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Introduction 

Bruce M. Kapron 

It would be difficult to overestimate the impact that Steve Cook has had on the 

field of Theoretical Computer Science. In posing the question of the power of non
deterministic polynomial time computation in 1967 and formulating the theory of 
NP-completeness in 1971, he created a new focus that dominated research in the 

theory of computation during the latter half of the 20th century and continues 
to animate it to this day. Furthermore, since its introduction the theory of NP-
completeness has provided an organizing principle for understanding when and 

how problems are resistant to efficient computational solutions, with an impact 
that extends well beyond computer science. While this is the work that has made 

Steve Cook famous, it is part of a larger program of research that has had a signif
icant impact in a diverse range of fields from the foundations of mathematics to 

the architecture of parallel computers. 
Cook was awarded the ACM Turing Award in 1982. The citation for the award rec

ognized his achievement as follows: “For his advancement of our understanding 

of the complexity of computation in a significant and profound way. His seminal 
paper, ‘The Complexity of Theorem Proving Procedures,’ presented at the 1971 ACM 

SIGACT Symposium on the Theory of Computing, laid the foundations for the the
ory of NP-Completeness. The ensuing exploration of the boundaries and nature 

of NP-complete class of problems has been one of the most active and important 
research activities in computer science for the last decade.” 

This volume presents a selection of works by Cook, focusing on some of his 
most significant contributions without attempting to be comprehensive. Notwith
standing its title, there are many works and many areas that are beyond the scope of 
this volume, which primarily considers contributions made before his 1982 Turing 

Award. Thematically, the included works are centered around the complexity of 
computation and its connection to logical systems and models of computation. 
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Even given this restriction, there are significant areas, such as the complexity of 
multiplication, that have not been included; some of these are described below. 
The current volume contains a selection of papers and chapters focusing on 

Cook’s contributions to P, NP, and the theory of NP-completeness, the complexity 
of propositional proof systems, logical systems for bounded arithmetic, space-
bounded computation, and models for efficient parallel computation. His work 

in each of these areas is fundamental, and in a number of cases, such as the theory 
of NP-completeness, proof complexity, and bounded arithmetic, Cook is among 

the handful of researchers who could be considered founders of these fields. In 

other areas, such as space complexity, he has had a sustained impact through his 
results and techniques. 

Cook’s work on complexity, automata, and logic not only made important con
tributions to each of these individual subareas but it also brought them together 
in a way that provided a cornerstone in the foundation of computer science as it is 
understood today. The papers included in this volume and the chapters addressing 

their nature and significance not only survey a collection of contributions but they 
also give a picture of how Cook was able to create a unified theory of complexity. 

The chapter by Christos Papadimitriou focuses on Cook’s most famous and 

significant contribution, namely the 1971 STOC paper, “The complexity of theo
rem proving procedures” that introduced NP-completeness. While much has been 

written on the history and significance of NP-completeness, the current chapter 
provides a historically focused look at Cook’s paper, in particular locating it in the 

computer science research milieu of the late 1960s and early 1970s, including its 
influences and immediate impact. The chapter also points out the important link 

between Cook’s contemporary work on automata theory and his breakthrough 

in the theory of NP-completeness, with a particular focus on another 1971 con
tribution, “Characterizations of pushdown machines in terms of time-bounded 

computers.” 
Chapters by Sam Buss and Jan Krajíček address Cook’s work in the areas of 

bounded arithmetic and proof complexity. At the time of Cook’s papers, “Feasi
bly constructive proofs and the propositional calculus” and “On the lengths of 
proofs in the propositional calculus,” co-authored with Robert A. Reckhow, the idea 

of bringing complexity measures into logical systems had been barely explored. 
The research areas for which these papers were foundational are flourishing and 

play an important role in complexity theory and other areas of theoretical com
puter science. As the chapters make clear, these areas are complementary while 

also providing another approach to understanding basic questions about computa
tional complexity. They also provide a bridge between theoretical computer science 
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and traditional areas of interest in mathematical logic, including proof theory and 

model theory. 
In their chapter, Paul Beame and Pierre McKenzie present a comprehensive 

account of the development of the theory of parallel computation while docu
menting the crucial contributions made by Cook and his collaborators, including 

chapter authors Beame, McKenzie, and Nicholas Pippenger, which helped advance 

the field. Cook’s paper “Towards a complexity theory of synchronous parallel com
putation” gives a comprehensive overview of his view of the field as it stood at the 

start of the 1980s, and itself serves as a good introduction to the field. 
The theory of space-bounded computation and the power of polynomial time 

versus logarithmic space is considered in the chapter by Nicholas Pippenger. This 
is another area whose direction was impacted by Cook’s contributions to the def
inition of related complexity classes, development of techniques, and exploration 

of computational models. Two of Cook’s related papers, spanning his work in this 
area, are included in the volume. The first, “A time–space tradeoff for sorting on a 

general sequential model of computation,” co-authored with Alan Borodin, is an 

early contribution to the theory of branching programs. Many of Cook’s ideas in 

this area come together in the second paper “Pebbles and branching programs for 
tree evaluation,” co-authored by Cook with Pierre McKenzie, Dustin Wehr, Mark 

Braverman, and Rahul Santhanam. This paper is unique in the volume in that it 
was written much later than the others. The motivation behind its inclusion was 
to demonstrate the long-term nature of Cook’s work on basic problems, and how 

it may take many years to synthesize previous work in obtaining new results. 
The remaining contribution included in the volume is the oldest, and one that 

has not been previously published. This is “A survey of classes of primitive recur
sive functions,” which summarizes material presented in a course Cook taught at 
UC Berkeley in 1967. This is an important document that demonstrates the influ
ence of logic and automata theory on the development of complexity theory, and 

in particular provide a foundation for his future work on P and NP. 
As previously noted, the extent and significance of Cook’s work goes well 

beyond the contributions surveyed in this volume. The following selection of his 
works is still not comprehensive but will give some additional indication of the 

scope, variety, and impact of his research. 
Cook’s Ph.D. thesis, titled “On the Minimum Computation Time of Functions” 

[Coo66a] addresses the computational complexity of multiplication. This includes 
a presentation of Andrei Toom’s recursive multiplication algorithm [Too63], in a 

form now known as Toom–Cook multiplication. This algorithm is asymptotically 
subquadratic and is used in practice for the multiplication of large integers as well 
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as for polynomial multiplication over finite fields. In this latter form it has recently 
seen application in lattice-based post-quantum cryptography, in particular in the 

implementation of a NTRU-based key-encapsulation mechanism [NG21]. 
In the area of program verification, in particular Hoare logics, Cook has made 

two notable contributions. The first is his work with Derek Oppen [CO75, OC75], 
which is an early contribution to the problem of verifying programs that manipu
late data structures. A more significant work is Cook [Coo75a, Coo78b], which intro
duces the notion of relative completeness for Hoare logic. Hoare logic [Hoa69] is a 

formal system for proving partial correctness assertions about programs, over some 

programming formalism and formal language of assertions. In the general case of 
while-programs and assertions in the language of Peano arithmetic, Hoare logic is 
not complete—there are valid assertions that are not provable. Cook’s result essen
tially shows that this is due to the incompleteness of Peano arithmetic itself. If an 

oracle for the validity of arithmetic assertion statements were available, then Hoare 

logic is complete. This notion of relative completeness has become a central notion 

in the metatheory of Hoare logics and systems for program verification. 
Works on subrecursive characterizations of complexity classes, including char

acterizations by Robert W. Ritchie of linear space via bounded primitive recur
sion [Rit63] and by Alan Cobham of polynomial time via bounded recursion on 

notation [Cob65], were an early influence on Cook’s approach to computational 
complexity. With Stephen Bellantoni, he made his own fundamental contribu
tion to this approach [BC92a, BC92b], giving a characterization of polynomial time 

via a form of predicative recursion on notation. In contrast to earlier characteri
zations, the Bellantoni–Cook scheme does not rely on bounding the size of the 

result of recursions via functions from an already-defined class, instead using a 

syntactic restriction to ensure that a value defined by recursion cannot control 
a nested subrecursion. Along with a related characterization by Daniel Leivant 
[Lei93], this work was the starting point for the field of implicit computational com
plexity, which has provided a deeper understanding of the connections between 

computational complexity and subrecursion, as well as having applications to 

programming languages, proof theory, and the foundations of mathematics. 
Starting with the work of Alan Turing [Tur36], there has been a direction in 

the theory of computability that considers computation over nonfinitary domains, 
such as real numbers and function spaces, and even hierarchies of higher-order 
functions. Work on computational complexity over such domains is much less 
developed. With respect to higher-order functions, Sam Buss [Bus86b] proposed a 

notion of polynomial time higher-order functions, primarily as a technical device 

for interpreting systems of intuitionistic bounded arithmetic. This was followed 

by Cook’s work with Alasdair Urquhart [CU89, CU93] on the finite-type system 
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PV𝜔 , again with the goal of providing functional interpretations of constructive 

systems of bounded arithmetic. The problem of relating these higher-order for
malisms to computational models was taken up by Cook and Bruce M. Kapron in 

Cook and Kapron [CK89, CK90] and Kapron and Cook [KC91, KC96]. The latter of 
these works provided a characterization of Kurt Mehlhorn’s class [Meh74, Meh76] 
of type-two polynomial time functions via a natural generalization of polynomial-
time oracle Turing machines to function oracles. In collaboration with Paul Beame, 
Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi [BCE+95, BCE+98] and 

with Impagliazzo and Tomoyuki Yamakami [CIY97], he investigated the relation
ship between type-two polynomial time, generic oracles, and NP search problems 
using a complexity model originally proposed by Mike Townsend [Tow90]. Work 

on polynomial time for real-number computation was initiated by Ker-I Ko and 

Harvey Friedman [KF82] and has grown into a substantial area of study (see, e.g., 
[Ko91].) Using ideas from Kapron and Cook [KC96], Akitoshi Kawamura and Cook 

were able to extend models for real-number computation to model the complexity 
of real operators [KC10, KC12]. 

Steve Cook has been recognized as an innovator in computer science and math
ematics and a leader in his field, not only with the Turing Award but also the CRM– 

Fields–PIMS Prize (1999), awarded by Canada’s three mathematics institutes for 
research achievements in the mathematical sciences, the Association for Symbolic 
Logic’s Gödel Lecture (1999), the Royal Society of Canada’s John L. Synge Award 

(2006) for outstanding research in the mathematical sciences, the Czech Academy 
of Sciences Bernard Bolzano Medal for Merit in the Mathematical Sciences (2008), 
the Gerhard Herzberg Canada Gold Medal for Science and Engineering (2013), and 

also as a Fellow of the Royal Society of Canada, the Royal Society of London, and 

Association for Computing Machinery, and as a Member of the National Academy 
of Sciences (US), the American Academy of Arts and Sciences, and the Göttingen 

Academy of Sciences. Michelle Waitzman’s biography “Stephen Cook: Complex
ity’s humble hero,” gives us a picture of the man behind these achievements, one 

who is respected and valued by those who know him not only as a researcher but 
also as a collaborator, mentor, teacher, and friend. 

Note on formatting and typesetting As noted above, this volume is not intended 

to be a compendium or critical anthology of Cook’s works. Rather, the selected 

articles and supporting chapters are meant to provide an introduction to some of 
his fundamental contributions, especially those for which he received the Turing 

Award. The papers reproduced here (some of which were originally prepared on 

a typewriter) are typeset in a consistent style reflecting modern conventions. In 

particular, the citation style is consistent with that used in the rest of the volume, 
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and citations in those articles are linked to the volume bibliography, although for 
completeness the papers’ reference sections have been retained. 
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1Anyone who has known Stephen Cook, more commonly known as Steve, during 

his long and influential career has similar things to say about him. The words 
“smart,” “modest,” and “kind” are used in equal measure. Although he is most 
often associated with his groundbreaking work on NP-completeness—which has 
become so fundamental to the study of math and computer science that practi
cally all students encounter it in their undergraduate textbooks—he is far from a 

one-dimensional figure. He derives as much satisfaction from racing sailboats as 
he does from examining computability problems. He enjoys music as well as logic. 
He has been a dedicated father to two boys, now men, who in very different ways 
have followed in his footsteps. 

Steve has accomplished a great deal, and yet he seems to be utterly without ego. 
He is equally happy to give his time to undergraduate students with an interest 
in complexity theory and fellow Turing Award winners; to him, every person and 

every idea deserves a fair hearing. Perhaps this egalitarian approach to life, and his 
lack of focus on his own achievements, explains why so few people outside Steve’s 
areas of research are familiar with the true breadth of his accomplishments. 

Steve’s small, cramped office at the University of Toronto paints a portrait of his 
long career. The crowded bookshelves are bowed under the weight of the disser
tations his graduate students have produced and the proceedings of conferences 
where he has presented his work. A few of his many awards lie on top of piles of 
papers, not deemed important enough to hang on the wall. The furnishings have 

not changed much since he first occupied the space in the early 1980s, although 

the computer monitor has grown larger to accommodate aging eyes. From across 

Stephen Cook: 
Complexity’s Humble 
Hero 
Michelle Waitzman 
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the hall, long-time colleagues with similar, cramped offices poke their heads in to 

see about plans for lunch. 
Steve’s retirement from lecturing and the supervision of graduate students in 

2018 provided an opportunity for his colleagues and friends to put him in the spot
light for a moment—an awkward place for Steve. A symposium in his honor at 
the Fields Institute for Research in Mathematical Sciences in Toronto in 2019 drew 

speakers from around the world, and so many attendees that even the overflow 

room needed an overflow room. In Steve’s own words, he was “flabbergasted” by 
the lineup of speakers and the scope of the event. However, attendees and speakers 
alike were less surprised since it was clear that an event of that scale was needed 

in order to celebrate a career of such significance. 
Steve Cook is a role model, not only as a dedicated researcher but also as an 

example of mentorship, compassion, and humility. 

1.1 Growing Up: Buffalo and Cows 
Steve’s parents met at the University of Michigan, where his father earned a doc
torate in chemistry and his mother earned a master’s degree in history. She would 

later add a master’s degree in English. From the start, his was an academically 
inclined family. 

“It was assumed that we were all going to university, and they were keeping track 

and making sure we were doing OK. I was a little slow—I think my mother was a 

bit worried when I was in kindergarten, learning to read,” Steve recalls. 
Steve was born in December 1939, the second of four boys in the family. Their 

early days were spent in Buffalo, New York, near the Canadian border. His father 
worked for Linde and Union Carbide and also taught at the University of Buffalo. 
He would sometimes go to Kleinhans Music Hall to indulge in his love of classi
cal music. Steve’s mother, in addition to raising four sons, was heavily involved in 

the League of Women Voters in the area and taught English at a local community 
college. 

Although the family enjoyed everything that Buffalo had to offer (Steve’s favorite 

childhood event was the circus that came through every year), they decided to move 

out of town and live on a farm. Steve’s mother had grown up on a farm in Michigan, 
and his father liked the idea of a rural lifestyle. When Steve was 10 years old, the 

family moved to Clarence, New York, about 20 miles from Buffalo. They purchased 

a farm and leased most of it to a local farmer who grew crops and raised heifers. 
Steve says, “We had 68 acres, and at the back there was about 8 acres of woods. So 

it was really quite nice. In fact, I spent time making a trail in the woods that led to 

a special tree, a blossom tree.” 
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The family kept one Guernsey cow on their homestead, named Millie, and Steve 

was in charge of the afternoon milking. His brother Mike, the second youngest, 
was more of a morning person and took the 5 am milking shift. Steve recalls, “We 

bought a pasteurizer. She gave a couple of gallons of milk a day; it was way too much 

for us to use so we sold it to the neighbors.” 
The farm was a fun place for a bunch of young boys, and they could often be 

found playing in the barn. They would make tunnels through the bales of hay, and 

they even set up a little basketball court in the middle of the barn. As they grew 

a bit older, their interests evolved. At 14 years old, Steve was excited to have the 

opportunity to drive the farmer’s tractor down the road a couple of miles. 
Clarence was also home to someone who would have a profound influence on 

Steve—Wilson Greatbach, an electrical engineer. Steve told ACM during an inter
view, “Transistors were a very new thing then, and he designed a transistor circuit 
that went ‘bip, bip, bip,’ and eventually turned it into an artificial pacemaker for 
hearts, which was implantable. That had never been done before. Well, of course 

you couldn’t do it with vacuum tubes, obviously. So he eventually got ushered into 

the Inventors Hall of Fame in the United States for inventing this thing” [ACM16]. 
Steve went to Greatbach’s home workshop and would solder circuits together 

based on instructions and drawings from Greatbach. This got Steve interested in 

electronics, and he started to think about pursuing a career in that area. 
“Later, I got a summer job at the company he was working with,” Steve says, “so 

I was actually attached to designing circuits to some extent. The one I designed 

was to make a computer that divided large numbers. This was all in the 50s. It all 
sounds trivial now, and I don’t think it was ever used, but Wilson Greatbach was 
impressed, anyway, with what I was doing.” 

At school, Steve’s talent for math was already becoming clear. He did well in 

his math and science courses generally, but New York state has a set of standard
ized exams called the Regents Exams. Steve recalls that his score on the math exam 

was 100 percent. Despite his undeniable strength in that subject, Steve decided that 
electronics was more interesting, and he enrolled in engineering for his undergrad
uate studies. He never considered going anywhere other than his “family univer
sity,” the University of Michigan. Not only had his parents met there, Steve’s older 
brother had already followed in their footsteps and enrolled at the university when 

he finished high school. 

1.2 The Lure of Mathematics 
Steve’s path to a career in engineering started off according to plan. He moved to 

Michigan in 1957 and began working toward his engineering degree. But during his 
freshman year, he also had his first real exposure to computers. The university had 
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an IBM 650, the first commercially mass-produced computer. Coincidentally, it was 
created and manufactured in upstate New York, not too far from where Steve had 

grown up. The 650 was marketed as a “magnetic drum data processing machine,” 
and it was known as the workhorse of early computing. 

Steve took a computing course taught by Bernard Galler for one hour per week 

during his second semester. He learned to program the machine using the univer
sity’s own programming language—Michigan Algorithmic Decoder, or MAD. Even 

at that early stage, he was using his access to computing power to test out math
ematical proofs. “I wrote a program to test Goldbach’s conjecture, which was that 
every even integer greater than two is the sum of two primes. So I tested it up to 

some large number and it turned out to be verified,” Steve says. This idea that com
puters could be used to test proofs would stay with Steve and influence his graduate 

work. 
In addition to his early computing experience, Steve immediately started 

to develop his talent for mathematics. His first calculus professor, Nicholas 
Kazarinoff, took notice of Steve’s impressive level of understanding and started 

giving him extra problems to work on that were more advanced than the usual 
course work. Professor Kazarinoff also encouraged him to take more challenging 

math courses and work at an accelerated pace. In the second semester of his first 
year, Steve was enrolled in a third-year algebra course. While it may have seemed 

obvious to Professor Kazarinoff where Steve’s real talents lay, Steve was still think
ing of a career in engineering, not math. In an interview with the Babbage Institute 

he said, “I was good in mathematics in high school, but I didn’t know any math
ematicians. I didn’t really know what mathematicians did” [CBI02]. This unclear 
path to a career in mathematics steered Steve toward engineering, but fortunately 
the emerging field of computer science would provide a way for his interests to be 

combined into a rewarding career. 
During his summers as an undergraduate student, Steve found jobs that used 

his computer and engineering-related experience. One summer, he worked for 
Cornell Aeronautical Laboratory (now called Calspan), which was near Buffalo. 
Steve used a Bendix G-15 computer there, he says, “which had 400 vacuum tubes 
and was about the size of a refrigerator. I did a little bit of programming, and every 
once in a while a tube would burn out and the computer would stop, so I learned 

how to take an oscilloscope and find out where the bad tube was and replace it.” 
The laboratory was working at the time on a computer guidance system to help 

fighter jets land on aircraft carriers. It was a project with little room for error. Dur
ing the testing, Steve felt that the pilots were very hesitant to trust a computer over 
their own training and instincts. Computer navigation was so new at the time that 
it was hard to blame them for their reluctance. 
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That job wasn’t the only one where Steve worked on military projects. He 

also held a summer job with Autonetics, a company that did avionics work for 
the US military. Steve worked on a program to test their guidance system for 
intercontinental ballistic missiles. For that, he required confidential government 
clearance. 

For a while, a career in military engineering was emerging as a possibility 
for Steve. But despite his interest and skill on the engineering side of comput
ing, Steve’s fascination with math continued to nudge him in a more academic 
direction. After two-and-a-half years as an engineering student, he switched to a 

mathematics major and ended up graduating with a math degree. 
Steve’s next challenge was making a decision about graduate studies. It was a 

given that Steve would pursue a graduate degree in math. He says, “My parents had 

graduate degrees, so there was no question about that. I think I was already think
ing about an academic position.” The only decision to be made was where to apply. 
Staying at the University of Michigan was an option, but Steve was attracted to 

some of the better-known math departments at top universities like Berkeley, MIT, 
and Harvard. In 1961, Steve moved to Massachusetts and began working toward his 
master’s degree at Harvard. 

Harvard introduced Steve to new influences and new possibilities—not all of 
them academic. It was at Harvard that Steve first tried his hand at sailing, which 

would become one of his great loves. But sailing on the Charles River wasn’t quite 

what Steve was looking for, so after a couple of outings with the university’s sailing 

club he put his nautical activities on hold and concentrated on his studies. 
Harvard was not just an Ivy League school with a strong mathematics depart

ment, it was also one of the first American universities to be involved in computer 
science, beginning as early as the 1940s. Harvard launched a master’s program 

in computer science in 1950, which was the first in the country. In 1962, just as 
Steve was completing his master’s degree, the Harvard Computation Center was 
launched. So although he’d chosen to study mathematics, Steve found himself 
in exactly the right place at the right time to be at the forefront of the growth of 
computer science in American academia. 

Steve’s master’s degree in math consisted of coursework, and he took some 

courses from an applied physics professor, Hao Wang. “I took a course from him 

because it involved computation,” Steve says, “and that’s how I became hooked.” 
Professor Wang was a logician and had a strong interest in computers. He’d worked 

for the IBM Watson Research Laboratory before coming to Harvard, and he had 

an interest in using computers to prove theorems. Steve found that idea intrigu
ing too. “It was really clear that logic and computation were very interesting and 

intriguing subjects,” Steve says. It was these shared interests with his professor 
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that drew Steve toward computer science as a possible field of research. In 1962, 
Hao Wang became Steve’s advisor for his doctorate. 

Another Harvard alumnus had a hand in steering Steve toward his eventual 
area of interest. Alan Cobham had been a doctoral student at Harvard before Steve 

arrived, although he’d left to work for IBM after completing his thesis without actu
ally receiving his Ph.D. In a paper, Cobham posed the question: in what way is 
multiplication harder than addition? The question had a profound influence on 

Steve. In the early 1960s, computational complexity was just beginning to emerge 

as an area of study. “I got in there early!” Steve says. “In my thesis I proved theo
rems, so in that sense it was mathematics even though nobody in the math depart
ment did that.” In fact, Steve’s thesis focused on the computational complexity of 
multiplication, so it was directly inspired by Cobham’s work. 

Steve was drawn to complexity theory because it was just beginning to evolve. 
Compared with other areas of mathematics, which had been studied for centuries, 
it was a new world with much to be discovered. Steve told the authors of Out of Their 
Minds, “Before real computers existed, you couldn’t execute algorithms except by 
hand. The process was so tedious that the question of complexity was less interest
ing. Now that we had these powerful machines to help us and they seemed like an 

enormously powerful tool—thousands of operations per second—it was very natu
ral to ask, just what sorts of problems could you really solve? … Obviously there are 

problems that are solvable in principle by algorithms but not in practice, because 

the sun burns out before you solve them. So, it’s just a very natural question to ask 

about the inherent difficulty of problems” [SL95]. 
In addition to completing his thesis, Steve had to jump over other hurdles to 

earn his Ph.D. at Harvard. “The math department had these exams that the stu
dents had to take. In order to continue towards a Ph.D. after your second year, you 

had to pass this exam—and a fair number of people failed,” Steve recalls. “I was ner
vous because I knew people who had failed. So I remember about a week before, 
I just intensely studied the material for 12 hours a day and then took a sleeping 

pill at night. I was waiting for the answer to appear in my mailbox. I thought I did 

OK, but I wasn’t sure. I did pass—that was a relief.” Was there any real chance that 
Steve, who would become an internationally respected mathematician, was at risk 

of failing the exam? It seems unlikely, but his reluctance to assume that he would 

easily pass is typical of Steve’s humble nature. 
Steve received his Ph.D. in 1966 and took a short break over the summer after 

graduation. He took the opportunity to have a European adventure and not do any 
work. He was to meet his youngest brother, Phil, in London to travel together. But 
Phil did not appear as planned. Instead, he sent the tent that the two had been 

planning to share, and Steve ended up traveling through England on his own for 
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the summer. He made his way through the country mainly by hitchhiking and stay
ing at bed-and-breakfasts. It served as a relaxing interval between life as a graduate 

student and the beginning of Steve’s academic career. 

1.3 From Smooth Sailing to Rough Waters 
The University of California, Berkeley was a lively place in the late 1960s, to say 
the least. It had become the epicenter of the student-led free speech movement, 
with its famous sit-ins, protests, and occasional confrontations with law enforce
ment. It was not unheard of for campus events at Berkeley to end with tear gas 
being thrown into the crowd. This was the environment in which a quiet, under
stated young assistant professor from upstate New York, Steve Cook, joined the 

math department and began his prestigious academic career. The university was 
just launching a new computer science department, but Steve was not a part of that. 
If he had been, his entire career might have been happily spent in sunny California 

rather than snowy Canada. But things don’t always go to plan, and Steve would 

make the necessary adjustments to keep the wind in his sails. 
Admittedly, academia was not the only thing on Steve’s mind when he decided 

to join the faculty at Berkeley. “It had a reputation as a good place to meet a wife,” 
Steve says. “Also, I knew San Francisco Bay was there, and although I had not sailed 

much, I liked the idea of sailing. I joined the sailing club in January of my first 
year—and this is Berkeley so it was actually warm in January, and not much wind, 
so it was a good time to learn to sail. It was a student sailing club, but they let faculty 
join. And they gave sailing lessons, so I learned to sail.” 

As it happened, Steve’s two extracurricular motivations for moving to Berkeley 
came together rather serendipitously. Steve met a young woman named Linda, who 

was the secretary of the University of California Yacht Club. He’d spotted her at a 

club meeting and thought she was attractive, but he didn’t get a chance to talk to 

her there. They met later, at a sailing club party on a boat, and spoke for the first 
time. She was an undergraduate student in philosophy and Spanish at Berkeley. 
Steve was immediately smitten and soon the two started dating. Steve had such a 

youthful appearance that at first she didn’t believe he was not a student. The 28
year-old looked so young that he had trouble buying beer. He eventually grew a 

beard to help him look his age, and kept it for many years. 
Steve’s interest in sailing strengthened as he participated in club races in San 

Francisco Bay, and he began to recruit his own students from the university to crew 

for his boat. It was a practice he would continue after he moved to Toronto. 
Steve also had the opportunity to go on some longer trips, including sailing to 

Hawaii over Christmas break one year. “One of the grad students at the club lived 

in Hawaii and he was an expert sailor. He got a contract to deliver a brand new 
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41-foot sailboat from Los Angeles to Hawaii and he needed a crew. He tried vari
ous people out, and we went out and it happened to be a windy day and I actually 
got seasick. But he decided to take me, and at first he chose Linda, too, but the 

owner said ‘no women and no booze.’ So Linda didn’t get to go, but we did have 

some booze.” They sailed for 17 days in open ocean, the longest trip Steve has ever 
undertaken. It gave him some good training in navigation. “This was before all of 
the electronic navigation—you used a sextant and the sun. And when we knew we 

were approaching the islands of Hawaii, it was pitch dark and the wind was behind 

us and we were tearing along. So that was a bit nerve wracking; we hadn’t seen any
thing or anybody, we were just trusting that our sextant didn’t lie to us. And then 

the dawn came and it was foggy, but when the fog cleared, five miles off to the left 
was the island.” They arrived just in time for New Year’s Eve, and one of the crew 

used a ham radio to let everyone back in California, including an anxious Linda, 
know that they had arrived safely. 

Steve and Linda turned out to be a good match, despite their very different areas 
of study and personalities. Drawn together by their shared interest in sailing, they 
ended up marrying two years after they met and have been together since. The cou
ple have two sons, Gordon, born in 1978, and James, born in 1985. James says, “Their 
personalities really complement each other.” He remembers his mother playing 

practical jokes on Steve, like pretending that their car had been stolen. “It’s the 

kind of thing my dad would never do, play some joke like that on my mom. He’s 
serious and doesn’t joke that much, and my mom is a little more fun.” The two 

are a good balance for one another. The academic pressure that marked Steve’s 
childhood was not a big part of their sons’ upbringing. Steve provided the boys 
with challenges in both academic and athletic areas, and they rose to meet those 

challenges in their own ways. But parenthood was years away and the last thing on 

Steve’s mind as he settled into his new life as an assistant professor in 1966. 
Steve’s position at Berkeley was unusual. He spent half his time as part of the 

math department, and half with the “computing center.” It was an on-campus 
computing facility, but it was separate from the university’s new computer science 

department. The computing center was part of the College of Letters and Science, 
while the computer science department was part of the College of Engineering. It 
was an odd situation brought about by a piecemeal approach to accommodating 

the new and emerging field of computers into existing faculties. This unusual state 

of affairs would end up being problematic for Steve. 
Steve was responsible for supervising graduate students almost immediately. 

His first student turned out to be an exceptional one: Walter Savitch. Walter’s work 

for his dissertation at Berkeley led to his discovery of “Savitch’s theorem,” which 

would eventually be included in most textbooks on complexity theory. It was at 
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Berkeley that Steve’s open and respectful style of supervision began to take shape. 
At the time, he was not much older than the students he was supervising (and prob
ably looked younger than many of them), so perhaps it seemed natural to him to 

treat them like peers rather than students. This approach continued throughout 
his career, making him a sought-after supervisor for students with an interest in 

complexity theory and logic. 
Steve was not a prolific publisher during his time at Berkeley. He has been 

known throughout his career for publishing fewer papers than most researchers, 
but the papers that he did publish ended up helping to define and influence the 

field of complexity theory from that point forward. Although his ideas were not 
yet fully formed at Berkeley, Steve’s research there laid the groundwork for his 
impressive career. 

In 1967, just a year after receiving his PhD, Steve prepared some course notes at 
Berkeley that he later distributed to some colleagues. Bruce M. Kapron, who was a 

doctoral student of Steve’s in the 1980s, was asked to interview Steve on behalf of 
the ACM in 2016. When they met for that interview, Steve showed him “some notes 
from a course that he taught at UC Berkeley in the January term of 1967. I was quite 

surprised to see that in these notes there was a fully worked out formulation of the 

classes that we now call P and NP. He also directly posed the question of whether P 

is equal to NP, with the comment that it would probably be a difficult problem to 

solve. People typically think of Steve’s contribution to the P versus NP problem as 
starting with his 1971 NP-completeness paper, but from these notes it is clear that 
he had formulated the problem long before that. My feeling is that this was the 

first complete statement of the problem as we understand it today.” When Bruce 

realized the significance of the notes, he transcribed them for digital upload and 

made them publicly available for the first time. Otherwise, this historical informa
tion may have been completely lost, and the origins of the P versus NP problem left 
to speculation. 

Steve’s early papers caught the attention of faculty members in the new com
puter science department at Berkeley, including future Turing Award winners Dick 

Karp and William “Velvel” Kahan. Steve also began to present his research at con
ferences, which introduced more people in the theoretical computer science field 

to his ideas. 
Steve also attended some of the seminars and lectures by professors in the com

puter science department because he was interested in the work they were doing. 
Dick Karp remembers Steve attending his seminars. “I remember a couple of times 
when I gave a talk and he asked a sharp, clarifying question—very helpful. He was 
always very gracious, gentlemanly, low-key—but obviously very smart.” 
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Unfortunately, the budding field of complexity theory was not well understood 

by Steve’s peers in the math faculty and, more importantly, by his employers. 
According to Dick Karp, “The problem was that computational complexity looked 

pretty foreign to the people in the math department, so he didn’t have advocates— 

or enough advocates.” After four years at Berkeley, he was considered by the tenure 

committee, and they decided not to offer Steve a tenured position. Steve told the 

Babbage Institute, “My natural colleagues tended to be in computer science depart
ments and I think that made a big difference. My field may have been a little too 

new to be accepted in mathematics” [CBI02]. 
Velvel Kahan, who had joined the computer science faculty at Berkeley in 1969 

after leaving the University of Toronto, recalled the situation during an interview 

at the Heidelberg Laureate Forum. “My office was in the same building as the math 

department, and I would pass Steve’s office and I would hear how he was treating 

students. I came to the conclusion that I should visit the math chairman at that 
time, Addison, and told him, ‘You know, you have a gem here, but he doesn’t blow 

his own horn. But I’ve heard what he says and how he says it, and we really should 

keep this guy.’ And Addison said, ‘Well, it’s too bad you weren’t here last Septem
ber, because that’s when we decided not to give him tenure.’ Steve was working in 

what you could call discrete math, on some rather important problems. But other 
members of the math department didn’t appreciate the importance of those prob
lems. But more than that, they didn’t appreciate the guy’s talent—particularly his 
talent for dealing with students” [HLF18]. 

Behind the scenes, several members of the computer science faculty were lob
bying their dean to offer a position in their department to Steve. Dick Karp, Mike 

Harrison, Elwyn Berlekamp, and Velvel Kahan all tried to explain what a valuable 

addition Steve would be to the department. Velvel Kahan says, “We tried to go to 

the dean and say we need a position for this guy or we’re going to lose him. And 

the dean said the budget committee is not going to grant this guy a tenured posi
tion if so prestigious a department as mathematics has denied him tenure. We 

could protest until we were blue in the face, but it didn’t do any good” [HLF18]. In 

an article on the Berkeley website recounting the history of the computer science 

department on the occasion of its 30th anniversary, Dick Karp said about Steve, “It 
is to our everlasting shame that we were unable to persuade the math department 
to give him tenure” [Kar19]. 

There was a chance that the computer science department would reconsider 
and offer him a position if Steve stayed on in his untenured position for another 
year. However, Steve thought that it was too risky to spend another year in an uncer
tain position and instead decided that it would be best to look for a job elsewhere 

and secure his future. 
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Leaving Berkeley was a great disappointment to Steve. Even during discussions 
about it in interviews years later, it is clear that the rejection was hurtful at that 
early stage of his career, and it left him a bit cynical about the bureaucratic side of 
academia. He had also settled into the California lifestyle and was enjoying sailing 

with his wife, who’d lived in Berkeley since she was a toddler. To Linda, the idea 

of leaving California was almost unthinkable. But, Steve says, “to be fair, when I 
proposed to her, I told her I might not get tenure. So she was forewarned.” Steve 

took it all in stride. Dick Karp says, “I remember being very impressed by the fact 
that he didn’t cry out about the injustice of it all or make a fuss. He just found a 

place where he wanted to be.” 
What Steve didn’t know at the time was that his computer science colleagues 

were also busy trying to find him a good place to be. In fact, it was a phone call from 

Velvel Kahan that steered the direction of Steve’s career. Velvel says, “I phoned the 

chairman of the computer science department at the University of Toronto, which 

I had just left. He was an old friend, Tom Hull. And I said, ‘Tom, we’re about to 

make a terrible mistake from which you can profit.’” He encouraged Tom to recruit 
Steve for the University of Toronto’s growing computer science department, which 

already had a strong reputation. The department was founded by three senior 
members, physicist Kelly Gottlieb, who’d been involved in computer science since 

the end of the Second World War, Tom Hull, and Pat Hume. They would be the 

first three chairs of the department as well. In addition, the department included 

graph theorist Derek Corneil and complexity theorist Allan Borodin, both of whom 

would remain at U of T throughout Steve’s career, and the three of them would be 

cornerstones of the theory group’s enduring reputation as one of the best in the 

world. 
Toronto was not somewhere that Steve had thought of moving, though. He was 

busy interviewing at other universities, including Princeton, Yale, and the Univer
sity of Washington in Seattle, when Tom Hull called his home in California. Tom 

had to persuade Linda to tell him where he could contact Steve. His persistence 

paid off. 
Allan Borodin recalls Tom’s initial inquiries in 1970, following up on Velvel 

Kahan’s phone call. “Tom was out aggressively recruiting people. When I was here, 
in that first year, he asked me if I knew Steve and I said I knew his work. I studied 

his PhD thesis in the first summer of my graduate work, and that got me very inter
ested in complexity theory and fundamental questions about computations. I was 
very influenced by Steve’s early work.” 

Steve says, “Tom was a very good recruiter. He was very polished and showed 

me around Toronto and pointed out that there is a lake there [for sailing] and that 
part was a feature! The department was up and coming.” 
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After his initial interview, Steve was invited back for a second visit along with 

Linda. Allan says, “at that time it wasn’t heard of that you brought back a candi
date and his spouse to see the city, to convince them to come. It was rather unique, 
I think. So he had Steve and Linda back, and found out what their interests were 

and showed them everything. They showed him what sailing could be like here. 
You’re really selling to a couple, you’re not just selling to one person. You’re selling 

the department, the university, the city, the country—you’re selling everything.” 
Convincing Steve to come to Toronto involved more than selling the city or uni

versity. Allan Borodin believes that Tom Hull was a successful recruiter because he 

made people feel like they were valued. “People often are very impressed when 

you genuinely feel people really want you. I’m sure he was getting other offers, 
but I think this offer probably came across as being very genuine.” Steve did get 
other offers, including one from Yale, but he decided to take a chance and move to 

Toronto. 

1.4 Growing Roots, Making Waves 
Steve’s initial appointment at the University of Toronto was split between the math 

and computer science departments, similar to his position at Berkeley, and he 

taught courses on both subjects. But after a year, Steve made the switch to working 

full time in the computer science department. This move eliminated the possibility 
of repeating the disappointment he’d gone through at Berkeley, and he was offered 

tenure very early on. Finally, Steve had the security he’d been hoping for. The com
puter science department had just expanded to include an undergraduate program 

around the time that Steve arrived in 1970. 
Allan Borodin, who arrived a year before Steve and eventually became the 

department’s fourth chair, recalls the atmosphere that they all worked to build. 
“We tried to make very careful appointments, and once a person gets here we want 
them to really enjoy being here—we want them to want to stay and we want them to 

succeed. It was a remarkably supportive environment. In the early days, Tom Hull 
had us over for dinner once a month. It wasn’t just that he did a great job recruiting, 
he did a great job of making you want to stay. What I always say when I’m trying to 

recruit someone is ‘your success is my success,’ and that is an attitude I inherited 

from Tom and all of the senior people here.” 
That unique environment and approach continued for many years. Toniann 

Pitassi was a doctoral student supervised by Steve in the late 1980s, and she eventu
ally returned to Toronto to take up a faculty position with the theory group. She says 
that the family-like atmosphere is truly special there, and that’s why she returned 

to join the faculty. “They just created this amazing environment of cooperation. 
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Everybody was interested in each other’s research and working together on prob
lems and thinking and sharing. I’ve been to many places, and I came to realize that 
the situation in Toronto in the theory group was really exceptional and unique and 

I might not find it anywhere else.” 
Silvio Micali, who would later be the co-winner of a Turing Award for his work 

in cryptography, spent a year at the University of Toronto as a postdoc in 1982. He 

was immediately struck by the level of interaction among the faculty, and the stu
dents, in the department. It was an approach that had been developing since the 

late 1960s when the department was formed. Silvio did his undergraduate degree in 

Italy, where students generally don’t live on campus, but he strongly preferred the 

North American system because it creates an atmosphere of collaboration. He says, 
“In Europe you go to classes and then you go home. In the American system it really 
works because there’s true immersion. In Toronto, the immersion also extended 

to faculty. Yes, everybody went back home, but we had communal activities and 

research ideas were tossed around. It was as close to full immersion as it could be 

for faculty members. It was an unusually friendly group. It really set a standard for 
me, how a group of colleagues should be interacting. We had personal dinners, 
communal lunches, and activities together.” 

It was a great place for a young professor like Steve, and Linda also became a 

fixture on the university’s campus. She worked at the registrar’s office until the late 

1980s. It became clear that Toronto was going to be their long-term home as they 
settled into their new lives and became friends with their colleagues. 

Steve started supervising graduate students once again and became a popular 
lecturer as well. Allan Borodin says, “Steve, early on, was getting rave reviews as an 

undergraduate lecturer. He’s a careful lecturer, and very informative.” 
Toniann Pitassi remembers his lectures similarly. “He’s very understated but 

extremely clear, and he says things very succinctly and is always accurate. He taught 
this one course, and I teach it now, a course in logic and computability. And he 

developed his own set of lecture notes for it, and he was famous for that course— 

both because it was only him that ever taught it and because it was his lecture 

notes. Everybody knew that it was one of the hardest courses, but also one of the 

best courses, the most enlightening.” 
In addition to his own lectures, Steve took an interest in what other professors 

were teaching and often attended seminars and lectures by his colleagues, like he 

had at Berkeley. When Silvio Micali was in Toronto for his postdoc, he was work
ing on zero-knowledge proofs, which would become very important for modern 

cryptography applications. “I was very surprised that Steve came every single day 
and took notes and attended lectures,” he says. “So I felt it was a testament to the 

man that it was not only a question of discussions in his office once or twice, but 
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actually he really wanted to understand things. But the best that I got from him 

was to have him in the audience. I really thought his questions were targeted, and 

always very enlightening.” 
In fact, Steve was so interested in Silvio’s area of research that he worked 

on some of the assignments that Silvio gave his students. Silvio says, “I gave 

homework—essentially the topic was zero-knowledge, but at the time there was 
not a fully distilled definition. So I gave a very vague definition for the homework 

and later on Steve invited me to discuss it because, he said, ‘I have no idea how to 

go about solving this exercise that you gave.’ So if I think something is obvious, and 

Steve doesn’t think it’s obvious, maybe it’s not obvious! All of a sudden I realized 

I really need to figure out (a) there was a new definition of a proof to be distilled, 
and (b) I have to be formal about it. Essentially, he made me realize how significant 
this advance was.” 

Silvio worked extensively on this topic with another professor in Toronto’s the
ory group, Charlie Rackoff, but Steve’s outside perspective provided valuable guid
ance on how to present the concept to the computer science community. “Steve 

helped me figure out that there’s something big here, waking up the sleeping giant 
that I was trying to start a new direction. And, with Charlie, we really formalized 

and defined it properly.” This type of collaboration and support was typical of the 

department and helped to propel their research, and careers, forward. 
Steve was not the only faculty member who attended other professors’ lec

tures. Many of the faculty members also attended Steve’s courses and participated 

actively. Bruce M. Kapron says, “I remember attending one course that Steve taught 
with Russell Impagliazzo—it was a fairly advanced course on logic and its connec
tions with complexity theory. This was a very advanced topics course, so it was 
right on the edge between teaching a course and just sort of having a seminar that 
would lead immediately into talking about research problems. All the grad stu
dents would be there, but often the other theory faculty would attend the courses 
as well. So you’d have Charlie [Rackoff] and Al [Borodin] and maybe Faith [Ellen] 
sitting up there in the front row, and they’d be carrying things on at a high level. In a 

way it was kind of intimidating when you first get there to be in these courses where 

the brightest ‘students’ are up at the front, and they’re the other faculty members!” 
As the study of theoretical computer science grew, sharing new ideas at con

ferences became an important aspect of academic life. Steve has been presenting 

papers in the ACM SIGACT (later called STOC, or Symposium on Theory of Com
puting) conferences since they began in 1969. He had no notion that the paper he 

submitted in 1971 for the third annual conference, “The complexity of theorem 

proving procedures,” would earn him a place in computer science history and a 

number of prestigious awards. 
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His paper discussed the concept of NP-completeness, but Steve admits that it 
was actually not in the original draft he submitted to the conference committee, 
and history could have taken a very different turn if that draft had endured. “What 
I sent to the committee to decide whether they’re going to let me present at the 

conference, that did not have NP-completeness. But by the time I published I had 

thought of this idea; so that got put in the actual paper. I was one of the people who 

invented the notion of NP-completeness, but I didn’t have that when I submitted 

the paper.” 
Thankfully, the version Steve presented at the conference did include NP-

completeness, but it was far from obvious that this was the key element in his 
paper. Allan Borodin admits that the significance of Steve’s result was not imme
diately clear to him. “Steve told me that he was submitting this result to the STOC 

1971 conference, his NP-completeness result. It seemed like a nice result, but he 

had other things in the paper, he was talking about proof complexity, and I wasn’t 
much of a logician. I was on that [STOC] program committee, and a lot of people 

didn’t quite understand the significance of that paper.” 
Dick Karp remembers that it was something he had to discover within the text. 

“It was a funny situation, because this gem of a result of the completeness of SAT 

was buried in a not very evident part of the paper. There was a lot of other stuff in 

there. It leaped out at me immediately because I was familiar with some of these 

other problems, and I was immediately convinced that there were many problems, 
if not most, that could stand in for SAT in terms of being complete.” 

In fact, had Dick Karp not been immediately interested in pursuing Steve’s 
result and determining which other problems were NP-complete, the paper might 
have had much less impact on the field of complexity theory. Steve was not the sort 
of person to go around bragging about the impressive work he’d done, and it was 
fortunate that others brought attention to it. The next year, Dick published a paper 
showing that he’d found many more problems that were NP-complete. Steve says, 
“Dick Karp saw what I had done, the notion that certain problems are NP-complete, 
and what he did was find—I think I had 3 examples [in my paper], and I think he 

had 20 and showed that this was really important.” 
Allan Borodin remembers how the notion of NP-completeness soon became an 

important topic in the complexity theory world. “It caught on so quickly because 

of Dick Karp, who at this point in time was a full professor at Berkeley and much 

better known. He followed up on Steve’s work and between those two papers it was 
just—it started to spread like wildfire. In that period of time, in the 1970s, every con
ference was featuring more and more NP-completeness results, along with people 

trying to prove that P does not equal NP. Not successfully of course.” 
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The growing popularity of Steve’s paper affected the atmosphere at the univer
sity and in the department, according to Allan Borodin. “The dynamics changed 

because all of a sudden we had a star in our department. People knew already how 

profound it was. There was a big textbook written by Garey and Johnson, I think in 

1979, just about NP-completeness, a whole book on NP-complete problems.” That 
textbook, Computers and Intractability: A Guide to the Theory of NP-Completeness, 
contains more than 300 NP-complete problems and continues to interest students 
more than 40 years later. 

The students at the university were also attracted by the idea that one of their 
professors had “discovered” the very thing they were learning about. According 

to Allan, “at some point in time, all the students, every undergraduate in math 

and computer science knows about NP-completeness. So when you’re taking a 

course from Steve, you’re taking a course from the expert. ‘The guy.’ People really 
appreciate that they’re in a class with him.” 

Jim Hoover was an undergraduate student at the University of Alberta in the 

mid-1970s who would later be supervised by Steve at U of T. He remembers learn
ing about Steve’s work in one of his undergraduate courses and how it helped to 

build the reputation of the strong theory department at the University of Toronto. 
“I took a graduate course on computability theory. About one-third of the course 

was on complexity theory, NP-completeness, and so on. So Cook’s theorem was a 

topic. Everyone I talked to said that if you want to study theory, Toronto was one of 
the best places in the world.” 

The question of whether P is equal to NP has long been associated with Steve’s 
work and has challenged mathematicians and computer scientists for almost 50 

years. It is such a difficult problem that the Clay Mathematics Institute at Cam
bridge made it one of their “Millennium Prize” problems, which is a list of the 

most important open problems in mathematics. Each of the seven problems on 

the list is attached to a $1 million prize for anyone who finds a solution. 
Although it’s certainly nice to have his work featured in such a high-stakes con

test, Steve says there is a downside to having a million-dollar prize available over an 

ever-growing number of years. “The effect of that is to get inundated with messages 
from people who claim they’ve solved it, which is sort of tiresome, so I’m kind of 
nasty about that. About half of them have ‘proved’ that P equals NP and half have 

done it the other way—and recently one person claimed he did both!” It’s unclear 
what Steve’s version of being “nasty” entails, but it likely involves a polite response 

explaining that their solution is not correct. He also recalls one person who “had a 

program for solving the ‘Mine Sweeper’ problem, which is NP-complete. He didn’t 
know what to do with it and he didn’t want to tell me the algorithm because he was 
afraid I would steal it and take the million-dollar award” [CBI02]. 
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The other high-profile result of Steve’s work in NP-completeness was his ACM 

AM Turing Award, which he won in 1982. It was still quite early in his career, a little 

more than a decade after he’d become a tenured professor, which is a strange time 

to achieve something that is considered the pinnacle of one’s profession. Some of 
Steve’s more senior peers, including Dick Karp and Velvel Kahan, would receive 

their own Turing Awards after Steve, later in the 1980s. For the computer science 

department at the University of Toronto, it was quite a coup. 
Allan Borodin says, “Everybody was really excited because everybody knows 

the importance of the Turing Award—everybody in computer science. (And now 

lately everybody outside of computer science.) It was clear anyway, but that makes 
it much more official or documented, that this is a profound result and that he 

deserves so much credit for it.” 
Outside the computer science department, however, the enormity of Steve’s 

achievement was not well understood. “When I heard about the Turing Award, 
I called up the person [at the university] who I thought was in charge of promoting 

these things,” Allan continues, “and I’m babbling on rapidly, I’m so excited about 
this. I knew how much it meant—not just to Steve but to the department and the 

university, and in fact, to the country. For a long time, Steve was the only Turing 

Award winner in Canada. Now we have Geoff Hinton [a University of Toronto pro
fessor who was a co-winner in 2018]. The importance of this to everybody, I thought, 
was pretty clear. And she stopped me and said, ‘How much is the award worth?’ 
Well, the award in 1982 was worth $2,000, I think. And she said, ‘Sorry, I only handle 

awards of $10,000 or more, I’ll give you somebody else to talk to.’ I said, ‘You don’t 
get it, this is the Nobel prize of computer science,’ but she said, ‘I’m sorry, this 
is what I do.’” There would be no such difficulty now since the award is currently 
worth an inarguably significant $1 million. 

Steve himself was typically understated about the award. “I think people were 

happy. It really helped the department, to be honest, because now there’s a Turing 

Award winner. The Turing Award wasn’t as big a deal then as it is now—now you get 
$1 million and I think I got $1,000 and a nice silver platter. But it was enormously 
helpful to get it,” he says. Nobody seems sure whether the award was $1,000 or 
$2,000 at the time because the significance of the win didn’t come from the money 
but from the prestige associated with the award. 

Thankfully, not everyone at the university was reluctant to celebrate Steve’s 
success. There was a party in the computer science department that was attended 

by the university’s president and other key people. There was also a more personal 
event at Allan Borodin’s home, where Steve and his peers, and even some students, 
gathered to celebrate. This happened to take place while Silvio Micali was at the 
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University of Toronto, and he remembers the event having a familial feel, which 

reflected the close ties between everyone in the department. 
Silvio recalls that when the award was announced, Steve didn’t feel quite right 

about claiming the spotlight for himself. He was uncomfortable taking full credit 
for the influence of NP-completeness without an equal acknowledgment of Dick 

Karp’s role in bringing the breadth of NP-complete problems to the attention 

of the research community. Silvio says, “He mentioned that he felt that a better 
outcome would have been if he and Dick got the award together. He really felt 
strongly about Dick’s contribution, too.” Dick Karp would not have to wait long 

for his own Turning Award. He was named the winner in 1985 for his wide-ranging 

accomplishments, including his contributions to the theory of NP-completeness. 
Allan Borodin says that Steve’s humble approach to his research and his stu

dents was unaffected by the award and the fuss surrounding it. “I don’t think 

it impacted his personality one bit. He is remarkably unassuming and modest. 
I think he wanted to continue to work on the problem and related problems in 

complexity theory. I don’t think he ever thought this is the crowning achievement 
of his career.” 

1.5 The Quiet Infiuencer 
Steve appreciated the recognition he received as a Turing Award winner, but in real
ity it changed very little for him on a personal level. His first son, Gordon, was just 
four years old in 1982. His second son, James, was born in 1985. They were a pri
ority in Steve’s life, and his status as an award-winning researcher was not more 

important than his role as a father. 
Even though he was working hard at the university, he made sure to get home 

and spend quality time with the family, eating dinner together and helping to put 
the young boys to bed. James remembers his father reading stories about sailing 

to him at bedtime, from a series of books called Swallows and Amazons, by Arthur 
Ransome. Steve’s earlier years on a farm also made him partial to reading books 
to his boys by Laura Ingalls Wilder, best known for her Little House on the Prairie 
stories. 

The family went sailing on their boat around Lake Ontario and took active vaca
tions where they would go climbing in the mountains. They would also visit Steve’s 
family in New York state so that the boys could spend time with their grandparents. 

Steve shared with his sons his love of mathematics, computer science, and sail
ing. Gordon was particularly keen on sailing, and he started competing in races 
at an early age. His passion for the sport had the family attending regattas on a 

regular basis as Gordon was growing up. He reached an elite level and represented 
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Canada in the “Optimist Worlds” competition on two occasions. After complet
ing an engineering degree, he focused on sailing once again and competed in the 

Olympic Games in 2008 in Beijing, returning in 2012 in London, which made him 

the only sailor to represent Canada twice in the 49er class. 
James also sailed, but he followed more closely in his father’s academic foot

steps. Having a parent in a computer science department made James an early 
example of a “digital native.” They had a personal computer in the house in the 

1980s, at a time when few parents were well-versed in computers—especially in 

programming. In fact, James remembers learning the alphabet on the computer 
keyboard as a preschooler. Lessons in creating simple programs followed soon 

after. 
“I got started with really basic things when I was seven and a half or something,” 

James says. “At some point we were writing a program together to translate English 

words into ‘pig Latin.’ We messed it up in that we’d forgotten to put in something 

for deciding when the program would stop. You were supposed to type in ‘stop’ for 
it to stop—except that, the way we’d done it, you had to type something that would 

turn into ‘stop’ in pig Latin, and ‘stop’ isn’t a word in pig Latin, so it was impossi
ble. But the code was kind of buggy, so he managed to type in a word that would 

turn into ‘stop’ and end the program.” 
Steve had felt a certain pressure from his own family to excel academically when 

he was growing up. A higher education, including graduate studies, was expected 

of Steve and his three brothers. But Steve and Linda made a point of not having 

unrealistic expectations that their sons should succeed at any cost, either in sailing 

or in academics. James says, “I think my parents were pretty careful about trying 

not to pressure me and my brother. In hindsight, I think they were pretty happy, 
especially my dad, that I went through college and grad school and everything.” 

In fact, James ended up studying computer science at the University of Toronto, 
and even took a couple of his father’s courses. He confirms that the calm, careful 
Steve Cook that students saw in the classroom was the same person he saw at home. 
After completing his undergraduate degree, James then went on to graduate school 
in the very department that Steve hadn’t managed to join as faculty—the computer 
science department at UC Berkeley. But rather than pursue an academic career like 

his father, James went into the industry workforce, landing a job at Google. 
Steve, meanwhile, continued his role at the University of Toronto. Things 

returned to the normal routine soon after he had received the Turing Award. In 

fact, Steve’s career has remained remarkably focused; for more than 50 years, he 

has explored a set of fundamental topics that continue to fascinate him. He says, 
“There are just two directions I go. One is theory of computation, which always is 
trying to prove that problems can’t be solved easily, which is always interesting. And 
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there’s the related problem of mathematical logic, and there the interest is theorem 

proving. So the question is how easy is it to prove something: Are there methods of 
finding proofs automatically? Proofs are easily recognized, but the problem is how 

easy is it to find it, and how long is the proof. These questions are all related.” 
One of Steve’s former doctoral students, Bruce M. Kapron, says “Steve was pretty 

driven by deciding for himself what was interesting and continuing to pursue that, 
rather than being influenced by trends and what was currently considered to be 

important or ‘hot.’” He explains that Steve’s work builds on “the foundations of 
mathematics that happened in the early to mid-20th century—there was this explo
sion of work with Church and Turing and Kleene and those people. In some ways 
it’s a continuation of the kind of foundational questions that those people were 

asking, but with the added idea that there’s a cost to computation. This funda
mental work thought about what’s computable in principle, without any concern 

about resources. But Steve was always very interested in the cost of computation. 
What does this mean for logic? How do we address this using logical tools? Or 
tools that come out of computation theory? He’s sort of the modern descendant 
of those people who were doing that early work on the nature of computation and 

the foundations of mathematics.” 
Toniann Pitassi has seen firsthand that Steve’s focus is firmly on his research, 

not his notoriety or the progression of his career. She says, “The driving force 

behind him is his research, and the research questions. Even now, he’s still pas
sionate about the questions. So he doesn’t let his reputation get in the way of that. 
He doesn’t promote himself, he doesn’t get worried about whether he gets a grant 
or whether people cited him. Most people want to make sure their career is going 

well and that they’re getting credit for things. When they give a talk, they’ll make 

sure that they cite themselves, and I’ve never seen him do that at all.” 
According to Allan Borodin, this extends to whether his name even appears on 

papers that he contributed to. He says, “Steve definitely wanted the rest of us to suc
ceed also—it was never about him making sure he was getting his credit. I had an 

early result, an influential result, where Steve really improved my result and made 

it much more attractive. And he said no, no, no, I don’t want my name on it. I think 

having somebody like Steve in the department, with no pretentions, makes it very 
hard for anyone else to have pretentions.” 

