\
—_ FORTRARN N

PROGR /\l TMING

FCOR
gy = L
=NGINI=I= \
- AND
w_ OCIH=NTISTS

_ SECOND

=IDITICON

VATV

Fortran IV Programming
for Engineers and Scientists

Fortran IV
Programming

for Engineers and Scientists

Second Edition

PAULW. MURRILL

and

CECILL.SMITH

Louisiana State University

Intext Educational Publishers

New York

Sixth Printing
Copyright © 1968 by International Textbook Company

Copyright © 1973 by Intext Press, Inc.

All rights reserved. No part of this book may be reprinted,
reproduced, or utilized in any form or by any electronic,
mechanical, or other means, now known or hereafter invented,
including photocopying and recording, or in any information
storage and retrieval system, without permission in writing
from the Publisher.

Library of Congress Cataloging in Publication Data

Murrill, Paul W.
Fortran IV programming for engineers and scientists.

1. FORTRAN (Computer program language)
3. Electronic digital computers—Programming.
I. Smith, Cecil L., joint author. II. Title
QA76.73.F25M87 1973 001.6'424 73-1689
ISBN 0-7002-2419-X

Intext Educational Publishers
666 Fifth Avenue
New York, N.Y. 10019

Contents

Preface to the Second Edition ix
Preface to the First Edition Xi

1 Introduction to Digital Computers 1

1-1. Digital-Computer Characteristics — 1

1-2. How the Digital Computer Works — 2

1-3. Control and Operation of the Computer — 4
1-4. Programming Languages — 6

1-5. Compilation — 8

1-6. Batch Processing Systems — 10

1-7. Conversational Time Sharing — 14

1-8. Peripheral Devices — 17

2 The Fortran Statement 21

2-1. Fortran Constants — 21

2-2. Fortran Variables — 23

2-3. Operations — 25

2-4. Expressions — 26

2-5. Functions — 28

2-6. Fortran Statements — 30

2-7. Statement Format — 31

2-8. Integer versus Real — 35

2-9. In Summary — 39
Exercises - 40

vi

3 Simple Fortran Programs 45
3-1. Format-Free Input Statements — 45
3-2. Formatted Input Statements — 47
3-3. Format-Free Output Statements — 49
3-4. Formatted Output Statements — SO
3-5. PAUSE, STOP, and END Statements — 52
3-6. An Example Program — 53
3-7. Handling Program Decks — 59
3-8. Debugging the Source Program — 62
3-9. In Summary — 64

Exercises — 64

4 Transfer of Control 67
4-1. Flowcharts — 67
4-2. Unconditional GO TO — 68
4-3. Computed GO TO — 71
4-4. Arithmetic IF — 73
4-5. Logical IF — 77
4-6. Simple Counters — 80

4-7.

In Summary — 83
Exercises — 83

5) Introduction to DO Loops and
to Subscripted Variables 87

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.

Definition of DO Loops — 87

Complete Examples — 89

Further Clarification — 91

Usefulness of Subscripted Variables — 96
Definitions and Subscript Arguments — 98
The DIMENSION Statement — 100

Input and Output — 105

A Final Example — 107

In Summary — 111

Exercises — 111

6 Multidimensional Arrays and Nested DO Loops

6-1.
6-2.
6-3.
6-4.

Multidimensional Arrays — 129
Nested DO’s — 131

Implied DO — 137

In Summary — 139

Exercises — 140

129

Contents

Contents

vii

7 Input-Output Operations 149

7-1.
7-2.
7-3.
7-4.
7-5.
7-6.
7-7.
7-8.
7-9.
7-10.

FORMAT Field Specifications — 149
Carriage Control - 154

FORMAT Options — 155

Other Input-Output Statements — 157
The DATA Statement — 159
Character Data — 160
Execution-Time Formats — 166
Direct Access Input-Output — 167
NAMELIST — 171

In Summary — 173

Exercises — 173

8 Functions and Subroutines 191

8-1.
8-2.
8-3.
8-4.
8-5.
8-6.
8-7.
8-8.
8-9.
8-10.
8-11.
8-12.

Concept of a Function, a Subprogram, and a Subroutine — 191
Introduction to Fortran Function and Subprogram Features — 193
Role of Arguments — 194

The Statement Function — 199

The Function Subprogram — 200

Subroutines — 206

COMMON — 210

EQUIVALENCE - 214

Adjustable Dimensions — 216

BLOCK DATA — 216

The EXTERNAL Statement — 218

Multiple ENTRY and RETURN — 219

Exercises — 221

9 Efficient Programming in Fortran 225

9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.
9-8.
9-9.
9-10.

Appendix A

Appendix B

Arithmetic Expressions and Replacement Statements — 226
Constants — 227

Powers — 227

Polynomials — 228

Statement Numbers — 228

IF Statements — 229

Subscripted Variables — 229

Input-Output Statements — 232

Subprograms — 232

In Summary — 233

Types of Variables 235

Various System Configurations 244

viii

Appendix C

Appendix D

Appendix E

Appendix F

Index

Fortran IV Library Functions 246

American Standard Flowchart Symbols 249‘
Solutions to Selected Exercises 250
WATFOR and WATFIV 305

317

Preface to the Second Edition

Since the publication and broad acceptance of the First Edition of this book, many
significant changes have occurred in the computing industry and in Fortran instruction.
As a result the authors have revised their own approach to the teaching of certain topics.
The combination of these factors led to the decision to publish this Second Edition,
which the authors think has the following advantages over the First Edition:

1.

Since the appearance of the First Edition, time-sharing systems have become
progressively more popular, and therefore, discussion of time-sharing systems
has been included at several points in the text, especially in Chapters 1 and 3.
However, it is the authors’ experience that time-sharing systems have not
achieved the level of standardization of card-oriented systems, so the instructor
will need to supplement the text with material describing operation of the
terminal (sign-on, sign-off, program saving, etc.), if one is used.

One advantage of the First Edition was that students could begin writing
programs at an early stage. This edition incorporates a discussion of format-free
input-output such as is available in WATFIV, so that the student’s first pro-
grams can be written even earlier and without the trauma of format. Early
discussion of format has been retained, of course, for those systems that require
its use. The authors have been very successful in permitting students to write
their first three or four programs without format, and then requiring its use
thereafter. At present, no course on Fortran can be considered complete
without a coverage of format.

Material has been included on the WATFIV in-core compiler and ifs error
messages, but not to the extent that the text becomes usable only to those with
access to WATFIV.

The material on subprograms (Chapter 9) has been revised extensively. This was
probably the weakest point in the First Edition, and we hope this has been
corrected.

The number of exercises—which was generous in the First Edition—has been

increased.

Preface to the Second Edition

6. We have concluded that the presentation of DO loops and subscripted variables
can be accomplished best as follows: DO loops first, single-subscripted arrays
second, then nested DO loops, and finally multiple-subscripted arrays. In effect,
more meaningful exercises can be formulated that use DO loops but not
subscripted variables, whereas it is very difficult to formulate an exercise using
subscripted variables that does not require a DO loop or the equivalent counter.
Therefore, the preferred order of presentation is incorporated into this Second
Edition.

7. The discussion in Chapter 7 of manipulation of character data has been revised
extensively and, we think, for the better.

8. The First Edition implied that mixed-mode arithmetic was taboo. Students
quickly learned, however, that the compiler would accept it, and they used it
without understanding what might happen if they were not careful. The Second
Edition addresses this point in a more direct fashion.

9. The introductory chapter has been revised to improve discussion of computer
characteristics, compilation, operating systems, and the role of Fortran.

The authors wish to express their sincere thanks to all of those who took the time to
point out the strengths and weaknesses of the First Edition. These thoughtful comments
were sincerely appreciated, and we would appreciate similar comments on the Second
Edition. As in the First Edition, we certainly owe our thanks to our ever-smiling
secretaries, Mrs. Jo Ann Caillouet and Miss Verma Dotson.

Preface to the First Edition

This book is intended to serve as both a text for an introductory course in Fortran IV
programming and a reference manual for those with prior programming experience. It is
primarily aimed toward engineers, scientists, mathematicians, or anyone with a very
elementary background in college-level mathematics.

The primary objective of the text is to introduce undergraduate students to Fortran
IV programming, and this objective was the prime consideration in selecting the order of
presentation of the subject matter. It is felt that most of the included material can be
easily understood by freshmen, but enough advanced problems are included to make it
appropriate for those who are further along in their studies. Basically, the material is
appropriate for any first course in programming.

This text arises from the authors’ experience in teaching a one-semester-hour course
on Fortran programming for the past five years. With only one hour of lecture per week it
is imperative that the student quickly begin to write programs. This requirement is
reflected in the text by the introduction of complete Fortran programs in Chapter 3.
Since the common thread among the students involved in the course is applied mathe-
matics, it is emphasized in the exercises and examples.

The advantages of this text are (1) a simple introduction in the first chapter to the
characteristics and method of operation of digital computers, (2) an organization that
allows the students’ programming ability to progress at a steady rate, (3) a wealth of
examples and exercises for students at all levels, and (4) inclusion of the more recent
Fortran options available on computers such as the IBM System/360.

The authors wish to express their thanks to Professor Warren H. Thomas, Depart-
ment of Industrial Engineering, State University of New York at Buffalo, and to Professor
Mary McCammon, Department of Mathematics, Pennsylvania State University, for their
very helpful reviewing of the manuscript. Equal thanks are also due to the faculty of
LSU’s College of Engineering and to countless students for their valuable suggestions.
Finally, but certainly not least, our thanks to the smiling secretaries, Mrs. Carol Houston,
Mrs. Ruth Albright, and Miss Hazel LaCoste, of the Department of Chemical Engineering,

who did most of the work.

Xi

Fortran IV Programming
for Engineers and Scientists

Introduction to Digital Computers

The steam engine and other devices for doing work gave man an extension of his physical
capabilities and brought about the Industrial Revolution. In a very similar manner,
electronic computers are providing man with tools with which he can process quantities
of information and solve problems that otherwise would be impossible to handle. These
computers are producing an informational revolution that will have more impact on each
of our everyday lives than any other aspect of modern technology—even atomic energy.
The purpose of this book is to assist. you, as a student of science or engineering, in
learning to utilize these computers in your day-to-day work.

1-1. Digital-Computer Characteristics

Modern electronic computers are of two basic types—digital and analog. The entire
content of this book is directed toward understanding and programming digital compu-
ters, and no attention is devoted to the study of analog computers or combinations of
analog and digital computers (hybrid computers).

Digital computers can be appreciated best by first considering some of their
characteristics. Understanding these characteristics will help us to appreciate their use-
fulness.

One of the most prominent characteristics of digital computers is their truly
incredible speed. Although they only work one step at a time, i.e., sequentially, they
perform their tasks at rates that are beyond the comprehension of the novice. As an
example, some large machines are capable of adding together several hundred thousand
16-digit numbers in less than a second. These tremendous speeds make it possible for the
machine to do work in a few minutes that might otherwise require years of time.

Not only is the digital computer capable of working very rapidly, but it also has a
perfect memory. It has virtually instantaneous “recall” of both data and instructions that

2 Introduction to Digital Computers

are stored inside, and it never forgets or loses the accuracy of the information which it
has within its memory.

A digital computer is an extremely accurate device. In most machines numbers are
handled with seven, eight, or nine significant digits, and twice this accuracy can usually be
obtained by the programmer. This means that a machine would have no difficulty
multiplying 2782.4362 times 40.127896 and obtaining the product correct to eight or
sixteen significant figures.

Coupled with the significant characteristics already listed, the digital computer does
its work automatically. It can accept instructions from its operator, and then execute
these instructions without need for human intervention. This implies that the machine
can be given a problem; then while you attend a movie, it will do your work with
incredible accuracy and at fantastic speeds. Learning to use such a tool should require no
further motivation.

Additional characteristics of the digital computer will be noted later, but for the
present it will be more advantageous to see how the machine works.

1-2. How the Digital Computer Works

The digital computer is basically a device to accept date and a set of instructions as to
how to manipulate these data in order to produce a set of answers. The set of instructions
is called the program, and these are prepared by a programmer (you). (See Figure 1-1.)
This book is primarily concerned with the preparation of programs. Sometimes the data
may be contained within the program, but more often the data are entered into the
computer after the program.

In general, the computer may be thought of as being composed of three main
sections: the memory, the central processing unit (CPU), and the input/output processor.
The computer memory is used for storing data, instructions, intermediate results, and
final answers; the central processing unit performs all the necessary manipulations of the
data; and the input/output processor communicates with the outside world. (See Figure
1-2.) Transfer of instructions and data among these units takes very little time— in some
machines less than one millionth of a second.

All information and signals in transit inside the computer are handled as electrical
signals (usually pulses), and in memory this information is stored in magnetic cores,

Programmer's list
of instructions for
the processing of
the data

(the program)

Input data

Digital
Computer

|

Output answers

Figure 1-1. Functional role of the digital computer

1-2. How the Digital Computer Works

Figure 1-2. Relation of memory unit, arithmetic unit, and control unit (Solid arrows
represent information flow, dashed arrows represent control signals.)

switches (flip-flops), and/or as magnetized spaces on drums, discs, and tapes. All of these
devices are designed to exist in only one of two states which we may associate with the
symbols 0 and 1. (See Figure 1-3.) These two states may be considered as binary digits or
bits (a contraction of “binary digizs™) and are used to represent information. Thus the
number system employed is basically binary, but it is usually more convenient for
instructions and addresses to be “‘represented” in the octal or hexadecimal number
systems. Nonnumeric information (alphabetic and special symbols) in a computer is
represented in a binary code, and numbers are represented in one of two ways: in a
binary-coded decimal system (each digit coded in a fixed number of bits) or the decimal
numbers are converted into the binary number system (used in most computers primarily

Input/
Memory N Output
Processor
A A
1
|
|
A |
|
Central |
Processing |# — — ———— 4
Unit

designed for scientific work).

Input data

and program

Output answers

Device lloll Stote " I n state
Current
pulse on
a wire
No pulse Pulse
Magnetic
field ina
magnetic
core
Clockwise Counterclockwise
. — T G et e (e
Switch
Open Closed

Figure 1-3. Examples of binary devices

Introduction to Digital Computers

1-3. Control and Operation of the Computer

While it is not necessary to understand such topics as binary arithmetic, the electronics of
digital circuits, or other topics fundamental to the design of digital computers in order to
learn to program in Fortran, a superficial understanding of the general operation of digital
computers will easily reveal the origins of certain rules and conventions incorporated into
the Fortran language. In reality, Fortran reflects basic machine characteristics to a greater
extent than most other languages.

The general schematic diagram of the computing system in Figure 1-2 is shown in a
little more detail in Figure 1-4. As pointed out in the last section, this system is broadly
divided into three units: central processing unit, memory, and input/output processor.
The central processing unit is further divided into two subunits: the arithmetic unit and
the control unit. The arithmetic unit is responsible for performing operations such as
additions, comparisons, etc., on the information in memory. The control unit is responsi-
ble for interpreting the instructions sequentially in memory and directing the arithmetic
unit and input/output processor to perform the appropriate operations.

The concept of storing both the instructions (i.e., the program) and the data in the
same memory unit has been of utmost importance in the development of computing
machines. The very earliest computers employed hand-wired programs which made them
inconvenient to use. The brilliant mathematician John von Neumann proposed the stored
program concept which, coupled with the remarkable advances in electronics technology,
led directly to computing machines as we know them today.

Since the central memory plays such an important role in the operation of the
computer, a clear view of the organization of this memory is essential. Perhaps the most
vivid way of visualizing the memory of the computer is as a set of mailboxes called
memory cells, memory locations, or storage locations. This analogy is quite appropriate.
In each individual memory cell only one word of information may be stored at any one
time. This word of information may be either data (numerical or nonnumerical) or

T Peripheral
Memory Output e[;:itsm
= Processor —je———
A A A
|j |
!]
[e - !
] TV,
Control
Arithmetic Unit
Unit
e r Program Counter j

L Accumulator j L Instruction Register “

Central Processing Unit

Figure 1-4. Schematic diagram of a simple computer (Solid arrows repre-
sent information flow, dashed arrows represent control
signals.)

1-3. Control and Operation of the Computer 5

computer instructions. Each memory cell has its own individual address, and it is
common to refer to memory cells by their addresses. The word contained in the memory
cell appears as a binary number, and by superficial inspection there is no way to identify
whether this word is data or whether it is an instruction. The computer must be told
explicitly which memory cells contain instructions and which contain data. The control
unit of the computer will treat the contents of a memory cell (a word) as though it were
an instruction, and the arithmetic unit of the computer will treat the contents of a
memory cell as though it were data. Each individual memory cell (or word) contains a
fixed, preset number of digits, and that number of digits will limit the amount of signifi-
cant information that can be stored in that memory cell. The instructions that are used
by the computer for the processing of information are constructed so that they deal with
memory-cell addresses.

As pointed out in the first section of this book, the digital computer is a sequential
machine. Its operation is a sequence of cycles, each of which consists of two phases: a
fetch phase and an execute phase. The fetch phase uses two registers in the control unit:
the program counter and the instruction register. The program counter is often referred
to by the more descriptive name of instruction address register, and it always contains the
address of the next instruction to be executed. At the beginning of the fetch phase, the
contents of the location in memory whose address is currently in the program counter is
loaded into the instruction register. Therefore the contents of this memory location will
be treated as an instruction. At the completion of the fetch phase the program counter is
incremented by one, so that it now points to the next instruction to be retrieved from
memory.

At the start of the execution phase, the control unit decodes the instruction and
issues specific commands to the various elements of the arithmetic unit. In performing its
operations, the arithmetic unit utilizes a register called the accumulator to contain the
data on which it is to operate. For example, a typical instruction might be to add the
contents of a specific storage location in memory to the current contents of the
accumulator. The instruction itself contains the address of the memory location involved
and a group of bits (called the operation code) whose pattern indicates that addition is to
be performed. The control unit relays the address to the memory addressing circuits in
order to retrieve the contents of the storage location, and activates the “add” circuit in
the arithmetic unit to achieve the desired result. :

To illustrate the sequence of operations, suppose we examine the instructions
required to add the contents of two storage locations (specifically, at addresses 2749 and
1398) and store the result in a third storage location (specifically, at address 1972). Three
instructions are required

Instruction Explanation

LW,2749 “Load Word” copies the contents of the storage location at
address 2749 into the accumulator.

AW,1398 “Add Word” adds the contents of the storage location at

address 1398 to the current contents of the accumulator.

STW,1972 “STore Word” copies the contents of the accumulator into
the storage location at address 1972.

In the above explanations, note the use of the word “copies.” The instruction LW, 2749
in no way alters the contents of the storage location at address 2749. Similarly, the
instruction STW, 1972 does not alter the contents of the accumulator, but does obliterate
whatever was previously contained in the storage location at address 1972. Although not

6 Introduction to Digital Computers

specifically mentioned, the instruction AW, 1398 does not alter the contents of the
storage location at address 1398. These points can be summarized by the following rule:
Read operations on memory are nondestructive; write operations on memory are destruc-
tive. Fortran follows this rule exactly.

To further illustrate the sequence of operations, suppose the three instructions are
stored in the memory locations at addresses 1027, 1028, and 1029. If the program
counter initially contains 1027, the sequence of operations is as follows:

1. The contents of the storage location at address 1027 are copied into the instruc-
tion register.

2. The program counter is incremented by 1, giving 1028.

3. The contents of the storage location at address 2749 are copied into the accu-
mulator.

4. The contents of the storage location at address 1028 are copied into the instruc-
tion register.

5. The program counter is incremented by 1, giving 1029.

6. The contents of the storage location at address 1398 are added to the contents
of the accumulator.

7. The contents of the storage location at address 1029 are copied into the instruc-
tion register.

8. The program counter is incremented by 1, giving 1030.

9. The contents of the accumulator are copied into the storage location at address
1972.

Many current computers could perform all these operations in less than ten millionths of
a second.

Of course, current computers offer far more features than illustrated by the
previous example, but their operations are basically straightforward. The examination of
these other features is inappropriate for a manual on Fortran.

1-4. Programming Languages

In the above “section we discussed how the computer would execute a program; in this
section we want to examine the preparation of a program.

Writing a program directly in instructions, as described in the previous section, is
said to be programming either in assembly language or in machine language. While this
approach is relatively straightforward, it becomes tedious, especially for large programs.
In essence the available instructions comprise the computer’s language, which we could
learn to speak but would rather not. Of course, the best solution would be for the
computer to speak our native language, which for most readers of this book would be
English. Unfortunately, this goal has not yet been achieved, although progress is being
made.

