

Fortran IV Programming
for Engineers and Scientists

Fortran IV
Programming
a or Engineers and Scientists

Second Edition

PAUL W. MURRILL
and

CECIL. SMITH

Louisiana State University

Intext Educational Publishers

New York

Sixth Printing

Copyright © 1968 by International Textbook Company

Copyright © 1973 by Intext Press, Inc.

Ail rights reserved. No part of this book may be reprinted,
reproduced, or utilized in any form or by any electronic,
mechanical, or other means, now known or hereafter invented,
including photocopying and recording, or in any information
storage and retrieval system, without permission in writing
from the Publisher.

Library of Congress Cataloging in Publication Data

Murrill, Paul W.
Fortran IV programming for engineers and scientists.

1. FORTRAN (Computer program language)
3. Electronic digital computers—Programming.
I. Smith, Cecil L., joint author. II. Title
QA76.73.F25M87 1973 001.6'424 73-1689
ISBN 0-7002-2419-X

Intext Educational Publishers
666 Fifth Avenue
New York, N.Y. 10019

Contents

ix

xi

1

Preface to tne Second Edition

Preface to the First Edition

1 Introduction to Digital Computers

1-1. Digital-Computer Characteristics — 1
1-2. How the Digital Computer Works — 2
1-3. Control and Operation of the Computer — 4
1-4. Programming Languages - 6
1-5. Compilation — 8
1-6. Batch Processing Systems — 10
1-7. Conversational Time Sharing — 14
1 -8. Peripheral Devices — 17

2 The Fortran Statement 21

2-1. Fortran Constants — 21
2-2. Fortran Variables — 23
2-3. Operations — 25
2-4. Expressions — 26
2-5. Functions — 28
2-6. Fortran Statements — 30
2-7. Statement Format — 31
2-8. Integer versus Real — 35
2-9. In Summary - 39

Exercises — 40

v

vi Contents

3 Simple Fortran Programs 45

3-1. Format-Free Input Statements — 45
3-2. Formatted Input Statements — 47
3-3. Format-Free Output Statements — 49
3-4. Formatted Output Statements — 50
3-5. PAUSE, STOP, and END Statements — 52
3-6. An Example Program — 53
3-7. Handling Program Decks — 59
3-8. Debugging the Source Program — 62
3-9. In Summary — 64

Exercises — 64

4 Transfer of Control 67

4-1. Flowcharts — 67
4-2. Unconditional GO TO — 68
4-3. Computed GO TO — 71
4-4. Arithmetic IF — 73
4-5. Logical IF — 77
4-6. Simple Counters — 80
4-7. In Summary - 83

Exercises — 83

5 Introduction to DO Loops and
to Subscripted Variables 87

5-1. Definition of DO Loops — 87
5-2. Complete Examples - 89
5-3. Further Clarification — 91
5-4. Usefulness of Subscripted Variables — 96
5-5. Definitions and Subscript Arguments — 98
5-6. The DIMENSION Statement — 100
5-7. Input and Output — 105
5-8. A Final Example — 107
5-9. In Summary — 111

Exercises — 111

6 Multidimensional Arrays and Nested DO Loops 129

6-1. Multidimensional Arrays — 129
6-2. Nested DO’s — 131
6-3. Implied DO — 137
6-4. In Summary — 139

Exercises — 140

Contents vii

7 Input-Output Operations 149

7-1. FORMAT Field Specifications — 149
7-2. Carriage Control — 154
7-3. FORMAT Options — 155
7-4. Other Input-Output Statements — 157
7-5. The DATA Statement — 159
7-6. Character Data — 160
7-7. Execution-Time Formats — 166
7-8. Direct Access Input-Output — 167
7-9. NAMELIST - 171

7-10. In Summary — 173
Exercises — 173

8 Functions and Subroutines 191

8-1. Concept of a Function, a Subprogram, and a Subroutine — 191
8-2. Introduction to Fortran Function and Subprogram Features — 193
8-3. Role of Arguments — 194
8-4. The Statement Function — 199
8-5. The Function Subprogram — 200
8-6. Subroutines — 206
8-7. COMMON-210
8-8. EQUIVALENCE-214
8-9. Adjustable Dimensions — 216

8-10. BLOCK DATA-216
8-11. The EXTERNAL Statement — 218
8-12. Multiple ENTRY and RETURN - 219

Exercises — 221

9 Efficient Programming in Fortran 225

9-1. Arithmetic Expressions and Replacement Statements — 226
9-2. Constants — 227
9-3. Powers — 227
9-4. Polynomials — 228
9-5. Statement Numbers — 228
9-6. IF Statements - 229
9-7. Subscripted Variables — 229
9-8. Input-Output Statements — 232
9-9. Subprograms - 232

9-10. In Summary — 233

Appendix A Types of Variables 235

Appendix B Various System Configurations 244

viii Contents

Appendix C Fortran IV Library Functions 246

Appendix D American Standard Flowchart Symbols 249

Appendix E Solutions to Selected Exercises 250

Appendix F WATFOR and WATFIV 305

Index 317

Preface to the Second Edition

Since the publication and broad acceptance of the First Edition of this book, many
significant changes have occurred in the computing industry and in Fortran instruction.
As a result the authors have revised their own approach to the teaching of certain topics.
The combination of these factors led to the decision to publish this Second Edition,
which the authors think has the following advantages over the First Edition:

1. Since the appearance of the First Edition, time-sharing systemshave become
progressively more popular, and therefore, discussion of time-sharing systems
has been included at several points in the text, especially in Chapters 1 and 3.
However, it is the authors’ experience that time-sharing systems have not
achieved the level of standardization of card-oriented systems, so the instructor
will need to supplement the text with material describing operation of the
terminal (sign-on, sign-off, program saving, etc.), if one is used.

2. One advantage of the First Edition was that students could begin writing
programs at an early stage. This edition incorporates a discussion of format-free
input-output such as is available in WATF1V, so that the student’s first pro
grams can be written even earlier and without the trauma of format. Early
discussion of format has been retained, of course, for those systems that require
its use. The authors have been very successful in permitting students to write
their first three or four programs without format, and then requiring its use
thereafter. At present, no course on Fortran can be considered complete
without a coverage of format.

3. Material has been included on the WATFIV in-core compiler and its error
messages, but not to the extent that the text becomes usable only to those with
access to WATFIV.

4. The material on subprograms (Chapter 9) has been revised extensively. This was
probably the weakest point in the First Edition, and we hope this has been
corrected.

5. The number of exercises-which was generous in the First Edition-has been
increased.

ix

X Preface to the Second Edition

6. We have concluded that the presentation of DO loops and subscripted variables
can be accomplished best as follows: DO loops first, single-subscripted arrays
second, then nested DO loops, and finally multiple-subscripted arrays. In effect,
more meaningful exercises can be formulated that use DO loops but not
subscripted variables, whereas it is very difficult to formulate an exercise using
subscripted variables that does not require a DO loop or the equivalent counter.
Therefore, the preferred order of presentation is incorporated into this Second
Edition.

7. The discussion in Chapter 7 of manipulation of character data has been revised
extensively and, we think, for the better.

8. The First Edition implied that mixed-mode arithmetic was taboo. Students
quickly learned, however, that the compiler would accept it, and they used it
without understanding what might happen if they were not careful. The Second
Edition addresses this point in a more direct fashion.

9. The introductory chapter has been revised to improve discussion of computer
characteristics, compilation, operating systems, and the role of Fortran.

The authors wish to express their sincere thanks to all of those who took the time to
point out the strengths and weaknesses of the First Edition. These thoughtful comments
were sincerely appreciated, and we would appreciate similar comments on the Second
Edition. As in the First Edition, we certainly owe our thanks to our ever-smiling
secretaries, Mrs. Jo Ann Caillouet and Miss Verma Dotson.

Preface to the I irst Edition

This book is intended to serve as both a text for an introductory course in Fortran IV
programming and a reference manual for those with prior programming experience. It is
primarily aimed toward engineers, scientists, mathematicians, or anyone with a very
elementary background in college-level mathematics.

The primary objective of the text is to introduce undergraduate students to Fortran
IV programming, and this objective was the prime consideration in selecting the order of
presentation of the subject matter. It is felt that most of the included material can be
easily understood by freshmen, but enough advanced problems are included to make it
appropriate for those who are further along in their studies. Basically, the material is
appropriate for any first course in programming.

This text arises from the authors’ experience in teaching a one-semester-hour course
on Fortran programming for the past five years. With only one hour of lecture per week it
is imperative that the student quickly begin to write programs. This requirement is
reflected in the text by the introduction of complete Fortran programs in Chapter 3.
Since the common thread among the students involved in the course is applied mathe
matics, it is emphasized in the exercises and examples.

The advantages of this text are (1) a simple introduction in the first chapter to the
characteristics and method of operation of digital computers, (2) an organization that
allows the students’ programming ability to progress at a steady rate, (3) a wealth of
examples and exercises for students at all levels, and (4) inclusion of the more recent
Fortran options available on computers such as the IBM System/360.

The authors wish to express their thanks to Professor Warren H. Thomas, Depart
ments Industrial Engineering, State University of New York at Buffalo, and to Professor
Mary McCammon, Department of Mathematics, Pennsylvania State University, for their
very helpful reviewing of the manuscript. Equal thanks are also due to the faculty of
LSU’s College of Engineering and to countless students for their valuable suggestions.
Finally, but certainly not least, our thanks to the smiling secretaries, Mrs. Carol Houston,
Mrs. Ruth Albright, and Miss Hazel LaCoste, of the Department of Chemical Engineering,
who did most of the work.

xi

Fortran IV Programming
for Engineers and Scientists

1
Introduction to Digital Computers

The steam engine and other devices for doing work gave man an extension of his physical
capabilities and brought about the Industrial Revolution. In a very similar manner,
electronic computers are providing man with tools with which he can process quantities
of information and solve problems that otherwise would be impossible to handle. These
computers are producing an informational revolution that will have more impact on each
of our everyday lives than any other aspect of modern technology—even atomic energy.
The purpose of this book is to assist, you, as a student of science or engineering, in
learning to utilize these computers in your day-to-day work.

1-1. Digital-Computer Characteristics

Modern electronic computers are of two basic types—digital and analog. The entire
content of this book, is directed toward understanding and programming digital compu
ters, and no attention is devoted to the study of analog computers or combinations of
analog and digital computers (hybrid computers).

Digital computers can be appreciated best by first considering some of their
characteristics. Understanding these characteristics will help us to appreciate their use
fulness.

One of the most prominent characteristics of digital computers is their truly
incredible speed. Although they only work one step at a time, i.e., sequentially, they
perform their tasks at rates that are beyond the comprehension of the novice. As an
example, some large machines are capable of adding together several hundred thousand
16-digit numbers in less than a second. These tremendous speeds make it possible for the
machine to do work in a few minutes that might otherwise require years of time.

Not only is the digital computer capable of working very rapidly, but it also has a
perfect memory. It has virtually instantaneous “recall” of both data and instructions that

1

2 Introduction to Digital Computers

are stored inside, and it never forgets or loses the accuracy of the information which it
has within its memory.

A digital computer is an extremely accurate device. In most machines numbers are
handled with seven, eight, or nine significant digits, and twice this accuracy can usually be
obtained by the programmer. This means that a machine would have no difficulty
multiplying 2782.4362 times 40.127896 and obtaining the product correct to eight or
sixteen significant figures.

Coupled with the significant characteristics already listed, the digital computer does
its work automatically. It can accept instructions from its operator, and then execute
these instructions without need for human intervention. This implies that the machine
can be given a problem; then while you attend a movie, it will do your work with
incredible accuracy and at fantastic speeds. Learning to use such a tool should require no
further motivation.

Additional characteristics of the digital computer will be noted later, but for the
present it will be more advantageous to see how the machine works.

1-2. How the Digital Computer Works

The digital computer is basically a device to accept data and a set of instructions as to
how to manipulate these data in order to produce a set of answers. The set of instructions
is called the program, and these are prepared by a programmer (you). (See Figure 1-1.)
This book is primarily concerned with the preparation of programs. Sometimes the data
may be contained within the program, but more often the data are entered into the
computer after the program.

In general, the computer may be thought of as being composed of three main
sections: the memory, the central processing unit (CPU), and the input/output processor.
The computer memory is used for storing data, instructions, intermediate results, and
final answers; the central processing unit performs all the necessary manipulations of the
data; and the input/output processor communicates with the outside world. (See Figure
1-2.) Transfer of instructions and data among these units takes very little time- in some
machines less than one millionth of a second.

All information and signals in transit inside the computer are handled as electrical
signals (usually pulses), and in memory this information is stored in magnetic cores,

Programmer's list
of instructions for

Figure 1-1. Functional role of the digital computer

1-2. How the Digital Computer Works 3

Figure 1-2. Relation of memory unit, arithmetic unit, and control unit (Solid arrows
represent information flow, dashed arrows represent control signals.)

switches (flip-flops), and/or as magnetized spaces on drums, discs, and tapes. All of these
devices are designed to exist in only one of two states which we may associate with the
symbols 0 and 1. (See Figure 1-3.) These two states may be considered as binary digits or
bits (a contraction of “binary digits”) and are used to represent information. Thus the
number system employed is basically binary, but it is usually more convenient for
instructions and addresses to be “represented” in the octal or hexadecimal number
systems. Nonnumeric information (alphabetic and special symbols) in a computer is
represented in a binary code, and numbers are represented in one of two ways: in a
binary-coded decimal system (each digit coded in a fixed number of bits) or the decimal
numbers are converted into the binary number system (used in most computers primarily
designed for scientific work).

Figure 1-3. Examples of binary devices

Device "0" State "I"State

Current
pulse on
a wire

No pulse Pulse

Magnetic
field in a
magnetic
core

Clockwise Counterclockwise

Switch
Open Closed

4 Introduction to Digital Computers

1-3. Control and Operation of the Computer

While it is not necessary to understand such topics as binary arithmetic, the electronics of
digital circuits, or other topics fundamental to the design of digital computers in order to
learn to program in Fortran, a superficial understanding of the general operation of digital
computers will easily reveal the origins of certain rules and conventions incorporated into
the Fortran language. In reality, Fortran reflects basic machine characteristics to a greater
extent than most other languages.

The general schematic diagram of the computing system in Figure 1-2 is shown in a
little more detail in Figure 1-4. As pointed out in the last section, this system is broadly
divided into three units: central processing unit, memory, and input/output processor.
The central processing unit is further divided into two subunits: the arithmetic unit and
the control unit. The arithmetic unit is responsible for performing operations such as
additions, comparisons, etc., on the information in memory. The control unit is responsi
ble for interpreting the instructions sequentially in memory and directing the arithmetic
unit and input/output processor to perform the appropriate operations.

The concept of storing both the instructions (i.e., the program) and the data in the
same memory unit has been of utmost importance in the development of computing
machines. The very earliest computers employed hand-wired programs which made them
inconvenient to use. The brilliant mathematician John von Neumann proposed the stored
program concept which, coupled with the remarkable advances in electronics technology,
led directly to computing machines as we know them today.

Since the central memory plays such an important role in the operation of the
computer, a clear view of the organization of this memory is essential. Perhaps the most
vivid way of visualizing the memory of the computer is as a set of mailboxes called
memory cells, memory locations, or storage locations. This analogy is quite appropriate.
In each individual memory cell only one word of information may be stored at any one
time. This word of information may be either data (numerical or nonnumerical) or

Central Processing Unit

Figure 1-4. Schematic diagram of a simple computer (Solid arrows repre
sent information flow; dashed arrows represent control
signals.)

1-3. Control and Operation of the Computer 5

computer instructions. Each memory cell has its own individual address, and it is
common to refer to memory cells by their addresses. The word contained in the memory
cell appears as a binary number, and by superficial inspection there is no way to identify
whether this word is data or whether it is an instruction. The computer must be told
explicitly which memory cells contain instructions and which contain data. The control
unit of the computer will treat the contents of a memory cell (a word) as though it were
an instruction, and the arithmetic unit of the computer will treat the contents of a
memory cell as though it were data. Each individual memory cell (or word) contains a
fixed, preset number of digits, and that number of digits will limit the amount of signifi
cant information that can be stored in that memory cell. The instructions that are used
by the computer for the processing of information are constructed so that they deal with
memory-cell addresses.

As pointed out in the first section of this book, the digital computer is a sequential
machine. Its operation is a sequence of cycles, each of which consists of two phases: a
fetch phase and an execute phase. The fetch phase uses two registers in the control unit:
the program counter and the instruction register. The program counter is often referred
to by the more descriptive name of instruction address register, and it always contains the
address of the next instruction to be executed. At the beginning of the fetch phase, the
contents of the location in memory whose address is currently in the program counter is
loaded into the instruction register. Therefore the contents of this memory location will
be treated as an instruction. At the completion of the fetch phase the program counter is
incremented by one, so that it now points to the next instruction to be retrieved from
memory.

At the start of the execution phase, the control unit decodes the instruction and
issues specific commands to the various elements of the arithmetic unit. In performing its
operations, the arithmetic unit utilizes a register called the accumulator to contain the
data on which it is to operate. For example, a typical instruction might be to add the
contents of a specific storage location in memory to the current contents of the
accumulator. The instruction itself contains the address of the memory location involved
and a group of bits (called the operation code) whose pattern indicates that addition is to
be performed. The control unit relays the address to the memory addressing circuits in
order to retrieve the contents of the storage location, and activates the “add” circuit in
the arithmetic unit to achieve the desired result.

To illustrate the sequence of operations, suppose we examine the instructions
required to add the contents of two storage locations (specifically, at addresses 2749 and
1398) and store the result in a third storage location (specifically, at address 1972). Three
instructions are required

Instruction Explanation
LW,2749 “Load Word” copies the contents of the storage location at

address 2749 into the accumulator.
AW,1398 “Add Word” adds the contents of the storage location at

address 1398 to the current contents of the accumulator.
STW,1972 “STore Word” copies the contents of the accumulator into

the storage location at address 1972.

In the above explanations, note the use of the word “copies.” The instruction LW, 2749
in no way alters the contents of the storage location at address 2749. Similarly, the
instruction STW, 1972 does not alter the contents of the accumulator, but does obliterate
whatever was previously contained in the storage location at address 1972. Although not

6 Introduction to Digital Computers

specifically mentioned, the instruction AW, 1398 does not alter the contents of the
storage location at address 1398. These points can be summarized by the following rule.
Read operations on memory are nondestructive; write operations on memory are destruc
tive. Fortran follows this rule exactly.

To further illustrate the sequence of operations, suppose the three instructions are
stored in the memory locations at addresses 1027, 1028, and 1029. If the program
counter initially contains 1027, the sequence of operations is as follows:

1. The contents of the storage location at address 1027 are copied into the instruc
tion register.

2. The program counter is incremented by 1, giving 1028.
3. The contents of the storage location at address 2749 are copied into the accu

mulator.
4. The contents of the storage location at address 1028 are copied into the instruc

tion register.
5. The program counter is incremented by 1, giving 1029.
6. The contents of the storage location at address 1398 are added to the contents

of the accumulator.
7. The contents of the storage location at address 1029 are copied into the instruc

tion register.
8. The program counter is incremented by 1, giving 1030.
9. The contents of the accumulator are copied into the storage location at address

1972.

Many current computers could perform all these operations in less than ten millionths of
a second.

Of course, current computers offer far more features than illustrated by the
previous example, but their operations are basically straightforward. The examination of
these other features is inappropriate for a manual on Fortran.

1-4. Programming Languages

In the above ‘section we discussed how the computer would execute a program; in this
section we want to examine the preparation of a program.

Writing a program directly in instructions, as described in the previous section, is
said to be programming either in assembly language or in machine language. While this
approach is relatively straightforward, it becomes tedious, especially for large programs.
In essence the available instructions comprise the computer’s language, which we could
learn to speak but would rather not. Of course, the best solution would be for the
computer to speak our native language, which for most readers of this book would be
English. Unfortunately, this goal has not yet been achieved, although progress is being
made.

The current solution is to use an intermediate language that has some of the
characteristics in which problems are naturally expressed, but a language that is suffi
ciently rigorous to permit the computer to perform the translation from the program
written in the programming language to the instructions that comprise the computer’s
natural language. This situation is illustrated in Figure 1-5. The programmer must
translate the statement of the problem into statements in the programming language
Using a program known as a compiler, the computer translates the statements in the
programming language into machine-executable instructions, a process referred to as
compilation.

1-4. Programming Languages

Statement of
in English

Machine-executable
instructions

Fortran

Programmer Compiler

Figure 1-5. Role of Fortran

Since the statement of problems tends to differ from discipline to discipline, several
different programming languages have appeared, each with special characteristics that
make one language more attractive to some fields and disciplines than to others. In the
business field, COBOL (COmmon Business Oriented Language) has dominated, primarily
because its features enable large files of data to be manipulated readily. In science areas,
Fortran (FORmula TRANslator) has dominated, primarily because algebraic expressions
can be readily implemented. However, Fortran has enjoyed some use in business circles.
The last decade saw the introduction of several new languages, some of which are easier
to learn than Fortran, some of which are more powerful than Fortran, and some of which
accomplish objectives (text editing, for example) that Fortran was never designed to
accomplish. Nevertheless, Fortran continues to enjoy widespread use, and it will probably
continue to do so for the foreseeable future.

Since its introduction in the mid-1950s, Fortran has gone through an evolutionary
process that has enhanced its utility as a programming language. The last major extension
of the language occurred in the early 1960s. At that time, most operational versions of
Fortran were referred to as Fortran II. So many new features were added to the language
at that time that the name was changed to Fortran IV. Although the Fortran available on
some current machines is closer to Fortran II than Fortran IV, the bulk of the manufac
turers have implemented Fortran IV. Therefore, this text will be devoted almost exclu
sively to Fortran IV.

Although the American National Standards Institute (ANSI) has adopted a standard
for the Fortran IV language, the implemented versions available on commercial com
puters normally contain some (usually) minor variations or extensions. In a text such as
this, we shall tend to present what we, at least, feel are the more common implement
ations. However, at many points these discrepancies force us to use “double-talk” or to
insert hedging words such as generally or usually. Any uncertainties can be clarified by
consulting the manuals provided by the computer manufacturer, but these are written for
the experienced programmer rather than for the beginner.

A very simple example of a Fortran program is shown in Figure 1-6. This program
computes the surface area a of a cylinder with diameter d and height h, the appropriate
equation being

a = irdh

In the program in Figure 1-6, the first two statements assign numerical values to variables
D and H. The third statement embodies the equation given above with the asterisk (*)
denoting multiplication. The fourth statement instructs the computer to print the

3 Introduction to Digital Computers

I D=14.25
2 H=22,5
3 A= 3 • 1 4 1 fc ♦ O♦ H
4 PRINT.’ARFA = • . A
5 STOP
6 ENC

(a) Program

AREA = O.10C7275E 04

(b) Output

Figure 1-6. Example of a Fortran program

characters AREA = followed by the numerical value of A. The fifth statement, the STOP
statement, terminates execution of the program. The END statement informs the com
piler that there are no more statements in the program. We shall dwell on the distinction
between the STOP and the END statements in more detail in Chapter 3.

In Fortran, the statements in the program are executed sequentially, starting with
the first statement and continuing until a STOP statement is executed. The output from
the program in Figure 1-6 is written in exponential notation with E standing for “10 to
the power.” That is, the notation .1007275E04 actually means .1007275 X 104 or
1007.275.

1-5. Compilation

The statements in the programming language are translated into an equivalent set of
machine-executable instructions by programs known as compilers. Since this must occur

Load-and-go
compiler

Machine-executable
instructions corresponding

to user's program

Unused

Figure 1-7. Memory allocation for a load-and-go compiler

1-5. Compilation y

prior to the performance of any operation specified within the program, this act of
translation is generally referred to as the compilation phase.

Compilers come in two “styles,” one of which is referred to as a load-and-go
compiler. A load-and-go compiler reads the statements in the program, generates the
corresponding machine-executable instructions, and places them directly into another
area of memory (see Figure 1-7). During this process, the CPU is executing the set of
instructions that comprise the compiler. After processing the last statement in the
program, and storing the last machine-executable instruction in memory, the compilation
phase is completed. An instruction in the load-and-go compiler then directs the CPU to
the first instruction in the set of instructions generated from the user’s program, and the
execution phase begins. The CPU executes this set of instructions until all operations
called for by the user’s program have been completed. For any logical termination point
in the user’s program (such as a STOP statement in Fortran), the load-and-go compiler
generates instructions that direct the CPU to return to a predetermined location within
the compiler itself. When these instructions are executed at the end of the execution
phase, the CPU is directed to return to the compiler, thus terminating the execution
phase. At this point the user’s program has been completed, and the compiler can instruct
the computer to proceed to the next program to be run.

Instead of storing the generated instructions directly into memory, many compilers
produce the set of machine-executable instructions on punched cards, magnetic tape, or
other medium suitable for subsequent reentry of the information into the computer. The
sequence of phases is as follows (refer to Figure 1-8):

1. Compilation phase. The compiler is entered into memory, followed by the
statements written in the programming language (these statements are called the
source program). The compiler generates the machine-executable instructions
on some medium from which they can be subsequently reentered into the
computer. This set of instructions is generally referred to as the object deck.

2. Load phase. Before the set of instructions can be executed, they must be
entered into memory. The loader is a small program that reads the instructions
and places them in memory. Since the compiler’s task has been completed,
these instructions can be placed in the same area of memory that was used for
the compiler.

3. Execution phase. Upon completion of the load phase, the loader directs the
CPU to the first instruction in the user’s program.

As for the relative advantages of the two types of compilers, the following
observations are pertinent:

1. Although we will not consider errors in detail until a later chapter, load-and-go
compilers are generally able to provide the programmer more information
concerning errors, especially during the execution phase. Compilers that pro
duce object decks are poorer in this respect.

2. The load-and-go compiler resides in memory during the execution of the
program. Compilers that produce an object deck need not reside in memory
past the compilation phase, freeing this memory for use by the program. Thus,
larger programs can be run.

3. If the same program is to be executed several times, an object deck can be saved
and the compilation phase avoided in all except the first run. Since a load-and-
go compiler produces no object deck, the compilation phase must be repeated.
However, compile time for load-and-go compilers is generally short.

Although a number of other observations could be made, for small- to medium-scale
programs a load-and-go compiler has definite advantages, particularly with respect to the

Introduction to Digital Computers10

Statements written in
a programming language
(source program)

Figure 1-8. Schematic representation of compilation and execution phases
for a compiler that generates an object deck

error messages generated. Large users and programmers in production-oriented centers
prefer compilers that produce an object deck.

1-6. Batch Processing Systems

Computing systems can be divided into two broad categories with respect to orientation
toward users: batch processing systems versus conversational time-sharing systems. Since
batch processing appeared first chronologically, we shall consider it before considering
conversational time-sharing.

As the operational complexity of general-purpose computing systems continued to
increase, centers began to use professional computer operators to operate the machines
instead of permitting individual programmers to operate them. Furthermore, the load at
most centralized facilities is such that some jobs are almost always waiting to be run. The
programmer brings his program to the center, leaves it to be run by the professional
operators, and returns for it at some later time. The term turnaround encompasses these
steps. How long he has to wait (referred to as the turnaround time) depends upon a
number of factors: the current load on the center, the priority of his work, the running
time and memory requirements of his program, etc. The number of times he can have his
program run during a day is determined by the turnaround time. Centers at which the

■JQI nd LU 03
aqiaads aqj uo Buipuadap 'A/iqBi/s squba apoo paqaund siq±

■Qpoo aaiaeaeqa ubjijoj isoidA} SMoqs pjeo paqound /BaidAj \/ 01'I sjnBj-j

GEESSEEEEEEfiEfifiESEfiEEEESESfiBEEEEEESG6SE|ESEEEEE|EBSEEEEE|EEESSfiEGEE66S|BEEEBEEEB

9 9 9 9 9 9 9 ||||||||||||P||||||||||| 9 9 9 9 9 9 9 I 9 1 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 |9 fl 99............ 9 9 9 9 1 9 9 9 9 9 9 9 9

99999999|99999|99999|99999|9999999999!9999|9999999|99999999|9999999999999|999999

SMoy
qounj jaqwnN

ZZZZZZZZZZZZ|ZZZZZ|ZZZZZ|ZZZZZ|ZZZZZZZZZZZZZZZ|ZZZZZZZ|ZZZZZZZZ|ZZZZZZZZZZZZZ|ZZ

0 0 G 0 0 0 0 min OOOOOOOOOOGOOOOBOO|0000000||||||||90000000000000000000000900000900|

■mu i mmm
mm i mmm

_________ ‘-■OSi n-)> ' .i?v s z-:? ZAXHAniSaOdDHNlXriHDJJiIJaU

J ■<— A SMO^j
/< Zqounj auoz

■<— po3j o; aidoad
19 9«

jo; buijuijj

aqj TI PUE II ‘sawj auoz oaaj uiaq; BAoqE aAEq smoj jaquinu ua; aqj -g oj q ujojj
jaquinu Xue Suquasajdaj joj s^aoj t(jaquinu„ ua; suisjuoo pJEB pjEpusjs aqjj ’uoijEnjound
jo ‘sjaquinu ‘sjajjaj jaqpa—uoi;eujjojui jo siajBEJEqa 08 PIOLI UB0 PUB suuirqoo jbbijjba
Og ssq y -uimpaui jndjno/jndui jo adXj apjESJaA puB dcaqo e si piso paqound aqj (‘so£6I
aqj oj qasq sajsp jpsq pjso umtqoa-Q8 9U1) ‘snsuao 0681 3141 J° uoijEjrduioo aqj ui asn
joj pjsa paqaund jo adXj siqj oj oissq sjdaouoo aqi padojaAap oqA\ qqjapojj ueujjbjj -jq
jajjE pauiEU ‘pjEO qiuaqojj paqEa-os aqj si siqi ’01’l 9-inSij ui paiEJjsnqi auo aqj se qans
spjEO paqound jo ujjoj aqj ui paniiuqns 8je suiEjgojd ‘g-j amSiq jo majsXs aqj uj

•sasodjnd jno joj ooyjns qiA\
q jnq ‘uopEJnSijuoa jeuidjiuj XpAijEjaj e si siqjj ’uoissnosip jno jo sisEq aqj se g-j ajnSiq
ui uiaisXs aqj asn qsqs bm ‘uoqEjado jo apoiu Suissaaojd qojsq aqj SuiuiEjdxa uj

•jajjaq XiqEJapisuoo op sjajuao
Xueui qSnoqqs ‘[Ensnun iou bje Xep jad ssaj jo spunojEUjnj jnoj oj pajiuiq si jauiuiEjgojd

Buissaooad qoieq joj uopejnBpuoo luqjsAs '61 a-mBi-i

LL siuajsAs Buissaaojj qojeg -gq

12 Introduction to Digital Computers

punched card is arranged so that a punch in a single number column will represent digit;
by making two or three punches in a single column it is possible to represent any letter of
the alphabet or one of the special characters. This is seen vividly in Figure 1-10. The
symbolic language of the punched card is automatically translated by the computer into
binary information for its internal use.

In a batch processing environment, a supervisory-type program often referred to as
the operating system, executive, or monitor is responsible for directing the computing
system through whatever sequence of events is necessary to process the job, as illustrated
in Figure 1-11.

Figure 1-11. Role of the monitor

1-6. Batch Processing Systems 13

The programmer submits his program along with any necessary control cards with
which he informs the operating system as to the nature of his program and what actions
will be necessary to process it. Figure 1-12 illustrates a typical deck complete with
control cards for processing a Fortran program. In computer terminology this complete
deck is called a “job.”

In the deck illustrated in Figure 1-12, each control card begins with the character $.
The $JOB control card indicates the beginning of a new job. The programmer’s name is
given along with his identification number for bookkeeping purposes, an estimated
maximum run time (1 minute), and an estimated maximum for pages of output (20
pages). Should this program run more than one minute or print more than 20 pages of
output, the job will be “aborted,” i.e., terminated, and the next job begun.

The next control card, SFORTRAN, indicates that the programmer is submitting a
Fortran program. In response to this card, the operating system directs the CPU to copy
into memory the Fortran compiler from an auxiliary storage device. Once this is
completed, the statements comprising the Fortran program are processed. The LIST
option on the SFORTRAN card instructs the compiler to list the source program as it is
being compiled. If the compiler produces an object deck, it will be written into a
preassigned area on the auxiliary storage unit.

Encountering the $LOAD card, the operating system copies into memory the
loader from the auxiliary storage device. The loader in turn copies into memory the
object deck from the auxiliary storage device. If a load-and-go compiler were used, this
step would be unnecessary.

Upon processing the $EXECUTE card, the operating system directs the CPU to the
first instruction in the program. If the Fortran program contains any READ statements,
the actual READ operation does not occur until the program is executed. The program in
Figure 1-12 is identical to the program in Figure 1-6 except that numerical values for D

/14.25 22. b ~
/^EXECUTE

/5L0AD
/ tn

/ .TUF
/ PRINT»‘AREA ='»A

/ A=3.1416*Ii*H " ~
/ READ.lGH

/^FORTRAN LIST
y§JOB JOE KOLLAGE.IH=1105.50003.TIME=1»PAGES=20
/ I I III II I II III

III II Illi I I
OOB8BOt)DODOOOOOOOOOO|000<I ^OOO|||0||OOOOe|0000|Otl|OOIIOOOCIOOOOOOOOOt!OODOOtlCIOOtlOOD
, , , , , [, I I 1,1 „ „ u „ I lnl II ;i „ n n ><>■ ii 11 :i n :i s » « « i> » n »*• " » « “ « « ■' » " « >' « >'11 “ 1111» 111111 " ’> - '>'i " 'i " M

222|222222222|22?22222222!222222!2722222222222|2|2222222222222222222222222222222

|33333333333333||333|3333333|3333|||33333|33333333333333333333333333333333333333

4444444444444444444444|4444444444I444|44444444444444444444444444*444444444444444

55555555555|5555555|5555555|5|55555555|555555|5555555555555555555555555555555555

it|tiitiltlSBtltitil>tit|StStSSStSSStC6t|ESSStSS|SS6SS5BSS6SStSSS6S6tS6SSS6S((Stf

7777777777777777?7|777777377771?T7777777?7|1|T77777T7T777J77717T77777J7777777737

■ tt(|tg||BIIBIItl8ll888Bllfl8B888B8BB8flflBBB8a0fl8O8flfll888B84l8888888888888888Elflflfl8B

Figure 1-12. Typical Fortran deck with control cards

14 Introduction to Digital Computers

and H are entered via a READ statement. Therefore, one card containing the two
numerical values is placed immediately after the SEXECUTE card.

Upon completion of the job, the operating system proceeds to the next control
card to ascertain what other actions are needed. The SFINISH card imorms the system
that nothing else is to be done. Were another job waiting to be run, the SFINISH card
could be removed and the next job immediately fed into the card reader.

While the batch processing system described in this section is fairly representative
of one used on small- to medium-size computers, larger computers provide much more
flexibility and capability in manipulating the processing of jobs to achieve maximum
efficiency. However the basic process, at least as far as the programmer is concerned, is
little different from that presented here.

One user might find this mode of operation very convenient, another might find it
very inconvenient. Anyone who is running a large problem, or a problem that runs a long
time, is generally content to leave his job for someone else to run when his turn comes.
For the small user whose program is very short and runs quickly, the waiting time
between job submission and return is, to say the least, inconvenient. Conversational time
sharing is a more attractive alternative.

1-7. Conversational Time Sharing

The basic idea behind conversational time sharing is that several users have programs in
progress simultaneously on the same computing system. In the simplest implementations,
the only components needed in the computing system are the CPU, memory, some
auxiliary storage, and a teletype for each of the users. Figure 1-13 illustrates the
configuration of a conversational time-sharing system supporting four users simultane
ously. The operating system occupies a region of memory, and the remainder is divided
among the four users of the system.

In addition to receiving his proportionate share of the system’s memory, each
programmer gets his proportionate share of the central processing unit’s time, which is
divided into small increments called slices. A user receives the processor’s undivided
attention for one time slice, but then receives no attention over the next three time slices.
Therefore, he is receiving 25 percent of the processor’s time minus the small overhead
entailed in switching from one program to the next. These time slices are so small that
each programmer feels he has the computer’s continuous services. Although his program
runs slower (as measured by the “clock on the wall”) than it would if he were the only
user, this is more than offset by the added convenience of being immediately able to get
his fraction of the machine’s services. He needn’t wait to have the entire computer at his
service.

Although conversational time-sharing systems are commercially available in config
urations similar to the one in Figure 1-13, machines with larger configurations can offer a
wider spectrum of services. Large conversational time-sharing systems can simultaneously
serve fifty or more users. If a large auxiliary storage unit is available, each user can be
assigned some space in which he can store programs or data to be available the next time
he uses the system Large systems generally offer other programming languages in
addition to Fortran.

In many systems the communication between terminal and computer is over
telephone lines; this permits the user to be located hundreds of miles from the computer.
When he wants to use the computer, he dials its number in the same manner that he
places other calls.

1-7. Conversational Time Sharing 15

(a) Configuration

Operating
System

User Area 1

User Area 2

User Area 3

User Area 4

(b) Memory allocation

Figure 1-13. Small conversational time-sharing system for running Fortran

To illustrate the conversational nature of the dialogue between the user and the
computer, a typical teletype printout is shown in Figure 1-14. All computer responses are
underlined. In the left margin, numbers have been added to facilitate explanation of the
printout.

1. After the call has been initiated, the computer responds with a message identi
fying the system along with other data of general interest such as the time of day and the
number of other users.

2. The user must enter his identification number for bookkeeping purposes. To
prevent the unauthorized use of this number by others, a password that is not printed on
the teletype output must be entered. A proper identification number followed by an
improper password will not be accepted as valid.

3. The user informs the computer that he wants to run a Fortran program.
4. By entering NEW, the user indicates that the program is to be created at the

terminal.
5. The first file name, JOHN, that is entered is not accepted because the user

16 Introduction to Digital Computers

7 (HILLBILLY TIME-SHARING SERVICE
(ON AT 10:27 TTY: 07

(ENTER USER ND: X547
2 < ENTER PASSUDRD :

3 SYSTEM' FORTRAN

4 OLD DR NEU? NEU

NEU FILE NAME: JOHN

INVALID FILE NAME
FILE NAME IN USE

NEU FILE NAME : MARY

READY

(10 ACCEPT’D’H
\ 2 0 A=3.141o*D*H

6 < 30 PRINT,"APtA ="jA
) 40 STDP
(50 END
/ SAVE

7 <
t READY

/ RUN

1? 14.25’22.5
8 \

\ AREA = 1 0 07■23

\ READY

(BYE
9 1

(OFF AT 10:51

Figure 1-14

already has a file by that name in the system. The name MARY is acceptable. Upon
completion of the necessary housekeeping chores associated with creating a new file, the
computer types READY to inform the user that he can proceed.

6. The Fortran program is entered from the terminal. Many systems scan the
statements for syntax errors as they are entered, thus indicating errors immediately so
that they can be corrected before proceeding.

7. By entering SAVE, the user instructs the computer to store a copy of the
program on the auxiliary storage unit. Upon completion, the computer again types
READY.

8. The command RUN instructs the computer to execute the program. The
Fortran program in Figure 1-14 is identical to the one in Figure 1-6 except that the values
of D and H are entered via an ACCEPT statement. Upon processing this statement during
execution, the computer types the ? character, and then the programmer enters the
appropriate numerical values. The answers are then typed by the computer as they are
generated. Upon completion of the program execution, the computer again types
READY.

1-8. Peripheral Devices 17

9. When the user has completed his work at the terminal, he enters BYE and the
computer changes his status from an active to an inactive user.

Most time-sharing systems provide the programmer with more features than are used in
the example in Figure 1-14. Programmers can readily add to programs or make changes
using editing features available at the terminal.

For the small or occasional computer user, the conversational time-sharing mode of
operation is far more desirable than batch processing. For this reason the popularity of
conversational time sharing has increased rapidly, and probably it will increase even more
in the future. Batch processing is attractive only to the user with a very large program
that requires virtually the entire machine in order to run it and to the user whose program
runs so long that the wait at the terminal would approach the turnaround wait in the
batch processing environment. The number of small users far exceeds the number of users
in the later two situations.

1-8. Peripheral Devices

A peripheral unit serves one of two functions: as a programmer communication device or
as an auxiliary storage unit. In this section we shall give a brief description of several
peripheral devices and their use in computing systems.

In time-sharing systems the teletype or typewriter is a very popular unit. Although
these units operate at the rather slow speed of 10 to 30 characters per second, they are so
inexpensive that in some cases a single programmer can be provided with a terminal for
his exclusive use. Although they are most popular with time-sharing systems, many batch
processing systems permit programs to be submitted over these units. In these systems,
editing features must be available at the terminal to permit the programmer to make
corrections readily without having to reenter the entire program.

In many cases the main disadvantages of teletypes or typewriters are their low
output speed and the noise levels associated with their operation; both of these can be
eliminated by using a cathode-ray tube unit. In simplest terms, this device consists of a
keyboard for entry of data and a screen similar to that of a TV except that only
characters can be displayed. These units are competitive in price, but they do not produce
hard copy, i.e., something that can be saved if desired.

In batch processing systems the most popular medium for the preparation of
programs has been the punched card, as illustrated in Figure 1-10. Large computers are
equipped with on-line card readers that can read cards at rates of 1000 cards per minute
or higher and on-line card punches that can punch cards at about half this rate.
Programmers punch cards off-line using a device called a keypunch machine. To eliminate
the expense and bother of cards, some large centers are currently considering reusable
cassette tapes as replacements for cards. To what extent this will prove successful is
uncertain at this writing.

The most important method for getting information out of a computer is via
high-speed printers. A photograph of a high-speed printer is shown in Figure 1-15. These
printers are set up to print an entire line of information rather than a single character at a
time as is common in most typewriters. Many of them are capable of printing rates up to
1200 lines a minute. The paper used in the high-speed printer may be of a special format
for handling accounting information, statistical reports, warehouse data, etc., or it may be
plain unruled paper in which the programmer is allowed to use his own individual format.

A second major means of communicating with a digital computer is via a roll of
magnetic tape such as is illustrated in Figure 1-16. Magnetic tape has two major

Introduction to Digital Computers18

Figure 1-15. High-speed printer capable of 800 iines/minute (Photo cour
tesy of J. R. Langley.)

advantages which make it highly desirable for use with digital computers. The first is that
it can be read into the computer at extremely rapid rates. Some computers are capable of
reading 120,000 characters per second from magnetic tape, which is approximately a
hundred times faster than is possible from punched cards. The second major advantage is
that a very small amount of tape can record huge amounts of information; e.g., a single
10 1/2-inch reel of tape can hold the contents of 250,000 punched cards. This magnetic
tape is very similar to the type of tape used in home tape recorders. It is a plastic ribbon
with an iron oxide coating that can be magnetized by external heads. A tiny area of the
iron oxide coating can be magnetized to represent a “1” in the binary code, and if it is an
unmagnetized area, it can be used to represent a “0.” A pattern of symbols can be
arranged in vertical columns on the tape in a manner very similar to that of the punched
card. The magnetic tape symbols that are commonly used are “pure binary” and normally
can be read directly by the computer. This allows magnetic tape to be used as a
computer’s external memory. The following analogy between magnetic tape and books is

1-8. Peripheral Devices 19

Figure 1-16. Magnetic recording of binary coded decimal information
(Reprinted by permission from IBM Magnetic Tape Units,
Publication No. A22-6589-1, ©by International Business
Machines Corporation.)

often used: the magnetic tape provides a sort of computer library, just as an individual’s
personal books provide a source of external memory for the individual. Magnetic tape is
relatively inexpensive and it may be easily erased and reused.

One type of storage device used by the computer which might fall into the category
of an input-output device to the central memory of the computer is the magnetic disc.
These discs look like large phonograph records and have a surface that can be magnetized.
Very large amounts of information may be stored on the magnetic surface of these discs,
and they provide a type of external memory that is very similar to magnetic tape. The
main advantage of the disc is that it transfers information into and out of the computer
much more rapidly than is possible from magnetic tape. A magnetic drum offers similar
advantages.

Another type of input-output device which has gained large usage in business work
is magnetic ink. The most common example of magnetic ink is the coded personal check
which many people have in their bank checking account, and this is illustrated in Figure
1-17. Magnetic ink can be “read” in much the same manner as magnetic tape, but it has
the additional advantage that the magnetic ink can be read by people as well as by
computers.

The optical scanner is another type of input device. The scanner is a device which
can read typed or written numbers and words, not just those printed in magnetic ink. The
primary advantage of such devices is that they eliminate the manual translation of
information into special computer codes. Optical scanners are still in a rudimentary stage
of their development; they work by allowing a photoelectric cell to scan material and
convert characters into electronic pulses which are compared to patterns that are already

20 Introduction to Digital Computers

stored in the computer’s memory. As their development progresses, optical scanners will
provide a very important adjunct to the use of the computer, and it will be much more
feasible for individuals to communicate directly with the computer.

This section has by no means covered all types)f peripheral units. For example,
paper tape units were once very popular, but they have virtually disappeared except on
very small systems. Incremental plotters enable the computer to prepare line drawings. In
effect the list is almost endless, and it is steadily growing.

2
he Fortran Statement

The previous chapter introduced the role of automatic-programming languages. It will
be the function of this chapter to illustrate the elementary programming concepts
associated with Fortran. The main thrust of all the material presented in this chapter will
be toward the development of skills related to the writing of simple arithmetic-type
statements in Fortran. it is not the purpose of this chapter to try to develop skills in
writing complete programs or even complete sections of programs; rather, the intention is
to write statements to carry out simple, specific arithmetic calculations. In order to do
this it will be necessary to gain a clear understanding of the use of constants, variables,
operations, expressions, functions, and correct statement layout in Fortran.

While much of the material presented in this and subsequent chapters is applicable
to all versions of Fortran, all of this material will be developed in terms of its application
in Fortran IV. This is implied throughout the book unless stated to the contrary.

In studying the material in this chapter, it is strongly recommended that the
student pay special attention to the distinction between integer and real. In fact, this
distinction is so important that the final section of this chapter is dedicated to this topic.

2-1. Fortran Constants

In the working of everyday problems in science and engineering it is always necessary to
make use of numerical constants. Upon a little reflection it becomes evident that there
are inherently two types of constants involved in what we do: numerical constants related
to the counting of quantities, and numerical constants related to the measurement of
quantities. In our day-to-day usage of these two types of numbers we normally switch
back and forth between them without really paying much attention to their inherently
different nature. The digital computer in its operation, however, will make quite different
usage of these types of numbers. They must be handled differently in the computer, and

21

22 The Fortran Statement

normally they are not interchangeable with one another. It is therefore necessary to have
a good understanding of these two different types of numbers.

When we refer to counting numbers, we indicate implicitly that they have no frac
tional part. For example, we count the number of apples in a barrel, the numbei of paper
clips in a box, the number of people in a room, etc., and we make no provision for fractional
parts. It is understood that the decimal point in any such number is fixed. These numbeis
are always integer numbers, and the decimal point is implied to be immediately to the
right of the last digit, although the decimal does not normally appear. In Fortran language
these numbers which have been indicated as counting numbers are referred to as integer
numbers which are a particular case of fixed-point numbers. Both of these terms are often
used interchangeably. Fortran also recognizes double precision and complex constants,
but these will be described only in Appendix A.

In Fortran, in order to distinguish integer numbers from other numbers, they are
simply written without a decimal point, and it is not even allowable to have a decimal
point associated with an integer number. It should also be noted that embedded commas
within a number are not allowed. Arithmetic operations can be carried out using integer
numbers, but the arithmetic is inherently integer in its nature; therefore, fractional parts
cannot be shown and will be dropped by the computer. For example, in integer
arithmetic if we divide 10 by 3 the answer is 3. Both positive and negative integer
numbers are allowable, and the largest integer number that is permissible varies widely
from one computer to the next. The appropriate limits are shown in Appendix B, but a
typical value is that of the IBM System 360 which allows up to 2147483647, or 231 - 1.
(This number is a result of the use of binary arithmetic in the operation of the computer.)

The following list is an example of some valid integer numbers:

576
-200

0
6

12345678
-127982

The following integer numbers are incorrect:

76.2
21.

10000000000
127,924

(decimal present)
(decimal present)
(normally too large)
(embedded comma)

The second type of number encountered in Fortran is the type of number normally
used for measuring. These numbers have the provision for expressing a fractional part.
For example, if we want to measure the dimensions of a desk top it may be 27.2 inches,
26.9 inches, or 27.0 inches. These numbers for measuring quantities not only must
express a fractional part, but it is also necessary that this part be preserved in any
arithmetic calculations. For this reason these numbers are more useful for actual compu
tational work in the computer. In Fortran these numbers are referred to as real or
floating-point numbers. The decimal point does exist, and its location inside the number
is not fixed but may have any location assigned to it by the programmer. The use of
floating-point numbers is very common in scientific work where a number is often
thought of as a fraction between 0.1 and 1.0 times a power to 10. In most systems the
magnitude (sign noi considered) of a floating-point number may be zero or somewhere
between approximately 10~76 and 1076. (See Appendix B for various actual limitations.)
The terms floating-point numbers and real numbers are normally used interchangeably.

2-2. Fortran Variables 23

Fortran numbers can only contain a finite number of digits, and thus they must be
rational numbers. Irrational numbers may only be approximated, i.e., represented by a
finite number of digits.

Fortran real numbers may have an integer value or they may have a fractional part.
Even if a real number has an integer value in Fortran, it must be written with a decimal
point to indicate that it is a real number. In the calculations inherent in Fortran the
computer will take care of all questions of “lining up” decimals before addition,
subtraction, etc., and this is not something with which the programmer must be con
cerned. Embedded commas are not allowed in real numbers, and real numbers are
considered to be positive if they are unsigned. It is permissible for them to be positive,
zero, or negative.

The following are permissible floating-point numbers:

96.7
-200.
.00001

-999999.

The following are not acceptable real constants:

2,782. (embedded comma not allowed)
+6 (no decimal present)

There is no restriction on the number of digits that may be written with a real con
stant, but no more than seven or eight significant figures will normally be retained by the
computer; therefore, there is no need to write more than approximately eight significant
figures on most systems.

It is also possible to have a real constant written in exponential format in which the
real constant is followed by the letter E and a one- or two-digit number (some versions
even allow a three-digit number) which may be positive or negative. This indicates an
integer power of ten by which the number is multiplied. This facilitates writing very large
or very small real numbers.

The following are acceptable real numbers in exponential form:

5.0E + 2 (5.X 102)
-50.E-21 (-50. X10’21)
-.7E2 (-.7X102)

12.345E21 (12.345 X 1021)

The following are not permissible real numbers in exponential form:

E + 2 (exponent alone not permissible)
5E - 1 (no decimal—rejected by most Fortrans)
5.E76 (too large for most versions)
5.1E2.1 (exponent must be integer)

2-2. Fortran Variables

Variables are used in Fortran to denote a quantity that is to be referred to by name rather
than by its appearance as a value. An arithmetic variable in Fortran refers to the memory
address of a number. The number in the memory address is the value of the variable, and
thus during the execution of a program this variable may take on many different values as

24 The Fortran Statement

different integer or real constants are stored in the address reserved for the variable NoU
that a constant is restricted to a single value, but a variable may take on many different
values.

Arithmetic variables in Fortran may denote the address of a number which may be
either an integer constant or a real constant, and therefore arithmetic variables are said to
have type, i.e., integer or real, depending on the kind of number which it names. (There
are also the possibilities of double-precision, logical, and complex variables in addition to
other types, but these are discussed in Appendix A.) There are two ways to denote the
type of a variable. One is an implicit method and the other is an explicit method. The
explicit method is based upon a type declaration (which is taken up in Chapter 5), and
this is the only way to handle the specification of complex, logical, or double-precision
variables. For integer or real variables the type declaration is normally not given expli
citly, but it is implied by the nature of the name of the variable. An integer variable, of
course, may take on any of the values permitted for an integer constant, and a real
variable may take on the values permitted of real constants.

The name of an integer variable is composed of from one to six letters or digits.
(The maximum allowable number of letters or digits may vary in some versions of
Fortran.) The Fortran compiler places no “type” significance on the arrangement of the
letters and digits beyond inspecting the first letter of the variable name. The first
character of an integer variable must be a letter and must be either I, J, K, L, M, or N.
Examples of acceptable integer variables are as follows:

JACK
NUTTY
LIT1
LIT200
JKL
KJL
LJK
I

Some examples of incorrect integer variables are as follows:

ANS (does not begin with the correct letter)
1*JK (contains a character other than a letter or digit)
M2.222 (contains a character other than a letter or digit)
NUTHOUSE (contains more than six characters)
21 (does not begin with a letter)

Rea* variables represent real constants inside the computer, i.e., as a fraction times a
power of ten. The name of a real variable may be composed of from one to six letters or
digits. The first character of the name of a real variable must be a letter, and it may be
any letter except I, J, K, L, M, or N.| From this it becomes quite obvious that the
Fortran compiler uses the first letter of the variable name in order to determine the type
of variable being named. Therefore, by proper selection of the first letter of the variable
name, there is an implicit declaration of variable type. Valid names for real variables are
as follows:

ANS
ANSWER

tin some Fortrans the character $ is considered to be alphabetic. It may be used in variable
names, and a variable whose first character is $ is considered to be real.

2-3. Operations 25

X
XI

• X2
ABC
CBA
BCA

Some examples of invalid names for real variables are as follows:

IANS (does not begin with a letter)
X - Y (contains a character other than a letter or digit)
XI23456 (contains too many characters)

It might be noted that the Fortran compiler will place no special meaning or significance
on the letters and digits selected to form variable names (other than to make the implicit
decision as to type specification). For example, when the computer sees A2 it does not
consider this to be A squared, A “times” two, or A with a subscript two, i.e., a2 ■ It simply
assumes this to be the name of a single real variable. This allows the programmer a great
deal of freedom in the selection of variable names throughout his program, and it makes
available a very large set of variable names. It also allows the programmer to make use of
mnemonic names. For example, instead of calculating a variable which will be assumed by
the programmer to mean answer, he may calculate a variable whose name is ANSWER.

One of the most common errors made by new programming students is the
incorrect selection of the first letter of a variable name.

2-3. Operations

Fortran provides for five basic arithmetic operations. These are addition, subtraction,
multiplication, division, and exponentiation, each represented by a separate and distinct
symbol

Addition +
Subtraction
Multiplication *
Division /
Exponentiation **

These are the only mathematical operations that are allowed in Fortran, and all other
mathematical operations must be built from these basic five. (The only apparent excep
tion to this is the use of special mathematical “functions” that will be discussed in a
subsequent section.)

Note that since the letter X is allowable as a variable name and since we do not use
a lowercase “x,” another character (the asterisk) must be used to indicate multiplication.
The exponentiation combination ** is considered as two characters but as a single
symbol, and it is never correct to write two consecutive mathematical operation symbols
in a Fortran statement.

These arithmetic operations are useful in combining constants, variables, and
functions (discussed later) into meaningful arithmetic expressions. The formulation of
these expressions is the subject of the next section.

The Fortran Statement26

2-4. Expressions

Expressions are used in Fortran to specify the computation of a numerical value. An
expression may consist of a single constant, a single variable, or a single function. In
addition, it may specify a combination of two or more constants, two or more variables, a
combination of constants’" and variables, or a combination of constants, variables, and
functions (discussed later). Table 2-1 contains some examples of valid Fortran expres
sions.

By using parentheses with arithmetic operation symbols, it is possible to build up
very complex Fortran expressions, and there are certain rules which the programmer must
follow in order to calculate the exact numerical value intended. The following rules
apply:

1. Parentheses may be used to indicate groupings just as in ordinary algebraic
manipulations. Parentheses force the inner operation to be carried out first (just as in
ordinary algebra), i.e., parentheses are cleared before other operations are performed.
There is no penalty for the use of unnecessary parentheses; therefore, the student should
not attempt to minimize the number of parentheses in an expression.

2. When the hierarchy of operations in an expression is not controlled by the use
of parentheses, the computer follows the following hierarchy:

(a) Exponentiation
(b) Multiplication and Division
(c) Addition and Subtraction

That is, all exponentiations are performed first, then all multiplications and divisions, and
finally all additions and subtractions. For example, the expression A + B * C is inter
preted as A + (B * C). Similarly, A **C * Bis (A ** C) * B.

3. In some cases the hierarchy rules stated above are not sufficient to specify the
order in which operations are performed. For example, the expression A/B/C could be
interpreted as either (A/B)/C = A/(B * C) or A/(B/C) = (A * C)/B, completely consistent
with the rules of hierarchy. This dilemma is resolved by adding the following rule:
Operations on the same level of the hierarchy are performed from left to right. Therefore,
A/B/C is interpreted as (A/B)/C = A/(B * C). The expression A/B * C is (A/B) * C =
(A *C)/B. Also note the seventh entry in Table 2-2.

Table 2-1. Valid Fortran expressions

Fortran Expression Its Meaning

J
54.40
X+ 26.5
SAM - BILL
X* Y
GO/1.234
Z * * 2
(X + l.)/(Y + Z)

The value of the integer variable J
The value of the real constant 54.40
The sum of the value of X and 26.5
The difference in the values of SAM and BILL
The product of the values of X and Y
The quotient of the values of GO and 1.234
The value of Z raised to the second power
The sum of the values of X and 1. divided by

the sum of the values of Y and Z
l./(X ** 2) The reciprocal of X2 _____

2-4. Expressions 27

Table 2-2. Invalid Fortran expressions

Conventional
Mathematical

Notation

Incorrect
Fortran

Expression

Correct
Fortran

Expression
x-y XY X * Y
x • (~y) X *- Y X * (-Y) or-X * Y
-(x + y) -X + Y - (X+ Y)or-X- Y

X ** I + 1 X ** (I + 1)
x3'+1 • z X ** Y + 1. * Z X ** (Y + 1.) * Z
x • y

X * Y/Z * Sz • s X*Y/(Z * S) or X/Z * Y/S

rx+/i314
(X +Y)/Z **3.14L « J ((X +Y)/Z) ** 3.14

x[r + y(r + z)] X(R + Y(R + Z)) X*(R +Y *(R + Z))
X

X/(1.0 +Y/16.2 +Z) X/(1.0 + Y/(16.2 + Z))
1 + -- y-

16.2 + z
yz xy X ** Y ** Z X ** (Y ** Z) or (X ** Y) ** Z

whichever is intended

4. In early computers, expressions were restricted to containing either all integer
variables or all real variables Mixing integers and real variables in an expression resulted in
mixed mode arithmetic which was not allowed. Most current systems have removed this
restriction, but there are some pitfalls for the beginning programmer as discussed in the
last section of this chapter.

5. One exception to the above definition of mixed mode arithmetic is that raising a
real variable to an integer exponent is not mixed mode arithmetic. Although real variables
can be raised to real exponents, only positive real numbers can be raised to real
exponents. For computational purposes, an expression such as 1,42'6 would be evaluated
using logarithms, i.e.,

1.42-6 = exp (2.6 • In 1.4)

The problem with negative numbers is that their logarithm does not exist. When numbers
are raised to integer exponents, results are effectively computed by successive multiplica
tion, thus avoiding logarithms. Therefore A ** J is computable for negative A but A ** B
is not. Even though B may not have a fractional part, it is a real variable, and the
operation will be performed with logarithms as indicated above.

As mentioned earlier, operation symbols may never appear next to one another.
Parentheses indicate grouping, and they- do not specify or imply multiplication. Some
mathematical operations must have a number of parentheses in order to achieve the
desired numerical result. Table 2-2 gives examples of invalid Fortran expressions.

The value of an arithmetic expression will be a number, and the mode of that
number will either be integer or real, depending on the mode of the expression itself.
When all of the variables and constants in an expression are of the same mode, the mode
of the expression will be the mode of the numerical quantity calculated as the value of

28 The Fortran Statement

the expression. For mixed mode expressions, the mode of the result will be real, a point
we shall examine in more detail in the last section of this chapter.

It is very important that the programmer develop a good “feel” for the specific
rules for the formulation of arithmetic expressions, because there are numerous specific
problems that can be created by an inadequate understanding of arithmetic expressions.
Some examples of these are appropriate.

The programmer should appreciate the difference between accuracy and precision.
As indicated in earlier sections, most digital computers work with approximately eight
digits of precision. This does not imply that every answer will be accurate to eight digits.
As an example, 0.12345678 minus 0.12345670 would give an answer of 0.00000008, a
result that has eight digits of precision but only one digit of accuracy.

Arithmetic operations, because of the way in which they are carried out, do not
obey all of the normal rules of arithmetic. For example, the expression
.5 + 12345678.- 12345670. would yield 8.0 if evaluated from left to right and 8.5 if
evaluated from right to left. The use of parentheses here would have an obvious advantage
in forcing the evaluation of the expression from right to left.

Another type of problem that might be encountered in a Fortran statement would
be the situation in which it would not be possible to get any answer whatsoever from an
arithmetic expression. For example, consider the expression X * Y/Z in which X, Y, and
Z have values of the order of magnitude of 1050. Without any parentheses the operation
could be performed by multiplying X times Y and the intermediate answer would be of
the order of magnitude of IO100. On many machines the multiplication would cause an
overflow. Overflow occurs when the resultant magnitude (that is, the exponent) of an
arithmetic operation exceeds the upper limit of numbers that can be accommodated by
the computer. It often occurs when the programmer attempts to divide by a variable
which may take on the value of zero. In the particular situation just noted, overflow
could be corrected by writing the expression as X * (Y/Z). It might also be noted that the
reverse of overflow is underflow, which occurs when a number is too small for the
computer. It is up to the programmer to avoid both overflow and underflow by properly
structuring his program.

There are some very special problems that arise in the course of performing
arithmetic in the integer mode. Division is the most common source of error in this type
of expression. In integer division a quotient having a fractional part will be truncated,
that is, dropped. For example, 10/3 is 3, 8/5 is 1, and -7/3 is -2.

The equivalent of the above situation can also occur in real arithmetic, where, for
example, the sum (1.0/3.0+ 1.0/3.0+ 1.0/3.0) yields the result of 0.99999999 instead of
1.00000000. This is caused by each of the individual parts of the expression being
evaluated as 0.33333333.

All of the above problems are nothing more than inconveniences, and in every case
they can be overcome by proper programming. The most important problem is to
appreciate and anticipate such difficulties.

2-5. Functions

There are many operations normally encountered in programming that involve rather
common mathematical functions. Examples of these are square roots, logarithms, trigo
nometric functions, absolute values, and exponentials. Each of these represents a mathe
matical function that can be evaluated by the programmer through proper use and

2-5. Functions 29

structure of the five basic mathematical operations. But since these are so commonly
encountered, the Fortran system has special “subprograms” or equivalent machine
language instructions which are useful for evaluating them. The exact list of functions
available in any version of Fortran will vary, but there are some functions that are
common to virtually all computers and compilers using Fortran. Some examples of these
are illustrated in Table 2-3, and a complete list is given in Appendix C.

The use of a Fortran function in an expression is very simple. The Fortran
function’s name is written, and it is followed by an expression enclosed in parentheses.
The compiler interprets this to mean that the expression contained in parentheses will be
computed according to the function. As an example, suppose it is necessary to compute
the natural logarithm of a variable X. This could be written as ALOG (X).

It is possible that the argument of a function may be an expression involving other
mathematical operations and/or functions. In most cases (and in all the functions except
IABS shown in Table 2-3) it is necessary that the expression which comprises the
argument of the function be a real expression, and the functional value computed will
appear in real form.

There are restrictions associated with the arguments of most Fortran functions, and
these restrictions depend on the compiler and the specific computer installation. Typical
of these kinds of restrictions is the fact that the argument of the square-root function
may not be negative. When these restrictions on function usage are violated, the results
are unpredictable. In some cases erroneous values will be computed and used in the
program, and in other cases an error message may be generated and the program
stopped.

It might be noted that some Fortran functions are not available in the form of
subprograms but are translated into machine-language instructions. A simple example is
the absolute-value function. The distinction between these types of functions is of no
importance to the programmer.

Table 2-3. Some common Fortran real functions

Description Fortran IV Fortran II Comments/Restrictions

Exponential: ex EXP(X) EXPF(X)
Natural logarithm ALOG(X) LOGF(X) Argument must be

larger than zero.
Logarithm to base 10 ALOGIO(X) LOGIOF(X)

(not available on
all compilers)

Argument must be
larger than zero.

Square root SQRT(X) SQRTF(X) Argument must be
positive.

Trigonometric sine SIN(X) SINF(X) Argument in radians.
Trigonometric cosine COS(X) COSF(X) Argument in radians.
Trigonometric

arctangent
ATAN(X) ATANF(X) Result in radians

in first or fourth
quadrant.

Trigonometric
arctangent of (Y/X)

ATAN2(Y,X) not available Result in radians
in correct quadrant.

Absolute value ABS(X)
IABS(J)

ABSF(X)
IABSF(J)

Real function
Integer function

Note: X and Y stand for any real expression.

30 The Fortran Statement

2-6. Fortran Statements

The general statements that comprise a program in Fortran may be classified in the
following four categories.

1. Arithmetic assignment statements
2. Input-output statements
3. Branch or transfer statements
4. Informational statements

The statement that will be discussed in most detail in this section is the arithmetic
assignment statement with which a new value of a variable may be computed. In general
it is of the form A = B, in which A is a variable name written without a sign, and B is any
expression as discussed in Section 2-4. The arithmetic assignment statement is interpreted
by the Fortran compiler as meaning: evaluate the expression on the right-hand side of the
equals sign and store the numerical value computed in the memory cell reserved for the
variable indicated on the left-hand side of the equals sign.

From the above statement it is quite obvious that the equals sign in an arithmetic
assignment statement is not equivalent to the equals sign normally used in conventional
arithmetic and algebra. It is perfectly permissible, for example, to write a statement
N = N + 1, which means to take the old value of N, add 1 to it, and store it in the storage
location reserved for the variable N. This is quite obviously not true from an algebraic
viewpoint, but it is perfectly permissible to use such a statement in Fortran.

Since the computer will interpret an arithmetic assignment statement as an opera
tion in which the expression on the right will be evaluated and stored in the variable
location indicated on the left of the equals sign, it is therefore illegitimate to try and do
any kind of arithmetic operation on the left-hand side of the equals sign. For example,
X - Y = A + B would be an incorrect arithmetic assignment statement.

The variables involved in the expression on the right-hand side of an arithmetic
assignment statement will be read from memory and will not be destroyed, i.e., they are
still available for subsequent calculations. The numerical value of the expression evaluated
will be stored in the single-variable address associated with the variable on the left-hand
side of the expression, and consequently the old value of the variable on the left-hand
side of the arithmetic assignment statement is destroyed and is not available for subse
quent computations. It is also very important to note that all of the variables named in
the expression on the right-hand side of the statement must be available at the time the
arithmetic assignment statement is executed, i.e., all of the variables must have numerical
values available in their storage addresses. If not, an “undefined variable” error will occur
and be detected by some computers but not detected by others.

As pointed out earlier, some computers do not permit mixing of the modes of arith
metic that occur in an expression. It is always permissible, however, to “mix modes” of
arithmetic across an equals sign in an arithmetic assignment statement. For example, an
integer expression on the right-hand side may be set equal to a real variable on the
left-hand side of an arithmetic assignment statement. The reverse is also allowable. When
such a statement is encountered, the computer will evaluate the expression on the
right-hand side in the appropriate mode of arithmetic and then convert it to the other
mode of arithmetic before it is stored. One comment might be made about the conversion
of the results of real expressions to integer values. If an arithmetic assignment statement
is written to compute a real number which is to be converted to integer form before
storage, the real number always will be truncated past the decimal point. In order to
obtain rounding, a statement such as I = A + 0.5 is sufficient to round the real number A
to the integer number I if A is positive.

2-7. Statement Format 31

Table 2-4. Some valid arithmetic assignment statements

Meaning

v = 16
3 . aa = -— + —

x2 2x

a m.\ +

_ x(x2 + y2)
8 x2 - y2 + 2

x = (3 • 10" 12 + 2x4)1/3
z = cos x + y sin y
y = (tan x)'2

!new — Zold +

*new =*old + -le

* missing
Left side must be a variable; only one equals sign

permitted
Unequal number of right and left parentheses
Integer quantites raised to negative powers al

ways give a zero result; variable on left must
not be written with a sign.

Two operation symbols side-by-side are not permitted,
even though the minus sign here is not intended
to indicate subtraction.

Mixed modes in multiplication; not accepted by some
compilers

Left side must be a single variable.
The left side must be a variable name.

Statement

V = 16.

ALPHA =~3./X ** 2 + A/(2. * X)

A = QC * XM1 * XM2/(XM1 + XM2)

G — X * (X ** 2 + Y ** 2)/(X ** 2 - Y ** 2 + 2.)

X = (3.E - 12 + 2. * X ** 4) ** (1./3.)
Z = COS(X) + Y * SIN(Y)
Y = (SIN(X)/COS(X)) ** .2
1 = 1+1
X = X + .1 *E

Table 2-4 shows examples of arithmetic assignment statements, and Table 2-5
shows some errors which are commonly made in arithmetic assignment statements. A
very careful review of these two tables is important to the reader.

The other types of Fortran statements discussed at the beginning of this section will
be discussed in much greater detail during subsequent chapters of this book.

2-7. Statement Format

A Fortran program is a series of individual instructions or statements arranged in the
order in which they are to be encountered and executed by the computer. For batch
processing systems the arrangement of the statement on the card has become highly
standardized. Therefore, we shall consider these systems first, followed by time-sharing
systems.

Table 2-5. Some invalid arithmetic assignment statements

X= 3.Y + 2.
2.14 = PI = 1.

Z = ((X + Y) ** 2
-J = I ** (-2)

X= 1./-2. * Y

A = N * X ** (N - 1)

A * X = Y
SQRT(X) = X ** 0.5

32 The Fortran Statement

Batch Processing Systems. Normally there is one statement prepared for each
individual input card, i.e., there is a punched card (or its equivalent) for each statement
that is to be fed to the Fortran compiler. It is necessary for the programmer to write on a
Fortran coding form the instructions that are to be punched on the cards by a keypunch
operator. There are some general guidelines that must be observed in preparing these
Fortran coding forms for interpretation by the keypunch operator. A typical Fortran
coding form is shown in Figure 2-1. Each line or row on the programming form
corresponds to one card that will be punched by the keypunch operator. The two
arithmetic assignment statements shown in Figure 2-1 are assumed to be part of a much
greater program that will be run by the computer. The first statement calculates an
individual’s pay as being equal to his rate of pay times the time that he has worked, and
then the net pay that the individual will receive will be equal to his gross pay minus
whatever taxes he must pay and whatever other deductions he might have in his payroll
computation.

These two arithmetic assignment statements will each appear later as an individual
punched card. Their layout on the Fortran coding form is sufficient to illustrate the usage
of the various columns on the coding form, but a few general statements about the
program coding form are appropriate. Note that each row is marked off into a series of
individual spaces. On the coding form shown there are 72 such spaces in each row. Only
one symbol may be written in each space, and each symbol must be written separately in
its own individual space. It does not make any difference if the symbol is a letter, a digit,
a comma, a period, a parenthesis, or an arithmetic operation sign, etc. Each individual
symbol must have its own individual space. The reason for this is obvious when it is

C FOR COMMENT

^STATEMENT
NUMBER

1 5 6 7 10 15 20 25

FORTRAN
30 35

STATEMENT
40 45 50 55 60 65 70 72

. . 1 . . f. . 1 1 . . /.. 1 I 1 J ... 1 1 1 1 1 . . 1 .

. . . 1 . . (. . 1 1 1 . . _ d 1 1 . . 1 . . . 1. . _____ 1 _ . _ _1__.

. . _ 1 __ _ . . 1 1 . i . 1 11 . 1 1 1 1 .

. . . 1 1 1_ . . A . 1 1 1 . - _L 1 1 1 . , . . 1 1 1 .

. . . 1 . . _ . 1 1 ■__ .__ ,__ _____ . . . 1 . . _L J . .__ . . 1 1 . . .__ . 1 . __ ____ I __ ___ . 1 . . . __ 1__ .

28 P AY R AT,E * TIME , . . . 1 ■ . . . 1 11... . . 1 1 .

29 PAYN.ET. = .PAY - T AX DED.UCT , - - . . 1. ■ , . i . . . x 1 ■__ ■ ■ __ 1 . - . . 1 .__ 1 1 .

. 1 1 1 . , P 1 ... 1 1 . x .. 1 1 1 .1 ... 1 I ,

. 1 . . . 1 1 . .

. 1 . . ■ ■ 1 ■ ■ ■ . 1 ■ Jr . 1 x ... 1 1 1 | | 1 1 I .

. . . 1 1 X . ■ X 1 1 . j .. I 1 1 1 1 1 1 1 1 .. . 1

____ ... L 1 . ■ . . .1—__ __ ■ ... 1 ■ .1 . . . ■ 1 . ■__ .. 1 I _ 1 1 1 i

. . . 1 . 1 1 1 1 1 i i 1 । . ! j

... 1 1 1 1 1 1 1 1 1 ... i . , i ,

... i 1 1 1 1 1 1 1 1 1 1 1 ,

... i 1 1 1 1 t 1 1 1 .. . 1 1 . t , ,_____ 1

■ ■ ..a i-i i i i । । । । । । ।

—A_ __ __ ._____ _.___L—_ __ ._ A_ 1_._ !_ ._ ,_____ A_ • A 1_ 1 A > . . 1 | . | f | |

___ ■ ■ 1 __ ._ .. 1 1 1 1 1 ... 1 .1 1 1

. . . 1_________ 1 ■ ■ . . 1 1 1 1 1 ... 1 . . ■ 1 1 1

Figure 2-1. Sta temen t format

2-7. Statement Format 33

recalled that each line on the coding form will correspond to a punched card at a later
time in the development of the program, and consequently each individual space will
correspond to a punch on a card. It might also be noted in the statements shown in
Figure 2-1 that a number of blank spaces are present in the arithmetic assignment
statements. These blanks are ignored by Fortran (except in the Hollerith format specifica
tion discussed later).

Columns 1-5 of the typical Fortran statement are reserved for a statement number
which identifies an individual statement. It is not necessary that all statements have a
statement number nor is it necessary that these statement numbers follow any distinct
order or sequence. There are additional uses for column 1, but these will be discussed
subsequently. The actual Fortran statement itself begins in column 7 and continues to the
right but may not go past column 72. If it requires more characters to form the Fortran
statement than can be placed in columns 7-72, then it is possible to continue a Fortran
statement on the next line, i.e., the next card. Column 6 of the Fortran coding form is
provided for this purpose. If there is any character punched in Column 6 (except a 0 or
blank), it will serve as a “flag” to the Fortran compiler that this card is a continuation
card for the statement above.

It might be recalled from Chapter 1 that punched cards normally have 80 columns
on them. In Fortran programming, columns 73-80 of punched cards are not used. They
may be used to punch identifying characters and/or sequence numbers into the cards for
a direct indication of the numbered sequence of the cards. The Fortran compiler will
ignore any information punched in columns 73-80, and for this reason many coding
forms do not even show these columns on the coding form itself.

In general, Fortran programs will consist of a series of statements in the following
typical structure. First, an input section; second, a series of calculations performed on the
data read into the computer via the input section (these calculations may involve flow of
control statements and arithmetic assignment statements); and third, an output section in
which the results of the calculations will be obtained from the computer. All of these
sections may contain informational statements. Most of the statements involved in the
sections of the Fortran program will use the general format shown in Figure 2-1 (with a
few possible exceptions which will be discussed as they are encountered).

It is very important for the beginning programmer to get a firm understanding of
the typical card format for Fortran programming. It is equally important in the prepara
tion of his Fortran coding form that he be very particular and neat in the preparation and
writing of the symbols in the individual spaces on the form. For example, it is very
common to confuse a 1 with an z, a 1 with a /, a 5 with an S, a 2 with a Z, or a “zero”
with an “oh.” Many computer ihstallations require that the 0 be written with a slash
through it to avoid confusion, but the reader is cautioned that the opposite convention is
used at some sites, i.e., the zero is written with a slash. In computer listings in this text
the letter 0 appears without a slash; the reader should become familiar with both styles.
These individual details require the undivided attention of the beginning programmer
because any one of the above mentioned errors or violations of the programming rules
will be sufficient to reject the execution of an entire program.

Figure 2-2 illustrates a complete card deck for a simple Fortran program. Note the
appearance of statement numbers, comment cards, and continuation cards.

Time-Sharing Systems. In batch processing systems, the program is in the form of
a card deck. In order to add, delete, or change statements in the program, the program
mer simply locates the proper cards and makes the desired changes. In time-sharing
systems, no card deck as such exists, but the programmer must still be able to make
program modifications in a convenient manner, a process often referred to as program
editing.

34 The Fortran Statement

END

57
LI

SIQP__
FDRMATC HAROLD = ',Fl 0.4,5X,* ALPHA =',F14.4)
HRITE<6,57) HAROLD,ALPHA_________________________
5.12778)*HAROLD+1.457766)*HAROLD+Q.451134

ALPHA=< < < <2.44532*HARDLD+12.44512)*HAROLD~1.24511)*HARDLD-
:OME HERE IF HAROLD IS NEGATIVE___________________________ _______
GOTO 14__ _ __________________
2,44511) "HAROLD* 0.274333)*HAP.DLD+0. 742355____________________

ALPHA=<CC(1.52347*HAR0LD+22.1687)*HAROLD-0.012354)*HAPQLD+
COME HERE IF HAROLD IS POSITIVE
IF < HARDLD.LT.0.) G0TD643________
FORMATCFl0.0)_______________________
READ(5,28) HAROLD
.CONTINUATION CARDS.
THIS PROGRAM
II I I

III I I

ILLUSTRATES
I
II

STATEMENT NUMBERS,
III II

I I I I I

COMMENT
I I
III I

I I
I

CARDS,
II I

I
I I

I
00900c |oo|o90oooDOOono|||oi!|i)|o||i)|ii(iiig|iii|oiigii||ieiooiii|ti)oo»||iHiiioBOiitogii

2I22J2222|22?2222222222i22722|21222222222222|22|22222222222222122222222222222222

33333|3333333333333||33|33|3333|3|3333|33333333|3|33333|3|3333|3333333333333333I

S5555555S5555555555555555555|555555|5||S5|555|55555555||5555555555|S555S5S5S5555

I 9 I 8 8 !