Steve’s work did get noticed within the theoretical computer science commu
nity, even without self-promotion. In addition to the Turing Award, Steve has accu
mulated a number of impressive honors. In 1999, he was awarded the CRM-Fields 
Prize (now the CRM–Fields–PIMS Prize), which is the highest honor for mathe
matics research in Canada. Bruce M. Kapron thinks that receiving that prize was 
particularly special to Steve. He says, “I think what Steve did appreciate was getting 
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recognition, not just from the computer science world, but from the mathematical 
world.” The award may have provided a form of validation—or vindication—after 
the Berkeley mathematics department had let him go all those years before. 

Steve’s prizes sometimes benefited more than just his own career. For instance, 
in 2012 he was awarded the Gerhard Herzberg Canada Gold Medal for Science 

and Engineering, which comes with a research budget of $1 million, distributed 

over a five-year period. The research budget is shared within the department, so 

Steve’s colleagues and the graduate students all had reason to celebrate when he 

was recognized with that award. Of course, having an established and respected 

researcher like Steve on the faculty also makes it easier for the department to get 
other research grants, all of which get shared among the faculty. Steve’s growing 

list of honors was therefore good for everyone. 
Steve is also a fellow of the Royal Society of Canada and the Royal Society of 

London and is a member of the National Academy of Sciences (US), the American 

Academy of Arts and Sciences, and the Gottingen Academy of Sciences. Although 

he doesn’t dwell much on these honors, he does admit that some of them come 

with rather pleasant perks. Steve says that, as a fellow of the Royal Society of Lon
don, “one of the effects of it is that when Linda and I go visit London, the Royal 
Society buildings have rooms for fellows to stay in, and they’re very nicely located 

right next to the palace. So we always stay there.” Likewise, Steve and Linda annu
ally travel to the lovely town of Heidelberg, Germany, to attend the Heidelberg 

Laureate Forum, an annual event that brings together former recipients of the 

most prestigious awards in mathematics and computer science: the Abel Prize, 
ACM AM Turing Award, ACM Prize in Computing, Fields Medal, and Nevanlinna 

Prize. There, the laureates meet young researchers and provide mentorship and 

inspiration and deliver lectures on a variety of topics. 
Steve has continued to stay focused on his research and on mentoring upcom

ing researchers. Silvio Micali says that Steve’s approach to research was influential 
early in his own academic career. “Steve’s style was to publish few and excellent-
quality contributions. Steve averaged about one paper per year, and each of his 
papers was very thoughtful, thought-provoking and people paid a lot of attention. 
It was very helpful to me to see that quality over quantity is an important thing.” In 

fact, Silvio explains, if it weren’t for the consistently high quality of Steve’s papers, 
Dick Karp may not have been an early enthusiast for NP-complete problems. “Dick 

said that Steve Cook was on his short reading list—a short list of people whose 

papers he read no matter what they were about. The paper about NP, if it wasn’t 
Steve who wrote it, he wouldn’t have read it.” 

Certainly Steve’s slow and thoughtful approach to publishing is unusual in 

the “publish or perish” environment of modern academics. There are many 
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researchers who feel a need to put results out regularly and rely on a certain num
ber of citations to cement their importance; Steve has instead taken his time with 

each problem and published only when he thought there was a significant result 
to share. 

Toniann Pitassi describes him as “both lightning fast and very slow at the 

same time. He thinks about things for a very long time, and in some ways it’s 
slow because he doesn’t publish a lot of papers—but when he does, they’re really 
important. But he’s lightning fast with his intuition [about which problems are sig
nificant]. So I’ve learned to appreciate that you don’t have to be the fastest person 

and produce hundreds of papers all the time. You can take your time, and if you 

have something really interesting and novel to say, even if it takes a long time to 

get to that point, that’s worthwhile.” 
He has passed this approach on to his students over the years. Toniann says 

that having Steve as a supervisor gave her the space to really explore her research 

without feeling rushed or panicking about getting a paper out. “I remember as 
a grad student wondering why he never asked me to publish papers, but it’s not 
the way he worked. It’s very uncommon in research. Most people want to publish 

papers and want to publish in top places. I never felt like that was an issue with 

him. I remember one time, after a couple of years—because his area is very theo
retical even within theory of computer science—I remember worrying, how am I 
ever going to get a job in this? Because all of these other people have many more 

papers, and papers in areas that are more applied. And I remember he just said 

that he thought that you have to work on what you like, and if you make a little bit 
of progress on a really hard problem, it’s just as good or better than making more 

progress on a not-so-hard problem.” 
It was a big relief for Toniann, who was insecure at first about her background 

(or lack of it) in computer science when she started her doctorate. “I was an under
grad in chemistry, so I didn’t have the background that a lot of other people had. 
You were assigned to an advisor. I don’t think that they even asked me who I wanted 

and, truthfully, I was so intimidated by Steve that I would not have even put him 

down. But I was assigned to him. And I remember being thrilled and terrified at the 

same time. But he was so nice and so sweet that I didn’t even consider switching.” 
Bruce M. Kapron had been more direct in his approach to working with Steve. 

He completed a master’s degree in mathematics at Simon Fraser University in 

British Columbia, Canada. His interest was in mathematical logic, but his pro
fessors encouraged him to pursue the computer science aspect of logic because 

it offered more career opportunities. He was also encouraged to submit some of 
his work to the Journal of Symbolic Logic. “Steve happened to be on the editorial 
board. You have to submit it to some editor, so I submitted it to him. And there 
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were these very good referee reports that came back, so I think he probably said, 
‘This looks like somebody who would be a good person to work with based on their 
background in logic.’” 

Bruce says that having Steve as a supervisor was a great experience because 

he doesn’t set himself above his students. Instead, he treats them as fellow 

researchers. “I felt like I was working with Steve, not working for Steve. We’d come 

in and it would be the same kind of interaction that he would have if Charlie [Rack
off] or Al [Borodin] walked into the room and were discussing some problems. He 

didn’t act like I was a student, he sort of acted like I was just as much an expert at 
this as he was. So that was really great. Really intimidating, but still a really great 
way to work with somebody.” 

Steve is known for his lack of pomposity. To him, everyone is deserving of 
patience and respect. Toniann says, “the way he treats students, whether they’re 

grad students or undergrad, he treats everybody the same. He gives everybody 
respect. And if you’re interested in the problems he’s interested in, he will give 

you lots of time and be happy to talk to you.” He not only supports his students 
through their research but also celebrates their successes. Whenever one of his 
graduate students completed their Ph.D., Steve would invite them for a dinner at 
his home. Often, he would also take them out sailing. The “your success is my suc
cess” attitude that had attracted Steve to the department had clearly become part 
of his own approach to supervision. 

Jim Hoover completed both his master’s degree and his doctorate in Toronto 

and was assigned Steve as his master’s supervisor when he arrived in 1978. He 

found that working with Steve was a very enriching experience because graduate 

students were treated like “junior colleagues” by the supervisors in the group. 
“There wasn’t really a supervisor–student relationship, at least within the theory 
group. You were expected to pull your share of the intellectual enterprise. One thing 

all of Steve’s students learned was that you should never be satisfied with a result. 
You should push it to see if you could make it better, or more general, and you 

should think about its implications on other work. He’s always been a ‘quality over 
quantity’ person.” One paper that Jim worked on with Steve and Paul Beame had 

already been accepted for publication when they realized that they could make it 
significantly better. “Steve insisted that we withdraw the original manuscript since 

it was no longer relevant considering our new result.” 
Working with Steve over several years, Jim got to know him quite well. He says 

that people’s impression of Steve as a truly nice guy rings true. “My overall impres
sion of the classic gentleman and scholar was consistent over time, it just became 

fuller. That says a lot because it means that Steve was always the genuine thing.” 
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While Steve has always been a dedicated researcher, he has not shied away 
from mixing business with pleasure. The students in the theory group were often 

recruited onto Steve’s sailing crew—including Jim Hoover, who had just learned 

to sail during the summer before he started his master’s degree. Steve was a 

member of the Royal Canadian Yacht Club in Toronto and participated in both 

long-distance races and course races with his student crews. 
“I have to admit that in the summer I probably saw Steve more at the yacht club 

than at the university,” Jim says. He discovered that Steve’s approach to training 

his crew was not much different from the way he supervised students. “Sailing is 
all about making and learning from your mistakes. After a race we would debrief 
about what went right and what went wrong, and how to do it better next time. 
That’s a practice that you can apply to all aspects of life.” Jim elaborates, “If we 

were out just sailing, Steve would often hand the boat over to you so you could 

learn how to skipper. He would happily follow your dumb orders and let you make 

mistakes. He would intervene only if the boat was at risk. On the other hand, in 

a supervisor situation, Steve would let you go off and follow wild ideas that often 

would end up as unproductive tangents. This was all part of the process of learn
ing to do research. So in that sense, his method of teaching was the same for both 

sailing and research.” 
Steve’s son James says that sailing brings out Steve’s competitive side in a way 

that doesn’t often show in other facets of his life. Although Steve is generally calm 

and patient, during a race things are a bit different. James says, “there’s not really 
any other activity I do with him where there’s urgency, and something needs to hap
pen quickly. It’s not like he’ll be mad if anything goes wrong, but there’s a sense of, 
we’d better get this done quickly and right so that we don’t fall behind in the race. 
You don’t really feel that from him in any other situation.” 

1.6 Profound and Complex 
Over the course of his career, Steve has supervised or co-supervised 35 doctoral stu
dents and taught courses for thousands of undergraduate and graduate students. 
That alone would be a strong legacy to leave the theoretical computer science com
munity. But Steve’s influence has gone far beyond those who have had the benefit 
of learning from him directly. Thanks to his foundational work in complexity the
ory, many of his contemporaries have credited him with changing the entire field 

and opening doors to new areas of study. 
Bruce M. Kapron believes that Steve’s work has had a significant impact on 

the areas that other researchers are now studying. “Theoretical computer science 

now is a really diverse field,” he says. “The kind of problems that people are 

working on in complexity theory now, they may not be directly the P versus NP 
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problem anymore, but that whole approach started to grow with the theory of NP-
completeness. That was the first real new contribution in complexity theory that 
was deep and serious. A lot of the work that gets done, even if it doesn’t cite Steve, 
is somehow a legacy of his work. It really permeates a lot of things. It’s interest
ing because he’s had these papers that led to whole fields, like his papers on proof 
complexity, like the work that he did with Bob Reckhow.” 

Toniann Pitassi agrees that Steve’s research has been remarkably influential, 
in many cases through results that are not well known. “I feel like what he’ll be 

remembered for and what I consider his legacy are very different things. Partly 
that’s because he’s so modest, and he has these amazing results that are not 
the one that he got the Turing Award for. They’re even better, but it might take 

another 20 years for people to notice. Right now people remember him for his NP-
completeness result. But I think he has this body of work in feasible mathematics 
that’s fascinating—a big program that’s been very influential. People who know 

it think it’s amazing, but it’s a small number of people. I think it’s slowly being 

realized just how profound it is. And I don’t know if Steve will get the credit for 
it because he doesn’t promote himself, but I think he should get the credit for all 
sorts of things that have happened in the last 20 years: directions that theory has 
taken off in, that really when you look back to the origins, they’re his work.” 

Toniann says that one of the secrets to Steve’s influential body of work is his abil
ity to choose the right problems to work on. “He’s very intuitive—that’s one thing 

about him, amazing intuition! He’ll know immediately, even if he doesn’t under
stand any details, whether it’s true or whether it’s false or whether it’s fishy. He just 
has this amazing high-level intuition both for which are the interesting questions 
and whether a proof has any shot at being correct or not.” 

Jim Hoover believes that Steve is a strong role model for academics because he 

has achieved so much without sacrificing his life outside of academia. “So many 
academics’ entire existence depends on being an academic—they are lost if they 
have to do something else. Steve shows that you can be an amazing researcher 
yet not have that consume your life. You can have hobbies, and a family, play 
music—and just generally enjoy life.” 

Perhaps Steve’s true legacy over the more than 50 years of his career is seen 

in the influence he’s had on his students, his colleagues, his peers in the com
puter science community, and his family. He has embodied the values of hard 

work, authenticity, egalitarianism, intellectual rigor, generosity of spirit, commu
nity, and a balanced lifestyle. Steve Cook is much more than the list of papers, 
awards, and honors on his CV, and those who have had the experience of study
ing under him, working with him, or sailing with him will continue to spread his 
influence wider when they reflect his values in their own lives and work. 





2recording of an interview that I had with Professor Steve Cook at the 

University of Toronto, where Steve is University Professor in the Computer 
Science and Mathematics Departments. This is part of the ACM Turing 

Award winners’ project. Professor Cook received the ACM Turing Award in 

1982 in recognition for his contributions to the theory of computational 
complexity, and in particular the theory of NP-completeness, which he 

introduced in his 1971 paper “The Complexity of Theorem-Proving 

Procedures.” So now what you’ll be seeing is my interview with him. 
SC: Hello. 
BK: You were born and you grew up not far from Toronto in Western New York. 

As a child, did you already have an interest in science or mathematics? 
SC: Yeah. Well, I certainly had an interest in science. My father was a chemist 

and worked for a Union Carbide branch, so I was interested in science. I 
was good in mathematics, but I didn’t think in high school that that was 
going to be my chief interest. 
But the big influence on me when I was in high school was Wilson 

Greatbatch, who was a resident of Clarence, New York, same as me. He was 
an electrical engineer, but a very creative one. Transistors were a very new 

thing then, and he designed a transistor circuit that went “Bip, bip, bip,” 
and eventually turned it into an artificial pacemaker for hearts which was 
implantable. That had never been done before. Well, of course you couldn’t 

This chapter contains a transcript of an interview conducted on February 25, 2016, on behalf 
of the ACM. A recording of the interview may be found at the ACM Turing Award website: 
amturing.acm.org. The transcript has been lightly edited for clarity. 
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Stephen A. Cook by 
Bruce M. Kapron 

BK = Bruce Kapron (Interviewer)
 
SC = Stephen Cook (A.M. Turing Recipient)
 

BK: Hello, this is Bruce Kapron. It is February the 25th, 2016 and this is a 
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do it with vacuum tubes, obviously. So he eventually got ushered into the 

Inventors Hall of Fame in the United States for inventing this thing. 
But while he was doing this and I was in high school, I helped him out. He 

had a little shop in the top of his garage in which he worked. He would draw 

pictures of transistorized circuits and I would solder them together. Then 

he’d try them out and I could see on an oscilloscope this “Bip, bip, bip.” 
This was the late 1950s? 
That’s right. That’s right, because I was in high school. So like I graduated 

from high school about 1957. Then I don’t think it actually got turned into a 

pacemaker till some years after that. Also, he worked for an electronic firm 

and he got me summer jobs there. So I was very interested in electronics 
and I thought that was going to be my profession. 
You mentioned your father. And your mother was also a teacher? 
Yeah. Well, yes. 
She was a teacher, yes? 
Yes. Well, she had two master’s degrees. My father and mother met at the 

University of Michigan. She got a master’s degree in English and history 
then I guess. Yeah. And of course where my father got his PhD in 

chemistry. Then later on when… I have three brothers and she was mostly 
taking care of us, but when we were all off, going off to various places, then 

she was a teacher. Oh, she got a second master’s degree in English and 

then she was teaching at a community college in the area. 
So you mentioned that you had quite an early introduction to I guess at the 

time what was very high technology electronics. What was your first 
exposure to computers and computer programming? 
Yes. Even in high school, I had a good math teacher who was somewhat 
interested in computers, and he took us to downtown Buffalo to some 

meeting. So I already had some idea about computers. But it really wasn’t 
till I went to University of Michigan, which was my undergraduate school… 

Since both my parents were alumni, there seemed to be no choice. My very 
first year, which would have been I guess ’58, the spring term, I took a 

course, a one-hour course in programming. This was from Bernard Galler. 
We learned how to program, and I think it was the IBM 650, which was a 

vacuum-tube machine whose memory was on a drum, just to put you in the 

category of what computers were like then. 
That was probably my real access to computers. But I enjoyed it a lot and I 
started writing fun programs like… I remember early on, I wrote a program 

to test Goldbach’s conjecture, which was that every even integer is the sum 

of two primes. So I tested it up to some large number and it turned out to 

be verified. 
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And at Michigan, you started off in electrical engineering? 
That’s right, I actually start-… It was engineering science I think, but I was 
thinking in terms of electrical engineering. But my very first year I took a 

calculus course from Nicholas Kazarinoff. It was I guess not just the 

completely typical calculus course, slightly more advanced. Anyway, I got 
quite interested in the course and Kazarinoff got interested in me. He 

would give me special homework theorems to work on. In fact, he was so 

impressed that he said I could skip the second-year calculus course – which 

I kind of regret now because I never learned two-variable calculus – and go 

on… there was a third-year course. And also then I took a third-year course 

in linear algebra. So yeah, I got off to a good start in mathematics. 
And eventually you switched into…? 
That’s right. After… I think I took two and a half years, and then I finally 
switched out of engineering and became an official math major. That’s 
right. 
So you were successful enough that you ended up going to Harvard for your 
graduate work. 
Yes, indeed. Yeah, yeah. I was quite excited about that. I must have gotten 

good reference letters. So yes, I guess it would have been ’61 I joined, I 
became a student for a master’s degree in the math department. I got that 
in ’62. 

BK: 

Then I needed a thesis advisor, but I’d taken a logic course from Hao Wang. 
He was not in the math department. He was in the Division of Applied 

Physics. But I mean he was really a logician. Logic was his major interest. 
But he also was interested in computers. And before coming to Harvard, he 

worked I guess for both Bell Telephone Labs and the IBM Watson Research 

Laboratory in Yorktown Heights, New York. There he wrote a program to 

prove theorems in propositional calculus automatically. That was one of 
his interests, trying to make automatic theorem provers. It apparently was 
very successful because he used an IBM 704, which is another vacuum-tube 

machine, and in just three minutes it proved all the hundred or so 

propositional tautologies in Russell and Whitehead’s Principia 

Mathematica. That was a big deal because other people, Shaw and Simon 

had tried to make automatic theorem provers for propositional calculus 
and apparently they weren’t very successful. 
Professor Wang was also very interested in foundational issues in 

mathematics in logic and computability. I’m wondering… It seems that 
both with the automated theorem proving and with his interest in 
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computability, that really had a big influence on a lot of the work that 
you’ve done. 

SC:	 That’s right. I mean it certainly did. There was no question about that, that 
yeah, he was interested in the Entscheidungsproblem of Hilbert, which is the 

problem of determining whether a given predicate calculus formula is 
satisfiable or not. Then of course Turing and others proved that it’s 
unsatisfiable. So then how simple a formula, class of formulas can you 

make to make it still unsatisfiable? And there was the so-called AEA case, 
for all exists for all case, and then proved it was still unsatisfiable. So he 

was part of that. And yes, that did have an influence on me later on. 
BK:	 But computational complexity has always been a theme in your work. I’m 

wondering if you can say a little bit more about what your PhD research 

was based on. 
SC:	 Ah! Yeah, okay. So some background for that. Computational complexity 

was a new subject of course, and this was in the early 1960s. In ’63 I think it 
was, Hartmanis and Stearns published their famous paper in which they 
introduced the word “computational complexity” on “The Computational 
Complexity of Functions” or something like that. So Hartmanis came to 

Harvard and gave a talk, and so I became quite interested in that. 
Then the other influence was by Alan Cobham. Alan Cobham had a degree 

from Harvard and he was a graduate student there. He wrote a thesis, but 
he never got his PhD because the math department, in addition to a thesis, 
it requires a minor thesis and Alan never bothered with a minor thesis. But 
he went off to work for, again, IBM Watson Research Lab. He was connected 

with... He was a friend of Hao Wang and he would come, so I got to know 

him. His famous paper was “The Intrinsic Computational Difficulty of 
Functions.” That was his paper he wrote. He was interested in… I think this 
was really before Hartmanis–Stearns, yeah, that happened, but he was 
interested in “In what sense are some computational problems harder than 

others?” and he compared multiplication and addition as an example, “In 

what way is multiplication harder than addition?” But his result, which… 

I mean one thing he did that really had an influence was he introduced the 

notion of what we would now call polynomial-time computable functions. 
He argued that this is an interesting class, a complexity class, because it 
seems to be all feasible functions, and if you’re not polynomial-time 

computable, you’re not going to be feasible. He made that argument. Then 

he also came up with an interesting characterization of the 

polynomial-time computable functions. Namely a function is 
polynomial-time computable if and only if it can be obtained from certain 
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initial functions and applying the operations of composition and limited 

recursion on notation. And that’s something he made up, a new kind of 
recursion. Primitive recursion of course had been well known for many 
years, but to characterize the poly-time computable functions, you needed 

this other notion, limited recursion on notation. So that also had an 

influ-… I was very interested in that. 
But in your PhD, you considered the question of the difficulty of 
multiplication. 
That is correct, yes. Maybe that was because of Alan Cobham’s question. 
Yes, of course. It’s very hard to prove lower bounds. We all know that now 

and that was certainly true then. The only way you’d get a lower bound on 

multiplication was to look at the case where the inputs are only read… 

What do you call that? So the inputs are restricted so that after each digit is 
given, you’ll have to give the output for the multiplication. 
Oh, it’s… 

Online. I’m just thinking online. Sorry for the… Yeah. So this was an online 

model of a Turing machine, which you think of an unlimited number of 
digits. You’re multiplying two numbers in decimal or binary, whatever, it 
doesn’t matter. So the first n, string of n digits would be the n least 
significant digits in the two numbers, and that’s enough information to get 
their product. So you had to output their product and then go on to the 

next two digits and then keep outputting the product and so on. That was 
the online model. In that model, I was able to get a lower bound of n log n 

over… just over n log n. What was it? I can’t remember exactly. n log n over 
log log n I think it was. Yeah. So that was a non-trivial lower bound. That 
was part of my thesis. The other parts again talked about computational, 
number theoretic, or real function problems. 
After graduating, you became a faculty member in the math department at 
the University of California, Berkeley. 
That’s right. 
What year was that? 
That was 1966. Yeah, so I finished my PhD in 1966. I had been offered a job. 
Now the job was half mathematics in the math department and half in 

the… It wasn’t a computer science department, although they did have a 

budding computer science department just starting. It was a research job 

in the Computer Center or something, something like that, so it was only 
half in mathematics. So yes. And so I started that out in the fall of 1966. 
So you were in Berkeley in the late ’60s, which must have been an 

interesting time intellectually and culturally as well. 



34 Chapter 2 ACM Interview of Stephen A. Cook by Bruce M. Kapron 

SC: 

BK: 

SC: 

Indeed. Of course yeah. This definitely was… The free speech movement 
was in full form and there were crowds of people there. In some cases, the 

police were called in. There was teargas and all kinds of stuff. Yes, all that 
was going on in the ’60s. Yes. 
As soon as you got there, I assume… or even, as you say, working on your 
PhD you were already thinking of a lot of questions about computational 
complexity and even thinking about polynomial time, so… 

Yes. Well, of course yeah, the polynomial time definitely came from 

Cobham, so I was interested in that. Early on, I did circulate a 

mimeographed set of notes on something like classes of primitive 

recursive functions, so there were complexity classes of primitive recursive 

functions. So there was work at Princeton at the time. There was a logician 

at Princeton, and I had read parts of Bennett’s thesis. 
Anyway, his thesis was called On Spectra, which was actually a predicate 

calculus sign, but it had a lot of complexity theory results based on logical… 

So there was kind of two different, yeah, classes of people then. I mean 

these were the logicians doing complexity theory. So he didn’t talk about 
Turing machines ever that I remember, but I remember one of the 

complexity classes he talked about were the extended positive rudimentary 
relations, the class of extended positive rudimentary relations, which had 

some fancy definition, logical definition. Then I eventually realized, “You 

know what this is? This is nondeterministic polynomial time.” The same 

characterization. So that’s probably the first time I became interested in 

what we now call “NP.” 
BK: 
SC: 

BK: 

And what year was that? 
That would have been, well, ’67, because I circulated this stuff, it has the 

date on it, 1967. So… 

So then you were already aware of the question of what the relationship 

would be between P and NP? 
SC: 

BK: 

SC: 

Well, absolutely. I even put it out in there that “Oh, this is interesting.” So 

one assumes that there are problems in nondeterministic poly time that 
can’t be done in deterministic polynomial time, but might be aware they’re 

hard to prove that. And I turned out to be right on that point. 
And while you were at Berkeley, you were already doing work that then 

ended up at the ACM’s Symposium on Theory of Computing… 

Yeah, that’s right. I had a couple ACM STOC conference papers. One of 
them was this characterization, another characterization of polynomial 
time, which I think is quite intriguing. So a problem can be solved in 

deterministic polynomial time if and only if it can be solved by a so-called 
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auxiliary logspace pushdown machine. So what is this? That’s a Turing 

machine that has read/write input tape and it has a work tape where they 
commonly use log-space, order log-space symbols on its work tape and do 

the work. But then… So that model is a characterization of what we call 
“logspace,” which is, as far as we know, a proper subset of polynomial time. 
Of course we can’t prove that either, but we assume logspace is certainly a 

subset of polynomial time, but… we assume it’s a proper subset. But if you 

add the pushdown stack, I proved you exactly get polynomial time. And not 
only that, the nondeterministic version also gave you deterministic 
polynomial time. So I thought that was kind of a neat result. That got 
published in the ACM journal. 
So you left Berkeley and you came to University of Toronto in 1970. Were 

you recruited by people at Toronto? 
The story there is that the math department denied me tenure, because 

otherwise I would have stayed certainly, especially since I had just married 

my wife Linda, who was raised in Berkeley, the centre of universe, and she 

had no desire to leave Berkeley. So this was quite… I should say, to be fair, 
when I proposed to her, I told her I might not get tenure. So she was 
forewarned. 
In any case, yeah, so it looked like I had to get a job somewhere else. So 

I applied at other places, including Yale and University of Washington and 

I think IBM Research. Then I went on a trip. But the Toronto connection, 
I didn’t have any sense of going to Toronto, even though I have to say that 
I had no problem with Canada because we lived in Buffalo, we used to go to 

resorts, the summer resorts in Ontario, so that’s fine. But anyway, I didn’t 
think of Toronto. But yeah, in fact I was recruited. Somebody in the 

computer science department at Berkeley who had just come from… who 

had been at U of T. He was Canadian but he was recruited by the Berkeley 
computer science department. So anyway, he called Tom Hull, the chair of 
the computer science department, and gave my name and said, “Maybe 

you should look into this.” Yeah, so Tom eventually got hold of me, not on 

that recruiting trip but later on. So Linda and I went to Toronto and 

eventually thought, “Oh, this is a great place.” Actually it was a very good 

budding department. 
It must have been young at the time. 
Yeah, it was quite new, but they still had a number of people. Tom Hull had 

just moved there, but Kelly Gotlieb was there and Patt Hume. And in fact 
before I came, Allan Borodin who is now quite well known as a complexity 
theorist and also Derek Corneil was there, and he is a graph theorist, 
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well known. So it was clearly an up and coming department. Yeah, so 

certainly it turned out to be a very good choice. 
And making the switch to computer science seemed like a natural…? 
Oh, that’s true. But the people who recruited me were all in computer 
science. Actually… So my first appointment was half in math and half in 

computer science, and then yes, I quickly switched to computer science, 
realizing the grass was greener in the computer science department, yes. 
You presented “The Complexity of Theorem-Proving Procedures” at ACM 

STOC in 1971, and that’s the paper that introduces what we now call the 

theory of NP-completeness. How was your paper received at the time? 
Actually it was received very well. Yeah, I gave it to a large audience. I gave 

the talk to a large audience and there were people there. I remember 
Michael Rabin was one and he seemed quite impressed. He had been 

thinking along similar lines actually. So I got positive feedback from that 
paper, for sure. 
Can you briefly describe a little bit about what’s in the paper, since it’s not 
in the form of NP-completeness that we know today? 
For sure. Not at all. Those symbols were never uttered in my paper. So 

here’s the story. I was interested in the complexity of theorem proving. In 

fact, that’s the name of the paper, right? “The Complexity of 
Theorem-Proving Procedures,” which doesn’t sound very much like 

“NP-completeness.” So when I submitted the paper to STOC, I actually 
didn’t have my result there. I had a section on propositional calculus and 

complexity, and I had a section on predicate calculus, but I didn’t have any 
really big results. 
But after they accepted my paper despite this… Because STOC was much 

easier to get into in those days than now. Its standards have gone way up. 
But then when I started thinking about writing the final version, I had this 
idea of completeness, of complete problems. And of course where did the 

idea come from? It came from completeness for recursively enumerable 

sets, and in fact the – what is it? – the unsatisfiable predicate calculus 
formulas are complete for recursively enumerable problems. I knew that 
and my advisor was very interested in that, so I credit him for giving me the 

idea “Well, why can’t we do this at a lower level for propositional 
formulas?” and then the analogue of recursively enumerable becomes 
nondeterministic polynomial time. And then I proved that the… Well, what 
I actually proved was that the valid propositional tautology, validity of a 

propositional tautology – which is in co-NP, it’s not in NP – was complete 

for this class. But the reductions I put in that paper were not the many-one 
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reductions that Karp used and I use now, but they were Turing, 
polynomial-time Turing reductions, which are much more general 
reductions. 
Yeah, so I didn’t have the words “NP” and “P” – that was due to Dick Karp 

later – and I didn’t have the same reduction, I had a more general 
reduction, and I had only three complete problems. And of course Dick 

Karp later, a year later had 21. I did have three in there. Of course there was 
the tautologies and subgraph isomorphism – given two graphs, is the first 
one isomorphic to a subgraph of the other? – and then three… Oh. And 

then, well, of course you could also instead of tautologies in general, you 

could look tautologies in disjunctive normal form, that was complete. And 

also, I did also have three DNFs. So conjunctive normal form with just 
three literals in a conjunct, that was also NP-complete, so that’s what I had 

in my paper. 
And was there a conjecture in there about primality? 
I mentioned other possibilities. Yes, primality testing. I said that’s a 

candidate maybe for completeness. I should look and see whether I was 
doubtful, because in fact there are randomized algorithms for primes. I 
may have said that, I don’t remember. And the other, an open question was 
graph isomorphism. Neither of those are thought to be NP-complete now. 
In fact, primes are in poly time. So yeah, I did mention those. And of course 

graph isomorphism is definitely thought not to be NP-complete, although 

nobody’s gotten a poly-time algorithm for it. 
You mentioned Richard Karp’s paper following onto yours. How long did it 
take for researchers to sort of realize the significance of NP-completeness? 
Oh, I think it came very fast. I mean it was obvious, and Karp’s paper was 
very well written. He had 21 examples of NP-complete problem. He cleaned 

up the terminology. He introduced “P” for poly-time for “NP” for 
nondeterministic polynomial time. That was new notation, very clean. He 

also introduced “many- one poly-time reducibility” whereas I had the more 

general kind of Turing reducibility, poly-time Turing reducibility. And all 
those were very clean, nice definitions. So that paper definitely caught on 

very rapidly. 
So in the 1970s, there was explosion of research. Were you surprised at the 

impact? 
Yeah, I would say I hadn’t quite anticipated that there were so many 
NP-complete problems. You know, I think there were two kinds of people 

working in this field. There were the logicians and the people… algorithmic 
guy. And Karp was definitely an algorithmic guy. My training had all been 
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with the logicians, so I think that’s my excuse for not realizing all of these 

examples of NP-completeness. And I should say on this term, a similar 
example for the notion of polynomial time of course was independently 
introduced by Jack Edmonds, about the same time as Alan Cobham wrote 

his paper. But they were from two different areas – Cobham was a logician 

and Jack was an algorithms guy. I mean they’re two different fields, and so 

quite independently they came up with polynomial time. But I didn’t know 

about Jack’s stuff at all until much later. Cobham was my source for 
polynomial time. 
The question of whether P is equal to NP is one that’s intrigued and 

frustrated a lot of researchers, so I have to ask you, what’s your opinion on 

the status of P versus NP? 
SC: 

BK: 

SC: 

BK: 

SC: 

BK: 

Oh. Well, that’s easy. I think P not equal to NP, and I think a majority of 
complexity theorists believe it. Well, so here’s my tune on this. First of all, 
we’re really good at finding algorithms for things. I mean there’s a whole 

algorithms course we teach undergraduates in all these methods of finding 

algorithms, and lots and lots of examples. But for lower bounds, we aren’t 
good at finding lower bounds. And here’s my proof. If you look at the 

sequence of complexity-classes log-space, which is a subset of polynomial 
time P, which is a subset of NP, nondeterministic poly-time, which is a 

subset of polynomial space. So here we have a sequence of three inclusions 
starting from log-space and ending in polynomial time. There’s an easy 
proof that log-space is a proper subset of polynomial space just by 
diagonalization. Therefore one of those intermediate three inclusions has 
to be proper. We can’t prove any of them are proper. QED. 
But I guess even in 1967 now, you were telling us that your feeling was that 
P is not equal to NP. 
That’s right. Based on attempts really seemed much harder to solve 

NP-hard problems, or NP problems in general. So yeah, I guess I 
conjectured that way back then. Yes. 
So not only is that problem P versus NP’s central problem or the central 
problem in theoretically computer science, with the introduction of the 

Millennium Problems, Millennium by the Clay Foundation, the seven 

problems, it sort of has been acknowledged as one of the most open 

problems… 

Yeah, I guess one of the most interesting open prob-… important, 
important open problems, yes. 
So were you consulted about that inclusion, or did you just…? 
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No, I was not consulted about the inclusion, but after they decided it, they 
did ask me to make a write-up for it. So I did contribute a write-up for that 
question, for the background. 
And I guess before that, Professor Smale had already… he had a list of 21 
problems I think and included it. 
Oh, I guess he did. Yeah, that’s right. He had already listed it as one of the… 

So definitely there’s a consensus this is an important problem. 
What about the bigger significance? I mean it even gets into popular 
culture in The Simpsons or whatever. So how do you feel about… 

[laughs] 
…I guess a little bit what’s the real significance of the P versus NP problem? 
Well, I don’t know. Yeah, you’re right, it gets into… I guess everybody, many 
people know P and NP and they don’t understand what it is. Well, 
obviously it’s an important question. And, well, for one thing, if P equals 
NP, it’s going to rule out a lot of cryptography. It’s hard to imagine how we 

could have any of the cryptographic protocols like RSA and so on. Public 
key encryption seemed to be impossible. So that’s on the one hand if it 
turns out P equals NP. And on the other hand, if P not equal to NP, of 
course you want to know more, you want to know just how hard is NP and 

so on. You can’t help but learning a lot more about the problems. Either 
way. Either way it goes, P equals NP or P not equal to NP, we’re going to 

learn a lot more about computation if the problem is solved. 
Right from the start of your research career, I guess what you’d call proof 
complexity has been a central focus. I think many computer scientists 
know about computational complexity, but maybe not so many know 

about proof complexity. So I’m wondering if you could describe a little bit 
what the concerns are and what some of the basic questions… 

Well, of course proof complexity in the propositional form is quite related 

to the P-NP question because you want to know… I mean a good aspect of 
proof complexity is you look at proof systems for proving tautologies, for 
example, which is equivalent to proving negations are unsatisfiable. So we 

have lots of standard proof systems for doing this. 
Now the issue there is though “How long is the shortest proof? Can you get 
an upper bound on the length of the shortest proof in some proof system?” 
The conjecture there is there’s no polynomial upper bound no matter what 
proof system, you know, efficient proof system. Under a reasonable 

definition of proof system, could you get a polynomial upper bound on the 

length of every tautology, a polynomial in the length of the tautology of 
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course? So we conjecture, no, that’s sort of like “P not equal to NP” 
conjecture. I mean that sort of would imply P not equal to NP. But the… So 

you’re… If there were such things, what I’m trying to say, if there were a 

proof system, efficient proof system to get poly-time proofs to all 
tautologies, then NP would equal co-NP, meaning that the complement of 
any NP problem would also be in NP. And again, there’s lots and lots of 
examples, and we just don’t think that’s true. So we conjecture… 

So this is all… proof complexity is certainly tied up with computational 
complexity. That’s just one example. 

BK: And you mentioned Professor Wang’s program for proving the 

propositional tautologies in Principia, and these days both automated 

theorem proving or satisfiability solving in the propositional case has 
really become an important technology. 

SC: Absolutely. Yeah, of course. And what was surprising is yeah, there are 

theorem provers especially for sets of clauses, for propositional problems 
that are in conjunctive normal form that are incredibly efficient. I mean 

they can find proofs or disproofs for even tens of thousands of clauses. So 

that’s an interesting, very interesting, important subject in its own right. Of 
course, despite their great successes for some cases, you can always stump 

them… 

BK: Of course. 
SC: …by coming up with hard examples. Like the pigeonhole tautologies is a 

good example. 
BK: Besides the work in computational complexity, you’ve worked in other 

areas including parallel computing and theory of programming languages. 
Is there a theme that goes through all this work that holds it together? 

SC: Well, it’s all… I mean certainly the parallel computing part is an 

interesting… it’s certainly mainstream, interesting complexity theory, 
because in practice now, computers have many, many processors and 

you’re very interested in how much time you save if you have a whole 

bunch of processors. And there are conjectures of course… Well, for some 

problems you can’t save much of any time. For other problems, you can 

save time hugely. So that’s a very important and natural complexity 
question for parallel. What was the other…? 

BK: The other one was theory of programming languages. 
SC: Oh yeah. Well, that’s Hoare. My contribution there was to Hoare logic. 
BK: Right. And I think I’ve heard that referred to as “Cook’s theorem of the 

relative completeness of Hoare’s logic.” 
SC: [laughs] 
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And I was quite surprised when I heard it referred to as “Cook’s theorem.” 
Well, apparently it’s had some effect. I mean that’s really not my field, 
programming langua-… It’s a very important field, proving correctness of 
programs of course, and Hoare had this logic, a whole method of proving 

correctness. By putting in certain kinds of assertions here and there, you 

could use it to prove correctness of programs. So I succeeded that in a 

certain sense his logic was complete, so you can always do it if it’s correct. 
So yeah, that was just one paper, but it seemed to have made a bit of a 

difference. 
Despite all the advances in computing technology – and here I have ’71, but 
now I should say ’67, which is when you originally formulated the problem 

– you know, the ideas about P and NP are still central questions in 

computer science. I’m wondering why they have such enduring 

significance. 
Well, I mean I guess – I tried to answer that before, right? – because they’re 

obviously important, they’re very important questions, and whichever way 
they resolve, we’re going to learn a lot more about computation. And of 
course it’s especially relevant at cryptographic protocols, which really 
would be much more difficult if it turns out to P equal NP. 
Apart from your research, you also have a lot of impact in terms of teaching 

and graduate supervision. I don’t know the count now, but you’ve had over 
30 PhD students. 
Yeah, it’s 33 I think. 33, 34 graduate students. Some of them co-supervised I 
have to say. Especially later, in my more recent years, I have to credit other 
people like Toni Pitassi for being really good and helpful co-supervisors for 
students. So indeed, yes. 
And I’m wondering how you see how those three, teaching and supervision 

and research, interact with each other. 
Yeah. Well, there’s no question supervising graduate students interacts 
with research, because your graduate students become co-authors in the 

papers. I mean it’s extremely enlightening and important to have graduate 

students. I’m very grateful to my graduate students, including yourself 
because we have a joint paper. There’s no question that working with 

graduate students is very enlightening and rewarding. And yeah, I also 

teach classes to undergraduates and, no, I enjoy that as long as I don’t 
teach too many. Especially if I’m teaching in the areas I really like, which 

are complexity theory and logic. Those are my two favourite subjects, and I 
do enjoy teaching those courses because I think they’re really neat and I try 
to get the students to agree. 
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BK: Well, I have to say from my personal experience that I think from the first 
time I walked into your office, you just treated me more as a colleague than 

a student, and I think it all was driven by real interest in the research 

questions. 
SC: Absolutely, yeah. Well, you’re definitely a helpful colleague indeed. 
BK: So you’re known to be an avid sailor. When did you first start sailing? 
SC: Well, the first serious time I started sailing is when I went to Berkeley. I had 

tried to sail a few times. Even at Harvard, you sail. The sailing there on the 

river isn’t too good, so I decided not to. But when I went to Berkeley, then 

you could stand up on the hill and see the San Francisco Bay opening up, 
the high road opening up for you, and all the boats out there really looked 

like fun. And I said, “Okay, I’m going to learn to sail.” So I joined the 

student sailing club, UC- whatever it is. UCYC, University of California 

Yacht Club. But they let faculty members in. So then I joined and they had 

a very nice teaching program on Sundays. So you went to Sundays and you 

got in a boat and you had a teacher, and it was all very reasonably priced 

and they would teach you how to sail. So I really took to that right away and 

became a good sailor. 
And the other thing is I met my wife, because she was secretary. She was an 

undergraduate. She was secretary of the club. So that was a great thing. 
Two good reasons why I learned to sail. But yes, I absolutely enjoyed it. 

BK: You’re a member of the Royal Canadian Yacht Club. 
SC: I am. Yes, that’s true. And so yeah, Linda and I are members of the Royal 

Canadian Yacht Club here. That was a recruiting tool by Tom Hull by the 

way to come to Toronto. He pointed out, “We do have a lake here. We don’t 
have the ocean, but we do have Lake Ontario and they do sail.” And he 

invited a member of the RCYC to lunch to explain how good it was. So 

indeed. 
BK: And you raced for a long time. 
SC: I still do. 
BK: You still do? 
SC: I still do. Yes, from the very beginning I took to sailboat racing, and I still 

do. Right now I sail… The club owns a fleet of… called Ideal 18s, two-person 

keelboats that are easy to sail. But they’re all alike and we all go out and 

race. I have races Thursday evenings and sometimes on Saturdays. I still do 

that and I get a kick out of it. 
BK: You mentioned your wife Linda. You still live with Linda in Toronto. And 

for a long time, she worked at University of Toronto, is that correct? 
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SC: 

BK: 

Yeah. She worked at the admissions office at first and then at the registrar’s 
office at University College. Then we started having children, and after a 

while we realized that it was tough, it was better if she quit. So she 

eventually quit and stayed home. 
And you have two sons, and I guess both of them have followed in your 
footsteps in their own way. I wonder if you could tell us a little bit more 

about them. 
SC: 

BK: 

Well, Gordon is the older one, born in 1978. And he took to sailing very 
early. Well, we encouraged him of course, Linda and I, in particular sailing 

in the Optimist dinghy, which is for children 15 and under, and they have a 

world-class racing… It’s a world-class racing boat. Optimist dinghies, 
they’re… What? They’re eight feet long and not very big and have one sail, 
and they’re for children. But they have international regattas. Anyway, 
Gordon took to that right away and practised and raced in the local races. 
Eventually he competed to represent Canada in the Optimist Worlds, and 

only five boats are allowed from each country. So he did that and he 

actually did that twice, and once it was in Greece and the second time it 
was in Spain, and I got to go and it was great. 
Then he graduated. He got his engineering degree from Queen’s University 
and started a little company making carbon-fibre stuff. But then he really 
liked sailing, so he decided to try out for the Olympics. So he worked very 
hard to... This is in the 49er class, is one of the Olympic-class racing boats, 
a 49er. It’s about 14–18 feet long and very hot, very fast. So that was 
Gordon’s choice, and he worked very, very hard and eventually competed 

for Canada in two different Olympics. In 2008 it was in China and 2012 it 
was in England. 
And James. 

SC: 

BK: 

And James. James also started out sailing, but he didn’t take to it quite in 

the same way. But he was certainly interested in computers from age 3 on 

and also mathematics. So that was his thing. So he got his undergraduate 

degree at University of Toronto in math and computer science. Then he 

went on to Berkeley and got his PhD in computer science. Now he’s 
working at Google in Silicon Valley and really enjoying it. 
I have one last question. What advice do you have for young researchers 
who are interested in starting a career in computer science or 
mathematics? 

SC: Yeah, that’s a really hard question. I guess my only comment there, as far 
as computer science goes, I think they need no encouragement because 

right now, as you know and I know, undergraduate institutions are being 
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flooded with people who want to take computer science. In our 
department, really it’s even more than we can handle. We have to turn 

them away. So somehow computer science has become an enormously 
interesting field, and probably with some good reason. I mean I think the 

big driver now is artificial intelligence and machine learning. We’re all 
seeing exciting things happening from that. And of course it’s a good field 

to go into, no question, but there’s going to be lots of competition. 
BK: So I guess… I don’t know if… I mean I’ve asked all my questions, but I don’t 

know if there’s anything else you want to add. 
SC: Oh, I think you covered it pretty well. 
BK: Good. Well, I really enjoyed talking to you. 
SC: Oh, really enjoyed your questions, and very nice of you to come. How much 

time have you taken? I don’t know. 
BK: I’m not sure. Probably… It’s 2:28, so it’s probably been about an hour. 
SC: Well, I hope they consider that to be enough. 
BK: [laughs] 
SC: Don’t want to bore people too much. 

[end of recording] 
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technical contributions to the computing community. 

The citation of Cook’s achievements noted that “Dr. Cook has advanced our 
understanding of the complexity of computation in a significant and profound 

way. His seminal paper The Complexity of Theorem Proving Procedures presented 

at the 1971 ACM SIGACT Symposium on the Theory of Computing laid the foun
dations for the theory of NP-completeness. The ensuing exploration of the bound
aries and nature of the NP-complete class of problems has been one of the most 
active and important research activities in computer science for the last decade. 

Cook is well-known for his influential results in fundamental areas of computer 
science. He has made significant contributions to complexity theory, to time–space 

tradeoffs in computation, and to logics for programming languages. His work 

is characterized by elegance and insights and has illuminated the very nature of 
computation.” 
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The 1982 ACM Turing 
Award Lecture 

Stephen Arthur Cook 1982 ACM Turing Award Recipient 

The 1982 ACM Turing Award was presented to Stephen Arthur Cook, Professor of 
Computer Science at the University of Toronto, at the ACM Annual Conference in 

Dallas on October 25, 1982. The award is the Association’s foremost recognition of 
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During 1970-1979, Cook did extensive work under grants from the National 
Research Council. He was also an E.W.R. Staecie Memorial Fellowship recipient 
for 1977-1978. The author of numerous landmark papers, he is currently involved 

in proving that no “good” algorithm exists for NP-complete problems. 
The ACM Turing Award memorializes A.M. Turing, the English mathematician 

who made major contributions to the computing sciences. 

An Overview of 
Computational 
Complexity 
Stephen A. Cook 

Abstract 
An historical overview of computational complexity is presented. Emphasis is on 

the fundamental issues of defining the intrinsic computational complexity of a 

problem and proving upper and lower bounds on the complexity of problems. 
Probabilistic and parallel computation are discussed. 

This is the second Turing Award lecture on Computational Complexity. The first 
was given by Michael Rabin in 1976.1 In reading Rabin’s excellent article [Rab77] 
now, one of the things that strikes me is how much activity there has been in 

the field since. In this brief overview I want to mention what to me are the most 
important and interesting results since the subject began in about 1960. In such a 

large field the choice of topics is inevitably somewhat personal; however, I hope to 

include papers which, by any standards, are fundamental. 

1 Early Papers 
The prehistory of the subject goes back, appropriately, to Alan Turing. In his 
1937 paper, On computable numbers with an application to the Entscheidungsproblem 

[Tur37], Turing introduced his famous Turing machine, which provided the most 
convincing formalization (up to that time) of the notion of an effectively (or algo
rithmically) computable function. Once this notion was pinned down precisely, 
impossibility proofs for computers were possible. In the same paper Turing proved 

1. Michael Rabin and Dana Scott shared the Turing Award in 1976. 
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that no algorithm (i.e., Turing machine) could, upon being given an arbitrary for
mula of the predicate calculus, decide, in a finite number of steps, whether that 
formula was satisfiable. 

After the theory explaining which problems can and cannot be solved by com
puter was well developed, it was natural to ask about the relative computational 
difficulty of computable functions. This is the subject matter of computational 
complexity. Rabin [Rab59, Rab60] was one of the first persons (1960) to address 
this general question explicitly: what does it mean to say that f is more difficult to 

compute than g? Rabin suggested an axiomatic framework that provided the basis 
for the abstract complexity theory developed by Blum [Blu67] and others. 

A second early (1965) influential paper was On the computational complexity of 
algorithms by J. Hartmanis and R. E. Stearns [HS65].2 This paper was widely read 

and gave the field its title. The important notion of complexity measure defined 

by the computation time on multitape Turing machines was introduced, and hier
archy theorems were proved. The paper also posed an intriguing question that is √ 
still open today. Is any irrational algebraic number (such as 2) computable in real 
time, that is, is there a Turing machine that prints out the decimal expansion of 
the number at the rate of one digit per 100 steps forever. 

A third founding paper (1965) was The intrinsic computational difficulty of func
tions by Alan Cobham [Cob65]. Cobham emphasized the word “intrinsic,” that is, 
he was interested in a machine-independent theory. He asked whether multiplica
tion is harder than addition, and believed that the question could not be answered 

until the theory was properly developed. Cobham also defined and characterized 

the important class of functions he called L: those functions on the natural num
bers computable in time bounded by a polynomial in the decimal length of the 

input. 
Three other papers that influenced the above authors as well as other complex

ity workers (including myself) are Yamada [Yam62], Bennett [Ben62], and Ritchie 

[Rit63]. It is interesting to note that Rabin, Stearns, Bennett, and Ritchie were all 
students at Princeton at roughly the same time. 

2 Early Issues and Concepts 
Several of the early authors were concerned with the question: What is the right 
complexity measure? Most mentioned computation time or space as obvious 
choices, but were not convinced that these were the only or the right ones. For 
example, Cobham [Cob65] suggested “... some measure related to the physical 
notion of work [may] lead to the most satisfactory analysis.” Rabin [Rab60] intro
duced axioms which a complexity measure should satisfy. With the perspective of 

2. See Hartmanis [Har81] for some interesting reminiscences. 
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20 years experience, I now think it is clear that time and space—especially time— 

are certainly among the most important complexity measures. It seems that the 

first figure of merit given to evaluate the efficiency of an algorithm is its running 

time. However, more recently it is becoming clear that parallel time and hardware 

size are important complexity measures too (see Section 6). 
Another important complexity measure that goes back in some form at least to 

Shannon [Sha49] (1949) is Boolean circuit (or combinational) complexity. Here it 
is convenient to assume that the function f in question takes finite bit strings into 

finite bit strings, and the complexity C(n) of f is the size of the smallest Boolean cir
cuit that computes f for all inputs of length n. This very natural measure is closely 
related to computation time (see [Pip79, PF79, Sch76]), and has a well developed 

theory in its own right (see Savage [Sav76]). 
Another question raised by Cobham [Cob65] is what constitutes a “step” in a 

computation. This amounts to asking what is the right computer model for mea
suring the computation time of an algorithm. Multitape Turing machines are com
monly used in the literature, but they have artificial restrictions from the point 
of view of efficient implementation of algorithms. For example, there is no com
pelling reason why the storage media should be linear tapes. Why not planar arrays 
or trees? Why not allow a random access memory? 

In fact, quite a few computer models have been proposed since 1960. Since 

real computers have random access memories, it seems natural to allow these in 

the model. But just how to do this becomes a tricky question. If the machine can 

store integers in one step some bound must be placed on their size. (If the num
ber 2 is squared 100 times the result has 2100 bits, which could not be stored in 

all the world’s existing storage media.) I proposed charged RAM’s in [Coo72a], in 

which a cost (number of steps) of about log|x| is charged every time a number x is 
stored or retrieved. This works but is not completely convincing. A more popular 
random access model is the one used by Aho, Hopcroft, and Ullman in [AHU74], 
in which each operation involving an integer has unit cost, but intergers are not 
allowed to become unreasonably large (for example, their magnitude might be 

bounded by some fixed polynomial in the size of the input). Probably the most 
mathematically satisfying model is Schönhage’s storage modification machine 

[Sch80a], which can be viewed either as a Turing machine that builds its own stor
age structure or as a unit cost RAM that can only copy, add or substract one, or 
store or retrieve in one step. Schönhage’s machine is a slight generalization of the 

Kolmogorov–Uspenski machine proposed much earlier [KU58] (1958), and seems 
to me to represent the most general machine that could possibly be construed as 
doing a bounded amount of work in one step. The trouble is that it probably is a 

little too powerful. (See Section 3 under “large number mutiplication.”) 
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Returning to Cobham’s question “what is a step,” I think what has become clear 
in the last 20 years is that there is no single clear answer. Fortunately, the compet
ing computer models are not wildly different in computation time. In general, each 

can simulate any other by at most squaring the computation time (some of the first 
arguments to this effect are in [HS65]). Among the leading random access models, 
there is only a factor of log computation time in question. 

This leads to the final important concept developed by 1965—the identification 

of the class of problems solvable in time bounded by a polynomial in the length 

of the input. The distinction between polynomial time and exponential time algo
rithms was made as early as 1953 by von Neumann [vNeu53]. However, the class 
was not defined formally and studied until Cobham [Cob65] introduced the class 
L of functions in 1964 (see Section 1). Cobham pointed out that the class was well 
defined, independent of which computer model was chosen, and gave it a charac
terization in the spirit of recursive function theory. The idea that polynomial time 

computability roughly corresponds to tractability was first expressed in print by 
Edmonds [Edm65a], who called polynomial time algorithms “good algorithms.” 
The now standard notation P for the class of polynomial time recognizable sets of 
strings was introduced later by Karp [Kar72]. 

The identification of P with the tractable (or feasible) problems has been gen
erally accepted in the field since the early 1970’s. It is not immediately obvious why 
this should be true, since an algorithm whose running time is the polynomial n1000 

is surely not feasible, and conversely, one whose running time is the exponential 
20.0001n is feasible in practice. It seems to be an empirical fact, however, that natu
rally arising problems do not have optimal algorithms with such running times.3 

The most notable practical algorithm that has an exponential worst case running 

time is the simplex algorithm for linear programming. Smale [Sma82a, Sma82b] 
attempts to explain this by showing that, in some sense, the average running time is 
fast, but it is also important to note that Khachian [Kha79] showed that linear pro
gramming is in P using another algorithm. Thus, our general thesis, that P equals 
the feasible problems, is not violated. 

3 Upper Bounds on Time 
A good part of computer science research consists of designing and analyzing enor
mous numbers of efficient algorithms. The important algorithms (from the point 
of view of computational complexity) must be special in some way; they generally 
supply a surprisingly fast way of solving a simple or important problem. Below I 

3. See [GJ79], pp. 6–9 for a discussion of this. 
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list some of the more interesting ones invented since 1960. (As an aside, it is inter
esting to speculate on what are the all time most important algorithms. Surely the 

arithmetic operations +, −, *, and ÷ on decimal numbers are basic. After that, 
I suggest fast sorting and searching, Gaussian elimination, the Euclidean algo
rithm, and the simplex algorithm as candidates.) 

The parameter n refers to the size of the input, and the time bounds are 

the worst case time bounds and apply to a multitape Turing machine (or any 
reasonable random access machine) except where noted. 

(1)	 The Fast Fourier Transform [CT65], requiring O(nlogn) arithmetic opera
tions, is one of the most used algorithms in scientific computing. 