The current solution is to use an intermediate language that has some of the
characteristics in which problems are naturally expressed, but a language that is suffi-
ciently rigorous to permit the computer to perform the translation from the program
written in the programming language to the instructions that comprise the computer’s
natural language. This situation is illustrated in Figure 1-5. The programmer must
translate the statement of the problem into statements in the programming language.
Using a program known as a compiler, the computer translates the statements in the

programming language into machine-executable instructions, a process referred to as
compilation.

1-4. Programming Languages 7

B
,\/ Y] V)

IS .
2\ o

Statement of problem Aﬁ Fortran (J —> Machine-executable

A

in English instructions

Programmer Compiler

Figure 1-5. Role of Fortran

Since the statement of problems tends to differ from discipline to discipline, several
different programming languages have appeared, each with special characteristics that
make one language more attractive to some fields and disciplines than to others. In the
business field, COBOL (COmmon Business Oriented Language) has dominated, primarily
because its features enable large files of data to be manipulated readily. In science areas,
Fortran (FORmula TRANslator) has dominated, primarily because algebraic expressions
can be readily implemented. However, Fortran has enjoyed some use in business circles.
The last decade saw the introduction of several new languages, some of which are easier
to learn than Fortran, some of which are more powerful than Fortran, and some of which
accomplish objectives (text editing, for example) that Fortran was never designed to
accomplish. Nevertheless, Fortran continues to enjoy widespread use, and it will probably
continue to do so for the foreseeable future.

Since its introduction in the mid-1950s, Fortran has gone through an evolutionary
process that has enhanced its utility as a programming language. The last major extension
of the language occurred in the early 1960s. At that time, most operational versions of
Fortran were referred to as Fortran II. So many new features were added to the language
at that time that the name was changed to Fortran IV. Although the Fortran available on
some current machines is closer to Fortran II than Fortran IV, the bulk of the manufac-
turers have implemented Fortran IV. Therefore, this text will be devoted almost exclu-
sively to Fortran IV.

Although the American National Standards Institute (ANSI) has adopted a standard
for the Fortran IV language, the implemented versions available on commercial com-
puters normally contain some (usually) minor variations or extensions. In a text such as
this, we shall tend to present what we, at least, feel are the more common implement-
ations. However, at many points these discrepancies force us to use “double-talk™ or to
insert hedging words such as generally or usually. Any uncertainties can be clarified by
consulting the manuals provided by the computer manufacturer, but these are written for
the experienced programmer rather than for the beginner.

A very simple example of a Fortran program is shown in Figure 1-6. This program
computes the surface area a of a cylinder with diameter d and height A, the appropriate

equation being
a = ndh
In the program in Figure 1-6, the first two statements assign numerical values to variables

D and H. The third statement embodies the equation given above with the asterisk ()
denoting multiplication. The fourth statement instructs the computer to print the

: | Introduction ta Digital Computers

D=14,425S

H=22e¢5
A=3e¢1416%D*H
PRINT,*ARFA =19,4A
STOP

ENC

OV P WwN =

(a) Program

AREA = Qel1DC7275E J4

(b) Output

Figure 1-6. Example of a Fortran program

characters AREA = followed by the numerical value of A. The fifth statement, the STOP
statement, terminates execution of the program. The END statement informs the com-
piler that there are no more statements in the program. We shall dwell on the distinction
between the STOP and the END statements in more detail in Chapter 3.

In Fortran, the statements in the program are executed sequentially, starting with
the first statement and continuing until a STOP statement is executed. The output from
the program in Figure 1-6 is written in exponential notation with E standing for “10 to
the power.” That is, the notation .1007275E04 actually means .1007275 X 10* or
1007.275.

1-6. Compilation

The statements in the programming language are translated into an equivalent set of
machine-executable instructions by programs known as compilers. Since this must occur

Load-and-go
compiler

Machine-executable
instructions corresponding
to user's program

Unused

Figure 1-7. Memory allocation for a load-and-go compiler

1-5. Compilation

prior to the performance of any operation specified within the program, this act of
translation is generally referred to as the compilation phase.

Compilers come in two “styles,” one of which is referred to as a load-and-go
compiler. A load-and-go ‘compiler reads the statements in the program, generates the
corresponding machine-executable instructions, and places them directly into another
area of memory (see Figure 1-7). During this process, the CPU is executing the set of
instructions that comprise the compiler. After processing the last statement in the
program, and storing the last machine-executable instruction in memory, the compilation
phase is completed. An instruction in the load-and-go compiler then directs the CPU to
the first instruction in the set of instructions generated from the user’s program, and the
execution phase begins. The CPU executes this set of instructions until all operations
called for by the user’s program have been completed. For any logical termination point
in the user’s program (such as a STOP statement in Fortran), the load-and-go compiler
generates instructions that direct the CPU to return to a predetermined location within
the compiler itself. When these instructions are executed at the end of the execution
phase, the CPU is directed to return to the compiler, thus terminating the execution
phase. At this point the user’s program has been completed, and the compiler can instruct
the computer to proceed to the next program to be run.

Instead of storing the generated instructions directly into memory, many compilers
produce the set of machine-executable instructions on punched cards, magnetic tape, or
other medium suitable for subsequent reentry of the information into the computer. The
sequence of phases is as follows (refer to Figure 1-8):

1. Compilation phase. The compiler is entered into memory, followed by the
statements written in the programming language (these statements are called the
source program). The compiler generates the machine-executable instructions
on some medium from which they can be subsequently reentered into the
computer. This set of instructions is generally referred to as the object deck.

2. Load phase. Before the set of instructions can be executed, they must be
entered into memory. The loader is a small program that reads the instructions
and places them in memory. Since the compiler’s task has been completed,
these instructions can be placed in the same area of memory that was used for
the compiler.

3. Execution phase. Upon completion of the load phase, the loader directs the
CPU to the first instruction in the user’s program.

As for the relative advantages of the two types of compilers, the following
observations are pertinent:

1. Although we will not consider errors in detail until a later chapter, load-and-go
compilers are generally able to provide the programmer more information
concerning errors, especially during the execution phase. Compilers that pro-
duce object decks are poorer in this respect.

2. The load-and-go compiler resides in memory during the execution of the
program. Compilers that produce an object deck need not reside in memory
past the compilation phase, freeing this memory for use by the program. Thus,
larger programs can be .run.

3. If the same program is to be executed several times, an object deck can be saved
and the compilation phase avoided in all except the first run. Since a load-and-
go compiler produces no object deck, the compilation phase must be repeated.
However, compile time for load-and-go compilers is generally short.

Although a number of other observations could be made, for small- to medium-scale
programs a load-and-go compiler has definite advantages, particularly with respect to the

10

Introduction to Digital Computers

Statements written in
a programming language
(source program)

5 [\

B Data
VY
¢ Compilation ¢ /
Errors
Machine-
executable
instructions
(object deck)
/A
| Execution ‘
Errors Answers

Figure 1-8. Schematic representatibn of compilation and execution phases
for a compiler that generates an object deck

error messages generated. Large users and programmers in production-oriented centers
prefer compilers that produce an object deck.

1-6. Batch Processing Systems

Computing systems can be divided into two broad categories with respect to orientation
toward users: batch processing systems versus conversational time-sharing systems. Since
batch processing appeared first chronologically, we shall consider it before considering
conversational time-sharing.

As the operational complexity of general-purpose computing systems continued to
increase, centers began to use professional computer operators to operate the machines
instead of permitting individual programmers to operate them. Furthermore, the load at
most centralized facilities is such that some jobs are almost always waiting to be run. The
programmer brings his program to the center, leaves it to be run by the professional
operators, and returns for it at some later time. The term turnaround encompasses these
steps. How long he has to wait (referred to as the turnaround time) depends upon a
number of factors: the current load on the center, the priority of his work, the running
time and memory requirements of his program, etc. The number of times he can have his
program run during a day is determined by the turnaround time. Centers at which the

131ndwi oo

a14193ds ay3 uo Buipuadap ‘Ajyblys saises apoa payaund siy L
'8P 09 131984819 ULI1I0- [BIIAAL SMOYS pied payaund [eIldAL Y ‘0L-| a4nbiH

/ UL R !rlllhll!\)ﬂulr.'\uull'u-x:.‘(r-l\nrv.lmuvlu:v-rnnnlllﬂlle-.iHll.:n\l‘ll(H-:Suu-Ile-Ml‘-‘\'l\ll\“"“ N
§G6E666666666660666666666666666666666666666666§656565666BEG65666666666JEG6G66866
RN [T T A RN CARNANENY IXRNNRNRANRANS EARA R
ARUNEEY FERReY [RRRNY [RARY (RN e [RERNENY [(NAEANENY (NRAN NS Rs PR a
IEEEEREEN EEEREY EEEREN EEEER] EREREREREERREREN EERRAREY EERREEEN] EERRENRRREERR] FARRELE
AR CE R CEEEY LIRS CEERERRR AR RETY HIARA Y RN EA A1 (R A1 AR AR AR AT LR AR]
RS RARNNY NN CRRNEY CRRARY CRRA RN RN AR Y CARN RN NY CARNSNNA) CARNRARARANRAY LARA
ceeccececcc@ececcecccefeccecPececreececeeecefececece@ecccccceffececccccceeecees

IXRERRR22222] 122221 122221 AR 1RRRRRA22AA A1 A2 Ad 1R1R2AA A A Aaaaa Al ki

J

smoy
~ young Jaquny

RN

RN IR RN Y IR AR NN o
T RS B ML T R N LG LR L IR e S vy T o T T TR TR U T T A B
ococoos ANENARMcocoococososoconcoBooncoo o @ENANERNcooocoouo0o0a00enn0sen0oo0o0o00o0onf

i [| i -) SMoy

L [| i -— J?UW“d auoz
\ AT T NS Tt o P ZAXMANLEADSONN AT THD A0 2 65/ 35FE 211 <— ppai 0y ajdoad

10y buizuliy

!

SUJL "7I PUB [] ‘SMOI 9UOZ OM) WaY) JAOQB IABY SMOI IdQUINU Ud) Y], "¢ 0} () Woif
lsquinu Aue urjussaidal 10] MO , JoquInU,, Ua) SUIBJUOO PIEd PIBpUeIS Jyf, "uonenjound
I0 ‘SIaqUinu ‘s19339] 19Y}I9—UO[JBWIOJUI JO SI9JOBIBYD 08 P[OY UBD PUB SUWINJOO [BII110A
08 sey 1] ‘winipaw Jndino/indur Jo adA) s[13esiea pue deayd e s1 pied payound ayJ, (‘sQE6]
oy} 0} JoB(q $IIBP J[9SIT PIBD UWIN[0D-OY 9YL) 'SNSUSD 0681 9yl JO uorie[idwod ayl ul asn
103 p1ed payound jo od A3 sryy 03 J1seq s3deou0d oy} padoleAsp oym YIIS[[OY UBULISH “I(]
I19]JE palluel ‘pIed YILIL[[OH Pa[[ed-08 Y} SI SIYL, ‘Q[-] 2InSI UI PSIBIISN[[I QUO Y} SB yons
sp1ed payound Jo wiroy Y3 ul pajyiuqns ore swieidoid ‘g-1 amndij jo wisAs ayy Uy
‘sesodind Ino 10J 901JJnS [JIm
111Nnq ‘UoneIN3JUOD [BWIUILI AJOAIJB[QI E SI SIY], "UOISSNISIP INO JO SISBq Y} SB G- 2InSIg
ul woysAs Yy osn [jeys am ‘uoneiado jo opow Juissedoid yojeq oyy Sururedxs uj
*19119q A[qBIIPISUOD OP 193U
Auew y3noyype ‘[ensnun jou a1e Aep 1ad ss9] 10 SpPUNOIBUING INOJ 0} pajur st rowrurerdord

buissaa04d yojeq 104 UoIRINBIIUOD WBISAS “6-| 84nbl4

abvio1g
Kipijixny
[
/
40853204 e 1un
43pD3 < :
ijDDH > 1ndinQ Kioway buissasoiy
indut - > [D43U3)
491ulid
out

L SwaisAg fuisssanlg yoleg 'g-|

Introduction to Digital Computers

punched card is arranged so that a punch in a single number column will represent digit;
by making two or three punches in a single column it is possible to represent any letter of
the alphabet or one of the special characters. This is seen vividly in Figure 1-10. The
symbolic language of the punched card is automatically translated by the computer into
binary information for its internal use.

In a batch processing environment, a supervisory-type program often referred to as
the operating system, executive, or monitor is responsible for directing the computing
system through whatever sequence of events is necessary to process the job, as illustrated
in Figure 1-11.

Monitor in
control of
machine operation

!

Monitor reads
control cards

Control
Cards i
Control cards instruct

monitor to load the
desired compiler

€~ Compiler

Compiler reads
specific.source program in
automatic-programming language

Source
Program i
Compiler transiates the source

program to a machine-language .
program to form object program (Translation)

Object Program

(if desired)

Object program loaded,
monitor transfers control
to programmer's program

:

Programmer's program
reads necessary data

Data —»l

Programmer's program
calculates answers

Results <—l

Control transferred
back to monitor

L

Figure 1-11. Role of the monitor

(Execution)

(Execution)

1-6. Batch Processing Systems 13

The programmer submits his program along with any necessary control cards with
which he informs the operating system as to the nature of his program and what actions
will be necessary to process it. Figure 1-12 illustrates a typical deck complete with
control cards for processing a Fortran program. In computer terminology this complete
deck is called a “job.”

In the deck illustrated in Figure 1-12, each control card begins with the character $.
The $JOB control card indicates the beginning of a new job. The programmer’s name is
given along with his identification number for bookkeeping purposes, an estimated
maximum run time (I minute), and an estimated maximum for pages of output (20
pages). Should this program run more than one minute or print more than 20 pages of
output, the job will be “aborted,” i.e., terminated, and the next job begun.

The next control card, SFORTRAN, indicates that the programmer is submitting a
Fortran program. In response to this card, the operating system directs the CPU to copy
into memory the Fortran compiler from an auxiliary storage device. Once this is
completed, the statements comprising the Fortran program are processed. The LIST
option on the SFORTRAN card instructs the compiler to list the source program as it is
being compiled. If the compiler produces an object deck, it will be written into a
preassigned area on the auxiliary storage unit.

Encountering the $LOAD card, the operating system copies into memory the
loader from the auxiliary storage device. The loader in turn copies into memory the
object deck from the auxiliary storage device. If a load-and-go compiler were used, this
step would be unnecessary.

Upon processing the SEXECUTE card, the operating system directs the CPU to the
first instruction in the program. If the Fortran program contains any READ statements,
the actual READ operation does not occur until the program is executed. The program in
Figure 1-12 is identical to the program in Figure 1-6 except that numerical values for D

/FF THIEH \
14,25 S
/FERECUTE — \
/SLOAT ﬁ
ENL N
STaF
/ PRINT, "ARREA ="»A 4‘\
=3, [J1C¥T*H
FERDs Ty H \
JEFORTRAN LIET N
//@JUB JOE KOLLAGE, IT=110S. 50003y TIME=1, PAGES=C(N
1 [} min] 11 i
111} nm [| |
ooooef§ooocfjoofococovooococooo00cp00000000000
LRI L LT TLE PO PR D U M R L e
o RERERERT TR NN | AR R RN BN RN AR RN R RN R R
221'122112711.2121227222222211122211212222““.1.211“H?2121722”11222222221211 _/
I/

B33333332333333003330333333303233QMN33333033333333333333333333333333333333333333
A e a s daadaaB ettt B
55555555555@5555555Ms5555550sMs555555055555505555555555555555955555555555555555
sBessssscMecoBosscossoBocsesssc6es66ccRoccsesNG6 6666666666666 GEGEGE666666666F
RN R R R Rl RR R R R AR AR R R R AR Rl AR AR R R AR R R R AR R R R R AR RRRERE/
llllllllllllllllllllllllll!llalllllllllllllllIlllllIlllIlllllllllll!lll!lllllilu
99999998998 9999999B99999999999999099999999999999999988998999994999099998959999
V1345800

N L R R LR P e BT ST RIS B

o -

Figure 1-12. Typical Fortran deck with control cards

GHRHEOONUNEE MG T L T /

14

introduction to Digital Computers

and H are entered via a READ statement. Therefore, one card containing the two
numerical values is placed immediately after the SEXECUTE card.)

Upon completion of the job, the operating system proceeds to the next control
card to ascertain what other actions are needed. The SFINISH card informs the system
that nothing else is to be done. Were another job waiting to be run, the $FINISH card
could be removed and the next job immediately fed into the card reader.

While the batch processing system described in this section is fairly representative
of one used on small- to medium-size computers, larger computers provide much more
flexibility and capability in manipulating the processing of jobs to achieve maximum
efficiency. However the basic process, at least as far as the programmer is concerned, is
little different from that presented here.

One user might find this mode of operation very convenient, another might find it
very inconvenient. Anyone who is running a large problem, or a problem that runs a long
time, is generally content to leave his job for someone else to run when his turn comes.
For the small user whose program is very short and runs quickly, the waiting time
between job submission and return is, to say the least, inconvenient. Conversational time
sharing is a more attractive alternative.

1-7. Conversational Time Sharing

The basic idea behind conversational time sharing is that several users have programs in
progress simultaneously on the same computing system. In the simplest implementations,
the only components needed in the computing system are the CPU, memory, some
auxiliary storage, and a teletype for each of the users. Figure [-13 illustrates the
configuration of a conversational time-sharing system supporting four users simultane-
ously. The operating system occupies a region of memory, and the remainder is divided
among the four users of the system.

In addition to receiving his proportionate share of the system’s memory, each
programmer gets his proportionate share of the central processing unit’s time, which is
divided into small increments called slices. A user receives the processor’s undivided
attention for one time slice, but then receives no attention over the next three time slices.
Therefore, he is receiving 25 percent of the processor’s time minus the small overhead
entailed in switching from one program to the next. These time slices are so small that
each programmer feels he has the computer’s continuous services. Although his program
runs slower (as measured by the “clock on the wall”) than it would if he were the only
user, this is more than offset by the added convenience of being immediately able to get
his fraction of the machine’s services. He needn’t wait to have the entire computer at his
service.

Although conversational time-sharing systems are commercially available in config-
urations similar to the one in Figure 1-13, machines with larger configurations can offer a
wider spectrum of services. Large conversational time-sharing systems can simultaneously
serve fifty or more users. If a large auxiliary storage unit is available, each user can be
assigned some space in which he can store programs or data to be available the next time
he uses the system. Large systems generally offer other programming languages in
addition to Fortran.

In many systems the communication between terminal and computer is over
telephone lines; this permits the user to be located hundreds of miles from the computer,

When he wants to use the computer, he dials its number in the same manner that he
places other calls.

1-7. Conversational Time Sharing 15

Teletype
1
A
Teletype
2
/
Central Input/
Processing (a— Memory - Output
Unit Processor
; Teletype
5
Y
Auxiliary Teletype
Storage 4

fa) Configuration

Operating
System

User Area 4

(b) Memory allocation

Figure 1-13. Small conversational time-sharing system for running Fortran

To illustrate the conversational nature of the dialogue between the user and the
computer, a typical teletype printout is shown in Figure 1-14. All computer responses are
underlined. In the left margin, numbers have been added to facilitate explanation of the

printout.

1. After the call has been initiated, the computer responds with a message identi-
fying the system along with other data of general interest such as the time of day and the
number of other users.

2. The user must enter his identification number for bookkeeping purposes. To
prevent the unauthorized use of this number by others, a password that is not printed on
the teletype output must be entered. A proper identification number followed by an
improper password will not be accepted as valid.

3. The user informs the computer that he wants to run a Fortran program.

4. By entering NEW, the user indicates that the program is to be created at the

terminal.
5. The first file name, JOHN, that is entered is not accepted because the user

16

Introduction to Digital Computers

g SHILLEILLY TIME-ZHARIHS ZERVICE

{ON AT 1n:s? TTv: 07
2 5 EMTER LZER MO: <547

{ ENTER FHIZWORD:
3 I¥ITEM? FORTRAN

4 OLD OF HEW? NEW
MEW FILE HAME: JOHN

INYARLID FILE HMAME
FILE MAME IMN UZIE

MEiW FILE MAME: MARY
FERDY

ACCERT oIt H
A=3.1416eDen

30 FRINT «"APERA =" A
40 ITOF

S0 EMD

ZAVE

P e e
- - 0 :
[y ;

8
HEER = 1007 .22
FERD
EVE
9
OFF HT 1a:51
Figure 1-14

already has a file by that name in the system. The name MARY is acceptable. Upon
completion of the necessary housekeeping chores associated with creating a new file, the
computer types READY to inform the user that he can proceed.

6. The Fortran program is entered from the terminal. Many systems scan the
statements for syntax errors as they are entered, thus indicating errors immediately so
that they can be corrected before proceeding.

7. By entering SAVE, the user instructs the computer to store a copy of the
program on the auxiliary storage unit. Upon completion, the computer again types
READY.