99999999|999|99|999|99999|99999999999999999999|9999999999999|9999999999999999999

Figure 2-2. Card deck for Fortran program

To facilitate this process, each statement in the Fortran program for time-sharing
systems is given a line number (not to be confused with or equated to a statement
number). The line number is generally restricted to a five digit number and always
appears prior to the Fortran statement. In essence the line number is not part of the
Fortran statement, and it is present only to facilitate program editing.

Although some time-sharing systems adhere strictly to the statement format pre
sented earlier in this section for batch processing systems, many systems use a freer
statement format. As illustrated in Figure 2-3, the rules are as follows:

A comment line is designated by a C immediately following the line number.
A continuation line is designated by an ampersand (&) immediately following

the line number.

A blank column normally separates the statement from the line number.
A blank column separates the statement number and the line number, and

another blank column separates the statement number from the remainder of the
statement.

Unfortunately, these rules are by no means universal, so the reader should not be
surprised if his specific system does not follow them. Since these rules are not standard
ized, we shall in this manual always use the previously presented rules for punched cards.

In effect, the system maintains a program file that may be modified from the
terminal by the programmer. To facilitate editing a program, the line numbers are
generally entered in increments of 10, as shown in Figure 2-3. Editing is accomplished as
follows:

2-8. Integer versus Real 35

IOC THIS PROGRAM ILLUSTRATES STATEMENT NUMBERS? COMMENT LINES?
2OC AND CONTINUATION LINES.
30 ACCEPT.HAROLD
40 IF<HAROLD.LT.0.) GCJTD643
50C COME HERE IF HAROLD IS POSITIVE
60 ALPHA= < C((1.52347*HAR0LD+22.1687)♦HAROLD-0.012954)♦HAROLD+
70& 2.44511)♦HAROLD*0.274333)♦HAROLD*0.742355
SO GOTO14
90C COME HERE IF HAROLD IS NEGATIVE
100 643 ALPHA= ((■::<2.44532>HARDLD+12.44512)♦HAROLD-1 .24511 '■♦HAROLD-
110& 5.12778)♦HAROLD*1.457766)♦HAROLD*0.451134
120 14 PR INT57.HAROLD.ALPHA
130 57 FORMATC"HAROLD = ".Fl 0.4»5X."ALPHA ="?F14.4i
140 STOP
150 END

Figure 2-3. Fortran program for timesharing system

To add a statement, simply give it a line number appropriate to its intended
position in the program and type it in. The system will always maintain the
program file with the statements in ascending order according to the line numbers.

To delete a statement, simply type its line number and depress RETURN.
To change a statement, simply reenter it. In essence, only the last statement

entered with a given line number is retained.

Most systems provide special editing commands that permit listing the entire program or
parts thereof, resequencing the line numbers, linking one program file with another, etc.
For these, a manual for the specific system being used is required.

2-8. Integer versus Real

Before discussing the pitfalls for beginning (and experienced) programmers that stem
from the existence of integer and real variables in Fortran, some explanation as to their
origin may be enlightening. The tendency of Fortran to conform to the computing
hardware is the primary reason for the two modes of variables. For scientific computa
tions, numerical values can be represented in one of two ways (integer versus real) in
storage. In integer form the number is stored directly, but fractional parts are not
permitted. In real form the number is expressed as a fraction and an exponent, and the
storage location is partitioned so that both the fraction and the exponent are stored in
the same storage location.

Virtually all modern scientific computers use the binary number system as the basis
for performing numerical operations. We shall, however, discuss only the three character
istics of the binary number system that are pertinent to our present subject.

A decimal number without fraction can be precisely represented in integer format
in the binary number system. Arithmetic operations involving integer numbers can be
performed precisely if we recognize the fact that any fractional parts resulting from
divisions are lost. The equation

2 + 2 = 4

is true for integer variables but, as we shall see in the next paragraph, it is not quite true
for real variables.

The Fortran Statement36

To store a numerical value in real format, the decimal number is converted to
binary, the decimal point (or binary point, to be precise) is floated to obtain a fraction
and an exponent, and the result is stored. Unfortunately, very few decimal numbers with
fractional parts can be accurately represented in the binary number system. For example,
if the decimal number 0.1 is converted to binary, the result stored in real format, and the
value in storage converted back to decimal, we would obtain the number
0.0999999930295- from one specific commercial computer. While the result is close to
0.1, it is not exactly 0.1. If we add 0.1 (as stored) to itself ten times and then have the
computer check to see if the result is 1.0, the answer is no. Similarly, using real
arithmetic, the equation

0.2 + 0.2 = 0.4

is not quite true. The error is typically in the seventh or eighth decimal place, which is
negligible in most calculations except for counting purposes. In counting, if we add 1 to
itself ten times, the result had better be exactly 10, not almost 10. Since counting
numbers never have a fractional part, and since integer arithmetic is exact, integer
variables and constants should always be used for counting. Integers should be used
whenever fractional parts will not be encountered.

For many constants in Fortran, the integer and real expressions have nearly the
same appearance, but results can often be significantly different. Consider the following
two examples:

A ** 2 A ** 2.

Although these two expressions are quite similar, the difference between them is very
significant. The exponent in the expression on the left is written without a decimal point,
which defines it to be integer. The exponent in the expression on the right is written with
a decimal point, which defines it to be real. We ask the question “What if A is negative?”
to see that this difference is significant. The expression on the left is a real number raised
to an integer exponent, i.e., A ** J, which is computable for all values of A, positive or
negative. However, the expression on the right is a real number raised to a real exponent,
i.e., A ** B, which is computable only for positive A. The fact that the real exponent
does not have a decimal fraction is immaterial since the computer performs all arithmetic
operations in the binary number system without making such a test. If the exponent is
real, the evaluation is made according to the procedure for computing A ** B even
though B may in fact not have a fractional part. Therefore, in exponentiations, integer
exponents should be used inc/Z cases where the exponent does not have a fractional part.
A ** 2 is preferred over A ** 2. in all cases.

The prohibition on mixed mode arithmetic stems from the computing hardware.
Arithmetic units in computers do not generally perform operations on mixed variables.
Hardware logic is available to add an integer number to an integer number, to add a real
number to a real number, but not to add a real number to an integer number or vice
versa. A similar situation exists with respect to subtraction, multiplication, and division.
Exponentiation is usually performed by routines similar to library functions; therefore, a
real variable can be raised to either an integer or real exponent.

In view of this situation, most early Fortran compilers simply did not allow mixed
mode arithmetic. If the product of variables A and N had to be computed and the result
stored in B, two statements such as the following were typically used:

X-N
B =A * X

2-8. Integer versus Real 37

The numerical value stored in variable N is converted to real and stored in variable X by
the first statement (the content of variable N is not changed). The second statement
computes the desired product.

Mixed mode arithmetic applies only to an expression. It is always permissible to set
an integer variable equal to a real expression or a real variable equal to an integer
expression.

While most programmers follow the practice illustrated above, using two statements
to avoid mixed mode arithmetic, an alternate approach is to use the two library functions
INT and FLOAT, described below:

INT(X) Computes the integer equivalent of the real variable or expression
used as the argument

FLOAT(J) Computes the real equivalent of the integer variable or expression
used as the argument

In effect, the statement

X = N

in the above example is in essence

X = FLOAT (N)

with the function FLOAT inserted by the compiler.
Mixed mode arithmetic can be avoided in this example by using the following

statement:

B = A*FLOAT(N)

If the result must be integer, a statement such as the following can be used:

J = INT(A)*N

The INT and FLOAT functions are available in all versions of Fortran, and can be used
whenever the need arises.

As Fortran compilers continued to be developed, they steadily became “smarter.”
It was easy to insert a FLOAT or INT function and continue, instead of printing an error
message on encountering mixed mode arithmetic. However, instead of attempting to
decide which function would be more appropriate, most compilers simply insert the
FLOAT function, changing all mixed mode arithmetic to real arithmetic. The statement

B = A*N

became perfectly acceptable, being computed as follows:

B = A*FLOAT(N)

which is quite appropriate.
Unfortunately, the unilateral insertion of the FLOAT function does not always lead

to the most appropriate result. For example, the statement

J = A*N

is computed as

J = INT(A*FLOAT(N))

38 The Fortran Statement

That is, variable N is floated, the result multiplied by A using real arithmetic, and the
result (in real) converted to integer. An alternative approach would be to compute the
statement

J = A*N

as follows:

J = INT(A)*N

In this case the value stored in variable A is converted to integer, the result multiplied by
N, and the result stored in J. How do the two statements

J = INT(A*FLOAT (N))
J = 1NT(A)*N

compare? The latter statement does not require a conversion from integer to real, and is
therefore computationally more efficient. However, the important difference is that these
two statements do not always produce the same answer. Suppose A equals 2.5 and N
equals 3. The statement

J = INT(A*FLOAT(N))

computes a value of 2.5 X 3 = 7.5 = 7 (integer) for J, whereas the statement

J = INT(A)*N

computes a value of 2 X 3 = 6 for J. Which is correct? That depends upon the problem,
and it is therefore the responsibility of the programmer. If the value 7 is correct, the
mixed mode statement

J = A*N

is appropriate, but the second statement must be used when the value 6 is correct.
Another problem with the use of mixed mode arithmetic is that the insertion of the

FLOAT function is not consistent from compiler to compiler. In compilers that use real
arithmetic for all computations in a mixed mode expression, the statement

A= J/N*100.

would be computed as follows:

A = FLOAT(J)/FLOAT(N)*100.

Other compilers perform the computations as dictated by the hierarchy and left-to-right
rules discussed in Section 2-4, and they insert the FLOAT function only when a mixed
mode operation is encountered. For the statement

A = J/N*100.

the sequence of operations would be to divide J by N and multiply the result by 100.
Since J and N are both integer, their division does not involve mixed mode arithmetic.
Therefore the FLOAT function is needed only when their result is multiplied by 100.
Therefore, some compilers would treat the statement

2-9. In Summary 39

A = J/N*100.

as

A= FLOAT(J/N)*100.

Is the statement above equivalent to the statement below?

A = FLOAT(J)/FLOAT(N)*100.

Suppose J equals 2 and N equals 5. The first statement computes a result of 0.0 for A
(dividing 2 by 5 in integer gives a result of 0). The second statement computes a result of
40.0 for A. Which is correct? That depends upon the problem and is therefore the
responsibility of the programmer.

To summarize this discussion, mixed mode arithmetic is a convenient feature, but it
is not without its pitfalls. Many experienced programmers avoid its use, partly out of
habit, since it was forbidden on earlier systems, and partly because of the pitfalls
discussed above. The beginning programmer must be cautious.

One final note: the fact that the fractional part is always truncated when a real
number is converted to integer in Fortran seems unnatural to many students, primarily
because rounding is emphasized in many mathematics courses. In reality, there is a large
number of problems in which truncation, as opposed to rounding, is required. Consider
the following problem:

A boy takes $1.00 into a department store to purchase as many baseballs as
his money will buy. He discovers that baseballs cost 35</ each. How many can he
buy?

To solve this simple problem, we divide 100 by 35, obtaining 2 30/35 or 2 5/6. Do we
round (obtaining 3) or truncate (obtaining 2) for the answer? Truncation is appropriate
for this problem.

2-9. In Summary

This chapter has introduced Fortran statements in general and has presented a general
discussion of the arithmetic assignment type of Fortran statement. Fortran constants,
variables, operations, expressions, and functions have all been discussed along with many
of the individual rules that must be followed in using these Fortran elements. Some of the
numerous idiosyncrasies that may be present in many compilers have been mentioned.
Various compilers have been written by different people at different times for different
machines and with some variation in objectives. Specific limitations, rules, and regulations
for individual compilers are always available in the form of individual programming
manuals for compilers on specific machines. It is not necessary (or desirable) to get
involved in individual idiosyncrasies at this point.

After this chapter has been carefully read, the student should be thoroughly
familiar with the techniques and the rules governing the writing of arithmetic assignment
statements. The next chapter will make these arithmetic assignment statements the basis
of Fortran calculations and couple them with the necessary input-output statements to
write simple programs for a Fortran compiler.

40 The Fortran Statement

EXERCISES^

2-1. Write the following as Fortran integer constants:

-2,486 4X102 -16.4 86,487.04

2-2. Write the following as Fortran integer constants:

27 0 -2,726 5.86 X 102 -16,262.0

2-3. Write the following as Fortran real constants (using either decimal or expo
nential format):

1021 0.0000082t -102 26,286.3

2-4. Write the following as Fortran real constants (using either decimal or expo
nential format):

-27,2814 10T17 0.298612 27.83 X 104

2-5. Why are the following unacceptable as Fortran integer constants?

-121.8 5,241 27E214 29342641893

2-6. Why are the following unacceptable as Fortran integer constants?

27E-03 16.8 27,2434 1014

2-7. Why are the following unacceptable as Fortran real constants?

-2,871. 27.8E + 924 +21 6EO2

2-8. Why are the following unacceptable as Fortran real constants?

9.12-E01 281E3.2 -18,3424 16,221.3

2-9. From the following list of variable names you are to select those that are
integer variable names, those that are real variable names, and those that are unacceptable
as variable names.

(a) 2EASY (g) IDIOT
4(b) TWO (h) UNCLE

(c) IKE t(i) ROOT
(d) ANSWER G) A- B

t(e) ANSWER 1 (k) (LAST)
(0 TO. JO (1) I

2-10. From the following list of variable names you are to select those that are
integer variable names, those that are real variable names, and those that are unacceptable
as variable names.

(a) ADDITION
4(b) 23SKEEDO

(c) T

(g) MUST
(h) GAMMA
(i) COBOL

^Solutions to Exercises marked with a dagger f are given in Appendix E.

Exercises 41

(d) TEE
t(e) A * B

(f) (X)

t(j) JERK
(k) DIRTY
(I) GO-GO

2-11. Write Fortran expressions to accomplish the following:

t(a) a + b
c + d

(b) x3

TTTo

(e)
x + 2
y + 4

(0 i +/
k+ 3

2-12. Write Fortran expressions to accomplish the following:

(a) ■ + m k + n

+(b)
a + b

d
e

(c) 1
X3+ — (3! is 3 factorial)

(d)
3 + y + y2 + 4y3

t(e)
a c ■ d
b e-f-g

z
(0 y

io
1

2-13. Write Fortran expressions to accomplish the following:

(a) 2rrr2

(b) a + x[b + x(c + rZr)J

t(d) [KO]' '
(e) V +

42 The Fortran Statement

(0 (-~x+^+j-)4

2-14. State the numerical value of J that will be transferred to memory by the
following arithmetic assignment statements:

t(a) J = 5 *5/7
(b) J = 5 * (5/7)
(c) J = 2/3+ 2/3
(d) J = 2./3. + 2./3.

t(e) J = 2000 * (1999/2000)
(f) J = (2000* 1999)/2000

2-15. State the numerical value of X that will be transferred to memory by the
following arithmetic assignment statements:

(a) X = 5 * 5/7
t(b) X = 5/7 * 5

(c) X = 5. *5./7.
(d) X = 4 ** (3 ** 2)
(e) X = (4 ** 3) ** 2

t(f) X = 5./3. + 3./3.+5./3.

2-16. Write arithmetic assignment statements to compute the following:

(a) x = + sin (a/2)

t(b) x = cos(y) + x ■ sin(z)

(c) x = -sin3y

(d) x = cosz+2(y)

(e) x = V+3 + 2z2/6

t(f) x = y • sin (n/z)

2-17. Write arithmetic assignment statements to compute the following (log
denotes log10 and In denotes loge):

. . 1 + cos y(a) x = i----------7 1 - cosy

I 1 + cosy | t(b) x = 7----------I 1 - cos y |

z x , 11 + cosy I(c) x = log ---------+
11 - cosy I

(d) x = •?; ■ sin2(y) • cosz+2(z)

t(e) x = log|tany|

(f) x = y • log | arctan (z/3) |

2-18. Write arithmetic assignment statements to compute the following:

(a)
J0\1/2
7?yz / cosy

Exercises 43

t(b) x = (yy/2 (z)i+1 (eyy

(c) x = e~^y^13

(d) x = cos (e~ sin x)
. . 1 , 1
(e) x = t ~

\/sin y \/cosy

t(f) x = log 1
x/cosj

• log I e x I

2-19. Identify the error(s), if any, in each of the following arithmetic assignment
statements:

(a) X = I ** Y ..
(b) X-3 =Y *Z + 6

t(c) X = Y*-Z.+ 6.
(d) X = I + 3 = J + 4
(e) X=27Z

t(f) X = (Y + 3)** 2

2-20. Identify the error(s), if any, in each of the following arithmetic assignment
statements:

(a) 11 = X Y
(b) -X= (Y+ Z) * 12.

f (c) X * Y = I ** 2
(d) X = 2,763 * A
(e) 3X + I ** 3

t(f) X = (Y + 4)**2
(g) X = (-3.5* ABS(D + G))**B

3
Simple Fortran Programs

The previous two chapters have introduced the concept of automatic programming
languages and developed the basic tools that are necessary to formulate some of the
simpler individual statements of Fortran. The last chapter gave attention to the develop
ment of the arithmetic assignment statement, and it is the purpose of this chapter to
carry this development forward and to explain some of the other types of Fortran
statements. Based on this, some simple Fortran programs will be written. In this chapter
statements will be introduced that are sufficient to write only a very elementary type of
Fortran program.

It might be reemphasized that the procedures, formats, and rules given are those
that are peculiar to Fortran IV.

3-1. Format-Free Input Statements

If a problem is to be done only one time, all of the necessary data associated with the
problem can be entered into the Fortran program directly in the form of constants in the
individual statements. This is not normally done, however, since a digital computer is best
suited for doing repetitive-type calculations, and most problems encountered in the
application of digital computers are those in which the program is to be executed a
number of separate times on different data. This is usually handled by having the program
read the data associated with an individual problem from cards (or their equivalent) at the
time the program is to be executed. Constants are used in the program only for those
quantities that are in fact constant, i.e., they are not dependent upon the input data. If

■ the program is set up in this general format, the same program can be used for many
different sets of input data. This means that the Fortran program must handle the input
of data into the computer. This becomes a significant portion of the programmer’s task
and it will now receive our attention.

45

46 Simple Fortran Programs

The primary thing to appreciate in considering input statements is the fact that the
input data for the program may be entered into the machine from any number of
different input units, e.g., from card reader units, from magnetic tape units, from
paper-tape units, or perhaps even from a console typewriter. Furthermore, the individual
numbers which comprise the input data for the program may appear in different layouts,
i.e., formats.

In general there are two approaches to handling input and output statements: the
format-free approach and the format approach. Both will be presented briefly. It is
important to note that either one may be used in any given problem^:; the choice is up to
the programmer. The format-free approach is simpler and easier to use, and the format
approach is more general and more powerful.

First, the format-free approach. An input statement can take the form

READ, K,X,Y

where K, X, and Y comprise a list of variables whose value is to be read into the
computer. By implication K is an integer variable and X and Y are real variables. The
execution of this statement will cause the standard input unit for the computer, usually a
card reader, to read in a card and to scan this card for the numerical values to assign to
these variables. If the computer finds all three numerical values, then it will execute the
next statement in the program. If it does not find all three, it will read in additional data
cards until it has found three numerical values. These numerical values will be assigned in
order to K, X, and Y. The first numerical value should be. therefore, integer, and the
second and third numerical values should be real. The numerical values on the input
card(s) may be punched anywhere, but successive values should be separated from each
other by blanks or commas.

Several comments apply to this format-free approach

There is no need for the first numerical value to start in column 1.
A numerical value may not be continued across two cards.
Successive cards will be read until enough items have been found to satisfy

the requirements of the list part of the READ statement.
Any numerical values remaining on the last data card read for a particular

READ statement will be ignored.
The type (real or integer) of a data item should match the type of variable to

which it is being assigned.

For integer values either signed or unsigned integer constants are acceptable.
For real values either exponential or floating-point constants are acceptable.
Format and format-free input-output statements may be mixed within the

same computer program.

The general form of the format-free input statement is

READ, variable list

As indicated earlier, the value of the format-free statement is based on its simplicity and
the ease with which it may be used.

For input via the teletype, many time-sharing systems use the ACCEPT statement.

tThis assumes that the Fortran IV compiler in use by your computer center has available on it
both of these capabilities.

3-2. Formatted Input Statements 47

For example, to enter values for variables X, J, and C, the appropriate statement is

ACCEPT, X,J,C

Upon processing this statement the computer waits for the programmer to enter numeri
cal values for X, J, and C. Most terminals have a light or other mechanism by which the
user is aware that the system is ready to accept input. Many programmers precede the
ACCEPT statement with a PRINT statement to tell them which variables appear in the
ACCEPT statement.

The rules regarding entry of values for the ACCEPT statement are essentially the
same as for the format-free READ statement. That is, the numerical values are separated
by a comma or one or more blank spaces. Only integer constants may be entered for
integer variables, but either exponential or floating-point constants may be entered for
real variables. After all values have been entered and the RETURN key depressed, the
computer continues processing the statements in the program.

3-2. Formatted Input Statements

Perhaps the easiest way to illustrate the nature of the standard formatted input
statement is by way of example:

READ (5,297)K,X,Y
297 FORMAT (I10,F10.2,E20.7)

These two statements are interpreted in the following manner. The READ indicates
to the computer that data is to be entered into the computer memory from one of the
many possible input units and in one of the many possible data formats that might exist
on the typical input card (or its equivalent). The number 5 is a number whose value
specifies the particular input unit to be used. This is an assignment that is made in a more
or less arbitrary fashion with regard to specific machine configurations.

The 297 refers to the statement number of an associated FORMAT statement for
the input READ statement. This FORMAT statement is not a statement that is executed
by the computer; it is a statement which provides information to the computer telling it
the arrangement of the various items of data on the input card (or its equivalent). The
three variables in the list following the parentheses in the READ statement have the
names K, X, and Y. These variables are assigned values from the data card when the
READ statement is executed.

In statement 297 (the FORMAT statement) there are field specifications for the
variables in the READ statement.

The FORMAT statement dictates the layout of data on the input card (or its
equivalent), and there must be a format field specification for each of the variables in the
input READ list In the list shown, the variable K is an integer variable, and the field
specification associated with the variable K is given as 110. The 110 indicates that the first
variable in the list is an integer variable, and it will be found in the first 10 columns of the
input data card.

The variable X is a floating-point variable, and the F10.2 is the field specification
associated with the data layout for the value of X to be read into the computer. The F
indicates that X is floating-point, and therefore the field specification is for a real
number. The 10 indicates that the value of X will be found in the next 10 columns on the
data card, i.e., columns 11-20, and the .2 indicates that when the number is processed,

48 Simple Fortran Programs

the decimal point will be assumed between the numbers in columns 18 and 19, i.e., two
places will be found to the right of the decimal It is better programming practice to
actually write the decimal in the number on the data card rather than to rely on its
assumed location. If the decimal is explicitly written, it would normally appear in column
18, but if it is placed in any other column, its actual column location will override the
format specification given in statement 297. This freedom is, of course, limited by the
fact that the entire numerical value of X, including the decimal point, must be completely
contained within columns 11-20.

The variable Y is also a real variable, and it could have been given in the
floating-point or F-type of field specification. For sake of illustration, the variable Y is
shown here in an alternate type of real-number field specification—the exponential or
E-type of field specification. The E-type of field specification calls for a numerical value
plus an exponent raised to a power of 10. The 20 specifies a total of twenty columns for
the field, and the .7 indicates that seven places will be assumed to the right of the decimal
in the input number. The number must also contain an exponent giving the power of 10
by which the fractional part of the number is to be multiplied. As before, it is better
programming practice to actually write the decimal in the numerical value of Y on the
data card. The input information for this particular number might appear as .526E01
which would indicate the real number 5.26. Note in this instance that the number of
decimal places indicated in the input number is less than that indicated in the field
specification. This is perfectly permissible and the actual location will override the field
specification given in statement 297. Also note that the input number proposed did not
occupy the full 20 columns allowed, i.e., columns 21-40. This is permissible and perhaps
even desirable because it allows the programmer to leave blank spaces (within limits)
between his input data on the cards, and thus make the data easier for people to read.
Since blanks on the input data card will be read by the computer as zeros, all numbers on
the input card should be placed in the columns at the right of the field provided and all
blank columns should be at the left of the field provided, i.e., the input should be right
justified.

Summarizing, the individual input statements shown in the previous example would
direct the computer to go to input unit number five and read in a single card which will
contain the integer variable K and the real variables X and Y. They will be contained on a
single card (or its equivalent) whose format is laid out in the arrangement shown in
statement 297 of the program. The integer variable K will be contained in columns 1-10,
the real variable X will be shown in normal decimal notation in columns 11-20, and the
real variable Y will be shown in exponential notation in columns 21-40.

There are many modifications to the nature of input READ statements depending

Table 3-1. Formatted input statements

Input Unit Standard Form Alternate Form

Card reader, on-line
Magnetic tape (cards off-line)

Paper tape
Console typewriter

READ (j,n) list

READ n, list
READ INPUT TAPE j, n, list

ACCEPT TAPE n, list
ACCEPT n, list

Note: j stands for an integer whose value specifies the input unit, n stands for the statement num
ber of the FORMAT statement, and list stands for the input variables.

3-3. Format-Free Output Statements 49

on the individual compiler. More recent Fortran compilers have arrived at a single
standard statement for use as a formated input statement, and that is the preferred form.
Older Fortran compilers use different statements to identify different input units, and in
general, different computer laboratories have preferred input units for standard jobs. A
listing of possibilities is shown in Table 3-1. If the standard form of the READ statement
shown in Table 3-1 is available, then its use is preferred.

3-3. Format-Free Output Statements

The general procedures associated with output statements are much the same as those
presented in the previous sections on input statements. Again, there is a format-free and a
format approach.

Suppose that the three variables K, X, and Y are read into the computer as
indicated in the previous section, and an answer to a simple problem is calculated. It is
then desired to obtain from the computer both the value of this answer and the values of
K, X, and Y which were used to produce this answer. The format-free output statement
would be

PRINT, K,X,Y, ANS

The numerical values of these four variables in the output list will then be printed across a
page on the printer. Each value will be printed to full precision with blank spaces inserted
between values for clarity. Eight values are typically printed across an output page, but
this varies from one installation to another. Real numbers are normally printed in
exponential format with seven significant figures. Typical output for the above statement
might be

12 0.1623000 E 01 0.1000000 E - 01 0.4210000 E 02

When the PRINT statement has more output variables than may be printed on a single
line, output is continued on the following line.

The general form of the PRINT statement is

PRINT, variable list

There is also an output PUNCH statement which produces output on cards and has
the general form

PUNCH, variable list

It is also possible to produce explanatory messages in format-free output by
inserting the material within single quotation marks in the output variable list. For
example:

PRINT, ‘THE ANSWER IS’, ANS

would produce

THE ANSWER IS 0.4210000 E 02

This will be illustrated further.

50 Simple Fortran Programs

3-4. Formatted Output Statements

Using the earlier example, the formatted output approach would use the following two
statements:

WRITE (6,28)K,X,Y, ANS
28 FORMAT (1X,I1O,F1O.2,E2O.7,E2O.5)

The WRITE statement is very similar to the READ statement. The WRITE statement
directs the computer to write the variables using unit number 6. The layout o he
variables will be given by FORMAT statement number 28, and the individual variables to
be written are K, X, Y, and ANS.

For line printer output, the output FORMAT statement has one slight ditference from
the input FORMAT statement. The first column of an output list is used as a carriage
control indicator, and the carriage of the output printer (which will ultimately produce a
printed list of these variables) will be controlled by the character found in column 1. Here
an X-type format specification indicates that the first column is blank. The X-type field
specification is a convenient way to indicate blank spaces in the output list. The width of
the field specification for an X-type format is given in front of the X specification, and a
IX field specification makes the first column in the output list a blank. Having column 1
blank will produce an output list that is single spaced. It might also be noted that the
X-type format is not associated with any of the variables in the output variable list shown
in the WRITE statement.

The carriage control indicator does not apply to teletypes such as those used in
time-sharing systems, nor does it apply to card punches, magnetic tapes, etc.

The next field specification in the FORMAT list is the 110 specification associated
with the integer variable K, and the Fl0.2 field specification is for the real variable X.
The E20.7 is the exponential format specification associated with the real variable Y, and
the E20.5 field specification is for the output variable ANS. Since it is possible that the
size of the numerical value of the variable ANS is unknown, it is desirable to have it come
out in an exponential format to take care of extremely small or extremely large numbers.
The field specification E20.5 takes care of this and allows twenty columns with five
significant figures.

Summarizing these output statements, they indicate to the machine that it should
use output unit number 6 to list the four variables K, X, Y, and ANS according to the
output format given by statement 28. Statement 28 indicates that in the output record
the first column should be blank, columns 2-11 should contain the integer variable K,
columns 12-21 should contain the floating-point variable X with two places to the right
of the decimal, columns 22-41 should contain the real variable Y in exponential notation
with seven places to the right of the decimal and with the fraction to vary between 0.1
and 1.0, and columns 42-61 should contain the variable ANS in exponential format with
five places to the right of the decimal and with the fraction to vary between 0.1 and 1.0.

There are many alternate possibilities for output statements just as there are many
alternate forms for input statements, and alternate forms are shown in Table 3-2.

One additional comment about input and output listings might be appropriate. As
indicated earlier, there are more columns specified in many of the field specifications
than are necessary to contain the variable. For example, in the sample output listing it is
possible that the output variable X will require only four columns to contain the value of
the variable. If the variable X took on the value 8.10, then it could be held in four
columns and there would be six columns left over in the output field specification. In all
cases such as this the computer will right justify the output. This means that the
computer will take the output number and push it as far to the right as it can in the

3-4. Formatted Output Statements 51

Table 3-2. Formatted output statements

Output Unit Standard Form Alternate Form

Card punch, on-line
Printer, on-line
Magnetic tape (for off-line

printing and punching)
Paper tape
Console typewriter

WRITE G,n)list

PUNCH n,list
PRINT n,list

WRITE OUTPUT TAPE j,n,list
PUNCH TAPE n.list
TYPE n.list

Note: j stands for an integer whose value specifies the output unit, n stands for the statement num
ber of the FORMAT statement, and list stands for the output variables.

output field specification, i.e., all of the output blanks will be on the left-hand side of the
field. For the value of X above, columns 2-7 would be blank.

On input statements the computer does not control whether the data are right
justified or left justified; this is up to the programmer. He may use any spacing within his
given field width that he desires for his real variables. In the input READ statement the X
could be placed either extremely to the left, i.e., left justified, or it could be right
justified within the columns allotted. If the number of places to the right of the decimal in
the actual value of X given is different from that called for in the field specification, then
the format of the input variable itself will override the number of decimal places called
for in the FORMAT statement field specification.

In the case of integer variables and real variables using exponential format the
problem is more complicated, however, because the computer will recognize blank spaces
as zeros. For this reason it is necessary that all integer variables and all real variables using
exponential form must always be right-justified for input, or otherwise the computer will
inadvertently enter an input constant that is orders-of-magnitude larger than intended.
The basic format specifications discussed in this and the previous section are summarized
in Table 3-3.

Table 3-3. Format field specifications

General form of the FORMAT statement for numerical data is
n FORMAT (Sb S2 . . . Sk)

where n stands for a statement number, and each is a format specification.
The following format specifications are available for single line input and output of

real and integer data and to skip a field on the input and output record.

Format
Code

External
Representation

Internal
Representation

Suggested Minimum
Output Field Width

Iw Integer,
±xxxx

Fixed-point
number

Number of significant
digits + 1

Fw.d Real number
without exponent,
±x.xxxx

Floating-point
number

Depends on number
size, at least d + 3

Ew.d Real number
with exponent,
±x.xxxE±xx

Floating-point
number

d + 7 for most
computers

wX Skip field None Any

In the above, w stands for an unsigned integer constant which specifies the field width, d stands for
an unsigned integer constant which specifies the number of digits in the fractional part of the number,
and x stands for any decimal digit or a blank character which is interpreted as a zero.

52 Simple Fortran Programs

3-5. PAUSE, STOP, and END Statements

There are several statements available for program termination and/or interruption. This
termination and/or interruption may come during the compilation or during the execu
tion of a program, and there are different statements available for these different
purposes. As described in Chapter 1, the first phase of running a Fortran program will be
the compilation of the program to produce an object program. There must be some way
for the Fortran compiler to recognize the end of the program that it is compiling. This is
true since a number of different programs may be stacked together and put into an input
unit for compilation. Unless there is some way for the compiler to recognize the end of
one program, it might try to compile all of these individual programs together as one large
program. The compiler recognizes the end of a program by an END statement. This
statement is not executable and does not itself produce any machine-language instruc
tions. The END statement is the last statement in the list of the Fortran source program.
This does not imply that it is the last statement to be executed, but it does indicate that
there are no further statements in this particular program list. Saying this another way,
there must be only one END statement in a program, and it must be the very last
statement in the program listing (disregarding the fact that there may be data cards
following the program itself).

Once the Fortran program has been compiled and the object program is ready for
execution, there also must be a means to terminate and/or interrupt the execution of the
program. The PAUSE and STOP statements are provided for these purposes. One of the
most logical applications of a STOP statement is at the termination of the executable
statements in the program. This says that the execution of a particular program is
complete, and all of the instructions for this individual program have been executed, i.e.,
the machine has completed running the program. A STOP statement is sufficient for this
purpose. Normally the computer cannot be made to continue within the given program
after a STOP statement has been executed. In computers using a monitor the STOP
statement normally shifts control back to the monitor to start a new program job. Note
that the STOP statement is such that it stops the execution of the object program and can
only take effect while the object program is being executed. The STOP statement does
not cause termination of compilation.

It might be noted that in some Fortran compilers the END statement automatically
causes the Fortran compiler to generate a STOP statement at the end of the object deck.

There are many additional useful applications of the STOP statement. For example,
in many cases a program will direct the computer to read a set of input data and check all
of these data for consistency. If some of the data are inconsistent, then the programmer
might direct the computer to go to a STOP statement and not try to process the data. In
such an application a STOP statement would be contained within the body of the
program, and if it were ever executed, it would actually stop the running of the program
before it had completed the entire sequence of calculations called for by the program.
Note that this implies that the STOP statement will be compiled and will generate
machine-language instructions that will appear in the object deck.

One of the difficulties with the STOP statement, as indicated earlier, is that the
computer cannot conveniently be made to continue within the same program after the
STOP statement has been executed. The PAUSE statement allows the operator to
overcome this inconvenience and to restart the program. The PAUSE statement does, in
fact, stop the computer, but it does allow restarting possibilities. This is usually done by
pressing a button on the computer console, and when this is done, the computer will
resume the execution of the object program beginning with the statement just after the

3-6. An Example Program 53

PAUSE statement The PAUSE statement might be used to interrupt a program temporar
ily in order to check intermediate results, to mount a new magnetic tape, or to take other
action.

There are many differences in computer centers as to their choice between the use
of STOP and PAUSE statements. Many large computer centers will try to avoid the
wasted (expensive) computer time that is consumed by encountering a STOP or PAUSE
statement, and they may actually modify the basic Fortran compilers so that these
statements are not acceptable. Large computer centers often have computers which are
run under the control of a monitor program as discussed in Chapter 1. The monitor
program normally does not provide for a STOP when a program reaches the normal
completion of its execution; it is more desirable for the computer to return control to the
monitor program. This is better than stopping execution completely. A convenient way
to provide for return of control from the individual program to the monitor’s control is
through the use of the CALL EXIT statement. The CALL EXIT statement has the effect
of simply returning the control of the computer to the monitor. Many compilers are set
up so that a STOP statement has the same effect as a CALL EXIT statement, and the
machine does not stop its operation. This point should be checked with any local
computer center before use is made of the STOP statement.

Summarizing, the END statement must be the last statement in the source program.
There may only be one END statement, and it is a signal to the compiler that it is the end
of the program being compiled into an object program. It is not a statement that is
executed during the running of the object program, and it does not generate any
machine-language instructions in the object program. The PAUSE and STOP statements
are statements that appear within the body of the program. There may be more than one
of them within any individual program; they do generate machine-language instructions
for the object program; and they may be executed during the course of running the
object program.

3-6. An Example Program

It is possible to write a sample Fortran program with the statements discussed so far. We
might want to evaluate the simple algebraic expression X2 + |Y| + 267K + 146 as being
the numerical value of a desired answer. The program should read in the values of K, X,
and Y and calculate a numerical answer as indicated. If only one set of data were ever to
be executed, it would be possible to write the program with the values of K, X, and Y
appearing as constants within the program. Assuming it is desired to make this calculation
quite often, the program will be written to read in values of K, X, and Y. For sake of
illustration in this section, we will only read in one set of values of K, X, and Y and,
based on these, calculate one numerical answer. To take care of many additional sets of
input data, one or two additional statements will have to be added to our program at a
later time.

In order to write the program one additional statement might be discussed. This is
the comment card or comment line. This is an informational type of statement in a
Fortran program as discussed in an earlier chapter. The comment card or comment line
has a C in column 1 of the statement. When the Fortran compiler encounters a card
which has a C in column 1, it does not process the information contained on the card. In
other words, it is not treated as an executable statement or a statement to be compiled,
but if the computer provides a “listing” of the program (a printed version of the program
which may be produced during the compilation phase), then the comment cards will

54 Simple Fortran Programs

appear in the listing. The comment card makes the program more easily understandable
by the programmer; it does not provide information for the computer. Liberal use of
comment cards will make the program more easily understandable by the original
programmer if he should return to the program some period of time after its original
conception, and it also will make it easier for someone other than the original program
mer to interpret the program. Comment cards are not necessary in short programs, but
they become almost mandatory in large and complex programs. In order to help the
reader get into the habit of using them, this entire book will make liberal use of comment
cards. Comment cards must not appear in input data.

The sample program is shown in Figure 3-1. Both format and format-free I/O
statements are shown. Note that comment cards have been used to indicate the name of
the program, the input statements, the calculation statements, the output statements, and
the terminal statements. The input statements for the program are exactly as discussed in
Sections 3-1 and 3-2, the output statements are exactly as discussed in Sections 3-3 and
3-4, and the terminal statements are as discussed in Section 3-5. The calculation state
ments are indicated and the calculation itself is broken up into three statements for
clarity. Both X and Y are real variables, while K is an integer variable; if they were all

C FOR COMMENT
1 STATEMENT

NUMBER

1 5

FORTRAN STATEMENT

7 10 15 20 25 30 35 40 45 50 55 60 65 70 72

C EX A MPLE, PR0G.RAM F,0R SECTI0N, 3.6 , . . ,
C ... 1 1 ... 1 ■ . . • . I I ■ ■ , . 1 1 1 1 J .__ .__ .__ .__ I_____.__ -__ x__ 1---------.------------- 1---- X---

c INPUT STATEMENTS , , , , , , । .
c . . . 1 1 1 I I I 1 I 1 1 i 1 1 .

READ,(5 ,29,7) K,X„Y , , , \ OR/RE AD ,,K, X , Y,

297 F0RM,AT (1.1,0 , F 10,. 2 , E 2,0.7) k . A .. . , . . . ,......................,...........................

C ... I . X 1 1 t 1 1 t t i I i ■ 1 . . X---- X----1_ X----

C CALC,UL ATI,0N STATEMENTS. , .
C ,

ANS1= X**,2. + A,BS(Y), ______ \_________________________ _ . .
ANS2,= K .*, .267..,+. 146, '*“V—k

ANS, ,=. ANS,! + A,NS 2 , , . .
c
c 0UTP,UT. STATEMENTS. ,
c

WR.IT.E (.6.. .2,8.).K . X,. Y . AN.S A OR /p.RI NT ,,K, X , Y,, ANS ,
28 F0R.M,AT.(.1.X,, Il 0 ,,F10.2,. E20...7 , E20,. 5) ' t,

C ... 1 1 . x . x 1 1 1 I 1 , , 1 I 1 I 1 1 .

C TERMINAL. .STATEMENTS.
C

ST.0,P| .। i i i । । । । । । । ,

E.N.D_ । । । । । । । . । ,i ।

526, , 16.8, , , .6,81E04, ,

...i..............».................. L................L

. . . 1 .1 1 1 I r 1 1 1 .

Figure 3-1. Coding form for sample program in Sec. 3-6 showing both for
mat and format-free I/O statements

3-6. An Example Program 55

three contained within a given expression, a “mixed mode” would be present and the
program would not be executed on some compilers. In order to overcome this the calcula
tion is done in three steps. An intermediate quantity, ANSI, is calculated using the real
variables X and Y and taking advantage of the absolute value function. Another interme
diate value, ANS2, is calculated by incorporating the integer constant 146 and the integer
variable K into a single expression. Note that the expression in the calculation of ANS2 is
carried out in integer arithmetic, and that when the number is stored, it is converted to a
real number. Both ANSI and ANS2 are real variables, and they may be combined to
produce the numerical quantity ANS which is the purpose of the program. The Fortran
coding form is written for a keypunch operator to produce all of the cards for the entire
computer program, and a typical data card is added at the end of the form. Once this
complete set of cards has been prepared by a keypunch operator, the program is ready for
insertion into the computer for its actual compilation and execution.

To illustrate the point of mixed modes further the program listing shown in Figure
3-1 contains an intentional mixed mode in the expression for the calculation of ANS2.
The variable K is an integer variable, and the 267. is a real constant. Multiplying an
integer variable by a real constant will produce a mixed mode error in some compilers. £
Removal of this mixed mode can be accomplished by removing the decimal after 267.
When the program is run, the data shown will give the results (layout is for formated
output)

526 16.80 0.6810000E 04 0.14768E06

The format-free output would appear as follows:

526 0.1680000 E 02 0.6810000 E 04 0.1476800 E 06

EXAMPLE 3-1

A small box of width w, height h, and depth d contains a number n of identical
spheres of radius r. It is desired to calculate the volume of the spheres themselves, the
volume of empty space left in the box when it contains the spheres, and the surface area
of the spheres. Set up a computer program to achieve these purposes. Consider that the
width, height, and depth are all contained on one data card in Fl0.2 formats and assume
that the number of spheres and the radius of these spheres are given on a second data
card. The number of spheres is an integer variable in 15 format and the radius of the
spheres is given in F10.4 format. The volume of the spheres, the volume of empty space,
and the surface area of the spheres should be printed out in E20.7 format.

The program for making these calculations is given in detail in Figure 3-2. Note in
this program that each of the READ statements in the input section will cause an
individual card (or its equivalent) to be read into the computer. The first READ
statement will introduce the width, height, and depth variables, and the second READ
statement will read a second card containing the number and radius of the spheres. Note
that it will be disastrous if these data cards are reversed inadvertently by the person
running the program on the computer.

Note in the calculation of the variable V0LM1 that the set of parentheses in this
arithmetic assignment is not absolutely necessary. Also note in this statement that the
value of Ti must be specified by the programmer, i.e., the computer does not know the

^In many present-day compilers this mixed mode is acceptable, but often it is wasteful of
machine time. In most current compilers the presence of the real constant in the expression will signal
the compiler to evaluate the entire expression in real arithmetic, i.e., convert all constants and variables
to real quantities and then perform the arithmetic operations This mixed mode is inserted and
illustrated here to point out a potential programming problem for some compilers.

56 Simple Fortran Programs

value of -it. The program also illustrates that raising a real variable to an integer constant
power is permissible. Also, to avoid a possible mixed mode problem in the calculation of
the total valume of the spheres, the number of spheres is converted to a real variable
before it is used in the arithmetic assignment statement for TOTVOL. An alternate way
to circumvent the problem of mixed modes in this calculation is to read in the number of
spheres as a real variable.

3-6. An Example Program 57

In the output FORMAT statement number 100 a new concept is introduced to save
programming time. As indicated in the statement of the problem, it is intended that all
three of the output variables be given in E20.7 format. Rather than write E20.7 three
separate times, it is possible to use a repetition number in front of the E. This indicates
the use of the field specification E20.7 three times.

In the ouput FORMAT statement number 100 the first column is left blank to
prevent any undesired spacing of the carriage on the output printer for the computing
system. In general, as indicated earlier, the contents of column 1 in an output line will
control the printer’s operation. The printer uses column 1 for carriage control, and thus
the contents of this column do not appear on the printed sheet. Generally speaking the
following printer actions are appropriate:

Contents of Column 1 Action of Printer
Blank Single space before printing
Zero Double space before printing
1 Skip to the top of a new page

before printing

The usage of these symbols to control carriage spacing on the output printer will be
illustrated further.

For the sample program the results are given below for input data in which the
width, depth, and height of the box are all given as 6 inches. It is further assumed that
there are five spheres, each of radius 0.348 inch. The results, reading from left to right,
are the total volume of all the spheres, the empty volume remaining in the box, and the
total surface area of all the spheres.

0.8826679E 00 0.2151173E 03 0.7609206E 01

EXAMPLE 3-2

A student goes into a laboratory and uses a refractometer to measure the refractive
index of a liquid solution. The refractometer has a scale which reads an arbitrary scale
factor instead of the refractive index. The manufacturer gives the following fourth-order
polynomial to convert the scale reading to refractive index:

1.276239 X 10“9 X (scale)4 - 2.812322 X 10“7 X (scale)3
-2.0922072 X 10"s X (scale)2 + 6.7203912 X 10”3 X (scale) + 1.2034111

In addition to this, the student knows that the refractive index for this solution can be
used to indicate the composition of the solution, and he knows that the weight percent
content of volatile component of the mixture is also given by the following fourth-order
polynomial which expresses weight percent as a function of scale reading:

-1.0148081 X 10“6 X (scale)4 + 3.9809369 X 10“4 X (scale)3
-2.1381599 X 10“2 X (scale)2 - 2.7003377 X (scale) + 1.7767899 X 102

It is desired to write a computer program to read in the refractometer scale reading and
convert it to the refractive index. It is further planned for the programmer to take the
scale reading and calculate the weight percent of the volatile component present in the
mixture. The scale reading can be read in F20.5 format, and the output variables should
be in F20.5 format.

The computer program necessary to carry out the indicated calculations is shown in
Figure 3-3 which uses comment cards (some of which are blank) to indicate the different
portions of the program and make it easier to follow the contents of the Fortran

58 Simple Fortran Programs

C FOR COMMENT

10

FORTRAN STATEMENT
20___________25___________ 30 35___________ 40________ 50 55____________60 70 72

C EX
C
C
C

IN

00

MPLE, PR0G,RAM T,0 C0N,VERT ,REFR A,CT0ME,TER, S.CALE. ,READI.NG

UT 0,F SCA,LE RE,APING,

READ,! 5 , 10,00) S.C.ALE
F 0 R M,AT (F 2,0.5) ,

OR? RE AD ,SCAL,E

A

P

1 0
c
c CA CU.L.A,TI0N ,0F. REFRACT,I.V.E, I,NDEX. ,
C

C
c
c

CA

REFI.ND = ,(1(1 .,27623,9E-09*SCAL|E-2
) * ,SCALE,+6 .72,03912,E-03), * SC,ALE

.8.
+

,123 2 2 E-0 7), ♦ S C,A
1.20,34111,E-00 ,

LE-2,.0 201

CULA,TI0N ,0.F. WE.IGHT ,PERCE,NT 0 F, V.0.LA ,T.I.L.E. ,C0M.P0,N.E.N.T. ,

9 2 7 2 E 5
1

1
PCT ,= (((,-1.0 1,48081,E-0.6. ,* SCA.LE
99E-Q2) *, SCAL.E - 2,. 70 03,3 7 7 E.-,00)

,3 . 9 80,9369 E,-0.4) ,*
SCAL,E + 1,. 7 76 7,8

SCALE,
99 E +,02*

2 1 3 81 5

c
L
c

2 0

0U PUT. ,0F. RESULTS,

WRI.T.E (6, ,2000) .SCALE,. REFI, ND, PC, T ,0R < P.RINT, .SCALE RE F I,ND PC.T
00

32

F0RM.AT (1 Xp 3F20,. 5)
S.T0P,__________ _ , ,
end , . .
370^_____ . __________

T

Figure 3-3. Coding form for Example 3-2

statements themselves. Note the use of continuation cards in the arithmetic assignment
statements associated with the calculation of the refractive index and the weight percent
age. In both cases the arithmetic assignment statements would have run past column 72
on the Fortran coding form, and continuation statements were necessary. It is good
programming practice to use a number in column 6 to indicate the number of the
continuation line rather than some arbitrary symbol. This is, however, a matter of
convenience and personal preference, since any symbol could have been used in column 6
to indicate that the card is a continuation card. In the output portion of the program a
repetition number in the output format statement is again employed.

The results of running this program for a refractometer scale reading of 32.370 are
shown below (for formated case):

32.37000 1.39089 80.25336

For format-free output:

0.3237000 E 02 0.1390890 E 01 0.8025336 E 02

3-7. Handling Program Decks

3-7. Handling Program Decks

59

The physical arrangement of programs and data is dependent on the computer and
monitor employed in a given center. The equipment associated with the computer and
individual preference of the local computer center are also important. Because of this it is
very difficult to generalize about the actual physical arrangement of programs and data,
but several example situations will be discussed. As an an example of how the operation
might be handled, consider a case in which a digital computer is used with an off-line
printer, i.e., a printer that is not physically connected to the computer. Also assume that
the installation is one in which all input to the computer is done primarily via punched
cards and output also is obtained primarily via punched cards. In such an installation the
compilation and execution of programs such as those illustrated in Examples 3-1 and 3-2
will be as follows The coding form would be used to prepare a source program deck, and
the source program deck would be fed through the computer along with the compiler
program (and assembler program, if necessary) in order to produce an object program
deck and, if appropriate, information on errors made in the language of the source
program. This is illustrated in Figure 3-4. If source program language errors are encoun
tered in the compilation of the program, the object program deck will not be one that is
suitable for execution. The error information is taken to a printer to produce a listing or a
hard copy of the information. As the object deck itself is in binary, it is not listed. (If too

Figure 3-4. Example of compilation (A one-pass compiler illustrated)

00 Simple Fortran Programs

many errors are present, an object deck may not be produced.) The common thing to do
at this stage if errors are present is to go back and make changes to individual cards in the
source program deck and recompile the source program deck. It is possible to go into the
object program deck and make corrections in it, but it requires a deep understanding of
absolute machine language on the part of the programmer. Consequently, except in the
rarest cases, the source deck is modified and recompiled to eliminate any source program
language errors, or bugs, that might have been encountered in the original compilation.
Once this phase of debugging is complete, the program is ready for execution.

In order to be executed, a program similar to those discussed in the previous
sections will require data cards in addition to the program itself. The data are prepared on
coding forms much like the Fortran program itself but with no restrictions on the use of
the various columns. These forms are converted into data cards by the keypunch
operator. The object program and the data cards are then fed into the computer. The
object deck will be introduced first, followed by the data cards. The results of the object
program’s execution on the specific data provided will produce answers in the form of an
answer deck which may be taken to an off-line printer to produce a printed list or hard
copy of the results obtained. This is shown schematically in Figure 3-5. In the execution
of the program it is possible that execution errors will be encountered and further source
program debugging will be necessary. (This is discussed further in Section 3-8.)

In Chapter 1 it was indicated that it may be desirable to have a load-and-go
compiler in which no output object deck is produced. An example of a load-and-go
compiler’s operation on a card-input and card-output computer system is shown in Figure
3-6. Note in Figure 3-6 that the compiler is entered first, followed by the source program

To programmers
card files

To programmer's
card files

Figure 3-5. Example of execution

3-7. Handling Program Decks 61

Figure 3-6. Load-and-go compiler

and then by the data cards. There is no object deck produced; there are no intermediate
results produced; the answer cards are produced directly (assuming no program errors).
These answers are taken to an off-line printer for preparation of an answer list or hard
copy. The load-and-go compiler has the advantage of not requiring the time necessary to
punch out an object deck, although the object program is internally prepared and stored
in memory. The load-and-go compiler is simpler in operation and requires fewer steps in
handling information external to the computer’s memory. It has the obvious disadvantage
that the program must be recompiled every time it is to be executed, and the compilation
phase requires machine running time. If a program is to be used over and over again, then
the load-and-go compiler is not very efficient. Load-and-go compilers are very useful in
student programming laboratories where programs are normally run only once and where
there are very large numbers of relatively simple programs to be handled. Also, a student
may have several runs on the same program before it is bug-free.

Large computers operating under the control of a monitor system are more
complex than the previous examples. Typically these larger machines have magnetic tape
input and output because of the slow speed of the card-handling equipment. Programs
and data must have control cards associated with them to make certain that the monitor
understands when, the program is to be compiled, when it is to be executed, and which
input unit contains data for a program. It is not desirable to discuss control cards further
because their use varies so widely from one computer to another. These control cards
typically carry the name of the programmer or the number of the job, the maximum

62 Simple Fortran Programs

amount of time the program is expected to run, and other types of similar information.
They also contain an indication as to the specific compiler that is necessary for the
program, which input units and output units are assigned for the program, etc. In some
installations some portion of this information is assigned by the monitor, and in other
cases they are dictated by the control cards directly.

3-8. Debugging the Source Program

It can happen to the best of us! The original program as prepared, punched, and compiled
on the computer is not properly written and errors exist in the program. These errors
must be removed or the computer will not provide an object deck that is acceptable for
actual execution. The purpose of this section is to give some insight into these errors.$

There are three different types of errors that might be present in a computer
program. There are source program language errors that prevent the compilation of the
program, and these must be removed before compilation can be successfully completed.
There are execution errors which will not be encountered until the actual execution of
the program. For example, some of the most common execution errors are due to the
programmer’s use of inadequate field specifications in FORMAT statements. All of these
execution errors must be removed before the computer will produce any complete
answers. Finally, there are errors in the logic and formulation of the program or of
individual statements by the programmer. These latter errors are the insidious ones that
appear when a programmer writes a program that is perfectly acceptable to the computer
and is a good program—except that it causes a computation to be made which is different
from the one intended by the programmer. § The only way that these errors of intent can
be corrected is for the programmer to make a thorough check for consistency and
reasonableness in the answers that are produced by the computer. There may be some
kinds of internal checks in the program which the programmer may provide, but in
general, there must be a final and thorough review of some typical answers of the
program to see if the program is actually doing what the programmer intends.

Most compilers provide “error scans” in order to detect compilation and execution
errors, and they give an indication to the programmer as to the nature of the error and its
location in the program. In Section 3-6 the program given in Figure 3-1 contained a
mixed mode. In the actual running of this program by some compilers an error will be
detected and the actual execution of the program deleted. The compiler would indicate
an error of “mixed mode” in statement 297 + 2 (which refers to the second line past
statement number 297, not including comment cards). In many cases the compiler also
will assign a line number to every statement in the Fortran program and provide an
output listing of the source program with the associated line numbers and error messages
(referenced to the appropriate line). The completeness of an error scan on any given
computer depends on both the desires and operating procedures of the computer center,
the nature of the compiler, and the nature of the computer. It might be recognized that
the larger the error scan, the more memory its programming will require in the computer.

t Debugging can be greatly assisted if a Fortran compiler such as the WATFOR or WATFIV
compiler is used. (See Appendix F.)

§ The statement has been made that the ultimate computer is one that does what we want it to
do, not necessarily what we tell it to do.

3-8. Debugging the Source Program 63

Also, the larger the error scan, the more time it will take to check for errors. Generally
speaking, error scans are very complete in load-and-go type compilers such as WATFOR
or WATFIV which are usually used in student installations.

Sometimes an error made during compilation in one statement will produce a whole
series of apparent errors in subsequent statements. For example, the potential error
indicated in the example program of Section 3-6 was a mixed mode that could prevent
some compilers from calculating the variable ANS2. Subsequently to this, ANS2 appears
on the right-hand side of the statement which calculates ANS. Since the compiler has no
record of ANS2 being defined (calculated), the compiler finds an error in the arithmetic
assignment statement for the calculation of ANS because ANS2 is not defined, and
therefore it is an undefined variable. This means that the compiler has no record of ANS
being defined, and therefore, in the WRITE statement at the end of the program, ANS is
not available for output. Thus an undefined variable is encountered in the output list. The
simple correction of the mixed mode in the calculation of ANS2 will remove all three of
these error indications.

For the exact error code for an individual computer, it will be necessary to contact
the computer center itself. (In some cases, manufacturer’s programming manuals contain
error codes.) These codes are normally prepared in the form of handouts for all users.

A number of general conclusions are possible concerning the debugging of compu
ter programs and the accompanying usage of error messages. These rules are as follows:

1. Never assume that a program is completely correct even though it may be
accepted by the computer, completely compiled, and numerical results are achieved. It is
possible that logical errors are present. .

2. The checking or debugging of a computer program is made much simpler if
values of intermediate variables are available. This means that quite often in the writing of
a computer program there are extra WRITE statements to make these values available for
debugging. Once the program is satisfactorily running, these extra WRITE statements can
be removed and the program recompiled for routine use.

3. The tendency is to write a program on a “once-through” basis and present it
immediately for keypunching and running on the computer. The programmer should
resist this temptation and spend some time in making a careful check of his programs
before they are punched and run.

4. When attempting to debug a Computer program, there is a big temptation to
assume that all aspects of a program are correct because it gives correct answers for an
individual set of data. Make certain when choosing data for trial runs of your program
that you select data which will execute every portion of your program.

5. When you are in the process of debugging a program, correct every error
encountered before you attempt to return it to the machine to have the program
recompiled. There is a temptation to make a single (or at least minimum) correction
before recompiling. Avoid this temptation and try to approach the computer with as
perfect a program as possible.

6. In writing your program make liberal use of comment cards, and for more
complex programs be certain that you have the flowchart complete before you attempt
to write any portion of the program. (Flowcharts will be discussed in more detail in
Section 4-1.) In other words, make every possible effort to make your program as easy to
interpret as possible, both for yourself and for others who may attempt to work with the
program. This time is well spent and will make it much simpler for the individual to
debug the program; it will result in a saving of both programmer and machine time.

64 Simple Fortran Programs

3-9. In Summary

This chapter has proposed to introduce simple input and output statements and the
termination and/or interruption statements that are necessary in the compilation and
execution of a program. All of these have been combined into some simple sample
programs. Finally, the arrangement of individual programs for execution has been
discussed briefly along with some error messages that may be encountered. Unfortu
nately, many of the items discussed in this chapter are dependent on the individual
computer center and will vary from one installation to the next.

It is hoped that the reader has gained an insight into the structure of Fortran
programming. Rather than go on to more complex programs or get involved in the
complexities of large programs, it is to the advantage of the student programmer to write
many small programs rather than a few very large ones. The exercises associated with this
chapter are structured with this in mind.

EXERCISES^

Where you use formatted I/O in these exercises you are to assume that all input real
variables are in Fl0.2 format, all input and output integer variables are in 110 format, and
all output real variables are to be E20.7 format.

3-1. Write the Fortran format-free and formatted input statements necessary to
read in the following:

(a) A, B, CAT, DO
(b) I, J, KID

t(c) X, J, YES
(d) A, SIMPLE, GO, I

3-2. Write the Fortran format-free and formatted input statements necessary to
read in the following:

(a) IN, OUT, UP, DOWN
(b) R, S, TEE, J
(c) X, Y, ZEE, ALPHA

t(d) CONST, OUKID, A, J

3-3. Prepare the Fortran format-free and formatted output statements necessary to
write out the variable lists of Exercise 3-1 plus a new variable ANS in each set. Assume
the variables given are input and ANS is the result of calculations performed on the input
variables.

3-4. Prepare the Fortran format-free and formatted output statements necessary to
write out the variable lists of Exercise 3-2 plus a new variable ANS in each set. Assume
the variables given are input and ANS is the result of calculations performed on the input
variables. .

f 3-5. Repeat Exercise 3-3, except provide an additional three blank spaces between
each output variable written. Do for formatted output only.

3-6. Repeat Exercise 3-4, except provide an additional three blank spaces between
each output variable written. Do for formatted output only.

f Solutions to Exercises marked with a dagger f are given in Appendix E.

Exercises 65

Note: For the following exercises you are to read in the given variables, perform
the desired calculations, and write out the results as directed. Write complete Fortran
programs including a trial data card. Watch for inadvertent cases of mixed modes, and
where necessary change variable names inside the program to avoid mixed mode errors.
Your instructor will indicate whether to take a format-free or a formatted approach in
each case.

3-7. Read: x, y, z

Calculate: RESULT =-X --2.
z

Write: x, y, z, RESULT

f 3-8. Read: a, b, c, s
Calculate: t = a ■ cos (s) + b ■ sin (s) + c • tan (s)
Write: a, b, c, s, t

3-9. Read: x, y, z
Calculate: SOLN = x17 + ey +logz

BEST = (SOLN)05
Write: x, y, z, SOLN, BEST

3-10. Read: TOP, XMID, BOT

Calculate: TM = (TOP)2 + + BOTv 7 XMID
LM = TOP + ^~ + (BOT)2

Write: TOP, XMID, BOT, TM, LM

3-11. Read:*,y, z
Calculate: a = \/x2 - 6

b= |y2 + 112.8 | + ez
Write: x, y, z, a, b

t3-12. Read: a, b, c

Calculate: Al =-------- r—;—:-----, 1 + abc

A2 = tan (Al) + log | Al |
Write: a, b, c, Al, A2

3-13. Read:*, y, i
Calculate: G0 = x2 + y + (z)1/2

STOP = z2 +y + (x)1/2
Write: x, y, i, GO, STOP

3-14. Read: h, i
Calculate: g = (/z)16 + (z)2 + hi

j = i ■ cos (/?) + hi + \fhi
Write: h, i, g, j

f3-15. Read:x,y, z
Calculate: Al — x3 +x2 +x + 1

A2 = y3 +y2 +y + 1 + Al
A3 = z3 + z2 + z + 1 + A2

66 Simple Fortran Programs

Write: (Line l)x, y, z
(Line 2) Al, A2, A3

3-16. Read: r, s, t, u, v
st

Calculate. HE — r H--------u - v

SHE = cos (r) +

DEL = HE - SHE

Write: (Line 1) r, s, t, u, v
(Line 2) HE, SHE
(Line 3) DEL

3-17. Read: (Card l)x, y
(Card 2) a, b
(Card 3) i

Calculate: SOLN = ax + by + i
Write: (Line l)x, y, a, b

(Line 2) i, SOLN

f3-18. Read: (Card l)r, s
(Card 2) t, u
(Card 3) x, y

Calculate: UP = (r - s) + (t - u) + (x - y)
DOWN = (r + s) + (t + w) + (x +/)
FIRST = r + t + x
SEC = s + u + y
FINAL = eup + VDOWN + cos (FIRST)

Write: (Line 1) r, s, t, u, x, y
(Line 2) UP, DOWN, FIRST
(Line 3) SEC, skip thirty blank spaces, FINAL

3-19. Read: (Card 1) a, skip ten blank spaces, b
(Card 2) x, skip ten blank spaces, z

Calculate: ANS = ax + bz
DIF = a - b
SUM = x + a

Write: (Line l)a, b, skip twenty-five blank spaces,x, z
(Line 2) SUM, skip twenty-five blank spaces, DIF
(Line 3) skip twenty-two blank spaces, ANS

3-20. Read: (Card 1) a (Card 4) <7
(Card 2) b (Card 5) e
(Card 3) c (Card 6)/

Calculate: SUM = abcdef + abcde + abed
SUMTAN = tan (a) + tan (/>) + tan (c)
SUMCOS = cos (J) + cos (e) + cos (/)
MINOR = abc + ab + a

Write: (Line 1) SUM
(Line 2) skip twenty blank spaces, SUMTAN
(Line 3) skip forty blank spaces, SUMCOS
(Line 4) skip sixty blank spaces, MINOR

4
Transfer of Control

In the preceding chapter some simple Fortran programs were illustrated and developed,
and each of these has one aspect in common. Each operates on a more or less “once-
through” basis, and there are no loops or branches in the structure of the program’s logic.
Programs such as these are encountered, but usually programs take advantage of logical
decision-making possibilities in the computer itself. At times the programmer would like
to skip certain statements in the program under one set of conditions, or execute those
statements under another set of conditions. At times the programmer might go back to
the beginning of the program and read in new sets of data, transfer to the end of the
program and terminate its operation, or go to some intermediate point in the program
and begin a new series of calculations. The situations described above give rise to the need
for transfer of control statements, and the purpose of this chapter is to introduce this
type of statement and show its usage in Fortran programming. Before tackling this
problem, however, it is desirable to introduce the subject of flowcharts.

4-1. Flowcharts

With possibilities for branches and loops within the logical structure of a computer
program, it is increasingly difficult for the programmer to mentally account for all
possible loops and branches. The programs that have been illustrated previously in this
book have been simple, but with the introduction of transfer of control statements they
can be made so complex that it is impossible for the programmer to visualize all of the
logical decision loops with a purely mental memory process. Flowcharts provide an
answer to this problem.

The flowchart is a type of schematic diagram or road map which allows the
programmer to chart on paper the logical structure of his computer program. He may
indicate all the branches and loops and their interrelationships with one another. The

67

ei Transfer of Control

flowchart or block diagram provides a visual representation that not only is helpful to the
individual programmer, but also is a valuable part of the documentation of his program
that will allow someone else to interpret and use the program with a minimum of
difficulty.

Flowcharts indicate the flow of control between the various executable statements
that comprise the program. The flowchart is normally made up of a set of boxes or shapes
which are coded to indicate the nature of the operations involved.

Appendix D gives a complete list of the American Standard flowchart symbols, but
for the purposes of this chapter the following list is sufficient.

A rectangle is used to indicate a processing symbol (typically arithmetic
operations).

A diamond is used to indicate a decision, and the lines leaving the corners of
the diamond are labeled with the decision results that are associated with each path.

The parallelogram is used to indicate any basic input or output symbol. There
are, in addition, many special symbols for input-output operations.

An oval is used to indicate either the beginning or the end of a program, i.e., a
START or terminal STOP.

A small circle is
flowchart in situations
basic flowchart.

used to indicate a connection between two points in a
where a connecting line between them would clutter the

Arrows are used to indicate the direction of flow through the flowchart.
Every line should have an arrow on it; the length of the arrow is not important.

Any text or notes may be placed beside or in these symbols. It is especially helpful
to indicate numbers beside appropriate processing symbols to indicate the statement
number that will be associated with that particular operation in the Fortran program.

Throughout the remainder of this book, examples of flowcharts will illustrate their
usage.

It cannot be overemphasized to the beginning programmer that the flowchart
represents the first step in the formulation of the program. Many beginning students
participate in the foolish habit of first trying to write their program and subsequently
constructing a flowchart to illustrate the logic of the program. This is exactly the
opposite of the recommended route. It should be noted that beginning programmers
cannot anticipate everything. Hence it is not until they have drawn a flowchart and tried
to write the Fortran statements that they begin to find flaws in the flowchart.

4-2. Unconditional GO TO

The primary purpose of the unconditional GO TO statement (and every other transfer of
control statement) is to allow the programmer to shift the execution of the program to
some statement other than the one that would normally be executed in sequence. As has

4-2. Unconditional GO TO G3

been pointed out in earlier chapters, a digital computer will execute each statement in
sequence according to the list encountered. The general form of the unconditional
GO TO statement is

GO T0rc

where n is the number of an executable statement somewhere else in the program, either
before or after the GO TO statement. When the GO TO statement is encountered, it
transfers the program to statement number n, and statement number n will be the next
statement executed in the program. After statement n has been executed, the statement
immediately following statement n will be executed unless statement n is a transfer of
control statement.

Every statement in Fortran programming may be classified as either executable or
nonexecutable, and statement n must be an executable statement. No transfer of control
statement may direct transfer to a nonexecutable statement. Nonexecutable statements
include some definition statements, certain specification statements, and the FORMAT
statement.

The statement number n illustrates quite vividly the only purpose which statement
numbers serve in a Fortran program. Statement numbers, as pointed out earlier, are
positive integer numbers of five digits or less, written in columns 1-5 of the Fortran
coding form, and punched in columns 1-5 of the input card or its equivalent. The
maximum value of the statement number varies, with some versions of Fortran allowing
up to 99999. The statement numbers in Fortran programs provide a cross reference,
allowing statements to refer to one another within the program. As indicated in earlier
examples, there is no necessary numerical sequence in Fortran statement numbers, and it
is not necessary that every statement be numbered. It is not permissible, however, for any
two statements to have the same number.

The main use of the unconditional GO TO statement is to allow the programmer to
return execution from logical branches in which he has been operating to the main body
of the program. There might be several such side branches in the program, and each of
these normally will be terminated either by a STOP statement or by an unconditional
GO TO statement.

EXAMPLE 4-1 '

To illustrate the use of the unconditional GO TO statement, consider the problem
in which a rocket is fired from the earth, and telemetering equipment is used to send back
to the earth a large amount of data giving the horizontal and vertical velocity compon
ents, vx and vy, of the rocket’s speed as a function of t, the time of flight. Consider these
data to be in units of seconds for time and meters per second for velocity components. A
large amount of these data would be received, and the velocity components could be used
to calculate the speed of v of the rocket at any moment t as

i> = v2 + v2 v x y

Write a computer program to read in a number of data cards containing the time of
measurement t and the horizontal and vertical velocity components, vx and vy. Calculate
the rocket speed v. The output of the computer program should be the time-versus-speed
data for each of the sets of input data. Consider for the moment that there will be an
undertermined number of such sets of input data.

The flowchart for such a calculation might appear as shown in Figure 4-1 and the
program as given in Figure 4-2. The program is relatively straightforward except that in

Transfer of Control70

Figure 4- 7. Flowchart for Example 4-1 (calculation of rocket speed)

, C FOR

j ATI MINT

CO wmENT

FORTRAN STATEMENT
| 10 15 20 25 30 35 M «5 50 55 «________ 70 77

C . EX
C

A MPLE, PR0G,RAM T,0 CAL,CULAT,E R0C.KET V,EL0CI,TY ____ r____ x______ t______ L_
I - il-l________ ■ l-.j- . - 1 - 1 x x L—x X 1 1------------- --------- 1 X x—l—x

C IN P UT 0,F VERTICAL, AND ,H0RI Z.0NT AL, VEL0,CITY ,VS . T.IME D,ATA
C

30 RE A D,(5 , 1 0 1 T , V X , VY ,
10 F0RM.AT I 3 F,10.2),

C
C CA L CULA.TI0N ,0F TH,E R0C.KET S.PEED , , ,....,
C 1 ■ ... 1 1 1 1 .__ . , . 1 , ■ ■ X .1 X ■ . ■ x 1 x . 1 ■__ .__ .__ ___ 1__ ■__ _____ . j ._ X—X__ .__ lL^__ *__ ._____1__ .__

40 SPEE.D = S,QRT(V,X **2, + VY, *»2),
C ■ 1 1 1 ... X 1 1 1 1 1 1 . ■ ■__ . 1 ______■ . 1 ■ ■ ■ . 1 . . ■ . 1 .

C 0U T PUT ,0F SP.EED V,S TIM.E DAT,A
C

50 WRITE (6 ,,20) T ..SPEED, , . . . , , . ,
20 F0RM,AT(1X,, FIO.,2 ,10X„ FIO.,2) . , . ,

C ... 1 1 1 1 I _i_. ... 1 .. 1 1 1 1 1 i .

C UN C 0NDI,TI0NA,L TRANSFER, 0F C ,0 N T R 0,L ,,,,,,,
C ... 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 .

60
E N D,...__ 1 . . . 1. ... 1 1____ . 1 ._____ . . 1 . 1 1 1 1 1

. ,-Ai... i . . • P.... । . .•PAi । । । i । ।। । .

l.-O, 10,8. , , , ■ , ,
10 .0. , 4 ,56, ,147.8, , , , , . , , , , , .

. . . 1..................1 1 1 1 1 1-------- . 1 1__________________________ ■ ■ < ■ . 1

Figure 4-2. Coding form for Example 4-1

4-3. Computed GO TO 71

output FORMAT statement 20 there is the provision to leave column 1 blank, to write
the time of the rocket speed data in Fl0.2 format, and then to provide for ten blank
spaces in the output line before writing the rocket’s speed in Fl0.2 format. After the
final output statement the program has an unconditional transfer of control statement,
GO TO 30, in which the execution of the program is referred back to statement number
30 and a new card is read into the machine, i.e., a new set of data introduced. This
program will continue to operate indefinitely as long as data cards are available.

When the last of the data cards has been read, the Fortran compiler will give an
execution error indicating that there is a last-card error (or something equivalent). This
execution error indicates that the computer has transferred control back to the READ
statement, the READ statement has tried to bring in a new set of data, and an input data
card is not available. From the viewpoint of the programmer this error is trivial, though it
is not pleasing from an esthetic viewpoint. There are many ways to circumvent this type
of error, and these will be discussed in detail in subsequent sections.

In order to illustrate the use of this program, some sample data are given and the
program is run to calculate representative speeds at times of .1, 1.0, and 10.0 seconds. In
an actual problem there would be much more data than these, but these values will be
sufficient to illustrate the results of using this program. Results for the running of these
data are shown below.

0.10 0.01 -
1.00 10.89

10.00 147.87
ERROR (STATEMENT 30+ 0 LINES)

The thing to note about this program is the permanent loop which has been formed
by the program: the computer continues to iterate through identical calculations because
of the transfer of control statement which appears as the last executable:statement in the
source program. This program will continue to run indefinitely as long as data cards are
available for processing. Note that if the GO TO statement had inadvertently been GO TO
40, a permanent loop would have been formed from which there is no exit. There would
have been an unending execution of statements 40, 50, and 60, and on each pass through
this loop there would have been resultant output (unchanging) associated with statement
50.

4-3. Computed GO TO

The unconditional GO TO statement causes a transfer of control to some other statement
in order to break the normal sequential execution of the program. A logical extension of
the unconditional GO TO is to allow transfer of control to multiple branches within the
program depending upon the value of an integer variable. The computed GO TO state
ment extends the capability of Fortran by providing the possibilities of entering multiple
branches. The general form of the computed GO TO statement is

GO TO («i, n2,.. ., nk),i

where n.i, n2, ■ • ■ , nk (integer numbers, not variables) stand for statement numbers of
executable statements elsewhere in the program. The i stands for a simple integer variable

72 Transfer of Control

which is written without a sign and must be in the range of values of 1 to k where k
indicates the number of statement numbers that are enclosed within parentheses.

The operation of the computed GO TO statement is as follows. When the computed
GO TO statement is executed, the value of the variable i may have any integer value
within the range indicated earlier. If the value of the variable i is /, then the next
statement to be executed in the Fortran program will be statement number rij. The
statement next in line for execution will be the statement following n- in the Fortran
statement list unless is a transfer of control statement.

As an example of the use of the computed GO TO statement, consider the
statement

GO TO (7, 127,68, 41), LEAP

If the value of the integer variable LEAP is 2 when the computed GO TO statement is
executed, the next statement to be executed will be 127; if the value of the integer
variable is 4, the next statement to be executed will be statement number 41; etc. If the
value of the integer variable LEAP is greater than 4, i.e., if it is above the number of
statement numbers contained within the parentheses in the computed GO TO statement,
the result is unpredictable. (Some compilers execute the statement immediately following
the computed GO TO statement, and some cause termination of execution.)

EXAMPLE 4-2

As an example of the use of the computed GO TO, consider the problem in which a
number of college students are given identical tests and raw scores from these tests are
recorded in order to calculate percentile scores for comparing one student against
another. It is necessary to weigh the raw scores depending on whether the individual
student tested is a freshman, sophomore junior, or senior. Assume that information on a
particular student, his college level and his test scores, are input data.

The flowchart for the computer program might appear as shown in Figure 4-3. The
Fortran program for this calculation is indicated in Figure 4-4. The variable LEVEL is fed
into the program along with other information. LEVEL is used as the integer variable to
determine which one of four possible branches might be used in the overall structure of
the program. If the value of LEVEL is 1 (indicating a freshman), the program transfers

Figure 4-3. Flowchart for Example 4-2 (college test score evaluation)

4-4. Arithmetic IF 73

,----- c FOR COMMENT

। sr-AitMtNi
NUMBER

' 5 6
FORTRAN STATEMENT

1_____ !9 '5 20 25 30 35 40 45 50 55 40 45 70 72

C EX A MPLE, PR06.RAM T0 SH0.W USE, 0F C.0MPUT.ED 60, T0 I.N SEL,ECTIN,G PR0.6RAM ,
C B.RANCH.ES F0.R C0L.LEGE .TEST ,SC0RE, EVAL,UATI0,N , , , ,
C
C IN P UT 0.F "LEV,EL" P,LUS 0.THER .DATA .INCLU.DING .SC0RE.S
c

500 READJ 5 ,1 l.LEVEL,, plus other variables
1 F0RM.ATII5,, pl u.s o t h.e r fi.eld s.pecif.icati.ons

C
C . C0 M PUTE.D 60 ,T 0 F0.R BRA.NCH S,ELECT,I0N ..
c

60 T,0 (10,0., 200,,300,,400 1 ,.LEVEL,
c
C BR A N.C.H E.S, , । । i . . iii । । ... । .
C . . . 1 1 1 1 1 i i 1 ... 1 ... 1 1 1 .

100 Calculations ,f o r f.reshrr^en an.d out,put o,f res.ults , , ,
60. T,0. .500, । . i । ... । । ... ,...i .

200 Cal,culat,ions ,f o r s,o p horr\or e s ,and o.utput, of r.esult.s , , ,
60 T,0 500, , । , । ... , . . । । । i । i .

300 Calculations ,f o r .i,u n i o.r,s. and, out p,u t of, r e s u,1 t s . , , . , ,
60 T,0 5 00, , . . । । । । , । ... । . . i । i .

400 C a 1 ,c u 1 at,ions ,f o r s,enior,s and, outp.ut of, resu.lts
60. T ,0 ,5,00, , , , , i , , , , , । । । । । । i ... , i । .
END, . , । i । । i i i । .

■ . 1. . . . 1 . . . ■ i ... 1 . . - 1-- - ■ 1- - - - 1 - 1 ______1______ . .1 . ---------L...................... t . 4 4 . 1 .

Figure 4-4. Coding form for Example 4-2

control to statement number 100 where all the necessary calculations are made on the
raw scores of the freshman student. Once these calculations have been completed and the
appropriate results have been printed out by the computer, control is transferred back to
the initial READ statement for a new set of data. The overall function of the program is
the same for sophomores, juniors, and seniors, and the particular branch involved depends
only on the value of LEVEL. There is a terminal END statement at the end of the
Fortran program list. It might also be noted that this program will suffer the same error
noted in Example 4-1 in which the compiler indicates an execution error when no more
data cards are available for processing.

