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Preface

This book is intended to help students to understand the
elementary mathematics involved in map making. Such
students may know very little mathematics and its notation,
or they may be quite competent but ignorant of some
requisite topics no longer treated in secondary school
syllabuses, or they may simply require to brush up previous
knowledge.

The first five chapters adopt an elementary approach in
which no previous knowledge of the subject is assumed: the
text then progresses to give the student a sufficient level of
understanding to cope with most topics confronting the
map maker, and finally it seeks to lead readers to a level of
understanding which will enable them to make full use of
the wide range of more traditional textbooks available on
the market and to understand the various articles to be
found in technical journals.

The assumption is made that the reader is already
motivated and is prepared to work hard to carry out the
exercises suggested. There are no quirky examples to test
the reader’s abstract reasoning powers, such as one finds
in traditional text books and examination questions. If the
concept is relevant, it is explained. A large number of



worked exercises is given for the reader to perform as they
arise.The experience so gained is vital for an understanding
of the next stage in the argument. To provide some means
of self testing, lists of keywords and formulae are given at
the end of each chapter.

It is assumed that a hand calculator is available. Access
to computer spreadsheets, though encouraged, is not
essential, except for the new Chapter 13 where it is
impracticable to carry out all but the simplest of
calculations by hand. Even spreadsheets have their
limitations here. Algorithmic forms of formulae are
discussed, and computer applications are never far from
sight.

The selection of topics and the level of treatment have
been severely restricted to contain the size of the book
within reasonable limits, and to avoid confusing the
beginner with too much detail. It is also hoped that some
readers may become so keen on mathematics that they will
be able to cope with the rigour required by more advanced
texts, some of which are listed in the reference section.

The material is arranged with careful cross-references.
Initially basic mathematical topics and concepts are
presented in a problem-oriented manner: that is, in the
logical sequence which arises in dealing with the making of
a map or other graphic product, such as a three-
dimensional visualisation. In this way it is hoped to make
clear the purposes and relevance of each topic, and to
maintain the interest of the reader. To assist the
visualisation of three-dimensional problems, the use of
paper or other models is strongly advocated, because
experience shows them to be effective with beginners.
Strangely enough, once the ability to visualise three-



dimensional objects has been acquired, physical models are
no longer required and conventional drawings serve
adequately.

Where possible the mathematical notation used in the
book follows that of the pamphlet, Formulae for Advanced

Mathematics with Statistical Tables published by the
Cambridge University Press for the Schools Mathematics
Project.

References listed at the end of the book are those I have
found useful. Because texts for further reading are
continually appearing, I feel it would be invidious to select
some to the exclusion of others. Current teachers will be
more competent to do this.

Arthur Allan
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How to use this book

The beginner is invited to read Chapters 1 to 5 in strict
order, and to carry out the exercises also in strict order,
before moving on to a new topic. A small calculator is
required for most exercises. At the end of each chapter a
list of key words is given so that the reader can reflect on
their meanings to see if they are properly understood
before proceeding further. If in doubt at any stage return to
the text and repeat the work. A list of formulae is also
given, in development order, at the end of each chapter.
These formulae are all recast as an index at the back of the
book, with the order changed to suit ready access to the
text. Many users will use this mode of entry if the book is to
serve as a refresher course.

Key paragraphs are numbered in sequence for cross-
reference. Each exercise is numbered within these main
paragraphs and indicated by the graphic shown below. A
complete reference to an exercise requires both numbers,
for example. 4.6 Exercise 6.

All key equations and formulae are numbered within
braces uniquely throughout the book. Thus, formula 6 of
Chapter 1 is labelled (1.6).



References are given towards the end of the book. An
appendix of useful information is located also at the end of
the book together with the index of formulae and the word
index.

indicates an exercise to be undertaken

Common mathematical operators

+ addition or plus 2 + 3 = 5
– subtraction or minus 5 – 3 = 2
± plus or minus 5 ± 3 = 8 or 2
× or *
or .

multiplication 1 × 2 × 3 = 1 * 2 * 3 = 1. 2. 3 = 6

÷ or / division 6 ÷ 2 = 6/2 = 3
1/x reciprocal 1/2 = 0.5

|x| modulus of x = positive value of x: |–3| = 3

first differential of y with respect to x

second differential of y with respect to x

partial differential of y with respect to x

∫ integral (see integration)
∑ sum of
∑n sum of first n integers (whole numbers) = 1 + 2 +

3 ... n

xn or x x to the power n 23 = 2.2.2 = 8



ˆ n
x0 = 1 by definition

√x square root of x √4 = 2
√–1 not defined in ordinary arithmetic, but usefully

denoted by i, then i2 = –1
( ) braces
{ } [ ] brackets (curly) (square)
3! factorial three 3! = 3 × 2 × 1 = 6
n! factorial n n! = n(n – 1)(n – 2) ... (3)(2)(1)

Common mathematical symbols

< less than 2 < 3
> greater than 3 > 2
= equal to 2 = 2
≠ not equal to 2 ≠ 3
≤ less than or equal to x ≤ 5
≥ greater than or equal to x ≥ 5
≈ or approximately equal to 3.1 ≈ 3
Ã or

∠A

angle A

∞ infinity
δx small change or increment (increase) in x δx =

0.02
Δx large change or increment (increase) in x Δx = 2



ΔABC triangle ABC
∂ del (see partial differentiation)
A matrix

AT transposed matrix

A–1 inverted matrix

x vector

Note on common usage

The Roman and Greek alphabets are both used in
mathematics. Coefficients and constants are usually
represented by small letters (lower case letters) taken from
the beginning of the alphabet. As a rule, those letters
coming towards the end of the alphabet are used for
variables or parameters and are printed in italic or sloping
form. Capital letters (upper case letters) are normally used
to describe points or matrices. Matrices and vectors are
always printed in heavy type, thus A or u, or if written by
hand, they should be underlined.

Depending on circumstances, these general rules will be
broken or appear to be broken. For example, the
coefficients of linear equations can be either variables or
constants according to circumstances. We encourage the
reader always to question which entities are constants and
which are variables irrespective of the notation used. For
example in the triangle ABC, the sides a, b, and c and
angles A, B C are often used as variables in surveying
because they are measured quantities, and the letters x, y



and z are required for the coordinates of points derived
from these measurements.

α alpha

β beta

γ gamma

δ delta

ε epsilon

ζ zeta

η eta

θ theta

ι iota

κ kappa

λ lambda

μ mu

ν nu

ξ xi

ο omicron

π pi

ρ rho

σ sigma

τ tau

υ upsilon

ϕ phi



χ chi

ψ psi

ω omega

The Greek alphabet-UPPER CASE

A ALPHA

B BETA

Γ GAMMA

Δ DELTA

E EPSILON

Z ZETA

E ETA

Θ THETA

I IOTA

K KAPPA

Λ LAMBDA

M MU

N NU

Ξ XI

O OMICRON

Π PI

P RHO

Σ SIGMA



T TAU

Y UPSILON

Φ PHI

X CHI

Ψ PSI

Ω OMEGA



Chapter 1 
Numbers and Calculation

1.1     The language of mathematics

In mathematics, technical or specialised words are used
which have to be learned so that ideas can be expressed
easily. Problems can arise with the study of maths if the
student does not absorb all the new meanings quickly
enough. As with a foreign language, the vocabulary must
be learned somehow, preferably by repeated use in
practice. In this book, the first time such words are
introduced they are in italics.

There is a further problem with jargon. In mathematics
quite ordinary words are given special meanings. For
example the word normal is given the special meaning ‘at
right angles to’, or ‘perpendicular to’. After a while the
particular meaning of a word should appear from the
context in which it is used. For example adjacent edges of
this sheet of paper are normal to each other. Opposite
edges are parallel to each other because they do not meet.

Mathematical modelling



We start by considering what happens when we look at a
solid object, such as the room we sit in, or when we look at
a drawing or map we wish to make of it. Assuming that the
room we sit in is a rectangular box, how does it appear to
us? What we see is a perspective view of the room and its
contents. How does the rectangular sheet of paper appear
to our eyes? If we hold the paper straight in front of us, it
looks like a rectangle, i.e. its opposite sides are parallel to
and equal to each other, and adjacent sides are
perpendicular to each other.

If we place the paper on the table below our eyes, it no
longer looks like a rectangle. Opposite sides no longer look
parallel, and adjacent ones do not appear perpendicular to
each other. What we see is a projected view of the
rectangle. An image of the sheet of paper is projected on to
the retina of our eyes. In a similar way, a photograph or
television scene is a projected view of the scene we wish to
view.

Look again at the room; the floor, the ceiling, and walls,
all appear as projected views. If we use each eye
separately, these views jump about slightly. Using both
eyes enables us to see stereoscopically or in genuine three
dimensions. Look with only one eye open and verify that
the three-dimensional effect vanishes; all we see is a single
perspective view of the room without depth.

As will be seen later, many of these effects can be
explained by considering straight lines, or rays, or vectors,

which are capable of mathematical treatment and
calculation in a computer: a mathematical model is created
for this to be done. For example, in this book you will be
shown how to create a stereoscopic (three-dimensional)



picture, such as we see in popular ‘Magic Books’, as well as
the more traditional processes used in map construction
and surveying.

1.2     Numbers and your calculator

The ability to count is essential to any civilisation and to
scientific development. Historically many systems of
counting were evolved to suit the needs of an emergent
civilisation. The system we use today is based on early
Arabic ideas with a zero and nine other symbols 1 to 9.
Because the Romans had no concept of zero, they found
multiplication and division almost impossible. The concept
of zero to indicate multiples of the number base is vital. We
are accustomed to use the number base of ten in everyday
work. Other bases, such as two (binary) or sixteen
(hexadecimal) are used by computers. We deal only with
the base of ten. There are two kinds of number in use
today, the integer and the real number.

In the following sections we will explain some of the
arithmetic functions which arise in map making. They may
be performed on a hand calculator or computer system,
such as a spread sheet, or high level language. These are

addition + subtraction – multiplication ×
*

division ÷
/

exponent
forms

integers 5 real numbers
1.23

truncation

rounding significance powers 43 log and
10x



ln and ex square roots reciprocals 1/x braces { }

brackets ( ) [
]

stores K in/K
out

change sign ± factorials
x!

It is assumed that you have a hand calculator available.
This calculator should have a memory M+, should
preferably have six stores, the forward trigonometrical
functions, sin, cos, tan, and their inverses sin–1, cos–1, tan–1,
and polar to rectangular keys R–P and P–R. Other functions
are usually supplied. Some of these functions will be
explained in this chapter; others will be left until later.

Before reading any further you should be sure that you
can add (+), subtract (–), multiply (×), and divide (÷) with
your calculator. These symbols such as (+) are called
mathematical operators which tell us what to do with the
numbers, in this case to add them together.

The brace { }, or pair of square brackets [ ] or
parentheses ( ), are also operators used to group numbers
together. They are always used in pairs. Loosely they are
all just referred to as ‘brackets’. For example in addition

(2 + 3) + 7

The brackets indicate that we add the numbers within
them, then add 7 to the result. Or again we might have

2 + (3 + 7) or 2 + 3 + 7

In these cases the results are all identical using the ‘ + ‘
operator. When using the ‘–’ operator, more care is needed.
Consider the operation



(2 – 3) –7 = 2 – 3 – 7 = –8

2 – (3 – 7) = 2 – (–4) = 2 + 4 = 6

But

This is because the negative sign outside the brackets
applies to all numbers inside them. Also in the case of
multiplication the position of the brackets alters the result:
for

(2 + 3) × 7 = 5 × 7 = 35 while 2 × (3 + 7) = 2 × 10 = 20

The general rule is that

brackets and multiplication are acted upon first

Thus, using the ‘×’ operator, the results differ. This also
applies to the ‘÷’ operator.

 
Exercise 1 Show that

(1 + 3) ÷ 2 = 2 and 1 + (3 ÷ 2) = 2.5

 
Exercise 2 Evaluate the following

The calculation stages are: carrying out operations from
inside in order, as follows:

2 + [(8) × 2 + (6)] × 6 
2 + [16 + 6] × 6 

2 + [22] × 6 
2 + 132 

134



If your calculator is provided with brackets and braces, you
can do this sum in the order expressed in line (1.1)
pressing each number and operator in turn from left to
right.

Normally the ‘x’ signs are omitted from such an
expression, but don’t forget them when calculating.

 
Exercise 3 Evaluate the following

(((1+2) 5 + 3) 5 + 4) 5 + 1

You will key in

1 + (((1 + 2) × 5 + 3) × 5 + 4) × 5 = 
471

Notice that there is always the same number of brackets
facing inwards as there is facing outwards.

 
Exercise 4 Evaluate the above expression in separate
stages.

(((1 + 2) × 5 + 3) × 5 + 4) × 5 + 1 
((3 × 5 + 3) × 5 + 4) × 5 + 1 

(18 × 5 + 4) × 5 + 1 
94 × 5 + 1 

471

 
Exercise 5 Show that, when 

(((1 + 2) a + 3) a + 4) a + 1 = 1.944

The sequence of key strokes is



(((1 + 2) ÷ 5 + 3) ÷ 5 + 4) ÷ 5 + 1 = 1.944

So the brackets matter for some operations but not for
others. We shall see later, when dealing with matrices, that
the order in which the operations is done can also be
important.

 
Exercise 6 Verify that

123 456 789 + 987 654 321 = 1 111 111 110

Notice that we display these large numbers in groups of
three to make them easier to read. In calculations,
however, no spaces should be left between digits.

 
Exercise 7 Verify that

987 654 321 – 123 456 789 = 864 197 532

that

987 654 321 ÷ 123 456 789 = 8.000 000 073

and that

987 654 321 × 123 456 789 = 1.219 326 311 × 1017.

The last number is so large that it cannot all be displayed
on the calculator directly. The method is to convert it to the
exponent form as explained next.

1.3     Numbers in exponent form

It is often convenient to express a very large number, such
as the nine-digit number 123 000 000, in exponent form
such as



123 × 106

This means 123 × 1 000 000.
The number 1 000 000 = 10 × 10 × 10 × 10 × 10 × 10 is

expressed as 106. Similarly a small number such as 0.000
000 123 can be written as

0.123 × 10–6

in which the symbol 10–6, means 1/1 000 000. This
exponent method allows you to concentrate on significant

figures separately from the order of magnitude or size of
the final answer.

 
Exercise 1 Multiply 2 000 000 by 0.000 003. Expressing
each number in exponent form we have

2 × 106 × 3 × 10–6 = 2 × 3 × 106/106 = 6

Most calculators have a key to convert a number to
exponent form automatically. (In some it is labelled ENG).
Most calculators give the power of ten, called the index, in
groups of three, i.e. as

103, 106, 109, and 10–3, 10–6, 10–9 and so on.

 
Exercise 2 Verify that the exponent forms of the following
numbers are respectively

123 = 123 × 100, 1 234 = 1.234 × 103, 12 345 = 12.345 ×
103.

To save space, only the powers are given in a window. An
example of the display is



2 03 or 2 –03

To obtain the magnitude of an answer, in powers of ten, we
add or subtract the indices separately from the exponents.

 
Exercise 3 Calculate the following

2 × 0.005 × 0.000 007

Expressing the numbers in exponent form we have

2 × 5 × 10–3 × 7 × 10–6 and re-ordering we have 
2 × 5 × 7 × 10–3 × 10–6 = 70 × 10–9 = 7 × 10–8

Normally the result is left in this form, but it can be written
as a decimal as

0.000 000 07

1.4     Integers: sequence and series

An integer is a whole number. For example, the following is
a sequence of the first five integers

1, 2, 3, 4, 5

It is called a sequence because it gives the integers in some
order. A different sequence of the same digits is

5, 4, 3, 2, 1

A series shows a relationship between numbers of a
sequence, such as their sum

1 + 2 + 3 + 4 + 5 = 15

The order in which the numbers appear does not matter
because



2 + 1 + 5 + 3 + 4 = 15

This means that the first five integers have to be added
together, using the notation for addition (+). In computers,
integers are treated differently from the next type of
numbers we will describe.

1.5     Real or decimal numbers

The idea of dividing numbers into decimal fractions allows
us to deal with another type of number, the real number.

For example 2.3 means an integer 2 plus three tenths of 1.
Computers handle such numbers differently from integers.
The number of decimal places handled depends on the
computer and the number of places printed or displayed
can often be chosen by the user.

 
Exercise 1 Divide 6 by 3. We write this as

all giving the integer 2 as answer.

 
Exercise 2 Divide 7 by 3.

7/3 = 2.333 333 33... in decimals 
= 2 + 0.333 333 33.

The result can be expressed as an integer 2 plus a fraction

 that is as 2 . Computer calculations almost always
express numbers in the decimal form.



1.6     Significant figures

If a real number is very large say

123 000 000

we may ask if the zeros are really significant, other than to
indicate the very large number. For example a similar
number might be

123 124 333

In terms of the problem does the last digit ‘3’ have real
meaning, or is it just thrown up by the calculation? It is
important to ask which digits are actually significant. If we
know from theory that a number is significant to four digits
only, it is misleading to quote it to nine significant figures
and it should be written as

123 100 000

It can be argued rightly that no harm is done if more
figures are carried in a calculation than are significant.
However, the question of significance should certainly be
considered when giving the end result of a calculation. The
problem of accuracy in calculations is quite complicated.
Also, when we use arithmetic examples to explain
mathematical theory there is sometimes a small
discrepancy from theory due to rounding errors. The map
maker also has to be careful to distinguish between
numbers which are exact, such as coefficients given by
theory, and numbers which arise from measurements,
which can never be exact.

 
Exercise 1 Suppose the sides of a rectangle are measured



on a map to be 23 mm and 45 mm. The area of the
rectangle is then 23 × 45 = 1035 mm2. If the measurements
are uncertain to a millimetre and we had obtained 22 mm
for the short side instead of 23, the result would have been
22 × 45 = 990 mm2. Thus the result is only good to two
significant figures if one side is also only good to two
significant figures, and it might be safer to quote the
answer as 1000 mm2, or as 1035 ± 45 mm2, or as a value
lying in the range 990 to 1080 mm2.

1.7     Truncated and rounded

numbers

Numbers have to be cut short or truncated when quoting
final results. For example a number such as 1.236 567 mm2

for the area of a field measured from a map would be
truncated to two decimal places or three significant figures
as 1.23 or rounded up to 1.24. The figure 1.234 567 would
be rounded down to 1.23. Computers do not automatically
round numbers; they only truncate them. If rounding is
required a short program segment, or algorithm, has to be
used to do so.

 
Exercise 1 Devise a small algorithm to round up a number
to two decimal places. An algorithm is the way a problem is
set out for calculation. In this case, suppose the number is
1.236 567 which has to be rounded to two decimal places.
If we add 0.005 to the number then truncate it we obtain
the required result. The process works this way



1.236 567 + 0.005 = 1.241 567 which truncates to 1.24 
1.234 567 + 0.005 = 1.239 567 which truncates to 1.23

Notice that the 5 is first added one digit to the right of the
last place of decimals required, and then the number is
truncated. This procedure is called a rounding algorithm.

Normally this process is only used when printing out the
final result of a computation.

1.8     Operators and stores

It has been assumed that the four basic operators of
arithmetic are understood. The plus symbol ‘+’ for addition,
minus ‘–’ for subtraction, the diagonal cross ‘×’ for
multiplication, and the quotient symbol ‘÷’ for division.

In most computer languages not all of these are
convenient. For multiplication a star or asterisk is used
instead of the × which can easily be confused with the third
last letter of the alphabet ‘x’. For example 3 times 4 is
written as

3 * 4

Also the division sign (÷) is often replaced by the slash / (or
solidus) so we write

3 divided by 4 as 3/4

It is very useful for your calculator to have at least six
stores. A number can be placed in each of these for further
use. This saves keying in a number more than once (if the
same number is going to be used in many calculations).
Arrangements vary from calculator to calculator. One
common system is labelled K in and K out. The six store
locations are numbered 1 to 6. Thus if we key in



‘123 K in 1’ the number in store 1 is 123

To recall this number to the display we key

‘K out 1’

The store locations can be used as a kind of program to
carry out arithmetic operations.

 
Exercise 1 Multiply 123 by 321 using stores 1 and 3. The
sequence of operations is as follows:

key in ‘123’ → press ‘K in 1’ → key in ‘321’ → press ‘K in 3’ 
→ press ‘K out 1 × K out 3 = ’

and the result is displayed as 39 483. If now we want to add
these numbers, all we need do is use the stores again and
press

‘K out 1 + K out 3 = ’

giving the answer 444. Thus varied calculations can be
carried out using the stores without re-keying the numbers
each time.

 
Exercise 2 Using stores 1 and 3 again, divide 123 by 321,
add 123 to 321, multiply 123 by itself and add 321.

(The last sequence is ‘K out 1 × K out 1 + K out 3 =’ 15
450.)

It is important to keep a record of which number is in
which store for further calculations. Also remember to
check that the correct numbers have been keyed in by



reading the displays back before any other operations are
carried out.

1.9     Reciprocals

The number 1/30 is called the reciprocal of 30, 1/4 is the
reciprocal of 4 and so on. Thus 1/x is the reciprocal of any
number called x. To calculate a result we key in a number
which becomes the x of the expression. Most calculators
have a reciprocal key.

 
Exercise 1 Verify that the reciprocals of 30 and 4 are
respectively 0.033 33 etc. and 0.25. Note these can be
calculated directly using 1 ÷ 30 and 1 ÷ 4. The benefit of
the reciprocal key is debatable.

1.10   Powers

When a number is multiplied by itself it is said to be
squared or raised to the power of two. Thus two squared is
written 22, two to the power often is 210. The power 10 etc.
is called the index. (For more information about indices see
Section 1.12)

Most calculators have a key to square numbers and some
have a key to raise a number x to any power (The xy key).
However we shall do this calculation a different way to
explain a general principle. To raise a number to any power
we need to use the keys called log or ln and their reverse
keys 10x and ex. These keys use logarithms and the
exponential series which will be explained in Sections 1.14



and 1.15. However their use is quite easy. (The reader may

prefer to read Sections 1.11 to 1.14 before carrying out

these simple exercises.)

 
Exercise 1 Raise 4 to the power of 3. Answer 43 = 64.
There are three ways of working out the result:

(1) multiply directly 4 × 4 × 4 = 64.
(2) use the log key (see 1.12)–the steps are
   key 4 ; log; × 3 = ; 10x ; = 64
(3) use the ln key-the steps are
   key 4 ; ln ; × 3 = ; ex; = 64

Note: some calculators will not give 64 exactly.

 
Exercise 2 Find the number whose cube is 64, i.e. find the
cube root of 64. Put another way, if x3 = 64 what is x?
Although we could use the xy key we will again use the log

or ln keys. The steps with these keys are

key 64; log; ÷ 3 = ; 10x = 4 
key 64 ; ln ; ÷ 3 = ; ex = 4

This use of the log and 10* or ln and ex keys clearly gives a
very general way of working out problems with powers.

 
Exercise 3 Find the square root of the number 123 201.
This means we have to find the number which multiplied by
itself equals 123 201. Using the log or ln keys as in the
previous exercise we find

123 2011/2 = √123 201 = 351



The check is that

351 × 351 = 3512 = 123 201

Most calculators have a square root key ‘√’ which can be
used directly, and computer languages have SQRT function
for the same purpose. However, because the log or ln keys
can handle almost any problem with roots and powers, they
are much more generally useful.

 
Exercise 4 Use the log key to find 123 201–1/2.

The notation –1/2 means that we wish to find 1/123 2011/2

or 

Using the log key the stages are

key 123 201 : log: change sign (+/–): ÷ 2 = : 10x : = 2.849
003 × 10–3.

The answer is the expected 1/351 in exponent form.

Thus the log key will deal with negative indices. It can also
handle fractional indices.

 
Exercise 5 Find 20.2345. It is difficult to think why such a
sum would be required. What does the 0.2345 th root of 2
mean? Such expressions arise in some conical map
projections. They are calculated in the same way as before.
The stages are

key in 2 : log: × 0.2345 = : 10x = 1.176 498 923

1.11   Factorials



Most calculators have a key marked ‘x!’ This is the factorial
key which performs the following operation

x! = 1 × 2 × 3 × 4 × 5 ...x

 
Exercise 1 Calculate ‘factorial 5’ or 5!

5! = 1 × 2 × 3 × 4 × 5 = 120

1.12   Indices in multiplication

In 1.10 we showed how a calculator can be used to operate
on expressions raised to powers, such as

43 = 64

We now discuss the matter of indices more generally. A
simple index indicates how many times a number has to be
multiplied by itself, for example

43 means (4 × 4 × 4) = 64

The rule is that for multiplication we add the indices thus

41 × 41 × 41 means 41 + 1 + 1 = 43

The same rule applies to fractional indices such as

8 × 8 = 641/2 × 641/2 = 641/2 + 1/2 = 641 = 64

For general indices n and m the same addition rule applies

 
Exercise 1 Verify that

23 × 29 = 4096



We have

23 × 29 = 8 × 512 =4096

but using the index addition rule

23 × 29 = 23 + 9 = 212 = 4096

1.13   Indices in division

If we define

we can treat division as part of multiplication. For example

Obviously

 
Exercise 1 Simplify the following expression and verify the
result by calculation

162 × 83.

Converting to powers of 2 we have

162 × 83 = (24)2 × (23)3 = 28 × 29 = 217

To check by calculation consider the original expression
162 × 83.



This can be calculated from

(exp(2 × ln 16)) × (exp(3 × ln 8)) = 256 × 512 = 131 072

The simplified expression 217 can be calculated from

exp(17 × ln 2) = 131 072

We shall now explain the theory of logarithms.

1.14   Logarithms

Before the invention of logarithms by John Napier in the
sixteenth century, all multiplications had to be carried out
longhand. Logarithms were used by scientists and
engineers for routine calculations for almost five centuries
until mechanical, and later electronic, computers were
invented. Logarithms are still important as mathematical
operators in many branches of science, and in the
derivation of mathematical functions themselves.

A logarithm is defined to enable the operations of
multiplication and division to be made by the addition and
subtraction of indices. We define:

The logarithm of a number N is the power to which

the base B must be raised to give the number.

That is if

logBN = y then By = N BlogN = N

This is really a very subtle idea. Its use is obvious from the
following. Suppose we have to multiply two numbers N and
M together. Then, using the addition of indices rule,

NM = BlogN BlogM = B(logN + logM)



therefore

Thus we can carry out multiplication by the addition of
logarithms. Of course the logarithms have first to be
calculated:a very tedious task. However, once tables of
logarithms had been devised, they could be used for all
further calculations. Traditionally two bases were used:

a base of B = 2.7 (approximately) for natural logarithms

denoted by ln 
a base of B = 10 for common logarithms denoted by log

Today we are only concerned with natural logarithms
although common logarithms are available on most
calculators. See Section 1.15 for more information about
Napier’s base number B = e.

 
Exercise 1 Using the common logarithms (log and 10x keys
of a calculator) show that 234 × 567 = 132 678.

log 234 = 2.369 216 
log 567 = 2.753 583 

log 234 + log 567 = 5.122 799 (= x) 
10x (105,122 799) = 132 678

The number ‘2’ before the decimals of the logarithm of 234
just indicates that

234 = 100 × 2.34 = 102 × 2.34

Similarly the ‘5’ in the log of 132 678 indicates that

132 678 = 105 × 1.326 78



 
Exercise 2 Using the natural logarithms (ln and e* keys of
a calculator) show that234 × 567=132 678.

ln 234 = 5.455 321 
ln 567 = 6.340 359 

ln 234 + ln 567 = 11.795 680 
ex = 132 678

Thus the same answer is obtained with either base B = e or
B = 10.

1.15   The base of natural logarithms

e

Napier selected a special base, the natural number e, for
his logarithms. This number is obtained by putting x = 1 in
the exponential series

where 3! = 3 × 2 × 1 is called ‘factorial 3’ (see Section
1.11).

Then

This may seem a strange choice of base. Its usefulness is
apparent when the differentiation of ex and ln x are
considered in Section 9.13.

 
Exercise 1 Calculate e to four decimal places using the



first five terms of the series. Then

The error is 0.01.

Note: The error is the difference between the true value
and the accepted value.

1.16   Division using logarithms

Suppose we have to divide number N by M. Then, using the
subtraction of indices

therefore

Thus we can carry out division by the subtraction of
logarithms.

 
Exercise 1 Using the natural logarithms show that
567/234 = 2.423 077

ln 234 = 5.455 321 
ln 567 = 6.340 359 

ln 567 – ln 234 = 0.885 038 (= x) 
ex = 2.423 077



1.17   Powers by logarithms

The ability to raise numbers to powers by logarithms is
most useful. Consider the number

N = Pk

By definition

logB P = y and By = P

then

N = Pk = (By)k = Bky

then

logBN = ky = k logBP

therefore

 
Exercise 1 Find the cube root of 2197. Let

R = 2197

then

R1,3 = 21971/3.

Taking logs

1.18   Arithmetic progression



An arithmetic progression (AP) is a series in which each
successive term differs from adjacent terms by a fixed
amount. For example

S = 1 + 2 + 3 + 4 + 5 to n terms

is an arithmetic progression because each term differs from
adjacent ones by 1.

 
Exercise 1 Is the following series an arithmetic
progression?

1 + 3 + 5 + 7 + ...

Test for the common difference (d)

3 – 1 = 2 5 – 3 = 2 7 – 5 = 2

Therefore it is an arithmetic progression (AP), d = 2. 
We are generally interested in the sum to n terms of an AP
such as

S = 1 + 2 + 3 + 4 + 5 to n terms

In general we can express the sum of an AP to n terms in
the form

if we write this again backwards we have

then, summing the two series, we have



Then the sum to n terms of the series

S = 1 + 2 + 3 + 4 + 5 to n terms

where a = 1 and d = 1 is

 
Exercise 2 Find the sum of the numbers from 1 to 10. Here
n = 10 so

S = 5(11) = 55

which can be verified by direct addition.

1.19   Polynomials

A mathematical expression which contains several terms
separated by the + or – operators is called a polynomial.

For example

x + y + z

is a polynomial whilst

xyz

is a monomial expression because it has only one term.
Usually a polynomial takes the form of increasing powers of
a variable such as x, for example as



P = a + bx + cx2 + dx3 + ...

where a, b are coefficients, or numbers supplied by theory.

For example P might be

P = 1 + 2x + 3x2 + 4x3 + ...

 
Exercise 1 Calculate P to four terms when x = 2 and

P = 1 + 2x + 3x2 + 4x3 + ...

We have

P = 1 + 2(2) + 3(4) + 4(8) 
P = 1 + 4 + 12 + 32 = 49

A neater way to calculate P is to recast the polynomial as
an algorithm in nested form. The expression

P = a + bx + cx2 + dx3 + ex4 + ...

can be rearranged to

P = (((ex + d)x + c)x + b)x + a

which is much easier to calculate.

 
Exercise 2 Calculate P, by the nested method, to four
terms when x = 2 and

P = 1 + 2x + 3x2 + 4x3 + ...

We have

P = ((4x + 3)x + 2)x + 1 
P = ((4(2) + 3)(2) + 2)(2) + 1 = 49



1.20   Sum of the squares of the first

n integers

Another important formula used in error theory is that for
the sum of the squares of the first n whole numbers
(integers), i.e.

 
Exercise 1 Verify that

and also

S = 1 + 4 + 9 + 16 = 30

Derivation of the formula

We derive this result by a general method using a
polynomial. Let

S = a + bn + cn2 + dn3

We assume a third-order polynomial because we know that
the sum of the integers is of second order. In any case if
our assumption is wrong we will be unable to find the
answer!



The equations (A) to (D) may be solved by any elimination
procedure giving the solutions

However it is instructive to employ a regular procedure as
follows. Casting these equations in matrix form (see
Chapter 7) gives

The solution may be obtained by elimination operating on
rows. Subtracting row 1 from rows 1 and 2, row 2 from row
3, and row 3 from row 4, gives the new matrix

In the new matrix, subtracting row 2 from rows 2 and 3 and
row 3 from row 4 gives another matrix



Finally subtracting row 3 from row 4 gives an equation in d
only

Substituting backwards and up through the decomposed
matrices gives the complete solution

This solution can be verified by substitution. Finally we
obtain the formula from

1.21   Ratios

In mathematics we often have to deal with ratios, for
example the sides of similar triangles. Such a case might be

or in typical numbers



A(1) is called the numerator and B(5) the denominator of
the first ratio or fraction. To deal with A, B, etc. separately
we may put the ratio equal to a factor K such that

Then

A – BK and D = EK

We use this to show that linear combinations of
corresponding numerators and denominators are possible.
For example

We see this is true because

and

Another useful device to equate numerators and
denominator is to put

Then we can say that

AP = D and BP = E

For example we can see that if



then

P = 4 and 2P = 8

 
Exercise 1 (Miss this exercise until you have understood
Chapter 3.) Suppose we have no table of tangents and only
values of sin x are available, use the above device to
evaluate x where

We can put

therefore

But

so

and



1.22   Inequalities

In mathematical logic inequalities such as

‘A is less than B’ and ‘B is greater than C’

are written in the form

A < B B > C

It follows from these inequalities that

B > A C < B

Again consider the fractions: if

then inverting both sides we have

 
Exercise 1 If A = 2, B = 3, D = 3, E = 4, clearly

Consider the inequality

Multiplying both sides by 12 we have



8 < 9

Inverting, we have

Multiplying again by 12 we have

therefore

1.23   The binomial theorem

One of the most important operations in ordinary
arithmetic, and ordinary algebra, is the ability to expand a
multiple expression in terms of its factors, for example,
how to deal with an expression like

(a + b) and (c + d) are said to be factors of P. For example,
because

4 = 2 × 2

the factors of 4 are 2 and 2. Other factors of 4 are 1 and 4.
Consider the expression (1.11) again

P = (a + b)(c + d)

We can open out the brackets as follows

P = (a + b)(c + d) = a(c + d) + b(c + d) 
= ac + ad + bc + bd



The same rule applies to negative signs for

Q = (a – b)(c + d) 
= ac + ad – bc – bd

This expansion procedure can be generalised into a
multiple product of a two-termed, or binomial, expression
such as (a + b)n. The way this is done is by the binomial

theorem which is explained below.

 
Exercise 1 Evaluate the following expressions by
multiplying out their factors

P = (1 + 3)(6 + 2) and Q = (5 – 1)(3 + 5)

Multiplying out gives

P = 1 × 6 + 1 × 2 + 3 × 6 + 3 × 2 
= 6 + 2 + 18 + 6 

= 32

and again

Q = (5 – 1)(3 + 5) 
= 5 × 3 + 5 × 5 – 1 × 3 – 1 × 5 

= 15 + 25 – 3 – 5 
= 32

We see that these are correct because 4 × 8 = 32.

1.24   Pascal’s triangle

Consider the special case of (1.11) in which

Multiplying out gives



and similarly

Consider also the triple product

Multiplying out in two stages gives

 
Exercise 1 It is left as an exercise for the reader to show
that

If we examine the structure of the expressions (1.13),
(1.17) and (1.18) we see that the coefficients follow the
pattern produced by Pascal’s triangle,

1 
1 2 1 

1 3 3 1 
1 4 6 4 1

The pattern can be seen best from line 4. An inner term is
found by adding the two terms immediately above and to its
side: for example 4 = 1 + 3, 6 = 3 + 3, etc. Also the powers
of a and b must always add up to the same figure: for
example, in (1.17) the indices add to 3. Thus it would be



easy to write down the result requested in Exercise 1
without the tedium of multiplying out.

1.25   General case of binomial

theorem

It can be shown that the above process applies also to
indices which are not positive whole numbers. The
coefficients take the same pattern as in Pascal’s triangle
and the sum of the indices is always a fixed amount. The
general expression is of the form

The coefficients follow the rule that

Remember that factorial 3 = 3! = 1 × 2 × 3 = 6, etc.

 
Exercise 1 Verify the coefficients of (a + b)4 from the
above formula (1.20) and Pascal’s triangle. Here n = 4; 4!
= 24.



1.26   Special case of binomial series

A very common use of the binomial theorem is as follows.
Assuming |a| is greater than |b| (where |a| is the absolute
value of a, i.e. a if a is positive or negative) recast the
expression as

where 

Note: The symbol |x| means that we take the positive value
of x. This value is called the modulus of x. For example |-2|
= 2.

Applying the binomial theorem gives

For many purposes, only the first few terms of this series
are sufficient for approximate calculations. When x is small
it is often sufficient to make the approximation to



for

 
Exercise 4 What is the error in using the approximation
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Chapter 2 
Plane Geometry

2.1     Planes and straight lines

In this chapter, the elementary properties of important
geometrical entities are described and terminology is
explained. The number of items has been kept to the very
minimum, selection being restricted to those required in
map making and for an understanding of later topics in this
book.

We begin by looking at sheets of paper on which maps
are drawn and printed. For this purpose a sheet of paper is
laid flat on a table or drawing board. Thus we can say that
the paper lies in a plane. A sheet of paper can be rolled into
other shapes such as a cylinder and cone, folded into boxes
and complex shapes in the art of origami. For mapping
purposes we deal with the paper lying in a plane.

Formerly, many different sizes of paper were used for
drawing and printing maps. Examples of these were quarto,

foolscap, and elephant. One size bigger than elephant was
called double-elephant; and, believe it or not, the half

double-elephant size was not the same as an elephant!



There has to be some agreement about paper sizes so that
all maps fit together, so that printing machines are
constructed to suit them, and so that map storage drawers
are also made a convenient size. The accepted international
paper sizes, called the A series, will now be used to explain
some mathematical ideas.

Most people are familiar with the A4 size of paper used
for everyday office work, student note pads, etc. (The size
of paper used in this book is rather smaller than A4.) It will
help your understanding of the following text if you have a
sheet of A4 white paper ready to work some of the
exercises as we go along.

The first thing to note about any paper sheet is that it
forms a rectangle. A rectangle has its opposite sides
parallel and equal, and its diagonals are also equal. When
the sheet is held as in Figure 2.1 it is in a portrait position,
and in Figure 2.2, it is landscape, named after the way
artists use paper sheets for these two purposes.

 
Exercise 1 Measure the sides and diagonals of an A4 sheet
of paper, called ABCD, as in Figure 2.1. The results, in
millimetres (mm), may be something like the following

Figure 2.1



Figure 2.2

The reason that we do not have a perfect rectangle is due
to errors in the measurements, but see below for the
theoretically exact dimensions.

It is difficult to measure the diagonals directly with a 300
mm ruler. The first thing to do is to draw the diagonals in
pencil by finding the middle of the paper, say point O. This
can be done, without folding and creasing the paper, by
stretching a piece of thread from corner to corner, marking
a short pencil line section in each case. Once the centre has
been found, the diagonals can be drawn in two parts, and
the lines measured, also in two parts, in this case as 300 +
62.8 = 362.8 and 300 + 63.5 = 363.5.

It is particularly interesting to use a piece of thread for
this exercise, because the name straight line means
‘stretched linen thread’. It also shows that a straight line is
the shortest distance in free space between two points. In
practical work a point and a line are usually about 0.2 mm
thick so that they can be seen. Sometimes it is necessary to
think about the middle of these as having no thickness at
all. In surveying and map construction, the setting-out or
drawing of a precise grid is of fundamental importance.



 
Exercise 2 Show that the ratio AB/BC = 0.713 is
approximately the same as the ratio 0.5 × BC/AB = 0.701.

This means that, if the paper is folded in two, the
rectangle formed is almost the same shape as the original
but half its size. The smaller paper size is A5. In fact it
should be exactly the same shape. The way the A paper
sizes are devised follows a pattern. If the paper proportions
are chosen so that

when folded over, the sides will be in the same ratios
exactly. The A system of paper sizes begins with a sheet
exactly one square metre in area with sides in these
proportions, i.e. such that

Thus

therefore

The sheet of paper thus created is called AO size. Halving
and halving in sequence gives all the other A paper sizes:
A4 is



1.1892/4 = 0.2973 m by 0.8409/4 = 0.2102 m 
or 297.3 mm by 210.2 mm

2.2     Straight lines

Straight lines may be drawn mechanically by moving a
pencil against the straight edge of a ruler. To test for
straightness, the ruler can be reversed and another line
drawn to coincide with the first. If the ruler is curved, a gap
shows between the two lines which are also curved. It is
important in map drawing to make this test, even if a
computer plotter is used to draw the lines. In surveying, a
straight line can be obtained by viewing objects in line,
either with the unaided eye, or through a telescope. The
finest line drawn on most maps is 0.2 mm thick.

As already explained above, yet another way to create a
straight line is to pull a fine string tight. (Note: A light path
may bend due to refraction and a string can sag
appreciably due to gravitational force: effects which must
be considered in precise work, but are ignored here.)

The length of a segment of a line may be measured by
graduated scale or tape or laser beam or radio wave. For
precise cartographic work a steel straight edge

(manufactured for straightness) is used separately from the
scale (for length). In ordinary work these two features are
combined into a conventional ruler capable of measuring to
0.2 mm.

2.3     Intersecting, normal and

parallel lines



Two lines drawn on a flat piece of paper (a plane) so that
they cut each other are said to intersect at an angle, which
is measured in the plane of the paper. Generally there are
two such angles, an acute one such as B, and an obtuse one
such as A (see Figure 2.3). Notice that in the sexagesimal
system of angles (360° to the circle) we have

B = 180° – A

If the angles A and B are equal (see Figure 2.4), they must
both be right angles (or 90°). In this case the lines are said
to be orthogonal to each other, or one line is normal to the
other or at right angles to the other. If two lines in a plane
do not intersect, they are said to be parallel to each other.

Figure 2.3

Figure 2.4

2.4     Reference grid



A network of regularly spaced parallel and orthogonal lines
forms a grid. In surveying and mapping the accuracy of the
grid is vital to most operations. It is therefore important to
consider this in some detail both for its own sake and to
introduce some basic geometrical concepts.

It has always been possible to create a right angle by
simple methods and therefore to construct a grid. To
capture the spirit of this truth, the reader is invited to
perform the task of drawing a grid as outlined here using
only a ruler, pencil and sheet of paper A4 size.

Figure 2.5

Figure 2.6

Start by drawing two straight lines roughly diagonally
across the paper. Let them intersect at point O. From O

mark off four equal lines OA, OB, OC and OD as shown in
Figure 2.5, and join across the sides AB, BC etc. You have
now drawn a rectangle.



Check that opposite sides are equal to drawing tolerance
(0.2 mm) and that the diagonals AC and BD are also equal.
If they are not, repeat the task and try to see why the error
has crept in.

The opposite sides should also be parallel to each other.
Test this by sliding a set square against a ruler, as shown in
Figure 2.6.

In mathematics we can define that ABCD is a perfect
rectangle, in reality it will only be a close approximation to
one. We say that the perfect rectangle ABCD is a
mathematical model of the real thing which you have just
drawn. The differences between the two will be the subject
of statistical and error analysis. In practical surveying,
engineering, woodworking, etc. we have to decide on an
acceptable tolerance for the practical creation of the
rectangle. For example a wooden door is probably good to
about 5 mm, a tennis court to about 10 mm, the grid of a
map to about 0.2 mm.

Figure 2.7



The basic rectangle ABCD is now used to construct a grid,
as in Figure 2.7, say at 40 mm intervals. Point A is chosen
as the origin of the grid and AD and AB its axes. Along AD

and BC mark off points, a, b,... p, q at multiples of 40 mm
apart. Do this first by stepping along at 40 mm intervals
and see how the error accumulates! The correct way is to
use the ruler to mark off all distances from the origin, i.e.
at 40 mm, 80 mm and so on.