8. The command RUN instructs the computer to execute the program. The
Fortran program in Figure 1-14 is identical to the one in Figure 1-6 except that the values
of D and H are entered via an ACCEPT statement. Upon processing this statement during
execution, the computer types the ? character, and then the programmer enters the
appropriate numerical values. The answers are then typed by the computer as they are

generated. Upon completion of the program execution, the computer again types
READY.

1-8. Peripheral Devices 17

9. When the user has completed his work at the terminal, he enters BYE and the
computer changes his status from an active to an inactive user.

Most time-sharing systems provide the programmer with more features than are used in
the example in Figure 1-14. Programmers can readily add to programs or make changes
using editing features available at the terminal.

For the small or occasional computer user, the conversational time-sharing mode of
operation is far more desirable than batch processing. For this reason the popularity of
conversational time sharing has increased rapidly, and probably it will increase even more
in the future. Batch processing is attractive only to the user with a very large program
that requires virtually the entire machine in order to run it and to the user whose program
runs so long that the wait at the terminal would approach the turnaround wait in the
batch processing environment. The number of small users far exceeds the number of users
in the later two situations.

1-8. Peripheral Devices

A peripheral unit serves one of two functions: as a programmer communication device or
as an auxiliary storage unit. In this section we shall give a brief description of several
peripheral devices and their use in computing systems.

In time-sharing systems the teletype or typewriter is a very popular unit. Although
these units operate at the rather slow speed of 10 to 30 characters per second, they are so
inexpensive that in some cases a single programmer can be provided with a terminal for
his exclusive use. Although they are most popular with time-sharing systems, many batch
processing systems permit programs to be submitted over these units. In these systems,
editing features must be available at the terminal to permit the programmer to make
corrections readily without having to reenter the entire program.

In many cases the main disadvantages of teletypes or typewriters are their low
output speed and the noise levels associated with their operation; both of these can be
eliminated by using a cathode-ray tube unit. In simplest terms, this device consists of a
keyboard for entry of data and a screen similar to that of a TV except that only
characters can be displayed. These units are competitive in price, but they do not produce
hard copy, i.e., something that can be saved if desired.

In batch processing systems the most popular medium for the preparation of
programs has been the punched card, as illustrated in Figure 1-10. Large computers are
equipped with on-line card readers that can read cards at rates of 1000 cards per minute
or higher and on-line card punches that can punch cards at about half this rate.
Programmers punch cards off-line using a device called a keypunch machine. To eliminate
the expense and bother of cards, some large centers are currently considering reusable
cassette tapes as replacements for cards. To what extent this will prove successful is
uncertain at this writing.

The most important method for getting information out of a computer is via
high-speed printers. A photograph of a high-speed printer is shown in Figure 1-15. These
printers are set up to print an entire line of information rather than a single character at a
time as is common in most typewriters. Many of them are capable of printing rates up to
1200 lines a minute. The paper used in the high-speed printer may be of a special format
for handling accounting information, statistical reports, warehouse data, etc., or it may be
plain unruled paper in which the programmer is allowed to use his own individual format.

A second major means of communicating with a digital computer is via a roll of
magnetic tape such as is illustrated in Figure 1-16. Magnetic tape has two major

18

Introduction to Digital Computers

Figure 1-15. High-speed printer capable of 800 lines/minute (Photo cour-
tesy of J. R. Langley.)

advantages which make it highly desirable for use with digital computers. The first is that
it can be read into the computer at extremely rapid rates. Some computers are capable of
reading 120,000 characters per second from magnetic tape, which is approximately a
hundred times faster than is possible from punched cards. The second major advantage is
that a very small amount of tape can record huge amounts of information; e.g., a single
10 1/2-inch reel of tape can hold the contents of 250,000 punched cards. This magnetic
tape is very similar to the type of tape used in home tape recorders. It is a plastic ribbon
with an iron oxide coating that can be magnetized by external heads. A tiny area of the
iron oxide coating can be magnetized to represent a “1”” in the binary code, and if it is an
unmagnetized area, it can be used to represent a “0.” A pattern of symbols can be
arranged in vertical columns on the tape in a manner very similar to that of the punched
card. The magnetic tape symbols that are commonly used are “pure binary” and normally
can be read directly by the computer. This allows magnetic tape to be used as a
computer’s external memory. The following analogy between magnetic tape and books is

1-8. Peripheral Davices 19

e
/;— s IS-»NIN

[. NIN*SIS*Ni\

—=s Js=n]n

\wl N 7/

NN S] o)
i / DN
| / TR \
\]
|
|
]

t| \\ll] 1
(1 |\l\/(|/'|:: III|::

J v 0 e 0

Figure 1-16. Magnetic recording of binary coded decimal information
{Reprinted by permission from |BM Magnetic Tape Units,
Publication No. A22-65689-1, © by International Business
Machines Corporation.)

often used: the magnetic tape provides a sort of computer library, just as an individual’s
personal books provide a source of external memory for the individual. Magnetic tape is
relatively inexpensive and it may be easily erased and reused.

One type of storage device used by the computer which might fall into the category
of an input-output device to the central memory of the computer is the magnetic disc.
These discs look like large phonograph records and have a surface that can be magnetized.
Very large amounts of information may be stored on the magnetic surface of these discs,
and they provide a type of external memory that is very similar to magnetic tape. The
main advantage of the disc is that it transfers information into and out of the computer
much more rapidly than is possible from magnetic tape. A magnetic drum offers similar
advantages.

Another type of input-output device which has gained large usage in business work
is magnetic ink. The most common example of magnetic ink is the coded personal check
which many people have in their bank checking account, and this is illustrated in Figure
1-17. Magnetic ink can be “read” in much the same manner as magnetic tape, but it has
the additional advantage that the magnetic ink can be read by people as well as by
computers.

The optical scanner is another type of input device. The scanner is a device which
can read typed or written numbers and words, not just those printed in magnetic ink. The
primary advantage of such devices is that they eliminate the manual translation of
information into special computer codes. Optical scanners are still in a rudimentary stage
of their development; they work by allowing a photoelectric cell to scan material and
convert characters into electronic pulses which are compared to patterns that are already

20

Introduction to Digital Computers

o Y
REPRO-ART SERVICE
125 S. HYDE PARK AVE.
SCRANTON, PA.
PAY TO THE
ORDER OF e)

WEST SIDE BANK
SCRANTON. PA.

s 1203 143»00050 29w3

Figure 1-17. Magnetic-ink characters

stored in the computer’s memory. As their development progresses, optical scanners will
provide a very important adjunct to the use of the computer, and it will be much more
feasible for individuals to communicate directly with the computer.

This section has by no means covered all types >f peripheral units. For example,
paper tape units were once very popular, but they have virtually disappeared except on
very small systems. Incremental plotters enable the computer to prepare line drawings. In
effect the list is almost endless, and it is steadily growing.

2.

The Fortran Statement

The previous chapter introduced the role of automatic-programming languages. It will
be the function of this chapter to illustrate the elementary programming concepts
associated with Fortran. The main thrust of all the material presented in this chapter will
be toward the development of skills related to the writing of simple arithmetic-type
statements in Fortran. It is not the purpose of this chapter to try to develop skills in
writing complete programs or even complete sections of programs;rather, the intention is
to write statements to carry out simple, specific arithmetic calculations. In order to do
this it will be necessary to gain a clear understanding of the use of constants, variables,
operations, expressions, functions, and correct statement layout in Fortran.

While much of the material presented in this and subsequent chapters is applicable
to all versions of Fortran, all of this material will be developed in terms of its application
in Fortran IV. This is implied throughout the book unless stated to the contrary.

In studying the material in this chapter, it is strongly recommended that the
student pay special attention to the distinction between integer and real. In fact, this
distinction is so important that the final section of this chapter is dedicated to this topic.

2-1. Fortran Constants

In the working of everyday problems in science and engineering it is always necessary to
make use of numerical constants. Upon a little reflection it becomes evident that there
are inherently two types of constants involved in what we do: numerical constants related
to the counting of quantities, and numerical constants related to the measurement of
quantities. In our day-to-day usage of these two types of numbers we normally switch
back and forth between them without really paying much attention to their inherently
different nature. The digital computer in its operation, however, will make quite different
usage of these types of numbers. They must be handled differently in the computer, and

21

22

The Fortran Statement

normally they are not interchangeable with one another. It is therefore necessary to have
a good understanding of these two different types of numbers.

When we refer to counting numbers, we indicate implicitly that they have no frac-
tional part. For example, we count the number of apples in a barrel, the number of paper
clipsin a box, the number of people in aroom, etc., and we make no provision for fractional
parts. It is understood that the decimal point in any such number is fixed. These numbers
are always integer numbers, and the decimal point is implied to be immediately to the
right of the last digit, although the decimal does not normally appear. In Fortran language
these numbers which have been indicated as counting numbers are referred to as integer
numbers which are a particular case of fixed-point numbers. Both of these terms are often
used interchangeably. Fortran also recognizes double precision and complex constants,
but these will be described only in Appendix A.

In Fortran, in order to distinguish integer numbers from other numbers, they are
simply written without a decimal point, and it is not even allowable to have a decimal
point associated with an integer number. It should also be noted that embedded commas
within a number are not allowed. Arithmetic operations can be carried out using integer
numbers, but the arithmetic is inherently integer in its nature; therefore, fractional parts
cannot be shown and will be dropped by the computer. For example, in integer
arithmetic if we divide 10 by 3 the answer is 3. Both positive and negative integer
numbers are allowable, and the largest integer number that is permissible varies widely
from one computer to the next. The appropriate limits are shown in Appendix B, but a
typical value is that of the IBM System 360 which allows up to 2147483647, or 2°! — 1.
(This number is a result of the use of binary arithmetic in the operation of the computer.)

The following list is an example of some valid integer numbers:

576

-200

0

6
12345678
-127982

The following integer numbers are incorrect:

76.2 (decimal present)

21. (decimal present)
10000000000 (normally too large)
127,924 (embedded comma)

The second type of number encountered in Fortran is the type of number normally
used for measuring. These numbers have the provision for expressing a fractional part.
For example, if we want to measure the dimensions of a desk top it may be 27.2 inches,
26.9 inches, or 27.0 inches. These numbers for measuring quantities not only must
express a fractional part, but it is also necessary that this part be preserved in any
arithmetic calculations. For this reason these numbers are more useful for actual compu-
tational work in the computer. In Fortran these numbers are referred to as real or
floating-point numbers. The decimal point does exist, and its location inside the number
is not fixed but may have any location assigned to it by the programmer. The use of
floating-point numbers is very common in scientific work where a number is often
thought of as a fraction between 0.1 and 1.0 times a power to 10. In most systems the
magnitude (sign noi considered) of a floating-point number may be zero or somewhere
between approximately 1077¢ and 1076, (See Appendix B for various actual limitations.)
The terms floating-point numbers and real numbers are normally used interchangeably. ‘

2-2. Fortran Variables 23

Fortran numbers can only contain a finite number of digits, and thus they must be
rational numbers. Irrational numbers may only be approximated, i.e., represented by a
finite number of digits.

Fortran real numbers may have an integer value or they may have a fractional part.
Even if a real number has an integer value in Fortran, it must be written with a decimal
point to indicate that it is a real number. In the calculations inherent in Fortran the
computer will take care of all questions of “lining up” decimals before addition,
subtraction, etc., and this is not something with which the programmer must be con-
cerned. Embedded commas are not allowed in real numbers, and real numbers are
considered to be positive if they are unsigned. It is permissible for them to be positive,
zero, or negative.

The following are permissible floating-point numbers:

96.7
-200.
.00001
-999999.

The following are not acceptable real constants:

2,782. (embedded comma not allowed)
+6 (no decimal present)

There is no restriction on the number of digits that may be written with a real con-
stant, but no more than seven or eight significant figures will normally be retained by the
computer; therefore, there is no need to write more than approximately eight significant
figures on most systems.

It is also possible to have a real constant written in exponential format in which the
real constant is followed by the letter E and a one- or two-digit number (some versions
even allow a three-digit number) which may be positive or negative. This indicates an
integer power of ten by which the number is multiplied. This facilitates writing very large
or very small real numbers.

The following are acceptable real numbers in exponential form:

50E+2 (5.X 10%)
~50.E-21 (-50.X 107%")
-.7E2 (-.7X 10?%)

12.345E21 (12.345 X 10%)

The following are not permissible real numbers in exponential form:

E+2 (exponent alone not permissible)
51g = | (no decimal—rejected by most Fortrans)
5.E76 (too large for most versions)

5.1E2.1 (exponent must be integer)

2-2. Fortran Variables

Variables are used in Fortran to denote a quantity that is to be referred to by name rather
than by its appearance as a value. An arithmetic variable in Fortran refers to the memory
address of a number. The number in the memory address is the value of the variable, and
thus during the execution of a program this variable may take on many different values as

24

The Fortran Statement

different integer or real constants are stored in the address reserved for the variable. Note
that a constant is restricted to a single value, but a variable may take on many different
values.

Arithmetic variables in Fortran may denote the address of a number which may be
either an integer constant or a real constant, and therefore arithmetic variables are said to
have fype, i.e., integer or real, depending on the kind of number which it names. (There
are also the possibilities of double-precision, logical, and complex variables in addition to
other types, but these are discussed in Appendix A.) There are two ways to denote the
type of a variable. One is an implicit method and the other is an explicit method. The
explicit method is based upon a type declaration (which is taken up in Chapter 5), and
this is the only way to handle the specification of complex, logical, or double-precision
variables. For integer or real variables the type declaration is normally not given expli-
citly, but it is implied by the nature of the name of the variable. An integer variable, of
course, may take on any of the values permitted for an integer constant, and a real
variable may take on the values permitted of real constants.

The name of an integer variable is composed of from one to six letters or digits.
(The maximum allowable number of letters or digits may vary in some versions of
Fortran.) The Fortran compiler places no “type” significance on the arrangement of the
letters and digits beyond inspecting the first letter of the variable name. The first
character of an integer variable must be a letter and must be either I, J, K, L, M, or N.
Examples of acceptable integer variables are as follows:

JACK
NUTTY
LIT1
LIT200
JKL
KJL
LJK

I

Some examples of incorrect integer variables are as follows:

ANS (does not begin with the correct letter)

1+JK (contains a character other than a letter or digit)
M2.222 (contains a character other than a letter or digit)
NUTHOUSE (contains more than six characters)

21 (does not begin with a letter)

Real variables represent real constants inside the computer, i.e., as a fraction times a
power of ten. The name of a real variable may be composed of from one to six letters or
digits. The first character of the name of a real variable must be a letter, and it may be
any letter except 1, J, K, L, M, or N.i From this it becomes quite obvious that the
Fortran compiler uses the first letter of the variable name in order to determine the type
of variable being named. Therefore, by proper selection of the first letter of the variable

name, there is an implicit declaration of variable type. Valid names for real variables are
as follows:

ANS
ANSWER

1In some Fortrans the character $ is conside i
. S red to be alphabetic. It may be used i i
names, and a variable whose first character is $ is considered to be real. . @ var

2-3. Operations

25

X
X1

- X2
ABC
CBA
BCA

Some examples of invalid names for real variables are as follows:

1ANS (does not begin with a letter)
X-Y (contains a character other than a letter or digit)
X123456 (contains too many characters)

It might be noted that the Fortran compiler will place no special meaning or significance
on the letters and digits selected to form variable names (other than to make the implicit
decision as to type specification). For example, when the computer sees A2 it does not
consider this to be A squared, A “times” two, or A with a subscript two, i.e., @, . It simply
assumes this to be the name of a single real variable. This allows the programmer a great
deal of freedom in the selection of variable names throughout his program, and it makes
available a very large set of variable names. It also allows the programmer to make use of
mnemonic names. For example, instead of calculating a variable which will be assumed by
the programmer to mean answer, he may calculate a variable whose name is ANSWER.

One of the most common errors made by new programming students is the
incorrect selection of the first letter of a variable name.

2-3. Operations

Fortran provides for five basic arithmetic operations. These are addition, subtraction,
multiplication, division, and exponentiation, each represented by a separate and distinct
symbol

Addition *
Subtraction =
Multiplication *
Division
Exponentiation #:

These are the only mathematical operations that are allowed in Fortran, and all other
mathematical operations must be built from these basic five. (The only apparent excep-
tion to this is the use of special mathematical “functions” that will be discussed in a
subsequent section.)

Note that since the letter X is allowable as a variable name and since we do not use
a lowercase “x,” another character (the asterisk) must be used to indicate multiplication.
The exponentiation combination #* is considered as two characters but as a single
symbol, and it is never correct to write two consecutive mathematical operation symbols
in a Fortran statement.

These arithmetic operations are useful in combining constants, variables, and
functions (discussed later) into meaningful arithmetic expressions. The formulation of
these expressions is the subject of the next section.

26 The Fortran Statement
2-4. Expressions

Expressions are used in Fortran to specify the computation of a nuTnerical valpe. An
expression may consist of a single constant, a single variable, or a single func_tlon. In
addition, it may specify a combination of two or more constants, two or more variables, a
combination of constants”and variables, or a combination of constants, variables, and
functions (discussed later). Table 2-1 contains some examples of valid Fortran expres-
sions.

By using parentheses with arithmetic operation symbols, it is possible to build up
very complex Fortran expressions, and there are certain rules which the programmer must
follow in order to calculate the exact numerical value intended. The following rules

apply:

1. Parentheses may be used to indicate groupings just as in ordinary algebraic
manipulations. Parentheses force the inner operation to be carried out first (just as in
ordinary algebra), i.e., parentheses are cleared before other operations are performed.
There is no penalty for the use of unnecessary parentheses; therefore, the student should
not attempt to minimize the number of parentheses in an expression.

2. When the hierarchy of operations in an expression is not controlled by the use
of parentheses, the computer follows the following hierarchy:

(a) Exponentiation

(b) Multiplication and Division

(¢) Addition and Subtraction

That is, all exponentiations are performed first, then all multiplications and divisions, and

finally all additions and subtractions. For example, the expression A + B = C is inter-
preted as A + (B * C). Similarly, A #* C * Bis (A #* C) * B.

3. In some cases the hierarchy rules stated above are not sufficient to specify the
order in which operations are performed. For example, the expression A/B/C could be
interpreted as either (A/B)/C = A/(B * C) or A/(B/C) = (A * C)/B, completely consistent
with the rules of hierarchy. This dilemma is resolved by adding the following rule:
Operations on the same level of the hierarchy are performed from left to right. Therefore,
A/B/C is interpreted as (A/B)/C = A/(B = C). The expression A/B = C is (A/B)«C =
(A =C)/B. Also note the seventh entry in Table 2-2.

Table 2-1. Valid Fortran expressions

Fortran Expression Its Meaning

] The value of the integer variable J

54.40 The value of the real constant 54.40

X+ 26.5 The sum of the value of X and 26.5

SAM - BILL The difference in the values of SAM and BILL

X*Y The product of the values of X and Y

GO/1.234 The quotient of the values of GO and 1.234

Z xx 2 The value of Z raised to the second power

X+1)/(Y+2) The sum of the values of X and 1. divided by
the sum of the values of Y and Z

1./(X %% 2) The reciprocal of X2

2-4. Expressions

27

Table 2-2. Invalid Fortran expressions

Conventiopal Incorrect Correct
Mathem_atlcal Fortran Fortran

Notation Expression Expression
xX-y XY X*xY
x-(y) X*-Y X*-Y)or-X Y
—(icl+y) -X+Y ~(X+Y)or-X-Y
x'+l X#xI+1 X*+x(I+1)
x?Th. 2 X*xY+1.%Z X*x(Y+1.)%2Z
x-y
it X *Y/Z %S X+Y/(Z = S) or X/Z = Y/S

X+ Y)/Z ++3.14 (X +Y)/Z) = 3.14

x +y] 31
[+]
x[r + y(r + 2z)]

X(R+Y(R +Z)) X*(R+Y *x(R + 7))

X/(1.0+Y/16.2+ Z) X/(1.0+Y/(16.2+ Z))

xY X %% Y %% 7 X % (Y #x Z)or (X #* Y) #* Z

whichever is intended

4. In early computers, expressions were restricted to containing either all integer
variables or all real variables. Mixing integers and real variables in an expression resulted in
mixed mode arithmetic which was not allowed. Most current systems have removed this
restriction, but there are some pitfalls for the beginning programmer as discussed in the
last section of this chapter.

5. One exception to the above definition of mixed mode arithmetic is that raising a
real variable to an integer exponent is not mixed mode arithmetic. Although real variables
can be raised to real exponents, only positive real numbers can be raised to real
exponents. For computational purposes, an expression such as 1.4%® would be evaluated
using logarithms, i.e.,

1.4%% =exp (2.6 - In 1.4)

The problem with negative numbers is that their logarithm uoes not exist. When numbers
are raised to integer exponents, results are effectively computed by successive multiplica-
tion, thus avoiding logarithms. Therefore A #* J is computable for negative A but A x* B
is not. Even though B may not have a fractional part, it is a real variable, and the
operation will be performed with logarithms as indicated above.