4-4. Arithmetic IF

The unconditional GO TO statement discussed in Section 4-2 provides a means for
returning from a branch of the logical structure of a Fortran program while the computed
GO TO statement of Section 4-3 provides a means of entering one of many possible
branches in the logical structure. This section will discuss the arithmetic IF statement,
which is similar to the computed GO TO statement in that it provides a means of
branching to one of three possible branches. The IF statement and the computed GO TO

B.RANCH.ES

74 Transfer of Control

statement appear quite different, but their operation and usage are often closely related.
The IF statement provides a means of branching to one of three statement numbers

by means of examining an arithmetic expression called the argument of the IF statement.
It causes transfer to one of the possible branches depending on whether the expression
evaluated is less than zero, equal to zero, or greater than zero.

The arithmetic IF statement is of the following general form:

IF(e>], n2, n3

where e stands for any expression and «i, n2 and n3 are numbers (not variables) of
executable statements in the Fortran listing that may appear either before or after the IF
statement. If the value of the expression within the parentheses is negative, the next
statement to be executed will be /?]; if the value of the expression within the parentheses
is zero, the next statement to be executed is n2 and if the value of the expression in the
parentheses is positive, the next statement to be executed is n3.

It is possible for any two of the statement numbers in the arithmetic IF statement
to be the same. (It is also possible for all three to be identical, but in such a case the result
would be the same as an unconditional GO TO statement.) It is necessary that every
statement number in the IF statement be the number of an executable statement in the
Fortran listing. It is possible in some situations that one branch of the IF statement will
never actually occur in execution with consistent data, but in any event it is still
necessary to provide a statement number for this possibility, even though it does not exist
from a practical viewpoint. Mixed modes of arithmetic are not normally allowed in the
expressions found as the argument of an arithmetic IF statement. Either real or integer
expressions are allowed, however. Complex expressions (to be discussed later) may not be
used in arithmetic IF statements, and if a complex expression is inadvertently placed in
an IF statement, the real part is tested.

One problem that may arise in the use of the arithmetic IF statement results from
the computer requirement that the arithmetic expression which comprises the argument
of the IF statement be identically zero before the second statement in the list of
statements is executed. There may be some problems created in this situation because of
the inherent manner in which the transition from binary to decimal arithmetic is
accomplished. Problems also may be created by truncation and round-off errors in the
representation of numbers (such as 1./3.). These do not present any difficulties when the
IF statement is applied to integer expressions, since fixed-point representation of integers
is inherently exact. When the argument of the IF statement is a real expression, however,
problems may be present due to the fact that the computer may not have the argument
exactly 0, and it may be to the advantage of the programmer to place some checks to
avoid inadvertent errors caused by the inherent operation of the arithmetic calculations
in the computer.

EXAMPLE 4-3

A convenient problem to illustrate the arithmetic IF statement is that encountered
in the use of the familiar quadratic formula which determines the roots of a quadratic
equation ax2 + bx + c = 0. The formula is

v ~ b ± \/h2 - 4ac
12 2a

The use of the formula is very straightforward, but the quantity under the radical sign
may be negative and introduce complex numbers. At this stage of the development of our

4-4. Arithmetic IF 75

programming skill we have not had any formal usage of complex Fortran arithmetic, so
we will take a direct approach to this problem to illustrate the arithmetic IF statement.

A flowchart for the proposed program for this example is illustrated in Figure 4-5,
and the program is given in Figure 4-6. In the program the three coefficients of the
quadratic equation, A, B, and C, are READ into the computer, and the quantity under
the radical sign, RAD, is calculated as B ** 2 - 4. * A * C. Depending on the value of this
quantity under the radical sign, control then goes to one of three branches in the
program. If the quantity under the radical sign is negative it is necessary to calculate two
complex roots which are conjugates of one another, i.e., their real parts are equal and the
complex parts are equal in magnitude. In this particular branch the output uses FORMAT
statement 11 in which provision is made for A, B, and C to be recorded in the same
format as that in which they were read. The real and imaginary parts of roots 1 and 2 are
also recorded with five blank spaces between each of them and five blank spaces between
the roots and the coefficients A, B, and C. After the completion of the output section,
control is returned to statement 1 (the initial READ statement) to introduce a new set of
coefficients.

If the quantity under the radical sign is zero, the two roots of the quadratic
equation are both real and equal to one another. The appropriate output statement for
this uses FORMAT statement 21, and the logic of this branch is much as before. When
the quantity under the radical sign is positive, the roots of the quadratic equation are
both real but unequal, and the calculations are made as shown in the third branch. In the
output section of the third branch the same FORMAT statement is used as that in the
second branch, i.e., statement 21. This is permissible. FORMAT statements are not
executable, and they may appear at any point in the Fortran program list. They may even

Figure 4-5. Flowchart for Example 4-3 (roots of a quadratic equation)

76 Transfer of Control

— c FO» co

-STAHMlNT e

mmEnT,

FORTRAN STATEMENT
55 60 65 7Q 77

Z TO '5 20 25 30 35 <0 45 50

C EXAMPLE, PR0G.RAM T0 CALCULATE R00,TS 0F. A QUADRATIC USJNG A,N J_____ I -

C .ARITHMETIC, IF STATEMENT , . 1 - - - . 1 -__ _ - - 1________ _ . J_______
•

. 1 .

C
C IN P|UT 0,F COEFFICIENTS , , , , ,
C

1 READ,! 5,, 10,0) A, B„C _____ _ , _________
100 |F0 RMAT (.3 F,10,1), , , . , ■

c
c CALCULATE, RADICAL , , , , , . , ,
c

RAD .= B *.*2 - ,4. * ,A * C, , ,
c
c CH E CK V.ALUE ,0F RA,DICAL. , . , ,
c

IF (R,AD) 10,, 20,3,0 , , , ,
c
C TH R EE. B.RANCH,ES , , , , . , , , , ... , . . , , . , ,
C

10 REALJ. =. -,8 ./. (,2. •. .A) .. t । । . . .
REAL.2 ■ R.EAL1 ,
XIMA,G1 = ,SQRT(,ABS(R,A0) 1/, (2 . A 1 ,

XIMA.G2 = ,- XIMAGl , , . . ,
WRITE(6J,1) A , B„ C , RE,AL1 , X.1MAG1,, RE AL,2, XIMAG2 ,

11 F0RMATI IX, ,3F10,.l, 5X,, 2F1.0.2 , 1,0 X , 2F,10 . 2), . . 1 1

60. T,0 1 ,,,,,,,, , , , ,
20

WRIT.Et 6,2,1) A, B„ C , RE.AL , RE,AL .
21 F0RNJATI IX,. 3F10..1 ,5X,, F10 .,2,10X,, F10 .,2)

60 T,0 .1. , ... , ,
30 RE.AL.1 = (,-B + ,SQRT (.RAD)), / (2,. • A,) . ,

REAL,2 = (,-B - ,SQ.RT (,RAD)), / (2,. » A,)
WRIT,E(6.2,1) A. B..C , RE.ALl, R.EAL2 , , ..
60. T,0 1 , , . , , , ,

A.*i. ^ •......... ., ... , . . . ।

1. 2 1______ . i ___ _ ■ ■ i ■ ■ ■ *i__________ __ i__ . - -i i_____________ । ... । ... i

... 1 1_______ ______1____________ 1__ 1 1 ... 1 . . ■ 1_____________1_______ ______L ____.1.1 1

Figure 4-6. Coding form for Example 4-3

appear together as a group at the end of the program. Programmers exhibit individual
preferences, but it is generally convenient to have them close to the input or output
statement with which they are associated.

This program also suffers from the last-card execution error shown in Examples 4-1
and 4-2.

4-5. Logical IF 77

In order to illustrate this program, some typical data are shown, and for these three
sets of data the output results are shown.

1.0 7.0 6.0 1.00 -6.00
1.0 12.0 37.0 6.00 1.00 -6.00 -1.00
1.0 2.0 1.0 1.00 -1.00
ERROR (STATEMENT 1 + 0 LINES)

4-5. Logical IF

The logical IF statement^: is the last statement for transfer of control that is considered in
this chapter. The logical IF statement has the general form

IF(e)S

where e is a Boolean (logical) expression with the value of true or false, and S is any
statement except another logical IF statement, an arithmetic IF statement (allowable in
some versions), or a DO statement. (The DO statement is considered in a subsequent
chapter.) If the expression which comprises the argument of the logical IF statement is
true, statement S is executed next, and then the next statement following the logical IF
statement is executed unless the S statement itself is an arithmetic IF (if allowed) or a
GO TO statement which would modify the normal sequence of execution. If e is false,
the statement immediately following the logical IF statement is executed next. The
Boolean expression e is a logical expression and these logical expressions are normally
formed by the use of relational operators in order to write relational expressions. Typical
questions are, for example, “is x greater than or equal to 3.14?” or “is i equal to/?” In
order to form such logical expressions the following relational operators are available:

Relational Operator Meaning
,LT. Less than
,LE. Less than or equal to
.EQ. Equal to
,NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

These relational operators may be used for both real and integer variables, but a change of
mode is not normally permitted across a relational operator.

The periods in these relational operators are essential and are inserted to differenti
ate relational operators from identical variable names which may inadvertently have been
chosen by the programmer.

The logical IF statement’s usefulness is extended by the combination of logical
operators such as .AND., .OR., and .NOT. with relational operators. These logical
operators are used as follows: suppose that we desire to go to statement number 267 if X
is greater than Y and if X is also greater than or equal to Z. If both of these conditions are
not met, then the next statement to be executed should be the statement following the
logical IF statement. This situation can be programmed into a single logical IF statement

IF (X.GT.Y.AND.X.GE.Z)GO TO 267

tSome smaller Fortran compilers do not provide logical IF statement capabilities.

78 Transfer of Control

If both conditions are met, statement 267 will be executed; and if either of the
conditions are not met, the next statement to be executed will be the one immediately
following the logical IF statement.

Although it is not normally possible to mix arithmetic modes in logical expressions,
it is normally allowable to have logical expressions of different arithmetic modes con
nected by a logical operator, e.g., the following example is correct:

IF (X.GT.Y.AND.I.GE.J)GO TO 267

In a similar fashion the .OR. operator is satisfied if either or both of the logical
expressions it connects are true, and the .NOT. operator reverses the truth value of the
expression it modifies. As an example of the use of the .NOT. operator, the expression

IF (,NOT.(X.LT.Y))X = Z

has exactly the same value as the logical IF statement

IF (X.GE.Y)X = Z

since “not less than” means the same as “greater than or equal to.”

Figure 4-7. Flowchart for Example 4-4 (selecting the largest of three
temperatures)

4-5. Logical IF 79

C FOR COMMENT

■ statement
NUMBER

1 5 6
FORTRAN STATEMENT

7 10 15 20 25 30 35 40 45 50 55 60 65 70 72

C E X AMPLE. PR0,BLEM ,T0 SELECT .THE L.ARGES.T 0F .THREE, TEMP,ERATU,RES , ,
C - - - 1 . - . . 1 1 . . X . 1 ... 1 1 ... I ... 1 1 .. . 1 . i ... 1 1 .

C R E AD I,N THE, THREE TEMPERATURES ,
C

RE AD.t 5 , i) T1 , T 2,,T 3 . , _____________ , , , , _________
1 F0RMAT.(3.F,1O . 2.)________ _______________________ _____________ _

C . . . 1 1 1 ... 1 1 1 ... j . . . >

C S E LECT, THE. ,L ARGE.R OF ,TW0 , t 1 i 1 1 1 ■

C . 1 X X . X 1 X ... 1 1 | 1 i .. .

IF (T.l. LE .,T2) G0, T0 5,
BI62, =. T1, _______________________ 1 . ,_x..ji . X.X X.J .X . 1_X __ ■ 1 ■ ■ ■ . 1 . -

60 T.0, io_____________________________ [.BI63 = T1_________________ .

5 BIG2, =. T2,_____ •________________________________ >0R< I F(T2.GT . BIG3)BIG3 = T2
C - X . 1 1 1 1 1 1 1 .. . J._. . ,IF (T3,.GT . B,IG3) B,163 = T,3
C C 0 MPAR,E THE, LARG.ER 0F, TW0 .WITH ,THE T.HIRD
C . X _X 1 X 1 . 1 1 1 1 1 1 .. .

10 IF(T,3.LT.,BIG 2), G0 T,0 15 , , ,

6.0. T,0 20. । । , , . . .
15 BI 63, - BI,G2 , .1 । । / । I . । . . । . ।

C
C 0 U TPU.T, 0.F. RESULT,S ________.... _____ _________ _
C

20 WRITE(6,2,). BIG,3 . . . ,_____ _ . . . __________ _________...._________
2 F0RM.AT (F2,O.. 2)______ ,___

S.I0P| , , , , । । । । । । । । i i i । ,

7 2 •46 _____ 8.1. 27_____ 7,4.21______________ , . ,
... 1 1 ... 1........................1... 1.....................1 1 1 ■ ... 1 1 1 1 ■ ... 1 ■

1 . . 1 1 1 ... x 1 1 L...... 1 . _ . . 1 1 1 . . . _x 1 1 .

| 1 1 , 1 1 l ._. .. 1 1 l x . 1 1.....................1.^ X X. X 1 .

Figure 4-8. Coding form for Example 4-4

Logical IF statements are useful tools available to the user of Fortran IV (they are
not available in earlier versions of Fortran), and the student should become familiar with
them. Questions relative to the hierarchy of relational expressions and logical operators
are covered in Appendix A.

EXAMPLE 4-4

As an example of the logical IF statement, consider the problem in which we intend
to make three readings of air temperature during a six-hour period and use the computer
to select the largest (highest) of these three temperatures. The computer will do nothing
more than select the largest of the temperatures and write it out as an answer. The three
input temperatures are in Fl0.2 format, and the output answer is to be in F20.2 format.
The flowchart is shown in Figure 4-7, and the computer program is shown in Figure 4-8.

The structure of the computer program is based on using a logical IF statement to

00 Transfer of Control

compare two of the temperatures and select the larger of these two. The larger of these
two temperatures is then compared to the third temperature in order to select the highest
temperature for the six-hour period. To select the larger of two temperatures a logical IF
statement is used with the .LE. operator. Based on the use of this operator an intermedi
ate variable BIG2 is calculated. A second logical IF statement is used to compare BIG2
with T3 in order to select BIG3, the highest of the three temperatures. In the second
logical IF statement the .LT. operator is used although the .LE. operator also could have
been used. Note from the alternative in Figure 4-8 that the manner in which the
programming is done has a significant effect on the number of statements required.

In the output format statement the single temperature that was selected as being
the highest is written out as BIG3 in F20.2 format. Since this variable, of necessity, is one
of the original three temperatures read into the computer, it cannot possibly occupy
twenty spaces since there were only ten spaces in the input field. The output answer will
be right justified in the space available, and there will be at least ten blank spaces to the
left of the output field. Since this is guaranteed, there is no need to provide a blank space
in column 1 of the FORMAT statement of the output record. Unpredictable carriage
control is prevented since this column will always be blank. The output result for the
example set of data on this problem is, of course, 81.27.

This example illustrates the nature of the logical IF statement and its usage in a
simple program. It may be pointed out that the problem proposed is a rather trivial one in
terms of justification for the usage of the computer, but it does illustrate the program
ming concepts.

4-6. Simple Counters

One of the principal applications of integers in Fortran programming is in counting the
repeated execution of a set of instructions, i.e., the counting of iterations of a program.
In Example 4-1 the use of a loop in the program caused the computer to repeat the
calculations over and over. When the last data card was read, the computer gave an
execution error indicating a last-card error which was unavoidable with the programming
knowledge available at that time. This problem can be avoided by the use of simple
counters.

Suppose it is planned in advance to read in 100 sets of input data to the program of
Example 4-1. A counter can be incorporated into the program for this problem, and the
program can check at the end of each set of calculations to see if it has, in fact, run 100
data sets. Before reading in the first data set a counter variable, defined as I, could be set
equal to zero, and on each execution of the READ statement the value of this integer
counter I could be incremented by one. At the end of the program’s calculation
statements an arithmetic IF statement can be inserted to check on the arithmetic
expression (I - 100). If this quantity is negative, control can be transferred back to the
beginning of the program; if it is zero or positive, control can be transferred to a STOP
statement at the end of the program. This action will prevent a last-card execution error,
and it illustrates how counters may be used in programming.

Another example of a counter is in keeping track of the number of times that a
computer program iterates through some trial-and-error calculation before an answer is
achieved. The value of the counter can be printed out at the end of the calculations to
give the programmer an indication of the quality of convergence which he has achieved in
his program. Another typical use of the counter is to set an upper limit on the number of
trials which may be run in a trial-and-error computation. For example, it may be desirable
to use a trial-and-error method to find the roots of a polynomial by some typical root

4-6. Simple Counters 81

solving technique. Since it is entirely possible that these techniques converge very slowly,
the programmer may desire to set an upper limit on the number of trials, 200, for
example. It may be desirable to punch out the values of the roots at this stage of the
trial-and-error calculation regardless of whether exact convergence has been achieved or
not. These types of applications of the counter are typical and in no way limit their
overall usage. Counters are extremely powerful tools for the programmer.

EXAMPLE 4-5

A single example will be sufficient to illustrate two different uses of the counter.
Assume there are three separate data cards, each containing a single angle expressed in
radians. Assume further that the value of these angles, all of which are positive, can vary
quite widely. The purpose of the program is to read in each of these angles, one at a time,
and subtract 2tt radians (360°) from each one a sufficient number of times to reduce it to

Figure 4-9. Flowchart for Example 4-5 (angle reduction)

Transfer of Control

------- C FOR C
-STaTEmEst'-

NJMBEB

' 5

o A* ** f N T _______________________ _______ ______________________________ ________ __________ —

FORTRAN STATEMENT
.7 10 15 30 25 30 35 40 « 50 55 ____SO------------------- 65------------- ■ 70 72

C EX/\MPLE, PR0B,LEM TJ& RED.UCE A,NG LE S, , , , . . . ■ ■ »__
C
C IN]JIALJZE C.0UNTE.R F0R, RECORDING, NUMB,ER 0F, DATA, CARD.S REA.D . . , . . , , .
C

C
C INF>UT 0,F 0NE, C ARD, , , , ... , .
C

20 RE A D,! 5 ,10,0) T H E,T A
100 F0 RM.AT (F2,O . 5) । . . ■ ■

C
C I N(LREME.NT CA.RD C0.UNTER, AND ,SET I,TERAT,I0N C,0UNTE,R F.0.R, THIS, CARD, . . . , .
C

C
C RE)U,CE ,THE ANGLE ,AS NE,CES.S.A,RY . . , , , , , ... , , , , . , .
C . 1 1 1 1 I 1 1 ... 1 a ... 1 1 - - - -I1 ■■ -- -__ _ 1 .A11—

10 IF(T,HETA ,- 2. ,* 3 .1,4159 } ,15 , 5 , ,5 , . . ,
5 IF (I,. EQ . 2,0) G0, T0 1,5 , , , , ... ■

1 ~ >1 "b 1, । । । । । । । । । । । .
THET.A - T.HETA ,- 2 . ,* 3.1,4159.. , . ,
60 T,0 10 , , , , , , i ... i .

C
C 0U1FPUTJ5F AN.GLE_____________________________ _____________ , _____ ______ _
C

1.5 WRI T,E (6,2,00) T H,ET A ______ , ______________________ , , ,
200 iF0RM,AT(IX,, F2.0 .,5)_____ _____ , , ____________ , , _________

C A A . 1 . A .. 1 1 1 1 .. . ^ 1 1 1 1 1 J | .
C CHE:CK T,0 SEE, IF T.HERE ,ARE M,0RE DAJA C.ARDS ..
C .4_A_1 . . . 1 1 1 1 ■ ■ . , 1. 1 . . . ■ | , , . | . . , . | J ,

|1FIJ,.LT.3,I 60 ,T0 20,______ ,______ ..

lST0p, , ,, , , , , .
£ nd ।.... ।...., ... i ,.........।.. . । . i i . . , ,

3 4
. . . 159.8 .2, , , . . , , , , । । , , ,

_ _ .. APP.-PP.. . . i_ । । । । । । । , , , , । , , , , ,
-------- . . 1 1 . . .-■... L 1 1 .. 1 1 1 1 . I . i , ,

Figure 4-10. Coding form for Example 4-5

an angle less than 2n radians. A counter will be used to instruct the computer to READ
the three data cards, one at a time, before it completely stops its calculations.

It was previously stated that it is possible to use a counter as a means of setting an
upper limit on the number of trial iterations that might be carried out in a particular loop

Exercises 83

of a program. The usage of counters also can be illustrated in this particular example by
subtracting 2zr radians from the angle no more than twenty times. After having made this
reduction of the angle (call it 0) by 2tt radians twenty times, if 0 is still greater than 2?r
radians the reduced value of 0 will be written on an output record.

The problem requires two counters as defined: one to handle the count of the
number of data cards that have been read into the machine, and a second to keep track of
the number of iterations made on any single data card. The flowchart for the program is
given in Figure 4-9, and the computer program necessary to make these calculations is
shown in Figure 4-10. It is first necessary to initialize the counter for reading data cards.
Once this has been done it is possible to READ a card and set the values of both counters
for that particular data card. The reductions of 0 are then made, and on each reduction of
the angle the counter I (used to keep track of the number of iterations) is incremented by
one. In each iteration through the computation a check is made on the value of 0 to see if
it is less than 2tt radians, and a separate check is made on the value of the iteration
counter I. Once 0 falls within its prescribed limits or the necessary number of iterations
have been made, control is transferred to the output section of the program where the
current value of 0 is written on an output record. After 0 has been written, a check is
made to see if there are more data cards to be processed by using an IF statement on the
data card counter J. If more data cards are to be processed, the flow of control is
transferred back to the READ statement; if not, transfer is made to the STOP statement.

For the typical values of input data shown, the results are

3.40000
272.53589

5.75220

4-7. In Summary

This chapter has been devoted to some of the powerful statements that are available in
Fortran programming, and the usage of these transfer of control statements unlocks the
powerful tools of the computer. The GO TO statements and the IF statements have been
discussed in some detail, and it is now assumed that the student has them at his
command. As the student becomes more familiar with these powerful transfer of control
statements, the logical structure of his program becomes more complex and the usage of
flowcharts to illustrate the structure of his program becomes increasingly important.

It is recommended that the student carefully study the example problems worked
out in this chapter. As stated at the end of an earlier chapter, it is important that the
student make a number of separate, although simple, uses of the types of statements
introduced in order to gain complete confidence in his ability to use them.

EXERCISES^

4-1. Most of the exercises at the end of Chapter 3 were presented as cases in
which only one set of input data was available. Assume that there are many sets of input
data available for these exercises. You are to indicate how the computer programs would
have to be written in order to process these multiple data sets using an unconditional
GO TO statement for

| Solutions to Exercises marked with a dagger f are given in Appendix E.

Transfer of Control84

(a) 3-9
(b) 3-13

t(c) 3-15
(d) 3-17
(e) 3-20

4.2. A computer program is set up to calculate insurance premiums for various
employees in a plant. The necessary calculations are dependent on the number of children
which an employee has, i.e., 0, 1,2, 3, or “more than 3.’ Set up the general outline of
this program much as is done in Figures 4-3 and 4-4, using a computed GO TO statement.

44-3. The age of a person is one of the principal factors in determining caloric
intake requirements. Assume that a person’s age is one part of input data to a program to
make this type of calculation. Depending on whether the person is 0-10, 11-20, . . . , or
91-100, there will be an appropriate set of calculations. Use a computed GO TO to select
the appropriate branch, and outline the program as in Figures 4-3 and 4-4.

Note: For all the following exercises you are to read in the given variables,
perform the desired calculations, and write out the results as directed. Write complete
Fortran programs including a trial data card(s).

4-4. Read in x and.y. If x >y, set z — 1; ifx <y, set z = 2; and ifx = y, set z = 3.
Write out x, y, and z. Assume there are many data cards, each containing a value of x and
y. Use an arithmetic IF statement(s) to make the necessary decision(s). Be certain to draw
a flowchart.

4-5. Repeat Exercise 4-4 using a logical IF statement(s).

f 4-6. A number of data cards are available, each containing three adjacent values of
the ordinates on a curve. Use an arithmetic IF statement(s) to check each set to see if a
local maximum is present, i.e., if y2 >y\ and y2 >T3. If a local maximum is present in
the input data set, write out the three ordinates. If no local maximum is present, do not
write out anything and go to a new data set. Be certain to draw a flowchart.

4-7. Repeat Exercise 4-6 using a logical IF statement(s).

4-8. A number of data cards are available, each containing a value of the variable
x. Use a logical IF containing two relational operators with the logical operator .AND. to
see if Kx < 99. If x is within this range, add the value of x to a running sum of all of the
values of x contained on the input data cards, write out the current value of the sum, and
read in a new data card. If x is outside the specified range, subtract 99 from x, add the
reduced value of x to the running sum, write out the value of the sum, and.read in a new
data card. Be certain to draw a flowchart.

4-9. Repeat Exercise 4-8 using only one test in the logical IF in conjunction with
the absolute value function.

4-10. Read in the real part (a) and imaginary part (b) of a complex number which
are both contained on the same data card. The number is assumed to be in rectangular
notation (a + z'Z>) and is to be converted to trigonometric notation (reZa) by

a. = tan"1 bfa
r =\J a2 + Z?2

where the equivalence of (a + z’Z>) and (re/a) notation is implied. Write out a, b, a, r, and
K for the number, where

Exercises 85

K = 1 if a < 90° and r < 1
K — 2 if a< 90° and r > 1
K = 3 if 90 a < 180° and r < 1
K — 4 if 90° < a < 180° and r > 1
K — 5 if 180° a. < 270° and r < 1
K = 6 if 180° < a < 270°and r > 1
K = 7 if 270° < a < 360° and r < 1
K = 8 if 270° < a < 360° and r > 1

Use only arithmetic IF statements. Assume there are many input data cards, each
containing a value of a and a value of b. Be certain to draw a flowchart.

4-11. Repeat Exercise 4-10, using logical IF statements.

14-12. Read in a data card containing an initial value of x, a final value of x, and an
increment on x. Write out these three values of x and then calculate y as a function of x:

2 3
y = 1 + X + yyy + yy + sin (x)

where x’s first value is x initial. Keep calculatingy for values of x (in each case adding the
increment on x to the old value of x) until x exceeds the final value of x. In each
calculation write out y and the value of x used to calculate y. When x exceeds the final
value of x, read in a new data card and start over. Be certain to draw a flowchart.

4-13. Repeat Exercise 4-12, except that you are directed to stop calculating y
whenever .y exceeds 100 or when x final has been exceeded, whichever occurs first.

4-14. Set up a counter on Exercise 4-4 to handle four input data cards.

f4-15. Set up a counter on Exercise 4-6 to handle seven input data cards.

4-16. Set up a counter on Exercise 4-8 to handle five input data cards.

4-17. Set up a counter on Exercise 4-10 to handle six input data cards.

4-18. Set up a counter on Exercise 4-12 to handle three input data cards. Also
add an iteration counter to stop calculations on a given set of input data if y is calculated
as a function of x more than fifty times.

f4-19. An alternate way to determine when a particular input data card is the last
card is to define a new input variable, e.g., N. Use a value of N as zero as a basis for
reading in a new data card and a value of N as 1 as a basis for stopping the program. N
will have to be included on each input card but since a zero value indicates further
processing, N will only have to be punched on the last input data card. Do this for
Exercise 4-6.

4-20. Repeat Exercise 4-19 for Exercise 4-8.

5
Introduction to DO Loops
and to Subscripted Variables

Many technical problems require identical or very similar calculations to be repeated
several times. Examples include searches for solutions of nonlinear equations, numerical
solutions of differential equations, matrix multiplication, or simply solving the same
problem for different values of the input data or parameters. As such repetitive opera
tions are very common, a special feature, the DO loop, should be mastered at an early
stage in programming. Actually, counters constructed around the IF statement as dis
cussed in the previous chapter will accomplish the same tasks as the DO loop, but the
latter is much more convenient. In addition to the DO loop, this chapter will introduce
subscripted variables, a powerful and convenient way to handle large quantities of data.

5-1. Definition of DO Loops

Suppose the sum of all whole numbers from 1 to 100

100
E ‘

i — 1

is to be calculated and stored in NSUM. Using the counters previously described, this can
be programmed as a counter. (See Figure 5-1.) Note that five statements are required, three
of which are necessary to form the counter.

This example illustrates that the DO statement is very convenient. Using the DO,
this problem can be programmed as in Figure 5-1. Now only three statements are
required.

The analogy between the counter and the DO can give insight into the operation of
the DO, and it is used for that purpose in the ensuing explanation. The general form of
the DO statement is as follows:

87

BB Introduction to DO Loopsand to Subscripted Variables

DO m i = «i, n2, n3

In this statement m is the statement number of the last statement under control of the
DO. In the example of the last paragraph m corresponds to 23. It is necessary, that m be a
statement number; it cannot be a variable. The index i of the DO is a nonsubscripted
integer variable. The index of the DO in the above example is I, which is also used to
form the counter. The value of the index upon initiation of the DO is given by nx, which
must be a nonsubscripted integer variable or a positive integer constant. In the previous
example the index I is initiated at one, which corresponds to the statement I = 1 in
forming the counter. The final value of the index is given by n2, which also must be
either a nonsubscripted integer variable or a positive integer constant. In the above
example n2 is 100. In the counter the final value is dictated by the statement IF
(I.LE.100) GO TO 23. Finally, n3 is the amount by which the index is incremented
between iterations. In the above example n3 is one, which is specified for the counter by
the statement 1 = 1 + 1. If n3 is not specified in the DO statement, it is assumed to be
one. Thus the DO statement for the above example can be

DO 23 1= 1,100

Nothing else may be omitted. Note carefully the location of commas. No comma appears
between the statement number and the index of the DO, but the indexing parameters
(«i, 2 and n 3) must be separated by commas.

The DO statement DO 23 I = 1,100,1 can be read as follows: DO through state
ment 23 beginning with I equal to one and repeat from the DO statement, incrementing I
by one, until I equals 100. The first time the DO is executed, I equals one; on the final
execution I equals 100.

Accomplished by
either a D0 or
a counter

(a) Flowchart

Figure 5-1. Analogy between the DO and the counter

Counter *

NSUM = O
1 = 1

23 NSUM = NSUM + I
1 = 1 + 1
IF (I.LE.100) G0 T0 23

00 <
NSUM = 0
D0 23 1 = 1,100,1

23 NSUM = NSUM +1

(b) Equivalent parts of the counter and the DO

5-2. Complete Examples 89

5-2. Complete Examples

Before continuing with other details of the DO, a complete program requiring a DO
statement should clarify a few points. Consider the simple case in which five real variables
are read (each from a separate card), their sum and average computed, and the average
printed. The flowchart, the complete program, and possible data cards are shown in
Figure 5-2. In this example two statements are in the range of the DO. The range begins
with the first statement following the DO and ends with the one whose statement number
is specified by the DO. The term DO loop denotes all statements in the range of the DO
plus the DO statement itself. Note that upon completion of the DO, execution proceeds
with the first executable statement following the DO loop.

As another example, consider the computation of the consumption of a quantity
such as electric power. The data are the customer number, the reading of his meter at the

(b) Complete program

c FIGURE 5-2 CALCULATION OF AVERAGE
c
c
c

1
c

INITIALIZE SUM TO ZERO

SUM=O.

c
c
c

2
3
4 2

C

CONSTRUCT DO LOOP TO READ
A AND ADD TO SUM

002J =1,5
READ!5,3) A
SUM = SUM-»A

THE VALUE FOR

C
C

R
6
7

C
C
C

10 3
11 4
12

COMPUTE AVERAGE AND WRITE

AVG=SUM/5.
WR ITE(6,4)AVG
STOP

FORMAT STATEMENTS

FORMAT(F5.0)
FORMAT!1X,F12.4)
END

(a) Flowchart

1.
5.
12.2
-3.
.161

(c) Input data

3.0722

(d) Output

Figure 5-2. Calculation of average

c
c
c
c
c
c

1
2

c
c
c
c

3
4

C
C
C
C

5
C
c
c
c

6 7
7

C
C
C
C

10 8
C
c
c

11 2

C
C
C

12
13

C
C
C

14 1
15 3
16 4
17 12
20

1 12.1
2 14.6
3 27.7
4 20.0

27.7000
32.4000

(a) Flowchart

FIGURE 5-3
ELECTRIC CONSUMPTION

INITIALIZE SUM TO ZERO AND READ N,THE
NUMBER OF CUSTOMERS

SUM=0.
REA015, 1) N

DO LOOP FOR READING INPUT FOR EACH
CUSTOMER AND PROCESSING APPROPRIATELY

002K=1,N
READI5, 12) J,PREV,PRFS

CHECK IF PREVIOUS READING IS GREATER
THAN PRESENT

I F (P R E V-P RE S) 7,7, 8

COME HERE IF READING IS VALID. SLM IS
INCREMENTED.

SUM= SUM+(PRE S~ °RE V)
G0T02

COME HERE IF READING IS INVALID. PRINT
THE INPUT VALUES.

WRITE I 6,3)J,PREV,PRES

DUMMY STATEMENT TO END DO LOOP

CONTINUE

OUTPUT

WRITE(6,4)SUM
STOP

FORMAT STATEMENTS

FORM/)T(15)
FORMAT(IX,I5,2F12.4)
FORMAT(1X,F15.4)
FORMAT!I5,2F10.0)
END

(b) Complete program

30.7*
26. 1
20.1
22.3

(c) Input data

20.1000

(d) Output

Figure 5-3. Electric consumption

90

5-3. Further Clarification 91

beginning of the month, and the reading of his meter at the end of the month. To
calculate the kilowatt-hours consumed by each customer, the previous reading is sub
tracted from the present and the difference is added to the running sum. (See Figure 5-3a
for flowchart.) Since a case in which the previous reading is higher than the present
indicates an erroneous condition, the computer upon detecting such a case should print
the customer number and the reading. (Note the branch within the DO loop in the
flowchart in Figure 5-3a.) Furthermore, this entry should be ignored in calculating the
total power consumption. Upon completion, the computer prints the total power used by
all the customers.

The specific program and a few sample data cards, the first giving the number of
customers, are given in Figure 5-3b. First the program reads the number of customers (the
value of parameter n2 in the DO statement) and then enters the DO loop. Upon each
iteration, the program reads the customer number, the previous reading, and the present
reading. If the previous reading is less than the present reading, the difference is added to
the sum, and the loop is repeated. If not, the customer and reading are printed, and the
loop is repeated.

Note the use of the CONTINUE statement as a dummy statement to end the range
of the DO. Use of the CONTINUE (or another dummy statement) to terminate the range
of the DO loop as in the above example is frequently necessary. After the execution of
either alternative of the DO, control must be transferred to the end of the range of the DO.
Since the two alternatives have nothing in common, a dummy statement such as
CONTINUE is required.^ The CONTINUE statement is considered to be executable, but
no machine language instructions are generated from this statement.

5-3. Further Clarification §

The following points regarding DO loops are worthy of special note:
1. The requirement that the initial, final, and incrementing values («j, n2, n3)

specified by the DO statement be nonsubscripted integer variables or positive integer
constants eliminates the following possibilities:

(a) DO 7 J = 1, N(I). The subscript is not allowed, but the same result can be ob
tained with the following two statements:

M = N(I)
DO 7 J= 1,M

(b) DO 7 J = 1, N + 2. A general rule to remember is that no numerical calcula
tions may be performed in the DO statement itself. The desired result can be
obtained by

M = N + 2
DO 7 J = 1 ,M

2. Consider the statement DO 1 I = 1,4,2. On the first pass, I = 1; on the second

j Many compilers permit free use of the CONTINUE statement, while others, the IBM 360, for
example, require that the CONTINUE statement have a statement number.

§In this section the idiosyncrasies of various Fortran IV compilers lead to some double-talk.
Fortran IV compilers are available for many different computers, and the differences of opinion of the
individuals who wrote the compilers are reflected by certain minor points of the DO being treated
differently by different compilers. In a general manual such as this, the more common or safe
variations are given.

92 Introduction to DO Loops and to Subscripted Variables

pass, 1 = 3; on the third pass, 1 = 5. Consequently, I never equals four, the value for
which the DO is satisfied. Will the DO be terminated after I equals three, after I equals
five, or will it be terminated at all? The answer is clear after considering the effective
manner in which the computer executes the DO. The behavior will be the same as when
executing a counter of the following type:

1= 1
1 (range)

< of >
(DO)

1 = 1 + 2
IF (I.LE.4) GO TO 1

From the above counter, it is apparent that I equals three on the last execution of the
statements in the range of the DO, although the value of I is five when leaving the counter.

What will result from the following DO statement?

DO 7 I = 4,4

The statements within the range of the DO will be executed only once. However, the DO
statement DO 7 1 = 4,3 will generate an error and will not be executed by many Fortrans
(note that a machine executing it according to the counter described in the previous
paragraph would execute it once). These situations are sometimes encountered when
variables are used as the indexing parameters andn2-

3. The index of the DO may not be altered within the range of the DO. For ex
ample, consider the hypothetical case in which the ten elements in a one-dimensional
array A are to be summed, except that the third element is to be omitted from the sum.
The following statements are proposed:

SUM = 0.
DO 7 1= 1,10
IF (I.EQ.3) 1 = 1+1

7 SUM = SUM + A(I)

However, this series of statements will not be accepted by the compiler, as the IF
statement attempts to change the index. Instead, the following procedure is appropriate:

SUM = 0.
DO 7 I = 1,10
IF(I.EQ.3)GO TO 7
SUM = SUM + A (I)

7 CONTINUE

This accomplishes the same result, but does not tamper with the DO index. The DO index
is available for calculations within the range of the DO, but must not be altered by
arithmetic statements or by reading a new value of the index within the range of the DO.

This same rule applies to the indexing parameters n1; n2, and n3.
4. Control may be transferred outside the range of a DO by two methods. First,

when the execution of the statements in the range of the DO as specified by the indexing
parameters (nlt n2 and n3) is accomplished, the DO is said to be satisfied and a normal
exit is achieved. Control is simply transferred to the first executable statement following
the DO loop. All examples cited previously involved normal exits.

However, it is possible to transfer control from within the range of the DO to a
statement outside the range of the DO. Consider the following statements:

5-3. Further Clarification 93

DO 100 I = 1,20
X = function(I,other variables)
IF (X.GT.XLIMIT)GO TO 200
WRITE (6,10)1,X

10 FORMAT (IX,110,E20.6)
100 CONTINUE
200 X = XLIMIT

If X never exceeds XLIMIT as I varies from one to twenty, a normal exit is made from
the DO loop. If, however, X exceeds XLIMIT as I varies from one to twenty, control is
transferred to statement 200.

In most Fortrans the index is not available after a normal exit, whereas the index is
available after all other exits. This problem can be readily circumvented by setting
another variable as equal to the index of the DO loop, for example N = I. The variable N
will be retained outside the loop no matter what type of exit is made.

5. Control can be transferred to the statements within the range of a DO only by
the DO statement. That is, the following sequence is not acceptable in most versions of
Fortran IV:

1 = 5
GO TO 7

DO 5 I = 1,12
(some valid statement)

5 (Some valid statement)

It is, however, possible to re-enter a DO after an exit other than a normal exit, but no
rules governing the DO may be violated between exit and re-entry.

6 . The last statement in the range of the DO must be executable. The main mistake
is the use of a FORMAT statement to terminate the DO loop.

7 . The last statement in the range of the DO must not be a GO TO, an arithmetic
IF, a STOP, or another DO statement. However, these may be used freely elsewhere
within the range of the DO.

The use of a logical IF statement as the last statement in the range of the DO is
permissible. Consider the following case:

DO 7 I = 1,5
7 IF (t)s

where t is a logical expression that is either true or false and s is an executable statement.
If the logical expression t is false, the DO index is incremented without executing s. If the
logical statement is true, statement s is executed and the DO index incremented.
However, if s were a transfer statement and t were true, the transfer is executed. J

t A few Fortrans will not accept transfer statements in a logical IF statement when it terminates
the range of a DO. Even this uncertainty can be surmounted as follows:

DO 7 1 = 1,5
IF(t)s

7 CONTINUE

94 Introduction to DO Loops and to Subscripted Variables

8. The statement s used in a logical IF of the type

IF (t)s

may not be a DO statement.

EXAMPLE 5-1

Least-Squares Fit. In many applications a straight-line approximation to experi
mental data is considered, and the least-squares technique statistically ascertains the best
fit. The observations consist of a value Yt for the dependent variable corresponding to the
value Xt for the independent variable. The total number of observations isN.

The procedure is as follows:
Average value of X

Average value of Y

Corrected sum of squares

Slope

N

Intercept

a—Y-bX

where a and b are coefficients for the linear approximating equation Y = a + bX.
A program is to be prepared that reads N from the first card, followed by the N

observations (i.e., X and corresponding Y entered one observation per card.) The
flowchart and the detailed program are shown in Figure 5-4.

(a) Flowchart

C
c

READ NUMBER OF DATA POINTS,N

1
c

READ(5,1)N

c DEFINE FLOATING POINT VARIABLE AN EQUAL
c
c

TO N

2
c

AN = N

c
c

INITIALIZE ALL SUMS TO ZERO

a SUMX=O.
4 SUMY=O.
5 SUMXY=O.
ft '

c
SUMXX=O.

c THE FOLLOWING DO LOOP READS THE INPUT
c
c

VALUES AND CALCULATES THE SUMS

7 0021=1,N
10 READ!5,3)X,Y
11 SUMX=SUMX+X
12 SUMY=SUMY+Y
13 SUMXY=SUMXY+X*Y
14 2

c
SUMXX=SUMXX+X«»2

c
c

COMPUTE AVERAGES

15 XAV=SUMX/AN
16

c
YAV=SUMY/AN

c
c

COMPUTE CORRECTED SUMS AND CROSS PRODUCTS

17 CSCP=SUMXY-SUMX»SUMY/AN
20

c
CSS=SUMXX-SUMX«*2/AN

c
c

CALCULATE FIT PARAMETERS AND PRINT

21 B=CSCP/CSS
22 A=YAV-B«XAV
23 WR ITE (6,4-) A, B
24

c
STOP

c
c

FORMAT STATEMENTS

25 1 FORMAT!13)
26 3 FORMAT(2F10.0)
27 4 FORMAT!1X,2E2O.8)
30 END

(b) Complete program

5
1.
2.
4.
6.
9.

2.1
3.9
7.7
13.
18.

(c) Input data
-0.33009171E-01 0.20393263E 01

(d) Output data

Figure 5-4. Least-squares analysis

95

Introduction to DO Loops and to Subscripted Variables

As subsequent calculations are in floating point, a floating-point variable AN is
defined equal to the fixed-point variable N immediately following the READ statement.
The sums are all initialized at zero, and the sums are calculated as the data is entered.

5-4. Usefulness of Subscripted Variables

One of the most powerful features of Fortran IV is the capability of using subscripted
variables. Use of subscripted variables gives the programmer an easy and flexible means to
handle complex tasks involving large amounts of data with a minimum of programming
effort. The ability to feel at ease in the use of subscripted variables is an absolute
necessity for a Fortran programmer.

The need for subscripted variables and the motiviation for their use may be
understood best by means of an example. Consider the rather elementary problem shown
in Figure 5-5 in which it is desired to find the area under the curve y = /(x)wheny is an
irregular curve. This is typically done by numerical integration, and the procedure
involved is breaking the area under the curve into a large number of small, thin regular
elements.

Often the small elements are considered to be rectangles, but one of the more
popular methods considers the individual elements to be trapezoids. In the case of a
trapezoid the area of an individual element can be considered to be 0.5 (y(+yz + i)h.
Summing all the individual intervals between the limits a and b on the curve, the area is
then given as

Cb h n h - nArea=J f(x)dx = - (y.+y.+ l)=-^- £ (y.+y.^
'a i — 1 i = 1

The computation outlined by the formula for the area under the curve is relatively
straightforward and is one that is extremely well suited for a computer. It is necessary to
read in all the appropriate y values and the width of the elements h (or a, b, and n).

Figure 5-5. Finding the area under a curve

5-4. Usefulness of Subscripted Variables 27

In carrying out this numerical integration, assume that there are forty values of y
available as points on the curve. The numerical integration of these points can be
accomplished using the tools that were developed in earlier chapters. The points can be
named Yl, Y2, Y3,. . . , Y40, and these forty individual and distinct variables can
be read into the computer separately. Once in the computer they are summed using
the formula for the area. In such an approach the area can be computed by an arithmetic
assignment statement, but it might be noted that this arithmetic assignment statement is
quite long, since it would involve terms for each of the forty values of y. Such an
arithmetic assignment statement can be written (using continuation statements), but this
approach to the problem represents a strong-arm approach to a simple problem. An
alternate way to program this calculation using tools already introduced is to read one
value of y at a time, add it to the sum, and then read the next value ofy. In this manner
only one value ofy is in memory at one time.

The type of problem illustrated above can be handled easily and with facility by the
use of subscripted variables, and this will be the solution approach employed. Subscripted
variables are not new to scientists and engineers because they are accustomed to working
with large arrays of data in which the individual elements of the arrays are indicated by
subscripts. It is done in this manner to simplify cumbersome problems in notation. We
have done this in the integration problem mentioned earlier by referring to the values as
yi> yi, ■ ■ ■ , y,, ■ ■ ■ , y^o- Fortran provides the same possibility for handling subscripted
variables with minor changes in notation. Instead of writing the values of y as indicated
above (conventional mathmematical notation), Fortran subscript notation can be used to
write Y(l), Y(2), Y(3),. .., Y(I),. .. , Y(40). We take values of y and indicate them as
being elements of a one-dimensional array with forty elements. The subscript of the

C FOR COMMENT
IsTATfMENT

NUMBER

» 5 £ 7 10
FORTRAN STATEMENT

15 20 25 30 35 40 45 50 55 60 65 70 72

. 1 . . 1 1 1 1 . 1 .

1 .. 1 1 1 ... 1 1 . . . 1 1 .

1 1 1 1 1 .

AREA, = o.., , , . . . , .
XN =, N 1 1 1 1 J .

PREF,IX = ,(B-A),/(2 . ,* XN), I i 1 i t .

I = A 00 200 ,1 - 1,,N, 1 ,
200 AREA, = PR,EFIX ,* (Y (,1) + ,Y(I t, 1)) ,+ ARE,A ^ZOO.ARJEA - ,PREFI,X* .

I = ,1 1 1
. “1 x X X .X _1 . . ■ . 1 . . . X I . . ., . 1 - . x ^.11. . .. x . 1 . X _1 1 J . X X . x_ 1 . .

I F (I,. LE .N.) 60 ,T0 20,0 , , . . . , , J
1 1 1 1 .. X . 1 .

,, 1 1 1 ... ■ 1. ... 1 1 ... - 1 ... ■ 1 1 I . 1 1

.. r 1 1 1 1 1 1 I 1 1 1 t

. . 1 , , , . 1 - . 1 ■ . . . 1_________ 1 J_______ i I i 1 1

. ..lx. . . 1 ■ ■ . . 1 - . ■ .1.., 1 ■ ... 1 1

I , | 1 1 ■ ... 1 1 ... X 1------- x- x

1 1 1 1 1 X.

, , 1 ■ . . . 1 . . . ■ 1 ... 1 . . . ■ 1 1—. . . 1 1... 1... 1 ■ - 1 ■ . . . 1 .

. . I . . ■ , | . I ■ ■ . , 1 ■ ■ ■ ■ 1 . ■ ■ ■ 1 . . . ■ 1 • . 1 1 1 1. . . J 1 ■

j 1 1 1 1 X X . . 1 1(till

. . . I . . . 1 ... 1 1 1 1 1 1 ... ■ 1 ... 1 ... 1 1 I .

Figure 5-6. Statements to calculate the area under a curve

Introduction to DO Loops and to Subscripted Variables9a

individual element of the array is enclosed in parentheses immediately following the name
of the array, and this subscript is illustrated as an integer constant and as an integer
variable. Using subscripted variables, the summation indicated by the area formula can be
accomplished by the series of statements shown in Figure 5-6.

As indicated in subsequent sections of this chapter, the problems associated with
the input and output of the array of information used in Figure 5-6 can be simplified.
Referring to Figure 5-6 and noting the ease with which the area of the thirty-nine
individual trapezoids created by the forty points has been summed should help in gaining
an insight to the use of subscripted variables. The advantage gained if there are a thousand
(or more) data points is obvious since the complexity of the subscripted variable program
is not increased.

5-5. Definitions and Subscript Arguments

Many quantities may be represented with one variable name through the use of subscripts
as indicated in the previous section. Only one-dimensional arrays are considered in this
chapter, with two- and higher-dimensional arrays reserved for the next chapter. For
convenience in orienting the individual’s thinking, the one-dimensional array can be
considered (in a geometric sense) as representing points along a line. Alternatively, it may
be viewed as a column or a row of numbers, elements of which can be referenced by their
position within the column or row.

A one-dimensional array will be referenced in a Fortran program by entries of the
following form:

Name (Subscript)

The name of a subscripted variable follows the same rules as those for nonsubscripted
variables. Furthermore, the variable name must not be identical to that of a Fortran
function: SQRT, ABS, etc. It is important to note that all the elements of any given array
must be of the same type. A subscripted variable may be integer or real, the type being
specified by the first letter in the array name according to the rules for nonsubscripted
variables.

Most Fortran systems allow only integer subscripts, but these may be integer
constants, integer variables, or limited forms of integer arithmetic expressions. (Some
advanced systems permit unlimited integer expressions and real subscripts) The allowable
forms of subscript arguments are restricted on most machines to the following, where I is
used to indicate a nonsubscripted integer variable, and L and L' are used to indicate
unsigned integer constants.

General Form Example
I K2
L 6
I±L J+6
L * I 6 * K
L * I ± L' 6 * K - 2

The value of the subscripted variable normally may not be less than one, nor may it be
greater than the value dictated at the beginning of the program through the use of the
DIMENSION statement (discussed in the next section). Fortran IV does not normally
allow the variable in the subscript expression to be subscripted, but some advanced forms
of automatic programming languages do allow this freedom.

5-5. Definitionsand Subscript Arguments 99

Some examples of invalid subscripts are as follows:
GOGO (A - 2)
LSD (2 + I)
TD(-I)
VAR(I(J))
VAR (I + J)

A is not an integer variable.
The variable must normally precede the constant, i.e., 1 + 2.
The variable may not be signed.
Subscripted subscript is not normally allowed.
Variable plus variable addition is not normally allowed.

The operation of the Fortran compiler is such that each element in the array is
associated with a unique memory address, and these addresses set aside these memory
address locations and maintain a simple system for reference to any individual element of
an array. For this reason it is necessary that the Fortran compiler know how many
locations to allocate for an individual array, and this leads to the use of the DIMENSION
statement which will be discussed in the next section.

For example, consider the following statements in a Fortran program:

Y(J)=C

A = Y(K)

The entries Y(J) and Y(K) refer to the same array, namely Y. Before the statement
Y(J) — C can be executed, the integer variable J must have been defined previously in the
program. Thus, the value of C is stored in the position in array Y corresponding to the
numerical value of J when this statement is executed. Similarly, the variable K must be
defined when the statement A — Y(K) is executed.

EXAMPLE 5-2

One crude indication of the expected value of a person’s blood pressure is to add
the age in years of the person to 100. Assume that we record the age and blood pressure
of 200 men and arrange them in two arrays named PRESS and AGE. Use them to
calculate a third array DIF, i.e., the difference between the man’s actual blood pressure
and the blood pressure given by the crude rule above. The zth element in DIF is given as

DIF(I) = PRESS(I) - (AGE(I) + 100.)

A portion of the computer program necessary to carry out this calculation is shown in
Figure 5-7.

EXAMPLE5-3

In geometry the distance between two points in a plane (a two-dimensional space)
is given as

D = V (%i -x2)2 + (+i -+2)2

This may be generalized to a multidimensional space.
Two one-dimensional arrays named X and Y each contain fifty elements. Consider

these to be coordinates of two points in a fifty-dimensional space. It is desired to

100 Introduction to DO Loopsand to Subscripted Variables

-------- C FOU
1 STATEMENT

NUM|E«

1 S

co MME NT _______ ________ _______ ___ ________________________________

FORTRAN STATEMENT
7 10 >5 30 35 30 35 40 45 SO S5___________ 60------------------- 65------- 70 72

Il 1 t i 1 . . . 1 1 A ■ . 1 . A A__ . 1 . ■ A . 1 . . 4 ■ I . 4 ■ 4 1 4 -

A 1 1 ... 1 1 1 1 1 • 1 - -----i — ---------- —4 1—‘—* 1—

. . . 1 . .\ . . 1 1 1 i 1 i a A A A. J__ . -A .4__ 4__1__ i__ 4__ .__J--- 1—4----1---- 4----U—1--- 4----4--- 4------------- 4----4—4--------- 1----4----

, D,0 5 I,= 1,20,0 , . . 4 , , , , , , . . , , , , „
5 DI F(,1) + PR.ESS (!,)-(AG,E(I)+,l00.), L5 D1IF(1)1=PRES3(I)-(AGE(iI) + 10i0.) ,

1 = J + 1. ... 4 4

IF(I..LE.2,00) G.0 T0 ,5 , J
... 1 . A A ■ 1 ■ - A 1 A. A 4__ - 1 ■ ■ A . j 1 . - . . 1 .

A A . 1 . J . . t 1 1 1 i A . A . I 1 • A - . 1 1 . . A . 1 . a . . 1 - . . - 1 A

. . . 1 . .) . 1 ... A 1 1 1 1 1 i 1 . A A .1.4. . 1 . - . ■ 1 ■ . . . 1 -

. . i . y

. . . । . . J . 1 1 1 I 1 . a . . 1 . A . 1' 1 - A A . 1......................... 1 a ... 1 1 .

. . . I 1 . . I 1 1 1 . . . A 1 A—. . .1- . . . 1 . A A _ 1. AAA J__ . .__ ■ . 1 - —.__ - 1__ 1__ ___

. . 1 . . . 1..................... 1 1 1 ... 1 1 1 1 1 1 A A . . 1 . .. - ■ 1 .

. . . । . 1 । - ... 1 ... A 1 1 . A A A 1_ ... A 1 1 1 1 1 i .

. . 1 . X.. A 1 1 ... A 1 ... A i । 1 ___ .. 1 1 1 । 1 1 .

. . . 1 . । . A 1 A A - ■ 1 A • • . 1 A - . . 1 A A . A 1 . A _ . 1 A A . . 1 1 A . . A 1 A A A . । . A . 1 .

. . . i . l . . 1 1 - . . A 1 A . . a t a . . 1 1 a a . 1 1 1 1 1 ... 1

A .. A - - j- . i 1 .. A . 1 1 . .. A . 1 . A .. 1 1 ... i 1 1 । 1

... 1 ■/. 4 । < 4 6 । । - 4 A A | . A A . 1 A . A . 1 . . ■ ■ j ■ . . . 1 i 1

. . . i A . - 1 - ... 1 A A A . I A-----. A 1 . . . 1 1 1 1 . . A . 1 ... 1 1 . . 1

.4.1 >■ A. . .1 1 1 ... - 1 1 1---------— 1. . _______1__________ 1 1 ■ ... 4 I .
■-------- -------— ----- -------- ---------- ---- *----- ----------- ----------- -------- —-------------- ------------- ------------------- -- _ . . ______ __________________ ___ _________

Figure 5-7. Statements for Example 5-2

calculate the following quantity, which might be referred to as a “distance function in
50-space”:

so
E (xr^-)1 2 3

1. The names of the variables to be subscripted
2. The number of subscripts to be used for each subscripted variable
3. The maximum value of each individual subscript for each individual subscripted

variable

i = 1

1/2

where the x’s are used to denote the coordinates of one point and the y’s are used to
denote the coordinates of the other point. A portion of the computer program necessary
to carry out this calculation is shown in Figure 5-8.

5-6. The DIMENSION Statement

The use of subscripted variables in a Fortran program necessitates supplying information
about the individual subscripted variables to the Fortran compiler. This information
includes

5-6. The DIMENSION Statement 101
-------C FOR COMMENT

* STATEMENT
NUMBER

I 5 6 7 10
FORTRAN STATEMENT

>5 ___ 20 25 30 35 40 45 50 55 60 65 70 72

—.__ 1 .
... 1 . 1

... 1

■ ■ • 1 ■ • ■ ■ 1 1 1 .. 1 1 1 1 . . . 1 . . . 1 . 1 . I i

I = ,1
D2 = ,0.

5 D2 = ,D2 + . (,X(I). Y.ll,).). **, 2____________________________ . , . ___________________
I = J .+ . Ai ■ ... 1 1 1 1 1 1 . , . . 1 1 1 1 1 .

IF (I,. LE .5,01 00, T0 5,______________________ •____________________________________ _
D = ,SQ RT (,D.2.), , , , , ±..........±_____......................... ._______

.. 1 1 1 1 i E 1 1 1 1 1 1 .
i ।

.. 1 1 1 1 1 1 1 1 1 1 1 1 .

. . . 1 i 1 I i i i.....................i i i i i .

. . . 1 i i i i i i........................ i i i t i .

. . . .1 i i i i 1 i . . i i . i i i i .

. . 1 . . ■ ■ 1 1 1 . 1 I - ... 1 ___ ___ 1— * 1 —- * * L 1

. . . 1 . . ■ ■ I ■ ■ . ■ 1 ■ ■ ■ ■ 1 ■ ■ . ■ 1 ■ . ■ • 1 ■ ■ ■ ■ 1- ■__ _ L 1 4—1—4__ ------------- 4—4----- 1 X -----.4 ,1-. -4.- 4---- - 1 1 ■

.. . 1 . . , I I 1 I.- 1-__ .1 .__ ,__ ■ - 1 1 .__ _----■ 1 - ■---- ----- 1 - - - . 1 1 ■

. . . 1 1 1 1 1 1 ■ .__ . . 1 . . - __ - I ■---- - . 1 . .---- ■ ■ 1 . . ■---- ■ 1 ■ ■ ■ ■ 1 -

Figure 5-8. Statements for Example 5-3

Providing this information to the Fortran compiler is done by DIMENSION
statements which normally appear at the beginning of the Fortran program. The DIMEN
SION statements must include every variable that is to be subscripted in the program, and
the inclusion of the subscripted variable in a DIMENSION statement must take place
prior to the first occurrence of the subscripted variable anywhere in the program. The
DIMENSION statement may mention any number of subscripted variables. It is not
necessary, however, that they all have the same number of subscripts. The DIMENSION
statement is a nonexecutable statement and normally takes the following form for
one-dimensional arrays:

DIMENSION name., (c/j), name2 (d2),...

In the above, name{ and name2 stand for array names of subscripted variables appearing
in the program, and the J’s stand for the dimension of an individual subscript. The
individual d’s must be unsigned, nonzero integer constants. As an example of a DIMEN
SION statement, consider the following:

DIMENSION 1(2),X(15),Y(8)

This DIMENSION statement would cause the Fortran compiler to assign a total of two
storage locations to the I array for storage of the two integer constants which comprise
the elements of the array. The compiler will also reserve fifteen storage locations for the
real constants which comprise the X array, and eight storage locations for the real
elements of the Y array. The order of listing arrays in the DIMENSION statement is not
important, and more than one DIMENSION statement may be used.

102 Introduction to DO Loops and to Subscripted Variables

It is usually not permissible to use zero or negative subscripts. (They are allowed in
relatively few Fortran compilers.) Neither is it permissible for the program to have any
subscript in an executable statement that is larger than the maximum size previously
specified in the DIMENSION statement. Although subscript values less than one or larger
than the maximum size indicated in the DIMENSION statement are invalid subscripted
variable references, many computers do not check subscripts for validity. The result is
that programs incorporating this error may be executed, and erroneous results are
obtained.

Even though the DIMENSION statement indicates the probable maximum size of
subscripted variable requirements, it is not necessary that the programmer use all the
element address locations that are reserved, i.e., it is permissible to overdimension arrays
in the DIMENSION statement. It must be pointed out, however, that overdimensioning
of arrays can be expensive in terms of computer running time and memory requirements.
Since most computers only have a limited amount of high-speed access or fast memory,
the use of unreasonably large arrays may necessitate the inclusion of a large amount of
slow-speed memory in the array address locations that are reserved. For each individual
array the compiler will reserve storage for the number of elements indicated by the
subscripts specified in the DIMENSION statement.

As some examples of the use of DIMENSION statements, the following are
appropriate. For the distance function program discussed in Example 5-3, it would be
necessary to have a DIMENSION statement of the form

DIMENSION X(50), Y(50)

For the calculation of the blood pressure difference of Example 5-2, it would be
necessary to have a DIMENSION statement of the form

DIMENSION AGE(200),PRESS(200),DIF(200)

When referring to an array in a DIMENSION statement, as opposed to an arithmetic
assignment statement, there is an implied difference between the two notations used. In a
DIMENSION statement the reference to the array is not to one individual element, but it
refers to the maximum size of the subscript. In a statement such as an arithmetic
assignment statement, a reference such as A(2) would refer to a specific element in the
array.

A common mistake of beginning programmers is to attempt to use the following
DIMENSION statement for the blood pressure example cited above:

N = 200
DIMENSION AGE(N),PRESS(N),DIFF(N)

This is unacceptable because the information in the DIMENSION statement is used
during compilation, whereas N is not actually assigned the value of 200 until the
statement is encountered during execution of the program.

There is a case in which the DIMENSION statement is not needed directly. Chapter
2 introduced the convention of denoting an integer variable by beginning the name with
one of the letters I, J, K, L, M, or N and a real variable by beginning the name with any
other letter. Electrical engineers use L for inductance, chemical engineers use p (mu) for
viscosity, and similar conventions occur in other disciplines. Thus in some cases it is
desirable for a real variable to begin with one of the letters I, J, K, L, M, or N, and vice
versa for an integer variable. A type statement is used to accomplish this, as illustrated by
the following examples:

5-6. The DIMENSION Statement 103

REAL L, MU
INTEGER A, B
REAL C, 1(50), G(2,3)
INTEGER J(10),F(2,7),K

In the first example the TYPE statement causes L and MU to be treated as real variables
throughout the program. Similarly, the second example causes variables A and B to be
treated as integer variables. In the third and fourth examples the variables C and K could
have been omitted, but there is no harm in including them. These examples also illustrate
the use of the TYPE statement to dimension the real variables I, G, J, and F. When
variables are dimensioned in a TYPE statement, a separate DIMENSION statement is not
necessary. However, the TYPE statement and DIMENSION statement may be used jointly
in some Fortrans as follows:

REAL C, I
DIMENSION 1(50), G(2,3)

Their order makes no difference,$ but simultaneous dimensioning in both statements is
not allowed.

Although most programmers place all their TYPE statements early in the program,
the only restriction is that the TYPE statement must appear prior to the first use of the
variable concerned.

Array names may appear in certain nonexecutable specification statements, in
references to subprograms, and in input-output statements without any of the subscripts
being mentioned, for example:

READ (5,10)A

Since such reference to an array without any mention of subscripts is permissible, it is
obvious that no other variable in the program may have the same name as the array itself.
In all cases other than those mentioned above, only array elements may be used. This is
particularly important in arithmetic expressions.

EXAMPLE 5-4

One current use of a computer is in maintaining an up-to-date account of items in
inventory. Suppose an inventory at the beginning of the month is punched on cards, the
stock number in the first five columns and the quantity in stock in the next five columns.
To keep the number of cards reasonable, suppose we write our program to handle only
six items in stock. The first section of the program in Figure 5-9 reads cards specifying
the initial inventory.

Suppose further that each time a shipment is received, cards are punched for each
item giving the stock number in the first five columns and the quantity received in the
second five. These cards will be m random order, and depending upon the number of
shipments received, there may be zero, one, or several cards foi any one item. To alleviate
the necessity of counting the cards, a blank card will be the last card in this group. When

±Some compilers require that type statements appear prior to the first executable statement
and in the following order:

Type statements (REAL, INTEGER, etc.)
EXTERNAL (see Section 8-11)
DIMENSION
COMMON (see Section 8-7)
EQUIVALENCE (see Section 8-8)

c
c
c c
c

1
2

c
c
c

5
c
c
c
c
c
c

INVENT0RY PROGRAM

DIMENSION ISTKI 61 i.IQUAN (6)

READ INITIAL INVENTORY

0011-1*6
READI5/2) ISTKII)jIQUAN(I)
F0RMATI2I5)

UPDATE INVENTORY FOR STOCK received

REAO(5«2) NSTK/NQUAN

CHECK FOR ZERO STOCK NUMBER

IF(NSTK.EQ.O)G0T63

ADD TO INVENTORY

c c
c
c
c

0041-1*6
IFINSTK.EQ.ISTKII))I QUAN(T >■IQUAN(IJ+NQUAN
GOT05

UPDATE INVENTORY FOR STOCK SHIPPED

READIS/SINSTK/NQUAN

c c

CHECK FOR ZERO STOCK NUMBER
IF(NSTK.EQ«0)GOT66

SUBTRACT FROM INVENTORY

D07I-1/6
IFINSTK.EQ.ISTKII))I QUAN(I)■ IQUANfIl-NQUAN
GOTOS

WRITE FINAL INVENTORY

0081-1*6
WRITE(6*9HSTK(I)* IQUANt I)
FORMAT(IX*215)
STOP
END

(b) Program
1207
1049
0907
0412
1222
0015
0412
0015
1049
1222
0412
0015

12
1
5
3
7
2
5
1
7
5
5
2

1207 2
1049 3
1222 10
0015 4
0412 7

(c) Input

(a) Flowchart

1207 1 0
1049 5
907 5
412 3

1222 2
15 3

(d) Output

1(14
Figure 5-9. Inventory program

> Old Inventory

> Received

> Shipped

5-7. Input and Output 105

read, the stock number will be zero, which indicates the end of this set of cards. The
second section of the program in Figure 5-9 reads these cards and updates the inventory.

Cards analogous to the above are punched for shipments of items. The third section
of the program in Figure 5-9 processes these cards. The final section prints the new
inventory.

In practice, the old inventory is stored on a more convenient medium than cards,
probably a disc or magnetic tape. The program reads the old inventory from the
appropriate source, updates it, writes the new inventory back on this medium, and prints
it.

5-7. Input and Output

One straightforward means of providing input and output statements for the elements of
an array is listing explicitly every individual element of the array in the input or output
statement. As an example, the information for the input of a four-element array A and a
two-element array B may be done by a READ statement as follows:

READ (5,100)A(l),A(2),A(3),A(4),B(l),B(2)
100 FORMAT (6F 10.2)

The four elements of the A array and the two elements of the B array can be written in
the READ statement in any sequence whatsoever. The only restriction, of course, is that
the information on the data card has to be in the corresponding order.

One of the advantages of subscripted variables is that it is possible to deal with all
of the elements of ah entire array without having to list them explicitly. As an example,
an input or output statement may contain only the name of the array without any
reference whatsoever to any subscript, and the entire array will be completely read or
written. When this is done it is absolutely necessary to have a complete understanding of
the implicit convention regarding the sequence in which the elements appear on the input
or output record. For one-dimensional arrays the elements are taken in an increasing
sequence, i.e., first the element with subscript 1, then the element with subscript 2, etc.,
up to the largest subscript in the DIMENSION statement (which must have appeared
earlier).

This means that the previous READ statement can be written as

READ (5,100)A,B
100 FORMAT (6F 10.2)

In such a case the elements on the data card must be punched in the following sequence:

A(1),A(2),A(3),A(4),B(1),B(2)

This implied sequence will always exist.
When an array is called for without explicit reference to subscripts, the entire array

will be assumed to exist in the size given in the DIMENSION statement, and any
overdimensioning of array sizes will present problems because the computer will attempt
to read all of the elements of the array whether they exist or not.

FORMAT statements have an important effect on the handling of information
associated with arrays. One format field specification is necessary for each individual
element in the array. As the elements of the array are read or written, the FORMAT
statement is scanned from left to right. When the last right parenthesis of the FORMAT
statement is reached, the FORMAT statement is exhausted and the computer will return

106 Introduction to DO Loops and to Subscripted Variables

to the first left parenthesis and go to a new record, a new line or card, for example, and
repeat (scan again) the FORMAT statement from left to right. Assume we have a
one-dimensional array with ten elements called the A array. If we write the statements

DIMENSION A(10)
READ (5,100)A

100 FORMAT (Fl0.2)

the computer reads the ten values of the ten elements of A from ten successive cards or
records. This means that element A(l) is assumed to appear in the first ten columns in
Fl0.2 format on the first card or input record; the second element, i.e., A(2), is expected
to appear in the first ten columns of the second input record or card in Fl0.2 format, etc,
and the tenth element, i.e., A(10), is expected to appear in the first ten columns of the
tenth record or card in Fl0.2 format.

As another example, if all five values of an array referred to as the one-dimensional
X array were to be found on a single data card, we could read all of these by the
following statements:

DIMENSION X(5)
READ (5,20)X

20 FORMAT (5F10.4)

This statement causes the computer to look for X(l) in columns 1-10, X(2) in columns
11-20, etc. through X(5) in columns 41-50.

The individual elements in an array must all be of the same mode, i.e., real or
integer, but it is not necessary that they all be read or written in the same format code.
As an example, some of the elements in an integer array may be written in 15, some in
17, and some in 115 format.

Sometimes it is desirable to transfer only part of the values into or out of an array
with a READ or WRITE statement, and on other occasions it is desirable to have the
subscripts in an array vary in some manner other than the sequence normally assumed by
the compiler. In such situations it is possible to have as a part of the input or output
statement an expression which will dictate the exact order in which the subscripts will

• • ’(/(/I, / = /77p /77g,/77j) •• •

where v
i

and m~s

is an array name.
is an integer variable used as an indexed (controlled)
subscript.
is either an unsigned integer constant or an unsigned
integer variable whose value is used as the initial value of /'
is either an unsigned integer constant or an unsigned
integer variable whose value is compared with the current
value of / at the completion of reading, or writing, each
array element. When the current value of /' becomes
greater than the value of the reading or writing
operation is terminated.
is either an unsigned integer constant or an unsigned
integer variable whose value is added to the current value
of / after each array .element is read or written, but before
the comparison between i and is made. It can be
omitted if 1 is to be added to / as the increment,
must be greater than zero.

Figure 5-10. General form of an indexed or controlled subscripted variable

5-8. A Final Example 107

vary.J The general form of this portion, called an implied DO, of an input or output
statement is indicated in Figure 5-10. As an example, it may be desirable to read only
elements six to ten of a one-dimensional array. The statements for this would be

READ (5,10)(V(I),I = 6,10)
10 FORMAT (5F 10.2)

The statement shown in Figure 5-10 can be extended to handle more than one array. For
example, we might have statements

READ (5,10)(A(I),B(I),I = 1,3)
10 FORMAT (Fl0.2)

These statements would read two arrays in the following fashion:

A(l)
B(l)
A(2)
B(2)
A(3)
B(3)

The use of input and output statements for arrays and the associated effect of
FORMAT statements on their execution will be shown in examples that follow and in
solved examples at the end of this chapter.

5-8. A Final Example

EXAMPLE 5-5

Sum of squares example. As an example of the use of subscripted variables, assume
that a student makes thirty measurements of a quantity. These thirty measurements
which he makes will comprise the elements of a one-dimensional array whose name is
DATA. The student also can calculate a value for each of his measurements, and he will
therefore have thirty calculated or expected values of these data points. These thirty
values comprise a second one-dimensional array named CALC. Assume that these two
arrays are read into the computer, and their differences are calculated and squared for
each point

As an example, assume that each of the input elements of DATA will appear on a
separate card in F10.2 format in the first ten columns of the card. Further assume that
the values of CALC will be found on five additional input cards, six values to a card in
6F10.2 format. For the output of this program it is desired to have the record appear
with the values of DATA in a vertical column; just to the right of DATA the correspond
ing values of CALC should appear in a vertical column; and just to the right of CALC the
square of the value of the difference between the DATA element and the CALC element
should appear. These thirty individual point values of the difference squared will be
named PTSUM. Below these three vertical columns of DATA, CALC, and PTSUM it is
desired to write out the value of the total sum of the squares for all thirty data points,
and this should be written in E20.7 format. The flowchart for a program necessary to
make the calculations is shown in Figure 5-11, and the program itself is shown in Figure
5-12.

JThis is completely covered in Section 7-5. Depending on the desires of the individual
instructor, it is possible to defer study of this type of statement until that point.

108 Introduction to DO Loopsand to Subscripted Variables

Figure 5-11. Flowchart for Example 5-5 (sum of squares calculation)

In the input of the two one-dimensional arrays into the computer, the READ
statements contain implicit assumptions about the sequence which the individual ele
ments of the arrays have on the data cards. Since the values of DATA are each in Fl0.2
format on a separate card, the input cards must be arranged so that the subscripts on
DATA vary from one to thirty. Since FORMAT statement number 10 has a single field
specification, the computer will read in one input card, look for a single element on that
card in Fl0.2 format, and then go to a new card or new record to look for the next
element of the DATA array, etc. In the case of CALC the computer will see that
FORMAT statement 20 has a repetition number of six associated with the field specifica
tion. The computer will expect the first six values of the CALC array to be found on the
first CALC input card, and then proceed to a new input card or record for elements 7-12,
to a third card for elements 13-18, etc., until five cards have been read for the CALC
array. The computer knows there are thirty elements in both DATA and CALC because
of the DIMENSION statement.

In the calculation of the sum of the squares a loop is used to calculate all of the
individual differences between DATA and CALC, and in each case the difference at a
point is squared. The sum of all of these squares is retained in the computer, but the

C FOR COMMENT

^STATEMENT q
NUMBER c

I 5 6
FORTRAN STATEMENT

_______12___________ _____________20 _ 25 30 35 40 45 50 55 60 65 70 72

C MPLE, CALCULATION 0F, SUM ,0F SQUARES,
C
C DAT-A. IN.PUT. S,ECTI0,N , , .. 1 1 1

C —. ■ ■ i ._ ■ ■ . ।_ ■_ •_ ■_ . i । । । । । । । .
DIME.NSI0N, DATA,(30) ,,CALCl,30) ‘ ,
read^s.iojdata

10 F»WT.<F1,O.2.I , _____________
R^MLS^oIcalc,........

, 20 FlMAneLio ,̂ 1 1 1 .

C.
C . CAL.CULA.TI0N 0.F. SU,M 0F SQUARES AN,D ARR.AY 0U.TPUT , 1 1 II .

C
1 1 1 .

SUMS.Q = 0,-. . . ,___________________________________ , ,
30 PTSU.M = (,DATA(,I) - ,C.ALC (,I)) *,*2 1 1 1 .

SUMSp S.UMSQ ,+ PTS,UM
WRIT,E(6 ,5,0) DAT,A(I) ,,CALC(,I) , PT.SUM

50 F0RM.AT (1,X, 3F1.0.2)_______________ , , 1 . . . 1 1 X .

I F (I,. EQ.,3,0) . 60, T0 4,0 ,____________ ____________ ,

60. T0 .50. i । । । । i । । । . I x . - . 1 1 .

C ... i । । । i i . .. i । । । . 1 1 1 .

C SUF4 0F ,SQUAR.ES 0U.TPUT , , . , , ,....,
C

40 WRIT,E(6 ,6,0) SUM,SQ , , , ,
60 F0RM,AT(1X,,E2O.,7) , , , . . , 1 I .

S.T.0.P, । । । .
END , । । . । । । । । i—i ... 1 . 1 . , . . ! .

0-62, i । । । .__ . i . .__ . 1 . 1 . . 1 . . 4 X 1

] . 1 1 .

■ A . 1 . , , . 1 . , . , 1 1 1 1........................1 . . x 1 .. ^..x._x----Lx.----- -] , i 1 ,

] 7.011 । i । i । t ... i i j . . . 1 1 1 .

• 6.8 9। ,_ , , i , . . . । . . .—, i , , . i4 1 . . X X 1 4 ,

. 6 .6 2, । । i i . . i i.^ 1 . . 1 . . .1

.6.311 ... 1 1 1 1 1 X X X .X----1---------x----x--- .----l__x--- -----X----------------- x--- *----*--- 1-------------X_ 1 1 i .

L 6 . 0 9, i i ... । । . i । । i i .. . j | j

• 5, > 8 2 ■ , , , ! . . . j . , I , , , __ . _1_ x- x- x_ . 1 -- -- x- X- 1_- ---. . i ■--X- X- X 1-4- 1- -- ---- X- - . 1 ■ X - 1 , , - . 1 ■

■ 5.04, , , ... । . । ... । ... । i ... i i 1 . ■ ■ . 1 ■ ■ ■ . 1 .

15.11, i । । । i i ~ . i i..... . 1 1 1 .

1 4 o , , , । . , , । । । । . . . i . . . । . ■ ■ ■ i......... 1 1 1 .

L 4,47, , । ... । । ... । i . . i --------- 1 i ...
14.26, । । . . . । । । i r —. i i

_1—------------1......................1 .

L 4. 00, । . i , . . । । । . i_____ l_—. .. j-------- _i--------- 1 1 1

■ i._ 1-. . - 1 -

1 . 1 1 .

l 1 J - ... 1 x ... 1 . .X ,---- 1__ _ ___ ___L_X-----.-------^_1_X----4--- --------------------------- 1 -----—----- *--- *---- '--------- •---- 1 1 1 .

Figure 5-12. Program for Example 5-5

109

SQUAR.ES

110 Introduction to DO Loops and to Subscripted Variables

I-------C FOR COMMENT

^STATEMENT
NUMBER

। 5

FORTRAN STATEMENT
7)0 15 20 25 30 35 40 45 50 55 60 65 70 72

1 A’99i. . । . . . ।. . . । । ।.... । ... i i... . । i.... । i...

1 2 79 y i । i । । i । i . * * * t * - < * —*—*—•—

1
1 2 34.। । i i i i i i i i i i i

1 2 17 . . . 1 1 1 1 1 1 1 1 1 1 1 1 . . 1 A_

1 2 03
1 । । i । । i i । i i i ... । ■

1 V-66. ...
1 i ... i ... i i i i i i i 1 i ...

1 1 21 . 1 i 1 1 1 I 1 . 1 1 1 ... 1 1 - 1

1 1 • 93, । । । . । . i i i ... । । ... i ... i ... ।
1 0 6 9v*. i i ... i i 1 i 1 1 1 i 1 i .

1 8.07, ,17.62, ,17.43, ,17.21, ,17.00, ,16.78,
1 6.45, ,16.28, ,15.87, ,15.61, ,15.21, ,15.05,
1 4.96, ,14.81, ,14.6.2, ,14.46, ,14.11, ,13.75,
1 4.62, ,13.42, ,13.02, ,12.71, ,12.46, ,12.25,
1 1.98, ,11-78, ,11.51, . ,1.1 .36, ,11.12, ,11.01, .,

Figure 5-12. (Con tinued)

point value, PTSUM, is written out as soon as it is calculated. Since PTSUM is not
retained, it is not subscripted, it is not stored, and it is not available for future processing.