The lines ap, bq, etc. are all parallel and equally spaced.
Again from the base line AD mark off the points g, h, ... and
k, l on AB and DC and join the lines across to form the grid.
Except by accident, or prior calculation, the original
construction rectangle ABCD does not fit the edges of the
grid exactly. Usually the original rectangle, draw in pencil,
is erased and the final grid plotted in ink.

On a building or archaeological site, where the grid is
used to set out or measure the footings of the walls, the
grid intersections are marked by pegs or steel plates.
Computer and cartographic plotters use a mechanical
system of orthogonal rails to establish the grid quickly.
Sometimes these rails are incorrectly aligned and need to
be checked. Grids are used as the basis of a coordinate
system. See Chapter 4.

2.5     Parallelogram, rectangle,

square, and rhombus

Clearly knowledge of the geometry of the rectangle is
essential for surveying and mapping. Consider the
properties of the rectangle ABCD. Which of them are



sufficient to define it ? Is it sufficient to say that ‘opposite
sides are parallel’?

Figure 2.8

Figure 2.8 clearly shows that this is not so. Such a
definition defines only a parollelogram. The method used to
check the rectangle, by measuring its diagonals, gives a
sufficient property to define it. A rectangle is a

parallelogram whose diagonals are equal. A square is a
special case of a rectangle whose sides are equal. A

rhombus is a parallelogram whose sides are equal.

2.6     Pythagoras’s theorem for a

right angled triangle

The word ‘theorem’ is used in mathematics to describe
some rule obeyed by a class of similar things, in this case
the sides of a right angled triangle, such as ΔABC (Δ means
‘triangle’). The long side AC is called the hypotenuse. The
theorem of Pythagoras states that, in a right angled

triangle,

the square on the hypotenuse = the sum of the squares on
the other two sides

Applying the theorem to the Δ ABC this means that

AC2 = AB2 + BC2



The notation used here for the area of a square is AC2 = AC

times AC = AC. AC.

 
Exercise 1 Is the triangle whose sides are 3, 4, and 5 units
long a right angled triangle? Answer: ‘yes’, because

52= 32 + 42 i.e. 25 = 9 + 16

This gives an easy way to construct a right angle using a
tape or ruler.

 
Exercise 2 Which of the following triangles are right
angled? The three sides in each case are

(1) 6, 8, 10   (2) 5, 6, 7   (3) 2, 3, 9

The first is right angled, the second is not, and the third is
not a triangle at all. For three sides to form a triangle, the
sum of any two sides must be greater than the third which
is not so in the third example.

Figure 2.9



Figure 2.10

2.7     Proof of Pythagoras’s theorem

That Pythagoras’s theorem is true for the (3, 4, 5) triangle
may be seen by inspection of Figure 2.9. It can be seen that
AC2 = the area of the square formed on the hypotenuse. If
AC is measured in millimetres, the area is counted in units
of square millimetres, written as mm2. By inspection and
counting of the squares

AC2 = AB2 + BC2 = 25

Another notation is to name the sides after the angles
opposite them, in small (lower case) letters thus

b2 = c2 + a2

This demonstrates the theorem, but does not prove it. To
do so, consider any right angled triangle ABC as in Figure
2.10. The angles of the triangle are written in capital
letters (A, B, C), and the sides opposite them in lower case
letters (a, b, c). Sometimes if there is some doubt as to
which angle is meant, it is written in the full form such as



The point D is the foot of the perpendicular from B to AC.
By inspection we can see that

Thus the two triangles BDC and ABC are the same shape
but of different sizes. The two triangles are said to be
mathematically similar. Notice we list the points in the
correct order to indicate which angles in each triangle are
equal. Since these triangles are similar, the corresponding
sides differ by a constant scale factor, say k. Then we can
say that

If we wish to calculate k we do so from any of the ratios
such as

 
Exercise 1 Show that, for the triangle whose sides are c =
3, a = 4, b = 5,

k = 0.8

Then

BD = kc = 0.8 × 3 = 2.4   and   DC = 0.8 × 4 = 3.2

Verify these results by measurement.
In this theoretical discussion we do not need to know k.

However we may put



In Figure 2.10, the large square ACEF of side length b can
be divided into two rectangles whose areas are DC.b and
AD.b, therefore

In the same way by comparing similar triangles ADB and
ABC we have

area AD. b = c2

Finally by adding areas we have that

square ACEF = b2 = area DC.b + area AD.b = c2 + a2

so

This is Pythagoras’s theorem proved for any triangle ABC,
right angled at B.

 
Exercise 2 Write down the angles and sides of the triangle
PQR right angled at Q. Also write out Pythagoras’s theorem
for this triangle. Sides are p opposite P, q opposite Q and r
opposite R. Since Q is a right angle

q2 = p2 + r2

2.8     The circle

The circle is surprisingly important and useful in practical
life. Just look around your house to see how many circular
objects there are in it: plates, knobs; water pipes, bottles,
tin cans with circular sections; buttons, wheels of all kinds,



and so on. One reason for this popularity is that a circle is
easy to make, say on a lathe, or draw with a pair of
compasses. In science too, the circle is important. It is the
basis of goniometers (devices for measuring angles), it is
used to describe sections through a sphere, and is the basis
for much theory about the shape of curves. In surveying
and mapping the circle is second in importance only to the
straight line.Therefore it is right to make some effort to
understand the plane geometry of the circle. A further
treatment of the circle is given in section 10.3.

 
Exercise 1 Take a can from the kitchen, place its flat end
on a sheet of paper, and draw round it to give a circle, as in
Figure 2.11. Next, using your ruler, try to measure the
greatest distance across the circle, the line AB of Figure
2.11. The line AB is a diameter of the circle, approximately
76 mm for a typical can of beans. Draw other lines through
A to cut the circle in points C and D as shown. These lines
AC and AD are called chords of the circle ABC. You can see
by inspection or by measurement that the diameter of a
circle is the greatest chord that can be drawn to a circle.
Note that we are not really sure that AB is the longest
chord, only nearly so.



Figure 2.11

Figure 2.12

 
Exercise 2 Try the following better way to measure the
diameter of the circle or the can itself. Draw a line XY

touching the circle as shown in Figure 2.12. Such a line is
called a tangent to the circle. Using the set square, drop
two other tangents perpendicular to XY cutting it at S and
T. ST is of equal length to the diameter of the circle. In our
example the result was 76 mm. This technique for
measuring diameters is incorporated into surveying
instruments and can be used optically.

It is often very important to find the centre of the circle.
One way to do so is given in the next exercise.

 
Exercise 3 Find the mid points of the chords AC and AD of
Figure 2.11 by measuring with the ruler. Using a set
square draw other lines perpendicular to the original
chords passing through their mid points. These are shown
as broken lines in Figure 2.11. These broken lines meet at a
point, the centre O of the circle ABC.

 
Exercise 4 Measure the lines OA, OB, OC and OD. Our



results in millimetres were 38, 38, 37.5 and 37.5
respectively. Ideally they should all be equal to 38 mm, or
half the length of AB. A line such as OA is called a radius of
the circle. (The plural of radius is radii.) The radius is half
the length of the diameter. If we call the length of the
radius r and the diameter d we can express this connection
as an equation

Note that the equation (2.5) applies to all circles, not just
this one. The quantities r and d are often called parameters

of the circle because they are the key pieces of information
needed to describe the circle. Note also that only one
parameter, r or d, is needed because the other can be
found from it using equation (2.5). The parameter d is said
to be dependent on r, and vice versa.

Figure 2.13

Figure 2.14



Another simple way to draw a circle from a known point as
its centre is to use a pair of compasses (see Figure 2.13).

 
Exercise 5 With a pair of compasses, set the distance
between the pencil and needle to be 38 mm and draw
another circle. Clearly this way of drawing a circle is as
easy as the first, but has the advantages that it gives the
centre and radius straight away by design. Both these
problems arise in surveying and mapping. Sometimes we
need to find the parameters of a given circle such as an oil
tank, or alternatively create a circle, such as a circular
flower bed, from design parameters. The first method using
chords gives a way to solve the oil tank problem, and the
flower bed can be swung out using a piece of rope.

It should be noted that the above two ways of drawing a
circle are analogue techniques. They depend on some
mechanical device to do the drawing. The first uses another
circle which is just copied, and the other a fixed dimension
rotated about a point. The computer system, to be
described later, uses digital techniques.

 
Exercise 6 Stand a tin can with its round side on a sheet of
paper, mark a starting point, and roll it along a straight line
until the starting point is reached again (see Figure 2.14).
This transfers the distance round the circle (its
circumference) into a straight line whose length can be
measured. (Note: The rolling process needs care to avoid
slipping.) Measure the length of the line PQ. Now divide



the circumference c by the diameter d. From a typical set

of measurements the results were

236/76 = 3.11

You should obtain a result of about 3.14. No matter how
many circles we draw or of what size, this result is always
the same, namely

The Greek mathematicians, who first found this result, gave
to the constant the symbol π (pronounced pie but spelled
pi). Thus we have the important equation

Pi is so important that most calculators store its value
permanently in a special memory accessed by a key
labelled ‘π’. Our calculator gives pi to nine decimal places
as

3.141 592 654

 
Exercise 7 Show that pi is approximated by the following
ratios:

22/7 to three decimal places, and

355/113 to six decimal places.

 
Exercise 8 The circumference of a tree was found by tape
to be 3 metres. Verify that its radius is 0.477 m. (Note:

This assumes that the tree has a circular cross-section.)



Figure 2.15

2.9     Angles

Figure 2.15 shows an angle AOB subtended, by an arc AB

of length s, at the centre of a circle, radius r, whose centre
is at O. It is common practice to label an angle in one of
several ways.

It may be written as ‘angle AOB’ placing the middle
letter at the point from which the arms of the angle radiate.
Angles are considered positive when measured in a
clockwise manner. The angle BOA, on the other hand, is a
negative acute angle. It may also be considered as a
positive exterior angle. Thus it is important to label the
points in a consistent manner, especially when calculating
with a computer and to adopt a consistent convention.
Other forms of writing an angle are

Where there is no ambiguity, a single letter may be used to
represent an angle. Greek letters are often used (see page
xiii). For example, at a point A an angle might be denoted



by α (alpha), at B by β (beta) and at C by γ (gamma). The
other Greek letters commonly used to denote angles are

theta θ, phi ϕ and omega ω.

In Figure 2.15 we have denoted the angle at O by θ.
Angles are measured in a variety of units. First of all, one

complete revolution of the radius may be called one cycle.
Again, the whole circle may be divided equally into four
parts, called right angles, which are themselves further
divided in different ways.

2.10   Sexagesimal system

A common method is to divide a right angle into 90 parts or
degrees, written 90°. Each degree is then further divided
into 60 parts, or minutes of arc, written 60’; and finally
each minute of arc is divided into 60 parts or seconds of
arc, written as 60”.

 
Exercise 1 Verify that there are 324 000” in a right angle
and 1 296 000” in a whole circle of 360°.

 
Exercise 2 Show that an angle of 47° 22’ 45” is 47.379
167°. Most calculators have a special key to make this
conversion. However the full calculation is written as

47 + 22/60 + 45/3600 = 47 + 0.366 667 + 0.012 500 =
47.379 167

 
Exercise 3 Convert the angle 47.379 167° into degrees,



minutes and seconds, as follows.

47.379 167 – 47 = 0.379 167, 0.379 167 × 60’ = 22.75 002’ 
22.75 002 – 22 = 0.75 002, 0.75 002 × 60” = 45” to the

nearest second of arc.

2.11   Sexagesimal time system

You will have noticed that we used the words ‘seconds of
arc’ in the above explanation. This is because of another
way to divide up a whole circle: into units of time. The
scientific clock face is divided into twenty four parts, one
for each hour. Thus a right angle consists of six hours. If we
divide each hour into 60 minutes of time, written 60m, and
each minute into 60 seconds of time written 60s, these
minutes and seconds are not the same size as the minutes
and seconds of arc.

 
Exercise 1 Show that a minute of time is 15 times larger
than a minute of arc. This follows from the fact that 360/24
= 15. Verify also that a second of time is numerically fifteen
times larger than a second of arc. In surveying both units
are used.

2.12   Centesimal system

There is another way to divide up a right angle, into 100
parts, called gons, written g, which is now the standard
method on the continent of Europe. Each gon is divided
into 100 centigons, written c, and each centigon is divided
into 100 parts, written cc. This decimal system greatly



simplifies the arithmetic. (Note: Another name for the
‘gon’ is the ‘grad’.)

 
Exercise 1 An angle of 47.2245g = 47g, 22c ,45cc. Thus no
arithmetic is needed in a conversion.

2.13   Radian system

In mathematics however, instead of these arbitrary
systems, the unit of angle employed is the radian. This
quite simple concept can be explained as follows. Refer to
Figure 2.15. If the angle θ is such that the arc of the circle
AB = s is equal in length to the radius r, then θ is defined to
be one radian. Radians are sometimes called ‘circular
measures’. The reason for adopting this system of angular
units is to allow us to relate the angle at the centre of a
circle to the length of arc it subtends in a simple way.

 
Exercise 1 How many radians are there in a full circle?
Answer: two pi radians, or 2π radians, or approximately
6.28 rad. The size of an angle in radians is given by the
length of the circular arc divided by the radius, thus in this
case

angle = c/r = 2/πr/r = 2π

where c is the circumference. It might be thought that this
is a complicated way of dealing with angles, especially as
there is no exact number in a complete cycle. In
mathematics it is the simplest system, but in practical
measurement of angle it is not. Thus both methods are



needed. The degree and gon systems are used for
instruments, such as theodolites or protractors, and the
radian system in mathematics.

When angles are mentioned in mathematical formulae, the

unit of measurement is always the radian unless otherwise

stated.

 
Exercise 2 Show that there are approximately 57.3° in a
radian. This is so because

2π rad = 360°, therefore one rad = 360°/2π = 360°/6.28 ≈
57.3°

where the symbol ≈ means approximately equal to. To
convert any angle α° to radians we use the formula

 
Exercise 3 Convert the sexagesimal angle 47° 22’ 45” to
its radian equivalent. First convert this angle to decimal
degrees as above to obtain 47.379 167°, and convert this to
radians using equation (2.7). (Note: Use the value of pi
from your calculator.)

angle in radians = 47.379 167° × π/180° = 0.826 922

The converse calculation from radians to degrees is carried
by the formula

 
Exercise 4 Convert the angle 0.826 922 rad to sexagesimal



degrees using equation (2.8)

angle° = 0.826 922 × 180°/π = 47.379 167°

 
Exercise 5 Find the length of the arc of a circle of radius
300 mm subtended by an angle of 45° at its centre. The arc
s is given by

s = rθ where θ is in radians.

Thus s = rθ° × π/180° = 235.62 mm

This is one of the most important calculations in mapping.

 
Exercise 6 What is the length of arc subtended by an angle
of one sexagesimal second of arc (1”) on the surface of the
Earth whose radius is 6 378 140 m?

 
Exercise 7 In seconds of arc, what angle is subtended at
the centre of the Earth by a distance of 3 mm?

We will use the result in Exercise 6 to arrive at an
approximate answer. The angle subtended by 30.922 m (=
30 922 mm) is 1”. Therefore 3 mm subtends an angle of
3/30 922” = 0.0001” approximately. The implication of this
for the cartographer is that very small angles are involved
in maps and map projections. These need special care in
calculations.
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Chapter 3 
Trigonometry

3.1     Introduction

Within the subject of trigonometry, many of the ideas and
theorems of geometry are converted into a language, or
algebra, which can be used to develop the subject without
the need for complicated diagrams. In turn, these algebraic
expressions are used to make calculations for all manner of
practical purposes in engineering, science and map
making.

3.2     Functions of angles

In surveying and mapping, angles by themselves are not
much use. To be really useful they are modified into
functions. We will explain this concept with an example.



Figure 3.1

 
Exercise 1 Draw a triangle ABC whose sides are 7, 9 and
10 cm long. This is best done by drawing the longest side
first: call it AC. Then using the compasses describe arcs AB

= 7 cm and CB = 9 cm as indicated in Figure 3.1. This
completes the triangle ABC.

 
Exercise 2 With a protractor, measure the angles A, B and
C. You should find them to be about the following values in
sexagesimal degrees

A = 61.5   B = 75.5   C = 43.5

Their sum is

A + B + C = 180.5°

Theoretically this sum should be two right angles, or 180°,
or π radians. In practice there is usually an error of
measurement. How can we find what the exact values of
these angles should be, given the lengths of the sides? The
answer is to use functions of the angles. We can calculate
the angle A using the cosine formula (3.6) given later and
find it to be 60.94°. Then using the same or another



formula (3.9) we can calculate angle B. Once angles A and
B are known, we find C from the equation

C° = 180° – A° – B°

Once the angles are known, several other important
calculations can be made, for example, to enable the
triangle to be plotted on a map, or for other purposes. Most
of the mathematics involved in cartography concerns
functions of angles and sides: this is the branch of
mathematics called trigonometry.

3.3     The cosine and secant function

We start by considering the circle of Figure 3.2 in which
two diameters AB and CD, meeting at O, are inclined to
each other by an angle of 56°. Lines CE and DF are
perpendicular to AB. Thus CE is parallel to FD. Angles ECD

and FDC are both 34°.

 
Exercise 1 Draw a copy of Figure 3.2, making AB = 84 mm
i.e. radius r = 42 mm. Measure OF, OE, FD, and EC. They
should be approximately 23.5, 23.5, 34.5 and 34.5 mm
respectively.

Figure 3.2



Now calculate the ratio OF/OD = 23.5/42 = 0.5595. Clearly
this ratio has something to do with the angle DOF = 56°.
No matter what size we make the circle, this ratio will be
the same, subject to drawing and measuring tolerances.

 
Exercise 2 Show that the ratio EF/CD = 47/84 = 0.5595.
The broken lines indicate why this is so.

 
Exercise 3 Now consider the problem around the other
way. If we know that OD = 42 mm and that the ratio is
0.5595, we can calculate

OF = OD × ratio = 42 × 0.5595 = 23.5 and also

EF = CG = CD × ratio = 84 × 0.5595 = 47

This ratio is called the cosine of 56° or cos 56° for short.
Remember cos 56° is just one number. Thus cos θ is also a
number. The function name is ‘cos θ’. The ‘cos’ cannot be
separated from ‘θ’ This cos function is to be found in most
calculators, which also allow for the angle to be input in
‘deg’ (sexagesimal degrees), or ‘grad’ (gons), or ‘rad’
(radians).

 
Exercise 4 Verify with your calculator that cos 56° =
0.5592 to four decimal places. The result we obtained by
drawing is close enough. The cosine function is the basic

function of trigonometry. It can be calculated from the
value of the angle itself (see 9.13) without drawing.
Normally a calculator will give the result to nine decimal
places, which is adequate for most surveying work.



 
Exercise 5 A sloping line is measured to be 123.456 m
long. If the slope of the line is 2°, verify that its horizontal
equivalent is 123.381 m.

This is a common calculation, because maps show only
horizontal distances. If the sloping line is called ‘s’ and the
horizontal equivalent ‘d’ they are related by the equation

 
Exercise 6 A horizontal line is 123.381 m long. If its slope
is 2° show that its slant length is 123.456 m. The result is
obtained from

123.381/cos 2° = 123.381/0.999 390 = 123.456

For convenience in writing, 1/cosine is called the secant.

Thus 1/cos 2° = sec 2°. However the secant function is not
usually given in a calculator because it is not really needed.
If we look again at Figure 3.2 we can see that sec θ =
OD/OF. Thus another equation relating s and d is

Which is neater than writing s = d/cos θ, even though this
formula is used in calculations.

 
Exercise 7 Using a calculator verify that sec 2° = 1.000
609 544

Notation for cosine squared



Because cos θ is just a number, we can square it, or take its
square root and so on. It would be cumbersome to write
‘the square of cos θ’ to write it as

(cos θ)2

Instead, it is written

cos2θ

Remember this just means cos θ × cos θ.

 
Exercise 8 Show that cos256° = 0.3127 to four decimals.

cos 56° = 0.559 19 and 0.559 19 × 0.559 19 = 0.3127

3.4     The cosine formula for a plane

triangle

Figure 3.3

Consider the triangle ABC of Figure 3.3. BD is
perpendicular to AC. Using Pythagoras’s theorem 2.7, in
triangles ABD and BCD we have

AB2 = AD2 + BD2 and BC2 = DC2 + BD2

therefore



Substituting in (3.3) for DC2 gives

If we put BC = a, because it is the side opposite the angle
A, and AB = c and AC = b, and also angle θ = A this
formula (3.4) becomes

This is the cosine formula for the plane triangle ABC. Its
form should be studied and memorised. You will notice that
a is the side opposite the angle A, and b and c are the other
two sides of the triangle. By the same argument we could
have shown that

b2 = a2 + c2 – 2 ac cos B 
c2 = a2 + b2 – 2 ab cos C

 
Exercise 1 Verify that the cosine formula for the triangle
PQR is

p2 = q2 + r2 – 2 cos P

 
Exercise 2 Recast formula (3.5) to calculate the angle A of



triangle ABC given its three sides a, b, and c. Proceed as
follows

2bc cos A = b2 + c2 – a2

therefore

 
Exercise 3 Show that if two sides of the triangle ABC are
equal, the angles opposite them are equal. Although this
might appear obvious by inspection, a formal proof is
needed. Suppose the sides are a and c, then from (3.6) we
have

If a = c these expressions become equal, for

Note: The sum of any two sides of a triangle must be
greater than the third for a triangle to be formed.

 
Exercise 4 If a = 11.358 cm, b = 10 cm and c = 7 cm
calculate the angle at A from equation (3.6). We have



This is the cosine of the angle 81.79°. The angle is found
using the inverse cosine key of a calculator. It is usually
written in red or brown as cos–1.

Note: It has to be pointed out that this notation for the
reverse functional process is quite inconsistent with most
other branches of mathematics. For example it is usual to
write the reciprocal of x or 1/x as x–1.

If this notation had been used for the cosine function then

cos–1x

would be secant x or sec x.
For trigonometric functions it is used in the following

sense: if

Summarising the forward and inverse operations of the
calculator keys we have

cos 81.79° = 0.1428 and cos–1 0.1428 = 81.79°

 
Exercise 5 Using the cosine formula, calculate the angles
B and C of the same triangle as in the last exercise, and
verify that all three angles add up to 180°. Table 3.1 shows
a tabular layout of the results of the calculations for all
three angles.

Table 3.1 Solution of plane triangle ABC



Figure 3.4

3.5     Angles greater than a right

angle

Figure 3.4 shows a triangle ABC in which one of the angles
is greater than 90° and less than 180°. Let’s see what
happens to the cosine formula in this case. Let the sides of
the triangle be a = 13 cm, b = 10 cm and c = 7 cm.
Drawing the triangle enables us to measure the angle A to
be 98°. From formula (3.6) we have

The calculator gives the correct answer as

cos–1 – 0.142 857 = 98.21°



The negative sign for cos A has to be interpreted in the
following manner. From Figure 3.4 you will see that the
cosine of A is AD/AB. Because D is on the opposite side of A
from C, the line AD is considered to be negative. Putting
this another way, if the line A to C, i.e. from left to right, is
positive, aline AD from right to left is considered negative.

This is an example of using the negative sign as an operator

which tells which direction along a line we are considering.

 
Exercise 1 If AC is a positive line, what is the sign of CA?
(Answer: negative)

The negative cosine indicates an angle greater then 90°,
but (as we shall see later) less than 270°. It is vital to deal
with signs correctly to obtain correct results from a
formula such as (3.6).

Figure 3.5

Now let us see what happens when the angle θ is more
than 180°. In Figure 3.5 the sides of the triangle are
unchanged but B now lies below A, and θ is the exterior

angle of the triangle at point A. By definition,



This is the same as cos ϕ where ϕ = 360° – θ is the interior

angle at A of the triangle ABC. Thus we have the rule that

cos A = cos(360° – A)

 
Exercise 2 If cos A is – 0.142 857 what is the angle A?

The calculator gives the result as 98.21°, but we have just
shown that the result could equally be

360° – 98.21° = 261.79°

 
Exercise 3 Demonstrate by calculator that

cos 261.79° = –0.142 802

(The slight difference is due to rounding errors in the
arithmetic. If the whole calculation is carried out without
writing down intermediate figures the results for cos A and
cos (360 – A) are identical.)

It is clearly very important in mapping to be able to tell
which result is correct when calculating the positions of
points such as B. In short, given the three sides of a
triangle alone we cannot tell whether Figure 3.4 or 3.5 is
correct. Some other information is needed, such as ‘B lies
above A’. Using a computer to solve problems we cannot
easily deal with written rules. The maths alone must supply
the complete answer. The way this problem is solved will
be discussed in section 3.6. We will return to this problem
after considering the last possible case, in which B is below
A but to the right of it, as in Figure 3.6.



Figure 3.6

In this case the angle θ is greater than 270°. Here it is 180°
+ 98.21° = 278.21°.

 
Exercise 4 Show that the cosine of 278.21° is 0.142 802,
i.e. positive, and that the cosine of (278.21° – 90°) = cos
188.21° = – 0.989751, i.e. negative.

 
Exercise 5 To complete the picture, show that the cosine
of 81.79° is 0.142 802, i.e. positive, and of 81.79° – 90 = –
8.21° is 0.989 751, i.e. also positive.

It is instructive to summarise all four cases of the triangle
from Figures 3.3 to 3.6, with B in four positions B1 to B4,
round the circle as in the combined figures of Figure 3.7,
and D in positions D1 and D2.



(1)

(2)

(3)

(4)

(5)

Figure 3.7

With reference to Figure 3.7, we recall the following
conventions:

The angle θ, which shows the direction of AB, is
considered positive anticlockwise from the starting
line AC.
A line directed from left to right is positive, and from
right to left is negative.
The line AB is considered to be a fixed positive
constant. Only the angle θ is varied.
The cosine of θ is always given by the ratio AD/AB. It
therefore takes the sign of AD.

Also, the projection of the line AB on to the line AC is
given by AB cos θ. This has size and sign.



From Figure 3.7 it can be seen that the sign of AD, and
therefore of the cosine, follows the scheme shown in Figure
3.8.

Figure 3.8

Figure 3.9

Each space of the figure is called a quadrant. The
quadrants are numbered anticlockwise in positive order
from the chosen starting line AC, as in Figure 3.9.

Putting the information of Figures 3.8 and 3.9 into
words, ‘the cosine is positive in the first and fourth
quadrants, and negative in the second and third quadrants’.

 
Exercise 6 Draw a scale figure for all four cases of the
triangle ABC similar to Figure 3.7, but to your own
dimensions, and show by measurement and using your
calculator that the signs of the cosines follow the pattern of
Figures 3.8 and 3.9.

3.6     Coordinate axes and bearings



We have shown that the angles of a triangle can be
calculated using the cosine formula, but that there is
ambiguity as to which way up or which way round the
triangle may be. To overcome this problem, a system of
axes is introduced at the point A round which the line AB is
rotated through an angle which can be up to 360°. It is
usual to call such a whole circle angle a bearing. Point A
becomes the origin O and the starting line AC becomes the
OX axis. The first axis is called the primary axis of the
system. If we consider anticlockwise bearings to be

positive, the axis at a bearing of +90° from the OX axis, or
OY axis, is called the secondary axis of the system. Usually
we just refer to these axes as the ‘X’ and ‘Y’ axes for short.

Note: In surveying, the axis system is usually chosen
differently. Positive bearings are reckoned clockwise from
north with the OX axis (the first axis) pointing North and
the second axis, the Y axis, to the east. This should not
cause problems with formulae provided the sign rules are
strictly adhered to. We will look at this difference later
when we come to three-dimensional problems.

In Section 3.4 we came across the problem that when
calculating an angle from its cosine two results are
possible. To resolve the matter we also use the cosine of a
second angle commencing at the secondary axis of the
system. If the first angle is A the second angle will be A –
90°. If both cosines, i.e. cos A and cos (A – 90°), are
available we can resolve any ambiguity. The signs of the
cosines for these two systems will follow the schemes



Combining these schemes in order gives the scheme for the
four quadrants.

Figure 3.10

 
Exercise 1 Show that, if the angles from the X and Y axes
to the line OB are 150° and 60° respectively, their cosines
enable us to say in which quadrant the point B lies.

We have cos 150° = – 0.8660 i.e. negative, cos 60° = 0.5
i.e. positive. Inspecting the scheme of Figure 3.10, we see
that B is in the second quadrant (as expected from drawing
either angle). Using a procedure similar to this, a computer
is able to avoid ambiguity in mapping points. (See section
4.4 dealing with the ATAN2 function)

If a point B lies in the first quadrant, say at an angle of 56°,
A – 90° is negative, i.e. 56° – 90° = – 34°. Its cosine is
positive = 0.829. This is because an angle of –A means a
clockwise movement from AC to a position which would
also be achieved by an anticlockwise turn of 360° – A.



 
Exercise 2 Verify that cos(360° – 34°) = cos(326°) = 0.829
= cos(– 34°). Also verify that cos(145°) = cos(360° – 145°)
= –0.819.

3.7     Direction cosines

Where the cosines of angles are referred to the primary
and secondary axes in this way they are called the direction

cosines of the line AB with respect to the OX and OY axes.
For brevity they are given single letters, usually L and M or
l and m. Thus

Figure 3.11

Consider Figure 3.11, we may put L = AD/AB and M =

DB/AB where L and M are the direction cosines of AB.

From the theorem of Pythagoras we have

AB2 = AD2 + DB2

Dividing throughout by AB2 we obtain



Therefore

3.8     Other trigonometrical functions

Although the direction cosines are much used in surveying
and mapping, conventional trigonometry defines other
functions for brevity and convenience.

The sine of angle θ or sin θ

From Figure 3.11, the ratio M = DB/AB = cos (θ – 90°) is
also called the sine of the angle θ (sin θ for short).

 
Exercise 1 Using a calculator, verify that cos (78° – 90°) =
sin 78° = 0.9781.

 
Exercise 2 Show that the signs of sine θ follow the scheme
shown in Figure 3.12

Figure 3.12

As expected, these signs are the same as the cosines of the
second angles referred to the OY axis, The sine is positive
in the first two quadrants and negative in the last two.



 
Exercise 3 Show that cos 45° = sin 45° = 0.7071.

Because L = cos θ and M = sin θ we have from equation
(3.7)

 
Exercise 4 Verify by calculator that equation (3.8) is valid
for the following angles

56°, 146°, 236°, 326°

3.9     The sine rule in triangle ABC

Another very useful formula connecting parts of a plane
triangle is the sine rule. In triangle ABC, if the sides
opposite the angles A, B, and C are respectively a, b, and c

we have the rule .

Here R is the radius of the circle which passes through
ABC, called its circumscribing circle.

 
Exercise 1 Calculate the length of the side a given that b =
10 cm, A = 60.94° and B = 76.23°.

Verify that the third side is 7 cm. (Hint: C = 180° – (A +
B)) and that R = 5.15 cm. It is a good idea to draw this



triangle to scale to check these results.

Proof of the sine rule

To prove this very important rule we first need to prove
other useful properties of a triangle and a circle.

Figure 3.13

Consider Figure 3.13

angle CBA = B = 180° – (A + C)

Since ABD is a straight line

∠DBC = 180° – B = A + C

In words this property is usually written The exterior angle
of a triangle is equal to the sum of its interior opposites.’
We now use this property applied to Figure 3.14.

Figure 3.14



Figure 3.15

The sides OA, OB, and OC are all radii of the circle and
equal to R. Therefore triangles ABO, ACO and CBO are
isosceles (they have two equal sides). Therefore angles
opposite equal sides in these three triangles are equal.
They are marked by dot and square symbols. By the rule
just proved

Thus

This important result is much used in surveying especially

in setting out engineering curves.

Now consider Figure 3.15 in which OE is perpendicular to
AC and, using the last result, bisects ∠AOC = 2B. From
triangles AOE and COE we have

AE = R sinB   and   CE = R sinB

therefore

b = AC = AE + CE = 2R sinB

Thus,



In an identical way we can show that

These three expression are combined into the sine rule as

 
Exercise 1 In triangle ABC, a = 9 cm, c = 7 cm and C =
40°, calculate side b.

First calculate angle A from

Therefore

A = sin–10.8264 = 55.73°

But the sine of 180° – 55.73° = 124.27° is also 0.8264, so A
could also be 124.27°. That this is possible can be seen
from Figure 3.16 in which the two positions of A are shown
at A and A’.

Figure 3.16



This exercise warns against using the sine rule without
thinking. A correct result will be obtained if two sides and
the angle included between them is given, but not in the
example set. Of course there may be other evidence to say
which result is correct, but the maths alone is unclear.

3.10   The tangent of the angle θ or

tan θ

In Figures 3.7, it is useful to call the ratio DB/AD the
tangent of the angle θ or tan θ for short.

 
Exercise 5 Show that

 
Exercise 6 Show that the signs of the tangents follow the
scheme of Figure 3.17.

Figure 3.17



The tangent is positive in the first and third quadrants.
Verify these signs using the tangents of the following
angles

56°, 146°, 236°, 326°

3.11   The inverse functions sin–1 and

tan–1

As with the cosine, the notation for the inverse function of
sin and tan are something of an anomaly. They mean
respectively

If sin 56° = 0.8290 then sin–1 0.8290 = 56° 
and if tan 56° = 1.4826 then tan–1 1.4826 = 56°

3.12   Cosecant and cotangent

The reciprocal of the sine is called the cosecant and the
reciprocal of the tangent is called the cotangent. These are
abbreviated to cosec and cot respectively. Thus we have

The cosecant should not be confused with the secant which
is the reciprocal of the cosine.



Figure 3.18

3.13   Summary of the

trigonometrical functions

The signs and key values of the three main trigonometrical
functions, cosine, sine and tangent, are summarised in
Figure 3.18. The centre scheme shows which functions are

positive in the four quadrants, with the convention that an
anticlockwise angle is positive. Notice that when

the sine and cosine are numerically equal to 

 
Exercise 1 Using your calculator, verify the signs and
values of the trigonometrical functions shown in Figure
3.18. Having done so, use your powers of reason to deduce
the same answers with reference to basic definitions.



 
Exercise 2 Sketch the graph y = sin θ within the range 0°
to 360°. (The characteristic wave shape is used to model
many physical phenomena.) The sketch for the key values
of Figure 3.18 is shown in Figure 3.19.

3.14   The cosine and sine of the

compound angle (A + B)

One of the most important problems in surveying and
mapping concerns coordinate systems and their
relationships. A geodetic satellite operates on a world wide
system of coordinates: in contrast, local maps are usually
based on a national or more local system. When you are out
walking in the countryside, map reading is an important
way of locating your position. Usually you have to turn the
map round to the correct orientation before finding your
way. In computer mapping systems, the equivalent of
rotating a map is also needed. To understand how this is
done involves the cosine and sine of compound angles such
as (A + B). The following are fundamental

Figure 3.19



We shall derive these results for angles in the first
quadrant, although they are valid for all quadrants.
Consider Figure 3.20. The following pairs of lines are
orthogonal

Figure 3.20

In triangle PQT the angle at Q = A, because the angles QPO

and QSO are equal (both 90°) and the angles marked with
dots are also equal.

Hence

therefore



 
Exercise 1 Show by calculation that

sin 70° = cos 20° sin 50° + sin 20° cos 50°

we have

sin 20° = 0.342 020 cos 20° = 0.939 693 
sin 50° = 0.766 044 cos 50° = 0.642 788

therefore by multiplication

sin 70° = (0.939 693 × 0.766 044) + (0.342 020 × 0.642
788) 

sin 70° = 0.939 693

which can be verified by direct calculation.

 
Exercise 2 Verify that

cos 20° = sin 70° = 0.939 693

3.15   Expression for cos (A + B)

We derive the expression for cos (A + B) in a similar
manner. Refer to Figure 3.20.

therefore



Note the change of sign.

 
Exercise 2 By calculation derive cos 300° by putting 300°
= 270° + 30°

cos 270° = 0 sin 270° = –1 
cos 30° = 0.866 025 sin 30° = 0.5 

cos (270° + 30°) = cos 270° × cos 30° – sin 270° × sin 30° 
= (0 × 0.866 025) + (1 × 0.5) 

= 0.500 000

This is the result expected because 300° = 360° – 60°:

cos (360° – A) = cos A = cos 60° = 0.5

3.16   Expressions for sin (A – B) and

cos (A – B)

If we put B = – B in the above expressions for sin (A + B)
and cos (A + B) and remember that

sin (–B) = – sin B and cos(–B) = cos B

we have at once the expressions

3.17   Expression for tan (A + B)

The result for tan (A + B) is simply obtained from



Division of numerator and denominator by cos A cos B

gives

And because tan (–B) = – tan B we have at once

3.18   Expressions for sin 2A and cos

2A

If we put B = A in the above expressions (3.12) and (3.13)
we obtain the special cases

Because

cos2A + sin2A = 1

(3.19) may also be cast in the useful forms

3.19   Expressions for sin 3A and cos

3A

If we put B = 2A in the above expression (3.13) and use
appropriate results from (3.19) and (3.21) we obtain the



special cases.

and

3.20   Expressions for sums and

differences in terms of half angles

The following identities are used in surveying and
cartography to derive important formulae such as the mid
latitude formulae for computing geographical coordinates.

We prove the first of these formulae to indicate how all can
be derived, and because the proof uses an important
mathematical procedure. We can express two quantities A
and B as follows

Then using (3.12) and (3.14)



which is formula (3.24). The other formulae (3.25), (3.26)
and (3.27) are proved in identical manner.

Note the sign change in (3.27) .

3.21   Half angle formulae

Formulae which express functions of the angles of a plane
triangle in terms of its sides are also important. These are

where the sum of the sides

a + b + c = 2s

In triangle ABC we have from (3.5)

a2 = b2 + c2 – 2bc cos A

but from (3.21)

so

Remembering that



But if

therefore

which is formula (3.28).

 
Exercise 1 Prove the formula

Hint: Use the general expression from (3.8).

cos2A = 1 – sin2A

3.22   Hero’s formula for the area of a

triangle

The area of the triangle ABC (6.2) is given by



See Section 6.2 for an exercise using hero’s formula.
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Chapter 4 
Plane Coordinates

4.1     Plane coordinates in map

making

Fundamental to map making are plane cartesian

coordinates, either in two or three-dimensions. Problems
arise with the conventions in use.

In a two dimensional system (X, Y) or (N, E), it is customary
to direct the X axis to the north (N) and the Y axis to the
east (E), because a bearing T is reckoned clockwise from
north in surveying. This convention accords with
mathematics in which the x axis points to the east, the y

axis to the north, but angles are reckoned positive in an
anticlockwise sense. The mathematical convention is used
in this book.



Figure 4.1

The mathematical convention for angles is in direct
contrast with the conventions of map reading and
cartography, where although it is customary to quote
easting (E) before northing (N), angles (bearings and
azimuths) are reckoned positive clockwise from north, not

anticlockwise from east.

Again, the other convention is to refer to geographical

coordinates in the order as latitude (ϕ) before longitude
(λ). To avoid potential confusion, all listed coordinates
should clearly indicate which definition is being used, as
well as the units of measurement.

In practice, a point on a map has to be sufficiently large
for it to be seen. Usually this is a dot of 0.2 mm. However in
strict mathematics we sometimes consider the centre of
this dot to be the actual point, and say that it has no size
but only position relative to other points.



4.2     Cartesian coordinates (x, y)

This system uses a network of squares to locate points in a
plane and, as has already been pointed out in Section 2.4,
is a very practical system both on a map for plotting points
and on the ground for surveying. Such a system of
cartesian coordinates (x, y) is illustrated in Figure 4.2.

Figure 4.2

A point such as P is located on the sheet of paper by a
distance OQ (called the abscissa of P) measured parallel to
the Ox axis, and another distance QP (called the ordinate of
P) parallel to the Oy axis. The abscissa and ordinate form
the cartesian coordinates of a point which are written in
the forms

P(x,y)   or as   (xP, yP)

Points to the left of the Oy axis and/or below the Ox axis
have negative values.

 
Exercise 1 From Figure 4.2 verify that the coordinates of



the points are as follows

A(–3, 1) B(3, –1) D(–2, –2) E(0, 2.8) P(4.5, 5.5)

A computer screen can be thought of as a very fine grid in
which cartesian coordinates (x, y) can be read or plotted to
an accuracy of at least 0.1 mm. When the cursor, driven by
a mouse, rests at a point on the screen, the coordinates of
this point are registered in the computer for further use.
The reverse of this process is also used in computer
plotting. Input coordinates of a point are used to drive a
pen or cursor to its position in the cartesian grid, and then
marked by some symbol chosen by the operator. The first
process is called digitising and the second is called
plotting.

4.3     Plane polar coordinates (r, U)

In this system we use radial lines to locate points in a
plane. Such a system of polar coordinates (r, U) is
illustrated in Figure 4.3. A point such as P is located on the
sheet of paper by a radial distance OP and an angle U

(called the bearing of P). The distance and bearing form
the polar coordinates of a point which are written in the
forms

P(r,U) or as (rP, UP)

The distance (r) is always positive.



(1)
(2)

Figure 4.3

 
Exercise 1 From Figure 4.3 verify by measurement, using
the figure scale for distance, that the polar coordinates of
the points are as follows

A(3.2, 161.6°) B(3.2, – 18.4°) D(2.8, – 135.0°) 
E(2.8,90.0°) P(7.11,50.7°)

Note: After studying Section 4.4, you may verify these
results by calculation.

4.4     Conversion of polar and

cartesian coordinates

Consider Figure 4.3. The position of the point P with
respect to the origin O and orthogonal axes Ox and Oy can
be defined in two ways:

by its rectangular cartesian coordinates (x, y)
by its polar coordinates (r, U)



U is reckoned positive in an anticlockwise direction from
the Ox axis. To convert from one system to the other the
following relationships are used.

(a) Given (r, U), we find x and y from

(b) Given (x, y), we find U and r from

and

A useful check is

 
Exercise 1 The coordinates of P in mm are (25, 55).
Calculate r and U.

Check

r = 25 cos 65.556° + 55 sin 65.556° = 60.42 mm

 
Exercise 2 The coordinates of P in mm are (–25, –55).
Calculate r and U.



How can U be the same as in Exercise 1? We have already
discussed this problem in Section 3.5. More information
than the tangent alone is needed to place P correctly in the
third quadrant. Two pieces of information are required.

r = √(252 + 552) = 60.42 mm

Check

r = 25 cos 65.556° + 55 sin 65.556° = 60.42 mm

If we use the rectangular-to-polar function key of a
calculator we obtain the following values

r = 60.42 U = – 114.443°

This correctly places P in the third quadrant. The calculator
algorithm has solved the ambiguity. Before explaining how,
check that tan (–114.443°) = 2.2. The calculator has
examined the signs of x and y separately before calculating
tan U and then U. In most systems the function used is
called

ATAN2

The function has taken note of the negative signs of both x
and y, thus ensuring that an erroneous first quadrant angle
is not returned, because

–5.5/ –2.5 = 2.2

Because not all algorithms to compute the reverse
trigonometrical functions deal properly with the various
quadrants, a check should be made when using a calculator



or computer algorithm for the first time. Also, a check
should be made to see if a correct result is given for the
limiting cases of points on the coordinate axes.

 
Exercise 3 Use your calculator to obtain the bearings U

from the origin O to the four axis points A, B, C and D, of
Table 3.2.

Table 3.2

The last result (– 90°) is usually added to 360° to give the
whole circle bearing of 270°.