(2)	 Large number multiplication. The elementary school method requires O(n2) 
bit operations to multiply two n digit numbers. In 1962 Karatsuba and Ofman 

[KO62] published a method requiring only O(n1.59) steps. Shortly after that 
Toom [Too63] showed how to construct Boolean circuits of size O(n1+𝜖) for 
arbitrarily small 𝜖 > 0 in order to carry out the mutiplication. I was a grad
uate student at Harvard at the time, and inspired by Cobham’s question “Is 
mutiplication harder than addition?” I was naively trying to prove that multi
plication requires Ω(n2) steps on a multitape Turing machine. Toom’s paper 
caused me considerable surprise. With the help of Stal Aanderaa [CA69], 
I was reduced to showing that multiplication requires Ω(nlogn/(loglogn)2) 
steps using an “on-line” Turing machine.4 I also pointed out in my thesis 
that Toom’s method can be adapted to multitape Turing machines in order 
to multiply in O(n1+𝜖) steps, something that I am sure came as no surprise to 

Toom. 

The currently fastest asymptotic running time on a multitape Turing 

machine for number multiplication is O(nlogn loglogn), and was devised by 
Schönhage and Strassen [SS71] (1971) using the Fast Fourier Transform. How
ever, Schönhage [Sch80a] recently showed by a complicated argument that 
his storage modification machines (see Section 2) can multiply in time O(n) 
(linear time!). We are forced to conclude that either multiplication is easier 
than we thought or that Schönhage’s machines cheat. 

(3)	 Matrix multiplication. The obvious method requires n2(2n−1) arithmetic 
operations to multiply two n × n matrices, and attempts were made to 

prove the method optimal in the 1950’s and 1960’s. There was surprise when 

Strassen [Str69] (1969) published his method requiring only 4.7n2.81 opera
tions. Considerable work has been devoted to reducing the exponent of 2.81, 

4. This lower bound has been slightly improved. See [PFM74] and [RS82]. 
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and currently the best time known is O(n2.496) operations, due to Copper
smith and Winograd [CW82]. There is still plenty of room for progress, since 

the best known lower bound is 2n2−1 (see [BD78]). 

(4)	 Maximum matchings in general undirected graphs. This was perhaps the 

first problem explicitly shown to be in P whose membership in P requires a 

difficult algorithm. Edmonds’ influential paper [Edm65a] gave the result and 

discussed the notion of a polynomial time algorithm (see Section 2). He also 

pointed out that the simple notion of augmenting path, which suffices for 
the bipartite case, does not work for general undirected graphs. 

(5)	 Recognition of prime numbers. The major question here is whether this 
problem is in P. In other words, is there an algorithm that always tells us 
whether an arbitrary n-digit input integer is prime, and halts in a number of 
steps bounded by a fixed polynomial in n? Gary Miller [Mil76] (1976) showed 

that there is such an algorithm, but its validity depends on the extended Rie
mann hypothesis. Solovay and Strassen [SS77] devised a fast Monte Carlo 

algorithm (see Section 5) for prime recognition, but if the input number 
is composite there is a small chance the algorithm will mistakenly say it 
is prime. The best provable deterministic algorithm known is due to Adle
man, Pomerance, and Rumely [APR83] and runs in time nO(loglogn), which is 
slightly worse than polynomial. A variation of this due to H. Cohen and H. 
W. Lenstra Jr. [CL82] can routinely handle numbers up to 100 decimal digits 
in approximately 45 seconds. 

Recently three important problems have been shown to be in the class P. The 

first is linear programming, shown by Khachian [Kha79] in 1979 (see [PS82] 
for an exposition). The second is determining whether two graphs of degree 

at most d are isomorphic, shown by Luks [Luk80] in 1980. (The algorithm 

is polynomial in the number of vertices for fixed d, but exponential in d.) 
The third is factoring polynomials with rational coefficients. This was shown 

for polynomials in one variable by Lenstra, Lenstra, and Lovasz [LLL82] in 

1982. It can be generalized to polynomials in any fixed number of variables 
as shown by Kaltofen’s result [Kal82a, Kal82b]. 

4 Lower Bounds 
The real challenge in complexity theory, and the problem that sets the theory apart 
from the analysis of algorithms, is proving lower bounds on the complexity of 
specific problems. There is something very satisfying in proving that a yes–no prob
lem cannot be solved in n, or n2, or 2n steps, no matter what algorithm is used. 
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There have been some important successes in proving lower bounds, but the open 

questions are even more important and somewhat frustrating. 
All important lower bounds on computation time or space are based on “diago

nal arguments.” Diagonal arguments were used by Turing and his contempories to 

prove certain problems are not algorithmically solvable. They were also used prior 
to 1960 to define hierarchies of computable 0–1 functions.5 In 1960, Rabin [Rab60] 
proved that for any reasonable complexity measure, such as computation time or 
space (memory), sufficiently increasing the allowed time or space etc. always allows 
more 0–1 functions to be computed. About the same time, Ritchie in his thesis 
[Rit60] defined a specific hierarchy of functions (which he showed is nontrivial for 
0–1 functions) in terms of the amount of space allowed. A little later Rabin’s result 
was amplified in detail for time on multitape Turing machines by Hartmanis and 

Stearns [HS65], and for space by Stearns, Hartmanis, and Lewis [SHL65]. 

4.1 Natural Decidable Problems Proved Infeasible 
The hierarchy results mentioned above gave lower bounds on the time and space 

needed to compute specific functions, but all such functions seemed to be “con
trived.” For example, it is easy to see that the function f (x, y) which gives the first 
digit of the output of machine x on input y after (|x|+|y|)2 steps cannot be computed 

in time (|x| + |y|)2. It was not until 1972, when Albert Meyer and Larry Stockmeyer 
[MS72] proved that the equivalence problem for regular expressions with squar
ing requires exponential space and, therefore, exponential time, that a nontrivial 
lower bound for general models of computation on a “natural” problem was found 

(natural in the sense of being interesting, and not about computing machines). 
Shortly after that Meyer [Mey75] found a very strong lower bound on the time 

required to determine the truth of formulas in a certain formal decidable theory 
called WSIS (weak monadic second-order theory of successor). He proved that any 
computer whose running time was bounded by a fixed number of exponentials 
(2n, 22n 

, 22
2n 
, etc.) could not correctly decide WSIS. Meyer’s Ph.D. student, Stock

meyer went on to calculate [Sto74] that any Boolean circuit (think computer) that 
correctly decides the truth of an arbitrary WSIS formula of length 616 symbols must 
have more than 10123 gates. The number 10123 was chosen to be the number of pro
tons that could fit in the known universe. This is a very convincing infeasibility 
proof! 

Since Meyer and Stockmeyer there have been a large number of lower bounds 
on the complexity of decidable formal theories (see [FR79] and [Sto79] for sum
maries). One of the most interesting is a doubly exponential time lower bound on 

5. See, for example, Grzegorczyk [Grz53]. 
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the time required to decide Presburger arithmetic (the theory of the natural num
bers under addition) by Fischer and Rabin [FR74]. This is not far from the best 
known time upper bound for this theory, which is triply exponential [Opp78]. The 

best space upper bound is doubly exponential [FR79]. 
Despite the above successes, the record for proving lower bounds on prob

lems of smaller complexity is appalling. In fact, there is no nonlinear time lower 
bound known on a general purpose computation model for any natural problem 

in NP (See Section 4.4), in particular, for any of the 300 problems listed in [GJ79]. 
Of course, one can prove by diagonal arguments the existence of problems in NP 

requiring time nk for any fixed k. In the case of space lower bounds, however, we do 

not even know how to prove the existence of NP problems not solvable in space 

O(logn) on an off-fine Turing machine (see Section 4.3). This is despite the fact 
that the best known space upper bounds in many natural cases are essentially 
linear in n. 

4.2 Structured Lower Bounds 
Although we have had little success in proving interesting lower bounds for con
crete problems on general computer models, we do have interesting results for 
“structured” models. The term “structured” was introduced by Borodin [Bor82] to 

refer to computers restricted to certain operations appropriate to the problem at 
hand. A simple example of this is the problem of sorting n numbers. One can prove 

(see [Knu73]) without much difficulty that this requires at least nlogn comparisons, 
provided that the only operation the computer is allowed to do with the inputs is 
to compare them in pairs. This lower bound says nothing about Turing machines 
or Boolean circuits, but it has been extended to unit cost random access machines, 
provided division is disallowed. 

A second and very elegant structured lower bound, due to Strassen [Str73] (1973), 
states that polynomial interpolation, that is, finding the coefficients of the polyno
mial of degree n−1 that passes through n given points, requires Ω(nlogn) multipli
cations, provided only arithmetic operations are allowed. Part of the interest here is 
that Strassen’s original proof depends on Bezout’s theorem, a deep result in alge
braic geometry. Very recently, Baur and Strassen [BS82] have extended the lower 
bound to show that even the middle coefficient of the interpolating polynomial 
through n points requires Ω(nlogn) multiplications to compute. 

Part of the appeal of all of these structured results is that the lower bounds 
are close to the best known upper bounds,6 and the best known algorithms can 

be implemented on the structured models to which the lower bounds apply. (Note 

6. See Borodin and Munro [BM75] for upper bounds for interpolation. 
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4.3 

4.4 

that radix sort, which is sometimes said to be linear time, really requires at least 
nlogn steps, if one assumes the input numbers have enough digits so that they all 
can be distinct). 

Time–Space Product Lower Bounds 
Another way around the impasse of proving time and space lower bounds is to 

prove time lower bounds under the assumption of small space. Cobham [Cob66] 
proved the first such result in 1966, when he showed that the time–space product 
for recognizing n-digit perfect squares on an “off-line” Turing machine must be 

Ω(n2). (The same is true of n-symbol palindromes.) Here the input is written on a 

two-way read-only input tape, and the space used is by definition the number of 
squares scanned by the work tapes available to the Turing machine. Thus, if, for 
example, the space is restricted to O(log3n) (which is more than sufficient), then 

the time must be Ω(n2/log3n) steps. 
The weakness in Cobham’s result is that although the offline Turing machine 

model is a reasonable one for measuring computation time or space separately, 
it is too restrictive when time and space are considered together. For example, 
the palindromes can obviously be recognized in 2n steps and constant space 

if two heads are allowed to scan the input tape simultaneously. Borodin and 

I [BC82] partially rectified the weakness when we proved that sorting n inte
gers in the range one to n2 requires a time–space product of Ω(n2/ log n). The 

proof applies to any “general sequential machine,” which includes off-line Tur
ing machines with many input heads, or even random access to the input tape. 
It is unfortunately crucial to our proof that sorting requires many output bits, 
and it remains an interesting open question whether a similar lower bound can 

be made to apply to a set recognition problem, such as recognizing whether all n 

input numbers are distinct. (Our lower bound on sorting has recently been slightly 
improved in [RS82].) 

NP-Completeness 
The theory of NP-completeness is surely the most significant development in com
putational complexity. I will not dwell on it here because it is now well known and 

is the subject of textbooks. In particular, the book by Garey and Johnson [GJ79] is 
an excellent place to read about it. 

The class NP consists of all sets recognizable in polynomial time by a non
deterministic Turing machine. As far as I know, the first time a mathematically 
equivalent class was defined was by James Bennett in his 1962 Ph.D. thesis [Ben62]. 
Bennett used the name “extended positive rudimentary relations” for his class, and 
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his definition used logical quantifiers instead of computing machines. I read this 
part of his thesis and realized his class could be characterized as the now familiar 
definition of NP. I used the term L+ (after Cobham’s class L) in my 1971 paper 
[Coo71b], and Karp gave the now accepted name NP to the class in his 1972 paper 
[Kar72]. Meanwhile, quite independent of the formal development, Edmonds, back 

in 1965 [Edm65b], talked informally about problems with a “good characterization,” 
a notion essentially equivalent to NP. 

In 1971 [Coo71b], I introduced the notion of NP-complete and proved 3
satisfiability and the subgraph problem were NP-complete. A year later, Karp 

[Kar72] proved 21 problems were NP-complete, thus forcefully demonstrating the 

importance of the subject. Independently of this and slightly later, Leonid Levin 

[Lev73], in the Soviet Union (now at Boston University), defined a similar (and 

stronger) notion and proved six problems were complete in his sense. The informal 
notion of “search problem” was standard in the Soviet literature, and Levin called 

his problems “universal search problems.” 
The class NP includes an enormous number of practical problems that occur 

in business and industry (see [GJ79]). A proof that an NP problem is NP-complete 

is a proof that the problem is not in P (does not have a deterministic polynomial 
time algorithm) unless every NP problem is in P. Since the latter condition would 

revolutionize computer science, the practical effect of NP-completeness is a lower 
bound. This is why I have included this subject in the section on lower bounds. 

4.5 #P-Completeness 
The notion of NP-completeness applies to sets, and a proof that a set is NP-
complete is usually interpreted as a proof that it is intractable. There are, however, 
a large number of apparently intractable functions for which no NP-completeness 
proof seems to be relevant. Leslie Valiant [Val79a, Val79b] defined the notion of #P
completeness to help remedy this situation. Proving that a function is #P-complete 

shows that it is apparently intractable to compute in the same way that proving a 

set is NP-complete shows that it is apparently intractable to recognize; namely, if a 

#P-complete function is computable in polynomial time, then P = NP. 
Valiant gave many examples of #P-complete functions, but probably the most 

interesting one is the permanent of an integer matrix. The permanent has a def
inition formally similar to the determinant, but whereas the determinant is easy 
to compute by Gaussian elimination, the many attempts over the past hundred 

odd years to find a feasible way to compute the permanent have all failed. Valiant 
gave the first convincing reason for this failure when he proved the permanent 
#P-complete. 
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5 Probabilistic Algorithms 
The use of random numbers to simulate or approximate random processes is very 
natural and is well established in computing practice. However, the idea that ran
dom inputs might be very useful in solving deterministic combinatorial problems 
has been much slower in penetrating the computer science community. Here I will 
restrict attention to probabilistic (coin tossing) polynomial time algorithms that 
“solve” (in a reasonable sense) a problem for which no deterministic polynomial 
time algorithm is known. 

The first such algorithm seems to be the one by Berlekamp [Ber70] in 1970, for 
factoring a polynomial f over the field GF(p) of p elements. Berlekamp’s algorithm 

runs in time polynomial in the degree of f and log p, and with probability at least 
one-half it finds a correct prime factorization of f ; otherwise it ends in failure. Since 

the algorithm can be repeated any number of times and the failure events are all 
independent, the algorithm in practice always factors in a feasible amount of time. 

A more dramatic example is the algorithm for prime recognition due to Solóvay 
and Strassen [SS77] (submitted in 1974). This algorithm runs in time polynomial 
in the length of the input m, and outputs either “prime” or “composite.” If m is in 

fact prime, then the output is certainly “prime,” but if m is composite, then with 

probability at most one-half the answer may also be “prime.” The algorithm may 
be repeated any number of times on an input m with independent results. Thus 
if the answer is ever “composite,” the user knows m is composite; if the answer is 
consistently “prime” after, say, 100 runs, then the user has good evidence that m is 
prime, since any fixed composite m would give such results with tiny probability 
(less than 2−100). 

Rabin [Rab76] developed a different probabilistic algorithm with properties 
similar to the one above, and found it to be very fast on computer trials. The 

number 2400–593 was identified as (probably) prime within a few minutes. 
One interesting application of probabilistic prime testers was proposed by 

Rivest, Shamir, and Adleman [RSA78] in their landmark paper on public key cryp
tosystems in 1978. Their system requires the generation of large (100 digit) ran
dom primes. They proposed testing random 100 digit numbers using the Solovay– 

Strassen method until one was found that was probably prime in the sense outlined 

above. Actually with the new high powered deterministic prime tester of Cohen 

and Lenstra [CL82] mentioned in Section 3, once a random 100 digit “probably 
prime” number was found it could be tested for certain in about 45 seconds, if 
it is important to know for certain. 

The class of sets with polynomial time probabilistic recognition algorithms in 

the sense of Solovay and Strassen is known as R (or sometimes RP) in the literature. 
Thus a set is in R if and only if it has a probabilistic recognition algorithm that 
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always halts in polynomial time and never makes a mistake for inputs not in R, and 

for each input in R it outputs the right answer for each run with probability at least 
one-half. Hence the set of composite numbers is in R, and in general P ⊆ R ⊆ NP. 
There are other interesting examples of sets in R not known to be in P. For exam
ple, Schwartz [Sch80b] shows that the set of nonsingular matrices whose entries 
are polynomials in many variables is in R. The algorithm evaluates the polynomi
als at random small integer values and computes the determinant of the result. 
(The determinant apparently cannot feasibly be computed directly because the 

polynomials computed would have exponentially many terms in general.) 
It is an intriguing, open question whether R = P. It is tempting to conjecture 

yes on the philosophical grounds that random coin tosses should not be of much 

use when the answer being sought is a well defined yes or no. A related question is 
whether a probabilistic algorithm (showing a problem is in R) is for all practical 
purposes as good as a deterministic algorithm. After all, the probabilistic algo
rithms can be run using the pseudorandom number generators available on most 
computers, and an error probability of 2−100 is negligible. The catch is that pseu
dorandom number generators do not produce truly random numbers, and nobody 
knows how well they will work for a given probabilistic algorithm. In fact, experi
ence shows they seem to work well. But if they always work well, then it follows that 
R = P, because pseudorandom numbers are generated deterministically so true 

randomness would not help after all. Another possibility is to use a physical pro
cess such as thermal noise to generate random numbers. But it is an open question 

in the philosophy of science how truly random nature can be. 
Let me close this section by mentioning an interesting theorem of Adleman 

[Adl78] on the class R. It is easy to see [PF79] that if a set is in P, then for each n 

there is a Boolean circuit of size bounded by a fixed polynomial in n which deter
mines whether an arbitrary string of length n is in the set. What Adleman proved 

is that the same is true for the class R. Thus, for example, for each n there is 
a small “computer circuit” that correctly and rapidly tests whether n digit num
bers are prime. The catch is that the circuits are not uniform in n, and in fact 
for the case of 100 digits it may not be feasible to figure out how to build the 

circuit.7 

6 Synchronous Parallel Computation 
With the advent of VLSI technology in which one or more processors can be 

placed on a quarter-inch chip, it is natural to think of a future computer com
posed of many thousands of such processors working together in parallel to solve 

7. For more theory on probabilistic computation, see Gill [Gil77]. 
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a single problem. Although no very large general purpose machine of this kind 

has been built yet, there are such projects under way (see Schwartz [Sch80c]). 
This motivates the recent development of a very pleasing branch of computation 

complexity: the theory of large scale synchronous parallel computation, in which 

the number of processors is a resource bounded by a parameter H(n) (H is for hard
ware) in the same way that space is bounded by a parameter S(n) in sequential 
complexity theory. Typically H(n) is a fixed polynomial in n. 

Quite a number of parallel computation models have been proposed (see 

[Coo81a] for a review), just as there are many competing sequential models (see 

Section 2). There are two main contenders, however. The first is the class of shared 

memory models in which a large number of processors communicate via a ran
dom access memory that they hold in common. Many parallel algorithms have 

been published for such models, since real parallel machines may well be like this 
when they are built. However, for the mathematical theory these models are not 
very satisfactory because too much of their detailed specification is arbitrary: How 

are read and write conflicts in the common memory resolved? What basic oper
ations are allowed for each processor? Should one charge log H(n) time units to 

access common memory? 
Hence I prefer the cleaner model discussed by Borodin [Bor77] (1977), in which 

a parallel computer is a uniform family ⟨Bn⟩ of acyclic Boolean circuits, such that 
Bn has n inputs (and hence takes care of those input strings of length n). Then H(n) 
(the amount of hardware) is simply the number of gates in Bn, and T(n) (the par
allel computation time) is the depth of the circuit Bn (i.e., length of the longest 
path from an input to an output). This model has the practical justification that 
presumably all real machines (including shared memory machines) are built from 

Boolean circuits. Furthermore, the minimum Boolean size and depth needed to 

compute a function is a natural mathematical problem and was considered well 
before the theory of parallel computation was around. 

Fortunately for the theory, the minimum values of hardware H(n) and parallel 
time T(n) are not wildly different for the various competing parallel computer mod
els. In particular, there is an interesting general fact true for all the models, first 
proved for a particular model by Pratt and Stockmeyer [PS76] in 1974 and called the 

“parallel computation thesis” in [Gol77]; namely, a problem can be solved in time 

polynomial in T(n) by a parallel machine (with unlimited hardware) if and only if it 
can be solved in space polynomial in T(n) by a sequential machine (with unlimited 

time). 
A basic question in parallel computation is: Which problems can be solved 

substantially faster using many processors rather than one processor? Nicholas 
Pippenger [Pip79] formalized this question by defining the class (now called NC, 



6 Synchronous Parallel Computation 61 

for “Nick’s class”) of problems solvable ultra fast [time T(n) = (log n)O(1)] on a par
allel computer with a feasible [H(n) = nO(1)] amount of hardware. Fortunately, 
the class NC remains the same, independent of the particular parallel computer 
model chosen, and it is easy to see that NC is a subset of the class FP of functions 
computable sequentially in polynomial time. Our informal question can then be 

formalized as follows: Which problems in FP are also in NC? 
It is conceivable (though unlikely) that NC = FP, since to prove NC ̸= FP would 

require a breakthrough in complexity theory (see the end of Section 4.1). Since we 

do not know how to prove a function f in FP is not in NC, the next best thing is to 

prove that f is log space-complete for FP. This is the analog of proving a problem is 
NP-complete, and has the practical effect of discouraging efforts for finding super 
fast parallel algorithms for f. This is because if f is log space-complete for FP and f 
is in NC, then FP = NC, which would be a big surprise. 

Quite a bit of progress has been made in classifying problems in FP as to 

whether they are in NC or log space-complete for FP (of course, they may be nei
ther). The first example of a problem complete for P was presented in 1973 by me 

in [Coo74], although I did not state the result as a completeness result. Shortly 
after that Jones and Laaser [JL77] defined this notion of completeness and gave 

about five examples, including the emptiness problem for context-free grammars. 
Probably the simplest problem proved complete for FP is the so-called circuit value 

problem [Lad75b]: given a Boolean circuit together with values for its inputs, find 

the value of the output. The example most interesting to me, due to Goldschlager, 
Shaw, and Staples [GSS82], is finding the (parity of) the maximum flow through 

a given network with (large) positive integer capacities on its edges. The interest 
comes from the subtlety of the completeness proof. Finally, I should mention that 
linear programming is complete for FP. In this case the difficult part is showing 

that the problem is in P (see [Kha79]), after which the completeness proof [DLR79] 
is straightforward. 

Among the problems known to be in NC are the four arithmetic operations 
(+, −, *, ÷) on binary numbers, sorting, graph connectivity, matrix operations 
(multiplication, inverse, deteminant, rank), polynomial greatest common divisors, 
context-free languages, and finding a minimum spanning forest in a graph (see 

[BvGH82, Coo81a, Rei82, Ruz81]). The size of a maximum matching for a given 

graph is known [BvGH82] to be in “random” NC (NC in which coin tosses are 

allowed), although it is an interesting open question of whether finding an actual 
maximum matching is even in random NC. Results in [VS81] and [Ruz81] provide 

general methods for showing problems are in NC. 
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The most interesting problem in FP not known either to be complete for FP or 
in (random) NC is finding the greatest common divisor of two integers. There are 

many other interesting problems that have yet to be classified, including finding a 

maximum matching or a maximal clique in a graph (see [Val82]). 

7 The Future 
Let me say again that the field of computational complexity is large and this 
overview is brief. There are large parts of the subject that I have left out altogether 
or barely touched on. My apologies to the researchers in those parts. 

One relatively new and exciting part, called “computational information 

theory,” by Yao [Yao82], builds on Shannon’s classical information theory by con
sidering information that can be accessed through a feasible computation. This 
subject was sparked largely by the papers by Diffie and Hellman [DH76] and Rivest, 
Shamir, and Adleman [RSA78] on public key cryptosystems, although its compu
tational roots go back to Kolmogoroff [Kol65] and Chaitin [Cha69, Cha75], who 

first gave meaning to the notion of a single finite sequence being “random,” by 
using the theory of computation. An interesting idea in this theory, considered 

by Shamir [Sha81] and Blum and Micali [BM82], concerns generating pseudoran
dom sequences in which future bits are provably hard to predict in terms of past 
bits. Yao [Yao82] proves that the existence of such sequences would have positive 

implications about the deterministic complexity of the probabilistic class R (see 

Section 5). In fact, computational information theory promises to shed light on 

the role of randomness in computation. 
In addition to computational information theory we can expect interesting new 

results on probabilistic algorithms, parallel computation, and (with any luck) lower 
bounds. Concerning lower bounds, the one breakthrough for which I see some 

hope in the near future is showing that not every problem in P is solvable in space 

O(log n), and perhaps also P ̸ NC. In any case, the field of computational com= 

plexity remains very vigorous, and I look forward to seeing what the future will 
bring. 
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4Cook’s NP-completeness 
Paper and the Dawn of the 
New Theory 
Christos H. Papadimitriou 

4.1 History 
In May 1971, Stephen A. Cook, by then at the University of Toronto after four years 
at UC Berkeley Mathematics, presented at the 3rd Symposium of the Theory of 
Computing, held at Shaker Heights, Ohio, a paper entitled “The complexity of 
theorem-proving procedures” [Coo71b]. In this now famous work, he points out 
that any decision problem solved by a polynomial-time nondeterministic Turing 

machine can be reduced, in polynomial time, to the problem of verifying Boolean 

tautologies, and thus the latter problem is the least likely to be solved in polyno
mial time among all such problems. “SAT is NP-complete,” we would have said in 

today’s terminology of our field—a field and a terminology that have been trans
formed dramatically and profoundly by this paper. In the last section of his paper, 
Cook goes on to define a framework for the complexity of proofs in first-order logic, 
and prove upper and lower bounds in it. 

To understand where this paper came from, one needs to look seven decades 
back. In 1900, David Hilbert declared war on all open problems in mathemat
ics, and mathematicians all over the world (actually, mostly Europe) resolved to 

dissect and automate mathematical truth. An explosion in mathematical logic 
resulted, culminating three decades later in Kurt Gödel’s Incompleteness The
orem, which established that Hilbert’s dream is unattainable. Spurred by that 
momentous result, mathematicians focused on extinguishing the last remaining 

hope for the automation of truth project: One could still hope that perhaps the
orems can be proved mechanically, as long as they can be proved at all. This is 
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precisely Hilbert’s Entscheidungsproblem featured in the title of Turing’s paper— 

as we shall see, a topic actually revisited in Section 4.3 of Cook’s paper. But the 

impossibility of the Entscheidungsproblem cannot be proved through logic alone, 
like Gödel’s theorem. This is how logicians were finally forced to leave logic behind 

and define computation. And define they did: Alonzo Church, Emil Post, Stephen 

Kleene (working from his notes for Gödel’s seminar, as turmoil in Europe had by 
then shifted much of the activity to New Jersey), A. A. Markov in the Soviet Union, 
and of course Alan Turing; all of these very different conceptions of computa
tion were soon to be proved equivalent. Turing’s entry, however, was particularly 
compelling and influential as his definition was vividly physical and visually engag
ing, and his paper contained a pitch for universality and software. Importantly, it 
boasted the paradigmatic proof that the halting problem is undecidable: Computer 
science is the only known field of scientific discourse that was born aware of its own 

limitations. 
War interrupted this intellectual pursuit but intensified the race for actual 

computing machines. It was immediately after the end of the war that John von 

Neumann, the protean and overpowering mathematician who was the first to 

absorb Gödel’s proof and Turing’s ideas, consolidated, focused, and advanced the 

era’s thinking about computers with his “First draft of a report on the EDVAC” and 

the ensuing creation of the first computers. 
In the years after that, a new mathematical field started crystalizing around the 

now extant computers, seeking algorithms for their applications but also math
ematical foundations and guidance for creating better hardware and software— 

especially compilers, the towering engineering problem of early computer science, 
soon to be joined by the design of operating systems, databases, chips, networks. 
During the 1950s and 1960s, and for a couple of decades to follow, developing the 

foundations of hardware and software was the job of computer science theorists— 

as opposed to the theoretically inclined researchers in these applied fields, as is 
the norm today. As the new field was looking around for inspiration in the late 

1950s, another intellectual giant of that era, Noam Chomsky, articulated his hier
archy of languages—hinting at a parallel one of computation—and computer sci
entists were impressed and inspired. Automata and language theory, so pertinent 
to computation and especially to the compilers project, became choice subjects for 
theoreticians. To understand the extent to which this had happened, just look at 
the titles of the 14 papers surrounding Cook’s in the proceedings of 1971 STOC: 

∙ “Some results in tree automata” 

∙ “Block structure: retention or deletion?” 

∙ “On the parallel computation of local operations” 
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∙	 “An iteration theorem in one-counter languages” 

∙	 “Intersection-closed full AFL1 and the recursively enumerable languages” 

∙	 “Absolutely parallel grammars and deterministic finite-state transducers” 

∙	 “Addressable data graphs” 

∙	 Cook’s paper 

∙	 “The care and feeding of LR(k) grammars” (by 2020 Turing award winners 
Alfred Aho and Jeffrey Ullman) 

∙	 “Domolki’s algorithm applied to generalized overlap resolvable grammars” 

∙	 “An algorithm generating the decision table of a deterministic bottom-up 

parser of a subset of context-free languages” 

∙	 “A decision procedure for generalized mapability-onto of regular sets” 

∙	 “Complexity of formal translations and speed-up results” 

∙	 “Classification of computable functions by primitive recursive classes” 

∙	 “Complexity classes of partial recursive functions” 

Theoreticians were already working on complexity, as can be seen in these last 
titles, albeit on an early version inspired and heavily influenced by Kleene’s recur
sive function theory. That this theory can be simplified and sharpened tremen
dously if one starts from the basis of polynomial-time computation was not yet 
part of the field’s culture. 

Polynomial time had already appeared in the field’s horizon a number of times. 
In 1953, John von Neumann had bragged about an algorithm of his being polyno
mial, compared to the exponential incumbent [vNeu53]; Alan Cobham, a logician 

working for IBM, had defined in 1964 the class of polynomial-time computable 

functions and called it ℒ [Cob65]—that is why Cook, in his 1971 paper, denotes what 
we now know as P by ℒ*, the decision variant of ℒ. In 1965–1967, Jack Edmonds 
had informally defined P and NP and conjectured that they are different [Edm67]. 
Finally—even though few people, if any, besides Gödel knew this in the year 1971 
[Har93]—Gödel had written 15 years earlier a letter to von Neumann (who was at 
that point terminally sick) pondering whether a problem in logic that today can be 

seen as an NP-complete generalization of satisfiability—namely, deciding whether 
there is a proof of length n of a given theorem in a given axiomatic system of first-
order logic—can be solved in time polynomial in n (Gödel himself appears in the 

letter to be surprisingly open to this possibility). 

1. Abstract families of languages. 
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4.2 Cook’s Other 1971 Paper 
What are the origins of Cook’s apparent interest in, and familiarity with, poly
nomial time? Cook was trained in logic (his Ph.D. advisor at Harvard was Hao 

Wang, with whom he had written a paper in set theory [CW66]) but was also inter
ested in forms of complexity beyond recursion theory—witness his Ph.D. thesis on 

the ways in which integer multiplication is harder than addition [CA69]. During 

his time at Berkeley during the late 1960s, he taught a graduate course on com
plexity, which was squarely within the dominant paradigm: the title of his notes 
for this class, included in this volume, is “A survey of classes of primitive recur
sion functions.” In these notes, however, Cook dwells upon the lower expanses of 
this domain, especially on classes of primitive recursive functions that correspond 

to Turing machine space and time bounds, in particular, polynomial and linear 
bounds, respectively. This includes Cobham’s class as well as Bennett’s classes of 
extended positive rudimentary relations and functions [Ben62]. Significantly, Cook 

observes that these classes are exactly those Turing machine computable in non
deterministic polynomial time. Connections to classical computability also play a 

role in his NP-completeness paper, where Cook defines the concept of polynomial 
degrees (“degree” being a common term in recursive function theory), precisely 
the step needed for connecting recursion-inspired complexity with the realm of 
polynomial-time computation. 

Like most theoreticians in the 1960s, Cook had also been active in automata the
ory, albeit with a forward-looking twist: during the late 1960s, he published a series 
of papers relating pushdown automata of various grades with Turing machine 

computation [Coo69, Coo70]. 
Four months before his talk at Shaker Heights, Cook published the most mature 

of these works in the Journal of the ACM [Coo71a]. He endows the pushdown 

automaton with a log n-bounded Turing machine tape and shows that the result
ing device is tantamount to polynomial-time computation! This follows from the fact 
that, with the help of a pushdown store, logarithmic space, both deterministic and 

nondeterministic, is equivalent to polynomial deterministic time—in fact, this is 
where Cook first introduced the notation ℒ*. The results are stated for an arbi
trary space bound no smaller than log n, but there is clear if implicit emphasis on 

log n space and polynomial time. That the computation of a pushdown automa
ton can be fathomed by an algorithm that analyses its configurations had been 

known, and a logarithmic tape makes this a polynomial-time deterministic algo
rithm. To prove the inverse direction, that polynomial deterministic time can be 

simulated by a logarithmic tape and a pushdown machine, Cook (1) standard
izes the polynomial-time Turing machine so that the square inspected at time t 
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is predictable, a familiar maneuver known as obliviousness, and (2) shows how 

the deterministic augmented pushdown device can explore the polynomial-time 

machine’s reachable configurations until an accepting one is found. The last part 
of this paper points out that this method resolves several open problems in the 

theory of pushdown and stack automata. Cook concludes by pondering, I believe 

for the first time, whether logarithmic space can be the same as P. 
This is a remarkable paper for at least three reasons besides its stunning orig

inality and power: It connects the core of automata theory, a subject that had 

arguably become the dead-end research direction of theory, with the fresh, dawn
ing paradigm of polynomial-time computation. Second, it takes some care to see 

why this result does not provide a path to P = NP: why can’t NP also be simulated 

by a tape and a stack? Finally, since an extended abstract of this paper had been 

published in the Proceedings of the 1st STOC in 1969 [Coo69], it tells us that Stephen 

Cook had spent time thinking about how to understand the relationship between 

(what is now called) P and NP at least two years before he penned the famous paper 
that he presented at the 3rd STOC. 

4.3 The Paper at the 3rd STOC 
The title, “The complexity of theorem-proving procedures,” comes across as a 

rather unexpected description of the paper’s momentous ideas and results, but 
the narrative itself is quite direct. The first sentence of the summary announces the 

main result, that nondeterministic polynomial time reduces to tautologies, while 

the second sentence defines what would become known as “Cook reductions”— 

even though, as far as I can tell, only “Karp reductions” are used in this paper.2 

The third sentence states that the clique problem has the same polynomial degree 

of difficulty as the tautologies problem—they both belong to an equivalence class 
that would soon be known as “NP-complete.” 

The mathematical framework is laid out next. A problem is a set of strings—this 
is the legacy of formal language theory that, in my opinion, has rendered Complex
ity Theory a bit more awkward than it had to be. Polynomial degrees are defined, 
and so is P—alias ℒ*, the polynomial degree of the empty language. Then Cook 

recites several problems resisting classification in P: The subgraph isomorphism 

problem exemplified by clique, the graph isomorphism problem, DNF tautologies, 
3DNF tautologies (primality is also mentioned). Since the class NP is not defined 

or dealt with explicitly, except to reduce later from its generic problem, the author 

2. See the chapter by Nicholas Pippenger for a full discussion of these reductions. 
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is cavalier with complement, and as a result his list contains specimens from both 

NP and coNP. 
The proof of the main result—that any nondeterministic polynomial time com

putation can be rendered as a DNF—starts and proceeds in the manner we all 
know and love, until one comes across an interesting oversight: at the most cru
cial moment of the proof, when the nondeterminism of the machine should be 

confronted head on by Boolean logic, a plainly deterministic machine is instead 

simulated! Since at that point only Steve Cook knew how to prove this theorem, in 

the coming years the mistake would give pause, and a little fright, to many a reader. 
But of course it can be fixed easily with just another layer of Boolean logic. 

The next theorem contains two reductions from DNF tautologies: to 3DNF and 

to clique. These are the first reductions from SAT—legions would follow, of course. 
In the preamble of the proof, the author admits, possibly with faint self-reproach, 
that he failed to devise similar reductions to graph isomorphism and primality, 
while he later points out that 2DNF is polynomial-time solvable through the Davis– 

Putnam algorithm. The two theorems provide clear evidence, the author argues, 
that Boolean tautologies are not easy to prove and that subgraphs are hard to iden
tify, and the same must hold for “any combinatorial problem to which tautologies 
is P-reducible.” Finally, Cook proposes that it is worth investing considerable effort 
trying to prove that such problems cannot be solved in polynomial time—a question 

that, he finally points out, cannot, alas, be settled by the diagonal argument. 

4.4 The Mystery of Section 4.3 
I find the last part of this paper brilliant and fascinating, and yet a rather odd 

coda of the paper that launched modern complexity theory. In a dense section 

entitled “The predicate calculus,” Cook turns to the complexity of proving incon
sistency in first-order logic, which is tricky to define since Turing proved that the 

problem is undecidable. The complexity of falsifying an inconsistent first-order 
formula is a function not of the length of the formula but of an uncomputable 

syntactic measure of its “logical complexity” (the minimum size of a canonical 
Herbrand expansion of the functional form of the formula containing a Boolean 

contradiction). Very roughly, Cook proves that this complexity function cannot be 

much smaller than the square root function (Theorem 3A) while it is at most an 

exponential (Theorem 3B). 
The proof of the lower bound is interesting as it vaguely parallels the proof of the 

paper’s Theorem 1, albeit in the logic and decidability domain: it entails a reduc
tion from the halting problem of Turing machines to the consistency of first-order 
formulae. The logical complexity (in the above sense) of the constructed formula 

is quadratic in the number of steps of the Turing machine (hence the square root 
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in the lower bound, while logarithmic factors are lost in the concluding diagonal 
argument). The reduction itself parallels Turing’s 1937 construction for the proof 
of the Entscheidungsproblem, but Cook’s proof instead cites a simpler 1964 reduc
tion by Hao Wang from Turing machine computation to a much more restricted 

class of first-order formulae, the so-called AEA case [Wan62]. 
There is an exponential gap between the upper and lower bounds in Theorem 

3A and 3B, and Cook points out that there are important reasons for this: a better 
upper bound in 3B would imply that nondeterministic time can be simulated in 

better than exponential deterministic time. And a larger lower bound in 3A would 

come close to showing that Boolean tautologies require superpolynomial time. 
There is a typo in this last statement: “1A” is written instead of “3A.” 

It seems magical that this part’s concluding argument brings up, in a very natu
ral way and yet starting from very far, the two important questions (“can tautologies 
be recognized in polynomial time?” and “can nondeterministic time be simulated 

better than exponentially?”) that have been already shown equivalent in the paper’s 
Theorem 1. 

Outside science, what I enjoy most is writing stories. After spending time with 

Steve Cook’s paper, I have come to suspect that there is a beautiful, intriguing 

story behind it. Perhaps the paper did not start as an assault on the complexity 
of Boolean logic and related combinatorial problems. Maybe it started with the 

elegant results in Section 4.3, a principled way of assessing the performance of 
the automated theorem provers in first-order logic that had become fashionable 

in the 1950s and 1960s—hence the paper’s title. Proving and contemplating these 

results created an explosive brew. This genre of theorem proving relates truth in 

first-order logic to tautology in Boolean logic. The ancient reduction from Tur
ing machines to logic was remembered—starting of course from deterministic 
machines, which can even help explain the famous deterministic slip in the proof 
of Theorem 1. To fathom the origin of the exponential gap between the two bounds 
of Theorem 3, the problem of simulating deterministically a nondeterministic 
machine was considered side-by-side with the question of the complexity of tau
tologies. Perhaps this unique combination of mathematical ingredients was soon 

followed by a spark of inspiration, which led to what became Theorem 1. 
And perhaps “1A” is not a chance typo but the telltale fossil of the moment when 

Theorem 1 of a nice paper on “the complexity of theorem proving procedures” was 
re-numbered as Theorem 3 of a larger opus destined to become a revered classic. 

4.5 Aftermath 
Today, the theory of computation is a thriving, dynamic, sophisticated, and cohe
sive mathematical discipline, continually expanding its horizons and adapting its 
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reach yet always centered on the dual subject of algorithms and complexity. It is 
also clear that the emphasis on these two subjects was not there during the 1960s. 
No single event ever launches a field, but I believe that two landmark research 

developments must have eased this transition: the development of the first surpris
ing and mathematically sophisticated algorithms exemplified by Strassen’s in 1969 

[Str69] and the four Russians’ [ADKF70] in 1970, and the rise of NP-completeness 
in 1971–1972. 

Already at the next theory conference after the 3rd STOC, the 12th SWAT3 in 

October 1971, two of the five sessions had algorithmic themes: Bob Tarjan spoke 

about depth-first search, Hopcroft and Karp presented their n 2
5 
bipartite match

ing algorithm, while algebraic complexity also had a presence (as it already had 

five months earlier at the 3rd STOC). Something new was undoubtedly in the air. 
This was not lost to IBM—at that point the major corporate sponsor of research 

in theory, and many of the exponents of the new ideas were invited to a workshop 

at Yorktown Heights the following March. There, barely ten months after Cook’s 
talk, Richard Karp presented his new paper, “Reducibility among combinatorial 
problems” [Kar72]. 

After reading Cook’s paper, Karp took a careful look around him and noticed 

something extraordinary: For almost every problem that he knew—and Karp did 

know many problems—either there was a polynomial time algorithm or a reduc
tion from SAT.4 Karp’s paper established, with its list of 21 complete problems, that 
the pattern identified by Cook was not an isolated phenomenon but a classifica
tion methodology of surprising power and reach. This was not at all obvious at 
the time. In a 1975 paper [Lad75a], Richard Ladner proved that, if P ̸ NP, then = 

there is an infinity of intermediate degrees between P and the complete problems, 
a situation quite familiar from the study of recursive functions. And yet, some
how, this plethora of halfway problems has a way of keeping out of sight. Apart 
from graph isomorphism, a few difficult total functions requiring their own treat
ment see, for example, Goldberg and Papadimitriou [GP18], and the still unfolding 

epic of approximability, there are very few corners of the NP realm that have not 
been completely sorted out with respect to their complexity through the use of 
NP-completeness. 

Meanwhile, in the Soviet Union, a brilliant if laconic paper was published 

in 1973 by a 25-year-old mathematician named Leonid Levin proving that sev
eral problems, including a variant of the tautology problem, are complete for 

3. “Switching and Automata Theory,” a conference that would soon be renamed FOCS. 

4. Karp also cites three problems—Graph Isomorphism, Linear Inequalities, and Nonprimes— 

that are in NP but not NP-complete. 
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nondeterministic polynomial time [Lev73]—even though the rest of the world did 

not take notice for another few years. One stylistic difference is that Levin, unham
pered by the formal language tradition, speaks not of sets of strings but of search 

problems, multivalued functions from inputs to verifiable solutions—see Trakht
enbrot [Tra84] for a paper recounting the research tradition on perebor (Russian 

for “exhaustive search”) that culminated in this paper. Levin had been speaking 

publicly about his results since two years before his paper appeared, and hence 

Theorem 1 of Cook’s paper is now known as the Cook–Levin theorem. 
Back in the West, our field had started to take its distinctive shape. Don Knuth, 

the ingenious chronicler of the mathematical nature of computer science, got busy 
with the task of giving the phenomenon a name; after a long and almost demo
cratic process, the adjective NP-complete emerged victorious [Knu74]. A couple of 
years later, two young researchers at Bell Labs, Mike Garey and David Johnson, 
started drafting chapters of a book on the subject [GJ79]. This book would become 

arguably one of the most leafed through scientific documents of all times, as NP-
completeness permeated, illuminated, sharpened, informed, and transformed all 
of computer science, and much of mathematics and science—as well as general 
scientific culture. 

The mathematical problem that Stephen Cook modestly encouraged his read
ers to “spend considerable effort” pondering may be, ultimately, the most weighty 
consequence of his NP-completeness paper. The P vs. NP question—“Can exhaus
tive search always be avoided?”—has emerged over the past five decades as an 

essential scientific conundrum, next to the origin of life and the unification of 
force fields. The kind of profound, consequential puzzle, concrete yet universal, 
that adds meaning not only to science but to human life itself. 





5cal propositional calculi and compared them with regards to their efficiency, and 

introduced the pigeonhole principle tautology PHPn, which remains the prime exam
ple of a tautology hard to prove in weaker systems, rivaled only by the tautology 
proposed earlier by Tseitin [Tse70]. It also showed that the central question of 
whether there exists a propositional proof system allowing polynomial size proofs 
of all tautologies is equivalent to a central question of complexity theory, namely 
whether the class NP is closed under complementation. 

Classical proof theory of first-order logic developed in the first half of the 20th 

century assigned to proofs several combinatorial characteristics and some of them 

can be perceived as measures of complexity; for example, the height of a proof 
tree. Primary emphasis was on constructions producing various normal forms of 
proofs and the combinatorial characteristic helped to measure the progress of nor
malization constructions. The question about the minimum length of a proof of 
a statement (measured by either the number of steps or by the size, i.e., the num
ber of symbols) was also studied, primarily in the context of speed-up results; the 

studies by Gödel [Göd36], Mostowski [Mos52], Ehrenfeucht and Mycielski [EM71], 
and Parikh [Par71, Par73] can serve as illustrations of this research. The results rest 
on constructions underlying the undecidability of the Halting problem or Gödel’s 
Incompleteness theorem and do not give any insight1 into analogous problems in 

propositional logic. 

The Cook–Reckhow 
Definition 
Jan Krajíček 

The Cook–Reckhow paper [CR79] introduced the notions of propositional proof 
systems and polynomial simulations among them, described several classes of logi

1. In fact, Parikh [Par71] introduced the theory PB (now called IΔ0, cf. Krajíček [Kra95, Kra19]) that 
later in the 1980s turned out to be important for the development of proof complexity. 
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It was the Cook–Reckhow 1979 paper [CR79] that defined the area of research we 

now call proof complexity. There were earlier papers that contributed to the subject 
as we understand it today, the most significant being Tseitin’s [Tse70]. But none of 
them introduced general notions2 that would provide an explicit and universal link 

between lengths-of-proofs problems and computational complexity theory. 
In this chapter, we shall highlight three particular definitions from the paper: 

of proof systems, p-simulations, and the formula PHPn, and discuss their role in 

defining the field. We will also mention some related developments and open prob
lems. In particular, we shall show that the general definition of proof systems that 
has seemingly little to do with how ordinary logical calculi are defined is actually 
equivalent to the calculi definition with a more general treatment of logical axioms 
than is usual (Section 5.1), we shall present the optimality problem stemming from 

the notion of simulations (Section 5.2), and we shall discuss the role of the PHPn 

formula in proof complexity lower bounds, its limitations and modern variants 
aimed at strong proof systems (Section 5.3). The paper [CR79] also discusses a few 

measures of complexity of proofs other than proof size and describes some rela
tions among them; we shall not discuss this and instead we refer the reader to 

available literature. 
The Cook–Reckhow paper [CR79] had a precursor [CR74], an extended abstract 

that summarized some research presented later in Cook and Reckhow [CR79], as 
well as from Reckhow’s Ph.D. thesis [Rec76]. This earlier paper differs from Cook 

and Reckhow [CR79] in several aspects: it uses simulations (see Section 5.2) as 
opposed to the latter’s finer notion of p-simulations, and it contains neither the 

Extended Frege system nor the PHP tautology. It presents a rather succinct ver
sion of the construction underlying Reckhow’s theorem that was replaced in Cook 

and Reckhow [CR79] by a similar statement for Extended Frege systems with much 

easier (and more illuminating) proof (cf. Section 5.2). It also treats in detail the 

sequent calculus that is only glanced over in Cook and Reckhow [CR79], and it 
derives some super-polynomial lower bounds, using Tseitin’s [Tse70] results, for 
weak proof systems such as tree-like resolution or semantic trees. 

The aim of this chapter is to give an idea to the nonexpert reader about the main 

ideas stemming from Cook and Reckhow [CR79] and about the fundamental prob
lems of proof complexity. Further information about proof complexity, its basic 

2. Tseitin’s [Tse70] paper offers no motivation for the research reported there but one of the 

motivations were questions we now formulate as the P vs. NP problem (another motivation was 
computer processing of natural languages) and the special role the Entscheidungsproblem for 
propositional calculus plays in them (personal communication). 
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as well as advanced parts, and about topics in mathematical logic and complexity 
theory it relates to can be found in Krajíček [Kra95, Kra19]. 

5.1 Definition of Proof Systems 
The main example of a logical propositional calculus to keep in mind is a Frege 
system. It is any calculus operating with propositional formulas over a complete 

basis of logical connectives (i.e., all Boolean functions can be defined in the lan
guage), having a finite number of sound axiom schemes and inference rules that 
are implicationally complete. The latter term means that if a formula A is a logi
cal consequence of formulas B1, . . . , Bm, then it can be derived from them in the 

calculus. An example of a complete language is the DeMorgan language with con
stants 0, 1 (corresponding to false and true) and connectives ¬, ∨, and ∧. We shall 
denote by TAUT the set of tautologies in this language, and we shall tacitly assume 

that TAUT ⊆ {0, 1}*, with formulas being encoded by binary strings in some 

natural way. 
There are a number of such systems described in logic textbooks, and they are 

often called Hilbert-style, referring to Hilbert’s work in proof theory [HA50, HB34, 
HB39]. The form of calculi is based on Frege’s [Fre79], hence the name Cook and 

Reckhow [CR79] chose for this class of propositional calculi. 
The calculi are sound (every provable formula is a tautology) and complete (every 

tautology is provable). In addition, the key property singled out by Cook and Reck
how [CR79] is that to recognize whether a string of symbols is a valid proof in the 

calculus or not is computationally feasible: it can be done by a p-time algorithm. 
This leads to the following fundamental definition. 

Definition 5.1	 Cook–Reckhow [CR79] 
A propositional proof system is any p-time computable function 

f : {0, 1}* → {0, 1}* 

such that 

TAUT = Rng(f ). 

Any w ∈ {0, 1}* such that f (w) = A is called an f -proof of A. 

Cook and Reckhow [CR79, Def. 1.3] actually define more generally a proof sys
tem for any L ⊆ {0, 1}* by the condition L = Rng(f ), and consider proof systems for 
the set of tautologies in any fixed language. 

A Frege system F can be represented by a function f that takes a string w 

and maps it to the last formula of w, if w is a sequence of formulas that forms 
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a valid F-proof, or to the constant 1 if w is not an F-proof. The soundness of F 

implies that Rng(f ) ⊆ TAUT and its completeness implies the opposite inclusion 

TAUT ⊆ Rng(f ). 
It is easy to see that a number of other classes of propositional calculi consid

ered in mathematical logic literature fit the definition in the same sense as Frege 

systems do. These calculi include resolution, sequent calculus, and natural deduc
tion. Less usual examples of propositional proof systems can be constructed as 
follows. Take a consistent first-order theory axiomatized by a finite number of 
axioms and axiom schemes that is sound and contains some simple base theory 
(in order to guarantee both the correctness and the completeness) and interpret it 
as a proof system: a proof of formula A is a proof in the theory of the formalized 

statement A ∈ TAUT. Other examples are logic calculi that are set up to prove the 

unsatisfiability of formulas: these can be interpreted as proof systems by accepting 

a refutation of ¬A as a proof of A. 
In addition, the general form of the definition allows us to interpret various cal

culations in algebra as propositional proofs. Here it is more natural to speak about 
refutation systems. If we have a CNF formula that is a conjunction of clauses Ci, 
we can represent each Ci by a constraint of an algebraic form and use a suitable 

algebraic calculus to derive the unsolvability of the formula. For example, a clause 

p ∨ ¬q ∨ r 

together with the requirement that we look for 0−1 solutions can be represented 

by polynomial equations 

(1 − p)q(1 − r) = 0 , p2 − p = 0 , q2 − q = 0 , r2 − r = 0 

the first equation states that the clause contains a true literal while the last three 

equations force 0−1 solutions over any integral domain. In this case we can use 

a calculus deriving elements of the ideal generated by the equations represent
ing similarly all clauses of the formula, trying to derive 1 as a member of the 

ideal and thus demonstrating the unsolvability of the equations and hence the 

unsatisfiability of the formula. 
Another approach is to represent the clause as integer linear inequalities 

p + (1 − q) + r ≥ 1 , 1 ≥ p, q, r ≥ 0 

and use some integer linear programing algorithm to derive the unsolvability of 
the system of inequalities representing the whole CNF formula. It is a great advan
tage of Definition 5.1 that it puts all these quite different formal systems under one 

umbrella. 
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Proof systems can be also defined equivalently in a relational form. A relational 
propositional proof system is a binary relation P(x, y) that we interpret as the prov
ability relation y is a proof of x. It is required that it is p-time decidable and that for 
any formula A it holds that: 

A ∈ TAUT iff ∃wP(A, w). 

This is closer in form to logical calculi (and can be represented by the function 

version as Frege systems were before) but it is equally general: a functional proof 
system f is represented by the relation f (y) = x. 

A proof system f is p-bounded iff there exists c ≥ 1 such that for all A, |A| > 1, 

A ∈ TAUT ⇒ ∃w(|w| ≤ |A|c) f (w) = A. 

In the relational form this would read 

A ∈ TAUT ⇒ ∃w(|w| ≤ |A|c) P(A, w) 

and combining this with soundness we get 

A ∈ TAUT ⇔ ∃y(|y| ≤ |A|c)P(A, y). 

The right-hand side expression has the well-known general form in which any NP 

set can be defined. Hence, we get as a simple but important corollary to the defi
nition the following statement (the second equivalence uses Cook’s theorem: the 

NP-completeness of SAT, cf. Cook [Coo71b]). 

Theorem 5.1 Cook–Reckhow [CR79] 
A p-bounded proof system exists iff TAUT ∈ NP iff NP = coNP. 

This theorem determines 

Problem 5.1 Main problem of proof complexity 
Is there a p-bounded proof system for TAUT? 

By Theorem 5.1, showing that no p-bounded proof system exists would imply, in 

particular, that P ̸= NP because P is closed under complementation. On the other 
hand, defining a p-bounded proof system f would allow to witness various coNP
properties by short witnesses (f -proofs); Cook and Reckhow [CR74] mentions the 

property that two graphs are not isomorphic. 
One may consider variants of the definition of proof systems when the prov

ability relation is not necessarily decidable by a p-time algorithm but only by more 

general algorithm; for example, using some randomness. My view is that this 
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changes the basic problems of proof complexity substantially. While it may link 

propositional proof systems with various other proof systems considered in dif
ferent parts of complexity theory, it is not clear that it will shed light on proof 
complexity proper. This may change if some of these other parts of complexity 
theory advance significantly on their own fundamental open problems. 

The Cook–Reckhow definition is handy for establishing Theorem 5.1 and the 

connection to complexity theory but the reader may wonder if it does not deviate 

from logical form of calculi too much. In fact, it can be shown that every proof sys
tem can be p-simulated (in the sense of the next section) by a Frege system whose 

set of axioms is not given just by a finite number of axiom schemes but is a possibly 
infinite but easy to recognize (in p-time, in particular) sparse subset of TAUT. Doing 

this precisely is rather technical and we refer the reader to Krajíček and Pudlák 

[KP89] and Krajíček [Kra95, Kra19]. 

5.2 Simulations among Proof Systems 
When studying the problem whether some proof system is p-bounded, it is use
ful to be able to compare two proof systems with respect to their efficiency. The 

following two notions3 are aimed at that. 

Definition 5.2 Cook–Reckhow [CR79] 
Let f , g be two proof systems. A simulation of g by f is any function 

h : {0, 1}* → {0, 1}* 

such that for all w ∈ {0, 1}* , |h(w)| ≤ |w|c, for some independent constant c ≥ 1 and 

all |w| > 1, and such that 

f (h(w)) = g(w). 

Simulation h a is p-simulation if it is p-time computable. 
Proof system f (p-)simulates g (f ≥ g and f ≥p g in symbols, respectively) iff 

there is a (p-)simulation of g by f . 