As mentioned earlier, operation symbols may never appear next to one another.
Parentheses indicate grouping, and they- do not specify or imply multiplication. Some
mathematical operations must have a number of parentheses in order to achieve the
desired numerical result. Table 2-2 gives examples of invalid Fortran expressions.

The value of an arithmetic expression will be a number, and the mode of that
number will either be integer or real, depending on the mode of the expression itself.
When all of the variables and constants in an expression are of the same mode, the mode
of the expression will be the mode of the numerical quantity calculated as the value of

28 The Fortran Statement

the expression. For mixed mode expressions, the mode of the result will be real, a point
we shall examine in more detail in the last section of this chapter.

It is very important that the programmer develop a good “feel” for the specific
rules for the formulation of arithmetic expressions, because there are numerous specific
problems that can be created by an inadequate understanding of arithmetic expressions.
Some examples of these are appropriate. :

The programmer should appreciate the difference between accuracy and precision.
As indicated in earlier sections, most digital computers work with approximately eight
digits of precision. This does not imply that every answer will be accurate to eight digits.
As an example, 0.12345678 minus 0.12345670 would give an answer of 0.00000008, a
result that has eight digits of precision but only one digit of accuracy.

Arithmetic operations, because of the way in which they are carried out, do not
obey all of the normal rules of arithmetic. For example, the expression
.5+ 12345678. — 12345670. would yield 8.0 if evaluated from left to right and 8.5 if
evaluated from right to left. The use of parentheses here would have an obvious advantage
in forcing the evaluation of the expression from right to left.

Another type of problem that might be encountered in a Fortran statement would
be the situation in which it would not be possible to get any answer whatsoever from an
arithmetic expression. For example, consider the expression X * Y/Z in which X, Y, and
Z have values of the order of magnitude of 10°°. Without any parentheses the operation
could be performed by multiplying X times Y and the intermediate answer would be of
the order of magnitude of 10'®. On many machines the multiplication would cause an
overflow. Overflow occurs when the resultant magnitude (that is, the exponent) of an
arithmetic operation exceeds the upper limit of numbers that can be accommodated by
the computer. It often occurs when the programmer attempts to divide by a variable
which may take on the value of zero. In the particular situation just noted, overflow
could be corrected by writing the expression as X * (Y/Z). It might also be noted that the
reverse of overflow is underflow, which occurs when a number is too small for the
computer. It is up to the programmer to avoid both overflow and underflow by properly
structuring his program.

There are some very special problems that arise in the course of performing
arithmetic in the integer mode. Division is the most common source of error in this type
of expression. In integer division a quotient having a fractional part will be truncated,
that is, dropped. For example, 10/3 is 3, 8/5is 1, and - 7/3 is - 2.

The equivalent of the above situation can also occur in real arithmetic, where, for
example, the sum (1.0/3.0 + 1.0/3.0 + 1.0/3.0) yields the result of 0.99999999 instead of
1.00000000. This is caused by each of the individual parts of the expression being
evaluated as 0.33333333.

All of the above problems are nothing more than inconveniences, and in every case
they can be overcome by proper programming. The most important problem is to
appreciate and anticipate such difficulties.

2-5. Functions

There are many operations normally encountered in programming that involve rather
common mathematical functions. Examples of these are square roots, logarithms, trigo-
nometric functions, absolute values, and exponentials. Each of these represents a mathe-
matical function that can be evaluated by the programmer through proper use and

2-5. Functions

28

structure of the five basic mathematical operations. But since these are so commonly
encountered, the Fortran system has special “‘subprograms” or equivalent machine
language instructions which are useful for evaluating them. The exact list of functions
available in any version of Fortran will vary, but there are some functions that are
common to virtually all computers and compilers using Fortran. Some examples of these
are illustrated in Table 2-3, and a complete list is given in Appendix C.

The use of a Fortran function in an expression is very simple. The Fortran
function’s name is written, and it is followed by an expression enclosed in parentheses.
The compiler interprets this to mean that the expression contained in parentheses will be
computed according to the function. As an example, suppose it is necessary to compute
the natural logarithm of a variable X. This could be written as ALOG (X).

It is possible that the argument of a function may be an expression involving other
mathematical operations and/or functions. In most cases (and in all the functions except
IABS shown in Table 2-3) it is necessary that the expression which comprises the
argument of the function be a real expression, and the functional value computed will
appear in real form.

There are restrictions associated with the arguments of most Fortran functions, and
these restrictions depend on the compiler and the specific computer installation. Typical
of these kinds of restrictions is the fact that the argument of the square-root function
may not be negative. When these restrictions on function usage are violated, the results
are unpredictable. In some cases erroneous values will be computed and used in the
program, and in other cases an error message may be generated and the program
stopped.

It might be noted that some Fortran functions are not available in the form of
subprograms but are translated into machine-language instructions. A simple example is
the absolute-value function. The distinction between these types of functions is of no
importance to the programmer.

Table 2-3. Some common Fortran real functions

Description Fortran IV Fortran II Comments/Restrictions
Exponential: e* EXP(X) EXPF(X)
Natural logarithm ALOG(X) LOGF(X) Argument must be
larger than zero.
Logarithm to base 10 ALOGI10(X) LOG10F(X) Argument must be
(not available on larger than zero.
all compilers)
Square root SQRT(X) SQRTF(X) Argument must be
positive.
Trigonometric sine SIN(X) SINF(X) Argument in radians.
Trigonometric cosine COS(X) COSF(X) Argument in radians.
Trigonometric ATAN(X) ATANF(X) Result in radians
arctangent in first or fourth
quadrant.
Trigonometric ATAN2(Y,X) not available Result in radians
arctangent of (Y/X) in correct quadrant.
Absolute value ABS(X) ABSF(X) Real functioq
IABS(]) IABSF(J) Integer function

Note: X and Y stand for any real expression.

30 The Fortran Statement

2-6. Fortran Statements

The general statements that comprise a program in Fortran may be classified in the
following four categories:

1. Arithmetic assignment statements
2. Input-output statements

3. Branch or transfer statements

4. Informational statements

The statement that will be discussed in most detail in this section is the arithmetic
assignment statement with which a new value of a variable may be computed. In general
it is of the form A = B, in which A is a variable name written without a sign, and B is any
expression as discussed in Section 2-4. The arithmetic assignment statement is interpreted
by the Fortran compiler as meaning: evaluate the expression on the right-hand side of the
equals sign and store the numerical value computed in the memory cell reserved for the
variable indicated on the left-hand side of the equals sign.

From the above statement it is quite obvious that the equals sign in an arithmetic
assignment statement is not equivalent to the equals sign normally used in conventional
arithmetic and algebra. It is perfectly permissible, for example, to write a statement
N =N+ 1, which means to take the old value of N, add 1 to it, and store it in the storage
location reserved for the variable N. This is quite obviously not true from an algebraic
viewpoint, but it is perfectly permissible to use such a statement in Fortran.

Since the computer will interpret an arithmetic assignment statement as an opera-
tion in which the expression on the right will be evaluated and stored in the variable
location indicated on the left of the equals sign, it is therefore illegitimate to try and do
any kind of arithmetic operation on the left-hand side of the equals sign. For example,
X—-Y = A + Bwould be an incorrect arithmetic assignment statement.

The variables involved in the expression on the right-hand side of an arithmetic
assignment statement will be read from memory and will not be destroyed, i.e., they are
still available for subsequent calculations. The numerical value of the expression evaluated
will be stored in the single-variable address associated with the variable on the left-hand
side of the expression, and consequently the old value of the variable on the left-hand
side of the arithmetic assignment statement is destroyed and is not available for subse-
quent computations. It is also very important to note that all of the variables named in
the expression on the right-hand side of the statement must be available at the time the
.arithmetic assignment statement is executed, i.e., all of the variables must have numerical
values available in their storage addresses. If not, an “undefined variable™ error will occur
and be detected by some computers but not detected by others.

As pointed out earlier, some computers do not permit mixing of the modes of arith-
metic that occur in an expression. It is always permissible, however, to “mix modes” of
arithmetic across an equals sign in an arithmetic assignment statement. For example, an
integer expression on the right-hand side may be set equal to a real variable on the
left-hand side of an arithmetic assignment statement. The reverse is also allowable. When
such a statement is encountered, the computer will evaluate the expression on the
right-hand side in the appropriate mode of arithmetic and then convert it to the other
mode of arithmetic before it is stored. One comment might be made about the conversion
of the results of real expressions to integer values. If an arithmetic assignment statement
is written to compute a real number which is to be converted to integer form before
storage, the real number always will be truncated past the decimal point. In order to

obtain rounding, a statement such as I = A + 0.5 is sufficient to round the real number A
to the integer number I if A is positive.

2-7. Statement Format

31

Table 2-4. Some valid arithmetic assignment statements

Meaning Statement
vy =16 V=16.
3 a
a=-— F = ALPHA =-3./X % 2+ A/(2. * X)
x 2x
my s
a =qcm A =QC x* XM1 = XM2/(XM1 + XM2)
x(x2 +y?)
g:m CG=X*(X*x2+Y ##2)/(X*x2-Y %2+ 2)
y

x= (310712 + 2x*)/3

z =cosx +ysiny
y = (tan x)?

inew = l'old +1

Xnew — Xold + .le

X=(3E- 12+ 2. % X %% 4) %% (1./3.)
Z = COS(X) + Y = SIN(Y)

Y = (SIN(X)/COS(X)) #* .2

I=1+1

X=X+.1%E

Table 2-4 shows examples of arithmetic assignment statements, and Table 2-5
shows some errors which are commonly made in arithmetic assignment statements. A
very careful review of these two tables is important to the reader.

The other types of Fortran statements discussed at the beginning of this section will
be discussed in much greater detail during subsequent chapters of this book.

2-7. Statement Format

A Fortran program is a series of individual instructions or statements arranged in the
order in which they are to be encountered and executed by the computer. For batch
processing systems the arrangement of the statement on the card has become highly
standardized. Therefore, we shall consider these systems first, followed by time-sharing

systems.

Table 2-5. Some invalid arithmetic assignment statements

X=3Y+2.
2.14=PI=1.
Z=((X+Y)=**2
==l (2)
X=1,/-2.%Y

A=N=x*X*x(N- 1)

AxX=Y
SQRT(X) =X #x 0.5

* missing

Left side must be a variable; only one equals sign
permitted

Unequal number of right and left parentheses

Integer quantites raised to negative powers al-
ways give a zero result; variable on left must
not be written with a sign.

Two operation symbols side-by-side are not permitted,
even though the minus sign here is not intended
to indicate subtraction.

Mixed modes in multiplication; not accepted by some
compilers

Left side must be a single variable.

The left side must be a variable name.

= C FOR COMMENT

The Fortran Statement

Batch Processing Systems. Normally there is one statement prepared for each
individual input card, i.e., there is a punched card (or its equivalent) for each statement
that is to be fed to the Fortran compiler. It is necessary for the programmer to write on a
Fortran coding form the instructions that are to be punched on the cards by a keypunch
operator. There are some general guidelines that must be observed in preparing these
Fortran coding forms for interpretation by the keypunch operator. A typical Fortran
coding form is shown in Figure 2-1. Each line or row on the programming form
corresponds to one card that will be punched by the keypunch operator. The two
arithmetic assignment statements shown in Figure 2-1 are assumed to be part of a much
greater program that will be run by the computer. The first statement calculates an
individual’s pay as being equal to his rate of pay times the time that he has worked, and
then the net pay that the individual will receive will be equal to his gross pay minus
whatever taxes he must pay and whatever other deductions he might have in his payroll
computation.

These two arithmetic assignment statements will each appear later as an individual
punched card. Their layout on the Fortran coding form is sufficient to illustrate the usage
of the various columns on the coding form, but a few general statements about the
program coding form are appropriate. Note that each row is marked off into a series of
individual spaces. On the coding form shown there are 72 such spaces in each row. Only
one symbol may be written in each space, and each symbol must be written separately in
its own individual space. It does not make any difference if the symbol is a letter, a digit,
a comma, a period, a parenthesis, or an arithmetic operation sign, etc. Each individual
symbol must have its own individual space. The reason for this is obvious when it is

o Con

FORTRAN STATEMENT
15 20 25 0 35 40 45 50 55 80 45 0 7

\{ 1 1 ; 1 it [i 1 1 1 1 1 1
] 1 l‘" 1 1 1 A1 1 1L 1 L 1 i
? 1 1 \) i 1 1 1 1 1 I 1 1 1

1 1 J 1 1 i 4 1 i 1 1 1 1

'y o N : :) ’ . 1 : . .

RATE * TIME | - L 1 ' N L N N n

PAYNET = PAY - TAX - DEDUCT ., N L N L N n '

‘ 1 1 (1 1 1 L | 1 1 i 1 1

g | A {I 1 1 1 1 1 1] I3 " 1

B e

1 - 1 1 1 i 1 1 i 1 1 1

L 1 i 1 1 1 1 1 1 1 1 1

L 1 1 1 1 1 1 1 1 1 i 1

1 1 1 L 1 1 1 1 1 1 1 1

1 1 1 1 1 1 i . 1 1 1 1 1

Figure 2-1. Statement format

2-7. Statement Format 33

recalled that each line on the coding form will correspond to a punched card at a later
time in the development of the program, and consequently each individual space will
correspond to a punch on a card. It might also be noted in the statements shown in
Figure 2-1 that a number of blank spaces are present in the arithmetic assignment
statements. These blanks are ignored by Fortran (except in the Hollerith format specifica-
tion discussed later).

Columns 1-5 of the typical Fortran statement are reserved for a statement number
which identifies an individual statement. It is not necessary that all statements have a
statement number nor is it necessary that these statement numbers follow any distinct
order or sequence. There are additional uses for column 1, but these will be discussed
subsequently. The actual Fortran statement itself begins in column 7 and continues to the
right but may not go past column 72. If it requires more characters to form the Fortran
statement than can be placed in columns 7-72, then it is possible to continue a Fortran
statement on the next line, i.e., the next card. Column 6 of the Fortran coding form is
provided for this purpose. If there is any character punched in Column 6 (except a 0 or
blank), it will serve as a ““flag” to the Fortran compiler that this card is a continuation
card for the statement above.

It might be recalled from Chapter 1 that punched cards normally have 80 columns
on them. In Fortran programming, columns 73-80 of punched cards are not used. They
may be used to punch identifying characters and/or sequence numbers into the cards for
a direct indication of the numbered sequence of the cards. The Fortran compiler will
ignore any information punched in columns 73-80, and for this reason many coding
forms do not even show these columns on the coding form itself.

In general, Fortran programs will consist of a series of statements in the following
typical structure. First, an input section; second, a series of calculations performed on the
data read into the computer via the input section (these calculations may involve flow of
control statements and arithmetic assighment statements); and third, an output section in
which the results of the calculations will be obtained from the computer. All of these
sections may contain informational statements. Most of the statements involved in the
sections of the Fortran program will use the general format shown in Figure 2-1 (with a
few possible exceptions which will be discussed as they are encountered).

It is very important for the beginning programmer to get a firm understanding of
the typical card format for Fortran programming. It is equally important in the prepara-
tion of his Fortran coding form that he be very particular and neat in the preparation and
writing of the symbols in the individual spaces on the form. For example, it is very
common to confuse a 1 with an i, a 1 with a /, a 5 with an S, a 2 with a Z, or a “zero”
with an “oh.” Many computer installations require that the O be written with a slash
through it to avoid confusion, but the reader is cautioned that the opposite convention is
used at some sites, i.e., the zero is written with a slash. In computer listings in this text
the letter O appears without a slash; the reader should become familiar with both styles.
These individual details require the undivided attention of the beginning programmer
because any one of the above mentioned errors or violations of the programming rules
will be sufficient to reject the execution of an entire program.

Figure 2-2 illustrates a complete card deck for a simple Fortran program. Note the
appearance of statement numbers, comment cards, and continuation cards.

Time-Sharing Systems. In batch processing systems, the program is in the form of
a card deck. In order to add, delete, or change statements in the program, the program-
mer simply locates the proper cards and makes the desired changes. In time-sharing
systems, no card deck as such exists, but the programmer must still be able to make
program modifications in a convenient manner, a process often referred to as program

editing.

The Fortran Statement

v END Q
i 10F =
57 FORMAT(® HAROLD ="sF10.4s5%s ALPHA ="»F14.4) \
4 MRITE(EyS7) HAROLD,ALPHA R
1] 5. 12772)%HARDLD+1. 457766 ¥HARDL D+ 0. 451134 R
£43 JLPHA=((((2.44532%HAROLD+12. 44512 }*¥HAROLD~1. 2451 | Y*HAROLD-)
COME HERE IF HAROLD IS NEGARTIVE)
507014)
1| 2,.4451 1)®HAROLD+0. 274323 *HAROLD+0. 742255
ALPHA=C C (1. 52347%HAROLD+22. 1627) ¥HARALD-10. 112954) *HAROL D+
) COME HERE IF HAROLD IS POSITIVE \(
IFCHAROLD.LT. 0. 3 SOTOA43 \
55 [FORMATCF10.0))
PEAD(S, 25) HAROLD)
5 CONTINUATION CARDS, 2\
B THIS PROGRAM ILLISSTRATES STATEMENT NUMBERSs COMMENT CARDS, AND)
& 1]] I I | 11 1kl il 1 1 1t 11
iy n 1 10 81 1 i 1 1
sloooct/Boo@oococococoooMEBooBoNo@RoReooo@eofoooofBooocoeafoooop@Peososcocjoaveonns
i (R T R NI R RIS R) v it HETTETE S IR IR R NIRRT SR RTRTN RIRER I N TRUIRCRE AR R B R R N)
[IIRERE (R RN RN AR R AR RRARR! AR NN R RN RSN R ERREEY EARENR IR R RN
r222422202222222220222 0222 220202222222222220220222222222222220222222022)22222222
EERER| EEERERERREEEEL | EX1 ERI EREE] EI ERER! EEEEEREE] EI EERER] Kl EEEE] EEREEERE EREEEEE]
IR AR RNy CRRRY CNRRR RN OOy | RN e] | O O e
5j55555[5555555555555555555555055555sMsMBssMsssBosssssssMlssss5555555s555s55555555
IIIIljllllllillilHSililIiiillli”ilili”lili”iHEIHHIHilill““ilil.ﬂlllltl
(LEEEE NREEY XY AR EE R AR R R R R R R R RN R R R AR RERE RS R AR AR EERERR R RR| [ER S B EE ¥
aposacjoBannnnnnnnasnnnnnnnvnvnnaenspnannnnnnneseBoenannntnvnnnaoocnnantfirannan
sjgsgesjosBosoBosBosoleneaalosnsoanggsegagsgssaolessosgsnsanoolososgsssngsfsogeayey
_ ‘Y!l'.lill‘l-'_l:u,';“l CUEETE ETR S IR T 0 R T P R B R T I R T R L R (N A RE L] P

Figure 2-2. Card deck for Fortran program

To facilitate this process, each statement in the Fortran program for time-sharing
systems is given a line number (not to be confused with or equated to a statement
number). The line number is generally restricted to a five digit number and always
appears prior to the Fortran statement. In essence the line number is not part of the
Fortran statement, and it is present only to facilitate program editing.

Although some time-sharing systems adhere strictly to the statement format pre-
sented earlier in this section for batch processing systems, many systems use a freer
statement format. As illustrated in Figure 2-3, the rules are as follows:

A comment line is designated by a C immediately following the line number.

A continuation line is designated by an ampersand (&) immediately following
the line number.

A blank column normally separates the statement from the line number.

A blank column separates the statement number and the line number, and

another blank column separates the statement number from the remainder of the
statement.

Unfortunately, these rules are by no means universal, so the reader should not be
surprised if his specific system does not follow them. Since these rules are not standard-
ized, we shall in this manual always use the previously presented rules for punched cards.

In effect, the system maintains a program file that may be modified from the
terminal by the programmer. To facilitate editing a program, the line numbers are

generally entered in increments of 10, as shown in Figure 2-3. Editing is accomplished as
follows:

2-8. Integer versus Real

10C THIS PROGRAM ILLUSTRATES STATEMENT NUMBERT: COMMENT LINESS
20C AND CONTINUATION LINEZ.