4.5     Coordinate differences

In practice, coordinates are seldom referred directly to the
origin O, but in terms of coordinate differences. Usually
connections between two points, such as A and B, are
required. In this case the above formulae (4.1) to (4.4)
need only a little modification to substitute the following

the Greek letter Δ indicating a difference. The
transformation equations become

Given (Δx, Δy), we find U and r from



and

A useful check is

 
Exercise 1 The coordinates of A and B in millimetres are A
(50,70) and B (75, 125). Calculate the distance (r), and the
direction (U) from A to B.

Check

r = 25 cos 65.556° + 55 sin 65.556° = 60.42 mm

Note: The direction from B to A is 245.556° = (180° + U).

4.6     Mathematical expressions for a

straight line

To deal with the drawing of straight lines by computer, and
many other problems in map making, we have to describe a
line in a mathematical way. In a two-dimensional
rectangular coordinate system with axes Ox and Oy, all
points on a line are usually expressed in the form of an



equation. The first form of such an equation is the gradient

form

In this equation (m) and (c) are constants which are
particular to this line, while (x) and (y) are the coordinates
of any point (such as P) lying on the line. Refer to the
Figure 4.4.

 
Exercise 1 Draw a copy of Figure 4.4 at any scale using
graph paper. To draw the line AEP, plot two points A (0,4)
and E (3, 5.8) and draw a line through them with a ruler.
Measure the angle that the line makes with the Ox axis (it
should be just over 30°). To plot the point P we have to
extend the line a little. Mark the fixed points A and E with a
black dot and P with a circle. This indicates that P can be
anywhere on the line. To form the equation of the line we
express the (x) and (y) values of P in terms of things we
know. First we see that the gradient (m) of the line is
obtained from

Next we express the unknown coordinates of P in terms of
something we know as



Figure 4.4

follows

Rearranging gives

because xA = 0. Then

yP = mxP + yA

Because A is the point on the Oy axis cut by the line we put
yA = c, called the intercept of the line on the Oy axis, and
obtain finally the equation of the line

This is the general form of the equation. The constant m is
the slope or gradient of the line relative to the Ox axis. (The
notation is copied from an uphill or downhill slope relative



to the horizontal.) Substituting the known values in this
case gives the equation of this particular line to be

yP = 0.6xP + 4

Since the general point P could have any name we drop the
suffixes and write

y = 0.6x + 4

for this particular line, and for the general case

It is important to grasp how to set up such an equation. The
process of drawing the line shows how this is done. We
plotted the point A, thus giving c, then obtained the
gradient m from two points A and E, and finally expressed
these known elements in terms of the unknown
coordinates. If the gradient had been given as data, there
would be no need to find it from two points. One fixed point
and a gradient defines the line. So too do two fixed points.
It is always a good idea to try to draw the line to see if
enough information is given before working out its
equation.

 
Exercise 2 Use the equation of the line AE to find where it
cuts the Ox axis. When the line cuts this axis y = 0
therefore

0 = 0.6x + 4

x = –4/0.6 = –6.6

 
Exercise 3 Verify that the point P (7.5, 8.5) lies on the line



(i)
(ii)

y = 0.6x + 4

Substitution for x = 7.5 in the right hand side of the
equation gives

y = 0.6 × 7.5 + 4 = 4.5 + 4 = 8.5

 
Exercise 4 Calculate the values of all ordinates (y) of
points on the line corresponding to the abscissae

x = 1, 2, 3, 4, 5

When several repetitive calculations have to be performed
by hand, it is best to make a table of the various steps, as
follows:

When a line is drawn by computer from, for example, a
given starting point and gradient, a vast number of close
points are plotted using the equation of the line just as in
this exercise. These closely stepped points give the effect
on the eye of a continuous line. With the aid of a
magnifying glass, look at a slanting line on a computer
screen to verify this statement.

 
Exercise 5 See what happens to the equation when a line
through A is

parallel to the Ox axis and,
parallel to the Oy axis.



We can still draw both these lines with a ruler so the
problem is not impossible. We are asked to see what
happens to the equation of the line in the form y = mx + c.

In the first case m = 0 and the equation is y = c. In the
second case m = tan 90° and the line does not cut the Oy

axis. The equation has no meaning. Thus if this equation is
used in a computer program it can fail. It is not a robust

equation, because it does not work in all cases.
In the second case, when the equation fails (m = ∞), we

can write another similar one in terms of the intercept of
the line on the Ox axis namely x = d. Thus all lines parallel
to the Ox axis have equations of the form y = c, and all
lines parallel to the Oy axis have equations of the form x =

d. We can use these equations to tell a computer to plot a
grid on a map. In the next section a more robust equation
for a straight line is considered.

4.7     Polar equation of a line in a

plane

In the above section it was demonstrated that the gradient
form of the equation for a line fails when the line runs
parallel to the Oy axis. The equation (4.10) can be recast as
follows

therefore



but

c cosU = OG = p (say)

Also, the angle that OG makes with the positive direction of
the Oy axis is + U (see Figure 4.5), and the angle it makes
with the positive direction of the Ox axis is

Figure 4.5

(90° + U). Thus the direction cosines of OG are respectively

L’ = cos (90° + U) = – sin U

and

This is a robust form of the equation of a line in a plane
which has no failure case. When

U = 90° M’ = 0 L’ = –1



equation (4.13) becomes

x = – p

When

U = 0° M’ = 1 L’ = 0

equation (4.13) becomes

y = p

Thus the polar equation of a line in the form (4.13) is
universally applicable.

4.8     Parametric equations of a line

in a plane

If E is any point on the line with coordinates (a, b) and the
distance EP along the line to any other point (say P) is t

then the coordinates of P are given by

Remembering that cosU and sinU are the direction cosines
of the line EP we see that these equations (4.14) can also
be written

Note in the polar form of the equation of the line (4.12), the
direction cosines of the ray from the origin perpendicular
to the line, i.e. of OG are used. The unknown variable
distance t is called parameter. Given the values of a, b and
U this parameter defines all other points on the line.

In geodetic surveying, the distance t is measured by
tape, by optical tachymetry or by an electromagnetic



system, and the angle U by theodolite circle. These
equations (4.14) or (4.15) are used to calculate the
coordinates of points, from measurements taken at a known
point such as (a,b).

 
Exercise 1 Refer to Figure 4.6. Two points A (20, 40) and
B (80, 80) lie on the centre line of a road. Find the equation
of the line AB in its three forms. From (4.7)

Figure 4.6

U = 33.69°

therefore
From (4.11) and the coordinates of A

c = y – m x = 40 – 0.6667 (20) = 26.67

The equation of the line in the gradient form is



Also

L’ = cos (90 + U) = – sin U = – 0.5547

and

M’ = cos (U) = cos U = 0.8320

From (4.13) and the coordinates of A (20, 40)

– x sin U + y cos U = p

p = 40 cosU – 20 sinU = 22.19

Therefore the equation of the line in the polar form is

Using point A as reference the equations of the line in the
parametric form are

The unknown parameter is t. All points on the line are
defined by its values. For example, point B is defined when

t = AB = √(602 + 402) = 72.111

and from (4.18)

xB = 20 + 0.8320 × 72.111 = 20 + 60 = 80

yB = 40 + 0.5547 × 72.111 = 40 + 40 = 80

 
Exercise 2 Two points C (20, 80) and D (100, 10) lie on the
centre line of another road. See Figure 4.6 again. Find the
equations of the line CD in its three forms. This is a repeat
of the calculations for Exercise 1 with different figures. The
summary of results is



The equation of the line in the gradient form is

Also

L’ = cos (90 + U) = – sin U = + 0.6585

and

M’ = cos (U) = cos U = 0.7526

From (4.12) and the coordinates of C (20, 80)

p = 80 cos U – 20 sin U = 80 × 0.7526 + 20 × 0.6585 =
73.378

Therefore the equation of the line in the polar form is

Using point C as reference the equations of the line in the
parametric form are

To check these equations, we fix D from C. The parameter t
is given by

t = √(802 + 702) = 106.3

 
Exercise 3 Find the coordinates of P at the intersection of
AB with CD. To obtain this result we solve the simultaneous
equations (4.16) and (4.19)



From (4.16)

y = 0.6667 (45.94) + 26.67 = 57.3

Therefore the lines intersect at the point P (45.9, 57.3).

 
Exercise 4 Find the angle at which the lines CD and AB

intersect at P. The anticlockwise angle DPB is given
directly from the two gradients

angle = gradient of AB – gradient of CD = 33.69° – (–
41.19°) = 74.88°

 
Exercise 5 The road AB of Exercise 1 is to be plotted 10
mm wide on the map. What are the equations of its edges?
The polar form is most appropriate here, since the edges of
the road are formed by shifting the centre line by +5 mm
and – 5 mm. This is achieved by alteringp of (4.17) by ± 5
mm to give the equations for the road edges to be

– 0.5547x + 0.8320y = 27.19 
–0.5547x + 0.8320y = 17.19

4.9     Angle between two lines

It was shown in Exercise 4 of Section 4.8 that the angle
between two lines can be obtained from the two gradients
of the lines. A neater way is to use direction cosines. Either



the direction cosines of the lines themselves or of the
normals to these lines can be used. Let the angle between

two lines whose gradients are U1 and U2 be W, then we
have

From equation (3.15)

therefore, if we put cos U1 = L1, cos U2 = L2, sin U1 = M1

and sin U2 = M2, we have

This a most important result. For similar results in three
dimensions see Section 5.10. It follows, because cos 90° =
0, that two lines are perpendicular if

and, because cos 0° = 1, that two lines are parallel if

In this simple case of two dimensions, we have the further
simplifications that for perpendicular lines

L2 = –M1 and M2 = L1

and for parallel lines

L1 = L2 and M1 = M2

It should also be remembered from (3.7) that

L2 + M2 = 1



 
Exercise 1 Find the angle between the lines CD and AB of
Exercise 4 of Section 4.8. From previous exercises we have

 
Exercise 2 Show that the lines whose equations are given
below are perpendicular to each other.

0.6585x + 0.7526y = 73 
– 0.7526x + 0.6585y = 12

By inspection,

L1L2 + M1M2 = 0

therefore the cosine of the angle between the lines is zero,
and therefore the lines are orthogonal.

4.10   The equation of a circle

The circle features widely in surveying and cartography. A
circle is a curve lying in a plane. It can be completely
described in a two-dimensional coordinate system in this
plane. (See also Sections 5.20 and 10.3.) To define a circle
we need three pieces of essential information. Most
commonly there are three cases to be considered.

(1) the coordinates (a, b) of the centre and the radius r,
or

(2) the coordinates (x, y) of three points on the circle, or



(3) three tangents of the circle from known points.

If the centre of a circle of radius r lies at the origin of
coordinates, the position of any point P (x, y) on its
circumference is given by

x2 + y2 = r2

This is the equation of a circle in a two-dimensional
coordinate system. Refer to Figure 4.7. If the centre of the
circle is moved to the point Q (a, b), the equation of the
circle becomes

(x – a)2 + (y – b)2 =r2

Expanding these expressions gives

which can be recast as

where

Equation (4.25) is the usual form of the equation of a circle
in two dimensions.

 
Exercise 1 The centre of a circle, shown in Figure 4.7, of
radius 5 units lies at the point (5, 2). Find its equation in
the standard form (4.25). Here



Figure 4.7

The equation of the circle is

 
Exercise 2 Do the points D(5,–3) and K (8, 5) lie on this
circle? Substituting the coordinates of D in (4.26) gives

52 + 32 – (10 × 5) + (4 × 3) + 4 = 25 + 9 – 50 + 12 + 4 = 0

Therefore D lies on the circle. Substituting the coordinates
of K we find that it does not lie on the circle.

 
Exercise 3 A circle passes through three points A (8, 6),
B(1, 5) and C (10, 2). Find its equation in the standard
form. The procedure is to substitute the coordinates of
each point in equation (4.25) and solve for g, e, and c. Thus
we have



or

Giving the solution

g = – 5 f = –2 c = 4

Therefore the equation of the circle is

Its centre is (5. 2) and its radius is given by

r = √(25 + 4 – 4) = 5

4.11   Tangent to a circle

Tangents to a circle are of interest in surveying because a
line of sight can be taken to a circular object such as a
pond or pipe, or tower. A common situation is to measure
the angle FEH = 2W say (see Figure 4.7) and the distance
EG = s say. Then

Thus we have the distance EQ to the centre of the circle = r
+ s.

 
Exercise 1 Find the centre and radius of the circle of
Figure 4.7 using the following information.



EQ is parallel to the x axis, the coordinates of E are (–5, 2),
EG = s = 5, and angle W = 30°.

so the coordinates of Q are (5, 2) because EQ is parallel to
the x axis.

4.12   Length of a tangent to a circle

from a given external point

The length of the tangent t from an external point such as E
(x, y) to the circle is given very neatly by the expression

This result follows from the fact that

EQ2 = (xE – a)2 + (yE – b)2 = t2 + r2

which on rearranging and remembering that

g = – a f = – b c = a2 + b2 – r2

results in expression (4.28).

 
Exercise 1 Find the length of the tangent EF to the circle
of Figure 4.7. We have from (4.28)

t2 = 25 + 4 – 10(–5) – 4(2) + 4 = 33 + 50 –8 = 75 
t = 8.66

This result can be verified from

t = EQ cos W = (s + R) cosW = 10 cos 30° = 8.66.



 
Exercise 2 Find the coordinates of point F. The gradient of
EF is 30° therefore

xF = – 5 + 8.66 cos 30° = 2.5

yF = 2 + 8.66 sin 30° = 6.33

4.13   Equation of a tangent to a point

on a circle

The equation of the tangent to a circle at a point F on the

circle is given by

or

The proof requires an understanding of differentiation (see
Chapter 9). Consider the equation of the circle (4.25)

Differentiating partially with respect to x and y we have

Thus (4.31) is the gradient of the tangent at any point on
the circle. The gradient at point F is therefore



(Note: The gradient of the normal to the circle at this point
is )

But the gradient by definition through any other point (x, y)
on the line is given by

Therefore

or

so

Since the point F lies on the circle

we have

therefore

Changing all signs and rearranging we have



 
Exercise 1 Find the equation of the tangent through F(2.5,
6.33) to the circle

x2 + y2 – 10x – 4y + 4 = 0

The equation is

As a check, we verify that E (–5, 2) lies on this tangent

–2.5(–5) + 4.33(2) – 21.16 = 0

Figure 4.8

4.14   Fitting a circle to three

tangents

A common case in surveying is to observe only tangents to
a circle, from at least two points whose coordinates relative
to each other are known. Usually four tangents are



obtained in such a case. The arrangement is illustrated in
Figure 4.8. The coordinates of Q the centre of the circle
and its radius r have to be found. The ray EQ bisects the
measured angle FEH, and the ray JQ bisects the angle KJL.

The angles U and Z are also known. Thus the angle EQJ can
be found from

angle (EQJ) = 180° – U – W – V – Z

The simplest solution is to calculate EQ from the triangle
EQJ using the sine rule (3.9)

and r from

r = EQ sin W

To keep Figure 4.8 simple, in this example the derivation of
the coordinates of Q is simple because EQ is parallel to the
Ox axis. In a more general case the bearing of EQ would be
found from the known data and Q calculated from (4.6).

 
Exercise 1 Find the coordinates of the centre and the
radius of the circle fitting the tangents observed from E

and J of Figure 4.8, and the following data.

From the coordinates of E and J we find



The coordinates of the centre are Q (5, 2). and the radius is
given by

r = 10 sin30° = 5
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Chapter 5 
Problems in Three

Dimensions

5.1     Referencesystems

Consider a solid, such as a tin can from the kitchen. Its
geometrical properties, size, shape, etc., are unaltered if it
is moved about in three-dimensional space, say if it is taken
from a shelf in position B and placed on a stool in position A
of Figure 5.1. What will change is its position and possibly
also its attitude. In this case it was originally lying on its
side on the shelf and has been moved to a vertical attitude
on top of the stool. The unchanged properties can be
measured anywhere, but the spacial information is very
special to each position of the can. To describe the position
and attitude of the solid a coordinate reference system is
needed. The commonest system is the three dimensional
grid, based on three axes (OX, OY, OZ) perpendicular to
each other (mutually orthogonal). Figure 5.1 shows a room
with three orthogonal axes with the origin O located at one
corner of the room. Two positions, A and B, of the centre of



the top of a tin can are also shown. The origin is chosen at
one corner to avoid negative values for coordinates. This
choice of origin is convenient but not essential. It makes
the arithmetic easier.

Figure 5.1 is drawn as an isometric view of the room.
The three axes are drawn at angles of 120° to each other
and the scales along each axis are made the same. Each
floor tile is 0.1 m square. This produces the effect that all
parallel lines in three dimensions remain as parallel lines in
the two dimensional drawing.

 
Exercise 1 By measurement on Figure 5.1 show that the
point P has coordinates

XP = 0.7 YP = 0.5 ZP = 0.7

 
Exercise 2 Verify that the stool is approximately 0.22 m
high, 0.18 m wide and 0.4 m long.

Because only lines parallel to the axes are true to scale in
isometric drawings, we cannot measure the horizontal
distance from P to the OZ axes. This distance may however
be calculated from the measured coordinates using
Pythagoras’s theorem. Verify that this distance is 0.86 m.



Figure 5.1

 
Exercise 3 Check that the dimensions of the door and
window are approximately (0.5 × 1.5) and (0.5 × 0.5)
metres respectively.

In surveying and cartography we do not normally deal with
tin cans but with artificial satellites or pipework in a
factory. However the mathematical principles used to deal
with these problems are much the same in all cases.
Isometric drawings are easy to construct from dimensions
and are useful for taking off measurements. However they
are disturbing to the eye which is more used to seeing



objects in perspective views, in which parallel lines are
depicted converging to the horizon. Perspective views are
much less convenient for making measurements.

 
Exercise 4 Imagine a grid system set up in one corner of
the room in which you are sitting. Estimate your position in
the system by estimating your distance from the two walls
and floor used as the reference planes. Suppose your
estimations are 2, 3 and 1 metre respectively. Thus your
position P in the room is uniquely described in metres by
the coordinates

A shorter way to describe this position is to write

P(2, 3, 1)

 
Exercise 5 Suppose you now move to a new position Q

whose estimated coordinates are

Q(3, 3, 1)

Clearly you have only moved by 1 metre parallel to one
wall.

 
Exercise 6 Where are you if your coordinates are (3, 3, 0)?
(Lying on the floor of course!)

For the survey of the interior of buildings, a laser electronic
distance meter is available to measure distances from walls



(1)

(2)

(3)

(1)

(2)

as depicted at P in Figure 5.1. This device is accurate to
about 3 mm.

5.2     A three-dimensional model

Before reading further, the reader should refer to Section
4.4 where polar and rectangular coordinates in two
dimensions are introduced. These basic ideas are now
developed further. To assist the understanding of three-
dimensional geometry the reader is strongly advised to
construct a three-dimensional model according to the
following instructions.

Copy Figure 5.2 on a sheet of paper at an enlarged
scale if possible.
Cut out the shape and also make a cut along the OZ

axis as shown.
Fold along the axes and, with a paper clip, hold the
tab in position behind the ZY plane to form a three
dimensional model which is represented in Figure
5.3 by the isometric view.

It is worthwhile comparing the two Figures 5.2 and 5.3,
and the three dimensional model, in some detail, and
noting the following.

All the plotted points lie in axes planes for ease in
constructing the three dimensional model.
In Figure 5.3 the point O lies inside a box open
towards the reader. Unfortunately the human vision
system will not always see it this way. The
impression changes suddenly so that that O appears
towards the reader on the outside of the box.



 
Exercise 1 Verify that this visual change from one aspect
to another does not occur with Figure 5.1.

The reason for this stability is probably due to the fact that
the brain is presented with other information, such as the
stool and the table, which it knows to have only one
acceptable aspect. If we redraw Figure 5.3 with a man
standing inside the box, the unstable tendency is reduced.
However we again encourage the reader to construct the
three dimensional model so that this visual problem is
removed, and for other reasons which will become
apparent as this chapter proceeds.

Figure 5.2



Figure 5.3

 
Exercise 2 Verify from both Figures 5.2 and 5.3 that the
coordinates of the points are

5.3     Signs and coordinate

differences

The three axes OX, OY and OZ of Figure 5.3 form a right

handed set, so called for the following reason. Consider the
right hand, as in Figure 5.4, with the thumb pointing
upwards along the OZ axis, the index finger along the OX

axis, and the second finger along the OY axis. This system
is called ‘right handed’. The positive directions are given by
the pointing direction of fingers and thumb. Negative



directions are opposite to the finger pointings. The similar
left handed system is less frequently used.

Figure 5.4

In coordinate geometry it is most important to stick strictly
to sign conventions. When we refer to the steps AA’, A’B’

and B’B we mean

Notice that the coordinate of the second point of a step is
written before the first point to ensure that the correct sign
is obtained.

 
Exercise 1 Verify that the step B’B is positive (+5) and
that BB’ is negative (–5).

 
Exercise 2 Verify that the steps A’A, B’A’ and BB’ are

or



Note that because A’, B’ and B all lie in the YZ plane

therefore in a similar way

and

5.4     Directed steps

The distance AA’ is called a directed step. It takes the sign
of the direction of an axis. In moving from A to B for
instance we are often forced to move in steps parallel to
the three axes.

 
Exercise 1 Verify that it does not matter in which order we
make the steps AA’, A’B’ and B’B in moving from A to B. The
six possibilities are illustrated in Figure 5.5.



Figure 5.5

That there are six possible ways of moving from A to B can
be reasoned as follows. There are three possible first

moves: parallel to the X axis (1), parallel to the Y axis (2),
parallel to the Z axis (3). After the first move there are two

possible second moves, shown in (4), (5) and (6). Thus we
have 3 × 2 possibilities.

Mathematics also uses these three steps for numerical
operations. We can think of the movement from A to B as a
vector AB, but when calculations are required, this
movement has to be reduced to its three steps or
components parallel to the axes. For more information
about vectors see Chapter 8.

A flatbed plotter is a mechanical device which draws
maps by moving a pen in steps along two orthogonal axes.
Industrial three-axes measuring machines move tools and
measuring heads along three orthogonal axes. Robots
however generally use the alternative of polar movements
involving rotations about axes, which are discussed later in
Section 5.6 (see also 7.18).

Other notation for directed steps



Because the notation used for the step

AB = XB – XA

is quite cumbersome, other ways of writing it are
employed, for example we write

ΔB = XB – XA

when the step AB is large and

δB = XB – XA

when it is small. This notation uses the Greek characters
‘delta’ for ‘D’ (Δ) and ‘d’ (δ), indicating a difference.

Sometimes the steps are abbreviated even further using
the lower case letters x, y, and z as follows

These various forms of notation representing the same
thing can be confusing to a beginner. When dealing with
any branch of mathematics it is vital to understand the
notation being used, before trying to use the notation to
develop further ideas. Notation is the vocabulary of
mathematics. If we don’t know the meaning of a word, we
cannot communicate.

5.5     Length of a line

The length of the line AB is related to the coordinates of A
and B by the expression

This is obtained by the successive application of
Pythagoras’s theorem, first to triangle ABB’ giving



and then to triangle AA’B’ giving

Therefore

The length AB = + √AB2.

 
Exercise 1 Show that the lengths of the lines AB and CD

are respectively

√((0 – 5)2 + (5 – 3)2 + (5 – 0)2) = √(25 + 4 + 25) = √54 =
7.35

and

√((0 – 9)2 + (10 – 0)2 + (7 – 2)2) = √(81 + 100 + 25) = √206
= 14.35

 
Exercise 2 Check these results by measurement on the
three-dimensional model.

If elastic bands are fed through small holes in the paper
model to join AB and CD a better impression of the space is
created. Figure 5.7 is a picture of this model with the
elastic bands in position.



5.6     Polar to rectangular

coordinates in three dimensions

The extension to a three-dimensional system is illustrated
in Figure 5.6. The axis system is right handed, with U

positive anticlockwise and V positive upwards, OP = r. The
transformation equations are

A useful check is

Figure 5.6

 
Exercise 1 The coordinates of P in millimetres are (25, 55,
20). Calculate r, U and V.



Check

r = (25 cos 65.556° + 55 sin 65.556°) cos 18.317° + 20 sin
18.317° 

= 63.640 mm

 
Exercise 2 Given that r = 63.64 mm, U = 65.556°, and V =
18.317° calculate the cartesian coordinates (x, y, z) using
equations (5.2).

x = 63.640 × cos 18.317° × cos 65.556° = 25.00 mm 
y = 63.640 × cos 18.317° × sin 65.556° = 55.00 mm 

z = 63.640 × sin 18.317° = 20.00 mm

5.7     Coordinate differences

In practice coordinates are seldom referred directly to the
origin O. Usually connections between two points, such as
A and B, are required. In this case the above formulae (5.1)
to (5.5) need only a little modification to put

the Greek letter Δ indicating a difference. The
transformation equations become



A useful check is

 
Exercise 1 The coordinates of A and B in millimetres are

A (50, 70, 20)   B (75, 125, 40).

Calculate r, U and V.

Check

r = (25 cos 65.556° + 55 sin 65.556°) cos 18.317° + 20 sin
18.317° 

= 63.640 mm



5.8     Direction cosines in three

dimensions

The directed steps of AB and the line AB itself are related
by the expressions

where the angles α, β and γ are the angles that AB makes
with the positive directions of the OX, OY and OZ axes
respectively. To visualise these angles properly, the reader
is advised to refer to the three-dimensional paper model
already constructed which is illustrated in Figure 5.7, and
more specifically in Figure 5.8.

Figure 5.7



Figure 5.8

In this case, the angle α which AB makes with the OX axis
is greater than 90° and less than 180°. Therefore its cosine
is negative. This can also be seen from the definition

The two other cosines are

The three cosines cos α, cos β and cos γ are called the
direction cosines of the line AB since they tell in which
direction AB is pointing relative to the axes. A very common
notation for these direction cosines is



To determine the angles from the direction cosines, we
need to consider the signs of all three L, M and N. Since
each can be positive or negative, there are eight possible
combinations, according to the scheme for quadrants in the
OXY plane.

If AB lies in the first quadrant and is pointing upwards, the
signs of L, M and N are all positive (shown as + + +). If AB

lies in the first quadrant and is pointing downwards, L and
M are positive and N is negative (shown as + + –), and so
on for all eight possibilities. In the exercise above, the
respective signs are – + +, therefore AB is in the second
quadrant pointing upwards. Hence the respective angles
are

 
Exercise 1 Verify that the direction cosines of the line DC

are L = +0.62718, M = –0.69686 and N = –0.34843.
Therefore DC is in the fourth quadrant pointing downwards
and the correct angles are

These results should be tested against the paper model.



 
Exercise 2 Show that the direction cosines L, M and N are
related by the expression

From (5.12) we have

and since

we have

therefore

L2 + M2 + N2 = 1

Note: It might be thought that only two direction cosines
need be known, leaving the third to be calculated from
(5.14). However, because the sign of the square root
cannot be resolved, no unique solution is possible with only
two direction cosines.

5.9     Equations of a line in three

dimensions



If two points on a line AB are known, its direction cosines,
L, M and N, can be calculated from equations (5.15).
Reversing the argument, the coordinates of B, a distance
AB along AB from A, will be given by the formulae

Thus any point P a distance AP along AB from A will be
given by the formulae

The distance AP is usually denoted by ‘t’ and formulae
(5.17) become

The coordinates of all points on the line, corresponding to
all values of t can then be found. Therefore these are the
equations of the line AB and its extensions beyond the
points A and B.

 
Exercise 1 If A and B are the points A (5, 3, 0) and B (0, 5,
5), show that the coordinates of E, the mid point of AB, are
E (2.5, 4.0, 2.5). Refer to Figure 5.9. Also find the
coordinates of F and G where GA = AF = 2AB.

It is wise to lay out the calculations in a tabular form, as in
Table 5.1. All columns of the table are listed in alphabetical
order from left to right, and the rows are numbered from
the top downwards. Thus we can give all cells a reference.



For example, the coordinates of point A are located in cells
B2, C2, and D2. The differences of coordinates between A
and B are in cells B4, C4, and D4, their squares in B5, C5,
and D5, and the square root of the sum of these squares in
B6. This is the distance AB obtained from

or in terms of the cells as

SQRT(B5 + C5 + D5) = √(25 + 4 + 25) = √54 = 7.348 469
23

where the computer code for square root is ‘SQRT’. A note
of this calculation is placed at some convenient spot in the
table to remind the operator what has been done to obtain
the number in cell B6.

Note: Some readers will see that this method of working is
that used by spreadsheet computer systems. To the reader
who only uses a hand calculator, this orderly layout is still
advisable.

Table 5.1



Having obtained the length of AB, the next stage is to
calculate the direction cosines L, M and N. These are
obtained from the operations

B4/B6, C4/B6, and D4/B6 abbreviated to B4:D4 /B6

and the results placed in cells B8, C8, and D8.
To test the calculation method we compute the

coordinates of B from the formulae (5.18), placing the
results in cells B10:D10. To calculate the coordinates of E
the mid point of AB, we put t = ½AB = 3.674, and again use
formulae (5.18). The points F and G are obtained by
making t = 2AB and t = –2AB respectively. The minus sign
places the point G along AB in the opposite direction to B.
Once again we encourage the reader to check the results
for F and G by using the paper model.

 
Exercise 2 Verify that the coordinates of E, F and G could
have been obtained by direct scaling of the directed steps
of AB without the need to find the direction cosines at all.



If we call the directed steps of AB respectively x, y, and z
that is

and if we introduce a scale factor k for each point (E, F or
G), depending on the length of ‘t’ in each case, we have

Then the scaled steps are kx, ky, and kz giving scaled steps
respectively of

Figure 5.9



These are steps from the point A(5, 3, 0) giving the
coordinates of E

(5 – 2.5, 3 + 1, 0 + 2.5) = (2.5, 4, 2.5).

In the same way we obtain the coordinates of F and G from

F(5 – 10, 3 + 4, 0 + 10) = (– 5, 7,10), and G(5 + 10, 3 – 4, 0
– 10) = (15, –1, –10).

Note: Both methods of finding the coordinates of points on
a line are used. Formulae (5.18) are necessary to solve
problems such as the point of intersection of rays observed
by theodolite.

5.10   The angle between two rays

One of the most important and useful formulae of three-

dimensional coordinate geometry is that for the angle
beween two rays in terms of their direction cosines.
Consider the two rays AB and AC, of Figure 5.10, with
direction cosines L, M, N, and L’, M’, N’ respectively. Then

and



Figure 5.10

The angle θ = BAC between the rays is given by

To prove this formula consider Figure 5.10 in which the
line BD is perpendicular to AC. By the cosine formulae of
plane trigonometry (see (3.4)) we have

To prove formula (5.19) we just have to recast this formula
(5.20) in terms of the direction cosines. From (5.12) we
have

From (5.20)

The right hand side is

On multiplying out and collecting terms this expression
simplifies to



equating to the left hand side and dividing throughout by
AB.AC we have

therefore

The angle given by this formula follows a right handed rule.
With the index finger pointing along AB, the second finger
along AC and the thumb pointing at right angles to both AB

and AC, the angle given by the formula is that obtained by
a rotation about the thumb axis of AB into AC. It is positive
clockwise and negative anticlockwise.

5.11   Parallel and perpendicular rays

If two rays are parallel, the angle between them is zero,
therefore

LL’ + MM’ + NN’ = 1

If the rays are perpendicular to each other (normal to each
other), the angle between them is 90° therefore

LL’ + MM’ + NN’ = 0



Figure 5.11

 
Exercise 1 In Figure 5.11 the points A, B and C have
coordinates (3, 0, 0), (0, 0, 3) and (0, 3, 0) respectively.
Verify, using the formula (5.19) that the angle at A between
AB and AC is 60°.

It is clear that the triangle ABC is equilateral because

AB = √(9 + 0 + 9) = 4.2426 
AC = √(9 + 9 + 0) = 4.2426 
BC = √(0 + 9 + 9) = 4.2426

Therefore the three angles A, B and C are each 60°. The
direction cosines of AB are

The direction cosines of AC are

Therefore the angle A is given by



If two rays such as AB and CD of Figure 5.7 do not
intersect, we can still give meaning to the angle between
them. Consider rays which do intersect, one parallel to AB

and the other parallel to CD. The angle between them lies
in a plane containing both rays. This is the angle between
the original rays.

 
Exercise 2 Prove that the angle between the rays AB and
CD of Figure 5.7 is 31.427°.

In Section 5.8, the direction cosines of AB and CD have
already been found to be

Therefore

5.12   Projection of one ray on

another

Consider Figure 5.10. Suppose we require the length of AD,
which is called the projection of AB on AC. The direction
cosines of AC are L’, M’, N’ as before, then the length of AD

is given by,



 
Exercise 1 If AD is the projection of AB on the line AC of
Figure 5.11, show that the length of AD is 2.12. The result
is readily known because triangle ABC is equilateral, and
side AC = 4.24. Alternatively, applying the formula (5.21)
we have

The coordinates of point D can then be found from the
equations of the line AD in this case

 
Exercise 2 From coordinates, calculate the length of BD of
Figure 5.11. B and D are the points

(0, 0, 3) and (1.5, 1.5, 0),

hence BD is given by

√(1.52 + 1.52 + 32) = √13.5 = 3.67



5.13   Distance from a point to a ray

Alternatively the distance from a point to a ray can be
found directly as follows. Suppose the length of BD is
required. Then

BD = AB sin θ = AB √(1 – cos2θ)

If we substitute in this formula for cos θ, BD can be written
directly in terms of the direction cosines of AB and AC as
follows

 
Exercise 1 Verify the length of BD using this formula.

To assist with the arithmetic, it is convenient to list the
direction cosines in order as follows.

The calculation is carried out by cross-multiplying pairs of
numbers as indicated by the arrows. Down-arrow products
take positive signs, and up-arrow products take negative
signs. The terms in each bracket are



Note: The terms in the brackets of (5.22) are two by two

determinants. See Section 6.6 for more information

5.14   The common normal to two

rays

Consider Figure 5.7 again. The rays AB and CD do not
meet. It is often important to find the length of the shortest
distance between them and the positions of each end of this
shortest line. The existence of a common normal to each
ray can be verified by inspecting the paper model
representing Figure 5.7. Suppose the direction cosines of
the common normal to each ray are U, V, and W. Then we
have

LU + MV + NW = 0 
L’U + M’V + N’W = 0

Dividing throughout by U gives the equations

Which we can solve for V/U and W/U. Also

U2 + V2 + W2 = 1

therefore

(V/U)2 + (W/U)2 + 1 = 1/U2

so that U can be found, and therefore V and W. So the
direction cosines of the common normal are now known.

 
Exercise 1 Find the direction cosines of the normal to the



lines AB and CD. Let the ends of the normal be the points E
and F on AB and CD respectively.

The direction cosines of AB and CD are

The equations (5.23) in this case are therefore

Solution of these equations gives the result

(V/U) = 0.5000 (W/U) = 0.799 99

Then we obtain U from

which gives

V = 0.5U = 0.363 698 and W = 0.79999U = 0.581 910

Note: We have chosen the positive value for U. If the
negative value is chosen, all direction cosines change sign
and the final result is the normal facing in the opposite
direction. If a particular direction is required, the two
original lines and their normal will form either a right or
left handed set of directions when chosen in order: line
one, line two and their normal. The system is right handed
if, when looking along the normal, a clockwise turn will
bring line one into line two.

5.15   The length of the normal EF



The length of this normal EF is the projection of any line,
such as AC, on the line with direction cosines U, V, and W
just found. Note one point has to lie on AB and another on
CD. Thus, in this case, the length of EF is given by

 
Exercise 1 Show that the projections of BD, CB and AD, on
EF are respectively all equal to 2.982.

5.16   Terminals of the common

normal EF

To find the points E and F we write the equations of AE and
CF respectively as

Two of the direction cosines of EF, U and V, may be
expressed in terms of the coordinates of E and F and the
length of EF as

or



Note: We do not require to use the third direction cosine
W. Substituting from (5.24) in (5.25) we have

These are two equations in the unknowns AE and CF which
we can solve, and then from equations (5.24) obtain the
coordinates of E and F.

 
Exercise 1 Calculate the coordinates of E and F for the
given data. Substituting the numerical values in (5.26) we
have

and rearranging

–0.627 18 CF + 0.68027 AE = –1.830 715 
0.696 86 CF – 0.272 11 AE = 4.084 668

which solve to give CF = 7.517 and AE = 4.239.

 
Exercise 2 Show that the coordinates of E and F are

The actual working is left as an exercise for the reader.
These results can be checked by calculating the distance
EF from these coordinates, and verifying that it is 2.982.

5.17   The equation of a plane



In Figure 5.12 a plane ABC is shown. The line OB is normal
to the plane, or in other words the angle ABO is 90°. A and
C are any points on the plane. If the direction cosines of OB

are respectively L, M and N and the length of OB = P, then
the equation of the plane is

OB is the projection of OA on OB. Therefore by equation
(5.21) we have

Since A is any point on the plane, all points in the plane
satisfy the equation

Figure 5.12

Usually a plane is defined by three points which do not lie
on a straight line, and the equation is found from their
coordinates. Assuming that the coordinates of A, B and C

are given, and because the three points lie in this plane,
their coordinates satisfy equation (5.28) and we have



which in matrix from is

It might be thought that there are four unknowns L, M, N

and P and only three equations for solution. But it should
be remembered that the direction cosines are not all
independent because

L2 + M2 + N2 = 1

Provided the plane does not pass through the origin of
coordinates, we can divide each equation throughout by P
to give

LX/P + MY/P + NZ/P = 1

or

(L/P)X + (M/P)Y + (N/P) Z = 1

The three equations in new unknowns (L/P) etc. become

and we solve for (L/P), (M/P) and (N/P) by any method.

Now we have

(L/P)2 + (M/P)2 + (N/P)2 = 1/P2



therefore we can obtain 1/P2 and therefore P. Using this
value we can finally calculate L, M and N from L/P, M/P and
N/P.

 
Exercise 1 In Figure 5.11 the points A, B and C have
coordinates (3, 0, 0), (0, 0, 3) and (0, 3, 0) respectively.
Derive the equation of the plane ABC. We tabulate the data
anticlockwise in order A, C, B.

The equations to be solved are

which gives at once that

Then

L = M = N = √3/3 = 1/√3

Note: The solid formed by the axes planes and the plane
ABC is the same as a glass corner cube used to reflect
electronic signals in surveying. The geometrical path length
of the signals in the cube is P. In the cube we have chosen,
the side length AB equals 4.243 units. If we scale this to be
one unit, then P becomes 0.408 units. This gives the rule



that for a cube of side length D the geometrical path of
signals is 0.408 D. In practice, the optical path taken is
affected by R the refractive index of the glass to give the
actual length of RP.

5.18   The equation of a sphere

The derivation of the equation of a sphere in three
dimensions follows easily from that of a circle in two
dimensions (see Section 4.10). A sphere is a surface
defined by the fact that all points on it are a fixed distance
from its centre. Let the centre have coordinates (a, b, c)
and the radius be r. Any point (x, y, z) on the surface of the
sphere is related to the radius and centre by

Expanding out we have

which can be written as

where the centre is the point (–e� –f, –g) and the radius is
√[(e2 + f2 + g2) – h]. The equation (5.30) is the equation of

a sphere. Clearly if the coordinates of the centre and the
radius are known, the sphere is defined.

5.19   The equation of a sphere from

four known points



A minimum of four points on the surface, not all of which
lie in a plane, is needed to define a sphere. If the
coordinates of these four points are measured by surveying
or other techniques, the equation can be established.

 
Exercise 1 Find the equation of the sphere ABCD which
fits the following data. A tabular layout is convenient.

Table 5.2

Substituting the values of Table 5.2 in equation (5.30) we
obtain four equations in e, f,g and h.

When these equations are solved by any method described
in Chapter 12, which the reader may verify by substitution,
we find that

Thus the centre is at (6, 5, 4) and the radius r is given by



5.20   Fitting to a circle in three

dimensions

In engineering and cartographical work, it often happens
that a circle has to be fitted to points whose coordinates
are established from surveying techniques or from
digitising a map. The cartographic problem is the simpler
because all the data lie in the plane of the two-dimensional
coordinate system and the procedure is as in Section 4.10
The surveying problem, however, is often more complex
because the circle does not always lie in a horizontal or
vertical plane. For example in pipe work, a circular section
through the pipe will very often be in a plane tilted with
respect to the vertical and horizontal planes.

For example, pipes, such as those shown in Figure 5.13
can be treated as thin cylinders, whose cross-sections are
circular. To know the attitude of the pipe axes and their
point of intersection is often very important in assembly
problems, such as in oil platforms, chemical works and the
like. In practice, the process usually involves fitting to more
than the minimum of data points by the method of least
squares. However, it is always necessary to obtain good
provisional values for the direction of a pipe axis and its
radius, before a least squares fitting commences.



Figure 5.13

Figure 5.14

It is assumed that the coordinates of at least three points
lying on a circular section of a pipe have been obtained by
some survey method. Figure 5.14 shows a circle ABC with
centre D lying in a plane tilted with respect to the right
handed rectangular cartesian axes OX, OY, OZ. The point Q
also lies in the plane ABCD. Q is the point where the line
from the coordinate origin O, perpendicular to the plane,
cuts the plane. The line OQ is of length P, and has direction
cosines with the respect to the OX, OY, and OZ axes of L,

M, and N respectively. The equation of the plane is given
by

By the same method as in Section 5.17 the first stage is to
find the equation of the plane ABC from the following data



This equation is

(Note: These direction cosines are also those of the axis of
the cylinder.)

To find the centre of the circle, we use the fact that the
plane passing through the mid point of a chord of the
circle, and normal to the chord, passes through the circle
centre. Two such planes and the plane of the circle itself
(5.31) will intersect at the centre.

From the chord AB we obtain its length and direction
cosines which are

The length P of the normal from the origin to the required
plane through the mid point of AB is obtained from

– 0.538 85 (XB + XA) + – 0.807 57 (YB + YA) + – 0.239 73
(ZB + ZA) = 2P

in this case P = –10.606 24. The equation of the required
plane is therefore

In a similar manner the equation of the plane normal to the
mid point of the chord BC is found to be

Solving equations (5.31), (5.32) and (5.33) gives the
coordinates of the centre of the circle ABC to be

(8.188, 3.683, 13.429)



The three values of the radius to A, B and C all give r = 3.
The equations of the axis of the cylinder are therefore

compiled from the coordinates of D and the direction
cosines of the plane ABC as follows:

A point E which is 6 units along the axis from D and nearer
the origin will have coordinates, given by putting t = – 6 in
equations (5.34), as follows

(6.138, 6.502, 8.545)

This point E is the centre of the circle FGH between three
points on another ring of the pipe (see Figure 5.13).

 
Exercise 1 Verify from the data below that FGH is a circle
in a plane parallel to ABC and E is the centre of this circle.

Assuming that the plane FGH is parallel to ABC and a
distance 6 units away from it, its equation will be

Substituting the values of F, G and H in this equation
verifies that these points lie in this plane.

5.21   Creation of a stereoscopic

image



It is quite common nowadays to employ a stereoscopic

optical model instead of a solid model to illustrate some
plan or construction proposal. Two slightly differing
drawings are made which, when viewed by lens or other
stereoscope, create the illusion of depth.