In other words, the statement that f ≥ g says that if we replace f by g we can 

speed-up proofs at most polynomially, while the statement that f ≥p g says that we 

can even efficiently translate g-proofs into f -proofs. Both these relations are quasi-
orderings (we get partial orderings after factoring by the equivalence relations of 
mutual simulations). 

The significance of p-simulation in the context of the system PV is discussed in 

S. Buss’s Chapter 6 in the current volume. 

3. p-simulations are also defined in Cook [Coo75b]. 
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There are other options for defining a quasi-ordering on proof systems. In par
ticular, if we did not insist in Definition 5.1 that all proof systems prove tautologies 
in the same language (we have defined TAUT using the DeMorgan language only) 
but allowed tautologies in different languages, then a (p-)simulation should allow 

translations of formulas as well as proofs. By insisting that the target set is TAUT, 
we forced the incorporation of such a translation of formulas into the definition 

of particular proof systems that may operate with formulas in other languages or 
even with polynomials or other objects. In fact, considering, instead of proposi
tional proof systems, proof systems for any coNP-complete set, we ought to allow 

p-reductions between such sets and TAUT. 
However, for positive results (as is Theorem 5.2 bellow) p-simulations allow 

the formulation of the strongest possible statements while the strongest negative 

results (obtained by proving a super-polynomial lower bound for f -proofs of for
mulas for which there are polynomial size g-proofs) talk about super-polynomial 
speed-ups and hence about the nonexistence of simulations. Thus, the two types 
of simulations serve their purpose very well. 

Cook and Reckhow [CR79] compared various logical proof systems in terms of 
p-simulations; the following statement summarizes their most memorable results 
in this respect. 

Cook–Reckhow [CR79] 

1. All Extended Frege systems in all languages p-simulate each other. 

2. Frege systems and the propositional parts of natural deduction and sequent 
calculus mutually p-simulate each other. 

3. Extended Frege system EF and Tseitin’s Extended Resolution ER are p-
equivalent, and they are p-simulated by any Frege system with the substi
tution rule. 

Extended Frege systems EF were defined in Cook and Reckhow [CR79] in a direct 
analogy with the Extended Resolution system ER of Tseitin [Tse70]. Any such sys
tem starts with a Frege system and in addition allows the abbreviation of formulas 
by new atoms that may be subsequently used in a proof. In particular, during an 

EF-proof we can take a new atom q (an extension atom) not used so far and not 
occurring in the target formula A to be proved, any formula D not containing q, 
and introduce the equivalence q ≡ D (represented in the language of the system) 
as a new extension axiom. Note that EF is not a Frege system as the introduction 

of extension axioms does not fit the schematic way Frege axioms are supposed to 

be defined. The first statement in the theorem is a weaker version of Reckhow’s 
theorem [Rec76], which is stated for Frege systems. The version for Extended Frege 
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systems is much easier to prove (see Krajíček [Kra95, Kra19] for published proofs 
of the stronger version). 

For the definition of natural deduction see Prawitz [Pra65], for sequent calculus 
see any of Gentzen [Gen36] and Krajíček [Kra95, Kra19] (the sequent calculus part of 
the statement is just mentioned in Cook and Reckhow [CR79] while natural deduc
tion is treated in detail). The substitution rule allows the inference from a formula 

B(p1, . . . , pm) of an arbitrary substitution instance B(C1, . . . , Cm) in one proof step. 
A Substitution Frege system SF is a Frege system augmented by this rule. It was 
proved later in Dowd [Dow79] (indirectly) and in Krajíček and Pudlák [KP89] (an 

explicit p-simulation) that EF actually p-simulates SF as well. 
An illuminating description of EF is that it is essentially a Frege system that 

operates with circuits rather than with formulas; this has been made precise in 

Jěrábek [Jěr04]. Perhaps even more useful is the statement that the minimum size 

s of an EF-proof of formula A is proportional to the minimum number of steps in 

a Frege proof of A and |A|, or to the minimum number of different formulas that 
need to occur as subformulas in any Frege proof of A and |A|, cf. Cook and Reckhow 

[CR79] or Krajíček [Kra95, Kra19]. Hence moving from F to EF means that we are 

replacing the size as the measure of complexity of Frege proofs by the number of 
steps. This is interesting because from the point of view of mathematical logic the 

number of steps is a very natural complexity measure. 
EF is also important because of its relation to a particular theory PV introduced 

by Cook [Coo75b] at the same time (he used ER in his paper). This is discussed in S. 
Buss’s Chapter 6 in the current volume. Theory PV (standing for polynomially veri
fiable) allows the formalization of a number of standard computational complexity 
constructions and arguments. Understanding the power of the proof system EF 

and, in particular, showing that it is not p-bounded is considered in the field as the 

pivotal step towards solving the Main Problem and proving that NP ̸ coNP. In = 

particular, it is also known that any super-polynomial lower bound for EF implies 
that NP ̸ cek [Kra19, section 12.4]). = coNP is consistent with PV (cf. Krajíˇ

We shall mention one problem formulated only later in Krajíček and Pudlák 

[KP89] that is, however, natural and is implicit in the definition of simulations. 

Problem 5.2 Optimality Problem 

Is there a proof system that (p-)simulates all other proof systems? 

Such a maximal proof system is called (p-)optimal after Krajíček and Pudlák 

[KP89]. We have (names for) three types of proof systems whose existence is con
sidered by most researchers unlikely: p-bounded, p-optimal, and optimal. Every 
p-bounded or p-optimal proof system is also optimal, and this rules out three out 
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of eight possibilities for the existence/nonexistence of objects of these three types. 
At present we cannot rule out any of the remaining five scenarios: 

∙	 A p-bounded, p-optimal proof system P1 exists. 

Having such an ideal proof system, we do not need to consider any other: 
even searching for proofs in any other proof system can be reduced to search
ing for P1-proofs. (We ignore here that p-reductions themselves increase poly
nomially the time complexity of a proof search algorithm and may transform 

a combinatorially transparent one into a complex one, cf. the last paragraph 

of this section.) 

∙	 A p-bounded proof system P2 exists but no p-optimal does. 

While p-size P2-proofs would exist for each tautology, finding them may be 

difficult and it may help to consider different proof systems for different 
(classes of) tautologies. 

∙	 A p-optimal proof system P3 exists but no p-bounded does. 

Here we can restrict our attention to P3: it is also optimal and search for 
proofs in any proof system can be replaced by a search for P3-proofs. 

∙ An optimal proof system P4 exists but no p-bounded or p-optimal does. 

Proving lengths-of-proofs lower bounds (or upper bounds, for that mat
ter) can be restricted to P4 but proof search may benefit from considering 

different proof systems for different classes of tautologies. 

∙	 None of these ideal objects exist. 

This appears to be the most likely scenario. 

At present we cannot rule out that a Frege system is one of P1, . . . , P4. The Opti
mality problem is related to a surprising number of varied topics in proof the
ory (quantitative Gödel’s theorem), finite model theory, structural complexity, and 

some other (cf. Krajíček [Kra19, chapter 21]). 
An interesting question left out by Cook and Reckhow [CR79] as well as in later 

literature is how to compare proof search algorithms. A tentative definition was 
proposed in Krajíček [Kra19, section 21.5] . 

5.3 Hard Tautologies and the PHPn Formula 
In order to prove lengths-of-proofs lower bounds for a proof system, we start with a 

suitable candidate tautology that we conjecture to be hard to prove (i.e., requiring 

long proofs) therein. A particular tautology for this purpose based on the pigeon
hole principle was proposed in Cook and Reckhow [CR79]. The formula, to be 

denoted PHPn, is built from atoms pij with i ∈ [n] := {1, . . . , n} and j ∈ [n − 1], 
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for n ≥ 2. Thinking of pij as representing the atomic statement that i maps to j, we 

can express that the map is defined at i by the clause 

⋁ pij (5.1) 
j 

the fact that j can be the value of at most one i by 

⋁ ¬pi1j ∨ ¬pi2j (5.2) 
i1 ̸=i2 

and the fact that i maps to at most one value by 

⋁ ¬pij1 ∨ ¬pij2 . (5.3) 
j1 ̸=j2 

Taking the conjunction of these clauses for all choices of i and j states that 

{(i, j) ∈ [n] × [n − 1] | pij = 1} 

is the graph of an injective map from [n] into [n − 1]. No such map exists and 

hence the negation of the conjunction is a tautology. This leads to the following 

definition. 

Definition 5.3 Cook–Reckhow [CR79] 
For any n ≥ 2, PHPn is the disjunction of negations of clauses in (5.1) for all i ∈ [n], 
in (5.2) for all j ∈ [n − 1], and in (5.3) for all i ∈ [n]. 

In fact, to reach a contradiction we do not need the assumption that it is the 

graph of a function, a multi-function suffices (if i occupies more values j it is harder 
to be injective). In other words, we do not need to include the clauses from (5.3) 
and Cook and Reckhow [CR79] did not include them. Nowadays, the definition of 
PHPn as formulated above is more customary and proving lower bounds for it yields 
stronger results than for the more economical version (the principle assumes more 

and hence it is logically weaker). 
Cook and Reckhow [CR79] showed that it is possible to prove PHPn in Extended 

Frege systems by a proof of size polynomial in n (note that the size of PHPn is 
also polynomial in n). In fact, they introduced EF in order to formalize smoothly 
the inductive argument: from an assignment violating PHPn we can define (using 

the extension rule) an assignment violating PHPn−1. Hence PHPn has also a proof 
in Frege systems with a polynomial number of steps (but having large size). Buss 
[Bus87] improved the result (by a substantially different construction formalizing 
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counting) and proved that Frege systems actually also admit polynomial size4 

proofs of PHPn. 
On the other hand, in a breakthrough result, Haken [Hak85] proved a first lower 

bound for resolution using PHPn, and the same formula was proved to be hard for 
constant depth subsystems of any Frege system in the DeMorgan language by Ajtai 
[Ajt88] (Haken’s lower bound was exponential while Ajtai’s super-polynomial—its 
rate was later improved to exponential too by Krajíček et al. [KPW95] and Pitassi 
et al. [PBI93]). The same formula (represented by polynomial equations similarly as 
in Definition 5.1) were used by Razborov [Raz98] for his lower bound for polynomial 
calculus, an algebraic proof system manipulating polynomials. 

There is an important variant of the PHP formula considered first by Paris et al. 
[PWW88] in the context of bounded arithmetic: allow i to range over a much bigger 
set than [n]; for example, over [2n] or even [n2]. Similarly as PHP is related to count
ing these weak pigeonhole principles relate to approximate counting and Paris et al. 
[PWW88] showed that they can sometimes be used in place of PHP proper and 

that, crucially, they are easier to prove. Their proof (formulated using bounded 

arithmetic) gives quasi-polynomial size proofs in constant depth Frege systems of 
formulas formalizing these weaker principles for n ≥ 2. 

Even if the formula PHPn itself cannot be used as a hard example for proof sys
tems like Frege or EF, formulas formalizing a form of a weak PHP in a different way 
possibly can. It has been an insight of Wilkie (result reported in Krajíček [Kra95, 
section 7.3]) that the dual weak PHP for p-time functions is important in bounded 

arithmetic (this has been much extended by Jěrábek [Jěr04, Jěr07, Jěr09]). The prin
ciple says that no p-time function g when restricted to any {0, 1}n can be onto {0, 1}2n . 
Now take an arbitrary b ∈ {0, 1}2n\Rng(gn), where gn is the restriction of g to {0, 1}n , 
and define propositional formula 

𝜏b(gn) 

expressing ∀x ∈ {0, 1}ngn(x) ̸= b. The formula uses n atoms for bits of x and a fur
ther poly(n) atoms for bits of the computation y of gn on x and says, in a DNF form, 
that either y is not a valid computation on input x or the output of the computation 

differs from b. Clearly, 

𝜏b(gn) ∈ TAUT ⇔ b ∉ Rng(gn). 

These formulas were defined in Alekhnovich et al. [ABRW04] and Krajíček [Kra01] 
and lead to the theory of proof complexity generators proposing several candidate 

4. In Buss [Bus15], he showed that the idea of the original Cook–Reckhow proof in EF can be 

formalized in Frege systems by quasi-polynomial size proofs, utilizing st-connectivity. 
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tautologies of the form above as possibly hard for strong (or all) proof systems. The 

reader may find an overview of the theory in Krajíček [Kra10, chapters 29 and 30] 
(no need to read the first 28 chapters). 
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6
Steve Cook’s 1975 paper, “Feasibly constructive proofs and the propositional cal
culus” [Coo75b], was a landmark in the study of weak formal systems and proposi
tional proof complexity. It introduced the equational proof system PV for reasoning 

about polynomial time identities and established an unexpected and remark
able connection between provability in PV and polynomial size extended reso
lution (extended Frege) proofs of propositional formulas. It established that PV 

can prove the consistency of extended resolution, and that extended resolution is 
the strongest propositional proof system which can be proved consistent by PV. 
As a consequence, extended resolution can give polynomial size proofs of its own 

partial consistency. 
Subsequent work discovered close connections between PV and first-order frag

ments of bounded arithmetic1 such as IΔ0 and especially S12. Many of these frag
ments of bounded arithmetic have their own connections to propositional proof 
complexity. Cook’s paper [Coo75b] serves as the foundational template for these 

still on-going developments. 
The first motivation—and perhaps the primary motivation—for Cook [Coo75b] 

was the approach suggested by Cook and Reckhow [CR74] for resolving the P ver
sus NP question. That paper, along with the later follow-up paper [CR79], proposed 

proving that NP ̸

Polynomially Verifiable 
Arithmetic 
Sam Buss 

6.1 Introduction 

= coNP by proving that there is no propositional proof system for 
which all tautologies have polynomial size proofs. For more on propositional proof 

1. Descriptions of many of these theories of bounded arithmetic can be found in Buss [Bus86a], 
Hájek and Pudlák [HP93], Krajícek [Kra95], and Cook and Nguyen [CN10]. 
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complexity and Cook and Reckhow’s program for resolving P versus NP question, 
see the article in the present volume by Krajíček about Cook and Reckhow [CR79]. 

The second, and more direct, motivation was to study the concept of “feasi
bly constructive” proofs of universal statements. A proof of a universal statement 
∀x A(x) justifies the statement that A(x) evaluates to true for every value of x. A con
structive proof gives finitary or combinatorial justifications for the truth of each 

instance of A(x). For feasibly constructive proofs, these justifications should be con
structible in polynomial time; in addition, the correctness of the justifications 
should rest only on polynomial time computable concepts. 

Let’s make this second motivation more concrete. Assume F1, F2, F3, . . . is a 

sequence of unsatisfiable propositional formulas in conjunctive normal form. Sup
pose that each Fn uses O(n) variables and has total size nO(1); and that the Fn’s are 

polynomial time uniform in that there is a procedure for constructing the Fn’s 
that runs in time nO(1). For x a binary string of length n, let A(x) assert that Fn is 
unsatisfiable. 

The formulas A(x) certainly have constructive proofs, namely by using the 

method of truth tables to evaluate Fn (where n = |x|). Proofs based on truth tables, 
however, are exponentially long. For the formulas A(x) to have feasibly constructive 
proofs, we need polynomial size proofs of the unsatisfiability of the formulas Fn. 
Furthermore, we need (polynomial size) uniform justifications that these proofs of 
unsatisfiability are in fact valid proofs. 

Cook [Coo75b] proposed an equational theory PV as the formal system for giv
ing feasibly constructive proofs: namely, a proof in PV specifies polynomial size 

uniform proofs along with uniform justifications of the correctness of the proofs. 
Then, in a truly striking and insightful step, Cook that PV can prove consistent. 

The developments are discussed in the next two sections. 

6.2 The Equational Theory PV for Polynomial Time Computability 
As just discussed, feasibly constructive proofs are not only required to be polyno
mial size but also the validity of the proofs must depend on only polynomial time 

concepts. For this purpose, Cook introduced equational theories, called PV and 

PV1, of polynomial time functions.2 These theories were defined analogously to the 

equational theory PRA of primitive recursive arithmetic, as developed by Skolem 

[Sko23] and Goodstein [Goo54], but using polynomial time functions instead of 

2. As shown by Cook [Coo75b], the two theories PV and PV1 are essentially equivalent. PV is a 

purely equational system. PV1 is defined by extending PV to allow Boolean combinations of equa
tions. In this article, we often refer to just “PV,” but most of our comments apply equally well to 

“PV1.” 
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primitive recursive functions. PV is defined with special axioms that allow intro
ducing symbols for polynomial time functions. These axioms define the polyno
mial time functions algorithmically in terms of recursion on notation as used by 
Cobham [Cob65] for the definition of the class ℒ of polynomial time computable 

functions.3 The axioms of PV also allow using induction on notation to prove facts 
about polynomial time equations. As a result, PV can introduce function symbols 
for all polynomial time computable functions and prove many straightforward 

properties of them. In addition, since PV can introduce only polynomial time com
putable functions and reason only with polynomial time computable concepts, 
theorems of PV can be viewed as feasibly constructive. 

The Verifiability Thesis of Cook [Coo75b] stated that provability in PV exactly 
captures the intuitive concept of feasibly constructive theorems. Specifically, an 

equation f (x) = g(x) with f and g polynomial time functions in ℒ is called polyno
mially verifiable, or just p-verifiable, provided there is a proof that provides a feasibly 
constructive proof of f (x) = g(x) in the sense described above. 

Verifiability Thesis: [Coo75b] 
An equation t = u of PV is provable in PV if and only if it is p-verifiable. 

One direction of the Verifiability Thesis is straightforward to prove: namely, any 
consequence t = u of PV is p-verifiable. This follows from the fact that a PV proof of 
t = u uses only polynomial time computable constructions and uses only simple 

notions of logic and a feasibly effective version of induction. In fact, as we discuss 
below, Cook [Coo75b] gives an even sharper form of this argument by showing that 
any PV proof of t = u can be translated into a family of polynomial size ER proofs 
of the propositional translations of t = u. 

The other direction of the Verifiability Thesis is essentially a philosophical state
ment about the nature of feasible constructivity. This is similar in spirit to the 

Church–Turing thesis about the nature of effective computability; however, the 

Verifiability Thesis is more subtle since it does not concern just polynomial-time 

computability but rather seeks to characterize polynomial-time constructive reason
ing. The Verifiability Thesis states that PV can formalize all feasibly constructive 

reasoning about polynomial time computable objects. This seems very plausible 

as no one has been able to formulate feasibly constructive proofs that are not for
malizable in PV. In addition, the present author formulated an ostensibly stronger 
theory S12 for polynomial time functions in Buss [Bus86a]: it turns out that S12 (when 

3. The definition of ℒ in Cobham [Cob65] used a base 10 representation of integers, whereas PV 

defined ℒ using a dyadic notation for integers. The differences between the two definitions are 

inessential, however; they both capture polynomial time computability in a natural and feasible 

manner. 
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expanded to the language of PV) is conservative over PV and thus cannot prove any 
new identities t = u beyond those already provable in PV. This provides evidence 

that PV is a powerful but natural theory, and thus that PV already incorporates all 
feasibly constructive reasoning. 

Sections 2–4 of Cook [Coo75b] introduced the theories PV and PV1 and proved a 

number of fundamental properties of these theories. These developments include: 

∙	 The theory PV treats (nonnegative) integers as being represented by dyadic 
strings instead of by binary representations. Dyadic strings use the alpha
bet {1, 2}, based on a notation of Smullyan.4 Each nonnegative integer has a 

unique dyadic representation. For instance, the integers 0, 1, 2, 3, 4, 5, 6, 7 

are represented by the strings 𝜀, 1, 2, 11, 12, 21, 22, 111, where 𝜀 denotes the 

empty string. There are two successor functions s1 and s2 that map a string w 

to the string si(w) = wi. Thus, if w is the dyadic representation of an integer 
m, si(w) is the dyadic representation of 2m + i. 

∙	 The function symbols of PV are defined from a few base functions (includ
ing s1 and s2) using composition and limited iteration on dyadic notation in 

the style of Cobham [Cob65]. The function symbols thus explicitly repre
sent polynomial functions, as computed by algorithms expressed in terms 
of composition and limited iteration. Conversely, by Cobham’s characteri
zation of polynomial time computability, every polynomial time function is 
represented by a function symbol of PV. 

∙	 The axioms and rules of inference for PV provide defining axioms for all 
polynomial time functions (all functions in ℒ), and induction on (dyadic) 
notation. 

∙	 Every PV provable formula t = u is p-verifiable, and thus valid. Consequently, 
PV does not prove 0 = 1 and is consistent. 

∙	 More general forms of recursion can be used in PV, including 2-recursion and 

n-recursion that allow definition by a recursion that act on multiple variables 
at once. 

∙	 PV1 is defined as the conservative extension of PV to allow formulas con
structed using propositional connectives. The axioms of PV1 include substi
tution, tautological implication, and a form of induction. 

4. The dyadic string representation was an optional choice; PV could have been defined to use 

binary representations instead of dyadic representations. The advantage of the dyadic represen
tation is that integers have unique dyadic representations. This is not true for binary representa
tions because of the possibility of leading zeros. This makes the two successor functions s1 and 

s2 more elegant for the dyadic representation. 
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∙	 Gödel’s second incompleteness theorem holds for PV; that is, PV does not 
prove CON(PV). The proof is based on an intensional approach, cf. Feferman 

[Fef60]. 

6.3 Extended Resolution and PV 
The final sections of Cook [Coo75b] introduced a strikingly novel and impor
tant connection between PV and ER. ER is essentially equivalent to the extended 

Frege proof system (EF). In this article we will mostly talk about EF, unlike Cook 

[Coo75b] who worked with ER, as EF is more convenient for talking about proposi
tional proof systems; however, working with EF instead of ER makes no essential 
difference. 

Frege and Extended Frege, introduced by Cook and Reckhow [CR74, CR79], are 

propositional proof systems using, say, the connectives ∧, ∨, →, ↔, and ¬. Frege 

proofs use a finite set of schemes of tautological axioms (for instance, 𝜙 ∧ 𝜓 → 𝜙) 
and a finite set of schemes for inference rules (for instance, modus ponens). An 

extended Frege system includes the axioms and inference rules of a Frege system, 
plus the extension rule allowing inferring any formula 

x ↔ 𝜙, 

where x is new variable; that is, x does not appear in 𝜙, in the proof so far, or in 

the conclusion of the proof. A convenient way to think about extended Frege (and 

hence ER) proofs is that they are proofs in which each line represents a Boolean 

function computed by a polynomial size circuit. (See Jěrábek [Jěr04] for an explicit 
formalization of this. Here, “polynomial size” means polynomial size in terms of 
the size of the extended Frege proof.) More details on extended Frege proofs can 

be found in the article by Krajíček in the present volume. 
The first part of the connection between PV and ER (stated below as Theorem 

6.1) can be summarized in modern terms as follows. We start with the observation 

that each line in a PV proof is an identity t(⃗x) = u(⃗x) between polynomial time func
tions using variables x⃗. For simplicity, we assume x⃗ is a single variable and denote it 
just x. It is a general principle that any polynomial time computable function f has 
polynomial size circuits [cf. Coo71b]. For f a function symbol of PV, the polynomial 
size circuits for f are constructed so as to simulate the definition of f as a member 
of ℒ using composition and limited recursion on dyadic notation. This gives, for 
any n ≥ 0, a polynomial size circuit Cn which takes an input x of dyadic length n, 
evaluates the values of t(x) and u(x), and outputs True if the two values are equal. 
Since the identity t(x) = u(x) is valid, the circuit Cn always outputs True. 
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The inputs to Cn are n Boolean inputs x1, . . . , xn representing the values of 
the n dyadic digits of x. We convert Cn to a valid propositional formula denoted 

[[t(x) = u(x)]]n. This formula uses the variables xi plus extension variables that 
express the computation of Cn. Each gate g in the circuit Cn has an associated 

extension variable yg representing the value computed by g. Let Corr(⃗y, x⃗) be the 

(polynomial size) DNF formula expressing that each yg has the correct value as 
computed by the gate g from its inputs. (This is similar to the construction used 

by Cook [Coo71b] to prove the NP-hardness of satisfiability.) Then [[t(x) = u(x)]]n is 
the propositional formula Corr(⃗y, x⃗) → ygout , where gout is the output gate of Cn. In 

other words, [[t(x) = u(x)]]n states that if the extension variables correctly encode 

the circuit’s computation, then the circuit outputs the value True. 
Note that [[t(x) = u(x)]]n is a tautology (i.e., is valid) since Cn always outputs True. 

Indeed, the validity of the formulas [[t(x) = u(x)]]n is equivalent to the validity of the 

equations t(x) = u(x). 

Theorem 6.1 (ER Simulation Theorem): [Coo75b] 

If PV proves t(x) = u(x), then the formulas [[t(x) = u(x)]]n have polynomial size 

extended Frege proofs.5 

The intuition for proving Theorem 6.1 is that the extended Frege proof traces 
the PV proof P of t(x) = u(x) line by line, establishing the truth of each line in P. 
The value of n is fixed. Each line in P is an equation v(x, z⃗) = w(x, z⃗) using the free 

variable x with dyadic length n and free variables z⃗ whose dyadic lengths are implic
itly polynomially bounded in terms of n. The proof introduces extension variables 
for every intermediate value used in P, including an extension variable for every 
gate in the (polynomial size) circuits that compute the terms v(x, z⃗) and w(x, z⃗). 

There is also a version of Theorem 6.1 for PV1 in place of PV. The main differ
ence is that lines in a PV1 proof are Boolean combinations of equations instead of 
just equations. The propositional translation works similarly for PV1 and respects 
the Boolean connectives. 

Theorem 6.1 leaves open the possibility that perhaps a weaker propositional 
proof system than EF or ER could be sufficient to give polynomial size proofs of 
the formulas [[t(x) = u(x)]]n. This, however, is not the case. A general propositional 
proof system is defined as follows. (Again, see Chapter 5 in the current volume by 
Krajíček for more details.) 

Theorem 6.1 [CR74, CR79] 

5. Cook [Coo75b] stated and proved this theorem for extended resolution, hence its name. As 
already stated, we prefer to work with the equivalent extended Frege proof system. 
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A propositional proof system is a polynomial time function f from {0, 1}* onto the 

set of tautologies. 
The extended Frege proof system can be viewed as a propositional proof sys

tem in the abstract sense of Definition 6.1 by letting f (w) = 𝜙 if w encodes a valid 

extended Frege proof of the formula 𝜙, and letting f (w) equal a fixed tautology 
otherwise. If f (w) = 𝜙, we call w an f -proof of 𝜙. 

Let CON(f ) be a PV formula expressing—in a natural way—the fact that f is a 

consistent propositional proof system.6 One way to formalize CON(f ) is to express 
that there is no f -proof of a particular nontautology, say x0 ∧ x0. Another way to for
malize CON(f ) is as stating ∀w ∀u ∀v CNf (w, u, v), where CNf (w, u, v) states that it is 
not the case that both w encodes an f -proof of a propositional formula encoded by 
u, and v encodes a truth assignment that falsifies the formula encoded by u. Note 

that CNf can be taken to be an equation in PV. We shall write SAT(u, v) to represent 
the PV formula expressing the property that v encodes a satisfying assignment for 
u: thus ∀v ¬SAT(u, v) expresses that u encodes an unsatisfiable formula. And CNf 

can be expressed by the PV1 formula f (w) = u → ¬SAT(u, v). The two formaliza
tions of CON(f ) are equivalent over PV. The definition using CNf is essentially the 

one used by Cook [Coo75b], although he used the terminology “f is p-verifiable”. 
So when we say PV proves the consistency of f , CON(f ), we mean that PV proves 
the equation CNf (w, u, v). 

Theorem 6.2 [Coo75b] 

PV proves CON(EF). 
A corollary is that EF has polynomial size proofs of the propositional trans

lations [[CON(EF)]]n, namely the propositional formulas expressing the partial 
consistency of EF. These formulas state in essence that there is no EF proof P of 
a falsifiable formula where proof P is encoded by a string of n bits. This corol
lary is initially quite surprising in light of Gödel’s incompleteness theorem, but 
it highlights a big difference between finitary consistency and ordinary (infini
tary) consistency. An analogue has also been shown for first-order theories such 

as Peano arithmetic (for this see Pudlák [Pud86, Pud87b]). An analogue also holds 
for Frege systems, as shown by Buss [Bus91]. 

The next theorem is the main theorem of Cook [Coo75b]; it implies that 
extended Frege is the weakest propositional proof system that satisfies Theorem 

6.1, and the strongest propositional proof system whose consistency is PV provable. 

6. We follow the common conventions, as well as Cook [Coo75b], in using the notation CON(f ). 
However, the notation is somewhat misleading: it is not the case that there is a fixed PV-formula 

CON(⋅) that takes a Gödel number for f as a parameter. A better notation would be CONf , since 

each f has its own consistency statement. 
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Definition 6.2 [Coo75b] 

Let f and g be propositional proof systems. We say f p-simulates g provided there 

is a polynomial time algorithm A such that if w is a f -proof of 𝜙, then A(w) is a 

g-proof of 𝜙. We say that f p-verifiably p-simulates g provided this fact is provable 

in PV for a suitably formalized representation of A as a polynomial time func
tion in ℒ. 

Theorem 6.3 Main Theorem of Cook [Coo75b] 

Suppose g is a propositional proof system such that PV proves CON(g). Then EF 

p-verifiably p-simulates g. 
Theorem 6.1 established that the extended Frege proof system can give poly

nomial size proofs of the propositional translations of any PV provable identity. 
However, it still remains open whether there are polynomial size extended Frege 

proofs of all tautologies. Cook [Coo75b] identified this question as an important 
step toward proving NP ̸ coNP and P = NP. He conjectured in particular that = ̸
the partial consistency statements [[CON(PV)]]n do not have polynomial size EF 

proofs. To formulate these, we view PV itself as a propositional proof system by treat
ing a PV proof of ¬SAT('𝜙', v) as a proof of 𝜙. Here '𝜙' is the Gödel number of 𝜙 

in some natural Gödel numbering scheme. The incompleteness theorem for PV— 

mentioned at the end of Section 6.2—implies that PV cannot prove the existence of 
(necessarily uniform) extended Frege proofs of the formulas [[CON(PV)]]n. In light 
of the Verifiability Thesis, this means that CON(PV) is not p-verifiable. This, how
ever, does not rule out the possibility of nonuniform extended Frege proofs or of 
extended Frege proofs whose properties cannot be proved in PV.7 

6.4 Subsequent Developments 
The connection between PV and extended Frege was the first linkage of its kind 

between arithmetic and propositional logic, but it was definitely not the last. The 

hallmarks of this connection are that we have 

∙	 A formal theory, in this case PV. 

∙	 A computational complexity class, in this case polynomial time (P). 

∙	 And a propositional proof system, in this case extended Frege (EF) or equiv
alently ER. 

These enjoy the following properties: 

7. Buss [Bus86a] later made a similar proposal using the “jump” of a theory. 
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∙	 The provably total functions of the theory (PV), and the functions that can be 

used in induction axioms, are the functions from the complexity class (P). 

∙	 The theory (PV) proves the consistency of the propositional proof system 

(EF). Furthermore, the propositional proof system (EF) p-simulates any 
propositional proof system that is provably consistent (in PV). 

∙	 The lines that appear in the propositional proofs (of the system EF) have 

computational complexity corresponding to a nonuniform version of the 

complexity class (in this case, the lines are polynomial size circuits, hence 

in nonuniform P). 

The next result of this type was due to Dowd [Dow78, Dow79], who developed a 

theory PSA of polynomial space arithmetic. The corresponding proof system was 
quantified propositional logic. This fulfills the template above since quantified 

Boolean formulas (QBF’s) are the nonuniform analogue of polynomial space. An 

improved version of translations from a bounded arithmetic theory to quantified 

propositional logic was given later by Krajíček and Pudlák [KP90]. 
Paris and Wilkie [PW81] discovered a different connection between the 

bounded arithmetic theory IΔ0 (which was introduced by Parikh [Par71]) and poly
nomial size, constant depth Frege proofs. There is also a Paris–Wilkie translation 

for IΔ0 + Ω1 and quasipolynomial size constant depth Frege proofs; the axiom Ω1 

states the totality of the function x ↦ 2log
2 x corresponding to polynomial growth 

rate functions. This “Paris–Wilkie translation” differs from the “Cook translation” 
in that Paris and Wilkie used free second-order predicates and translated predicate 

values to propositional variables, whereas Cook used only first-order objects and 

translated bits (or, dyadic digits) of first-order objects to propositional variables. 
(The distinction between the Cook and the Paris–Wilkie translations becomes less 
clear in the much more recent second-order systems of Cook and Nguyen [CN10].) 

The next main development was the definition of a hierarchy of first-order and 

second-order theories of bounded arithmetic by Buss [Bus86a]; the former are sub-
theories of IΔ0 + Ω1. One of the first-order theories, S12, is in essence conservative 

over PV, and so has the same connection to extended Frege proofs as PV. Other 
theories Si 2, T2i , U12, and V21 have computational complexity related to the levels of 
the polynomial time hierarchy, to polynomial space, and to exponential time. For 
example, the provably total functions of U12 correspond to the polynomial space 

computable functions.8 The first-order theories, Si 2 and Ti 2, have Paris–Wilkie trans
lations to quasipolynomial size, constant depth Frege proofs. Krajíček and Pudlák 

8. It seems certain that U12 is essentially conservative over PSA, but there is no proof of this in the 

literature. 
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[KP90] also gave a Cook-style translation from these theories to fragments of quan
tified propositional logic (these are subtheories of the quantified propositional 
proof system used by Dowd). 

There is a great deal of subsequent development of formal proof systems with 

Cook-style connections to propositional proof systems. It is beyond the scope of 
this article to describe these, but many of them are described by Cook–Nguyen 

[CN10] who give a second-order formulation for all these theories. Figure 6.1 lists 
many of these results as well, with pointers to the literature. Another set of relations 
between consistency statements (in formal theories) for propositional proof sys
tems and propositional proof complexity was given by Krajíček and Pudlák [KP89]. 
More connections between extensions of PV and propositional proof complexity 
can be found in Krajíček [Kra19]. 

In a different direction, the theory PV was generalized to intuitionistic theo
ries by Buss [Bus86b] and Cook and Urquhart [CU93]. The latter papergives a very 

Formal Propositional Total 
Theory Proof System Functions 

PV, S1 2, VPV EF, G* 
1 P [Coo75b], [Bus86a], [CN10] 

T1 2, S
2 
2 G1, G* 

2 ≤1−1(PLS) [KP90], [KT92], [Bus86a], [BK94] 

T2 
2, S

3 
2 G2, G* 

3 ≤1−1(CPLS) [KP90], [KT92], [KST07], [Bus86a] 

Ti 2, S
i+1 
2 Gi, G* 

i+1 ≤1−1(LLIi) [KP90], [KT92], [KNT11], [Bus86a] 

PSA, U1 2, W1 
1 QBF PSPACE [Dow78, Dow79], [Bus86a], [Ske04] 

V1 2 ** EXP [Bus86a] 

VNC1 Frege (F) ALOGTIME [CT92], [Ara00]; [CM05], [CN10] 

VL GL* L [Zam97], [Per05], [CN10] 

VNL GNL* NL [CK04], [Per09], [CN10] 

Figure 6.1	 Cook translations from formal theories to propositional proof systems. PV and PSA 
are equational theories; Si 2 and T2 

i are first-order theories; U12, V21 , VNC
1, VL, VNL, and 

VPV are second-order theories; W1
1 is a third-order theory. F and EF are the Frege and 

extended Frege proof systems; Gi and QBF are quantified propositional proof systems. 
Starred (*) propositional systems are tree-like. PLS is Polynomial local search, [JPY88]; 
CPLS is Colored PLS, [ST11]; LLI is Linear local improvement [KNT11], [BB14]; and ≤1 − 1 is 
many-one reducibility for TFNP functions [Pap94a]. 
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elegant intuitionistic type theory called PV𝜔 corresponding to polynomial time 

computability. 
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7Towards a Complexity 
Theory of Parallel 
Computation 
Paul Beame and Pierre McKenzie 

7.1 First Words 
This chapter covers Steve Cook’s “parallel complexity years.” It adopts an historical 
perspective: first, the context leading to his interest in the study of parallel com
putation, then the steps of a theory in the making with the many actors involved, 
followed by the refinements and maturing of the theory. This culminates with an 

overview of his other work in the field and his two influential survey papers on 

parallel complexity, one of which is included in this volume. 

7.2 The Early Years 
In his seminal work characterizing computation, Alan Turing [Tur36] used the 

paradigm of a computer as a single intelligence, with a single focus of attention and 

action. However, in building electronic realizations of digital computing devices 
to implement this paradigm, aspects of parallelism soon arose in a natural way: 
Separate hardware components were needed to handle individual parts of the pro
cess of computation and, once they became available, it was natural to consider 
overlapping their activation rather than activating them only one at a time. This 
idea of parallel execution, which later became known as instruction-level paral
lelism [RF93], was already part of Turing’s later proposal for Pilot ACE [CD86] and 

discussed in detail by Maurice Wilkes [Wil51]. 
On the theoretical side, parallelism on this modest scale became a natural part 

of the analysis of computation. For example, the proof that any recursively enu
merable language whose complement is also recursively enumerable must also 
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be decidable naturally involves running two computations, one for the language 

and one for its complement, in parallel. Moreover, more pointedly, in their sem
inal development of complexity theory of sequential computation in the early 
1960s, Juris Hartmanis and Richard Stearns [HS64, HS65] used multi-tape Turing 

machines with some (small) constant number of tapes as the standard model for 
measuring time and space complexity. 

Parallelism on a much larger scale had already been a feature of human compu
tation for some time—rooms full of people had been employed to perform numer
ical or code-breaking calculations for actuarial, scientific, or military applications. 
However, the idea of building a digital computer comprised of a large number of 
processors was not widely suggested until the late 1950s. In his 1958 survey of the 

modest amount of parallelism that had been used in digital computers, Stanley Gill 
[Gil58] argued that the benefits of using parallelism on a much larger scale would 

outweigh the difficulties of its implementation, an opinion which he indicated his 
peers did not share. Around the same time, John Cocke and Daniel Slotnick [CS58] 
analyzed the impact of using a highly parallel computer, organized as an array of 
processing elements, for numerical computations. In the early to mid-1960s, Slot-
nick led the design of highly parallel computers along these lines [Slo82], first on 

the SOLOMON project at Westinghouse [SBM63], and then that of ILLIAC IV whose 

fundamental design was widely known by the mid-1960s though the full design was 
only complete and released in 1968 [BBK+68]. 

In 1966, Michael Flynn produced his widely used taxonomy of parallel systems 
[Fly66] that distinguished the Single-Instruction-Multiple-Data (SIMD) approach, 
used in the SOLOMON and ILLIAC IV designs, from the Multiple-Instruction
Multiple-Data (MIMD) approach that had been used on a very small scale in the 

designs of two and four processor systems such as LARC [ECTS59] and had also 

been suggested as a basis for large-scale parallel computation [LM64]. 
Though the SOLOMON project was abandoned and the actual completion 

of the ILLIAC IV took the better part of a decade, the release of the ILLIAC 

IV design and the anticipation for its completion captured the imagination of 
many researchers. These included researchers developing algorithms to take 

advantage of parallel computation, along with computer architects and pro
gramming language researchers. Highly parallel algorithms for numerical [Nie64, 
CW67, She67], algebraic [KMW67, Pea67, Pea68], and data manipulation [Bat68] 
problems began to be published with regularity in the most widely read pub
lications in the field like the Communications of the ACM and the Journal of 
the ACM. 

However, the relatively young field of computational complexity was far from 

ready to tackle the question of large-scale parallelism. For example, in their 
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1971 survey of the theory in the Journal of the ACM [HH71], Juris Hartmanis and 

John Hopcroft only briefly mention parallelism in the context of the small-scale 

instruction-level parallelism discussed above.1 

Meanwhile, in parallel programming and system design, a number of distinctly 
different ways of structuring and thinking about parallel and distributed compu
tations were being developed, such as Petri nets [Pet62], fork-and-join parallelism 

[Con63], and vector addition systems [KM69]. 

7.3 The Beginnings of a Theory 
The first model that began to tackle the question of the computational complex
ity of parallel computation was given in a paper by Vaughan Pratt, Michael Rabin, 
and Larry Stockmeyer2 [PRS74], presented at the annual ACM STOC conference in 

the spring of 1974 prior to the completion of the ILLIAC IV. Pratt et al. considered 

the question of augmenting the usual model of random-access machines (RAMs) 
with integer registers with extra vector registers each capable of holding a vector 
of bits on which operations could be performed at unit cost. These unit-cost oper
ations included bit-wise parallel Boolean operations on pairs of bit vectors as well 
as indexing and shift (left and right) operations that combined vector and integer 
registers, yielding a SIMD model of parallelism. 

Their paper began by giving examples of the dramatic speed-up that such a 

model could yield, for example, satisfiability of CNF (Conjunctive Normal Form) 
formulas in linear time. This algorithm used bit-vectors of exponential length in 

the input size and the authors noted that, though in general it was unclear whether 
bit-vectors of more than exponential length could lead to an even more powerful 
model, they could not rule out the possibility. 

Using ideas from the quadratic simulation of nondeterministic space by deter
ministic space shown by Cook’s Ph.D. student Walter Savitch [Sav69, Sav70], they 
proved that, for decision problems, and with reasonable functions used as time 

and space bounds, their vector machines could simulate nondeterministic sequen
tial machines that use space S(n) in deterministic parallel time roughly O(S2(n)), 
and, in turn, a nondeterministic version of their vector machines running in time 

T(n) could similarly be simulated in deterministic space O(T2(n)). This equiva
lence, up to a polynomial, of time on their vector machines and space on ordinary 
sequential machines would become a theme of research on parallel computing 

over the next several years. 

1. The survey appeared only months prior to Cook’s 1971 paper on NP-completeness. 

2. The 1976 journal version of the paper [PS76] did not include Rabin as a co-author. 
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They asked 

Can one always obtain a “polynomial in log” time improvement by going 

from serial to parallel computation? If we equate vector machines with 

parallel computation then this question is equivalent to an open question 

concerning the “DTIME vs SPACE” relation for Turing Machines. Of course, 
there is no reason to suppose that vector machines are the most powerful 
possible forms of parallel computers, even to within a polynomial. 

In a follow-on paper presented at the IEEE Switching and Automata Theory con
ference (which would become the IEEE Symposium on Foundations of Computer 
Science (FOCS)) later that fall, Hartmanis and Janos Simon [HS74] showed that one 

could eliminate the idiosyncrasy of the segregated variable types of Pratt et al.’s vec
tor machine model and use unit-cost multiplication3 on unbounded registers in an 

ordinary RAM model to obtain an equivalent model (up to a polynomial). 
By this time, the completed (quarter of the) ILLIAC IV was finally in opera

tion, the Cray-1 [Rus78] was in development, and there were research projects, 
such as the C.mmp [WB72], focused on developing other modes of parallel com
putation and alternative interconnection networks [Sto71]. Algorithmic develop
ments included the first parallel graph algorithms [LK72] and general methods for 
parallelizing arithmetic expressions [Bre74]. 

From a complexity-theoretic point of view, the next major milestone was the 

independent work of Dexter Kozen [Koz76] and of Ashok Chandra and Stock
meyer [CS76] presented at the 1976 IEEE FOCS conference that produced beautiful 
and deeper connections between sequential space complexity, alternating Turing 

machines, and parallel computation. One natural mechanistic view of the opera
tion of a nondeterministic computation involves a parallel execution over all possi
ble branches that the algorithm may take on a given input. With this parallel view, 
there is no necessity that the combination rule for these parallel branches be the 

existence of an accepting branch among them. One could instead have the uni
versal requirement that all of them accept. Both papers considered this parallel 
interpretation. Kozen, whose work also seems independent of that of Pratt et al. 
[PRS74], explicitly drew a direct correspondence between this kind of parallelism 

and the parallelism created through the fork operation and the subsequent join 

operation that brings the parallel executions back together again, whereas Chan
dra and Stockmeyer used the model to show equivalence of two seemingly different 
models of parallelism. 

3. It is worth noting that the time-bounded RAM model of Cook and Robert Reckhow [CR73] had 

deliberately excluded multiplication as an allowable unit-cost operation. 



7.4 Development and Issues with the Theory 111 

An alternating Turing machine (ATM) allows for both of existential and univer
sal possibilities in a single machine: some states are designated existential states 
and other states are designated universal states. Both of these kinds of states cause 

a fork and the creation of (two) child processes: For a universal state, the associated 

join requires both child processes to have accepted, for an existential state, at the 

join only one of the two child processes needs to have accepted. Chandra, Kozen, 
and Stockmeyer showed how complexity classes like PSPACE and levels of the 

polynomial-time hierarchy (recently defined by Stockmeyer [Sto75]) had direct nat
ural characterizations using ATMs: Time on this ATM model captures both deter
ministic and nondeterministic sequential space up to a quadratic amount.4 While 

Pratt et al. had been somewhat hesitant about the universality of the loose con
nection they had found, Chandra and Stockmeyer explicitly formulated a hypoth
esis that Leslie Goldschlager, in his 1977 Ph.D. thesis [Gol77] written under Cook’s 
supervision termed the Parallel Computation Thesis: 

Parallel time is polynomially equivalent to sequential space. 

7.4 Development and Issues with the Theory 
The outlines of a model of parallel computation seemed to be emerging nicely, 
though none of the models felt especially natural as a parallel computing device. 
A series of papers developed models designed to be the truly parallel analogues of 
the sequential RAM. Savitch and Michael Stimson [SS76] showed how the model of 
Pratt et al. [PRS74] is equivalent to a parallel RAM model, the k-PRAM, that had an 

explicit call/return, somewhat like a fork/join of processes except that the proces
sors are ready and waiting to be activated at the beginning and each processor can 

activate up to k other processors with explicit calling parameters and return values. 
In this model, each processor has its own collection of registers. Like Pratt et al., 
Savitch and Stimson emphasized the fact that, unlike the sequential models where 

the question is still open, the addition of nondeterminism to the model affects the 

parallel time by at most a polynomial amount. 
Two papers presented at the ACM STOC conference in the spring of 1978 (sub

mitted in December 1977), one by Goldschlager [Gol78] and another by Steven For
tune and James Wyllie [FW78], suggested a different approach to parallel RAMs— 

one that involves synchronous processors using global shared memory to com
municate. In Goldschlager’s model, which he called a SIMDAG (SIMD and global 
memory), each processor has an individual processor number that allows for the 

4. And alternating space is equivalent to exponentially larger deterministic time, a fact that we 

will revisit later. 
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centrally broadcast instructions to have different effects for each processor. In For
tune and Wyllie’s model, which they called the P-RAM, new processors are activated 

by a fork operation and each processor has its own, possibly different, program 

counter in the common shared program; it also allows for local memory in addition 

to global shared memory. 
Both models allow concurrent read access to the shared global memory, but 

their choices of write access differed: Goldschlager’s SIMDAG gave a concurrent 
write tie-breaking rule in which the lowest-numbered processor writing to a loca
tion succeeds. Fortune and Wyllie’s P-RAM assumed immediate halt and rejection 

if the execution causes any concurrent writes to be attempted. Fortune and Wyl
lie’s name P-RAM with the same pronunciation, but without the hyphen, came 

to be adopted subsequently for the refinement of both models, with Fortune and 

Wyllie’s model being the basis for the concurrent-read exclusive-write (CREW) 
PRAM and Goldschlager’s SIMDAG becoming the concurrent-read concurrent-
write (CRCW) PRAM. 

Both papers emphasized the same connections between parallel time and 

sequential space discussed in earlier papers, though the emphasis of the two 

papers was quite different: Fortune and Wyllie also showed that the nondeter
ministic O(log n) P-RAM time is sufficient to simulate NP and described how the 

parallel simulations of PSPACE can be executed using only polynomial-size global 
memory. Goldschlager focused on the constructibility of his SIMDAGs, as well as a 

very general notion of parallel computation based on what he called conglomerates, 
interconnected computing units inspired by VLSI circuits, out of which he showed 

one could build SIMDAGs with a suitable instruction cost model, and which he 

argued also satisfy the Parallel Computation Thesis. 
An alternative approach to parallel computation was initiated somewhat ear

lier in the work of Allan Borodin [Bor77] who focused on circuits as models 
of parallel computation. Since circuits are an inherently nonuniform model of 
computation—one needs a family of circuits with a separate circuit for each input 
size—in order to connect the model to machine-based models of computation, 
Borodin needed to discuss how efficiently the circuit for inputs of size n can be 

constructed as a function of n. Borodin’s paper, “On relating time and space to 

size and depth,” which was submitted to SIAM Journal on Computing in March 1976, 
connects circuits to space-bounded sequential computations and hence requires 
that n-input circuits of depth d(n) be constructible by Turing machines using space 

O(d(n)). The key idea that enables the simulation of nondeterministic space O(S(n)) 
by circuit depth O(S2(n)) is a uniform circuit of depth O(log2 N) (and size NO(1)) for 
Boolean N ×N matrix powering, and hence transitive closure on directed graphs of 
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size N, which allows the circuit to simulate reachability in the configuration graph 

of the space-bounded computation. 
Borodin asked a fundamental question about the relationship between simul

taneous complexity bounds in the sequential and parallel models: He noted that in 

addition to the simulation of space S(n) by depth O(S2(n)), prior work by Nicholas 
(Nick) Pippenger and Michael Fischer [FP74] had given a very tight separate sim
ulation of sequential time by circuit size (time T(n) can be simulated by circuit 
size O(T(n) log T(n))). He asked whether these simulations could be combined to 

give a single simulation5 that would take a sequential algorithm that runs in time 

T(n) using space S(n) and obtain a circuit of size T(n)O(1) and depth S(n)O(1). This 
question ended up being critical in the later development of the theory. 

Borodin also introduced a nonuniform notion of depth-completeness for polyno
mial size circuits, in analogy with log-space completeness for P. Because the best 
circuit bound available even for simulating deterministic log-space used O(log2 n) 
depth, he chose many-one reductions that are computable by logO(1) n (polylog
arithmic) depth circuits. This notion of reduction did not preserve polynomial 
size, so in this definition of completeness it was necessary to add a separate extra 

constraint that the resulting function could also be shown to be computable by 
polynomial-size circuits. 

This anomaly in the definition of reduction is the first hint of an issue with the 

consensus in the definitions of parallel time complexity. In all of these papers, as 
was the case in the earlier work on vector machine and ATM models, as the paral
lel time T(n) or circuit depth d(n) grows to 𝜔(log n), problems computable in this 
parallel time or depth are not necessarily computable in polynomial time since the 

amount of hardware available after T(n) steps or depth in these models potentially 
grows exponentially with T(n). 

7.5 Steve’s Class and Nick’s Class 
Space-bounded computation and its relationship to sequential computation time 

had long been a focus of interest for Cook6; even before his work on NP-
completeness, in a 1969 paper he had raised the question of whether all of P can 

be computed in logspace [Coo69]. This question, expanded to the larger question 

of whether everything in P can be computed in logO(1) n space, was a key motivator 

5. This is Open Question 2 in the paper, though there is a typographical error in which what was 
obviously intended to be an S shows up as T. 

6. See Chapter 8 in the current volume by N. Pippenger for more detail. 
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for the 1973 paper in which he had introduced the notion of log-space complete
ness for P and shown that a problem on path systems is log-space complete for 
P [Coo73b]. 

As Cook’s first Ph.D. student, Walter Savitch had proved the simulation of 
nondeterministic algorithms using space S by deterministic algorithms using 

space O(S2) and, in particular, that transitive closure is computable using O(log2 n) 
space [Sav69]. 

While Savitch’s theorem showed that O(log2 n) space is sufficient, the algorithm 

that achieves this requires nΘ(log n) time, which is only quasipolynomial rather than 

polynomial. Cook asked whether it is possible to find an algorithm that simultane
ously operates in polynomial time and only uses O(log2 n) or logO(1) n space. 

Work on the Parallel Computation Thesis had largely been expressed as refine
ments of the relationship given by Savitch’s theorem. This had been part of Cook’s 
interest in advising Goldschlager in his work on parallel computation, but Cook 

was not yet focusing on these questions himself. 
In January 1978, Nick Pippenger began a half-year as a research visitor at the 

University of Toronto. During that spring semester, he taught a graduate research 

course on parallel communication and the theory of switching in telephone net
works. Telephone switching networks were modeled as bounded-degree graphs in 

which certain nodes are designated as external, representing the potential senders/ 
receivers, and the remaining nodes, representing the switches, are internal. The 

overall goal is to design switching networks that let one choose short node-disjoint 
routes through the network between as many simultaneous arbitrarily chosen 

sender–receiver pairs as possible among the external nodes while using as little 

hardware as possible for the internal nodes in the network. Examples of such 

networks include Clos–Benes networks [Clo53, Ben65] in which n senders can be 

simultaneously connected to n receivers via edge-disjoint paths in a graph with 

log n layers, each of n nodes, each of which pairs up two edges of one layer with two 

edges of the next layer in one of two ways. 
In the telephone switching theory, switches had no separate computational 

power in themselves and were controlled via an external algorithm that set the 

switches in order to match up the designated sender–receiver pairs. Pippenger 
had begun to develop simple algorithms to set the switches and began to consider 
whether it would be possible to compute the positions of the switches inside the 

network itself in order to make the required sender–receiver connections [Pip]. To 

make this useful, one would want the algorithm to run quickly and not use too 

much network hardware. For example, it was possible to build smarter networks 
to do this internally computed setting of switches by using sorting networks due 

to Kenneth (Ken) Batcher [Bat68], which have depth of O(log2 n) and O(n log2 n) 
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hardware. What kinds of computations should one allow? When he began think
ing about the question, Pippenger originally focused on computations of logO(1) n 

(polylog) time and n logO(1) n (quasilinear) hardware, in keeping with the hardware 

limitations typically considered in the telephone switching models [Pip]. 
However, there were certain algorithms for networks that Pippenger wanted 

to use that involved operations like reachability or transitive closure, for which it 
seemed that quasilinear hardware would not be enough and something closer to 

n3 size might be necessary. He realized that relaxing the hardware bound to any 
polynomial would probably be necessary to get a general enough model [Pip]. 

Cook and Borodin regularly attended Pippenger’s class. After class, the three of 
them would often discuss research and the material from the class over tea in the 

large spartan lounge of the McLennan Physics building at the University of Toronto 

that was the temporary home of part of the computer science department.7 While 

it was an easy place to socialize, the environment in the lounge was not a conducive 

place for writing out details for all of them to see. It was in this environment that 
Pippenger raised the questions of what computations were possible using polylog 

parallel time and polynomial hardware simultaneously. 
To all of them, this immediately seemed a very interesting class of problems 

worth exploring. It also nicely cleaned up the concern from Borodin’s earlier paper 
that polynomial-size circuits and polynomial-time are not necessarily closed under 
polylog depth reductions; reductions using these simultaneous resource bounds 
(with suitable notions of uniformity) would preserve both. Borodin’s work had 

shown that O(log n) sequential space could be simulated by O(log n)-space uni
form circuits of polynomial size and O(log2 n) depth. Borodin and Cook suggested 

that, more generally, the right notion of uniformity for this new class would be 

constructibility in O(log n) space. 
Their discussions quickly led to the puzzle of transitive closure. While Cook had 

been focused on the simultaneous sequential complexity of the problem “Is transi
tive closure simultaneously computable in polynomial time and polylog space?” in 

the parallel case, the O(log2 n) time/depth algorithm for transitive closure requires 
only polynomial hardware and hence is in the class of problems solvable by the 

kinds of algorithms that Pippenger had suggested. 
There were now two related classes involving simultaneous resources, one 

sequential and one parallel. What natural problems might be in these two classes? 
What are the relationships between them and their associated parameters? As 
noted above, in his 1977 paper Borodin had already explicitly asked the dual 

7. A fire the previous spring had destroyed the building that had previously housed the 

department. 
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question, in general form, of whether there was containment of the sequential class 
in the parallel one [Bor77]. Transitive closure was a good candidate for a separation 

between the two classes. 
Transitive closure was not the only natural candidate. After hearing a talk at 

Toronto by Janos Simon on simulations of probabilistic space-bounded machines 
by deterministic machines with polynomially larger space bounds that was later 
presented at FOCS 1978 [SGH78], Borodin, Cook, and Pippenger were able to 

improve the simulation for probabilistic machines to match the bounds of Sav
itch’s Theorem. Moreover, using a redundant representation of numbers, they were 

able to extend parallel algorithms for transitive closure to an analogous closure 

for stochastic matrices and hence show that probabilistic O(log n) space can be 

simulated by polynomial-size circuits of O(log2 n) depth. 
What about other interesting problems already known to be separately solvable 

in polylog space or polynomial time? For example, was context-free language (CFL) 
recognition in either of these simultaneous classes? (More than a decade prior, 
Philip Lewis, Hartmanis, and Stearns had shown that every CFL can be decided 

using only O(log2 n) space [LSH65], matching the later bound for transitive closure 

and complementing the earlier polynomial-time algorithm of Cocke, Kasami, and 

Younger [Kas66, You67].) CFL recognition was a particularly natural next problem 

to consider for simultaneous bound beyond transitive closure since I. H. (Hal) Sud-
borough [Sud75] had shown that transitive closure is log-space reducible to CFL 

recognition and hence in the class LOGCFL that consists of such problems. 
As they discussed these questions aloud, they needed a shorthand description 

to enable the free flow of conversation. There is some variance in their recollec
tions of how these shorthand descriptions came to be. In Borodin’s recollection, 
Cook began to refer to Pippenger’s new simultaneous parallel complexity class as 
“Nick’s class.” Cook liked to refer to the simultaneous sequential complexity class 
as PLOPS for “Polynomial-time PolyLOg Space,” though this was not a name that 
seemed desirable to pronounce8; over time, Pippenger, in response to Cook’s short
hand for his newly defined simultaneous parallel complexity class, began to refer to 

the sequential one as “Steve’s class.” However, in Pippenger’s recollection, Borodin 

had been the first to use both names. 
Over the spring and summer of 1978, Pippenger continued to develop the theory 

of this new complexity class and began relating it to other properties of sequential 

8. In his paper first defining the class, Cook used both PLOPS and the more mellifluous PLOSS 

to stand for its subclass of “Polynomial-time LOg Squared Space” [Coo79]. 
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computation. Due to the peculiarities of the conference-focused publication ethos 
in theoretical computer science, he was not the first to discuss the class in print 
and by then it had already been named after him. 