20 ACCEFT sHAROLD

40 IFCHRROLD.LT.0.» 50TO&43

30C COME HERE IF HAROLD IS FOSITIVE

50 ALPHA=CCO(]1 .S2247eHARDLD+22 . 1537) oHARDLD -0 . 0112354 » ¢HAROL D+
70% 2.44511eHARDLD+0.274323eHAROLD+0.742355

20 307014
F0C COME HERE IF HARDLD I: NEGATIWE
100 543 ALPHA=((({2 ,44532eHAROLD+12.445122eHAROLD-1.24511 »¢HAROLD-

110% S.127731eHAROLD+1 .457755 0 eHAROLD+0.451134

120 14 PRINTS? sHAROLD sALPHA

130 S7 FORMATC"HAROLD ="sF10.4:SX:"ALPHA =" F14.4)
140 =70OP

150 END

Figure 2-3. Fortran program for time-sharing system

35

To add a statement, simply give it a line number appropriate to its intended
position in the program and type it in. The system will always maintain the
program file with the statements in ascending order according to the line numbers.

To delete a statement, simply type its line number and depress RETURN.

To change a statement, simply reenter it. In essence, only the last statement

entered with a given line number is retained.

Most systems provide special editing commands that permit listing the entire program or
parts thereof, resequencing the line numbers, linking one program file with another, etc.

For these, a manual for the specific system being used is required.

2-8. Integer versus Real

Before discussing the pitfalls for beginning (and experienced) programmers that stem

from the existence of integer and real variables in Fortran, some explanation as to their

origin may be enlightening. The tendency of Fortran to conform to the computing

hardware is the primary reason for the two modes of variables. For scientific computa-
tions, numerical values can be represented in one of two ways (integer versus real) in
storage. In integer form the number is stored directly, but fractional parts are not

permitted. In real form the number is expressed as a fraction and an exponent, and the

storage location is partitioned so that both the fraction and the exponent are stored in

the same storage location.

Virtually all modern scientific computers use the binary number system as the basis
for performing numerical operations. We shall, however, discuss only the three character-

istics of the binary number system that are pertinent to our present subject.

A decimal number without fraction can be precisely represented in integer format

in the binary number system. Arithmetic operations involving integer numbers can be
performed precisely if we recognize the fact that any fractional parts resulting from

divisions are lost. The equation

2+2=4

is true for integer variables but, as we shall see in the next paragraph, it is not quite true

for real variables.

36

The Fortran Statement

To store a numerical value in real format, the decimal number is converted to
binary, the decimal point (or binary point, to be precise) is “floated” to obtain a fraction
and an exponent, and the result is stored. Unfortunately, very few decimal numbers with
fractional parts can be accurately represented in the binary number system. For example,
if the decimal number 0.1 is converted to binary, the result stored in real format, and the
value in storage converted back to decimal, we would obtain the number
0.0999999930295-+ from one specific commercial computer. While the result is close to
0.1, it is not exactly 0.1. If we add 0.1 (as stored) to itself ten times and then have the
computer check to see if the result is 1.0, the answer is no. Similarly, using real
arithmetic, the equation

02+02=04

is not quite true. The error is typically in the seventh or eighth decimal place, which is
negligible in most calculations except for counting purposes. In counting, if we add 1 to
itself ten times, the result had better be exactly 10, not almost 10. Since counting
numbers never have a fractional part, and since integer arithmetic is exact, integer
variables and constants should always be used for counting. Integers should be used
whenever fractional parts will not be encountered.

For many constants in Fortran, the integer and real expressions have nearly the
same appearance, but results can often be significantly different. Consider the following
two examples:

A x%2 A %% 2,

Although these two expressions are quite similar, the difference between them is very
significant. The exponent in the expression on the left is written without a decimal point,
which defines it to be integer. The exponent in the expression on the right is written with
a decimal point, which defines it to be real. We ask the question “What if A is negative?”’
to see that this difference is significant. The expression on the left is a real number raised
to an integer exponent, i.e., A *#+* J, which is computable for all values of A, positive or
negative. However, the expression on the right is a real number raised to a real exponent,
i.e., A *x B, which is computable only for positive A. The fact that the real exponent
does not have a decimal fraction is immaterial since the computer performs all arithmetic
operations in the binary number system without making such a test. If the exponent is
real, the evaluation is made according to the procedure for computing A #* B even
though B may in fact not have a fractional part. Therefore, in exponentiations, integer
exponents should be used inall cases where the exponent does not have a fractional part.
A #x 2 is preferred over A ** 2. in all cases.

The prohibition on mixed mode arithmetic stems from the computing hardware.
Arithmetic units in computers do not generally perform operations on mixed variables.
Hardware logic is available to add an integer number to an integer number, to add a real
number to a real number, but not to add a real number to an integer number or vice
versa. A similar situation exists with respect to subtraction, multiplication, and division.
Exponentiation is usually performed by routines similar to library functions; therefore, a
real variable can be raised to either an integer or real exponent.

In view of this situation, most early Fortran compilers simply did not allow mixed
mode arithmetic. If the product of variables A and N had to be computed and the result
stored in B, two statements such as the following were typically used:

X =N
B=A=x*X

2-8. Integer versus Real 37

The numerical value stored in variable N is converted to real and stored in variable X by
the first statement (the content of variable N is not changed). The second statement
computes the desired product.

Mixed mode arithmetic applies only to an expression. It is always permissible to set
an integer variable equal to a real expression or a real variable equal to an integer
expression.

While most programmers follow the practice illustrated above, using two statements
to avoid mixed mode arithmetic, an alternate approach is to use the two library functions
INT and FLOAT, described below:

INT(X) Computes the integer equivalent of the real variable or expression
used as the argument

FLOAT(J) Computes the real equivalent of the integer variable or expression
used as the argument
In effect, the statement

X=N

in the above example is in essence

X = FLOAT (N)

with the function FLOAT inserted by the compiler.
Mixed mode arithmetic can be avoided in this example by using the following
statement:

B = A*FLOAT(N)

If the result must be integer, a statement such as the following can be used:

= INT(A)*N

The INT and FLOAT functions are available in all versions of Fortran, and can be used
whenever the need arises.

As Fortran compilers continued to be developed, they steadily became *‘smarter.”
It was easy to insert a FLOAT or INT function and continue, instead of printing an error
message on encountering mixed mode arithmetic. However, instead of attempting to
decide which function would be more appropriate, most compilers simply insert the
FLOAT function, changing all mixed mode arithmetic to real arithmetic. The statement

B= AxN

became perfectly acceptable, being computed as follows:
B = A*FLOAT(N)
which is quite appropriate.

Unfortunately, the unilateral insertion of the FLOAT function does not always lead
to the most appropriate result. For example, the statement

J=A=N

is computed as

J = INT(A*FLOAT(N))

38

The Fortran Statement

That is, variable N is floated, the result multiplied by A using real arithmetic, and the
result (in real) converted to integer. An alternative approach would be to compute the
statement

J = AxN
as follows:
J = INT(A)=*N

In this case the value stored in variable A is converted to integer, the result multiplied by
N, and the result stored in J. How do the two statements

J = INT(A*FLOAT (N))
J = INT(A)*N

compare? The latter statement does not require a conversion from integer to real, and is
therefore computationally more efficient. However, the important difference is that these
two statements do not always produce the same answer. Suppose A equals 2.5 and N
equals 3. The statement

J = INT(A*FLOAT(N))
computes a value of 2.5 X 3 = 7.5 = 7 (integer) for J, whereas the statement
J=INT(A)*N

computes a value of 2 X 3 = 6 for J. Which is correct? That depends upon the problem,
and it is therefore the responsibility of the programmer. If the value 7 is correct, the
mixed mode statement

J= AsN

is appropriate, but the second statement must be used when the value 6 is correct.

Another problem with the use of mixed mode arithmetic is that the insertion of the
FLOAT function is not consistent from compiler to compiler. In compilers that use real
arithmetic for all computations in a mixed mode expression, the statement

A = J/N%100.

would be computed as follows:

A = FLOAT(J)/FLOAT(N)=100.

Other compilers perform the computations as dictated by the hierarchy and left-to-right
rules discussed in Section 2-4, and they insert the FLOAT function only when a mixed
mode operation is encountered. For the statement

A = J/N=100.

the sequence of operations would be to divide ¥ by N and multiply the result by 100.
Since J and N are both integer, their division does not involve mixed mode arithmetic.
Therefore the FLOAT function is needed only when their result is multiplied by 100.
Therefore, some compilers would treat the statement

2-9. In Summary

39
A = J/N#100.

as

A = FLOAT(J/N)*100.

Is the statement above equivalent to the statement below?

A = FLOAT(J)/FLOAT(N)*100.

Suppose J equals 2 and N equals 5. The first statement computes a result of 0.0 for A
(dividing 2 by 5 in integer gives a result of 0). The second statement computes a result of
40.0 for A. Which is correct? That depends upon the problem and is therefore the
responsibility of the programmer.

To summarize this discussion, mixed mode arithmetic is a convenient feature, but it
is not without its pitfalls. Many experienced programmers avoid its use, partly out of
habit, since it was forbidden on earlier systems, and partly because of the pitfalls
discussed above. The beginning programmer must be cautious.

One final note: the fact that the fractional part is always truncated when a real
number is converted to integer in Fortran seems unnatural to many students, primarily
because rounding is emphasized in many mathematics courses. In reality, there is a large
number of problems in which truncation, as opposed to rounding, is required. Consider
the following problem:

A boy takes $1.00 into a department store to purchase as many baseballs as
his money will buy. He discovers that baseballs cost 35¢ each. How many can he
buy?

To solve this simple problem, we divide 100 by 35, obtaining 2 30/35 or 2 5/6. Do we
round (obtaining 3) or truncate (obtaining 2) for the answer? Truncation is appropriate
for this problem.

2-9. In Summary

This chapter has introduced Fortran statements in general and has presented a general
discussion of the arithmetic assignment type of Fortran statement. Fortran constants,
variables, operations, expressions, and functions have all been discussed along with many
of the individual rules that must be followed in using these Fortran elements. Some of the
numerous idiosyncrasies that may be present in many compilers have been mentioned.
Various compilers have been written by different people at different times for different
machines and with some variation in objectives. Specific limitations, rules, and regulations
for individual compilers are always available in the form of individual programming
manuals for compilers on specific machines. It is not necessary (or desirable) to get
involved in individual idiosyncrasies at this point.

After this chapter has been carefully read, the student should be thoroughly
familiar with the techniques and the rules governing the writing of arithmetic assignment
statements. The next chapter will make these arithmetic assignment statements the basis
of Fortran calculations and couple them with the necessary input-output statements to
write simple programs for a Fortran compiler.

40 The Fortran Statement
EXERCISESE

2-1. Write the following as Fortran integer constants:

-2.,486 4 X 10* ~-16.F 86,487.0F

2-2. Write the following as Fortran integer constants:
27.0 -2,726 5.86 X 10% -16,262.0
2-3. Write the following as Fortran real constants (using either decimal or expo-
nential format):
10% 0.0000082+ -102 26,286.3
2-4. Write the following as Fortran real constants (using either decimal or expo-
nential format):

-27,281% 105" 0.298612 27.83 X 10*

2-5. Why are the following unacceptable as Fortran integer constants?

-121.8 5,241 27E21% 29342641893

2-6. Why are the following unacceptable as Fortran integer constants?

27E-03 16.8 27,243F 10"

2-7. Why are the following unacceptable as Fortran real constants?

-2,871. 27.8E + 927 +21 6EO2

2-8. Why are the following unacceptable as Fortran real constants?
9.12-E01 281E3.2 -18,342t 16,2213
2-9. From the following list of variable names you are to select those that are

integer variable names, those that are real variable names, and those that are unacceptable
as variable names.

(a) 2EASY (g) IDIOT
t(b) TWO (h) UNCLE
(c) IKE (i) ROOT

(d) ANSWER () A-B
t(¢) ANSWERI (k) (LAST)
(f) TO.JO) 1

2-10. From the following list of variable names you are to select those that are

integer variable names, those that are real variable names, and those that are unacceptable
as variable names.

(a) ADDITION (g) MUST
t(b) 23SKEEDO (h) GAMMA
() T (i) COBOL

fSolutions to Exercises marked with a dagger § are given in Appendix E.

Exercises

(d) TEE t(j) JERK
t(e) A*B (k) DIRTY
) X () GO-GO

2-11. Write Fortran expressions to accomplish the following:

a+bh

@ e

(b) x3

{c) a-k:

c+d
a-b
c+ 10

x+2
(e)y+4

(d)

i+j
() k+3
2-12. Write Fortran expressions to accomplish the following:
Ik
@ k+n

+m

a+b
(o) T

o —
e

2 3
X X
(©) 1+x+§+§

3+y+y*+4y°
T

c-d
e-f-g

1 (»Y
0 = (m)
2-13. Write Fortran expressions to accomplish the following:

(a) 2mr?
(b) a +x[b + x(c + dx)]

» (%)WH
+(d) [p(%)] o

() k* + (%ﬂ)zk

(3! is 3 factorial)

fe) 5+

42

The Fortran Statement

() (_ -x +y2+27)4

4

2-14. State the numerical value of J that will be transferred to memory by the
following arithmetic assignment statements:

t(a) J=5%5/7
(b) J=5%(5/7)
(c) T=2/3+2/3
(d) T=2/3.+2,/3.
$(e) J=2000 * (1999/2000)
() T = (2000 * 1999)/2000

2-15. State the numerical value of X that will be transferred to memory by the
following arithmetic assignment statements:

(a) X=5=x5/7
t(b) X=5/7 %5
(c) X=5.%5./7.

(d) X=4=%x(3 **2)
(€) X=(4#%%3)#%2
t(f) X=5./3.+3./3.+5/3.

2-16. Write arithmetic assignment statements to compute the following:

(@ x= —ﬁ + sin (a/2)

t(b) x = cos(y) + x -sin(z)
(c) x =-siny
(d) x =cost?(y)
() x=+»*+277/6
T() x=y-sin (n/z)

2-17. Write arithmetic assignment statements to compute the following (log
denotes log;o and 1n denotes log,):

_1+cosy
@) YT T T cosy
_ |1+ cosy|
T(b)x_ll—cosyl
|1+ cosyl
:1 L
(©) x Ogil—cosyi

(d) x =m-sin®(¥) - cos’T2(2)
t(e) x=log|tany|
(f) x =y -log| arctan (z/3) |

2-18. Write arithmetic assignment statements to compute the following:

- 1_0\ 1/2
(2) x= (ﬂyz/) cosy

Exercises 43
tb) x=0)" @) ()7
) x= eVYIs
(d) x =cos (e Sinx)

@ x=——+|—1
\siny |+/cosy
(f) x=log log|e™|
cosy

2-19. Identify the error(s), if any, in each of the following arithmetic assignment
statements:

(a) X=1#xY .
(b) X-3=Y=xZ+6
t(c) X=Y=*-Z+6.
(d X=1+3=J+4
() X=272

F(f) X=(Y+3)*x2

2-20. Identify the error(s), if any, in each of the following arithmetic assignment
statements:

(@ N=X-Y

(b) - X=(Y+Z)=12.

to) XxY=1=#%2

(d) X=12,763 = A

() 3X+1=*%3

) X=(Y +4)#x2

(g) X =(-3.5%ABS(D +G)) **B

Simple Fortran Programs

The previous two chapters have introduced the concept of automatic programming
languages and developed the basic tools that are necessary to formulate some of the
simpler individual statements of Fortran. The last chapter gave attention to the develop-
ment of the arithmetic assignment statement, and it is the purpose of this chapter to
carry this development forward and to explain some of the other types of Fortran
statements. Based on this, some simple Fortran programs will be written. In this chapter
statements will be introduced that are sufficient to write only a very elementary type of
Fortran program.

It might be reemphasized that the procedures, formats, and rules given are those
that are peculiar to Fortran IV.

3-1. Format-Free Input Statements

If a problem is to be done only one time, all of the necessary data associated with the
problem can be entered into the Fortran program directly in the form of constants in the
individual statements. This is not normally done, however, since a digital computer is best
suited for doing repetitive-type calculations, and most problems encountered in the
application of digital computers are those in which the program is to be executed a
number of separate times on different data. This is usually handled by having the program
read the data associated with an individual problem from cards (or their equivalent) at the
time the program is to be executed. Constants are used in the program only for those
quantities that are in fact constant, i.e., they are not dependent upon the input data. If
the program is set up in this general format, the same program can be used for many
different sets of input data. This means that the Fortran program must handle the input
of data into the computer. This becomes a significant portion of the programmer’s task
and it will now receive our attention.

45

46

Simple Fortran Programs

The primary thing to appreciate in considering input statements is the fact that the
input data for the program may be entered into the machine from any number of
different input units, e.g., from card reader units, from magnetic tape units, from
paper-tape units, or perhaps even from a console typewriter. Furthermore, the individual
numbers which comprise the input data for the program may appear in different layouts,
i.e., formats.

In general there are two approaches to handling input and output statements: the
format-free approach and the format approach. Both will be presented briefly. It is
important to note that either one may be used in any given problemi; the choice is up to
the programmer. The format-free approach is simpler and easier to use, and the format
approach is more general and more powerful.

First, the format-free approach. An input statement can take the form

READ, K.X,Y

where K, X, and Y comprise a list of variables whose value is to be read into the
computer. By'implication K is an integer variable and X and Y are real variables. The
execution of this statement will cause the standard input unit for the computer, usually a
card reader, to read in a card and to scan this card for the numerical values to assign to
these variables. If the computer finds all three numerical values, then it will execute the
next statement in the program. If it does not find all three, it will read in additional data
cards until it has found three numerical values. These numerical values will be assigned in
order to K, X, and Y. The first numerical value should be. therefore, integer, and the
second and third numerical values should be real. The numerical values on the input
card(s) may be punched anywhere, but successive values should be separated from each
other by blanks or commas.
Several comments apply to this format-free approach

There is no need for the first numerical value to start in column 1.

A numerical value may not be continued across two cards.

Successive cards will be read until enough items have been found to satisfy
the requirements of the list part of the READ statement.

Any numerical values remaining on the last data card read for a particular
READ statement will be ignored.

The type (real or integer) of a data item should match the type of variable to
which it is being assigned.

For integer values either signed or unsigned integer constants are acceptable.
For real values either exponential or floating-point constants are acceptable.

Format and format-free input-output statements may be mixed within the
same computer program.

The general form of the format-free input statement is
READ, variable list

As indicated earlier, the value of the format-free statement is based on its simplicity and
the ease with which it may be used.

For input via the teletype, many time-sharing systems use the ACCEPT statement.

1 This assumes that the Fortran [V compiler in use by your computer center has il i
both of these capabilities. i R

3-2. Formatted Input Statements 47

For example, to enter values for variables X, J, and C, the appropriate statement is

ACCEPT, X,J,C

Upon processing this statement the computer waits for the programmer to enter numeri-
cal values for X, J, and C. Most terminals have a light or other mechanism by which the
user is aware that the system is ready to accept input. Many programmers precede the
ACCEPT statement with a PRINT statement to tell them which variables appear in the
ACCEPT statement.

The rules regarding entry of values for the ACCEPT statement are essentially the
same as for the format-free READ statement. That is, the numerical values are separated
by a comma or one or more blank spaces. Only integer constants may be entered for
integer variables, but either exponential or floating-point constants may be entered for
real variables. After all values have been entered and the RETURN key depressed, the
computer continues processing the statements in the program.

3-2. Formatted Input Statements

Perhaps the easiest way to illustrate the nature of the standard formatted input
statement is by way of example:

READ (5,297)K,X,Y
297 FORMAT (110,F10.2,E20.7)

These two statements are interpreted in the following manner. The READ indicates
to the computer that data is to be entered into the computer memory from one of the
many possible input units and in one of the many possible data formats that might exist
on the typical input card (or its equivalent). The number 5 is a number whose value
specifies the particular input unit to be used. This is an assignment that is made in a more
or less arbitrary fashion with regard to specific machine configurations.

The 297 refers to the statement number of an associated FORMAT statement for
the input READ statement. This FORMAT statement is not a statement that is executed
by the computer; it is a statement which provides information to the computer telling it
the arrangement of the various items of data on the input card (or its equivalent). The
three variables in the list following the parentheses in the READ statement have the
names K, X, and Y. These variables are assigned values from the data card when the
READ statement is executed.

In statement 297 (the FORMAT statement) there are field specifications for the
variables in the READ statement.

The FORMAT statement dictates the layout of data on the input card (or its
equivalent), and there must be a format field specification for each of the variables in the
input READ list. In the list shown, the variable K is an integer variable, and the field
specification associated with the variable K is given as 110. The 110 indicates that the first
variable in the list is an integer variable, and it will be found in the first 10 columns of the
input data card.