The output FORMAT statement has a IX to keep the carriage-control column
blank on the output record, and a repetition number of three is used in the output field
specification. A blank, the first element of DATA, the first element of CALC, and
PTSUM for the first elements will be written on one output record; and on the second
output record the first column also will be blank, followed by the second element of
DATA, the second element of CALC, and PTSUM for the second elements (all in Fl0.2
format). This will continue through the thirty sets of values for the arrays. After all the
output arrays have been written, the computer then encounters a new WRITE statement
which records the sum of the squares.

For input data appearing in the example the output of the program will appear as

18.62 18.07 0.30
17.79 17.62 0.03
17.42 17.43 0.00
17.01 17.21 0.04
16.89 17.00 0.01
16.62 16.78 0.03
16.31 16.45 0.02
16.09 16.28 0.04
15.82 15.87 0.00
15.04 15.61 0.32
15.11 15.21 0.01
14.87 15.05 0.03
14.47 14.96 0.24
14.26 14.81 0.30
14.00 14.62 0.38

Exercises 111

13.75 14.46 0.50
13.53 14.11 0.34
13.27 13.75 0.23
13.00 14.62 2.62
12.79 13.42 0.40
12.56 13.02 0.21
12.34 12.71 0.14
12.17 12.46 0.08
12.03 12.25 0.05
11.88 11.98 0.01
11.66 11.78 0.01
11.47 11.51 0.00
11.21 11.36 0.02
11.03 11.12 0.01
10.69 11.01 0.10

0.6493900E 01

5-9. In Summary

The combined use of the subscripted variables and DO loops provides one of the most
powerful tools available to the Fortran programmer. They allow him to handle large
amounts of data with a minimum of programming effort. Tedious calculations and
laborious input and output instructions also can be handled through the use of the sub
scripted variable notation. The programmer should make every effort to gain facility in
the use of subscripted variables and DO loops. The extension to multidimensional arrays
and nested DO loops (one within another) is treated in the next chapter.

For the above reasons, the student should make every effort to work a large
number of the problems at the end of this chapter to make certain he is familiar with the
use of subscripted variables and DO loops.

EXERCISES^

Note: For all the following exercises you are to read in the given variables,
perform the desired calculations, and write out the results as directed. Write complete
Fortran programs including trial data card(s). The following exercises are designed to
focus the student’s attention on understanding and using the DO statement. Problems of
a scientific, engineering, and business nature are included. Exercises 5-1 through 5-23 do
not require knowledge of subscripted variables.

5-1. Write a program to condense statistics on students in a class. One data card is
provided for each student; it contains (1) his or her age in columns 1 and 2; (2) the
student’s sex in column 5, the code being 1-male, 2-female; and (3) the student’s standing
in column 7, the code being 1-freshman, 2-sophomore, 3-junior, 4-senior. The output
should be the average age of the students, the percent males, and the percent freshmen,
sophomores, juniors, and seniors. The cards are not counted, so use a blank card to
indicate last card as in the inventory program in Example 5-4. Use the following data:

+ Solutions to Exercises marked with a dagger f are given in Appendix E.

112 Introduction to DO Loops and to Subscripted Variables

21 1 3
23 2 2
19 1 1
24 1 4
20 2 2
21 1 2
18 2 1
27 1 4
20 1 2
21 2 3
21 2 2
20 1 2

+ 5-2. A plant whose production rate is P Ibs/year produces a product whose value
is V $/lbs. The product costs C $/lb to produce. The gross profit is then P ■ (V~ C). The
total tax rate is 52%, so the profit after taxes is .48 times the gross profit. If the plant
costs B $ to build, the pay-out time in years is B divided by the profit after taxes.

Suppose the values of C, B, and P are known to be $1.50/lb, $900,000, and
200,000 Ibs/yr, respectively. Write a program to calculate the pay-out time for values of
V from $2.75/lb to $3.25/lb in increments of $0.05/lb. The listing should be in columnar
fashion, with a value of V and a corresponding value of the pay-out time.

5-3. A man invests $600 per year at 8% interest. How much will he have after ten
years? Write a Fortran program to calculate this using a DO loop. Read the amount
invested annually, the interest rate, and the number of years for which the value of his
investment is to be calculated.

5.4. At an interest rate of 6%, how much must you deposit at the first of each
year so that at the end of five years you will have $8,000? Write a program to calculate
this. Assume $1.00 is deposited each year and calculate the amount available at the end
of five years as in the previous program. The amount to be deposited is $8,000 divided by
this value. Read the interest rate, how much is to be accrued, and the number of years in
which deposits will be made.

5-5. A calculation encountered in financial analysis is the computation of depreci
ation. One popular technique for doing this is the sum-of-the-years’-digits method.
Suppose $15,000 is to be depreciated over a five-year period. The sum-of-the-years’-digits
is 1+2 + 3 + 4+ 5 = 15. According to this method, 5/15 of $15,000 is depreciated the
first year, 4/15 the second, 3/15 the third, etc. Write a program that reads the amount to
be depreciated and the number of years over which the depreciation is made. The output
should be tabulated as follows for the above case:

1 5000.00
2 4000.00
3 3000.00
4 2000.00
5 1000.00

Run this program to calculate the annual depreciation if $50,000 is to be depreciated
over ten years.

5-6. Prepare a program to read N and calculate N!. N is always a nonnegative

Exercises 113

number, but may be zero (0! = 1). The output should be N and N!(N! = 1X2X...X
(N - 1) X N). N! is pronounced “N factorial.”

f5-7. In business applications, a quantity known as the capital-recovery factor is
defined as follows:

r + *0 + 0"capital-recovery factor = ^n--_ *

where i is the interest rate and n is the number of years. Write a program to print a
tabulated set of values for n = 1 through n — 25 for i = 8%. The output should appear as
follows:

1 1.08000
2 0.56077
3 0.38804

etc.

5-8. A man borrows $100.00 at an interest rate of 1 1/2% per month. If he pays
$10.00 at the end of each month, how much does he owe at the end of ten months?
Write a program to solve this problem. Read the amount he borrows and the amount he
pays each month. Note that the interest for the first month is 0.015 X $100 = $1.50.
Since he pays $10 at the end of the month, he owes $100.00 + $1.50 - $10.00 = $91.50.
Use a DO loop to iterate these calculations for each month.

5-9. For the situation given in the previous problem, suppose he wants to know
how long it takes to pay off his debt. Determine (1) how many months he must pay
$10.00, and (2) his payment for the last month required to leave a balance of exactly
zero. Run the program for the case in which he borrows $250 instead of $ 100.

f5-10. Write a program to calculate the geometric average and the arithmetic
average of the following data:

12.2
7.9

20.2
13.5
49.4

2.1
5.8

As output, write only the two averages. The program should read the number of data
points from the first card, followed by the data, one value per card. For n data points, the
geometric average is the nth root of the product of all the values.

5-11. Evaluate the series

a + nb a a + b a + 2b a + 3b a + 20b
n = o

for a - 2 and b = 0.5. Read a and b from a data card, and write only the value of the
sum.

114 Introduction to DO Loopsand to Subscripted Variables

5-12. On
infinite series:

the interval 0<X<2, log (X) can be represented by the following

oo

log (X) = 2.303

E HIE 1 (X- i)"
n = 1________n

2.303

Prepare a program that reads a value for X and sums the series, printing the answer after
3, 5, 10, 50, and 100 terms. Also print the answer using ALOG 10 for comparison. Run
the program for X = 1.8. In programming, assume X will always be in the above interval.

5-13. The function sin2 X can be represented by the following series:

sin2 X=X2
23 X* 25 X6

4! 6!

(-1)» + i 22»- i X2n

(2n)l

Prepare a program to evaluate this series for X = 2.0, printing the results after 5, 10, 50,
and 100 terms and comparing to the true solution. The program should read the value of
X. Note that the term for n = 1 is X2, and that all consecutive terms can be obtained by

~(2X)2
multiplying the previous term by-------------

2n (2n - 1)

45-14. The following definite integral:

(1 + X2)dX = f(X)dX

can be evaluated analytically to be 4.6667. However, not all integrals can be evaluated
analytically. The purpose of this and the next few problems is to illustrate some of the
features of numerical integration techniques.

Perhaps the simplest of all numerical techniques is the rectangular approximation.
The interval of integration is divided into smaller intervals, and the value of the function
over the entire interval is assumed to be the value at either end. This is shown in the
illustration, using the value at the left end. The smooth curve is the plot of 1 + X2
versus X, and the shaded area is the result of the numerical integration. The accuracy of
the result increases as the number of intervals increases (width decreases).$ The approxi
mate value of the integral is

(1 + X2)dX = AX [f (0) + /(AX) + /(2AX) + • • •]

Prepare a program to perform the following functions:

(a) Read in the number of increments (fixed point).
(b) Evaluate the integral numerically.
(c) Print the number of increments and the numerical result.
(d) Return to Step (a) and repeat.

To illustrate the effect of increment size, run the program using increments of 4, 10, 20,
50, 100, and 1000.

fThis is true up to a point. For very small intervals the round-off error may be serious.

Exercises 115

Exercise 5-14. Rectangular integration

5-15. From an inspection of the accompanying figure, some improvement can be
seen by evaluating the function at the midpoint of the increment. The result, as shown in
the illustration, is given by

(1 + X2}dX = XX

fW

Exercise 5-15. Modification of rectangular integration

Prepare a program similar to the one for Exercise 5-14, except use the above integration
technique. Again evaluate using increments of 4, 10, 20, 50, 100 and 1000.

5-16. A slightly different scheme is to approximate the function by straight lines
over a given increment, as shown in the drawing. In this case, the integral over the first in
crement would be XX ■ [f(0) + f(AX)]/2. Summing over all increments yields the fol
lowing equation, known as the trapezoid rule:

(1 + X2)dX = XX + f(AX) + f(2AX) + • • • + f(2 - XX) +^-

Prepare a program similar to the one for Exercise 5-14, except use this integration
technique. Again, evaluate using increments of 4, 10, 20, 50, 100, and 1000.

116 Introduction to DO Loops and to Subscripted Variables

5-17. The method known as bisection or interval halving is a simple, effective, and
easy-to-program technique for finding roots of many polynomials. The method proceeds
as follows:

Consider a function f(x) similar to the function in the accompanying figure. The
main feature is that the function has one and only one root on the interval (a,b). The root
in this case can be found by the following technique:

(a) Evaluate f(x) at the midpoint of the interval, say x = c = (a + h)/2.
(b) If f(c) is zero, the root is found. However, this is an extremely unlikely

outcome.
(c) If /(<?) is positive, note that the root must now lie on the interval (a,c). If f(c) is

negative, the root must lie on the interval In either case, the interval on
which the root is known to lie is cut in half.

(d) The procedure is repeated for the new interval. As the interval is halved on
each iteration, after twenty iterations the size of the interval is 1/220, or
negligibly small. After twenty iterations, the midpoint of the final interval is
assumed to be the value of the root.

The function of f(x) = x3 - x2 - x - 1.9 is very similar to the function shown in
the accompanying sketch. Assuming a root lies between 0.0 and 5.0, use the method
described above to locate the root.

Exercise 5-17. Function suitable for bisection

Exercises 117

5-18. Another technique for solving for roots of an equation is known as New
ton’s method. This technique proceeds as follows:

(a) Assume a value, say x = a, for the root.
(b) Evaluate f(a). If I f(d) I < e, the root is found.
(c) If not, evaluate df(a)fdx = f'(a), the slope of the line tangent to f(x) at x = a.

This line is shown in the figure.
(d) Determine the point b at which this tangent line intercepts the x-axis This

point is given by

b = a~ f(fl)/f'(a)

(e) The procedure is repeated from Step 1 by assuming b as the new value for the
root.

Exercise 5-18. Illustration of Newton's method

Prepare a program to perform these calculations for f(x) = x3 - x2 - x - 1.9. The
input is to be a value fora and e, and the output should be the root. Furthermore, the
search will be terminated after twenty iterations with no output if the root has not been
found. Let a = 1.5 and e — 0.001.

Although this method will work for f(x) given above, it is not difficult to find
functions for which this iterative procedure diverges.

f 5-19. Suppose the following equations are to be solved for* and

y = 1 - e~x
y = x I x I

As we have two equations and two unknowns, they can be solved for x and y.
Graphically, this is the problem of determining the intersection of the two curves in the
illustration. One could equate the two equations to obtain one equation in one unknown,
but the result would be nonlinear. Suppose the following procedure is implemented:

(a) Let yt = 1 - e-xandy2 -x I x I
(b) Let 3 =j>i -_y2
(c) Assume a value for x, say b.
(d) Compute y,, y2, and 3.
(e) If I 8 K e, the solution is found.

118 Introduction to DO Loops and to Subscripted Variables

(f) If not, note that when b is less than x0 (the true solution), 5 is positive. Now
suppose b is increased by an amount proportional to 6, that is,

b — b + kb

(where k is a proportionality constant), and the procedure repeated from Step
(d). The value for b should progressively approach x0- Note also that this same
equation can be applied when b >Xq, as the negative value of 8 will cause a
decrease in b.

Exercise 5-19. Solution of nonlinear equations

Prepare a program to read a value for b, e, and k, and print the value of b, e, and k
(use F-format) followed by values of b, yt, y?, and 8 (use E-format) for each iteration.
Let b = 1., e — 0.001, and run the program for values of k of 0.1, 0.5, 1., and 2. If
convergence is not obtained after twenty iterations, abandon the search. Note that the
difficulty with this technique is selecting the appropriate value for k: a small value
requires too many iterations and a large value produces an unstable situation.

f5-20. The digital computer is often called upon to solve differential equations
numerically. Consider the following equation:

+ c(r) = 1 dt v ’
c(0) = 0

This equation with specified initial condition is known to have the solution c(t) =-
1 - e-f, which can be used to compare with a numerical solution.

Consider the following scheme, known as the Euler technique:

(a) Solve the differential equation for the first derivative, yielding

^=1-(')

(b) Select a time increment for the numerical integration.
(c) As c(0) is known, dc(G)jdt, the initial slope, can be calculated.
(d) The point at the end of the first time increment is determined by assuming the

derivative (or slope) is constant over the first time increment, as illustrated.
(e) This procedure is repeated for consecutive time increments, and is known as

the Euler technique for solving ordinary differential equations.

Exercises 119

Exercise 5-20. Euler technique

Another way to obtain the same formulation is to approximate dc(t)!dt by a
forward difference, yielding

dc(t) ._ c(t + At) - c(t) _ _ .
dt At V}

Solving for c(t +At) yields

c(t + At) = c(t) + [1 - c(t)] Ar

This recursive relationship is identical to the Euler technique.
Prepare a program to use the above procedure to calculate the solution of the

differential equation at t = 1. The program should read the number of increments to be
used, and write as output the number of increments, the numerical solution, and the true
solution. Determine these for increments of 4, 10, 20, 50, 100, and 1000.

5-21. The Euler technique can be modified slightly to obtain some improvement.
The procedure is as follows:

(a) Evaluate the derivative at the beginning of the increment, i.e., c (t).
(b) Using this slope, determine a first estimate of c(t + At), say

g(t + At). Note that g(t + At) = c(t) + (At) c (t).
(c) Now evaluate the slope at the end of the increment, i.e.,g'(t + At), using the

original differential equation with# substituted for c.
(d) Average the slopes determined in Steps (a) and (c), and use this value to

determine c(t + At) by the equation

c(t + At) = c(t) + (At) [c'(t) + g'(t + At)] /2

Exercise 5-21. Modified Euler technique

120 Introduction to DO Loopsand to Subscripted Variables

This technique, illustrated above, is know as the modified Euler technique.
Repeat Exercise 5-20 using this technique.

5-22. Probably the most popular high-order integration technique is a fourth
order Runge-Kutta. Let the differential equation be of the form dc(t)ldt =/[f,c(f)],
where c(0 is the dependent variable and t is the independent variable. Then the point
c(t + Ar) at a small increment Ar from a known point c(r) is given by

c(t + AO = c(r) + (AOfKj + 2K2 + 2K3 + K4)/6
Ki =f[t,c(f)]

r A/
^3=/U+T’c(r) +
k4 =f\t + Ar,c(r) + K3Ar]

KiA/J
2 J

K2Ar
2

Use this procedure to solve the differential equation in Exercise 5-20.

f5-23. The above methods for numerically solving first-order differential equations
can be readily extended to higher-order differential equations. For example, consider the
following equation:

d2c(t) dc(t)

dt2 dt
+ c(r) = 1

' c(0)= 0

rfc(O) = 0
dt

Define a new variable z(r), as follows:

dc(t) _ ,

Now the original equation becomes

^+z(/) + C(f)= 1 (b)

The boundary conditions are

c(0) = 0
z(0) = 0

Now equations (a) and (b) are first-order differential equations and can be solved
simultaneously using the concepts presented in the previous exercises. Using the Euler
technique, the iterative equations are

c(t + AO = c(0 + (A?) [z(0]
z(t + AO = z(r) + (AO [1 - z(r) - c(0]

Prepare a program to solve the above differential equation for c(4). Let the input be
the number of increments, and solve for increments of 4, 10,20,50, 100, and 1000.

Exercises 121

Note: The following examples are all designed to use subscripted variable con
cepts.

5-24. Identify the errors, if any, in each of the following subscripts [array A
dimensioned A(5)]:

(a) A(B)
(b) A(l+J)
(c) A(10)
(d) A(J/2)
(e) A(J*2+1)
(0 A(-J)

5-25. A data card contains a list of six numbers, each in F10.2 format, which we
shall consider as a one-dimensional array A. Read in the six numbers, find their sum, and
find what fraction each of these numbers is of their sum. The fractions shall be
considered as a second one-dimensional array F. Write out A in a single vertical column
alongside of which is located the corresponding F elements. Use F10.4 format for the
elements in F.

5-26. Twenty students take an exam on which the marks are from 0 to 100. Write
a program to determine how many students make a mark higher than the average. For
input data assume one mark per card in Fl0.1 format. Write out the array of marks and
the number (in 110 format) earning a mark higher than the average. Make up some trial
data.

5-27. The accounting procedure at the typical computer center consists of assign
ing to each user a charge number, which he must submit with each job. At the end of
each job, the.computer punches a card containing the user’s charge number in columns
1-5 and the number of minutes run in F format in columns 6-15.

Write a program that reads these cards and calculates the total amount of time used
by each user on all jobs he ran. The output should be in columnar fashion with user
number, total time used, and percent of total. Use a blank card to indicate last card.
Input data are shown below:

40709 1.27
80001 2.34
50200 2.11
40709 4.02
40201 3.11
70207 2.06
50200 3.09
80001 1.02
40709 0.79
70207 3.04

5-28. As a conscientious student in basket weaving, Joe Kollage has performed
some bursting tests on his products. Since higher mathematics still baffle him, he decides
to use the computer.

The experiment consisted of placing weights in each basket until it ruptured. Joe
used three different weights-weight one weighing five pounds, weight two, ten pounds,
and weight three, twenty-five pounds. He performed this experiment on four baskets, and
he has the number of weights of each type in the basket when it ruptured. The data for
each test are entered on a separate card as follows:

122 Introduction to D0 Loops and to Subscripted Variables

Number of
Weight 1

Number of
Weight 2

Number of
Weight 3

Test 1 12 1 0
Test 2 6 2 1
Test 3 8 1 1
Test 4 0 2 2

Joe is confident he can keep the cards in order, so only the number of weights of each
type for each test is entered according to FORMAT (313). The program should proceed
as follows:

(a) Read input.
(b) Calculate total weight in basket at rupture. This value should be stored in an

array.
(c) Calculate average weight at rupture.
(d) Calculate the difference between individual test value and average test value.
(e) Print test number, total weight at rupture, and difference from average for

each test.
(f) Print average weight at rupture.

5-29. Revise the inventory program in Example 5-4 to print the final inventory in
ascending order of the stock numbers.

|5-30. Read in a one-dimensional array A containing eight elements in F5.1 format
on a single data card. Sort the elements into ascending order based on their absolute
value. Write out the results on a single data card in F5.1 format.

5-31. Redo Exercise 5-30 for descending order.

f5-32. Given two one-dimensional arrays, A and B, each containing ten elements in
F20.4 format. Data card one-contains ax and b10, data card two contains a2 and b9, etc.
for ten data cards. Read in the arrays and calculate the norm as

rib
ABNORM = < / aibi

Write out the norm in E20.7 format.

5-33. Joe Bleaux needs to borrow $1500 for a period of three years. After
consulting three loan departments, he has the following possibilities:

(a) 8% per year, compounded monthly
(b) 814% per year, compounded annually
(c) 814% per year, compounded quarterly

Which one is the most attractive?
Write a Fortran program to calculate this. Read i, the annual interest rate, andm,

the number of compounding periods annually. The final amount owed is
$1500 • (1 + The output should be the annual interest rate, the number of
compounding periods annually, and the amount owed after three years. The output
should be ordered so that the most attractive appears first and the least attractive last.
Assume that the data cards are not read in this order.

Exercises 123

5-34. Suppose we have the coordinates of five points in the x,y plane, and would
like to find the distance between the two points that lie the farthest apart. The five points
are read from five cards punched as follows:

X y
-0.94 -3.22
-4.02 8.17

7.07 -9.11
5.49 8.76
0.20 4.45

The distance between the first two points is ■*/(%! - x2)2 + (Pi ~ j'2)2; between the first
and third is x/(*i ~ X3)2 + (yj - y3)2 ; etc. Only the value of the farthest distance is to be
printed. Be sure to check all possibilities (a total of ten).

f5-35. Prepare a program to calculate telephone bills. Our booming company has
ten customers, whose identification numbers and base charges are punched on data cards,
one card per customer. In addition, we have several cards containing charges for each long
distance call made along with the customer number of the calling party. Of course, a
given customer may make no calls or several calls. The cards for long distance are neither
counted nor ordered. Write a program to compute and print the total charges for each
customer. Don’t forget to add 10 percent federal excise tax for long distance calls, but
base charges are not taxable. Place the ten cards with base charges first in the input data,
and make up your own data.

5-36. Suppose the sales slips on merchandise sold in a given department contain
the amount of the sale and the salesperson’s identification number. At the end of the day,
these are punched onto cards with the salesperson’s identification number in columns 1-3
and the amount of the sale in F format in columns 4-13. We would like to prepare a
program to (a) calculate the total sales of each salesperson, (b) calculate the percent of
the total, and (c) calculate his or her commission for the day (3 percent of the sales above
$50). These cards are neither counted nor ordered in any way. The program’s output
should be in columns containing the salesperson’s identification number, the total
amount of his or her sales for the day, the percent of the total, and his or her
commission. Make up your own data cards.

5-37. An array of data consists of n experimental measurements of the variable x.
They are in F5.1 format on the minimum number of data cards. Read them in and
calculate their mean value and standard deviation:

-- t 1Mean value = —

Standard deviation =

Write out the mean value, the standard deviation, and n.

5-38. Redo Exercise 5-37, except you are also to write out the value ofx which is
most different from the mean value of x.

124 Introduction to DO Loops and to Subscripted Variables

5-39. A one-dimensional array X contains twenty elements which represent exper
imental measurements. These may be smoothed by calculating

rf, =----------- 5

for all but the first and twentieth elements. Read in X, calculate SX, and write out the
two arrays, one above the other.

5-40. Read in a one-dimensional array X containing sixteen elements in Fl0.2
format on two input data cards. Calculate the first, second, and third differences

DELXl(I) = X(I + 1) - X(I) for I = 1, .. . , 15
DELX2(I) = DELX1(I +1)- DELXl(I) for I = 1, ... , 14
DELX3(I) = DELX2(I + 1) - DELX2(I) for I = 1, .. . , 13

Write out X, DELX1, DELX2, and DELX3 in four vertical columns which are side by
side.

5-41. Let f(x) = anxn + an _ xxn ~ 1 + • • • + axx + a0. A program is to be pre
pared to read n, read the coefficients of /(x), read b, and evaluate/(h). The first card
contains the value of n, the next n + 1 cards contain the values of the coefficients
(beginning with a0), and the last card contains the value of b. Store the coefficients of
f(x) in a one-dimensional array, storing a0 in A(l),at in A(2), etc. Assume n will always
be less than fifty. Print b and/(h).

As input, let /(x) = -0.8x5 - 0.06x4 + 1.7x3 - 3.2x2 + 7x + 1 and evaluate at
x = 0.75. Although not the easiest to program, the most efficient manner for evaluating
this polynomial is as follows:

((((-0.8x - 0.06)x + 1.7)x - 3.2)x + 7)x + 1

f5-42. Let /(x) = anxn + an_ 1xn ~ 1 + • • • + axx + a0, let g(x) = ex + d, and let
h(x) — flx)g(x) = bn + lxn + 1 + bnxn + • • • + bxx + h0- Prepare a program to read
from the first card the values of n, c, and d, read the coefficients of /(x) from the next
n + 1 cards (beginning with a0), calculate the coefficients of h(x), and print the results.
Use array A to store the coefficients of f(x), storing a0 in A(l), and similarly for the
coefficients of h(x). The maximum value of n is thirty, in Appendix E.

As input, let g(x) = 1.7x + 2.1 and let/(x) = xs + 1.6x4 - 0.7x3 + 0.2x2 + 6.1x + 0.8.

5-43. Prepare a program to multiply polynomials /(x) of order n and g(x) of order
m to obtain h(x). This is a generalization of the previous program. The maximum value
for n and m is thirty, and n > m. Use input similar to above, reading n and m, then the
coefficients of/(x), and finally the coefficients ofg(x).

As input, let/(x) =x4 + 1.7x3 - 2x2 + 0.71x + 1.1 andg(x) = x2 +2.1x+ 1.8.

5-44. The three coordinates of a point in space (Xit X2, X3) are to be considered
as elements in a one-dimensional array. The direction cosines associated with this point
also may be considered as a one-dimensional array and are given as

= X1
Cl y/X} +Xj+Xj

x2
C2 = ~'ry/x2x + X22+X23

______-^3

C3 y/x2x +X22+Xl

Exercises 125

Assume you have five points and for each point you desire to calculate the direction
cosines. Structure the program to read in the coordinates of a point, calculate the
direction cosine array, write out the X and C arrays, and go to a new data card. For each
point processed, an identifying output number also should be written to identify the
point as the first, second, third, fourth, or fifth point. (A counter handles this last
requirement nicely.) Use Fl0.2 or 15 for all input and output format field specifications.

f5-45. Given a one-dimensional array A containing sixteen elements in Fl0.2
format. Calculate a new array B whose elements are given as

bi = i'ai

Write out all the A elements in a single vertical column alongside of which is located the
corresponding B elements. Use Fl0.2 format for all output.

5-46. Read in a one-dimensional array A which contains twelve elements in F20.2
format. Calculate a new array B whose elements are given as

6Z. = (-I)\«z)! + 1

Write out the A array in F20.2 format on three output records. This should then be
followed by the B array in E20.7 format on the next three output records.

5-47. Read in the one-dimensional array A which contains twenty elements in
F20.5 format. Calculate two sums,* andj^, given as

x = for i odd, i.e., * = + a3 + ■ • - + aX9
y = 'Lai for i even, i.e.,y = a2 + a4 + ■ ■ ■ + a20

Write out the A array in two vertical columns. The left-hand column should contain all
the odd elements and the right-hand column should contain all the even elements. Use
F20.5 format. Now write out x and y in E20.5 format so that they appear below the
appropriate columns.

5-48. Read in the one-dimensional array A containing ten elements in Fl0.2
format. Calculate the following:

SUMNEG = sum of all the negative elements
SUMPOS — sum of all the positive elements
NNEG = number of negative elements
NPOS = number of positive elements

Write out these results in E20.2 or 110 format, as appropriate.

f5-49. Read in two one-dimensional arrays, A and B, containing five elements
each. Assume each input data card contains a single element of A and the single
corresponding element of B. Calculate a new array C where

cf — a(+ bf if bt > Uj
ct = - bt if bt <

Write out A, B, and C, in three vertical columns. Use Fl0.2 format on all input and
output.

5-50. Read in two one-dimensional arrays, A and B, containing ten elements each.

126 Introduction to DO Loops and to Subscripted Variables

Assume the A array is contained on two data cards in Fl0.2 format and the B array is
contained on the next three data cards in E20.7 format. Calculate a new array C where

cz= (ai + bf ifa^bi

biY ifa^bf

Write out the C array in E20.7 format on three data cards.
|5-51. Consider the following problem in vapor-liquid equilibria: A liquid

containing n components is in equilibrium with its vapor at total pressure Pt . Let the
mole fraction of component i in the liquid be X{, its vapor pressure be Pz, and its relative
volatility be R(. For component i, its vapor pressure Pi can be calculated from
temperature T by

-0.05223 A.
log loPj =-------f------J

where Ai and Bt are experimentally determined constants for component i.
The problem is, given Pt and the mole fraction of each component, to calculate the

temperature T at the bubble point. The input is as follows:
The first card contains values for n, Pt, and an initial estimate of T using FORMAT

(12, 2F 10.0).
This card is followed by n cards, each containing the values of Xt, At, and Bt for

component i, using FORMAT (3F10.0).
The calculations proceed as follows:

(a) Assume T. Initially this is the value read from the first data card.
(b) For each of the n components, calculate P{ from T, At and Bi using the equa

tion above.
(c) For each of the n components, calculate Rt from Rf = PjPi. Of course, R{ = 1.

n
(d) Calculate BiXj.

i = 1
/ n

(e) Calculate Pa by: Pa = Pt /
/ ' - 1

0.05223 Ay
(f) Calculate T„, the new estimate of T, by: T = ~;----------

a Bi - log10Pa
(g) Compare Ta with T. If | Ta - T | /Ta < 0.001, the solution is found. Write Ta.

If not, set T = Ta and repeat from Step (b).

The maximum value for n is ten. Use the following inputs:

n = 2, Pt= 2000., T = 273.

i *i *i

1 .5 23450. 7.395
2___ .5 27691. 7.558

Exercises 127

5-52. Let a be an «-dimensional vector (an n X 1 matrix) defined as follows:

“a

a2

«3

Norm la I of a vector is defined as follows:

I a | = (fl? + fl? + • • - + fl2)1/2

Prepare a program to read n followed by ax, a^, . . . , an (each on a separate card),
compute the norm of a and print the result. The maximum value for n will be fifty. For
data, let

T
1

a~ 0
3

f5-53. A normalized vector is one whose norm is unity. Any given vector can be
normalized by dividing each of its elements by the norm. Prepare a program to read the
elements of a vector as in the previous problem, compute the normalized vector, and
print the results (the elements of the normalized vector, one to a line). Use same input as
in previous problem.

5-54. Let a, b, and c be vectors defined as in the previous exercises. If vector c is
to be the sum of a and b, i.e., c = a + b, then Cj, the zth element of c, is the sum of a{ and
b{, i.e., Cj = dj + bj. Prepare a program to

(a) Read n, the order of each of the vectors. The maximum value of n is fifty.
(b) Read the elements of a, one to a card.
(c) Read the elements of b, one to a card.
(d) Compute c.
(e) Print the elements of c, one to a line.

As input, let

|5-55. The dot product of vectors a and b is a scalar whose value equals

n
E aibi

i = 1

128 Introduction to DO Loops and to Subscripted Variables

Prepare a program to

(a) Read n, the order of each of the vectors. The maximum value of n is fifty.
(b) Read the elements of a, one to a card.
(c) Read the elements of b, one to a card.
(d) Compute the dot product and print the results.

As data, use the two vectors in Exercise 5-54.

5-56. Early in a course on vector algebra, the following theorem is proved:

I a + b I2 = I a I2 + I b I2 + 2a • b

Prepare a program to prove this for a specific case by evaluating each side of the
relationship. The input is arranged in the same manner as in the previous two exercises,
and the output is to be the value of both sides printed on the same line. For input use the
vectors in Exercise 5-54.

5-57. Exercise 5-55 considered the dot product of two vectors. Let a, b, c, and d
be vectors, where d is defined as follows:

d = (a ■ b) ■ c

Note the (a • b) gives a scalar, which is then multiplied by c. Prepare a program to read
vectors a, b, and c in a manner similar to Exercise 5-55, compute d, and print the results
in columnar fashion. Use the following vectors as input:

6
Multidimensional Arrays
and Mested DO Loops

The previous chapter treated single DO loops and one-dimensional arrays. The objective
of this chapter will be to expand upon this material and thus extend the usefulness of
subscripted variables and DO loops to the programmer.

6-1. Multidimensional Arrays

Many quantities may be represented with one variable name through the use of subscripts
as indicated in the previous chapter. A subscripted variable in Fortran may have one, two,
or three subscripts (separated by commas within the parentheses of the subscript), and
these in turn represent one-, two-, or three-dimensional arrays. For convenience in
orienting the individual’s thinking, the one-dimensional array can be considered (in a
geometric sense) as representing points along a line, the two-dimensional array as
representing points in a plane, and the three-dimensional array as representing points in a
three-dimensional space or points in a series of planes stacked one on top of the other.

An alternate way of viewing arrays is to consider the one-dimensional array as a
column or a row of elements; to consider the two-dimensional array as a table of
elements, i.e., made up of rows and columns; and to consider the three-dimensional array
as a series of tables, i.e., a series of two-dimensional arrays.

The concept of one-, two-, and three-dimensional arrays refers to the number of
subscripts for the element and not to the number of elements themselves. For example, a
one-dimensional array can have many elements, and it would be possible for a three
dimensional array to have only one element. It might also be pointed out that some
versions of Fortran allow more than three subscripts (some systems allow seven-dimen
sional arrays).

A two-dimensional array, in its geometric interpretation, may be thought of as
being composed of horizontal rows and vertical columns. The first subscript of the

129

130 Multidimensional Arraysand Nested DO Loops

variable refers to the row number in the array, and it will vary from one to the total
number of rows. The second subscript refers to the vertical column number, and it will
vary from one to the number of columns. As an example, two entrants in a beauty
contest might have their conventional measurements stored in a 2 X 3 array which might
be shown in mathematical notations as follows:

ai,i ai,2 ^1,3
#2,1 fl2,2 a2,3

These could be written in Fortran subscript notation as A(1,1), A(2,l), A(l,2), A(2,2),
A(l,3), and A(2,3). Note that the subscripts are separated by commas.

In a more general sense an n X m array named A might be presented as follows:

In general, at.• would be the element in the zth row and the /th column.
In the DIMENSION statement, multidimensional arrays must be included in the

same manner as one-dimensional arrays. For example, the statement

DIMENSION A(2,3), K(2,3,4)

would establish 2X3 = 6 storage locations for array A and 2 X 3 X 4 = 24 storage
locations for array K. As can be seen from Appendix B, most machines allow up to
three-dimensional arrays, a few allow up to seven, and one or two permit even more.

The order in which higher dimensional arrays are stored in memory is important.
The rule is that storage is arranged as if the first subscript were varied most rapidly and
the last subscript varied least rapidly. That is, the storage for an array dimensioned A(2,3)
would be in the following order:

A(1,1) A(2,l) A(l,2) A(2,2) A(l,3) A(2,3)

This is important in the reading of arrays. The read statement

READ (5,10) A

would read the elements of array A in the same order as they are stored. If a two-dimen
sional array is viewed as a table, as suggested previously, then the table is read by
columns.

EXAMPLE 6-1

As an example of the use of subscript notation, consider the two-dimensional array
associated with solving a set of simultaneous algebraic equations. A system of two
equations and two unknowns is sufficient to illustrate the technique.

6-2. Nested DO's 131

C FOR COMMENT
1 STATEMENT

NUMBER

I 5 6 7 10
FORTRAN STATEMENT

____ L?_ 20 23 30 35 40 45 50 55 60 65 20 22

...1.1

___ _ . 1 .

. . . 1 . | ■ | j . . ! ,

- ■ - 1- ■

...1.1

■ . . 1 ■

1 . .
DEN0.M = . All.l). * Al,22) Al 2„ 1) ♦, All.,,2)_________ , . _________________
XII), = (B,(1) ♦, A(2„2) - ,B(2) ,* Al 1„2)) ,/ DEN.0M
X(2), = (8,(2) *, A(l„l) - ,B(1) ,» A(2„l) 1 ,/ DEN.0M
... I -

1 ~ - 1 - •
- - . i . .

... 1

. .. 1. (. . 1 1 . . . n 1 1 ... i 1 i 1 1 1 1 1 .

. . . 1 . 4 . 1 1 1 1 1 1 1 i 1 i 1 1 .

. 1 . .. 1 i 1 1 1 1 ... 1..................... 1 1 1 1 1 .

. .1. . .. 1 1 1 . .. 1 1 i ... 1 1 1 1 I 1 .

. . . 1 . .

. . . 1 . . . 1 1 . . 1 1 1 1 1 1 1 1 1 1 .

. . . 1 _______1-1... i.-l.ii -------- ------------------ -------- - 1 1 t 1... 1

Figure 6-1. Statements for Example 6-1

i-^i 1 2^2 — ^1

^2 1^1 ^"^2 2^2=^2

By Cramer’s rule, these may be solved by the following relationships:

1

i

^1-^2,2 ^2^1,2

^1,1^2,2 “ ^2,1^1,2

^2^1,1 ~ ^1^2,1

^1,1^2,2 “ ^2,1^1,2

In general, simultaneous equations are not solved by Cramer’s rule, but it is used to
illustrate the programming concepts rather than the numerical analysis concepts. The
program to make these individual calculations is shown in Figure 6-1.

6-2. Nested DO's

Consider the table containing five rows and three columns as shown in Figure 6-2a.
This table is stored in a two-dimensional array TABLE(I,J), where the first subscript
denotes the row number and the second subscript denotes the column number. A
program is to be prepared to calculate the sum of each column, storing the result in a
one-dimensional array SUM.

132 Multidimensional Arrays and Nested DO Loops

(a) The table to be summed

1.31. -1.17 4.23
2.06 -0.11 0.45

-1.17 2.10 1.97
-2.01 5.09 0.88

0.02 1.25 -1.78

0.21 7.16 5.75

TABLE (I,J)

SUM (J)

Outer
D0

Inner
D0

(b) Flowchart

Figure 6-2. Summing the columns of a table

Using a DO loop, the sum of the first column is calculated with the following
statements:

J= 1
SUM(J) = 0.
DO 3 1= 1,5

3 SUM(J) = SUM(J) + TABLE(1,J)

This set of statements is reflected in the inner loop of the flowchart in Figure 6-2b. To
calculate the sums for all the columns, these statements must be executed for J = 2 and
J = 3. This is accomplished with a DO, and all the sums are calculated with the following
statements:

DO 4 J= 1,3
SUM(J) = 0.
DO 31= 1,5

3 SUM (J) = SUM (J) + TABLE(I,J)
4 CONTINUE

6-2. Nested DO's 133

Figure 6-3. Examples of permissible and unpermissive transfers in nested
DO loops: transfers 1,3,4 and 6 are permissible; transfers 2, 5,
and 7 are not permissible

This series contains one DO (the inner DO) within the range of another DO (the
outer DO). DO statements occurring in this fashion are called nested DO’s.

The rules applying to DO’s used in this manner are essentially the same as
applicable to single DO’s. The important features of such DO’s are enumerated below:

1. As the index of a DO cannot be redefined within its range, the index of the
inner DO must not be the same as the index of the outer DO.

2. The range of the inner DO must not extend beyond the range of the outer DO.
However, this does not prohibit the ranges of nested DO’s from terminating with the
same statement. That is, the CONTINUE statement in the previous example could be
eliminated as follows:

DO 3 J = 1,3
SUM (J) = 0.
DO 3 I = 1,5

3 SUM(J) = SUM (J) + TABLE (I ,J)

3. The rules applying to transfer are identical for nested and unnested DO loops.
However, transfers within nested DO’s can be somewhat intricate, and several permissible
and unpermissible transfers are illustrated in Figure 6-3.

EXAMPLE 6-2

In the preceding paragraphs the DO loops for calculating the sums of each column
in a table were presented. Now consider the preparation of a complete program as given
in Figure 6-4 to read into memory the elements of TABLE in Figure 6-2, calculate the

134 Multidimensional Arraysand Nested DO Loops

DIMENSION SUH(IO), TABLE(10,10)
C
C READ TABLE
C

0021*1,5
2 RE AD(5,3)TABLE!I,11,TABLE(1,2),TABLE(I»3)

C
C DO LOOP FOR SUMMING EACH COLUMN
C

DO5J=1,3
C
C INITIALIZE SUM TO ZERO
C

SUM!J)=0.
C
C DO LOOP FOR ADDING EACH ELEMENT TO SUM
C

DO4I=1,5
4 SUM!J)=SUM(J)+TABLE(I,J)

C
C WRITE STATEMENT
C

5 WRITE(6,6)SUM!J I
STOP

C
C FORMAT STATEMENTS
C

3 FORMAT(3F5.0)
6 FORMAT!IX,F15.4)

END

(a) Complete program

1.31-1.17 4.23
2.D6-0.ll 0.45

-1.17 2.10 1.97
-2.01 5.09 0.88
0.02 1.25-1.78

(b) Input data

0.2100
7.1600
5.7500

(c) Output data

Figure 6-4. Summation of columns in a table

sum of each column, and write the results. First, a DO loop is used to read the table. The
statements in the program in Figure 6-4 read each row of the table from a single card.
Alternatively, the entries of the table can be arranged one per card, and two DO’s can be
used as follows:

D02I — 1,5
DO 2 J= 1,3

2 READ (5,3)TABLE(I,J)
3 FORMAT (F5.0)

The data cards are arranged such that the elements appear in the order TABLE (1,1),

6-2. Nested DO's 135

TABLE (1,2), TABLE (1,3), TABLE (2,1), TABLE (2,2), etc. Alternatively, the DO’s can
be reversed, yielding

DO 2 J= 1,3
DO 21 = 1,5

2 READ (5,3) TABLE (I, J)
3 FORMAT (F5.0)

The data is now entered in the order TABLE (1,1), TABLE (2,1), TABLE (3,1), TABLE
(4,1), TABLE (5,1), TABLE (1,2), etc.

The statements for calculating the sums are as discussed earlier, except that the
write statement is incorporated into the outer DO loop.'

EXAMPLE 6-3

In many instances it is preferable, or necessary, for the elements in an array to be in
relative numerical (ascending or descending) order. An individual could do this with very
little thought for small arrays, but how would you tell a machine to do it?

To define the problem more completely, let A be a one-dimensional array of N
elements. The original values of the elements are stored in A, and it is desirable to obtain
the rearranged array in A.

If a person were doing this, he would probably begin by finding the smallest
element and placing it in A(l), placing the second smallest in A(2), etc. The computer
could proceed in a similar manner by first finding the smallest element in the array and
switching with the original A(l). The smallest element could be located by first assuming
A(l) is smallest, and comparing with the remaining elements. When a smaller element is
found, the assumption is updated. Letting M be the assumed position of the smallest
element, it can be located as follows:

M= 1
DO 2 I = 2,N

2 IF(A(I).LT.A(M))M = I

See flowchart in Figure 6-5. Upon completion of the DO, it has been determined that
element M is the smallest element in array A.

Now it is necessary to place A(M) in A(l) and A(l) in A(M). Using an intermediate
storage position called TEMP, this may be achieved by

TEMP = A(l)
A(l) = A(M)
A(M) = TEMP

The elements are thus switched.
At this point the smallest element is found in A(l), but the remainder of the

elements are unordered. In a similar manner, the elements 2 through N must be searched
for their smallest value, which is stored in A(2). For this case the statements for locating
the smallest element and switching with A(2) are

M = 2
DO 2 I = 3,N

2 IF (A(I).LT.A(M))M = I
TEMP = A(2)
A(2) = A(M)
A(M) = TEMP

136 Multidimensional Arraysand Nested DO Loops

Figure 6-5. Flowchart for locating smallest element in an array and placing
in first position

As this procedure must be repeated for A(3), A(4), . . . , A(N - 1), the logic of the
flowchart in Figure 6-6 can be used. Coding with the use of DO loops produces the
following statements:

NA = N- 1
DO 3 J = 1 ,NA
M = J
MA = J + 1
DO 2 I = MA,N

2 IF (A(I).LT.A(M))M = I
TEMP = A(J)
A(J) = A(M)

3 A(M) = TEMP

For a specific case, let array A be 1.0, 2.0, 0.5, 4.0, 1.5. In the first iteration,
elements 1 and 3 are interchanged, yielding 0.5, 2.0, 1.0, 4.0, 1.5. Elements 2 and 3 are
switched on the second iteration, yielding 0.5, 1.0, 2.0, 4.0, 1.5. On the third iteration,
elements 3 and 5 are switched to form 0.5, 1.0, 1.5, 4.0, 2.0. Switching elements 4 and 5
on the fourth iteration yields 0.5, 1.0, 1.5, 2.0, 4.0. Thus, the array is successfully
ordered after four or N - 1 iterations.

Could the outer DO in this example be DO 3 J = 1,N? If so, what would be the

B-3. Implied Uu 137

Figure 6 6. Flowchart for ordering elements in an array

value of MA when J = N? This means that the first index for the inner DO is larger than
the second index, which does not «eem reasonable (See Item 2, Section 5-3).

6-3. Implied DO

The implied DO described in Figure 5-10 can be extended to handle multidimensional
arrays in a manner analogous to nested DO loops. For example, to read a two-dimensional
array A, the following statement is appropriate:

RE,AD 10)(l AH J) J = 1,4),I = 1,2)
10 FORMAT (SF 10.0)

138 Multidimensional Arraysand Nested DO Loops

The data must appear in the following order:

A(1,1), A(1,2), A(1,3), A(1,4), A(2,1), A(2,2), A(2,3), A(2,4)

The following combination is also permissible:

WRITE (6,12)(I,(B(I,J),J= 1,3),I= 1,3)
12 FORMAT (IX,15,3F10.2)

The output would be as follows:

1 2.2 3.4 9.1
2 1.7 2.9 0.9
3 0.5 6.3 3.1

This form could not be used in a READ statement, since reading I would redefine the
index of the implied DO.

EXAMPLE 6-4

Assume that two arrays are each 2X2. The two arrays are read into the computer,
and a third two-dimensional array is calculated. Assume that the input arrays are named
A and B and the third array to be calculated is named C. The elements of C are calculated
by the following equations:

#11 = #11611 +#12621

#12 = ^11612 + #12^22

#21 = #21611 +#22621

#22 =#21612 +#22622

Figure 6-7. Flowchart for Example 6-4 (calculating a two-dimensional array)

6-4. In Summary 139

C FOR COMMENT

• statement
NUMBER

' 5 5 7 10 15 20
FORTRAN STATEMENT

25 30 35 40 45 50 55 60 65 70 72

c EX A MPLE, IN C.ALCU L,ATI NG, A TW,0-DI M,ENSI 0,NAL A.RRAY ,
c
c IN P UT S.ECT10,N ,__ _________ _________
c

DIME.NSI0N, A(2,,2) 3(,2 ,2) ,,C(2 ,2.)______
READ,! 5,10,0) A___ _____________ __________

100 F0RM,AT (4F.10.0), _____________ , , _________________ ________________
RE AD,! 5, .1.0,0.) B . ,_____ _________________________________ ____________________________

c . —A__ 1__ A__L__ ,__ . X 1__ __________ 1.__ . _^._x 1 x . X . 1 . . , X 1 1 1 X . . . 1 . . X . 1 1 . . X . 1 X X X_ —1__ A_

c CA L CULATI0N ,0F NE,W ARR.AY . . x 1 . . . L . X 1 x x_ x x lx X X X 1 x _X .__ .__ 1__ ..

c . .. 1 1 1 1 1 1 1 1 1 1 I 1 1 . .

Cl 1,,1) = ,A(1,1,) * B.l 1 , 1), + Al,1.2) * B(2„1) . 1 X . . . 1 i 1 . .x . . 1 .

C(1, ,2) = ,A(1 , 1.) * B,(1 .2). + A 1,1.2) .* B(2„2) . 1 i' 1 1 1 .

C(2 , ,1) = ,A(2 , 1,) * B,(1,1), + A(,2,2) ,* B.l 2,,1) . . . i 1 1 .

Cl 2,,2) = ,A(2,1,) • B.I 1 , 2), + A(,2, 2) .* B(2,,2) . 1 x .x.^L .1 ... 1 ... 1 1 .

c
c 0U T PUT ,SECTI,0N
c 1 ... 1 1 ... 1 1 ... X 1 . X X x -.1. . x X__x j ■ ■ .__ . 1 ■ . . . 1 ■ . ■ ■ t . ■ ■__ ■ 1 ■

WRIT,E(6,2,00) A,,B c . 1 1 1 1 . . . X 1 1 1 1 1 1 X

2 00 F0RM.AT (1X,.4F1O,.()) . J 1 . . X l.X. 1 . . 1 ... 1 1 1 .

end । i ... i . . । । । । । .__ . i._x.___ . . i . . .__ . i , , . . i ..

12----------------- -6,,2.7,, . . . ■ . -2,, . A x x_ £ x__xJ_ . 1 A 1 A X 1 I .Ill.....................1 A A A A 1 1

0., _____ 14., . , . 16,. , . -A•, . -I__ ■ 1 1 X A A . 1 x . . . 1 i 1 X ... 1 .

, , , | , , , , | , , , , j , . ■ -1 ■ . . . 1 ■ ■ . ■ -1-......................1 . A X. ■ 1 ■ . A ■ 1- . A A A 1.. A. X X 1 . X ■■ A- 1 -A.............. 1 .

. . . 1 . | 1 1 . - -X ■ 1 1 . _ - . 1 ... 1 X . x . 1_ x . ■ ... X 1 X A A . 1 A ■

_ _ _. . - . -—— - " i — 1 — ,1 r - .■ - - __________ - ' " _ ~~ ~

Figure 6-8. Program for Example 6-4

Those readers who are familiar with matrices will recognize the above relationship as
indicating the multiplication of two 2X2 matrices. The flowchart for the program
necessary for the indicated multiplication is shown in Figure 6-7 and the program itself is
shown in Figure 6-8.

Note that in each case the various arrays involved will be written with the (1,1)
element, (2,1) element, (1,2) element, and (2,2) element in this implied sequence. This
must be the format of the A and B array on the input cards, and it is the output order of
the A, B, and C arrays with the results as illustrated:

12. -6. 27. -2
0. 14. 16. -2

378. -28. 138. -92

6-4. In Summary

This chapter virtually completes the description of subscripted variables and DO loops.
The utility of both of these cannot be emphasized too highly. The exercises following this
chapter are designed to require that they be used.

140 Multidimensional Arraysand Nested DO Loops

EXERCISES^

6-1. Identify the errors, if any, in each of the following subscripts:

(a) COPS(H,I,J)
(b) ROBBER(I- 2,J * 3 + 2)
(c) LSU(I + J,K + 2,L- 3)
(d) GOGO (1,1(2),NONO)

t(e) METWO(A(I),J,K*3)
(f) HOHO(27,I.NO,YES)

6-2. Assume that you write a computer program which includes the following
statements:

DIMENSION EXTRA (5000)
DIMENSION BIG (50)
DIMENSION BIGGER (4,4,4), SLIM (16)
A = 25.
BIGGER (1,1,1) = 5280
1=4
J = 5
K = 3

If this is true, then all the following subscripts are invalid. Why?

(a) EXTRA(40,20)
t(b) BIG(B)

(c) EXTRA(BIGGER(1,1,1))
(d) B(I-2)
(e) SLIM(2*J-12)

t(f) BIGGER(I,J,K)

f 6-3. Five students take four examinations. Their marks are

Exam 1 Exam 2 Exam 3 Exam 4
Student 1 48.6 30. 62.8 23.4
Student 2 40.1 40. 60.1 29.6
Student 3 63.4 50. 63.7 31.2
Student 4 56.2 60. 58.2 27.3
Student 5 71.0 70. 67.3 26.4

Read their marks as a table (a two-dimensional array) named DATA. Assume one row per
input card in Fl0.1 format. Calculate the average on each test, the average for each
student on all four tests, and the average for all students on all tests. Write out these three
sets of results in Fl0.2 format on three data cards.

6-4. Three construction men work a week (five days) and put in the hours shown:

Day 1 Day 2 Day 3 Day 4 Day 5
Worker 1 8.0 8.5 9.5 8.0 8.5
Worker 2 8.0 8.5 10.0 8.0 9.0
Worker 3 8.0 9.0 9.0 9.0 8.5

Read in their hours as a table (a two-dimensional array) named WORK. Assume one row

^Solutions to Exercises marked with a dagger f are given in Appendix E.

Exercises 141

per input card in F10.1 format. Calculate the total hours worked for each man, and the
total hours worked by all men in the week. Write out these results in F10.2 format on a
single data card.

6-5. Redo Exercise 6-4 except assume that there are two different projects to
which each man can be assigned. In the three-dimensional array below assume the first
number applies to Project Number 1 and the second number applies to Project Number 2.

Day 1 Day 2 Day 3 Day 4 Day 5
Worker 1 5.0,3.0 5.0,3.5 4.5,5.0 5.0,3.0 4.5,5.0
Worker 2 5.5,2.5 5.5,3.0 5.0,5.0 4.5,5.5 5.0,4.0
Worker 3 6.0,2.0 4.5,4.5 4.0,4:5 4.0,5.0 6.0,2.5

Read in this three-dimensional array row by row with one worker’s hours on a single
input data card. Calculate the total hours worked on Project Number 1 and on Project
Number 2. Write these results out in Fl0.1 format. Now calculate the average hours
worked on each project on each day and write these results out in F10.1 format with a
single day’s totals on a single output card.

6-6. One useful item to a contractor on a constuction project is the number of
men of each craft required each week. Suppose he will need carpenters, plumbers, and
electricians, referred to as crafts 1,2, and 3, respectively. The contractor usually divides
his total effort into various jobs which he then schedules to start on a given week. For
each job, he estimates how many weeks are required and how many of each craft are
needed. Suppose he punches this information onto cards, the job number in columns 1-2,
the starting week in columns 4-5, the weeks required in columns 7-8, and the number of
workers in crafts 1,2, and 3 in columns 11-12, 14-15, and 17-18, respectively.

Assuming the total duration of the contract is ten weeks, write a program that
determines the number of workers in each craft needed each week. The output should be
in columnar fashion, with the week number and the number of craftsmen needed in each
craft. Use as input the following:

Job Start Duration Craft 1 Craft 2 Craft 3

01 2 4 5 1 2
02 1 2 2 0 0
03 4 1 0 4 0
04 2 2 3 0 1
05 5 5 2 0 0
06 7 1 0 1 0
07 9 1 1 1 1

6-7. Multiply a matrix A (a two-dimensional array) times a five-element vector B
(a one-dimensional array) to calculate their product C:

5
ci = Z A4bi Z’ = 1 ’ ■ • • ’ 5

/ = 1

Read in A and b as
A b

16.1 12.3 14.3 176.0 2.3 12.3
12.3 -8.4 -16.2 12.7 18.1 14.2
19.3 127.1 -6. 12.7 18.1 -8.1
27.1 -12.9 -8.2 121. 18.92 0.9
12.4 12.2 -6.3 -17.2 19.4 126.2

142 Multidimensional Arraysand Nested DO Loops

+ 6-8. A set of simultaneous equations is given as

ai,ixi ~~
^2,1^1 ^2,2X2 ^2

a3,lXl + fl3,2X2 + a3,3X3 ~ ^3

@n,lXl &n,2X2 + &n,nXn

Read in N, the A array, the B array, and calculate the X array.

6-9. Redo Exercise 6-8 if the set of equations is given as

al,lXl ‘ ‘ + a\,n - lxn - 1 + al,nxn ~~

an - 2,n - 2xn -2 an - 2,n - lxn - 1 an - 2,nxn - 2
an - 2,n - lxn - 1 an - \,nxn ~ bn - 1

an,nXn ~~ bn

6-10. What integer number would be stored in each element of the array by the
following program (what number would be stored in TEST(1,1), TEST(1 £.), etc.)?

DIMENSION .TEST(3,3)
K = 1
DO 40 J = 1,3
DO 40 N = 1,3
TEST(N,J)= K

40 K = K + 1

+ 6-11. What integer number would be stored in each element of the AGAIN array
by the following program?

DIMENSION AGAIN(2,2,3)
K = 2
DO 6 J = 12
DO 6 L = 1,3
DO 6 N = 1,2
AGAIN(J,N,L) = K

6 K=K+2

6-12. Prepare a program to insert either zeros or ones into an array to give the
following result for a 4 X 4 array:

~1 0 0 r
0 110
0 110
10 0 1

That is, place ones on both diagonals and zeros elsewhere. Read the size (<20) of the
array from a data card, but do not read values for the elements. Print your final result.

Exercises 143

6-13. Read in a two-dimensional array A. Calculate a new array B where

bt,i aj,i

The A array is 3 X 3 and in F10.2 format. Use an implied variation in subscript in reading
in the elements of A which are

10.1 16.8 -4.2
0 27.1 -3.4

21.26 -12.3 .01

Write out the B array in F10.2 format as

10.1 0 21.26
16.8 27.1 -12.3
-4.2 -3.4 .01

B is called the transpose of A.

t6-14. Redo Exercise 6-13 where A has three rows and five columns, and therefore
B will have five rows and three columns. Make up trial data.

6-15. Redo Exercise 6-13 where z varies from one to n and j varies from one to m.
Let the first input data card contain n and m and assume the following data cards will
contain A.

6-16. Consider the following set of simultaneous equations:

auxi = bi
a21Xl + a22X2 ~ b2

anlxl + an2X2 + + annxn bn

Prepare a program to read the a's and h’s and solve for the x’s. The a's are to be
stored in a two-dimensional array, but no zero elements are to be read. The input data are
the value of n (always less than twenty), the a’s (one to a card, beginning with zzn), and
the h’s (one to a card beginning with h,). The output should be the x’s. Solve the third
set of equations given in the following problem.

f6-17. Consider the following set of simultaneous equations:

3xj + 4x2 + x3 = 4
Xi + 4x2 - 2x3 = 0

2xi + x2 T x3 = 1

Suppose the following two operations are performed: (1) multiply third equation by
(- 2.)/l. and subtract from second equation, and (2) multiply third equation by l./l. and
subtract from second equation. These operations yield

Xj 4- 3x2 = 3
5xi + 6x2 = 2
2xi ■+ x2 4-x3 = 1

144 Multidimensional Arrays and Nested DO Loops

Now multiply the second equation by 3./6., and subtract from first to obtain

-1.5xi =2
5xi + 6x2 = 2
2xi + x2 + x2 ~ 1

This example is a variation of the procedure known as the Gauss reduction. Note that a
set of equations of this type was solved in the previous problem.

Program this procedure for the general case. The input should be n, the coefficients
of the original set of equations in the order ax i, fli2,etc., and the ZPs. The output should be
the coefficient, including the zero elements, of the reduced set oi equations. The
coefficients of the original equations are to be stored in a two-dimensional array A, and
the coefficients of the reduced set should also appear in this array. The maximum value
for n is twenty.

6-18. Now consolidate the above two programs into one program whose input is
the input to Exercise 6-17 and whose output is that of Exercise 6-16.

6-19. Instead of the set of equations given in Exercise 6-16, suppose they had
been as follows:

i 2^2 ■+•••+ flj nxn — 6,
fi22x2 -p... + a2nxn —

Again store the a’s in a two-dimensional array, read the nonzero elements beginning with
flu, read the h’s, and calculate and print the x’s. Solve the same set of equations as
before.

6-20. Program the Gauss reduction described in Exercise 6-17 in a manner such
that the resulting reduced set of equations resembles those given in Exercise 6-19. Use the
same input as in Exercise 6-17. The program for this Exercise and the program for
Exercise 6-19 could be combined in a manner similar to that in Exercise 6-18.

6-21. Now for the program for the Gauss reduction. Using the two-dimensional
array as in the previous exercises is inefficient with respect to storage, as almost half of
array A contains zeros. In this exercise, prepare a program to solve the set of equations in
Exercise 6-19 using a one-dimensional array for storing the coefficients. The next exercise
treats the reduction step.

+ 6-22. If storage space is to be conserved throughout the program, it must be
conserved in the reduction step also. This precludes reading the coefficients of all the
equations and then performing the manipulations. This requires that the reduction be
accomplished as the data is read. The procedure must proceed as follows:

(a) Read the coefficients and b for Equation 1. These remain unchanged; they are
the first n elements in the one-dimensional array.

(b) Read the coefficients and b for Equation 2. Equation 1 is used to eliminate the
first coefficient, and the resulting coefficients form the next n - 1 elements in
the resulting array.

(c) Read the coefficients and b for Equation 3. Equation 1 is used to eliminate the

Exercises 145

first coefficient, Equation 2 is used to eliminate the second coefficient, and
the results form the next n - 2 elements in the resulting array.

(d) This procedure is applied to each succeeding equation.

Program this technique and use it to reduce the equations in Exercise 6-17.

6-23. The following data are available for specific gravity of NaOH solutions as a
function of temperature (International Critical Tables, Vol. Ill, McGraw-Hill, 1926-33, p.
79):

Percent
NaOH

Temp.,
°F

50 86 122 176 212

2 1.023 1.018 1.010 0.993 0.980
6 1.068 1.061 1.052 1.035 1.022

10 1.113 1.104 1.094 1.077 1.064
14 1.158 1.148 1.137 1.120 1.107
18 1.202 1.192 1.181 1.162 1.149
22 1.247 1.235 1.224 1.205 1.191

Prepare a program to do the following:

(a) Read the above table into a two-dimensional array.
(b) Read a value of temperature and concentration of NaOH for which the specific

gravity is desired.
(c) Using linear interpolation, determine the specific gravity. Assume the input is

always within the range of the table. First interpolate by rows, then by
columns, or vice versa. Note that temperatures are not at equally spaced
intervals.

(d) Write the temperature, concentration, and corresponding specific gravity.
(e) Go to Step (b) to read new values.

Determine the specific gravity at the following values:

Percent NaOH
5.876
21.77
15.20

Temperature, °F
130
210

58

6-24. Let A be an n X m matrix defined as follows:

fin ff12 ’

A =
fl21 fi22 ’ ’ ‘ a2m

anl an2 anm

146 Multidimensional Arraysand Nested DO Loops

When n equals m, A is said to be a square matrix. The transpose of such matrices is
obtained by interchanging the rows and columns. For example, the matrix

“1 2 0 5~
-1 3 7 1
0-514

8 -9 0 0

has as its transpose

"1-1 0 8~
2 3-5-9
0 7 10

_5 1 4 0

Prepare a program to read matrix A, compute its transpose, and print the results. This
program is easy when the transpose is stored in a different array than the original matrix,
however, this is undesirable as it consumes storage. Prepare a program that produces the
transpose of A in the same array as A with a minimum of storage.

In order to facilitate input-output, prepare this program specifically for 4X4
matrices. Each card on input contains the elements of a row of A, and the output (the
transpose of A) is to be arranged similarly. Use the above example for data.

f6-25. Two matrices of equal order (he., equal number of rows and equal number
of columns) can be added in a manner analogous to vector addition. For example, let A,
B, and C be matrices of order n X m. Then the element on the zth row and /th column
of C, equals atj plus by. Prepare a program to read n (for simplicity on input-output, let
m = 4), read the elements of A (one row per card), read the elements of B, compute C,
and write the results (one row per line). As data use the following matrices for A and B:

2 1-20
7 8-6 5
0 7 1-3

-4 4 0 3
2 7-31
0 0 2 0

Let the maximum value for n be ten.

6-26. An n X m matrix and an mth-order vector can be multiplied to produce an
nth-order vector. For example, consider the following product:

"2 0
_3 -1

5
10

The zth element of c is given by the following expression:

n

/■ = 1

Prepare a program to read n (for simplicity on input-output, let m = 4), read A (one row
per card), read b (all elements on one card), multiply, and write c (one element per line).
The maximum value for n is ten. As input, use the above example.

Exercises 147

6-27. The vector-matrix multiplication of the above exercise is really a special
case of matrix-matrix multiplication. An n X m matrix A can be multiplied on the right
by m X k matrix B to give an n X k matrix C, that is, A • B = C. The element of C on the
zth row and /th column, ci}-, is given by

cij aik^kj

For example:

"1 0 -2
2 1 7
5-2 0

13 12
13 71

1 10

Prepare a program to solve the above specific example. Use any input-output procedure
you desire.

f 6-28. The Gauss reduction technique can also be used to evaluate a determinant.
Recall that the multiplication of one row by a constant and adding to another does not
alter the value of the determinant. For example, this procedure can be used to modify the
determinant

2 1 1
4-15
2-2 7

to

2 1 1
0-3 3
0-3 6

and finally to

2 1 1
0-3 3
0 0 3

The value of this determinant is simply the product of the diagonal elements, namely,
-18. Prepare a program that utilizes this technique to evaluate the following determinant:

5 0
2 3

-1 2
7 -4

1 7
0 5

-9 1
0 2

The output should be the value of the determinant.

6-29. Unfortunately, life is not quite so simple as the previous problem infers. For
example, consider the following case:

2
4
2

1 1 2 1 1
2 3 ----- -0 0 1 -----► ?

-2 7 0 -3 6

Due to the zero on the diagonal, the third and final rearrangement cannot be made

148 Multidimensional Arraysand Nested DO Loops

directly. If the program prepared in the previous exercise is used, a division by zero is
encountered. To surmount this difficulty, the column, namely the second column in the
above example, in which the zero causing the difficulty appears, is switched with a
column without a zero in this location. Recall that this multiplies the value of the
determinant by -1. If no column is found without a zero in this location, then the
determinant has a zero row and its value is zero. Alternatively, rows could be switched.

In the above example, interchanging the last two columns yields

2
0
0

11 2 11
1 0 —0 1 0
6 -3 0 0 -3

The value of the last determinant is 6.
Prepare a program to evaluate the following determinant:

2 13 7
4 0 5 3
2-1 2 0
1 5-9 6

In preparing this program, switch columns if the value of the diagonal element is less than
10~5.

You might note that this same difficulty plagues the Gauss reduction technique
when used to solve sets of equations.

6-30. Another good exercise is to evaluate cofactors of a matrix. The cofactor
of matrix A is (-1)' + 7 times the determinant formed by deleting row i and column / from
the matrix. Prepare a program that performs the following:

(a) Reads matrix A.
(b) Reads i and /.
(c) Evaluates A^.
(d) Prints Aif; i, and j.

Evaluate A13 for the following matrix:

“17 3 1“
5-124

-3 0-5 1
_7 6 9 -7.

You may assume zeros never appear on the diagonal.

7
Input "Output Operations

In the previous chapters, input-output features were introduced only to the extent that
enabled the input-output for the programs to be accomplished in a convenient manner.
At this point it seems appropriate to devote an entire chapter to the subject of
input-output in Fortran. Our previous discussion has been fairly complete with regard to
most implementations of format-free input-output. We have by no means discussed all of
the features of the FORMAT statement, and we will devote the first two sections of this
chapter to this statement. Carriage control will also be described in more detail along with
other forms of input-output statements.

Although Fortran was designed primarily for the processing of numerical data, the
capabilities for processing character data are extensive. Although some other languages
are superior to Fortran in this respect, the features available in Fortran permit some
interesting problems involving character data to be undertaken. We shall devote an entire
section to this subject, but the DATA statement in the previous section should be
reviewed before undertaking this topic.

The final sections of the chapter describe features such as direct-access input-output
and the NAMELIST statement that are powerful but not in widespread use.

7-1. FORMAT Field Specifications

Since I, E, and F fields were introduced in Chapter 3, the reader should be familiar with
the concept of a field. However, some concepts will be repeated for completeness.

The I field is used in input-output operations involving fixed-point or integer
variables. Important points are

1. The field specification is rlw, where r is the repetition number and w is the
width of the field.

149

150 Input-Output Operations

2. On input, any blanks within the I field are interpreted as zeros; hence, the input
must be right justified. The computer automatically right justifies any output in the I
field.

3. If no sign is provided on input, the number is assumed positive. On output a
column must be provided for the sign if the number is negative. Positive numbers are
written without a sign.

4. Any nonnumerical character other than the sign that appears in an I field on
input is taken to be an indication of error.

5. When the field width on output is insufficient (for example, attempting to write
-127 in field 12, a format overflow occurs. Some systems simply fill the specified field
with asterisks (that is, the output is ** for the aforementioned case), while others write
what they can starting from the right (that is, the output for this case is 27 with no
indication of a format overflow. Asterisks or other mention that format overflow has
occurred is the preferable and more common treatment.

As the I field has been used frequently in previous chapters, further discussion is
unnecessary.

The E field, is appropriate when a floating-point or real variable on either input or
output is to appear with a numerical value accompanied by an exponent. The following
points are pertinent:

1. The field specification is rEw.d, where r is the repetition number, w is the
number of columns in the width of the field, and d is the number of digits following the
decimal point.

2. The computer automatically right justifies the output in the E field. Normally,
the value appears as ±0.XjX2 • • • XdE ± YY or minor variations thereof (e.g., EXq.Xj
• • ■ XdE ± YY, where Xt X2 ■ • • Xd are the specified digits and YY is the exponent. Thus,
if the value of 9727. is printed under El2.5, the result is b0.97270Eb04 (the b
symbolizing a blank column). If the exponent is EbOO, these four characters are omitted
by many computers.

3. On output, the minimum width of the E field can be readily obtained by
accounting for each character:

Leading sign 1 column
Leading zero 1 column
Decimal point 1 column
d digits d columns
Character E 1 column
Sign of the exponent 1 column
Exponent digits 2 columns
Total d+ 7

Thus the minimum value of w in Ew.d must be at least d + 7, or mathematically

w > d + 7

The E field is commonly used when the magnitude of the corresponding variable in the
output list cannot be predicted with certainty. If the field width is insufficient, a format
overflow occurs with results analogous to the results for the I field discussed previously.
Caution: If the output specification is E7.0, the output is +0.E ±YY. No significant digits
are obtained, only the exponent.

4. Although the E field used for output is very regular in appearance, several
variations can be conveniently used on input. Useful features include these:

7-1. FORMAT Field Specifications 151

(a) If a decimal point is provided, it overrides d in the field specification Ew.d. If
the decimal is omitted, the d digits preceding the exponent in the field are
placed to the right of the decimal. For example, if the value 13848 were
entered as 13848E03 right justified in a field with specification El5.3, the
number entered would be 13.848E03. If large amounts of data are to be
keypunched, this feature saves time.

(b) If the exponent is E±00, the exponent can be omitted entirely. Furthermore,
if the decimal point is provided, the E field need not be right justified. This
applies only to this specific case. In all other cases, the entry in the E field
must be right justified.

(c) If sufficient, only one digit of the exponent need be punched.
(d) Unsigned value or exponent is taken as positive.
(e) If the sign is present for both positive and negative exponents, the letter E may

be omitted.
(f) A decimal point must not appear in the exponent.

As an illustration of these rules, the value 13848. may be entered in field El5.3 by
any of the following entries:

+ 13848E+03
13848E3
13848+3

13848.
13.848E03
1384.8E01
13848 + 03

All except the entry 13848. must be right justified.
The F field is used whenever a floating-point or real variable without an exponent is

to appear in the input or output. This field specification is rFw.d, where r is the
repetition number, w columns are contained in the width of the field, and d digits appear
after the decimal point.

On output, a decimal point is always provided (hence a space must be provided),
and a space must be allowed for the sign if the number is negative. The F field must be
used carefully on output. For example, the field specification F6.2 provides enough
spaces only for numbers in the range -99.99 to 999.99. If the number is less than 1.0, a
space must be provided for a zero before the decimal point. Furthermore, if the number
0.00127 is written under the specification F6.2, the output is 0.00 (two digits following
decimal point). The F field is always right justified on output, and format overflows are
treated in a manner analogous to their treatment for the I field.

On input the use of a decimal point overrides d and also removes the necessity of
right justification. If no decimal point is provided, the last d digits in the F field are
placed to the right of the decimal point. In this case, the entry must be right justified. For
example, the entry 14276 read under F5.2 becomes 142.76 (two digits following decimal
point).

A scale factor may be incorporated into the field specification whenever E or F
fields are used. However, the scale factor does not act the same for F fields as for E fields,
although the specification is sPrFw.d or sPrEw.d for the respective fields. In each case, s
may be a positive or negative integer.

When used with the F field for either input or output, its effect is

External value = internal value ■ 10;

152 Input-Output Operations

For example, if the fraction 0.278 is to be expressed as a percent, a field specification of
2PF10.1 gives the result 27.8. It can also be used on input and output if, for example, the
values of certain variables are to be in kilograms on input and output but grams
internally.

When the scale factor is used with the E field, the magnitude of the result is not
altered. In fact, scale factors with E fields are ignored entirely on input. On output the
fractional part is multiplied by 10s and the exponent is reduced by s. Thus the magnitude
is not affected, but the results are often more readable. For example, the field specifica
tion 1PE15.3 for listing 0.00137 yields 1.370E-03 instead of 0.137E-02. Caution: The
rule w > d + 7 for E fields must be modified whenever a scale factor is used.

Another precaution is that a scale factor accompanying an E or F field is automatic
ally applied to succeeding E and F fields until another scale factor is encountered. Thus if
the scale factor is to affect only one field, the next E or F field must be accompanied by
scale factor OP.

The G field is a generalized format code that may be used for input-output of either
integer or real data. The general form is rGw.d, where r is the repetition number, w is the
width of the field, and d depends upon the type of the corresponding variable in the I/O
list. If this variable is integer, the .d is ignored, and rGw.d is equivalent to rlw. On input
of real variables, the data may appear with or without an exponent, and d is the number
of digits to the right of the decimal point. On output, d is the number of significant digits
to be transmitted. If the number is between .1 and 10**d, the number is printed without
an exponent. Otherwise, output is similar to that from the E field. The field width w
should be sufficient to allow four spaces for the exponent if it is required.

The G field appears only in a few recent systems; therefore, programmers must
check its availability before using it.

The X field is used to insert blanks into the output list or to ignore columns on
input. The field specification rX on input causes r columns, which may or may not be
blank, to be skipped. On output, rX causes r blank columns to be inserted. For example,
the statements

READ(5,5)A,B
5 FORMAT (F6.0,6X,E7.0)

read the value of A from columns 1-6, skip columns 7-12, and read the value of B from
columns 13-19. Columns 7-12 may or may not be blank. The use of the X field in the
FORMAT statement is not reflected in the input or output variable listing, since no
information transfer is associated with the X field.

On output, the X field can be used to provide additional spacing. To illustrate, the
statements

WRITE (6,7)A,B
7 FORMAT (IX,F7.2,4X,E10.3)

yield the output (recall that the first character is used for carriage control, and does not
appear in the output)

□□ 12.7onmnno. 1 7oeqo2

where □ designates a blank character.
The T code is a tab code used to specify the column with which the reading or writing

7-1. FORMAT Field Specifications 153

for the following format code begins. The general form is Tvv, where w is the column
number. For example, consider the READ statement

READ (5,4)J,B

using the FORMAT statement

4 FORMAT (T4,I4,T27,F14.6)

The integer variable J is read from columns 4-7 and B is read from columns 27-40.
Similarly, the statement

4 FORMAT (T4,I4,F 14.6)

causes the input scan to begin with column 4.
The above manipulations could be obtained using the X field, but the T code is

more powerful than this. For example, using the statement

4 FORMAT (T27,14,T4,F 14.6)

causes J to be read from columns 27-30 and B from columns 4-17. This specification can
be used to read two variables from the same positions on the card. For example, using
the statements

READ (5,1)J,B
4 FORMAT (T4,I4,T4,F4.0)

causes the information in columns 4-7 to be stored in integer format in variable J and in
real format in variable B.

The Hollerith or H-field is used in the format statement to insert characters into the
output line. In the simplest version of this field specification, the desired characters to be
output are simply enclosed in apostrophes.For example, the statements

A= 1.2
WRITE (6,18) A

18 FORMAT (IX,’AD =’,F5.1)

generate the following output:

ad = Eini.2

where □ designates the blank character. As a second example, the statements

K= 12
J = 1967
WRITE (6,2)K,J

2 FORMAT (IX,’JUNE’,13,’,’,15)

generate the following output:

JUNEni2,D1967

f Although apostrophes are used in this text, many systems require quotation marks instead.

154 Input-Output Operations

Special treatment must be given to apostrophes that occur naturally within the
character data. For each apostrophe that appears in the message, an extra apostrophe
must be inserted, giving consecutive apostrophes. On output, a single apostrophe is
obtained. For example, the statements

WRITE (6,30)
30 FORMAT (IX,TT”SnTIMEnTODGO)

produce the output

IT’SnTIMEnTODGO

The use of apostrophes to designate a Hollerith field did not appear in early
versions of Fortran, and it is not acceptable on a few current systems (generally small
ones). These systems require that the field specification consist of the characters to be
printed preceded by the letter H preceded by the number of characters in the message.
Using this implementation, the FORMAT statements presented previously in this section
appear as follows:

18 FORMAT (IX,3HA=,F5.1)
2 FORMAT (1X,4HJUNE, 13,1H„I5)

30 FORMAT (1X,15HIT’S TIME TO GO)

Apostrophes are not repeated in this version.
The main disadvantage of this version is that the programmer must count the

characters in the message. However, this version is universally accepted, even on systems
that also recognize the use of apostrophes.

The A field permits character data to be read and stored in variables. This field will
not be discussed until a subsequent section devoted to character data in this chapter.

7-2. Carriage Control

The carriage on the high-speed printer can be controlled in much the same fashion as the
carriage on a typewriter. Essentially all computing systems have adopted the convention
of using the first character in each line of output for this purpose. This character is never
printed, and it causes paper spacing as follows:

Character in
Column 1

Blank

Zero

One

Plus

Printer
Action

Advance carriage one
line and then print
Advance carriage two
lines and then print
Advance carriage to
top of page and then
print
Print without advancing
carriage

Resulting
Spacing

Single space

Double space

Skip to next
next page

Overprint

Field
Specifications

IXor’ET
or 1HQ
’O’ or 1H0

Tor 1H1

’+’ or 1H+

As all output FORMAT statements considered in the previous sections began with IX,
single spacing was obtained.

7-3. FORMAT Options 155

The carriage control can be integrated with other field specifications. For example,
the output from the statement

FORMAT (6X.F12.2)

is five blank columns followed by the floating-point number. The first blank from the X
field causes the printer to single space. As a further illustration, consider the following
statements:

WRITE (6,2)
2 FORMAT (’UNPUTbPARAMETERS’)

The words INPUT PARAMETERS are printed at the top of the next page, as dictated by
the 1 in the first column.