Consider Figure 5.15 which shows the plan and elevation
of a simple tower consisting of points A, B, ..., J. The (x, y, z)
coordinates of these key points on the tower would have
been obtained by some surveying method. The objective is
to create by computer the two views (Figure 5.16) which
would be obtained if the tower had been photographed, and
to view them subsequently to obtain a stereoscopic image,
as with two photographs.

Points L and R of Figure 5.15 are the two projection
centres and the projection plane is the line dd’ orthogonal
to the page. Let the equation of this plane be

We choose P = 38, and because the plane is parallel to the
y O z plane, L = 1, M = 0 and N = 0, therefore the equation
reduces to

From the first viewpoint L we create the image to be
viewed by the left eye to form the stereopair. This is shown
in Figure 5.16. Consider a typical ray LDd, where d lies on
the projection plane. If t is a scaling parameter, the first
equation of this ray is

Suppose the coordinates of the viewpoints L and R and of
the tower points A to J are as listed in Table 5.3.



Table 5.3

We select xL = 0, and because all x values of the projected
points are equal to 38, we have

xd = 38

Also



Figure 5.15

so

All other values of y are calculated in the same way to give
the results in Table 5.4.

The values of z coordinates are obtained in a similar way
from typically



Table 5.4

Project points (left) y z

a 9.96 18.91

b 24.83 18.91

c 19.71 26.16

d 8.68 26.16

e 9.96 35.43

f 24.83 35.43

g 19.71 38.42

h 8.68 38.42

j 15.56 44.19

Table 5.5

Project points (left) y z

a' 13.22 18.91

b' 28.09 18.91

c' 20.84 26.16

d' 9.81 26.16

e' 13.22 35.43

f' 28.09 35.43

g' 20.84 38.42



h' 9.81 38.42

j' 17.59 44.19

All other points are treated similarly to give the results in
column 3 of Table 5.4. From these coordinates (y, z) the
drawing of the left eye view is plotted at any suitable scale.

The whole process is repeated for the right eye position
R and values of Table 5.5 obtained, from which the right
eye view is plotted at the same scale. If copies are made of
the views of Figure 5.16, each on a separate piece of paper,
and viewed with a simple stereoscope, a three-dimensional
impression is obtained. Many persons can fuse the images
without a stereoscope.

Figure 5.16

Calculating by hand or spreadsheet is tedious and
impractical if many thousands of coordinated points are
involved such as in a terrain model or complex road
intersection. However, computers are ideally suited to such
problems. Animated dynamic views can be obtained with



amazing speed by modern processors, the results being
depicted on the computer screen and viewed by a suitable
stereoscope or synchronised flicker device.

SUMMARY OF KEY WORDS

isometric view, perspective views, right handed, directed

step, vector, components, direction cosines, the

projection of AB on AC, equation of a sphere,

stereoscopic optical model

SUMMARY OF FORMULAE

COORDINATE TRANSFORMATIONS

COORDINATE DIFFERENCES



DIRECTION COSINES AND LINES

EQUATION OF A PLANE

EQUATION OF A SPHERE



Chapter 6 
Areas and Volumes

6.1     Areas of plane figures

The calculation of the area of a plane figure is important to
surveying and cartography, especially for land tax
evaluation and other financial matters. In practice, most
areas are calculated from the plane coordinates of points
spaced round the perimeter of the area to be quantified.We
look first at the methods of determining the area of a plane
triangle and later to more complex problems.

Figure 6.1

6.2     Area of a triangle

Consider the triangle ABC of Figure 6.1. KL and AC are
parallel lines and AKLC is a rectangle. By inspection it can



be seen that the area of the triangle ABC is half that of the
rectangle AKLC. Let the area of the triangle ABC be Δ.
Thus we see that

Also from (3.9) we have

Δ = ½ ba sinC and Δ = ½ ac sinB

Another useful expression for the area of triangle especially
in a three dimensional coordinate system is Hero’s formula

given in (3.31)

 
Exercise 1 Calculate the area of the triangle whose sides
are 6, 7 and 8 units long.

Figure 6.2

6.3     Area of a trapezium

A trapezium is a four-sided figure (quadrilateral) with two
opposite sides parallel. One is shown in Figure 6.2 in which



BC is parallel to AD. The area Δ of the trapezium ABCD is
given by

Δ = ½BL(BC + AD)

Consider the sum of the areas of the triangles ABL and
KCD, and the rectangle BCKL, then

 
Exercise 1 Calculate the area of the trapezium ABCD in
which

6.4     Area of a triangle in terms of

plane coordinates

Now consider the triangle ABC in Figure 6.3. Let its area
be Δ. Then if we consider all areas to be positive for the
moment



Figure 6.3

therefore

and finally

At first sight there may not be a pattern to this result, but if
we write the coordinates down as an array in two lines
repeating the first pair as follows, the pattern will appear

The rule is to follow a cross multiplication rule indicated by
the arrows: down products are positive and up products are
negative. Note that the coordinates of the first point A are
listed twice.

 
Exercise 1 Calculate the area of the triangle ABC formed



by the points whose coordinates are A(1, 3) B(5, 4) C(3, 2).
Writing the coordinates in two rows gives

and the area of the triangle as

The negative sign arises because the points ABC have been
taken clockwise. Because an anticlockwise angle is positive
in the coordinate system, an anticlockwise order for the
points would yield a positive result.

 
Exercise 2 Calculate the area of the triangle in the order
ACB. Here we have

Note: In this book simple numbers have been chosen to
illustrate theory. In practice, the coordinates of points can
be quite large. In such cases it is usual to modify these
coordinates before performing a calculation. The method is
to move the origin to a point whose coordinates are the
average of all values, say i points. If this new origin, called
the centroid, has the coordinates



all coordinates are reduced to new values X, Y using

and the area calculated using the new values. This device is
simply to reduce the size of the numbers in calculation.

 
Exercise 3 Calculate the area of the triangle ABC, where
the coordinates are A(51,73), B(55,74), C(53,72). Here we
have the centroid

and the new coordinates reduced to the centroid are

which is the same as if the original values had been used
without modification.

6.5     Extension to polygon

The above rule applies also to any closed polygon no matter
how large. It is important to list the coordinates in the
correct order in which the points are joined to form the
perimeter of the figure so that correct signs are obtained
for areas that turn backwards. A clockwise or anticlockwise
convention of numbering points will produce the correct
numerical value.



We will derive the result for the quadrilateral ABCD of
Figure 6.4. The area of the polygon is the sum of the areas
of the triangles ABC and ACD. Writing down their
coordinates we have

Figure 6.6

and

giving 2Δ twice the sum of the two triangular areas as

which after rearranging gives the same result as from the
coordinates of the four points listed as

Note: When calculating an area with a map digitiser, the
operator traces round the perimeter of an area whose



coordinates are sampled at some preset rate. A modified
version of the above formula is then used to calculate the
enclosed area from the digitised coordinates. The same
formula is used to calculate cross-sectional areas in
engineering works.

6.6     Determinants

Although the cross multiplication rule for calculating the
area of a triangle is convenient for hand calculation, a
mathematical notation for the process is required, so that
problems can be treated in an orderly manner. To deal with
such and similar problems the algebra of determinants was
devised. The notation used is similar to that employed in
matrices (see Chapter 7) but is not to be confused with it.
At first sight the process may seem a little perplexing. We
simply have a set of useful rules to carry out arithmetic.
These rules can be programmed in a computer and are
available in spreadsheets for actual calculations. Some
understanding of the structure is needed therefore to use
the notation properly. Unlike matrices, determinants deal
only with square arrays of numbers.

A square array of numbers, D, is written within parallel
vertical lines as follows

D is called a determinant of the second order and is given
the meaning



 
Exercise 1 Evaluate the determinant D where

 
Exercise 2 Evaluate the determinant D where

Then

The process can be extended to deal with any size of square
array. For the moment we need only to consider a
determinant of the third order, for example D where

This determinant D has the meaning

which is twice the area of the triangle ABC obtained by the
cross multiplication rule explained in Section 6.4. To
explain how the determinant is written out in full, or
expanded, we need to define a few terms. The third-order
determinant D can be written in terms of second-order
determinants, D1 D2 and D3 as follows



where

Examining these determinants and D we see that

D1 is the determinant formed from D omitting the first row
and the first column of D. It is called a minor

determinant of D. Because it is clearly related to xA, it is
called “the minor of the element xA”.

D2 is the determinant formed from D omitting its first row
and second column, and it is called “the minor of the
element yA”.

D3 is the determinant formed from D omitting the first row
and the third column of D. It is called “the minor of the
element 1”.

The rule then for expansion of a determinant is:

Take the elements of the first row, multiply each of these
elements by its minor, attaching + and – signs alternately.

 
Exercise 3 Evaluate the determinant



 
Exercise 4 Evaluate the determinant again by expanding it
down the first column instead of along the first row. We
have

 
Exercise 5 Evaluate the determinant again by expanding it
down the third column instead of along the first row. We
have

Note: We can expand a determinant using any row or

column and its minors.

 
Exercise 6 Evaluate the determinant



This is best expanded down column 3 to give

This same result was obtained by the cross multiplying rule
in Section 6.4 Exercise 1.

Note: Many operations on determinants are possible which
do not concern us here. The reader should refer to a more
advanced text to learn about these if required.

6.7     The tetrahedron

A tetrahedron is a four-sided figure with plane sides. The
best-known example is a pyramid which usually has three
sides equal. Some cartons of milk have all four sides equal.
In surveying, the volumes of solid (such as part of a hill
which is to be excavated to make way for a road) have to be
calculated. Generally, the solid can be divided into many
tetrahedra whose separate volumes are calculated. The
coordinates of the corners of the tetrahedra can be
obtained from surveying, photogrammetry or map
measurements. Therefore the calculation of the volume of a
tetrahedron is fundamental to the wider calculation of
solids in general.

Consider the tetrahedron ABCD shown in Figure 6.5. It is
worthwhile making a paper model of this solid to
understand the basis of the mathematics that follows. The



solid is constructed from the shape indicated in the figure
which should be drawn to scale when making the model.
Shape One is cut out and folded into Shape Two. Note that
the points are lettered in an anticlockwise manner
according to their positions in the xy plane.

Figure 6.5

Figure 6.6

In Figure 6.6, the line DE = H, perpendicular to the plane
of the triangle ABC, is the height of the tetrahedron. Plane
IJW, a plane parallel to ABC between ABC and point D, cuts



DE at F. Let DF = h. Let the areas of triangles ABC and IJW
be Δ and Δs respectively. Then

This follows because the respective sides of the triangles
ABC and IJW are proportional to H and h, for

angle I = angle A

and from similar triangles

and

therefore since I = A

 
Exercise 1 Show that the area of the triangle IJW is ¼Δ if
h = ½H.

6.8     Volume of the tetrahedron

The volume of the tetrahedron can be thought of as the
sum of the areas of all triangles like IJW of thickness dh.



We can think of dh as very small. The volume Vis therefore
given by the integral (see Chapter 9)

Thus we have the very simple result that the volume of a
tetrahedron is equal to one third of the area of its base
times the height. The result is true also of a cone because

the areas of successive slices parallel to the base are

proportional to the square of the height.

Note: In the derivation we selected the triangle ABC to be
the base and DE as height. The triangle on any of the four
faces could have been chosen together with the appropriate
perpendicular to that face as height.

6.9     Volume of the tetrahedron from

coordinates

The volume V of a tetrahedron ABCD is given very neatly,
in terms of the coordinates of its four corners, by the
fourth-order determinant (see also Section 8.18).

We will now derive this important result. Again we treat
the plane ABC as base and DE as the height. The plane



ABC is not generally parallel to any coordinate plane.

Area of a triangle in three dimensions

First we need to find the formula for the area of triangle
ABC in this general case. To follow the logic of the next
explanation, hold a flat object, such as a piece of card, in
front of your eyes against the background of a room corner
imagined to form a right handed set of coordinate axes.
Also see Figure 6.7 where we have chosen the bottom
corner of a room for origin.

Figure 6.7

Let N = cos θ be the direction cosine of the normal to the
plane ABC with respect to the axis Oz (see Figure 6.7) Let
the orthogonal projections of the points A, B and C on the



Oxy plane be A’ B’ and C’ respectively, then Δ’, the area of
this triangle, A’ B’ C’ is given by

But A’, B’ and C’ have the same x and y values as A, B and C
so

Since N is the cosine of the angle between the normal to
the plane ABC and the Oz axis, it is also the cosine of the
angle between the plane ABC and the Oxy plane. Thus the
area of triangle ABC is given by

Δ’ = N Δ

therefore

Now from (5.28) the equation of the plane ABC is

Lx + My + Nz = P

From three points in the plane we obtain L, M, N and P

(see Section 5.17) and therefore we can calculate Δ.
The length of the perpendicular H from the fourth point

D to the plane ABC is given by

Thus we can calculate the volume of the tetrahedron from
the formula (6.7)



All that remains is to recast these expressions into the neat
determinant formula for volume. Consider the equation of
the plane

Lx + My + Nz = P

or

This is the general form of a linear equation

We can put

where k is a constant. That equations (6.10) and (6.11) are
the same can be seen by substituting in (6.11) thus

and dividing by k gives equation (6.10).

Because (see (5.14))

we have

If we know the coordinates of three points A, B and C then
equation (6.11) is satisfied by their coordinates. Any other



point (x, y, z), also satisfies (6.11) giving the equations in
the four unknowns P, Q, R and S.

For these equations to be consistent (see Section 12.6) the
determinant of their coefficients must be zero therefore

Expanding the determinant along the first row we have

Tx + Qy + Rz + S = 0

where

and from



and

we can express L etc. in terms of third-order determinants.
The perpendicular from D to the plane ABC is given by (see
equation (6.9))

so we also have

This is the determinant formed by putting the coordinates
of D in (6.11) and

Finally the volume Vis given by

or

If this determinant is re-ordered in the neater form as



its sign changes. Usually its numerical value is all that is
required. We will now work some examples based on the
following data.

The following exercises involving determinants are quite
arduous if worked by hand using a small calculator. If a
spreadsheet is available, such as Excel, they are quite
simple, because the function MDETERMO is available to
evaluate determinants.

 
Exercise 1 Find the equation of the plane ABC by the
method of determinants. (It is easier to use the method of
Section 5.17 if only a hand calculator is available.)

The determinants T, Q, R and S are evaluated as follows.



Therefore

and

giving

Therefore the equation of the plane in the form

Tx + Qy + Rz + S = 0

is

–12.5x + y + 64z + 3.5 = 0

and in the form

Lx + My + Nz – P = 0

is



– 0.191 668x + 0.015 333 4y + 0.981 340 04z + 0.053 667
= 0

 
Exercise 2 Find the area of the triangle ABC. The area of
triangle ABC is given by

Check 

 
Exercise 3 Find the area of the triangle ABC using Hero’s
formula for Δ. Hero’s formula (3.31) for the area of a
triangle ABC in terms of its sides a, b, and c is

where

2s = a + b + c

The sides obtained from coordinates are

Within the expected precision, this agrees with the result
obtained above by the coordinates method.



 
Exercise 4 Find the height H of D above the plane ABC.

The height is given by substituting the coordinates of D in
the equation of the plane, therefore

 
Exercise 5 Calculate the volume of the tetrahedron ABCD:

(a) from first principles and

(b) by the determinant formula.

Note: Because the determinant (6.15) gives the volume of
the tetrahedron ABCD, if these points all lie in the same
plane, the volume is zero, hence the condition for
coplanarity of the four points is

This relationship is important in photogrammetry.



 
Exercise 6 Verify that the following points are coplanar

All that is required is to evaluate the determinant

It is left as an exercise for the reader to show that it is zero.

SUMMARY OF KEY WORDS

Hero’s formula, trapezium, centroid, determinants, 

determinant of the second order, 

determinant of the third order, minor determinant,

tetrahedron, 

fourth order determinant

SUMMARY OF FORMULAE





Chapter 7 
Matrices

7.1     Matrices

Matrix algebra was invented to deal with the arithmetic
procedures needed to solve large numbers of linear
equations and related problems. Special rules were devised
for the four arithmetic processes of addition, subtraction,
multiplication and division, in handling arrays of numbers
instead of individual values. Of course, the procedures
ultimately involve many repetitive calculations, but these
are largely unseen by the user. These rules are expressed
in a neat algebraic form for which some new and some old
forms of notation are employed. It is usual to distinguish
matrix algebra from ordinary algebra by always printing
letters in bold type, and in hand-written work the letters
are underlined.

We first give some idea of the power and usefulness of
matrix algebra by working out a simple problem. Later, a
more formal approach is given in the hope that the reader
will see that it is very worthwhile making some effort to
learn the few rules that apply, especially when it is realised



that many computer spreadsheet systems require a user to
know the structure of matrix algebra, and thus obtain
freedom from the tedium of doing the arithmetic.

7.2     An introduction to matrix

algebra

Consider the simultaneous linear equations representing
two lines in a plane

Provided these equations do not represent parallel lines
they will have a solution. That is there are values of x and y
which satisfy both equations at once.They are called
simultaneous linear equations because they do not involve
powers of the unknowns x and y other than the first, and
they have to be solved together. By contrast an equation
involving squares of x and y is called a second-order

equation. An example of a second-order equation is

x2 + 2y2 = 5



Figure 7.1

In this case there may be more than one solution for x and
y. In the case of linear equations there is only one solution
or no solution at all.

 
Exercise 1 Plot the equations (7.1) and (7.2) on graph
paper and read off the coordinates of the point where they
cut each other.

To plot the equations select easy values for x and y, such
as zero, and calculate the corresponding values from the
equations.For example

Equation (7.1)

If x = 0 then y = 5/2 = 2.5 If y = 0 then x = 5

Equation (7.2)

If x = 0 then y = 13/6 = 2.17 If y = 0 then x = 13

Figure 7.1 shows the plotted lines representing (7.1) and
(7.2). They intersect at the point whose coordinates are (1,
2). Thus the solution to the linear equations is x = 1 and y
= 2. These results are verified by substitution back into the
equations: for

x + 2y = (1) + 2(2) = 1 + 4 = 5

and

x + 6y = (1) + 6(2) = 1 + 12 = 13

7.3     Solution by elimination



Another way to solve the equations without drawing a
graph is by eliminating one variable at time. Consider the
equations again

A simple method of solution is first to express x in terms of
y from equation (7.2)

and then substitute this into equation (7.1) to give the
result for y.

Thus from (7.2)

x = 13 – 6y

and substituting in (7.1) we have

Then from (7.2)

The mathematical language called ‘matrix algebra’ was
devised to put this elimination procedure on a formal basis,
and to simplify the whole process of handling linear
equations often numbering many hundreds. Consider the
expression

4y = 8

The solution for y is obtained from



It is neater to write the reciprocal of 4 as 4–1, and the
calculation as

y = 4–1.8 = 2

In general, a linear equation can be written

ax = b

and the solution

x = a–1.b

 
Exercise 1 Write the solution to the equation 3z = 9 in the
general form. We have

z = 3–1.9 = 3

The originator of matrix algebra thought that it would be
convenient to treat large sets of linear equations in this
neat manner. Consider the two linear equations again

Suppose we write these as

We use heavy type to say they have a different meaning to
the simpler

ax = b

Before explaining the meaning of the notation used in
equations (7.3) we state that their solution is



This very simple algebraic language is valid no matter how
many linear equations there are. Often, in practical
problems in geodesy, there can be many thousands of
equations to solve. Now we explain the notation used in
equation (7.3).

7.4     Matrix notation

First of all, we separate the coefficients from the unknowns
in equations (7.1) and (7.2) and write them as a separate
square array of numbers within square brackets, which we
call A. Thus

This array of numbers within the square brackets, is called
a square matrix because it is to be subjected to the rules of
matrix algebra which we will explain. The place of the
number in the matrix is very important. Like a coordinate
system, the rows and columns are numbered, in this case
from the top left corner along and down. For example the
number 2 in A above is the element a12, being in the first

row and the second column, and the number 6 is element
a22. A whole row, such as row 1, is written a1* and a whole
column, such as column 2, as a*2. The asterisk is used as a
counter for all the numbers in that row or column. Note
that the numbers of the matrix are not connected to each
other in any way. All that matters is their position in the
array.



Next, we write the unknowns x and y in a column matrix

called x

and finally the numerical part as another column matrix
called b.

Assembling all these three matrices together we have

Ax = b

or in full

All that remains is to explain how the square matrix A is
multiplied by the column matrix x to give the left hand
sides of the equations (7.1) and (7.2).

Note: Care must be taken not to mistake the column matrix
x, in heavy type, for the unknown ‘x’ in its first row.
Perhaps a better notation is to write the elements of x as x1
and x2. Both forms of notation are common.

7.5     Matrix multiplication

The rule is to adopt a row times column multiplication. That
is, we take each term of the first row of matrix A and
multiply it by the corresponding term in the column x and



add the results. This is best explained by the example.The
left side of equation (7.1)

1x + 2y

is the result of multiplying each element of row one of A by
each element of column x, and adding the results, and the
left side of equation (2)

x + 6y

is the result of multiplying row 2 of A by column x. The box
layout below should explain the (row × column)
multiplication

Begin the multiplication with row 1 (a1*) highlighted in the
box below. The asterisk means we use the positions 1 and 2
along the row in succession, multiplying them by
successive positions down the column x*1.

Thus we obtain the row-column product

[x + 2y]

which is placed in position b11 of the resulting column.
The multiplication now treats row 2 (a2*) highlighted in

the box below. The asterisk means we use the positions 1
and 2 along the row in succession, multiplying them by
successive positions down the column x*1. Thus we have



and again we obtain the row-column product

[x + 6y]

which is placed in position b21 of the resulting column.The
complete result is

But we have been given that

So, equating each element from equivalent positions, we
have the equations in traditional form

Note: To be able to do this row-column multiplication,
there must be the same number of columns in A as there

are rows in x. Then we can say that the matrices are

conformable for multiplication.

It may seem to the beginner that this is a complicated
process and not the simple procedure suggested earlier.
However, because it can be programmed into a computer
very easily it is an exceedingly powerful arithmetic tool. To
use the tool requires some understanding of the procedures
and is well worth the effort of learning it. The next exercise
should drive home the method.



 
Exercise 1 Write down in longhand the result of the
following matrix multiplication.

Answer

 
Exercise 2 Multiply the following matrices together

Call them A and B and the result C. Thus we require

AB = C

The box layout is

The row-column multiplications can be written

meaning



In practical use, we need only state that we want the result
of the matrix multiplication

AB = C

And, in using a spreadsheet such as Excel, simply call

C = MMULT(A,B)

having selected an array location of correct size, here (2 ×
2) (two by two), for the resulting matrix C.

7.6     The inverse of a matrix

To continue with the solution of equations (7.1) and (7.2),
consider equation (7.4) again. The solution is given by

An example of a (2 × 2) matrix A–1, in full, is

Before we explain how to find the matrix A–1 of equation
(7.4) we continue to work out the result by matrix
multiplication. Thus we obtain

x = 1.5 × 5 – 0.5 × 13 = 7.5 – 6.5 = 1



and

y = – 0.25 × 5 + 0.25 × 13 = – 1.25 + 3.25 = 2

These results are expressed as the column matrix x

Before explaining the key factor in the process, how to find
the inverse of A, consider the product of the matrix A and
its inverse. That is

A. A–1

In full we have the matrix product

giving the results

These results are expressed as a matrix

This matrix is called the unit matrix I. It plays the same
role in matrix algebra as the number one (unity) does in
ordinary algebra. Compare this with ordinary algebra.

 
Exercise 1 Carry out the following multiplication



We obtain the matrix

This shows that the unit matrix I acts like the number 1
(unity) in ordinary arithmetic or algebra. Therefore

IA = A

Again, compare this with ordinary algebra, if

ab = c

then

and, with ordinary arithmetic, if

3 × 4 = 12

then

 
Exercise 2 Using the same figures as before show that

we have



giving the result

This result tells us the order of multiplying a square matrix
by its inverse does not matter because

The size of I is the same as A.

 
Exercise 3 Multiply the following matrices together, in
either order, and show that the result in both cases is
approximately the unit matrix I. (Small rounding errors in
the arithmetic give only an approximation to I.)

To obtain A. A–1 work down the rows of A in succession as
follows.

Row 1 of A times column 1 of A–1 gives

4 × 0.375 – 2 × 0.083 + 4 × (– 0.083) = 1.5 – 0.166 – 0.332
= 1.002

Row 1 of A times column 2 of A–1 gives

4 × 0.083 – 2 × 0.278 + 4 × 0.056 = 0.332 – 0.556 + 0.224
= 0



Row 1 of A times column 3 of A–1 gives

4 × (– 0.083) – 2 × 0.056 + 4 × 0.111 = – 0.332 – 0.112 +
0.444 = 0

Thus the first row of the inverse of A–1 is

1.002 0 0

Row 2 of A times column 1 of A–1 gives

– 2 × 0.375 + 5 × 0.083 – 4 × (– 0.083) = – 0.75 +0.415 +
0.332 = – 0.003

Continuing in this way we obtain the approximate unit
matrix

The approximation is due to rounding effects on the
elements of the inverse.

7.7     The inverse of a square matrix

In classical matrix algebra only a square matrix may have
an inverse. To find the inverse of the (2 × 2) matrix A we
proceed as follows. Let the elements of the inverse B be a,

b, c and d as shown.

The product of these two matrices has to be the (2 × 2) unit
matrix I where I is



Then we have

AB = I

or

Matrices are equal when their elements are equal, thus the
product of the first row of A and the first column of B has
to be 1. Therefore we obtain the equation

Next, the product of the first row of A and the second

column of B has to be 0. Thus

Next, the product of the second row of A and the first
column of B has to be 0. Thus

Finally, the product of the second row of A and the second
column of B has to be 1. Therefore

From (7.8)

a = –6c

Substituting in (7.6) we have



and from (7.8)

a = 6/4 = 3/2 = 1.5

Also from (7.7)

b = –2d

and substituting in (7.9) we have

Finally from (7.7)

b = –2d = – 0.5

So all four elements of the inverse have been found.

Note: In practice, special arithmetic routines are used by
computers to find the inverse by methods developed by the
mathematicians Gauss and Cholesky in the nineteenth
century. (See Chapter 12 for more information.) Most
spreadsheet and computer languages have such routines
mounted. For example in Excel we need only to call

MINVERSE(A)

to obtain the inverse A–1.

7.8     Inverse of a (2 × 2) matrix by

Cramer’s rule

The inversion of a (2 × 2) matrix can be achieved by a
simple rule which is worth learning. The matrix B is to be



inverted, where

Then the inverse B–1 is given by

where

The number K is called the determinant of the matrix B and
is obtained from the products obtained by cross mutiplying
the diagonals.

 
Exercise 1 Obtain the inverse of the matrix

by Cramer’s rule.

K = 2 × 6 – 4 × 1 = 8

and the inverse is



Note: Cramer’s rule can be extended to give a theoretical
way to invert any square matrix. It is however a grossly
inefficient, and is never used in practice other than for
advanced theoretical studies of the structure of matrices.
(See Chapter 12.)

7.9     Singular matrices

Not all square matrices have an inverse.

 
Exercise 1 Find the inverse of the matrix M by Cramer’s
rule where

The determinant K is

which is not defined in arithmetic. Therefore the matrix M
has no inverse. It is called a singular matrix. The problem
can arise from the same equation being written as a linear
combination of another by mistake (here equation 2 is
three times the first).Generally speaking, if a problem is
properly posed, singular matrices should not arise. For
further discussion of this matter see a specialist book such
as Theory and Problems of Matrices, F Ayres, Schaum
Outline Series.

7.10   More matrix multiplication



The (row × column) multiplication rule applies to matrices
generally. For matrix multiplication to be possible, there
must be the same number of columns in the first matrix as
there are rows in the second. The numbers in each row and
column are called the elements of the matrix. They are
usually assigned subscripts: the row number is written first
followed by the column number. Thus the general (3 × 3),
pronounced ‘three by three’, matrix A has elements aij, and
a (3 × 2) matrix B has elements bjk as follows

The result of the multiplication is a (3 × 2) matrix. This has
the dimensions of i k, the outside indices in the product of

It is important to examine the dimensions of matrices to see
that they are conformable for multiplication. This can be
told at once from the individual dimensions. In this example
the multiplication is

(3 × 3) (3 × 2)

The result is a matrix given by the outer numbers, in this
case (3 × 2).

Note: It would be impossible to change the order of the

above matrices in the product because there are only two
columns in B but three rows in A. The dimensions are

(3 × 2)(3 × 3)



Because the two inner dimensions are not the same, the
operation of matrix multiplication is impossible. Thus
although the product AB is defined, BA is not, or we say it
is not conformable for multipication. If on the other hand
both A and B are square, then both products AB and BA

are conformable for multiplication. If these products are

equal, we say that the two matrices commute. By contrast
ordinary numbers always commute, because

3 × 4 = 4 × 3

The same is true of ordinary algebra, for

ab = ba

The expressions ‘premultiply’ and postmultiply’ are used of
matrices. For example if it is said that ‘matrix A

postmultiplies matrix B’ this means the product BA.

 
Exercise 1 Show that the matrices M and N conform for
multiplication but do not commute, that is MN ≠ NM.

 
Exercise 2 What are the dimensions of the matrix formed



by premultiplying a (10 × 3) matrix by a (7 × 10) matrix?
The result is given by

(7 × 10) (10 × 3) = (7 × 3)

7.11   Other matrix operations:

addition and subtraction

So far we have dealt only with the two important matrix
operations of multiplication and inversion (the equivalent of
division). The operations of addition and subtraction are
much simpler. Provided the matrices are of the same
dimensions they can be added or subtracted. Thus for
example, if A and B are two matrices, we can obtain a third
matrix C by addition from

The process merely involves the addition of respective
elements. A typical element of C such as cij is given by

 
Exercise 1 Add the matrices A and B to give matrix C

where



 
Exercise 2 Subtract matrix B from matrix A to give D.

The last form of the result shows that a common factor (–4)
can be taken from a matrix and placed outside. Such a
common factor is called a scalar because it alters the size

of each element of the matrix.

 
Exercise 3 Simplify the following matrix

Clearly this can be written as

7.12   The transpose of a matrix

If the rows and columns of a matrix are exchanged the
matrix is said to be transposed.

For example if



the transpose of C, written as CT, is

Occasionally the transpose is written as

C!

The transpose is commonly used in printed books to save
space. For example if the column matrix x is given by

its transpose uses only one line, because

7.13   Further operations on matrices

The use of brackets in matrix statements is the same as in
ordinary algebra. For example

In these examples the matrices are said to be associative.

 
Exercise 1 Verify that the above associative rules apply to
the matrices A, B and C.



Note: For these matrices to be conformable for all three
operations of addition, subtraction and multiplication they
must all be square.

7.14   Operations on matrix products:

reversal rule

We now consider operations on matrices which are entirely
different from ordinary arithmetic and algebra: the
transposition and inversion of matrix products.

Transposition of a product

Consider the product of two matrices

C = AB

If we now transpose C we have

CT = (AB)T

Clearly we can multiply AB then transpose the result, but it
is also true that

The rule is that the order of multiplication is reversed in
transposition.

 
Exercise 1 Verify the reverse order rule for the
transposition of the following matrices



Inversion of a product

The same rule also applies to the inverses of matrices.
Consider the product of two matrices

C = AB

If we now invert C we have

C–1 = (AB)–1

Clearly we can multiply AB then invert the result, but it is
also true that

The rule is that the order of multiplication is reversed in
inversion.

 
Exercise 2 Verify the reverse order rule for the inversion
of the following matrices

Note: The reversal rule applies generally for transposition
and inversion. If D = ABC

7.15   Some applications of matrix

algebra



For a number of reasons, matrix notation and methods are
very useful to deal with problems other than the solution of
linear equations. The very existence of computer programs
and commands in spreadsheets to work matrix operations
has added to their use. We now give a few important
examples.

The length of a vector

In three dimensions, the distance S from the origin O to a
point P(x, y, z) is given by

S2 = x2 + y2 + z2

If we write (x, y, z) as a column matrix x then S is given by

The matrix dimensions of xT and x are (1 × 3) and (3 × 1) so
their product has dimension

 
Exercise 1 Write down in full the matrix which results
from the product

xxT

In full this product is



The dimensions of this column and row are (3 × 1)(1 × 3),
therefore the result is a (3 × 3) symmetric matrix

A matrix of this form is very important in statistical work.
Clearly

7.16   Rotations in three dimensions

One of the most important applications of matrix algebra to
cartography and surveying is to deal with the rotation of
rigid bodies. In photogrammetry, a three-dimensional
model is often rotated and, in cartography, a map may need
a changed orientation. Much of the problem of datum
definition in geodesy is based on rotations of axes of
coordinate systems. In our discussions here, we deal only
with rotations related to the known coordinate axes.
Consider a solid object PQR located within three, right
handed, cartesian axes Ox, Oy and Oz, as in Figure 7.2.
Figure 7.2 shows the plan view in the Oxy plane. The Oz
axis is pointing outwards from the page as you read it.
Consider that the solid is rotated about the Oz axis in an
anticlockwise manner from position PQ to position P1Q1.



The only thing that has happened is that the body has been
rotated positively within the system. Therefore

Also P1Q1 makes an angle B with the direction of PQ, and
the length of PQ = length of P1Q1.

The purpose of the rotation matrix is to enable us to
transform the original coordinates of the solid, such as for
the point P, to the new coordinates in its new position P1.
Let OP = OP1 = r and let the respective coordinates be

Figure 7.2

Because the rotation is about the Oz axis there will be no
change to the z coordinates of P as it moves to P1 Therefore

zP1 = zP



Now

Rearranging the order we have

Adding in the z coordinate we have

The zero coefficients have been added so that we can
recast these equations in matrix form as follows

This is of the form

X = Rzxx

where X is the vector of the new coordinates, and x of the
old coordinates.

 
Exercise 1 The point P has coordinates (10, 8, 3). Find its



new coordinates if B = 30°. Substituting in equations (7.19)
for cos B = √3/2 = 0.8660 and sin B = 0.5 gives

7.17   Structure of the rotation matrix

To ensure that a correct rotation matrix is formed, its
structure is worth noting. In the above case, a rotation of
the body was made about the Oz axis yielding a matrix of
the form

In this matrix C = cosine and S = sine of the angle of
rotation. The signs of C and S depend on the quadrant of
the angle.

Figure 7.3

Note on the sign of rotation



To grasp the idea of the sign of a rotation consider Figure
7.3, which shows a screw about to be driven into a piece of
wood by a screwdriver. The three axes (Ox, Oy, Oz) are also
shown. If the screwdriver is rotated in a clockwise sense as
we look along Oz the screw will enter the wood. This is a
positive rotation. Conversely if the screw is to be extracted
from the wood an anticlockwise or negative rotation is
needed. Now compare Figure 7.2 with 7.3. Because in
Figure 7.2 we are looking down the Oz axis we see the
rotation from the other aspect to that of Figure 7.3, and the
positive rotation appears anticlockwise in Figure 7.2.

 
Exercise 1 Rotate the point (4.66, 11.928, 3) of Exercise 1
in Section 7.16 back to its original position at P. Because
the rotation would remove a screw pointing along the Oz

axis, the rotation is negative, therefore

and

Thus

Note: We have denoted the matrix for the reversal as RRz

because it is different from the matrix for the forward



rotation Rz. Inspection shows that

the transpose of matrix for the forward case.

7.18   Rotation of solid body about the

Oy and Oz axes

To derive the equations for the effect of a rotation of a solid
about the Oy axis, we consider Figure 7.4.

Figure 7.4

Here the Oy axis is pointing out of the page towards the
reader, as was the case for the Oz axis of the previous case
in Figure 7.2. A positive rotation of the solid is
anticlockwise again. The order of coordinates has to be
changed to accord with the figure. That is we quote the



coordinates in the new order (z, x, y). Thus we can write
down the structure of the rotation as before to be

Writing these out in full we have

Rearranging rows and columns to the usual order gives

and in matrix form

By a similar argument we find that the equations for
rotation about the Ox axis are

Summarising the three structures we have



Clearly the only matter requiring attention is the sign of S.

Note about rotation of axes

If we had rotated the axes about one axis, instead of the
solid body within a set of fixed axes, the sign of the rotation
angle changes. The effect is only to change the signs of S in
all three matrices. Both types of problem arise.

7.19   Reverse case of rotation

A common problem often arises in which two sets of known
coordinates are given, and the rotation between them has
to be found. One way to treat the problem is to calculate
the respective bearings of the lines joining these points to
the respective origins. The difference of these bearings is
therefore the rotational angle required. However, a more
convenient and direct solution in terms of the coordinates
is usually adopted. Consider the basic rotation equations
for a rotation about the Oz axis. These are



Rearranging the order gives

The z coordinates can be omitted because they are
unaffected by the rotation so we solve the simpler problem

writing C = cos B and S = sin B we have

In matrix form this is

which is of the form

Ax = b

whose solution is

x = A–1b

 
Exercise 1 The coordinates of P on two systems are
respectively

(10, 8, 3) and (4.66, 11.928, 3)

Assuming that the different values are due only to a
rotation B about the Oz axis, show that this angle of
rotation is 30°.

From (7.24) we have



which gives the solution C = 0.8660, S = 0.5000. Since
both C and S are positive, the angle B lies in the first
quadrant, therefore B = 30°.

Note: Without the two separate values for C and S we
cannot tell in which quadrant B lies.

7.20   Orthogonal matrices

Consider the effect of a rotation on the coordinates,
expressed as

X = R x

Multiplying both sides of the equation by the inverse of R
we have

but

and

I x = x

so

R–1X = x

or

x = R–1X



The length of the line from the origin to the original
position of point P is given by

xTx

and to the new position by

XTX

This length does not change due to a rotation so

xTx = XTX

but

X = R x

so

For this to be possible

RTR = I

but

R–1R = I

therefore

Thus the inverse of a matrix which causes only a rotation is
equal to its transpose. This is a very important result,
because many matrices used in cartography and surveying
are of this type. The practical significance of the result is
that the inversion is the very simple operation of
transposition. Matrices of this type are called orthogonal

matrices.



 
Exercise 1 Test to see if the following matrix is orthogonal.

Now

then

but

therefore

But

R–1R = I

therefore

R–1 = RT

The matrix is orthogonal.



Note: An orthogonal matrix has the properties that the
matrix product of any row or column by itself is always
unity, and the matrix product of a row (column) by another
row (column) is always zero. For

and

–sin A cos A + sin A cos A = 0

7.21   Coordinate transformations in

three dimensions

Many problems in surveying and cartography, but
especially in photogrammetry, involve coordinates in three
dimensions. Systems have to be related to each other by
datum shifts, by scaling, and by rotation about any of three
axes. It is not possible to consider all aspects of this major
topic in this book. However the basic and simplest
operations merely involve the standard operations of matrix
addition, subtraction, multiplication and inversion. An
example will suffice to illustrate methods.

 
Exercise 1 The points A, B, C, D on system (x, y, z) have to
be transformed to a new system (X, Y, Z). The change
parameters are, in order,

(a) a datum shift to point (–1, –2, –3) as origin,

(b) a rotation of the axes about the y axis of 10°,

(c) a scale change of 1.5.



Consider one point only for the moment. To save space in
printing, we write the column vector of coordinates in the
form

xT = (x,y,z)

and the datum shift vector as

The translation to the new origin is written

 
Exercise 2 Change all points ABCD to the new origin (–1, –
2, –3). We have

Since the rotation of the axes is to be about the Oy axis the
y coordinates will be unchanged. The x and z coordinates
will be affected by the rotation through angle A. The matrix
to achieve such an effect is



The suffix ‘y’ indicates that rotation is about the y axis.

Note: This matrix is similar to (7.22). Only the sign of sin A
changes because we are treating axes rotation.

A similar rotation about the x axis would be

and about the z axis

Note: These matrices apply to the rotation of the axes. If
the solid is rotated, the matrices are similar except that the
signs of ‘sin A’ are changed throughout.

The effect of the rotation on the coordinates of a point is
given by

 
Exercise 3 Transform the new coordinates of point A(12, 8,
3) if A = 10° about the y axis. The rotation matrix is



Using the direct multiplication we have

x2 = Ryx1

As an illustration and check, using the transposed
multiplication we have

The final scale change is brought about by multiplying the
results by the scale factor 1.5 to give



Note: When a large number of points, say 100, have to be
transformed, their values are assembled in a matrix, say A
of dimensions (100 × 3). The resulting matrix, say B, is also
(100 × 3). The rotation matrix R is of dimensions (3 × 3).
The transformation then is

B = (R AT)T

The dimensions are

The results of the above transformations on the four points
A, B, C and D are

A useful partial check on results is to take out the lengths
of some lines before and after transformations to see if they
are 1.5 times longer after the transformation.

7.22   The reverse transformations

Because the rotation matrices used in these
transformations are orthogonal, their inverses are obtained
by simple transposition. If there is a scale factor present



the matrix can be factorised into a product of two matrices
easily inverted (see below).

Diagonal matrices

A matrix which has at least one value on its diagonal and
zeros elsewhere is called a diagonal matrix. For example I
is a diagonal matrix. Another example is the matrix

A diagonal matrix is easy to invert for

where

That this is true can be seen by multiplication

DD–1 = D–1D = I

Matrix factorisation

A lookout should be kept for any matrix which is the
product of a diagonal and an orthogonal matrix, because its
factors are easily inverted and the reversal rule applied.
Many scaled transformations in surveying and geodesy are
of this type.

Example A non-orthogonal matrix N is the product of a
diagonal matrix D and an orthogonal matrix M. Its effect on



a transformed vector x is to rotate it through 60° and to
rescale the ordinate y by a factor of 2. (This can be verified
also by drawing.) We have

DM = N

with respective values

The vector x, given by xT = [4 3], is transformed by the
orthogonal matrix M without changing its length (5); i.e. it
rotates it through 60°. The diagonal matrix D enlarges the
ordinate from 4 to 8, and the length of the vector to 8.54.

 
Exercise 1 Verify, directly or via the product DM, that the
inverse of N is

(1) The inverse of N directly by Cramers rule is

where

therefore



(2) The inverse of N from the product rule is

therefore
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Chapter 8 
Vectors

8.1     Vectors

Unlike a scalar which only has a size, a vector has both size

and direction. For example if we say that ‘Glasgow is 600
kilometres from London’, the distance ‘600’ is a scalar
quantity. There are many places the same distance from
London, all lying on a circle of radius 600 km. However if
we also say that ‘Glasgow is 600 km north west of London’,
by giving information which has both magnitude and
direction, we have given vector information. In this case
only one place, Glasgow, can satisfy the definition.

The algebra of vectors evolved to deal with problems in
electromagnetism, in which a magnetic force, an electrical
force and a mechanical force act as an orthogonal triplet in
three-dimensional space. Vector algebra was also found to
be useful in many other fields such as photogrammetry and
geodesy. Its notation is very neat and lends itself well to
theoretical analysis. However, when calculations are
required, matrix methods are employed. It is debatable
whether vector methods are really needed to handle simple



three-dimensional problems in cartography and surveying.
However because the literature includes many articles
using vector algebra, for completeness we give an
introduction to the topic here.

8.2     Vector algebra

The notation used in vector algebra is very like matrix
algebra, with which it overlaps to some extent. It is

assumed that the reader has studied Chapters 5 and 7

before reading on. In fact most of the results of Chapter 5
can be recast in vector form. Initially the algebra of vectors
may seem unnecessarily complicated to the beginner. The
various ideas are developed to give meaning to the
multiplication of vectors which is the really effective
operation of the algebra. As with all mathematics, it is vital
that the notation is properly understood.