The variable X is a floating-point variable, and the F10.2 is the field specification
associated with the data layout for the value of X to be read into the computer. The F
indicates that X is floating-point, and therefore the field specification is for a real
number. The 10 indicates that the value of X will be found in the next 10 columns on the
data card, i.e., columns 11-20, and the .2 indicates that when the number is processed,

48

Simple Fortran Programs

the decimal point will be assumed between the numbers in columns 18 and 19, i.e:, two
places will be found to the right of the decimal. It is better programming practice to

" actually write the decimal in the number on the data card rather than to rely on its

assumed location. If the decimal is explicitly written, it would normally appear in column
18, but if it is placed in any other column, its actual column location will override the
format specification given in statement 297. This freedom is, of course, limited by the
fact that the entire numerical value of X, including the decimal point, must be completely
contained within columns 11-20.

The variable Y is also a real variable, and it could have been given in the
floating-point or F-type of field specification. For sake of illustration, the variable Y is
shown here in an alternate type of real-number field specification—the exponential or
E-type of field specification. The E-type of field specification calls for a numerical value
plus an exponent raised to a power of 10. The 20 specifies a total of twenty columns for
the field, and the .7 indicates that seven places will be assumed to the right of the decimal
in the input number. The number must also contain an exponent giving the power of 10
by which the fractional part of the number is to be multiplied. As before, it is better
programming practice to actually write the decimal in the numerical value of Y on the
data card. The input information for this particular number might appear as .526E01
which would indicate the real number 5.26. Note in this instance that the number of
decimal places indicated in the input number is less than that indicated in the field
specification. This is perfectly permissible and the actual location will override the field
specification given in statement 297. Also note that the input number proposed did not
occupy the full 20 columns allowed, i.e., columns 21-40. This is permissible and perhaps
even desirable because it allows the programmer to leave blank spaces (within limits)
between his input data on the cards, and thus make the data easier for people to read.
Since blanks on the input data card will be read by the computer as zeros, all numbers on
the input card should be placed in the columns at the right of the field provided and all
blank columns should be at the left of the field provided, i.e., the input should be right
justified.

Summarizing, the individual input statements shown in the previous example would
direct the computer to go to input unit number five and read in a single card which will
contain the integer variable K and the real variables X and Y. They will be contained on a
single card (or its equivalent) whose format is laid out in the arrangement shown in
statement 297 of the program. The integer variable K will be contained in columns 1-10,

‘the real variable X will be shown in normal decimal notation in columns 11-20, and the

real variable Y will be shown in exponential notation in columns 21-40.,
There are many modifications to the nature of input READ statements depending

Table 3-1. Formatted input statements

Input Unit Standard Form Alternate Form
Card reader, on-line READ n, list
Magnetic tape (cards off-line) READ INPUT TAPE j, n, list
READ (j,n) list
Paper tape ACCEPT TAPE n, list
Console typewriter ACCEPT n, list

Note: j stands for an integer whose value specifies the input unit, » stands for the statement num-
ber of the FORMAT statement, and list stands for the input variables.

3-3. Format-Free Output Statements 49

on the individual compiler. More recent Fortran compilers have arrived at a single
standard statement for use as a formated input statement, and that is the preferred form.
Older Fortran compilers use different statements to identify different input units, and in
general, different computer laboratories have preferred input units for standard jobs. A
listing of possibilities is shown in Table 3-1. If the standard form of the READ statement
shown in Table 3-1 is available, then its use is preferred.

3-3. Format-Free Output Statements

The general procedures associated with output statements are much the same as those
presented in the previous sections on input statements. Again, there is a format-free and a
format approach.

Suppose that the three variables K, X, and Y are read into the computer as
indicated in the previous section, and an answer to a simple problem is calculated. It is
then desired to obtain from the computer both the value of this answer and the values of
K, X, and Y which were used to produce this answer. The format-free output statement
would be

PRINT, K, X,Y,ANS

The numerical values of these four variables in the output list will then be printed across a
page on the printer. Each value will be printed to full precision with blank spaces inserted
between values for clarity. Eight values are typically printed across an output page, but
this varies from one installation to another. Real numbers are normally printed in
exponential format with seven significant figures. Typical output for the above statement
might be

12 0.1623000 E 01 0.1000000 E - 01 0.4210000 E 02
When the PRINT statement has more output variables than may be printed on a single

line, output is continued on the following line.
The general form of the PRINT statement is

PRINT, variable list
There is also an output PUNCH statement which produces output on cards and has
the general form
PUNCH, variable list
It is also possible to produce explanatory messages in format-free output by

inserting the material within single quotation marks in the output variable list. For
example:

PRINT, ‘THE ANSWER IS’, ANS

would produce

THE ANSWER IS 0.4210000 E 02

This will be illustrated further.

50 Simple Fortran Programs

3-4. Formatted Output Statements

Using the earlier example, the formatted output approach would use the following two
statements:

WRITE (6,28)K,X,Y,ANS
28 FORMAT (1X,110,F10.2,E20.7,E20.5)

The WRITE statement is very similar to the READ statement. The WRITE statement
directs the computer to write the variables using unit number 6. The layout of the
variables will be given by FORMAT statement number 28, and the individual variables to
be written are K, X, Y, and ANS.

For line printer output, the output FORMAT statement has one slight difference from
the input FORMAT statement. The first column of an output list is used as a carriage
control indicator, and the carriage of the output printer (which will ultimately produce a
printed list of these variables) will be controlled by the character found in column 1. Here
an X-type format specification indicates that the first column is blank. The X-type field
specification is a convenient way to indicate blank spaces in the output list. The width of
the field specification for an X-type format is given in front of the X specification, and a
1X field specification makes the first column in the output list a blank. Having column 1
blank will produce an output list that is single spaced. It might also be noted that the
X-type format is not associated with any of the variables in the output variable list shown
in the WRITE statement.

The carriage control indicator does not apply to teletypes such as those used in
time-sharing systems, nor does it apply to card punches, magnetic tapes, etc.

The next field specification in the FORMAT list is the 110 specification associated
with the integer variable K, and the F10.2 field specification is for the real variable X.
The E20.7 is the exponential format specification associated with the real variable Y, and
the E20.5 field specification is for the output variable ANS. Since it is possible that the
size of the numerical value of the variable ANS is unknown, it is desirable to have it come
out in an exponential format to take care of extremely small or extremely large numbers.
The field specification E20.5 takes care of this and allows twenty columns with five
significant figures.

Summarizing these output statements, they indicate to the machine that it should
use output unit number 6 to list the four variables K, X, Y, and ANS according to the
output format given by statement 28. Statement 28 indicates that in the output record
the first column should be blank, columns 2-11 should contain the integer variable K,
columns 12-21 should contain the floating-point variable X with two places to the right
of the decimal, columns 22-41 should contain the real variable Y in exponential notation
with seven places to the right of the decimal and with the fraction to vary between 0.1
and 1.0, and columns 42-61 should contain the variable ANS in exponential format with
five places to the right of the decimal and with the fraction to vary between 0.1 and 1.0.

There are many alternate possibilities for output statements just as there are many
alternate forms for input statements, and alternate forms are shown in Table 3-2.

One additional comment about input and output listings might be appropriate. As
indicated earlier, there are more columns specified in many of the field specifications
than are necessary to contain the variable. For example, in the sample output listing it is
possible that the output variable X will require only four columns to contain the value of
the variable. If the variable X took on the value 8.10, then it could be held in four
columns and there would be six columns left over in the output field specification. In all
cases such as this the computer will right justify the output. This means that the
computer will take the output number and push it as far to the right as it can in the

3-4. Formatted Output Statements 51

Table 3-2. Formatted output statements

Qutput Unit Standard Form Alternate Form
Card punch, on-line PUNCH n,list
Printer, on-line PRINT n,list
Magnetic tape (for off-line
printing and punching) WRITE (j,n)list WRITE OUTPUT TAPE j,n,list
Paper tape PUNCH TAPE n,list
Console typewriter TYPE n,list

Note: j stands for an integer whose value specifies the output unit, n stands for the statement num-
ber of the FORMAT statement, and list stands for the output variables.

output field specification, i.e., all of the output blanks will be on the left-hand side of the
field. For the value of X above, columns 2-7 would be blank.

On input statements the computer does not control whether the data are right
justified or left justified; this is up to the programmer. He may use any spacing within his
given field width that he desires for his real variables. In the input READ statement the X
could be placed either extremely to the left, i.e., left justified, or it could be right
justified within the columns allotted. If the number of places to the right of the decimal in
the actual value of X given is different from that called for in the field specification, then
the format of the input variable itself will override the number of decimal places called
for in the FORMAT statement field specification.

In the case of integer variables and real variables using exponential format the
problem is more complicated, however, because the computer will recognize blank spaces
as zeros. For this reason it is necessary that all integer variables and all real variables using
exponential form must always be right-justified for input, or otherwise the computer will
inadvertently enter an input constant that is orders-of-magnitude larger than intended.
The basic format specifications discussed in this and the previous section are summarized
in Table 3-3.

Table 3-3. Format field specifications

General form of the FORMAT statement for numerical data is
n FORMAT (S, S, ... S))
where n stands for a statement number, and each §; is a format specification.

The following format specifications are available for single line input and output of
real and integer data and to skip a field on the input and output record.

Format External Internal Suggested Minimum
Code Representation Representation Output Field Width
Iw Integer, Fixed-point Number of significant
EXXXX number digits + 1

Fw.d Real number Floating-point Depends on number
without exponent, number size, at least d + 3
X .XXXX

Ew.d Real number Floating-point d + 7 for most
with exponent, number computers
tx.xxxEfxx

wX Skip field None Any

In the above, w stands for an unsigned integer constant which specifies the field width, d stands for
an unsigned integer constant which specifies the number of digits in the fractional part of the number,
and x stands for any decimal digit or a blank character which is interpreted as a zero.

52 Simple Fortran Programs

3-5. PAUSE, STOP, and END Statements

There are several statements available for program termination and/or interruption. This
termination and/or interruption may come during the compilation or during the execu-
tion of a program, and there are different statements available for these diff(f,rent
purposes. As described in Chapter 1, the first phase of running a Fortran program will be
the compilation of the program to produce an object program. There must be some way
for the Fortran compiler to recognize the end of the program that it is compiling. This is
true since a number of different programs may be stacked together and put into an input
unit for compilation. Unless there is some way for the compiler to recognize the end of
one program, it might try to compile all of these individual programs together as one large
program. The compiler recognizes the end of a program by an END statement. This
statement is not executable and does not itself produce any machine-language instruc-
tions. The END statement is the last statement in the list of the Fortran source program.
This does not imply that it is the last statement to be executed, but it does indicate that
there are no further statements in this particular program list. Saying this another way,
there must be only one END statement in a program, and it must be the very last
statement in the program listing (disregarding the fact that there may be data cards
following the program itself).

Once the Fortran program has been compiled and the object program is ready for
execution, there also must be a means to terminate and/or interrupt the execution of the
program. The PAUSE and STOP statements are provided for these purposes. One of the
most logical applications of a STOP statement is at the termination of the executable
statements in the program. This says that the execution of a particular program is
complete, and all of the instructions for this individual program have been executed, i.e.,
the machine has completed running the program. A STOP statement is sufficient for this
purpose. Normally the computer cannot be made to continue within the given program
after a STOP statement has been executed. In computers using a monitor the STOP
statement normally shifts control back to the monitor to start a new program job. Note
that the STOP statement is such that it stops the execution of the object program and can
only take effect while the object program is being executed. The STOP statement does
not cause termination of compilation.

It might be noted that in some Fortran compilers the END statement automatically
causes the Fortran compiler to generate a STOP statement at the end of the object deck.

There are many additional useful applications of the STOP statement. For example,
in many cases a program will direct the computer to read a set of input data and check all
of these data for consistency. If some of the data are inconsistent, then the programmer
might direct the computer to go to a STOP statement and not try to process the data. In
such an application a STOP statement would be contained within the body of the
program, and if it were ever executed, it would actually stop the running of the program
before it had completed the entire sequence of calculations called for by the program.
Note that this implies that the STOP statement will be compiled and will generate
machine-language instructions that will appear in the object deck.

One of the difficulties with the STOP statement, as indicated earlier, is that the
computer cannot conveniently be made to continue within the same program after the
STOP statement has been executed. The PAUSE statement allows the operator to
overcome this inconvenience and to restart the program. The PAUSE statement does, in
fact, stop the computer, but it does allow restarting possibilities. This is usually done by
pressing a button on the computer consale, and when this is done, the computer will
resume the execution of the object program beginning with the statement just after the

3-6. An Example Program 53

PAUSE statement. The PAUSE statement might be used to interrupt a program temporar-
ily in order to check intermediate results, to mount a new magnetic tape, or to take other
action.

There are many differences in computer centers as to their choice between the use
of STOP and PAUSE statements. Many large computer centers will try to avoid the
wasted (expensive) computer time that is consumed by encountering a STOP or PAUSE
statement, and they may actually modify the basic Fortran compilers so that these
statements are not acceptable. Large computer centers often have computers which are
run under the control of a monitor program as discussed in Chapter 1. The monitor
program normally does not provide for a STOP when a program reaches the normal
completion of its execution; it is more desirable for the computer to return control to the
monitor program. This is better than stopping execution completely. A convenient way
to provide for return of control from the individual program to the monitor’s control is
through the use of the CALL EXIT statement. The CALL EXIT statement has the effect
of simply returning the control of the computer to the monitor. Many compilers are set
up so that a STOP statement has the same effect as a CALL EXIT statement, and the
machine does not stop its operation. This point should be checked with any local
computer center before use is made of the STOP statement.

Summarizing, the END statement must be the last statement in the source program.
There may only be one END statement, and it is a signal to the compiler that it is the end
of the program being compiled into an object program. It is not a statement that is
executed during the running of the object program, and it does not generate any
machine-language instructions in the object program. The PAUSE and STOP statements
are statements that appear within the body of the program. There may be more than one
of them within any individual program; they do generate machine-language instructions
for the object program; and they may be executed during the course of running the
object program.

3-6. An Example Program

It is possible to write a sample Fortran program with the statements discussed so far. We
might want to evaluate the simple algebraic expression X + [Y|+ 267K + 146 as being
the numerical value of a desired answer. The program should read in the values of K, X,
and Y and calculate a numerical answer as indicated. If only one set of data were ever to
be executed, it would be possible to write the program with the values of K, X, and Y
appearing as constants within the program. Assuming it is desired to make this calculation
quite often, the program will be written to read in values of K, X, and Y. For sake of
illustration in this section, we will only read in one set of values of K, X, and Y and,
based on these, calculate one numerical answer. To take care of many additional sets of
input data, one or two additional statements will have to be added to our program at a
later time.

In order to write the program one additional statement might be discussed. This is
the comment card or comment line. This is an informational type of statement in a
Fortran program as discussed in an earlier chapter. The comment card or comment line
has 2 C in column 1 of the statement. When the Fortran compiler encounters a card
which has a C in column 1, it does not process the information contained on the card. In
other words, it is not treated as an executable statement or a statement to be compiled,
but if the computer provides a “listing” of the program (a printed version of the program
which may be produced during the compilation phase), then the comment cards will

54

—— C FOR COMMENT

Simple Fortran Programs

appear in the listing. The comment card makes the program more easily understandable
by the programmer; it does not provide information for the computer. Liberal use of
comment cards will make the program more easily understandable by the original
programmer if he should return to the program some period of time after its original
conception, and it also will make it easier for someone other than the original program-
mer to interpret the program. Comment cards are not necessary in short programs, but
they become almost mandatory in large and complex programs. In order to help the
reader get into the habit of using them, this entire book will make liberal use of comment
cards. Comment cards must not appear in input data.

The sample program is shown in Figure 3-1. Both format and format-free 1/0
statements are shown. Note that comment cards have been used to indicate the name of
the program, the input statements, the calculation statements, the output statements, and
the terminal statements. The input statements for the program are exactly as discussed in
Sections 3-1 and 3-2, the output statements are exactly as discussed in Sections 3-3 and
3-4, and the terminal statements are as discussed in Section 3-5. The calculation state-
ments are indicated and the calculation itself is broken up into three statements for
clarity. Both X and Y are real variables, while K is an integer variable; if they were all

GO FORTRAN STATEMENT
1 5/8)?7 10 15 20 5 30 35 40 45 50 55 40 65 70 72
C . EXAMPLE, PREGRAM FPR SECTI@N, 3.6, . , A . . .
C 1 1 1 1 1 . i 1 1 1 1 I 1
C NPUT STATEMENTS _ | N . . .) . . : \
C i 1 1 1 1 1 1 1 1 1 1 1 i
READ,(5,297)K, X, Y | 1 VOR{READ, K, X,Y, . . 1 .
297 FARMAT (I10,F10,2,E20.7) , S L 1 . 1 1 . 3
c i 1 1 1 1 1 1 . 1 1 1 1 1 1
C CALCULATI@N STATEMENTS | , .) L) f '
c 1 i 1 1 1 Lo e o _‘;l 1 =1 1 1 1 |
ANS1,= X¥%2 + ABS(Y), . e = \ . . .
ANS2= K % 267.t 146 <7 PRcradimonte | . , . .
ANS_= ANS1 + ANS2 DL N E——— | . . .
c 1 1 1 i 1] 1 1 1 1 1 1 1
c @UTPUT STATEMENTS | . : N ;) . N .)
C | L | ! L ;) ; 1 L 1 L L
WRITE(6,28)K.X. Y, ANS A i SORIPRINT K, X,Y,,ANS x n
28| [FORMAT (1X,T10,F10.2, E20.7.E20.5) o+ L,] l .] .
c 1 1 1 1 1 1 1 1 1 1 1 1 1
¢ TERMINAL STATEMENTS, | ,) .) . |) '
c 1 1] 1 1 1 1 1 1 1 1 i 1
ST@PI 1 1) i L. 1 1 1 1 1 1 |
END L ! 1 L I) P T S e | L
526, _16.8, , . .681E04, w—/ Dala card (dagocl \ l
] i ! 1 J 1 1 L['ﬂa%m"-l‘rr 1 L\I 1
1 i 1 1 1 1 1 W"dﬁﬂ]&m‘“’:ﬂ.wﬁ]
' 1 1 l 1) L\ Sorratppseach ward] 0

Figure 3-1. Coding form for sample program in Sec. 3-6 showing both for-
mat and format-free 1/0 statements

3-6. An Example Program 55

three contained within a given expression, a “mixed mode” would be present and the
program would not be executed on some compilers. In order to overcome this the calcula-
tion is done in three steps. An intermediate quantity, ANS], is calculated using the real
variables X and Y and taking advantage of the absolute value function. Another interme-
diate value, ANS2, is calculated by incorporating the integer constant 146 and the integer
variable K into a single expression. Note that the expression in the calculation of ANS2 is
carried out in integer arithmetic, and that when the number is stored, it is converted to a
real number. Both ANS1 and ANS2 are real variables, and they may be combined to
produce the numerical quantity ANS which is the purpose of the program. The Fortran
coding form is written for a keypunch operator to produce all of the cards for the entire
computer program, and a typical data card is added at the end of the form. Once this
complete set of cards has been prepared by a keypunch operator, the program is ready for
insertion into the computer for its actual compilation and execution.

To illustrate the point of mixed modes further the program listing shown in Figure
3-1 contains an intentional mixed mode in the expression for the calculation of ANS2.
The variable K is an integer variable, and the 267. is a real constant. Multiplying an
integer variable by a real constant will produce a mixed mode error in some compilers. {
Removal of this mixed mode can be accomplished by removing the decimal after 267.
When the program is run, the data shown will give the results (layout is for formated
output)

526 16.80 0.6810000E 04 0.14768E 06
The format-free output would appear as follows:

526 0.1680000 E 02 0.6810000 E 04 0.1476800 E 06

EXAMPLE 3-1

A small box of width w, height /4, and depth d contains a number » of identical
spheres of radius 7. It is desired to calculate the volume of the spheres themselves, the
volume of empty space left in the box when it contains the spheres, and the surface area
of the spheres. Set up a computer program to achieve these purposes. Consider that the
width, height, and depth are all contained on one data card in F10.2 formats and assume
that the number of spheres and the radius of these spheres are given on a second data
card. The number of spheres is an integer variable in IS format and the radius of the
spheres is given in F10.4 format. The volume of the spheres, the volume of empty space,
and the surface area of the spheres should be printed out in E20.7 format.

The program for making these calculations is given in detail in Figure 3-2. Note in
this program that each of the READ statements in the input section will cause an
individual card (or its equivalent) to be read into the computer. The first READ
statement will introduce the width, height, and depth variables, and the second READ
statement will read a second card containing the number and radius of the spheres. Note
that it will be disastrous if these data cards are reversed inadvertently by the person
running the program on the computer.