Several characters besides the 0, the blank, the 1, or the + can be used to obtain
carriage manipulations. These other options are used so infrequently that they will not be
discussed here. However, the programmer should pay careful attention to carriage
control, as some characters will cause the printer to continuously eject pages of blank
paper. For a 600 line per minute printer, this is undesirable.

Another similar situation may arise when using a ’1’ or 1H1 field for carriage
control (skip to a new page) in a statement to be executed repeatedly. Proper use is

WRITE (6,10)
10 FORMAT (’1’)

DO 12 J = 1,N

12 WRITE (6,11)ANSWER
11 FORMAT (lX,F20.6)

instead of placing the 1H1 within the DO loop as follows:

DO 12 J = 1,N

12 WRITE (6,11) ANSWER
11 FORMAT (T,F20.6)

The first procedure places the first answer on a new page, subsequent answers appearing
on the same page. The second procedure places each answer on a new page.

7-3. FORMAT Options

The repetition number used with an individual field can also be used with a group of
fields by placing the group of fields within parentheses and placing the repetition number
before the parentheses. Thus, the specification 2(F 10.2,16) is equivalent to
F10.2,16,F10.2,16, but not to 2F10.2,2I6.

Another frequently used option is the slash (/) within the FORMAT statement,
such as

156 Input-Output Operations

WRITE (6,1)N,A,B
1 FORMAT (IX,114/IX,2F14.4)

The slash causes one record line to be terminated and another to be begun. In the above
case, N appears on the first line and A and B appear on the second line of the output.
Note that carriage control is required for each line of output, and thus the IX for carriage
control follows the slash in the above example. Slashes on input are treated similarly.

Consecutive slashes simply cause consecutive record lines to be terminated. Al
though treated the same by the computer, slashes in the middle and at the end of the
FORMAT statement appear to give slightly different results. Consider the statement

READ (5,4)A,B

with the FORMAT statement

4 FORMAT (/2F 10.2)

Two cards in the input data are read, but the information on the first card is ignored
entirely. On the other hand, if the FORMAT statement is

4 FORMAT (Fl0.2/F10.2)

two cards are still read, but one value is read from each card. To read the value of A from
the first card, skip the next card, and read the value of B from the third card, the
appropriate FORMAT statement is

4 FORMAT (F10.2//F 10.2)

The first slash terminates the scan of the first card after reading a value for A. The second
slash terminates the scan of the second card without reading any values, which in effect
causes it to be skipped.

To generalize, n + 1 slashes at the beginning or end of the FORMAT statement
cause n + 1 records to be skipped on input or n + 1 blank records to be written on
output. However, n + 1 slashes in the middle of the FORMAT statement cause only n
records to be skipped on input or n blank records to be written on output.

If the number of variables in an output list is less than the number of field
specifications, output continues through Hollerith fields and slashes between the last used
field specification and the next unused one (or the end of the FORMAT statement if the
number of fields exactly equals the number of variables in the output list). That is, the
output from

WRITE (6,1)RES
1 FORMAT (1 X,F 12.4’DOHMS’/)

appears as (RES =1.7126)

□□□□□□1.7126QOHMS

followed by a blank line.
Parentheses within the FORMAT statement may be used in a manner other than

with a repetition number. Consider the statements

READ (5,2)N.A,B,C,D
2 FORMAT (I5/(2F10.2))

7-4. Other Input-Output Statements 157

Note that these parentheses are not preceded by a repetition number. The value of N is
read from the first card, and the slash causes the input scan to proceed to the next card.
The inner parentheses are ignored on the first pass through the FORMAT specifications,
and variables A and B are read from the second card. Now the end of the FORMAT has
been reached with two variables, C and D, remaining to be read. Control now reverts back
to the first preceding open parenthesis and the record line is terminated (equivalent to a
slash). Thus C and D are read from the third card according to 2F10.2. Such parentheses
are treated analogously on output.

In order to ascertain how the Fortran compiler will treat parentheses in FORMAT
statements, it is necessary to introduce the concept of levels for the parentheses. The pair
of parentheses consisting of the open parenthesis following the word FORMAT and its
associated close parenthesis are designated level 0 parentheses. The rule used to assign a
level to a pair of parentheses is that their level is one higher than that of the pair of
parentheses within which they are enclosed. This is illustrated by the following example:

19 FORMAT(1X,I5/2(5X,2F14,4)/3(4X,I5,2(I4, F8.4),3X),F10.1)
I_____J

level 2

level 1 level I

level 0

When the format scan reaches the final close parenthesis (level 0), the rescan rule is that
control reverts back to the repetition count of the rightmost level 1 sub-pair of parentheses.
If there are no level 1 parentheses, then control reverts back to the first field in the
FORMAT statement.

Although this book has generally followed the practice of using commas to separate
all fields in a FORMAT statement, most compilers permit a comma to be omitted provided
that the result would not be ambiguous. For example, the comma in 1X,3F1O.5 can be omitted
to give 1X3F10.5, which can only be interpreted as fields of IX and 3F10.5. However, the
comma in 3F10.5,12X cannot be omitted since 3F10.512X could be interpreted as either
3F10.5,12X or 3F10.51,2X. However, it is not incorrect to insert commas between all fields,
and many programmers insert them for clarity. Furthermore, the compilers are not consistent
with respect to the rules governing which commas may be omitted.

7-4. Other Input-Output Statements

In the previous cases the input or output statements have followed the form READ (5,z)
or WRITE (6,z), where i specified the FORMAT statement. The more general forms are
WRITE (n,i) or READ (n,t), where n denotes the logical unit involved. Although the
statement number i must be an integer number, n may be either an integer variable or
constant. The specific configuration of the logical units depends upon the particular
installation, but the total number is usually about ten. Logical unit 5 is the card reader,
logical unit 6 is the systems output tape which is subsequently printed, logical unit 7 is
the card punch, and the use of the remaining logical units varies so much from one
installation to the next that the specific computer center should be consulted for this
information. Generally, these units are used for intermediate storage of large amounts of
data, and the center can advise as to the best units to use.

158 Input-Output Operations

When reading cards online, the logical unit may be omitted from the READ
statement in some versions of Fortran IV to give

READ i, list

where i is the FORMAT statement number. Note that i is not enclosed in parentheses, but
it is followed by a comma. Similarly, printing and punching online (as explained
previously in Table 3-2) on some machines can be dictated by

PRINT i,list
PUNCH i,list

In other installations, the statement

PRINT i, list

is equivalent to

WRITE (6,z) list

in that all output is on logical unit 6, the system output tape.
When transferring large amounts of information to or from logical devices other

than 5 or 6, the use of binary (the internal numbering system in the machine) can speed
up the process by eliminating the conversion from binary to BCD (binary coded decimal),
or vice versa. As this also eliminates the need for a FORMAT statement, the READ and
WRITE statements become

READ (n)list
WRITE (n)list

To facilitate these intermediate input-output operations, the instructions END FILE n,
REWIND «, and BACKSPACE n are used, respectively, to place a mark denoting that the
last record has been encountered, to rewind the tape, or to backspace one record (the
information corresponding to one card or printed line). Of course, these instructions are
not permitted for logical units 5 (the card reader), 6 (the systems output unit), or 7 (the
card punch).

Recent versions of Fortran IV also permit extension of the READ statement to
include transfers upon encounter of an end-of-data and/or an error in the input data. For
example, the statement

READ (5,7,END = 19,ERR = 8)A,I,D

would read information from logical unit 5 according to FORMAT statement 7. If an
end-of-data is encountered, control is transferred to statement 19. If an error is en
countered in the input, control is transferred to statement 8.

To illustrate the use of the END = option, suppose we write a program to compute
the arithmetic average of a set of numbers which are punched one per card in the first ten
columns in Fl0.0 format. It is not known how many numbers are in the set, but we will
assume there are too many to be conveniently counted. Using the END = option in the
READ statement, the program in Figure 7-1 counts the cards, sums the numbers, and
computes their average. The END = transfer is made upon encounter of a control card in
the input data. The deck arrangement must therefore be such that a control card always
follows the input data.

7-5. The DATA Statement 159

5.872
15.422
1.245
-2. 1 1 1
12.55
6.222

1 N = 0
2 SUM=0.
3 2 READ!5.1.END=4) A
4 1 FORMAT!F10.0)
5 SUM=SUM+A
b N = N + 1
7 G0T02
R • AVG=SUM/N

WR ITE(6.3)AVG
10 3 FORMAT!* AVERAGE = * » F 1 4 » 3)
1 1 STOP
12 END

(a) Program

(b) Input data

AVERAGE ■

(c) Output
6.533

Figure 7-1. Example of the use of the END = option

Many systems that do not recognize the END = feature as described here provide an
alternate mechanism to accomplish the same objective. For example, some systems
recognize the following special form of the IF statement:

IF (EOD)hi,«2

which must appear immediately following the READ statement. Upon encounter of
end-of-data (EOD), control is transferred to statement n2; otherwise, control is trans
ferred to statement nY.

7-5. The DATA Statement

Up to this point, the value 2.7 could be stored in the variable A by either reading the
information from a card or by equating with an arithmetic statement such as A = 2.7. If
the value of A never changed from one run to the next, reading the value of A would be a
nuisance when preparing the data cards. The use of the statement A = 2.7 suffers the
disadvantages that, first it is an executable statement and requires time to execute, and
second the storage of the associated instructions may consume critically needed storage
for large programs. To alleviate these situations, the DATA statement is used to assign the
desired values to such variables before execution of the program begins. Since this occurs
before execution, the DATA statement is not executable.

The general form of the DATA statement is

DATA list/dy, rii *d2, ■ ' ’, dn/, list/dx, d2, - • ■ dm/, ■ ■ ■ /

160 Input-Output Operations

The rules governing the list are the same as in READ or WRITE statements. That is,
implied DO’s (only with numerical values for nv n2 n3), use of array names without
subscripts, use of subscripted variables (subscript must be given a numerical value unless
within an implied DO), and other options available in READ or WRITE lists are
permissible.£ The list is separated from the values by a slash, and the numerical values are
separated by commas. The use of nx * d2, where n\ is an integer constant, denotes that
d2 is repeated nx times. The number of variables in the list should equal the number of
constants supplied.

As an example, the nonsubscripted variables X,Y,J,B, and A may be assigned values
with either of the following DATA statements:

DATA X,Y,J,B,A/12.1,1,7E-2,5,2 * 8./
DATA X,Y/12.1,1,7E-2/,J/5/.B,A/2 * 8./

Several other possibilities may be suggested. The implied DO can be used to set the first
twelve elements of one-dimensional array C equal to 1.0 as follows:

DATA (C(J),J = 1,12)/12 * 1.0/

If C were dimensioned as containing only twelve elements, this could also be accom
plished by

DATA C/12 * 1.0/

Recall that the DATA statement is not executable. Thus, these variables are
assigned these values at the beginning of execution with the DATA statement. It is
permissible to redefine these variables in any way desired, but the DATA statement may
not be reexecuted to reassign to them their initial values.

Further examples of the use of the DATA statement will be given in the following
section.

7-6. Character Data

In all examples presented up to this point, only numerical values were stored in variables.
Although Fortran’s main advantages lie in the realm of numerical computations, Fortran
permits rather extensive character manipulation.

As an example of a program that involves the processing of character data, we shall
write a program that reads a temperature from columns 1-10 in Fl0.0 format and reads
the scale from column 11, an F representing Fahrenheit and C representing Centigrade.
The program should print the temperature in both °F and °C The appropriate conver
sions are

°F = 1.8 X °C + 32
°C = (°F- 32)/l .8

In order to solve this problem we must first discuss the FORMAT features as they
apply to character data. The appropriate field specification is the A field whose general
form is rAw, where r is the repetition number and w is the width of the field. For
example, the statements

fNot all machines will accept implied DO’s or variables written with subscripts in DATA
statements. However, all will accept nonsubscripted array names.

7-6. Character Data 161

READ (5,8)T,J
8 FORMAT (F1O.O,Al)

read a numerical value from the first ten columns and store it in variable T and read a
character from column 11 and store it in variable J.

In Fortran, character data can be stored in either integer or real variables. That is,
the above READ statement could be changed to

READ (5,8)T,S

However, in some systems real arithmetic can cause strange things to happen, making the
use of integer variables preferable. We shall return to this point later.

The number of characters that can be stored in a single variable depends upon the
system, with values commonly ranging from two to ten. Since a number of current
systems permit four characters to be stored in a single variable, we shall use four
throughout this text. For example, suppose the characters COMPUTER are punched in
the first eight columns of a card, and are to be read and stored in memory. Since the
word COMPUTER consists of eight characters, two storage locations will be required. The
following three examples will produce the desired results:

READ (5,4)JA,JB
4 FORMAT (2A4)

4

DIMENSION J(2)
READ (5,4)(J(K),K = 1,2
FORMAT (2A4) 4

DIMENSION J(2)
READ (5,4)J
FORMAT (2A4)

The following example is not correct (K is a simple variable):

READ(5,4)K
4 FORMAT (A8)

These statements specify the entry of eight characters of data into a single storage
location, which in our system can store only four characters. In these cases, the system
will store only the four rightmost characters in the A8 field.

Similarly, the following example is incorrect:

DIMENSION J(2)
READ (5,4)(J(K),K = 1,2)

4 FORMAT (A8)

The FORMAT statement specifies that each card contains one field eight columns in
width. The READ statement calls for the entry of the values for two variables. Recall that
the contents of each field in the FORMAT statement are entered into a single variable.
Therefore these statements cause the characters in columns 5-8 of the first card to be
stored in J(l) and the characters in columns 5-8 of the second card to be stored in J(2).

In the temperature problem described above, an appropriate READ statement is as
follows:

READ(5,4)T,J
4 FORMAT (F10.0,Al)

How do we determine if J contains the character F or the character C? The logical IF may
be used to determine equality or inequality, or the arithmetic IF may be used to
determine if an expression is zero or nonzero.

A few systems permit the use of alphanumeric constants as in the following
statements:

162 Input-Output Operations

IF (J.EQ.’F’)GO TO 8
IF (J- ’F’)9,8,9

where control is transferred to statement 8 only if J contains the character 4F . However,
most systems do not recognize alphanumeric constants used in this fashion.

The only alternative is to read character data into variables or to initialize character
data into variables by the DATA statement. For example, variables ICHF and ICHC could
be initialized to the characters F and C, respectively, by the following DATA statement:

DATA ICHF,ICHC/’F’,’C7

All systems will now recognize the following statements:

IF (J.EQ.ICHF)GO TO 8
IF (J-ICHF)9,8,9

These statements are examples that justify the previous suggestion that integer
variables be used to store character data. If real variables are used, the problems
mentioned in Chapter 4 regarding comparing real variables for equality apply. Comparing
real variables for equality is always a questionable undertaking.

Another problem that may occur is illustrated by the following statements:

DATA CHC,ICHC/’C’,’C7
IF (CHC.EQ.ICHC)GO TO 20

At first glance, it appears that we are comparing character C to character C, which are
surely equal. However, Fortran evaluates such comparisons using arithmetic operations.
The above IF statement calls for the comparison of an integer variable to a real variable.
In such cases, the integer variable is converted to real before the comparison is made. If
an integer variable containing the character C is converted to real, the result is not the
character C. Therefore, the above statement would conclude that ICHC does not equal
CHC.

The complete program for the temperature example posed earlier in this section is
given in Figure 7-2. The character in column 11 is read into variable J, and it is then
compared to the character F in ICHF and the character C in ICHC. If equality is found,
the appropriate conversion is made. If no equality is found, an error message is printed.

To illustrate the flexibility of Fortran in character manipulations, suppose we
write a program to prepare a plot on the printer. Specifically, we shall plot the
following arrays:

x y
1.2 52.7
4.6 8.1
1.8 40.2
0.2 75.6
3.2 23.5
2.5 31.6

We shall plot x on the horizontal axis (columns) and y on the vertical axis (lines). The
plot shall be fifty columns in width and forty columns in height. The scales are 0 to 5 for
x and 0 to 100 fory.

The flowchart, the program, and the resulting plot are given in Figure 7-3. The
values of x and y are first read. In preparing the plot, the general approach is to use an

7-6. Character Data 163

1 DATA ICHC, ICHFZ • C• , • F• /
2 R READ!5,4)T, J
3 4 FORMAT! FK ,C,A1)
* IF(J«EQ , ICFF)G0T02
5 IF(JocQjICFC)GOTO 3
6 W R I T E (6,6) J
7 6 FORMATf INVALID SCALE *,A1)
R G0T08
9 2 TF=T

10 TC=(T-32, 1/1,8
11 7 WRITE(6,8) TF, TC
12 5 FORMAT(• TEMPERATURE IS’,F8.2,' DEG F 0R',F8j2,’ DEG C’>
13 G0T08
14 3 TC=T
15 T F = 1.8+.T C+3 2 o
16 G0T07
17 END

(a) Program

156,2 F
147,5 □
22.1 C

(b) Input data

TEMPERATURE IS 156.26 DEG F O>- 69,00 DEG C
INVALID SCALE D
TEMPERATURE IS 71.78 DEG F OP 22,1') DEG C

(c) Output

Figure 7-2. Program for temperature conversions

array IP of fifty elements to store the fifty characters to be printed on each line of the
plot. Since we start plotting at the top, the line index I is set equal to forty and
decremented. Each line of the plot entails the following computations:

1. Each element of array IP is set equal to a blank character.
2. For each value of Y, the line IY on which the point should appear is computed.
3. If IY equals the current value of I, the column IX in which the point should

appear is computed, and IP(IX) is set equal to the asterisk character.
4. The line is printed, with every tenth line bearing an annotation for the y-axis.

After printing the forty lines of the graph, the x-axis is printed.
Some increase in the efficiency of the program in Figure 7-3 could be obtained by

precomputing the line indices for each value of Y and storing them in an array.
As a final example of the processing of character data, we shall prepare a program

to code a message, a process known as enciphering. In our approach we begin with an
original message (called the clear) such as the following:

HE HAD A BAD DAY

In performing the enciphering, we will use another message called the keyword. In our
example, the keyword will be COMPUTER.

I DIMENSION X!20),Y!20)» IP!50)
2 DATA IB.IAZ*

c-----------READ DATA TO 8E PLOTTED
3 READ!5,1)N,!X!I),Y!I),I=1,N)
4 I FORMAT(I5Z(2F10.0))

C----------- ADVANCE TO NEW PAGE
5 WRITEI6,10)
6 10 FORMAT!•!•)

C------------START AT TOP LINE OF PLOT (1=40)
7 1 = 40

C------------BLANK ENTIRE LINE
8 5 DO2K=l,50
9 2 IP(K)=IB

C-----------EXAMINE DATA POINTS TO SEE IF ANY SHOULD
C APPEAR ON THIS LINE

10 DO3J=1,N
C-----------COMPUTE LINE INDEX

11 IY =Y I J > Z 2 • 5+» 5
C------------if LINE INDEX NOT EQUAL TO THIS LINE
C PROCEED TO NEXT POINT

12 IF(IY.NE.IIGOTO3
C------------COMPUTE COLUMN INDEX

13 IX=X(J)*10.+,5
C-----------PLACE * AT COLUMN INDEX

14 IP(IX)=IA
15 3 CONTINUE

C-----------Y-AXIS ANNOTATION IS EVERY 10 LINES
16 IF((IZ 10)♦I 0•EQ•I)GOTO4

C-----------WRITE WITHOUT Y-AXIS ANNOTATION
17 WRITEI6,20)IP
18 20 FORM AT! 1IX,•»50AI)
19 GO TO 6

C------------WRITE WITH Y-AXIS ANNOTATION
20 4 YP=2.5*I
21 WRITEI6,21)YP, IP
22 21 FORMAT!IX,F8.0,2X,•+•,50A1)

C------------GO TO NEXT LINE
23 6 1=1-1

C------------STOP AFTER 40 LINES (1=0)
24 IF(I ,GT.0)GOTO5

C-----WRITE X-AXIS
25 YP=0 .
26 WR ITE!6,22)YP
27 22 FORMAT(IX,F8.0,2X,•+•,5(•♦*♦♦♦♦♦**+•))

C------------COMPUTE X-AXIS ANNOTATION
28 D09I=l,6
29 9 X!I > = I— 1

C------------WRITE X-AXIS ANNOTATION
30 WR ITE(6,12)(X! I), 1 = 1,6)
31 12 FORMAT!2X,6F10.1)
32 STOP
33 END

(a) Flowchart

(b) Program

1,2 52o7
4. 6 8, 1
1,8 40.2
0,2 75.6
3, 2 23,5
2.5 31.6

(c) Input data

Figure 7-3. Plotting on the output printer

164

7-6. Character Data 165

100. +

*
*

*
*

75< ♦ ■
♦
♦
*

*
♦
■
♦
* *

50. +
*
♦
♦
♦ *
♦
♦
♦ ♦
■

25. ♦
* ♦
♦ ■
♦
♦

■ ♦
♦
*

0 < +*****#« + *4.«# $##****■♦•#***#**** + **♦**♦#*♦♦♦♦♦*♦*♦*$ +
0.0 1.0 2.0 3.0 4.0 5.0

(d) Output

Figure 7-3. (Continued)

We begin by writing the keyword, repeated as necessary, over the clear, as illus
trated in Figure 7-4. The basic approach is to convert each character in the keyword and
the clear according to the index table of Figure 7-4b. The corresponding indices are
added; the result is then increased by ten, and then twenty-seven is subtracted whenever
necessary in order to obtain a result between zero and twenty-six. Looking up the
corresponding character in the index table gives the coded message.

The flowchart and program for the enciphering process are given in Figure 7-5. The
keyword and message are read into arrays KEY and MSG, storing one character per
storage location. The next step is to convert each character of the keyword to its index,
which is stored in array NKEY. To do this for a given character, it is compared to each
element of array SYM (defined in the DATA statement) until an equality is located. The
appropriate index is one less than the index of the element in SYM.

166 Input-Output Operations

KEYWOR D
CLEAR
KFYWDR D
CL^AR IN
SUM
ADD 10
SU3TRA CT
C0DcD ME

(a) Encipht

C
H

INDEX 3
nr X a

1 1
2 1

27 21
SSAGr U

?ring a messc

0
tr

1 r.

20
30

3
C

ige

M
□

1 3
0

1 3
23
23

W

P
H

16
8

24
34

7
G

U T
A D

21 20
1 4

22 24
^2 34 1

5 7 1
E G

iu □
in o

ir- in c

p
A

1 8
1

lc
29

2
0

c
□
3
0
3

1 3
1 3

M

0.
3

1 5
?

17
27

0
□

M
A

1 3
1

1 4
24
24

X

P
D

16
4

20
3 0

3
C

U
□

2 1
0

2 1
31

4

D

T
D

20
4

24
34

7
G

E
A
5
1
6

1 6
1 6

P

R
Y

1 8
25
43
53
26

Z

Character Index Character Index Character 1 ndex

□
A
B
C
D
E
F
G
H

0
1
2
3
4
5
6
7
e

I
J
K
L
M
N
□
P
Q

9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7

R
S
T

U
V
w
X
Y

z

1 8
1 9
20
21
22
23
24
25
26

(b) Index table

Figure 7-4. The enciphering process

The next section then processes the characters in the message one at a time,
converting them to the appropriate character in the cryptogram. Variable J serves as the
pointer to the appropriate character in the keyword. It is incremented to eight, and then
reset to one. The index of the character in the message is determined by the approach
outlined above. The value of the appropriate element in NKEY is added, ten is added to
the result, and units of twenty-seven are removed until the result is between zero and
twenty-six. The easiest approach to accomplish the last step is to compute the remainder
obtained by dividing the sum of the indices by twenty-seven. The character corresponding
to this remainder is readily available from array SYM. The final step is to print the
cryptogram.

Fortran is somewhat inefficient for problems like this in that only one character is
stored in each storage location whereas four or more can actually be stored. This can be
accomplished by packing and unpacking, but it is usually not worth the effort. Even so,
Fortran can be used to introduce students to the processing of nonnumeric data, and
several exercises on this topic are available at the end of this chapter.

7-7. Execution-Time FORMATS

Consider the case in which a general program has been prepared for use in several
applications. Furthermore, assume that there is considerable input according to the read
statement

7-8. Direct Access Input-Output 167

READ (5,8) N,(A(J),B(J),J = 1,N)

Using only previously discussed features of Fortran, each user must prepare his data to be
consistent with FORMAT statement number 8.

To surmount this disadvantage, the object-time FORMAT can be employed. In this
case, the READ statement is modified to

READ (5,X) N,(A(J),B(J),J = 1,N)

where X is a one-dimensional array containing the FORMAT specifications. Specifically,
consider the case in which the data are to be entered according to

FORMAT (I5/(F12.2,El 7.3))

The pertinent parts of the program are

DIMENSION X(10), A(200), B(200)
READ (5,6) (X(J),J= 1,10)

6 FORMAT (10A4)
READ (5,X) N, (A(J), B(J), J = 1,N)

The data card containing the format would contain the following information anywhere
in the first forty (dictated by 10A4) columns:

(I5/(F12.2,E17.3))

Note that the word FORMAT and the statement number are not punched.
The array X in the above example is dimensioned as ten for illustrative purposes

only. It may be as large (or small) as necessary, and extremely long FORMATS may be
read from more than one card as necessary. Of course, the field specification A4 varies
from machine to machine as discussed in the previous section.

7-8. Direct Access Input-Output

Programs for problems requiring the storage of significant amounts of data on peripheral
storage devices tend to require input-output capabilities beyond that normally required
for most programs. All previous input-output statements involve the reading or writing of
records in a sequential fashion. That is, there is no means by which an individual record
can be retrieved directly. The direct access I/O statements can only be used with direct
access storage devices such as a magnetic disc, but these statements allow individual
records to be stored and retrieved directly from such devices.

The direct access statements permit the programmer to define files on the periph
eral devices, and then under program control to locate a record in these files, to read the
contents of this record, or to write new information in this record. The four statements
are

DEFINE FILE j(m,r,f,v)
FIND (i’u)
READ (i’u.n) list
WRITE (i’u,ri) list

(a) Flowchart

Figure 7-5. Flowchart and program for the enciphering problem

168

7-8. Direct Access Input-Output ir.R

GENTRY
COMPUTER
HE HAD A BAD DAY

1 INTEGER KEY(8) < MSG! 16)»SYM!27),NKEY(8) .CRYP I 16)
2 DATA SYM/' ’ • * A • , • 8 ’ » • C ’ . • D ’ . • E • . • F • , • G • » • H ’ , • I • , • J • , • K • ,

i •L’.’m’.’N’.’O’.’P’.’q’.’r’.’S’.’T’.’u’.’v’.’w’.’x’.’y’.’Z’/
3 READ(,5, 1 1KEY.MSG
4 i FCRMAT(8A1/16A1)
5 DO2J=1.8
6 D03K =1,27
7 IF(KEY!J) ,EQ,SYM!K))GO TO2
8 3 CONTINUE
9 WR ITE!6,4)

10 4 FORMAT!’ INVALID CHARACTER IS KEYWORD’)
1 1 STCP
1 2 2 NKFYIJ)=K- 1
1 3 J-0
1 4 DQ5L=1 , 16
1 5 J= J+l
1 6 IF I J,EQ.9) J= 1
1 7 D06K= 1,2 7
18 IF(MSG!L > > EQ,SYM!K)) GOTO7
1 9 6 CONTINUE
20 X R IT F (6 , M)
21 f> FORMAT!’ INVALir CHARACTER IN MESSAGE’)
22 7 M=K+NKLY!J)+9
23 M=M-27*(M/27)
24 5 CRYPIL) = SYM!M + 1)
25 W R IT E ! 6,9) CP YP
26 9 FORMAT! •0CRYP TOCRAN IS ’ , 16A1)
27 STCP
28 END

(b) Program

(c) Input data
CRYPTOGRAM IS UCWGEGOBM XCDGPZ

(d) Output

Figure 7-5. (Continued)

Typical examples of each are

DEFINE FILE 2(15,20,E,JFL)
FIND (2’JFL)
READ (2’JFL,7)A
WRITE (2’JFL,8) B

Each of these will be discussed in detail.
The DEFINE FILE is a specification statement used to establish the file on the

peripheral device. The various items in the above statement are defined as follows:

j is an unsigned integer number that designates a particular file.
m is an unsigned integer number that specifies the number of records in a

particular file.
v is a nonsubscripted integer variable (called an associated variable) that after

execution of a READ or WRITE statement contains the designation of the
next record in the file.

170 Input-Output Operations

f must be one of the following letters:
E specifies that a FORMAT statement will be used in conjunction with

the READ or WRITE statements. Information is thus stored in the
form of characters.

U specifies that a FORMAT statement will not be used. Information is
thus stored in binary representation.

L specifies that the READ or WRITE statements may be used with or
without a FORMAT statement. Information is thus stored in either
binary or character representation.

r is an unsigned integer number that specifies the size of each record in the file.
Depending upon/(E,U, or L), r is one of the following:

f r
E characters
U words
L bytes

The byte probably deserves some explanation. On machines like the IBM 360, the
fundamental storage unit is the byte, which contains eight bits. Thus, one word contains
four bytes. Furthermore, one character may be stored in one byte. Thus, if/equals L and
r is 400, then 400 characters or 100 words may be stored in one record on the file.

The WRITE and READ statements are quite similar to the more common state
ments of this type discussed earlier. The only difference is that the logical unit number is
replaced by the file and record designation, i’u. The possibilities are

WRITE (i’u, n) list
READ (i’u,n, ERR = d) list

The individual items in these statements are defined as follows:

z is an unsigned integer number or variable that designates the file to be used.
Of course, the file must be specified in a DEFINE FILE statement.

u is an integer variable or expression that designates the particular record in the
file that is to be' read or written. After execution of the READ or WRITE
statement, the value of the associated variable (v in the DEFINE FILE
statement) contains the designation of the next subsequent record in the file.

n is a FORMAT statement number, if required.
list is the same as in standard READ and WRITE statements, but it must not

contain the associated variable.

The i’u appearing in the FIND statement is defined in the same manner as for the READ
or WRITE statements.

Now for a few examples. Suppose two files are defined as follows:

DEFINE FILE 8(50,100,EJFL8), 33(10,20,U,IFL33)

Thus file 8 contains fifty records of 100 characters each; file 33 contains ten records of
twenty words each. A FORMAT statement must be used to read or write on file 8, but
must not be used for file 33.

Suppose variables A and B are to be written into the fifth record on each file. The
statements are

7-9. NAMELIST 171

WRITE (8’5,20)A,B
20 FORMAT (2F 10.4)

WRITE (33’5)A,B

After execution of these statements, both IFL8 and IFL33 equal 6. Similarly, these
READ statements may be used to retrieve this information

K = 8
IFL8 = 5
READ (K’IFL8,20)A,B
J = 3
READ (33’J + 2)A,B

If A and B are to be written on successive records in file 8, a slash in the FORMAT
statement or other equivalent measures can be used. For example, the statements

WRITE (8’10,4)A,B
4 FORMAT (Fl0.4/E20.7)

cause A to be stored in record ten and B in record eleven. After execution of this
statement, IFL8 equals twelve.

The FIND statement is used to keep the computer’s processing unit from being idle
during the finite time required for the peripheral device to locate the record. For
example, the statements

FIND (8’7)

READ (8’7,20)A,B

allow the record to be located while the computer is also performing the calculations for
the statements between the FIND and the READ. However, the FIND in consecutive
statements such as

FIND (8’4)
READ (8’4,20)A,B

serves no useful purpose and should be omitted. After execution of a FIND statement,
the associated variable contains the location of the record designated in the FIND.

7-9. NAMELIST

Many recent versions of Fortran IV permit input-output using the NAMELIST feature. A
NAMELIST statement such as

NAMELIST /XYZ1/I,J,P,X(2,3)

designates which variables are to be read or printed by input-output statements of the
type

READ (5,XYZ1)
WRITE (6.XYZ1)

172 Input-Output Operations

The NAMELIST statement has the general form

NAMELIST /x/a,b, ■■■ , c/z^e, ■■■ ,f

where x and z are NAMELIST names and a,b, • • •, /are variable or array names. Note the
use of slashes to enclose the NAMELIST names, and commas to separate the variable or
array names.

Subsequent to the appearance of the NAMELIST statement, input-output state
ments of the form

READ (n,x)
WRITE (n,x)

may be used. The n denotes the logical unit to be used, and x is the appropriate
NAMELIST name.

On input, the data must be in a special form in order to be read using the
NAMELIST feature. For example, consider the statements

DIMENSION 1(5)
NAMELIST /ME/A,B,I
READ (5,ME)

An appropriate input card could be (b symbolizes a blank column)

I b&MEbl = 7,3 ■ 0,14,A = 1.76,B = -2.01,&END

The rules are

1 The first column must be blank.
2. The second column must contain the character &.
3. This character is immediately followed by the NAMELIST name, with no

embedded blanks.
4. The NAMELIST name is followed by a blank.
5. The items in the list must be separated by commas.
6. The two types of permissible items are

(a) Variable name = constant, where the variable name may be a subscripted
array name.

(b) Array name = set of constants, where the array name is not subscripted.
The constants are separated by commas, and successive occurrences of the
same constant are entered in the form k * constant as for the DATA
statement. The number of constants must be less than or equal to the
number of elements in the array.

7. The order is insignificant, but all variable and array names must have appeared
in the NAMELIST list.

8. The list of items is terminated with &END, which may or may not be separated
from the last item by a comma (Note: WATFIV requires either a space or a comma).
Successive cards are processed until &END is found, thus allowing several cards
to be used for entering the data.

On execution of the READ statement, successive entries in the input data are examined
until the entry with the appropriate NAMELIST name is located.

On output, the data written using the NAMELIST list is in a form that can be read
using the NAMELIST list. The fields for all entries are appropriately selected such that all
significant digits are retained. For example, using the statement

Exercises 173

WRITE (6, ME)

with the NAMELIST given above gives the following output:

1st line &ME
2nd line A = 1.76000000,B =-2.01000000,1 = 7,0,0,0,14
3rd line &END

The constants in the list may be of any type, including literal (Note: WATFIV prints real
constants in the exponential format, and places &END at the end of the list of constants
instead of on a separate line.).

7-10. In Summary

Since the ability to communicate with the computer is an important part of program
ming, this chapter should be given due attention. Not all format features are treated in
this chapter, but the ones treated are common to essentially all Fortrans. The following
exercises should elucidate the use of the concepts presented in this chapter.

EXERCISES^

The following exercises emphasize the input-output of information. An effort has been
made to keep the numerical calculations to a minimum, or to use programs presented
earlier. The figures associated with the exercises are intended to give the general form of
the output, and it is not intended that the student count the exact number of blank
spaces, indented spaces, etc. Pay careful attention to carriage control.

7-1. Prepare a program to evaluate the factorials of the numbers 1 through 12.
The output should be in columnar fashion, the columns labeled NUMBER and FAC
TORIAL.

7-2. The binomial coefficients (7) are given by the following expression:

n\
(7) -T7----- ao 7 = 0, 1, • • ■, nj\ («-/)!

Prepare a program to read b value for n (use n — 8 for this case), compute the binomial

THE BINOMIAL COEFFICIENTS FOR N =

N J COEFFICIENT
8 0 1
■ I 8
8 2 28
8 3 56
8 4 70
B 5 56
■ 6 28
I 7 8
8 8 1

Exercise 7-2

8

tSolutions to Exercises marked with a dagger f are given in Appendix E.

174 Input-Output Operations

coefficients, and print the results as in the illustration. Assume n is always greater than 1.
The cautious programmer will note that the first term is 1, and each succeeding term is
simply (n - j + 1)//, j = 1,2,. . . , n, times the preceding term. Programming in this man
ner avoids overflows which may occur if the factorials are evaluated directly. (This is not
the case for n = 8, and such programming may be used if desired.)

f7-3. Consider the following experiment:

(a) Fill a vessel of known size and weight with a porous medium, sand, for
example, and weigh.

(b) Fill all voids with water, and weigh again.

The difference between the weights gives the weight of water, which can be divided by its
density (62.4 lb/ft3) to give the volume of water or void volume. The void fraction is the
void volume divided by the total volume. The true density is the dry weight minus the
weight of the container, all divided by the total volume minus the void volume.

The input to the program is the two weights (in pounds). The container is
cylindrical, 0.333 ft in diameter and 0.75 ft in height, weighing 1.04 lb. Enter these and
the density of water via a DATA statement. The output should appear as shown.

DIMENSIONS OF CONTAINER -
DIAMETER 0.3330 FT

HEIGHT 0.7500 FT
WEIGHT 1.0400 LB

WEIGHT WITHOUT WATER 7.1200

WEIGHT WITH WATER 8.3000

VOID FRACTION 0.2895

DENSITY OF MATERIAL 131.0093 LB/CU FT

Exercise 7-3

7-4. In elementary physics courses, the following experiment is often run in the
laboratory:

(a) An object is weighed in the atmosphere
(b) The same object is weighed while suspended under water.

The objective is to calculate the specific gravity or density of the material in the object.
Of course, this only works for objects whose specific gravity is greater than one.

The calculations are: first, subtract the weight in water from the weight in air to
obtain weight of displaced water, then divide by the density of water (1.0 gm/cc) to
obtain the volume of the object. The normal weight of the object divided by its volume is
its density (gm/cc) or specific gravity.

Prepare a program to read the respective weights, perform the calculations, and
print the results in a fashion similar to that shown.

DENSITY DETERMINATION

WEIGHT IN AIR 147.2000

WEIGHT SUBMERGED 134.700,0

DENSITY 11.7760 GMS/CC

Exercise 7-4

Exercises 175

f7-5. Prepare a program to calculate and print the function fit) = 1 - e”f from
t = 0 through t = 4 for increments of 0.2. The output should be t and fit) in columnar
fashion, labeled TIME and RESPONSE, respectively.

7-6. Evaluate the following expressions for r = 0.5 and values of T from 0.5 to
1.0 in increments of 0.02:

(1 4- e~T/T e~T)(r- 1)

Te-T(e-T^T - 1) + e~T^T (1 - e-T)

_________ (1 + e~r/T + e~T + e~T/T e~T) (r - 1)__________
t(1 - e~T/T) + (e~T - 1) - re~T (e~T- 1) - e-T/T (1 - e-T)

As input, read t, the initial value of T, the final value of T, and the increment. The output
should appear as shown.

EVALUATION OF CRITICAL GAINS FOR TAO = 9.5000

T K(1) K{ 2)

0.500 0.13026E 02 0.36075E 02
0.520 0.12380E 02 0.32372E 02
0.540 0.11807E 02 0.29187E 02
0.560 0.11296E 02 0. 26432E 02
0.580 0.10840E 02 0.24036E 02
0.600 0.10430E 02 0.21942E 02
0.620 0.10063E 02 0.20102E 02
0.640 0.97315E 01 0.18479E 02
0.660 0.94328E 01 0.17042E 02
0.680 0.91631E 01 0.15764E 02
0.700 0.89192E 01 0.14623E 02
0.720 0.86984E 01 0.13602E 02
0.740 0.84985E 01 0.12684E 02
0.760 0.83174E 01 0.11857E 02
0.780 0.81535E 01 0.11109E 02
0.800 0.80050E 01 0.10432E 02
0.820 0.78708E 01 0.98159E 01
0.840 0.77496E 01 0.92548E 01
0.860 0.76402E 01 0.87424E 01
0.880 0.75419E 01 0.82734E 01
0.900 0.74537E 01 0.78431E 01
0.920 0.73750E 01 0.74476E 01
0.940 0.73049E 01 0 . 70 8 3 3E 01
0.960 0.72430E 01 0. 67472E 01
0.980 0.7 1888E 01 0.64364E 01
1.000 0.71416E 01 0.61485E 01

Exercise 7-6

7-7. The roots of the equation ax'1 + bx + c = 0 are given by the quadratic
formula

-b ± Vb2 4ac
ri,2- 2a

Note that the roots may be real or complex.
Prepare a program that reads values of a, b, and c, determines if the roots are real or

176 Input-Output Operations

complex, and calculates their values. The program should accept as many data cards as
provided, and the output for the two possible cases should be arranged as shown.

COEFFICIENTS
A 2.00000
8 -7.00000
C 9.00000

ROOTS ARE COMPLEX
REAL PART 1.7500
IMAGINARY PART 1.1990

COEFFICIENTS
A 3.00000
8 1.00000
C 1.00000

ROOTS ARE COMPLEX
REAL PART -0.1667
IMAGINARY PART 0.5528

COEFFICIENTS
A 2.00000
B -3.00000
C -7.00000

ROOTS ARE REAL
ROOT 1 2.76556
ROOT 2 -1.26556

COEFFICIENTS
A 3.00000
I' 1.50000
C 0.40000

ROOTS ARE COMPLEX
REAL PART -0.2500
IMAGINARY PART 0.2661

Exercise 7-7

Determine the roots of the following equations:

2X2 - IX + 9 = 0
3X2 + ^+1=0
2X2 - 3X - 7 = 0
3X2 + 1,5X + 0.4 = 0

7-8. The equation of a line in the x-y plane is

ax + by + c = 0

Exercises 177

Given a point (x0, j>o), find the equations of lines through this new point that are,
respectively, parallel [a(x - x0) 4- b(y - y0) — 0] and perpendicular [rz(x - x0) ~ b(y - y0)
= 0] to the original line.

The input to the program should be a, b, and c on the first card followed by cards
containing values ofx0 andy0' The output should be arranged as shown.

EQUATION OF ORIGINAL IINE
(3.0')')Jt)0)*X + ! 2,')')0>)E i)<)) * Y + (-a.0)00= 00) = 0.

POINT 2.0000E DO,-l.OO()OE 00

PARALLEL LINE
(3.D03TF J9)«X + (2.0000E 00)*Y + (-^.OOOUE 00) - 0.

PERPENDICULAR LINE
(3.0000E 00)*X + t-2.));))E)))»Y 4- (-S.)TOOE 99) - 0.

POINT 4.0099E 00, 0.0000'—39

PARALLEL LINF
(3.0000E 00)»X + (2.9030E 0D)*Y + (-1.2000c 01) = 0.

PERPENDICULAR LINF
I 3.0999E 90)*X + (-2.9900c 99)*Y + (-1.2000c 01) = 0.

POINT 2.9091E 00, 3.0000E 00

PARALLEL LINE
I 3.9909E 00)«x 4- (2.0010E OO)*Y + (-l.’OOOE 01) = 0.

PERPENDICULAR LINE
(3.0009E 9D)»X 4- (-2.3000E 00)*Y 4- (O.OOOOE-39) = 0.

Exercise 7-8

Run the program for the following input:

3x 4- 2y - 8 — 0
(2,- 1)
(4,0)
(2,3)

7-9. The derivative of a function fix) at x = a can be approximated by the fol
lowing expression:

f\a) ~^a + h^~

The approximation is exact in the limit as h approaches zero. For/(x) = x2 and a- 1,
prepare a program to compute the approximate values of the derivative for the following
values of h'. 1.0, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.001. Compare to the true derivative.
The output should appear as shown.

178 Input-Output Operations

APPROXIMATION OF DERIVATIVE OF F(X) = X**2 AT X = 1 •

TRUE DERIVATIVE = 2«X = 2.

H APPROX. DER
1.0000 3.00000
0.5000 2.50000
0.2000 2.20000
0.1000 2.10000
0.0500 2.05000
0.0200 2.02000
0.0100 2.01000
0.0010 2.00097

Exercise 7-9

7-10. A function f(x,y) of two variables may be linearized about a point (x0, To)
as follows:

„ . „ , . df(x,y)fiM = f(x0, y0) +——
(x0,y0)

(x - x0) + Zf(x,y) (y- To)
(x0,y0)

For the function f(x,y) = xy, linearize about the point (5,4). Evaluate the function and
its linear approximation at (6,5), compute the percentage error of the approximation, and
write the results in a manner similar to that shown. Use only one WRITE statement.

LINEARIZATION OF F(X,Y) = X*Y AT (5,4)

EXACT AND APPROXIMATE RESULTS COMPARED AT (6,5)

RESULT FROM LINEARIZATION - 29.000
PER CENT ERROR - -3.333

EXACT VALUE - 30.000

Exercise 7-10

f7-11. The function (x + a)n is given by the following expression (n an integer):

The quantities I .) are the binomial coefficients given by (see Exercise 7-2)

nl
/! (n - /)!

Prepare a program to calculate the n + 1 coefficients in the expansion of (x + a)n. The
program should read n and a. The output should appear as in the accompanying figure.
Let n = 10 and a = 1.2.

Exercises 179

COEFFICIENTS OF (X+A)»*N
N = 10
A = 1.2000

POWER OF X COEFFICIENT

10 1.0000
9 12.0000
8 64.8000
7 207.3600
6 435.4560
5 627.0566
4 627.0566
3 629.9817
2 193.4918
1 51.5978
0 6.1917

Exercise 7-11

7-12. Prepare a program to read a date in the form XX/XX/XX and write in a
fashion such as AUGUST 12, 1962. Use only one WRITE and FORMAT statement for
this. Store names of months in an array with a DATA statement. Select and process one
date from each month If the month is greater than 12 or the day is greater than 31, print
the words ERRONEOUS DATE XX/bXX/bXX.

If the DATA statement has not been studied, this can be accomplished either by
reading the names of the months or by twelve WRITE statements and a computed GO TO
statement.

7-13. Prepare a program to read the table presented in Exercise 6-23 in a similar
fashion and print the table as in the figure. Use implied DO’s for the input, and use only
one WRITE statement.

TEMPERATURE, DEG F

50 86 1 22 176 212

2

• ■

• 1.023

«

1.018

«

1.010

a

0.993

a

0.980

6 ♦ 1.068 1.061 1.052 1.035 1.022
PER

10 ♦ 1.113 1.104 1.094 1.077 1.064
CENT

14 ' 1.158 1.148 1.137 1.120 1.107
NA0H

18 • 1.202 1.192 1.181 1.162 1.149

22 ■ 1.247 1.235 1.224 1.205 1.191

(SOURCE
PAGE

- INT.
791

CRIT . TABLES, VOL . Ill,

Exercise 7-13

180 Input-Output Operations

|7-14. Same as the previous problem, except that the table is entered with a DATA
statement.

7-15. In Figure 5-4 a program for fitting a set of data points to a straight line was
presented. Modify this program such that its output appears as in the accompanying
figure.

LEAST SGUARES FIT

Y = { 1.95724E 00)*X + (-2.23498E-01)

DBS X Y PREDICTED

1 1.716 3.0 21 3.135
2 5.911 10.819 11.. 346

3 3.726 7.502 7.06 9
4 9.123 17.801 17.632

5 4.r22 7.688 7.649

Exercise 7-15

Run the program for the following data:

X y
1.716
5.911
3.726
9.123
4.022

3.021
10.819
7.502

17.801
7.688

The input should be the same as in Figure 5-4, i.e., the number of observations is not
fixed. Use only one WRITE statement.

7-16. Let A be an n X n matrix, n less than eight. Prepare a program to read n,
followed by n2 cards (not in order) containing the row number of the element in the first
five columns, the column number in the second five, and the value of the element in the
next ten columns. Use only one read statement. The output should appear as shown.

Exercise 7-16

■»• MATRIX A *****

ROW
COLUMN 1 2 3

1 -4.900 2.800 2.700
2 1.700 3.500 1.200
3 6.900 -7.800 7.000

17-17. Letffx) be defined by the following equation:

/(x) = x2 sin (toc)

Prepare a program to perform the following functions:

(a) Compute f(x) for values of x of 0., .1, .2,... , 1.0.
(b) Locate the maximum of these values.
(c) Divide each of the above values by the maximum value to obtain normalized

values.

Exercises 181

(d) Print as shown in the figure.

FIX) ■ X«*2 • SIN I 3.1416*X)

X FIX) NOR FIX)
0.0000 0.0000 0.0000
0.1000 0.0031 0.0078
0.2000 0.0235 0.0593
0.3000 0.0728 0.1837
0.4000 0.1522 0.3839
0.5000 0.2500 0.6306
0.6000 0.3424 0.8637
0.7000 0.3964 1.0000
0.8000 0.3762 0.9489
0.9000 0.2503 0.6314
1.0000 -0.0000 -0.0000

Exercise 7-17

7-18. One frequent use of the computer is to generate tables of unusual functions.
Suppose that someone needed a table of values of the function

In (x)
(> + sinx |)2

over the range 1 to 3 in steps of 0.02. Prepare a computer program to arrange the output
as shown. This is similar to the common log10 tables.

X 0 2 4 6 8
««•«««««« «««««««•««

1.0 ■ 0.00000 0.00584 0.01157 0.01718 0.02270
1.1 • 0.02665 0.03169 0.03663 0.04150 0.04628
1.2 ■ 0.04884 0.05327 0.05763 0.06191 0.06613
1.3 « 0.06805 0.07201 0.07591 0.07975 0.08354
1.4 ■ 0.08536 0.08895 0.09250 0.09600 0.09945

1.5 ■ 0.10162 0. 10494 0.10822 0.11145 0.11464
1.6 0.11755 0.12066 0.12373 0.12676 0.12975
1.7 • 0.13377 0.13672 0.13963 0.14251 0.14536
1.8 0.15087 0.15370 0.15651 0. 15928 0.16203
1.9 0.16944 3.17220 0.17494 0.17765 0.18033

2.0 • 0.19C14 0.19287 0.19557 0.19825 0.20090
2.1 • 0.21372 0.21645 0.21915 0.22183 0.22449
2.2 e 0.24107 0.24384 0.24658 0.24930 0.25199
2.3 • 0.27331 0.27615 0.27897 0.28176 0.28453
2.4 0.31187 0.31482 0.3’776 0.32066 0.32355

2.5 • 0.35861 0.36173 0.36482 0. 789 0.37994
2.6 • 0.41603 0.41936 0.42268 0.42596 0.42922
2.7 • 0.48751 0.49113 0.49472 0.49829 0.50184
2.8 « 0.57773 0.58172 0.58568 0.58962 9.59353
2.9 « 0.69329 0.69776 0.70221 0.70662 0.71101

Exercise 7-18

7-19. Prepare a program to read the four coefficients of the polynomial

1.217x3 + 1.798x2 - 4.102x + 9.17

1«2 Input-Output Operations

and print in the following fashion (b symbolizes a blank space):

(bl.217)bX ** 3b + b(b 1.798)bX ** 2b + b(-4.102)bXb + b(b9.171)

Use implied DO’s in both the READ and WRITE statements. The input should be one
coefficient per card, and should not have a decimal point punched.

f 7-20. If the order of the polynomial is unknown beforehand, the arrangement in
the above exercise is not convenient. Instead, the output could be more conveniently
arranged as follows:

(bl.217)bX ** 3b+
(bl.798)bX ** 2b+
(-4.102)bXbbbb+
(b9.171)

Prepare a program to read the degree (maximum will be fifty) of the polynomial followed
by the coefficients, one per card. Use only one READ statement.

The program should be able to read the data for one polynomial, print the results,
and return to the READ statement for another polynomial. Each should be on a separate
page.

Use this program to print the following polynomials:

1.712x + 1.000
5.917x4 + 1,722x3 - 1 .OOlx2 + 0.022x + 1.00
l.OOQx2 + 1.222x - 1.710

7-21. The following timetable is given for train schedules:

Distance City Time, P.M.
0 Chicago 4:00

93 Niles 6:42
141 Kalamazoo 7:28
164 Battle Creek 7:53
210 Jackson 8:39
248 Ann Arbor 9:18
284 Detroit 10:00

Prepare a program to read the above information, calculate the remaining entries in the
table shown in the figure, and print in a similar fashion.

TRAIN SCHEDULE

DISTANCE CITY TIME TIME
LAST

FROM
STOP

ELAPSED
TIME

0 CHICAGO 4- 0 P. M. 0 MIN 0 MIN

93 NILES 6- 42 162 162

141 KALAMAZOO 7- 28 46 208

164 battle CREEK 7- 53 25 233

210 JACKSON 8- 39 46 279

248 ANN ARBOR 9- 18 39 318

284 DETROIT 10- 0 42 360

Exercise 7-21

Exercises 183

|7-22. A function /(x) with continuous derivatives can be represented by a Taylor
series expansion about some point x0 as follows:

Ax) =>0) + (x - Xo)/' (x0) + fn (Xo)

(x- x0)” . .
+ ■■■+ /,||(X„) +

For fix') = sin 2x and x0 = 1., evaluate this series for x = 1.1, truncating after the first
derivative, second derivative, etc., up to and including the tenth derivative. Print the
output as in Exercise 7-9, comparing the results to the true value. For/(x) = sin 2x, the
derivatives are given by

X1"1 (x) = 2n (- 1) cos 2x, n odd
2” (- 1)M/2 sin 2x, n even

7-23. Let /(x) be evaluated at equally spaced intervals of x. For convenience,
denote fix;) as The first forward difference A/j- can be defined as follows:

FINITE DIFFERENCES

X FIX) DEL DEL*«2 DEL»*3
1.30 4.0030

2.9696
1.20 6.9696

4.3200
1.3504

0.3456
1.40 11.2896

6.0160
1.6960

0.3840
1.60 17.3056

6.0960
2.0800

0.4224
1.80 25.4016

10.5984
2.5024

0.4608
2.00 36.0000

13.5616
2.9632

0.4992
2.20 49.5616

17.0240
3.4624

0.5376
2.40 66.5856

21.j 2 40
4.0000

0.5760
2.60 87.6096

25.6000
4.5760

0.6144
2.80 113.2096

30.7904
5.1904

0.6528
3.00 144.0000

36.6336
5.8432

0.6912
3.20 180.6336

43.1680
6.5344

0.7296
3.40 223.8016

50.4320
7.2640

0.7680
3.60 274.2336

58.4640
8.0320

0.8064
3.80 332.6975

67. 3024
8.8384

0.8448
4.00 399.9999

76.9856
9.6832

0.8832
4.20 476.9855

8 7. 5520
10.5664

0.9216
4.40 564.5375

99.0400
11.4880

0.9600
4.60 663.5775

11 1.4880
12.4480

4.80 775.0655

Exercise 7-23

184 Input-Output Operations

A/J = h

where h is the difference between successive values of x. The second difference A fj is
defined as

a2z
AZ-+1-AZ-

h

Higher-order differences can be computed similarly

Afc + = a*Z+1-
h

Let f(x) = (x3 + x2) (x + 1). Let h = 0.2 and evaluate this function for twenty
consecutive values of x, beginning with x = 1.0. Calculate the first, second, and third
differences and print as shown. Use a 20 X 5 array to store x, f, and the differences.

7-24. Prepare a program to perform the following:

(a) Read the number of students in a class.
(b) Read one quiz score for each student along with his name.
(c) Arrange the scores in descending order.
(d) Compute the average score.
(e) Read a header card and reproduce as first line of output.
(f) Write average grade, the number of students making above average, and the

number of students making below average.
(g) List the scores in descending order along with names. Write MEDIAN by me

dian grade.

An example is shown in the accompanying illustration. The maximum number of
students is fifty and allow twelve characters for each name.

COOKIE CUTTING LABORATORY

AVERAGE SCORE 78.2857

NUMBER ABOVE AVERAGE 4

NUMBER BELOW AVERAGE 3

SCORE NAME

99.00 ROBERTS
91.00 STEPHENS
87.00 KILROY
82.00 JONES MEDIAN
71.00 LEVEQUE
62.00 NO NAME
56.00 JAMES

Exercise 7-24

Note: Machines storing six alphameric characters per word will require two words
per name; machines storing five alphameric characters per word will require three words
per name (field specification 2A5, A2 or 3A4); and similarly for other machines.

17-25. Consider the following equations:

y = (x + I)12

z
x + 2

(a) Axes for oblique projection drawing

THREE-DIMENSIONAL PLOTTING

PHI = 35.00 DEGREES

EXTREMITIES OF AXES X P YP

X 4 .000 -0.000
Y -0 .'ooo 4.000
Z -3 .277 -2.294

X Y Z XP YP

0.00000 1.00000 0.01900 -0.00000 1.00000
0.10000 1.12117 0.00476 0.09610 1.11844
0.20000 1.24456 0.01818 0.18511 1.23414
0.30000 1.37004 0.03913 3.26795 1.34759
0.40000 1.49745 0.06667 0.34539 1.45922
0.50000 1.62671 0.10000 0.41808 1.56935
0.60000 1.75770 9.13846 0.48658 1.67828
0.70000 1.89033 0.18148 0.55133 1.78625
0.80000 2.02454 0.22857 0.61276 1.89345
0.90000 2.16025 0.27931 0.67120 2.00006
1.00000 2.29740 0.33333 0.72694 2.10622
1.10000 2.43592 3.39032 0.78026 2.21206
1.20000 2.57577 0.45000 0.83137 2.31768
1.30000 2.71690 0.51212 0.88048 2.42318
1.40CCC 2.85926 3.57647 0.92777 2.52863
1.50000 3.00281 0.64286 0.97339 2.63411
1.60000 3.14752 3.71111 1.01747 2.73967
1.70000 3.29334 3.78108 1.06016 2.84536
1.80000 3.44025 3.85 26 3 1.10154 2.95123
1.90000 3.58821 0.92564 1.14174 3.05732
2.00000 3.73719 1.00009 1.18082 3.16365
2.10000 3.88717 1.07561 1.21888 3.27027
2.20000 4.03813 1.15238 1.25600 3.37719
2.30000 4.19003 1.23023 1.29222 3.48444
2.40000 4.34235 1. 30909 1.32762 3.59203
2.50000 4.49657 1.38889 1.36225 3.69999
2.60000 4.65118 1.46957 1.39616 3.80832
2.70000 4•8066 4 1.55106 1.42940 3.91705
2.80000 4.96295 1.63333 1.46201 4.02617
2.90000 5.12009 1.71633 1.49402 4.13571
3.00000 5.27803 1.80C00 1.52548 4.24566

(b) Output

Exercise 7-25
185

186 Input-Output Operations

These equations are to be evaluated for values of x from 0.0 to 3.0 in increments of 0.1.
As the resulting function is to be plotted in an oblique projection, consider the three-
-coordinate set of axes x, y, and z shown in the drawing. Although the axes are really
perpendicular, the drawing must be made in two dimensions. Thus the z-axis is drawn at
some angle to the x-axis. Given xit y{, zt, the coordinates of point i, an exact
location is specified in respect to the x-,y-, and z-axes as illustrated. However, this cannot
be plotted very conveniently.

The plot would be much easier to make indirectly. That is, the coordinates (x,-, yt,
z) are transformed into (xz’,j/) for plotting on the two-dimensional coordinates
superimposed in the drawing. The equations for these transformations are

y'i = yi~ z,sin^

x'f = Xz - Z(- cos

Prepare a program to perform the following:

(a) Read the value of
(b) Print and the (x/, y-) coordinates of points (4,0,0) (0,4,0), and (0,0,4)

thus locating the extremities of the x-, y-, and z-axes.
(c) For the prescribed values of x, calculate y, z, x' and y'. The output should

appear as shown. Let p> = 35°.

7-26. In Exercise 6-27 a specific case of matrix multiplication was considered.
Now that further input-output techniques have been presented, this program can be
generalized. Consider the multiplication of an n X k matrix A by a k X m matrix B, n, k,
and m less than twenty-five. The program should be organized as follows:

(a) Read n, k, and m.
(b) Read a variable FORMAT to specify the input arrangement for matrix A.
(c) Read matrix A.
(d) Read another variable FORMAT for B, and read B.
(e) Compute the product.
(f) Read another variable FORMAT for output, and write results.

Run this program for the example in Exercise 6-27.

f7-27. Write a program that reads a sentence that contains a maximum of eighty
characters (including the period at the end) and counts the total number of characters
(excluding blanks and commas) in the sentence. The sentence should be punched on a
single card, and the characters should be read into an array as one character per element.
Only alphabetic characters, blanks, and commas will appear in the sentence. A comma is
always followed by a blank.

7-28. Same as Exercise 7-27, except count the number of occurrences of the letter
E in the sentence.

7-29. Same as Exercise 7-27, except count the number of occurrences of each
letter of the alphabet within the sentence. The output should appear as in the accom
panying figure.

7-30. Same as Exercise 7-27, except count the number of occurrences of words
containing three letters or less.

aspjaxj

SSSSS55SSSSSSSSSSS|SSSSS|SS|SSSSSSSS|5H5||'S|?S|555S55|S55|!s!!ss5555I!!I!!S!5!

ZZZZZZZZZZZZZZZZ||ZZZZZZZZZZ|ZZZZ|ZZZZZZZZZ|ZZtZZZ|ZZZZZZ|||zZZZZZZZZZZZ|ZZZZZZZ

11111 o«11 it i o 11 iiii 11111 tii lit i iiiiii 11 «ii tin H i iii 1111 uh ■ 111111111 ui 1111111
■II II

II I I III III II
III III

I II II
b SS3J03d 3M 3SDddl3S *3314311435 339MIS b

III

DMISS33D3d
I
JO

III I
iIb31SMI

__________ Sb Sg3b3 M31 JO 1413441 Xb44 b >40 J3H3md 33 33 Itl Hdb39b3bd 3H1 'HdbdObdbd.
3H1 SM0330J_______________ -AbM3b 3313b3bH3 >4Mb38 b '331'1913 9HIAHbdH033b 3H1 MI iI31b31Srmj,

3H1 *3SI333X3 SI Hl 30 J '11350 33 33 IM SU3DM U31bM3HdAH OH UMb *144103 3bi4I33J/
3M0 *5144344333 H33iIHriH 1HDI3 JO Ab33b 339MIS b QIN I flb33 31 H3I30HS Hdb3Db3b.

\ S334431M3S 3H1 HI S8MDM JO 333441344 39b33Ab 3H1 311334403 '144344333 3H1 01 3313b3bH3
'S33b3d 33441333 0M1 01 33MSHb 3H1 IM 133 UMb Hdb3Db3bd 3H1 HI/

I I

•saaBjd puqaap omj oj jbaasub aq))und puB qdBi§EiEd aq) in saoua)uas
aq) in spioM jo jaqiunu bSbibae aq) ajnduioj quamaja qoBa o) japsiEqa ano ‘sjuauiap
008 J° ^bjjb bjSuis b ojin psai aq pjnoqs qdBi§EiEd aq) ‘asioiaxa siq) joj 'pasn aq
[[im spjOM papuaqdXq on pus ‘juiod puqoap aq) SA\oqoj sXbmjb lapBisqa 5fUBiq V 3inS!J
SinXuBduioaoB aqj in papjjsnip sb spiBa uaj jo uinunxBin b no paqound aq qiM qdBi§EiBd
aqi 'qdBJ§BiBd b ssaooid bm asoddns ‘aouajuas ajSuis b Sinssaaoid jo pBaisiq 'ZZ'L

•saoEid puipap om) oj iomsub aqj }uuj 'aauaiuas aqj
ut spioM aq) jo qjSuaj bSeibab aqi ainduioo)daoxa ‘0£-£ aspiaxq sb blues ■[,£-£

rQ33dS 33HI0 = H3NI b I -Hl SI 56310^10 3V1I5IG JU 31 IS I L310VHVH0 INVlbOdrtl NV
93N31NSS 3VNI9I30

9SI3J9X3

2 2 N
• A 2 3

X C X
■ r
A 6 i

I n 2 H
z L 1 9
V S I J
Q H Z a

0 L a
V d S 3
f □ ! H
L N 9 V

siOK-amDaa c dVHD S33N3baO33U •dVH3

Z8L S9SI0J3X3

188 Input-Output Operations

7-33. Same as Exercise 7-32, except print the number of words in each sentence
and the average number of characters per word for each sentence.

t 7-34. Same as Exercise 7-32, except print the distribution of the number of
characters in each word as shown in the accompanying figure. Words containing over
twelve characters can be considered as containing twelve characters.

wcro lfngth d isrw it'ur iun

CHS./wCRD
1
2
3
4

OCCURRENC-:-.

1 6
1 5

o
5
6
7

fl
f

1 3
8 3
9

1C
1 1
12 CR MORE

7
2
1
1

Exercise 7-34

f7-35. Same as Exercise 7-32, except process the cards one at a time, That is, the
array should be defined as containing only eighty characters. A card is read into this area,
the computations performed, and then the next card is read into this same area.

7-36. Same as Exercise 7-33, but with the modification suggested in Exercise 7-35.

7-37. Same as Exercise 7-34, but with the modification suggested in Exercise 7-35.

7-38. Same as Exercise 7-35, except that the last word on the card may be
hyphenated (using the minus sign) and split onto two cards.

7-39. Same as Exercise 7-36, except that the last word on the card may be
hyphenated and split onto two cards.

7-40. Same as Exercise 7-37, except that the last word on the card may be
hyphenated and split onto two cards.

t7-41. Write a Fortran program to read a number in integer format from any
position on a card without using format-free input-output. The card should be read
under A format, and the characters stored in an array, one character per element. The
number may contain as many digits as desired, and may be preceded by a minus sign, by a
plus sign., or no sign at all. The number will not contain any embedded blanks. This
number is to be stored in a single integer variable. The program should print the final
answer to verify correctness.

7-42. Same as Exercise 7-41, except that a number in real format should be read
from any position on the card. The number may contain only the decimal digits, a sign
(optional), and a decimal point. The following examples should be acceptable: 127.23,
+ 12.72, -1200., +.02007, and .00030. The number should be stored in a real variable
and printed.

Exercises 189

7-43. Same as Exercise 7-41, except that the number should be read in exponen
tial format. The number may contain only the decimal digits, an optional sign for the
exponent, and a decimal point (in the fraction only). The number should be stored in a
real variable and printed.

7-44. A simple approach to preparing cryptograms is to simply interchange the
letters in the original message. The original message should contain less than eighty
characters, and should end with a period. This sentence should be punched on a card and
read into memory. Then a card should be read containing the two characters to be
exchanged in the first two columns. For example, suppose these two characters were E
and H. Each E in the original message should be replaced by an H, and each H should be
replaced by an E. The program should accept multiple cards with letters to exchange, and
a card with an asterisk indicating end-of-data. The output should appear as in the
accompanying figure.

ORIGINAL MESSAGE
AN IMPORTANT CHARACTERISTIC OF DIGITAL COMPUTERS IS THEIR INCREDIBLE SPEED,

CRYPTCGRAM AFTER EXCHANG I NG . CPARACTERS I AND X
AN XMPURTANT CH AR AC T ER X S T XC OF DXGXTAL COMPUTERS XS THEXR XNCRr'DXHLE SPEED,

CRYPTCGRAM AFTER EXCHANGING CHARACTERS A AND N
NA XMPORTNAT CHNRNCTtRXSTXC OF DXGXTNL COMPUTERS XS 1HEXR XACREDXBLE SPECO.,

CRYPTOGRAM AFTER EXCHANGING CHARACTERS G AND V
NA XMPORTNAT CHNRNCTERX STXC OF DXVXTNL COMPUTERS XS THE XR XACR^DXFiLE SPEED*

CRYPTOGRAM AFTER EXCHANGING CHARACTERS M AND K
NA XKPORTNAT CHNRNCTERXSTXC OF DXVXTNL COKPUTERS XS THtXR XACPcDXHLl SPE^D,

CRYPTCGRAM AFTER EXCHANGING CHARACTERS C AND U
NA XKPORTNAT UHNPNUTL«XSTxU OF DXVXTNL UOKPCT^RS XS TH^XR XAURrDXBLE SPEED*

CRYPTCGRAM AFTER EXCHANGING CHARACTERS D AND P
NA XKCORTNAT UHNRNUTtRX £T*U OF RXVXTNL UOKDCTERS XS TH.XR XAUREPXHLE SDEEP,

CRYPTCGRAM AFTER EXCHANGING CHARACTERS A AND G
NG XKDORTNGT UHNRNUT F?X STXU OF PXVXTNL UOKDCTERS XS THrXR XGUPEPXULE SDEEP,

Exercise 7-44

7-45. Write a program to decode the cryptogram produced by the program in
Figure 7-5 and obtain the original message.

8
Functions and Subroutines

In this chapter we will introduce those features of Fortran that are applicable only to
functions and subroutines or are generally used only with functions and subroutines. We
begin with a fairly general discussion of the concept of a subprogram and the use of
arguments. This is followed by a detailed description of the Fortran features of statement
function, function subprogram, and subroutine. The COMMON declaration is then
introduced, followed by the EQUIVALENCE declaration. The chapter concludes with a
discussion of less commonly used features, including adjustable dimensions, BLOCK
DATA, EXTERNAL, and multiple ENTRY and RETURN.

8-1. Concept of a Function, a Subprogram, and i Subroutine

In Chapter 2, we introduced several functions (for example the square root function,
SQRT) available in Fortran. In essence, these are pre-programmed or “canned” routines in
the computing system available to anyone who writes a Fortran program. This frees the
programmer from having to write his own routine, and functions such as SQRT are
written for widespread use, are completely debugged, programmed in an extremely
efficient manner, and always produce the correct answer.

The concept of a function is one of unambiguous designation. For any positive
value of X, SQRT(X) designates another specific value which can be computed by the
library routine. By a mechanism that we shall cover in more detail in a later section, the
numerical value of X, the argument, is communicated to this library routine, and the
value computed by this routine is communicated back, or returned, to the point in the
program where SQRT appeared.

The use of the SQRT routine is analogous to the use of the “number-processing
machine” illustrated in Figure 8-1. The number whose square root is to be taken is fed to
the machine, which in turn produces the desired square root. As long as the user is

191

192 Functions and Subroutines

Figure 8-1. Number-processing machine

confident that the machine produces the correct answer in an efficient manner, there is
little incentive short of plain curiosity to ascertain how the machine works.

In Fortran, a programmer may define his own functions in one of two ways. One is
the statement function feature which, as we shall see shortly, has its limitations in that
the entire function must be defined in a single statement. This statement is defined in,
and is a part of, the program in which it appears.

The second approach to defining a function is to prepare a function subprogram. In
Fortran, a subprogram is very similar to the programs, called main programs, that we have
been preparing except that they are executed only when called by another program.
Subprograms have their own structure, their own specification statements (DIMENSION,
INTEGER, REAL, etc.) and their own END statement. The compiler treats the subpro
gram as a separate entity, and the subprogram is compiled separately from the main
program and other subprograms.

Communication among the subprogram, the main program and other subprograms is
restricted to that which the programmer specifies in terms of arguments (in a later section
we shall see that COMMON can play a role). Suppose variable K is used in both the main
program and in a subprogram. The compiler will always reserve a storage location for K in
the main program. If K does not appear in the argument list of the subprogram, the
compiler will also reserve a storage location for K in the subprogram. Since these two
storage locations are not the same, there is absolutely no connection between variable K
in the main program and variable K in the subprogram.

Being compiled separately from the main program, a transfer statement in the
subprogram such as

GO TO 56

will always transfer control to statement 56 in the subprogram even though there may be
a statement 56 in the main program. Similarly, suppose the following specification
statement appears in the main program:

DIMENSION A(27)

This statement defines A as an array of twenty-seven elements in the main program but

8-2. Introduction to Fortran Function and Subprogram Features 193

not in the subprogram. In the subprogram, A may be used as a simple variable or may be
specified in any manner desired, for example,

INTEGER A(7,9)

Being compiled separately, all specification statements applicable to the subprogram
must appear therein.

Fortran permits two types of subprograms: a function subprogram and a subrou
tine. The distinction is basically that the subroutine is called by a special statement (the
CALL statement), whereas the function is called by its use within an expression. In
addition, the function returns a value, the functional value, that is used in the expression
in which the function call appears. For example, in the statement

Y = A + B * SQRT(G)

the functional value (\/G) is used in computing the value to be assigned to Y. Since
subroutines do not appear in expressions, there is no function value.

The programmer benefits from the use of functions and subroutines. Since function
subprograms and subroutines are separate programs, they can be written, tested, and
debugged separately from the remainder of the program. This enables the programmer to
prepare several components of the total program, debug them simultaneously, and
assemble them into the total program. Several programmers may be assigned portions of
large programs to prepare and debug simultaneously.

Another use of functions or subroutines occurs when the same computation is
required at different points in the same program. In this case a single routine can be made
a function or subroutine, rather than coded at each point in the program where it is
needed.

8-2. Introduction to Fortran Function and Subprogram Features

In this section, an example illustrates the features of statement function, function
subprogram, and subroutine. In later sections, we shall examine each of these in detail
and present more examples of their use.

The example used in this section consists of the conversion of civilian time to
military time. We shall use the following variables:

JHOUR ' Hour in civilian time
JMIN Minutes in civilian time
JAMPM Morning-afternoon designator for civilian

time (0 - AM; 1 = PM)
MTIME Military time

Military time is expressed on a twenty-four hour basis. For example, 8:45 AM in civilian
time is 0845 military time; 4:27 PM is 1627. In preparing our programs, we shall make
the convenient assumption that JHOUR will never equal 12.

The Fortran program in Figure 8-2 illustrates the use of a statement function to
convert from civilian time to military time. The first statement in this program defines
the statement function JTME. This function is then called from the fourth line. When the
function is executed, the value of variable JHOUR is used for I in the function, JMIN for
J, and JAMPM for K.

The use of a function subprogram to convert from military to civilian time is

Functionsand Subroutines194

1 jtme(i•J'k)=i*too+J♦1200*K
2 READ(5,20) JHOUR,JMIN•J AMPM.
3 20 FORMAT(3I5)
4 MT IME = JTME(JHOUR.JMIN,JAMPM)
5 WR I T E (6,30) M T 1M iL
6 30 FORMAT(• TIME IS*,15)
7 STOP
B END

(a) Program

4 27 i

(b) Input data

TIME IS 1627

(c) Output

Figure 8-2. Example of a statement function

illustrated in Figure 8-3. The first statement in the function subprogram is the FUNC
TION statement (line 8), which should not be confused with the statement function
feature described in the previous paragraph. The FUNCTION statement defines the name
of the function and designates the arguments. This function is called in line 3 in the same
manner as the statement function was called in Figure 8-2. In the function JTME in
Figure 8-3, the values of JHOUR, JMIN, and JAMPM are communicated to the subpro
gram by the arguments. The value of military time assigned to variable MTIME in line 3 is
the value of variable JTME in the subprogram at the time the RETURN statement is
executed. The value returned to the calling program is the value of the variable in the
subprogram whose name is identical to the name of the function. In all function
subprograms, a value must be returned to the main program in this manner.

Figure 8-4 illustrates the use of a subroutine to convert from civilian to military
time. The first statement in the subroutine is the SUBROUTINE statement which defines
the name of the subroutine and designates the arguments. The subroutine is called by the
CALL statement in line 3 of the main program. In this case, communication is entirely via
the arguments. Values used for variables I, J, and K in the subroutine are the values of
variables JHOUR, JMIN, and JAMPM in the main program. The value of MTIME printed
in line 4 of the main program is the value computed for L in the subroutine.

Note that in programs in both Figures 8-3 and 8-4, statement numbers 20 and 30
appear both in the main program and in the subprogram. This leads to no confusion
whatsoever. The only way to transfer to a function subprogram is by use of the function
in an expression. The only way to transfer to a subroutine is by the CALL statement. The
only way to transfer from a function subprogram or a subroutine to the calling program is
by the RETURN statement.

8-3. Role of Arguments

In each of the examples in the previous section, arguments are used to communicate
information between the main program and the function or subroutine In this section we
examine this aspect in more detail.

8-3. Role of Arguments 195

(a) Main program (b) Function subprogram

1 RtADI 5,20) JH.'JUR, JM IN, JAMPM
2 20 FORMATIJI5)
3 MTIME=JTMP(JHOUR,JM1N,JAMPM)
4 WR I TE(6.JO >MT IME
5 30 FORMAT!' TIME IS’,IS)
6 STOP
7 END

(c) Program

8 FUNCTION JTM£(I,J,K)
9 JTMF=100*I+ J

1 0 IF(K)20,20,30
1 1 30 JTMC-JTMt+1200
1 2 20 RETURN
I 3 END

4 27 1

(d) Input data

TIME IS 1627

(e) Output

Figure 8-3. Example of a function subprogram

Values of variables used as arguments can be communicated to and from subpro
grams in one of two ways

1. Call by address
2. Call by value

Functions and Subroutines196

(b) Subroutine

l RRAD (5.20)JHOUR.JMIN.J AMPM
2 20 F0RMAT(3I5>
3 CALL IIMLI JHOIiR.JMIN, JAMPM.MTIME)
u WR I TE(6.30)MTIME
5 30 FORMAT!' TIME IS*. 15)
6 STOP
7 END

8 SUBROUTINE T I ME(I , J , K.L)
9 L=1OO*I+J

10 IF!K)20.30.30
11 30 L=L+1200
12 20 RETURN
1 3 END

(c) Program

4 27 1

(d) Input data

TIMF IS 1627

(e) Output

Figure 8-4. Example of b subroutine

We shall examine each of these using the function subprogram in Figure 8-3 and the
subroutine in Figure 8-4 as the basis for our discussion. We shall first explain these two
approaches, and then discuss their advantages and disadvantages.

Call by Value. In this approach, the actual numerical value is transferred from the
storage location in the main program to a storage location in the subprogram. For the
function subprogram in Figure 8-3, storage locations are reserved in the main program for

8-3. Role of Arguments 197

variables JHOUR, JMIN, and JAMPM, and separate storage locations are reserved for
variables I, J, and K in the subprogram. At the time the function is called, the current
values stored in JHOUR, JMIN, and JAMPM are transfered to the storage locations for I,
J, and K. However, upon execution of the RETURN statement, the reverse transfer of
values is not made. Therefore, if the value of variable I, J, or K is changed in the
subprogram, this change is not reflected in the corresponding variable in the main
program. Therefore, if call by value is used for the subroutine in Figure 8-4, the value of
L is not available in the main program.

Call by Address. In this approach, the address of each of the variables used as
arguments in the calling statement is transferred to the subprogram and used for the
respective variables in the argument list in the subprogram. For example, in the subrou
tine in Figure 8-4, the address of the storage location for JHOUR is transferred to
the subprogram for use as the address for variable I. The other arguments are treated
similarly. Therefore, if the value of variable I is changed in the subprogram, the value of
variable JHOUR changes in the main program, since its address is being used for variable I
in the subprogram. The subroutine in Figure 8-4 functions properly only if call by address
is used.

Example. As an example of the difference between call by address and call by
value, suppose we have written the function subprogram in Figure 8-5 that computes the
electrical resistance for the following equation:

R= 1.2 + .047T- 0.00056T2

where T is in °C. We have written our function so that it accepts temperatures in either
°C or °F. The scale is designated by the second argument J (0 = °C; 1 = °F). Suppose we
use the following statement to call RES:

R = RES(TEMP,1)

Since the value of the second argument is 1, the value of TEMP is in °F. Therefore, when
the subprogram is executed, a new value is computed for T in the second statement in the
subprogram.