In Figure 8.1(a) we illustrate a vector PQ. It is denoted in
bold type by the letter a. The size of a is the length of PQ

denoted by the modulus sign |a|. To show the directional
property we define ā to be a unit vector in the direction of
PQ. Then

Figure 8.1



 
Exercise 1 Write the following information in vector form.

‘Glasgow is 600 km north west of London’

We define

ā = 1 km in a direction north west

The length of the vector a is 600 × 1 km therefore

|a| = 600

Therefore

a = |a| ā = 600 ā

The return journey looked at from the London end is

– a = –600 ā

and in words

‘600 km south east’

Note: ‘600’ is written in ordinary type because it is a scalar
quantity having size alone.

 
Exercise 2 Write in vector form the statement that ‘the
ceiling of the room is eight feet above the floor’. Let

ā = 1 foot vertically

then the length of the vector is

|a| = 8

and the height of the room is

h = |a| ā = 8 ā



8.3     Triangle ABC

Now consider the sides of the triangle ABC of Figure 8.1(b)
as vectors a, b, and c. We see that

a + b + c = 0

where 0 is the null vector. The order in which we carry out
the addition does not matter because a route such as

a + c + b

would bring us back to B. See also Section 5.6.

8.4     Free vectors and position

vectors

If two vectors are parallel and the same size they are said
to be equal no matter where they are located in space.
Such vectors are free vectors. If on the other hand we wish
to specify their location within a three-dimensional
coordinate system, position vectors have to be specified
from some point. For example we could specify the position
of P (see Figure 8.1) relative to the origin O as the position

vector p. Thus a point Q would have its position given by

q = p + a

where a is the vector PQ.

 
Exercise 1 Express the position vector of Q in terms of the
separate unit vectors.

q = |q|  = |p|  + |a| ā



8.5     Orthogonal unit vectors

For greatest practical convenience it is best to express a
vector in terms of unit vectors lying in the three orthogonal
axes Ox, Oy and Oz. These axes form a right handed set.
That is, if we look along the Oz axis, a clockwise rotation
about Oz will turn the Ox axis into the Oy axis. We can
express a by its components as follows

The unit vectors along the axes are also often written as i,
j, k. Thus we also have the notation

 
Exercise 1 Express the vector OP in terms of its
orthogonal unit vectors, where the coordinates of P are (25,
55, 20). The vector OP = p given by

or

p = 25i + 55j + 20k

Returning to the triangle ABC, in a similar way the vectors
b and c are written



Thus we can also write for the sides of the triangle ABC

The net effect of moving round the triangle is the same as
moving along each of the three axes by the respective
components. In this case

a + b + c = 0

 
Exercise 2 The triangle ABC has the vertices, A (1, 2, 3), B
(3, 5, 6) and C (4, 6, 8). Show that the vectors representing
the sides are linked by the expression

a + b + c = 0

From the coordinates we have

Hence we see that

a + b + c = 0

8.6     Components and direction

cosines

If the vector a makes angles with the respective axes Ox,

Oy and Oz, of



the lengths of the respective components of a are

Let the unit vectors in the three axes be respectively i, j
and k. Thus we write the components of a in the three axes
as

It will be noticed that in traditional notation

where L, M and N are the direction cosines of the line. See
equations (5.13).

8.7     Length of a vector

From equations (8.5) and consideration of Figure 8.2 we
see that the length of the vector |a| is given by Pythagoras’s
theorem (2.1) as

because ax, ay and az are the lengths of the orthogonal
vectors ax, ay and az respectively. (Remember: Scalars in
light type, vectors in bold type.)

 
Exercise 1 Calculate the direction cosines of the vector
which has components



Figure 8.2

Then

therefore from equation (8.6)

Now

therefore

Check



 
Exercise 2 Express the points A, B, C, and D as position
vectors a, b, c, d, in terms of unit axis vectors i, j and k in
an orthogonal system.

The position vectors are

 
Exercise 3 Determine the lengths of the position vectors of
Exercise 2.

 
Exercise 4 Determine the space vectors AB, AC and AD.

From the position vectors we have



 
Exercise 5 Show that the vectors p, q, and s form a closed
triangle.

The vectors form a closed set because

p + q + s = 0

8.8     Multiplication of a vector by a

scalar

The multiplication of a vector by a scalar simply changes its
size. It has no effect on its direction. For example

3a = 3 |a| ā

8.9     Multiplication of vectors

The rules for the multiplication of vectors were developed
to solve problems in electromagnetism and other similar
fields. There are two types of multiplication designed to
produce particular results experienced in science. In scalar

multiplication, the dot product of two vectors, the result is
a scalar, not a vector. In vector multiplication, the result is
a vector. As soon as possible, we will demonstrate to the
reader their effectiveness.



8.10   Scalar multiplication or ‘dot

product’

The dot product, or scalar multiplication, of two vectors a
and b inclined to each other at an angle U is defined to be

 
Exercise 1 If U = 0° what is the dot product of two vectors
of length 3 and 5 units? Does the order of multiplication
matter?

Answers: 15 square units because cos 0° = 1, and ‘no’,
therefore

a . b = b . a

 
Exercise 2 If U = 90° what is the dot product of two
vectors of length 3 and 5 units?

Answer: zero, because cos 90° = 0.

8.11   Dot products of orthogonal unit

vectors i,j, and k

The scalar products of pairs of like and unlike orthogonal
unit vectors are of great importance in what follows below.
Firstly, from the results of Exercises 1 and 2 in section
8.10, there is the result that the dot product of like unit

vectors is unity, because they are parallel to each other, i.e.



and the dot product of unlike unit vectors is zero whatever
their order, because they are orthogonal to each other, i.e.

8.12   Dot product in terms of

components

Consider the dot product

Here ax etc. are scalars which may be positive or negative
according to the direction of the vectors. Multiplying out
the right hand side, by the rules of ordinary arithmetic,
gives three terms in which i . i, j . j and k. k occur, each of
which is unity. There are six other terms in which unlike
produts occur. These are all zero. Therefore

Note: If we write a and b as column matrices (see Section
7.15) the dot product is given by

and this is how the dot product is calculated.

 
Exercise 1 Using the dot product, find the length of the
vector (2i, 3j, 4k). The length of the vector a is given by



 
Exercise 2 Find the angle between the vectors p, g, and s
forming a triangle. From Exercise 5 of Section 8.7, we
know they close on themselves.

The lengths of the vectors are

The vector AC = – CA = –q = –8 i – 4 j – 1.5 k

The angle A between AB and AC (see Section 5.10) is given
by

cos A = LL’ + NN’ + MM’

Now from (8.5)

therefore

therefore



This is the very important result (5.19) expressed in vector
notation and is consistent with the definitions of equation
(8.7).

In the example

The angle B between BA and BC is given by

The angle C between CB and CA is given by

 
Exercise 3 Check that the angles of the triangle add up to
180°.

A + B + C = 42.57° + 57.23° + 80.22° = 180.02°

The discrepancy is due to rounding errors in the arithmetic.

 
Exercise 4 Use the sine rule (see (3.9)) to check the three
values of 2R, the diameter of the circumcircle of the
triangle ABC. We have



Figure 8.3

8.13   Vector multiplication or ‘cross

product’

The mathematical rules governing vector multiplication

were devised to deal with problems in
electromagnetism.The outcome of vector multiplication is
another vector, lying in a direction which is orthogonal to
the plane of the two original vectors. The three vectors
form a right handed set as shown in Figure 8.3. Vector a
makes an angle U with vector b. Vector c is orthogonal to
the plane formed by a and b. For example if we multiply
the vectors a and b in that order, vector c is obtained. To
distingish vector from scalar multiplication we write

a × b = c

The vector multiplication, or cross product, of two vectors a
and b inclined to each other at an angle U is defined to be



where  is a unit vector in a direction orthogonal to the
plane of a and b. Looking along the direction of  a
clockwise rotation moves a into b. The cross product is
sometimes written as

 
Exercise 1 If U = 0° what is the cross product of two
vectors of length 3 and 5 units long? Answer: zero because
sin 0° = 0.

 
Exercise 2 If U = 90° what is the cross product of two
vectors of length 3 and 5 units long? Does the order of
multiplication matter?

Answers: 15 , because cos 90° = 1. Yes the order matters
because to bring b into a requires a negative rotation

U = –90°

and since

The general rule is

8.14   Cross products of orthogonal

unit vectors i, j, and k



The cross products of pairs of like and unlike orthogonal
unit vectors are of great importance in what follows below.
Because like vectors are parallel, the angle between them
is zero, and sin 0° = 0 so we have the rule that the cross

product of like unit vectors is a zero vector. Therefore

Conversely the cross product of unlike unit vectors is ±

unit vector depending on their order      because sin 90° =
1

Note: It helps to remember these signs if we think of i, j
and k written clockwise in a circle: adjacent clockwise

combinations are positive, adjacent anticlockwise

combinations are negative.

8.15   Cross product in terms of

components

Consider the cross product

Multiplying the right hand side gives three terms in which i
× i, j × j and k × k occur, each of which is a zero vector.
(Note: We use the notation × to remind us to use (8.17),



(8.18) and (8.19)). There are six other terms in which
unlike cross products occur. These are all plus or minus
unit vectors, depending on the order. Omitting the zero
terms, it is worthwhile multiplying out in full as follows

Applying the results of (8.17), (8.18) and (8.19) we have

which can be expressed as a determinant (see Section 6.6)
by

Figure 8.4

By inspection of Figure 8.4 the length of the vector a × b is
given by



which is the area of the parallelogram formed by a and b,
and twice the area of the triangle ABC.

 
Exercise 1 Find the area of the triangle ABC, whose
vertices are

This result is derived in an entirely different way in Section
6.9, exercise 2.

8.16   Parallel and orthogonal vectors

If the length of the cross product vector is zero the vectors
are parallel, and if it is unity, they are orthogonal.
(Contrast this result with the dot product where the
reverse is true for the scalar outcome.)



8.17   The scalar triple product

The scalar triple product of three vectors a, b and c is
usefully defined as

a . (b × c)

The outcome is a scalar, because the combined dot product
and vector product is

a . (b × c) = vector . vector = scalar

Now let the vector product within the bracket be the vector
d; then

The dot product of a with d is

therefore

This is the volume of the solid whose edges are represented
by the vectors a, b and c. This solid, which is called a
parallelepiped, is illustrated in Figure 8.5. We now derive



this important result which was derived in a different way
in Section 6.9.

Figure 8.5

The area of the base parallelogram is given by the length of
the vector product b × c. Now the volume of the solid is
the vertical height multiplied by the area of the base. If the
vector a makes an angle U with the normal to the plane
ABC,

the vertical height = |a| cos U

The volume of the solid is therefore

V = (|a| cos U) (|d|) = |a| |d| cos U

But U is the angle between a and d therefore V is in the
form of a scalar product, and



 
Exercise 1 Find the volume of the parallelepiped whose
edges are the vectors

V = the value of the determinant

We have shown in Section 6.9 Exercise 5 that Vis also six
times the volume of the tetrahedron ABCD.

8.18   Volume in terms of position

vectors

The volume of the parallelipiped may also be expressed in
term of the position vectors of its apices ABC and D. If the
position vectors for A, B, C and D are p, q, r and s say,
then we have

The volume is then calculated as before from

 
Exercise 1 Calculate the volume of the tetrahedron ABCD



from the coordinates

Here

from which we have as before

8.19   Coplanarity of vectors

If three vectors a, b, and c all lie in one plane (are
coplanar) then the volume of the parallelepiped formed by
them is zero, and therefore the triple scalar product is zero

or

 
Exercise 1 Show that the following vectors are coplanar

Evaluating the determinant we have



Therefore the vectors are coplanar. This result has
applications in photogrammetry.
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Chapter 9 
Calculus

9.1     Calculus

The differential and integral calculus are very important in
mathematics, both for their own sake, as in curve tracing,
and as a means of deriving other results, such as the
determination of areas and volumes. The differential
calculus in particular has many applications to surveying
and map making, particularly in the treatment of quality
control and error propagation. Once the notation has been
grasped, the beginner should find the subject quite
straightforward, although the purpose of it all may appear
to be something of a puzzle. It is only when the technique is
applied to problems that the power of the calculus is made
clear and the initial effort made to learn the rules is
rewarded.

9.2     Functions

Consider the following expressions



y = x y = x2 y = x3

In each case we say that y is a function of x. By this we
mean that if we give x a value, say x = 2, then y will have a
corresponding value, in these cases y — 2, y = 4 and y = 8.

Without specifying what the function is we can also say

y = f(x)

This just states that y is dependent upon x in some way. In
the three cases above we have specifically that

The notation f1(x) just means ‘the first function of x’, f 2 (x)
the ‘second function of x’ and so on. Any letter can be used
to mean a function of any variable such as x. For example
we might put ‘ let P be a function of s’, or

Generally the letters f and F are used to denote functions.



Figure 9.1

Figure 9.1 shows a sketch of the graphs of f(x) in each of
these three cases, for values of x between -3 and +3. The
word ‘sketch’ is used to indicate that an accurate graph is
not required. We first draw up a table of respective values.

Table 9.1

These functions are said to be continuous because you
could draw them on a sheet of paper without lifting the



•
•

•

pencil and they have no kinks.

 
Exercise 1 Verify from the above table that

The notation means that the value of f1 when x = 3 is 3, the
value of f2 when x = 3 is 9 and so on.

 
Exercise 2 Show that

and that

 
Exercise 3 Plot corresponding values of y and x for the
functions in Table 9.1. These are sketched in Figure 9.1.
The following factors should be noted.

All three graphs pass through the origin.
Because all values of f2 (x) are positive, f2 (x) is called
an even function of x.

Because values of f1 and f3 can be positive and negative

they are called odd functions of x.

 
Exercise 4 Sketch the graphs of the following functions



Note: It is is easier to draw a new O’x’ axis 10 units below
the original Ox axis on the first graph than to replot all the
graphs. This new axis is shown on Figure 9.1 as a broken
line.

The graph of y = f4(x + 3) however would need to be
redrawn because

when

and

when

In Section 9.4 we will show how to find the slope (gradient)
of a curve at any point and so plot its shape more closely.

 
Exercise 5 Evaluate y = F(x) = sin x, when x = 90°.

9.3     Limits of functions

We shall soon need to use the idea of a limit of a function.

Consider the following function



When

which has no meaning, and yet as x approaches closer and
closer to 1, F(x) does have a meaning. We can see this from
the following table

Other than when x = 1, F(x) is nearly 2. We write this fact
in the following way

In words this means ‘the limit of F(x) as x tends to 1 is 2’

Note: Often the limit can be determined by first recasting
the function F(x) in an appropriate form. In this case, we
can factorise the numerator and simplify the function as
follows

and therefore

or more neatly



9.4     Tangents to curves

The tangent to a curve is the straight line which just
touches the curve at some point. We will consider the
function

 
Exercise 1 Sketch the tangent to the curve at point P when
x = +1. See Figure 9.2. When x = 1, y = 1. To find the
tangent at the point P (1, 1) consider two points close to P
on either side of P, for example at Q when x = 1 - 0.1 = 0.9
and at R where x = 1 + 0.1 = 1.1. The corresponding values
of y are 0.81 and 1.21 giving

The slope or gradient of QR is then

This gradient is approximately that of the curve at P.



Figure 9.2

 
Exercise 2 In just the same way, sketch the tangent to the
curve at the point (2, 4)

Here we find that the slope is

Thus the approximate gradient of the curve is 4 at the point
(2, 4)

 
Exercise 3 Find the general expression for the gradient to
the curve at any point P(x, y). In this case we let the
changes to x and y be small amounts called δx and δy. (In
the numerical example above δx = 0.1). Note that we
cannot separate the δ from the x. The notation ‘δx’ means
‘a small change to x close to x’.

Because



if we alter x by δx, y is altered by δy thus we have

And if we alter y by –δy we have from (9.2)

Thus the gradient of the tangent is approximately

Hence we have the important result that the gradient of the
curves = f(x)= x 2 is 2x. In the case of this function, the
ratio of the changes δy and δx is always equal to 2x even if
they are quite large. Only when they are small can we say
the tangent approximates to the curve at P. If we make
them smaller and smaller approaching zero, their ratio still
remains 2x. We write this information in the following way

and we write this special limiting case of δy/δx as dy/dx.

To summarise, we can say that if

then the gradient is given by



or even more shortly as

This process is called differentiation of y or f(x)with respect

to x. It is often abbreviated to the form

 
Exercise 4 If f(x) = x2, show that f’(1) = 2, and f’(2) = 4.
Here f’(x) = 2x. The meaning of ‘ f’(1)’ is the value of f’(x)
when x = 1. These results were already found numerically
The angles which the tangents make with the x axis are
respectively

Verify these results by drawing.

 
Exercise 5 Differentiate y = f(x) = x3 from first principles.
This means that we have to derive the result in exactly the
same way as before. The process of selecting points close
to P and equating the gradient reduces to



Thus, because

the gradient of the curve is obtained from

and we may write this as

 
Exercise 6 If f(x)= x3, verify that f’( 1) = 3, and f’(2)= 12.
The angles which the tangents make with the x axis are
respectively

9.5     General case

The result for the general case where y = xn and n is an
integer (whole number) is

 
Exercise 1 Show that, if f(x) = xn, and n = 2, f’(2) = 4, and
3) = 6.



 
Exercise 2 If again f(x)= x n and n = 5 show that f’(2)= 80

9.6     Proof of the general result

The proof of the general result follows the same method
used for the previous functions

We consider the gradient of the line between two points
either side of f(x) at f(x + δx) and at f(x - δx). Thus we have

The terms (x + δx)n and (x - δx)n are expanded by the
binomial theorem (see Section 1.25) to give

 plus terms in higher powers
of δx

Thus

because δx and its higher powers tend to zero.



Note: If the function to be differentiated is multiplied by a
constant A, i.e. if

then

This may also be written in the form

Note: We shall discuss later the reverse process in which
we know F’(x) and wish to find F(x). (See Section 9.23.)

9.7     Multiple problems

The differentiation of a multiple expression, or polynominal,
is treated term by term as follows. If

because A is a constant

 
Exercise 1 Differentiate the following expression with
respect to x



 
Exercise 2 Sketch the curve y = 3 + 4x - 5x2+ 6x3 in the
vicinity of the point (x = 1, y = 8) and verify by drawing
that its gradient is 12 at this point.

 
Exercise 3 Sketch the graph of the function F’(x) = 4 - 10x

+ 18x2 and demon strate that its gradient at the point

where x = 1 is 26.

9.8     Second and higher differentials

It is quite possible to differentiate the function F’(x) = 4 –

10x + 18x2 with respect to x. Thus we write

The notation for this second differential of the original
function is F”(x). An alternative notation is to write

We can go on differentiating indefinitely or until a constant
is obtained. For example the third differential of y with
respect to x is written



and the general case of the nth differential of y with
respect to x is written

 
Exercise 1 Find the third differential of y with respect to x
of the function

y = 3x5

and show that this equals 720 when x = 2.

When x = 2

Note: The differentiations have to be carried out before the
value of the function is substituted.

9.9     Maclaurin’s theorem

In the above exercises we have been building up knowledge
of the differentiation of polynomials representing curves or
other useful functions. Two very important theorems were
developed by two 18th century mathematicians, Maclaurin
and Taylor. First we deal with Maclaurin’s theorem. Many
(though not all) curves can be expressed as a polynomial of
the form



Differentiating with respect to x we have

Suppose we now differentiate F’(x) with respect to x, we
write this as

and if we again differentiate with respect to x we obtain

Examining the values of F(x), F’(x), ... when x = 0, we can
see at once that

and so on. Therefore we can express the original
polynomial

in the form

and remembering that 3! (factorial 3) = 1 x 2 x 3, we have



This expression (9.7) is Maclaurin’s theorem.

 
Exercise 1 There will be an important exercise using
Maclaurin’s theorem after we have obtained the derivatives
of sin x and cos x.

9.10   Differentiation of

trigonometrical functions sin x and

cos x

To find the derivative of sin x with respect to x, we must
first consider the important limit

If we just write

this has no meaning. So we must consider the matter more
carefully by a geometrical method.

Consider Figure 9.3 in which AC is the arc of a circle,
centre O and radii OA = OC = R. AB is a tangent to the
circle at A. CD is perpendicular to OA. The angle subtended
at the centre of the circle is x radians. (See Section 2.13.)

By inspection

CD is less than arc AC, and arc AC is less than AB



Figure 9.3

Expressed more neatly

CD < arc AC > AB

The sign ‘<’ means ‘less than’, and note we omit the trivial
case when x = 0.

Dividing throughout by the radius R

where x is in radians.

 
Exercise 1 Using your calculator demonstrate that sin x <
x < tan x for angles less than 90°.

Consider the expression again



Dividing throughout by sin x gives

inverting gives

The sign ‘>‘ means ‘greater than’.
Now cos x = 1 if x = 0, thus as x tends to zero sin x/x is

squeezed between 1 and 1 or this means that

 
Exercise 2 Given that Show that by inverting

9.11   Derivative of sin x

Let

then, from 3.14



Subtracting gives

and dividing by 2δx

then

because

Thus we have the interesting and important result that

9.12   Derivative of cos x

We follow the same procedure as for sin x. Suppose

then, remembering formulae (3.13) and (3.15), we have

Subtracting gives



and dividing by δx

then

because

Thus we have another interesting result that

Note the change of sign.

 
Exercise 1 Derive a series for sin x using Maclaurn’s
theorem (9.7). Let

The successive differentials, applying (9.9) and (9.10), are

evaluating these functions for x = 0 we have



Substituting in (9.11) we obtain the series for sin x

Remember that x is in radians. Note also that alternate
terms are positive and negative, and that only odd powers
of x are present.

 
Exercise 2 Calculate sin 10° to three significant figures.
(Remember to convert x to radians before substituting in
the series.) Check your result with a calculator.

Note: An electronic calculator does not use this series to
calculate the sine of an angle because it takes too long by
this method. A more efficient algorithm using a curve
fitting routine is used instead.

 
Exercise 3 Show by applying Maclaurin’s theorem that the
series for cos x is

Remember that x is in radians. Note also that alternate
terms are positive and negative, and that only even powers
of x are present.

 
Exercise 4 Verify from the series that the differential of
cos x with respect to x is -sin x.



9.13   The differentials of ex and In x

In Chapter 1 some discussion of ‘e’ the base of natural
logarithms was given. It was stated that

and that e is obtained when x = 1 namely

Note that e is an irrational number, it cannot be expressed
as a fraction. Napier chose e as the base for his logarithms
to enable him to calculate the values of logarithms. If we
now differentiate ex with respect to x we obtain the
interesting and important result that

Therefore



Now consider

Let

then by definition of a logarithm

By (9.16)

and therefore

therefore

 
Exercise 1 Show by Maclaurin’s theorem that

Let



The successive differentials are

and putting x = 0 in these differentials we have

Remembering that In (1) = 0 because e° = 1 by definition

because 3! = 3 x 2 etc.

Note that there are no factorials in the denominators of
(9.18). If x is greater than + lor less than –1 the expression
(9.18) never converges to a practical value. If x lies in the
range –1 to +1 it does converge.

 
Exercise 2 Calculate In 1.5 from the first six terms of
(9.25). Here x = 0.5 and



A calculator gives In 1.5 = 0.4055.

Note: In practice Napier calculated logarithms by a more
effective method which we need not describe here.

9.14   Taylor’s series

A slight modification to Maclaurin’s series gives the very
useful Taylor’s series.In Figure 9.4 two axes systems are
shown, one (x, y) with origin at O and the other (x’, y’) with
the origin at Q.

If y is a function of x or

then

Now let y be a continuous function or polynomial

We can find the value of F(x) at the point where x = a from

Suppose we now want to find the value of y at a point R

close to Q where x’ = h say. Consider the origin of



coordinates at point Q (a, F(a)) of Figure 9.4. By
Maclaurin’s theorem we can put

Figure 9.4

or in terms of the original axes

This is Taylor’s series for one variable.

 
Exercise 1 Show that sin 10° 15’ = 0.177944 given that sin
10° = 0.173 648. Here F(x) = sin x and a = 10°. Then F(a)
= F(10°) = 0.1736. We first convert 15’ to radians to obtain
h. Therefore



Now cos2 x = 1 - sin2 x thus cos 10° = 0.984 808
Substituting in (9.21) we have

Note: Because h is small it is sufficient to use approximate
values for F”(a) etc.

9.15   Differentiation of a product

Suppose y is the product of two variables u and v each of
which is a function of x,and we wish to differentiate y with
respect to x. For example we might have

If we let

then

y = uv

We shall prove that

Consider small changes to y, u, and v, then we have



Subtracting gives

Dividing through by 2δx we have

then

therefore

Exercise 1 Derive, by the product rule, the differential of
sin x cos x with spect to x. Let

y = sin x cos x, u = sin x and v = cos x

then

so



9.16   Differentiation of a function of

a function

We now consider the case when y is a double function of x
such as

y = sin2x = (sin x)2

We say ‘double function’ because there are two operations
involved; first to find sin x then to square it. To differentiate
such a function of a function we proceed as follows.

Let sin x = u; then

y = u2

Now

therefore

 
Exercise 1 Differentiate y = sin 2x with respect to x. Let

therefore



Note: After some practice the actual substitution of u is not
required. To differentiate sin 2x with respect to x we first
differentiate sin 2x with respect to 2x and obtain cos 2x;

then multiply it by the differential of 2x with respect to x
i.e. by 2, obtaining the result 2 cos 2x straight away.

 
Exercise 2 Differentiate y = cos 2x with respect to x.

First differentiate cos 2x with respect to 2x and obtain - sin
2x, then differentiate 2x with respect to x to obtain 2, and
multiply the two results, to obtain the final answer of

 
Exercise 3 Differentiate y = cos2 2x with respect to x.

First differentiate y with respect to cos 2x to obtain 2 cos
2x, then differentiate cos 2x with respect to 2x and obtain -
sin 2x, and differentiate 2x with respect to x to obtain 2.
Multiply these three results together to give the final result

What we have done is to avoid making the following
substitutions.

Let



then

Next let

2x = u

then

 
Exercise 4 Derive the differential, with respect to x, of tan
x by the product and chain rules. Let

Let

then

then



9.17   Quotient rule for differentiation

Consider the case where y, u and v are functions of x and

Here, y is a function of the division process, it is the
quotient of u (the numerator) by v (the denominator). To
differentiate y with respect to x we merely use the product
and chain rules, for

This formula is often used to differentiate quotients, but I
prefer to use only the product rule in the same way as
above.

 
Exercise 1 Differentiate tan x with respect to x by the
quotient rule. Let



therefore

 
Exercise 2 Show, by Maclaurin’s theorem, that the series
for sec x is

Note: This important series is used in deriving formulae for
the Transverse Mercator projection. There are some quite
heavy differentiations to work out to obtain this result. We
will give working for the first three terms only to save
space. Remember to use results previously found as the
dififerentations proceed.

Let

Differentiating F(x) we have

Differentiating F’(x) we have, using (9.22)

Differentiating F”(x) we have

Differentiating F”‘(x) we have



When x = 0, since tan(0) = 0 and sec(O) = 1, the
differentials expressed in (9.24) to (9.27) are respectively

Substituting these values in the Maclaurin series (9.7)
gives

or more accurately, if more terms are taken

9.18   Partial differentiation

Consider the equation of a circle of radius R in the x/y

plane.

x2 + y2 = R2

We wish to see how small changes in these parameters
affect each other. We see that

If the changes (δx, δy and δR) are small, e is small because
it involves higher powers of small terms, then



 
Exercise 1 If R = 5, x = 3, and y = 4, find the approximate
change in R as a result of changing x and y by +0.01.

then

Note: We can obtain the result of the changes from

The advantage of the differential method is that it involves
only multiplication, and avoids the more complex processes
of squaring and square rooting. It enables us to reduce
complex mathematical formulae to the much simpler linear
equations. This advantage is particularly useful in statistics
and error theory.

9.19   Total differential

We express the process of partial differentiation more
formally by the following procedure. Because

we can write



The differential of F(x,y,R) with respect to x only, treating
all other variables as constant, is written in the form

In this case

The curly tailed ‘d’ or d is called del. This is called the
partial differentiation of F with respect to x only The other
partial differentials are

We can formally obtain the results: if

then

This is called the total differential of F(x,y,R). The partial
differentials are sometimes written in the form

Note: This result is only valid if the three variables are
linked only by this function. For example if x and y are
linked by another function such as y = sin x the partial
differentials with respect to x and y are also linked.



Equations formed by total differentials are much used in
error estimation problems in surveying, cartography and
geodesy.

 
Exercise 1 In triangle ABC the side a is calculated from
side b, and angles A and B by the formula

Derive an expression to be used in calculation of the effect
on the computed side a of small errors δb in b, δA in A and
δB in B. We rewrite the expression as

Thus we have

The total differential of F is

The required expression is

Evaluating the differentials we have

thus



therefore

Note that δA and δB are in radians.

9.20   Logarithmic partial

differentiation

It is interesting to derive the result of (9.35) more easily by
first taking logarithms of the monomial function (9.34)

The function is called monomial because there is only one
term on each side of the equation. It is therefore possible to
take logarithms of both sides, giving

then partial differentiation gives

Many monomial functions which arise in map making are
much more easily differentiated by this logarithmic
method.



 
Exercise 1 In triangle ABC the angles A and B are each
70° and the side b = 100 metres. What is the effect on the
computed side a of the following changes: +1’ in angle A,
-1’ in angle B, and -0.05 metre in side b? It is instructive to
derive the result in two ways:

(1) by recalculation of the triangle after making the
changes, and

(2) by the total differential formula.

Method (1) The new values are

Method (2) Remembering that there are approximately
3438 minutes of arc in a radian, we have

This gives the new value of a as 100 - 0.029 = 99.971 as
before.

 
Exercise 2 Find the total differential of the function F(S, x,
y, z) where



Logarithmic differentiation is not possible because the
function is not monomial.

therefore

where L, M and N are the direction cosines of s. (See
Section 5.8.)

9.21   Curvature

Consider the ellipse shown in Figure 9.5. Two circles of
different sizes are also shown touching the ellipse. Their
centres are O1 and O2 and radii R1 and R2. These circles
are called osculating circles because they kiss the ellipse.

At the points of contact, the circles and the ellipse have
the same radius ofcurvature. The radius of curvature of the
ellipse varies from a minimum to a maximum as we move
round the curve. The ellipse therefore does not have
constant curvature. In geodesy we are interested in the
curvature of an ellipse at any point on its arc. Engineering
surveying also requires knowledge of the curvature of arcs.

We define the curvature of an arc at a point P to be the
reciprocal of the radius of the osculating circle at P.



Figure 9.5

A curve which lies in a plane can be expressed as

The radius of curvature of an arc of this curve is given by

The differentials are evaluated for the curve at the point of
interest. To derive this expression, consider Figure 9.6
showing a curve in a plane coordinate system. PS is the
tangent to the curve at point P where the curvature is
required. This tangent makes an angle A with the positive
direction of the Ox axis. The centre of curvature is at U. As
P moves round the curve to Q the tangent changes by an
angle δA. Because the radii are perpendicular to these
tangents, the angle at the centre U also changes by δA. The
arc δs of the osculating circle subtended by δA is given by



δs = RδA

therefore

but

so

Figure 9.6

and

but



Proceeding to the limits as δx tends to zero gives

but

therefore

But

therefore

Finally



 
Exercise 1 Calculate the radius of curvature of the point P
(2, 2) on the curve whose equation is

Now

At P

In Section 10.10 the expression for the radius of curvature
of an ellipse is derived.

9.22   Integral calculus

The integral calculus is very important in cartography and
geodesy, both for its own sake, as in map projection theory,
and as a means of deriving other results, such as the
determination of areas and volumes. In the section on
differentiation we discussed functions such as the following
expressions



In each case we say that y is a function of x or

More specifically we can write

This just states that y is dependent upon x in some way.
The differentiation of f(x) with respect to x was expressed
in the form

and the result for the general case where y = xn and n is an
integer is

Thus in each case of (9.38)

Now consider the reverse problem. Given that

what is f(x)? We know one answer to be

Is this the only answer? If a constant is added to f(x) the
differential remains the same, because a constant cannot



be changed or in this case if

Thus if

then we must say that

where k is any constant.

 
Exercise 1 Given that f’(x) = 2x what is f(x)? The result is

 
Exercise 2 Given that f’(x)= 3x 2 what is f(x)? The result is

General rule for integration

By inference from these three results, we can see that the
general rule, where n is an integer, is that where

This is valid except for the case in which the integer n = –1.



 
Exercise 3 If f’(x) = 1 find f(x). Here n = 0 therefore

 
Exercise 4 If f’(x) = x find f(x), and test the result by
differentiation. Here n = 1 therefore

Differentiating with respect to x

9.23   The notation for an integral

The expression ‘If f’(x) = x find f(x)’ is cumbersome, so a
word ‘integration’ is used to describe the process. Thus
instead of writing

we say

or simply

‘Integrate f’(x)’

A even neater way is to use the symbol ∫, for an elongated
S, to denote integration. For example



Thus

and

and

These results are known as indefinite integrals because the
constant k in each case is unknown.

 
Exercise 1 Write down the indefinite integrals of the
following functions

(1) cos x (2) sin x (3) sec x

These results can be proved by differentiating them with
respect to x. See Sections 9.9, 9.10 and 9.16.

Note: The integration of many functions is a difficult
process often requiring clever substitutions. Again some
important formulae, such as that of the ellipse, are not
integrable in a strict mathematical sense. The reader is



referred to advanced texts for more information about
integration.

 
Exercise 2 Verify by differentiation that

Let

then

Now

therefore

Summarising, we have



or

where k is an unknown constant. This integral is basic to
the theory of the Transverse Mercator projection of the
sphere.

Figure 9.7

9.24   Geometrical interpretation of

integration

Consider the x axis of Figure 9.7. A value x could be divided
into many little equal parts δx. Then we could reverse the
process and say that x is the sum of all the small parts δx,
or

x = + δx + δx + δx + δx + ...



If we think of the δxs becoming as small as we like, x is still
their sum and we say that

The integration symbol ∫ means ‘sum up the parts’ dx. The
function resulting from the integration procedure is called
the integral. The function integrated is called the
integrand.

9.25   Integration limits

To be more specific, we have to define the ends of the line
x. If one end lies at the origin where x = 0, and the other is
at a point where x = 2, we write the integral

as

This means, integrate, or sum up the parts, starting at 0
and ending at 2. The next stage is to carry out the
integration part and place it in square brackets with the
limits placed outside. In this case

We now assign the values of x = 2 and x = 0 to the
integrand

The whole process is written



Note that the value of the integral at the lower limit is
subtracted from the value of the integral at the upper limit.
The use of these limits gives a definite integral without the
arbitrary constant k.

 
Exercise 1 Write down the notation for the integration of
dx between the range x = 5 to x = 28, and obtain the result
of this calculation.

 
Exercise 2 Write down the notation for the integration of x
dx between the range x = 5 to x = 28, and obtain the result
of this calculation.

 
Exercise 3 Write down the notation for the integration of
x2 dx between the range x = – 4 to x = 2, and obtain the
result of this calculation.

9.26   Areas by Integration

Consider the graph in Figure 9.7 of the function



Consider the area, δA, of a small strip between the curve
and the x axis. The width of the strip is δx and the mid
ordinate is y. Then the area of the strip is given by

The area A, bounded by two ordinates y1 and y2 is the sum
of many strips, that is

 
Exercise 1 Given that

find the area between the curve and the x axis bounded by
ordinates at x = 1 and x = 3. Applying the formula we have

 
Exercise 2 Given that

find the area between the curve and the x axis bounded by
ordinates at x = –3 and x = –1. Applying the formula we
have



Note: A negative value for the area indicates that it lies to
the left of the origin. If we integrate from x = –3 to x = +3
the area is calculated as zero by the formula, because
negative and positive areas balance. Care with signs is
therefore needed in solving area problems. In this case it is
better to treat the problem in its two halves either side of
the origin.

9.27   Simpson’s rule for approximate

integration

We can recalculate the above area using the formula

where y1 and y2 are the ordinates corresponding to x1 and
x2, and ym corresponds to the ordinate at xm where

The formula (9.42) is called Simpson’s rule for approximate
integration. It gives the exact result if f(x) involves no more
than squares of x, and a good approximation in other cases
provided the range (x2 - x1) is kept small.

 
Exercise 1 Consider the above case in which

y = f(x) = x2

Then



From Simpson’s rule we have

which multiplied out becomes

which is the formula derived by integration.

 
Exercise 2 Show that if y = f(x) = 2x + 3x2, the areas
under the curve derived by integration and by Simpson’s
rules are the same, i.e.  This is left as an
exercise for the reader, who should follow the method used
for the above case where y = x2.

Figure 9.8

9.28   Properties of the circle

Consider a circle of radius R shown in Figure 9.8. The
radian is defined as that angle subtended at the centre of
the circle by an arc S equal to R. Thus there are 2π radians
to a whole circle. When S = C, the circumference of the



circle, C = 2πR. Let a small element of arc be δS which
subtends a small angle δθ at the centre of the circle. Then
if δθ is in radians

δS = Rδθ

The total arc length round the circle is the circumference C
therefore

Now consider the small sector of the circle ABO. The small
angle

AOb = δθ

and the area of the small triangle AOB is given by

If we make δθ and δA smaller and smaller until they are
the infinitesimally small (d0 and dA respectively) we have

The area of the whole circle is therefore given by

 
Exercise 1 Show that the area As of a sector of the circle
defined by its angle 0 is given by



Figure 9.9

9.29   Properties of the sphere

Consider a sphere of radius R shown in Figure 9.9. We are
going to prove by integration that the area of the curved
surface of the sphere is given by

and that its volume is given by

The shaded portion ZXZ’Y of the surface, shown in the
small diagram to the left, is called a lune. The surface of
the sphere can be divided into small patches such as

If these patches are summed over the whole sphere the
suface area is obtained. Let the small angles



The area of the patch is given approximately by

δA = PQ x PM

If the patch is infinitesimally small the approximation is
negligible. Now since

To obtain the area of the lune shown in the small diagram
on the left of Figure 9.9 we sum up the patches δA from

For the whole lune δθ is constant and the area of the lune
is

To obtain the total surface area of the sphere we integrate
again with respect to δø over a whole circle. Thus the
surface area of the sphere is

To obtain the volume of the sphere all we need to do is to
sum up the volume of spherical shells like the layers of an
onion. The thickness of each of these shells is dR. Starting
from O, each shell is dR thick, so the volume will be given
by



therefore

9.30   The normal distribution

function

As an example from statistics which combines curve tracing
and the application of both differentiation and integration
we consider the normal distribution curve. We do not
attempt to derive this curve in this book, but merely use it
as a useful example to illustrate the application of the
calculus. Beginners who find this too difficult should just

ignore this section until they have studied the basic

statistics required for an understanding of the problem.

In error theory and statistical analysis the bell shaped
curve, of Figure 9.10, which represents the frequency (y) of
residuals (x) about a mean derived from randomly observed
variables, may be expressed by the probability density
function or PDF given by the formula

Such statistical or stochastic mathematical models are
derived from probability theory. See for example an
advanced statistical textbook such as Yule and Kendal,
1950, An Introduction to the Theory of Statistics to which
the reader may refer. However, to give some understanding
of this most important distribution, we will trace the



function and show that a bell shaped curve results.
Consider the formula (9.47).

When

Figure 9.10

giving the maximum height of the curve ym. The quantity h
is known as the index of precision. Again, differentiating we
obtain

therefore

In the second case y = 0 when the curve touches the x axis
at a very great (or infinite) distance away on either side of
zero. The symbol for this infinite distance is a figure-of-
eight on its side or ±∞. The curve is parallel to the x axis at
these points.

Differentiating again we have



therefore

when

When the change of gradient is zero, the curve has a point

of inflexion and the gradient reaches a maximum value on
either side of the y axis. A rough sketch of the curve can
now be made using all the information about gradients and
special values just derived above. The curve clearly follows
the bell shaped pattern shown in Figure 9.10. The index of
precision h is related to the statistical quantify (variance)
by the expression

By definition, the population variance (s) is given by

or in mathematical terms

It is to be remembered that there are y values of each
residual x. But



is the probability of all residuals being selected, namely a
certainty, therefore

therefore

Again

therefore, integrating all terms, we have

Remembering that the gradient of the curve is zero at
infinity, taking the left hand side of (9.56), we have

Taking the right hand side of (9.56), remembering (9.55)
and (9.53), we have

and therefore

giving the result

and



Thus the original equation (9.47) may also be written

By putting s = 1 this expression is often standardised to be

 
Exercise 1 Verify that the values of 10y correspond to
residuals x of the following table, assuming that a
standardised normal distribution is present. Sketch the
curve.
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Chapter 10 
Conic Sections

10.1     Conic sections

The conic sections are the well-known curves

circle, parabola, ellipse and hyperbola

These curves are surprisingly useful in the applied
sciences, such as optics and engineering, and in geometry,
geodesy, cartography and statistics. Their mathematics is
elegant and complex. From within the vast subject of conic

sections we select only a few basic ideas and develop those
properties immediately valuable to the map maker.

10.2     Sections of a cone

As their name suggests, these curves are the various
sections described in planes which cut a cone. We will
consider only a right circular cone, which has a circle as its
base and the axis normal to the base passing through its
centre. In mathematics, a double cone, shaped like an hour
glass or egg-timer, is usually considered.



In Figure 10.1 we see a right circular cone touching a
sphere along a small circle B1B2Q. A small circle of a
sphere does not pass through its centre. All points marked
by a black dot lie in the plane of the paper. This plane is
illustrated separately in Figure 10.2 which is a section
containing the axis of the cone and a diameter of the
sphere. The points marked in Figure 10.1 by an open circle
do not lie in this plane.

The plane of the small circle B1B2QC is orthogonal to the
plane of the paper. Another plane A1A2D, also orthogonal to
the plane of the paper, touches the sphere at T and makes
an angle V with the cone axis. We are interested in the
curve drawn out by the cone in the plane A1A2D. Let P be
any point on this curve. Once we have selected the sphere,
the point T and the line CD are fixed relative to the cone. P
can vary round the curve. PN is drawn parallel to the axis
of the cone and meets the plane B1B2QC in point N. Angle
NPQ = U. ND is drawn parallel to the line B1B2C. CD is
orthogonal to the plane of the paper. Therefore the angle
NPD = V. Also



Figure 10.1

Because PQ and PT are both tangents to the sphere

PQ = PT

therefore



Figure 10.2

As P varies round the curve, this ratio is always satisfied: it
is called the eccentricity (e) of the curve. Therefore

where e = cos V sec U.

Curves defined by this ratio are called conic sections or
‘conics’. The fixed point T is called the focus of the conic,
and the fixed line CD the directrix of the conic.

The angle U defines the shape of the cone. Of specific
interest are

(1) when U = 0 we obtain a cylinder touching the sphere,
and

(2) when U = 90° the cone degenerates into a plane
touching the sphere. Given a cone defined by U, the angle
V determines which type of curve is generated.

Case (1) Circle

If V = 90°, cos V = 0 ,and e = 0, the curve A1A2P becomes
the circle B1B2Q.

Case (2) Parabola

If V = U, e = 1, the curve A1A2P cuts the cone only once to
become a parabola.

Case (3) Ellipse

If V > U, e < 1, the curve A1A2P is closed on itself, and cuts
the cone only once to become an ellipse.

Case (4) Hyperbola



If V < U, e > 1, the curve A1A2P cuts the extended cone

twice to become an hyperbola with two separate parts
called sheets.