Note in the calculation of the variable VOLMI that the set of parentheses in this
arithmetic assignment is not absolutely necessary. Also note in this statement that the
value of 7 must be specified by the programmer, i.e., the computer does not know the

+In many present-day compilers this mixed mode is acceptable, but often it is wasteful of
machine time. In most current compilers the presence of the real constant in the expression will signal
the compiler to evaluate the entire expression in real arithmetic, i.e., convert all constants and variables
to real quantities and then perform the arithmetic operations. This mixed mode is inserted and
illustrated here to point out a potential programming problem for some compilers.

Simple Fortran Programs

56
—— C FOR COMMENT
'SL‘J‘M“BER”'E FORTRAN STATEMENT
i slels 10 15 20 25 30 35 40 gidS) e 39 . o (OB
C_ EXAMPLE, PRO6RAM F@R CALCULATING SPHERE AREA AND, VLUMES IN A B@X .
C o5 1 1 1 1 1 Ji 1 1 1 1 1 1
C REJAD IN, B@X DIMENSI®NS,, NUMBER AND RADIUS @F SPHERES , " 1
C 1 L i 1 1 1 1 i 1 1 1 1 S S
READ,(5.,10)W, H,D R = 1 : D :
10/ FARMAT (F10.2,F10.2,F10.2) OR READ, W,H,D, . . . s
READ(5,11)N,R | A 1 . READ,N,R | . . L :
11 FPRMAT(I5,F10.4) oS . 1 1 , ! .
C L I 1 1 1 1 1 L 1 . L L e
C CALCULATI@N @F VBLUME @F @NE SPHERE | . : i ; ; ;
C 1 1 | 1 1 1 1 i | i 1 1 1 L
VOLML = (4./3.) x 3.1416 % Rx*3 |)) . . :
C i 4. 1 1 1 1 1 1 i e L W 1 % |
C CAL|CULATI@N @F TOTAL SPHERE, VOLUME ———— T~ ! 1 1
C 1 1 1 1 1 o L2 fMJ_“’f.dl oﬂll/ = 1 1 1 1
XN =1 N b 1 i 1 1 1 I 1 lezo/ M i \1 1
TPTVBL = VPLL * XN, , A o o '
C 1 1 1 1) I / 1 1 i 'f’b it 1 } 1 1
C__ CALICULATIGN @F EMPTY_ VBLUME, .| AaTemenZ. | \
C | i 1 1 1 1 \A _,.»“-.-J\/ 1 1 1
BOXVOL = W x H % D | ; | ’ 1 1 i 1 + i
EMPVle = lBgXVgJ' » leTVGLl 1 | 1 1 1 1 1 1
C 1 i 1 1 i 1 1 i 1 1 1 1 1
C CALCULATI@N @F SURFACE, AREA, @F SPHERES ; i , ! i .
C 1 1 1 1 = 1 1 1 1 1 1 1 1
SUR = 3.1416 % (2.% R) xx2 % XN L)) l) N
C i i .| 1 1 L i 1 1 1 i 5 1 1
C _QUTIPUT @F ANSWER , : . n ; ; ; , ; n ,
c 1 1 1 1 L 1 1 1 W il 1 1 1 1
WRITE(6.,100)TOTVOL EMPVAL SUR, > OR ¢,k PRINT,T@TVEL,EMPV@L ,SUR
100 FORMAT(1X, 3E20.7) ' . J .U , ,) , ‘
STQPI i 1 1 1 1 1 i & 8 1 1 1 1
END | . .) .) L | : .) : ,
6., 6. . 6., , ,) , .) : .
5 1 3481 1 L 1 I 1 1 1 1 1 1 1
1 1 1 1 dl 1 1 1 1 n St 1 1
| 1 ! 1 1 1 it L 1 .| 1 L 1 1
[|

— = e

Figure 3-2. Coding form for Example 3-1

value of 7. The program also illustrates that raising a real variable to an integer constant
power is permissible. Also, to avoid a possible mixed mode problem in the calculation of
the total valume of the spheres, the number of spheres is converted to a real variable
before it is used in the arithmetic assignment statement for TOTVOL. An alternate way

to circumvent the problem of mixed modes in this calculation is to read in the number of
spheres as a real variable.

3-6. An Example Program 57

In the output FORMAT statement number 100 a new concept is introduced to save
programming time. As indicated in the statement of the problem, it is intended that all
three of the output variables be given in E20.7 format. Rather than write E20.7 three
separate times, it is possible to use a repetition number in front of the E. This indicates
the use of the field specification E20.7 three times.

In the ouput FORMAT statement number 100 the first column is left blank to
prevent any undesired spacing of the carriage on the output printer for the computing
system. In general, as indicated earlier, the contents of column 1 in an output line will
control the printer’s operation. The printer uses column 1 for carriage control, and thus
the contents of this column do not appear on the printed sheet. Generally speaking the
following printer actions are appropriate:

Contents of Column 1 Action of Printer
Blank Single space before printing
Zero Double space before printing
1 Skip to the top of a new page

before printing

The usage of these symbols to control carriage spacing on the output printer will be
illustrated further.

For the sample program the results are given below for input data in which the
width, depth, and height of the box are all given as 6 inches. It is further assumed that
there are five spheres, each of radius 0.348 inch. The results, reading from left to right,
are the total volume of all the spheres, the empty volume remaining in the box, and the
total surface area of all the spheres.

0.8826679E 00 0.2151173E 03 0.7609206E 01

EXAMPLE 3-2

A student goes into a laboratory and uses a refractometer to measure the refractive
index of a liquid solution. The refractometer has a scale which reads an arbitrary scale
factor instead of the refractive index. The manufacturer gives the following fourth-order
polynomial to convert the scale reading to refractive index:

1.276239 X 1072 X (scale)* - 2.812322 X 1077 X (scale)’
-2.0922072 X 1075 X (scale)® + 6.7203912 X 1073 X (scale) + 1.2034111

In addition to this, the student knows that the refractive index for this solution can be
used to indicate the composition of the solution, and he knows that the weight percent
content of volatile component of the mixture is also given by the following fourth-order
polynomial which expresses weight percent as a function of scale reading:

~1.0148081 X 1076 X (scale)* + 3.9809369 X 10™* X (scale)?
~2.1381599 X 10 2 X (scale)® - 2.7003377 X (scale) + 1.7767899 X 10?

It is desired to write a computer program to read in the refractometer scale reading and
convert it to the refractive index. It is further planned for the programmer to take the
scale reading and calculate the weight percent of the volatile component present in the
mixture. The scale reading can be read in F20.5 format, and the output variables should
be in F20.5 format.

The computer program necessary to carry out the indicated calculations is shown in
Figure 3-3 which uses comment cards (some of which are blank) to indicate the different
portions of the program and make it easier to follow the contents of the Fortran

Simple Fortran Programs

58
.,s*:;‘:a::’g FORTRAN STATEMENT 5 . N
5167 10 15 20 25 30 35 40 a8 50 5 & 1] —
C EX/AMPLE, PRPGRAM T@ CPNVERT REFRACT@METER SCALE READING | .
C 1 i 1 i i i 1 X i i L
C INPUT @F SCALE READING, : , 1 , , : ; .
C 1 1] 1 1 - 1 1 1 1 1
READ(5,1000)SCALE L 0RJ READ,,SCALE ,) : _
1000| |F@RMAT (F20.5) | J : : ; : : :
c . : _ _ , , 1 . . , : :
C CALCULATIPN @F REFRACTIVE INDEX , , . . . ; i
c : : : . . _ 1 . , : : . ‘
REFIND = (((1.276239E-09%SCALE-2.812322E-07) * SCALE-2.0922072E-05
1)) *x SCALE+6.7203912€-03) % SCALE + 1.2034111E-00
c i i 1 1l { g H t 1 I ! i}] 1
C_ CALICULATI@N @F WEIGHT PERCENT @F, VALATILE C@MPPNENT
PCT = (((-1.0148081E-06 » SCALE + 3.9809369E-04) x SCALE - 2.13815
1/99E-02) x SCALE - 2,.7003377E-00) x SCALE + 1.7767899E+02
C 1 1 I i] i 1 [i
C__QUTIPUT @F RESULTS, ; ; : i . i i i
C ! ! 1 4 1 Il 1 I I | i] i
WRITE (6,2000)SCALE,REFIND,PCT S OR{ PRINT,SCALE,REFIND,PCT
2000 [FBRMAT (1X,3F20,.5) . . o e | : :
STQPI 1 1 L i i 1 i i L 1 L
END ! 1 1 i I 1 !
32 2 370 .l 1 L i i ! 1 1 i i [} 1 1
i i 1 I i 1 | L
(o i b S — ==upeery e e e

Figure 3-3. Coding form for Example 3-2

statements themselves. Note the use of continuation cards in the arithmetic assignment
statements associated with the calculation of the refractive index and the weight percent-
age. In both cases the arithmetic assignment statements would have run past column 72
on the Fortran coding form, and continuation statements were necessary. It is good
programming practice to use a number in column 6 to indicate the number of the
continuation line rather than some arbitrary symbol. This is, however, a matter of
convenience and personal preference, since any symbol could have been used in column 6
to indicate that the card is a continuation card. In the output portion of the program a
repetition number in the output format statement is again employed.

The results of running this program for a refractometer scale reading of 32.370 are
shown below (for formated case):

32.37000 1.39089 80.25336

For format-free output:

0.3237000 E 02 0.1390890 E 01 0.8025336 E 02

3-7. Handling Program Decks 59

3-7. Handling Program Decks

The physical arrangement of programs and data is dependent on the computer and
monitor employed in a given center. The equipment associated with the computer and
individual preference of the local computer center are also important. Because of this it is
very difficult to generalize about the actual physical arrangement of programs and data,
but several example situations will be discussed. As an an example of how the operation
might be handled, consider a case in which a digital computer is used with an off-line
printer, i.e., a printer that is not physically connected to the computer. Also assume that
the installation is one in which all input to the computer is done primarily via punched
cards and output also is obtained primarily via punched cards. In such an installation the
compilation and execution of programs such as those illustrated in Examples 3-1 and 3-2
will be as follows. The coding form would be used to prepare a source program deck, and
the source program deck would be fed through the computer along with the compiler
program (and assembler program, if necessary) in order to produce an object program
deck and, if appropriate, information on errors made in the language of the source
program. This is illustrated in Figure 3-4. If source program language errors are encoun-
tered in the compilation of the program, the object program deck will not be one that is
suitable for execution. The error information is taken to a printer to produce a listing or a
hard copy of the information. As the object deck itself is in binary, it is not listed. (If too

Program
coding
form

A

Source
program
deck

(second input)

v ‘ ,
%foirrnspt”ienrpu p—— ~—— ————— To programmer's

) Computer card files
Return to <*———17

computer center's
card files \

Error Object
information program
deck

Printzr— " 1
-

Error
listing

Figure 3-4. Example of compilation (A one-pass compiler illustrated)

Simple Fortran Programs

many errors are present, an object deck may not be produced.) The common thing to do
at this stage if errors are present is to go back and make changes to individual cards in the
source program deck and recompile the source program deck. It is possible to go into the
object program deck and make corrections in it, but it requires a deep understanding of
absolute machine language on the part of the programmer. Consequently, except in the
rarest cases, the source deck is modified and recompiled to eliminate any source program
language errors, or bugs, that might have been encountered in the original compilation.
Once this phase of debugging is complete, the program is ready for execution.

In order to be executed, a program similar to those discussed in the previous
sections will require data cards in addition to the program itself. The data are prepared on
coding forms much like the Fortran program itself but with no restrictions on the use of
the various columns. These forms are converted into data cards by the keypunch
operator. The object program and the data cards are then fed into the computer. The
object deck will be introduced first, followed by the data cards. The results of the object
program’s execution on the specific data provided will produce answers in the form of an
answer deck which may be taken to an off-line printer to produce a printed list or hard
copy of the results obtained. This is shown schematically in Figure 3-5. In the execution
of the program it is possible that execution errors will be encountered and further source
program debugging will be necessary. (This is discussed further in Section 3-8.)

In Chapter 1 it was indicated that it may be desirable to have a load-and-go
compiler in which no output object deck is produced. An example of a load-and-go
compiler’s operation on a card-input and card-output computer system is shown in Figure
3-6. Note in Figure 3-6 that the compiler is entered first, followed by the source program

b (second input)

Object deck \ i
(first input) ———{« ~——~r———= To programmer’s
) Computer card files
Return to =
programmer's

card files or to
computer center's i
card files

Answer
deck

| g
Drinter —T0 programmer s
card files

Answer
list

Figure 3-5. Example of execution

3-1. Handling Program Decks 61

Program
coding
form

Source
Data
z:::?‘rom cards
{second inm‘ Ard input)
To programmer's card files *——--E, - t\- - To programmer's
Compiler (first input) —————— '\’0 IpUsEr card files
Return to *———f—~~

computer center's

card files
Answer
deck
\ '
== =—> To programmer s
Printer card files

Answer

Figure 3-6. Load-and-go compiler

and then by the data cards. There is no object deck produced; there are no intermediate
results produced; the answer cards are produced directly (assuming no program errors).
These answers are taken to an off-line printer for preparation of an answer list or hard
copy. The load-and-go compiler has the advantage of not requiring the time necessary to
punch out an object deck, although the object program is internally prepared and stored
in memory. The load-and-go compiler is simpler in operation and requires fewer steps in
handling information external to the computer’s memory. It has the obvious disadvantage
that the program must be recompiled every time it is to be executed, and the compilation
phase requires machine running time. If a program is to be used over and over again, then
the load-and-go compiler is not very efficient. Load-and-go compilers are very useful in
student programming laboratories where programs are normally run only once and where
there are very large numbers of relatively simple programs to be handled. Also, a student
may have several runs on the same program before it is bug-free.

Large computers operating under the control of a monitor system are more
complex than the previous examples. Typically these larger machines have magnetic tape
input and output because of the slow speed of the card-handling equipment. Programs
and data must have control cards associated with them to make certain that the monitor
understands when: the program is to be compiled, when it is to be executed, and which
input unit contains data for a program. [t is not desirable to discuss control cards further
because their use varies so widely from one computer to another. These control cards
typically carry the name of the programmer or the number of the job, the maximum

62

Simple Fortran Programs

amount of time the program is expected to run, and other types of similar information.
They also contain an indication as to the specific compiler that is necessary for the
program, which input units and output units are assigned for the program, etc. In some
installations some portion of this information is assigned by the monitor, and in other
cases they are dictated by the control cards directly.

3-8. Debugging the Source Program

It can happen to the best of us! The original program as prepared, punched, and compiled
on the computer is not properly written and errors exist in the program. These errors
must be removed or the computer will not provide an object deck that is acceptable for
actual execution. The purpose of this section is to give some insight into these errors. I

There are three different types of errors that might be present in a computer
program. There are source program language errors that prevent the compilation of the
program, and these must be removed before compilation can be successfully completed.
There are execution errors which will not be encountered until the actual execution of
the program. For example, some of the most common execution errors are due to the
programmer’s use of inadequate field specifications in FORMAT statements. All of these
execution errors must be removed before the computer will produce any complete
answers. Finally, there are errors in the logic and formulation of the program or of
individual statements by the programmer. These latter errors are the insidious ones that
appear when a programmer writes a program that is perfectly acceptable to the computer
and is a good program—except that it causes a computation to be made which is different
from the one intended by the programmer.§ The only way that these errors of intent can
be corrected is for the programmer to make a thorough check for consistency and
reasonableness in the answers that are produced by the computer. There may be some
kinds of internal checks in the program which the programmer may provide, but in
general, there must be a final and thorough review of some typical answers of the
program to see if the program is actually doing what the programmer intends.

Most compilers provide “error scans” in order to detect compilation and execution
errors, and they give an indication to the programmer as to the nature of the error and its
location in the program. In Section 3-6 the program given in Figure 3-1 contained a
mixed mode. In the actual running of this program by some compilers an error will be
detected and the actual execution of the program deleted. The compiler would indicate
an error of “mixed mode” in statement 297 + 2 (which refers to the second line past
statement number 297, not including comment cards). In many cases the compiler also
will assign a line number to every statement in the Fortran program and provide an
output listing of the source program with the associated line numbers and error messages
(referenced to the appropriate line). The completeness of an error scan on any given
computer depends on both the desires and operating procedures of the computer center,
the nature of the compiler, and the nature of the computer. It might be recognized that
the larger the error scan, the more memory its programming will require in the computer.

i Debugging can be greatly assisted if a Fortran compiler such as the WATFOR or WATFIV
compiler is used. (See Appendix F.)

§ The statement has been made that the ultimate computer is one that does what we want it to
do, not necessarily what we tell it to do.

3-8. Debugging the Source Program 63

Also, the larger the error scan, the more time it will take to check for errors. Generally
speaking, error scans are very complete in load-and-go type compilers such as WATFOR
or WATFIV which are usually used in student installations.

Sometimes an error made during compilation in one statement will produce a whole
series of apparent errors in subsequent statements. For example, the potential error
indicated in the example program of Section 3-6 was a mixed mode that could prevent
some compilers from calculating the variable ANS2. Subsequently to this, ANS2 appears
on the right-hand side of the statement which calculates ANS. Since the compiler has no
record of ANS?2 being defined (calculated), the compiler finds an error in the arithmetic
assignment statement for the calculation of ANS because ANS2 is not defined, and
therefore it is an undefined variable. This means that the compiler has no record of ANS
being defined, and therefore, in the WRITE statement at the end of the program, ANS is
not available for output. Thus an undefined variable is encountered in the output list. The
simple correction of the mixed mode in the calculation of ANS2 will remove all three of
these error indications.

For the exact error code for an individual computer, it will be necessary to contact
the computer center itself. (In some cases, manufacturer’s programming manuals contain
error codes.) These codes are normally prepared in the form of handouts for all users.

A number of general conclusions are possible concerning the debugging of compu-
ter programs and the accompanying usage of error messages. These rules are as follows:

1. Never assume that a program is completely correct even though it may be
accepted by the computer, completely compiled, and numerical results are achieved. It is
possible that logical errors are present.

2. The checking or debugging of a computer program is made much 51mp1er if
values of intermediate variables are available. This means that quite often in the writing of
a computer program there are extra WRITE statements to make these values available for
debugging. Once the program is satisfactorily running, these extra WRITE statements can
be removed and the program recompiled for routine use.

3. The tendency is to write a program on a “once-through” basis and present it
immediately for keypunching and running on the computer. The programmer should
resist this temptation and spend some time in making a careful check of his programs
before they are punched and run.

4. When attempting to debug a computer program, there is a big temptation to
assume that all aspects of a program are correct because it gives correct answers for an
individual set of data. Make certain when choosing data for trial runs of your program
that you select data which will execute every portion of your program.

5. When you are in the process of debugging a program, correct every error
encountered before you attempt to return it to the machine to have the program
recompiled. There is a temptation to make a single (or at least minimum) correction
before recompiling. Avoid this temptation and try to approach the computer with as
perfect a program as possible.

6. In writing your program make liberal use of comment cards, and for more
complex programs be certain that you have the flowchart complete before you attempt
to write any portion of the program. (Flowcharts will be discussed in more detail in
Section 4-1.) In other words, make every possible effort to make your program as easy to
interpret as possible, both for yourself and for others who may attempt to work with the
program. This time is well spent and will make it much simpler for the individual to
debug the program; it will result in a saving of both programmer and machine time.

64 Simple Fortran Programs

3-9. In Summary

This chapter has proposed to introduce simple input and output statements and the
termination and/or interruption statements that are necessary in the compilation and
execution of a program. All of these have been combined into some simple sample
programs. Finally, the arrangement of individual programs for execution has been
discussed briefly along with some error messages that may be encountered. Unfortu-
nately, many of the items discussed in this chapter are dependent on the individual
computer center and will vary from one installation to the next.

It is hoped that the reader has gained an insight into the structure of Fortran
programming. Rather than go on to more complex programs or get involved in the
complexities of large programs, it is to the advantage of the student programmer to write
many small programs rather than a few very large ones. The exercises associated with this
chapter are structured with this in mind.

EXERCISES

Where you use formatted I/O in these exercises you are to assume that all input real
variables are in F10.2 format, all input and output integer variables are in 110 format, and
all output real variables are to be E20.7 format.

3-1. Write the Fortran format-free and formatted input statements necessary to
read in the following:

(a) A,B,CAT, DO
(b) 1,J,KID

#(c) X,J,YES

(d) A, SIMPLE, GO, I

3-2. Write the Fortran format-free and formatted input statements necessary to
read in the following:

(a) IN, OUT, UP, DOWN
(b) R,S,TEE,J

(c) X, Y,ZEE, ALPHA

(d) CONST, OUKID, A, J

3-3. Prepare the Fortran format-free and formatted output statements necessary to
write out the variable lists of Exercise 3-1 plus a new variable ANS in each set. Assume
the variables given are input and ANS is the result of calculations performed on the input
variables.