If call by value is used, a separate location is reserved for T in the subprogram, and
changing its value in the subprogram in no way changes the value of TEMP in the calling
program.

However, if call by address is used, the address of TEMP in the calling program is
used as the address for T in the subprogram, and changes to T in the subprogram are
changes to TEMP in the main program. In effect, variable T is a dummy: no storage
location is reserved for it. After execution of the function subprogram in Figure 8-5, the
value of TEMP in the main program is changed from °F to °C.

Advantages and Disadvantages. Call by address and call by value have the advan
tages and disadvantages listed on page 198:

FUNCTION RESIT.J)
IFIJ.EO.1>T=(T-32.)/1.8
rES=1•2 + T * I 0 »0 47-0 « 00056* T)
RETURN
END

Figure 8-5. Function subprogram to compute resistance

198 Functions and Subroutines

1. Call by address is meaningless when expressions are used as arguments in the
main program. For example, suppose the following statement is used for the
function RES in Figure 8-5:

R = RES(TEMP-273.,0)

Since the first argument is not a variable, no storage location is reserved in the
calling program for this argument in this form. Call by value is best for this
argument.

2. Use of call by address is not appropriate when a constant is used as an
argument. For example, consider the statement

R = RES(O.,1)

This statement evaluates the resistance at 0°F. If call by address is used, the
address of the storage location for the constant 0. in the main program is used
for variable T in the subprogram. The second statement in the subprogram in
Figure 8-5 changes the value from 0. to -17.8. Since the address for the
constant 0. in the main program is used for T, the constant 0. is now - 17.8. If
0. appears in any subsequent statement in the main program, -17.8 is used
instead: the results will be disastrous. Use of call by value avoids this problem.

3. Call by value cannot be used for arguments such as MTIME in the subroutine in
Figure 8-4 unless an extra step is taken: transferring values from the locations in
the subprogram to the corresponding locations in the main program. However,
with the addition of this extra step, call by value has the same disadvantages as
call by address in the previous two situations.

4. Call by address is more efficient for arrays. Suppose an entire array A,
containing 100 elements, is to be available to the subprogram. If call by value is
used, 100 storage locations must be reserved in the subprogram in addition to
the 100 storage locations reserved for A in the calling program. Furthermore,
the values of each of the 100 elements must be copied from the storage
locations in the calling program to the corresponding storage locations in the
subprogram. When call by address is used, only the address of the first storage
location in the array must be transferred to the subprogram, making call by
address attractive for arrays.

Summary. Unfortunately, the choice between call by address and call by value
varies from system to system; this prevents us from being explicit here. The choice
between call by address and call by value can be summarized as follows:

1. All systems use call by address for arrays.
2. Call by address is used for all arguments of subroutines. Some systems do not

accept expressions as arguments in subroutine call statements. In other systems, the
compiler creates a storage location for the result of the expressions, and transfers this
value to the subprogram. This makes the statement

CALL SUB(X + 2.,Y,Z)

appear to be compiled as

XA = X+2.
CALL SUB(XA,Y,Z)

If the compiler does not accept expressions as arguments of subroutines, the programmer
must insert the extra statement. Better compilers insert these steps when constants are

8-4. The Statement Function 199

used as arguments, thereby avoiding the pitfail outlined in step 2, above. Unfortunately,
not all compilers do this, so many experienced programmers avoid the use of constants as
arguments.

3. Some systems use call by address when simple variables are used as arguments
of function subprograms; others use call by value. The difference is that if the value of a
variable used as an argument in the subprogram is changed within the subprogram, these
changes are not reflected in the corresponding variable in the calling program when call
by value is used but are reflected when call by address is used. In this manual, we assume
that call by address is used, but on this point programmers should consult manuals
specific to their system.

8-4. The Statement Function

Rules regarding the statement function are as follows:

1. The statement function must be defined by a single statement, although the
continuation feature can be used as for other statements.

2. The statement function is itself a non-executable statement in that it only
defines the function; it is not executed until it is called.

3. The statement function must appear prior to any executable statements in the
program.

4. The name of the statement function must conform to the general rules of the
naming of variables. That is, the name must consist of from one to six characters, the first
of which must be a letter. If the result of the functional evaluation is an integer, the name
must begin with one of the letters I through N. For example, the name of the statement
function

JTME(I,J,K) = I * 100 + J+ 1200 *K

\ in Figure 8-2 begins with the letter J, which defines the result as an integer. Alternatively,
the name can be declared integer in the INTEGER statement as illustrated by the
following example:

INTEGER TIME
TIME(I,J,K) = I * 100+ J + K* 1200

Real functions are treated analogously.
5. A statement function must have at least one argument. If it contains more than

one argument, arguments are separated by commas.
6. The statement function may include library functions, function subprograms,

or other previously defined statement functions.
7. The arguments of the statement function are dummies in that no storage

locations are reserved. In fact, variables used as arguments may be subsequently used as
variables elsewhere within the program.

8. The statement function may include variables other than those used as argu
ments. For example, consider the function

RES(T) = A + T*(B + C*T)

Variable T is a dummy, but variables A, B, and C are not. When this function is called, the
current values of variables A, B, and C are used in computing the function.

Functions and Subroutines200

(b) Output

1 F(X)=(X+4. 7 > **2/(SOPT(X)+X**2+1 •)

2 W W I T F (6,1)
3 1 FORMAT(3X, 3(•X' ,5X, • F (X) • . 6X))

4 DO21=2•20. 2
5 X= 1-2
6 FX = F(X)
7 Y=X+20.
8 FY = F(Y)
9 Z=X+40.

1 0 F Z = F(Z)
1 1 2 HRITE(6,3) X.FX.Y.FY, Z.FZ
1 2 3 FORMAT(IX, 3 (F 4 . 0 . F 1 0 .4,2X))

1 3 STOP
1 4 END

(a) Program

X F (X) X F (X) X F (X)
0o 22. 0900 2OS 1 > 50 4 6 40 , 1.2431
2. 6j 99H5 22a 1 ,■> 4 5 5 8 4 2, 1,2311
4 * 3, 98 37 24. 1.4155 4 4 o 1 a2202
09 2. 9922 26> 1.38 17 46 , 1.2103
8. 2 , 3779 28. 1,35g) 48. 1.2013

10. 2 , 0746 30, 1 3253 50a 1 ,1930
12. 1 . 8785 32. 1 a 30 68 52. 1.1853
14. 1 > 7420 34, 1 ,28’30 54 j 1,1783
16. 1 3 6417 36c 1 i27 1 3 5 6. 1,1717
18. 1 * 5651 33. 192564 58 , 1 1 656

Figure 8-6. Use of a statemen t function

One example of the use of a statement function is in the following program.
Suppose we would like to create a table of values for the function

(X + 4.7)2 ■
\/F+x2 + 1

for values of X between zero and fifty-eight in increments of two. The program in Figure
8-6 prints this table in three columns. The statement function is defined in the first line
of the program, and it is then called from lines 6, 8, and 10.

8-5. The Function Subprogram

Rules regarding the use of the function subprogram are as follows:

1. The first statement in the function subprogram must be a FUNCTION state
. ment. As illustrated in Figure 8-3, this statement consists of the word FUNCTION

followed by the name of the function subprogram followed by the arguments enclosed in
parentheses and separated by commas.

2. The function subprogram must have at least one argument.
3. The function subprogram name conforms to the normal rules for the naming of

variables. That is, the name consists of from one to six characters, the first of which must
be a letter. If the value associated with the function subprogram is integer, the name must

8-5. The Function Subprogram 201

begin with one of the letters I through N. If real, the name must begin with any other
letter. The use of type declarations to override this convention is illustrated in a
subsequent example.

4. The value associated with the function subprogram and used in evaluating the
expression in which the function itself appears is the value of the variable in the function
subprogram that is identical to the name of the function itself. Note the use of variable
JTME in function JTME in Figure 8-3.

5. A function subprogram must have at least one RETURN statement. It may have
more than one, and it may also include one or more STOP statements.

6. Array names may be used as arguments in the FUNCTION statement but must
not be written with subscripts.

7. The function subprogram may call library functions, other function subpro
grams, or subroutines.

8. Expressions may be used as arguments of the function subprogram in the calling
program.

As an example of a function subprogram, suppose we prepare a subprogram to find
the largest number (called the greatest common divisor) that evenly divides two
other numbers. Although there are more efficient approaches, we shall use the approach
of trying successive numbers starting with 2 and continuing until the smaller of the two
numbers is reached. The function subprogram and a short calling program are given in
Figure 8-7. Since the value returned by the function subprogram is an integer, a name

1 RE AD(5.1 IN1.N?
2 1 FORMAT(215)
3 N-NGCDIN1.N2)
4 W«ITE(6,2)N1,N2,N
5 ? FORMAT!' GCD OF•, I 5, • AMD',15, • IS‘,I5)
6 STCP
7 END

A FUNCTION NGCD(N,M)
9 K=N

10 IF(M.LT.K)K=M
1 1 NGCD=1
1 2 DOI J=2,K
1 3 I F((N/J)*J«NE ,NJGOTOl
1 4 IF((M/ J) * J t, N E s M) GO TO 1
1 5 NGCD=J
1 6 I CONTINUE
1 7 RETURN
1 8 END

(a) Program

1528 5748

(b) Input data

GCD OF 1528 AND 5748 IS 4

(c) Output

Figure 8-7. Use of a function subprogram to determine the greatest
common divisor

202 Functions and Subroutines

Parallelogram

(a) Figures
Rectangle

I
2 I
3
4
5 2
6
7

8
9

10
1 1
1 2
1 3

(b) Program

READ!5.1)A.B.THETA
FORMAT!3F10.0)
X=RECT (A . 8 , THtT A . Y)
WR ITE(6,2)A,B.THETA.X.Y
FORMAT(IX , 3F10.2/1X2F10.2)
STOP
END

FUNCTION RECT(A,B,T»Y)
H = B*S IN(T/57.2)
RECT=(A + H + SQR T((A+B)**2-4.*A*H))/2o
Y =A4H/RECT
RETURN
END

8. 5. 26.

(c) Input data

8.00 5.00
11.47 1.53

(d) Output

26.00

Figure 8-8. Use of a function subprogram

beginning with N is chosen. Also note the use of NGCD as a variable in the function
subprogram.

As a second example, suppose we have the parallelogram illustrated in Figure 8-8a.
The angle 9 and sides a and b are known. Suppose we would like to determine the sides x
and y of a rectangle whose area and perimeter are the same as the parallelogram. The
equations are as follows:

h = b sin 9
A = a h =x -y
P=2-(g + b) = 2 ’(x+y)

The equations forx andy are as follows:

_ {a + b) + x/fa + b)2 - 4ah
X~ , 2
y — ah/x

Using a function subprogram for this problem is complicated by the fact that two values,
one for x and one for y, are to be returned. One can be associated with the function
name. If the computer system uses call by address for arguments of a function, the
function subprogram can be written as in Figure 8-8b. The value of y is transferred back
to the main program via the fourth argument. For systems that use call by value for

8-5. The Function Subprogram 203

function arguments, this program is not acceptable. Alternatively, COMMON can be used
for Y, or a subroutine can be used instead of a function subprogram.

The next example of the use of a function subprogram is in interpolating between a
set of data points. Specifically, suppose the following data are available:

X y
45 1.7
50 1.9
55 2.2
60 2.4
65 3.1
70 4.2
75 5.8
80 7.2
85 10.5
90 14.7
95 19.2

100 26.5

SJOB 1105.50003
I DIMENSION Y(12)
2 DATA YZ1.7.1.9.2.2.2.4•3.1 .4.2.5.8.7.2.10.5.14.7.19.2.26.5Z
3 READ!5.1)X
4 1 FORMAT(F5.0)
5 YX=TER(X,Y)
6 WR ITEC6,21X.YX
7 2 FORMAT!* A = • .F8.2.5X. *Y =*.F6.2)
8 STOP
9 END

10 FUNCTION TER(X.Y)
1 1 DIMENSION Y!12)
12 IF! X.LT.45. IGOTOl
13 IF(X.GT.100.) G0T02
14 F«!X—40.)Z5.
15 J=F
16 F=F—FLOAT!J)
17 TER=Y(J) >F ♦(Y (J* 1) —Y (J))
18 RETURN
19 1 WRITEI6.3IX
20 3 FORMAT(• X =*.F10.2.* IS BELOW 45*)
21 STOP
22 2 WR ITE(6.4)X
23 4 FORMAT(• X = *.F10.2.* EXCEEDS 100*)
24 STOP
25 END

(a) Program

67,4

(b) Input data

X = 67.40 Y = 3.63

(c) Output

Figure 8-9. Use of a function subprogram to interpolate

204 Functions and Subroutines

For a given value of x, we would like to interpolate between the values of y using a
straight-line approximation. The resulting function subprogram is shown in Figure 8-9.
Note that the array Y appears in a DIMENSION statement in both the main program and
the function subprogram. Since the entire array Y is to be available to the function,
subprogram, the name of the array written without a subscript appears in the calling
statement. As we shall see in a subsequent example, an array written with a subscript in
the calling statement causes transfer of a single number to the subprogram.

The function subprogram may change elements of an array used as argument. For
example, the function subprogram in Figure 8-10 computes the arithmetic average of
array Y and then subtracts the average from each of the elements. Since call by address is
always used for arrays, the subprogram is actually changing the values in the array in the
calling program.

(a) Program

1 DIMENSION Y(20>
2 RE AD!5. 1)N»(Y(I) • 1 = 1.N)
3 1 FORMAT!I5/CF5.0))
4 A=AVG(Y,N)
5 WRITE(6,2)A,(I,Y(I).1=1.N)
6 2 FORMAT!' A =',F10.2/» I•.7X.•Y•/(1X.I 3 .F 1 0.2))
7 STOP
a END

9 FUNCTION AVG(X.N)
1 0 DIMENSION X(20)
11 SUM = 0.
1 2 DOI 1= 1 . N
1 3 1 SUM=SUM+X(I)
1 4 AVG=SUM/FLOAT(N)
1 5 DC2I = 1 »N
1 6 2 X(I)=X(IJ-AVG
1 7 RETURN
1 A END

19.5
4.8
45. 22
13.4
20.11

(b) Input data

* ■ 20.61
I Y
1 -1.11
2 -15.81
3 24.61
4 -7.21
5 -0.50

(c) Output

Figure 8-10. Function subprogram to compute the average of the elements
in an array

8-5. The Function Subprogram 205

1
2

3
4 1
5
6 2
7
S
9

10
1 1
1 2
1 3 5
14
1 5 9
16
1 7

i a
1 9
20

21
22
23 1
24
25 3
26
27 2
28
29

As a final example of the use of a function subprogram, note that in the encipher
ing program in Figure 7-5, a block of code to perform the lookup in the index table
appears in two locations: once for the keyword, once for the message. Use of the
function subprogram INDEX in Figure 8-11 permits the same block of code to be used
for both these lookups. However, the array SYM must be defined by a DATA statement
in both the main program and the function subprogram. As we shall see shortly, this can
be circumvented by the use of COMMON.

At the beginning of this section, we mentioned that type statements could be used
to alter the usual integer-real convention for function names. The program in Figure 8-12
is identical to the one in Figure 8-7, except that GCD is used as the function name instead
of NGCD. This requires the use of the word INTEGER in the FUNCTION statement,
defining the function as an integer function and defining variable GCD in the function
subprogram as an integer variable. In addition, an INTEGER type statement is required in

INTEGER KEY! 8)«MSG(16) *SYM(27) «NKE.Y(ft) «CRYP(16)
DATA SYM/' • , • A • . • fl • , ■ C • . ' D • , • E • , 'F • . »G • . • H • , • 1 • , • J • , • K • ,

1 'L'.'M'.'N',•O','P','O','R','S','T','U','V','W,'X','Y','Z'/
READ!5•1)KEY,MSG
FORMAT!0A1/16A1)
DO2J=1* 6
NKEY(J) = INCEX(KEY(J)U
J = 0
OO5L =1,16
J = J+l
IF!JiEQ.9)J=1
M=INDEX(MSG(L))+NKEY(J) + lC
M=M-27*(M/27)
CRYP IL) =SYM!M♦1)
WR ITE!6,9)CRYP
FORMAT I •0 CRYPTOGRAM IS ».16A1)
STOP
end

FUNCTION INDEX!IC)
INTEGER 5YMI27)
DATA SYM/' • , •A•* •B•, •C' • •D• « •E•• 1F•, •G•,»H• « ' I • «•J• , •K■.

1 । l ' , ' M' , ' N ' , 'O ' , 'P ' . ' Q ' . 'K ' , ' S' , ' T ' , 'U' , ''v' , ' » ' , • X' , ' Y' , • Z '/
DOIJ=1,27
IF!IC»£Q»SYM!J))GOTO2
CONT INUE
WRITEI6.3)
FORMAT!' INVALID CHARACTER')
STOP
INDEX=J-1
RETURN
END

(a) Program

COMPUTER
HE HAD A BAD DAY

(b) Input data

CRYPTOGRAM IS UCWGEGOBM XCDGPZ

(c) Output

Figure 8-11. Use of a function subprogram in the enciphering problem

206 Functions and Subroutines

the calling program to declare the name GCD as integer. Since GCD is used as a function,
this defines function GCD as integer in the main program.

8-6. Subroutines

Rules that apply to subroutines are as follows:

1. The first statement in the subroutine is the SUBROUTINE statement, an example
of which is

SUBROUTINE TIME (I,J,K,L)

The word SUBROUTINE is followed by the subroutine name which is followed by the
arguments enclosed in parentheses.

2. The name of the subroutine is restricted to six characters, the first of which
must be alphabetic. Since no value is associated with the subroutine name, there is no
integer-real distinction.

3. As illustrated by the example in Figure 8-4, the subroutine is called by a CALL
statement

CALL TIME (JHOUR,JMIN,JAMPM ,MTIME)

The word CALL is followed by the name of the subroutine to be called, which in turn is
followed by the arguments. As pointed out in an earlier section, some systems do not
permit expressions to be used for arguments in the CALL statement.

4. The subroutine may have no arguments; this generally occurs only when
COMMON is used.

5. Transfer from the subroutine to the main program is by the RETURN state
ment. The subroutine may contain more than one RETURN statement, but unlike the
function subprogram, it is not necessary that it contain a RETURN statement. STOP
statements are permitted in subroutines.

As an example, we shall prepare a program using a subroutine to accomplish the
same objective as the program in Figure 8-8. We need only add another argument (X) to
the function subprogram in Figure 8-8, replace the function call with a subroutine CALL
statement, and change the FUNCTION statement to a SUBROUTINE statement, giving
the program in Figure 8-13. All communication between the main program and the
subroutine is by the argument list. The values of A, B, and THETA are available to the
subroutine since they appear in the argument list. Similarly, the values of X and Y are
available to the main program. However, variable H in the subprogram does not appear in
the argument list and is not available to the main program.

Although in many cases the use of a function subprogram as opposed to a
subroutine or vice versa is purely a matter of personal choice, problems are not suitable
for a function subprogram if there is no one value that can be designated as the functional
value. An example of this situation occurs if a subroutine is used to perform the
inventory update described in Figure 5-9.

If a subroutine to update the inventory is prepared, it can be used for items
received and items shipped, provided negative values are used for the latter. In the

r program in Figure 8-14, array STOCK, array QUAN, variable STKNO, and variable NREC
are available to the subroutine. Its primary objective is to update array QUAN, which
appears as an argument. This routine is such that no functional value appears, and thus a
subroutine is preferred over a function subprogram.

1
2
3 1
4
5
6 2
7
8

9
10
1 1
1 2
1 3
1 4
1 5
16
1 7 1
18
1 9

(a) Program

INTEGER GCD
RE ADC 5, 1 1N1.N2
FORMAT(215)
N=GCD(N1,N2)
WR ITFC 6,2)N1,N2,N
FORMATC' GCD OF',15,' AND*,15,' IS'
STOP
END

INTEGER FUNCTION GCDCN.M)
K = N
IF(M,LT,K)K = M
GCD = 1
DOIJ = 2 ,K
IF((NZJ)*J jNE , N) GOTO1
IF((M/J)*JoNEsM JGOTOl
GCC = J
CONTINUE
RETURN
END

I 5)

1528 5748

(b) Input data

GCD OF 1528 AND 5748 IS 4

(c) Output

Figure 8-12. Use o f specification statements for a function

1
2 1
3
4
5 2
6
7

8
9

1 0
1 1
1 2
1 3

(a) Program

8.

RE ADC 5. 1) A,3, TH- TA
FORMATC 3F10.0)
CALL RECTCA,3,THETA,X.Y)
Id R I T E (6,2) A , B , T HE T A , X , Y
FORMATC 1X.3F1 0 • 2/1 X 2F 1 0 2)
STOP
END

SUBROUTINE R E C T (A , 8 , F , X , Y)
H = B*S INC T/57,2)
X=(A+B+SQRFC(A+i)**2-4,*A*H))/2*
Y=A*H/X
RETURN
ENC

5. 26.

(b) input data

8*00
11*47

(c) Output

5»00
1*53

26. 00

Figure 8-13. Use of a subroutine

207

1 0

1 INTEGER STECK(20).QUAN!20).STKNO
2 RF AC I 5 » 1)ITEMSi (STOCK!J),OUAN(J I ,J=1. I IEMS)
3 1 FORMAT(15/(215))
4 4 Rt AD(5 i 2)5 IK.NO.NFcEC
5 2 FORMAT(2 I 5)
6 I F(NR-C.EQ.0)GO TO3
7 CAUL UPC AT (S TUCK■QUAN, STKNO . IT"VS,N^CC)
8 GO I 04
9 3 RE AD(5 f 2)sTKNG,NSHP

1 0 I F (N S HP « E Q • 0) GO TU 6
1 1 NSHP=-NSHP
1 2 CALL UPUAT E(S TUCK.QUAN.STKNO, I Tfc MS.NSHP)
1 3 GOT 03
1 4 6 WR ITE(6» 5)(STOCK(J) ♦QUAN!J).J = 1»ITEMS)
1 5 5 FORMAT! ’OF INAL INVENTORY'/’O ITEM* ,5K.’(;UANTI TY'/(1 X» 15. I 12)
1 6 STOR
1 7 ENO

SUtNOUTI Nfc UPCATE(SIOCK,QUAN,STKNO. ITErS.N)
1 9 INTEGER STOCK (20).QUAN(20).STKNO
20 DO1J=1. HEMS
2 1 IF(STUCK(J) »EQ.STKNO) GO TO 2
22 1 CONTINUE
? i W R I T F (6.3) S TK Nt)
24 3 FOMMATC NO I T F NIMHER’,16)
2 5

6
7
8

C'J
C

J
Cd

2
RETURN
QUAN! J) =QUAN(J) 4N
RE TOWN
END

(a) Program

7
15 19 19
12 00 5
13 17 9 •
1802 3
1988 1 7
10 12 15
1 30 3 8
1 802 5
10 12 20 NC ITEM NUMBER 1805
1 20 6 1 5
180? 14 FINAL INVENTORY
10 12 7

0 0 ITEM QUANTITY
1805 6 1519 19
10 12 5 1206 20
1317 3 1317 1
10 12 3 1802 22
130 3 1 1988 17
13 17 5 1012 34

0 0 1303 7

(b) Input data (c) Output

Figure 8-14. Use of a subroutine in the inventory problem

208

8-6. Subroutines 209

1
2

3
4
5
6
7
8
9

10
1 1
1 2
1 3
14
1 5
1 6
1 7

1 8
I 9
20

2 1
22
2 3
24
25
26
27
28
29
30

INTEGER KEY(16),MSG(16),SYM(27),CRYP(16>
DATA SYMZ* • , • A • , • 8 ’ , • C ' , • D* , • L • , «F • , • G • * »H • « • I • , • J* . • K« ,

1 •L»,*M*,»N», • D • , • P • , • O • , • R • , 'S', •T«,*U,,»V','*«,*X',,Y’,’Z‘Z
RFAC15, 1)(KEY (J),J=1,8),MSG

1 FORMAT (H A 1 / 1 t> A 1)
CALL INDEX(KEY,8)
CALL INDEX(MSG.16)
J = 0
D05L=1,16
J = J + l
I F (J,PQo9)J=1
M=MSG(L) + KEY(J)+10
M=M-27*(M/?7)

5 CRYPIL)=SYV(M+1)
WRITE(6,9)CRYP

9 FORMATt 'OCRYPTOGRAM IS • , 16A 1)
stcp
END

SUBROUTINE INCEX(C.N)
INTEGER C(lt>) ,SYM(27)
DATA SYMZ’ *,•A•,•D•,•C•,•D•,•E•,•Fr,•G•,•H•,•I•,•J•,•K•,

1 •L’,'M’,'N’,'(J',‘P*,‘Q','R',«S‘,'T',’U,,’V‘,*W’,'X',‘Y‘.,Z'Z
DO 1J= 1 , N
D02K=1,27
IF(SYM(K)0FQ.C(J))GO IO 1

2 CONTINUE
W R I T £ (6 , <+)

4 FORMAT!' INVALID CHARACTER*)
STOP

1 C(J)=K-1
RETURN
END

(a) Program

SENTRY
COMPUTER
HE HAD A BAD DAY

(b) Input data

CRYPTOGRAM IS UCWGEGQBM XCDGPZ

(c) Output

Figure 8-15. Use of a subroutine in the enciphering problem

Another case in which a subroutine is preferred over a function subprogram occurs
if an array is computed in the subprogram. Only simple variables, not arrays, can be
treated as functional values. As an example of such a situation, suppose we modify our
approach in solving the enciphering process by using a subroutine INDEX to replace the
alphabetic characters in the vectors for the keyword and the message by their respective
indices. The resulting program is given in Figure 8-15. In this way, the vector of numeric
indices is the result of the computation in the subprogram. This makes the subroutine a
logical choice over the function subprogram.

210 Functions and Subroutines

8-7. COMMON

In all previous examples in this section, communication between the calling program and
the subprogram has been exclusively via arguments. In some cases this leads to long
argument lists. Furthermore, as will be pointed out in the next chapter, use of COMMON
leads to computational efficiency.

The COMMON statement causes the system to create a set of storage locations
(called the COMMON block) that is accessible to all programs and subprograms contain
ing the COMMON statement. This is Fortran’s counterpart to the global declaration of
other programming languages. For example, the statement

COMMON G, A,K,A4

creates a COMMON block consisting of four storage locations.
The COMMON statement can be used to define arrays. For example, the statement

COMMON A(4,5),J,X,I(7)

creates a COMMON block consisting of twenty-nine storage locations. Alternatively, the
following two statements can be used:

DIMENSION A(5,4),I(7)
COMMON A,J,X,I

Either alternative is acceptable, but the same variable must not be declared as an array in
both the DIMENSION and the COMMON statements. REAL and INTEGER can be used
similarly. For example, the statements

REAL J(7),IX
COMMON G,IX,J,K(8)

are equivalent to the statements

REAL J,IX
COMMON G,IX,J(7),K(8)

Either case creates a COMMON block consisting of seventeen storage locations.
As an example, we shall use COMMON in place of the fourth argument in the

subprogram in Figure 8-8. As illustrated in Figure 8-16, we only add the statement

COMMON Y

to both the main program and the subprogram, and we delete the fourth argument. This
causes a single location to be created for Y in the COMMON block, and this location is
available to both the main program and the subprogram.

In the subroutine in Figure 8-13, COMMON can be used to remove all the
arguments from the argument list as illustrated by the program in Figure 8-17. In the
main program the COMMON block is defined by the statement

COMMON A,B,THETA,X,Y

In the subroutine the COMMON block is defined by the statement

COMMON A,B,T,X,Y

1
2
3 1
4
5
6 2
7
8

common y
Rt AD I 5 , 1) A . B . TH. TA
FORMAT I3F10.0)
X=RFCT(A.L«,TH£TA)
W R I T F (6.2) A , fcJ . T HET A , X . Y
FORMAT(IX.3F10.2/1X2F10.2)
STOP
INC

9
10
1 1
1 2
13
1 4
1 5

FUNCTION RECTIA.H.TI
COMMON Y
H=f’*S INIT/57,2)
PECT=(A + CJ + SQR T((A + B >2-4» *A*H))/2
y=a*h/rect
RETURN
END

(a) Program

8. 5. 26.

(b) Input data

8.00
1 1.47

5.00 26.00
1.53

(c) Output

Figure 8-16. Use of COMMON declaration

1
2
3 1
4
5
6 2
7
8

COMMON A,b,THETA,X,Y
RFAD(5.1)A,B.TH-_TA
FORMAT(3F10.0)
CALL RECT
WRirE(6.2)A.B.THtTA,X,Y
FORMAT(IX,3F10.2/1X2F10.2)
STOP
END

9
1 0
1 1
1 2
13
1 4
1 5

SUBROUTINE RECT
COMMON A.B.T , X,Y
H = B*S INIT/57.2)
X=(A+H+SQRT((A+B)*♦2—4o♦A♦H))/2.
Y=A*H/X
RETURN
END

(a) Program

8. 5. 26.

(b) Input data

8.00
11.47

5.00 26.00
1.53

(c) Output

Figure 8-17. Use of COMMON

211

212 Functions and Subroutines

Each of these statements defines a COMMON block of five storage locations. The address
of the first storage location is used for variable A both in the main program and in the
subroutine. Similarly, the addresses of the second, fourth, and fifth storage locations are
used for variables B, X, and Y, respectively, in both main program and subroutine. In the
main program the address of the third location is used for variable THETA, but in the
subprogram this same storage location is used for variable T. This makes variable THETA
in the main program synonymous with variable T in the subprogram.

The COMMON statement only defines the addresses of certain variables as being
storage locations in the COMMON block. In establishing a COMMON block, the program
mer can select whatever variable names are most convenient. As illustrated in the example
in Figure 8-17, the same names do not have to be used in the main program and in the
subprogram.

For the sake of illustration, suppose that an array of four elements is most
convenient for the main program, but that in the subprogram the use of simple variables
for these four storage locations is more convenient. To implement this, the main program
should contain the statement

COMMON X(4)

and the subprogram should contain the statement

COMMON A,G,YA,Z

In this case, the first location in COMMON is the first element of array X in the main
program and is simple variable A in the subprogram, the second location is the second
element of array X in the main program and is simple variable G in the subprogram, etc.

Although it is possible to change the variable names associated with COMMON
storage locations between the main program and subprogram, it is not permissible to use
an integer variable for a storage location in the main program and a real variable in the
subprogram for the same storage location, or vice versa. That is, changing variable types is
not permissible.

As a final example of COMMON, we shall use COMMON for array SYM in the
program in Figure 8-15. In this program, array SYM is needed in both the main program
and the subprogram. In Figure 8-15, separate storage locations are reserved for SYM in
the main program and in the subprogram. By use of COMMON as illustrated in Figure
8-18, the same storage locations can be used for SYM in both the main program and the
subprogram. However, many systems do not permit the DATA statement to assign initial
values to storage locations in COMMON. In Figure 8-18, the elements of SYM are read
into memory. This can be avoided by using the BLOCK DATA subprogram described in
Section 8-10.

Most systems permit the length of the COMMON block in the calling program to be
longer than the COMMON block in the subprogram.

Multiple COMMON statements may be used. Subsequent COMMON statements are
treated as continuations of the first COMMON statement; together they define a single
COMMON block. For example, the statements

COMMON X(8),J,K(7)
COMMON A,B,C(2,4)

are equivalent to the single statement

COMMON X(8),J,K(7),A,B,C(2,4)

In programs with several subprograms, the labeled COMMON feature can be used to

8-7. COMMON 213

(a) Program

1 INTEGER KEY(16) ,MSG(16),SYM(27),CRYP(16)
2 COMMON SYM
3 RE AD(5 * 1) (KEY(J),J=1,B),MSG,SYM
4 1 FORMAT(8A1/16AI/27A1)
5 CALL INDEX(KEY,8)
0 CALL INDEX(MSG,16)
7 J = 0
8 D05L= 1,16
9 J= J + 1

10 IF(J.EQ,9)J=1 •

1 1 M=VSG(L)+KEY(J)♦10
1 2 M=M-2?*(M/27)
1 3 5 CRYP(L)=SYM(M ♦ 1)
1 4 WR ITE(6,9)C»YP
1 5 9 FORMAT(•OCRYPTOCRAM IS • , 16A 1)
1 6 STOP
1 7 FND

1 8 SUBROUTINE INDEX(C.N)
19 INTEGER C(16)*SYM(27)
20 COMMON SYM
2 1 DO 1 J=1 ,N
22 D02K =1.27
2 3 if(sym(k),eq.c(j))gotoi
24 2 CONT INUE
25 WR ITE(6,4)
26 4 FORMAT!* INVALID CHARACTER')
27 STOP
28 1 C(J)=K-1
29 RETURN
30 END

COMPUTER
HL HAD A BAD DAY

ABCDEFGHIJKLMNCPQRSTUVWXYZ

(b) Input data

CRYPTOGRAM IS UCWGEGOBM XCDGPZ

(c) Output

Figure 8-18. Use of COMMON for array SYM in the enciphering program

define different COMMON blocks. The label, enclosed in slashes, follows the word
COMMON, as illustrated by the following example:

COMMON /JACK/A,G(16)

The name used as a label is generally restricted to six characters, the first of which
must be alphabetic. A few systems do not permit the name used as a label in a COMMON
statement to be used as a variable elsewhere in the program. Unlabeled COMMON is
referred to as blank COMMON.

Labeled COMMON enables the programmer to define certain variables as in COM
MON between one program or subprogram and another subprogram, while other variables
are in COMMON between the same program or subprogram and a third subprogram. The

214 Functionsand Subroutines

same program may contain blank COMMON along with one or more labeled COMMON
blocks. However, the same variable may not appear in more than one COMMON
block.

8-8. EQUIVALENCE

Within a given program or subprogram, a unique variable has been associated with each
available storage location in all discussions up to this point. Using COMMON, a storage
location within the COMMON block can be associated with one variable in the main
program and another variable in the subprogram. But within the main program this
storage location was associated with a single variable name.

Using the EQUIVALENCE statement permits two or more variables to be associ
ated with the same storage location. For example, the statement

EQUIVALENCE (JACK,K)

causes the same storage location to be used for variables JACK and K. In effect, these two
variables are identical.

The EQUIVALENCE statement may be used to cause any number of variables to
be associated with a given storage location. Furthermore, equivalencing may be accomp
lished for more than one storage location within the same EQUIVALENCE statement, as
illustrated by the following statement:

EQUIVALENCE (JACK,K,LAMP),(X,G)

Elements in an array may also be included in an EQUIVALENCE statement:

EQUIVALENCE (AK,X(4))

This statement causes the fourth storage location within array X to be used for variable
AK

Since arrays are always stored in consecutive storage locations, entire arrays can be
equivalenced by equivalencing single elements. For example, the statements

DIMENSION G(14),X(9)
EQUIVALENCE (X(1),G(1))

cause the first nine storage locations for array G to be used for array X. In addition to
equivalencing X(l) and G(l), we have also equivalenced X(2) and G(2), X(3) and G(3),
etc.

Equivalencing may be desirable for several reasons

1. The name used for a variable in one section of the program is changed,
erroneously, in another section of the program. The EQUIVALENCE statement corrects
this situation without changing the statements.

2. The use of subscripted variables entails more computational overhead than the
use of simple variables: the address of the element must be computed from the value of
the subscript and the address of the first element reserved for the array. For simple
variables, the address is available directly. Therefore, if a specific element of an array,
X(4), appears explicitly in several statements within the program, it is more efficient to
use

EQUIVALENCE (X(4),X4)

8-8. EQUIVALENCE 215

and replace the subscripted variable X(4) with the simple variable X4 throughout the
program. Some compilers effectively do this automatically.

3. The EQUIVALENCE statement can be used to conserve storage in large
programs. For example, suppose variable A is used only in one section of the program,
variable B is used only in another section, and outside these sections these variables are
not needed for any purpose. In this case, the statement

EQUIVALENCE (A,B)

reduces the storage requirements by one. Of course, equivalencing arrays produces greater
reductions than equivalencing simple variables.

The use of the EQUIVALENCE statement in conjunction with the COMMON
statement produces interesting results. For example, the statements

DIMENSION X(4)
EQUIVALENCE (X(1),A),(X(2),B),(X(3),C),(X(4),D)

equivalences X(l) with A, X(2) with B, X(3) with C, and X(4) with D. This can also be
accomplished as follows:

DIMENSION X(4)
COMMON A,B,C,D
EQUIVALENCE (X(1),A)

The COMMON statement defines a COMMON block consisting of four storage locations
reserved for variables A, B, C, and D. The EQUIVALENCE statement defines the first
location in the COMMON block as the first element in array X. Since the COMMON
statement specifies that the storage location reserved for B immediately follows the
storage location reserved for A, and since elements in an array are always stored in
consecutive storage locations, it follows that these statements have equivalenced X(2) and
B, X(3) with C, and X(4) with D.

In the above example, the statement

EQUIVALENCE (X(1),A)

can be replaced by any one of the following statements:

EQUIVALENCE (X(2),B)
EQUIVALENCE (X(3),C)
EQUIVALENCE (X(4),D)

The EQUIVALENCE statement may also be used to extend the COMMON block.
For example, consider the following statements:

DIMENSION X(4)
COMMON A,B,C,D
EQUIVALENCE (X(1),D)

The COMMON block is defined as consisting of the four storage locations for variables A,
B, C, and D. However, the location for D is then defined by the EQUIVALENCE
statement as being the first element of a four-element array. Therefore, the COMMON
block consists of seven storage locations, since three additional consecutive storage
locations are reserved for the array in addition to the four locations explicitly reserved by
the COMMON statement.

216 Functions and Subroutines

While it is quite acceptable to extend COMMON by using the EQUIVALENCE
statement to attach storage locations to the end of the explicitly defined COMMON
block, it is not acceptable to attach locations to the front of the COMMON block. For
example, the statements

DIMENSION X(4)
COMMON A,B,C,D
EQUIVALENCE (X(4),A)

equivalence A with the fourth element of array X. For this to be possible, the three
storage locations preceding A must be available for array X. Fortran does not permit
COMMON blocks to be extended in this manner.

8-9. Adjustable Dimensions

In the enciphering programs in Figures 8-15 and 8-18, the array KEY is defined to consist
of sixteen elements when only eight are used. This is because array C in
subroutine INDEX is defined for sixteen elements in order to accommodate array MSG.
In reality, the increase in the size of KEY is not necessary because no storage locations in
the subprogram are reserved for C: it is used as an argument. However, some systems
require that consistent array sizes be defined in both the calling program and the
subprogram.

On these systems, increasing the sizes of the arrays can be avoided by using the
adjustable dimension feature. Since no storage-locations are reserved for the subprogram
arguments, the compiler need not know how large the array will be, provided it knows
that it will be specified when the subprogram is called. A variable may be used in the
DIMENSION statement in the subprogram in these cases. The restrictions are as follows:

1. The variable specifying the size of the array in the subprogram appears as an
argument. Placing this variable in COMMON is not acceptable.

2. The name of the array must also be an argument in the subprogram. Arrays not
appearing as arguments must be defined as usual in the DIMENSION statement
since storage locations must be reserved for them.

Figure 8-19 presents an example of the use of adjustable dimensions in the enciphering
program.

8-10. BLOCK DATA

In earlier sections it was pointed out that some systems do not permit DATA statements
to assign initial values to variables in COMMON. In these cases, a subprogram beginning
with the statement

BLOCK DATA

can contain such DATA statements. This subprogram may not contain any executable
statements; it may only contain the following statements:

8-10. BLOCK DATA 217

1
2

3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
15
16
1 7

1

5

9

INTEGER K F Y (8),MSG(16),SYM(27),CRYP(16)
DATA SYMZ* • , •A•, •0•. •C• . •D• « •t• . •F• . •G• ,•H•«• 1 • .•J• «•K • •

1 •L,,*M',*N,,*O*,'P*,*Q*.*R*,*S»,*T*,*U,,,V,,'W,,*X*,*Y,,,Z,Z
RE AD(5, 1) KEY.MSG
FORMAT(R A1/16A1)
CALL INDLX(KEY,8)
CALL INDt_X(MSG, 16)
J = 0
D05L = 1.16
J = J+ 1
IF(J.EQ.9) J=1
M=MSG(L)+KEY(J) *10
M=M-27*(MZ27)
CRYP1L)=SYM(M+1)
WRITF(6.9)CRYP
FORMAT(•0 CRYPTOCRAM IS • . 16A1)
STOP
END

1 8
1 9
20

2 1
22
23
24
25
26
2 7
28
29
30

2

4

1

sueROUTINE INDEX(C.N)
INTEGER C(N),SYV(27)
DATA SYM/' • , •A *. •H•. •C•■ •D• , •E• . *F•. *G•.•H• .• I • .•J* .•K* .

1 •L*.*M*,*N*,*O*,*P*.*Q*,'H,,*S*.*T*.*U*,*V*,'W*,*X».*Y',’Z*Z
DO 1J = 1 .N
DO2K = 1.27
IF(SYM(k).EQ.C(J))GO TO 1
CONTINUt
WRITE(6,4)
FORMAT!* INVALID CHARACTER*)
STOP
C(J)=K-1
RETURN
END

(a) Program

COMPUTER
HE HAD A BAD DAY

(b) Input data

CRYPTOGRAM IS UCWGEGOBM XCDGPZ

(c) Output

Figure 8-19. Use of adjustable dimensions

1. DIMENSION, INTEGER, or REAL statements
2. COMMON statements
3. EQUIVALENCE statements
4. DATA statements
5. An END statement

An example of the use of the BLOCK DATA subprogram is illustrated in Figure 8-20 for
the enciphering program.

Functions and Subroutines218

1
2
3
4
5
6
7

INTEGER K E Y(16), MSG(16),SYM(27),CRYP(lb)
COMMON SYM
READ(5, 1) (KEY(J) ,J = 1,8),MSG

1 FORMAT(8 A 1/16 A 1)
CALL INDEX(KEY,8)
CALL INDEX(MSG. 16)
J=O

8
9

10
1 1
1 2
1 3
1 4
1 5
1 6
1 7

D05L = 1.16
J= J + 1
IF(J«EQu9) J=I
M=MSG(L) +KEY(J)+10
M=M-27*(M/27)

5 CRYP (L)=SYM(M + 1)
WR ITE(6,9)CRYP

9 FORMAT(•OCRYPTOGRAM IS •.16A1)
STCP
END

18
1 9
20
2 1
22
23
24
25
26
27
28
29
30

SUBROUTINE INCEX(C.N)
INTEGER C(16).SYM(27)
COMMON SYM
DO 1 J= 1 . N
DC2K =1,27
IF(SYM(K)aEQ.C(J))GOTO1

2 CONTINUE
W R I T E (6.4)

4 FORMAT!' INVALID CHARACTER1)
STOP

1 C(J)=K-1
RETURN
END

31
32

BLOCK DATA
INTEGER SYM(27)

33
34

COMMON SYM
DATA SYM/’ • , • A • , • C • , • C • , • D • . 'E • . ’F • , ’G • . • H • , • I • . • J’ . • K • .

1 •L’.’M’.’N'.'O’.’P’.’Q'.’R’.’S’.’T’.'U’.’V’.’W'.’X’.’Y’.'Z
35 END

(a) Program

COMPUTER
HE HAD A BAD DAY

(b) Input data

CRYPTOGRAM IS UClMGEGOBM XCDGPZ

(c) Output

Figure 8-20. Use of BLOCK DA TA

8-11. The EXTERNAL Statement

The names appearing in the EXTERNAL type statement are subprogram names to be
used as arguments in a subprogram call. Suppose for one call the subprogram should use
ALOG while for another the subprogram should use ALOGIO. The proper statements are

8-12. Multiple ENTRY and RETURN 219

C MAIN PROGRAM •
EXTERNAL ALOG10,ALOG

CALL SUB(. . . ,ALOG,. . .)

CALL SUB(... ,ALOG10,...)

END
SUBROUTINE SUB(... ,FLOG,...)

RESULT = FLOG(ARG)

RETURN
END

8-12. Multiple ENTRY and RETURN

The normal entry into either a SUBROUTINE or a FUNCTION subprogram occurs when
the CALL statement references the subprogram name. Entry into the subprogram is at
the first executable statement following the FUNCTION or SUBROUTINE statement. In
some cases, this is not always desirable. For example, suppose there is to be some
initialization the first time a subprogram is called. Thereafter, this initialization is
unnecessary. Thus, all entries except the first can be at some point other than the first
executable statement following the FUNCTION or SUBROUTINE statement.

Multiple entry points in the subprograms are created by using the ENTRY state
ment of the form

ENTRY name(a} ,a2, . . . ,«w)

where name is the name of the entry point. Rules for ENTRY names are the same as for
FUNCTION and SUBROUTINE names. ait a2, . . . , an are arguments analogous to the
arguments in a FUNCTION or SUBROUTINE statement.

The ENTRY statement is nonexecutable, and the entry into the subprogram is at
the first executable statement following the ENTRY statement. Entry cannot be made
within the range of the DO. Some systems require that the arguments in the ENTRY
statement be identical to the arguments in the FUNCTION or SUBROUTINE statement,
although others relax this requirement.

As an example, suppose we wish to prepare a function subprogram to calculate the
resistance as a function of temperature from an equation of the form a + bT + cT2. Also
suppose that the first time the function subprogram is called, the values of a, b, and c
must be read and the value ota + bV+ eV2 returned to the calling program. The subprogram
can be as follows:

FUNCTION RESIS(T)
READ (5,10)A,B,C

10 FORMAT (3F 10.0)
ENTRY RES(T)

220 Functions and Subroutines

RESIS = A+T*(B + C*T)
RETURN
END

The value returned at the exit from a function subprogram is the value last assigned to the
FUNCTION name or any ENTRY name. However, if the last value assigned to an ENTRY
name differs in type from the current ENTRY name, the returned value is undefined.
That is, it is possible to change types between ENTRY names, but the type of the
returned value must be consistent with the type of the current ENTRY name.

A calling sequence for the above subprogram is

C MAIN PROGRAM

P = V**2/RESIS(TEMP)

V = CURNT * RES(TA)

The first time the function is called, entry is at the READ statement. Thereafter, it is at
the arithmetic statement for calculating RESIS.

Just as it may be desirable to enter a subprogram at different points, it may also be
desirable to return to some statement other than the statement following the SUBROU
TINE call (multiple return only applies to SUBROUTINE subprograms). For example
consider the following sequence:

C MAIN PROGRAM

CALL SUB(A,X,Z,&4,Q,&8)
3 B = A*X

4 X = X + A
8 X=X+Q

END
SUBROUTINE SUB(B,C,D, *, Z, *)

IF (F)8,19,30
8 RETURN 2

19 RETURN
30 RETURN 1

END

Notice that the RETURN statement is of the form

RETURN i

Exercises 221

where i is an integer constant or variable whose value denotes the location of the
statement number in the argument list at which return to the main program is to be
made. Note that statement numbers in the CALL statement are preceded by &, and the
corresponding arguments in the SUBROUTINE statement consist only of an *. In the
above example, return is as follows:

F > 0, return to statement 4
F = 0, return to statement 3
F < 0, return to statement 8

Perhaps the multiple return illustrated above can be best explained by comparison with
the computed GO TO. The return is the same as for the following sequence:

C MAIN PROGRAM

CALL SUB(A,X,Z,Q,J)
GO TO (3,4,8),J

END
SUBROUTINE SUB(A,X,Z,Q,J)

IF(F)8,19,30
8 J = 3

RETURN
19 J= 1

RETURN
30 J = 2

RETURN
END

This could also be accomplished with an assigned GO TO.

EXERCISES^

f8-1. Exercise 5-17 describes the use of interval halving to locate roots of poly
nomials. Reprogram this exercise using a statement function for evaluating/(x).

8-2. Exercise 5-18 describes Newton’s method for locating roots of polynomials.
Reprogram this exercise using statement functions to evaluate/(x) and/'(x).

8-3. Exercise 5-19 describes an iterative procedure for solving nonlinear equa
tions. Reprogram this exercise using statement functions to evaluate the two functions.
Run program for k equal to 0.5 and 1.0.

j 8-4. Reprogram Exercise 7-9 using a statement function to evaluate/(x).

Solutions to Exercises marked with a dagger f are given in Appendix E.

222 Functionsand Subroutines

8-5. Reprogram Exercise 5-14 using a statement function to evaluate /(x).

8-6. Reprogram Exercise 5-15 using a statement function to evaluate f(x).

f8-7. Reprogram Exercise 5-16 using a statement function to evaluate fix).

8-8. Reprogram Exercise 5-20 using a statement function to evaluate the deriva
tive.

8-9. Reprogram Exercise 5-21 using a statement function to evaluate dc(t)/dt.

t8-10. Reprogram Exercise 5-22 using a statement function to evaluate dc(t)/dt.

8-11. Prepare a function subprogram SIN2 (X) to compute sin2 (x). Use the series
representation in Exercise 5-13, truncated after 100 terms. Prepare a main program to
check the results against the computer’s SIN function for x = 2.

8-12. Prepare a function subprogram IBINOM to evaluate the binomial coeffi
cients as discussed in Exercise 7-2. This subprogram should use a subprogram IFAC to
compute factorials. Use these subprograms to program Exercise 7-11.

| x | 4/3
8-13. Prepare a function subprogram to compute the cube root \/x =—------

of a number. Prepare a program using this subprogram to compute the cube roots of 5.6
and -7.2.

|8-14. Let f(x) — anxn + an_ xxn ~ 1 + ■ • ■ + axx + aQ. The coefficients are stored
in a one-dimensional array A, a0 being stored in A(l), ai in A(2), etc. Prepare a function
subprogram FUNC (A,N,B) to evaluate /(h). Also prepare a main program to read n, the
coefficients of /(x) beginning with a0, and b; to call FUNC; and to print b and/(h) with
appropriate labeling. The maximum value of n is fifty. Evaluate /(x)=:x4 + 1.2x3 +
1.7x2 - 1.9x + 0.8 atx = 2.2.

8-15. A number of interesting exercises can be devised around the effect of
computational precision upon numerical techniques. For example, the series ex is repre
sented as follows:

x^ x^^=l+x+-+-+-+...

where the zth term is x'/z!. In computing this series, the best approach is to compute the
ith term by multiplying the previous term by x/z.

To determine the effect of computational precision, first write a function subpro
gram to limit the precision of a number to three significant digits, using rounding for the
last digit. For example, 127568.2 is 128000. to three significant digits and 0.0012743 is
0.00127. The ALOG10 function can be used for this purpose.

In evaluating the above series, the function ROUND should be inserted after every
addition, subtraction, etc. For example, the statement

TERM = TERM * X/FLOAT(I)

should be programmed as follows:

TERM = ROUND (ROUND(TERM *X)/FL0AT(I))

Compute e directly according to the above series using three digits precision.
Terminate the computation of the series whenever ah additional term changes the value

Exercises 223

of the summation by less than 0.001 percent. Compare to the value of e 5-5 computed by
the EXP function. Then compute e~5S by noting that

g-5.5 _ l/e5.5

and evaluate e5'5 by the above series. Compare the value of e-5’5 computed in this
manner to the value obtained above.

f8-16. Prepare a function subprogram SUM (A, N, M) to evaluate

N

i - 1

where A is a one-dimensional array of M elements (M > N). Use this subprogram to solve
Exercise 7-15.

8-17. Prepare a function subprogram SPGRAV to perform the table lookup for
Exercise 6-23, and reprogram this exercise using this subprogram. Use a DATA statement
in the subprogram to enter the table as in Exercise 7-14.

8-18. Prepare a function subprogram called ANORM with arguments (A,N) to
compute the norm of the n X 1 vector a. Also prepare a main program to read n and a,
compute the norm, and print the result. See Exercise 5-54 for a more detailed discussion.
The maximum value for n is fifty.

8-19. Modify the function subprogram in the previous exercise so that the vector
is normalized (see Exercise 5-55). The main program should print the normalized vector
in addition to the norm of the original vector.

f8-20. Prepare a function subprogram DOT to compute the dot product of vectors
a and b. Use this subprogram to program Exercise 5-57. Transfer the number of
components in the vectors as an argument.

8-21. Use the function subprogram ANORM developed for Exercise 8-18 and the
subprogram DOT developed for Exercise 8-20 to program Exercise 5-58.

8-22. Prepare a subroutine to interchange column I with column J in an n X n
matrix A. The CALL statement should transfer I, J, A, N (the order of A), and M (the
dimensioned size of A). Prepare a program calling the above subroutine to switch columns
2 and 4 in the following matrix:

’12 1 4"
4 12 2
0 3 1-9
7 5 0 2

This program should read N, A, I, and J as data, and print the final result in a columnar
fashion.

f 8-23. Prepare a subroutine called SCALAR to multiply an n X 1 vector by a scalar
quantity. Do not destroy original vector. Use this subroutine along with the function
subprogram DOT in Exercise 8-20 to program Exercise 5-59.

8-24. Prepare a subroutine to normalize the n X 1 vector a. Use this subroutine to
program Exercise 5-55.

224 Functions and Subroutines

8-25. Prepare a subroutine to add an n X 1 vector a to an n X 1 vector b to obtain
an « X 1 vector c. Use this subroutine to program Exercise 5-56.

t8-26. Prepare a subroutine called TRANS to take the transpose of the n X n
matrix A. Use this subroutine to program Exercise 6-24. Let the maximum value of n be
twenty.

8-27. Prepare a subroutine called MTXSUM to add matrices A and B of order
n X m to obtain matrix C. Use this subroutine to program Exercise 6-25.

8-28. Prepare a subroutine to multiply an n X m matrix A by an mth-order vector
b to obtain zzth-order vector c. Use this subroutine to program Exercise 6-26.

f8-29. Prepare a subroutine to multiply an n X m matrix A by an m X k matrix B
to obtain an n X k ma trie C. Use this subroutine to solve Exercise 7-26.

8-30. Prepare a subroutine called SOLVE (A, B, X, N, M), where M is the dimen
sional size of A. B, and X, to solve the set of equations given in Exercise 6-16. Also
prepare a main program using this subroutine to solve the same set of equations as in
Exercise 6-16.

8-31. Exercise 6-17 discusses the Gauss reduction technique for solving sets of
linear algebraic equations. Prepare a subroutine called GAUSS (A, B, N, M), where M is
the dimensional size of A and B, to perform the Gauss reduction Prepare a main program
to perform the same objectives as required in Exercise 6-17.

f 8-32. Repeat Exercise 6-18 using the two subroutines prepared for the above two
examples. Use an input similar to that of Exercise 7-26.

8-33. Prepare a subroutine named CONV to convert a complex number to a
magnitude and an angle. Using this subroutine along with an appropriate program,
convert the following complex numbers and print the results:

1 + z2
-3 - z’5
~3 + z’2

2 - z3

Use two arguments, one for the real part and one for the imaginary part, to communicate
the complex number to the subroutine.

8-34. Prepare a subroutine to perform the least-squares analysis as performed by
the program in Figure 5-4. The main program should read the observations into arrays X
and Y. The subroutine should compute the regression coefficients which should then be
printed by the main program.

8-35. Prepare a subroutine to plot points as does the program in Figure 7-3. The
points should be read into arrays X and Y by a main program. This program should also
read maximum and minimum values for the coordinates of the axes. The number of rows
and columns should be fixed at forty and fifty, respectively.

9
Efficient Programming in Fortran*

A number of techniques can be used to decrease the running time and memory space
requirements for Fortran programs. The usage of these depends upon the characteristics
of a particular compiler and system.

Real mastery of a problem-oriented language implies the ability to describe a job so
that it will be done efficiently, i.e. with a minimum of unnecessary extra operations. At
present, concern for program efficiency is considered archaic by many people. However,
it assumes renewed importance with the advent of the many small computers which can
execute problem-oriented languages, in particular Fortran. It does not take much of a
Fortran program to tax the capabilities of these small machines. Therefore, efficiency can
make the difference between being able to run such a program in a straightforward
manner, or, on the other hand, having to segment the program, resort to machine
language, or look for a larger computer—all of which are inconvenient.

The measures that are necessary to improve program efficiency depend upon how
optimally each type of Fortran statement is handled by a given compiler. In general, the
compilers for the smaller machines do less well in this respect, so that more attention is
required from the programmer to obtain optimal code. Therefore, the programmer must
know the characteristics of the particular compiler which he uses. Because of the variety
of compilers now available and the rate at which new ones are being introduced, it is not
practical to give those characteristics here. They can be ascertained by examination of the
machine language output produced by the compiler from some benchmark programs.
(Ideally, such information should be provided by the computer manufacturers.)

Normally, the measures discussed in this paper save both running time and memory
space. (It is the latter that normally limits the size of problem that can be run on a small
computer.) Where a trade-off between the two is involved, that will be noted.

tCharles Erwin Cohn, Argonne National Laboratory, Argonne, Illinois. Reprinted by permis
sion from Software Age, Vol. 2, No. 5 (June 1968), pp.22-31. Work performed under the auspices of
the U.S. Atomic Energy Commission.

225

226 Efficient Programming in Fortran

Although the discussion in this paper is in terms of Fortran, it applies in general to
any problem-oriented language. The points discussed may seem trivial, but it is the
author’s experience that many “professional” programmers and practically all amateur
programmers are unaware of them. They are not covered in most texts.

9-1. Arithmetic Expressionsand Replacement Statements

Arithmetic expressions and replacement statements can be optimized by eliminating the
repeated calculation of redundant subexpressions. In the statement

Z = (A * B/C) * SIN(A * B/C)

the redundant subexpression (A * B/C), although appearing twice, should be calculated
only once and the result saved until it is needed again. Most compilers will do this
automatically if the redundant subexpression is set in parentheses, as shown here.

If a particularly rudimentary compiler does not optimize this case automatically,
the programmer must do it as follows:

TEMPI = A* B/C
Z = TEMPI *SIN(TEMP1)

Practically no compilers, except the most sophisticated, will optimize subexpres
sions that are redundant between two or more arithmetic replacement statements. These
must invariably be optimized by the programmer. For example, the statements

. X=SIN(A*B/C)
Y = COS(A * B/C)

should instead be written

TEMPI = A* B/C
X = SIN(TEMP1)
Y = COS(TEMPl)

In both cases, additional running time and memory space are required for the
instructions that store the result of the redundant subexpression in the memory location
assigned to the variable TEMPI. This extra time and space is outweighed, however, by the
savings resulting from elimination of the instructions required to calculate the subexpres
sion a second time. The net savings become greater, of course, as the subexpression
becomes more complicated and as it is used a greater number of times. The saving in time
is especially noteworthy, as floating-point operations are unduly time-consuming on small
computers that do not have floating-point hardware. The memory space consumed by the
temporary storage variable TEMPI can be used most efficiently by using the same name
wherever temporary storage is required.

If a loop contains an expression whose variables do not change value during the
course of the loop, time (but not space) may be saved by evaluating the expression once,
outside the loop, and holding the result until needed. For example, the loop

DO 141= 1,N
14 Y(I) = A * B *X(I)/C

can be rewritten as

9-3. Powers 227

TEMPI = A*B/C
DO 1 41= 1,N

14 Y(I) = TEMPI *X(I)

The latter version may incur a slight space penalty from the extra instructions needed to
store and retrieve the result of the expression.

Arithmetic operations on whole numbers are best done in integer mode, with the
results converted to real where needed.

9-2. Constants

Where mixed mode arithmetic is allowed, it is best to write constants in the dominant
mode of the expression to avoid needless conversions. For the expression 2 * A, most
compilers will store the 2 as an integer and convert it to real each time the expression is
evaluated. With the expression in the form 2. * A (i.e. with the decimal point shown) the
constant is stored as real and the conversion is eliminated.

Arithmetic operations on constants should be performed by the programmer before
writing an expression. In the expression 4. * A/3., the two constants are stored separately
by most compilers, and the division is performed each time the expression is evaluated. It
should instead be written 1.333333 * A. This and other transcendental constants should
be written to as many significant figures as the computer handles in its arithmetic, so that
full advantage is taken of the computer’s precision. There is no penalty for the additional
digits.

Some compilers store constants only as magnitudes. When a negative constant is
used as a subprogram argument, extra instructions to negate the constant are inserted.
Where the same negative constant is used in more than one argument list, it is efficient in
such a system to assign the value to a variable and use the variable name in the argument
lists. For example, instead of

CALL SUBRA(W,X,-3)

CALL SUBRB(Y,Z,-3)

you would write

M3 =-3

CALL SUBRA(W,X,M3)

CALL SUBRB(Y,Z,M3)

9-3. Powers

In many compilers the use of the “**” notation calls upon a special subroutine in the
library. If only small whole-number powers are to be calculated, the time and space

228 Efficient Programming in Fortran

required for this subroutine can be saved by avoiding the “**” notation. For example, toi
X ** 2 write X * X, for X ** 3 write X * X * X, and for X ** 4 write (X * X) * (X * X)
(with the redundant subexpression (X * X) handled as described above).

When the use of the “**” notation is appropriate, the mode of the exponent can
make a difference. That is because many systems use different library subroutines for real
or integer exponents of real arguments. If such a program already contains a real
exponent, memory space can be saved by making whole number exponents real, thus
eliminating any need for the integer exponent subroutine. Other systems have a sub
routine for real exponents only, and convert all integer exponents to real before calling
the subroutine. There, the exponents might as well be shown as real to begin with, thus
eliminating the conversion step.

9-4. Polynomials

Optimization of polynomials is useful for any compiler. For a polynomial of the form

Y=A + B*X + C*X**2 + D*X**3

calculation requires three additions, three multiplications, and two exponentiations.
There is a saving if the polynomial is instead written in nested form as

Y = A + X* (B + X * (C + X * D))

which is obviously equivalent. The additions and multiplications remain but the expo
nentiations have been eliminated. It is straightforward to put any polynomial into this
optimal form.

Special treatment is needed when one of the terms carries a minus sign. Since, in
the nested form, the minus sign multiplies all subsequent terms, the next term must also
carry a minus sign to cancel the effect of the previous minus. Thus, for example, the
polynomial

Z = A + B*X* C*X**2 + D*X**3 + E*X**4

would be written in nested form as

Z = A + X*(B - X*(C~X*(D + X*E)))

Care must be taken, of course, to close the expression with the correct number of
parentheses. The coefficients, shown here as single variables, may be expressions enclosed
in parentheses, with any redundancies handled as described above.

9-5. Statement Numbers

Ordinarily there is no penalty for attaching a number to a statement even when it is not
needed for reference by another statement. However, such a penalty can arise under two
special circumstances.

First, some small machine compilers are very limited in the size of programs that
they can compile because of limited memory space for the assignment tables that keep
track of variables, statement numbers, etc. There, elimination of unneeded statement
numbers will reduce the burden on the available space.

9-7. Subscripted Variables 229

Second, some compilers perform limited optimization on sequences of arithmetic
replacement statements. In particular, a variable needed in one statement may not have to
be fetched from memory if it is already in a register as the result of a previous statement.
This optimization is done only if none of the statements has a number, indicating that the
sequence is never entered in the middle. If the last statement in the sequence ends the
range of a DO, its number can be removed and attached to a CONTINUE statement
following. There is never a penalty for the use of a CONTINUE statement.

9-6. IF Statements

When the quantity calculated in the expression embedded in an IF statement, or any part
of it, is also used earlier or later in the program, the unnecessary repeated calculations of
that quantity should be avoided as described above for redundant subexpressions. For
example, the program segment

X=A*B+E
IF(A*B~C*D)1,2,2

1 Y=C*D+F
2 ...

can be optimized as

TEMPI = A*B
TEMP2 = C * D
X = TEMPI +E
IF (TEMPI - TEMP2)1,2,2

1 Y = TEMP2 + F
2 ...

(Note that two variables are needed for temporary storage.)
The Fortran logical IF statement is not handled efficiently by some compilers.

These set up an intermediate logical variable according to the results of the relational
operations specified, and then test this logical variable to determine the outcome of the
IF statement. With such a compiler it is more efficient to replace the logical IF statement
with one or more three-branch IF statements as required.

9-7. Subscripted Variables

Retrieval or storage of subscripted variables always requires more work than the retrieval
or storage of unsubscripted variables. This is because the address of the datum must be
calculated from the subscript combination. In more advanced systems, this arithmetic is
done through indexing so no additional time or space is required that can readily be
eliminated. However, less advanced compilers insert additional instructions to perform
address arithmetic wherever a subscripted variable is referenced. Here, it helps to cut
down on such references.

In the statement

C(I) = C(I) + X

there are two references to the same subscripted variable. A well-designed compiler will
perform the necessary address arithmetic only once and save the result until needed. If a

230 Efficient Programming in Fortran

compiler is not so optimized, nothing can be done here, because the two references to the
subscripted variable are on opposite sides of the equals sign.

In the statement

Z = C(I) * SIN(C(I) * D)

the compiler should again do the address arithmetic only once for the two references. If
that is not the case, the two references can here be treated as redundant subexpressions as
explained previously, because they appear on the same side of the equal sign.

When the same subscripted variable is referenced in two or more statements, these
references may be handled as redundant subexpressions, provided that the values of the
subscripts do not change through the sequence. The statements

DO 1 1= 1,M
IF (INDEX(I,1)- INDEX(I,2))2,1,2

2 JROW=INDEX(I,1)
JCOLUM = INDEX(I,2)

1 CONTINUE

may be optimized as

DO 1 1= 1,M
ITEMP1 = INDEX(I,1)
ITEMP2 = INDEX(I,2)
IF (ITEMP1 - ITEMP2)2,1,2

2 JROW = ITEMP1
JCOLUM = ITEMP2

1 CONTINUE

When the value of a subscripted variable is formed in one statement and used in a
subsequent statement, the extra reference may be eliminated similarly. The statements

DO4I = l.N
C(I) = A(I) + B(I)

4 WRITE (5,1000)A(I),B(I),C(I)

may be changed to

DO 4 I = 1,N
TEMPI = A(I)
TEMP2 = B(I)
TEMP3 = TEMPI + TEMP2
C(I) = TEMP3

4 WRITE (5,100)TEMPl ,TEMP2,TEMP3

However, if one of the statements has the subscripted variable on both sides of the equals
sign, such a change might not save anything if the compiler would do the address
arithmetic only once for the statement in any case.

Subscripted variable references with constant subscripts need not be handled in this
way. Most compilers will perform the address arithmetic during compilation, so that the
subscript reference incurs no penalty. For those systems which leave even this address

9-7. Subscripted Variables 231

arithmetic until program execution, an unsubscripted variable name may be made
equivalent to the element in question and used in all references. Thus, the coding

DIMENSION B(38)

B(14)= ...

may be replaced by

DIMENSION B(38)
EQUIVALENCE (B14,B(14))

B14 = ...

Sometimes a two- or three-dimensional array may be handled more efficiently by
making it equivalent to a one-dimensional array. The initialization of a matrix to zero is
usually written as

DIMENSION A(20,10)

DO 3 J = 1,10
DO 3 I = 1,20

3 A(I,J) = 0.

This may be done more efficiently with any compiler by

DIMENSION A(20,10),AA(200)
EQUIVALENCE (A,AA)

DO 3 I = 1,200
3 AA(I) = 0.

which saves address arithmetic as well as the instructions for the inner DO loop. This
approach clearly offers an advantage only in those special cases, such as the one shown, in
which computation of the subscript is not necessary.

The use of subscripts with any variable is justified only if the values so saved will
actually be needed later in the program. In the DO loop

DO 1 1 = 1,N

A(I) = . . .
1 WRITE (4,2)I,A(I),.. .

the variable A should carry subscripts only if the values assigned to it will be needed again
after the loop has been completed. If that information will not be needed later, time and
space will be saved by dropping the subscripts, handling A as a simple variable.

232 Efficient Programming in Fortran

9-8. Input-Output Statements

The input or output of an entire array may be specified either by a D<3-implying loop
over the array or by mention of the name of the array with no qualification. In many
systems, the latter saves space by causing fewer instructions to be compiled, and also
saves central processor time.

In many systems there is a space penalty for specifying additional input-output
modes, since each mode requires its own subroutine from the library. For example,
consider a program whose primary output is a printer. If the programmer decides to
include monitor output on the console typewriter for the convenience of the operator,
the space penalty incurred may include the typewriter output subroutine in addition to
the coding for the output statements. If memory space is critical, it might be best to
forego the monitor output or take it on the printer.

9-9. Subprograms

Use of subprogram organization incurs a time and space penalty because of the linkage
instructions. The space penalty is more than made up, however, if the subprogram is
called from more than one place in the main program, because the coding to perform the
subprogram’s functions need not be repeated at each place it is needed. If a subprogram is
called from only one place in the main program, it is most efficient to eliminate its
separate identity as a subprogram and incorporate it directly into the main program.
Where a subprogram is a function that can be executed in one replacement statement, it
may best be included in the main program as an arithmetic statement function (but see
below).

Attention must also be paid to the manner of linking variables between a main
program and a subprogram. There are two ways of doing this, through argument lists and
through COMMON statements, and each has its proper role. There is a time and space
penalty associated with the use of argument lists. The subprogram must contain coding
that will fetch the address of an argument from the main program and plant that address
where it is accessible to those instructions in the subprogram that require it. With
COMMON linkage, on the other hand, there is no penalty.

Therefore, we may state the following rule: when a variable in the subprogram
always corresponds to the same variable in the main program at every call of the
subprogram, then the linkage should be through COMMON (or parameters, for an
arithmetic statement function). On the other hand, when a variable in the subprogram
corresponds to different variables in the main program at different calls of the subpro
gram, then the linkage should be through the argument list. (Of course, a reference to a
function subprogram must always have at least one argument so that the compiler may
distinguish it from a reference to an ordinary variable.)

There is a time penalty and there may be a space penalty associated with each
additional reference to an argument within a subprogram. Therefore, if an unsubscripted
variable is referenced more than once in a subprogram, it could be worthwhile to use a
local variable in its stead. The local variable is made equal to the argument, or vice versa,
at the beginning or end of the subprogram, depending upon whether the argument is an
input or output variable. Examples are as follows:

9-10. In Summary 233

FUNCTION POLY(X)
COMMON A,B,C,D
XA = X
POLY = A + XA*(B + XA*(C+XA*D))
RETURN
END
SUBROUTINE SUM(TOTAL,X,N)
DIMENSION X(N)
TEMP = 0.
DOI 1 = 1,N

1 TEMP = TEMP+ X(I)
TOTAL = TEMP
RETURN
END

(For an array, this substitution would require a DO loop. It may or may not be
worthwhile, depending upon the length of the array and the number of times it is
referenced in the subprogram.)

Some compilers handle arithmetic statement functions like open subroutines or
macros, repeating the instructions for the function at each place where it is called in the
program. This saves a little time (by eliminating linkage) at the cost of much space. (If a
program on such a system is space-limited, the arithmetic statement functions should be
replaced with function subprograms.

COMMON storage has an important use in addition to the linkage of variables. In
most systems, variables declared as COMMON (blank COMMON for Fortran IV) are
assigned to the memory area that is occupied by the loader during object-program
loading. This space is otherwise unavailable to the Fortran programmer. Therefore, a
program that taxes memory can obtain some relief by use of COMMON storage, even
when subprogram linkage is not in question. For best use to be made of this feature,
enough arrays and unsubscripted variables should be declared COMMON to fill the loader
area.

9-10. In Summary

We have seen how the efficiency of a Fortran program can be improved through a number
of measures, depending on the properties of the compiler and system. The saving from
each of these measures is small individually, but throughout a program their sum total can
be significant. If applied to all the production programs in a computer installation, b
worthwhile reduction can be made in the installation’s workload.

Appendix

Types of Variables

Up to this point only real and integer variables and constants have been considered.
Fortran IV will also recognize double-precision, complex, and logical variables. Although
most programmers find only occasional need for these, their advantages in certain
applications make their study worthwhile. For example, problems in electrical engineer
ing are considerably facilitated by using complex variables, and logical variables are used
advantageously for problems in Boolean algebra. Double precision is often necessary for
matrix inversion, solution of simultaneous equations, etc.

A-1. Complex Variables

A single complex variable is in reality two floating-point (real) variables: one is the real
part and the other is the imaginary part of the complex number. To denote which
variables are to be treated as complex, the type statement COMPLEX is used in the
following manner:

COMPLEX A,I,B(20),J(2,3,5)

Note that a complex variable may also be subscripted.
The real advantage in using complex variables in Fortran is that the five arithmetic

operations of addition, subtraction, multiplication, division and exponentiation (complex
variable raised to integer exponent only) are defined as usual. The permissible operations
with complex variables are shown in Figure A-1. In addition, the complex functions are
defined as follows (z = V~T):

CABS (a + ib) = y/a2 + 62
CEXP (a + ib) = ea (cos b + i sin b)
CLOG (a + ib)= 1/2 log (a2 + b2) + i tan-1 (b/a)
CSIN (a + ib) = sin (a cosh b) + i cos (zz sinh b)

CCOS (a + ib) = cos (a cosh b) - i sin (a sinh b)
CONJG (a + ib) = a - ib

These complex functions are used in the same manner as the real functions described
previously, with the exception that the argument of all must be complex and the result,
except for CABS, is also complex. A complete list is given in Appendix C.

The value of a complex variable can be assigned by either a READ statement, an
arithmetic statement, or a DATA statement. The arithmetic assignment statement makes
use of the CMPLX function as illustrated below

C = CMPLX(A,B)

where C is a complex variable, and A and B are real variables, constants, or expressions.

235

236 Appendix A

Addition, Subtraction, Multiplication, Division

+ - * / Real Integer Complex Double
Precision Logical

Real Yes
Machine
dependent Yes Yes No

Integer
Machine-
dependent Yes No No No

Complex Yes No Yes No No

Double -
precision Yes No No Yes No

Logical No No No No No

Exponentiation

"■\Exponent

8ase^\. Real Integer Complex Double-
Precision Logical

Real Yes Yes No Yes No

Integer No Yes No No No

Complex No Yes No No No

Double-
precision Yes Yes No Yes No

Logical No No No No No

Relational Operators

.GT. .GE. .LT.

.LE. .EQ. ,NE. Real Integer Complex Double
Precision Logical

Real Yes No No Yes No

Integer No Yes No No No

Complex No No No No No

Double
precision Yes No No Yes No

Logical No No No No No

Figure A-1. Permissible operations for the types of variables

The result is C - A + zB. On input, two real variables, the first being the real part and the
second being the imaginary part, are read for each complex variable. For example, if C is
a complex variable, the READ and FORMAT statements are

READ (5,3)C
3 FORMAT (IX,F10.3,E20.2)

A similar situation exists for output. A complex variable appearing in a DATA statement
also requires two constants

DATA C/10.-1.0/ ■

Types of Variables 237

Arithmetic statements involving complex variables do not permit a change of
variable type across the equals sign. That is, the results of a complex expression must be
stored in a complex variable. However, it is permissible (see Figure 8-1) to add, subtract,
multiply, and divide complex and real variables, the result being in the complex mode.

To illustrate these points, consider the evaluation of the following expression:

g + a = ^ + ^pW-fe + i),)

The program reads c, d + if, and g + ih, calculates a + ib, and prints the results as shown
in Figure A-2. The use of the COMPLEX type statement $ in line 1 and the functions
CEXP and CMPLX in line 4 should be noted.

A-2. Double Precision

On most computers the real variable is accurate to about seven or eight significant figures,
depending on the word length of the machine. In some cases these are simply not enough
digits for sufficient accuracy. In such cases the double-precision feature of Fortran IV is
used, at least doubling the number of significant digits. The double-precision variable is
designated by the DOUBLE PRECISION type statement, an example of which is

DOUBLE PRECISION A, J, C(12,12)

Note that a double-precision variable may also be subscripted.
A set of functions have also been developed for double-precision variables, 'the more

common functions being

1
2

3

4
5
6
7
10

COMPL EXA,D,G,CEXP,CMPLX
READ(5,2)C,D,G
FORMAT(F10.0/12F10.0))
A=C*D*CEXP(CMPLX(O.,C))ZG-G
WRITE(6,3)A
FORMAT 114 HlREAL PART I ,F10.?/UH
STOP
END

IMAGINARY PART IS ,F10.3)

2

3

(a) Program

2.1
-1.7 1.2
0.2 -0.7

(b) Input data

REAL PART IS 5.410
IMAGINARY PART IS -1.436

(c) Output

Figure A-2. Illustration of the use of complex variables

| In some versions of Fortran, the functions CEXP and CMPLX must also be included in the
type statement.

238 Appendix A

DABS absolute value
DSQRT square root
DSIN sine
DCOS cosine
DATAN arctangent
DEXP exponentiation
DLOG natural logarithm

The argument as well as the result of each of these functions is in double precision.
The double-precision variable may be assigned a value by either an arithmetic

statement, a READ statement, or a DATA statement. An example of an arithmetic
statement is

A= 1.71D2

where the D is the double-precision equivalent of E. On input and output, the FORMAT
field specification corresponding to a double-precision variable is the D field, which is
analogous to the E field. For example, a READ statement for A is

READ (5,5)A
5 FORMAT (D20.8)

The output is handled in a similar fashion. The DATA statement also follows similarly, an
example being

DATA A/1.71D2/

Change of mode across the equals sign in arithmetic statements is permissible.
Integer to double precision, double precision to integer, real to double precision, and
double precision to real are all legal. Double-precision and real variables may also be
mixed in an arithmetic statement. Figure A-l gives the permissible operations using
double-precision variables.

As an example of the use of double precision, consider the solution of the
equations

x + 2y = 1
1.0017 262x+ 1.9991278y = 1

These equations can be solved for* andy by double precision. The equations

+ bxy = ct
a2x + b2y = c2

have solutions

y = (cia2 - c2a1')/(bia2 - b2a2)
x = (ci- b^/ai

The program and the results are shown in Figure A-3. Solution of large sets of simultane
ous equations is one application frequently requiring double precision, and one of the
exercises at the end of this chapter treats the Gauss reduction in double precision.