The submission deadline for the 1978 IEEE FOCS conference that fall had long 

passed and the next natural venue to present the work would have been the 1979 

ACM STOC conference. However, Pippenger was one of the eight members of the 

program committee and, in keeping with a longstanding policy that has contin
ued for decades, as a member of the program committee member he could not 
submit anything to the conference. As a result, his paper on the subject of his 
new complexity class did not appear in print until the fall of 1979 at the FOCS 

conference [Pip79]. 
Meanwhile, Cook continued to work on the problem of simultaneous com

plexity bounds for CFL recognition, eventually developing an algorithm for the 

recognition problem for the special case of deterministic context-free languages 
(DCFLs) that simultaneously ran in polynomial time and O(log2 n) space [Coo78a]. 
An examination of the algorithm showed that it was also in Nick’s class; moreover, 
it required only O(log2 n) circuit depth and polynomial size, avoiding the general 
loss in parameters in going from sequential space to parallel depth (unlike the 

simulation of O(log n) space by circuits). Cook’s paper at the 1979 STOC confer
ence [Coo79] included a short paragraph mentioning Nick’s Class and its defi
nition, using the notation NC, together with its containment of the problem of 
DCFL recognition, which became the first description of the complexity class in 

the published literature. 
Pippenger’s work on these new complexity classes eventually appeared in his 

1979 FOCS paper, “On simultaneous resource bounds.” There, Pippenger pointed 

out the weakness of simulations between sequential and parallel models, including 

those previously described by Borodin, that 

bound one resource in the simulating realm as a function of the correspond
ing resource in the simulated realm, but...allow the other resource in the 

simulating realm to grow beyond any interesting bound, even if there is a 

bound on the other corresponding resource in the simulated domain. 

His paper focused on the question that had been raised by Borodin of the relation
ship between the two complexity classes, the simultaneous sequential one defined 

by time and space bounds and the simultaneous parallel one defined by O(log n)
space uniform circuit size and depth. Could one prove a simulation in either direc
tion? He did indeed prove that there were precise characterizations of each of these 
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simultaneous classes by simultaneous classes involving the other model, but not 
of a form that answered either of these questions. 

In particular, Pippenger showed that (1) uniform polynomial size and polyloga
rithmic depth circuits were equivalent to Turing machines running in polynomial 
time and polylogarithmic reversals (change in direction of head movement) and 

(2) Turing machines running in polynomial time and polylogarithmic space were 

equivalent to uniform polynomial size circuits of polylogarithmic width. However, 
his paper makes no mention of these specific bounds and their associated com
plexity classes and only discusses the simulations in terms of arbitrary time, space, 
size, and depth bounds. The only reference to Cook’s DCFL paper is to the notion 

of O(log n)-space uniformity for circuits. In fact, it is only at the very end of the 

paper that Pippenger mentions that the circuit models he had been considering 

are models of parallel computation, and then only in the context of a discussion of 
subsequent work. To discuss that subsequent work, we first step back to the spring 

of 1979. 
Cook’s paper on DCFLs was not the only paper at the 1979 STOC conference that 

considered questions concerning CFLs and models with simultaneous resource 

bounds. The other was by Walter L. (Larry) Ruzzo [Ruz79b], who was motivated by 
the CFL recognition algorithms in the ATM model. As noted earlier, in addition 

to suggesting ATM time as a measure for parallel computation, Chandra, Kozen, 
and Stockmeyer had shown that deterministic polynomial-time corresponds to 

languages decided by ATMs using O(log n) space. Ruzzo observed that CFL recogni
tion could be implemented easily as an O(log n) space ATM algorithm but that this 
implementation did not seem to require the full unrestricted power of O(log n)
space ATMs; it required only a size O(n log n) accepting tree, a tree of configurations 
representing the part of the computation on an input required to prove that the 

input is accepted. (For a nondeterministic TM, this tree is simply a path corre
sponding to an acception computation, but for an ATM the universal branches 
require branching. In general, such an accepting tree can have many repeated 

configurations and the result for ATM space O(log n) could be as large as 2n
O(1) 
.) 

Based on this, Ruzzo considered a new resource, the (accepting) tree-size of an 

ATM and focused on complexity classes associated with ATMs that have simultane
ous space and tree-size bounds.9 Ruzzo also showed that with the additional tree-
size bound, ATM space can be simulated using small parallel time; in particular, 

9. In particular, Ruzzo related this restriction to a model called auxiliary pushdown automata 

(AuxPDAs) introduced by Cook in 1969 [Coo69, Coo71a] and used by Sudborough [Sud78] to charac
terize LOGCFL, showing that it exactly corresponds to languages recognized by ATMs with O(log n) 
space and polynomial tree-size. 
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ATMs with O(log n) space and polynomial tree-size can be simulated by ATMs using 

only O(log2 n) time and hence O(log2 n) time vector machines. 
Ruzzo learned of Pippenger’s results and had discussions with Borodin, Cook, 

and Pippenger during the STOC conference. During these conversions, Cook 

speculated that, while DCFL was in NC, CFL recognition would not be. Shortly 
afterward, Ruzzo realized that, by a simple modification, he could improve his 
simulation of O(log n)-space polynomial tree-size ATMs by ATMs with O(log2 n) 
time while still keeping the O(log n) space bound. Moreover, he realized that NC 

could be characterized by ATMs that simultaneously had O(log n) space and logO(1) n 

time. Together, these showed that general CFL recognition is actually in NC, 
contradicting Cook’s speculation. 

With its multiple alternative characterizations, Ruzzo’s 1979 FOCS paper 
[Ruz79a] containing these results provided another argument for the robustness of 
NC using ATMs bounded in both space and time. In particular, Ruzzo showed that 
for polynomial-size circuits of depth ≥ log2 n, Borodin and Cook’s O(log n)-space 

constructibility definition yields the same notion as time-bounded O(log n)-space 

ATMs, but that at smaller depths that are not known to simulate O(log n) space, this 
is unclear. On the other hand, with a stronger uniformity notion,10 circuit depth for 
polynomial-size circuits and ATM time for O(log n)-space machines yield precisely 
the same complexity classes for all depths. Ruzzo’s paper also defined the nota
tion NCk to refer to the subclass of NC consisting of those problems solvable by 
polynomial size circuits of O(logk n) depth.11 

While these results tied together the class NC nicely in a mathematical sense, 
there are drawbacks in the models of computing devices themselves in expressing 

the resources of parallel hardware and parallel time. ATMs with bounded accept
ing tree size are largely in the realm of a thought experiment. Combinational cir
cuits are closer to modelling real devices, but they mix the two resources since 

circuit elements are each associated with only one time step. PRAMs/SIMDAGs 
with their shared memory and simultaneous reads and writes to the same location 

have a potentially unreasonable power to have fully reconfigurable communication 

between processors on a per-step basis. 
Cook and his Ph.D. student Patrick Dymond, whom he co-advised together 

with Borodin and Charles Rackoff, took up the question of more precisely mod
eling these two resources. Their work gave further evidence that NC is fair in 

representing efficiently parallelizable problems. 

10. Termed UE* uniformity. 

11. The terminology of SC for “Steve’s Class” had not yet made an appearance in print. Ruzzo’s 
FOCS paper still referred to it as PLOPS. 



120 Chapter 7 Towards a Complexity Theory of Parallel Computation 

In order to avoid the mixing of parallel time and hardware in combinational 
circuits, they introduced a notion of synchronous sequential circuits with random 

access to the inputs, which they termed “aggregates,”12 that reuses the same gates 
with fixed connectivity at every step.13 Aggregates have the advantage of allowing 

one to consider sublinear hardware and the possibility of having the product of 
parallel hardware and parallel time be as small as the sequential time, a property 
that would later be termed a work-optimal algorithm (see, e.g., JáJá [JáJ92]). Dymond 

and Cook showed that aggregate hardware has a natural correspondence with the 

width of (synchronous14) combinational circuits. 
Alternatively, could one make the PRAM/SIMDAG model more reasonable? For 

this, Dymond and Cook developed a model with communication between paral
lel processing elements that is reconfigurable but in a much more limited way 
than in the PRAM/SIMDAG. The general idea is that each processor can activate 

a new processor or get information from one of only a constant number of other 
neighbor processors per step, and can only change this list of neighbor processors 
by adding a newly activated processor or by replacing one by a processor on one 

of its neighbors’ lists of neighbor processors. In their 1980 STOC paper, Dymond 

and Cook called such machines Hardware Modification Machines (HMMs), as they 
were an extension of the Storage Modification Machines (SMMs) introduced by 
Arnold Schönhage in 1970 to model flexible storage and input access in sequen
tial computation [Sch70],15 but in the much later journal publication of this work, 
Cook and Dymond [CD93] used the more natural name Parallel Pointer Machines 
(PPMs). Using what has later been termed “pointer jumping”16 and prefix com
putation [LF80], Dymond and Cook showed that their simpler HMMs/PPMs still 
had all the good properties of the PRAM/SIMDAG models with respect to efficient 
simulation of sequential space. In particular, 

HMM/PPM time S ⊆ Turing machine space S2 ⊆ HMM/PPM time S2. 

12. A natural finite version of Goldschlager’s notion of conglomerates. 

13. The random access to the inputs is achieved by having certain groups of circuit gates associ
ated with input indices and a corresponding returned input bit that is available log n steps later, 
which accounts for the delay of the fan-in tree that would be needed to implement it. 

14. Those with all paths to a gate from the inputs having the same length. 

15. Cook had developed a notion similar to SMMs in his 1966 Ph.D. thesis [Coo66a]. 

16. Pointer jumping is the operation of taking an out-degree 1 directed graph represented by 
a function p on vertices that defines the unique out-edge from each vertex v as (v, p(v)), and 

producing the new graph for which p(v) is replaced by p(p(v)). 



7.6 Cook’s Surveys of Parallel Computation 121 

Finally, Dymond and Cook showed that one can characterize both NC and 

SC using either uniform aggregates or HMMs/PPMs, with the former character
ized by polynomial hardware and polylogarithmic parallel time and the latter 
characterized by polynomial parallel time and polylogarithmic hardware. 

7.6 Cook’s Surveys of Parallel Computation 
Over the next few years, Cook concentrated on parallel computation and on map
ping out directions for the development of its complexity theory. Two survey papers 
are major milestones in that development. Cook’s first survey paper 

“Towards a complexity theory of synchronous parallel computation” 

was the outcome of a lecture delivered in early 1980 at a Logic and Algorithms Sym
posium in honor of mathematician Ernst Specker. Cook’s theory of synchronous17 

parallel computing intertwined nicely with the study of sequential computation, as 
witnessed by the parallel computation thesis and by the tantalizing issues raised 

by the works of Borodin, Cook, Pippenger, and Ruzzo on simultaneous resource 

bounds. Cook’s survey brought together many of the results for these models that 
had been shown over the preceding half dozen years. It gave many of the details 
of the new models of aggregates and mentioned HMMs/PPMs and their associated 

characterizations of simultaneous complexity classes NC and SC. The properties of 
the aggregate and HMM/PPM models gave further justification in working with NC. 

Though the focus of this survey was on the different models of parallel compu
tation and the connections between them, the primary impact of the survey was 
as a convergence of ideas, particularly on the importance of questions of simulta
neous resource bounds in general, and NC and the question of NC versus SC more 

specifically. Given that these subjects had attracted the attention of one of the lead
ing researchers in all of theoretical computer science, the survey provided a spark 

for a growing group of researchers to turn to the study of parallel computation and 

NC algorithms, a subject that was to become one of the dominant directions in 

theoretical computer science in the ensuing decade. 
Complexity-theoretic and algorithmic aspects of parallel computation were 

central to Cook’s research during this time. He supervised Romas Aleliunas’ Ph.D. 
research on randomized fast parallel routing in bounded-degree networks that 

17. Excluding computation by processes that differed widely in speed or localization and thus 
required a significant emphasis on routing and clocks and the study of race conditions that was 
more in the realm of “distributed computing.” 
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would let such architectures simulate NC algorithms efficiently [Ale82]. With Cyn
thia Dwork and Rudiger Reischuk, he produced the first lower bounds for the PRAM 

model, proving that the CREW PRAM requires Θ(log n) steps even to compute sim
ple functions such as the OR of n bits [CD82, CDR86], and hence PRAMs do not 
always provide asymptotic speed-up relative to Boolean circuit depth. 

Borodin, Cook, and Pippenger [BCP83] finally published their probabilistic ana
logue of Savitch’s Theorem and their parallel algorithm for stochastic closure 

from 1978 which showed that probabilistic O(log n) space is contained in NC2. In 

doing so, they simplified their algorithm and generalized their results to a broad 

class of objects, which they termed “well-endowed” rings, ones for which addi
tion and multiplication can be particularly efficiently computed (in NC0 and NC1, 
respectively). 

Cook also worked with each of us, as his Ph.D. students, on developing algo
rithms for parallel computation. With McKenzie, Cook wondered whether permu
tation group problems recently shown solvable in polynomial time could be placed 

in NC. They developed NC3 algorithms for problems such as testing membership 

in an Abelian group specified by generating permutations [MC87]. Permutation 

groups provided rare examples of natural computational problems18 in NC but 
apparently outside NC2. Cook and McKenzie further identified, as a by-product of 
their work on permutation groups, a list of problems [CM87] complete for the class 
L = DSPACE(log n), thus located well inside NC2 but likely outside NC1. 

The space complexity of the basic arithmetic operations had interested Cook 

for some time; integer addition and multiplication were easily shown to be com
putable in O(log n) space, but division seemed much harder. One motivation was to 

be able to discuss a representation-independent notion of log-space computable 

integer functions as a refinement of Cobham’s representation-independent notion 

of polynomial time complexity [Cob65]. In his Ph.D. thesis, Cook had shown how 

to use Newton iteration to compute integer division in O(log2 n) space. From the 

new perspective of parallel computation, this became an NC2 algorithm. Cook’s 
graduate student, H. James (Jim) Hoover, showed an alternative direct approach 

based on reducing the problem to an NC2 algorithm for efficiently computing the 

n-th power of an n-bit integer [Hoo79]. Inspired by a faster algorithm for division 

by John Reif [Rei83] based on a self-reduction using the fast Fourier transform, 
Cook, together with Beame and Hoover, first developed an O(log n log* n)-depth 

NC algorithm for division based on the Chinese Remainder Theorem (CRT) and 

18. Much effort over the period 1983–1987 culminated in an intricate NC algorithm by László Babai, 
Eugene Luks, and Ákos Seress [BLS87] that relied on the massive classification of finite simple 

groups to test membership in general permutation groups. 



7.6 Cook’s Surveys of Parallel Computation 123 

self-reduction; then Beame, Cook, and Hoover applied ideas from Cook’s work 

with McKenzie to eliminate the self-reduction component and achieve O(log n) 
depth circuits for integer division [BCH86], matching the circuit depth of the other 
arithmetic operations.19 

For a keynote talk at the 1983 Foundations of Computing Theory conference, 
Cook produced his second major survey of parallel computation entitled “The clas
sification of problems which have fast parallel algorithms” and modestly revised 

in journal form as 

“A taxonomy of problems with fast parallel algorithms.” 

By the time of this survey, parallel algorithms had become a burgeoning field, 
expressed as circuits, PRAM algorithms, or algorithms for networks of proces
sors. The number of problems for which good NC algorithms were known had 

grown tremendously. A survey of parallel algorithms by Uzi Vishkin [Vis83] from 

the same year catalogued a wide range of problems and problem areas for which 

very fast parallel algorithms had been found, which PRAM variants (EREW, CREW, 
or CRCW) were required to achieve them, and introduced a “Super-PRAM” model 
with even more powerful instructions. 

Cook’s survey focused on developing a larger picture among the results and on 

general methods for understanding the relationships between the parallel com
plexity of problems. This survey introduced and popularized some key terminology 
and raised important open questions; it has become one of Cook’s most widely 
cited papers. 

In addition to providing a clear presentation of the key circuit definitions for 
NC and NCk, Cook’s survey introduced several new organizing concepts and def
initions. It introduced a particularly clean notion of uniform circuit reduction, 
NC1-reducibility, in which to solve a problem A one can employ O(log n) depth cir
cuits with the usual binary gates plus oracle gates that compute B at unit cost in 

circuit size and a cost of logarithmic depth in their number of inputs. Such cir
cuits automatically have polynomial size. These reductions have the nice property 
that they preserve the levels of the NC hierarchy. Cook also defined several other 
complexity classes of functions using closure under NC1 reductions. 

This survey also introduced the terminology ACk for functions computable by 
polynomial-size circuits of O(logk n) depth that can use unbounded fan-in AND and 

19. These circuits were somewhat uniform in that they were polynomial-time constructible 

but they were not known to be O(log n)-space constructible; hence, they did not yet yield a 

representation-independent notion of log-space computable integer functions. That was implied 

by the later work of Chiu, Davida, and Litow [CDL01], which built on the CRT approach and was 
refined by Hesse, Allender, and Barrington [HAB02]. 
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OR gates in addition to negations.20 The study of nonuniform versions of such 

circuits of constant-depth (the case k = 0) had been popularized by the results 
of Merrick Furst, James Saxe, and Michael Sipser [FSS81] and by Chandra Stock
meyer, and Vishkin [CSV82], but there was no agreed-on terminology to describe 

the complexity classes that they define.21 The latter’s simulations, as well as uni
form versions of those simulations by Ruzzo and Martin Tompa in unpublished 

work, showed that the ACk complexity is equivalent to the SIMDAG (uniform CRCW 

PRAM) model with polynomially many processors running in O(logk n) time. 
Much of this survey is devoted to understanding the complexity of problems 

lying between NC1 and NC2, which is where many of the most interesting parallel 
algorithms seemed to sit. NC1 lies in L, deterministic log-space, for which the best 
parallel simulations are no better than NC2 algorithms, while NC2 also contains 
NL, nondeterministic log-space, and its functional closure under NC1 reductions, 
which Cook denoted NC* and showed contains the minimum spanning tree prob
lem. Moreover, he pointed out that a generic parallel greedy algorithm could be 

used to compute a minimum weight basis for an arbitrary matroid in NC* given an 

oracle for matroid rank yielding the result for minimum spanning trees.22 

Moreover, Cook observed that most natural problems known to be in NC2 were 

NC1-reducible to one of two natural problems: CFL recognition or integer determi
nant, each of which suffices to capture all of NL. By a trivial simulation, the ACk 

class hierarchy interleaves the NCk hierarchy, and AC1 contains NL* via the natu
ral circuit for Boolean matrix powering. By an extension of the results of Ruzzo 

mentioned earlier, AC1—and hence NC2—includes the complexity class LOGCFL, 
as well as the potentially larger set of problems CFL* that are NC1 reducible to CFL 

recognition.23 

20. The A in AC was intended to stand for alternating since such circuits naturally correspond to 

alternating bounded quantifiers. 

21. At the time, Miklós Ajtai’s work on these circuits was not yet widely known [Ajt83]. 

22. Carla Savage’s 1977 Ph.D. thesis [Sav77] gave an algorithm for minimum spanning trees, along 

with a number of other graph problems, using O(log2 n) parallel time and polynomial numbers of 
processors, which naturally translates to an NC3 algorithm rather than an NC2 algorithm because 

the model is a PRAM variant. 

23. The survey predates the surprising results of Neil Immerman [Imm88] and Róbert Szelepc
sényi [Sze88] showing that NL is closed under complement, and suggests that CFL* is larger than 

LOGCFL since the latter seemed unlikely to contain the complement of NL. A later and beauti
ful characterization of LOGCFL due to H. Venkateswaran [Ven91], shows that the AC1 algorithms 
for LOGCFL can be tightened to an equivalence of LOGCFL with SAC1, the set functions com
putable by uniform O(log n) depth semi-unbounded fan-in circuits in which the fan-in of OR gates 
is unbounded and that of AND gates is bounded. Using inductive counting ideas similar to those 

used to show the closure of NL under complement, Cook together with Borodin, Dymond, Ruzzo, 
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Cook identified the importance of the class DET of functions NC1 reducible to 

integer determinant and showed that it had several alternative characterizations 
and, via Cook’s results with Borodin and Pippenger on the computation of stochas
tic closures [BCP83], included simulating O(log n) space-bounded probabilistic 
algorithms. 

One of the major impacts of this survey was to point out the importance of the 

question of whether NC=FP; that is, whether every polynomial-time computable 

function24 can be efficiently parallelized to yield an efficient polylogarithmic time 

parallel solution. This included highlighting results on problems that are NC1
complete for FP, and hence unlikely to have such algorithms—a property that came 

to be termed inherently sequential. These included some of Goldschlager’s results 
showing that restricted circuit value problems are complete for FP and especially 
his result with Ralph Shaw and John Staples that the maximum flow problem with 

large capacities is also complete for FP [GSS82]. Cook also gave a particularly sur
prising and simple example of such a hard problem: computing the lexicograph
ically first maximal clique in an undirected graph, a problem computable by the 

most trivial of sequential greedy algorithms. 

7.7 Last Words 
In his 1981 survey paper, Cook wrote: 

We close this section with two little results about aggregates in the style “if 
horses can whistle then pigs can fly.” This style (but not those results) comes 
from the paper of Karp and Lipton [KL]. [Coo81a] 

That excerpt (but not those horses) is testimony to Cook’s unpretentious 
approach to research. In earnest, Cook spent a half-dozen years studying parallel 
computation. But approaching the area with his characteristic rigor and method, 
he played a significant role in firming up a fledgling complexity theory of paral
lelism. Beyond the technical contributions due to him and reported in the present 
chapter, Cook raised a number of questions and directions for further study that 
helped guide the work of others. This led to many subsequent unexpected dis
coveries, such as the stream of complexity upper bounds described in footnote23 

and, to some extent, to Barrington’s proof that simultaneous polynomial time and 

constant space captures NC1 [Bar89]. The young at heart need not despair, though, 

and Tompa subsequently showed that LOGCFL is indeed closed under complement and hence 

SAC1 can also be defined in terms of circuits with bounded fan-in OR gates and unbounded fan-in 

AND gates [BCD+89a]. 

24. Since NC is defined as a set of functions, it is natural to relate it to the class of functions FP 

rather than the class P of decision problems. 
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as Cook also raised issues that remain unresolved 40 years later: Is randomness 
necessary for some problems to have fast parallel algorithms? Is integer determi
nant complete for NC2? Are integer greatest common divisor or modular exponen
tiation either in (R)NC or complete for FP? Is NC=NCk for some integer k? And of 
course: Is NC=FP? 



8Computation with Limited 
Space 

Nicholas Pippenger 

8.1 Time and Space Bounds 
Stephen Cook’s paper “Pebbles and branching programs for tree evaluation” 
(with Pierre McKenzie, Dustin Wehr, Mark Braverman, and Rahul Santhanam) 
[CMW+12], reproduced in this volume, touches upon many themes that reca
pitulate Cook’s research interests over his career. Two of these, “pebbles” and 

“branching programs,” are clear from the title. But broader themes also recur in 

this paper. One of these concerns the general region of the map of complexity 
classes that is dealt with: the internal (or “fine structure”) of polynomial time, P, 
and also small amounts of space, which we shall take to be polylogarithmic space 

PL = ⋃k≥1 SPACE ((log n)k). In this chapter, we shall take up these themes in turn, 
giving the background to Cook’s work, and outlining subsequent developments. 

Although Cook is best known for inquiring after the relationship between P 

(polynomial time) and its superset NP (nondeterministic polynomial time), he 

devoted much of his attention to what lies between L (logarithmic space) and its 
superset P. In this survey, we shall meet many intermediate complexity classes. 
We’ll also need to mention PL (polylogarithmic space). It is not known if either of 
P and PL is included in the other; but as we’ll see below, it is known that they are 

not equal! 
Our story begins with Walter Savitch, who did his Ph.D. under Cook at Berkeley. 

Savitch [Sav69, Sav70] relates L to NL (nondeterministic logarithmic space) just as 
Cook related P to NP: find a language complete for the larger class (with respect 
to a reducibility based on the smaller class); the two classes are then equal if and 

only if the complete language belongs to the smaller class. Savitch also showed 
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that a nondeterministic space-bounded machine can be simulated by determin
istic machine whose space bound is the square of that of the simulated machine, 
so that NL ⊆ SPACE ((log n)2). (And when PSPACE (polynomial space) was defined, 
there was no need to define NPSPACE as a separate complexity class, for the square 

of a polynomial is a polynomial.) 
We have mentioned “reducibility,” and this will be a good time to more fully 

describe some of the various reducibilities used in complexity theory. The notion 

of reducibility comes to us from recursive function theory, which has, among oth
ers ≤T (Turing reducibility: A ≤T B means “A is computable, given an oracle for 
B”) and the stronger ≤m (many-one reducibility: “there is a computable function 

that transforms questions about membership in A to questions about member
ship in B having the same answer”). Turing reducibility is generally regarded as 
the weakest (and therefore most broadly applicable) notion of reducibility that 
makes sense when discussing computability; the advantage of using a stronger 
reducibility, such as many-one reducibility, is that it yields a finer (and thus more 

detailed) classification of languages. In complexity theory, we use the same types of 
reducibility but qualify “computable” by imposing resource bounds. Cook’s work 

on P versus NP [Coo71b], reproduced in this volume, used ≤P 
T , combining com

putability in polynomial time with Turing reducibility. Richard Karp’s subsequent 
work [Kar72] used the stronger ≤P , combining computability in polynomial time m

with many-one reducibility. To discuss the relationship between L and P, a still 
stronger reducibility is needed. The relation ≤L , combining computability in log-m

arithmic space with many-one reducibility, was used implicitly by Cook [Coo73b, 
Coo74] to exhibit a problem (Solvable Path System) complete for P. He presented 

this as evidence that this problem was not in L, or even PL. This result enabled 

Ronald Book [Boo76] to observe that, as stated above, P ̸ PL because the for= 

mer class has a complete problem with respect to ≤L while a complete language m 

for the latter would violate the hierarchy theorem of Lewis, Hartmanis, and Stearns 
[SHL65]. Neil Jones and William Laaser [JL76] then used ≤L to show other problems m 

complete for P. Savitch [Sav70] used ≤L to show the problem Threadable Mazes is m 

complete for NL; Jones, Y. Edmund Lien, and Laaser [JLL76] then used it to show 

other problems complete for NL. 
The next instalment of our story concerns Cook’s work on characterizing P. The 

class P was first defined by Alan [Cob65] and Jack [Edm65a]. Edmond’s definition 

was in terms of steps for a machine model, which is clearly a precursor of the cur
rent definition. Cobham, however, characterized P in terms of its closure under 
certain operations on languages. This characterization involved operations capa
ble of generating strings of various polynomial lengths, and thus had the notion 

“polynomial” built into it in the same way as Edmond’s. Cook has been involved 
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with two characterizations of P that do not require any mention of “polynomials” 
or “time.” 

The first of these characterizations of P was based on “auxiliary pushdown 

machines.” Pushdown machines come to us from the world of context-free lan
guages. Nondeterministic pushdown machines were used by Noam Chomsky 
[Cho62] and Robert Evey [Eve63] to characterize the class CFL of context-free lan
guages, which was originally defined by Chomsky [Cho56] in terms of grammars. 
Later, the class DCFL of deterministic context-free languages was defined by Sey
mour Ginsburg and Sheila Greibach [GG66], simply by restricting the pushdown 

machines recognizing them to be deterministic. (The deterministic context-free 

languages can also be characterized by imposing restrictions on their grammars 
[see Knu65].) Cook’s first “resource-free” characterization of P involved space-
bounded auxiliary pushdown machines (where “auxiliary” means that the space 

needed to maintain the pushdown store is not included in the space bound). Cook 

[Coo71a], reproduced in this volume, showed that auxiliary pushdown machines 
(either deterministic or nondeterministic) running in logarithmic space recognize 

exactly the languages in P. (More generally, he showed that such machines running 

in space s(n) recognize exactly the languages in ⋃c>1 TIME (cs(n)). See Chapter 4 in 

the current volume on NP-completeness by Christos Papadimitriou for further dis
cussion of this result.) It might be thought that we have just traded one resource 

bound, “polynomial time,” for another, “logarithmic space,” that is just as objec
tionable. But the point here is that logarithmic space can easily be defined without 
mentioning either “logarithms” or “space” merely by allowing a fixed number of 
“heads” (or even just movable “markers”) on the input tape. 

A later “resource-free” characterization of P was given by Stephen Bellantoni 
and Cook. It characterizes the languages recognizable in polynomial time among 

those definable by “primitive recursion.” The latter are usually defined for integer 
functions of integer arguments [see Kle52], but can also be defined with binary 
words replacing integers (as was done by Cobham [Cob65]). Bellantoni and Cook 

[BC92a, BC92b] showed that by imposing a purely syntactic condition on the recur
sion schemes used to define functions, the functions that can be defined are all 
and only those computable in polynomial time. 

The sets CFL and DCFL are “families of languages,” meaning that they are closed 

under various operations studied in formal language theory. In particular, they are 

both “cylinders,” meaning that they are closed under inverse homomorphic images 
and intersections with regular languages. In fact, CFL is a “principal cylinder,” 
meaning that there is a single language L1 ∈ CFL such that every other language 

L ∈ CFL is the intersection of a regular language with an inverse homomorphic 
image of L1 (that is, there is regular language R and a homomorphism h : Σ → Σ1 
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from the alphabet Σ of L to the alphabet Σ1 of L1 such that L = R ∩ h−1(L1)). 
Such a “hardest context-free language” was first described by Greibach [Gre73]. 
(Actually, one must take two such languages, one generating languages contain
ing the empty string and another for languages not containing the empty string.) 
For complexity theory, however, we usually want complexity classes to be closed 

under some reducibility. Thus, we shall consider the complexity class LOGDCFL, 
comprising the languages ≤L -reducible to a context-free language. Any hardest m

context-free language is then also a complete language for LOGCFL (with respect 
to ≤L -reducibility). We then have m

L ⊆ LOGCFL ⊆ P, 

because every language in L is reducible to the context-free language {𝜀} compris
ing just the empty string and because every context-free language is in P (as was 
shown by John Cocke [CS70], Tadao Kasami [Kas66], and Daniel Younger [You67] 
independently), and P is closed under ≤L -reducibility. m

For deterministic context-free languages, the situation is different. Greibach 

[Gre74] (see also Jean-Michel Autebert [Aut79]) has shown that DCFL is not a prin
cipal cylinder, meaning that there is no single language L1 ∈ DCFL such that every 
other language L ∈ DCFL is R ∩ h−1(L1) for some regular language R and some 

homomorphism h. But Ivan Sudborough [Sud78] has shown that the complexity 
class LOGCFL, comprising the languages ≤L -reducible to a deterministic context-m

free language, has a complete language (with respect to ≤L -reducibility) that is a m

deterministic context-free language (and not merely reducible to one). Thus, we 

have 

L ⊆ LOGDCFL ⊆ LOGCFL ⊆ P. 

In Cook’s characterization of P using auxiliary pushdown machines, the aux
iliary pushdown machine is not subject to a time bound (only to a space bound). 
Sudborough [Sud77] has shown that if, in addition to the logarithmic space bound, 
we impose a polynomial time bound on a deterministic (respectively, nondeter
ministic) auxiliary pushdown machine, the class of languages recognized is exactly 
LOGDCFL (respectively, LOGCFL). 

8.2 Pebbling 
We now come to Cook’s contributions to “pebbling.” Let G be a binary acyclic 
directed graph (that is, an acyclic directed graph in which every vertex has in-degree 

two, except for the “sources,” which have in-degree zero). We consider the follow
ing activity, in which “pebbles” are placed on and removed from the vertices of G 
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according to the following rules. (1) A pebble may be placed on a vertex if all the 

immediate predecessors of that vertex currently have pebbles. (Note that this rule 

allows a pebble to be placed on a source at any time because a source has no imme
diate predecessors.) (2) A pebble may be removed from a vertex at any time. The goal 
of this activity is to start with no pebbles on the graph and perform a sequence of 
placements and removals in which every vertex receives a pebble at some time, end
ing with no pebbles on the graph. (Note that it would be enough to demand that 
every “sink” (vertex having out-degree zero) receive a pebble at some time because 

every other vertex lies on some path to a sink, and thus must be pebbled before 

that sink can be pebbled.) Every graph can be pebbled by a trivial strategy that con
sists of arranging its vertices in sequence such that the predecessors of a vertex 
precede that vertex, pebbling the vertices in this order, then removing all the peb
bles. We shall be interested, however, in minimizing the “space” used by a pebbling 

strategy (the maximum number of pebbles on the graph at any time), even if this 
entails an increase in the “time” (the total number of placements of pebbles). The 

trivial strategy described above, for example, uses space n and time n for an n-vertex 
graph. 

The significance of the terms “space” and “time” can be seen by considering the 

graph as representing a straight-line program in which the sources represent the 

input values of the computation and in which other vertices represent values com
puted by applying a dyadic operator to the two values represented by the immediate 

predecessors, with the sinks representing the output values of the computation. 
The space used by a pebbling strategy then corresponds to the maximum num
ber of values that must be kept in local storage (think of registers) simultaneously 
(we do not count the storage required for the input values until they are fetched 

into local storage), while the time used corresponds to the number of applications 
of dyadic operations, plus the number of fetches of input values into local storage. 
(Another interpretation arises by considering the presentation of a proof at a black
board. The vertices represent assertions, the sources represent axioms, while other 
vertices represent the proof of an assertion by applying a rule of inference to the 

two assertions represented by its immediate predecessors.) 
The earliest pebbling result is due to Michael Paterson and Carl Hewitt [PH70], 

who showed that pebbling a balanced binary tree with depth k and n = 2k+1 − 1 
vertices requires exactly k + 2 pebbles (unless k = 0 and n = 1, when one pebble 

suffices). They used this result to show that the power of recursive programs (with 

access to a pushdown store implementing recursion) exceeds that of programs 
with only fixed static storage. For the upper bound, a straightforward recursive 

strategy (for k ≥ 1, get a pebble on the root of the left subtree, get a pebble on 

the root of the right subtree, place a pebble on the root of the tree, then clear the 
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pebbles from the roots of the subtrees) gets a pebble on the root of the tree while 

using space k + 2. For the lower bound, they gave the following argument. Say a 

path from an input to the root is open if all its vertices are unpebbled, otherwise 

closed. Any strategy that gets a pebble on the root starts with all paths open and 

ends with all paths closed. Consider then the last configuration in which there is 
an open path P. The move from this configuration must close P by pebbling the 

input of P (for each of the k + 1 other vertices on P has its immediate predecessor 
on P unpebbled). Each of these k + 1 other vertices on P has another immediate 

predecessor that is not on P, and each of the k + 1 disjoint subtrees rooted in these 

k + 1 other immediate predecessors must contain at least one pebble (else there 

would still be an open path), and these k + 1 pebbles, plus the one just placed, give 

a total of k + 2. 
A balanced binary tree with n vertices requires space Θ(log n). Cook [Coo73b, 

Coo74] introduced another family of graphs, called pyramids, that require more 

space. A pyramid of height k has n = (k + 1)(k + 2)/2 vertices, regarded as the inte
ger lattice points (i, j) ∈ Z × Z such that i ≥ 0, j ≥ 0, and i + j ≤ k. The vertex 
(i, j) has as immediate successors the vertices (i − 1, j) (unless i = 0) and (i, j − 1) 
(unless j = 0). It is straightforward to pebble this graph with k+2 pebbles, pebbling 

first the sources (the vertices with i + j = k), then the vertices with i + j = k − 1, 
and so forth (removing pebbles when they are no longer needed). And a modifica
tion of the open-path/closed-path argument given above for trees shows that k + 2 

pebbles are necessary as well as sufficient. But now, because n grows more slowly 
with k (quadratically, rather than exponentially), we have graphs that require space 

Θ(n1/2) rather than Θ(log n). 
At this point, the question arises: what graphs with n vertices require the most 

space? In particular, are there binary graphs that require space Θ(n)? That the 

answer to the latter question is “no” was shown by John Hopcroft, Wolfgang 

Paul, and Leslie Valiant, who showed that space O(n/ log n) is always sufficient 
and used this result to show that TIME(f (n)) ⊆ SPACE (f (n)/ log f (n)) for multi-
tape Turing machines. (This result has been extended (with a slightly larger space 

bound) to Turing machines with multidimensional tapes by Paul and Rüdiger 
Reischuk [PR79, PR81] and (with the original SPACE (f (n)/ log f (n)) space bound) 
to pointer machines by Joseph Halpern, Michael Loui, Albert Meyer, and Daniel 
Weise [HLMW86]. For Turing machines with a single one-dimensional tape, the 

smaller space bound SPACE (f (n)1/2) has been shown by Paterson [Pat72], even 

for nondeterministic time-bounded machines and deterministic space-bounded 

machines.) 
The work of Hopcroft, Paul and Valiant [HPV75, HPV77] provides an upper 

bound of O(n/ log n) to the space required by any n-vertex graph; but are there any 
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graphs for which Ω(n/ log n) space is actually necessary? That the answer is “yes” 
was proved by Paul, Tarjan, and James Celoni [PTC76a, PTC76b, PTC77]. Savings in 

space usually come at a cost in time, and Lengauer and Tarjan [LT79, LT82] have 

shown that the time t required to achieve space s = Ω(n/ log n) is at most 

n 
t = n exp exp O ( ) ,s 

and that there are graphs for which 

n 
t = n exp exp Ω ( )s 

is actually necessary. Loui [Lou80] has given simplified proofs of both the upper 
bound for space of Hopcroft, Paul, and Valiant and the upper bound for time of 
Lengauer and Tarjan. 

All these results on pebbling raise the question as to how hard it is to determine 

the space required by a graph. For trees, the space required can be determined 

in linear time, using a recurrence first derived by Ershov [Ers58]. (This result has 
been extended to trees in which the in-degrees of vertices may be greater than two 

[see LT80].) But for general graphs, it can be very difficult to determine the space 

required: John Gilbert, Lengauer, and Tarjan [GLT79, GLT80] have shown that this 
problem is PSPACE-complete. 

In 1976, Cook and Ravi Sethi [CS74, CS76] introduced “white pebbles” to peb
bling. The pebbles employed previously were now called “black pebbles,” and the 

new white pebbles were placed and removed using rules dual to those of black peb
bles, as follows. (1) A white pebble may be placed on a vertex at any time. (2) A white 

pebble may be removed from a vertex if all the immediate predecessors of that ver
tex currently have pebbles. (The pebbles that justify the placement of a black pebble 

or the removal of a white pebble may be black, white, or a combination of the two.) 
As before, the goal of this activity is to start with no pebbles on the graph and 

perform a sequence of placements and removals in which every vertex receives a 

pebble (black or white) at some time, ending with no pebbles (black or white) on 

the graph. 
The use of white pebbles corresponds in a way to nondeterminism. In the inter

pretation regarding straight-line programs, placing a white pebbles corresponds 
to guessing the result of an operation, while removing a white pebble corresponds 
to verifying the correctness of that guess. (In the interpretation regarding presen
tations of proofs, placing a white pebble corresponds to making an assertion and 

promising to prove later, while removing a white pebble corresponds to fulfilling 

that promise.) 
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The duality that is evident in the rules for black and white pebbles has as its con
sequence the following observation: if, for a strategy for pebbling a graph, we run it 
backwards (exchanging placements with removals), and if in addition we exchange 

black pebbles with white pebbles, we obtain another strategy for pebbling the 

graph. In particular, the space required using black pebbles alone is the same as 
the space required using white pebbles alone. But a strategy employing both black 

and white pebbles may use less space than one using only a single color of pebble. 
In particular, Cook and Sethi showed that a pyramid of height k could be pebbled 

with space about k/2 when both black and white pebbles are used. 
This upper bound shows that white pebbles can be used to reduce space require

ments, but they also derived a lower bound of Ω(k1/2) = Ω(n1/4) for pyramids. They 
presented this lower bound as evidence that the Solvable Path System problem can
not be solved in polylogarithmic space, even by nondeterministic machines. It is 
noteworthy that the lower bound they derived for black and white pebbles grows 
as square root of the Ω(k) = Ω(n1/2) bound they derived for black pebbles alone, 
corresponding to the relationship established by Savitch: a lower bound of f (n) 
for deterministic space-bounded machines implies a lower bound of f (N)1/2 for 
nondeterministic space-bounded machines. 

The results of Cook and Sethi raise many questions: how many black and white 

pebbles are needed for pyramids? How many for other graphs? In particular, what 
is the largest gap between black and white pebbles and black pebbles alone? The 

first of these questions was answered by Maria Klawe [Kla83, Kla85], who showed 

that space about k/2 is required to pebble a pyramid of height k using black and 

white pebbles. For trees, Lengauer and Tarjan [LT80] have shown that white peb
bles can reduce space requirements by at most a factor of two, even for trees with 

unbounded in-degree, and they have shown that the bound Ω(n/ log n) of Paul, 
Tarjan, and Celoni, and that their bound 

n 
t = n exp exp Ω ( )s 

continue to hold, even when white pebbles are allowed. 
As for the largest gap, Friedhelm Meyer auf der Heide [Mey79, Mey81], showed 

that it can be no larger than the squaring that occurs in Savitch’s result: any graph 

that can be pebbled with s black and white pebbles can be pebbled with O(s2) 
black pebbles alone. Obtaining results in the other direction proved much more 

challenging. Robert Wilber [Wil85, Wil88] first proved that the gap could be larger 
than any constant factor, and later found a graph for which s black and white peb
bles suffice, but for which Ω(s log s/ log log s) pebbles are needed if they can only 
be black. Finally, a matching bound was obtained by Bala Kalyanasundaram and 
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Georg Schnitger [KS88, KS91], who found a graph for which O(s) black and white 

pebbles suffice, but for which Ω(s2) pebbles are needed if they can only be black. 
We again have the problem of how hard it is to determine the space require

ments, using both black and white pebbles, of a given graph. For trees, this can be 

done in time O(n log n) (even when vertices can have arbitrary in-degree), as was 
shown by Yannakakis [Yan83, Yan85]. For general graphs, the problem is again 

PSPACE-complete, as was shown by Philipp Hertel and Toniann Pitassi [HP07, 
HP10] (but unlike the case of black pebbles alone, this result requires graphs with 

unbounded in-degree). 
The general idea of “pebbling,” but with different rules, has continued to recur 

in the theory of computation. To give just one example, Yuval Filmus, Pitassi, 
Robert Robere, and Cook [FPRC13b] introduced “reversible pebbling,” in which 

both the placement and removal of a pebble require the immediate predecessors 
to have pebbles. 

We come now to what has come to be called “Steve’s Class” (denoted SC). This 
class was defined by Cook in the spring of 1978 during a discussion of the notion 

of “simultaneous resource bounds.” As noted above, the membership problem for 
a context free language can solved in polynomial time, and it can also be solved 

in log-squared space (as was shown by Lewis, Stearns, and Hartmanis [LSH65, 
Har67]). Thus, it is in P ∩ L2. But we are referring here to two different algorithms: 
a polynomial-time algorithm that uses more than polylogarithmic space and a 

log-squared-space algorithm that uses more than polynomial time. But is there a 

single algorithm that uses polynomial time and polylogarithmic space? We still do 

not know the answer to this question, but Cook showed that every deterministic 
context-free language has such an algorithm. Cook [Coo79] defined the complex
ity class (now known as “Steve’s Class” and denoted SC) comprising the problems 
that can be solved by an algorithm that uses both polynomial time and polylog
arithmic space. We also use SCk when the algorithm uses polynomial time and 

logk-space (and we have SC1 = L). (See Chapter 7 in the current volume on parallel 
computation by Beame and McKenzie, for further discussion of the results in this 
and the next paragraph.) Cook did not refer to pebbling in his paper, but it was 
soon recognized (by Burchard von Braunmühl and Rutger Verbeek [vBV80], and 

independently by Kurt Mehlhorn [Meh80]) that it could be formulated in terms of 
pebbling graphs (called “mountain ranges”) that describe the way data is accessed 

by a deterministic pushdown machine. The final result was a joint paper by von 

Braunmühl, Cook, Mehlhorn, and Verbeek [vBCMV83]. 



136 Chapter 8 Computation with Limited Space 

8.3 Circuits 
In that same spring, the current author considered simultaneous resource bounds 
in order to characterize problems solvable in polynomial time in a “highly parallel” 
way. The natural way to do this was to consider not time and space for machines 
but rather “size” and “depth” for circuits, for circuits of small size have small cost, 
and circuits of very small depth introduce very small delay between the accep
tance of the inputs and the production of the outputs. Since a circuit solves the 

instances of a problem of one particular size, what solves all instances of a prob
lem is an infinite sequence of circuits (one for instances of each size), and so to 

make sequences of circuits comparable with machines, we must impose some 

“uniformity” constraint on the sequences of circuits (usually taking the form of 
a requirement that the circuit for instances of size n can be “easily” computed (in 

some sense) from n). Assuming this to have been done in some appropriate way, 
Savage [Sav72] (in one direction) and Pippenger [Pip77] (in the other) established 

the equivalence of polynomial time for machines and polynomial size for circuits, 
and Allan Borodin [Bor77] established the equivalence of polylogarithmic space 

for machines and polylogarithmic depth for circuits. Thus, it might seem that SC 

would be the desired class, but the arguments relating time and size on one hand, 
and space and depth on the other, do not appear to work together for simultaneous 
resource bounds. Thus Pippenger [Pip79] defined a complexity class (now known 

as “Nick’s Class” and denoted NC) comprising the problems that can be solved by a 

single uniform sequence of circuits having both polynomial size and polylogarith
mic depth. We also use NCk when the circuits have polynomial size and logk-depth 

(and Borodin’s results show that NC1 ⊆ L ⊆ SC2). In view of the results of Savage, 
Pippenger, and Borodin, it may seem strange that NC and SC are apparently dif
ferent, but Patrick Dymond and Cook [DC89] exhibited a sort of duality between 

these two classes by introducing what they called “aggregates.” 
At this point, we should say more about the various notions of uniformity that 

have been used (that is, about the various ways in which the phrase “some appro
priate way,” appearing above, may be interpreted). To establish the equivalence 

of polynomial time for machines and polynomial size for circuits, it is enough 

to insist that the circuits be “polynomial-time uniform,” meaning that a descrip
tion of the circuit can be computed in polynomial time from a tally of the input 
(a word over a single-letter alphabet that is the same length as the input). To 

establish the equivalence of space and depth calls for a more delicate uniformity, 
and “logarithmic-space uniformity” is commonly used. To illustrate the difference, 
consider the problem of division of integers represented in binary (to obtain a quo
tient and remainder). For the simpler problems of addition and multiplication, it 
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has long been known that they can be performed both by circuits of depth O(log n) 
and by machines in logarithmic space. For many years it was an open question as 
to whether similar results could be obtained for division, until Paul Beame, Cook, 
and H. James Hoover [BCH84, BCH86] showed in 1986 that division could indeed 

be performed by circuits of depth O(log n). But the circuits they described were only 
polynomial-time uniform, so they could not obtain the conclusion that division can 

be done in logarithmic space. Only in 2001 did Andrew Chiu, George Davida, and 

Bruce Litow [CDL01] construct circuits of depth O(log n) that are logarithmic-space 

uniform, thereby showing that the division problem is itself solvable in logarithmic 
space. 

But the story of division does not stop here. William Hesse et al. [HAB02, HAB14] 
showed that division is in a complexity class believed to be even smaller than NC1, 
namely the class TC0 comprising those functions that can be computed by polyno
mial size, bounded depth circuits (or formulas, it makes no difference) of majority 
gates (the gates can have any number of inputs, with the size of a circuit being 

the sum over gates of their number of inputs). Since the majority function is in 

NC1, we have TC0 ⊆ NC1. (Multiplication is also in TC0, and addition is in the even 

smaller class AC0, which is like TC0 but with AND- and OR-gates instead of major
ity gates.) Could we go farther, and place division in some complexity class that 
might be even smaller than TC0? The answer is “no,” for Hesse also showed that 
division is complete for TC0. Of course, proving completeness for TC0 calls for a 

reducibility more delicate than log-space reducibility. The reducibility Hesse used 

is called DLOGTIME; we will not go into its definition here but merely observe that 
with Hesse’s result, division has found its home ( just as Cook showed that NP is 
the home of Satisfiability, and that P is the home of Solvable Path System). 

One cannot help but notice that the various notions of uniformity just discussed 

are closely related to the various notions of reducibility discussed earlier. Just as 
one may define uniformities more delicate than logarithmic space, one may define 

more delicate reducibilities, and these will allow one to explore the fine structure 

of L and to find problems that are complete for L. For example, Cook and McKen
zie [CM87] give a list of problems complete for L, using NC1-reducibility (which is 
intermediate between DLOGTIME and logarithmic space reducibilities). Prominent 
on this list is the determination of connectedness for undirected graphs consisting 

of one or more cycles. The restriction of the graphs to collections of cycles arose 

because, at the time their paper was written, it was not known that connectedness 
for general undirected graphs is in L. When Omer Reingold [Rei05, Rei08] proved 

that USTCONN (point-to-point connectedness in general undirected graphs) is in 
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L, it showed that USTCONN is a natural complete problem for L, in perfect anal
ogy with the completeness of STCONN (point-to-point connectedness in general 
directed graphs) for NL. 

8.4 Branching Programs 
Thus far, we have considered two kinds of models for computation: machines 
and circuits. But there is a third kind of model that plays a role in the paper 
under discussion: the branching program. Branching programs were introduced 

by Chester Lee [Lee59], under the name of “binary-decision programs.” A branch
ing program is an acyclic directed graph with a single source, in which every vertex 
has out-degree either two (in which case it represents a query of an input variable, 
whose value determines which outgoing edge is to be followed) or zero (in which 

case it announces the output value). For a branching program, “time” is defined 

as the length of the longest path from the source to a sink (and thus measures 
the maximum number of queries in a computation), and “space” is defined as 
the logarithm (to base two) of the number of vertices (and thus represents the 

number of bits needed to keep track of the state of the computation, where the 

bits representing the values of the input variables are not counted). As for cir
cuits, branching programs compute Boolean functions, so recognizing a language 

calls for a sequence of branching programs, one for each size of instances. Thus, to 

establish a correspondence between complexity classes defined by machines and 

complexity classes defined by branching programs, one must introduce a notion 

of uniformity for the sequences of branching programs. 
That branching programs present a dramatically new perspective on computa

tional complexity is shown by a result of David Barrington. Consider branching 

programs that are “leveled,” in the sense that all paths from the source to a sink 

have the same length. For such a program, we define the “width” to be the max
imum number of vertices at any level. Any Boolean function can be computed 

by a branching program of width three (consider conjunctive or disjunctive nor
mal form), so interesting classes of functions can only be defined by imposing 

additional resource constraints. Barringto [Bar86, Bar89] showed that the func
tions computable in polynomial time by branching programs of bounded width 

are exactly the functions in NC1. 
Cook’s first contribution to the theory of branching programs concerns time– 

space tradeoffs for the problem of sorting n elements. For this problem, the output 
is as large as the input, and as always when we discuss small amounts of space, we 

do not want to count the space used to store the input or the output in our space 
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bound. Thus, for this problem, we assume the input is read from read-only stor
age and that the output is written (as the execution of the program progresses) to 

write-only storage (by announcing the ranks of the elements). 
The story starts with a result of Borodin, Fischer, David Kirkpatrick, Nancy 

Lynch, and Martin Tompa [BFK+79, BFK+81], who proved a lower bound of st = 

Ω(n2) for a modification of the branching program model in which the only opera
tions that can be performed to determine the order of the n elements are pairwise 

comparisons. This result is not far from the best possible: there are many algo
rithms that sort with O(n log n) comparisons and use space O(n log n) to keep track 

of a permutation of the n elements. On the other hand, one can get by with O(log n) 
space by making n passes over the input, with the k-th pass finding the k-th small
est element; only one element need be remembered from pass to pass; but this 
algorithm uses time O(n) comparisons per pass, for a total of O(n2) time. 

This result suffers, however, from its restriction to programs that use only pair
wise comparisons to determine the order of the input elements. There are “digital” 
sorting algorithms that directly access the bits of the binary representation of 
the elements to be sorted, and in some situations such algorithms can provably 
outperform algorithms that use only pairwise comparisons. 

Borodin and Cook [BC82] (included in this volume) improved this result by 
showing that if the elements to be sorted are integers in the range [1, n2], and if 
the program can, as a single operation, branch n2 ways on the value of any ele
ment, a lower bound of st = Ω(n2/ log n) still holds. The model used in this result 
is very general: it can clearly simulate the operation of any sorting algorithm for a 

serial computer, even one with random access to storage. In particular, it can sim
ulate any algorithm that performs pairwise comparisons, with a contribution of 2 

to time for each comparison, and an overall contribution of O(log n) to space. 
These results raise the question as to whether similar results could be proved 

for a decision problem (a problem having a yes-or-no answer). Borodin, Faith Fich, 
Meyer auf der Heide, Eli Upfal, and Avi Wigderson [BFM+86, BFM+87] adapted the 

result of Borodin, Fischer, Kirkpatrick, Lynch, and Tompa [BFK+79, BFK+81] to the 

problem of “element uniqueness” (the problem of determining whether all n ele
ments are distinct), using the two-way comparison model, and obtaining a lower 
bound of st = Ω (n3/2 (log n)1/2). Beame [Bea89, Bea91] then showed that the same 

result held for the general n2-way branching model, obtaining st = Ω(n2). 
In this survey, we have not been able to discuss all the results inspired by Cook’s 

work on polynomial time and small amounts of space, nor all recent results on 

pebbling and branching programs. We have, however, exhibited some of the diver
sity of such work, and we expect many more such results to be forthcoming in the 

future. 
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9Summary 
It is shown that any recognition problem solved by a polynomial time-bounded 

nondeterministic Turing machine can be “reduced” to the problem of determin
ing whether a given propositional formula is a tautology. Here “reduced” means, 
roughly speaking, that the first problem can be solved deterministically in polyno
mial time provided an oracle is available for solving the second. From this notion 

of reducible, polynomial degrees of difficulty are defined, and it is shown that the 

problem of determining tautologyhood has the same polynomial degree as the 

problem of determining whether the first of two given graphs is isomorphic to a 

subgraph of the second. Other examples are discussed. A method of measuring 

the complexity of proof procedures for the predicate calculus is introduced and 

discussed. 
Throughout this paper, a set of strings means a set of strings on some fixed, large, 

finite alphabet Σ. This alphabet is large enough to include symbols for all sets 
described here. All Turing machines are deterministic recognition devices, unless 
the contrary is explicitly stated. 