10.3     Circle

We have already considered many properties of the circle
in other parts of this book, especially in Section 2.8 and
4.10. For convenience a summary of these and some other
properties useful to a surveyor are given here.

First we will consider geometrical properties. A circle is
a plane curve defined by its centre O and radius R. All
points on its circumference are a distance R from the
centre. Thus, in Figure 10.3,

AO = BO = CO = R

Chords of the circle are lines joining two points on its
circumference, such as AB and AC. A chord passing

through the centre is called a diameter.

In Figures 10.3 and 10.4, various equal angles are
marked by dots and a square and others by combinations of
these symbols. The reader new to this topic should draw
these figures and verify these angular relationships by
measurement. Perhaps the most important relationship is
that shown in Figure 10.3 where



Figure 10.3

Figure 10.4

angle AOC = 2x angle ABC

The sides OA, OB and OC are all radii of the circle and
equal to R. Therefore triangles ABO, ACO and CBO are
isosceles (they have two equal sides). Therefore angles
opposite equal sides in these three triangle are equal. They
are marked by dot and square symbols. Because

This important result is much used in surveying especially
in setting out engineering curves. The line KFH which
touches the circle at F is called a tangent to the circle. It is



perpendicular to the diameter AF. A very useful property is
that the angle subtended by a diameter at the
circumference is a right angle. For example angle ABF =
90°

To prove this, applying (10.3) we have,

But

therefore

Another very useful property in setting out curves is that

This follows from the fact that

Also

therefore

Consider also the second tangent HC touching the circle at
C. Then



therefore

Thus the triangle HCF has two sides equal opposite these
angles. That is, the two tangents HF and HC drawn from a
point to a circle are equal. This is yet another important
property of the circle.

Figure 10.5

We now turn our attention to the equation of the circle.
Refer to Figure 10.5 showing a circle centre O and radius r.
P is any point (x, y) on the circle; therefore by Pythagoras’s
theorem

This is the equation of a circle based on the origin at its
centre. See also Section 4.10. If we translate the origin of
coordinates to some other point Q (-a, -b) not a its centre,
the new coordinates of P are (X, Y) given by

x = X – a and y = Y – b



and the equation (10.6) becomes

If we put

equation (10.7) becomes

This is the general equation of a circle in terms of its plane
coordinates in a two-dimensional system. (See also Section
5.19 for a consideration of the circle in a three dimensional
system). Notice that the quantity c is the length of the
tangent from Q to the circle.

Exercise 1 Refer to Figure 10.6. Find the equation of
the circle passing through the points ABC whose
coordinates are shown in the diagram.



Figure 10.6

Let the equation of the circle be

Substituting in (10.9) for the X and Y values of A, we obtain
one equation in f, g and c

Similarly for B and C we obtain

Solving equations (10.10), (10.11) and (10.12) gives

Therefore the equation of the circle is

 
Exercise 2 Verify equation (10.13) by showing that the
original coordinates of A, B and C satisfy it. The working
for point A is

4 + 4 - 5.752 (-2) - 4.220 (2) - 11.061 = 8 + 11.504 – 8.44 –
11.061 = 0

 
Exercise 3 Find the coordinates of the centre of the circle



and its radius. The coordinates of the centre O are given
directly as

and the radius from

 
Exercise 4 Find the equation of the tangent to the circle at
C.

The formula for the gradient to the circle is found by
differentiating the equation of the circle with respect to X,

i.e. from

therefore

Substituting the values for the problem we have

Expressing the equation of the tangent in the gradient form
we have



where d is the intercept on the Y axis; the equation is

Substituting the values for C gives d to be

and the equation of the tangent is

 
Exercise 5 It is left as an exercise for the reader to
calculate the following angles from respective bearings

This verifies that the angle between a tangent and chord
equals the angle in the alternate segment of the circle and
is equal to twice the angle subtended at the centre of the
circle. See (10.3) and (10.5).

10.4     Parabola



Figure 10.7

Figure 10.7 shows a parabola with focus T and directrix

CD, defined by the relationship, e = 1, therefore

PD = PT

The line CT is chosen as x axis, and the coordinate origin to
be at O where the curve cuts this axis. The Oy axis is
perpendicular to Ox. Since O is a point on the curve,

Let P be the point (x, y) then at once we have coordinates

also

therefore



This is the equation of a parabola. It is symmetrical about
the x axis and takes the form shown in the Figure 10.7. It is
often used as a vertical curve in road design. Perhaps its
most important property is that a line such as DP, parallel
to the x axis, is equally inclined to the normal at P as is the
line PT which passes through the focus T. In other words,
the normal PE bisects the angle QPT. This enables the
parabola to be used in optics as a means of bringing
parallel light, or radio waves, to a focus. Or conversely to
create a parallel beam by emission from a focus. To prove
this property, differentiating (10.14) we have

This is the gradient of the tangent at P. The normal to the
curve at P therefore has the gradient

But this is also the gradient of DT. Therefore the normal at
P is parallel to DT. In triangle DPT, DP = TP, therefore the
angles at D and T, marked by dots, are equal: and from the
parallel lines, the angles QPG and TPG, again marked by
dots, are also equal. Finally at A and B, x = a therefore y =
±2a. Therefore

AB = 4a

10.5     Ellipse



The ellipse is by far the most important conic section for
the map maker. It is the basis of the ellipsoid of revolution
used as a standard figure to represent the Earth; it is the
theoretical path taken by an earth-orbiting satellite, and by
the Earth itself round the Sun. It also features in
engineering, surveying, systems of distance measurement,
and in error theory. This is by no means a complete list.

Figure 10.8

10.6     Equation of an ellipse

In Figure 10.8, T is the fixed focus and CD is the directrix
of the curve. Any point P is located so that PT = e PD where
e < 1. When P is at A and at B, the ratio still holds therefore

Let AB = 2a, then



therefore

Now

Also

But by definition of the ellipse

therefore

so

and finally

This is the equation of an ellipse in terms of its two
parameters, the semi-major axis and the eccentricity. By
inspection, it can be seen that the curve is symmetrical
about both axes. Also it could have been defined from



another focus at G and another directrix to the left of the
curve (not shown in the figure). If e = 0 the equation
becomes the equation of a circle of radius a, which
circumscribes the ellipse. This circle is called the auxiliary

circle to the ellipse. See Figure 10.9.
When P is at E, x = 0 and if we put y = b, we have

Hence we may write the equation of the ellipse in the
commonly used form

The ellipse can also be thought of as circle deformed
uniformly in one direction. Consider the point Q on the
auxiliary circle in Figure 10.9. It has the same abscissa (x)
as P. From the equation of the auxiliary circle

and from the equation of the ellipse

therefore

and



This is true for all positions of P and Q on the ellipse and
auxiliary circle. Thus the ellipse is a circle uniformly
contracted in the ratio b/a.

Figure 10.9

10.7     Area of an ellipse

Following equation (10.20), because all ordinates of the
circle are contracted into the ellipse, their total sum is also
contracted. Since the total sum of all ordinates is the area
within the curve we have that

10.8     Sum of focal distances

From (10.2) and figure 10.9 we have



and from (10.17)

The distance from P to the second focus is PG, OG = OT =

ae,

therefore

Immediately from (10.22) and (10.23) we have

This is a most important result which, among other things,
enables an ellipse to be drawn on a map or set out in a
field.

 
Exercise 1 A cylindrical pipe of diameter 200 mm meets a
wall at a point P at angle of 30°. Mark out the shape on the
wall to be cut to enable the pipe to pass through. (A similar
calculation is required for the other side of the wall at
another point Q.) The reader is encouraged to drawn this
ellipse on a piece of paper, from the following instructions.



The shape required is an ellipse with the following
parameters.

b = 100 mm and a 100 cosec 30° - 100 × 2 = 200 mm

Figure 10.10

The axes are drawn through P as shown in Figure 10.10
and a and b measured off to give points A, B, C and D on
the ellipse. From A and from C arcs are drawn of length a
to cut the x axis in the foci at T and G. Pins are placed at
these foci. Each end of a string of length 2a is attached to
each pin. If a pencil is moved round keeping the string taut
as shown, an ellipse is drawn out as required.

10.9     Freedom equations of the

ellipse

It is important to be able to express the coordinates of any
point P(x, y) in terms of a useful independent parameter.
Equations in this parameter are called free-dom equations.
The parameter most useful to the map maker is the angle U
of Figure 10.11. This is the angle between the normal PC to
the ellipse and the x axis. In geodetic problems this angle is
the latitude of a place on the earth’s surface. The line OQ

passes from the origin perpendicular to the tangent at P



meeting it in Q. The length, OQ = p, is called the pedal

distance of P with respect to the ellipse. If we put

then from the equation of the ellipse

Figure 10.11

we have

which gives

or

By inspection of Figure 10.11 we see that

and remembering that



we have

therefore

therefore

therefore

10.10   Radius of curvature of the

ellipse

The radius of curvature of the ellipse is required for
geodetic calculations and map projections. From (9.34) we
have the radius of curvature R given by

Differentiating the equation for the ellipse gives



Therefore

but from

therefore

Now differentiating (10.28), we have

But from (10.19)

therefore

Now substituting from (10.29) and (10.30) in (9.34), we
have



or because 

This is a useful form of R. The negative sign merely means
that the ellipse is concave towards the origin at its centre.
To recast (10.31) into the more traditionl form, we have

therefore

10.11   Length of the normal to an

ellipse

Also of great importance in geodesy is the length of PC.

Now



10.12   Length of an arc of the ellipse

In map projections, the length of an elliptical arc is
required. If R is the radius of curvature at point P and dS is
a small arc, then

dS = R dU

There is no closed solution to this elliptic integral. It has to
be converted into a series in terms of U, integrated term by
term, with the results added. The number of terms used in
the series depends on the accuracy needed. The whole
process is tedious and not very illuminating.

Another very practical way to evaluate the integral is to
do so numerically. A value of R is calculated for each of a
very large number of angles U, spaced over the range of
interest, by selected amounts dU. The successive values of
dS = RdU are added to give the required result. The
accuracy of the calculation depends on how small we select
dU to be. This computational process is ideally suited for a
computer.

 
Exercise 1 The range sum from two fixed shore points P

and Q, 10 km apart, is measured by an electronic system to
be 12 km. Sketch the ellipse on which the ship lies, at a
scale of 1 cm = 1 km.

Let the equation of the ellipse relative to the standard
origin at the mid point of the base line be



From the range sum we have

Thus the equation of the ellipse is

Drawing up a table of values we have

Figure 10.12

Hence we can sketch the ellipse in Figure 10.12. 
Note: This sketch can be used later in conjuction with the
sketch of a similar hyperbola to locate the ship. See
Exercise 2 of Section 10.14.

10.13   The hyperbola



The last conic section to be considered is the hyperbola.
This curve is drawn out in the intersecting plane when V <

U (see Figure 10.2) and e > 1. There are two parts of the
curve where the plane cuts the double or extended cone.
Figure 10.13 shows the principal section through the cone
axis. In each part of the cone there is a sphere which the
intersecting plane touches in points T and T1 Associated
with these spheres are two directrices. There are also two
points on each directrix at C and C1 The points of interest
on the cone and curve are A and A1 By inspection of Figure
10.13 it appears that the following relationships hold

We now prove this to be the case. Remember that tangents
to a circle from a common point are equal.

Figure 10.13

From Figure 10.13 the following stages are evident



therefore

Considering similar triangles, we have

but

therefore

therefore

Again from (10.1)

therefore

Note: This relationship could be considered to follow
immediately from the definition of the conic using the
second focus and directrix. However, experience shows
that it needs to be established separately as above.



From these three results (10.35), (10.36) and (10.37) we
can establish the equation of the hyperbola in the
traditonal form

Figure 10.14 shows the plane containing the conic section
and the line of Figure 10.13, TACC1A1T1. The directrices
with respective foci T and T1 are CD and C1D1. Let O be the
mid point of AA1 and let

Also

thus

Figure 10.14



thus

By definition, for any point P (x, y) on the conic,

PT = e PD

therefore

Finally, putting

we have

10.14   Range difference property

For the map maker, perhaps the most important property
of the hyperbola is that the range difference from the two



foci to a point on the curve is constant. Consider the range
difference

therefore

Range difference systems, such as in hydrographic position
fixing or satellite Doppler systems, define hyperbolae.
These in turn are used to find an observer’s position.

 
Exercise 1 The range difference from two fixed shore
points P and Q, 10 km apart, is measured by an electronic
system to be 8 km. Sketch the hyperbola on which the ship
lies, at a scale of 1 cm = 1 km.

Let the equation of the hyperbola relative to the standard
origin at the mid point of the base line be

From the range difference we have

2a = 8

and when

y = 0 x =±a = ±4

The base line is 10 km long so



The equation of the hyperbola is

when

Corresponding selected values are

Hence we can sketch the two branches or sheets of the
curve which is symmetrical about both axes.

Figure 10.15

 
Exercise 2 If we now combine the two sketches, of the
hyperbola (Figure 10.15) and the ellipse (Figure 10.12) into
Figure 10.16, we produce part of a lattice chart showing
the four possible positions of the ship. It is usually possible



to select the correct solution using other information such
as one point is the only one where water can be located!
From the graphs drawn to scale we find the position of the
ship to be (4.75, 2.05). These values do not satisfy the
equations exactly. A better solution (4.8, 2.0) is obtained by
Newton’s method in Section 12.14.

Traditionally, mariners worked from lattice charts to
obtain solutions to navigation problems. Today, solutions
are obtained by purely analytical methods solving for the
intersection of the conics by computer software.

Figure 10.16
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Chapter 11 
Spherical Trigonometry

11.1     Introduction

The study of the trigonometrical formulae connecting parts
of a sphere is called spherical trigonometry. No new
mathematical functions are involved: we are simply using
standard trigonometrical functions applied to a sphere.
Although most problems to do with spheres can be solved
without the use of this branch of mathematics, it is
sometimes more convenient to do so with it. Map makers
mainly use spherical trigonometry to solve problems in field
astronomy, navigation and map projections, although it also
has applications to surveying instrumentation.

It is helpful if the reader has available a spherical ball,
such as a tennis ball or table tennis ball, for inspection as
we define terms and consider ideas.



Figure 11.1

11.2     The sphere

A sphere can be defined in the following way with
reference to Figure 11.1. Consider O, a fixed point in space
and from it sweep out a surface by rotating a line of fixed
length R. This surface forms a sphere, of radius R, centred
on the fixed point. Any plane cutting the sphere does so in a
circle, and, if the plane also passes through the centre of
the sphere, the circle formed is the largest possible.

It is therefore called a great circle of the sphere. Clearly
the radius of a great circle is also R. All circles smaller than
a great circle are called small circles of the sphere. In

spherical trigonometry we are concerned solely with great

circles.

11.3     The spherical triangle

A spherical triangle ABC is formed by three great circles of
a sphere as shown in Figure 11.1. A good way to visualise
this is to draw great circles on a table-tennis ball. To do
this, place the ball in an egg cup, hold a pencil point



against the ball and rotate the ball carefully creating a
great circle on its surface.

11.4     Model of spherical triangle

To assist the reader the following model of a spherical
triangle should be constructed from a sheet of paper A4
size. With a centre O and radius about 15 cm describe the
arc of a circle C1BACB1 as shown in Figure 11.2. Mark off,
in the order indicated, the angles

a = 30° c = 50° b = 40° a = 30°

Notice that these angles are denoted by lower case letters.
Mark the points C1,B, A, C and B1 on the circumference as
shown. Draw straight lines CFD and C1 ED perpendicular
to OA and OB respectively to meet at D. Draw FHG

perpendicular to OB, and HD perpendicular to GF, to
complete the rectangle GEDH. Note that

angle HFD = c

Figure 11.2



Carefully cut out the diagram. Fold it inwards along the
radii and construct the spherical triangle ABC with the two
faces OC1B and OCB1 overlapping. Pin these together. In
the folded position, a shape like that illustrated in Figure
11.3 is obtained. Hold the model in this position to compare
it with the drawing. The angles at the vertices of the
spherical triangle are A, B and C, written in upper case
letters. These are the angles between the tangents to the
sphere at a vertex. (You should verify this by looking
inwards along a radius of the model.)

Figure 11.3

The sides of the triangle are Ra, Rb, and Rc respectively
where R is the radius of the sphere and the small angles
are converted to radians. Because the relative relationships
of the sides and angles do not depend on the size of the
sphere, it is usual to put R = 1 and deal only with the
angles subtended at the centre. It is customary still to refer
to these as ‘sides’ even although they are actually angles.

11.5     Spherical trigonometrical

formulae



As with plane trigonometry, there is one basic formula in
spherical trigonometry, the cosine formula, from which the
others may be derived. It is

However, the proof given here lends itself to derive two
other important formulae directly and with little extra
effort. These are the sine formula

and the cotangent formula

11.6     Proof of the cosine formula

By inspection of Figure 11.3, we have the following
relationships

angle CFD = A and angle CED = B 

CD is perpendicular to the plane OBA

Consider triangles OCF, CDF and FDH in turn to give

From triangles OCE, OCF and OFG in turn we have also



Equating values of HD from (11.6) and (11.10), R cancels
out, giving the cosine formula:

This is the most useful formula of spherical trigonometry. It
relates two sides and their included angle to the side
opposite. There is no sign ambiguity in a between the first
and second quadrants, because cos a is positive in the first
and negative in the second quadrant.

 
Exercise 1 Write down the two other cases of the cosine
formula relating the angles B and C to the ‘sides’. These
are

 
Exercise 2 Calcuate the angles of the spherical model in
which

a = 30° b = 40° c = 50°

We will give the working for A only. From (11.1)



Verify this result by direct measurement on the paper
model. It is left to the reader to check that the other two
results are

B = 56.86° and C = 93.68°

Note: The sum of the angles of a spherical triangle do not
add up to 180°. In this case the sum is 191.19°. The excess
of this sum over 180° is called the spherical excess e of the
triangle. Or we put

11.7     Proof of the sine formula

In triangles OC1E, OCF of Figure 11.2, and triangles CED

and CFD of Figure 11.3, we have respectively

Equating the two expressions for CD gives the sine rule



Similarly, by dropping a perpendicular from B to plane
OAC, we could show that

therefore

This formula links sides with their opposite angles.

Although a convenient formula, care has to be taken with
signs, because the sine is positive in both the first and
second quadrants. For this reason, an apparently more
complicated alternative formula is often preferred.

 
Exercise 1 Use the sine rule to check the calculations of
the angles A, B and C of Exercise 2 of Section 11.6. The
respective ‘sides’ and angles are

The minor discrepancy is due to rounding errors in the
arithmetic.

11.8     Proof of the cotangent

formula

Consider triangles HFD and OCF of Figure 11.2 and
triangle CDF of Figure 11.3 to give



From triangles OFG, OCF, CED, and OCE we have

Equating values of HF gives

Dividing by sin b gives

This cotangent formula relates four adjacent parts of the
triangle.

 
Exercise 1 Use the cotangent formula to check the
calculations of the angles A, B and C of Exercise 2 of
Section 11.6. The data are

We shall calculate B from



11.9     Spherical excess

The amount by which the sum of the angles of a spherical
triangle exceeds 180° is called the spherical excess e: in
other words

On a sphere of radius R, the spherical excess in seconds of
arc of a triangle, whose area is Δ, is given by

Thus a terrestrial triangle, such as an equilateral triangle
of side 20 km, whose area is about 180 km2 has a spherical
excess of one second.



Figure 11.4

To prove equation (11.12) refer to Figure 11.4 which show
two aspects of the same diagram. It will be seen that a
second spherical triangle A’B’C’ is shown on the opposite
side of the sphere from ABC and that AOA’, BOB’ and COC’

are diameters of the sphere. The triangle A’B’C’ is identical
to ABC and has the same area. Suppose the sphere is cut
into four pieces, like the segments of an orange or
tangerine, along the planes ACC’ and ABB’. The two
smaller segments formed by the angle BAC form the moon
of A. The surface of this moon is called a lune LA. The
beginner may care to use a table tennis ball or orange as a
model on which to draw lunes to follow the arguments used
in the derivation. The surface area of a complete sphere
can be thought of as the area swept out by a great circle as
it rotates through 180°, or π radians, about a diameter. For
any intermediate angle A the surface area of the lune swept
out, LA, is proportional to A, thus we have

Remembering, from (9.44) that the surface area of a sphere
of radius R is

The formula for the spherical excess follows by considering
the surface areas of the lunes LA, LB and LC formed by the
three angles A, B and C. Adding these areas we have



Let the area of the triangle ABC and of A’B’C’ be Δ,. If we
add the areas of the lunes, the area of triangle ABC is
covered six times, two of which are needed to obtain the
curved surface area of the sphere, four others are
redundant. Thus

therefore

and we have finally

 
Exercise 1 Calculate the area of the triangle ABC of the
model if R = 120 mm. From (11.11) the spherical excess is

therefore



11.10   Navigation and spherical

trigonometry

An aircraft is to fly from London to New York at a speed of
800 km per hour. How long will the flight take, and in what
direction will the plane leave London? The radius of the
Earth is 6378 km and the latitudes and longitudes of the
cities are

Refer to Figure 11.5. In this case we select the point A to
be at the Earth’s North Pole, B is at London and C is at
New York on a spherical Earth. The arc AB = c is the
angular distance from London to the pole, the complement
of its latitude. Therefore

and similarly the arc CA = b, the complement of the
latitude of New York, there fore

The angle at the North Pole is the difference in longitude
between the two cities, that is



Figure 11.5

To find the inter-city distance we calculate the arc BC by
the cosine formula

The linear distance is

Since the speed of the aircraft is 800 km per hour the flight
time is 6.97 hours.

11.11   Direction at take-off

The direction at take-off is the angle B given again by
(11.3) or by



The direction from north in which the plane takes off is
287.88°.

Note: As the plane flies along the great circle BC the pilot
has to alter the plane’s direction relative to north from time
to time. Spherical triangles are solved at these times to
give the new direction.

 
Exercise 1 Find the direction to fly when the plane is
halfway between the two cities. In this case the cotangent
formula is most appropriate because four adjacent parts of
the triangle are involved. The angle ADB = D is required. It
is given by

The required forward flying direction is now 255.28°.

11.12   Map projections of a sphere

Map projections were formerly chosen for their ease of
computation and drawing. Computer methods free the user
from such restrictions. We shall demonstrate procedures
with an example of the oblique stereographic projection,
which has the property of being conformal (shows small
shapes correctly) and is therefore suitable for
topographical mapping. Although it also happens to be easy



to draw by graphical methods, we will demonstrate the
computational procedures here. The position of a point on
the surface of a sphere is defined by its latitude (the
angular distance from the equator towards the North Pole
or South Pole) and its longitude (the angular distance
round the equator from a standard meridian, such as the
meridian of Greenwich). Whilst the origin of latitude has
some natural basis, the origin of longitude is purely
arbitrary and was selected for historical reasons. In
mapping, any point can be chosen as the ‘pole’ and any line
for reference.

11.13   Oblique coordinate system

In the case of an oblique projection, the first stage is to
select the geographical position of the centre of the map

and the reference line from which the spherical arc
distances and directions to the points on the graticule are
computed by spherical trigonometry. We have selected an
example from a popular atlas. Refer to Figure 11.6. The
reference line is the meridian through the centre of
projection at the point Q whose geographical coordinates
are

The points of the graticule to be plotted are A to J (see
Figure 11.6) at the intersections of parallels 40°, 60° and
80°, with the meridians 20° West, 0° and 20° East of
Greenwich. The land mass covered is Western and central
Europe.



Consider a typical point F (60° N, 20° E) The first stage
is to change the origin of longitude to the point Q, thus the
new longitude of F becomes 65° W of Q. The other
longitudes become 85° W and 105° W of Q.

Figure 11.6

We have to calculate the arc distance QF and the
direction V to obtain the coordinates of F referred to the
new origin at Q. Applying the cosine formulae (11.1) to the
spherical triangle PFQ gives

 
Exercise 1 Given the coordinates of F (60°N, 65°W from
Q), and Q (40°N, 0) calculate (90 – θF).

therefore



To find V we again use the cosine rule to give

 
Exercise 2 Verify that the spherical coordinates in degrees
of points A to J referred to Q are as follows

Table 11.1

11.14   Stereographic projection of a

sphere

Consider a typical point such as F on a generating sphere
of radius R representing the Earth. See Figure 11.7. The
plane of the map touches this sphere at Q. In the
stereographic projection the point of projection is chosen to



be at S diammetrically opposite to Q. The line through S

and F meets the map plane in F’.

To calculate QF’

The angular arc distance pF = 90 - θF = = 44.07° has
already been calculated by spherical trigonometry. We
obtain the length of QF = rF from

This follows because

 
Exercise 1 Show that QF = 56.8 mmusing R = 70.2 mm,
and pF = 90 - θF = 44.07°

11.15   Azimuthal property of the

stereographic projection

The stereographic projection is one example of projections
in which we choose to draw the angles through the origin
at Q correctly preserved on the map, i.e. the same on the
sphere as on the map. Thus we drawn the lines radiating
from Q at the computed angles V. This means the the
azimuths (true directions) at Q are correct. If we select the
y axis of the map to pass through the North Pole N, and the
x axis pointing to the west, the final cartesian coordinates
of the projected point F are



Figure 11.7

 
Exercise 1 Verify that the cartesian coordinates in mm of
all points A to J are as follows

Table 11.2



Figure 11.6 shows these points plotted at a suitable scale
and the graticule sketched in.

 
Exercise 2 Plot Figure 11.6 from the data of Table 11.2
and verify that the lines of the sketched graticule are all
circles, and that they meet at right angles. (It is a property
of the stereographic projection of the sphere that all circles
on the surface of the sphere appear as circles on the map.)

11.16   Conformality of the

stereographic projection

The scale factor K of a map relates the map distance to the
corresponding ground distance by

Because of the distortion introduced when converting the
three-dimensional surface of the sphere to a two-
dimensional plane, the scale factor varies from point to
point over the map. If the scale factor at a point does not

vary with direction the shapes of small land parcels are



correctly preserved but at a different size. Such a
projection is called conformal or orthomorphic. For
example, the theodolite circle on which horizontal angles
are observed, maps into another circle on these
projections. At finite distances over 100 metres or so the
accuracy of angle measurement cannot be preserved and
distortion occurs. For further information on this topic see
Allan (1997). An examination of the scale factors at a point,
in two orthogonal directions, reveals whether a projection
is conformal or not.

It is convenient to select the two directions of the
spherical coordinates for an examination of scale factors.

11.17   Scale factor in direction QF

Refer to Figure 11.8. In the vicinity of F a small angular
change to p of δp will cause a corresponding change to the
spherical arc of δs given by

This is the change in ground distance caused by a small
change in the angle p. The corresponding change to the
map distance in the direction QF’ in the vicinity of the
projected point F’ is



The scale factor along QF’ is therefore

Figure 11.8

11.18   Scale factor in direction

orthogonal to QF

A small arc of the sphere orthogonal to the plane of Figure
11.8 in the vicinity of F is given by



This is because the effective radius is the length EF of
Figure 11.8. Because of the azimuthal property of the
projection, the corresponding map distance is

Thus the scale factor orthogonal to QF is given by

therefore

and

The point scale factors in two orthogonal directions are
equal, therefore the projection is conformal. Inspection of
the plotted graticule shows that its lines meet at right
angles as they do on the sphere.
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Chapter 12 
Solution of Equations

12.1     Introduction

Many problems in mathematics involve the solution of
equations of various forms. Typical examples are

The unknowns (or variables) are x, y and z, while a, b, c

and d are coefficients usually given by theory. Typical
numerical versions of these equations are

Some solutions to these equations are



If we substitute the values in each case, the equations are
satisfied: for example, testing (A) gives

An equation of type (A) is called a linear equation because
the three variables appear only directly, unlike the other
three non-linear types in which higher powers of the
unknowns than the first are present. Again equations (B)
and (C) only contain one variable x. There are usually two
solutions for type (B) which is called a quadratic equation,
and three solutions for type (C) which is called a cubic

equation. Equation (D) is called a second-order equation in
two variables. In this chapter we discuss some common
methods of solving such equations.

12.2     Linear equations

The treatment of linear equations requires an
understanding of matrix algebra (see Chapter 7). Linear
equations are of the form

ax + by + cz + d = 0

They contain no powers of the variables x, y and z higher
than the first. If there are only two variables x and y,
equations of the form

ax + by = c



can be represented as straight lines on paper, so are of
interest to cartographers. An equation in three variables

ax + by + cz + d = 0

can represent a plane in three-dimensional space. If there
are more than three variables, no simple geometrical

interpretation can be made.

12.3     Simultaneous linear equations

Sets of equations which have to be satisfied by the same
values of the variables are called simultaneous equations.

Consider for example the linear equations

ax + by + c = 0

We can represent these as straight lines on a graph as in
Figure 12.1. Since the point P lies on both lines, the
coordinates of P(x, y) satisfy these equations.

 
Exercise 1 Plot the lines representing the equations

and show that they intersect at the point (1,2).

 
Exercise 2 Solve the equations (E) and (F) by simple
elimination. If we multiply each term of (E) by 3 we have



Figure 12.1

Figure 12.2

3x + 6y = 15

We have used the multiplier 3 so that we can eliminate x
from the equations by subtracting (F) from this new
equation. That is

3(E) - (F) = 3x + 6y – (3x + y) = 15 – 5 = 10

or

5y = 10

therefore y = 2

Substituting for y = 2 in (F), we have

3x + 2 = 5



x = 1

It may appear that two equations in two variables, x and y
say, are sufficient to obtain a solution. Whilst two equations
are necessary, they may not be sufficient. Consider the two
equations

ax + by + c = 0

and

nax + nby + d = 0

If we plot these on a graph we obtain the parallel lines
shown in Figure 12.2 and because they do not intersect
there is no point P and therefore no solution of the two
equations.

 
Exercise 3 Show that there is no solution to the equations

x + 2y = 3

2x + 4y = 7

 
Exercise 4 Show that the determinant (see Section 6.6)
formed by the coefficients of the variables is zero. We have
the determinant A given by

When the terms in x and y in one equation are simple
multiples of those in another, we say their coefficients are
linearly dependent. For a solution we need that the rows



and columns of the coefficients of the variables are linearly

independent.

Whilst it is clear that two independent equations are
necessary to obtain a solution, this does not rule out the
possibility that several equations have a common solution.
For example, the point P of Figure 12.3 may lie on three
lines intersecting at one point. Any two of the lines can give
a solution for P: thus one equation is redundant. We say
that the problem is overdetermined.

In surveying, this extra information is used to check the
result of measurements. For example, Figure 12.4 might
represent the three rays observed from three survey
stations. In the unlikely event of three rays intersecting
exactly, we might say that the observations are free of
error and that the equations are consistent. However since
small observational errors are likely, a usual outcome is for
three lines not to meet at one point as shown in Figure
12.4. The mismatch of the lines shows that the equations
are inconsistent.

Figure 12.3



Figure 12.4

In the measurement sciences, the mismatch is used to
give a statistical estimate of the precision of the
measurements. To obtain a unique solution, the original
equations are reduced in number to the minimum by
replacing them with new equations, which are solved. The
statistical process used for this replacement is called the
Principle of Least Squares, which is beyond the scope of
this book. See Allan (1997) for more information.

Sets of linear equations can be underdetermined, if there
are fewer equations than variables, or overdetermined if
there are more equations than variables, or normal if there
is the same number of equations as variables. Ultimately
the problem is to solve the normal case, with an equal
number of variables as equations. These are, in matrix form
(see Chapter 7)

in which the vector of unknowns x is related to the square
matrix N and the absolute vector b. A typical set of such
equations is



of which the solution is x = 1, y = 2, or in matrix notation

A formal statment of the solution is

where the inverse of the matrix N is

N-1

Note: If the determinant of N is zero, its inverse is not
defined, and the matrix is said to be singular. Refer to
Exercise 4 above.

Although much use is now made of computer packages and
spreadsheets to obtain solutions, it is none the less
necessary to write solution algorithms when compiling
software of one’s own, or dealing with large problems. The
matrix N is always square and often symmetric, that is

If N is orthogonal or diagonal or can be factorised into a
product of these two types of matrix, the inverse can be
written down directly (see 7.20 and 7.22). Usually
problems are not so simple. There are two basic
approaches to solution

(1) to obtain a solution without evaluating the inverse
explicitly,

(2) to obtain a solution by first forming the inverse.

Generally, the first method is preferred because it gives a
more accurate arithmetic solution. However, the discussion
can be quite academic when a few well· conditioned



equations, say up to thirty in number, have to be solved.
Often a satisfactory method is to employ the matrix
inversion routines available in spreadsheet software.

12.4     Cramer’s rule for the solution

of linear equations

The solution of the above two simple equations is quite
trivial and may be effected by any simple method such as
elimination by inspection. Consider the equations again

One approach is to use Cramer’s rule to obtain the inverse,
in this case as

The way to obtain this inverse is as follows. First evaluate
the determinant of coefficients of the original matrix. In the
example

The reciprocal is multiplied by another matrix obtained by
interchanging the diagonal terms in the original and
changing the signs of the off-diagonal terms. The solution is
then obtained from



This simple routine, called Cramer’s rule, which is easy to
remember, is probably worth using for this simple type of
problem, which surprisingly does often arise. Although the
value of Cramer’s rule to invert a three-by-three matrix is
debatable, its use is certainly out of the question for a
larger problem, so it will be given no more attention here.

 
Exercise 1 Find the inverse of the following matrix by
Cramer’s Rule

thus the inverse is

Check by multiplying these two matrices together to obtain
the unit matrix I.

12.5     Derivation of Cramer’s Rule

for a (2 x 2) matrix

Cramer’s rule is derived as follows. Consider the two linear
equations

To eliminate y we multiply (G) by b2 and (H) by b1 to give



and subtracting gives

This can be written in determinants as

To eliminate x we multiply (G) by a2 and (H) by a1 to give

Hence we have the solution

or in matrix form combining (I) and (J)

which is Cramer’s rule for a two by two matrix. (Note in
this derivation we have placed c1 and c2 on the left hand
side of the equations (G) and (H).)



12.6     Note on consistency of linear

equations

Consider equations (G) and (H) again. If a third linear
equation

has the same solution as (G) and (H), the three equations
are said to be consistent. For this to be possible

or

Writing ths is full we have

or more neatly

Thus for the three equations

to be consistent, the determinant formed from their
coefficients is zero. The result can be extended to four



equations in three variables and so on to n equations in (n
+ 1) variables.

12.7     Direct solution by LU

decomposition

The two most common methods available for a direct
solution of linear equations are due to the mathematicians
Gauss and Cholesky. We treat only the former in this book.
Both methods are versions of a process in which the
original matrix N is decomposed into the product of two
triangular matrices: a lower triangular matrix L, and an
upper triangular matrix U both of the same dimensions as
the original. These terms will become clear as we go along.
Let

The original equations become

and when the further substitution is made

We have finally

The intermediate vector f is derived first by the forward

solution of (12.8), then x by the back solution of (12.7). The
meaning of these terms will become obvious when the
following example is worked through. We describe these
techniques in turn with reference to the same symmetric
normal equations. Although it is unlikely that a hand



solution will be carried out today, the explanation should be
of value in coding an algorithm for a computer. The set of
equations to be solved is

The solution is x = 1, y = –1, z = 2. This can be verified by
substitution in equations (12.9).

12.8     Gaussian elimination

This method is capable of solving equations with a non-
symmetric matrix of coefficients whilst Cholesky’s is not.
For information on Cholesky’s method see Allan (1997). It
must be pointed out that the only process involved in these
methods is the multiplication of matrices. The
multiplications are made in unconventional order as soon
as numerical values become available. In these methods
there is no inefficient duplication of effort such as is found
using Cramer’s rule.

The first stage is to decompose the normal matrix N into
the two triangular matrices L and U as follows

In the above matrices, the twelve elements of the L and U
matrices have to be evaluated from the nine known
elements of the original N matrix. Thus we can choose
reasonable arbitrary numbers for any three of these twelve.



Gauss made the convenient choice of unity along the
diagonal of the U matrix. The scheme is then to use

It is equally possible to make this choice for the diagonal of
the L matrix instead, but not both.

12.9     Decomposition

The starting values for the decomposition process of
equations (12.9) are

We multiply the first row of L with the three columns of U
in turn, using each value as it is obtained, and equate the
answers to the first row of N. Thus we obtain from the first
column of U

Hence

From the second column of U we have

therefore



From the third column of U we have

We have now carried out the following decomposition

Notice that the first row of U equals the first row of N
divided by its leading term 4. Next, multiplying the second
row of L with the three columns of U and equating to the
second row of N gives

And continuing the same process we complete the
decomposition as follows

Thus we have decomposed the original matrix into the
product of two triangular matrices using only the processes
of matrix multiplication which can be programmed in a
computer algorithm.



 
Exercise 1 Verify by multiplying LU together that the
above decomposition is correct.

12.10   Forward solution

If the calculation is being carried out by hand, the final
result should be checked by multiplying the LU matrices
together. The next stage is to solve for the values off from

Lf = b

We have the numerical values

Multiplying out the first row of L and the f vector and
equating to b1 = 14 gives

And so on to the end when we have

This completes the forward solution.

12.11   Back solution



The back solution is carried out in a similar manner to the
forward solution except that the matrix multiplication is
carried out backwards, or from the bottom up. We start
with the following

Multiplying row 3 of U with x and equating to f we have

And continuing upwards we obtain finally the vector x.

Therefore we have the values of the variables x = 1, y = –1
and z = 2.

This process may seem a little complicated, but once
programmed into a computer, there is almost no limit to
the number of equations that can be solved, subject to
storage problems in the computer.

12.12   Inverse of N
Although we do not require to find the inverse to obtain a
solution, its approximate value is often needed to provide
statistical information. In this case the inverse will be
computed separately from the decomposed matrix LU. We



make use of the fact that the inverse of an upper triangular
matrix is also an upper triangular matrix, whose diagonal

elements are the reciprocals of the diagonal elements of
the original triangular matrix. This can be verified quite
easily by multiplication. Consider the product

UU–1

or for the 3 × 3 case

The off-diagonal non-zero elements of the inverse of U are
marked with a question mark, because they are never
required if the original matrix N is symmetrical. In
statistical least squares estimation problems this is always
the case, and it is only in such problems that the inverse is
required in mapping. For these reasons we restrict the
treatment from now to the special case of a symmetric
matrix N. Remembering that

UU-1 = I

we see that

Therefore (12.10) is valid.

Consider the inverse of the symmetric matrix N. By
definition we have



or

Thus

Putting

or in full

Those off-diagonal non-zero elements of U-1 marked by a
question mark are not required if N and M are
symmetrical. Since this is always the case in least squares
problems the discussion is now confined to symmetric
matrices. The problem therefore reduces to finding the six
unique elements of M. This is expressed by

Note that we have removed the upper triangle of
coefficients from M because they are identical to those of
its lower triangle and in the Gaussian method the diagonal
values of U are each 1. Therefore the numerical version is



Carrying out a back multiplication of ML and equating to U-

1 gives the required elements of the inverse as follows

Remember that M is symmetric about the diagonal. And the
final solution

Thus we have the inverse of N as

 
Exercise 1 Verify the above inverse by premultiplication
and postmultiplication of M by N to obtain the unit matrix.
That is show that

MN = NM = I

There are other methods of solving normal equations, by
direct and iterative methods. Special methods are
employed to suit sets of linear equations with the special
structures which arise in photogrammetric and geodetic



problems. It is not appropriate to discuss these here but
see Allan (1997) for more information.

12.13   The solution of a quadratic

equation

Surprisingly often in applied science, there is a need to
solve an equation of the following kind

In many cases there are two solutions to this quadratic

equation given by

The derivation is as follows. Divide equation (12.11)
throughout by a to give

To both sides of the equation we add a term to make a
perfect square on the left side, thus

Then we have



therefore

If (b2 – 4ac) is negative, the square root is not defined in
ordinary numbers, and there are no real solutions. If b2 =
4ac the two solutions are equal.

 
Exercise 1 Solve the quadratic equation

Here a = 2, b = – 5, and c = - 3 therefore the solutions are

12.14   Graphic solution of equations

Sometimes the quickest way to obtain an approximate
solution to a high-order equation is to draw a graph of the
function and find where it cuts the x axis. The plotting
process is known as curve tracing. To illustrate the method
we shall solve the quadratic equation (12.16) by the
graphical method.

We draw up a table of values of the function



Figure 12.5

To find the point on the curve where its gradient is zero we
examine the differential of y with respect to x as follows

therefore

When the gradient is zero, the curve runs parallel to the x
axis, that is when

This value of x gives us a point at which the gradient is
zero. Such a point is called a turning point on the curve and
y has a turning value, in this case a minimum. Using the



values of x and y and the turning point as coordinates we
can sketch the graph of the curve shown in Figure 12.5. At
once we see that the curve crosses the x axis when

These are the solutions to the quadratic equation by the
graphical method. Exercise 2 Solve the equations

If we plot the graphs of both equations, as in Figure 12.6,
their intersection yields the solutions

Figure 12.6

To obtain an exact analytical solution we proceed as follows
From (12.18)



Substituting in (12.17) for y we have a new quadratic
equation in x

which gives the solutions by (12.12)

From (12.18) we have

12.15   Solution of a cubic equation

The ability to solve a cubic equation is needed in error
ellipsoid theory. Consider the equation

Division throughout by a gives

or

If we complete the cube by making the substitution



we obtain the equation in y

or

Putting

and

we have

and if we now put

equation (12.23) becomes

But since



and we obtain finally

From which we obtain three values of q given by

which yield the three values of x by back substitution first
for

then

 
Exercise 1 Find the values of x which satisfy the following
cubic equation

(a) by the graphical method
(b) by the analytical method.

Method (a) We draw up a table of the function

The turning values are obtained from putting



Figure 12.7

giving

Corresponding values of y are

Differentiating again, we have



indicating that y has a minimum turning value at this point.

indicating that y has a maximum turning value at this point.

Figure 12.7 shows a rough sketch of the curve which
crosses the x axis when

x = 2, 3 and 6

These are the approximate solutions to the cubic. We say
‘approximate’ becaus they have been scaled from the
graph. Substitution in the function gives y = 0 in each case,
showing they are also the exact solutions. It should be
noted that the graphical method of solution is unsuitable
for computer use.

Method (b) To derive the solutions by computer we use
the analytical method

Division by 2 gives

therefore

becomes



Now

therefore

We also have

These yield the three values of x by back substitution first
for

y = k cos q = 2.4037cos q

then



12.16   Newton’s method of solution

of non-linear equations

A most useful way to solve non linear equations is by
Newton’s method. The method is iterative, producing
better solutions from previous ones. It is adopted for most
problems in mapping involving least squares estimation.

Before giving a formal statement of the method we will
work through an example. Consider the equations of the
position fixing ellipse and hyperbola of Exercise 2 of
Section 10.14. They are

At most, there are four solutions to these equations. By
sketching the curves, as in Figure 10.16, we obtain an
approximate solution

Substituting these values in the left sides of (12.27) and
(12.28) we get

399.4775 and 135.8225

Clearly the equations are not satisfied by these values. But
they are close. Suppose the changes required to these



values of x and y are δx and δy respectively, then the
better solutions will be

Partially differentiating the equations (12.27) and (12.28)
with respect to x and y we obtain the linear equations in δx
and δy

The values of x and y to be used here are the approximate
ones (4.75, 2.05), so the equations to be solved are

The solution is

These are corrections to be made to the initial values x and
y giving

Checking by re-substitution in the left sides we obtain
respectively

396.00 and 144.00

Sometimes, if a closer solution is needed, the
approximation process is repeated. This type of calculation
is ideally performed by computer.