Types of Variables 239

DOUBLE PRECISION RESULTS
X = 0.999947847 fl77377 ID 00
Y = 0.5215212262295C1ID-04

1
2

DOUBLE PRECISION ADI 2),BD(2),CD(2),XD,YD
READ(5,2) (AD (I),BD(I),CD(I) ,1=1,2)

1 2 FORMAT I3D8.O)
4
5
6

YD=(CD(1)«AD(2 1-C D(2) • AD(1)
XD=(CD(1)-RD(1)*YD)/AD(1)
to R I T F (6,4) X D » Y-D

)/(BD(l)*AD(2)-BD(2)»AD(l))

7
10
11

4 FORMATI25H DOUBLE PRECISION
STOP
END

(a) Program

1.D00 l.DOO l.DOO
1.710-8 2.78D00 1.45D-4

(b) Input data

RESULTS/5H X = D30.16/5H Y = D30.16)

(c) Output

Figure A-3. Illustration of the use of double precision

A-3. Logical Operations

In Chapter 4 the use of the logical IF was introduced along with a few logical expressions.
Entire logical equations can be programmed so that the computer can solve Boolean
algebra or other problems involving logic. The logical variables can assume only the values
true or false, and a logical constant is either .TRUE, or FALSE.. A logical variable must
be specified in a LOGICAL type statement such as the following:

LOGICAL A,J,K(10)

Again subscripting is permitted.
A logical variable may be assigned values by either a logical assignment statement

(analogous to the arithmetic assignment statement), the DATA statement, or the READ
statement. An example of the logical assignment statement is

J = .TRUE.

which sets J to be true. Similarly, the DATA statement is used as follows:

DATA J/.TRUE./

The input and output of logical information is by the L field. Consider the following
input statements:

READ (5,5) J
5 FORMAT (L5)

240 Appendix A

Although the width of the L field is five columns the scan routine looks at only the first
nonblank character in the field. If it is a T, J is set true; if an F or if the field is
completely blank, J is set false; if neither, a read error occurs. The remaining columns are
completely ignored, and may contain anything. On output, a T or an F depending on the
value of the logical variable, is inserted in the rightmost column of the L field (right
justified).

In Chapter 4 the relational operator .LT., .LE., .EQ., .NE., .GT. and .GE. were
defined along with logical operators .AND., .OR. and .NOT.. Figure 8-1 gives the
permissible operations using .LT., .LE., .EQ., .NE., .GT. and .GE.. Using these operators,
logical assignment statements can be constructed as follows:

J = A.GT.B

If A > B, J is .TRUE.; otherwise, J is .FALSE.. Combinations of logical operators and
relational operators to form logical expressions are also permissible, the rules regarding
their use being

1. Use of parentheses in a logical expression to control order of execution is
analogous to their use in an arithmetic expression.

2. The precedence of execution is

Order of
Precedence

1 (highest)

2

3
4
5 (lowest)

Operation
Any arithmetic operations appearing
in the logical expression
The relational operators .GT., .GE.,
.LT., .LE., .EQ., and .NE.
.NOT.
.AND.
.OR.

According to these rules, the logical expression

A.LT.B + C.AND..NOT.I.EQ.J.OR.K.LE.M

is equivalent to

11 i-------- 11 I I---------111 i-----------1
((A.LT.(B + C)).AND.(.NOT.(I.EQ.J))).OR.(K.LE.M)

The use of the logical IF in the following fashion is sometimes advantageous:

LOGICAL TEST
TEST = A.GT.B
IF (TEST)C = D + G
IF (.NOT.TEST)C = ALOG 10(D)

That is, logical variables can be used directly in the logical IF.
To illustrate the use of logical expressions, consider programming the computer to

solve the logic circuit corresponding to the binary half-adder in Figure A-4. For all
possible combinations of states for A and B (the inputs to the circuit), the states of C and
D (the outputs) are to be determined. The results from the program should be as follows:

Types of Variables 241

Represents ,0R.

Represents .AND.

Represents .N0T.

Figure A-4. Binary half-adder

A B C D
.FALSE. .FALSE. .FALSE. .FALSE.
.FALSE. .TRUE. .FALSE. .TRUE
.TRUE. .FALSE. .FALSE. .TRUE.
.TRUE. .TRUE. .TRUE. .FALSE.

The program reads the values of A and B, computes C and D, and prints the results. The
construction of the table with this program is illustrated irt Figure A-5.

A-4. Type Statements fot the IBM System 360

On the IBM System 360 and comparable machines of other manufacturers, the standard
word length is thirty-two bits (binary digits). These words are said to consist of four bytes
(eight binary digits). The programmer has various options for modifying the standard

, convention, as shown below:

Variable
Type

INTEGER
REAL
COMPLEX
LOGICAL

Standard
Length

4 bytes (32 bits)
4 bytes (32 bits)
8 bytes (64 bits)
4 bytes (32 bits)

Optional
Length

2 bytes (16 bits)
8 bytes (64 bits)

16 bytes (128 bits)
1 byte (8 bits)

242 Appendix A

(a) Program

1 LOGICAL A,B,G,D.t
2 D02I = 1,4
3 READ(5,3)A,B
4 3 FORMAT(2L 5)
5 E=A.OR.B
6 C=A.AND.B
7 D=E.AND..NOT.C
10 2 WR I TE (6,4)A,B,C , D
11 4 FORMAT(1X,AL 5)
12 STOP
13 END

F F
F I
T F
I T

(b) Input data
F F F F
F r F T
I F F T
T T T F

(c) Output

Figure A-5. Illustration of the use of logical variables

These types may be selected by either Fortran conventions (standard length), by explicit
type statements (REAL, COMPLEX, INTEGER, LOGICAL), or by the IMPLICIT state
ment. The results of arithmetic operations involving the various modes are given in Figure
A-6. Note that mixed mode is permitted.

The REAL statement is essentially the same as described in the previous section
except as illustrated in the following examples:

REAL * 4 I,J,C(10)
REAL *8 A(15)

The number following the asterisk is the number of bytes to be used. The second example
is equivalent to the DOUBLE PRECISION statement described in Section A-2.

This convention is directly extendable to the other explicit type statements. One
notable feature is that the statement

COMPLEX * 16 AX(5)

causes the array AX to consist of double-precision complex variables.
It is also worth noting that the DATA statement and the explicit type statement

may be combined. For example, the statement

INTEGER B(2)/’INVERSE7

causes this alphanumeric information to be stored in this array.
All the type statements discussed previously can only change the type of the

variables included in the list. The IMPLICIT statement is used to modify the standard

Types of Variables 243

Exponent

+ -*/ INTEGER *2 INTEGER *4 REALM REAL *8 COMPLEX * 8 COMPLEX * 16
INTEGER * 2
INTEGER *4

INTEGER *2
INTEGER *4

INTEGER *4
INTEGER *4

REAL *4
REALM

REALM
REALM

COMPLEX *8
COMPLEX *8

COMPLEX * 16
COMPLEX * 16

REAL *4
REAL*8

REALM
REAL*8

REAL *4
REALM

REALM
REAL * 8

REALM
REAL *8

COMPLEX *8
COMPLEX * 16

COMPLEX * 16
COMPLEX * 16

COMPLEX*8
COMPLEX * 16

COMPLEX *8
COMPLEX * 16

COMPLEX *8
COMPLEX * 16

COMPLEX *8
COMPLEX * 16

COMPLEX * 16
COMPLEX * 16

COMPLEX * 16
COMPLEX * 16

COMPLEX * 16
COMPLEX * 16

BA
SE

* * INTEGER * 2 INTEGER *4 REAL *4 REALM COMPLEX *8 COMPLEX * 16
INTEGER *2 INTEGER * 2 INTEGER *4 REALM REAL *8 no no
INTEGER *4 INTEGER *4 INTEGER *4 REAL *4 REAL *8 no no
REALM REALM REAL *4 REAL *4 REALM no no
REALM REALM REAL*8 REAL *8 REALM no no
COMPLEX *8 COMPLEX *8 COMPLEX *8 no no no no
COMPLEX * 16 COMPLEX * 16 COMPLEX * 16 no no no no

Figure A-6. Type of result of arithmetic operations on the IBM System 360

Fortran convention (i.e., variables beginning with I through N are integer, others real).
For example, the statement

IMPLICIT INTEGER * 2(1 - N), REAL * 8(0- Y), COMPLEX * 8(C,Z)

causes variables beginning with I through N to be treated as two-byte integer variables,
variables beginning with O through Y as double-precision real variables, and variables
beginning with C and Z as complex variables. All other variables are treated as usual. It is
also noteworthy that the statement

IMPLICIT REAL* 8(A- H,0- Z,$)

would convert a normal single-precision to a double-precision program. Some compilers in
this category would also automatically retype any functions if necessary. The IMPLICIT
statement must be the first statement in a main program or the second statement in a
subprogram.

Appendix

Various System Configurations

Source: D. D. McCracken,/! Guide to Fortran IVProgramming. Wiley, New York, 1965, with updating by authors.

ASA
Basic

A SI
6000
Series

Bur
roughs
B5500

Com
puter

Control
DDP-24,

116
124,224

CDC
1604
3600
3800

CDC
1700

CDC
6000
Series PDP-6

EA1
640

EA1
8400

GE
200

Series

GE
400

Series

GE
600

Series

Maximum statement number 9999 99999 99999 99999 99999 99999 99999 99999 99999 99999 32767 32767 32767 99999

Maximum continuation cards 5 19
No

limit 9
No

limit
No

limit 5
No

limit 19 19 19
No

limit
No

limit 19

Specification statements must
precede first executable
statement

* * * ■ ■ ■ * ♦ * ♦ ♦

INTEGER constant, maximum
digits 7 11 7 14 5 18 11 5 5 6 7 11

INTEGER maximum magnitude 2”-l 23’-l 223—1 2”—1 215—1 2s’-1 23S-1 215-1 2's-i 2”-l 223-l 235—1

REAL constant, maximum digits 11 11 7 11 7 15 8 7 7 9 8 9

DOUBLE PRECISION
constant, digits 14 25 29 16 14 14 18 19

REAL, DOUBLE PRECISION
magnitude 1076 IO6’ 107‘ IO30” IO30’ IO3’ 1038 IO38 1078 IO'27 10“

Variable name maximum
characters 5 6 6 6 6 8 6 8

No
limit 6 6 12 6 6

Mixed mode arithmetic
permitted * ♦ ♦ ♦ ♦ * ♦

Assigned GO TO ♦ * * * * * ♦ ♦ ♦ * * ♦ ♦

Logical IF, relations * * ♦ * ♦ * ♦ * ♦ ♦ * ♦

DOUBLE PRECISION operations * ♦ * ♦ ♦ ♦ ♦ * ♦

COMPLEX operations * ♦ ■ • ♦ ■ • ♦

LOGICAL operations * ■ ♦ ■ ♦ • ■ ■ * ■ ■

Dimension data in type
statements * * * * * » ■ ■ ■ ♦

Labeled COMMON ♦ ♦ * ♦ ■ ■ a 4 ■ ♦

Maximum array dimensions 2 3 3 3 3 3 3 3 3 3 7 63 3 7

Adjustable dimensions * ♦ . ■ ♦ ■ ■ ♦ ■ ♦ ♦

Zero and negative subscripts ♦ ■

Subscripts may be any
expression, with subscripted
variables permitted

• • ♦

■

♦

Subroutine multiple entries
and/or nonstandard returns * *

DATA statement ♦ ♦ * ♦ ♦ ♦ * ♦ * * ♦ ♦ ♦

Object time FORMAT ♦ * ♦ * ♦ ♦ ♦ ♦ * * ■ ♦

244

Various System Configurations 245

Honey
well
200

Honey
well
800
1800

IBM
1130
1800

IBM
1401
1440
1460

IBM
1410
7010

IBM
7040
7044

(16-32K)

IBM
7090
7094

IBM
360/370
D level
E level

IBM
360

H level

NCR
Century
Series

RCA
Spectra

70
Size A

RCA
Spectra

70
Size B

SDS
Sigma

2

SDS
Sigma
5&7

Univac
111

Univac
1107

99999 32767 99999 99999 99999 99999 32767 99999 99999 99999 99999 99999 99999 99999 32767 32767

9 19 5 9 9 9 19 19 19 19 19 19
No

limit
No

limit 9 19

♦ ♦ ♦ * * * ♦ ♦

20 13 5 20 20 11 11 10 10 10 10 10 5 10 6 11

2”’-l 2**—1 215—1 10ro-l 10”-1 235-l 23S-1 231 —1 231 —1 23l-l 23,-l 231 —1 2,!—1 231 —1 10‘ -1 23s-l

20 12 7 20 18 9 9 7 7 7 7 7 7 7 10 9

20 16 16 16 16 16 16 16 16 17

10” 10” 10” 10” IO3* IO38 10” 10” 10” 10” 10” 10” 10so IO38

6 6 5 6 6 6 6 6 6 8 6 6 6
No

limit 6 6

♦ * * ♦ * * ■ B

♦ ♦ * * * ♦ * B * ♦

♦ ♦ * * ♦ * ♦ * * ♦ * *

♦ ♦ ♦ * * * * * * *

♦ ♦ ♦ ♦ * ♦ * ♦

♦ * ♦ ♦ ♦ ♦ * * . ♦ ♦ B

♦ ♦ ♦ ♦ ♦ * ♦ ♦ * * ♦ * ♦

♦ ♦ 1800 * ♦ * * ■ * ♦ ♦

3 3 3 3 3 3 7 3 7
No

limit 3 7 3
No

limit 3 7

♦ ♦ * ♦ * * * ♦ * *

*

♦ *

* ♦ * *
♦

♦

4 * 1800 ♦ * ♦ * * ■ * ■ ♦ ♦

♦ * ♦ * « ♦ * * * ♦ * ♦

Appendix

Fortran IV Library Functions

The functions in the following list are common to most Fortran IV systems. However,
specific installations often add to the basic list as their needs warrant.

Integer functions

Function
name

Type of
argument

Number of
arguments Examples Explanation

IABS Integer 1 I = IABS (J) Absolute value of argument
INT Real 1 I = INT (A)) Convert floating-point to
IFIX Real 1 I = IFIX (A) J fixed-point
IDINT Double- 1 I = IDINT (D) Convert double-precision

precision to fixed-point
MOD Integer 2 I = MOD (J,K) Remaindering arg 1 — [arg 1/

arg 2] arg 2, where [Y] = inte
gral part of X

MAXO
MAXI

Integer
Real \V

\V

to
 to 1 = MAXO (J,K,L, .

I = MAXI (X,Y,Z,
■) I

■ •)/ Largest of set of arguments

MINO
MINI

Integer
Real

C9 (N
A

\ A
\

I = MINO (J,K,L, . .
I = MINI (X,Y,Z, .

•) I
Smallest of set of arguments

ISIGN Integer 2 I = ISIGN (J,K) Sign of arg 2 X arg 1
IDIM Integer 2 I = IDIM (J,K) Positive difference: arg 1 — min

(arg 1, arg 2)

Rea! functions

Function
name

Type of
argument

Number of
arguments Examples Explanation

ABS Real 1 X - ABS (Y) Absolute value of argument
AINT Real 1 X = AINT (Y) Truncation: sign of argument

times absolute value of the
largest integer in argument

AMOD Real 2 X = AMOD (Y,Z) Remaindering: arg 1 — [arg 1/
arg 2] arg 2, where [Y] = inte
gral part of Y

AMAXO Integer >2 X = AMAXO (I,J,K, . .))
X = AMAX1 (R,S,T, . .)f Largest value of argumentsAMAX1 Real >2

AMINO Integer >2 X = AMINO (I,J,K, . .) i
X = AMIN 1 (R,S,T, . .) f Smallest value of argumentsAMIN1 Real >2

FLOAT Integer 1 X = FLOAT (I) Convert fixed point to floating
point

246

Fortran IV Library Functions 247

Rea! functions (Continued)

Function
name

Type of
argument

Number of
arguments Examples Explanation

SIGN Real 2 X = SIGN (Y,Z) Transfer of sign: sign of arg 2
times arg 1

DIM Real 2 X = DIM (Y.Z) Positive difference: arg 1 - min
(arg 1, arg 2)

SNGL Double
precision

1 X = SNGL (D) Convert double precision to
single precision

REAL Complex 1 X = REAL (C) Obtaining real part of a complex
number

AIMAG Complex 1 X = AIMAG (C) Obtaining the imaginary part
of a complex number

SQRT Real 1 X = SQRT (Y) x = x/y : the square root
EXP Real 1 X = EXP(Y) x = ey: the natural anti

logarithm of y
ALOG Real 1 X = ALOG (Y) x = In y: the natural

logarithm ofy
ALOG 10 Real 1 X = ALOG 10 (Y) x = logw (y): the common loga

rithm of y
SIN Real 1 X = SIN (Y) x = sin(y): the trigonometric

sine
COS Real 1 X = COS (Y) x = cos(y): the trigonometric

cosine
ATAN Real 1 X = ATAN (Y) x = tan’1 (y), the arctangent ofy:

result is placed in first two
quadrants depending upon sign
of y

ATAN2 Real 2 X = ATAN2 (Y,Z) x = tan’1 (y/z): same as ATAN
except that result is placed in
proper quadrant

ARSIN Real 1 X = ARSIN (Y) x = sin’1 (y): the arcsine of y
ARCOS Real 1 X = ARSIN (Y) x = cos’1 (y): the arcsine ofy
TANH Real 1 X = TANH (Y) x = tanh (y): the hyperbolic

tangent
CABS Complex 1 X= CABS (C) Magnitude of a complex num-

ber: x = \/<z2 + h2 , where c =
a + ib

Double-precision functions

Function
name

Type of
argument

Number of
arguments Examples Explanation

DABS Double
precision

1 D = DABS (DA) Absolute value of argument

DMAX1 Double
precision

>2 D - DMAX1 (DA, DB,
...)

Largest of set of arguments

DMIN1 Double
precision

>2 D = DMIN1 (DA, DB, Smallest of set of arguments

DSIGN Double
precision

2 D = DSIGN (DA, DB) Transfer of sign: sign of arg
2 times arg 1

248 Appendix C

Double-precision functions (Continued)

Function
name

Type of
argument

Number of
arguments Examples Explanation

DBLE Real 1 D =DBLE(X) Convert single-precision to
double-precision

DMOD Double-
precision

2 D = DMOD (DA, DB) Remaindering: arg 1 - [arg
1/arg 2] arg 2, where [X] -
integral part of X

DSQRT Double
precision

1 D = DSQRT (DA) Double-precision equivalent
of SQRT

DEXP Double
precision

1 D = DEXP (DA) Double-precision equivalent
of EXP

DLOG Double
precision

1 D = DLOG(DA) Double-precision equivalent
of ALOG

DLOG 10 Double
precision

1 D = DLOG 10 (DA) Double-precision equivalent
of ALOG 10

DSIN Double
precision

1 D = DSIN (DA) Double-precision equivalent
of SIN

DCOS Double
precision

1 D = DCOS (DA) Double-precision equivalent
of COS

DATAN Double
precision

1 D = DATAN(DA) Double-precision equivalent
of ATAN

DATAN2 Double
precision

1 D = DATAN2(DA) Double-precision equivalent
of ATAN2

Complex functions

Function
name

Type of
argument

Number of
arguments Examples Explanation

CMPLX Real 2 C = CMPLX (X,Y) Express two arguments in
complex form, C = X + iY

CONJG Complex 1 C = CONJG (CA) Obtain complex conjugate of
argument

CSQRT Complex 1 C = CSQRT (CA) Complex square-root function
CEXP Complex 1 C = CEXP (CA) Complex exponential
CLOG Complex 1 C = CLOG (CA) Complex natural logarithm
CSIN Complex 1 C = CSIN (CA) Complex sine
CCOS Complex 1 C = CCOS (CA) Complex cosine

Appendix

American Standard
IFlowchart Symbols

Any text or notes may be placed inside or beside these symbols:

Basic Input-Output Symbol
(represents an input or out
put operation if one of the
special symbols is not used)

Punched-card Input or Output

Communication Link (direct
connection between remote
locations)

Processing Symbol (arith
metic operations)

Magnetic Tape Input or Out
put Decision Symbol

Punched Paper Tape Input or
Output Predefined Process (subroutine)

Printed Output (document)
Manual Operation

Manual Input (keyboard)

Display Output (video devices,
etc.)

On-line Storage (magnetic
drums, discs, etc.)

Off-line Storage

Terminal Symbol (stop or
start)

Auxiliary Operation of Off
line Equipment

Direction of Flow (with or
without arrowheads)

Connector or Junction (to be
used when the flow direction
is broken)

Annotation Symbol (can be
used to annotate the flow
chart with additional com
ments)

t These symbols are substantially those recommended by the X6 Committee to the United
States of America Standards Institute, New York City.

249

Appendix

Solutions to Selected Exercises

Chapter 2

2-1.

(C) -16 (0)86467

2-3.

(E)8.2E-6

2-4.

(AJ-27281.0

2-5.

(C) EXPONENT I AL PRESENT ANO NORMALLY TOO LARGE

2-6.

(C) I MBCDDED COMMA

2-7.

(6(NORMALLY TOO LARGE

2-8.

(C) IMBEDDED COMMA and NO DECIMAL

2-9.

(B)REAL (E)UN ACC EPTABLE (I)REAL

2-10.

(0)UNACCEPTABLE (E)UNACCEPTABLE (J)INTEGER

2-11.

(A) (A + B)/(C+O) (D) A*D/(C + 10.0)

2-12.

(B) (A + B)/(C + D/E) (E)A/B+C*D/(E*F*G)

250

Solutions to Selected Exercises 251

2-13.

(D) (P*R/S)♦♦(T-1« 0)

2-14.

(A) 3 (E)O

2-15.

< B) 0•0 (F)4#3333333

2-16.

(B)X=COS(Y)+X*SIN(Z) (F)X=Y♦SIN{3♦1416ZZ)

2-17.

(B)X=ABS((1.O+COS!Y))/(1.0-COS(Y)))
(E) X = AL CG 1 0 (A BS (S I N (Y) ZCCS (Y)))

2-18.

(B)X=Y**0»5*Z**(I + l)*FXP(-Y)
(F)X - ALCG 1 0(AES! 1,OZSQRT!COS(Y))))*AL0G10(A8S(EXP(-X)))

2-19.

(C)T*O ADJACENT ARITHMETIC OPERATIONS
(F)MIXEC MODE. 3 IS AN INTEGER AND Y IS REAL* SHOULD READ

(Y + 3*0) ♦ ♦ 2

2-20.

(C)INVALID VARIABLE NAME ON LEFT OF EQUATION* MULTIPLICATION
SIGN CANNOT BE USED IN VARIABLE NAME*

(F)MIXED MODE*

Chapter 3

3-1 (c).

RE AD(5,25)X.J,YES
25 FORMAT!F10.2, I 10.F10.2)

or

RE AD,X.J,YES

3-2(d).

RE AC (5.10 1) CONST,OUK ID, A, J
101 FORMAT!3F10.2, I 10)

or

READ.CONST,CUK ID,A,J

252 Appendix E

3-5(a).

dR!TE(6.13)«.R.C4r,CO.ANS
13 FCRMAT(1X,5(E2?»7,’X))

3-5(b).

WRITE!6.51) It J.KID.ANS
51 FORMAT(IX , 3(I 10.3X)*E20a7)

3-5(c).

WRITE(6.1 30) X.J.YcS.ANS
130 FORMAT(lX.E2Ua7.3X. I 10.3X,E2C*7,3X,E2C»7)

3-5(d).
\»R I TEC 6,33) A.S IMPLE . GO . I . ANS

3 3 FORMAT! IX,3CE20.7.3X), I10,3X,E20.7>

3-8.

C INPUT
C

I RE ACC 5 . 1) A,P,C . S
C
C CALCULATE T
C

2 T = A*CCS<S)+l?*SIMSI+C*rAMS)
c
C OUTPUT
c

3 WRITEC6,2)A,0.C.S.T
4 STCP

C
c FORMAT STATEMENTS
c

5 I FORMATC4F10a2)
6 2 FORMAT(IX.4F10,2,E20,7)
7 ENO

Input

5*0 6.92 la 73 1*04 72

Output _

Sa 0 0 6 a 92 1.73 1.05 0 5,11489 3 fjF 02

3-12.

C INPUT
C

1 READ!5, 1) A.H.C
C
C CALCULATE Al
C

2 CUM l=l»O + A*e*C
3 DU M 2 = 1 « 0 ♦ (A ♦ ♦ 2/(8* C)) * * (1 0/ 3,0)
4 Al = l,C/(laO-DUM 1/OUM2)

Solutions to Selected Exercises 253

c
C CALCULATE A2
C

5 A2 = TAN (A 1) 4ALCG(ABS(A 1))
C
C CUTPUT
C

6 WRITE(6,2)A,B.C,A1,A2
7 STCP

C
c FORMAT statements
c

8 1 FORMAT!3F10.2)
9 2 FORMAT(IX,3F10•2,2F20.7)

10 END

Input

3.0 5.0 0*33333

Output

3*00 5*00 0.33 -0.8486789E 00 -0.1299377E 01

3-15.

C INPUT
C

1 REACI5,1 1X.Y.Z
C
C CALCULATION OF Al, A2, AND A3
C

2 A 1 = X ♦ ♦ 3 4 X ♦ 4 2 4 X 4 i » 0
3 A 2 = Y ♦ ♦ 3 4 Y ♦ 4 2 4 Y 4 1.0 + A 1
4 A 3 = 2 ♦ ♦ 3 4 Z + * 2 4 2 4 1.0 4 A 2

C
C CUTPUT
C

5 WRITE(6,2>X,Y,Z. ,A1,A2,A3
6 STCP

C
C FORMAT STATEMENTS
C

7 1 FORMAT)3F 10.2 1
B 2 FCRMAT(1 X,3F10*2/1 X , 3F20. 7)
9 END

Input

-17.5 8 •» 0 3.

Output

-17.50 8.00 3.00
-0.5069625E 04 -O.4484625E 04 -0.4444625E 04

3-18.
C INPUT
C

1 REACC5, 1 >R.S,T,U,X.Y

254 Appendix E

c
C CALCULATIONS
C

2 UP=R-S+T-U+X-Y
3 DCWN=R+S*T+U+X+Y
4 FIRST = R-»T + X
5 SEC=S+U+Y
6 FINAL=EXP(UP)+SGRT(DOWN)+COS(FIRST)

C
C AESCLUTt VALUE CF UP MUST BE
C LESS TFAN E 8. * 2 9
c
c OUTPUT
C

7 WRITE(6.2)R.S.T,U.X,Y,UP.DOWN,FIRST.SEC.FINAL
8 STCP

C
C FOPMAT STATEMENTS
C

9 1 FORMAT I2F10.2/2F10•2/2F10•2)
10 2 FOR M AT (1 X . EF 1 0.2/1 X » 3E 20 « 7 / 1 X . E 20. 7,30 X . F 2 0 • 7)
11 END

Input

10. 9.
« > 7 .
6« 5,

Output

10.00 9.0C 8.00 7.CO 6.00 5.00
OsJOOOOCOE 31 0.4500000E 02 C.24Q0O0OE 02
0.2100000E 02 0.2721788E 02

Chapter 4

4-1 (c).

C INPUT
C

1 10 REACI5.1 1X.Y,Z
C
C CALCULATION OF Al. A2. AND A3
C

2 A1=X**3+X**2+X+1.0
3 A2=Y**3+Y**2+Y+1.0+A1
4 A3=Z**3+Z**2*Z+1.0+A2

C
C OUTPUT
C

5 WR ITE(6.2)X.Y,Z•A 1.A2•A3
C
C TRANSFER CONTROL TO READ NEXT SET
C OF DATA.
C

6 GO TO 10
C
C FORMAT STATEMENTS

Solutions to Selected Exercises 255

c
7 1 FORMAT(3F10.2)
8 2 FORMAT(IX,3F 10.2/IX.3E20.7)
9 END

Input

-17.5 8.0 3.
15.0 8.0 3.0
15.0 9. 3.
17.5 9. 3.00

Output

-17,50 8.00 3.00
-0.5069625E 04 -0.4484625E C4 -0.4444625E 04

15.00 3.00
0.3616000E 04

3 >00
0>42010C0E 04 0.4241000E 04

15.00 9.00
0.3616000E 04

3.00
0 .44360C0E 04 C .4476000E 04

17.50 9.C0
0.5684125E 04

3,00
0.6504125E 04 0.6544125E 04

4-3.

nn
n n r» r> n

nn
no

o CALCULATION OF CALORIC INTAKE REQUIREMENTS
DEPENDENT ON AGE

INPUT OF AGE AND OTHER DATA

100 READCS,1)AGE....
1 FORMAT(Fl0•1••••)

ASSIGN INTEGER VALUES TU REPRESENT THE
AGE GROUPS

AGE=AGE—0.00 1
NAGE=AGE/10.0
NAGE=NAGE*1

COMPUTED GO TO FOR BRANCH SELECTION

GO TO (10,11.12,13, 14, 15,16.17. 18,19),NAGE
C
C BRANCHES
C

10 CALCULATIONS FOR 0-10 AGE GROUP AND OUTPUT OF RESULTS
GO TO 100

C
11 CALCULATIONS FOR 11-20 AGE GROUP AND OUTPUT OF RESULTS

GO TO 100
C

12 CALCULATIONS FOR 21-30 AGE GROUP AND OUTPUT OF RESULTS
GO TO 100

C
13 CALCULATIONS FOR 31-40 AGE GROUP AND OUTPUT OF RESULTS

GO TO 100
C

14 CALCULATIONS FOR 41-50 AGE GROUP AND OUTPUT OF RESULTS
GO TO 100

256 Appendix E

15 CALCULATIONS FOR 51-60 AGEGROUP AND OUTPUT OF RESULTS
GO TO 100

16 CALCULATIONS FOR 61-70 AGE GROUP AND OUTPUT OF RESULTS
GO TO 100

17 CALCULATIONS FOR 71-80 AGE GROUP AND OUTPUT OF RESULTS
GO TO 100

18 CALCULATIONS FOR 81-90 AGE GROUP AND OUTPUT OF RESULTS
GO TO 1)0

19 CALCULATIONS FOR 91-100 AGE GROUP AND OUTPUT OF RESULTS
GO TO 100
END

Solutions to Selected Exercises 257

4-6.

1

4

5

6
7

C
C

10 1
c
c
c
c
c

110
c
c
c
c
c

120
c
c
c
c

c
c
c

102

INPUT

RE*C(5,102) Y1 ,Y2,Y3

ARITHMETIC IF TC CHECK FOR LOCAL MAXIMUM
ANC TRANSFER CONTROL TO INPLT IF NONE EXISTS
IN PRESENT SET CF DATA

IFIY1-Y2)110.101.131
IF(Y3-Y2 >120. 10 1.10 1

IF LOCAL MAX. EXISTS, WRITE THE 3 ORDINATES.

OUTPUT

WR ITE(6.102)Y 1.Y2.Y3

TRANSFER CONTROL TO READ NEXT SFT
OF CATAa

GO TO 101

FORMAT STATEMENTS

FORMATI 1X.3F10.2)
END

258 Appendix E

Input

0 <» 3. 9 .
3 » 9 » 12.
9. 1 2 o 7.

1 2. 7, 5.
7, 5* 10.
5 , 10, 6 •

10 j 6 j 0.
6. 0 . 0 .
0. 0, 8 .
0 o 8 , .5 r

Output

9.00 12.00 7.00
5.00 10.00 6,00
0.00 8.00 3. 00

4-12.

1

C INPUT
c

1 PE*D(5.2IX1,X2,OX
C
C OUTPUT
C

Solutions to Selected Exercises 259

2 WRITE(6.3)X1.X2.DX
C
C
C

3
C
c
c

4 13

assign initial value of x

X = X 1

calculate y

Y=l+X*X**2/2«♦X**3/fc.+SIN(X)
C
C
c

c
c

CUTPUT

WR ITE(6 » 4 > Y. X

TEST FOR VALUE CF X LESS TEAM X2
c

6
c
c
c

7 20
8

C
C

IF(X2-X >50.50.20

I NCREVENT X

X=X+OX
GC TO 10

TRANSFER CONTROL TO READ NEXT SET
c
c

9 50
C
c
c

10 2
1 1 3
12 4
1 3

OF CATA.

GO TO 1

FORMAT STATEMENTS

FORMAT(3F10.2>
FORMAT!IX.3F1C.2)
FORMAT!1X.E15.5.F10.2)
END

Input

15.
1O«

500.

1 .5
2.

25.

Output

1.00 15.OC 1,50
0.3508 1 E 0 1 1.00
C.98276E 01 2.50
0.22910E 02 4.00
C.48649E 02 5o50
C.90-324E 02 7.00
C.14878E 03 8.50
C.22712E 03 1C.00
C.33123E 03 11.50
0.46509E 03 13.00
0.62966E 03 14.50
0.82738E 03 16.00

2.00 10.00 2.00
0.72426E 01 2.00
0.22910E 02 4.00
0.60721E 02 6.00
0.12732E 03 8.00
0.22712E 03 10.00
75.00 5C0.C0 25.CO

260 Appendix E

0.7320 IE 05 75. 3C
0 * 17177E 06 1CC.3C
O.33346E 06 125.30
0.57390E 06 150.00
0.90872E C6 175.C 3
0. 1 3535E 07 200.90
0.19240E 07 225.00
3.26357E 07 25CouC
0.35042E 07 275.00
0.45453E 07 300.00
C.57745E 07 325.30
C.72C74E 07 350.00
0.88597E 07 375.00
C» 1C747E 08 430.00
0.12885E 38 425.CO
0.15289E 08 450.00
0.17975E 08 475.)C
0.20959E 08 5'30. :o

4-15.

c
c

DEFINE COUNTER

1
c

K= 1

c
c

INPUT

2 101
C

REAC(5,102)Y1,Y2. Y3

c ARITHMETIC IF TO CHECK FOR LOCAL MAXIMUM
c ANC TRANSFER CONTROL TO INPUT IF NONE EXISTS
c
c

IN PRESENT SET OF CATA

3 IF(Y1-Y2) 113. 104.1C4
4 1 1U

C
IF(Y3-Y2)120. 104.134

C
C

IF LOCAL MAX. EXISTS, WRITE THE 3 ORDINATES.

c
c

OUTPUT

5 120
C

WRITEC6, 102IY1.Y2.Y3

c
c

TEST COUNTER

6 104
C

IF(K-7) I t 5. 11,11

7 105
C

K = K + 1

c TRANSFER CONTROL TO READ NEXT SET
c
c

OF CATA.

8 GO TO 101
9 1 1

C
STOP

C
C

FORMAT STATEMENTS

10 102 FORMAT!IX.3F10.2)
1 1 END

Solutions to Selected Exercises 261

Input

9.
12.

5.
10.
6.
0.

12.
7.
5.

1C.
6.
0.
0.

Output

9.00 12.C0
5.00 10.00

7.0C
6.00

4-19.

C INPUT
C

1 101 REAC(5,1O2)Y1,Y2,Y3,N
C
c ARITHMETIC IF TC CHECK FOR LOCAL MAXIMUM
c ANC TRANSFER CONTROL TO INPUT IF NONE EXISTS
c IN PRESENT SET OF DATA
c

2 IF(Y1-Y2) 1 10, 1C 1, 161
3 110 IF(Y3-Y2) 120, 101.1C1

c
c IF LOCAL MAX. EXISTS, WRITE THE 3 ORDINATES',
c
c OUTPUT
c

4 120 W R IT E (6 , 1 3 2) Y 1, Y 2 , Y 3
C
C CHECK FOR END OF DATA
C

5 IF(N J15C. ICS, 15'
6 108 CONTINUE

C
C TRANSFER CCNTROL TO READ NEXT SET
C OF DATA.
C

7 GO TO Ijl
e 150 STCP

c
C FORMAT STATEMENTS
C

9 102 FORMAT! IX,3F10.2. 15)
10 ENC

Input

12
10

10
0«

262 Appendix E

6. 0. 0.
0. 0. 8.
0. 8. 3 •

Output

9.00 12.00 7.00
5.00 10.00 6.00
0.00 8.00 3.00

Chapter 5

5-2.

C DEFINE PRODUCT COST, PLANT COST, AND PRODUCTION RATE
1 C=1.50
2 8=900033,
3 P ~ 2 0 0 0 r. 'i ■,

Q ITERATE CN V ALU ' S OF PRODUCT VALUE
A DEI 1 = 2 75,325,5
5 Z= I

C COMPUTE PAY-OUT TIME
6 V = Z / I 0 0 »
7 PNET=P*(V-C)
P PRCF=.48*PNET
9 TIME = E’/PROF

C WRITE RESULTS
10 1 WR ITE (6,2) V , T IMt-
11 2 FCRMAT(1X, 2F1 0.2)
12 STOP
1 3 END

Input—none

Output

2.75 7.50
2.an 7.21
2,85 6.94
2.90 6.70
2.95 6,47
3.OU 6.25
3.05 6.05
3.10 5.86
3.15 5.68
3.20 5.51
3.25 5.36

5-7.

C DC FOR 25 YEARS
1 DC1N=1,25

C COMPUTE CAPITAL RECOVERY FACTOR
2 CRF=.08*(1.08)**N/((1.08)**N-l.)

C WRITE RESULTS
3 1 WRITE(6,2)N.CRF

Solutions to Selected Exercises 263

4
5
6

2 FORMAT!IX, I5.F10.5)
STOP
ENC

Input—none

Output

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1.08000
0.56077
0.38803
0.30192
0.25046
0.21632
0. 19207
0.1740 1
0.16008
0. 14903
0.14008
0.13270
0.12652
0. 12130
0.11683
0.11298
0. 10963
0.10670
0.10413
0.10185
0.09983
0.09803
0.09642
0.C9498
0.09368

5-10.

C SET SUN1 TO ZERO AND PRODUCT TO 1,
L
2

SUM=0.u
PRCC = 1.0

C REAC NUMBER OF POINTS
3
4

READ!5. 1)N
1 FORMAT! 15)

C REAC DATA AND COMPUTE SUMS AND PRODUCT
5
6
7
fl
9

DC3I=1,N
REAC!5,2)VALUE

2 FCRMATIF5.1)
PRCC = PR0D*VALUE

3 SUM= SUM+ VALUE
C COMPUTE MEANS

I 0
1 1
1 2

TERM=K
AMEAN=SUM/TERM
GMEAN=PROC♦*(lj/TERM>

C WRITE RESULTS
1 3
1 4
1 5
1 6

WRITE(6»5)AME AN,GMEAN
5 FORMAT(1X.2F6,1)

STOP
ENC

264 Appendix E

input

r
12*2
M

PC .2
13.5
A'i* 4

2*1
5 . t'

Output

15. J t T

5 13.

1
2

3
4
5
6

7
8
9

10

1 1

1 2
I 3
14

C READ X
C

READ!5.1)X
TS0L«S INI X)**2

C
C BEGIN SUMMATION
C

TERM«X4*2
SUM«TERM
00 21*2*100
AI-24 !♦(24 1-1)

C THE FOLLOWING STATEMENT IS TO AVOID EXPONENT UNDERFLOWS
1F< ABS(TERM)•LT.I.E—50)TERM«O.
TERM*—TERM4(2.4X)442/AI
SUM*SUM>TERM

2 IF(I.EO.S.OR.I.EQ.10.OR.I.EQ.50.OR.I.EQ.100)
4WR 1TE(6.3) l.SUM.TSOL

STOP
C
C FORMAT STATEMENTS
C

1 FORMAT1F5.0)
3 FORMAT(1X* 15*2F 15.4)

ENO

Input

Output

5 0.8429 0.8268
10 0.8268 0*8268
50 C.8268 0.8268

10' 0.8268 4.826.

5-14.

C REAC THE NUMBER OF INCREMENTS
C

1 1 RE AC(5•2)N INC
C
C CONVERT TO FLOATING POINT AND DETERMINE

Solutions to Selected Exercises 265

c
c

SIZE CF INCREMENT.

2 ANINC=NINC
3 DELX=2.ZAN INC

C
C NUMERICALLY INTEGRATE
c

4 X = 0.
5 SUM=0.
6 OC3I=1.NINC
7 FX= 1.+X442
8 SUM=SUM*FX*OELX
9 3 X=X4DELX

C
C WRITE RESULTS
c

1 c WR ITE(6.4)NINC,SUM
11 G0TC1

c
c FORMAT STATEMENTS
c

12 2 FORMAT(15)
13 4 FORMAT! IX. 15.Fl 5.4)
14 ENC

Input

4
10
20
50

100
10C0

Output

4 3.7500
10 4.2800
20 4.4700
50 4.5872

100 4.6267
1000 4.6622

» U
 N

5-17.

C REAC INPUT
C

1 REAC(5, DA.0
C
C INITIALIZE BY HALVING INTERVAL
C

C=(A+E)/2.
002 1=1.20
FC=((C-l.)*C-1.)*C-1.9

5 IF(FC)3.4.5
C
C IF FC NEGATIVE. REPLACE LEFT VALUE CF
C THE INTERVAL BY C.
C

6 3 A=C
7 GO TO 2

2E-E Appendix E

c
C IF FC POSITIVE. REPLACE RIGHT VALUE OF
C THE INTERVAL BY C
C

" 5 B=C
9 2 C=(A+B)/2.

C
C THE RCOT IS FOUND
C

10 4 WRITE!6,7)C
11 STOP

C
C FORMAT STATEMENTS
C

12 1 FORMAT!2F 10*0)
13 7 FORMAT! IX.F 15*4)
14 END

Input

0. 5.

Output

1*9856

5-19.

C
c

INPUT FOR E.FPS.AND AK

1 REAC(5.1 1B0.EPS
2 5 READ!5,2)AK
3 b=bc
4

C
WR ITEI6.3)B,EPS.AK

c
c

PERFORM 2!.’ ITERATIONS IF NECESSARY

5
c

DC4 1= 1,20

c
c

COMPUTE Y1.Y2, AND DELTA* COMPARE TO EPS*

6 Y1 = 1*-EXP(-B)
7 Y2=B*ABS(B >
8 DELTA = Y1-Y2 f
9 WR ITEI 6.6)R•Y1,Y2»DELT A

10 IF(ABS(DELTA)*LT*EPS)GOTO5
1 1 4 8=E+AK*CELTA
12

C
G0TC5

C
C

FORMAT STATEMENTS

13 FORMAT!2F10.0)
14 2 FORMAT{F10*0)
15 3 FORMAT! 1X.3F12.3)
16 6 FORMAT! IX,4E15.4)
17 END

Input

1*
• 1

• 001

Solutions to Selected Exercises 267

• 5
I.
2.

Output

i • m 0.001 0.1 C 3
3.1000= : i 0 • 6 3 2 1E c * i c ; c e C 1 36 796 Cl
3.96’326 00 1.6183= :c ,C • 9 2 7 8 E Cv -0,3' 946 ‘
'*93236 k 3,6 .636 V , e 6 9 1 E u C -C>26286 : v
C.9C60E 0.59596 '> 8 2 v 8 E c c -C *22506 k 0
C . 8 8 3 5 E •C *58676 ;, 7 8:6 e CC -',19396
1.8641E 3.57866 .97467E co -. . 1 6 8 1 E . .
3*84736 C c 1.57 14E * 0 C > 7 1 7 9 E -0,14656 CC
O.8326E 3*565 IE C 0 v > 6 9 3 3 E <2 0 -C. 1282E ’i’
.'•81986 -> . ,5595= CG C.67216 r r -r,1126E c-._
'i.scaeE 10 ,5545 = •’ * v > 6638E -U,9 92 76—'1
■*,79866 C ,55 C 1 E u 2.63786 C C -f087766-11
C.73996 . C 0 >546 IF C C 0.6239E * C -'.77796-^1
0*78216 1,54256. C U 0.61176 z c -C.691 16- 1
1.7752E >‘1 <7 » 5 394E <0 -•6CC9E -''*6 1516- .1
<»769'E >* '3.53656 j.59146 -C.5486E-C1
9.76356)r 0,5340= •* c O . 5 8 3 C E :c -Co49<-:e-;: i
C.7586E 3 0 0,53176 :c > 5 7 5 5 6 co -C.4383E-.1
1*754 36 10 '.52966 •" <3 C.5689E c c -C.39266-'1
1,7533= 0 • 5 2 7 8 6 9.563CE c c -r.35 2'E-7l
2.7468E 1'3 •3.52616 C A C.5577E CC -%316',E-'.l

1 o * 0 0 0,131 C .* 5 G 0
) • 1 r □ <? e 0 1 0*6 32 IE OO v•10 C 0 6 U 1 ->.*36 796 CO
1.81616 30 J « 5 5 7 81 cc 2,66606 c c -C.1 181E
3.762CE 30 1.53336 20 C • 5 8 0 6 E z c -C i 4737E —1
0.7383E 00 1,52216 CO C,545 1 6 2G -C.23'2E-'1
6.72686 oc , 5 1 6 5 E v.52826 0 2 -r , 1 1696--. 1
.3.72106 30 3.51376 CO 0 • 5 1 9 8 E CC -r,o6C62E-C2
0.7179E 30 3.51226 co C . 5 1 5 4 E CC -C- 31 776 - .2
C.71636 GO 2.51156 00 2.5 1 3 1 E u C -Os16746-02
C.7155E 00 1,51116 00 1.51196 2 C -0,88476-03

1.100 OaCCl 1 • C C J
:.ico«e ■) 1 0.632 IE 00 0,1CC0E i. 1 —0.3679E CO
0.63216 ■>/ 3.4685E oc 0.3996E CC 0,68966-01
1.701 IE 0 c ’3.5040E oc U.4915E CC 3, 12446-01.
C.7135E 10 C.51G IE 30 C.509IE c c 0.97486—C3

1.303 0.00 1 2.CCC
0.10066 J1 •; • 6 3 2 1 E 00 0.10:06 31 -0,36796
3.2642E 30 0.23226 co 6982E- Cl C.16246 <<
0.58906 00 C.445 IE •£ 0,3469E CC 0,98 1 9E-C 1
0.78546 2.54-4 1 E cc U , 6 1 6 8 E C G -0-, 72 786 — 01
3.63986 3 3 3.4726E :c C.4094E CC 0,63236- 1
7.7663E 7.53536 <>58726 CC -•*.,5 1 956-'' 1
0.6624E OO 0.48446 0 0 U . 4 3 6 8 E CC Ce4561E-C1
0.7536E OC 1.52936 CC 2 o 5 6 7 9 E CC -6.386CE-C1
C.6764E •30 2.49166 co *.4575E co •’.a 3403E-0 1
0.74456 oc 2.5250E c ■* C.5542E -''a 29226-"I
0.6860E 00 C,49646 CC 1.47066 CC 0.25796-'; 1
C.7376E oc •7.52 176 :o C.544 IE CC -0,2233E-01
3.69306 00 0,49996 oc C.48C2E CC 0.19726-01
0.7324E 00 C.5192E CC C.5364E U L -0.17156-01
0.69816 00 J.5025E co C.4873E 0 0 e, 15146-01
0.7284E 00 0,5173E CC C.5305E CC -Co 1321E-01
C.7C19E 00 0.5044E co C.4927E CC 0, 1 1666-01
0.7253E 00 0.5158E co C.5260E co -C»1020E-01
0.7049E 00 0.5058E no 0.4968E CC 0.8993E-02

0.7228E 00 0.5146E co 0.5225E co -0.7877E-02

Appendix E

5-20.

C READ NINC AND CALCULATE CT
C

1 TS CL= 1 • -EXP (- 1. 1
2 1 RE AC I 5,4)N INC
3 AN INC = N INC
4 DT=1./ANINC

C
C BEGIN NUMERICAL SOLUTION
C

5 c=c»
6 0021=1,N INC
7 2 C=C + (1» —C)*DT

C
C OUTPUT
C

8 WRITE!6.3)NINC,C,TSOL
9 GOTO 1

C
C FORMAT STATEMENTS
C

1 0 4 FORMAT(15)
1 1 3 FORMAT! IX, 15.2F 15.41
1 2 ENC

Input

4
10
20
50

100
1000

Output

4
10
20
5C

ICO
1000

0.6836
0.6513
0.6415
C.6358
0.6340
•'.6323

0.632 1
0.6321
0*6321
0.632 1
0.6321
0.632 1

5-23.

c REAC NINC AND CALCULATE INCREMENT SIZE
c

1 1 RE AC!5,2 IN INC
2 ANINC = N INC
3 DT = 4./AN INC

C
C BEGIN SOLUTION
C

4 C=0.
5 z=o.
6 DC3 1=1,NINC
7 DC = Z
8 DZ = l.-C-Z
9 C=C+DC*CT

10 3 Z=Z+DZ*CT

Solutions to Selected Exercises

c

11
1 2

1 3
1 4
1 5

c
c

c
c
c

2
4

WRITE RESULTS

WR ITE(6»4 ININC.C
GCTC1

FORMAT STATEMENTS

FORMAT (15)
FORMAT! IX. 15.FIE.
ENC

Input

4
10
20
50

100
1000

Output

4
1 0
2C
50

1 CO
1 COC

2.000C
1 » 2672
1 • 2 Z 1
1.1704
1.1616
1 ■> 1538

5-30.

c
1 0 IMENS ICNA(10),X(10) .Y(10>

C
C INPUT
C

2 PEAC(5,11)(A(J),J=1.E)
C
C CREATE A WCRKINC ARRAY AND FIND ABSOLUTE VALUES
C

3 DC25J=l.a
4 Y(J) = A(J >
5 25 X (J)=AES!A(J))

C
C ORCFR TEE ARRAY BY ARRANGING ADJACENT NUMBERS
C

6 DC75 1= 1 . 7
7 DC75J=1.7
H IF(X!J)»L6 aX I J 4 1)) GO1075
9 DX = X(J)

1C CY = Y(J >
11 X(J > = X(J4 I >
12 Y(J)=Y(J4 1)
13 X (J 4 1) -- D X
14 Y (J4 1)=CY
15 75 CONTINUE

C
C OUTPUT
C

16 WRITEI6,10 1 HY!J).J = 1.8)

270 Appendix E

1 7 999 STCP
C
C FORMAT STATEMENTS
C

1 « 1 1 FORMAT(9F5.1)
1 9 10 1 FORMAT! 1X.9F5.1)
20 END

Input

5.C-25.0 -130 -975 13.1 43.0

Output

0.0 5.0 7.4-13.0 13,1-25.0 43. 1-97.5

5-32.

5
6
7
a

g
io

C

C
C
C

20

C
C

99 9
C
C
c

11
50

D IMENS IONA (10 »♦ B(10)

INPUT

DCS 1= 1 , 10
N- 11- I
READ(5.1l)A(I),B(N>

CALCULATE NORN

SUMAB=C j>0
DC2CJ=1.10
SUMAB-SUMAP+A(J) ♦ B (J)
ABNCRM=SGRT(SUMAB)

OUTPUT
WR ITE(6,50) AHNONM
STCP

FORMAT STATEMENTS

FORMAT(2F20.4|
FORMAT! 1X.E20.j7)
FNC

1

2
3
4

C
C
c

11
1 2
1 3

Input

1 •
2.

4.

6.
7.
8.
9.

10.

1 •
2j

4 .

6.
7.
8.
9.

10.

Solutions to Selected Exercises 271

Output

0.1483240E 02

5-35.

1
C

DIMENSION NO (50)•BILL(50)
READ BASE CHARGES

2 001 1=1.10
3 1 READ(5.2)N0(I).BILL(I)

C READ LONG DISTANCE CHARGES
4 77 READ(5.2)NUMBER,CHARGE
5 2 FORMAT! 13.F6.2)

C IS CARD BLANK
6

C
I F (NUMBER.EQ.0)GOTO6
ACD TO APPROPRIATE BILL

7 D04 I = 1. 10
8 IF(NUMBER,EQ,NO(I))B ILL I I) =6 ILL(I) ♦ 1 •1♦CHARGE
9 4 CONT INUE

10
C

G0TC77
WRITE FINAL BILLS

1 1 6 DO7 1 = 1,10
1 2 7 WR I TE(6.8) NO(I) .BILL! I)
1 3 8 FORMAT(IX, 15.F10.2)
1 4 STCP
1 5 ENC

Input

1 1.5C
2 1.29
3 1,75
4 1.75
5 2,00
6 1.10
7 1,75
8 1,75
9 2.00

10 1,75
8 6,00
7 3,12
1 1,75
4 5-j 60
8 1.50

10 4,20
(BLANK CARO)

Output

1 3,43
2 1,29
3 1.75
4 7.91
5 2,00
6 1,10
7 5.18
8 10,30
9 2.00

10 6,37

272 Appendix E

5-41.

c
c

1
c
c
c

2
C
C

3
C
C
c

*
c
c
c
c

5
6 2

C
C
c

7
C
C
C

8 1
9 J

10
1 1

RESERVE STORAGE FOR FIFTY ELEMENTS

DIMENSION A(50)

READ INPUT

READ!S«1) N.(A!J) .J = 1»N).A!K+1) .B

INITIALIZE F TO COEFFICIENT OF HIGHEST POWER
F»A(N+1)

USE LOOP TO GEN POWERS

D02J=l,N

MULTIPLY BY D AND ADD COEFFICIENT OF
NEXT POWER OF A ■

K»N + 1-J
F=B*F+A(K I

WRITE RESULTS

WRITEI6.3) B.F ■

FORMAT STATEMENTS

FORMAT!I5/IF10.0))
FORMAT! IX.Fl4.4 »
STOP
END

Input

5
1.
70
-3.2
1.7
-0.06
-G.8
0.75

Output

0.7500
4.9584

5-45.

1 DIMENSION A!16).B!16)
C
C INPUT
C

2 10 READ!5,1 1) ! A! I),1 = 1.16)
C
C CALCULATION OF E ARRAY
C

Solutions to Selected Exercises 273

3 1 = 1
4 12 RI = I
5 e(1) = R I*A(I)
6 1=1+1
7 IF (I.LT.17)GOTO 12

C
C OUTPUT
C

B 13 WR ITE(6, 101 1 (A(I) .8! I) , 1=1,16)
9 999 STOP

C
C FORMAT STATEMENTS
C

10 11 FORMAT(4F10•2)
11 101 FORMAT! 1X.2F10.2)
1 2 ENC

Input

1.00 2.00 3.00 4.00
5.00 6.00 7.9C e.oo
9.00 1.00 2. OC 3.00
A.00 5.00 6.00 7.00

Output

1.00 1.00
2.0Q 4.00
3.00 9.00
4,00 16.00
5.00 25.CO
6.CO 36.CO
7.00 49.00
e.oo 64.00
9.00 81.CO
1.00 10.00
2.00 22.00
3.0C 36.60
4.03 52.00
5.00 70.00
6.00 90.00
7.00 1 12.CC

c

5-49.

1 DIMENSION A (5) , F (5) , C(5)
C
C INPUT
C

2 10 REAC(5,ll>(A(I)fB(l),I=1.5)
C
C CALCULATE C ARRAY
C

3 1=1
4 20 IF(E(I)jGEjA(I))GO TO 50
5 C< I) = A(I)-E(I)
6 GO TO 6 0
7 50 C(I) = A(I)+E(I)
8 60 1=1+1
9 IF(I.LT.6 1GOTC20

274 Appendix E

c OUTPUT
c

10 100 WR I TE (6 . 1 0 1 > < A < I) . B < I) • c (I > . I = 1 . t5 >
1 1 999 STOP

C
C FORMAT STATEMENTS
C

12 11 F 0 R M AT (2F 1 0 • 2)
13 101 FORMAT! IX,3F1Q.2)
14 ENC

Input

o. 5.
13. 7.
6. 6.

7281.00 82.
C.111 0.112

Output

c

C.00
10.00
6.00

7281.00

5.00 5.00
7.00 3.00
6.00 12.C0

82.00 7199.00
0.11 0.220. 1 1

1

2
3

5-51.

c
c
c

DIMENSION A(10) » B(10)

READ INPUT

RE AC (5, 1 IN,PT,T
DC2 1 = 1 »N

,p< ic >,x(io)

4

5
6
7
8
9

10
1 1

1 2
1 3
1 4

1 5
1 6

2
c
c
c
c

6

4
c
c
c

c
c
c

c
c
c

5

REAC(5,3)X(I) ,A(I),U(I)

LET SUM RE SUM(R I *X I) . INIT I AL I ZE TO ZERO,
ANC CALCULATE FI, RI, AND SUM

SUM=3,
DC4 1= 1 ,N
P(I) = i:.**(R(I)-C. >5223*A(I)/T)
R = P(I)/P(1 >
SUM=SUM+R*X(I)

CALCULATE PA ANC TA

PA=PT/SUM
TA = 0a 35223*A(1)/(B(1)-ALOG10(PA))

CHECK

IF (ABS(T A-T)/TA->LT.0,001)GO TO5
T = T A
G0T06

SOLUTION IS FOUND

WR ITE(6,7)TA
STOP

Solutions to Selected Exercises 275

C FORMAT STATEMENTS
C

17 | FORMAT! 12*2F10*0)
18 3 FORMAT)3F10.0)
19 7 FORMAT! 1X.F12.3)
20 ENO

Input

2 2000* 273*
■1 23450a 7*395
•5 27691* 7*558

Output

313*861

5-53.
1 DIMENSION A(50)

C
C READ N
C

2 READC5.DN
C
C READ ELEMENTS OF VECTOR AND COMPUTE NORM
C

3 SUM=C*
4 002I=l»N
5 REAC!5 * 3 >A! I)
6 2 SUM = SUM4A(I)**2
7 SUM = SCRT!SUM)

C
C DIVIDE EACF ELEMENT BY NORM AND PRINT
C

8 D04I=l.N
g All) = A(I)/SUM

10 4 WR ITEI6.5) M I)
11 STOP

C
C FORMAT STATEMENTS
C

12 1 FORMAT!13)
13 3 FORMAT(F1C»‘)
14 5 FORMAT(IX,F12*4)
15 ENC

Input

4
2*
1 a
0*

Output

C*5345
0*2673
0*0000
0*8018

276 Appendix E

5-55.

1 DIMENSION 4(50) -
c
c RE AC N
c

2 RE AC(5. 1)N
c
c READ VECTOR A
c

3 002 1= 1 ,N
4 2 REAC(5*3)A(I)

C
C READ VECTOR B AND COMPUTE COT PRODUCT
c

5 DOT=C.
6 D04 1= 1 , N
7 REAC(5,3)B
8 4 D0T = CCT+B*A(I)

C
C PRINT RESULT
c

9 WR ITE(6,5)COT
10 STOP

C
C FORMAT STATEMENTS
c

11 1 FORMAT(I 3)
12 3 FORMAT(F 1C.C)
1 3 5 FORMAT! IX,F 12.4)
1 4 ENC

Input

4
4.
0.

2.
-io

2.
1 •

-2.

Output

-1.0000

Chapter G

6-1 (c). Subscript must be an integer variable; Subscript must not be a subscripted
variable; K * 3 should be 3 * K.

6-2 (b). Subscript must be an integer.
(f). As J = 5, subscript exceeds size specified in dimension statement.

Solutions to Selected Exercises 277

6-3.

1
C

DIMENSION CATA(5,4),TAVG(4) , SAVG(5)

c REAC INPUT DATA
c

2 REAC(5,1) ((DATA(I•J) ,J= 1 •4) •1=1,5)
3 1 FORMAT(4F1 1)

c
c COMPUTE TEST AVERAGE
c

4 DC2 1=1,4
$UM=9.

6 DO3J = 1.5
7 3 SUM = SUM 4L'A T A (J, I)
8 2 TAVG(I)=SUM/5 >

C
c COMPUTE STUDENT AVERAGE
c

9 SUM A = O.>
I 0 D041=1.5
1 1 SUM = C a
1 2 005 J = 1,4
1 3 5 SUM=SUM♦UATA(I,j)
14 SAVG(I)=SUM/4*
1 5 4 SUM A = S AVG(I) 4-SUMA
1 6

C
AVG=SUMA/5a

C WRITE RESULTS
C

1 7 WRITE(6,6) TAVG
18 WRITE(6,6> SAVG
1 9 WRITE (6.6) AVC-
20 6 FORMAT(IX,5F 1 0.2 >
2 1 STOP
22 ENC

Input

48.96

43. 6 30 .0 62,8 23.4
40. 1 4 0 sC 60 , 1 29.6
63. 4 50. 0 63*7 31.2
56 • 2 60.0 58,2 27.3
71 • 0 70,3 67*3 26.4

Output

5 5 » 86 50.OC 62. 42 27,58
4 1. 2 0 42.45 5 2. "7 5C,42 58,67

6-8.

c
DIMENSION A (25,25)•B(25).X(25)

C
C INPUT
C

278 Appendix E

2
C

REA0(5,ll)N,((A(I,J),J=l,N),I=l,N),(B(K),K=l.N>

C
C

3
4
5
6
7
8 25
9 15

C
C
c

1 z
c
c
c

11 11
1 2 30
1 3
1 4

7
5CQ

50 10 0

CALCULATION OF X ARRAY

X(1) = E(1)/A(1 ,1)
0015J=2,N
K= J-l
SUM=C®0
D025I=l,K
SUM=SUM+A(J,I)*X(I)/A(J,J)
X(J) = B(J)/A!J.J) —SUM

OUTPUT

WRITE(6,30)(X(K),K=l,N)

FORMAT STATEMENTS

FORMAT! I 5/1 10F7.2))
FORMAT!IX,5E15.5»
STCP
FNC

Input

350 -740
111 -42C 918

-250 38b 17 12CJ
630 490 -853 13CC 555 -2G2 80C

1605 301
2350 2200 2003

331 58 65 7CC 25C0
1500 12CG 1C00

Output

0»53000E JI -0»81j81E CO 0®1421CE Cl 0>57535E Cl Cjlb605t Cl
-0»38473E 01 —C,91436E—01

6-11.

1 INTEGER AGA INI2,2,3)
2 K = 2
3 DO6J=1,2
4 D06L=l,3
5 DC6N=1,2
6 AGA IN(J,N,L)=K
7 6 K=K42
8 WRITE(6»7)({(I,J,K,AGAIN(I,J.K),I=1,2),J=1,2),K=1,3)
9 7 FORVATI IX,415)

10 STCP
1 1 ENC

Input—none

Output

1112
2 1 1 14
12 14
2 2 1 16
112 6
2 1 2 18

Solutions to Selected Exercises 279

l 2 2 r
2 2 2 20
1 1 3 10
2 1 3 22
1 2 3 12
2 2 3 24

6-14.

3
4
5
6
7
a
9

1 0
11

1 2
1 3
1 4

DIMENSION A(3.5) . l!(5,3)
0
C INPUT
C

ReAC(5, 1 1) ((A(I,J).J=1,5). 1 = 1.3)
C
C INVERSION GF A—MATRIX
C

1=1
1’3 3=1
101 B(3.I)=A(I,3)

3 = 3 + 1
IF(J.LT.6JCOTClOl
1=1 + 1
IF! I.LT.4)GQTC100

C
C OUTPUT
C

20 WRITEI6.21)!(E(3.I).I=1,3).3=1.5)
999 STOP

C
C FORMAT STATEMENTS
C

1 1 FORMAT!5F 10.2)
21 FORMAT! IX.3F10.2)

ENC
»

Input

11.50 -17.80
-9*8 39.7

-7*07 16.20
22. 7

1 7.90
-39 >

36.040

Output

11.50 -9.80 -7.07
17.80 39.70 16. 20
22.40 5.20 70. 40
0.00 22.70 - 14.01

17.90 -39.00 36.04

6-17.

I
C

DIMENSION A! 2C.20).B(1C)

C
c

INPUT

2 REAC!5.1)N
3 0021=1.N
4 0023=1.N
5 2 READ(5.3)A(I.J)
6 0041=1.N

280 Appendix E

7 4 READ! 5.3 > B (I)
c
C NOTE THAT N-1 ROWS MUST EE RECALCULATED
C

8 NN=N—1
9 0051=1.NN

C
C MULTIPLICATION FACTOR FOR EQUATION J
C IS A(K.J)/A(JJ) WHEN SUBTRACTING FROM
C EQUATION K

c
c
c

24 1
2 5 3
26 9
2 7

C
C J-l EQUATIONS MUST BE OPERATED ON
C

11 L=J—1
12 DC6K=1,L
13 FACT = A(K,J)/A{J.J)

C
C THERE ARE J NONZERO TERMS IN EACH EQUATION
C

14 DC7M=1.J
15 7 A(K ,M) = A!K,M)-FACT*A!J,M)

C
C DO NOT FORGET CONSTANT TERM
C

16 6 B(K)=E(K>-FACT*H(J)
17 5 CONTINUE

C
C OUTPUT
C

18 008 1= 1 ,N
19 DC8J=1.N
2C 8 WR ITE(6 ,9) A(I . J)
2 1 ' 0 C1I- 1 . N

22 1 . WRITE(6.9)F(I)
STOP

FORMAT STATEMENTS

FORMAT! I 5)
FORMATIFl'")
FORMAT*! 1X.F12.4)
END

Input

3
3.

1.
1.

-2.
2.
1«
!•

0.
1.

Solutions to Selected Exercises 281

Output

-1•5000
-Co 0000
-0.0000
5.0000
6.C000

-o.occc
2 » 0 0 C 5
1.0COG
1--.CCOO
2.0CC0
2 # 0 C 0
i.r*oo

6-22.

c
c
c
c
c

i
c
c
c

2

4 2

6
C
C
C

7
C
c
c

a
<3 5

1 0
C
C
c

11
12
1 3
1 4
IS

C
c
c

16
17
ie
19 7
20 6

C
C

ARRAY C IS INTERMEDIATE STORAGE. wHFN THIS
PROGRAM IS COMBINED WITH THE PROGRAM IN
THE PREVIOUS PROBLEM, ARRAYS C AND X MAY
BE THE SAME ARRAY TO CONSERVE STORAGE

DIMENSION A(2 Is. > . HI 2<) , X(2C) ,C (2 :)

REAC N ANO FIRST EQUATION

REACI5,1)N
CC2 1=1 ,N
REACI5.3)A(I)
REACI5*3)H(1)
I = N

MUST CO FOR REMAINING ROWS

DC4J = 2.N

INPUT

CC5K= 1 ,N
R E A C I 5,3) C I K)
RE AC I 5.3) CI J >

J-l PREVIOUS RO*S» M IS INDEX IN ARRAY A

L = J-1
M = 1
DC6K= 1 «L
FACT=CIK)/AIM)
M = M* 1

REMAINING ELEMENTS IS N-K. BEGIN AT K+l

NN-K+1
DC7JJ=NN,N
CIJJ)=ClJJ)-FACT*AtM)
V = M*1
BlJ)=BIJ)-FACT*BIK>

SHIFT C TO A.

282 Appendix E

21
22
23

DC4K=J,N
1=1 + 1
A(I) = C(K)

24
25
26
27
2H

29
30
3 1
32

1 1

C
c
c

1
3
1 ?

OUTPUT

DC 10J= 1 . I
WR I TE(6. 12) A(J)
DO 1 1 J= 1 .N
WRITEC6. 12)81 J)
STOP

FORMAT STATEMENTS

FORMAT!15)
FORMAT!F10*0)
FORMAT(1X . F 1 2 • 4)
END

Input

Output

3.0 0 C 0
4.0 0 C 6
1.000 ;
2.6667

-2.3333
-l» 1250
4.0000

—1.3333
-2.5000

6-25.

1 DIMENSION A!10«4).B!4)«C!4)
C
C READ N
C

2 READ!5,1)N
C
G READ MATRIX A
C

3 DC2 1= 1 .N
4 2 RE AO! 5.3) A(I. 1) , A(I . 2) , A(I .3) , A! I ,4)

C

Solutions to Selected Exercises 283

C READ MATRIX BIONE ROW AT A TI ME) ,COMPUTE
C TEE CORRESPOND ING ROW OF C, AND WRITE
C RESULTS.
C

5 D04I=l,N
6 READ!5,3)R(1) ,BI2),B (3) ,B(4)
7 D05J=l,4
a 5 C(J) = A(I, J)+E1(J)
<3 4 W R I T E I 6 • 6) C I 1) , C I 2) , C I 3) , C (4)

10 STOP
C
C FORMAT STATEMENTS
C

11 1 FORMATI I 3)
12 3 FORMAT!4F10.0)
13 6 FORMAT(IX,4F 1 2a4)
14 ENC

Input

2. 1« -2a O,
7. 8. -e, 5,
0. 7, la -3,

-4, 4. 0. 3,
2a 7. -3a la
C, Oa 2a 0.

Output

-2.00C3
9.000
C » C 0 0 3

5 a IOC.
15aCOu ;
7.000 “

-2.CC0C
-9.33c;

3.CCCC

3 a C C C 0
6 > C L C C

-3.0C0)

6-28.

I
c
c
c

2
3 1

C
C
c

4
5
6
7
e
9

10 4
C
c
c

11
1 2
1 3 3

C
C

DIMENS ION CI 4,4)

READ INPUT

DC 11= 1.4
REACl5,2)Dl I, 1) •D(I ,2) »Dl I ,3) ,DI 1,4)

BEGIN GAUSS REDUCTION

DC4 1 = 1,3
K= I ♦ 1
DC4J = K , 4
AMUL=-CIJ, I)/C(I, I)
D(J, I)=Oa
DC4L = K , 4
D(J.L)=C(J,L)+AMUL*D(I,L)

EVALUATE DETERMINANT

DET=D(1,1)
DC3 1 = 2,4
DET=DET*D(1,1)

OUTPUT

384 Appendix E

c
14 WRITE(6.5)CET
15 STEP

C
C FORMAT STATEMENTS
C

16 2 FORMAT(4F10.0)
17 5 FORMATt 1X.F15.4)
18 ENC

Input

5. 1* 7-j
2. 3. 0. 5.

-1« 2. -9. 1.
7. -4. 0. 2.

Output

649.9993

Chapter 7

7-3.

C DATA STATEMENT
C

I DATA DENSW•HT.DIA.WTCON/62.4.0*75.0*333.1•04/
C
C INPUT

2
3
4
5
6
7
<*•

9
10

11

C
READ(5»1IWTDRY.WTWET
VO 10=(WTWET—WTORY)/DENSW
V0L«3.1416»HT*(0.54DIA)*42
VOID FR=VOID/VOL
DENS=(WTDRY-WTCON)/(VOL-VOID)
WR ITEI6.2)DIA.HT.WTCON•WTDRY•WTWET•VOIDFR.DENS
STOP

C
C FORMAT STATEMENTS
C

1 FORMAT{2F10.0)
2 FORMAT('1DIMENSIONS OF CONTAINER -•Z6X.•DIAMETER•.Fl5.4•• FT'/

I 6X,•HEIGHT'.F15.4.• FT•Z6X.•WE IGHT•.Fl 5.4•• LB•/
2 ■ WEIGHT WITHOUT WATER•.F15.4/' WEIGHT WITH WATER'.F15.4Z
3 'OVOID FRACT ION'.Fl5.4/•ODENSITY UF MATERIAL*.F15.4.
4 ■ LBS/CU. FT.')

END

Input

7. 12 8.30

Solutions to Selected Exercises 285

Output

DIMENSIONS OF CONTAINER -
DIAMETER 0.3330 FT
HEIGHT 0.7500 FT
WEIGHT 1.0400 LB

WEIGHT WITHOUT WATER 7,1200
WEIGHT WITH WATER ••3000

VOID FRACTION 0.2895

DENSITY OF MATERIAL 131.0096 LsS/CU. FT.

7-5.

C WRITE HEADINGS
C

1 WR ITE(6.1)
2 1 FORMAT(7X.4HT IMF,3X.8HRESPCNSE/)

C
C COMPUTE ANC PRINT VALUES
C

3 T = 0.
4 DC2I=1.21
5 FT= l.-EXPI-T)
6 WR ITE(6»3)T,FT
7 2 T=T+.2
8 3 FORMAT(1 XF 10.2.F10.4)
9 STOP

1 0 ENO

Input—none

Output

TIME RESPONSE

0.00 -:.occJ
C.23 0.1813
C.40 0.3297
0.60 0.4512
0,80 0.5507
1.00 0.6321
1.2C 0.6988
1,40 0.7534
1.60 0.7981
1.80 0.8347
2.00 0.8647
2, 20 0.8892
2.40 0.9093
2»6“ 0.9257
2.80 0,9392
3,00 0.9502
3.20 0.9592
3,4 ■. 0.9666
3.60 0.9727
3.80 0.9776
4.00 C.9817

286 Appendix E

1

2

6
7
8
9

I

1 1
1 2
1 3
1 4
1 5
ie
1 7
1 8
1 9
2C

DAT AX/ 1 □/
C
C READ N AND A ANC WRITE HEADINGS. FIRST COEFFICIENT IS 1.-
C

READ!5, 1 >N,A
1 FORMAT!I5.F5.C)

WR ITE(6,2)N,A.N.X
2 FORMAT!25F1 COEFFICIENTS OF !X♦A)♦*N/6X3HN =I6/6X3HA = ,

1 F 10.4/1 1HCPCWER OF X,5X , 11HCOEFFICIENT//1X,I 8,F18»4)
C
C CALCULATE N FACTORIAL AND INITIALIZE CALCULATION CF
C BINARY COEFFICIENTS
C

NFACT=1
DC3 1 = 2.N

3 NFACT=NFACT*I
JFACT=1
JNFACT=NFACT

C
C CALCULATE COEFFICIENTS
C

DC4l=l.N
IXP = N- I
JFACT=JFACT*I
JNFACT=JNFACT/(N+1-I)
C=NFACT/(JFACT*JNFACT>
C = C*A** I

A WR ITE!6 » 5) TXP,C
5 FORMAT! IX, 18,F1E.4)

STOP
ENC

Input

10 1.2

Output
COEFFICIENTS CF (X+A)**N

N - 10
• - 1.2000

POWER OF X

10
9
9
7
6

4
3
?
1
fl

COEFFICIENT

1.0000
1 2.0000
64.7999

207.3598
435.4553
627.0559
627.0559
429.9810
193.4915
51.5977
6.1917

Solutions to Selected Exercises 287

7-14.

1 DIMENSION T(6,5)
C
C DATA STATEMENT
C

2 DATA TZ1,023, 1.068, 1,1 13,I.158,1a202,lo247,
* 1.018. 1.061.1.104, 1.148.1.192.1.235.
* 1.010. 1.052. 1.094. 1.137.1,181.1.224,
* 0.993. 1., 35, 1.077.1.120.1,162,1.205.
* 0,980. 1.J22. 1,064.1.107.1?149.1.191/

3 WRITE(6,2)((T(I,J),J=i,5),I=l,6)
4 2 FORMAT(24X,18FTEMPERATURE• DEG F/Z16X.2H50•6X•2H86,

♦5X.3H122.
♦ 5X.3H176.5X.3F2 12//UX, 1H*.4X.5(1H* ■ 7X) ZZ8X . 4H2 ♦.
♦F7.3.4F8.3ZZ
♦8X.4H6 ♦.F7.3.4F8,3Z4H PERZ7X.5H10 ♦,F7.3,4F8.3Z5H CENTZ
♦7X.5H14 ♦.F7.3.4F8.3Z5H NA0HZ7X.5H18 ♦,F7>3.4F8,3ZZ7X.5H22 •,
♦ F7.3.4F8.3ZZ13X.38H1SOURCE - INTa CRIT. TABLES. VOL. I I I,Z
♦16X.8HPAGE 79))

5 STOP
6 ENC

Input—none

Output

TEMPERATURE, DEG F

50 86 122 176 212

» • ♦ 4 • * '

2 » 1.023 1.018 1.010 0.993 C. 980

6 • 1.068 1.J61 1.052 1.C35 1.022
PER

10 • 1.113 1.104 lo094 1.G77 1.064
CENT

14 ■ 1.158 1.148 1.137 1.120 1.1C7
NAOH

18 ♦ 1.202 1.192 1.181 1.162 1.149

22 ♦ 1.247

< SOURCE
PAGE

1.235

- INT.
79)

lo224 1.205

CRIT. TABLES, VOL.

1.191

III,

7-17.

1 DIMENSION F(11)»FN(11)

n n
 n CALCULATE MAXIMUM VALUE OF F(X)

2 XsJ.O
3 N=l
4 0011=1.11
5 F(I) = X4*2*S IN(3 11416*X)

238 Appendix L

6 IF(F(I),GT.F(M >N=I
7 1 X = X+<j o 1

C
C CALCULATE NORMALIZED VALUES
c

8 D02 1= 1,11
9 2 FN(I)=F(I)/F(N)

C
C OUTPUT
c

10 WRITE(6,3)
11 3 FORMAT(2oH1F(X) ■ X**2 • SIN(3.1416*X)//7X«1HX7X•4HF(X)■

♦5X8HNCR F(X)>
12 X = 0.
I 3 D04 1= 1 « 1 1
14 WR I TE(6,5)X,F(I) •FN{ I)
15 5 FORMAT(1 X3F10•4)
16 4 X=X+Ool
17 STOP
18 END

Input—none

Output

F(X) = X**2 ♦ SIN(3.14164X)

X F(X) NOR FIX)
0.0000 0.0030 C.COOO
0. 1C0C 0.0031 0.00 78
0.2030 0.0235 0.0593
0.300v 0.3728 0.1837
0.4000 0.1522 0.3839
0.5000 0.2500 C 16306
0.6^00 0.3424 0.8637
0.7000 C.3964 1.OOCC
0.8000 0.3762 0.9489
0.9C0C C.2503 0-63 14
1.0300 -c.ooco -3.cc:c

7-20.

1
c
c
c

2 9
3 1

C
C
c

4
5 4
6
7
8 5
9 6

10 3
1 1 7
12 2
13
14
15

DIMENSION A(51)

READ INPUT

REAC(5,1) N,(A(I). 1=1,N) ,A(N + 1)
FORMAT! I5/(F5.3))

OUTPUT

IF(N-1)2,3,4
M = N—1
DC5 1=1,M
K = N + 1- I
WRITE(6,6)A(I),K
F0RMAT(2H (F6.3,5H) X**I3»2H ♦)
W R IT E (6,7) A (N)
F0RMAT(2H (F6>3,3H) X,6X,1F+)
WR ITE(6,8)A(N♦1)
FCRMAT(2H (F6•3,1H)/1H1)
G0T09
ENC

Solutions to Selected Exercises 289

Input

1
1712
1CCO

4
5917
1722

-IOC 1
0C22
1OCC

2
1 COC
1222

- 1 7 1 C

Output (rule designates new page)
(1o712) X +
i i»o;o)______________
(5*917) X** 4 4
(1*722) X ♦ * 3 +
(-1,051) X*» 2 4
(0.022) X 4
(l.CQO) ________
(1.02?) X♦* 2 +
(1.222) X 4
(-1*710)

7-22.