The Complexity of 
Theorem-Proving 
Procedures 
Stephen A. Cook 

1 Tautologies and Polynomial Re-Reducibility 
Let us fix a formalism for the propositional calculus in which formulas are written 

as strings on Σ. Since we will require infinitely many proposition symbols (atoms), 
each such symbol will consist of a member of Σ followed by a number in binary 
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Definition 

Definition 

notation to distinguish that symbol. Thus a formula of length n can only have 

about n/log n distinct function and predicate symbols. The logical connectives are 

& (and), ∨ (or), and ¬ (not). 
The set of tautologies (denoted by {tautologies}) is a certain recursive set of 

strings on this alphabet, and we are interested in the problem of finding a good 

lower bound on its possible recognition times. We provide no such lower bound 

here, but Theorem 1 will give evidence that {tautologies} is a difficult set to rec
ognize, since many apparently difficult problems can be reduced to determining 

tautologyhood. By reduced we mean, roughly speaking, that if tautologyhood could 

be decided instantly (by an “oracle”) then these problems could be decided in poly
nomial time. In order to make this notion precise, we introduce query machines, 
which are like Turing machines with oracles in [KR64]. 

A query machine is a multitape Turing machine with a distinguished tape called 

the query tape, and three distinguished states called the query state, yes state, and 

no state, respectively. If M is a query machine and T is a set of strings, then a T-
computation of M is a computation of M in which initially M is in the initial state 

and has an input string w on its input tape, and each time M assumes the query 
state there is a string u on the query tape, and the next state M assumes is the yes 
state if u ∈ T and the no state if u ∉ T. We think of an “oracle”, which knows T, 
placing M in the yes state or no state. 

A set S of strings is P-reducible (P for polynomial) to a set T of strings iff there is 
some query machine M and a polynomial Q(n) such that for each input string w, 
the T-computation of M with input w halts within Q(|w|) steps (|w| is the length of 
w), and ends in an accepting state iff w ∈ S. 

It is not hard to see that P-reducibility is a transitive relation. Thus the relation 

E on sets of strings, given by (S, T) ∈ E iff each of S and T is P-reducible to the other, 
is an equivalence relation. The equivalence class containing a set S will be denoted 

by deg(S) (the polynomial degree of difficulty of S). 

We will denote deg({0}) by L*, where 0 denotes the zero function. 

Thus L* is the class of sets recognizable in polynomial time. L* was discussed 

in [Coo71a], p. 5, and is the string analog of Cobham’s class of functions [Cob65]. 
We now define the following special sets of strings. 

1)	 The subgraph problem is the problem given two finite undirected graphs, 
determine whether the first is isomorphic to a subgraph of the second. A 

graph G can be represented by a string G on the alphabet {0, 1,* } by listing 
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the successive rows of its adjacency matrix, separated by ’s. We let {sub
**graph pairs} denote the set of strings G1 G2 such that G1 is isomorphic 

to a subgraph of G2. 

2) The graph isomorphism problem will be represented by the set, denoted by 
**{isomorphic graphpairs}, of all strings G1 G2 such that G1 is isomorphic 

to G2. 

3) The set {Primes} is the set of all binary notations for prime numbers. 

4) The set {DNF tautologies} is the set of strings representing tautologies in 

disjunctive normal form. 

5) The set D3 consists of those tautologies in disjunctive normal form in which 

each disjunct has at most three conjuncts (each of which is an atom or 
negation of an atom). 

Theorem 1	 If a set S of strings is accepted by some nondeterministic Turing machine within 

polynomial time, then S is P-reducible to {DNF tautologies}. 

Corollary	 Each of the sets in definitions 1) - 5) is P-reducible to {DNF tautologies}. 

This is because each set, or its complement, is accepted in polynomial time by 
some nondeterministic Turing machine. 

Proof of the theorem. Suppose a nondeterministic Turing machine M accepts a set 
S of strings within time Q(n), where Q(n) is a polynomial. Given an input w for M, 
we will construct a proposition formula A(w) in conjunctive normal form such that 
A(w) is satisfiable iff M accepts w. Thus A(w) is easily put in disjunctive normal 
form (using De Morgan’s laws), and A(w) is a tautology if and only if w ∉ S. Since 

the whole construction can be carried out in time bounded by a polynomial in |w| 
(the length of w), the theorem will be proved. 

We may as well assume the Turing machine M has only one tape, which is infi
nite to the right but has a left-most square. Let us number the squares from left 
to right 1, 2, … . Let us fix an input w to M of length n, and suppose w ∈ S. Then 

there is a computation of M with input w that ends in an accepting state within 

T = Q(n) steps. The formula A(w) will be built from many different proposition 

symbols, whose intended meanings, listed below, refer to such a computation. 
Suppose the tape alphabet for M is {𝜎1, … , 𝜎ℓ}, and the set of states is 

{q1, · · · , qs}. Notice that since the computation has at most T = Q(n) steps, no 

tape square beyond number T is scanned. 

Proposition symbols Psi ,t for 1 ≤ i ≤ ℓ, 1 ≤ s, t ≤ T. Psi ,t is true iff tape square 

number s at step t contains the symbol 𝜎i. 
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Qit for 1 ≤ i ≤ r, 1 ≤ t ≤ T. Qit is true iff at step t the machine is in state q1.
 
Ss,t for 1 ≤ s, t ≤ T is true iff at time t square number s is scanned by the tape
 

head. 
The formula A(w) is a conjunction B & C & D & E & F & G & H & I formed as fol

lows. Notice A(w) is in conjunctive normal form. B will assert that at each step t, 
one and only one square is scanned. B is a conjunction B1 & B2 & · · · & BT , where Bt 
asserts that at time t one and only one square is scanned: 

Bt = (S1,t ∨ S2,t ∨ · · · ∨ ST,t) & [ & (¬Si,t ∨ ¬Sj,t)]
1≤i<j≤T

For 1 ≤ s ≤ T and 1 ≤ t ≤ Tj Cs,t asserts that at square s and time t there is one 

and only one symbol. C is the conjunction of all the Cs,t.
 
D asserts that for each t there is one and only one state.
 
E asserts the initial conditions are satisfied:
 

E = Qo & Pi1 & Pi2 & Pin	 & P1 1 & S1,1 1,1 2,1 & · · · n,1 & Pn1 +1,1 & · · · T,1 

where w = 𝜎i1 · · · 𝜎in , qo is the initial state and 𝜎1 is the blank symbol. 
F, G, and H assert that for each time t the values of the P’s, Q’s and S’s are 

updated properly. For example, G is the conjuction over all t, i, j of Gti, j, where Gti, j 
asserts that if at time t the machine is in state qi scanning symbol 𝜎j, then at time 

t+1 the machine is in state qk, where qk is the state given by the transition function 

for M. 

T
Gti,j = & (¬Qit ∨ ¬Ss,t ∨ ¬Ps

j 
,t ∨ Qt+1

k ) 
s=1

Finally, the formula I asserts that the machine reaches an accepting state at 
some time. The machine M should be modified so that it continues to compute in 

some trival fashion after reaching an accepting state, so that A(w) will be satisfied. 
It is now straightforward to verify that A(w) has all the properties asserted in the 

first paragraph of the proof. 

Theorem 2	 The following sets are P-reducible to each other in pairs (and hence each has 
the same polynomial degree of difficulty): {tautologies}, {DNF tautologies}, D3, 
{subgraph pairs}. 

Remark	 We have not been able to add either {primes} or {isomorphic graph pairs} to the 

above list. To show {tautologies} is P-reducible to {primes} would seem to require 

some deep results in number theory, while showing {tautologies} is P-reducible to 

{isomorphic graph pairs} would probably upset a conjecture of Corneil’s [CG70] 
from which he deduces that the graph isomorphism problem can be solved in 

polynomial time. 
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Incidently, it not hard to see from the Davis-Putnam procedure [DP60] that the 

set D2 consisting of all DNF tautologies with at most two conjuncts per disjunct, is 
in L *. Hence D2 cannot be added to the list in Theorem 2 (unless all sets in the list 
are in L *). 

Proof of Theorem 2. By the corollary to Theorem 1, each of the sets is P-reducible 

to {DNF tautologies}. Since obviously {DNF tautologies} is P-reducible to {tau
tologies}, it remains to show {DNF tautologies} is P-reducible to D3 and D3 is 
P-reducible to {subgraph pairs}. 

To show {DNF tautologies} is P-reducible to D3, let A be a proposition formula 

in disjunctive normal form. Say A = B1 ∨ B2 ∨ · · · ∨ Bk, where B1 = R1 & · · · & Rs, and 

each Ri is an atom or negation of an atom, and s > 3. Then A is a tautology if and 

only if A' is a tautology where 

A' = P & R3 & · · · & Rs ∨ ¬P & R1 & R2 ∨ B2 ∨ · · · ∨ Bk, 

where P is a new atom. Since we have reduced the number of conjuncts in B1, this 
process may be repeated until eventually a formula is found with at most three con
juncts per disjunct. Clearly the entire process is bounded in time by a polynomial 
in the length of A. 

It remains to show D3 is P-reducible to {subgraph pairs}. Suppose A is a for
mula in disjunctive normal form with three conjuncts per disjunct. Thus A = 

C1 ∨ · · · ∨ Ck, where Ci = Ri1 & Ri2 & Ri3, and each Rij is an atom or a negation of 
an atom. Now let G1 be the complete graph with vertices {v1, v2, . . . , vk}, and let G2 

be the graph with vertices {uij}, 1 ≤ i ≤ k, 1 ≤ j ≤ 3, such that uij is connected by an 

edge to urs if and only if i ̸ ) do not form an opposite = r and the two literals (Rij, Rrs
pair (that is they are neither of the form (P, ¬P) nor of the form (¬P, P)). Thus there 

is a falsifying truth assignment to the formula A iff there is a graph homomorphism 

𝜑 : G1 → G2 such that for each i, 𝜑(vi) = uij for some j. (The homomorphism tells 
for each i which of Ri1, Ri2, Ri3 should be falsified, and the selective lack of edges in 

G2 guarantees that the resulting truth assignment is consistently specified). 
In order to guarantee that a one-one homomorphism 𝜑 : G1 → G2 has the prop

erty that for each i, 𝜑(vi) = uij for some j, we modify G1 and G2 as follows. We select 
graphs H1, H2, . . . , Hk which are sufficiently distinct from each other that if G'1 is 
formed from G1 by attaching Hi to vi, 1 ≤ i ≤ k, and G'2 is formed from G2 by attach
ing Hi to each of ui1 and ui2 and ui3, 1 ≤ i ≤ k, then every one-one homomorphism 

𝜑 : G ′ 1 → G ′ 2 has the property just stated. It is not hard to see such a construction 

can be carried out in polynomial time. Then G ′ 1 can be embedded in G ′ 2 if and only 
if A ∉ D3. This completes the proof of Theorem 2. 
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2 Discussion 
Theorem 1 and its corollary give strong evidence that it is not easy to determine 

whether a given proposition formula is a tautology, even if the formula is in normal 
disjunctive form. Theorems 1 and 2 together suggest that it is fruitless to search for 
a polynomial decision procedure for the subgraph problem, since success would 

bring polynomial decision procedures to many other apparently intractible prob
lems. Of course the same remark applies to any combinatorial problem to which 

{tautologies} is P-reducible. 
Furthermore, the theorems suggest that {tautologies} is a good candidate for an 

interesting set not in L *, and I feel it is worth spending considerable effort trying to 

prove this conjecture. Such a proof would be a major breakthrough in complexity 
theory. 

In view of the apparent complexity of {DNF tautologies}, it is interesting to 

examine the Davis-Putnam procedure [DP60]. This procedure was designed to 

determine whether a given formula in conjunctive normal form is satisfiable, but 
of course the “dual” procedure determines whether a given formula in disjunctive 

normal form is a tautology. I have not yet been able to find a series of exam
ples showing the procedure (treated sympathetically to avoid certain pitfalls) must 
require more than polynomial time. Nor have I found an interesting upper bound 

for the time required. 
If we let strings represent natural numbers, (or k-tuples of natural numbers) 

using m-adic or other suitable notation, then the notions in the preceeding sec
tions can be made to apply to sets of numbers (or k-place relations on numbers). 
It is not hard to see that the set of relations accepted in polynomial time by 
some nondeterministic Turing machine is precisely the set L+ of relations of the 

form 

(∃ y ≤ gk(x)) R(x, y) (1) 

where gk(x) = 2(ℓ(max x))k 
, ℓ(z) is the dyadic length of z, and R (x̄, y) is an L * relation, 

(L+ is the class of extended positive rudimentary relations of Bennett [Ben62]). If 
we remove the bound on the quantifier in formula (1), the class L+ would become 

the class of recursively enumerable sets. Thus if L+ is the analog of the class of r.e. 
sets, then determining tautologyhood is the analog of the halting problem; since, 
according to Theorem 1, {tautologies} has the complete L+ degree just as the halt
ing problem has the complete r.e. degree. Unfortunately, the diagonal argument 
which shows the halting problem is not recursive apparently cannot be adapted to 

show {tautologies} is not in L * . 
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3 The Predicate Calculus 
Formulas in the predicate calculus are represented by strings in a manner simi
lar to the propositional calculus. In addition to the symbols for the latter, we need 

the quantifier symbols ∀ and ∃, and symbols for forming an infinite list of individ
ual variables, and infinite lists of function and predicate symbols of each order (of 
course the underlying alphabet Σ is still finite). 

Suppose Q is a procedure which operates on the above formulas and which ter
minates on a given input formula A iff A is unsatisfiable. Since there is no decision 

procedure for satisfiability in the predicate calculus, it follows that there is no 

recursive function T such that if A is unsatisfiable, then Q will terminate within 

T(n) steps, where n is the length of A. How then does one appraise the efficiency of 
the procedure? 

We will take the following approach. Most automatic theorem provers depend 

on the Herbrand theorem, which states briefly that a formula A is unsatisfiable if 
and only if some conjunction of substitution instances of the functional form fn(A) 
of A is truth functionally inconsistent. Suppose we order the terms in the Herbrand 

universe of fn(A) according to rank, and then order in a natural way the substitution 

instances of fn(A) from the Herbrand universe. The ordering should be such that 
in general substitution instances which use terms with greater rank follow substi
tution instances which use terms of lesser rank. Let A1, A2, . . . be these substitution 

instances in order. 

Definition	 If A is unsatisfiable, then 𝜑(A) is the least k such that A1 & A2 & . . . & Ak is truth-
functionally inconsistent. If A is satisfiable, then 𝜑(A) is undefined. 

Now let Q be the procedure which, given A, computes the sequence A1, A2, . . . and 

for each i, tests whether A1 & . . . & Ai is truth-functionally consistent. If the answer 
is ever no, the procedure terminates successfully. Then clearly there is a recursive 

T(k) such that for all k and all formulas A, if the length of A ≤ k and 𝜑(A) ≤ k, then 

Q will terminate within T(k) steps. We suggest that the function T(k) is a measure 

of the efficiency of Q. 
For convenience, all procedures in this section will be realized on single tape 

Turing machines, which we shall call simply machines. 

Definition	 Given a machine MQ and recursive function TQ(k), we will say MQ is of type Q and 

runs within time TQ(k) provided that when MQ starts with a predicate formula A writ
ten on its tape, then MQ halts if and only if A is unsatisfiable, and for all k, if 𝜑(A) ≤ k 

and |A| ≤ log2k, then MQ halts within TQ(k) steps. In this case we will also say that 
TQ(k) is of type Q. Here |A| is the length of A. 
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Theorem 3 

Theorem 4 

The reason for the condition |A| ≤ log2 k instead of |A| ≤ k, is that with the latter 
condition, finding a lower bound for TQ(k) would be nearly equivalent to finding a 

lower bound for the decision problem for the propositional calculus. In particular, 
Theorem 3A would become obvious and trivial. 

A) For any TQ(k) of type Q, 

TQ(k)√ is unbounded. (2)
k/(log k)2 

B) There is a TQ(k) of type Q such that 

TQ(k) ≤ k 2k(log k)2 

Outline of proof. A). Given any machine M, one can construct a predicate formula 

A(M) which is satisfiable if and only if M never halts when starting on a blank tape. 
This is done along the lines described in Wang [Wan62] in the proof which reduces 
the halting problem to the decision problem for the predicate calculus. Further, if √ 
M halts in s steps, then 𝜑(A(M)) ≤ s2. Thus, if, contrary to (2), TQ(k) = 0( k/ log2 k), 
then a modification of MQ could verify in only 

√ 
0( s2/ log2 s2) = 0(s/ log2 s) 

steps that M halted in s steps (provided m ≤ log s2, where m is the length of A(M)). 
A diagonal argument (see [HU69] p. 153) shows that this is impossible in general. 

B) The machine MQ operates in time TQ by following the procedure outlined at 
the beginning of this section. Note that the formula A1 & A2 & . . . & Ak has length 

0(k log2k), since we can assume |A| ≤ log k. 

If the set S of strings is accepted by a nondeterministic machine within time 

T(n) = 2n, and if TQ(k) is an honest (i.e. real-time countable) function of type Q, 
then there is a constant K so S can be recognized by a deterministic machine within 

time TQ(K8n). 

Proof. Suppose M1 is a nondeterministic machine which accepts S in time 2n. Let 
M2 be a nondeterministic machine which simulates M1 for exactly 2n steps and then 

halts, unless M1 accepts the input, in which case M2 computes forever. Thus for all 
strings w, if w ∈ S then there is a computation for which M2 with input w fails to 

halt, and if w ∉ S, then M2 with input w halts within 4n steps for all computations. 
Now given w of length n, we may construct a formula A(w) of length 0(n) such that 
A(w) is satisfiable if and only if M1 accepts w. (A(w) is constructed in a way similar 
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to A(M) in the proof of 1A). Further, if M2 halts within 4n steps for all possible com
putations, then 𝜑(A(w)) ≤ K(4n)2 = K8n. Thus, a deterministic machine M can be 

constructed to determine whether w ∈ S by presenting MQ with input A(w). If no 

result appears within TQ(K8n) steps, then w ∈ S, and otherwise w ∉ S. 

4 More Discussion 
√ 

There is a large gap between the lower bound of k/(log k)2 for time functions TQ(k) 
given in Theorem 3A and a possible 

TQ(k) = k2k(log k)2 

given in 3B. However, there are reasons for the gap. For example, if we could 

improve the result in 3B and find a TQ(k) bounded by a polynomial in k, then by 
Theorem 4 we could simulate a nondeterministic 2n time bounded machine deter
ministically in time p(2n) for some polynomial p. This is contrary to experience 

which indicates deterministic simulation of a nondeterministic T(n) time bounded 

machine requires time kT(n) in general. 
On the other hand, if we could push up the lower bound given in Theorem 3A 

and show 

TQ(k) 
2k 

is unbounded, then we could conclude {Tautologies} ∉ L *, since otherwise the gen
eral Herbrand proof procedure would provide a TQ(k) smaller than 2k. Thus such 

an improvement in 3A would require a major breakthrough in complexity theory. 
The field of mechanical theorem proving badly needs a basis for comparing and 

evaluating the dozens of procedures which appear in the literature. Performance of 
a procedure on examples by computer is a good criterion, but not sufficient (unless 
the procedure proves useful in some practical way). A theoretical complexity crite
rion is needed which will bring out fundamental limitations and suggest new goals 
to pursue. The criterion suggested here (the function TQ(k)) is probably too crude. 
For example, it might be better to make TQ(k) a function of several variables, of 
which one is 𝜑(A), and another might be the minimum number of substitution 

instances of fn(A) needed to form a contradiction (note that in general not all of 
A1, A2, · · · , A𝜑(A) are needed.) 

TQ(k) may be a crude measure, but it does provide a basis for discussion, and, 
I hope, will stimulate progress toward finding better complexity measures for 
theorem provers. 
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A class of machines called auxiliary pushdown machines is introduced. Several types 

of pushdown automata, including stack automata, are characterized in terms of 
these machines. The computing power of each class of machines in question 

is characterized in terms of time-bounded Turing machines, and corollaries are 

derived which answer some open questions in the field. 

Key words and Phrases 
Turing machines, multitape Turing machines, time-bounded computers, abstract 
computer models, pushdown automata, multihead pushdown automata, stack 

automata, writing pushdown acceptors, auxiliary pushdown machines, computa
tional complexity 

Department of Mathematics. The research reported here was supported in part by Office of Naval
 
Research Contract Nonr 3656 (23) and by the National Science Foundation Contract GJ474. Most
 
of the results in this paper were announced in [Coo69].
 
Originally published in Journal of the Association for Computing Machinery, Vol. 18, No. 1,
 
January 1971, pp. 4–18. https://doi.org/10.1145/321623.321625 

https://doi.org/10.1145/321623.321625


154 Chapter 10 Characterizations of Pushdown Machines in Terms of Time-Bounded Computers 
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1 Introduction 
In this paper we have two main purposes: first, to provide a unified treatment of 
several types of two-way pushdown automata and stack automata, and, second, 
to give an interesting characterization of the computing power of each of these 

machines in terms of deterministic time-bounded Turing machines. 
In Section 2 we introduce the notion of time-bounded computer. This is simply 

a general computer model used to distract attention from picky arguments about 
Turing machine tapes and heads. In Section 3 we introduce the notion of auxiliary 
pushdown machine, which is like a tape-bounded Turing machine but has a push
down store attached whose storage does not count in the tape bound. The main 

theorem, in Section 4, characterizes the computing power of auxiliary pushdown 

machines for tape bounds L(n) ≥ log2 n in terms of time-bounded computers, and 

states that for any tape bound L(n) ≥ log2 n the deterministic and nondetermin
istic versions have the same computing power. Here n is the length of the input 
string. 

Theorem 2 in Section 4 states that the computing power of two-way multihead 

pushdown machines, writing pushdown acceptors, and two-way stack automata 

can be characterized in terms of auxiliary pushdown machines, and hence in terms 
of time-bounded computers. In particular, a deterministic two-way stack automa
ton is equivalent to a deterministic ncn time-bounded Turing machine, and a non
deterministic two-way stack automaton is equivalent to a deterministic 2cn

2 
time-

bounded Turing machine. A number of corollaries are derived from Theorems 1 
and 2, some of which answer open questions in the literature. 

2 Time-Bounded Computers 
Turing machines of various kinds are the most common abstract computer model 
used in the theory of computational complexity. Yet they are often criticized as 
models of real computers, since they do not behave much like random-access 
machines. In fact, some of the results in the literature showing Turing machines 
require a great deal of time to recognize simple sets of strings, surely depend on 

exploiting the inefficient storage arrangement of a single head on a single tape, 
and do not reflect any fundamental property of computation. Many other results, 
however, hold as well for any reasonable computer model as they do for Turing 

machines. 
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The results in this paper are of the latter kind. In order to emphasize this point 
we shall quote our results in terms of “time-bounded computers” instead of Turing 

machines. Informally, a time-bounded computer is any device equipped to accept 
a set A of strings within a certain time bound T(n), provided some Turing machine 

accepts A within time (T(n))k for some k. Our formal definition will not characterize 

the possible such devices, but just the notion of acceptance within a time bound. 

Definition	 Let T(n) be a function from positive integers to positive integers, and let A be a set 
of strings over a finite alphabet Γ. Then we say A is accepted by a time-bounded com
puter within time T(n) provided some simple deterministic Turing machine M (see 

Section 3) accepts A within time (T(n))k, for some constant k. 

Examples of time-bounded computers are simple Turing machines, multitape 

Turing machines, iterative arrays of finite-state machines [Col66], Shepherdson-
Sturgis machines [SS63], and abstract random access machines in the sense of 
Earley [Ear70, p. 102]. The proofs in each case are straightforward; see, for example, 
[HS65] for the case of multitape Turing machines. 

The motivation for this notion of time-bounded computer rests on a feeling 

that (1) any reasonable computer model should be at least as strong as a simple 

Turing machine [i.e. to demonstrate conclusively that a task can be performed 

within time T(n) it is more than sufficient to show that a simple Turing machine 

can do so], (2) as stated above a large class of computer models is included in 

the notion of time-bounded computer—in particular, a plausible formal notion of 
random-access machine—and (3) at the present state of the art it is difficult to find 

a convincing more restricted definition of computer. 
In Section 5 we refer to the class L* of sets of strings, first defined by Cobham 

[Cob65] in terms of numerical functions instead of sets of strings. 

Definition	 A set A of strings is in the class L* if and only if A is accepted by a time-bounded 

computer within time P(n), for some polynomial P(n). 

The class L* is the smallest class which can be characterized (in a reasonable 

way) in terms of time-bounded computers. As pointed out by Cobham [Cob65], the 

class is unchanged if the word “computer” in the definition is replaced by any of 
“random-access machine,” “Turing machine,” “Shepherdson-Sturgis machine,” or 
“iterative array of finite-state machines.” It will turn out (see Section 5) that L* has 
an interesting characterization in terms of multihead pushdown machines. 

3 Other Machine Models 
By a simple Turing machine we mean the familiar device consisting of a finite-state 

control attached to a single read/write head moving along a single two-way infinite 
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tape. In one step, the machine can assume a new state, print one of a finite set of 
symbols on the tape square currently scanned, and shift its head either left or right 
one square, or leave it stationary. The action of the machine in a step depends on 

the current state and tape symbol being scanned. By a multitape Turing machine we 

mean a finite-state control attached to both a two-way read-only input head moving 

along an input tape, and finitely many read/write work heads each moving along 

a distinct two-way infinite work tape. In one step, the machine can assume a new 

state, print one of a finite set of symbols (excluding the blank symbol) on each of 
its work tapes (but not its input tape), and shift some of its heads left or right one 

square in any combination. The action taken depends on the current state of the 

machine and the symbols scanned by each of its heads. 
Before any computation a finite input string is placed on the input tape delim

ited by blanks at each end. The finite-state control is designed so that the input 
head will never leave the segment consisting of this string and the two blanks 
during any computation. 

An auxiliary pushdown machine (auxiliary PDM) is a multitape Turing machine 

which has an extra tape called the pushdown tape, which operates in a special fash
ion. The pushdown alphabet has a distinguished symbol s0 which appears initially 
on the pushdown tape. The machine is designed so that the pushdown head never 
shifts left of s0 or changes s0. Further, the pushdown head can never shift left when 

scanning any tape symbol unless it first erases (i.e. overwrites a blank on) that 
symbol, and it can never shift right from a square unless it first prints a nonblank 

symbol on that square. Initially the pushdown head is scanning the symbol s0 and 

all other squares on the pushdown tape are blank. Thus throughout the computa
tion all squares on the pushdown tape are blank except for the segment bounded 

on the left by s0 and on the right by the pushdown head, which is nonblank. 
The last type of machine we describe here is the two-way stack automaton, 

introduced in [GGH67]. For our purposes, a two-way stack automaton, or briefly 
stack automaton, consists of a finite-state control attached to an input tape and a 

stack tape. The input tape is just like that for multitape-Turing machines: it is of 
the two-way read-only type, with input delimited by blanks. The stack tape is like 

the pushdown tape for an auxiliary PDM, except the stack head is allowed to read 

the information on the stack between the symbol s0 and the rightmost nonblank 

symbol. At the beginning of any computation, the stack tape is blank except for one 

square containing the symbol s0, and the stack head scans this square. The input 
tape is initially blank, except for the input string w, and the input head scans the 

leftmost symbol of w. In one step, the machine will, depending on its internal state 

and the symbols scanned by the input head and stack head, assume a new state, 
shift its input head one or zero squares left or right (but not outside the blanks 
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delimiting the input), and shift the stack head one or zero squares left or right, but 
not left of the symbol s0. In addition, the stack head may print a symbol before 

shifting, provided either it is scanning the leftmost blank symbol to the right of s0 

on the stack tape or if on the preceding step the stack head printed a blank and 

shifted left, and in addition provided the scanned symbol is not s0 and provided 

the stack head does not print a blank and shift right. These provisions are imple
mented by the design of the finite-state control, and by use of an enlarged symbol 
alphabet for the stack tape. 

We shall sometimes allow auxiliary PDM’s and stack automata to be nondeter
ministic, although Turing machines are here always assumed to be deterministic, 
unless the contrary is explicitly stated. 

Each of the above types of machines has certain distinguished states called 

accepting states, and a single distinguished state q0 called the initial state. Let M 

be one of the above machines (deterministic or not), and let Γ be a (finite) subset 
of the set of symbols which M can read on its input tape (here we will refer to the 

single tape of a simple Turing machine as the input tape), and suppose Γ does not 
contain the blank symbol. Then we say M accepts a string w on Γ provided that some 

computation of M terminates in an accepting state, where initially M is in the state 

q0, and all tapes are blank except the input tape contains the string w with the input 
head scanning the leftmost symbol of w (and the pushdown or stack tape contains 
the symbol s0). For the case of auxiliary PDM’s we shall require in addition that the 

pushdown head scan the symbol so (i.e. the pushdown list is empty) at the end of 
the accepting computation. 

Suppose T(n) and L(n) are functions on the positive integers, and suppose A is 
a set of strings on Γ. Then we say a machine M accepts the set A within time T(n) 
provided, for each w ∈ A, M accepts w in some computation consisting of T(| w |) or 
fewer steps, where | w | is the length of w, and provided M accepts no strings w not 
in A. We say a multitape Turing machine or auxiliary PDM accepts A within storage 
L(n) provided, for each w ∈ A, M accepts w in some computation in which no work 

tape (excluding the input tape and pushdown tape) scans more than L(| w |) distinct 
squares, and provided M accepts no strings w not in A. 

4 The Main Theorem 

Theorem 1	 Main Theorem 

The following three conditions are equivalent for any set A of strings on an alphabet Γ 

and for any function L(n) ≥ log2 n on the positive integers. 

(a) A is accepted by some deterministic auxiliary PDM within storage L(n). 
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(b)	 A is accepted by some nondeterministic auxiliary PDM within storage L(n). 
(c)	 A is accepted by some time-bounded computer within time T(n) = 2cL(n) for some 

constant c. 

Proof. (a) ⇒ (b). Obvious. 
(b) ⇒ (c). The argument is a generalization of one appearing in [AHU68]. Sup

pose M1 is a nondeterministic auxiliary PDM which accepts the set A within storage 

L(n). We will construct a deterministic multitape Turing machine M2 which accepts 
A within time T(n) = 2cL(n) for some constant c. 

Fix a string w on the input alphabet Γ, let n = | w | (the length of w), and sup
pose M1 has k work tapes in addition to the input tape and pushdown tape. Then 

a configuration of M1 with input w is a string P = pqu1↓v1 * u2↓v2 * · · · * uk↓vk * s, 
where p is the dyadic notation for an integer between 0 and n + 1, q is a state of 
M1, u1, . . . , uk and v1, . . . , vk are strings on the work tape alphabets, s is a symbol on 

the pushdown alphabet, and ↓ and * are new symbols. We say M1 with input w is 
in configuration P provided M1 has the string w delimited by blanks written on its 
input tape, the input head is scanning symbol number p from the left (counting the 

blank immediately to the left of w as symbol number 0), M1 is in state q, the k work 

tapes have the strings u1v1, u2v2, · · · , ukvk written on them with work head i scan
ning the first symbol of vi (i = 1, 2, . . . , k), and the symbol s is currently scanned by 
the pushdown head (i.e. on top of the pushdown list). Thus a configuration com
pletely specifies an instantaneous description of M1, except the input string w and 

the contents of the pushdown tape (other than the currently scanned symbol) are 

left unspecified. 
We say the pair (P, Q) of configurations of M1 with input w is realizable provided 

there is some partial computation of M1 with input w such that at the beginning of 
the partial computation M1 is in configuration P with the pushdown head scanning 

some square c, and at the end of the partial computation M1 is in configuration Q 

with the pushdown head scanning the same square c (although c need not have the 

same symbol written on it) and throughout the partial computation the pushdown 

head never moves to the left of c. If we let P0 correspond to the initial configura
tion, so that P0 = 1q0↓𝛽 * · · · *↓𝛽s0 (where 𝛽 represents the blank symbol), then 

M1 accepts the input w if and only if there is some configuration Qa, whose state 

symbol is an accepting state, such that the pair (P0, Qa) is realizable. We shall call 
such a pair (P0, Qa) an accepting pair. 

We shall design the Turing machine M2 to build a list of realizable pairs (P, Q) 
on one of its work tapes. If ever M2 finds an accepting pair (P0, Qa), it will halt and 

accept the input string w. Otherwise M2 computes forever. 
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Since the machine M1 is supposed to operate within storage L(n), M2 need only 
consider configurations P = pqu1↓v1 * · · · * uk↓vk * s whose work tape strings uivi 
do not exceed L(n) in length, where n = | w |. However, the function L may be dif
ficult or impossible to compute, so rather than calculate the value L(n), M2 uses 
a parameter l, stored on one of its work tapes, to guess at L(n). Initially l = 1. In 

general, after M2 has found all realizable pairs (P, Q) whose work tape storage does 
not exceed l, and if no accepting pair (P0, Qa) has been found, then l is increased 

by one. The process continues indefinitely. 
The list of realizable pairs (P, Q) formed by M2 is initially empty. In general, 

after all realizable pairs have been found for a particular value of l, l is increased 

by one and the list is increased as follows. First, all pairs (P, P) of configurations 
whose work storage is equal to l are added to the list. Next, for every two pairs 
(P1, Q1), (P2, Q2) appearing on the list, each pair (P3, Q3) is added to the list such that 
(1) the pairs (P1, Q1), (P2, Q2) “yield” the pair (P3, Q3) in the sense defined below, (2) 
configurations P3, Q3 each have work storage at most l, and (3) the pair (P3, Q3) does 
not already appear on the list. This last step is repeated until either an accepting 

pair (P0, Qa) is found, in which case M2 accepts w, or no new realizable pairs can be 

found, in which case l is increased by one and the process starts all over again. 

The two pairs (P1, Q1) and (P2, Q2) of configurations are said to yield the pair (P3, Q3) 
provided P1 = P3, and either (i) Q1 = P2 and M1 can go from configuration Q2 to 

Q3 in one step without shifting its pushdown head, or (ii) M1 can go from Q1 to P2 

in one step by printing some symbol s on its pushdown tape and shifting its push
down head right, M1 can go from Q2 to Q3 in one step by shifting its pushdown head 

left, and when M1 is in configuration Q3 its pushdown head scans this symbol s. 

Clearly if (P1, Q1) and (P2, Q2) are realizable pairs which yield (P3, Q3), then 

(P3, Q3) is realizable. Conversely, the following lemma shows that the procedure 

outlined above for M2 will eventually produce all realizable pairs. 

Every realizable pair (P, Q) of configurations of work tape storage l or less can be 
obtained from pairs of the form (P, P) by successively applying the yield relation, where 
all configurations appearing have work tape storage l or less. 

Proof. Suppose the pair (P, Q) is realizable and the work storage of the configura
tions P, Q does not exceed l. Then there is some partial computation of M1 with 

input w whose initial configuration is P, whose final configuration is Q, and such 

that the pushdown head satisfies the restrictions in the definition of “realizable.” 
Let P = P1, P2, . . . , Pt = Q be the configurations of the successive steps in the com
putation. Then the work storage for none of the Pi can exceed l, since the storage 

cannot shrink during a computation. We shall prove by induction on t that (P, Q) 
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can be obtained as stated in the lemma. If t = 1, then (P, Q) is one of the initial 
pairs (P, P). Suppose t > 1. There are two cases: 

(i) Suppose the pushdown head remains stationary in the step Pt−1, Pt. Then 

the pair (P1, Pt−1) is realizable, and by the induction hypothesis it can be obtained 

as stated in the lemma. But (P1, P1) and (P1, Pt−1) yield (P1, Pt). Therefore (P1, Pt) = 

(P, Q) can be obtained as stated in the lemma. 
(ii) Suppose the pushdown head shifts left in the step Pt−1, Pt (it cannot shift 

right). Let Pi be the first configuration in the computation such that the pushdown 

head shifts right in the step Pi, Pi+1. Then both the pairs (P1, Pi) and (Pi+1, Pt−1) are 

realizable, and by the induction hypothesis they can be obtained as stated in the 

lemma. But the pairs (P1, Pi) and (Pi+1, Pt−1) yield (P1, Pt). Therefore (P1, Pt) = (P, Q) 
can be obtained as stated in the lemma. 

It remains to estimate the time required by M2 to carry out the simulation. 
Clearly there is some constant c1 (independent of w and n = | w |) such that for 
each value of l ≥ log2 n [recall L(n) ≥ log2 n], M2 requires at most c1l + c1 squares 
to represent any pair (P, Q) of configurations on its work tape, provided the work 

storage indicated in P, Q does not exceed l. Thus there is some constant 𝛾 such that 
the total number of possible configuration pairs of work storage not exceeding l is 
bounded by 𝛾c1l+c1 . Hence the number of realizable pairs of configurations appear
ing in the list on M2’s work tape never exceeds 𝛾c1l+c1 . Since the time required to 

add one pair to the list will not exceed a constant times, say, the fourth power of 
this bound, and since if M1 accepts w [within storage L(n)] then M2 will accept w 

for some l ≤ L(n), it is clear that there is some constant c such that if M1 accepts w, 
then M2 will accept w within 2cL(n) steps. 

(c) ⇒ (a). Suppose some time-bounded computer accepts the set A within time 

T(n) = 2cL(n). Then, by definition of acceptance by a time-bounded computer, there 

is a simple (deterministic) Turing machine S and a constant d such that S accepts 
A within time 2dL(n). We first modify S to form a simple Turing machine M1 which 

accepts A within time 2c1L(n) for some constant c1, such that the head of M1 operates 
in a regular predictable pattern as follows. Suppose initially M1 has the input w of 
length n on its tape, delimited by blanks, with the head scanning the leftmost sym
bol of w. Throughout its computation, M1 prints only nonblank symbols. First the 

head shifts right for n successive steps until reaching the first blank square, imme
diately to the right of w. Then the head prints a nonblank symbol and shifts left for 
n + 1 successive steps until reaching the first blank square, immediately to the left 
of w. The head prints a nonblank symbol, shifts right for n + 2 steps, then left for 
n + 3 steps, and so on. Meanwhile M1 is simulating S by carrying out one or more 

print operations of S’s computation for each sweep of M1’s head (except possibly 
the first). On the first sweep right, M1 simulates S as long as S continues to shift 
right at the rate of one shift per step. Then M1 marks that square, and continues 
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the simulation when its head sweeps back left. The details of the simulation are 

left to the reader. The important thing is that M1 requires at most one sweep, and 

hence at most T(n) = 2dL(n) steps, for each step of S, and hence if S accepts w, then 

M1 accepts w within [T(n)]2 = 22dL(n) steps. 
We shall now construct a deterministic auxiliary PDM M2 which indirectly sim

ulates M1. Let us fix an input string w of length n, and consider triples ⟨t, q, s⟩, where 

t is a nonnegative integer, q is a state of M1, and s is a symbol in the tape alphabet 
of M1. Such a triple is said to be realizable provided that, at step number t of the 

computation of M1 with input w, M1 is in state q scanning the symbol s. The sim
ulating machine M2, with input w, will operate by making a list of coded forms of 
realizable triples ⟨t, q, s⟩ on its pushdown tape, always searching for one such that 
q is an accepting state. Note that M1 accepts w if and only if there is some realizable 

triple ⟨t, q, s⟩ such that q is an accepting state. 
Given a realizable triple ⟨t, q, s⟩, the immediate task of M2 is to calculate the real

′ izable triple ⟨t + 1, q , s ′⟩, which describes M1 at step t + 1 of its computation. The 
′ state q is easily determined by applying M1’s state transition function to the pair 

(q, s). However, in order to determine s ′ , usually M2 must have access to a realiz
able triple ⟨t1, q1, s1⟩ describing M1 the last time it scanned the square it scans at 
step t + 1. We make the relationship among these three triples precise as follows: 

′ The triples ⟨t, q, s⟩ and ⟨t1, q1, s1⟩ are said to yield the triple ⟨t+1, q , s ′⟩ provided that 
when M1 is in state q scanning the symbol s, it next assumes the state q ′ , and either 

′ (i) M1 scans a square for the first time at time t + 1, in which case s is the symbol 
originally occupied by that square (either blank or a symbol of w), or (ii) t1 is the 

greatest integer less than t + 1 such that M1 scans the same square at steps t1 and 
′ t + 1, in which case s is the symbol printed by M1 when in state q1 scanning the 

symbol s1. 

It should be clear that if this yield relation holds, and if both the triples ⟨t, q, s⟩ 
′ and ⟨t1, q1, s1⟩ are realizable, then ⟨t + 1, q , s ′⟩ is realizable. Furthermore, the ques

tion of whether or not the three triples satisfy the yield relation can be easily 
answered by M1, because of the predictable pattern described by M1’s head. This 
point will be discussed later. 

We can describe M2’s operation informally as follows. We assume M2 has 
enough work tape space available to store, say, at least four triples. Thus M2 has 
no trouble in calculating realizable triples ⟨t, q, s⟩ for t ≤ n, i.e. triples describing 

the first sweep of M1’s head. Now let us assume as an informal induction hypothesis 
that for some fixed t, and every 𝜏 ≤ t, there will be a point in M2’s computation at 
which the realizable triple ⟨𝜏 , q𝜏 , s𝜏 ⟩, which describes M1 at time 𝜏 , will appear alone 

on M2’s pushdown tape. Suppose M2 has just written the realizable triple ⟨t, q, s⟩ on 



162 Chapter 10 Characterizations of Pushdown Machines in Terms of Time-Bounded Computers 

its pushdown tape, which is otherwise empty. Let ⟨t1, q1, s1⟩ be a realizable triple 
′ such that ⟨t, q, s⟩ and ⟨t1, q1, s1⟩ yield ⟨t + 1, q , s ′⟩. M2 will proceed by repeating its 

entire computation to date, except now ⟨t, q, s⟩ will be treated as the bottom (left 
end) of the pushdown tape, and ⟨t, q, s⟩ will remain undisturbed. By our induction 

hypothesis, the triple ⟨t1, q1, s1⟩ will appear immediately to the right of ⟨t, q, s⟩ on the 

pushdown tape at some point in the computation. M2 will constantly check (using 

work tape storage) to see whether the rightmost two triples on its pushdown tape 

can be combined to yield a third triple, and if this is possible, M will replace the two 

triples by the third triple. Thus, at some point in the computation, the realizable 
′ triple ⟨t + 1, q , s ′⟩ will appear alone on the pushdown tape, and we have carried the 

induction one step farther. Of course we must supply a program for M2 before the 

argument can be made precise. This is done below. 
We note that in the course of computing the triple ⟨t, q, s⟩ and placing it at the 

left end of its pushdown tape, M2 will develop a list of triples on its pushdown tape 

which, at a maximum, contains as many triples plus one as the head of M1 makes 
sweeps up to step t. 

We now give the precise algorithm which M2 follows. We assume that through
out its computation M2 has a list of triples on its pushdown tape. (The value of t 
in ⟨t, q, s⟩ is stored in binary notation.) Initially this list is empty. The top of the list 
means the rightmost entry on the list. Of course throughout the computation M2 

has access to the input string w. 

4.1 Algorithm for M2 

P1 (ADD FIRST TRIPLE). Add the triple ⟨0, q0, ̄s⟩ to the top of the pushdown list, 
where q0 is the initial state of M1 and ̄s is the leftmost symbol of w. 

P2 (ACCEPT?). If the top triple is ⟨t, q, s⟩, where q is an accepting state of M1, then 

ACCEPT the input w. Otherwise, go to P3. 

P3 (APPLY YIELD RELATION). If the list has at least two triples, and x and y are 

the top two triples, and x and y yield a triple z, then remove x and y from the 

list and add z, and go to P2. Otherwise go to P1. 

To prove the algorithm works (i.e. causes M2 to accept the input w if and only if 
M1 accepts w), one need only formalize the informal argument given above. Notice 

that initially P1 is executed twice before P3 succeeds, so that two copies of ⟨0, q0, ̄s⟩ 
appear on the pushdown list. 

It remains to estimate the auxiliary storage (i.e. work tape storage) required by 
M2. We shall confine our remarks to step P3, since it is clearly the most difficult. 

The key to executing step P3 is computing the function 𝜋(n, t), whose value is the 

position of the head of M1 at step number t of a computation with an input string of 



5 Applications of the Main Theorem 163 

length n. The position is an integer assigned to the square scanned at step t. Inte
gers are assigned to squares on the tape by assigning 0 to the square containing 

the leftmost symbol of the input w (in its position at the start of the computation), 
consecutive positive integers to squares to the right of square 0, and consecutive 

negative integers to squares to the left of square 0. Assuming the argument t is 
available on a work tape in binary notation, and n is the length of the input string, 
M2 computes 𝜋(n, t) by simulating on a work tape the head motion of M1 for t steps, 
keeping track of M1’s head position during the simulation by a parameter p writ
ten in binary notation. Thus the number of work tape squares required to compute 

𝜋(n, t) is at most d1 max (log2 n, log2 t) for some small constant d1. If M1 accepts w 

then it does so within 2c1 L(n) steps. Hence values of t considered by M2 will never 
exceed 2c1L(n), so that the storage used is at most d1 max (log2 n, c1L(n)) and, hence, 
at most d2L(n) for some constant d2, since L(n) ≥ log2 n. If M1 fails to accept w, we 

are not concerned with the storage required by M2. 
To execute step P3, M2 copies the top two triples, if they exist, from the push

down tape (where they will be destroyed) to a work tape. If the pushdown tape 

contains only one triple, M2 restores that triple to the pushdown tape and passes 
control to step P1. Otherwise, M2 determines whether or not the top two triples 
yield a triple z. This is easily done by computing 𝜋(n, t + 1), and 𝜋(n, 𝜏 ) for succes
sive values of 𝜏 ≤ t, and by referring to the transition function for M1 and referring 

to the input w. If the triple z can be found, it is added to the top of the pushdown 

list and control is passed to step P2. Otherwise, the top two triples are restored to 

the pushdown tape and control is passed to step P1. 
As mentioned above, if M1 accepts w, then the value of t in the triples ⟨t, q, s⟩ con

sidered by M2 never exceeds 2c1L(n), and hence the space required to store a triple is 
bounded by d3L(n) + d3 for some constant d3. From this it is clear from the above 

discussion that the auxiliary storage required by M2, in case M1 (and hence M2) 
accepts w, is at most d4L(n) + d5, for some constants d4, d5. By using the standard 

techniques of increasing the work tape alphabet and finite-state control for M2, the 

constants d4 and d5 can be reduced to 1 and 0. Thus in fact M2 can be made to accept 
the set A within storage L(n). 

5 Applications of the Main Theorem 
The theorem below gives characterizations of the computing power of several types 
of pushdown machines in terms of time-bounded computers. In addition to the 

pushdown devices described in Section 3, the theorem mentions two others: the 

writing pushdown acceptors of Mager [Mag69] and the two-way multihead push
down automata discussed in [HI68]. A writing pushdown acceptor was defined in 

[Mag69] to be a nondeterministic linearly bounded automaton equipped with a 
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Table 1 

Machine type L(n) for auxiliary 
PDM 

T(n) for deterministic 
Turing machine 

1. Two-way multihead pushdown log n nc, constant c 
automaton 

2. Deterministic two-way log n nc, constant c 
multihead pushdown automaton 

3. Writing pushdown acceptor n	 2cn, constant c 
4. Deterministic writing n 2cn, constant c 
pushdown acceptor 
5. Deterministic two-way stack n log n ncn, constant c 
automaton 

6. Nondeterministic two-way stack n2
 

automaton
 

2cn
2 
, constant c 

pushdown store, but this is easily seen to be equivalent in computing power to 

a nondeterministic auxiliary PDM with storage bounded by L(n) = n. A multi-
head two-way pushdown automaton consists of a nondeterministic finite-state 

control attached to a pushdown store, and to several two-way read-only input heads 
operating on an input tape with endmarkers. 

Theorem 2	 A set A of strings is accepted by a machine of type i (1 ≤ i ≤ 6) in the first column of 
Table 1 if and only if A is accepted by some auxiliary PDM (deterministic or not) within 

storage L(n) given in row i of the second column, and again if and only if A is accepted 

by a time-bounded computer within time T(n) given in row i of the third column. 

Proof. The equivalences indicated between columns 2 and 3 of the table follow 

directly from Theorem 1. Of the equivalences between columns 1 and 2, those in 

rows 3 and 4 follow easily from Mager’s definition of writing pushdown acceptor 
in the light of Theorem 1, which guarantees that the deterministic and nonde
terministic versions of auxiliary PDM’s bounded by storage L(n) = n to have the 

same computing power. The equivalence between two-way multihead pushdown 

automata and (log n)-bounded auxiliary PDM’s follows from unpublished but fairly 
well-known proof techniques by Alan Cobham and others showing that two-way 
multihead finite-state machines are equivalent to (log n) tape-bounded multitape 

Turing machines. 

The equivalences between stack automata and auxiliary PDM’s remain to be 

demonstrated. These will follow immediately from the next three lemmas. 
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If a set A of strings can be recognized by a deterministic [nondeterministic] stack automa
ton, then A can be recognized by an auxiliary PDM within storage n log n [storage n2]. 

Proof. The argument is similar to the one used by Hopcroft and Ullman [HU67] to 

simulate nonerasing stack automata by tape-bounded Turing machines. Suppose 

S is an (erasing) stack automaton (deterministic or not) and let w be its input. At 
any point in the computation of S with input w the nonblank portion of the stack 

tape will be a string y. Following [HU67], we associate with each w and y a transition 

matrix Mw,y defined as follows. 
Let n be the length of the input w, and let N be the set of integers between 0 and 

n + 1. Then Mw,y is a binary relation on (Q × N) ∪ {A}. We say Mw,y holds between 

(p, i) and (q, j) provided there is some partial computation of S in which initially S 

is in state p with the input head scanning symbol number i of the input w (count
ing symbol 0 as the blank to the left of w and symbol n + 1 as the blank to the right 
of w) with y the nonblank portion of the stack tape and the stack head scanning 

the rightmost symbol of y, and finally the input head is scanning the position j 
of w and the stack head is scanning the blank immediately to the right of y. Fur
ther, throughout the partial computation the string y must remain unchanged, and 

except for the last step, the stack head must never leave the string y. 
We say Mw,y holds between (p, i) and A if there is some partial computation of 

S which satisfies the same initial conditions as above, but ends in S accepting w 

before the stack head leaves y. 
We construct an auxiliary PDM X to simulate S as follows. X will be determinis

tic if S is deterministic, and sometimes nondeterministic if S is nondeterministic. 
Suppose the stack automaton S is in state q with input head scanning symbol i of 
the input w, and let y = Y1Y2 · · · Yk be the nonblank portion of the stack tape. If the 

stack head is scanning the leftmost blank on the stack tape (to the right of y), we say 
S is in a regular configuration. This regular configuration is represented in X by the 

pair ⟨q, i⟩ on a work tape and by the information Y1Mw,Y1 , Y2, Mw,Y1Y2 , . . . , Yk, Mw,y on 

the pushdown tape (where the transition matrices Mw,Y1...Yj are specified in some 

suitable notation). 
Given a regular configuration occurring in a computation of S, X proceeds by 

finding the next regular configuration in the computation; or, in case S is nondeter
ministic, X will nondeterministically choose a possible next regular configuration 

for S. 
Before S next assumes a regular configuration, the nonblank portion y of the 

stack tape may either (1) remain unchanged; or be changed in any of the follow
ing ways: (2) a new (nonblank) symbol Yk+1 is added to the right of y, resulting in 
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yYk+1, (3) the right symbol of y is altered to a new nonblank symbol Yk
′ , resulting in 

Y1Y2 · · · Yk−1Yk
′ , or (4) the right symbol of y is erased, resulting in Y1Y2 · · · Yk−1. 

In case (2), X must calculate the transition matrix Mw,yYk+1 and add it to the right 
of its pushdown tape. X can easily calculate the new transition matrix from the sym
bol Yk+1 and the transition matrix Mw,y, which appears on the pushdown tape. The 

method is described in detail in [HU67]. In case (3), X must calculate Mw,Y1···Y ′ . This k 

new transition matrix is calculated from Yk 
′ and Mw,y1 ···Yk−1 (which appears on the 

pushdown tape immediately to the left of Yk, Mw,y) using exactly the same method 

as for case (2). Finally, in case (4), X need only delete the pair Yk, Mw,y from its 
pushdown tape and update the pair ⟨q, i⟩ on one of its work tapes. 

In any of the cases (1), (2), or (3), S may shift its stack head to the left of the 

rightmost nonblank symbol on its stack tape at some point before reaching the 

next regular configuration. Then, by the restrictions placed on the stack head in 

the definition in Section 3, the stack head cannot further change any symbols on 

the stack tape before reaching a regular configuration. Hence X can find the next 
state input position pair ⟨q, i⟩ (or the possible next pairs in the nondeterministic 
case) of S by referring to the transition matrix on the right of its pushdown tape. 
Of course X can also tell whether S can accept the input before the next regular 
configuration, and if S can accept, then X accepts. 

The auxiliary (i.e. work tape) storage required by X for the simulation is a con
stant multiple of the number of squares required to store the largest transition 

matrix. In case S is deterministic, for each transition matrix Mw,y and each pair 
(p, i) there is at most one possible pair (q, i) standing in the relation Mw,y to (p, i) 
Hence the storage required to write down all pairs ⟨(p, i), (q, j)⟩ or ⟨(p, i), A⟩ satisfy
ing Mw,y is at most cn log n for some constant c, where n is the length of the input 
w. (The integers i and j are stored in binary notation.) In case S is nondetermin
istic, the possibilities for Mw,y are increased. However, Mw,y is always a subset of 
(Q × N) × ((Q × N) ∪ {A}), a set of at most c1n2 elements, where the constant c1 
depends only on the cardinality of the state set Q. Since a set of c1n elements has 
2c1n

2 
subsets, an arbitrary subset, and hence any transition matrix Mw,y, can be spec

ified by using c1n2 tape squares, using any efficient notation. Details can be found 

in [HU67]. Also, the method for calculating the transition matrix Mw,yY from Mw,y 

and Y using at most the storage c2n log n (if S is deterministic) or c2n2 (if S is non
deterministic) is described in [HU67]. The constants c, c1, and c can be reduced to 

unity by standard methods. 

Lemma 3	 If a set A of strings is accepted by some deterministic auxiliary PDM within storage 
L(n) = n2, A is accepted by some nondeterministic stack automaton. 
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Proof. The argument uses the same techniques as are used in [HU67] to show a 
2nondeterministic nonerasing stack automaton can simulate a nondeterministic n

tape-bounded Turing machine. 
Let X be a deterministic auxiliary PDM which accepts A within storage L(n) = n2. 

Let us fix an input w for X. We will abbreviate the notation for configuration 

given in Section 4 in the proof (b) ⇒ (c), and write P = ⟨q, i, u, Y⟩ instead of 
P = iqu1↓v1 * u2↓v2 * . . . * uk↓vk * Y , where u stands for u1↓v1 * . . . * uk↓vk. Thus 
X is in the configuration ⟨q, i, u, Y⟩ provided X is in state q, with input head scan
ning symbol number i of w, with work tapes described by u, and pushdown head 

scanning the symbol Y. 
We now show how a nondeterministic stack automaton S simulates X. Sup

pose at some point in its computation X is in configuration ⟨q, i, u, Yk⟩, with y = 

Y1Y2 . . . Yk equal to the contents of its pushdown tape (i.e. the string of symbols 
between s0 on the left and the pushdown head on the right, including both ends). 
For each symbol Yj on the pushdown tape, let 𝜑( j) be the configuration of X the 

last time in the computation to date that the square on which Yj is printed was 
scanned. Thus, regardless of the values of Y1, Y2, · · · , Yj−1, if j < k, then we know 

that when X is in the configuration 𝜑( j), it will print Yj on the pushdown tape and 

compute with its pushdown head to the right of this Yj until at some point it is in 

the configuration ⟨q, i, u, Yk⟩, with the symbols Yj+1 · · · Yk written to the right of Yj 
on the pushdown tape. Further, 𝜑(k) = ⟨q, i, u, Yk⟩. 