3-4. Prepare the Fortran format-free and formatted output statements necessary to
write out the variable lists of Exercise 3-2 plus a new variable ANS in each set. Assume

the variables given are input and ANS is the result of calculations performed on the input
variables.

+3-6. Repeat Exercise 3-3, except provide an additional three blank spaces between
each output varable written. Do for formatted output only.

3-6. Repeat Exercise 3-4, except provide an additional three blank spaces between
each output variable written. Do for formatted output only.

Solutions to Exercises marked with a dagger 1 are given in Appendix E.

Exercises

65

Note: For the following exercises you are to read in the given variables, perform
the desired calculations, and write out the results as directed. Write complete Fortran
programs including a trial data card. Watch for inadvertent cases of mixed modes, and
where necessary change variable names inside the program to avoid mixed mode errors.
Your instructor will indicate whether to take a format-free or a formatted approach in
each case.

3-7. Read: x, y, z
) 2
Calculate: RESULT =2X—+ 16¥
Write: x, y, z, RESULT

1t3-8. Read: a, b, ¢, s
Calculate: t =a - cos(s) + b - sin (s) + ¢ - tan (s5)
Write: g, b, ¢, s, t
39. Read: x, y, z
Calculate: SOLN =x'7 +¢” +log z

BEST = (SOLN)®*
Write: x, v, z, SOLN, BEST

3-10. Read: TOP, XMID, BOT

N , , 1000.
Calculate: TM = (TOP)* + XMID + BOT
- 1000. .
LM =TOP + XMID + (BOT)

Write: TOP, XMID, BOT, TM, LM

3-11. Read: x, y,z
Calculate: @ =+/x%*- 6
b=|y*+1128|+¢
Write: x, v, z,a, b

13-12. Read: q, b,

1
Calculate: Al = ~ ltakc

d 2\ 1/3
a
l +(bC)
A2 =tan (A1) +log | Al |
Write: a, b, ¢, Al, A2

3-13. Read:x, y, i
Calculate: GO = x2 +y + (i)'/?
STOP = i +y + (x)'?
Write: x, y, i, GO, STOP

3-14. Read: A, i
Calculate: g = (R)'® + ()* +hi
j =i-cos(h)+hi+/hi
Write: A, 1, g, J

13-15. Read: x, y, z
Calculate: Al =x3 +x2 +x +1
A2=33+y2 +y+1+Al
A3=2z% +z2 +z+1+ A2

66 Simple Fortran Programs
Write: (Line 1) x, y, z
(Line 2) A1, A2, A3
3-16. Read:r, s, t,u, v
Calculate: HE =r +

st

u-v

4
SHE = cos () +(1i_‘}T

DEL = HE - SHE

Write: (Line 1) 7, s, ¢, u, v
(Line 2) HE, SHE
(Line 3) DEL

3-17. Read: (Card 1) x, y
(Card 2)a, b
(Card 3) i
Calculate: SOLN =ax + by +1i
Write: (Line 1) x, y, a, b
(Line 2) i, SOLN

13-18. Read: (Card 1), s
(Card 2) ¢, u
(Card 3) x, ¥
Calculate: UP = (r~ s) + (¢ - u) + (x - y)
DOWN=(r+s)+ (zt +u) +(x +y)
FIRST=r+1¢+x
SEC=s+u+y
FINAL = ¢U? ++/ DOWN + cos (FIRST)
Write: (Line 1) 7, s, ¢, u, x,
(Line 2) UP, DOWN, FIRST
(Line 3) SEC, skip thirty blank spaces, FINAL

3-19. Read: (Card 1) g, skip ten blank spaces, b
(Card 2) x, skip ten blank spaces, z
Calculate: ANS = ax + bz
DIF =a- b
SUM=x+a
Write: (Line 1) @, b, skip twenty-five blank spaces, x, z
(Line 2) SUM, skip twenty-five blank spaces, DIF
(Line 3) skip twenty-two blank spaces, ANS

3-20. Read: (Card 1)e (Card 4)d
(Card2) b (Card 5)e
(Card 3) ¢ (Card 6) f
Calculate: SUM = abcdef + abede + abed
SUMTAN = tan (a) + tan (b) + tan (c)
SUMCOS = cos (d) + cos (e) + cos (f)
MINOR = abc + ab + a
Write: (Line 1) SUM
(Line 2) skip twenty blank spaces, SUMTAN
(Line 3) skip forty blank spaces, SUMCOS
(Line 4) skip sixty blank spaces, MINOR

4

Transfer of Control

In the preceding chapter some simple Fortran programs were illustrated and developed,
and each of these has one aspect in common. Each operates on a more or less “once-
through” basis, and there are no loops or branches in the structure of the program’s logic.
Programs such as these are encountered, but usually programs take advantage of logical
decision-making possibilities in the computer itself. At times the programmer would like
to skip certain statements in the program under one set of conditions, or execute those
statements under another set of conditions. At times the programmer might go back to
the beginning of the program and read in new sets of data, transfer to the end of the
program and terminate its operation, or go to some intermediate point in the program
and begin a new series of calculations. The situations described above give rise to the need
for transfer of control statements, and the purpose of this chapter is to introduce this
type of statement and show its usage in Fortran programming. Before tackling this
problem, however, it is desirable to introduce the subject of flowcharts.

4-1. Flowcharts

With possibilities for branches and loops within the logical structure of a computer
program, it is increasingly difficult for the programmer to mentally account for all
possible loops and branches. The programs that have been illustrated previously in this
book have been simple, but with the introduction of transfer of control statements they
can be made so complex that it is impossible for the programmer to visualize all of the
logical decision loops with a purely mental memory process. Flowcharts provide an
answer to this problem.

The flowchart is a type of schematic diagram or road map which allows the
programmer to chart on paper the logical structure of his computer program. He may
indicate all the branches and loops and their interrelationships with one another. The

67

63 Transfer of Control

flowchart or block diagram provides a visual representation that not only is helpful to the
individual programmer, but also is a valuable part of the documentation of his program
that will allow someone else to interpret and use the program with a minimum of
difficulty.

Flowcharts indicate the flow of control between the various executable statements
that comprise the program. The flowchart is normally made up of a set of boxes or shapes
which are coded to indicate the nature of the operations involved.

Appendix D gives a complete list of the American Standard flowchart symbols, but
for the purposes of this chapter the following list is sufficient.

A rectangle is used to indicate a processing symbol (typically arithmetic
operations).

A diamond is used to indicate a decision, and the lines leaving the corners of
the diamond are labeled with the decision results that are associated with each path.

The parallelogram is used to indicate any basic input or output symbol. There
are, in addition, many special symbols for input-output operations.

1

() An oval is used to indicate either the beginning or the end of a program, i.e., a
START or terminal STOP.

A small circle is used to indicate a connection between two points in a
flowchart in situations where a connecting line between them would clutter the
basic flowchart.

O

Arrows are used to indicate the direction of flow through the flowchart.
] Every line should have an arrow on it; the length of the arrow is not important.

Any text or notes may be placed beside or in these symbols. It is especially helpful
to indicate numbers beside appropriate processing symbols to indicate the statement
number that will be associated with that particular operation in the Fortran program.

Throughout the remainder of this book, examples of flowcharts will illustrate their
usage.

It cannot be overemphasized to the beginning programmer that the flowchart
represents the first step in the formulation of the program. Many beginning students
participate in the foolish habit of first trying to write their program and subsequently
constructing a flowchart to illustrate the logic of the program. This is exactly the
opposite of the recommended route. It should be noted that beginning programmers
cannot anticipate everything. Hence it is not until they have drawn a flowchart and tried
to write the Fortran statements that they begin to find flaws in the flowchart.

4-2. Unconditional GO TO

The primary purpose of the unconditional GO TO statement (and every other transfer of
control statement) is to allow the programmer to shift the execution of the program to
some statement other than the one that would normally be executed in sequence. As has

4-2. Unconditional GO TO G3

been pointed out in earlier chapters, a digital computer will execute each statement in
sequence according to the list encountered. The general form of the unconditional
GO TO statement is

GOTOn

where 7 is the number of an executable statement somewhere else in the program, either
before or after the GO TO statement. When the GO TO statement is encountered, it
transfers the program to statement number n, and statement number n will be the next
statement executed in the program. After statement n has been executed, the statement
immediately following statement n will be executed unless statement 7 is a transfer of
control statement.

Every statement in Fortran programming may be classified as either executable or
nonexecutable, and statement # must be an executable statement. No transfer of control
statement may direct transfer to a nonexecutable statement. Nonexecutable statements
include some definition statements, certain specification statements, and the FORMAT
statement.

The statement number # illustrates quite vividly the only purpose which statement
numbers serve in a Fortran program. Statement numbers, as pointed out earlier, are
positive integer numbers of five digits or less, written in columns 1-5 of the Fortran
coding form, and punched in columns 1-5 of the input card or its equivalent. The
maximum value of the statement number varies, with some versions of Fortran allowing
up to 99999. The statement numbers in Fortran programs provide a cross reference,
allowing statements to refer to one another within the program. As indicated in earlier
examples, there is no necessary numerical sequence in Fortran statement numbers, and it
is not necessary that every statement be numbered. It is not permissible, however, for any
two statements to have the same number. _

The main use of the unconditional GO TO statement is to allow the programmer to
return execution from logical branches in which he has been operating to the main body
of the program. There might be several such side branches in the program, and each of
these normally will be terminated either by a STOP statement or by an unconditional
GO TO statement.

EXAMPLE 4-1

To illustrate the use of the unconditional GO TO statement, consider the problem
in which a rocket is fired from the earth, and telemetering equipment is used to send back
to the earth a large amount of data giving the horizontal and vertical velocity compon-
ents, v, and v, of the rocket’s speed as a function of 7, the time of flight. Consider these
data to be in units of seconds for time and meters per second for velocity components. A
large amount of these data would be received, and the velocity components could be used
to calculate the speed of v of the rocket at any moment ¢ as

v=vl+v

Write a computer program to read in a number of data cards containing the time of
measurement ¢ and the horizontal and vertical velocity components, v, and v,. Calculate
the rocket speed v. The output of the computer program should be the time-versus-speed
data for each of the sets of input data. Consider for the moment that there will be an

undertermined number of such sets of input data.
The flowchart for such a calculation might appear as shown in Figure 4-1 and the

program as given in Figure 4-2. The program is relatively straightforward except that in

70 Transfer of Control

(START)

30

READ T, VX,
and VY

SPEED=SQRT(VX %2 +VY%x2)

L

WRITE T, SPEED

Figure 4-1. Flowchart for Example 4-1 (calculation of rocket speed)

C FOR COMMENT

.""‘“‘“"ii FORTRAN STATEMENT
% !ld ‘ 4 10 15 20 25 30 . 35 40 S 45 50 = 5? = 80 - _65 = 70 _77
©. . LE.X]AMP_L_EI APBQ’G,RAM T8 CAL,CULATLUpCIKET VEL@CITY y o DI e
C B S 1 1 1 1 i P 1 1 1 1 1 1
¢ INPUT @F VERTICAL, AND HARIZPNTAL, VEL@CITY VS. TIME DATA | n |
c L 1 i i . i 1 A 1 L] i 1 1
30/ [READ(5.10)T VX, VY | ; , .) : :] : .
10| FARMAT{3F10.2), : L n n n : L L L L
EALCALCULAITIQN lﬂF THE RQCIKET SPEED |)) L L .])
C i 1 PP S | WP N 1 1 1 1 1 L 1 L
40| ISPEED = SQRT (VX x%2 + VY x%2) N s . . | e
¢ 1 1 1) L 1 1 1 1 It L L 1
C QUTIPUT @F SPEED VS TIME DATA . N . .)) : N
c i i i i 1 1 1 H A1 1 1 L
50| WRITE (6 ,20)T ,SPEED, . n n L | " N L)
20| FARMAT(1X, ,F10.2 10X,F10..2) . 0 f) n 0 . \
C " 1 1 i 1 1 i 1 1 A I 1
C UNCIONDITI@NAL TRANSFER @F CONTROL A n N " L l "
1 1 1 1 1 1 1 1 1 i 1 n . - 1
60 Ga T.@ 30 H i I 1 1 1 1 1 1 1
END 1 1 1 1 L 1 1 1 1 L 1 1 i
s 1; L ‘01 1 '011 1 1 1 i 1 1 1 1
1.0, e hee . 10.8, | |) L i ST 1 L
10.0, . 4.56, 147.8, i L N i i ! \ I
1 1 1 L I 1 i
1 1 L 1 1 1 1 1 1 1 " 1 1
M,L—J—\—f_"ﬁ_" ——— —_—————— —

Figure 4-2. Coding form for Example 4-1

4-3. Computed GO TO 71

output FORMAT statement 20 there is the provision to leave column 1 blank, to write
the time of the rocket speed data in F10.2 format, and then to provide for ten blank
spaces in the output line before writing the rocket’s speed in F10.2 format. After the
final output statement the program has an unconditional transfer of control statement,
GO TO 30, in which the execution of the program is referred back to statement number
30 and a new card is read into the machine, i.e., a new set of data introduced. This
program will continue to operate indefinitely as long as data cards are available.

When the last of the data cards has been read, the Fortran compiler will give an
execution error indicating that there is a last-card error (or something equivalent). This
execution error indicates that the computer has transferred control back to the READ
statement, the READ statement has tried to bring in a new set of data, and an input data
card is not available. From the viewpoint of the programmer this error is trivial, though it
is not pleasing from an esthetic viewpoint. There are many ways to circumvent this type
of error, and these will be discussed in detail in subsequent sections.

In order to illustrate the use of this program, some sample data are given and the
program is run to calculate representative speeds at times of .1, 1.0, and 10.0 seconds. In
an actual problem there would be much more data than these, but these values will be

sufficient to illustrate the results of using this program. Results for the running of these
data are shown below.

0.10 0.01 -
1.00 10.89
10.00 147.87
ERROR (STATEMENT 30+ 0 LINES)

The thing to note about this program is the permanent loop which has been formed
by the program: the computer continues to iterate through identical calculations because
of the transfer of control statement which appears as the last executable:statement in the
source program. This program will continue to run indefinitely as long as data cards are
available for processing. Note that if the GO TO statement had inadvertently been GO TO
40, a permanent loop would have been formed from which there is no exit. There would
have been an unending execution of statements 40, 50, and 60, and on each pass through
this loop there would have been resultant output (unchanging) associated with statement
50.

4-3. Computed GO TO

The unconditional GO TO statement causes a transfer of control to some other statement
in order to break the normal sequential execution of the program. A logical extension of
the unconditional GO TO is to allow transfer of control to multiple branches within the
program depending upon the value of an integer variable. The computed GO TO state-
ment extends the capability of Fortran by providing the possibilities of entering multiple
branches. The general form of the computed GO TO statement is

GO TO (n,,n2,.. ._,nk),l.

where ny, n,, ..., n, (integer numbers, not variables) stand for statement numbers of
executable statements elsewhere in the program. The 7 stands for a simple integer variable

72

Transfer of Control

which is written without a sign and must be in the range of values of 1 to k where k
indicates the number of statement numbers that are enclosed within parentheses.

The operation of the computed GO TO statement is as follows. When the computed
GO TO statement is executed, the value of the variable i may have any integer value
within the range indicated earlier. If the value of the variable i is j, then the next
statement to be executed in the Fortran program will be statement number #;. The
statement next in line for execution will be the statement following n; in the Fortran
statement list unless #; is a transfer of control statement.

As an example of the use of the computed GO TO statement, consider the
statement

GO TO (7, 127, 68, 41), LEAP

If the value of the integer variable LEAP is 2 when the computed GO TO statement is
executed, the next statement to be executed will be 127; if the value of the integer
variable is 4, the next statement to be executed will be statement number 41; etc. If the
value of the integer variable LEAP is greater than 4, i.e., if it is above the number of
statement numbers contained within the parentheses in the computed GO TO statement,
the result is unpredictable. (Some compilers execute the statement immediately following
the computed GO TO statement, and some cause termination of execution.)

EXAMPLE 4-2

As an example of the use of the computed GO TO, consider the problem in which a
number of college students are given identical tests and raw scores from these tests are
recorded in order to calculate percentile scores for comparing one student against
another. It is necessary to weigh the raw scores depending on whether the individual
student tested is a freshman, sophomore, junior, or senior. Assume that information on a
particular student, his college level and his test scores, are input data.

The flowchart for the computer program might appear as shown in Figure 4-3. The
Fortran program for this calculation is indicated in Figure 4-4. The variable LEVEL is fed
into the program along with other information. LEVEL is used as the integer variable to
determine which one of four possible branches might be used in the overall structure of
the program. If the value of LEVEL is I (indicating a freshman), the program transfers

(sTarT)
500§

! READ LEVEL, etc /

r
| 60 70 (100,200, 300, 400) LEVEL]

100‘ 200y 300 ‘400

Freshman Calculations | | Sophomore Calculations | | Junior Calculations | | Senior Calculations
and Qutput and Output and Output and Qutput

?

Figure 4-3. Flowchart for Example 4-2 (college test score evalua tion)

4-4, Arithmetic IF

73
F‘Aw- C FOR COMMENT
v |§ FORTRAN STATEMENT
! LR 0 [F] 20 25 20 35 40 43 50 55 0 65 207l
C _EXAMPLE, PROGRAM T@® SH@W USE, @F COMPUTED 6@ T@ IN SELECTING PRAGRAM
\ BRANCHES FPR CPALLEGE TEST SCPRE, EVALUATI@N g)) .
C 3
1 1 i i 1 i 1 i 1 1 1 1
C__INPUT @F "LEVEL" PLUS BTHER DATA INCLUDING SCPRES .)) nl
c] 1 i]] 1 i 1
500/ READ(5 ,1)LEVEL,, plus other variables : ;) ; \
1 FORMAT (IS, plus other field specifications |)))
©
A 1] A L] 1 1 1 1 1 1 1
C CPMPUTED 66 TP FBR BRANCH SELECTI@N N L \ . . L L
c 1 1 1 1 [i [} | 1 1 1 A 1
6 TP (100,200,300,400) ,LEVEL, ;) ,)) . n
c 3 i] 1] I A 1 1 1 1 1 1
C__BRAINCHES . n : n n . 0 : \) L L
c A 1 1 1 1 1 i el 1 1 1 1 1
100 [Calculations for freshmen and output of results , . 0 .
G¢ T.l0 500] 1 i L) 1 1 1 1 1 1 1
200{ | Calculations for sophomores .and output, of result,s 2 " 1
Gm Tlo 500: 1 1 1 L 1 Il 1 1 1 t 1
300/ | Cal,culat,ions for juniors and output of, results) .)
60 T|0 5001 I3 1 1 1 1 1 1 1 1 i 1
400 | Cal culations for seniors and output of resuylts | N N N
Gg TI¢ spol 1 1 1 1 1 1 1 1 .) 1
END L 1 1 1 1 1 i L 1 1 1 1 1
1 1 1l i 1 1 1 1 L 1 1 1 1
—l . e e e)

Figure 4-4. Coding form for Example 4-2

control to statement number 100 where all the necessary calculations are made on the
raw scores of the freshman student. Once these calculations have been completed and the
appropriate results have been printed out by the computer, control is transferred back to
the initial READ statement for a new set of data. The overall function of the program is
the same for sophomores, juniors, and seniors, and the particular branch involved depends
only on the value of LEVEL. There is a terminal END statement at the end of the
Fortran program list. It might also be noted that this program will suffer the same error
noted in Example 4-1 in which the compiler indicates an execution error when no more
data cards are available for processing.

4-4. Arithmetic IF

The unconditional GO TO statement discussed in Section 4-2 provides a means for
returning from a branch of the logical structure of a Fortran program while the computed
GO TO statement of Section 4-3 provides a means of entering one of many possible
branches in the logical structure. This section will discuss the arithmetic IF statement,
which is similar to the computed GO TO statement in that it provides a means of
branching to one of three possible branches. The IF statement and the computed GO TO

B.RANCH.ES

74

Transfer of Control

statement appear quite different, but their operation and usage are often closely related.
The IF statement provides a means of branching to one of three statement numbers
by means of examining an arithmetic expression called the argument of the IF statement.
It causes transfer to one of the possible branches depending on whether the expression
evaluated is less than zero, equal to zero, or greater than zero.
The arithmetic IF statement is of the following general form:

IF(e)ny, na, ns3

where e stands for any expression and n,, n, and n; are numbers (not variables) of
executable statements in the Fortran listing that may appear either before or after the IF
statement. If the value of the expression within the parentheses is negative, the next
statement to be executed will be #, ; if the value of the expression within the parentheses
is zero, the next statement to be executed is n, ; and if the value of the expression in the
parentheses is positive, the next statement to be executed is n3.

It is possible for any two of the statement numbers in the arithmetic IF statement
to be the same. (It is also possible for all three to be identical, but in such a case the r<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>