C
c

READ INPUT AND WRITE HEADERS

1 REAC(5» 1)X,XO
2 1 FORMAT(2F 1 >,<?)
3 W R I T E (6 • 2) X . X C
4 2 FORMAT(36H EVALUATION OF F(X) = SIN(2X) AT X =F6j3/

♦39H FROM TAYLOR SERIES EXPANSION ABOUT X =F6.3Z
♦1OFONUMBtR OF,3X 11FAPPROX I MATE3X5HEXACT/
♦3X5HTERMS.0X5FVALUE.5X5HVALUE)

C
c IN IT I AL IZE
c

5 TRUE=SINI2**X)
6 DEL=X-XO
7 FX = S IN(2**X0)
8 CCEF=1.
9

c
DC3 1=1.1')

c UPDATE COEFFICIENT
c

10 A 1= I
1 1

c
C0EF=C0EF*2.*CEL/AI

c TEST FOR I EVEN OR ODD
c

12 TST= 1/2
1 3 ITST=TST
14 IF(I.E0.2*ITST)FX = FX4C0EF*(-l.)♦♦(IZ2)♦SIN(2.♦XO)
15 IFI I«NE®2* ITST)FX = FX4C0EF*(— 1.)*♦((!-!)/2)*COS(2a♦XO)
1 6 3 WR ITE(6.<») I.FX. TRUE
17 4 FORMAT!1X15.F1655.F11j5)
18 STOP
19 ENC

290 Appendix E

Input

lei le

Output

EVALUATION OF FIX) = SINI2X) AT X = lelCC
FROM TAYLOR SERIES EXPANSION AFOUT X = leCC'j

NUMBER OF APPROX IMATE EXACT
TERMS VALUE VALUE

1 0e326U7 0>8085G
2 C>80788 C o 8 C 8 5 0
3 Os 30844 Z n 8 0 8 50
4 0>80853 C >8 08 50
5 C >80853 £>83850
6 C>8085C 3380850
7 0>8085C £>80850
8 0>30852 0*80853
9 C>80850 Ce80850

10 £>30853 Ca80850

7-25.

1 DIMENSION XX! 3) .YY!3),A(3)
2 DATA AZ3*0*Z

C READ PH I ,CALCULATE EXTREMITIES OF AXES,AND PRINT
C

3 READl5,1>PFI
4 1 FOPMATIF)
5 WRITE!6•2)PH I
6 3 FORMAT(3JHTHREE-DIMENSIONAL PLOTTING ♦♦♦♦♦//

19X.5HPHI ■ F8.2.8H DEGREESZZ6X.19HEXTREMIT I ES OF AXES
26X.2HXP.8X.2HYPZ)

7 PH I=PH IZ57,3
8 XA=COS(PHI)
9 YA = S IN! PHI)

1 0 DC3 1 = 1,3
1 1 A(I) = 40
1 2 XX! I) = A(1) — A(3)*XA
1 3 YY(I) = A(2) —A(3)*YA
14 3 A(I) = £.
15 WRITE(6»4)(XX(I),YY(I),I = 1,3.)
16 FORMAT!2IX.1HX,F13>3,F1C* 3Z21X,1HY.F13e3,F1Ce3Z21X1HZF13e3>

♦ F10e3ZZ1 JX, 1HX, 14X. 1HY. 14X.1HZ•14X,2HXP,I 3X.2HYPZ)
C
C CALCULATE POINTS
C

1 7 X=0>0
1 8 DC5 1=1.31
19 Y=(X + 1,)**1>2
20 Z=X**2Z!X+2,)
2 1 XP=X-Z*XA
22 yp=y-z»ya
23 WRITE(6,6)X,Y,Z,XP.YP
24 6 FORMAT!lX.5F15e5)
25 5 X=X+.l
26 STCP
27 ENC

Solutions to Selected Exercises 291

Input

35.

Output
***** THREE-0 I h/ENS IONAL PLOTTING *****

ph I = 35.C 3 DEGREES

EXTREMITIES CF AXES XP YP

X 4.00L -0,000
Y -O.COO 4.COO
t -3.277 -2o 294

X Y Z XP

0.00000 i., cooro CaCCCOC -c.occcc
0.100 OC 1.121 17 C.CC476 2.0961C
0.2000C 1 o 24456 O.C 1818 C.18511
0.30000 1.37033 0.03913 C.26795
C.4000C 1.49745 C.06667 C»34539
0.50000 1.62671 0.1CCCC 0.41808
0.60300 1.7577C 0.13846 0,48658
0.70000 1.89033 0.18148 C.55133
o.a^occ 2 >02454 0>22857 0,61276
0.9030C 2. 16025 0.27931 2.67123
1.00000 2.29740 0.33333 C.72694
1.10000 2.43592 0.39C32 C.78026
1.23000 2,57577 0u45CC0 C.83137
1•30000 2,71690 0.51212 u.88048
1.4jCOC 2,85925 0.57647 C,92777
1.50000 3.CG281 0.64286 C.97338
1.60000 3.14751 C.7111 1 1.01747
1.700CC 3.29323 0 • 7 8 1 0 8 1.06015
1.8'03' 3,44024 Oj 85263 1.10154
1.89999 3.58820 0.92564 1.14173
1.99999 3.737 18 l.CCCCC 1.18082
2.09999 3.88716 1 .C756C 1,21888
2. 19999 4.03812 1, 15238 1.25599
2.29999 ‘♦.195 01 1.23023 1.29222
2.39999 4.34283 1.3C9C8 1,32762
2,49999 4.49656 1.38888 1.36225
2.59999 4.651 16 1.46956 1.39616
2,69999 4,89663 1,55105 1,42940
2a79999 4.96294 1.63332 1,46231
2.89999 5,12307 1.71632 1.49432
2.99999 5,27801 1.79999 1.52548

7-27.

1 DIMENSION IA(80)
2 DATA ICOM.IPER.I8LK/’.’. • • /
3 READ!5.1»IA
4 1 FORMAT(60A1)
5 N«O
6 DO 2 1 = 1.80
7 IF(IA(I).EQ.IPER) GO TO J

YP

1 jCCQCO
1 » 1 1844
1.23414
1 a 34759
1.45922
1.56935
1,67828
1.78625
1.89345
2,00005
2.10622
2.21205
2,31768
2.42317
2.52863
2.63410
2,73966
2,84535
2.95122
3.05731
3 >16364
3.27026
3.37718
3.48443
3.59202
3.69998
3,80831
3.91704
4.02616
4.13569
4,24565

292 Appendix E

’ IFI IA(I)•EQ#I COM#OR•IA(I)•EQ.IBLK) GO TO I
i N=N+1

10 2 CONTINUE
11 J WRITE(6.4)N
12 4 FORMAT I• SENTENCE CONTAINS'•13.' CHARACTERS'!
13 STOP
14 ENO

Input

AN IMPORTANT CHARACTERISTIC OF DIGITAL COMPUTERS IS THEIR INCREDIBLE SPEED#

Output

SENTENCE CONTAINS 8S CHARACTERS

7-34.

1 DIMENSION IAI 800)•NI 12)
2 DATA N/12*0Z

4 READ!5.1)IA
1 1 FORMAT180A1)
6 1=1
7 3 IFII#GT#800)G0T04
B IFIIAII)#NE#IBLK)G0T02
9 1=1 + 1

10 G0T03
1 1 2 NC=1
12 6 1=1+1
13 IFI IAI I)#EQ#IBLK)G0T05
14 IFIIA(I).EQ#IPER)G0T05
15 IFIIAl I)•EQ#ICOM)G0T05
16 NC=NC+1
17 GOT06
18 5 IFINC.GT#12)NC=12
19 N(NC)=NINC)+1

1=1+1
21 G0T03
22 4 WRITE16.7) II.NII)•1=1.12)
23 7 FORMATl•1WORD LENGTH DISTRIBUTION•/•OCHS#/WORD OCCURRENCES'/

• 1 1 I IX,15.116/)•IX. 15.• OR MORE'.IS)
24 STOP
25 ENO

Input

INSTEAD OF PROCESSING A SINGLE SENTENCE. SUPPOSE ME PROCESS A
PARAGRAPH# THE PARAGRAPH WILL BE PUNCHED ON A MAXIMUM CT TEN CARDS AS
ILLUSTRATED IN THE ACCOMPANYING FIGURE# A BLANK CHARACTER ALWAYS FOLLOWS THE
DECIMAL POINT. AND NO HYPHENATED WORDS WILL BE USED# FOR THIS EXERCISE. THE
PARAGRAPH SHOULD BE READ INTO • SINGLE ARRAY OF EIGHT HUNDRED ELEMENTS. ONE
CHARACTER TO THE ELEMENT# COMPUTE THE AVERAGE NUMBER OF WORDS IN THE SENTENCES
IN THE PARAGRAPH AND PRINT THE ANSWER TO TWO DECIMAL PLACES#

Solutions to Selected Exercises 293

Output

WORD LENGTH DISTRIBUTION

CHS./WORD OCCURRENCES
1 5
2 16
3 15
4 A
5 6
• 8
7 12
3 3
9 7

10 2
11 1
12 OP MORE 1

7-35.

1 DIMENSION 1AI80)
2 DATA IBLK.IPERZ* •.•*•/
3 NW0S=0
4 NSEN=0
S DO 7 1=1.10
A REA0I5.1) IA
7 1 FORMAT(BOAl)
8 JW = O
9 J=1

10 5 IF(IA(J).NE*I PER) GO TO 2
1 1 IFIJW.NE.O) NWDS=NWDS+1
12 NSEN=NSEN+1
13 GO TO 3
14 2 IF(IA(J)•EQ.IBLK) GO TO 4
15 JW=1
16 GO TO 3
1 7 4 IFIJW.EQ.l) NWDS=NWDS+1
18 JW=0
19 3 J=J+1
20 IF(J*LE*80) GO TO 5
21 7 IFIJW.EQ.l) NWDS=NWDS+-1
22 AVG=FLOAT(NWDS)/FLOAT(NSEN)
23 WRITEI6.6) AVG
24 6 FORMAT(•0AVERAGE WORDS PER SENTENCE =*.F10*2)
25 STOP
26 ENO

Input

INSTEAD OF PROCESSING A SINGLE SENTENCE. SUPPOSE W PROCESS A
PARAGRAPH* THE PARAGRAPH WILL BE PUNCHED ON A MAXIMUM OF TEN CARDS AS
ILLUSTRATED IN THE ACCOMPANYING FIGURE* A BLANK CHARACTER ALWAYS FOLLOWS THE
DECIMAL POINT. AND NO HYPHENATED WORDS WILL BE USED* FOR THIS EXERCISE. THE
PARAGRAPH SHOULD BE READ INTO A SINGLE ARRAY OF EIGHT HUNDRED ELEMENTS. ONE
CHARACTER TO THE ELEMENT* COMPUTE THE AVERAGE NUMBER OF WORDS IN THE SENTENCES
IN THE PARAGRAPH AND PRINT THE ANSWER TO TWO DECIMAL PLACES*

294 Appendix E

Output

AVERAGE WORDS PER SENTENCE = 17.80

7-41.

1 DIMENSION ID I G(10) • I A(80)
2 DATA IBLK,IOIG.IPLS.IMINZ* •••0•••1•••2•••3•••4•••5*■•6•■•7•■•8

19*.• ♦•.*-*Z
3 READI5.1) IA
4 1 FORMATC80A1)
5 IOG=O
6 NUM=0
7 J=0
8 3 J=J+1
9 IF(J.GT.8O) GO TO 1

10 IF(IA(J).EQ.IBLK) GO TO 1
1 1 IS» + 1 .
12 IF(I A(J),NE.IM IN) GO TO 4
13 IS«-1
14 J = J + 1
15 GO TO 5
16 4 IF (I A(J) .EQ. I PLS) J=J + 1
17 5 IF(J.GT.8O) GO TO 6
18 00 7 1=1.10
19 IF(IA(J)•EQ.I 01G(I)) GO TO 8
20 7 CONTINUE
21 IF(IA(J).NE.IBLK) GO TO 9
22 IF(IDG.EQ.O) GO TO 9
23 12 NUM=NUM*IS
24 WRITEI6.10) NUM
25 10 FORMAT(•OVALUE =••110)
26 STOP
27 2 WRITEI6.il)
28 11 FORMAT(•OBLANK CARD*)
29 STOP
30 6 IF(IDG.NE.O) GU TO 12
31 9 WRITEI6.13) IA.J
32 13 FORMAT(6X.80A1Z6X••INVALID CHARACTER NEAR COLUMN*.13)
33 STOP
34 8 NUM=NUM*10♦I-1
35 IDG=1
36 J= J + l
37 GO TO 5
38 ENO

Input

♦154678

Output

VALUE 154678

WRITEI6.il

Solutions to Selected Exercises 395

Chapter 8

8-1.

c
c

DEFINITION OF FIX)

1
c

FI X) = ((X—1,)♦X—1.)*X—1.9

c
c

REAC LIMITS

2
C

READ!5.1) A.H

C
C

ITERATION TO LOCATE ROOT

3 C=(A+E)/2.
4 DC2 1=1,20
5 IF(FIC)) 3,4.5
6 3 A = C
7 G0TC2
8 5 B=C
9 2

C
C=(A + E)/2.

c
c

ROOT IS FOUND

10 4 WR ITE16.7)C
1 1

c
STOP

c
c

FORMAT STATEMENTS

12 1 FORMAT I2F 10.0)
1 3 7 FORMAT! 1X.F15.4)
14 ENC

Input

O. 5.

Output

1.9856

8-4.

C DEFINE FIX). WRITE HEADINGS,
C

1 F(X)=X**2
2 WR ITEI6, 1)
3 1

C

FORMAT(39H0APPROXIMATION OF DERIVATIVE OF FIX)
♦ 14I-|X**2 AT X = 1./
♦6X.26HTRUE DERIVATIVE = 2*X = 2. Z9 X ,.l HH6X .
*12HAPPR0X, DER.)

c
c

READ H AND CALCULATE APPROXIMATION

4 4 READ!5.2)H
5 2 FORMAT!F5.0)
6 DER=(F(1»+H)”F(I.))/H

296 Appendix E

7 WRITE(6.3)H.DER
8 3 FORMAT(5X,F8a4,F14,5)
9 G0T04

10 END

Input

la
D«5
Ca?
Cal

CeC5
C* C 2
0.01

OaCCl

Output

X**2 AT X laAPPROXIMATION OF DERIVATIVE OF F(X)
TRUE DERIVATIVE • 2*X = 2.

H APPROX, DER«
1.0000 3.CO J 0)0
Ca5)00 2,50000
C.2000 2s 19999
Ca1OCT 2>09998
0 a 050'0 2a 04996
0,0200 2.01993
C.C100 2.CG977
0.0010 1,99986

8-7.

0
c

1
0
c
c
0

2 1
3

C
C
0

5
6
7
e 3

c
0
c

4
1C

c
c
c

1 1 2
12 4
1 3

DEFINE F(X)

FIX)=1.+X**2

READ NUMBER OF INCREMENTS AND CALCULATE
STEP SIZE

READ!5.2)N INC
DELX=2a/FLCAT(NINC)

NUMERICAL INTEGRATION

SUM=(F(O»)+F(2.))*DELX/2a
X=DELX
DO3 1 = 2,NINC
SUM=SUM+F(X)*CELX
X=X+DELX

WRITE RESULTS

WR ITE!6,4)NINC.SUM
G0T01

FORMAT STATEMENTS

F0RMATII5)
FORMAT! IX, I5.F15.4)
END

Solutions to Selected Exercises 297

Input

4
ic
20
50

1C3
1000

Output
4

20
50

ICC
1000

4.75C0
4,6800
4,6700
4,6672
4,6667
4,6662

8-10.

C
c

1
c
c
c

?
3 1
4

C
C
C

5
6
7
6
5

IC
1 1 2

C
c
c

1 2
1 3

C
c
c

14 4
1 5 3
16

DEFINE CC(C)

DC(C) = 1,-C

REAC N INC AND CALCULATE CT

TSCL= 1 a-EXP(— 1,)
RE AC(5•4)N INC
DT= 1 ,/FLOAT(N INC)

NUMERICAL INTEGRATION

c=o,
DC2 1=1»NINC
AK1=DC(C)
AK2 = DC(C + DT*AK 1 /2«)
AK3=DC(C + DT4AK2/2,)
AK4=DC(C+DT4AK3)
C = C + D T ♦ (AK 1 + 2 , ♦ AK 2 + 2 • ♦ AK 3 ♦ AK 4) / 6 a

OUTPUT

WRITE(6» 3)MNC«C» TSOL
G0TC1

FORMAT STATEMENTS

FORMAT(15)
FORMAT!1XI5.2F15.4)
ENC

Input

4
IC
20
50

100
1000

298 Appendix E

Output

4
10
20
5C

100
10C0

C.6321
0.6321
C.6321
C.6321
C.6321
C.6321

C ,632 1
C ,632 1
Co 632 1
C-.6321
(1,632 1
0,6321

8-14

1
c
c

DIMENSION A(51)

REAC INPUT,CALL FUNC.AND WRITE RESULTS
c

2 RE AC!5,1)N,(A! I) , 1 = 1,N),A IN + l),B
3 1 FORMAT! I5/IF1C. C))
4 •
5
6 2

R=FUNC(A,N,B)
W R IT E I 6,2) E , R
FORMAT(3HCF!F10 □4,3H) =F15.4)

7
8

<3
C
C
c

10
11
1 2
13 1

STCP
ENC

FUNCTION FUNC!A,N,8)

EVALUATION OF F(B>

DIMENSION A!51)
FUNC=A!1)
DOI 1=1,N
FUNC = FUNC + A! 141)*B4»I

14
15

4
la 0
la 2
la?
1.9
0.8
2.2

F! 2.:

RETURN
ENC

Input

Output

2000) = 5C<>83<;6

8-16.

1 DIMENSION X(5C) ,Y!50),XX(5C)*XY(50).PREDI5C)
C
C REAC INPUT ANC COMPUTE X*X AND X*Y
C

2 RE AC(5 * 1) N•(X(I) ,Y(I), I = 1.N)
3 1 FORMAT! 15/!2F10))
4 D02I=l,N
5 XX(I)=X(I) 4*2
6 2 XY(I) = X(I)*Y(I)

C
C COMPUTE CORRECTED SUMS AND CROSS PRODUCTS
C

Solutions to Selected Exercises 299

7
a

9
10
1 1
1 2

1 3
1 4

15
16

1 7

1 8
1 9
23
21
22
23

CSCP=SUM(XY,N . 5 ')—SUM(X.N» 5C)*SUM(Y ,N,5<.) /FLCA TIN)
CSS = SUMI XX • N. 50) —SUM I X.N.5C)*♦2/FLOATIN)

C
C COMPUTE COEFFICIENTS AND PREDICTED VALUES
C

B=CSCF/CSS
A = (SUM I Y . N . 50)-H*5UM(X ,N, 5C)) /FLOAT I N,)
0071=1,N

7 PREDI I) = A + E*X(I)
C
C OUTPUT
c

WRITE(6.6)A.B.(I,X(I >.Y(I) ,PRED I 1). I = 1.N)
6 FORMAT(17X.17FLEAST SQUARES FIT// 8X.5HY = I1PE12.5.

♦ 5HX + I E 1 2.5. 1H 1//6X, 3H0ESS »8X. 1HX , 1 2X. 1HY .8X.9HPRE0 ICTED
*//(IX. I7.0P3F 13,3))

STOP
END

FUNCTION SUM(A.N.M)
C
C SUMS AN ARRAY
C

DIMENSION AIM)
SUM=0.
001 1=1.N

1 SUM=SUM+A(I)
RETURN
ENC

Input

1.716
5.91 1
3.726
9. 123
4.022

3.021
10.819
7.5C2

17.801
7.638

Output

LEAST SQUARES FIT

Y = (—2.23407E—0IX ♦ < 1.95722E 30)

Y PREDICTED

1 1.716 3.521 3. 135

2 5.911 10.819 11.346

3 3.726 7.502 7. 069
9.123 17.801 17.632

5 4.022 7.688 7.649

8-20.

1 DIMENSION A(5C)»B(5C)
C REAC INPUT.CALL DOT.AND WRITE RESULTS

2 REAC(5.1)N.(A(I)»I=1»N).(B(I).I=1.N)
3 R=DCT(A,B.N)
4 WRITEI6.2IR
5 1 FORMAT! I5/IF1C.''))

300 Appendix E

6 2 FORMAT I14H£DOT PRODUCT =F15a7)
7 STOP
P ENC

t FUNCTION DCTIA.E.N)
C COMPUTES DOT PRODUCT OF A AND B

10 DIMENSION A!5’j).B!5C»
11 DCT=0»
12 0011=1.N
13 1 COT=DCT + A(I)*e(I)
14 RETURN
15 ENC

Input

4.
Oa

2.
- 1 •

2a
la

Output
DCT PRODUCT =

8-23.

1 DIMENSION A! 5S)»B(5C)«C(SC)«D(50)
C
C REAC INPUT
C

2 REAC(5.1)N,(A(I),I=1.N).(B(I).I=1,N).(C(I).I=1.N)
3 1 FORMAT! I5/(F10a<))

C
c COMPUTE 0 AND WRITE RESULTS
c

4 CALL SCALAR!C.DCT(A,B.N).D.N)
5 WRITE I6.2H I,C(I). 1=1aN)
6 2 FORMAT! 14HCELEMFNTS OF D/1 1X I 1L.F15a4))
7 STOP
8 ENC

9 FUNCTION DOTIA.P.N)
c
c COMPUTES DOT PRODUCT OF • AND B
c

1C DIMENSION A!5S)«8(50)
1 1 DCT=0a
12 DOI 1=1 .N
1 3 1 DCT = DCT + A{ I >*B! I)
14 RETURN
15 ENC

16 SUBROUTINE SCAL AR!A.C* B « N >
c
c MULTIPLIES ARRAY A BY SCALAR C TO OBTAIN
c ARRAY 8

Solutions to Selected Exercises 301

c
17 DIMENSION A(5C),B(5C)
1? DO1I=1,N
19 1 B(I) = A(I)*C
20 RETURN
21 ENC

Input

4
1 •
0 •
4.
2.
7.

2.
1 >
2.
2.

-2.
7.

Output

ELEMENTS OF D
1 34.CCCO
2 34. CC'/Q
3 -34.CO
4 X 19.C 0 .'T

8-26.

1 DIMENSION A(2C.2C)
C
C REAC INPUT.CALL TRANS,AND WRITE RESULTS
C

2 PEAC(5,1)N,((A(I,J).J=1,4>,I=1,4)
3 1 FORMAT(I 5/(4F 10 ,0))
4 CALL TRANS(A.N)
5 WRITE(6«2)((A(I,J),J=1,4)»I=1,4>
6 2 FORMAT(17HCTRANSPOSE MATRIX/C1H 4F15.4))
7 STCP
8 ENC

9 SUBROUTINE TRANS(A.N)
C
C TAKES TRANSPOSE OF A
C

1 -I DIMENSION A(2C*20)
1 1 NN = N-1
12 DC3I=1,NN
13 K= 1 + 1
14 DC3J=K,N
15 TEMP=A(I.J >
16 A(I,J) = A(J , I)
17 3 A(J,I)=TEMP
18 RETURN
19 ENC

302 Appendix E

Input

4
1 •> 2a

-la 3a
Oa -5a
8. -9a

Output

TRANSPOSE MATRIX
laOOOO
2a0000
CaOOOC
5a o:c

Ga
7a
la
Ca

- 1 a C 0 0 0
3.COCO
7»0C CO
laGCCC

8-29.

5. j
1 »
4a
Oa

CaCCJC
-SaCCOC

laCCOC
4acc :c

8,COCO
—9aD0CC

CaCOCC
0 © 0 0 C v

C
C
c

3
4
5
6
7
8

9
1 0
1 1
1 2
1 3

c
c
c

DIMENSION A(25,25),B(25,25),C(25,25).FMT(23)

REAC INPUT

REAC(5,1IN.K.M
FORMAT(315)
REAC(5.2)FMT
FORMAT(2>A4)
REAC(5»FMT)((A(I.J),J=1,K),I=1,N)
REAC(5,2)FMT
REAC(5,FMT)((E(I,J).J=1.M).I=1.K)

MULTIPLY AND WRITE RESULTS

CALL MTXMPYfA ,8.C.N.K.M)
REAC(5.2)FMT
WRITE(6.FMT)((C(I.J).J=1,M).I=1,N)
STOP
ENC

14 SUBROUTINE MTXMPY(A.B.C,N,K.M)
C
C MULTIPLIES A ANC B
C

15 DIMENSION A(25.25).B(25,25) .C(25,25)
16 0051=1,N
17 D05J=l,M
18 C(I.J)=0©
19 D05L=l.K
20 5 C(I ,J) = C(I .J) *A(I,L)*B(L,J)
21 RETURN
22 ENC

Input

3 4 2
(4F10,0)

la Ca -2a 4.
?• 1. 7. 3a
5a -2a Ca Ca

Solutions to Selected Exercises 303

! 2F10.0)
1.
2.
0 o
3.

!1H 2F15.4)

2.
O.

6.

Output

13,0000
13,0000

l.OOCC

12,0 ICC
71.00CC
10.00 co

8-32.

1

2
3
4

5

6

7
8
9

10

1 1

1 2
13
14
15
16
1 7
18
19
27
2 1

22

23

DIMENSION A(2C« 20).B(20), X(20) »FMT!2)
C
C REAC INPUT
C

REAC!5,1)N,FMT
1 FORMAT!I5/20A4)

REAC(5•FMT) ! !A! I , J) , J=1,N)■I = 1•N),(B(I),I = 1,N)
C
C GAUSS REDUCTION
C

CALL GAUSS!A,E.N,2CJ
c
C SOLUTION
c

CALL SOLVE!A,B,X.N,20)
C
C OUTPUT
C

WR I TEI 6•2) ! I,X I I), I = 1,N)
2 FORMAT I9H0SOLUT ION/!3H X!I3,3H) =F15,4))

STOP
ENC

SUBROUTINE SOLVE!A,B.X.N,MM)
C
C SOLUTION OF EQUATIONS
C

DIMENSION A!MM,MM),B!MM),X!MM)
X! 1)=B!1)/A! 1,1)
DO2 1 = 2.N
M= 1-1
SUM=B!I)
DO3 J = 1 .M

3 SUM = SUM-A(I.J)*X(J)
2 X! 1)=SUM/A!I. I)

RETURN
ENC

SUBROUTINE GAUSS!A.B.N.MM)
C
C PERFORMS GAUSS REDUCTION
C

DIMENSION A!MM,MM),B!MM)

304 Appendix E

24 NN=N-1
25 DC5I=1.NN
26 J=N+1-I
27 L=J-1
28 ' CC6K=1,L
29 FACT=A(K.J)/A(J,J)
3^ DO7M=1»J
31 7 A(K,M)=A(K,M)-FACT*A(J,M)
32 6 R(K)=E(K)-FACT»E(J)
33 5 CONTINUE
34 RETURN
35 ENC

Input

3
(3F1C.C)

3, 4» 1.
1 s 4. -2»
2» 1 • 1.
4. 0 • 1.

Output
SCLUT ICN

XI 1) =
X (2) =
X (3) -

- 1>3333
1j4444
2*2222

Appendix

WATFOR and WATFIV

Users of computing equipment fall into two categories: expert programmers and poor
programmers. Members of the second category are by far the more numerous, encom
passing most computer users who view the comptuer only as a tool to obtain numerical
solutions to numerical problems in their field of interest. To best serve their needs, the
Fortran compilers should possess two characteristics: fast compilation, which means the
computer center can potentially give them fast turnarounds (especially for debugging),
and excellent error detection capabilities, both during compilation and during execution.

To meet these requirements a compiler named WATFIV, pronounced “what five,”
has been developed by the Department of Applied Analysis and Computer Science,
University of Waterloo. Chronologically, WATFIV is an extension of WATFOR, pro
nounced “what for,” which was developed in 1965 for the IBM 7040 and extended to the
IBM 360 in 1967. WATFIV appeared in 1969, and essentially is a more powerful version
of WATFOR. WATFIV has now almost completely replaced WATFOR, and
WATFIV will receive our prime attention in this appendix. WATFIV is a Fortran IV
compiler, but a few aspects of the basic language are especially useful. One of these,
format-free input-output feature permits the READ, PRINT, and PUNCH statements to
be used without a FORMAT statement.

This appendix seeks to accomplish three objectives: describe some aspects of
WATFIV, discuss the control cards, and present the error codes for WATFIV.

F-1. Special Aspects

The items to be presented here are only those items which are not covered completely in
the regular sequence of this text and which are thought to be most useful to beginning
programmers. Except as noted, they apply to both WATFOR and WATFIV. For other
facets of these compilers, the student should consult his computer center’s reference
manuals on these special compilers.

Format-Free Input-Output. Since one of the most perplexing features to the
beginning student of Fortran is the FORMAT statement, the format-free input-output
feature of the language is very useful. This is first introduced in Chapter 3. The
format-free input-output feature permits the READ, PRINT, and PUNCH statements to
be used without a FORMAT statement.

First consider the format-free READ statement, which takes the following form:

READ, variable list

Note that a comma separates the word READ from the variable list, and no FORMAT

305

306 Appendix F

statement number or device number appears, the latter normally assumed to be a card
reader. As an example, the statement

READ, A,B,N,C

would cause the reading of values for the variables A, B, N, and C. Execution of this
READ statement would cause a card to be read and scanned for these values. The
numerical values for these variables should be punched on this card or succeeding cards in
the order in which they appear in the READ statement, i.e., the value for A followed by
the value for B, etc. The values may be punched anywhere on the card, but successive
values should be separated by one or more blanks or by a comma. If the values for all
variables in the READ statement are not found on the first card, another card is read and
scanned. This process is continued until all values have been read. This permits entry of
data with one value per data card, if desired. Floating-point constants may be punched in
either decimal or exponential format.

As an example, data for the previous READ statement may appear on one data card
in any of the following ways:

1.7 0.0012 5 99.8
1.7, 0.0012, 5, 99.8
1,7, 1.2E-3 5, 9.98E1
1.7 12.E-4 5 99.8

Blank cards are completely ignored, and thus may be placed anywhere in the data deck.
Next, consider use of the format-free PRINT statement, whose general form is

PRINT, variable list

Again, only a comma follows the word PRINT. The values of the variables in the output
list are printed across the page. Each value is printed to full precision with spaces inserted
between values for clarity. Eight values are normally printed across the page, but this
varies with computer installations. Real (floating-point) numbers are printed in exponen
tial form with seven significant figures. For example, suppose the variables entered with
the above READ statement are printed with the statements

PRINT, N,A
PRINT, B,C

The output would appear as follows:

5 0.1700000 E 01
0.1200000E—02 0.9980000 E 02

If the PRINT statement contains more values than can be printed on one line, output is
continued on the following line.

Rules for the PUNCH statement are analogous to those for the PRINT statement.

Expressions in Output Lists. The WATFOR and WATFIV compilers permit ex
pressions to be used in output lists. Only the results of these expressions are printed.
Functions may be freely used in these expressions. For example, the following statement
is entirely valid:

PRINT, X,Y,I + J, A/SQRT(B)

WATFOR and WATFIV 307

Only four values are printed. One restriction must be observed: the expression must not
begin with an open parenthesis .$ That is, the expression (I + J)/2 must be written as + (I +
J)/2, making the PRINT statement

PRINT, + (I + J)/2

It is also possible for constants to appear in output lists, for example

PRINT, 2

This statement causes the integer 2 to be printed. This feature is helpful in debugging.
WATFIV also permits explanatory messages to be written with format-free input

output statements. For example, the statement

PRINT, ‘THE SQUARE ROOT OF’ ,A, ‘IS’ ,SQRT (A)

gives the output

THE SQUARE ROOT OF 0.4000000E 01 IS 0.2000000E 01

Extended Assignment Statement. Statements of this type permit more than one
variable to be assigned a value in a single Fortran statement. Examples are

SUMA = SUM = A = 0.
I = J = 1
A=B=C=D= SQRT(1. - X ** 2)

In the first example, the three variables SUMA, SUM, and A are all assigned the value of
zero. The other two statements function analogously.

When mixed expressions of the type

X = I = Y = 2.4

appear, the manner in which the compiler treats this statement is important. For this
example, this statement is equivalent to the three statements

Y = 2.4
I = Y
X = I

Note that X is assigned the value 2.0 rather than 2.4. Precision may also be lost when
integers appear in statements of the type

M = A = N= 123456789

When A is in single precision, only about seven of the nine digits are retained.

Multiple Statements per Card. One of the notable extensions of WATFIV over
WATFOR and other Fortran IV compilers is that several statements may be punched on a
single card. For statements without statement numbers, the successive statements are
simply separated by semicolons. For example, the program

I This indicates an implied DO to the compiler.

308 Appendix F

READ, A,B
C = A*SQRT(B)
PRINT, C
STOP
END

could be punched on one card as follows:

READ, A,B;C = A * SQRT(B); PRINT, C;STOP;END

Only columns 7-72 are used, although the normal rules for continuation cards still apply.
When statement numbers are used, they must either appear in columns 1-5 as usual

or be separated from the Fortran statement by a colon. For example, the statements

22 SUM = 0.
DO 32J = 2,M

32 SUM = SUM + X(J)

could be punched

22 SUM = 0.;DO 32 J = 2,M;32:SUM = SUM + X(J)

Statement numbers may not be split onto a continuation card. Nor can FORMAT
statements be punched in this manner.

Comment cards must also be punched in the conventional manner.

F-2. Control Cards

The program deck when using the WATFOR or WATFIV compiler appears as follows:

SJOB
{ Fortran program }
SENTRY
{ Data cards}

The SJOB and SENTRY cards are known as control cards. Both cards must be punched
beginning in column 1, with no blank spaces. The SJOB card signifies to the compiler the
beginning of the Fortran program, and the SENTRY card signifies that execution is to
begin. Both of these cards are usually available prepunched on colored cards from the
computer center. WATFIV permits certain options to be obtained with entries in the
SJOB card, but again the computer center should be consulted about the use of these.

F-3. Error Codes

The WATFOR and WATFIV compilers may generate error messages during either compi
lation or execution. At compile time, the compiler checks for violations of the rules of
Fortran. During execution it checks for unreasonable situations that usually mean
programming errors. Examples of such situations include undefined variables, value of

WATFOR and WATFIV 309

subscript exceeding dimensioned size of array, etc. Few other compilers detect error of
this type.

During compilation, three types of error messages may appear

1. Extension. These messages flag each use (other than format-free input-output) of
one of the extensions of these compilers, since it is unlikely that other compilers
will accept these statements.

2. Warning. These messages flag situations in which the compiler has encountered
ambiguous code but has taken a predetermined course of action to generate ex
ecutable code. For example, upon encounter of a variable name with more than
six characters, the first six are used as the variable name and a VA-2 warning
message is generated.

3. Error. An error message flags code that cannot be interpreted by the compiler.
The error message appears with the print-out of the program, designates a par
ticular error code, and in some cases gives other information relating to the
source of the error.

The error codes for WATFOR and WATFIV are somewhat different. Since virtually
all computer centers now use the WATFIV compiler exclusively (over WATFOR), the
WATFIV error codes are reproduced on the following pages for convenience.?

WATFIV compiler error messages

•ASSEMBLER LANGUAGE SUBPROGRAMMES'
AL-0 ’MISSING END CARD ON ASSFMBLY•LANGUAGE OBJECT OFCK'
AL-1 'ENTRY-POINT OP CSFCT NAME IN AN OBJECT DECK WAS PREVIOUSLY

DFFINED.FIRST DEFINITION USED'

•BLOCK DATA STATEMENTS'
BO-0 ''EXECUTABLE STATEMENTS ARE ILLEGAL IN BLOCK DATA SUBPROGRAMS'
BO-1 'IMPROPER BLOCK DATA STATEMENT'

•CARD FORMAT AND CONTENTS'
CC-0 'COLUMNS 1-5 OF CONTINUATION CAPC ARE NOT PLANK.

PPCEAPLF CALSE:STATEMENT PUNCHED TO LEFT CF COLUMN 7'
CC-1 'LIMIT CF 5 CONTINUATION CARDS EXCEEDED'
CC-2 'INVALID CHARACTER TN FORTRAN STATEMENT.

A M' WAS INSERTED TN THF SOURCE LISTING'
CC-3 'FIRST CARD OF A PROGRAM IS « CONTINUATION CARO.

PROBABLE CAUSE:STATFMEMT PUNCHED TO LEFT OF COLUMN 7*
CC-4 'STATEMENT TOO LONG TO COMPTLF (SCAN-STACK OVERFLOWL'
CC-5 'A BLANK CARD WAS ENCOUNTERED'
CC_6 'KEYPUNCH USED DIFFERS PROM KEYPUNCH SPCCIFIFD ON JOB CAPC
CC-7 'THE FIRST CHARACTER OF THF STATEMENT WAS NOT ALPHABETIC*
CC-6 'INVALID CHARACTER(S) APF CONCATENATED WITH THE FORTRAN KEYWORD'
CC-q 'INVALID CHARACTERS TN COLUMNS 1-c . ST A TE ME NT NUMDER IGNORED.

PPOBAE.LF CAUSE ISTATEMFN T PLNCEFC to LEFT CF COLUMN 7'

•COMMON'
CM-0 'THF VARIABLE IS ALREADY IN COMMON’
CM-1 'CTHFR COMPILERS MAY NOT ALLOW COMMONEC VARIABLES TO BE INITIALIZED IN

CTHFF THAN A BLOCK DATA SUBPROGRAM'
CM-? 'ItlFCAL USE OF A COMMON BLOCK CP NAMELIST NAME'

JWATFIV error codes have been reproduced by permission from “/360 WATFIV Implementation
Guide,” Department of Applied Analysis and Computer Science, University of Waterloo, Waterloo,
Ontario, Sepetember 1969.

310 Appendix F

WATFIV compiler error messages (Continued)

•FORTRAN TYPF CONSTANTS'
CN-0 'MIXFC REAt*4,RE AL*8 IN CCNPLFX CC N ST ANT I R F A L *R ASSUMED FOR BOTH '
CN-1 'AN TNTFGFR CONSTANT MAY NCT BF CPFATFR THAN 2,147,483,647 (2**31-1)'
CN-2 'THF FXPONFNT OF ! RFAL CONSTANT IS GREATER THAN 99,W MAXIMUM'
CN-3 'A RFAL CONSTANT HAS MORE THAN 16 DIGITS.IT WAS TRUNCATFC To 16'
C.N-4 'INVAIID HFXACFCIMAL CONSTANT'
CN-5 'TLIFCAL USE OF A DECIMAL POINT'
CN-6 'CONSTANT WITH E-TYPE EXPONENT HAS MORE THAN 7 DIGITS, C-TYOF ASSUMED'
CN-7 'CONSTANT OP STATEMENT NUMBER CRFATER THAN SP9R9'
CN-fl 'AN EXPONENT OVERFLOW CR UNCFRFICW OCCURRED WHILE CONVERTING A CONSTANT

IN A SOURCE STATEMENT'

•COMPILER ERRORS'
CP-0 'A COMPILER ERROR WAS CETFCTED IN DECK LANDR'
CP-1 'COMPILER ERROR.LTKFLY CAUSEiMCRE THAN 255 00 STATEMENTS'
CP-2 ’A COMPILER. ERROR WAS DETECTED IN DFCK APITH'
CP-4 'COMPILER ERROR - INTERRUPT AT COMPILE TIMF,RETURN TO SYSTEM'

•CHARACTER VARIABLE'
CV-0 'A CHARACTER VARIABLE IS USED WITH A RELATIONAL OPERATOR'
CV-1 'LENGTH OF > CHARACTER VALUE ON RIGHT OF EQUAL SIGN EXCFFDS THAT ON

LEFT. TRUNCATION WILL OCCUR'

•DATA STATEMENT'
DA-0 'REPLICATION FACTOR IS ZERO OR GREATER THAN 32767.

IT IS ASSUMFC TO RE 32767'
DA-1 'MORE VARIABLES THAN CONSTANTS'
DA-2 'ATTEMPT TC INITIALIZE A SUBPROGRAM PARAMETER TN A DATA STATEMENT'
DA-3 'OTHER COMPILERS MAY NCT ALLOW NCN-CCNSTANT SUBSCRIPTS IN DATA

STATEMENTS'
DA-4 •NON-AGPFEMENT BETWEEN TYPF OF VARIABLE AND CONSTANT'
DA-5 'MORF CONSTANTS THAN VARIABLES'
DA-6 'A VARIABLE WAS PREVIOUSLY IN IT I Al I 7ED. THE LATEST VALUF IS USED.

CHECK COMMCNEC ANO FCUIVALENCEC VARIABLES'
OA-7 'OTHER COMPILERS MAY NOT ALLOW INITIALIZATION Op BLANK COMMON'
DA-8 'A LITERAL CONSTANT HAS BEFN TRUNCATED'
DA-9 'OTHER COMPILERS MAY NOT ALLOW IMPLIED DO-LOOPS IN DATA STATEMENTS'

•DEFINE FILE STATEMENTS'
OF—0 'THE UNIT NUMBER IS MISSING'
DF-1 'INVALID FORMAT TYPF'
DF-2 'THE ASSOCIATED VARIABLE IS NOT A SIMPLE INTEGER VARIABLE'

•DIMENSION STATEMENTS'
DM-0 'NO CIMENSICNS ARE SPECIFIED FCR A VARIABLE IN A DIMENSION STATEMENT'
DM—1 'THE VARIABLE HAS ALREADY BEFN DIMENSIONED'
DM-2 ' CALL-PY-LOCAT ION PARAMETERS MAY NOT BF DIMENSIONED'
DH-3 'THE DECLARED SIZE OF ARRAY EXCEEDS SPACE PROVIDED BY CALLING ARGUMENT'

•DO LOOPS'
DO-O 'THIS STATEMENT CANNOT PE THE OBJECT OF A DO-LOOP'
DO-1 'ILLEGAL TRANSFER INTO THF RANCE OF A DO-LCOP'
00-2 'THE OBJECT OF THIS DO-LOOP HAS ALREADY APPEARED'
DO—3 'IMPROPERLY NESTED CC-LCCPS'
00-4 'ATTEMPT TC REDEFINE A DC-LOOP PARAMETER WITHIN THE RAKGF OF THE LOOP'
00-5 'INVALID DC—LOOP PARAMETER*
DO-6 'ILLEGAL TRANSFER TO A STATEMENT WHICH IS INSIDE THE RANGE OF A DO-LOOP'
DO-7 'A OO-LOOP PARAMETER IS UNDEFINED OR OUT OF RANGE'
DO-8 'BECAUSE OF ONE CF THE PAR AMFTERS,TH I S DO-LOOP WILL TERMINATE AFTER THF

FIRST TIME THROUGH*
DO-9 'A DO-LOOP PARAMETER *AY NCT BF REDEFINED IN AN INPUT LIST'
DO-A 'OTHER COMPILERS MAY NCT ALLOW THIS STATEMENT TO END A DO-LOOP'

DIGITS.IT

WATFOR and WATFIV 311

WATFIV compiler error messages (Continued)

•EQUIVALENCE AND/OR COMMON'
EC-0 •EQUIVAIFNCEC VARIABLE APPEARS IN A COMMON STATEMENT'
EC-1 ’A COMMON BLOCK HAS A DIFFERENT LENGTH THAN IN 4 PREVIOUS

SUPPFOCRAM:GREAT ER LENGTH USED'
EC-2 'COMMON AND/OR EQUIVALENCE CAUSES INVALID ALIGNMENT.

EXECUTION SI OWED.REMEDY:CRCFR VARIABLES BY DECREASING LENGTH'
EC-3 ’EQUIVALENCE FXTENCS COMMON DOWNWARDS'
EC-4 ’A SUBPROGRAM PARAMETER APPEARS TN * COMMON OR EQUIVALENCE STATEMENT*
EC-5 'A VARIABLE WAS LSFn hl TH SUBSCRIPTS TN AN EQUIVALENCE STATEMENT RUT HAS

NOT FFFN PROPERLY DIMENSIONED'

•END STATEMENTS’
EN-0 ’MISSING END STATEMENT:ENO STATEMENT GENERATED'
EN-1 •AN END STATEMENT WAS USED TC TFRMINATF EXECUTION’

• EQUAL SIGNS’
EQ-0 •ILLEGAL QUANTITY CN LFFT OF EQUALS SIGN i
EQ-1 • ILLEGAL USE CF EQUAL SIGN'
EQ-2 •OTHFR COMPILERS MAY NOT ALLOW MULTIPLE ASSIGNMENT STATEMENTS'
EQ-3 •MLLTIPLF ASSIGNMENT IS NOT IMPLEMENTED FOR CHARACTER VARIABLES'

•EQUIVALENCE STATEMENTS’
EV-0 ’ATTEMPT TC EQUIVALENCE A VARIABLE TO ITSELF'
EV-2 ’A Ml ITt—SIPSCRIPTFD ECUIVALENCEC VARIABLE HAS REEK INCORRECTLY

RF-ECUIVALFNCEC.REMFDYsOImenSICN THF VARIABLE FIRST’

•POWERS ANC FXPONFMI ATICN’
EX-0 ’ILLFGAL COMPLEX EXPONENTIATION’
EX-1 •I**J WHERF I=J=O‘
EX-2 'I**J WHERE I=C. J.LT.O’
EX-3 ’O.C**Y WHFRF Y.IF.O.C'
EX-4 'C.C**J WHFRF J=O'
EX-5 ’C.C**J WHERF J.LT.O’
EX-6 'X*MY WHERF X.LT.O.O. Y.NE.O.O’

•ENTRY STATEMENT’
EY-0 ’ENTRY-POINT NAME WAS PREVIOUSLY DEFINED'
EY-l ’PREVIOUS DEFINITION CF FUNCTION NAME IN AN ENTRY IS INCORRECT'
EY-2 'THE USAGE OF A SUBPROGRAM PARAMETER IS INCONSISTENT WITH A PREVIOUS

fntry-pcint’
EY-3 'A PARAMETER HAS APPEARED IN fl EXECUTABLE STATEMENT BUT IS NOT A

SUBPROGRAM PARAMETER'
FY-4 'ENTRY STATEMENTS ARE INVALID IN TEE MAIN PROGRAM’
EY-5 'ENTRY STATEMENT INVALID INSIDE 0 DO-LOOP’

I
format ERROR MESSAGES’ GIVE CHARACTERS TN WHICH ERROR WAS DETECTED

•IMPROPER CHARACTER SEQUENCE OP INVALID CHARACTER IN INPUT DATA’
• NO STATEMENT NUMBER ON A FORMAT STATEMENT'
• FORMAT CODE AND DATA TYPE DO NOT MATCH’
• FORMAT PROVIDES NO CONVERSION SPEC IF ICA TICN FOR 4 VALUE IN- 1-/0-14 S-T'
• AN INTEGER IN THF INPUT DATA IS TOO LARGE.

(MAXIMUM=2,147.483.647=2**31-1)'
•A REAL NUMBER IN THE INPUT DATA IS CUT CF MACHINE RANGF (1.E-70»1.E+75)
•FIRST CHARACTER OF VARIABLE FORMAT IS NOT A LEFT PARENTHESIS'
•INVALID CHARACTER ENCOUNTERED IN FORMAT'
•INVALID FORM FOLLOWING A FORMAT CODE'
•INVALID FIELD OR GROUP COUNT'
• A FIELD OR GROUP COUNT GREATER THAN 255'
• NO CLOSING PARENTHESIS ON VARIABLE FORMAT'
• NO CLOSING QUOTE IN I HOLLERITH FIELD’

’FORMAT
SOME

FM—0
FM-1
FM-2
FM—4
FM-5

FM-6
FT-0
FT-1
FT-2
Fl-3
FT—4
FT-5
FT—6

312 Appendix F

WATFIV compiler error messages (Continued)

FT-7 'INVALID USE OF COMMA* 4

• INPUT/OUTPUT'
10-0 'I/O STATEMENT REFERENCES A STATEMENT WHICH IS NOT A FORMAT STATEMENT'
IO-1 'A VARIABLE FORMAT MUST BE AN ARRAY NAME'
IO-2 'INVALID ELEMENT IN INPUT LIST OR DATA LIST'
10-3 'OTHER COMPILERS MAY NOT ALLOW EXPRESSIONS IN OUTPUT LISTS'
10—4 'ILLEGAL USE OF FND= OR ERR= PARAMETERS'
10-5 'INVALID UNIT NUMBER'
10-6 'INVALID FORMAT•
10-7 'ONLY CONSTANTS.SIMPLE INTEGERS VAR I ABLES , AND CHARACTER VARIABLES ARE

ALLOWED AS UNIT'

FT-8 'FORMAT STATEMENT TOO LONG TC COMPILE (SCAN-STACK OVERFLOW)'
FT-9 'INVAIIC USF OF P FORMAT CODE'
FT-A ’INVALID USE OF PFRIOD(.)'
FT-B 'MORF THAN THREE LEVELS OF PARENTHESES'
FT-C 'INVALID CHARACTER BEFORE A RIGHT PARENTHESIS'
FT-D 'MISSING OR ZERO LENGTH HOLLERITH ENCOUNTERED'
FT-E 'NO CLOSING RIGHT PARENTHESIS'
FT-F 'CHARACTERS FOLLOW CLOSING RIGHT PARENTHESIS'
FT-G 'WRONG QUOTE USED FOR KFY-PUNCH SPECIFIED'
FT-H 'LENGTH TF HOLLERITH EXCEEDS 255*

•FUNCTIONS AND SUBROUTINES'
FN-1 'A PARAMETER APPEARS ROPF THAN ONCF TN A SUBPROGRAM OR STATEMENT

FUNCTION DEFINITION'
FN-2 'SUBSCRIPTS ON PIGHT-HAND SIDE OF STATEMENT FUNCTION.

PROPABLE CAUSE :VARIAELE TO LEFT OF EQUAL SIGN NOT DIMENSIONED*
FN—3 'MULTIPLE RETURNS ARF INVALID TN FUNCTION SUBPROGRAMS'
FN-4 'ILLEGAL LENGTH MODIFIER'
FN-5 'INVALID PARAMETER'
FN-6 'A PARAMETER HAS THE SAME NAME AS THE SUBPROGRAM'

•GO TO STATEMENTS'
GO-O 'THIS STATEMENT COULD TRANSFER TO ITSELF'
GO-1 'THIS STATEMENT TRANSFERS TO A NON-EXECUTABLE STATEMENT'
GO-2 'ATTEMPT TO DEFINE ASSIGNED GOTO INDEX IN AN ARITHMETIC STATEMENT'
GO-3 'ASSIGNED GOTO INDEX MAY BE USED ONLY IN ASSIGNED GOTO AND ASSIGN

STATEMENTS'
GO-4 'THE INDFX OF AN ASSIGNED GOTO IS UNDEFINED OR- OUT OF RANCE,OR INDEX OF

COM.PUTFD GOTO IS UNDEFINED'
GO-5 'ASSIGNED GOTO INDEX MAY NOT BE AN INTEGER*2 VARIABLE'

•HOLLERITH CONSTANTS'
HC-0 'ZERO LENGTH SPECIFIED FOR H-TYPF HOLLERITH'
HO-I 'ZERO LFNCTH QUOTE-TYPE HOLLERITH'
HO-2 'NO CLOSING QUOTE OR NFXT CARD NOT A CONTINUATION CARD'
HO-3 'UNEXPECTED HOLLERITH OR STATEMENT NUMBER CONSTANT'

•IF STATEMENTS (ARITHMETIC AND LOGICAL)'
IF-0 'AN INVALID STATEMENT FCLLCVS TFF LOGICAL IF'
IF —1 'ARITHMETIC GP INVAI ID EXPRESSION IN LOGICAL IF'
IF-2 •LCGTCAt,CCMP|EX CR INVALID EXPRESSION TN ARITHMETIC IF'

• IMPLICIT STATEMENT'
IM-0 •INVALID DATA TYPE'
IM-1 'INVALID OPTIONAL LENGTH'
IM-3 'IMPROPER ALPHABETIC SEQUENCE IN CHARACTER RANGE'
IM-4 'A SPECIFICATION IS NOT A SINGLE CHARACTER.THE FIRST CHARACTER IS USED'
IM-5 'IMPLICIT STATEMENT DOES NOT PRECEDE OTHER SPECIFICAT ICN STATEMENTS'
IM-6 'ATTEMPT TO DECLARE THE TYPE OF A CHARACTER MORE THAN ONCF'
IM-7 'ONLY ONF IMPLICIT STATEMENT PER PROGRAM SEGMENT ALLOWED. THIS ONE

IGNORED'

WATFOR and WATFIV 313

WATFIV compiler error messages (Continued)

■JOB CONTROL CAROS'
JB-0 'CONTROL CARD ENCOUNTERED DURING COMPILATION;

PROBABLE CAUSE;MISSING SENTRY CARD'
JB-1 'MIS-PUNCHED JOB OPTION'

•JOB TERMINATION'
KO-O 'SOURCE ERROR ENCOUNTERED WHILE EXECUTING WITH RUN=FREE'
KO-1 'LIMIT EXCEEDED FOR FIXED-CCINT DIVISION RY ZERO'
KO-2 'LIMIT EXCEEDED FOR FLOATING-POINT DIVISION BY ZERO’
KO-3 'EXPONENT OVERFLOW LIMIT EXCEEDED*
KO-4 'EXPONENT UNDERFLOW LIMIT EXCEEDED'
KO-5 'FIXED-POINT OVERFLOW LIMIT EXCEEDED'
KO-6 'JOB-TIME EXCEEDED'
KO-7 'COMPILER ERROR - EXECUTION TIME:RETURN TC SYSTEM'
KO-P 'TRACEBACK ERROR. TRACEPACK TERMINATED'

•LOGICAL OPERATIONS'
LG-0 '.NOT. WAS USED AS A BINARY OPERATOR'

•ITBRARY ROUTINES'
LI-0 'ARGUMENT OUT OF RANGE DGAMMA OR GAMMA. (1.382E-76 .LT. X .LT. 57.57)'
LI-l 'ABSOLUTE VALUE OF ARGUMENT .GT. 174.673, S INH.COSH,DS INH,DCOSH•
LI-2 'SENSE LIGHT OTHER THAN 0,1,2.3.4 FOR SlITE OR 1,2,3,4 FCP SLITFT'
IT-3 'RFAI PCRTICN CF ARGUMENT .GT. 174.673, CEXP OR COEXP'
LT-4 'ABS(AIMAG(Z)) .GT. 174.673 FOR CSIN, CCDS, CDSIN OR COCOS OF Z'
LI-5 'APS I RFAI (Z)) .GE. 3.537E15 FOR CSIN, CCDS, CDSIN OR CDCOS OF Z'
LI-6 • ApS(AIMAC(7)) .GE. 3.537E15 FOP CEXP OR CCEXP OF Z*
LI-7 'ARGUMENT .GT. 174.673, EXP OR DEXP'
LI-8 'ARGUMENT IS ZERO, Cl OG, CL0G10, CDLCG OR CDLG10'
LI-9 'ARGUMENT IS NEGATIVE CR ZERO, ALCG, AL0C10, CLOG CR DLOGIT
LI-A 'ABS(X) .GE. 3.537E15 FOR SIN, COS. DSIN OR DCCS CF X'
LI-B 'ABSOLUTE VALUE CF ARGUMENT .GT. 1, FOR ARSIN, APCOS, OARSIN OP DARCOS•
LI-C 'ARGUMENT I< NEGATIVE, SCRT CP CSORT'
LI-D 'BOTH ARGUMENTS OF OATAN2 CP ATAN2 ARE ZERO'
U-E 'ARGUMENT TOO CLOSE TC A SINGULARITY, TAN, COTAN, DTAN OR OCOTAN'
LJ-F 'ARGUMENT CLT CF RANGE DLGAMA OF ALGAMA. (0.0 .LT. X .LT. 4.29E73)'
LI-G 'ABSOLUTE VALUE CF ARGUMENT .GE. 3.537E15, TAN, COTAN, DTAN, DCOTAN'
LI-H 'LESS THAN TWO ARGUMENTS FOR ONE OF MINO,MINI,AMINO,ETC.•

•MIXED MODE'
MD-0 'RELATIONAL OPERATOR HAS LOGICAL OPERAND'
MD-1 'RELATIONAL OPERATOR HAS COMPLEX OPERAND'
MD-2 'MIXED MPDF - LOGICAI OP CHARACTER WITH ARITHMETIC'
HO-3 'QTHFR COMPTIFRS MAY NOT ALLOW SUBSCRIPTS OF TYPE COMPLEX,LOGICAt OR

CHAR AC TER •

•MEMORY OVERFLOW'
MO-0 ' INSUFF IC. I ENT MEMORY TO CGMPTIF THIS PROGRAM. P EMAINOFR WILL PE ERROR

CHECKED ONLY'
MO-1 'INSUFFICI ENT MEMORY TO ASSIGN ARRAY STORAGE. JOB ABANDONED'
MO-2 'SYMBOL TABLE EXCEEDS AVAILABLE SPACE,JOB ABANDONED'
MO-3 'DATA ARFA OF SUBPROGRAM EXCEEDS 24K — SEGMENT SUBPROGRAM'
MO-4 'INFUFFICIENT MEMCRY TO ALLOCATE COMPILER WORK AREA OR WATLIB BUFFER'

•NAMELIST STATEMENTS'
Nl-0 'NAMELIST ENTRY MLST EF A VARIABLF.NCT A SUBPROGRAM PARAMETER'
Nl-1 'NAMELIST NAME PR EV IOLSLY DEF I NED•
NL-2 'VARIABLE NAME TCC LCNC'
NL-3 'VARIABLE NAME NCT FCLNC IK NAMELIST'
NL—4 'INVALID SYNTAX TN NAMELIST INPUT'
Nl-6 'VARIAPIF INCORRECTLY SUBSCRIPTED'
NL-7 'SUBSCRIPT CLT CF RANGF*

314 Appendix F

WATFIV compiler error messages (Continued)

• PARENTHESES*
PC-C 'UNMATCHED PARENTHESIS'
PC-1 'INVALID PARENTHESIS NESTING IN I/O LIST'

•PADRE, STEF STATEMENTS'
PS-0 'OPERATOR MESSAGES NOT ALLCWFD : SIMPLE STOP ASSUMED FOR STOP,

CONTINUE ASSUMED FOR PAUSE'

•RETURN STATEMENT'
RE-1 'RETURN I. WHFRF I IS CUT OF RANCF OR UNDEFINED'
RE-2 'MULTIPLE FFTLPN NCT VALID IN FUNCTION SUBPROGRAM'
RE-3 'VARIABLE IS NOT A SIMPLE INTEGER'
RE-4 'A MULTIPLE RETURN IS NOT VALIC IN THE MAIN PROGRAM'

•ARITHMETIC AMO LOGICAL STATEMENT FUNCTIONS'
PROEAFLF CAUSE OF SF ERRORS - VARIABLE ON LEFT OF = WAS NOT DIMENSIONED

SF-1 'A PREVIOUSLY REFERENCED STATEMENT NUMBER APPEARS CN A STATEMENT
FUNCTION DEFINITION'

SF-2 'STATEMENT FINCTICN IS THE OBJECT OF A LOGICAL IF STATFMFNT'
SF—3 'PFCIRSIVF STATEMENT FUNCTION 0EF I NTTI ON :NAME APPEARS CN BOTH SIDES OF

FCUAL SIGN.LIKELY CALSE:VAR IABLF NOT DIMENSIONED'
SF—4 'A STATEMENT FUNCTION CEFINITION APPEARS AFTER THE FIRST EXECUTABLE

STATEMENT*
SF-5 • ILIFGAL USF OF A STATEMENT FUNCTION NAME'

• SUBPROGRAMS'
SR-n 'MISSING SUBPROGRAM'
SR-1 'SIPPRCGRAM REDEFINES A CO N ST A N T , EX P RF SS I CN , DO-P AR AM ET E R OR ASSIGNED

GOTO INDEX'
SR-2 'THE SUBPROGRAM WAS ASSIGNED DIFFERENT TYPES IN DIFFERENT PROGRAM

SEGMENTS'
SR—3 'ATTEMPT TO USE A SUBPRCGRAM PFCLRSIVElY•
SR-4 'INVALID TYPE CF ARGUMENT IN REFERENCE TO A SUBPROGRAM'
SR—5 'WRONG NUMBER CF ARGUMENTS IN A REFERENCE TO A SUBPROGRAM'
SR-6 'A SIPPROGRAM WAS PREVIOUSLY DEFINED. THE FIRST DEFINITION IS USED'
SR-7 'NO MAIN PROGRAM'
SR-R 'ILLEGAL OR MISSING SUBPROGRAM NAME'
SR—9 'LTPFARY PROGRAM WAS NOT ASSIGNED THE CORRECT TYPE'
SR-A 'METHOD FOR ENTERING SUBPROGRAM PRCCUCFS UNDEFINED VALUE FOR

C Al L-PY-LOCAT ION PARAMETER'

• SUBSCRIPTS'
SS-0 'AFRO SUBSCRIPT OR DIMENSION NOT ALLOWED'
SS-l 'YOU ALREADY FAVE THE MESSAGE'
SS-2 'TNVAIID SUPSCRIPT FORM'
SS-3 'SUBSCRIPT IS OUT OF RANGE'

•STATEMENTS ANO STATFMFNT NUMBERS'
ST-0 'MISSING STATEMENT NUMBER'
ST-1 'STATFMFNT NUMPFR GREATFP THAN 99999'
ST-2 'STATEMENT NUMBER HAS ALREADY PFfN DEFINED'
ST-3 'UN CECOOEARI E STATEMENT'
ST-4 'THIS STATFMFNT SHOULD FAVE 1 STATEMENT NUMBER'
ST-6 'STATEMENT NUMBER IN A TRANSFER IS A NCN-EXFCUTABLE STATEMENT'
ST-6 'CNIY CALL STATEMENTS MAY CONTAIN STATEMENT NUMBER ARGUMENTS'
ST-7 'STATEMENT SPECIFIED IN A TRANSFER STATEMENT IS A FORMAT STATEMENT'
ST-8 'MISSING FORMAT STATEMENT'
ST-9 'SPECIFICATION STATEMENT DOES NOT PRFCFDF STATEMENT FUNCTION DEFINITIONS

OR EXECUTABLE STATEMENTS'

'SUBSCRIPTED VARIABLES'
SV-0 'THE WRONG NUMBER OF SUBSCRIPTS WERE SPECIFIED FOR A VARIABLE'

WATFOR and WATFIV 315

WATFIV compiler error messages (Continued)

SV-1 'AN ARRAY OR SUBPROGRAM NAME TS USED INCORRECTLY WITHOUT 4 LIST'
SV-2 ’MORE THAN 7 DIMENSIONS ARE NOT ALLOWED'
SV-3 'DIMENSION OR SUBSCRIPT IS TOO LARGE (MAXIMUM
SV-4 'A VARIABLE USED WITH VARIABLE DIMENSIONS IS NOT A SUBPROGRAM PARAMETER'
SV-5 'A VARIABLE DIMENSION IS NOT ONE OF:STMPLE INTEGER VAR I ABLE• TIBPROGRAM

PARAMETER.TN COMMON'

•SYNTAX ERRORS'
SX-0 'MISSING OPERATOR'
SX-1 'EXPECTING OPERATOR'
SX-2 'EXPECT INC SYMBOL •
SX-3 'EXPECTING SYMPOl OR OPERATOR'
SX—4 'EXPECTING CONSTANT'
SX-5 'EXPECTING SYMBOL CP CONSTANT'
SX-6 'EXPECTING STATEMENT NUMBER'
SX-7 'EXPECTING SIMPLE TNTEGFP VARIABLE'
SX-8 'EXPECTING SIMPLE INTEGER VARIABLE C» CONSTANT'
SX-9 'ILLEGAL SEQUENCE OF OPERATORS TN EXPRESSION'
SX-A 'EXPECTING ENE-CF-STATEMFNT•

•TYPE STATEMENTS'
TY-0 'THE VARIABLE HAS ALREADY BFFN EXPLICITLY TYPED'
TY-1 'THE LENGTH OF THE EQUIVALFNCED VARIABLE MAY NOT BE CHANGED.

RFMFCY: INTERCHANGE TYPE AND ECLIVALFNCE STATEMENTS'

•!/O OPERATIONS'
UN-0 'CONTROL CART ENCOUNTERED ON UNIT 5 AT EXECUTION.

PROBABLE CAUSE:MISS ING DATA OR INCCRPFCT FORMAT'
UN-1 'FND OF FILE ENCOUNTERED (IBM CODE IHC217)'
UN-2 'I/O ERROR (IBM CODE IHC71P)'
UN-3 'NO DO STATEMENT WAS SUPPLIED (IBM CODE IHC219)'
UN-4 'REWIND.ENDFII E .BACKSPACE REFERENCES UNIT 5. 6 OR 7'
UN-5 'ATTEMPT TO RFAC ON UNIT 5 AFTER IT HAS HAD FND-OF-FILE•
UN-6 'AN INVALID VARIABLE UNIT NUMBER WAS DETECTED (IBM CODF IHC220)'
UN-7 'PAGE—LIMIT EXCFFDFO'
UN-R 'MISSING DEFINE FILE STATEMENT OR ATTEMPT TC DC SEQUENTIAL I/O ON A

DIRECT ACCESS FILE (1PM CODE IHC231)'
UN-9 'WRITE REFERENCES 5 OP READ REFERENCES 6 CP 7'
UN-A 'ATTEMPT TT DC DIRECT ACCESS I/O CN A SEQUENTIAL FTLF (IBM CODE IHC235)'
UN-B 'RECORD SIZE IN DEFINE FIlF STATEMENT IS TOO LARGE(MAX»32763 I .OP EXCEEDS

DD STATEMENT SPEC IF ICATION (IBM CODE I HC233.IHC237 I•
UN-C 'FOR DIRECT ACCESS I/O THE PFLATIVF RECORD POSITION TS NECATIVF»Pn.Op

TCQ I ARGE (IBM CODE IHC 232)'
UN-0 'AN ATTEMPT WAS MADE TC READ TRF INFORMATION THAN LOGICAL RECORD

CONTAINS (IBM CODE IHC236)'
UN-E 'FORMATTED LINE EXCEEDS BUFFER LFNGHT'
UN-F 'I/O ERROR - SEARCHING LIBRARY DIRECTORY'
UN—G 'I/O ERROR - RFADING LIBRARY'
UN-H 'ATTEMPT TO DEFINE IHF OBJECT ERROR FILF AS A DIRECT ACCESS FILE

(IBM CODE IHC234)•
UN-I 'RECFM OTHER THAN V(B) IS SPECIFIED FOR I/O WITHOUT FORMAT CCNTPOL

(TPM CODE IHC214) •
UN-J 'MISSING DO CAPP FOR WATlIB.NC ITPRAPY ASSL'MFD'
UN-K 'ATTEMPT TO RE-AD OR WRITE PAST THE END OF CHARACTER VApIAPLE BUFFER'

'UNDEFINED VAR I API FS•
UV-0 'VARIABLE IS UNDEFINED'
UV-3 'SUBSCRIPT IS UNDEFINED'
UV-4 'SUBPROGRAM IS UNDEFINED*
UV-5 'ARGUMENT IS UNDEFINED'
UV-6 'UNDECODABLE CHARACTERS TN VARIABLE FORMAT'

316 Appendix F

WATFIV compiler error messages (Continued)

•VARIABLE NAMES’
V A-0 'A NAMF IS TOO LCNG.IT PAS BFFN TRUNCATED TT SIX CHARACTERS'
VA-I 'ATTEMPT TO USF AN ASSIGNEE OP INITIALIZED VARIABLE CP DO-PAPAMFTER IN A

SPEC IF ICATTON STATEMENT’
VA-2 •ILLEGAL USE TF A SUPRCLTINE NAMF •
VA-3 • Il 1 FGAl USF OF 1 VARIABLE NAMF•
VA-4 •ATTEMPT TO USE THE PRFVTFLSLV DEFINED NAME AS A FUNCTION OR AN ARRAY
VA-5 •ATTEMPT TO USF A P°FV ICC SLY DEFINFC NAMF AS A SUBROUTINE'
VA-6 • ATTEMPT TO USF 1 PRCVICLSLY CFFINFC NAMF AS A SUBPROGRAM'
VA-7 •ATTEMPT TO USF A PREVIOUSLY DEFINFD NAME AS A COMMON BLOCK'
VA-fl •ATTEMPT TC USF A FUNCTION NAMF AS A VARIABLE'
VA-9 •ATTEMPT TC USE A PREVIOUSLY DEFINFC NAME AS A VARIABLE'
V A-A • Il 1 EGAL USE OF A PREVIOUSLY DEFINED NAME'

•EXTERNAL STATEMENT’
XT-0 »A VARIABLE FAS AIRFACY APPEARED TN AN EXTERNAL STATEMENT'

LCNG.IT

Index

A

>1 field, 154, 160
Accuracy, 2, 28
Addition, 25, 236
Address, 5, 23, 197
Adjustable dimensions, 216
Alphanumeric, 162
Analog computer, 1
ANSI, 7
Apostrophe, 153
Argument, 74, 77, 191, 194, 232
Arithmetic assignment statement, 30, 226
Arithmetic IF, 73, 162
Arithmetic unit, 4
Array, 198, 214, 229
Array input-output, 105
Associated variable, 169
Auxiliary storage, 13, 14

B

Backspace, 158
Batch processing, 10, 32
Binary-coded decimal, 3
Binary number, 3, 35
Bit, 3, 170
Block data, 216
Boolean expression, 77
Bugs, 60
BYE, 17
Byte, 170

C

Call by address, 195
Call by value, 195
CALL EXIT, 53
CALL statement, 193, 194, 206, 227
Card, punched, 11
Card read/punch, 17
Carriage control, 50, 57, 154
Cathode-ray tube, 17
Central processing unit, 2
Character data, 160
Clear, 163
COBOL, 7
Coding form, 32
Commas in format, 157
Comment, 33, 34
Comment card, 53
Comment line, 53
COMMON statement, 192, 203,210, 215,

232
Compilation, 8, 59
Compilation phase. 9
Compiler, 6
Complex functions, 248
Complex variable, 235
Computed GO TO statement, 71
Constant, 21,227
Continuation, 33, 34
CONTINUE statement, 91, 229
Control unit. 4
Core, 3
Counters, 80, 88

319

Index320

Counting, 21,36
CRT, 17

D

D field, 238
DATA statement, 159, 162, 216, 236, 238,

239,242
Debugging, 60, 62, 308
Deck, 13, 59
DEFINE FILE, 167
DIMENSION statement, 100, 130, 192, 204,

210. 216, 217
Direct access, 167
Disc, disk, 3,19
Division, 25, 236
DO loops, 87
Double precision, 237
Double precision functions, 247
Drum, 3, 19

E

E field, 48, 51, 150
Editing, 35
Enciphering, 163
END, 52
END FILE, 158
END = option, 158
ENTRY statement, 219
EOD, 159
Equals sign, 30
EQUIVALENCE statement, 214, 231
ERR = option, 158
Error codes, 308, 309-316
Errors, 9, 61,308
Execution, 60
Execution phase, 5, 9
Execution-time-format, 166
Executive, 12
Exponential form, 23, 48, 51, 150
Exponentiation, 25, 27, 36, 229, 236
Expression, 25
Extended assignment statements, 307
EXTERNAL statement, 218

F

F field, 47, 51, 151

Fetch phase, 5
File, 16, 167
FIND, 167
Fixed-point, 22, 149
FLOAT function, 37
Floating point, 22, 226
Flowchart, 67, 249
Format-free input-output, 45, 49, 305
Format overflow, 15
FORMAT statement, 47, 51, 155, 166, 236,

238,239
FUNCTION statement, 194
Function subprogram, 193, 200
Functions, 28, 191, 246

G

G field, 152

H

//field, 153, 156
Hard copy, 17
Hierarchy, 26, 240
Hollerith field, 33, 153, 156
Hybrid computer, 1

/

/field, 47,51, 149
IF statement, 73, 77, 159, 162, 229
IMPLICIT statement, 242
Implied DO, 137, 160
Index of DO, 88
Inner DO, 133
Input, 45
Input-output processor, 2
Instruction, 4
Instruction register, 5
INT function, 37
Integer, 22, 24, 35, 103, 149
Integer functions, 246
INTEGER statement, 192, 199, 205, 217,

241

J

Job,13

Index 321

K

Keypunch, 17, 32

L

L field. 239
Labeled COMMON. 213
Left justify. 51
Line number, 34, 62
Line pointer, 17, 154
Listing. 53
Load-and-go, 9, 61
Load phase, 9
Logical expressions, 77
Logical IF, 77, 162
Logical operator, 77, 240
LOGICAL statement, 239, 241
Logical unit, 157
Logical variable, 239

M

Magnetic core, 3
Magnetic ink, 19
Magnetic tape. 3, 9, 17
Measurement, 21
Memory, 1,2
Memory address register. 5
Memory cell, 4
Memory location. 4
Mixed mode, 27, 30, 36
Monitor, 12
Multidimensional arrays, 129
Multiple entry, 219
Multiple return, 220
Multiple statements, 307
Multiplication, 25, 236

N

Name, 24
NAMELIST, 171
Nested DO. 129, 131
Normal exit. 92

O

Operating system, 12, 15

Operation, 25, 236
Operation code. 5
Optical scanner, 19
Outer DO. 133
Output, 49
Overflow, 28

P

Paper tape, 20
Parentheses, 26
Parentheses in format, 156
PAUSE. 52
Plotter, 20
Plotting. 163
Polynomial. 228
Precision, 28
PRINT statement, 49, 51, 158. 306
Program, 2
Program counter, 5
Programming. 45
Programming language. 6
PUNCH statement, 49, 51, 158

Q

Quotation mark. 153

R

Range of DO. 89
READ statement, 46, 157, 167, 172
Real, 22, 24, 35
Real functions. 246
REAL statement, 103, 192, 199. 210, 216,

217
Record, 170
Relational expressions, 77
Relational operator, 77, 240
Repetition number, 57, 155
RETURN statement, 194, 201,220
REWIND. 158
Right justify, 50
RUN. 16

S

SAVE. 16
Scale factor, 151

322 Index

Sequence numbering, 33
Significant figures, 23
Slash, 155
Spacing, 154
Statement, 30
Statement format, 31
Statement function, 193, 199
Statement number, 33, 34, 228
STOP statement, 52, 201
Storage location, 4
Subprogram, 29, 191,232
Subroutine, 191,206
SUBROUTINE statement, 194, 206
Subscripted variables, 96
Subscripts, 98
Subtraction, 25, 236

Truncation, 28, 39
Turnaround, 10
Type, 24, 236
TYPE statement, 51, 102

U

Unconditional GO TO, 68
Undefined variable, 63
Underflow, 28

V

Variables, 23

W

T WATFIV, 305,309-316

Tcode, 152
Teletype, 15, 17
Terminal, 14
Time sharing, 14, 33
Time slice, 14
Transfer of control, 67
Transfers into DO, 137

WATFOR, 305
Word, 5
WRITE statement, 50,51, 157, 167, 172

X

X field, 50, 51, 152

$LSO BY PAUL W. MURRILL & CECIL L SMITH:

INTRODUCTION TO COMPUTER SCIENCE

PL/1 PROGRAMMING

BASIC PROGRAAAMING

AN INTRODUCTION TO COBOL PROGRAAAMING

AN INTRODUCTION TO FORTRAN IV
PROGRAAAMING: A GENERAL APPROACH

	Fortran IV Programming

	a or Engineers and Scientists

	Library of Congress Cataloging in Publication Data

	Contents

	Preface to the Second Edition

	Preface to the Second Edition

	Preface to the I irst Edition

	Introduction to Digital Computers

	1-1. Digital-Computer Characteristics

	1-2. How the Digital Computer Works

	1-4. Programming Languages

	1-5. Compilation

	10

	1-6. Batch Processing Systems

	1-7. Conversational Time Sharing

	1-8. Peripheral Devices

	18

	he Fortran Statement

	2-1. Fortran Constants

	2-2. Fortran Variables

	2-3. Operations

	26

	2-5. Functions

	2-7. Statement Format

	2-8. Integer versus Real

	2-9. In Summary

	EXERCISES^

	Simple Fortran Programs

	3-1. Format-Free Input Statements

	3-2. Formatted Input Statements

	3-3. Format-Free Output Statements

	3-5. PAUSE, STOP, and END Statements

	3-6. An Example Program

	PC.T

	3-7. Handling Program Decks

	3-8. Debugging the Source Program

	3-9. In Summary

	Transfer of Control

	4-1. Flowcharts

	4-2. Unconditional GO TO

	70

	4-3. Computed GO TO

	4-4. Arithmetic IF

	4-5. Logical IF

	4-6. Simple Counters

	4-7. In Summary

	Introduction to DO Loops and to Subscripted Variables

	5-1. Definition of DO Loops

	5-2. Complete Examples

	5-3. Further Clarification §

	1 = 1 + 2

	5-4. Usefulness of Subscripted Variables

	5-5. Definitions and Subscript Arguments

	5-6. The DIMENSION Statement

	5-7. Input and Output

	5-8. A Final Example

	5-9. In Summary

	6

	Multidimensional Arrays and Mested DO Loops

	6-1. Multidimensional Arrays

	6-2. Nested DO's

	6-4. In Summary

	Input "Output Operations

	7-1. FORMAT Field Specifications

	7-2. Carriage Control

	7-3. FORMAT Options

	7-4. Other Input-Output Statements

	7-5. The DATA Statement

	7-6. Character Data

	7-7. Execution-Time FORMATS

	7-8. Direct Access Input-Output

	7-9. NAMELIST

	7-10. In Summary

	Functions and Subroutines

	8-1. Concept of a Function, a Subprogram, and i Subroutine

	8-2. Introduction to Fortran Function and Subprogram Features

	8-3. Role of Arguments

	8-4. The Statement Function

	8-5. The Function Subprogram

	8-6. Subroutines

	8-7. COMMON

	8-8. EQUIVALENCE

	8-9. Adjustable Dimensions

	8-10. BLOCK DATA

	8-11. The EXTERNAL Statement

	8-12. Multiple ENTRY and RETURN

	Efficient Programming in Fortran*

	9-1. Arithmetic Expressionsand Replacement Statements

	9-2. Constants

	9-3. Powers

	9-4. Polynomials

	9-5. Statement Numbers

	9-6. IF Statements

	9-7. Subscripted Variables

	9-8. Input-Output Statements

	9-9. Subprograms

	9-10. In Summary

	Types of Variables

	A-1. Complex Variables

	5

	10

	A-3. Logical Operations

	A-4. Type Statements fot the IBM System 360

	Various System Configurations

	Fortran IV Library Functions

	American Standard

	IFlowchart Symbols

	Solutions to Selected Exercises

	4-6.

	a

	Chapter G

	6-11.

	WATFOR and WATFIV

	F-1. Special Aspects

	F-2. Control Cards

	F-3. Error Codes