The stack tape of S encodes the computation of X to date as follows. The stack 

tape is divided into an upper channel and a lower channel. On the upper channel is 
written the sequence of configurations 𝜑(1), 𝜑(2), · · · , 𝜑(k), with a certain amount 
of “garbage” between adjacent entries. The garbage consists of obsolete configura
tions which are labeled with *’s and ignored by the machine. On the lower channel 
below each 𝜑( j) is a configuration 𝜓( j) which represents a guess by S as to the 

configuration of X the next time X scans square j of its pushdown tape. 
We now describe how S updates its stack tape for each of the possible steps that 

X can take. Notice that S can determine what action X will next take by examining 

(without destroying) the top configuration 𝜑(k) in its stack. The index i in the triple 

⟨q, i, u, Yk⟩ is stored in unary notation (i strokes) so that S can determine which 

symbol of the input string X is scanning. 
(1) Suppose X prints a symbol on its pushdown tape and shifts its pushdown 

head right (and does various operations with its work heads and input head). Then 

S will compute the new configuration 𝜑(k + 1) = ⟨q1, i1, u1, 𝛽⟩ and write it on the 

upper channel of its stack tape to the right of 𝜑(k). The method used by S to pro
duce 𝜑(k + 1) to the right of 𝜑(k) is exactly the one described in [HU67] that enables 
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a nondeterministic nonerasing stack automaton to write the next instantaneous 
description of an n2 tape-bounded Turing machine next to the old one. While S is 
producing 𝜑(k + 1), it simultaneously writes on the lower channel below 𝜑(k + 1) 
an arbitrary configuration 𝜓(k + 1). 𝜓(k + 1) is chosen nondeterministically, and 

represents a guess as to the configuration of X the next time X scans square k + 1 
on its pushdown tape. 

(2) Suppose X prints a symbol Yk 
′ on its pushdown tape but does not shift its 

pushdown head. Then S prints a * to the right of 𝜑(k) to label that configuration as 
obsolete (garbage), and then proceeds to write the new configuration 

′ ′ 𝜑 ′(k) = ⟨q , i ′ , u , Yk
′⟩ 

to the right of 𝜑(k)*, using the method of the preceding paragraph. Simultaneously 
S guesses at the configuration 𝜓 ′(k) and writes it on the lower channel below 𝜑 ′(k). 

(3) Suppose X prints a blank on its pushdown tape and shifts its pushdown head 

left. Then S searches left on its stack tape (without erasing) until it finds the right
most configuration 𝜑(k − 1) which is to the left of 𝜑(k) and which is not labeled 

obsolete with a *. On the lower channel below 𝜑(k − 1) is the configuration 

𝜓(k − 1) = ⟨q2, i2, u2, Y ′′⟩ 

which represents the guess made earlier by S as to the present configuration of X. 
The stack automaton S now checks whether 𝜓(k − 1) is correct, by first checking 

whether Y ′′ is the symbol printed by X on its pushdown head when in the configu
ration 𝜑(k − 1). The remaining entries q2, i2, u2 of 𝜓(k − 1) are checked against the 

rightmost configuration 𝜑(k) on the stack to see if they are correct. The method of 
checking is exactly the reverse of the method mentioned in case (1) for producing 

𝜑(k + 1) next to 𝜑(k), and as each symbol (starting with the right) of 𝜓(k − 1) is 
checked, the corresponding symbol of 𝜑(k) will be erased. If 𝜓(k − 1) is incorrect, 
the computation of S is terminated unsuccessfully (recall S is nondeterministic). If 
𝜓(k − 1) is correct, then all garbage to the right of 𝜓(k − 1) is erased, the pair 𝜑(k − 1) 

𝜓(k − 1) 
is labeled obsolete with a *, 𝜓(k − 1) is copied as 𝜑 ′(k − 1) on the upper channel 
immediately to the right of 𝜑(k − 1), and a new guess 𝜓 ′(k − 1) is written on the 

lower channel below 𝜑 ′(k − 1). 
(4) If X accepts the input w, then S accepts the input w. 

Lemma 4	 If a set A of strings is accepted by some deterministic auxiliary PDM within storage 
L(n) = n log n, then A is accepted by a deterministic stack automaton. 

Proof. The argument is the same as the previous proof, with two exceptions. First, 
when the simulating deterministic stack automaton S produces the successor 
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𝜑(k + 1) to a configuration 𝜑(k) on its stack tape, it cannot use the same method as 
the nondeterministic stack automaton in the previous proof. The method used is 
that described in [HU67] for a deterministic nonerasing stack automaton to update 

an instantaneous description of an n log n storage bounded Turing machine. Since 

the auxiliary PDM being simulated has its work tapes bounded by n log n, the new 

method works. Similarly, the new method is used by S for the other copy and ckeck 

operations on the configurations of X. 
The second difference in the present argument is that the deterministic 

stack automaton S cannot guess nondeterministically at the configurations 𝜓(k). 
Instead, S guesses systematically. We assume the possible configurations of the 

auxiliary PDM have a lexicographical ordering. Initially S sets 𝜓(k) equal to the 

first configuration in the order, and writes this configuration on the lower chan
nel below 𝜑(k). In general, suppose S is updating its stack tape to correspond to 

a left shift of the pushdown head of x [see case (3) in the preceding proof]. If the 

latest guess 𝜓(k − 1) of the new configuration is incorrect, S erases all information 

to the right of the pair 𝜑(k − 1) 
𝜓(k − 1), labels that pair obsolete with a *, and copies over 

the pair on the space immediately to the right of the *, except 𝜓(k − 1) is replaced 

by the next configuration in the lexicographical order. Then the simulation of X is 
repeated, starting with the configuration 𝜑(k − 1). Sooner or later the right choice 

for 𝜓(k − 1) will be found, and the simulation can continue. 
This completes the proof of Lemma 4 and of Theorem 2. As an immediate con

sequence of Theorem 2 and the definition of Cobham’s class L* (see Section 2) we 

have the following. 

A set A is in L* if and only if A is accepted by some two-way multihead pushdown 

automaton. 

As a second consequence, we can answer some open questions about the effect 
of determinacy. 

In the case of both writing pushdown acceptors and two-way multihead pushdown 

automata, the deterministic and nondeterministic versions have the same computing 
power. 

For the next corollary, we need a result proved in [HS66]. 

Hennie-Stearns 
If T1(n) is a real-time countable function, then there is a set A of strings which is accepted 

by some deterministic multitape Turing machine within time T1(n), but by no such 

machine within time T2(n) for any function T2 satisfying 

T2(n) log T2(n)lim inf = 0. 
n→∞ T1(n) 
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Corollary 3 

Corollary 4 

Corollary 5 

Corollary 6 

Corollary 7 

The next result answers an open question in [GGH67]. 

The class of sets accepted by deterministic two-way stack automata is properly included 

in the class accepted by nondeterministic such machines. Similarly, the classes defined 

by the machines in lines 1, 3, and 5 of Table 1 form an increasing sequence with proper 
inclusions. 

Proof. This follows easily from Lemma 5 and Theorem 2. For example, if we set 
T1(n) = 2n

2
, and T2(n) = nn log n, then T2(n) eventually dominates ncn for every con

stant c, and hence every set A accepted by some deterministic stack automaton is 
accepted by some Turing machine within time T2(n). But then by Lemma 5, there 

is some set A which is accepted by a Turing machine within time T1(n), and hence 

by a nondeterministic stack automaton, but A is accepted by no Turing machine 

within time T2(n) and hence by no deterministic stack automaton. 

The next corollary was first proved in [KB67], by a direct but complex argument. 

Knuth-Bigelow 

The class of context-sensitive languages is properly included in the class of sets accepted 

by deterministic two-way stack automata. 

Proof. All context-sensitive languages are accepted by nondeterministic Turing 

machines which operate with storage bounded by a linear function of the length of 
the input. But these machines are clearly special cases of writing pushdown accep
tors (row 3 of Table 1), so all context-sensitive languages are accepted by writing 

pushdown acceptors. Corollary 4 now follows from Corollary 3. 

The next two corollaries state for nondeterministic Turing machines facts which 

are obvious for deterministic Turing machines. 

If a set A of strings is accepted by some nondeterministic Turing machine within storage 
L(n) ≥ log2 n, then A is accepted by a (deterministic) time-bounded computer within 

time T(n) = 2cL(n) for some constant c. 

This follows directly from Theorem 1, by dropping the pushdown tape from the 

auxiliary PDM. In particular, we have for the case L(n) = n: 

Every context-sensitive language is accepted by some deterministic Turing machine 
within time 2cn , for some constant c. 

The class of sets accepted by each machine type of Table 1 is closed under union, 
intersection, and taking complements. 

This is clear from the characterizations given in the third column of the table. 
Since each of the functions there is real-time countable (i.e. suitably easy to 
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compute), a Turing machine accepting a set in any of the classes can be made to 

halt on all inputs. The corollary follows easily. 

6 Conclusion and Open Questions 
The major open question concerning these results is whether the pushdown tape 

really adds to the computing power of auxiliary PDM’s. That is, we cannot show 

that Theorem 1 becomes false if “auxiliary PDM” is replaced by “Turing machine” 
in parts (a) and (b). This modified Theorem 1 would assert the converse of Corol
lary 5; that is, a set is accepted by a time-bounded computer within time 2cL(n) if 
and only if it is accepted by a Turing machine within storage L(n). Such a general 
equivalence between time and storage appears unlikely, but we have no proof. 

A second group of questions which remain open concerns the two-way push
down automaton described in [GHI67]. This device is easily characterized as an 

auxiliary PDM operating with zero auxiliary storage (i.e. no work tapes). Since the 

auxiliary storage is less than log2 n, Theorem 1 does not apply, and such questions 
as whether the nondeterministic version is more powerful than the deterministic 
version, and whether the class of sets accepted by either version is closed under 
complements, remain unanswered. 

A final long-standing problem in the field of computational complexity is to 

prove that some interesting set (or function) must take a long time to compute on 

a reasonable general computer model. More specifically, no one can find any set 
not in Cobham’s class L*, except artificial examples through use of diagonal argu
ments. It is, however, easy to find plausible candidates, such as the set of binary 
notations for the primes. It seems to me that, because of the simple nature of multi-
head pushdown machines, Corollary 1 in Section 5 might provide a first step toward 

finding something interesting not in L*. 
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The Relative Efficiency of 
Propositional Proof 
Systems 
Stephen A. Cook and Robert A. Reckhow 

1 Introduction 
We are interested in studying the length of the shortest proof of a propositional 
tautology in various proof systems as a function of the length of the tautology. 
The smallest upper bound known for this function is exponential, no matter what 
the proof system. A question we would like to answer (but have not been able to) 
is whether this function has a polynomial bound for some proof system. (This 
question is motivated below.) Our results here are relative results. 

In Sections 2 and 3 we indicate that all standard Hilbert type systems (or Frege 

systems, as we call them) and natural deduction systems are equivalent, up to 

application of a polynomial, as far as minimum proof length goes. In Section 4 

we introduce extended Frege systems, which allow introduction of abbreviations 
for formulas. Since these abbreviations can be iterated, they eliminate the need for 
a possible exponential growth in formula length in a-proof, as is illustrated by an 

example (the pigeon-hole principle). In fact, Theorem 4.6 (which is a variation of a 

theorem of Statman) states that with a penalty of at most a linear increase in the 

number of lines of a proof in an extended Frege system, no line in the proof need 

be more than a constant times the length of the formula proved. The most difficult 
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result is Theorem 4.5, which states that all extended Frege systems, regardless of 
which set of connectives they use, are about equivalent, as far as minimum proof 
length goes. Finally, in Section 5 we discuss the substitution rule, and show that 
Frege systems with this rule can simulate extended Frege systems. 

Some of our results here appeared earlier in the conference proceedings [CR74], 
and Reckhow’s Ph. D. thesis [Rec76]. (These two papers also establish and report 
nonpolynomial lower bounds on some proof systems more restricted than the ones 
mentioned above.) 

To motivate the study of propositional proof systems, let us briefly review some 

of the theory of P and NP (see [Coo71b, Kar72], and Chapter 10 of [AHU74]). By 
convention, P denotes the class of sets of strings recognizable by a determinis
tic Turing machine in time bounded by a polynomial in the length of the input. 
NP is the same for nondeterministic Turing machines. If we let TAUT denote 

the set of tautologies over any fixed adequate set of connectives, then the main 

theorem in [Coo71b] implies that P = NP if and only if TAUT is in P. Now 

P = NP not only would imply the existence of relatively fast algorithms for 
many interesting and apparently unfeasible combinatorial algorithms in NP (see 

[Kar72]), it would also have an interesting philosophical consequence for mathe
maticians. If P = NP, then there is a polynomial p and an algorithm A with 

the following property. Given any proposition S of set theory and any integer n, 
A determines within only p(n) steps whether S has a proof of length n or less 
in (say) Zermelo-Fraenkel set theory. To see that the existence of A follows from 

P = NP, observe that the problem solved by A is in NP. In fact, a nondeter
ministic Turing machine can write any string of length n on its tape and then verify 
that the string is a proof of the given proposition. For any reasonable logical theory, 
this verification can be performed within time bounded by some polynomial in n. 

Hence the importance of showing P ̸ NP (or P = NP?). A related impor= 

tant question is whether NP is closed under complementation, i.e. 𝛴* − L is 
in NP whenever L is in NP. (Here we use the notation 𝛴* for the set of all 
finite strings over the finite alphabet 𝛴 under consideration, and the assump
tion L ⊆ 𝛴*. This notation will be used throughout.) If NP is not closed under 
complementation, then of course P ̸ NP. On the other hand, if NP is closed = 

under complementation, this would have interesting consequences for each of the 

combinatorial problems in [Kar72]. Hence the following result is important. 

Proposition 1.1 NP is closed under complementation if and only if TAUT is in NP. 

Notation 1.2 L is the set of functions f : 𝛴* → 𝛴2 
* , 𝛴1, 𝛴2 any finite alphabets, such that f can1 

be computed by a deterministic Turing machine in time bounded by a polynomial 
in the length of the input. 
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Proof of Proposition 1.1. The complement of the set of tautologies is in NP, since 

to verify that a formula is not a tautology one can guess at a truth assignment and 

verify that it falsifies the formula. Conversely, suppose the set of tautologies is in 

NP. By the proof of the main theorem in [Coo71b], every set L in NP is reducible 

to the complement of the tautologies in the sense that there is a function f in L 

such that for all strings x, x ∈ L iff f (x) is not a tautology. Hence a nondeterminis
tic procedure for accepting the complement of L is: on input x, compute f (x), and 

accept x if f (x) is a tautology, using the nondeterministic procedure for tautologies 
assumed above. Hence the complement of L is in NP. ■ 

The question of whether TAUT is in NP is equivalent to whether there is a 

propositional proof system in which every tautology has a short proof, provided 

“proof system” and “short” are properly defined. 

If L ⊆ 𝛴* , a proof system for L is a function f : 𝛴* → L for some alphabet 𝛴1 and f1 

in L such that f is onto. We say that the proof system is polynomially bounded iff 
there is a polynomial p(n) such that for all y ∈ L there is x ∈ 𝛴* such that y = f (x)1 

and |x| ≤ p(|y|), where |z| denotes the length of a string z. 

If y = f (x), then we will say that x is a proof of y, and x is a short proof of y if in 

addition |x| = p(|y|). Thus a proof system f is polynomially bounded iff there is a 

bounding polynomial p(n) with respect to which every y ∈ L has a short proof. 

A set L is in NP iff L = ∅ or L has a polynomially bounded proof system. 

The analogous statement for recursive function theory is that L is recursively 
enumerable iff L = ∅ or L is the range of a recursive function. The proof of the 

present proposition is straightforward. If L ∈ NP, then some nondeterministic 
Turing machine M accepts L in polynomial time. If L ̸= ∅, we define f such that if 
x codes a computation of M which accepts y, then f (x) = y. If x does not code an 

accepting computation, then f (x) = y0 for some fixed y0 ∈ L. Then f is clearly a poly
nomially bounded proof system for L. Conversely, if f is a polynomially bounded 

proof system for L, then a fast nondeterministic algorithm for accepting L is, on 

input y, guess a short proof x of y and verify f (x) = y. ■ 

Putting Propositions 1.1 and 1.4 together we see that NP is closed under com
plementation if and only if TAUT has a polynomially bounded proof system, in 

the general sense of Definition 1.3. It is easy to see (and is argued below) that 
any conventional proof system for tautologies can naturally be made to fit the 

definition of proof system in Definition 1.3. Although it is doubtful that every gen
eral proof system for TAUT is natural, nevertheless this general framework helps 
explain the motivating question of this paper: Are any conventional propositional 
proof systems polynomially bounded? 
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We cannot answer that question directly (except negatively for certain restricted 

systems: see [CR74] and [Rec76], and also [Tse70]), but at least we can put differ
ent proof systems into equivalence classes such that the answer is the same for 
equivalent systems. We conjecture that the answer is always no. 

Definition 1.5 If f1: 𝛴* 
1 → L and f2: 𝛴* 

2 → L are proof systems for L, then f2 p-simulates f1 provided 

2 such that g is in L, and f2(g(x)) = f1(x) for all x. 

Thus g translates a proof x of y in the system f1 into a proof g(x) of y in f2. It is 
easy to see, using the fact that L is closed under composition, that p-simulation is a 

transitive reflexive relation, so that its symmetric closure is an equivalence relation. 

Proposition 1.6	 If a proof system f2 for L p-simulates a polynomially bounded proof system f1 for L, then 

f2 is also polynomially bounded. 

This is an immediate consequence of the definitions of “proof system” and 

* 

“polynomially bounded”, and the fact that every function in L is bounded in 

length by a polynomial in the length of its argument. ■ 

We close this section by establishing some notation and terminology specific 
for propositional proof systems which will be used in the rest of this paper. The let
ter 𝜅 will always stand for an adequate set of propositional connectives which are 

binary, unary, or nullary (have two, one, or zero arguments). Adequate here means 
that every truth function can be expressed by formulas built up from members of 𝜅. 
A formula refers to a propositional formula built up in the usual way from atoms 
(propositional variables) and connectives from some set 𝜅, using infix notation. 
(We speak of a formula over 𝜅 if its connectives are from 𝜅.) If A1, . . . , An, B are for
mulas, then we write A1, . . . , An |= B if B is a logical consequence of A1, . . . , An (i.e. 
every truth assignment satisfying A1 . . . , An satisfies B). Each of our propositional 
proof systems will be defined relative to some connective set 𝜅, and will be capable 

of proving all tautologies over 𝜅 by proofs using formulas over 𝜅. A derivation (from 

zero or more lines called hypotheses) in such a system is a finite sequence of lines, 
ending in the line proved. A line is always a formula, except in the case of natu
ral deduction systems (Section 3). Each line must either be a hypothesis, or follow 

from earlier lines by a rule of inference. (In case the rule itself has no hypothesis, 
the rule is an axiom scheme.) If the derivation has no hypothesis, it is called a proof. 

Thus to specify a propositional proof system for our purposes, it is only neces
sary to specify 𝜅, the definition of a line, and a finite set of rules of inference. To 

make this notion of proof system be an instance of our abstract Definition 1.3, we 

note first of all that formulas can be naturally regarded as strings over a finite alpha
bet. The only problem is that an atom itself must be regarded as a string (say the 

letter P followed by a string over {0, 1}) in order that there be an unlimited supply of 

→ 𝛴there is a function g: 𝛴* 
1 
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atoms. Then a proof 𝜋 in the propositional system which is, say, a sequence of for
mulas, can naturally be regarded as a string over a finite alphabet which includes 
the comma as a separator symbol, as well as the symbols necessary to specify the 

formulas. The function f which abstractly specifies the system would be given by 
f (𝜋) = A if 𝜋 proves A, and f (𝜋) = A0 for some fixed tautology A0 if 𝜋 is a string not 
corresponding to a proof in the system. 

⊢𝜋The notation A1, . . . , An B means that 𝜋 is a derivation of B from hypothe-S 

ses A1, . . . , An in the proof system S. (The notation ⊢S means that there is some 

derivation 𝜋 in the system S.) We use the following notation for various length 

measures: 
l(A) is the number of occurrences of atoms and nullary connectives in a formula 

(or sequence) A. 
𝜆(𝜋) is the number of lines in a derivation 𝜋. 
𝜌(𝜋) = maxil(Ai), if 𝜋 is (A1, . . . , An). 
|𝜋| or |A| is the length of 𝜋 or A as a string. 

2 Frege Systems 
In the most usual propositional proof systems the rules of inference are formula 

schemes, and an instance of the scheme is obtained by applying a substitution to 

the scheme. We shall call such systems Frege systems, after Frege [Fre67]. 
Throughout this section we assume that all formulas are over some fixed 

adequate connective set 𝜅. The following terms are defined relative to 𝜅. 

Definitions 2.1	 If D1, . . . , Dk are formulas and P1, . . . , Pk are distinct atoms, then 𝜎 = 

(D1, . . . , Dk)/(P1, . . . , Pk) is a substitution, and 𝜎A is the formula which results by 
simultaneously replacing Pi by Di, i = 1, . . . , k, in formula A. A Frege rule is a sys
tem of formulas (C1, . . . , Cn)/D, where C1, . . . , Cn |= D. If n = 0, the rule is an 

axiom scheme. For any substitution 𝜎 we say that 𝜎D follows from 𝜎C1, . . . , 𝜎Cn by the 

rule(C1, . . . , Cn)/D. An inference system F is a finite set of Frege rules. The notions 
of derivation and the symbol ⊢ for F are defined as in the end of Section 1, where 

now a line in a derivation is a formula. By our condition on the definition of Frege 

rule, it is clear that if A1, . . . , An ⊢F B then A1, . . . , An |= B. 

Definitions 2.2	 An inference system F is implicationally complete if A1, . . . , An ⊢F B whenever 
A1, . . . An |= B. A Frege system is an implicationally complete inference system. 

In fact, Frege’s original system in [Fre67] does not fit the above definition, 
because it has axioms instead of axiom schemes, and tacitly includes the substi
tution rule (see Section 5). According to Church [Chu56, p. 158], the idea of axiom 

schemes used to replace the substitution rule is due to von Neumann [vNeu27]. 
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Theorem 2.3 

Corollary 2.4 

Lemma 2.5 

If we modify Frege’s system to be a Frege system, the result has connectives 𝜅 = 

{¬, ⊃}, and the rule 

A, A ⊃ B
 
B
 

and the six axiom schemes 

A ⊃ (B ⊃ A), (C ⊃ (B ⊃ A)) ⊃ ((C ⊃ B) ⊃ (C ⊃ A)), 
(D ⊃ (B ⊃ A)) ⊃ (B ⊃ (D ⊃ A)), (B ⊃ A) ⊃ (¬A ⊃ ¬B), 

¬¬A ⊃ A, A ⊃ ¬¬A. 

For any two Frege systems F1 and F2 over 𝜅 there is a function f in L and constant 
⊢𝜋c such that for all formulas A1, . . . , An, B and derivations 𝜋, if A1, . . . , An F1 

B then 
f (𝜋)A1, . . . , An ⊢ B, and 𝜆(f (𝜋)) ≤ c𝜆(𝜋) and 𝜌(f (𝜋)) ≤ c𝜌(𝜋). (See the end of Section 1F2 

for notation.) 

Any two Frege systems over 𝜅 p-simulate each other. Hence one Frege system over 𝜅 is 
polynomially bounded iff all Frege systems over 𝜅 are. 

The corollary is an immediate consequence of the theorem and Proposition 1.6. 
Reckhow [Rec76] proves a generalization of the corollary to cover the case of Frege 

systems with different connective sets simulating each other, even when some 

of the connectives have arity greater than two. His proof is much more compli
cated than our proof of Theorem 2.3 given below, largely because of the difficulty 
of simulating systems using the connectives ≡ and ≡| by systems without these 

connectives. Fortunately, Corollary Theorem 4.6 below, concerning extended Frege 

systems, makes Corollary 2.4 and Reckhow’s generalization less important than 

they might appear at first, since extended Frege systems seem to be more natural 
than Frege systems when measuring proof lengths. 

The lemma below is used in the proof of Theorem 2.3. (The notation 𝜎(𝜋) means 
𝜎A1, . . . , 𝜎Ak, if 𝜋 is a derivation A1, . . . , Ak.) 

If 𝜋 is a derivation of A from B1, . . . , Bk in a Frege system F, then 𝜎(𝜋) is a derivation of 
𝜎A from 𝜎B1, . . . , 𝜎Bk in F, for any substitution 𝜎. 

The proof is an easy induction on the length of 𝜋. ■ 

To prove Theorem 2.3, assume F1 and F2 are Frege systems over 𝜅. For each 

rule R = (C1, . . . Cm)/D in F1, let 𝜋R be a derivation of D from C1, . . . , Cm in F2. Now 

suppose 𝜋 is a derivation of B from A1, . . . , An in F1, and suppose 𝜋 = B1, . . . , Bk. 
To construct the F2-derivation f (𝜋) from 𝜋, if Bi follows from earlier Bj’s by the 

F1-rule Ri and substitution 𝜎i, simply replace Bi by the derivation 𝜎i(𝜋Ri ) (with 

hypotheses deleted). According to Lemma 2.5, 𝜎i(𝜋Ri ) is a derivation of Bi from 
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the same earlier Bj’s. Clearly 𝜆(f (𝜋)) ≤ c1𝜆(𝜋), where c1 is the number of lines 
in the longest derivation 𝜋R, as R ranges over the finite set of rules of F1. Finally, 
𝜌(f (𝜋)) ≤ c2𝜌(𝜋), where c2 is an upper bound on l(A) as A ranges over all formulas 
in all the derivations 𝜋R, R a rule of F1. ■ 

3 Natural Deduction Systems 
The purpose of this section is to indicate the sense in which natural deduction 

systems are equivalent to Frege systems. Rather than presenting a specific natural 
deduction system, such as one appearing in Prawitz [Pra65], we shall introduce a 

general definition analogous to our general notion of Frege system. To make the 

classical proposition system of Prawitz fit our definition, it is necessary to allow 

Prawitz’s notion of proof to be a more general directed acyclic graph, rather than a 

tree. That is, once a formula is derived from a set of assumptions, we do not require 

that it be derived again if it is used twice. Alternatively, we could stick to Prawitz’s 
tree proofs, provided that if a formula occurred several times in a proof with the 

same assumptions, it be counted only once in measuring the length of the proof. In 

fact, we shall present our natural deduction proofs as sequences of lines, and each 

line will have the form A1, . . . , An → A, where A1, . . . An are assumptions which imply 
A. Thus our proofs require repeating the assumptions for a formula with each step, 
which makes them a little longer and harder to write down, but easier to analyze. 
For convenience, we allow only the right-most formula An to be discharged. Reck
how [Rec76] gives a more general treatment of natural deduction systems, as well 
as Gentzen’s sequent systems. 

Part of the appeal of a natural deduction system is that it allows the “deduction 

theorem” to be used as a rule. According to the deduction theorem, from a deriva
tion 𝜋 in a Frege system F showing A1, . . . , Am ⊢ B we can construct a derivation 

𝜋 ′ in F showing A1, . . . , Am−1 ⊢ Am ⊃ B. The trouble is that 𝜋 ′ may be twice as long 

as 𝜋, so that if a natural deduction derivation has m nested uses of this deduction 

rule and they are eliminated sequentially to obtain a Frege derivation, the result 
might be longer by a factor of 2m than the original derivation. Fortunately, they can 

be eliminated simultaneously, as shown by the construction fr(N ) below. 
The following definitions are relative to a given adequate connective set 𝜅. 

Notation 3.1	 Even if ¬ or ∨ is not in 𝜅, formulas N(P) and O(P, Q) over 𝜅 can always be found 

such that N(P) and O(P, Q) are equivalent to ¬P and P ∨ Q, respectively, and such 

that P and Q each has at most one occurrence in each of N(P) and O(P, Q). A fixed 

“dummy” atom P0 may occur several times, however. For example, if 𝜅 is {≡| , ⊃} 
then N(P) could be (P ≡| (P0 ⊃ P0)) and O(P, Q) could be ((P ≡| (P0 ⊃ P0)) ⊃ Q). 
(See Section 5. 3.1.1 of [Rec76] for an argument showing how this can be done in 
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general.) Thus we will take ¬A or A ∨ B to mean N(A) or O(A, B), respectively, if ¬ or 
∨ is not in 𝜅. We use ⋁(A1, . . . , Am) to stand for (· · · (A1 ∨ A2) · · · ∨ Am) (association 

to the left), and ⋁′(A1, . . . , Am) to stand for (A1 ∨ · · · (Am−1 ∨ Am) · · ·) (association to 

the right). 

Definitions 3.2	 A naturnal deduction line (or just line) is a pair 𝛤 → A, where 𝛤 is any finite 

sequence of formulas, and A is a formula. If 𝛤 is empty, the line is written sim
ply → A. Associated with a line L = (A1, . . . , Am) → A are two equivalent formulas 
L* = ⋁(¬A1, . . . , ¬Am, A) and L# = ⋁′(¬A1, . . . , ¬Am, A). (If m = 0, the L* = L# = A.) 
The line L takes on the same truth value under a truth assignment as formulas L* 

and L#, so that the concepts of validity, logical consequence, etc. are well defined 

for lines. If 𝛥 is a sequence B1, . . . , Bn of formulas and L is the line (A1, . . . , Am) → A, 
then 𝛥L is the line (B1, . . . , Bn, A1, . . . , Am) → A. If 𝛬 is a set of lines, L is a line, 
𝛥 is a sequence of formulas, and 𝜎 is a substitution, then 𝛬 |= L implies that 
𝛥𝜎(𝛬) |= 𝛥𝜎(L), where the operations 𝛥 and 𝜎 are extended to sets of lines in 

the natural way. If 𝛬 is a finite set of lines and L is a line such that 𝛬 |= L, then the 

system R = 𝛬/L is a natural deduction rule. Line L ′ follows from 𝛬 ′ by rule R provided 

for some substitution 𝜎 and sequence 𝛥, 𝛬 ′ = 𝛥𝜎(𝛬), and L ′ = 𝛥𝜎(L). A natural 
deduction system is a finite set of natural deduction rules which is implicationally 
complete (implicationally complete being defined in a manner analogous to that 
for Frege systems). A formula A is represented in a natural deduction system N by 
the line → A. This convention allows us to speak of proofs of formulas and deriva
tions of a formula from formulas in N, and thus write for example A1, . . . , An ⊢𝜋 BN 

instead of → A1, . . . , → An ⊢𝜋 → B.N 

If L = (A1, . . . , Ak) → A is a line, then l(L) = l(A1) + · · · + l(Ak) + l(A). If 𝜋 is a 

derivation, then 𝜆(𝜋) is the number of lines in 𝜋, and 𝜌(𝜋) is the maximum of l(L), 
for all L in 𝜋. 

An example of a natural deduction rule, which embodies the deduction theo
rem, is R1 = (P → Q)/(→ ¬P ∨ Q). This rule together with its converse R2 = (→ 

¬P ∨ Q)/(P → Q) can turn any Frege system F into a natural deduction sytem 

nd(F), provided we reinterpret every rule R = (C1, . . . , Cn)/D of the Frege system 

to be R ′ = (→ C1, . . . , → Cn)/ → D. In fact, if 𝛬 |= L, then to deduce L from 𝛬 in 

nd(F), we first observe that every hypothesis M in 𝛬 can be changed to → M# by 
repeated use of the rule R1. By the implicational completeness of F, we can derive 

→ L# in nd(F) from these lines → M#. Now L can be derived from → L# by repeated 

use of the rule R2. 
Notice that every derivation in F, of say B from A1, . . . , An, can be turned into a 

derivation of B from A1, . . . , An in nd(F) simply by adding the symbol → to the left 
of every formula in the derivation. 
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Conversely, every natural deduction system N can be turned into a Frege 

system fr(N), where the rules of fr(N) consist of the two rules R ′ and R ′′ for 
every rule R of N. To explain R ′ and R ′′ we need to recall the notation M* for 
⋁(¬A1, . . . , ¬Am, A) and introduce the notation (PM)* for ⋁(P, ¬A1, . . . , ¬Am, A), 
where M is a line (A1, . . . , Am) → A and P is an atom. If R = 𝛬/L, then R ′ = 𝛬*/L* 

and R ′′ = (P𝛬)*/(PL)*, where P is some atom not occurring in 𝛬 or L, and we have 

extended the * notation to sets 𝛬 of lines in the obvious manner. It is easy to see 

that the rules R ′ and R ′′ are sound if R is sound. 
Now if 𝜋 = L1, . . . , Ln is any derivation in N, then we claim that 𝜋* = L* 

1 , . . . , L* 
n 

is a derivation in fr(N ). For suppose Li follows from earlier Lj’s by the the rule 

R = 𝛬/L in N. Then for some substitution 𝜎 and sequence 𝛥, Li is 𝛥𝜎(L) and the 

earlier Lj’s comprise the set 𝛥𝜎(𝛬). If 𝛥 is empty, the L* follows from earlier L* 
j ’s i 

by the Frege rule R ′ = 𝛬*/L* by 𝜎, since for any line M, (𝜎(M))* = 𝜎(M*). If 𝛥 is 
not empty, then L* 

i follows from earlier L* 
j ’s by the Frege rule R ′′ = (P𝛬)*/(PL)* and 

substitution 𝜎 ′ , where 𝜎 ′ is the substitution obtained by simultaneously applying 

the substitution 𝜎 and ⋁(¬A1, . . . , ¬Ak)/P, where 𝛥 is (A1, . . . , Ak). We need the fact 
that for any line M with no occurrence of P, 𝜎 ′((PM)*) = (𝛥𝜎(M))* . 

Thus 𝜋* is a derivation in fr(N ) for every derivation 𝜋 in N. Notice that since 

(→ A)* = A, if 𝜋 is a derivation in N of B from A1 . . . , Al then 𝜋* is a derivation in 

fr(N ) of B from A1, . . . , Al. Further, notice that 𝜆(𝜋*) = 𝜆(𝜋) and 𝜌(𝜋*) ≤ c𝜌(𝜋), 
where the constant c depends only on the underlying connective set 𝜅. 

Although the constructions above allow us to translate back and forth between 

Frege and natural deduction systems, the following result still needs a separate 

proof. 

Given natural deduction systems N1 and N2 over 𝜅 there is a function f in L and a con
⊢𝜋stant c such that for all lines L1, . . . , Ln, L and derivations 𝜋, if L1, . . . , Ln N1 

L, then 
f (𝜋)L1, . . . , Ln ⊢ L, and 𝜆(f (𝜋)) ≤ c𝜆(𝜋) and 𝜌(f (𝜋)) ≤ c𝜌(𝜋).N2 

The proof is very similar to the proof of Theorem 2.3. Lemma 2.5 is replaced by 
the statement that if 𝜋 is a derivation in N of line M from lines M1, . . . , Mk, then 

𝛥𝜎(𝜋) is a derivation of 𝛥𝜎(M) from 𝛥𝜎(M1), . . . , 𝛥𝜎(Mk). ■ 

Let 𝜅 be any adequate set of connectives. All Frege and natural deduction systems over 
𝜅 p-simulate all other Frege and natural deduction systems over 𝜅. Hence one such sys
tem over 𝜅 is polynomially bounded if and if all such systems over 𝜅 are polynomially 
bounded. 

The corollary follows immediately from Theorems 2.3 and 3.3, together with the 

constructions nd(F) and fr(N ) given above. ■ 
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Reckhow [Rec76] treats a kind of natural deduction system in which 𝛤 in a line 

𝛤 → A is regarded as a set of formulas rather than a sequence of formulas. Such a 

system might allow for shorter proofs, since in effect there are implicit rules which 

allow 𝛤 to be reordered. In [Rec76] it is shown that the above corollary holds for 
this system, and that the second part holds even when the systems have different 
connective sets. 

The corollary also holds for Gentzen systems with cut, provided a Gentzen proof 
is considered to be a sequence of sequents, so that a given occurrence of a sequent 
can be used more than once in a proof, as opposed to the more usual definition that 
a Gentzen proof is a tree of sequents. When a Gentzen proof is defined to be a tree, 
an exponential lower bound for the number of sequents in a minimum cut-free 

proof of a formula follows from an unpublished result of Statman. More recently, 
Cook and Rackoff have an unpublished result showing an exponential lower bound 

for Gentzen proofs considered as sequences, provided both the cut and thinning 

rules are disallowed. 

4 Extended Frege Systems 
The previous sections have indicated that certain standard proof systems for the 

propositional calculus are about equally powerful. We now look for natural exten
sions of these systems which might be more powerful, in the sense that they yield 

shorter proofs. To motivate this search, we try to use Frege systems to simulate an 

informal proof of the “pigeon-hole principle”. 
One statement of the pigeon-hole principle is that no injective function maps 

{1, 2, . . . , n} to {1, 2, . . . , n − 1}, n ≥ 2. For each value of n, this statement may be for
malized in the propositional calculus as follows. Let Pij, 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1, be 

a set of atoms, whose intended meaning is “i is mapped to j”. Let Sn be the set (or 
sometimes the conjunction of the formulas in the set) {Pi1 ∨ · · · ∨ Pi,n−1|1 ≤ i ≤ n} 
⋃ {¬Pik ∨ ¬Pjk|1 ≤ i < j ≤ n, 1 ≤ k ≤ n − 1}. If a truth assignment were given 

for which each formula in Sn is true then one could define a function f which by 
the first set of disjunctions is from {1, 2, . . ., n} to {1, 2, . . ., n − 1} and which by the 

second set is injective. Thus the formula An = ¬Sn is a tautology. 
An informal proof of the pigeon-hole principle proceeds by induction on n. 

It is obvious for n = 2. In general, if f : {1, . . . , n} → {1, . . . , n − 1}, then let 
f ′ : {1, . . . , n − 1} → {1, . . . , n − 2} be defined by f ′(i) = f (i) if f (i) ̸ n − 1; other= 

wise f ′(i) = f (n). If f is injective, it is easy to see that f ′ is also, contradicting the 

induction hypothesis. 
To mimic this proof in a Frege system, we try to deduce Sn−1 from Sn. For each 

i, j, we introduce a formula Bij which means f ′(i) = j. Bij = Pij ∨(Pi,n−1 & Pnj), 1 ≤ i ≤ 

n − 1, 1 ≤ j ≤ n − 2. Let 𝜎n−1 be the substitution Bij/Pij (1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 2). 
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The argument that f injective implies f ′ injective shows Sn |= 𝜎n−1(Sn−1). By com
pleteness, Sn ⊢ 𝜎n−1(Sn−1). Similarly, Sn−1 ⊢ 𝜎n−2(Sn−2), so by Lemma 2.5, there 

is a derivation of the same number of lines showing 𝜎n−1(Sn−1) ⊢ 𝜎n−1𝜎n−2(Sn−2), 
so Sn ⊢ 𝜎n−1𝜎n−2(Sn−2). Proceeding this way, we finally obtain a derivation show
ing Sn ⊢ 𝜎n−1 · · · 𝜎2(S2). But S2 is {P11, P21, ¬P11 ∨¬P21}, from which a contradiction 

is easily derived, so by the deduction theorem, ⊢ ¬Sn; i. e. ⊢ An. 
It is not hard to see that by choosing the rules of our Frege system conveniently, 

the derivation of 𝜎n−1(Sn−1) from Sn has O(n3) lines. Hence the entire proof of An 

has O(n4) = O(N4/3) lines, where N is |An|. On the other hand, each application of a 

substitution 𝜎i triples the length of a formula, so the longest formulas in the proof 
of An grow exponentially in n. 

A simple device to reduce the formula length in the above proof is to introduce 

new atoms which abbreviate the formulas Bij. Thus the atom Q1 ij has a defining 

formula Q1 ij ≡ (Pij ∨ (Pi,n−1 & Pnj)), 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 2. From these 

defining formulas and the formulas Sn, the formulas 𝜏n−1(Sn−1) are easily derived, 
where 𝜏n−1 is the substitution Q1 ij/Pij (1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 2). In gen
eral, a new atom Qkij 

+1 is introduced for 𝜎n−1 · · · 𝜎n−k(Bij) with defining formula 

Qkij 
+1 ≡ (Qij

k ∨(Qki,n−k−1 & Qn
k 
−k,j)), and the formulas 𝜏n−k−1(Sn−k−1) are easily derived 

from these defining formulas and the formulas 𝜏n−k(Sn−k) where 𝜏n−k is the sub
stitution Qkij/Pij (1 ≤ i ≤ n − k, 1 ≤ j ≤ n − k − 1). In this way, a contradiction 

is derived from Sn in O(n4) lines, where now each formula has length only O(n). 
Hence An has a proof of length O(n5) in this framework. This kind of proof system 

can be formalized as follows: 

An extended Frege system over a connective set 𝜅 is a proof system which consists 
of a Frege system F over 𝜅 together with the extension rule which allows formulas 
of the form P ≡ A to be added to a derivation, where A is any formula over 𝜅, and P 

is any “new” atom. (P must not occur in A, in any lines preceding P ≡ A, or in any 
hypotheses to the derivation. P can occur in later lines, but not in the last line.) We 

say P is a defined atom and P ≡ A is its defining formula. If ≡ is not in 𝜅, we choose 

some short formula P ∼ Q over 𝜅 which is equivalent to P ≡ Q, and let P ∼ A be the 

defining formula for P. The extended Frege system based on F is denoted by eF. 
(The extension rule was first suggested by Tseitin [Tse70], in the context of 

resolution proofs.) 

Soundness of eF 

If A1, . . . , An ⊢eF B, then A1, . . . , An |= B. 

Proof. Let 𝜏 be any truth assignment to the atoms of A1, . . . , An and B which satis
fies A1, . . . , An. Then 𝜏 can be extended to make each line in the derivation true. In 
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Proposition 4.3 

Theorem 4.5 

particular, if P ≡ A is a defining formula, then P has not occurred earlier in the 

derivation, so we are free to extend 𝜏 so 𝜏 (P) = 𝜏 (A). Hence 𝜏 (B) is true, since B is 
the last line of the derivation. ■ 

Although the extension rule apparently allows the lengths of formulas in a 

derivation to be greatly reduced, the following result shows the number of lines 
in a proof cannot be much reduced. 

If 𝜋 is a derivation of B from A1, . . . , An in eF, then there is a derivation 𝜋 ′ of B from 

A1, . . . , An in F with 𝜆(𝜋 ′) ≤ 𝜆(𝜋) + cm where c depends only on F, and m is the 
number of defining formulas in 𝜋. 

Proof. Suppose Pi ∼ Ci, 1 ≤ i ≤ m, are the defining formulas in 𝜋 (given in the 

order in which they occur in 𝜋). Then 𝜋 is a derivation in F of B from A1, . . . , An, 
P1 ∼ C1, . . . , Pm ∼ Cm. Now let 𝜎 be the composed substitution 

Cm Cm−1 C1∘ ∘ · · · ∘ .
Pm Pm−1 P1 

By Lemma 2.5, 𝜎(𝜋) is a derivation of 𝜎B from 𝜎A1, . . . , 𝜎An, 𝜎(P1 ∼ C1), . . . , 𝜎(Pm ∼ 

Cm). By the restrictions on the defined atoms Pi, 𝜎(𝜋) is a derivation in F of B from 

A1, . . . , An, 𝜎C1 ∼ 𝜎C1, . . . , 𝜎Cm ∼ 𝜎Cm. But Q ∼ Q has some fixed proof in F of 
some number of lines (say c lines), so by Lemma 2.5, each 𝜎Ci ∼ 𝜎Ci has a proof in 

F of c lines. Also 𝜆(𝜎(𝜋)) = 𝜆(𝜋). Hence we construct 𝜋 ′ from 𝜎(𝜋) together with 

these m proofs, and the proposition follows. ■ 

Of course the formulas of 𝜋 ′ can grow exponentially in m, even if the formulas of 
𝜋 are short, as shown by the pigeon-hole example at the beginning of this section. 

We mentioned that Reckhow [Rec76] strengthened Theorem 2.3 to cover the 

case of different connective sets, but the proof was complicated by the difficul
ties of finding a short translation for a formula containing ≡ into one containing, 
say, just &, ∨, and ¬. In the case of extended Frege systems, this difficulty can be 

circumvented. Theorem 4.5 below states that if the number of lines in the short
est proof of a tautology A is bounded by some function L(l(A)) in some extended 

Frege system, then essentially the same is true of any extended Frege system over 
any connective set, and furthermore the lengths of the formulas in a proof need 

not be much longer than the formula proved. (The latter is in sharp contrast to the 

apparent situation for Frege proofs without extension.) 
′ Suppose eF and eF are extended Frege systems over 𝜅 and 𝜅 ′ , respectively, and sup

pose L(n) ≤ n is a natural number function such that every tautology A over 𝜅 has a 

proof 𝜋 in eF with 𝜆(𝜋) ≤ L(l(A)). Then every tautology A ′ over 𝜅 ′ has a proof 𝜋 ′ in 
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eF ′ such that 𝜆(𝜋 ′) ≤ cL(cl(A ′)) and 𝜌(𝜋 ′) ≤ cl(A ′), where the constant c depends only 
′ on F and F . 

Theorem 4.6	 Statman1 

For any extended Frege system eF and tautology A, if 𝜋 is a proof of A in eF, then there 
is a proof 𝜋 ′ of A in eF such that 𝜆(𝜋 ′) ≤ c(𝜆(𝜋) + l(A)) and 𝜌(𝜋 ′) ≤ cl(A), where the 
constant c depends only on F. 

Corollary 4.7	 To Theorem 4.5 

A given extended Frege system is polynomially bounded if and only if all extended Frege 
systems over all connective sets are polynomially bounded. Also, an extended Frege sys
tem eF is polynomially bounded if and only if there is a polynomial bound on the number 
of lines in proofs in eF. Hence, if P ̸= NP, then there is no polynomial bound on the 
number of lines in proofs in extended Frege systems, Frege systems, or (by Section 3) 
natural deduction systems. 

Propositions Theorems 4.5, 4.6, and Corollary 4.7 are evidence that the extended 

Frege systems are a very natural class of proof system. Further evidence is provided 

by results in [Coo76b], which show that extended Frege system proofs can simulate 

the proof of any theorem of a certain number theory system PV. (“Simulate” here 

means something similar to the way in which extended Frege proofs simulate the 

proof of the pigeon hole principle in the example given at the beginning of this sec
tion.) The same paper [Coo76b] shows that extended Frege systems are the most 
efficient systems whose soundness is provable in PV. 

The remainder of this section is devoted to proving Theorems 4.5 and 4.6. Let 
us start by showing that a bound on proof length in an extended Frege system gives 
us a bound on derivation length. 

Lemma 4.8	 Suppose eF and L(n) satisfy the hypotheses of Theorem 4.5. If A1, . . . , Am, B are formulas 
over 𝜅 such that A1, . . . , Am |= B, then there is a derivation 𝜋 in eF of B from A1, . . . , Am 

with 𝜆(𝜋) ≤ cL(cn), where n = l(A1) + · · · + l(Am) + l(B), and c depends only on F. 

Proof. Suppose first that the connective set 𝜅 of F contains ∨ and ¬. Since 

A1, . . . , Am |= B, we have |= (¬A1(¬A2 ∨ · · · ∨ (¬Am) ∨ B) · · ·)). Hence this formula 

has a proof 𝜋 ′ in eF with 𝜆(𝜋 ′) ≤ L(n), n = l(A1) + · · · + l(Am) + l(B). If we assume 

1. After proving a version of Theorem 4.5 without the bound on 𝜌(𝜋 ′) in course notes [CR+76], 
the first author received an earlier version of Statman [Sta77] and realized the proof in the notes 
could be strengthened to yield the present Theorems 4.5 and 4.6. Statman’s theorem in [Sta77] 
has a more general setting than Theorem 4.6, but a weaker bound on 𝜆(𝜋 ′). The authors wish to 

thank Martin Dowd for helpful discussions concerning Theorem 4.6. 
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F has the cut rule 

P, ¬P ∨ Q 
Q 

then by appending m applications of this rule to 𝜋′, we obtain a derivation 𝜋 of B 

from A1, . . . , Am satisfying the lemma, with 𝜆(𝜋) ≤ 2L(n). If the cut rule is not in 

F, then by Theorem 2.3 the rule can be simulated to produce a derivation 𝜋 with 

𝜆(𝜋) ≤ cL(n). 
If ∨ or ¬ is not in 𝜅, one can check that nevertheless there are formulas O(P, Q) 

and N(P) over 𝜅 equivalent to P ∨ Q and ¬P, respectively, such that O(P, Q) and N(P) 
have at most one occurrence each of P and Q (see Notation 3.1). In this case we 

obtain the bound 𝜆(𝜋) ≤ cL(cn). ■ 

To prove Theorems 4.5 and 4.6 we need the notion of a defining set of formulas 
def(A) for a formula A. We assume that every formula B (over any connective set) 
has associated with it an atom PB such that PQ is Q for any atom Q, and distinct 
nonatomic formulas have distinct associated atoms. To be definite, we could let PB 

be the string consisting of the letter P followed by the string B, if B is nonatomic. 
In any case, we shall also assume for convenience later, that there are infinitely 
many atoms P, called admissible atoms, which are not of the form PB for any 
nonatomic B. 

Let us call a formula A admissible if all its atoms are admissible. If A is admis
′ sible, then every truth assignment 𝜏 to the atoms of A has a unique extension 𝜏 

to the atoms PB, B any subformula of A, such that 𝜏 ′(PB) = 𝜏 (B). We shall define 
′′ ′′ ′ def(A) such that any extension 𝜏 of 𝜏 satisfies def(A) iff 𝜏 agrees with 𝜏 on 

the atoms PB. For example, if A is Q ∨ (R & S), then def(A) might be {(P(R&S) ≡ 

(R & S)), (PA ≡ Q∨P(R&S))}. In fact, it is useful to more generally define def𝜅(A), where 

𝜅 is any adequate set of connectives, perhaps different from the set of connectives 
appearing in A. 

Definition 4.9	 Let 𝜅1 and 𝜅2 be connective sets. Corresponding to each nullary connective (con
stant) K1 in 𝜅1 we associate a fixed formula K2 over 𝜅2 equivalent to K1; correspond
ing to each unary connective u1 over 𝜅1 we associate a fixed formula u2P over 𝜅2 

equivalent to u1P, and corresponding to each binary connective ∘1 in 𝜅1 we asso
ciate a fixed formula P ∘2 Q over 𝜅2 equivalent to P ∘1 Q. We assume the formulas 
P ∼1 Q over 𝜅1 and P ∼2 Q over 𝜅2 are each equivalent to P ≡ Q. For each formula 

A1 over 𝜅1 we associate a set def𝜅2 (A1) of formulas over 𝜅2 defined by induction on 

the length of A1 as follows: 

def𝜅2 (P) = ∅ (the empty set) for each atom P. 
def𝜅2 (K1) = {PK1 ∼2 K2} for each constant K1 in 𝜅1. 
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def𝜅2 (u1A) = def𝜅2 (A) ∪ {Pu1A ∼2 u2PA}, for each unary connective u1 in 𝜅1. 
def𝜅2 (A∘1B) = def𝜅2 (A)∪ def𝜅2 (B)∪{PA∘1B ∼2 PA∘2 PB}, for each binary connective 

∘1 in 𝜅1. 
In case 𝜅1 = 𝜅2, we assume K1 = K2, u1 = u2, and ∘1 = ∘2. It is easy to check 

that the total number of occurrences of atoms in def𝜅2 (A) is bounded by a linear 
function of l(A). 

Suppose eF is an extended Frege system over 𝜅, A is an admissible formula over 𝜅, and 

def𝜅(A) ⊢𝜋 PA. Then for some 𝜋 ′ we have ⊢𝜋 ′ A, where 𝜆(𝜋 ′) ≤ 𝜆(𝜋) + cl(A) andeF eF 

𝜌(𝜋 ′) ≤ (𝜌(𝜋) + c)l(A), and c depends only on F. 

Proof. Let 𝜎 be the simultaneous substitution E/PE for all nonatomic subformulas 
E of A, so in particular 𝜎PA = A. Then every formula in 𝜎(def𝜅(A)) is an instance of 
P ∼ P, and each of these instances will have a proof in F of some fixed number 
of lines, and a number of atoms bounded by a constant times l(A). These proofs, 
together with 𝜎(𝜋), comprise 𝜋 ′ . ■ 

If eF and eF ′ are extended Frege systems over 𝜅 and 𝜅 ′ respectively, A ′ is an admissible 
formula over 𝜅 ′ , and def𝜅(A ′) ⊢𝜋 PA ′ , then for some derivation 𝜋 ′ , def𝜅 ′ (A ′) ⊢𝜋 ′

′ PA ′ ,eF eF 

where 𝜆(𝜋 ′) ≤ c𝜆(𝜋) and 𝜌(𝜋 ′) ≤ d, and the constants c and d depend only on F and 
′ F . 

Proof. Suppose 𝜋 is B1, . . . , Bm. We may assume, by renaming if necessary, that all 
atoms of each Bi are admissible, except possible those which occur in the hypothe
ses or conclusion of 𝜋 (i.e. except those of the form PC ′ , where C ′ is a subformula 

of A ′). We shall construct the derivation 𝜋 ′ in eF ′ by filling out the skeleton deriva
tion PB1 , . . . , PBm . (Notice that PBm is PA ′ , since Bm is PA ′ and in general PQ = Q for 
any atom Q.) In fact, we shall show that for some constants c and d depending only 
on F and F ′ , each PBi can be derived from earlier PBj ’s and def𝜅 ′ (A ′) in at most c 
lines by formulas C with l(C) ≤ d. ■ 

To see how to derive PBi in 𝜋 ′ we consider three cases, depending on how Bi 
was obtained in 𝜋. For each of these cases we assume that some of the formulas of 
def𝜅 ′ (Bi) are available in 𝜋 ′ , either because they are among the hypotheses def𝜅 ′ (A ′) 
of 𝜋 ′ or because they are introduced at the beginning of 𝜋 ′ by the extension rule. 
The defining formula for PC, where C is a subformula of Bi, is in def𝜅 ′ (A ′) if C is also 

a subformula of A ′ . If C is not a subformula of A ′ , then the defining formula for PC 

can legally be included in 𝜋 ′ by the extension rule. 
Case I. Bi is a hypothesis for 𝜋, so Bi is in def𝜅(A ′). We may assume Bi has the 

form PC ′ ∼ (PD ′ ∘ PE ′ ), where C ′ , D ′ , E ′ are subformulas of A ′ , P ∘ Q is the fixed for
mula over 𝜅 equivalent to P ∘ ′ Q, and C ′ is D ′ ∘ ′ E ′ . (The cases of unary and 0-ary 



188 Chapter 11 The Relative Efficiency of Propositional Proof Systems 

connectives are similar.) Then PC ′ ∼ ′ (PD ′ ∘ ′ PE ′ ) is in def𝜅 ′ (A ′), and so is a hypothe
sis of 𝜋 ′ . Let H(∘ ′) be the formula P ∼ (Q ∘ R) over 𝜅. Note that H(∘ ′) depends only 
on the connective ∘ ′ , and not otherwise on Bi. Then the rule 

R = 
P ∼ ′ (Q ∘ ′ R), def𝜅 ′ (H(∘ ′)) 

PH(∘ ′) 

is sound, so by Theorem 2.3 we may assume it is a rule of F ′ . Let 𝜎 be an extension 

of the substitution 

PC ′ , PD ′ , PE ′ , PBi 
P, Q, R, PH(∘ ′) 

such that 𝜎(def𝜅 ′ (H(∘ ′))) = def𝜅 ′ (Bi). Then PBi follows in one step by R and 𝜎 from 

def𝜅 ′ (A ′) and def𝜅 ′ (Bi). 
Case II. Bi is introduced in 𝜋 by the extension rule. Then Bi has the form P ∼ C, 

where P is a new defined atom. The constraints governing the use of the exten
sion rule imply that P does not occur in the hypotheses or conclusion of 𝜋, and by 
our assumption at the beginning of this proof, P is admissible. Therefore, P does 
not occur in the hypotheses or conclusion of 𝜋 ′ . We note that the formula P ∼ ′ PC, 
together with any subset of the formulas of def𝜅 ′ (Bi) not introduced earlier could be 

introduced by the extension rule in 𝜋 ′ , after any necessary formulas of def𝜅 ′ (Bi−1) 
and before formulas of def𝜅 ′ (Bi+1) are introduced. The order of introduction could 

be def𝜅 ′ (C), P ∼ ′ PC, followed by one or more formulas whose conjunction is equiv
alent to PBi ∼ ′ (P ∼ ′ PC). This last formula itself will be in def𝜅 ′ (Bi) if ≡ is in 

𝜅, in which case Bi is P ≡ C. In this case, it follows from Theorem 2.3 that PBi 
can be deduced in a bounded number of bounded steps in 𝜋 ′ from P ∼ ′ PC and 

PBi ∼ ′ (P ∼ ′ PC). If ≡ is not in 𝜅, there are nevertheless a bounded number of 
formulas in def𝜅 ′ (Bi) which imply PBi ∼ ′ (P ∼ ′ Pc), and the number and structure 

of these formulas depends only on the way ≡ is represented in 𝜅 and 𝜅 ′ . Hence 

again PBi can be deduced in 𝜋 ′ from def𝜅 ′ (Bi) and P ∼ ′ PC by a bounded number of 
bounded formulas. 