12.17   Formal statement of Newton’s

method

The process usually involves the solution of non-linear
equations. Suppose the equations to be solved can be
written

f(x, y) = 0

Now let

x = x’ + δx, y = y’ + δy

thus

f(x’ + δx, y’ + δy) = 0

f(x, y) can be expanded by partial differentiation as

This equation is approximate, but becomes more nearly
true the closer x’ comes to x, and y’ to y; and
correspondingly δx and δy become smaller. The procedure
is to obtain better and better values for x’ and y’ by
repeated solutions, i.e. by iteration.

Note: In virtually all practical cases come across in
surveying and mapping, Newton’s method provides an
extremely efficient and rapid method for solving nonlinear
equations. Occasionally if the initial values are poor, the
process will not converge to a solution. A consideration of
the conditions for convergence is beyond the scope of this
book.

To illustrate the need for iteration, we will select poor
initial values for the intersection of the ellipse and



hyperbola at the point

x = 4 y = 2

In the case of the equation of the ellipse we have

Also

The linear equation to be solved is

The second linear equation is obtained similarly from the
equation of the hyperbola to be

Division by 88 and 72 respectively gives

As before, these are corrections to be made to the initial
values x’ and y’ giving

x = 4 + 0.88 = 4.88 and y = 2 – 0.01 = 1.99



If these new values are substituted into the equation of the
ellipse, we find that

f(x,y)= 11 x (4.88)2 + 36 × (1.99)2–396 = 8.522

and if these new values are substituted into the equation of
the hyperbola, we find that

f(x,y) = 9 x (4.88)2 – 16 x (1.99)2 – 144 = 6.968

Because these errors of 8.522 and 6.968 are unacceptable,
a further iteration is necessary.

Two new equations can be formed using the best values
for x = 4.88 and y = 1.99 and these small misclosures, to
give

107.36 δx + 143.28 δy = –8.522

87.84 δx – 63.68 δy = -6.968

And a new solution

δy = -0.000 and δx = -0.079

and acceptable values of

x = 4.801 and y = 1.990

We know they are acceptable because yet another iteration
gives the equations

105.6 δx + 143.28 δy = -0.0036

86.4 δx - 63.68 δy = 0.0016

and the solution to four decimal places

Because computer algorithms to carry out such iterations
are easy to write, Newton’s method is widely used.
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Chapter 13 
Least Squares Estimation

13.1     Introduction

In this book, we have been dealing so far with ideal

mathematical entities such as lines, planes and circles. We
now enter a different field, in which parameters are
imperfect and have to be modelled from measurements. In
this chapter we consider how to obtain the best estimates

of parameters. These parameters may be directly observed

(or measured) or may be derived from measured
components. The technique, called Least Squares
estimation, was developed by Legendre, Gauss and others
in the nineteenth century. Until the advent of electronic
computers, the tedium of calculation meant that the
technique was applied only to specially important work.
Today its application is quite general. The application of
Least Squares techniques has two main purposes: to make
the best use of all measured data in deriving results; and to
obtain estimates of the quality of results and of quantities
derived from them. In this book we can only introduce
some basic essentials of a very large and important subject.



There are two fundamental ways of dealing with Least
Squares problems:

(1) by concentrating on the observations themselves or
(2) by concentrating on constraints among these

observations.

We focus on (1), with only a short reference to (2) at the
end of the chapter, in Section 13.33.

In Appendix A2, we develop some further matrix
concepts and methods required for an understanding of the
Least Squares estimation process described in this chapter.
The discussion here is restricted to classical matrices of full

rank. Although generalised inverses are now applied to
mapping problems, they are not considered.Appendix A3
lists the notation employed by a few other authors and
references to their work.Appendix A4 is concerned with the
error ellipse and its pedal curve.

13.2     Calculation of examples

The Least Squares process involves calculations which are
often exceedingly complex and extensive, and require the
use of a computer. Spreadsheet systems, such as Excel, are
of inestimable value in treating comparatively small
problems. Although some of the examples of this chapter
can be worked by pocket calculator, the reader is advised
to use an Excel or other spreadsheet.

13.3     Measurement science

In most of this book we have been dealing with ideal
mathematical functional models. For example, we have



considered ideal versions of such entities as a straight line
or a plane. In reality we are often never sure that we are
dealing with these ideal entities, but only approximations to
them. The entities under consideration will be described by
parameters which may or may not be measured.

An example of a functional model is an equation which
relates the distance between two points to their coordinate
differences. Unlike matrices which are written in bold type,
these models are written in ordinary type such as

where s is the distance between the two points, and x and y
are the usual coordinates. This equation is an explicit

statement of the relationship between the distance and the
coordinate differences. However it might be expressed in
the general form as

Equation (13.2) just tells us that the parameters are
functionally related. The observed parameter may be the
distance s, with Δx and Δy being the unobserved

parameters. In this case it is helpful to rearrange the order
of the parameters in equation (13.2) to be

Here the unobserved parameters are placed first and
separated from the observed parameter by a colon. This
convention is helpful though not essential nor generally
adopted by all authors.

Alternatively, the observed parameters might be the
coordinate differences Δx and Δy which were measured
from a map or aerial photograph, with s then being the



distance derived from them, or the unobserved parameter.

In this case we rearrange the functional model as

Ultimately we reduce both cases to a standard
mathematical form to be treated in matrix terms expressed
in heavy (bold) type. Then the unobserved parameters will
be always be expressed as the vector x and the observed
parameter as the vector s, writing the functional statement
as

This covers both cases. The change of notation from
ordinary algebra to matrix algebra may confuse the
beginner. To reduce the chances of possible confusion, we
prefer to develop the full equations in the ordinary algebra
of the customary notation for the problem, before
converting to matrix notation. An example should help to
make this clear.

 
Exercise 1 Express the bearing U between two points G

and A as an explicit function of their coordinates. The
formula linking two points A and G and their bearing U is

This is the required explicit functional model.

 
Exercise 2 Express equation (13.7) in the general form, if
the bearing U is the observed parameter and the



coordinates the unobserved parameters. We have the
general form in the notation of coordinate geometry

and in matrix notation

13.4     Statistical notation

It is a great pity that there is no generally agreed notation
to be employed in Least Squares estimation, as can be seen
from Appendix A3, which shows the notation adopted by
several authors in this field. The topic is difficult enough for
the beginner without this added confusion. We adopt the
notation that has some general use in the UK and
elsewhere. Once the topic is understood it is comparatively
easy to adopt another notation, provided it is consistent
within itself.

The reader is assumed to be familiar with the
mathematical topics of matrix algebra and partial

differentiation, which can be found in Chapters 7 and 9
respectively, and the concepts expressed in the Appendix
A2.

In discussing the statistical models used in Least Squares
analysis, a rather complex notation is required to
distinguish between the observed, provisional, estimated

and population versions of a parameter. Once the
mathematical model has been cast into a standard form,
the notation can be simplified without confusion. Figure
13.1 illustrates the notation used in this book to describe
various statistical values, taking the measurement of a line



as an example. If one end of a tape-measure is held fixed
and the other end is free to rotate in a plane, it will
describe a circle whose radius is s. Figure 13.1 shows short
arcs (tangents) in the vicinity of the free end representing
each of four versions of the length of s. These are, firstly,
two known values

and secondly, two values to be estimated from the
observations

(Note: The population value is sometimes referred to as
the true value.) Differences between these fundamental
parameters are



Figure 13.1

The objective in a Least Squares analysis is to find the best

estimates of all parameters. The best estimates are
invariably the best linear unbiased estimates (BLUE)
obtained by applying the least squares principle to sampled
known values of the observations.

In addition to the observed parameters we often have to
estimate additional parameters for which no observations
are available or required. The notation

for these is

Derived from these fundamental parameters are

Note the absence of residuals in these expressions.



13.5     Newton’s method - general

theory

Because equations such as (13.1) and (13.6) are not linear,
direct solution is complicated. (See Chapter 12, Sections
12.13 to 12.15.) Therefore we adopt Newton’s method of
solution (see Section 12.16). This involves first obtaining an
approximate solution, which is then improved by iteration,
using linear equations found by partially differentiating the
relevant functional model. For example, consider equation
(13.6) which is non-linear. It is written in general form as
equation (13.8). Newton’s method then takes the form

The values with the ‘hat’, such as ÊA are the final ones that
we choose to accept, and those with the asterisks, such as
EA are selected provisional values. These two sets of
parameters are related by the fact that

We say ‘choose to accept’, because the iteration may need
to be repeated. Sometimes, as in photogrammetry, many
iterations are required before an acceptable solution is
obtained. In this book generally one iteration will be
acceptable.

To illustrate the method we now give a practical example
from surveying.



13.6     Data for practical examples

Figure 13.2 shows a typical surveying network involving
seven points A to G, which are located on a map grid.
Following surveying conventions, the coordinates assigned
are Eastings E and Northings N, quoted in that order, and
the bearings U are reckoned clockwise from north. Table
13.1 lists the values in metres of the coordinates of points A
to F, the bearings U (in sexagesimal degrees), and their
tangents.

Figure 13.2

Table 13.1

 
Exercise 1 Assuming that the coordinates of A and B are
known, calculate the coordinates of point G, using the



observed bearings from these points. This is the standard
surveying problem of intersection. Clearly we need two
rays that intersect to give the position of G, and we could
not obtain a solution if these rays were parallel.

Substituting the coordinates of A and tangent of the
bearing of AG in equation (13.7) we have

The equation of the ray BG is

and substituting values again we obtain the equation

Subtracting equation (13.11) from equation (13.12) gives

Finally substituting in (13.11) gives

EG = 488.378 + (0.0621928) 448.993 = 516.302

Thus the coordinates of point G derived from the two rays
AG and BG are

(516.302, 448.993)



 
Exercise 2 Derive and solve the equations (13.11) and
(13.12) by matrix methods.

In matrix form these equations are

or specifically

and the solution is

or specifically

 
Exercise 3 Show that the coordinates of G derived from
the rays BG and CG are (516.330, 448.990).

13.7     Newton’s method - application

In Section 13.6, we showed how to derive the provisional
coordinates of point G. It will be seen that the right-hand
sides of equations (13.13) are quite large numbers. In fact



the coordinates used in mapping are often nine-digit
numbers. An additional advantage of Newton’s method is
that it avoids the use of such large numbers, once the
provisional values have been obtained. We remember that
Newton’s method involves the equation (13.9).

Because all final values must exactly satisfy the
functional equation

There are two ways of dealing with the expression linking
the provisional values:

(1) we can calculate the provisional value of the
‘observable’ so that

(2) we can use the inconsistent provisional values along
with the observed bearing to find

We shall use the second method for the moment because it
is slightly easier to calculate. Normally in this calculation
we use the given coordinates of A, the provisional
coordinates of G and the observed value of U. However, in
this case, because we used the observed value of U to
obtain the provisional coordinates of G, the result K will be
zero. (The reader should verify this.) So, to illustrate the
general method, we will select other provisional values
close to the computed ones. We select



Then

In a similar way for the ray BG

 
Exercise 1 Show that the K values for the other four rays
are KCG = 0.01847307, KDG = 0.12108216, KEG =
0.15951738, KFG = 0.36022632

All that remains is to evaluate the partial differentials. We
proceed as follows by partially differentiating the equation
for the ray AG, i.e. equation

Thus we obtain

Substitution in (13.9) gives

The similar equation for the ray BG is



These equations (13.14) and (13.15) are the general
expressions for the rays AG and BG in terms of all the
parameters. In the case of simple intersection, the points A
and B are kept fixed so

and we have

Where we have only two rays necessary to fix the point G
the bearings U will not be changed so

Hence equations (13.16) and (13.17) greatly simplify to

The numerical versions of these are

The solution is

And the final coordinate values are



Which, as expected, are the same as those obtained by the
direct solution in Section 13.6.

13.8     Summary and revision

In the above paragraphs we have introduced the reader to
much of the notation and some concepts involved in the
Least Squares estimation process, but have not actually
begun to explain the method itself. To summarise, the
essential mechanisms required to reach an understanding
of

what follows are:
(1) the solution of equations by Newton’s method
(2) the need for partial differentiation in this method
(3) the great convenience of treating equations in matrix

form
(4) the practical benefits of calculating results by a

spreadsheet system.

13.9     Redundant measurements:

degrees of freedom

To calculate the coordinates of point G any two rays that
intersect will suffice. We can select two rays from six in any
of 15 ways which will give 15 different versions of the
position of G. Using the data from Table 13.1, Figure 13.3
shows a scale diagram of how the various rays intersect in
the vicinity of G. (The intersection of BG with FG cannot be
shown at this scale.) Clearly we can say that there is no
unique solution to the problem as it stands, or that the
position of G is overdetermined. This redundancy of



information can be put another way. We say that, because
there are six equations in all, only two of which are
necessary and sufficient, there are 6 – 2 = 4 degrees of

freedom in the problem. In general if we have m equations
in n variables, m > n, the number of degrees of freedom is
m – n.

Figure 13.3

On this Figure 13.3, the reader can verify that rays AG

and BG meet at the point whose coordinates are (516.302,
448.993), and rays BG and CG meet at (516.330, 448.990).
The final objective of our analysis is to select one unique
position for G which uses all the rays in some regular
systematic way. Suppose the finally accepted position of G,
resulting from the Least Squares process, is

EG = 516.300 and NG = 448.960

Table 13.2



Clearly after this position has been found, the bearings of
the rays from G to the points A to F will not generally equal
the observed values. Table 13.2 shows the new ‘best
bearings’ calculated from A to G etc. and the differences
between the two sets of bearings. These differences are
called ‘Least Squares residuals’, or just ‘residuals’ for
short. Hence we define a residual as

Residual = Best estimate of a parameter - Observed

value of the parameter

(Note that some authorities define the residual in the
opposite sense. This does not affect the treatment, provided
the convention is consistent throughout the whole
analysis.)

So how was the position of G found? It was found by
making the sum of the squares of these residuals a
minimum. For brevity, we usually let

the sum of the squares of residuals = Ω

Thus, in our example,

and we have obtained the coordinates of G by making Ω a
minimum.



As was shown in Chapter 7 Section 7.15, if v is a column
matrix of residuals, Ω is the square of the length of the
vector given by

13.10   Observation equations

Returning to the practical problem, we form observation
equations for all the observed bearings. Consider the ray
AG for which we derived the equation (13.16).

We now see that the change to the bearing, after the Least
Squares solution has been carried out, will be its residual,
i.e. δUAG = vAG hence (13.16) becomes

Division of (13.22) by the coefficient of the residual vAG,
and rearranging the order of terms, gives

Now, although these coefficients can be recast in simpler
forms for computation, and we will do so later, they can be
expressed in algebraic form as



In the same way we can form equations for the other rays
and obtain the full array of six equations as follows

Which are neatly expressed in matrix form as

where A is the (6 x 2) matrix of coefficients,
x is the (2 x 1) column vector of variables (δEG δNG)T

and
v is the (6 x 1) column vector of residuals (v1 v2 v 3v 4 v5

v 6)T.

(We write a column vector as the transpose of a row to save
printing space.)

 
Exercise 1 Express equations (13.25) in numerical form
from the data in Table 13.1.

Before doing so we can recast the coefficients of A in
neater forms.

Since



where SAG is the length of AG

Table 13.3 shows the calculations of the coefficients for all
six equations.

Table 13.3

13.11   Normal equations

The observation equations (13.25) are six equations in two
variables of the form

or in full they are



where m = 6 and n = 2 and the variables are x1 = δEG and
x2 = δNG.

It is shown in Appendix A2 that by minimising Ω = vTv we
reduce the number of equations to be solved down to two in
this case, that is to the usual or normal case in which there
is the same number of equations as variables. The solution
of these normal equations gives the required parameters.

As shown in Appendix A2, these normal equations are of
the form

The dimensions of these matrices are as follows

The equations in full are

Their solution is

and as before



13.12   Calculation of the residuals

After the variables δEG = 0.100 and δNG = 0.060 have been
found we substitute them in the observation equations
(13.25) to obtain the residuals. As a numerical check we
show that ATv = 0.

 
Exercise 1 Evaluate the residuals in the example and
verify that ATv = 0. The residuals are shown in Table 13.4
to be

Table 13.4

13.13   Summary to date

(1) We form equations (functional models) relating the
various observed and unknown parameters. Since the
equations are generally non-linear, Newton’s method of
solution by partial differentiation is used. This has the
effect of making us look at small changes to the variables,
and has the added convenience that sizes of numbers are
reduced.



(2) These observation equations are based on imperfect
observations and so different combinations will give
different answers. Each observation in turn differs from the
‘best’ answer by a small amount or residual.

(3) For ease of calculation we can express these equations,
usually known as ‘observation equations’, in matrix form.
We have an A matrix involving the coefficients of our
unknowns - in this case the Easting and Northing of the
intersected point. We also have a known L matrix which
contains the observed data, here related to the observed
bearings to the intersected point.

(4) The principle of Least Squares allows us to condense all
the many (m) observation equations into just the right
number (n) of ‘Normal’ equations to solve for the (n)
unknowns. Finally we can calculate the (m) residuals - the
differences between the observed values and best
estimates - which reflect the quality of the original
observations.

13.14   Calculation of L: an

alternative approach

We suggest that the beginner should ignore this section

and return to it some time later, as it does not add anything

vital to the development of concepts.

We shall now describe an alternative way how to derive the
absolute term L in observation equations. It is a method
used widely in surveying literature, and has merit in its
own right in special cases. In Section 13.7 we showed how
to obtain K from



Now, instead, if  is chosen so that

and we put  =  + δU, then

We expand this by Taylor’s theorem (see Section 9.14) as

where f1 is the differential of F with respect to U only.

 
Exercise 1 Derive L1 = for the ray AG by this alternative
method. The computed bearing is obtained from

The observed bearing U = 3.5588° = 0.062113 radians, so



Notice that this method of approach fits well into the
general treatment as illustrated in Figure 13.1.

13.15   More functional models

Before considering more aspects of the Least Squares
process, we shall consolidate the theory developed so far,
by considering two other functional models:

(1) when distances have been measured
(2) when coordinates have been measured directly.

 
Exercise 1 Derive the equation to be solved if the length of
AG has been measured to fix the position of G. The
functional model is

In the statement of Newton’s method of solution we obtain
the general functional equation for a distance measurement
as

Then



Thus the explicit observation equation is

Division throughout by 2SAG gives the final form as

which again is of the form

 
Exercise 1 Derive the observation equations representing
the two measured distances

Using values from Table 13.3

Evaluating the coefficients of equations (13.35) the
distance observation equations become



 
Exercise 2 Derive the observation equations representing
the position of G measured by a Global Positioning System
(GPS) satellite receiver. In this simple case, there is no
functional model, but merely an observational model. The
residuals are by definition

We let

therefore

Thus the observation equations are of the form

Suppose the measured GPS values are

these equations become

13.16   Combined measurements

We have now seen how equations representing observed
bearings, measured distances and positions can be formed,
so it might be thought that they can be combined into an A



matrix as they stand, and proceed with the Least Squares
solution. This cannot be done for three reasons:

(1) the measurements are not all of the same kind
(angles and lengths)

(2) they will not necessarily be of the same quality
(3) the measurements may not be independent of each

other (This is especially true of the GPS coordinates).

To allow for these three factors, we have to introduce the
concept of weighted observations and correlated

observations. These two factors are treated by the
introduction of a dispersion matrix, often known as a
variance-covariance matrix.

13.17   The arithmetic mean

Before embarking upon a discussion of variance, we shall
consider the simple example of a single parameter
measured several (m) times, and where each measure is of
the same quality. Table 13.5 shows nine such measures of
an angle A in column 1. Ignoring the rest of the table for
now, we wish to estimate the best value of the angle by the
method of Least Squares. Let the nine observed values be
Ai, where i = 1,..., 9, the best estimate be A and the
provisional value be A, then we have

and the residuals are

Thus the observation equations are of the form



Again the nine equations are in the general form

In full these equations are

Thus the A matrix is the (9 x 1) column vector (11111111
1)T. Forming the normal equations, we have as usual

But ATA = m and ATL = L1 + L2 + L3 + ··· + L9 = XL

Thus the Least Squares estimate of the angle is its
arithmetic mean.

 
Exercise 1 From the data of Table 13.5, calculate the



arithmetic mean of the angle A, the nine residuals, and
check that ATv = 0 within expected numerical limits.

(Note: Hand calculation has rounding errors at various
stages which give rise to imperfect checks. If a spreadsheet
is used, the rounding error is insignificant here. But all
practical computation suffers from rounding error at the
limit of precision.)

We will also note for the moment that Ω = Σv2 = 30.64.

 
Exercise 2 The reader is encouraged to form ‘residuals’
from two values which differ from the arithmetic mean and
verify that the sums of their squares are greater than
30.64, thus demonstrating that Ω is a minimum.

Table 13.5

Obs angle A109° 25’
secs

+v -v v2

06.3 1.4   1.96

07.2 0.5   0.25

10.4   2.7 7.29

04.3 3.4   11.56

09.6   1.9 3.61



05.8 1.9   3.61

07.9   0.2 0.04

08.3   0.6 0.36

09.1   1.4 1.96

sum = 68.9 sum = +7.2 sum =
-6.8

sum =
30.64

Mean = 07.7 Sum = 7.2 -
6.8

= 0.4  

13.18   More about weights

Now suppose that all records of the nine observations have
been lost, but we have only two values, one of which we
know is the mean of the first six observations and the other
the mean of the remaining three. How do we still obtain the
best estimate from this information? Consider the example.
Ignoring the degrees and minutes, the two remaining
known values now are

Their arithmetic mean is 07.85 which is not the correct
value 07.7. But if we take a weighted mean, each value



weighted by the number of observations used in
determining it, we have the result

We can write this whole calculation in matrix notation. If
we define a diagonal weight matrix W whose diagonal
terms are 6 and 3, the numbers of values from which the
observed values were derived, the Least Squares solution is
given by the equations

Since in this case the A matrix is a column matrix (1 1)T we
have in full

and

The solution is

This may seem like using a heavy hammer to crack a nut,
but the structure is important and we anticipate, as we
shall see later, that the general case follows that of (13.41).

13.19   Variance



The residuals show how much the observations are spread
about the mean, and we say they give an indication of the
dispersion of the observations. However, a better indicator
of dispersion is the squares of the residuals, so their
average is used as a dispersion indicator. This average of
the sum of the squares of residuals is called the variance.

For a limited number of observations it is usually denoted
by s2. Such a limited number is called a sample of the total
possible number of all possible observations - the

population. Thus for m observations

 
Exercise 1 Calculate the sample variance of the
observations in Table 13.5. The squares of the residuals are
given in column. Their sum is 30.64. Thus the sample
variance is

The quantity s is called the standard deviation of the
sample and in this case

s = 1.845

 
Exercise 2 Divide all residuals by s to give new residuals u
and calculate Σu2/m

The calculations are shown in Table 13.6.

Table 13.6



Hence scaling the sample residuals by their standard
deviation gives a new sample whose variance (and standard
deviation) are one.

 
Exercise 3 Prove this result by working through the above
procedure in terms of the algebra only.

13.20   Expectation

In Section 13.17 we calculated the mean value of a sample
of m observations, and showed that this equals the best
estimate obtained from an application of the principle of
Least Squares. If we increased the sample size to infinite
proportions, we would calculate the mean value of the
whole population. In mathematical language this idea is



expressed as expectation. The mathematical expectation
E(y) of a function y is defined as the average value to which
y will tend when an infinite number of values is taken.

Thus, for example,
if y = A

i
 (a measured parameter such as an angle),

the expectation of y, written E(y) = E(A
i
),

is the limit to which the mean of the m values Ai (i = 1 to
m)

will tend as m tends to infinity, or in other words it is the
population mean.

The concept of expectation is written as E(A
i
) = A

Again, suppose we have taken the means Â (i = 1 to n) of n
different samples then it is reasonable to see that the mean
of all samples will tend again to the population mean and
we can write

Again if we increase the number of observations in a
sample to infinity, the mean of the observations will tend to
the population mean, and each residual will become a
population residual, denoted by V. Thus a population
residual is defined as

and a sample residual defined as before by



In both cases E(vi) = 0 and E(Vi) = 0 because Σv = 0 and
ΣV = 0.

Now, since we define variance as the average value of v2,

as we increase the sample size, each value of tends to the
population residual Vi and the expectation of V2 is the
population variance, usually denoted by σ2. Thus we can
say

In matrix terminology this is expressed as

It might be thought that, just as the expectation of the
sample mean is the population mean, the expectation of the
sample variance will be the population variance. But this is
not so, and

What E(s2) says is that we calculate all the sample
variances for the whole population and then take their
mean. Since the residuals of each sample are biased by
their sample mean this is not the same thing as first
obtaining the population residuals and then calculating the
variance. We shall return to this topic in Section 13.26.

13.21   Covariance and correlation

Now consider two sets of observed parameters A and B.

Each will have a population variance - call these



We wish to find out if these observed parameters are
connected in any way. A way of finding if there is a link is
to calculate a statistic by cross-multiplying all combinations
of their residuals, i.e. to find the covariance defined by

This notation for covariance is misleading because it is a
second-order quantity like variance itself. In older books it
was written with a better notation as a double sigma σσAB.
This is thought to be unnecessary today. If two parameters
are quite unrelated then their covariance is zero. This
result depends on the fact that the sum of the residuals of
each parameter is zero. Calculating the covariance, each
residual from one sample is multiplied by all residuals from
the other for which the sum is zero. All such products are
zero so, for uncorrelated parameters,

 
Exercise 1 Example of covariance Consider the case of
three directions observed by theodolite to points A, B and C
as shown in Figure 13.4. Assume that the three pointings
are quite independent, i.e. if we ignore centering errors
and refraction. For each direction, let three typical
residuals be

VA, VB and VC



Figure 13.4

Then the residuals of the two included angles A and β will
be given by

V« = VB-VA and Vp = VC - VB

then

Taking expectations we have

Assuming that the directions are independent then

The result is partly to be anticipated from common sense
because we would expect that the statistical connection
between the two angles has something to do with their
common direction. On the other hand, if entirely separate



measures had been made for each angle, i.e. if the
direction to B was observed separately for each angle,
there would be no correlation and the covariance would be
zero.

In the above example, we were able to predict the
covariance from theory. In practice we often do not know
whether or not there is any correlation between two
measurements, nor do we know the value of the covariance.
Sometimes in research work finding the correlation is the
object of the analysis. Often we have to assume no
correlation at all.

 
Exercise 2 Example of variance An angle is the difference
between two directions read on a theodolite. Let such an
angle be given by

Then the angle residual will be related to the direction
residuals by

Taking expectations we have

But since the directions to A and B are independent



so

To the beginner, this may appear to be a rather unexpected
result. We might have anticipated a minus sign for the
variance of the difference of two observed quantities.

In the same way, the variance of the second angle is given
by

 
Exercise 3 Suppose we use the sum of these two angles in
a calculation. What is the correct variance of this sum to be
used? Let their sum be

We can answer this question in two ways. From first
principles we have

hence, from the previous result,

Alternatively, it is instructive to obtain this result indirectly,
working from the variances and covariance of the
component angles, for



therefore

as before.

 
Exercise 4 Find the variance of the mean of an angle
observed m times. Suppose A

i
 is a typical independent

observation (i = 1 to m) and that each has the same
variance. From an extension of the above result, the
variance of the sum S of the m observations each with the
same variance σ2

A
is given by

The mean is given by  = S/m therefore

Now the variance of each independent observation is σ2
A

so taking expectations we have

In Section 13.18 we showed that the weights can be
assigned to observations according to the number of
observations of which they are the mean. This result
(13.44) shows that weights can also be assigned in
proportion to the reciprocals of their variances, or



 
Exercise 5 Obtain the coordinates of G by Least Squares if
the standard errors of the bearings AG and BG are 1” and
60” for all the other bearings. The two variances are 1 and
3600 or in radians 1/206265 and 3600/206265. (There are
206265 seconds of arc in a radian.) Hence the weights are
206265 and 206265/3600 = 57.2958. If the computation is
by hand calculator, the simplest way is to multiply each
observation equation by the square root of its weight, then
treat these weighted observation equations as before. This
working is shown in Table 13.7.

The original observation equations are given in cells A1
to B6 and the values of L in column C. Cells A1 to C2 are
multiplied by the square root of the weight √206265 to give
the weighted observation equations in cells D1 to F2. The
remaining four weighted observation equations in cells D3
to F6 are obtained by multiplying cells A3 to C6 by the
square root of their weights √57.2958. These are the
equations

Table 13.7



Refer to Table 13.8. The weighted normal equations formed
in cells A1 to C2 are

Table 13.8

  A B C

1 53.1356483 5.04083991 5.90066698

2 5.04083991 75.6286452 7.60360177

3 0.01893951 -0.0012624 0.10215724

4 -0.0012624 0.01330664 0.09372961

The inverse of N is located in cells A3 to B4 and the
solution in C3 and C4. However, this method is only
possible if the observations are uncorrelated (covariances
are zero) so the more applicable alternative is to be
preferred, although in this case the calculation is somewhat
longer.

The standard method of calculation by spreadsheet or
computer programme is to form the square weight matrix
W and perform the calculations by matrix methods. Table
13.9 shows the weight matrix in cells A1 to F6.

Table 13.9



Performing the matrix multiplications A
T

WA and A
T

WL

yields the same weighted normal equations as before and of
course the same solution. This is δ E = 0.102 and δN =
0.094 and final coordinates of G as

E = 516.302 and N = 448.994

It will be noticed that these values are virtually the same as
those using the rays AG and BG only. This is to be
expected, because we gave such high weights to these
directions compared with the others. It might be thought,
therefore, that we should just have ignored the other rays.
Had we used only two rays, there would be no check on the
result, so that, if a mistake had been made in copying down
a reading say, a gross error could result for the position of
G and, what’s more, we would have no indication of it. Such
a result therefore is said to be unreliable. It may of course
be perfectly satisfactory, but we are not sure of this. The
extra rays and their residuals do give us a check against a
mistake, and enable us to say we have a reliable result.

13.22   Summary

We discussed mathematical expectation, variance and
covariance and we have shown that the variance is the
expectation of the square of a residual or



And in the same way we defined the covariance of two
different parameters such as ai and bi to be

We also showed how observations of different quality can
be incorporated using a weight matrix. We now extend our
ideas to consider how to treat correlated observations.

13.23   The dispersion matrix or

variance - covariance matrix

Although the following discussion is limited to a vector of
three population residuals, simply to contain the
explanation to a manageable size and in a simple form, the
theory is valid for any number of variables. Consider three
population residuals V arranged as a column matrix. We
can write

Now, if we postmultiply this column vector by its transpose
(a row vector) we obtain a square matrix as follows

Taking mathematical expectations we have



This matrix is called the variance-covariance matrix or,
better, the dispersion matrix of the observations, and is
usually denoted by D0.

This square matrix is symmetrical because

V1V2 = V2V1

and therefore

E(V1 V2) = E(V2 V1)

and so on. When the correlations are zero (if we consider
the observations to be independent of each other), these
matrices are diagonal and therefore easy to invert.

The dispersion matrix is then given by

and



In this case of independent observations

Where I is a (3 x 3) unit matrix in this case. If there are m
observations I would be a unit matrix of dimensions (m x
m), written as Im.

We remind readers that a square symmetric matrix is equal
to its transpose: for example, the normal equation’s matrix
N and the weight matrix W are square symmetric, so

This is also true of their inverses:

13.24   The dispersion matrix of

derived parameters

We are now going to show that the dispersion matrix of the
derived parameters (in the example, the coordinates of G)
is obtained from the inverse of the normal equations. If, as
usual, the variables x are obtained from a solution of the
normal equations

Nx = b

the dispersion matrix Dx of these unknowns is given by



where σ2
0 is a parameter estimated from the residuals (see

Section 13.26). We denote the dispersion matrix of the
observed parameters by D0 and the dispersion matrix of
the derived parameters by Dx. Because the dispersion
matrix of the observed parameters can only be estimated
from some data from previous experience, we make
allowance for an error in estimation by introducing an
unknown scaling factor, σ2

o, called the variance of an

observation of unit weight. We relate the inverse of the
weight matrix W-1 to the a priori estimated dispersion
matrix D0 by

The data of any Least Squares calculation will be used to
estimate this scaling factor from the sample residuals, and
thus gain a better value for the dispersion matrix of the
observations. If the calculated value of σ2

o, is equal to 1
then the original estimated weight matrix is correct and

W-1 = Do

In practice we are happy with a value of σ2
o which is close

to 1.
The next step in the discussion is to examine how the

best estimates obtained from the sample of actual
observations differ from their theoretical, or population,
values.

The observations made are only a sample of all the possible
observations that might be made in theory. We must now



distinguish between the population and the sample.
If  is the population value of an observed parameter ,

then we define the population residual V by

Correspondingly, the vectors representing all the
observations are written in bold notation

Similarly the vector of data for the sample is

We use capital V for population residuals and lower case v
for the sample residuals. Then the differences ds between
the Least Squares values and the population values will be
given by

Also, we can write the respective sample and population
models as

Ax + L = v

where X are the population values of the derived
parameters and x are the sample values of these
parameters derived from a Least Squares treatment.
Subtracting gives

A(X-x) = V-v



where dx is the vector of the differences between the
population parameters and their corresponding values
estimated by Least Squares.

Now, assume there are two parameters to be derived and
therefore two elements in the vector of errors, so that

We have chosed two for convenience. Taking expectations
we have

which is the dispersion matrix of the derived parameters.
The next stage is to link the two dispersion matrices

together. First of all, we have to estimate the variances on
the diagonal of the dispersion matrix of the observations

using samples of previous data, such as repetitive measures
with the instrument or similar instrument, or results from
its previous use. Depending on the way the observation
equations have been treated we may have some idea about
the covariances between measures. Quite often we make
the simple assumption that these are zero, which means
that the observations are uncorrelated. But this is unlikely
with rounds of angles, and especially in GPS measures. This
topic is one that attracts a lot of thought and discussion.



The mechanism for treating the dispersion matrix is
straight forward, so that’s what we will concentrate on
here.

Given that we have some acceptable values for variances
and covariances, we obtain a weight matrix W from

Now from (13.51)

A dx = V - v

Premultiplying both sides by ATW we obtain

ATWAdx = ATWV

or say

Ndx = ATWV

and

dx = N-1ATWV

Then

Taking expectations we have



It is quite amazing that this result eventually comes out as
such a simple expression.

For completeness, we should modify the result by allowing
for poor estimates of the variances and covariances and put

 
Exercise 1 What are the variances, the standard errors
and the covariance of the coordinates of G?

From Table 13.8 the inverse of N is

Identifying the variables in terms of the coordinates of G
we have

This means that, in general terms, the position is only good
to about 10 cm, which is obvious from the Figure 13.3. It
shows that we really do not need to draw such a figure at
all, and rely on the calculated values of the variances and
the covariance for quality assessment. (Appendix A4 shows



how these results can also be depicted by an error ellipse

and its pedal curve.)
The significance of the covariance is that it can be used

in a subsequent Least Squares estimation involving the
point G, and other measurements, such as a GPS fix.

13.25   Error propagation

In the exercises of Section 13.21 we demonstrated from
first principles how error propagation can be determined in
individual cases. We now show how a matrix treatment can
be used to generalise the process. Consider again the
directions A, B and C and their included angles α, β and γ.
The relationships among residuals are

In matrix form these equations are

in short they can be written as

V = Av

Then

By the same reasoning as in (13.26)



Because the directions A, B and C are independent, their
respective covariances are zero

Similarly

Equating terms we obtain the results of the separate
exercises together with expressions for σ

αγ
 and σβ not

previously derived from first principles.

13.26   Estimation of σo
2

Because the weights might not be estimated correctly we
introduce a scaling parameter called the variance of unit



weight σo
2 given by

is an unbiased estimator of the variance of unit weight σ2
o.

This result is derived in Appendix A2, Section A2.6. If we
let

then the expectation of s2
o is σ2

o and we say that s2
o is an

unbiased estimator of σ2
o.

The greater the sample we take, the nearer we get to an
estimate of the population unit variance. Also the
numerator (m - n) shows the degree of freedom of the
problem. The greater it is, the better the estimate will be.
For example, in the case of m observations of one
parameter, (A2.26) reduces to the familiar expression

That’s why there are two common formulae in use, one for
the sample variance and another for an estimate of the
population variance, which are respectively

The use of the scaling parameter σ2
o only allows for a

general failure to estimate the weight matrix properly. With
a complicated problem, involving different types of
measurements, we can use different scaling factors for
different types of measurement. A lot of research into GPS



error sources uses this concept, but this topic is out with
the scope of a basic textbook such as this.

13.27   Combined Least Squares

estimation

We now have the theory to tackle the problem of combining
observed parameters of different quality and of different
kind, and of estimating the quality of the results. We shall
use the original data in Table 13.1, also incorporating
distance and GPS measurements into the original
intersection problem. These extra equations are (13.36)
and (13.38) above.

One might argue that the GPS positions are not
‘observations’, because we actually have results derived
from a great many observations, which have been
numerically treated in a sophisticated manner. The same
thing can be said of distances, and come to think of it of
angles too. But we must settle for the numerical output by
the systems as ‘observations’. Perhaps that’s why many
authors refer to them not as ‘observations’ but as
‘observables’.

There are the six direction equations already dealt with,
and two distance and the two position equations, giving ten
equations in two variables, i.e. m = 12 and n = 2. These are
shown in part of the Excel spreadsheet of Table 13.10.

Table 13.10



We must now select suitable elements for the dispersion
matrix. Let’s say that the directions are uncorrelated and
each has a standard error of 20 seconds of arc, that the
distances are also uncorrelated with a standard error of
0.01m and let’s also say that the position of point G is
obtained by differential GPS relative to point A with a
standard error of 0.014 m in Easting and a more accurate
0.0014 in Northing.

We shall see what value we obtain for σ2
o. However, we

really must also include a value for the covariance of the
GPS results. This would be output from the GPS software
anyway. Let’s say -0.000006. Also, since we worked the
directions in radians, their standard error of 20 seconds
has to be converted to radians thus

and the variance

P = S2 = 9.4012E-09

This deals with D0, the dispersion matrix of the
observations, which we show in Table 13.11 as part of the
spreadsheet. The rest of the process is purely arithmetical.



The various stages are shown in Tables 13.12 to 13.14 of
the spreadsheet.

Table 13.11 

Dispersion matrix D0 

S = 9.70E-05, P = S
2
 = 9.4012E-09

The normal equations of Table 13.13 are

Nx = b

where

N = ATWA and b = ATWL

Table 13.12



Table 13.13

And the solution is

The final position of point G is

516.296 448.983

We calculate the residuals from

which are placed in Table 13.10. And from these residuals
we calculate so

2, an estimate of from σo
2 the formula



The fact that this is not close to unity indicates that the
dispersion matrix has not been modelled very well, or that
the mathematical model is imperfect, which we shall see is
the case.

Table 13.14

13.28   Statistical tests for outliers

A huge benefit arising from a Least Squares estimation of
results is the statistical information available as a bi-
product. Some of this will now be described. We start by
assuming that residuals have a normal distribution (see
Section 9.30). We must stress that for most tests to be valid
we should be dealing with a sample of more than about 30
individual measurements. In our simple example we have
only ten observations, in which case we should be
discussing the Student’s distribution but, as most Least
Squares problems involve many more than 30 variables, we
will stick to the normal distribution. We cannot deal with
theoretical matters now. We can only explain the principles
involved and explain how to operate the tests.



Figure 13.5

From the Least Squares process we obtain the residuals v.
We assume these are normally distributed about an origin
x. A theoretical graph of these residuals about an origin at
x is shown in Figure 13.5. This is a normal distribution
curve showing the probability y of the occurrence of a
residual v. The area under the curve represents the
probability of all errors occurring, or certainty, or P = 1.
The unshaded area represents the probability of a residual
being less than or equal to a, and conversely the shaded
area (a) represents the probability of a residual being
greater than or equal to a.

The points of inflexion occur when v = σ the standard
error (see Section 9.30). Every graph will be the same
shape but a different size, so we scale each graph by
dividing each residual by σ, including, of course, σ itself.
This gives what we call a standardised normal distribution
with zero origin and unit standard error (and also unit
variance) (see Section 13.26). The probability function is
tabulated for this standardised normal distribution, written
as N(0, 1). The original curve would be written as N(x, σ).
We use the curve to illustrate our ideas. A normal
distribution table gives the actual numbers.

The reasoning goes like this. Suppose we want to know
the probability of there being a residual greater than the
standard error σ. We look up the tables with t = v/σ = 1.
The tabular entry is P = 0.8413. Complete normal
distribution tables are quite readily available in many
textbooks on surveying or elsewhere. Table 13.15 shows
selected values from such a table.



Table 13.15 Table of cumulative normal probability

The chance of a residual being greater than σ is therefore

P = 1 - 0.8413 = 0.16 or 16%.

And the probability of it being both greater than +σ or less
than -σ is 32%. Or, put another way, the probability of a
residual being numerically less than σ is 68%.

(Note that the value of t, when P = 0.5, is 0.6745, was the
basis of the concept of probable error PE = 0.6745a used in
old Least Squares literature.)

Consideration of the normal distribution is used to detect
outliers in the data. By an outlier, we mean a suspect
observation or result.

If we look at Figure 13.3, some directions seem wrong.
But we need a test which is not arbitrary, and which can be
applied automatically, before we can reject an observation.
Although we can use a simple test such as ‘reject residuals
greater or less than three times the standard error’, such a
test has limited application, as we shall see. It is almost as
easy to test the probability of a residual exceeding a
selected value, or the value outside a given probability.
Suppose, for example, that we decide to reject all residuals
whose probability of occurrence is greater than or equal to



5%. This means that a two-sided test for 2.5% is applied.
The table value corresponding to 97.5% is 1.96. Then we
apply the test:

is t = v/σ greater than or equal to 1.96?

If so, we reject the observation.
To apply this test to our example we have first to

calculate the standard errors of each residual. We assume
the formula for the moment so that the flow of the
discussion is not interrupted. We give the derivation in
Section A2.8 below.

The variance of the residuals are readily obtained as the
diagonal terms of the matrix

where

Ds is the dispersion matrix of the observables, and D0 the
originally estimated dispersion matrix of the observations.
The square roots of the diagonals of Dv are the required
standard errors. We summarise all these matrices and
parameters in Table 13.16.

Table 13.16

In calculating



we will use σ2
o= 1 instead of the clearly incorrect value of

s2
o.

Not all the figures have been shown but, as we are
interested only in the diagonal terms, we will concentrate
on them and display them as rows, alongside the residuals
from the Least Squares solution. See Table 13.18.

In Table 13.18 we have the following
Row 1 shows the diagonal elements of D0

Row 2 shows the diagonal elements of Ds

Row 3 shows the difference of diagonal elements of Dv =

D 0 - Ds

Row 4 shows the square roots of the diagonal elements
of Dv, i.e. σ

v

Row 5 shows the residuals v
Row 6 shows the statistical test ratio t = v/σv

These ratios t will be used to detect for blunders in the
observations. Again it is assumed that the observations are
normally distributed. We select a suitable rejection level of
significance, usually 0.01% and test to see if any
observations lie outside the test bound. From a normal
distribution table we see that this critical value is 2.57
which is exceeded by three ratios in Table 13.18. We do not
reject them all.

Table 13.17 Dispersion matrix of observables



Table 13.18

We reject the observation with the largest rejection ratio,
namely the direction from the sixth point F, and re-run the
whole analysis. This is not a colossal piece of extra work
for, with a spreadsheet calculation, all we have to do is to
set the coefficients of equation 6 to zero while retaining the
original weight matrix.

On recomputation the value we get for the variance of
unit weight is 2.67 which is much better. Table 13.19
shows the calculations for the test ratios t, for the new
situation. Now we see two directions failing to meet the
test.

We now have two options: either to go on with the
process and end up by removing the three directions from
F, C and E, or to enquire more into the circumstances of the
observations to see if there may be some reason to explain
these large residuals.



Figure 13.6

On doing so and referring to Figure 13.6, we found out
that, at the time of the GPS fix, the Electromagnetic
Distance Measurement (EDM) distances to A and D were
measured, so there is no likelihood of miscentering at G.
However, for use as a reference object later, a flag pole
was erected at G and kept in place by guy wires. The
inward angle observations were taken at different times,
those at A and D in the same field visit as the EDM and
GPS. The observations from B, C, E and F were taken when
these stations were visited later when running the loop
surround traverse. The centering of the pole was not
checked. We should have looked more closely at the field
books in the first place. But we could still go into the field
and inspect the flag pole. In the case in point it was found
that the pole could wobble by about 2 to 3 cm about the
vertical position, so we should assign standard errors to the
four poor observations in inverse proportion to the squares
of the lengths of lines say by 0.025/distance2. When we do
that we obtain a different result.



Table 13.19 Network with direction from F removed

Table 13.20

The respective standard errors for directions BG, CG, EG

and FG are

Re-running the computations gives a value for s2
o = 1.07

and the test results shown in row 6 of Table 13.20.
The value of s2

o seems fine now and for the ratio 1.07 is
fine. The t tests are all acceptable. So, in practice, when
the statistical ratio shows a problem in some of the
residuals (and therefore in the original observations), we
need to look at whether the problem is due to a blunder or
an incorrect estimation of weights.

Common blunders are to mix up the order of the stations
for an angle, or to mis-identify a station name. Correcting
this often makes the network solution converge as if by
magic. Over- or under-estimating the observation weights
(in this case due to faulty equipment) can similarly cause
major problems. The statistical test that we’ve outlined will



point us towards the culprit, and we can make a better
estimate of relevant weights.

13.29   Dispersion matrices of derived

quantities

So far we have assumed or obtained measures of precision:
variances found as the diagonal terms of the dispersion
matrices, and covariances as their off-diagonal terms. It is
also possible to extend the analysis to obtain measures of
precision of any parameter derived from the final
coordinates of a network. This parameter could well be an
important dimension such as the location of bridge piers, or
a bearing on which to base a tunnel drive.

Suppose we want to calculate the standard error in the
length of the side BG which has not been directly measured
for some reason. Its length is calculated from the
coordinates in the usual way. We can also obtain its
standard error by setting up the coefficients of an
observation equation for this length BG. (See Section
13.15.) The elements of the A matrix are

where in this case S = length BG. We then apply the
formulae

Consider the following example.

Table 13.21



Refer to Table 13.21. The inverse of the normal equations
(the same normals of the previous example) is located in
cells D3 to E4. The inverse is the dispersion matrix of the
calculated coordinates derived by the Least Squares
computation using the observed data.

The variance of the length of BG is then obtained from
(13.58) or in full

Giving the standard error of the length BG,σ
x
 = 0.00405.

In the same way we could estimate the standard error of
a bearing such as AG using the formula for the coefficients
in the A matrix

The rule is to derive the coefficients of the equation as if for
an observed direction. In fact you can treat any function of
the coordinates in this way, such as an area, or in the case
of three dimensions, a calculated volume.

Many of the procedures we have been describing can be
carried out without any observations at all. A pre-analysis
can be made when designing a measurement programme,



before ever going into the field. Such an analysis can
usually save money and wasted effort.

13.30   Reliability testing

Reliability concerns the ability to check work. For example
the reliability of a position fix is a measure of the ease with
which gross errors may be detected. The greater the ease,
the more reliable. Reliability also depends on the amount of
redundancy in the problem. Imagine a point fixed by only
two measured distances from two known points. There are
no redundant measurements, so we have no residuals. Thus
the test

is indeterminate and no check for gross errors is possible.
We consider such a fix as unreliable. It could in fact be very
good, but there is also the thought that it could be very
wrong! We need as much redundancy as is practicable. In
our example we have eight degrees of freedom so the fix
should be reliable. With this example we can make some
other useful reliability statements to assess quality in
comparative terms.

We need to recap a little. In Section 13.28 we described
how we can detect outliers, based on a boundary statistic of
2.57σ, defined by the confidence limit of 99% (α = 1%
significance level) obtained from a normal distribution
table. We now extend this idea to consider the marginal
error with respect to two hypotheses: (1) that there is no
gross error in a measurement (the null hypothesis), and (2)
that there is a gross error (the alternative hypothesis). This



assumes that there is only one outlier in the data. Refer to
Figure 13.7.

Here we illustrate two hypotheses about the normal
distributions of residuals of a particular observation, call it
the i th observation. The preferred hypotheses (the null
hypothesis) shows the dispersion of residuals in this i th
observation about a zero mean, and the other hypothesis
(the alternative hypothesis) about a mean δu

i. This second
distribution is believed to arise from the existence of a
maximum gross error in the i th observation of Δi

u, where

and σi is the standard error of the i th residual. The ‘u’
indicates the upper limit. Considering the null hypothesis, if
we reject residuals outside the bound (defined by a), we
are rejecting some good data and we are said to have made
a Type I error. According to statistical theory, very small or
very large residuals are possible, but very unlikely. But this
Type I error is a small price to pay for the detection of bad
data.

However, sometimes outliers may be so small that the
test is passed and data containing outliers is accepted.
When this occurs we say a Type II error has occurred.
Considering the alternative hypothesis, the probability of
such an event is called β, or alternatively the probability of
detecting the outlier is (1 - β). This probability is called the
power of the test. To quantify the extent to which outliers
can be detected, the power of the test is selected (usually
80%) and we calculate the magnitude of the outlier that
may be detected with this probability. This magnitude is
called the marginal detectable error, MDE. The 80%



probability is selected so that we can say the magnitude of
the outlier can be found with reasonable certainty.

Figure 13.7

The choice of α determines the rejection limit and so
affects our actions. The choice of β has no real effect on the
rejection process; it merely affects what we say about the
data quality. To make comparisons between different sets
of data, it is usual to accept these probability levels for both
distributions.

For example in Figure 13.7, we select both a and β, find
a and b from normal tables and calculate (α + b) and the
MDE from

where σi is the standard error of the residual vi.

Internal reliability

The internal reliability is expressed in terms of MDEs. It
is common to test the assumption (hypothesis) that only



one observation has a gross error and we calculate the
MDE for each observation.

Table 13.22

σ V t

7.22E-05 6.28E-05 0.87

4.80E-04 1.30E-04 0.27

4.01E-04 2.95E-04 0.74

7.27E-05 2.01E-06 0.03

3.10E-04 2.66E-04 0.86

5.99E-04 1.21E-03 2.03

9.91E-03 8.20E-03 0.83

9.85E-03 1.09E-02 1.11

1.42E-02 1.28E-02 0.91

4.92E-04 5.64E-04 1.15

Table 13.22 is a summary of previous data. We have
already shown that, since no value of t exceeds the test
statistic 2.57, we reject no further data. From normal



distribution tables a = 0.01 (two tailed), the entry of 99.5%
yields A = 2.57. Again from the tables we get b = 0.84,
entry with 80% (one tailed). Hence we obtain the MDEs for
each observation. The first MDE is given by (2.57+ 0.84)
7.22E-05 = 2.47E-04

All the MDEs are shown in Table 13.23 together with some
other data used later.

Table 13.23

The quality is an assessment of the size and nature of
undetected errors that remain in the solution. In this case
the largest MDE is 4.84E-02 or approximately 5 mm in the
GPS Easting. Such a low figure indicates a high internal
reliability. We can say of the quality that when outlier
detection is carried out with a level of significance of 1%
there is an 80% chance an outlier of 5 mm will be detected.

External reliability

External reliability is actually a more useful concept
because a large undetected outlier may have little effect on
the solution and conversely. External reliability is assessed



by the largest effect of an observational MDE on the
solution, in this case on the coordinates of G. We compute
the separate effect of each MDE on the solution, and quote
the largest to describe the quality of the fix. We make a
series of computations to find the contribution of each MDE
in turn using the formula

where the column dL has all zeros except for the
observation under scrutiny, which its MDE in place. This is
shown in column 2 of Table 13.23. The inverse and
calculation of dx is shown in Table 13.24.

Table 13.24

Inverse dx

1.6454E-05 -5.887E-07 6.89E-03

-5.887E-07 1.7579E-06 -2.90E-04

Thus the effects of the MDE in the first observation on the
coordinates of G are about 7 mm in Easting and 0.3 mm in
Northing. Columns 3 and 4 of Table 13.23 show the MDEs
in position caused by the MDE of each observation in turn.
So we see that the External reliability is also good, because
the largest MDEs in position are 6 mm in Easting and 2 mm
in Northing.



13.31   Test on the variance, Fisher F

test

Although this test has wide application, it is used mainly in
Least Squares problems to see if the value calculated for
the unit variance is ‘reasonable’, which in this context
means close to the expected value of ‘one’. The test
generally is to see if we can accept that two sample
variances are typical of one population, or alternatively that
the evidence suggests they belong to populations with
different variances.

Figure 13.8

The test statistic t is the ratio of the two variances always

taking the ratio greater than unity. Figure 13.8 shows the
approximate shape of the F statistic for degrees of freedom
greater than three. The actual shape varies for each degree
of freedom. It is also tabulated in Table 13.25.

Example Before considering the unit variance in a Least
Squares problem, let’s consider a simpler case. Suppose we
calculated a sample variance s1

2 from nine observations to
be 3.4, and suppose we have similar sample with a variance
of 5.6 from seven observations. To test whether these
samples come from populations with equal variances, we



test the ratio of the larger variance to the smaller, i.e. the
test statistic is:

The respective degrees of freedom are = 6 and r2 = 8,
giving a rejection limit of 3.58 from the Fisher Table 13.25,
which has been tabulated for the 5% confidence level.
Since 1.64 is well within the rejection limit of 3.58, we can
accept that these samples come from populations with
equal variances.

Table 13.25 5% points of Fisher table

In a Least Squares problem, the sample statistic is the unit
variance calculated from the weighted residuals, i.e. from

This is compared with the theoretical value for the
population variance. Thus the test statistic is given by

Since σ2
o = 1 in theory the test is



In our example we want to see if the value for the unit
variance of 1.07 is acceptable. We compare this value from
r1= 8 degrees of freedom with the theoretical value of 1.0
from an infinite number of values, r2 = ∞. From Table 13.25
we have the bound of 1.94. Thus the tested value is
acceptable.

13.32   General Least Squares, the C

matrix

In Appendix A2, Section A2.3 we derive the general
equations for the Least Squares process. Here we repeat
some of the concepts with reference to our explanatory
problem of the surveying network. In the derivation of the
observation equations we manipulated them to obtain the
form which eliminated the coefficients of the unobserved
parameters to give equations of the form

Partial differentiation of a non-linear mathematical model
such as the length equation

gives

and we said further that these equations are usually further
simplified by dividing throughout by the coefficient of the
observed parameter, S in this case, to give



This simplification is only possible when there is only one
measurement in each equation, as is the case of a distance
or an angle.

To handle the more general case, the method is as
follows. Equation (13.63) was derived from equation
(13.62) by dividing the equation by the coefficient of the
measured parameter S. To explain the more general
approach we have to write the equation (13.62) in a more
general form as

i.e. we separate the coefficients of the observed parameters
δS from those of the required unobserved parameters (δEA
δNA δEG δNG) = xT and rewrite equation (13.64) in the
form

To reduce this to the required form we premultiply by the
inverse of the matrix C, so we have

It will be seen that equation (13.66) is the same as equation
(13.63). To invert C is not always simple. A case of this
arises in coordinate transformation and line-fitting
problems, and stage (13.65) has to be included as a matrix
operation to produce equations of the standard form

ATWAx = -ATWL



The following example will demonstrate the method.

13.33   Mathematical models with

more than one observed parameter

In the two simple problems considered above, there was
only one observed parameter in each equation, thus giving
equations of the form

Ax + L = v

To deal with problems with more than one observed
parameter per equation we introduce equations of the form

These equations ultimately lead to the solution of a set of
symmetric equations of the same form as before, i.e.

where

W is the weight matrix of the observations.

We will derive these equations in the course of fitting a
straight line to observed data points.

Example of fitting a straight line by Least Squares



In this section we use the example of fitting a straight line
to data. Not only does this particular problem occur in
several fields, such as surveying, cartography, engineering
surveying and photogrammetry, but the method of
treatment is the same for all manner of curve-fitting
problems. Thus the following treatment of the straight line
problem must be seen as typical of many Only two points
are needed to define a straight line. For simplicity we
confine our attention to the two-dimensional problem of
fitting a straight line in a plane. Three cases of fitting the
corresponding values of x and y, listed in the first two
columns of Table 13.26, will be treated.

Table 13.26

In two dimensions the equation of a straight line is

where m is the gradient and the intercept on the y axis is c.

(Note: This form of the equation of a line can cause
problems if the line runs parallel to or nearly parallel to one
of the axes. In such a case, the axes are rotated through
some suitable angle such as 45°, before carrying out the



analysis, and then rotated back to the original orientation.
See Section 7.16.) The functional equation is

f(m,c:x,y) = 0

Generally the problem is to find values for the coefficients
m and c, from given values of x and y. There are two main
cases of the line-fitting problem:

(a) when only one of the parameters x or y is observed,
(b) when both parameters x and y are observed.

In the first case, the Least Squares model follows the
simple method already considered above. We shall deal
with this briefly to set the scene for the more complex
treatment which follows.

If a large-scale graph is drawn of the values of y and x it
will be seen that a straight line cannot be found to fit the
data exactly. This graph is illustrated in Figure 13.9
showing the eye-balled line 1-10, from which the
parameters can be measured as a check to give

c = 2.5 and m = arc tan (13°)

(The figures of the example have been selected from an
initial line whose equation is y - 0.5x - 2.0 = 0 with
randomly generated errors added.) The Least Squares
process is an analytical method of drawing this graph.



Figure 13.9

It produces unique results and will not depend on the skill
of the person drawing it.

 
Exercise 1 The beginner is encouraged to draw this graph
before continuing with the analytical method.

The first case is similar to a regression analysis of two
variables, in which the small residuals are considered to be
only in the direction of the y axis. The second requires that
the residuals lie perpendicular to the line and thus needs to
be treated by the general Least Squares method. In a later
section we will deal with another case in which the solution
is constrained in some way for example to force the line to
pass through a given fixed point. These examples illustrate
the basic mechanisms for tackling a wide range of such
problems.



Case 1: Simple case with one observable per equation

For each observed value, , there is an observation
equation. We select provisional values of the parameters to
be

Ten values of , in column 3 of Table 13.26, are calculated
using the equation

of the respective values of x = 1 to 10.
The objective is to find the best estimates of the

unobserved parameters , , and of the observed
parameters . As usual the various quantities are related by
the equations:

Since there is only one observed parameter, , in each
equation the residuals v are written

therefore



Because the best estimates and the provisional values
satisfy equation we may write:

Hence

which gives

It will be remembered that, in this simple case, x is
considered error free because it is not an observed
parameter. Again we have equations of the standard form

Ax + L = v

The normal equations, on the assumption that observations
are all of equal weight, are:

Nx = b



Giving the solution δm = -0.25858

δc = 0.5472

Back substitution in the observation equations gives the
residuals of the fifth column in Table 13.26. Thus we can
calculate the variance factor from

Finally the best estimates of the derived parameters are
obtained from

and the best estimates of the observed parameters from

These are listed in the last column of Table 13.26.

Case 2: Both x and y are observed parameters

We now extend the treatment to the more general case in
which both x and y are observed. The principles involved
are also common to problems in astronomy and coordinate
transformation. The treatment is the same as before with
the addition of the extra fact that we have to estimate



The functional models to be satisfied are

The notation indicates that the coefficients of the variables
are evaluated using the provisional values adopted for the
problem. More casually the equation may be written
without the asterisks as:

Separating the unobserved from the observed parameters
we have:

These equations can be written

Ax + Cs = 0

Notice the change in the notation from the ordinary algebra
of the problem, in this case m, c, x and y, to that of the
matrix notation in which we always write the derived
vector as x and the observed vector as s. The dimensions of
the matrices and vectors are

A matrix = 10 x 2, C matrix = 10 x 20

x vector = 2 x 1, s vector = 20 x 1

Forming ten equations for every one of the ten observed
points gives



In general there are r equations in m observed parameters
to estimate n derived parameters. As usual the small
changes to the observed parameters are split into two
parts: the known part L, and the unknown part v.

Thus for example

The final equations are of the form

We obtain the normal equations

where

The weight matrix is W. It is not practicable to give all the
working of the above example here. Instead we give the key
information only.

Approximate solution with weights Suppose we assign
weights of 1 to x and 2 to y giving a (20 x 20) weight matrix



with these values alternating down the diagonal. In this
example, because the numbers have been chosen to
simplify the arithmetic, the matrix N (10 x 10) is diagonal
with one value (0.75) for all of its diagonal terms. Its
inverse is therefore the simple:

where I is the (10 x 10) unit matrix.
All values of the L vector are zero for each value of x

because the provisional values were chosen to be the same
as the observed values. The L values for each value of y are
the same as before.

The problem finally reduces to a solution of the normal
equations

which are

The solution is

Although this solution is not very different from the
previous method, in this case the residuals are the
perpendicular distances from the observed points to the
line.

Case 3: Solution with additional constraint



Sometimes new measurements have to be constrained to fit
previous work upon which maps will have been plotted, or
building construction has begun.

Suppose that the line just fitted to data has to pass
through a fixed point ( x’,y’). This means that there is one
equation which must be satisfied exactly: i.e.

This is a constraint equation which the finally estimated
parameters must also satisfy exactly, i.e. we have

One practical way to treat the problem is to assign a very
high weight to the fixed point coordinates and treat them
as observations in the usual way. If we hold the tenth point
nearly fixed by assigning it a weight of 100, we obtain the
solution:

Although this procedure is often acceptable in practice, it is
incorrect theoretically because an infinite weight cannot be
handled computationally. However, the solution is seen to
be acceptable when compared with the exact solution
which follows.

Additional constraints Since a theoretically correct
treatment is not difficult, it should certainly be employed in
scientific studies. Two theoretically correct methods are
available.



A conceptually simple method is to eliminate one
parameter from the problem by expressing it in terms of
the other. Although this would be the simplest way to treat
the particular problem of our example, which has only two
parameters, it is not convenient in complex cases. For this
reason we present a general alternative method of
treatment.

Constraints by Lagrangian multipliers As is explained
in Appendix A2 the use of Lagrange’s method yields
equations of the form:

These can be combined into one hyper-matrix as follows

If we hold point 10 fixed, its observation equation becomes
the constraint equation, k is the Lagrangian multiplier, and
the hyper-matrix is:

the solution of which is

δm = -0.2922 
δc = 0.8426

This compares very well with the previous weighted
solution.



13.34   Further reading

The literature dealing with Least Squares estimation is
vast. In Appendix A3 we give the titles of some texts
concerned with its surveying applications together with the
notation used. Articles in journals, such as Survey Review

or the Photogrammetric Record, should also be consulted.
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Appendix of Useful Data

Fractions and multiples of units

Note the symbol for units should never have the plural ‘s’
attached. For example a distance is 30 km, not 30 kms.

power of 10 prefix symbol

-1 deci d
-2 centi c
-3 milli m
-6 micro m
-9 nano n

-12 pico P
-15 femto f
-18 atto a
+ 1 deka da
+ 2 hecto h
+ 3 kilo k



+ 6 mega M
+ 9 giga G

+ 12 tera T

Units of length

1 metre (trad) = length of a quadrant of the Earth x 10-7

= 0.5 ∏R 10-7 where R is the radius of the Earth
Radius of the Earth R ≈ 6.4 x 106 m
1 metre = distance travelled by light in vacuo during a

period of 1/299 792 458 th of a second of time.
1 British foot = 0.3048 metre (m) exactly (one inch =

25.4 mm)
1 British statute mile = 5280 feet (ft) = 1760 yards (yd)

= 1609.344 m ≈ m
1 ft = 12 inches (in)
1 inch = 25.4 mm exactly
1 yard = 3 ft
1 chain = 22 yards = 66 feet

Units of Area

1 are (a) = 100 square metres (m2)
1 hectare (ha) = 102 ares = 104 m2 = the area of the

average football pitch
1 acre = 10 square chains ≈ 0.405 ha = about half the

area of a football pitch

Units of Angle

2 π radians =one cycle = 360 sexagesimal degrees (°) =
400 centesimal degrees (g)



60 sexagesimal minutes of arc (‘) = one sexagesimal
degree

60 sexagesimal seconds of arc (“) = one sexagesimal
minute

100 centesimal minutes (c) = one centesimal degree (g)
100 centesimal seconds (cc) = one centesimal minute (c)
one sexagesimal minute ≈ 0.003 rad
one sexagesimal second ≈ 3 centesimal seconds (cc) ≈

0.000 005 rad
1 radian (rad) = the angle subtended by the arc of a

circle equal to its radius 1 radian =  sexagesimal
degrees (°) ≈ 57.3° ≈ 3438’ ≈ 206 265” = 
centesimal degrees (gon) (g) ≈ 63.66g.



Appendix A2: Further

Matrix Algebra

In this Appendix we develop some further matrix concepts
and methods required for an understanding of the Least
Squares estimation process described in Chapter 13. The
discussion here is restricted to classical matrices of full
rank. Although generalised inverses are now applied to
mapping problems, they are not considered.

A2.1     Trace of a matrix

The trace of a square matrix is the sum of its diagonal we
will use is

Consider first the simple case



Then by definition of the trace of a matrix

trace(VVT) = sum of the diagonal terms of

Now consider the general case VTWV = trace (VVTW)

The trace T of the resulting matrix is

Now

which on multiplying out is equal to T.

A2.2     Differentiation of matrices:

bilinear and quadratic forms



If A is a square matrix whose elements are functions of a
variable x, then we take dA/dx to be the matrix of the same
dimensions as A containing elements which are the
respective differentials of each element of A with respect to
x. For example if

If x and y are column vectors of variables of order (m × 1)
and (n × 1) respectively, and A is a matrix of coefficients of
order (m × n) the bilinear form U is

defined as

Then

Assembling the elements into a column vector (as is x) we
have



where I is the unit matrix of dimensions (m x m). Or writing
∂U/∂x for the row vector of partial derivatives we have

In the same way we have

and so on. These are the first and second columns of xTA.

Writing ∂U/∂y as a row vector we have

If the vector y = x and A is square, then U is known as the
quadratic form given by

Then, by the chain rule, we have the total differential, given
by (A2.3) and (A2.4)

If the matrix A is symmetric, then A = AT and we have



In Least Squares we are concerned with the quadratic form

Hence

For a minimum turning value of Ω,

Therefore

But

giving the two vital formulae of the whole Least Squares
process of

and by transposing and remembering that W is symmetric,
also

A2.3     Least Squares models for the

general case Ordinary algebra



To be consistent, the best estimates and the provisional
values† must satisfy the mathematical models exactly, thus

Expressing the model in terms of small differential
changes, we have

therefore

and since

we have

Matrix algebra

The partial differentials are gathered together into a
matrix, called the Jacobian matrix. We adopt the convention
that there are m observations, having a weight matrix W, in
n parameters (m > n) linked together by r equations of type
(A2.10), which in matrix form, with their dimensions, are



L =  -  is known, and the design matrices A and C are also
known, thus the product CL is also known. Letting

CL = -b

equation (A2.ll) becomes

To obtain a unique solution for x we invoke the principle of
Least Squares, making the sum of weighted squares of the
residuals

a minimum. Introducing a vector λ of Lagrangian

multipliers, of dimension (r x 1), we may put

This vector λ of correlates or undetermined multipliers is
an ingenious device invented by Lagrange to treat
problems of conditioned minima. We can see that equation
(A2.13) is valid because by equation (A2.12) the second
term is zero.

Notice that the dimension of Ω is (1 x 1), i.e. a single
number.

The (m x m) weight matrix W is formed from the inverse
of the dispersion matrix of the observations estimated in
some way. We now partially differentiate the function Ω

with respect to the variables x and s, and equate them to
zero. Before doing so, however, we will establish that
differentiation with respect to the observed parameter s is
the same as differentiation with respect to v.



Because s = L + v, and L has constant elements,

and thus

For a minimum value of Q we have

Applying these expressions to equation (A2.13) gives

Since W is symmetric

Thus we have a most important equation

And again

therefore

Substituting for λ from (A2.15) in equation (A2.12) gives



Putting

we have

and

Substituting for v from (A2.16) in equation (A2.15) gives

And putting

we have the final equations

The matrix N1 is square and symmetric. Traditionally the
equations (A2.18) were called ‘normal equations’. Their
solution gives the required parameters.

From (A2.15), (A2.16) and (A2.12) we obtain another
very important result

It is so important that we remind readers that

N = CW-1CT



A2.4     Mathematical model with

added constraints

It sometimes happens that there are certain constraints
among the parameters which need to be allowed for. For
example we may need to hold a length fixed between two
points whose positions may be allowed to vary. A constraint
is written as a linear equation which has to be satisfied
exactly, i.e. as an equation, which has no residual, of the
form

It is often possible, and thoroughly desirable for simplicity,
to eliminate one parameter for each constraint, right at the
outset. Not only does this simplify the solution but it
reduces the size of the matrix to be solved. The simplest
application of this procedure is to eliminate the variables
for fixed points in a network.

Another practical way to solve the problem is to assign a
very high weight to the constraint equations, which are
then treated as observations, thus ensuring that the
constraints are almost satisfied.

A theoretically correct and standard procedure is to
employ further Lagrangian multipliers k, one for each
constraint equation, and proceed as before, and as follows.



Since λ is the same as before (A2.13), we obtain

These equations may be combined into a hypermatrix as
follows

(Note: These may be solved as they stand, although if
Cholesky’s method is used, the null matrix causes negative
square roots which have to be flagged during the
procedure to identify negative squares. When they arise,
Gauss’s method of solution has no problems in its general
form.) This hypermatrix form is useful when making design
studies to add and subtract constraint equations.

If an explicit solution for x only is desired, a smaller set
of equations has to be solved. The explicit solution is
obtained as follows: from (A2.21)

and from (A2.20)

or



Substituting for k in (A2.21) finally gives

or

Thus the problem once again reduces to the solution of a
symmetric set of equations of the form

Nx = b

A common simplification

Many problems are simplified at the outset so that they do
not contain any constraint equations, for example by the
elimination of fixed parameters when forming up the
observation equations.

Also in many cases it is possible to select a mathematical
model which has only one observation in each equation,
giving an observation equation which contains only one
residual. Thus the C matrix reduces to the unit matrix, or
alternatively it has an inverse. In such cases, equations
(A2.12) may be simplified by premultiplying by this inverse
giving

which is of the form

giving directly the Normal equations



These equations are commonly found in many surveying
applications. For example equations (Ax + Cs = 0) can be
written

or

A2.5     Population parameters and

sample statistics

We now relate the best estimates from a sample to their
theoretical population from which the sample has been
drawn. If  is the population value of the observed
parameter, then the population residual V is given by

Correspondingly the vectors are written in bold notation

This compares with the vector of data from the sample

where ds is the difference between the population value
and the sample estimate. Applying similar ideas to the



mathematical model we have the respective sample and
population models

Ax + Cv + CL = 0

and

Subtracting gives

where dris the vector of the differences between the
population parameters and their corresponding values
estimated from the sample by Least Squares. Now we know
from equation (A2.19) that

thus by premultipling (A2.24) by ATN-1 we obtain

or say

where

Now



therefore

Taking expectations, and remembering that (See Sections
13.23 and 13.24)

Pre and postmultiplying both sides by N1
-1 gives

or

but

and

and finally



Thus the dispersion matrix of the required parameters is
the scaled inverse of the normal equations. Hence,
although this inverse may not be needed to obtain the
solution, it is needed for this statistical information.

Special case

When C = I the unit matrix, the result is of the same form,
namely

which reduces to equation (A2.25).

A2.6     Estimation of σo
2

We now show how σo
2 is estimated from the sample itself,

as a bi-product of the Least Squares computation, using the
expression:

For economy of space, the derivations are not given in full,
with some work left to the reader, who is once again
reminded of the symmetric nature of many of the matrices.

From equation (A2.16) we have

and from equation (A2.14)

Thus we have the sample residuals given by



The population residuals are therefore given by

giving by subtraction

or

where

Now from equation (A2.19)

Thus we have the important result

Now

Now, remembering that the trace of a matrix is the sum of
its diagonal terms, we have



Thus equation (A2.31) becomes

and taking expectations of both sides we have

Now

Also

Therefore

because

Now Im and In are unit matrices of dimensions m and n,

thus



If we put

then E(S2
o) = σ2

o and we say that s2
o is an unbiased

estimator of σ2
o. The denominator m-n is the number of

degrees of freedom in the problem, or the number of
redundant observations which are not essential for a
solution to be obtained.

Special case of one parameter

In the special case of one parameter estimated from m

observations, the above expression for s2
o reduces to

and

Also

an unbiased estimator of the population variance.

A2.7     Dispersion matrix of the

sample residuals Dv



Although the quality of the derived parameters, as
expressed by their dispersion matrix Dx, is generally of
most interest, there are several statistical reasons for
calculating the quality of the residuals derived in the Least
Squares process. From equation (A2.27) we have

where

Differentiating gives

Now

therefore

but  is the error vector of the observed parameters, i.e. =

V the population residuals, and  = 0, thus

Taking expectations we have



Since, as we will show below, the third and fourth terms of
this expression are both equal to

we have

Note: The following is a brief outline proof that terms three
and four above are both equal to

From (A2.18)

therefore

The third term then is

which reduces to

This is symmetric and equals the fourth term transposed.

A common simplification



In the case of the simple model in which the C matrix is the
unit matrix, it is easy to show that the general result in
(A2.33) reduces to the much simpler expression

A2.8     Dispersion matrix of the

estimated observed parameters Ds

The dispersion matrix Ds of the Least Squares estimates of
the observed parameters is given by the simple expression

where Dv is given by (A2.33) for the conditioned model and
by (A2.34) for the simple model. In this latter case we have
the even simpler expression

The proof of (A2.35) follows similar lines to that for (A2.33)
in which some heavy, but straightforward, matrix
manipulation is involved. The basic steps are as follows.

The best estimates of the observed parameters are given by

but from (A2.32)

therefore

but



therefore

Substituting for

gives the expression

or say

where

Now

Taking expectations

and substituting for F we obtain, after some heavy algebra,
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For an alternative approach to this treatment, see Section 13.14.
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Appendix A4: The Error

Ellipse and its Pedal Curve

A particularly useful application of an ellipse and its pedal
curve is to display some results of an error analysis in two
dimensions. The pedal curve, which shows graphically the
size and direction of an error function, in the vicinity of a
point, is useful in presenting results to clients, and in
design studies, especially of networks.

Figure A4.1



Figure A4.2

Figure A4.1 shows displacements dx and dy and their
compounded effect dr at a bearing t. If dr rotates through a
full circle about one end, the locus of the free end is a
doughnut-shaped curve, the pedal curve to an ellipse. This
is shown in figure A4.2. As will be seen shortly, these
displacements dx and dy can also be represented by
standard errors derived from the dispersion matrix
obtained in a Least Squares analysis. By inspection, from
the figure we have

dr = dx cos t + dy sin t

therefore

Now dr can be taken to represent the component in
direction t of the residuals dx = vx and dy = vy, so taking
expectations we have

which may be recast as

We now wish to find the turning values (maximum and
minimum) of this function. Differentiating (A4.3) with



respect to t we have, putting F = 2σ2
r,

The turning values are obtained when t = T, and dF/dt = 0,
i.e. when

where Δ is a positive constant. Therefore we may separate
the numerator and the denominator as follows

Substituting from (A4.5) and (A4.6) in (A4.3) we have, after
some rearranging,

F is A maximum and a minimum respectively when

That is σr has maximum and minimum values given by

Adding and subtracting gives



This is the equation of the pedal curve to the ellipse whose
semi-axes are respectively σmax and σmin with its axes
oriented with respect to the original axes by the bearing T.

From Chapter 10 equation (10.27)the pedal distance p to
an ellipse whose semi-axes are a and b is

Hence we see the analogy between σr and p, U and (t - T).
From (A4.12),we have

The calculations are shown in Table A4.1 using the data
from Chapter 13. Cells A1 to B2 are the elements of the
inverse of N, its variances and covariance, which are used
to calculate T from

(2T is in the third quadrant because both its sine and
cosine are negative.) Then we calculate Δ from either of the
two equations

or



and the semi-major and semi-minor axes, a and b, of the
ellipse from (A4.8) and (A4.9). The calculations are shown
in Table A4.1 giving a major axis a = 0.016 m oriented at a
bearing of 95°, b = 0.005 m.

Figure A4.3

Table A4.1 Error ellipse

  A B C

1 0.00025508 -1.014E-05 Bearing

2 -1.014E-05 2.9512E-05  

3 Delta 0.00022648 T°-87.430461

4 Max 0.00051107 A = 0.016
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Min0.01597116 5.8114E-
050.00543249

b = 0.005

It is quite tricky to plot the ellipse and its pedal curve by
hand. It is easier to use a computer plotting routine for
this. But a rough sketch is really all that is needed, as
shown in Figure A4.3. This was plotted using the MacDraw

package as if plotting by hand. To obtain the standard error
at any direction all we need to do is scale it from the figure.
For example, we can verify that the pedal curve cuts the
axes at the correct values: in this case of

σ
E
 = 0.016, from cell A6 the square root of A2

and

σ
N
 = 0.005, from cell B7 the square root of B3.

In this case the ellipse is so aligned that this check is weak.
As with all Least Squares estimation, care is needed

when using error ellipses, because they are influenced by
the datum selected for the calculation of coordinates.
Ellipses showing the relative errors between pairs of points
often convey more useful information.

SUMMARY OF FORMULAE





Summary of Formulae

Miscellaneous functions

Series



Binomial theorem

Maclaurin’s theorem



Taylor’s theorem

Trigonometry

Pythagoras’s theorem: in triangle ABC, right angle at B





Cartesian and polar coordinates

in two dimensions

Given (r, U), find x and y from

Given (x, y), find U and r from

Coordinate differences in two

dimensions

Equations of a straight line in

two dimensions



Direction cosines in two

dimensions

The Circle



Coordinate transformations in

three dimensions

Coordinate differences in three

dimensions

Direction cosines and lines in three dimensions



Equation of a plane in three

dimensions

Equation of a sphere

Areas and volumes



Area by determinants

Matrices



Vectors



Calculus:Differentiation



Partial differentiation

Curvature of plane curve



Calculus: Integration

Conic sections



Spherical trigonometry

Solution of equations



Least Squares estimation
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A4 size of paper 25
addition of matrices 146
analogue techniques 34
angles 35–6, 97–9

acute 27
between two lines 75
obtuse 27

angles between two rays 97–9
appendix of useful data 286–7
areas 115 et seq.

by integration 213–14
of circle 215
of an ellipse 233
of a trapezium 116
of a triangle 115–16

arithmetic mean 302
arithmetic progression 14–15
auxiliary circle 232
azimuths (true directions) 256

back solution 270–71
base of natural logarithms e 12–13



bearings 48
binomial series special case 22
binomial theorem 20–21

general case 22
braces xii
brackets xii

calculator 2–4
calculus 180 et seq.

integral 208–10
Cartesian coordinates 64–5
centesimal systems 36–7
chords 33
circle 32–5, 215, 223, 225–9

area 215
auxiliary 232
chord 33
diameter 33
equation of 76–7, 227
in three dimensions 107–9
tangent 33
tangent to 78

common normal to two rays 102–3
components and direction cosines 167
compound angle 55
conformal projection 258
conformality 258
conic sections 223 et seq.
constraint 344, 357
coordinate axes 48
coordinate differences 67–8, 91



coordinate transformations 158–61
coplanarity of vectors 178
correlation 307
cosecant 54–5
cosine 41–2

formula 43–5, 247
proof of 247–9

cotangent 54–5
formula 247
proof of 249–50

covariance 307
Cramer’s rule 143–4, 265–6

derivation for a (2 x 2) matrix 266–7
cross product 172–3

of orthogonal unit vectors 173
in terms of components 174–5

cubic equation 261
solution of 276–80

curvature 205–8

decimal numbers 6
decomposition of matrix 269–70
degrees of freedom 294
derivative

of cos x 191–3
of sin x 191

determinants 119–22
diagonal matrices 161
diameter 33
differential xii

second and higher 188
total 202–4



differentials of ex and lnx 193–5
differentiation 185, 189

logarithmic partial 204–5
of a function of a function 198–9
of a product 197–8
of trigonometrical functions 189–91
of y or f(x) with respect to x 185
partial 201–2
quotient rule 200–1
total 202–4

directed steps 88–9
direction cosines 50, 167

in three dimensions 92–4
directrices 239
directrix 230, 231
dispersion 305
dot product 170
dot products of orthogonal unit vectors 170

elimination 134–6
ellipse 223, 231

area of 233
equation of 231
error 369
freedom equations 235
length of arc 238–9
length of normal to 237
pedal curve 369
radius of curvature 236

elliptic integral 238
equation

cubic 261



linear 261
of a circle 76–7
of a plane 104–6
of a sphere 106
quadratic 261

equations
of a line 94–7
in three dimensions 94–7
observation 295
normal 297

error
ellipse 369
marginal detectable 331
type I 331
type II 331

estimator, unbiased 319
even function 182
expectation 306
exponent form 4–5
exponential series 12

factorial xii, 10
Fisher F test 334
focus 230, 231
forward solution 270
freedom equations of the ellipse 235–6
free vectors 166
function 180–2

even 182
normal distribution 217–20
odd 182

functions of angles 40



limits of 182–3

Gaussian elimination 268–9
geometrical interpretation of integration 212
gons 36
grad 37
graphic solution of equations 274–6
Greek alphabet xiii

half angle formulae 60–1
Hero’s formula 61
hyperbola 223, 239–41
hypotenuse 30
hypothesis

null 331
alternative 331

indices 10–11
division 10
multiplication 10

inequalities 19–20
integers xii, 5–6

sequence 5
series 5

integral xii
calculus 208–10
notation for 210–11

integration 209–10, 213
geometrical interpretation of 212
limits 212–13

intersection 290
inverse cosine 44



inverse functions 54
inverse of a matrix 139–42
inverse of a square matrix 142–3
inverse of N 271–3
inverted matrix xii isometric view 83
isosceles triangle 52

Lagrangian multipliers 345
landscape 25
Least Squares 285

combined 320, 335
line fitting 337

length of arc of ellipse 238–9
length of normal to an ellipse 237
length of vector 149, 167–9
limits of functions 182–3
linear equation 261, 262

consistency of 267
solution by LU decomposition 267–8

linearly dependent coefficient 263
linearly independent coefficient 263
lines 72

normal 27–8
orthogonal 28
parallel 27–8

logarithmic partial differentiation 204–5
logarithms 11–14

base of natural e 12
division 13
powers 13

LU decomposition 267–8
lune 216, 251



Maclaurin’s theorem 188–9
map projections of a sphere 254
mathematical operators 2
matrices 133 et seq.

diagonal 161
orthogonal 156
singular 144
triangular 267

matrix xii
addition 146–7
bilinear form 352
differentiation of 352
dispersion 313, 329, 363, 365
factorisation 161–2
hyper 358
inverse of 139–42
inverted xii

Jacobian 355
lower triangular 267
multiplication 137–9, 144–6
notation 136
products 148–9
quadratic form 352
rotation 152
subtraction 146–7
trace of 351
transposed xii transpose of 147
upper triangular 267
variance-covariance 313

modulus xi
monomial 15



multiplication scalar 170
multiplication of vectors 164, 169
multiplication of a vector by a scalar 169

natural logarithms 12
natural number 12
navigation 252–3
Newton’s method 280–81, 281–3, 289, 291

solution of non-linear equations 280–1
non-linear equations 280
normal 24, 28

lines 27
normal distribution 323
normal distribution function 217–20
null vector 165
numbers

decimal 6
real 6
rounded 7
truncated 7

numbers and calculation 1 et seq.

oblique coordinate system 254–6
odd function 182
operators xi, 7–8
orthogonal 28

matrices 156–8
unit vectors 166–7
dot products of 170

orthomorphic projection 258
outliers 323



parabola 223, 230–1
parallel and orthogonal vectors 175
parallelepiped 176
parallel lines 27
parallelogram 30
parameter 72
parallel and perpendicular rays 99–100
parametric equations of a line 72–5
partial differentiation 201–2

logarithmic 204–5
Pascal’s triangle 21
pedal curve 369
plane cartesian coordinates 63
plane coordinates 63 et seq.
plane geometry 25 et seq.
planes 25–7
point of inflexion 218
polar coordinates 65
polar equation of a line 71–2
polynomials 15
population parameters 359
portrait 25
position vectors 166
power of the test 331
powers 8–11
problems in three dimensions 83 et seq.
Pythagoras’s theorem 30–1

quadrant 48
quadratic equation 261, 273

solution of 273–4
quotient rule for differentiation 200–1



radian 37–8
radius of curvature of ellipse 236
range difference 242–3
ratios 18–19
rays 97–9

angle between 97–9
parallel and perpendicular 99–100

real numbers 6
reciprocals 8
rectangle 1, 30
redundant measurements 294
reference grid 28–9
reliability

external 333
internal 332
testing 330

residuals
population 288
sample 288, 298

rhombus 30
right handed set 87
rotation matrix 151–2
rotations in three dimensions 150–1
rounded numbers 7

sample statistics 359
scalar 164

multiplication 170
triple product 175–7

scale factor 258
secant 41–2
second and higher differentials 188



sequence 5–6
series 5–6
sexagesimal systems 36
significance level 333
significant figures 6–7
Simpson’s rule 214–15
sin θ50
sine formula 247

proof of 249
sine rule 51–3
singular matrices 144
solution of equations 261 et seq.

by elimination 134–6
sphere 216–17, 245–6

map projections 254
stereographic projection 256

spherical excess 250–2
spherical triangle 246

model of 246–7
spherical trigonometrical formulae 247
spherical trigonometry 245 et seq.

square 30
square root xii standard deviation 305
statistical tests 323
stereographic projection 256

conformality 258
stereoscopic image 109–13
stores 7–8
straight lines 25–7, 68–71
subtraction of matrices 146
summary of formulae 289–99



tan Η 54
tangent 33

to a circle 78
tangents to curves 183–6
Taylor’s series 195–6
tetrahedron 122

volume of 123
three dimensional model 85–7
total differential 202–4
transposed matrix xii
transpose of a matrix 147
trapezium area of 116
triangle area of 115
trigonometry 40 et seq.

truncated numbers 7
turning point 275
turning value 275

unit matrix I 140

variance 306, 361
vector

length of 149, 167–9
multiplication by a scalar 169
multiplication or cross product 172–3
null 165

vectors 164 et seq.
coplanarity of 178
free 166
multiplication of 164, 169
orthogonal unit 166
parallel and orthogonal 175



position 166
volume in terms of position vectors 177
volume of the tetrahedron 123–4
volumes 115 et seq.

weights 304
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