Case III. Bi follows from earlier formulas in 𝜋 by a rule R = (C1, . . . , Ck)/D in F 

by the substitution 𝜎. Then C1, . . . , Ck |= D, so the rule 

def𝜅 ′ (D), def𝜅 ′ (C1), . . . , def𝜅 ′ (Ck), PC1 , . . . , PC𝜅R ′ = 
PD 

is sound, and by Theorem 2.3 we may assume it is a rule of F ′ . We may assume 

all formulas C1, . . . , Ck, D are admissible. Let 𝜎 ′ be the composition of the substi
tutions 𝜎(E)/PE for all subformulas E of formulas in the set {C1, . . . , Ck, D}. Then 

𝜎 ′(def𝜅 ′ (Cj)) ⊆ def𝜅 ′ (𝜎(Cj)), 1 ≤ j ≤ k, and 𝜎 ′(def𝜅 ′ (D)) ⊆ def𝜅 ′ (𝜎(D)). Of course 
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each 𝜎(Cj) is some Bl, 1 < i, and 𝜎(D) is Bi. By the induction hypothesis P𝜎(Cj ) occurs 
earlier in 𝜋 ′ . Hence PBi follows by R ′ and 𝜎 ′ from earlier formulas 𝜋 ′ and a bounded 

number of formulas from def𝜅 ′ (Bl), for various Bl. 
This completes the proof of Lemma 4.11. 
Now assume the hypotheses of Theorem 4.5, and let A ′ be any valid formula over 

𝜅 ′ . We may assume A ′ is admissible, for if not, we may rename the atoms in A ′ so 

that it is admissible, find a suitable proof of the result, and then rename all atoms 
in the proof to obtain a suitable proof of A ′ . Then def𝜅(A ′) |= PA ′ , so by hypothesis, 
the bounds on l(def𝜅(A ′)), and Lemma 4.8, there is a derivation 𝜋 in eF of PA ′ from 

def𝜅 ′ (A ′) such that 𝜆(𝜋) ≤ c1L(c1l(A ′)). By Lemma 4.11, there is a derivation 𝜋 ′ in 
′ eF of PA ′ from def𝜅(A ′) such that 𝜆(𝜋 ′) ≤ c2L(c1l(A ′)) and 𝜌(𝜋 ′) ≤ d. Theorem 4.5 

now follows by Lemma 4.10. 
To prove Theorem 4.6, we may assume as above that A is admissible. By induc

tion on the length of B, it is easy to see that for every admissible formula B over 
𝜅 there is a derivation 𝜋B in F of PB ∼ B from def𝜅(B) such that 𝜆(𝜋B) ≤ c1l(B) 
and 𝜌(𝜋B) ≤ c2l(B), where 𝜅 is the connective set of F. By putting together 𝜋A 

with 𝜋 in the theorem, we obtain a derivation 𝜋1 of PA from def𝜅(A) such that 
𝜆(𝜋1) ≤ c3(𝜆(𝜋) + l(A)) and 𝜌(𝜋1) ≤ c4l(𝜋). We now apply Lemma 4.11 with 𝜅 ′ = 𝜅, 

′ eF = eF, and 𝜋 = 𝜋1 to modify 𝜋1 so its formulas have bounded length, and finally 
apply Lemma 4.10 to the resulting derivation. ■ 

5 The Substitution Rule 
Frege’s original propositional proof system [Fre67] tacitly assumed the following: 

Substitution Rule 5.1 From A conclude 𝜎A, for any substitution 𝜎 in the notation of the system. 

Definition 5.2	 A Frege system with substitution, sF, is obtained from a Frege system F by addition 

of the substitution rule. Hypotheses are not allowed in derivations in sF. 

The reason hypotheses are not allowed in sF-derivations is that in general not 
A |= 𝜎A. Thus the substitution rule is unsound in this sense. On the other hand, 
if |= A then |= 𝜎A, so if ⊢sF A then |= A. In other words, sF is a sound system for 
proving tautologies, but not for deriving formulas from hypotheses. 

The theorem below shows that Frege systems with substitution can p-simulate 

extended Frege systems. The converse may be false, however. (We conjecture Frege 

systems with substitution are not p-verifiable in the sense of [Coo76b], whereas 
extended Frege systems are p-verifiable.) 

Theorem 5.3	 Given an extended Frege system eF there is a function f in L and constant c such that 
f (𝜋)for all proofs 𝜋 and formulas A, if ⊢𝜋 A, then ⊢ A, and 𝜆(f (𝜋)) ≤ c𝜆(𝜋)𝜌(𝜋) andeF sF 

𝜌(f (𝜋)) ≤ c𝜆(𝜋)𝜌(𝜋). 
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Proof. Suppose P1 ∼ C1, . . . , Pk ∼ Ck are the defining formulas introduced by 
extension in 𝜋. As discussed before Theorem 3.3, F can be turned into a natural 
deduction system N by including the rules 

P → Q → ¬P ∨ Q
R1 = and R2 = .

→ ¬P ∨ Q P → Q 

Let us assume in addition that N has the rules 

P → Q	 P → Q
R3 = and R4 = ,

P, R → Q R, P → Q 

and the axiom P → P. Then for each i, 1 ≤ i ≤ k, the line E1, . . . , Ek → Ei can be 

derived from the axiom and k − 1 uses of R3 and R4, for any formulas E1, . . . , Ek. 
The derivations of these k lines, together with 𝜋, describe a derivation 𝜋1 in N of 
E1, . . . , Ek → A, where now Ei is the defining formula Pi ∼ Ci, and 𝜆(𝜋1) ≤ 𝜆(𝜋) + k2 

and 𝜌(𝜋1) ≤ (k +1)𝜌(𝜋). Now by adding k applications of rule R1, we obtain a deriva
tion in N of B, where B is ¬E1 ∨ (¬E2 ∨ · · ·∨ (¬Ek ∨A) · · ·). Hence noting k < 𝜆(𝜋), we 

have by the proof of Corollary 3.4 a derivation 𝜋2 in F of B, where 𝜆(𝜋2) ≤ c1(𝜆(𝜋))2 

and 𝜌(𝜋2) ≤ c1𝜆(𝜋)𝜌(𝜋). Now assume the defining formulas P1 ∼ C1, . . . , Pk ∼ Ck are 

numbered in reverse of the order in which they appear in 𝜋. Then P1 ∼ C1 appears 
last, so P1 has no occurrence in any Ci or in A. By applying the substitution rule to 

B with the substitution C1/P1, and applying the Frege rule (¬(P ∼ P) ∨ Q)/Q, we 

can derive (¬E2 ∨ · · · ∨ (¬Ek ∨ A) · · ·) from B. By k − 1 further applications of the 

substitution rule and this Frege rule, each of the Ei’s can be pruned, and we obtain 

a proof of A in sF which satisfies the conditions of the theorem. ■ 

By combining the above theorem with Theorem 4.5, we obtain the following. 

Corollary 5.4	 If there exists a polynomially bounded extended Frege system, then all Frege systems 
with substitution over all connectives sets are polynomially bounded. ■ 

A result similar to Theorem 4.5 can be proved for Frege systems with substitu
tion, using the methods in that proof and in the above argument. In particular, one 

Frege system with substitution is polynomially bounded if and only if all such sys
tems over all connective sets are polynomially bounded. Reckhow [Rec76] proves 
this result by different methods. 
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12
Feasibly Constructive 
Proofs and the 
Propositional Calculus 
(Preliminary Version) 
Stephen A. Cook 

1 Introduction 
The motivation for this work comes from two general sources. The first source is 
the basic open question in complexity theory of whether P equals NP (see [Coo71b] 
and [Kar72]). Our approach is to try to show they are not equal, by trying to show 

that the set of tautologies is not in NP (of course its complement is in NP). This is 
equivalent to showing that no proof system (in the general sense defined in [CR74]) 
for the tautologies is "super" in the sense that there is a short proof for every tautol
ogy. Extended resolution is an example of a powerful proof system for tautologies 
that can simulate most standard proof systems (see [CR74]). The Main Theorem 

(5.5) in this paper describes the power of extended resolution in a way that may 
provide a handle for showing it is not super. 

The second motivation comes from constructive mathematics. A constructive 

proof of, say, a statement ∀xA must provide an effective means of finding a proof of 
A for each value of x, but nothing is said about how long this proof is as a function 

of x. If the function is exponential or super exponential, then for short values of 
x the length of the proof of the instance of A may exceed the number of electrons 
in the universe. Thus one can question the sense in which our original “construc
tive” proof provides a method of verifying ∀xA for such values of x. Parikh [Par71] 

Originally published in STOC ‘75: Proceedings of the seventh annual ACM symposium on Theory 
of computing May 1975 Pages 83–97. 
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makes similar points, and goes on to suggest an "anthropomorphic" formal sys
tem for number theory in which induction can only be applied to formulas with 

bounded quantifiers. But even a quantifier bounded by n may require time expo
nential in the length of (the decimal notation for) n to check all possible values of 
the quantified variable (unless P = NP), so Parikh’s system is apparently still not 
feasibly constructive. 

In section 2, I introduce the system PV for number theory, and it is this system 

which I suggest properly formalizes the notion of a feasibly constructive proof. The 

formulas in PV are equations t = u, (for example, x ⋅ (y + z) = x ⋅ y + x ⋅ z) where t and 

u are terms built from variables, constants, and function symbols ranging over L, 
the class of functions computable in time bounded by a polynomial in the length of 
their arguments. The system PV is the analog for L of the quantifier-free theory of 
primitive recursive arithmetic developed by Skolem [Sko23] and formalized by oth
ers (see [Goo57]). A result necessary for the construction of the system is Cobham’s 
theorem [Cob65] which characterizes L as the least class of functions containing 

certain initial functions, and closed under substitution and limited recursion on 

notation (see section 2). Thus all the functions in L (except the initial functions) 
can be introduced by a sequence of defining equations. The axioms of PV are these 

defining equations, and the rules of PV are the usual rules for equality, together 
with “induction on notation”. 

All proofs in PV are feasibly constructive in the following sense. Suppose an 

identity, say f (x) = g(x), has a proof Π in PV. Then there is a polynomial pΠ(n) such 

that Π provides a uniform method of verifying within PΠ(|x0|) steps that a given nat
ural number x0 satisfies f (x0) = g(x0). If such a uniform method exists, I will say 
the equation is polynomially verifiable (or p-verifiable). 

The reader’s first reaction might be that if both f and g are in L, then there is 
always a polynomial p(n) so that the time required to evaluate them at x0 is bounded 

by P(|x0|), and if f (x) = g(x) is a true identity, then it should be p-verifiable. The 

point is that the verification method must be uniform, in the sense that one can 

see (by the proof Π) that the verification will always succeed. Not all true identities 
are provable, so not all are p-verifiable. 

There is a similar situation in constructive (or intuitionistic) number theory. 
The Kleene-Nelson theorem ([Kle52], p. 504) states that if a formula ∀xA has a con
structive proof, then it is recursively realizable in the sense that there is a recursive 

function f which takes x0 into a proof of Ax0 (more properly, f (x0) is a number which x 

“realizes” Ax0 ). The converse is false. One can find a formula ∀xA which is recur-x 

sively realizable, but not constructively provable, since one cannot prove that the 

realizing recursive function works. Similarly, any true equation f (x) = g(x) in PV 
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is recursively realizable (in fact, L-realizable), but not all are p-verifiable (i.e. have 

feasibly constructive proofs). 
I argue in section 2 that provable equations in PV are p-verifiable. I also 

conjecture the converse is true, which leads to 

An equation t = u of PV is provable in PV if and only if it is p-verifiable. 

This statement is similar to Church’s thesis, in that one can never prove that 
PV is powerful enough, since the notion of p-verifiable is informally defined. We 

present evidence for the power of PV in this paper by giving examples of things that 
are provable in PV, and by presenting the system PV1 in section 3 which appears to 

be more powerful than PV, but isn’t. 
Another argument for the power of PV that can be made is this. There is evi

dence that intuitionistic number theory, as formalized by Kleene [Kle52], is equiv
alent to a quantifier-free theory in which functions are introduced by ordinal recur
sion up to 𝜖0. From this point of view, PV is the same kind of quantifier-free theory, 
except the kind of recursion allowed is restricted so that only functions in L can be 

defined. 
In section 2, the system PV is described in detail, and some simple examples 

of proofs in the system are given. The Valuation Theorem (2.18) states that all true 

equations in PV without variables are provable in PV. 
In section 3, the system PV1 is presented. This system allows formulas to be 

truth functional combinations of equations, instead of just equations, and is much 

more convenient than PV for formalizing proofs. Nevertheless, theorem 3.10 states 
that any equation provable in PV1 is provable in PV. 

The second Gödel Incompleteness theorem for PV, stating that the consistency 
of PV cannot be proved in PV, is proved in outline in section 4. I am aware of only 
one other treatment in the literature of this theorem for a free-variable system, and 

that is in [Ros61]. (However, there seems to be a mistake in [Ros61], since theorem 

16, p. 134 fails when f (s(x)) is neither identically zero nor identically non-zero.) 
In section 5, the proof system extended resolution is described, and the notion 

of a p-verifiable proof system for the propositional calculus is defined. The 

Main Theorem (5.5) states that a proof system f for the propositional calculus 
is p-verifiable iff extended resolution can simulate f efficiently, and the proof 
that the simulation works can be formalized in PV. The “if” part is proved 

in outline. 
Section 6 describes how to develop propositional formulas which express the 

truth of equations t = u of PV for bounded values of the variables in t and u. 
The ER Simulation Theorem (6.8) states that if t = u is provable in PV, then 
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there is a polynomial (in the length of the bound on the variables) bound on 

the length of the minimal extended resolution proofs of the associated proposi
tional formulas. The “only if” part of the Main Theorem is then proved in outline 

from this. 
In section 7, it is shown how the Gödel Incompleteness theorem implies that the 

system PV, as a proof system for the propositional calculus, is not itself p-verifiable. 
Finally, section 8 offers some conclusions and directions for future research. 

2 The System PV 
I will use dyadic notation (see Smullyan [Smu61]) to denote natural numbers.1 The 

dyadic notation for the natural number n is the unique string dkdk−1 . . . d0 over 
k

the alphabet {1, 2} such that ∑ di2i = n. In particular, the dyadic notation for 
i=0 

0 is the empty string. The dyadic successor functions s1(x) and s2(x) are defined 

by si(x) = 2x + i, i = 1, 2, and correspond to concatenating the digits 1 and 2, 
respectively, on the right end of the dyadic notation for x. I shall thus abbreviate 

si(x) by xi. 
A function f comes from functions g1, . . . , gm by the operation of substitution iff 

some equation of the form 

f (x1, . . . , xn) = t (2.1) 

holds for all x1, . . . , xn, where t is a syntactically correct term built up from the 

variables x1, . . . , xn, numerals for the natural numbers, and the function symbols 
g1, . . . , gm. 

A function f comes from functions g, h1, h2, k1, k2 by the operation of limited 

recursion on dyadic notation iff 

f (0, y) = g(y) (2.2) 

f (xi, y) = hi(x, y, f (x, y)), i = 1, 2 (2.3) 

f (x, y) ≤ ki(x, y), i = 1, 2 (2.4) 

for all natural number values of the variables, where y = (y1, . . . , yk). We allow the 

case k = 0, in which g is a constant. 
Cobham’s class L can be defined to be the set of functions f on the natural num

bers such that for some Turing machine Z and some polynomial p, for all natural 
numbers x1, . . . , xn, Z computes f (x1 . . . , xn) within p(|x1| + . . . + |xn|) steps , where 

|x| is the length of the dyadic notation for x. 

1. The trouble with the more conventional binary notation is the necessity of proving the 

consistency of the analogs of equations 2.2 and 2.3 when x = i = 0. 
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The dyadic notation for ⊗(x, y) is the dyadic notation for x concatenated with itself 
|y| times. 

Cobham 

L is the least class of functions which includes the initial functions s1, s2, and ⊗, 
and which is closed under the operations of substitution and limited recursion on 

dyadic notation. 

Cobham stated this result in [Cob65], in a slightly different form. I am not 
aware of any published proof of the theorem, although Lascar gave a proof in some 

unpublished seminar notes [Las67]. 
The formal system PV will have function symbols with defining equations of 

the forms 2.1, 2.2, and 2.3. I want only functions in L to be definable in PV, which 

means the inequalities 2.4 must be satisfied for some functions k1, k2 in L. It is 
not hard to see that the question, given g, h1, h2, k1, k2, of whether the function f 
defined by 2.2 and 2.3 satisfies 2.4 is recursively undecidable. I want, however, for 
the proof predicate in PV to be not only decidable, but definable in PV. Therefore, 
I shall require that before a function f can be introduced by 2.2 and 2.3, a proof 
must be available in PV that f does not grow too fast. It is awkward to require that 
2.4 be proved directly in PV, because it obviously cannot be proved without using f , 
whose status in PV is uncertain until after the proof is carried out. Thus the proof 
will instead verify the inequality 

|hi(x, y, z)| ≤ |z *ki(x, y)|, i = 1, 2 

for some previously defined functions k1 and k2 (not those in 2.4), where * indicates 
concatenation. It is easy to see that this inequality guarantees that f is in L if k1 and 

k2 are in L, since then |f (x, y)| ≤ |g(y)|+ |k(0, y)|+ |k(d1, y)|+ . . .+ |k(d1 . . . dk, y)| where 

d1 . . . dk+1 is the dyadic notation for x and k(x, y) = k1(x, y) + k2(x, y). 
In order to specify formally what constitutes a proof of this inequality, we must 

introduce enough initial functions in PV to define the relation |x| ≤ |y| . Thus we 

introduce a function TR(x) (TR for “trim”) which deletes the right-most digit of x. 
From this, a function LESS(x, y) can be defined whose value is x with the right
most |y| digits deleted. Thus |x| ≤ |y| iff LESS(x, y) = 0. In addition, we need * 

(concatenation) as an initial function, and also ⊗ (see 2.5). The purpose of ⊗ is to 

allow formation of functions in PV by composition which grow sufficiently fast to 

dominate any function in L. 
Function symbols in PV will be defined later to be certain strings of symbols 

which encode the complete derivation from initial functions of the function they 
stand for. In particular, the defining equation(s) and number of arguments (arity) 
for a function symbol can be determined by inspection from the symbol. 
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The set of terms of PV is defined inductively as follows. (i) 0 is a term, any vari
able x is a term, and any function symbol f of arity 0 is a term. (ii) If t1, . . . , tk 

are terms, and f is a function symbol of arity k ≥ 1, then f (t1, . . . , tk) is a term. 
An equation is a string of the form t = u, where t and u are terms. A derivation 

in PV of an equation E from equations E1, . . . , En is a string of equations of the 

form D1, . . . , Dℓ, such that Dℓ is E, and each Di, 1 ≤ i ≤ ℓ, is either some is either 
some Ej, a defining equation for a function symbol, or follows from earlier equa
tions in the string by a rule of PV (see below). If such a derivation exists, we shall 
write E1, . . . , En ⊢PV E, or simply ⊢PV E, if there are no hypotheses (the symbol 
PV here will sometimes be deleted). A derivation of E from no hypotheses is a 

proof of E. 

Rules of PV 
(Here t, u, v are any terms, x is a variable, and y is a k-tuple of variables, k ≥ 0.) 

R1. t = u ⊢ u = t 

R2. t = u, u = v ⊢ t = v 

R3. t1 = u1, . . . , tk = uk ⊢ f (t1, . . . , tk) = f (u1, . . . , uk), 

for any k-place function symbol f , k ≥ 1. 

R4. t = u ⊢ t v = u v ,x x 

where v indicates substitution of the term v for the variable x.x 

R5. (Induction on notation) E1, . . . , E6 ⊢ f1(x, y) = f2(x, y), 

where E1, . . . , E6 are the equations 2.2 and 2.3 with f replaced by f1 
and by f2. 

The definition of proof is not yet complete, because the notion of function sym
bol (and hence of term and equation) and associated defining equations has not yet 
been specified. These notions must actually be defined inductively simultaneously 
with the definition of proof, because of our requirement that the boundedness of 
functions be proved in PV. The arity of a function symbol is the number of argu
ments, and the order of the symbol is roughly the depth of nesting of recursion on 

notation used to define it. We define the order of a proof to be the greatest of the 

orders of the function symbols occurring in it. Now we can complete the definitions 
of all these notions simultaneously and recursively as follows: 

The initial function symbols all have order 0. These are the symbol 0 (of arity 
0), s1, s2, TR (each of arity 1) and * , ⊗, LESS (each of arity 2). There are no defining 

equations for 0, s1 and s2, and the defining equations for the others are (here x1 
means s1(x), x2 means s2(x)): 
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TR: TR(0) = 0 

TR(xi) = x, i = 1, 2 

*: *(x, 0) = x 

*(x, yi) = si(*(x, y)), i = 1, 2 

⊗: ⊗(x, 0) = 0 

⊗(x, yi) =* (x, ⊗(x, y)), i = 1, 2 

LESS: LESS(x, 0) = x 

LESS(x, yi) = TR(LESS(x, y)), i = 1, 2 

Note: We use infix notation for * and ⊗ after this. 
It t is a term, and k is the maximum of the orders of the function symbols 

occurring in t, and all variables in t are among the variables x1, . . . , xn, n ≥ 0, then 

𝜆x1 . . . xn t𝜌 is a function symbol of arity n and order k. The defining equation is 
f (x1, . . . , xn) = t, if n ≥ 1, and f = t, if n = 0, where f is 𝜆x1 . . . xnt𝜌. 

If g, h1, h2, k1, k2 are function symbols of arity n − 1, n + 1, n + 1, n, and n, respec
tively, (n ≥ 1) and if k is the maximum of the orders of the five function symbols, 
and if Πi, i = 1, 2 are proofs of order k or less of LESS(hi(x, y, z), z *ki(x, y)) = 0, 
i = 1, 2, then ⟨[g, h1, h2, k1, k2][Π1][Π2]⟩ is a function symbol of arity n and order 
k + 1. If f denotes this function symbol, then the three defining equations for f are 

f (0, y) = g(y) (or f (0) = g, if n = 1) 

f (xi, y) = hi(x, y, f (x, y)), i = 1, 2 

All function symbols must be formed in these ways. This completes the formal 
specification of the system PV. 

As examples of proofs on PV, let us verify some simple properties of LESS or TR. 

⊢PV TR(LESS(xi, y)) = LESS(x, y), i = 1, 2 (2.7) 

The strategy is to use R5 (induction on notation). To do this we introduce a 

new function symbol f (formally, f is 𝜆xyTR(LESS(yi, x))𝜌) with defining equation 

f (x, y) = TR(LESS(yi, x)). Also a function symbol LESS ′ is introduced with defining 

equation LESS ′(x, y) = LESS(y, x). Now the hypotheses of the induction rule can be 

verified, when f1 is f and f2 is LESS ′ , and g(y) = y, and hj(x, y, z) = TR(z); j = 1, 2. 
Hence f (x, y) = LESS ′(x, y), from which 2.7 follows by R1, R2, and R4, and the 

defining equations for f and LESS ′ . 

⊢PV LESS(x, x) = 0 (2.8) 
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Theorem 2.12 

This is shown by induction on x, using 2.7 with y replaced by x. 

* ⊢PV LESS(x, yi* z) = TR(LESS(x, y z)), i = 1, 2 (2.9) 

This is proved by induction on z. Here hj(x, y, z, u) = TR(u). 

* * ⊢PV LESS(x, y z) = LESS(x, z y) (2.10) 

Again this is proved by induction on y, using 2.9, and the same function hj above. 

* ⊢PV LESS(x, x y) = 0 (2.11) 

The proof is induction on y, using 2.8. 
The intended semantics of PV should be clear. Every function symbol f stands 

for a uniquely defined function in L, which we can denote by 𝜑(f ). (The reader can 

give a precise definition of 𝜑(f ) by induction on the length of the function symbol 
f .) An equation t = u in PV is true iff its universal closure is true in the domain of 
natural numbers, when all function symbols receive their standard interpretations. 

We say a function F on the natural numbers is definable in PV iff 𝜑(f ) = F for 
some function symbol f of PV. By Cobham’s theorem, every function definable in 

PV is clearly in L, but the converse is far from obvious, because of our requirement 
that the bounding inequalities be provable in PV. Nevertheless, the converse is true. 

Every function in L is definable in PV. 

To prove this requires a reproving of half of Cobham’s theorem, showing that 
the functions introduced by limited recursion on notation can have their bounding 

inequalities proved in PV. We will not give the argument here. 
Below we introduce two functions in PV which we will use in the next sec

tion. The defining equations given do not strictly fit the format for recursion on 

notation, since the function symbols g, h1, h2, k1, k2 would have to be introduced 

explicitly. However, the reader should have no trouble doing this. 
Note: s1(0) is abbreviated by 1, and s2(0) is abbreviated by 2. 

sg(0) = 1 (2.13)
 

sg(xi) = 0, i = 1, 2
 

sg(0) = 0 (2.14)
 

sg(xi) = 1, i = 1, 2
 

CON(0, y) = 0 (2.15)
 

CON(xi, y) = sg(y)
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The bounding inequalities for the above three functions are easily proved in PV 

from the defining equations for LESS and TR. 
We now wish to argue in support of one part of the Verifiability Thesis (1.1), 

namely that only p-verifiable equations are provable in PV. Our argument includes 
an outline of a highly constructive consistency proof for PV, and it could be formal
ized in, say, primitive recursive number theory, to show there is no proof in PV of 
0 = 1. An indication of how a similar argument showing the consistency of elemen
tary arithmetic (in the sense of Kalmar) could be carried out in primitive recursive 

arithmetic was given in Rose [CR67]. 

If ⊢PV t = u, then the equation t = u is p-verifiable. 

Not ⊢PV 0 = 1. 

Our argument for establishing 2.16 proceeds by induction on the length of the 

proof of t = u (here length counts the length of the function symbols in the proof). 
Thus suppose ℓ ≥ 1, and the proposition holds for all proofs of length < ℓ. Let Π 

be a proof of t = u of length ℓ. If t = u is a defining equation for a function symbol 
f , then the equation holds by definition of f . However, the time required to verify 
the equation for a particular value of the arguments is equal to the time to com
pute f at that value, so we must be sure that this computation time is bounded by 
a polynomial in the length of the arguments. Here we apply the induction hypoth
esis, both to be sure that f does not grow too fast (we know this partly because 

if f is defined by recursion, then there are proofs of length less than ℓ, establish
ing a bound on the growth rate) and that all functions used in defining f can be 

computed in polynomial time. 
Now suppose t = u follows from earlier equations in Π by one of the rules 

R1, . . . , R5. 
We will consider R4 as an interesting example. Thus (changing the roles of t and 

u to be consistent with the notation of R4) we assume by the induction hypothe
sis that t = u is p-verifiable, and also that the equations defining the functions in 

the term v give a polynomial time method of evaluating v. Thus, to verify t v = u v x x 

for particular values for the arguments, we first evaluate v at the argument val
ues, obtaining v0, and then (using the induction hypothesis) verify t = u at these 

argument values except we let x have the value v0. Note that, by the induction 

hypothesis, we are confident that the equation will hold at the values. Further, 
since a composition of polynomials is a polynomial, the whole process is bounded 

in time by a polynomial in the length of the arguments. 
We leave the other rules to the reader. 
Notice that nothing is said about how the verification time grows with the 

length of the proof Π. In fact, it is easy to see that the naive bound on this time 



202 Chapter 12 Feasibly Constructive Proofs and the Propositional Calculus (Preliminary Version) 

is at least exponential in the length of Π for fixed argument values, and we will 
prove in section 7 that PV itself is, in a sense, not p-verifiable. 

The final result in this section is the following: 

Theorem 2.18	 Valuation Theorem 

If t = u is a true equation of PV without variables, then ⊢PV t = u. 

Definition 2.19	 The numeral n for the natural number n is the unique term in PV of the form 

si1 (si2 (. . . sik (0) . . .) whose value is n. In particular, the numeral for 0 is ’0’. 

Lemma 2.20 Every true equation in PV of the form f (n1, . . . , nk) = m is provable in PV. 

First let us note that the valuation theorem follows from the lemma. One shows 
by induction on the length of t (using the lemma) that if t = n is a true equa
tion, then it is provable in PV (rules R1, R2, R3 are all that is needed for this). But 
t = n, u = n ⊢PV t = u. 

The lemma is proved by induction on the length of the function symbol f , where 

we take the lengths of s1 and s2 to be 0, and the lengths of TR, * , ⊗, and LESS to be 

1, 2, 3, and 4, respectively. If f is s1 or s2, then our task is to show ⊢PV m = m. But 
the identity function has defining equation I(x) = x, from which we may conclude 

x = x by R1 and R2, and m = m by R4. 
Now suppose f is 𝜆x1 . . . xnt𝜌 for some term t. Then the defining equation for 

f is f (x1, . . . , xn) = t. If f (n1, . . . , nk) = m is true, then t n1,...,nk = m is true. Since x1,...,xk 

the induction hypothesis applies to each function symbol in t, the argument made 

two paragraphs above can be applied to show this last equation is provable in PV. 
Hence, by R4 and R2, ⊢PV f (n1, . . . , nk) = m. 

Finally, suppose f is introduced by recursion on notation, so that it has defining 

equations 2.2 and 2.3. (I intend to include the initial functions TR, * , ⊗, and LESS 

in this case too.) Then one can see by induction on p that if f (p, n, . . . , nk) = m is 
true, it is provable in PV. (Notice that the main induction hypothesis holds for the 

function symbols g, h1, h2.) 

3 The System PV1 
The goal now is to construct a system PV1 in which it is easier to formalize proofs 
than in PV, and then show that every equation provable in PV1 is provable in PV, 
and conversely. 

As a first step, we notice that it is often easier to define a function by simulta
neous recursion on several variables at once, rather than on just one variable, as in 
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2.2 and 2.3. For example, addition is easily defined this way as follows: 

x + 0 = 0 + x = x 

xi + yj = 

⎧⎪⎪⎪
⎨⎪⎪⎪⎩ 

(x + y)2 if i = j = 1 
(s(x + y))1 if i ̸= j 
(s(x + y))2 if i = j = 2 

where s(x) = x + 1. 
More generally, f (x, y, z) is defined from g00, g01, g10, {hij, kij |i, j ∈ {1, 2}} by limited 

2-recursion on dyadic notation iff 

f (0, 0, z) = g00(z) (3.1) 

f (0, yj, z) = g01(y, z) (3.2) 

f (xi, 0, z) = g10(x, z) (3.3) 

f (xi, yj, z) = hij(x, y, z, f (x, y, z)), i, j ∈ {1, 2} (3.4) 

LESS(hij(x, y, z, u), u *kij(x, y, z)) = 0, i, j ∈ {1, 2} (3.5) 

The reason for using three initial defining equations (3.1, 3.2, 3.3) instead of 
just two, defining f (x, 0, z) and f (0, y, z), is to avoid the necessity of proving the 

consistency of the equations when x = y = 0. 

Theorem 3.6 Suppose there are function symbols g00, g01, g10, {hij, kij |i, j ∈ {1, 2}} in PV such that 
the four equations 3.5 are each provable in PV. Then there is a function symbol f in 

PV such that each of the equations 3.1, . . ., 3.4 is provable in PV. 

The proof will not be given here. 
It is also useful to have a rule allowing induction on notation on several 

variables at once. 

Theorem 3.7 Suppose the equations 

f (x1, . . . , xn, y) 0 = gi(x1, . . . , xi−1, xi+1, . . . , xn, y), 1 ≤ i ≤ n (3.8)xi 

f (x1i1, . . . , xnin, y) = hi1 , . . . , in(x1, . . . , xn, y, f (x1, . . . , xn, y)), 

(i1, . . . , in) ∈ {1, 2}n (3.9) 

(2n + n equations altogether) are each provable in PV when f is replaced by f1 
and again when f is replaced by f2. Then f1(x1, . . . , xn, y) = f2(x1, . . . , xn, y) is 
provable in PV. 

The proof will not be given here. 
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The system PV1 can now be defined. Variables, function symbols, terms, and 

equations are the same as in PV. Formulas in PV1 are either equations, or truth-
functional combinations of equations, using the truth-functional connectives 
&, ∨, ¬, ⊃, ≡. The axioms and axiom schemes of PV1 are the following: 

El. x = x
 

E2. x = y ⊃ y = x
 

E3. (x = y & y = z) ⊃ x = z
 

(E4)f .	 (x1 = y1 & . . . & xk = yk) ⊃ f (x1, . . . , xk) = f (y1, . . . , yk) for each k ≥ 1 and 

each k-place function symbol f in PV 

E5.	 (x = y) ≡ (xi = yi), i = 1, 2 

E6.	 ¬x1 = x2 

E7.	 ¬0 = xi, i = 1, 2 

DEF.	 The defining equations for any function symbol in PV are axioms in PV1. 
Further, the equations 3.1, . . ., 3.4 are axioms in PV1, provided the equations 
3.5 are provable in PV1 without using these instances of 3.1–3.4, and pro
vided that the function symbol f is the one given by theorem 3.6. Finally, the 

*defining equations of the initial functions TR, , ⊗, and LESS, are axioms 
of PV1. 

TAUTOLOGY. Any truth-functionally valid formula of PV1 is an axiom of PV1. 

The rules of PV1 are the following: 

SUBST. A ⊢ A t , where A is any formula of PV1, t is any term, and x is any variable. x 

IMP. A1, . . . , An, ⊢ B, where the formula B is a truth-functional consequence of 
formulas A1, . . . , An. 

n-INDUCTION, n ≥ 1: 

1 ≤ i ≤ n}, {A ⊃ Ax1i1,...,xnin{A 0 |	 | (i1, . . . , in) ∈ {1, 2}n} ⊢ Axi	 x1,...,xn 

For example, 1-induction is the rule 

A 0 , A ⊃ Ax1 , A ⊃ Ax2 ⊢ Ax x x 

Proofs and derivations in PV1 are described in a way similar to PV. 
We use the notation Cl(A) to mean the universal closure of A. We say a formula A 

of PV1 is true if Cl(A) is true in the domain of natural numbers, when the function 

symbols receive their standard meanings. The reader is warned that if the terms t 
and u have variables, then this interpretation means that ¬t = u is not the negation 
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of t = u. For example, sg(x) = 0 and ¬sg(x) = 0 are both false, since their universal 
closures are both false in the natural numbers. 

Theorem 3.10	 An equation t = u is a theorem of PV1 if and only if it is a theorem of PV. 

The proof is omitted for lack of space.
 
As a measure of the power and usefulness of the system PV1, we prove the
 

following result. 

Theorem 3.11	 If A1, . . . , An, B are formulas in PV1, and Cl(B) can be derived from Cl(A1), . . . , Cl(An) 
in the predicate calculus with equality, then A1, . . . , An ⊢PV1 B. 

Proof. Suppose the hypotheses of the theorem are satisfied. Then Cl(B) is a logical 
consequence of Cl(A1), . . . , Cl(An), Cl(E1), . . . , Cl(E4) in the predicate calculus (with
out the equality axioms). Thus Cl(A) ⊃ Cl(B) is a quantificationally valid formula, 
where A is (A1 & . . . & An & E1 & . . . & E4). By the Herbrand theorem (see [CL73]), 
there are substitutions 𝜎1, . . . , 𝜎k such that 

k 
(A𝜎i ⊃ B c1,...,cr∨ )	 (3.12)x1,...,xri=1

is truth-functionally valid where c1, . . . , cr are new distinct constant symbols, 
x1, . . . , xr are the variables occurring in B, and each 𝜎i is a substitution of “ground” 
terms (built from c1, . . . , cr and constant symbols of PV by applying function sym
bols of PV) for the variables in A. If we let 𝜎i 

′ be the substitution resulting when 𝜎i 
is followed by the substitution x1,...,xr , then the formula c1,...,cr 

k ′ ∨ (A𝜎i ⊃ B)	 (3.13)
i=1

is “isomorphic” to 3.12, and hence it is also truth-functionally valid. It follows, since 

3.13 is a formula of PV1, that it is an axiom of PV1 (by TAUTOLOGY). Furthermore, 
by the rule SUBST, each of the formulas E1𝜎i 

′ , . . . , E4𝜎i 
′ , 1 ≤ i ≤ k, is a theorem 

of PV1, and A1𝜎i 
′ , . . . , An𝜎i 

′ , 1 ≤ i ≤ k, can be derived in PV1 from the hypotheses 
A1, . . . , An. Hence, by the rule IMP, we see that A1, . . . , An ⊢PV1 B. 

4 The Gödel Incompleteness Theorem for PV 
The main theorem in this section states that the consistency of PV cannot be 

proved in PV. This will be applied in section 7 to show that the system PV, as a 

proof system for the propositional calculus, is not p-verifiable. 
It is easy to see that PV is incomplete, because the equivalence problem for func

tions in L is not recursively enumerable. But we need to know that a proof of this 
incompleteness can be given in PV itself so that we can follow Gödel’s method of 
proving that a theory cannot have a proof of its own consistency. 
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The first step is to assign “Gödel numbers” to the terms, equations, and proofs 
in PV. Notice that an object of any of these three kinds has been defined to be 

a string of symbols. The underlying alphabet of symbols is infinite, because we 

assume there are an unlimited number of variables at our disposal. However, we 

can agree that a variable is just the symbol x followed by a finite string on the 

alphabet {1, 2}. Hence any term, equation, or proof, is a finite string on some fixed 

alphabet A of at most 32 symbols. We can code each symbol 𝜎 in A by a unique 

five-digit code 𝜓(𝜎) over the alphabet {1, 2}. Then the Gödel number of a string 

𝜎1 . . . 𝜎k is the number whose dyadic notation is 𝜓(𝜎1) . . . 𝜓(𝜎k). The number of an 

object C is denoted by [C]. The important property of Gödel numbers from our 
point of view is that an object C and the dyadic notation for [C] can he obtained 

from each other within time bounded by polynomials in the lengths of [C] and C, 
respectively. 

We define the function proof on the natural numbers by 

proof(m, n) = 

⎧⎪⎪⎪
⎨⎪⎪⎪⎩ 

1 if m is the number of an equation t = u, and n is 
the number of a proof in PV of t = u 

0 otherwise 

Next we define the function sub as follows: sub(m) = n if m = [t = u] and 

n = [(t = u) m ], for some equation t = u, where m is the numeral for m. If m is notx 

of the form [t = u], then sub(m) = 0. 
It is not hard to see that both the functions proof and sub can be computed in 

time bounded by a polynomial in the lengths of their arguments, so that both func
tions are in L. By theorem 2.12 there are function symbols PROOF and SUB in PV 

which define proof and sub, respectively. (We assume that the defining equations 
for these function symbols represent a straightforward algorithm for computing 

the functions.) Let 

r = [PROOF(SUB(x), y) = 0] (4.1) 

Then 

s = sub(r) = [PROOF(SUB(r), y) = 0] (4.2) 

Thus equation number s says “I am not provable”. 

Theorem 4.3 Equation number s has no proof in PV. 

Proof. Suppose, to the contrary, that p is the number of a proof of equation num
ber s. By the valuation theorem (2.18), we have ⊢PV PROOF(SUB(r), p) = 1. But 
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Lemma 4.5 

Lemma 4.7 
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by assumption, ⊢PV PROOF(SUB(r), y) = 0, so by the rules R4, R1, and R2 of PV, 
⊢PV 0 = 1. This contradicts the consistency of PV (theorem 2.17), establishing the 

present theorem. 

Now let CON(PV) stand for the equation PROOF([0 = 1], y) = 0. This is a true 

equation of PV, asserting that the equation 0 = 1 has no proof in PV. 

CON(PV) has no proof in PV. 

The idea, of course, is to show that the proof of theorem 4.3 can be formal
ized in PV. We will actually work in the system PV1, since this is easier. The first 
step is to formalize the valuation theorem (2.18) in PV1. The proof of 2.18 shows 
how to construct, for each function symbol f of PV, a function genf in L such that 
genf (n1, . . . , nk, m) is the number of a proof in PV of the equation f (n1, . . . , nk) = m, 
provided the equation is true, and genf (n1, . . . , nk, m) = 0 otherwise. The function 

formf (n1, . . . , nk, m) = [f (n1, . . . , nk) = m] is certainly in L. It should be possible to 

show 

⊢PV f (x1, . . . , xk) = y ⊃ PROOF(FORMf (x1, . . . , xk, y), GENf (x1, . . . , xk, y)) = 1 for 
each function symbol f of PV, where FORMf and GENf are the function symbols 
defining formf and genf , respectively. 

Now let us apply the lemma when f is PROOF, and substitute s (from 4.2) and 1 
for two of the variables, to obtain 

⊢PV1 PROOF(s, y) = 1 ⊃ PROOF(FORM(s, y, 1), GEN(s, y, 1)) = 1 (4.6) 

where we have left off the subscripts on FORM and GEN. By definition, 
formPROOF(s, n, 1) = [PROOF(s, n) = 1], and for each value of n, a proof (say number 
p) in PV of the equation in brackets together with a proof (say number q) in PV of 
formula number s (see 4.2) gives rise easily to a proof (say number contra(p, q, n)) 
in PV of 0 = 1. If we let CONTRA define the function contra, then one can prove 

the last statement in PV1. 

⊢PV1 (PROOF(FORM(s, y, 1), z) = 1&PROOF(s, u) = 1) ⊃ PROOF([0 = 1], CONTRA 

(z, u, y)) = 1 

Now lemma 4.7 with GEN(s, y, 1) substituted for z and y substituted for u, 
together with 4.6 gives us immediately by the rule IMP of PV1 

⊢PV1 PROOF(s, y) = 1 ⊃ PROOF([0 = 1], t) = 1 (4.8) 

where t is CONTRA(GEN(s, y, 1), y, y)). 
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By axiom E7 of PV1, ⊢PV1 ¬0 = 1. Hence, by substituting t for y in the definition 

of CON(PV), we have by IMP and equality reasoning, from 4.8, 

⊢PV1 CON(PV) ⊃ ¬PROOF(s, y) = 1 (4.9) 

Simple reasoning shows ⊢PV1 ¬PROOF(x, y) = 1 ⊃ PROOF(x, y) = 0, and since 

by the valuation theorem, ⊢PV s = SUB(r), we have by 4.9 

⊢PV1 CON(PV) ⊃ PROOF(SUB(r), y) = 0 (4.10) 

Thus, if ⊢PV CON(PV), then ⊢PV1 CON(PV) (by theorem 3.10), so ⊢PV1 
PROOF(SUB(r), y) = 0 so ⊢PV PROOF(SUB(r), y) = 0 (again by 3.10), which 

contradicts theorem 4.3. This completes our outline of the proof of theorem 4.4. 

5 Propositional Calculus and the Main Theorem 
Propositional formulas will be formed in the usual way from the connectives 
&, ∨, ¬, ⊃, ≡, and from an infinite list of atoms. We will define an atom to be the 

letters ATOM followed by a string on {1,2}, so that formulas are certain strings on a 

certain fixed finite alphabet. We can assign Gödel numbers to the strings as in sec
tion 4, and we will write [A] for the number of the formula A. A tautology is a valid 

propositional formula, and we will use TAUT to denote the set of Gödel numbers 
of tautologies. 

A proof system (for TAUT) is a function f in L from the set of natural numbers 
onto TAUT. (This differs from the definition in [CR74] in that numbers are used 

instead of strings.) If f is a proof system, and f (x) = [A], then x is (or codes) a 

proof of A. 
The paper [CR74] describes a large number of standard proof systems, and com

pares them from the point of view of length of proof. The system we are interested 

in here is a very powerful system called extended resolution (ER), which can effi
ciently simulate any of the standard systems, except possibly Frege systems with a 

substitution rule. The idea of extended resolution is due to Tseitin [Tse70]. 
The system ER can be defined as follows. A literal is an atom or a negation of 

an atom. The complement L of a literal L is given by P = ¬P, ¬P = P , where P is an 

atom. A clause is a disjunction (L1 ∨ . . .∨Lk) of literals, k≥0, with no literal repeated. 
If k = 0 the clause (called the empty clause) is denoted by □. If A is a propositional 
formula, then we associate a literal LB with every subformula B of A by the condi
tions (i) if B is an atom, then LB is B, (ii) if B is ¬C, then LB is LC, and (iii) if B is 
(C ∨ D), (C & D), (C ⊃ D), or (C ≡ D), then LB is some uniquely associated with B. 

If F is a propositional formula, then CNF(F) denotes some set of clauses whose 

conjunction is equivalent to F (and which is not unnecessarily long). Now we 
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associate with every propositional formula A a set def(A) of clauses by the con
ditions (i) def(P) = ∅ if P is an atom, (ii) def(¬B) = def(B), (iii) def(B ∘ C) = 

def(B) ∪ def(C) ∪ CNF(LB∨C ≡ (LB ∘ LC)), where ∘ is &, ∨, ⊃, or ≡. 
′ a) Any truth assignment 𝜏 to the atoms of A has a unique extension 𝜏 to the 

atoms of def(A) which makes (each clause in) def(A) true. In fact, 𝜏 ′(LB) = 

𝜏 (B) for each subformula B of A, so in particular, 𝜏 ′(LA) = 𝜏 (A). 
b) A is a tautology if and only if LA is a truth-functional consequence of def(A). 
c) There is a function f in L which satisfies f ([A]) = [def(A)]. 

Part a) is proved by induction on the length of A. Part b) follows immediately 
from a). For part c), observe that def(A) has at most three times as many clauses as 
A has connectives, and these clauses are easily found. 

Notice that, in contrast to def(A), CNF(A) is not in general computable in polyno
mial time, simply because some formulas have a shortest conjunctive normal form 

which is exponential in their length. (For example, (P1 & P2 ∨ . . . ∨ P2n−1 & P2n)). 
If a clause C1 is (L1 ∨ . . .∨Li ∨L∨Li+1 ∨ . . .∨Lk) and C2 is (M1 ∨ . . .∨Mj ∨L∨Mj+1 ∨ 

. . . ∨ Mℓ) then the resolvent of C1 and C2 is the clause which results from deleting 

repetitions of literals from (L1 ∨ . . . ∨ Lk ∨ M1 ∨ . . . ∨ Mℓ). 
The extension rule for an atom P allows the introduction of the three or four 

clauses in CNF(P ≡ (L1 ∘ L2)), where ∘ is &, ∨, ⊃, or ≡, provided P and P are dis
* C**C*tinct from L1 and L2. An ER proof of a formula A is a string A*C* . . . k k+1 . . . 

* Cn,1 

where Cn is LA, {C1, . . . , Ck} are the clauses in def(A), and each Ci for i > k is either a 

resolvent of two earlier Cj’s, or is introduced by the extension rule for some atom P 

which has no earlier occurrence in the string. Any string not of the above form is, 
by convention, an ER proof of (P ∨ ¬P), for some fixed atom P. The proof system 

ER is the function such that ER(n) = [A], provided the dyadic notation of n codes 
an ER proof of A. It is easy to see the function ER is in L. 

It follows from lemma 5.1 and a slight modification of the usual completeness 
theorem for ground resolution (see [CL73], for example) that every tautology A has 
an ER proof in which the extension rule is not used. (The purpose of the extension 

rule is to give shorter proofs.) I now prove the converse explicitly, since I want to 

argue later that the proof can be formalized in PV. 

Soundness of ER 

If a formula A has an ER proof, then A is a tautology. 

Proof. If A is, ¬P ∨ P, then A is obviously a tautology. Otherwise, the proof has the 
* C**C*form A*C1 * . . . k k+1 . . . 

* Cn described earlier. Let 𝜏 be any truth assignment to 

the atoms of A. Then, as mentioned in lemma 5.1, 𝜏 can be extended to a truth 
′ ′ assignment 𝜏 to the atoms LB of def(A) such that 𝜏 makes all clauses in def(A) 
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′ true and 𝜏 ′(LA) = 𝜏 (A). Hence 𝜏 makes C1, . . . , Ck true. Further, each time clauses 
′ D1, D2, D3 are introduced by the extension rule for an atom P, 𝜏 can be extended 

to 𝜏 ′′ whose domain includes P in such a way that D1, D2, D3 are true under 𝜏 ′′ (for 
example, if the clauses are CNF(P = (L1 ∨ L2)), then 𝜏 ′′(P) is 𝜏 ′(L1 ∨ L2)). Thus 

′ there is an extension 𝜏1 of 𝜏 which makes all clauses Ci introduced by extension 

true. It is easy to see that any truth assignment which makes two clauses true 

must make any resolvent of those clauses true. Hence, by induction on i, we see 

that 𝜏1 makes Ci true for 1 ≤ i ≤ n. In particular, 𝜏1 makes Cn = LA true. Since 

𝜏1(LA) = 𝜏 ′(LA) = 𝜏 (A), 𝜏 makes A true. Since 𝜏 is an arbitrary truth assignment to 

A, A is a tautology. 

The above argument shows more than just the soundness of ER. It shows that 
an ER proof of A provides a uniform method of checking rapidly that a given truth 

assignment satisfies A; namely check that 𝜏1 satisfies successively C1, C2, . . . , Cn = 

LA, and check successively that 𝜏1(B) ≡ 𝜏1(LB) for larger and larger subformulas B of 
A, and finally check that 𝜏 (A) = 𝜏1(LA) = true. Thus ER is a p-verifiable proof system 

in the following sense. 

Definition 5.3 Informal definition 

A proof system F for TAUT is p-verifiable iff there is a polynomial p(n) such that 
given a proof x in the system of a formula A, x gives a uniform way of verifying 

within p(|x|) steps that an arbitrary truth assignment to A satisfies A. 

It is easy to see that all the usual “Frege” systems (see [CR74]) for the propo
sitional calculus satisfy this definition, in addition to ER. On the other hand, 
if the substitution rule (from A conclude A𝜎, where 𝜎 substitutes formulas for 
atoms) is added to Frege systems, then it is no longer clear that the system is 
p-verifiable. A proof of A in such a system does provide a way of verifying that a 

given truth assignment 𝜏 satisfies A, but since a formula B in the proof may have 

several substitution instances in the proof, and each of these instances can again 

have several instances, and so on, we may end up having to verify B for exponen
tially (in the length of the proof) many truth assignments to check that A comes 
out true under the single assignment 𝜏 . Also, there is no reason to think that a 

proof system for TAUT which incorporates Peano number theory or set theory is 
p-verifiable. 

To make the notion of p-verifiable proof system precise, let us code a truth 

assignment 𝜏 as a string (P1, 𝜏 (P1)), (P2, 𝜏 (P2)), . . . , (Pk, 𝜏 (Pk)) listing the atoms in 

its domain and the truth value assigned to these atoms. This string in turn can be 

coded as a string on {1, 2}, and [𝜏 ] will denote the number whose dyadic notation 
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is this last string. Then we can define a function tr in L such that 
{ 
1 if 𝜏 (A) is true 

tr([A], [𝜏 ]) = 
0 if 𝜏 (A) is false 

We can make the convention that 𝜏 assigns false to all atoms of A for which a value 

is not explicitly given, so that 𝜏 (A) is defined for any formula A and truth assign
ment 𝜏 and every number n codes some truth assignment. Let TR be a function 

symbol in PV which defines tr. 

Definition 5.4	 Formal Definition 

A proof system f for TAUT is p-verifiable iff there is some function symbol F in PV 

defining f such that ⊢PV TR(F(x), y) = 1. 

It is worth pointing out that this formal definition depends on the particu
lar function symbol TR chosen to define tr. That is, it depends on the algorithm 

chosen to compute tr. Presumably, if TR and TR ′ both represent straightforward 

algorithms for computing tr, then ⊢PV TR(x, y) = TR ′(x, y), so definition 5.4 would 

be the same for TR and TR ′ . 
The formal definition requires that the soundness of f be provable in PV. If one 

believes the verifiability thesis (1.1), then it is easy to see that the formal definition 

captures the informal one. 
In [CR74], a notion of one proof system simulating another is defined. Here I 

would like to sharpen that notion and say that a proof system f1 p-simulates a proof 
system f2 iff there is a function g in L such that f2(n) = f1(g(n)) for all n. Further, f1 
p-verifiably simulates f2 iff there exist functions symbols F1, F2 in PV defining f1, f2, 
respectively, and a function symbol G such that ⊢PV F2(x) = F1(G(x)). 

Now I can state the main theorem of this paper, which characterizes the 

p-verifiable proof systems. 

Theorem 5.5	 Main Theorem 

A proof system f for tautologies is p-verifiable if and only if extended resolution 

p-verifiably simulates f . 

Theorem 5.6	 Extended resolution p-verifiably simulates any Frege system (see [CR74]). 

Corollary 5.7	 Every Frege system is a p-verifiable proof system. 

Theorem 5.6 can be proved by formalizing in PV the proof in [CR74] which shows 
that ER simulates any Frege system. The argument will not be given here. 

The following lemma is needed for the Main Theorem. 

Lemma 5.8 ER is p-verifiable. That is, ⊢PV TR(EXTRES(x), y) = 1, where EXTRES is a suitable 

function symbol in PV defining ER. 
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The proof amounts to showing the proof of 5.2 (Soundness of ER) can be for
malized in PV. (Of course, in practice it is easier to work in PV1.) Thus one defines 
a function tauone(n) in L such that when n = [𝜏 ], then tauone(n) = [𝜏1], where 𝜏1 is 
the truth assignment described in that argument. Then the formal versions of the 

equations 𝜏1(LA) = 𝜏 ′(LA) = 𝜏 (A) are provable in PV, and TR(ER(x), y) = 1 follows. 
The details are omitted. 

The “if” part of the Main Theorem follows easily from the lemma. For suppose 

ER p-verifiably simulates f. Then ⊢PV F(x) = EXTRES(G(x)), where F defines f . 
If rule R3 of PV (with TR for f ) is applied to this equation and the result applied 

with transitivity to 5.8 with G(x) for x, we obtain ⊢PV TR(F(x), y) = 1. Hence f is 
p-verifiable. 

The converse to the Main Theorem is more difficult and will be dealt with in the 

next section. 

6 Propositional Formulas Assigned to Equations of PV 
To prove the “only if” part of theorem 5.5 I propose to first prove that extended 

resolution can p-simulate any p-verifiable proof system, and then argue that this 
proof can be formalized in PV. This first proof is carried out by assigning, for 
each m, a propositional formula to each equation t = u which says, roughly 
speaking, “the equation holds when variables are restricted so that the dyadic 
notations for all relevant functions have length at most m”. I then argue that if 
⊢PV t = u, then there is an ER proof of the formula whose length is bounded 

by a polynomial in n. Applying this result to the equation TR(F(x), y) = 1 (which 

is provable in PV if F represents a p-verifiable proof system f ), one can see that 
there is an ER proof of formula number f (n) which is not much longer than the 

proof n. 
Proceeding more formally, let us fix the integer m > 0. We associate with every 

term t of PV the atoms P0[t], P1[t], . . . , Pm[t] and Q0[t], Q1[t], . . . , Qm[t]. We will call 
these the atoms of t. The intended meanings are 

{ 
true if ith dyadic digit (i.e. coefficient of 2i) of t is 2 

Pi[t] ≡ 
false if this digit is 1 irrelevant if the dyadic length of t is < i + 1

{ 
true if coefficient of 2i in t is defined (i.e. t ≥ 2i+1 − 1)

Qi[t] ≡ 
false otherwise 

Now we can define, for each term t and each truth assignment 𝜏 to the atoms of 
t which satisfies Qi[t] ⊃ Qi−1[t], 1 ≤ i ≤ m, a number valm(t, 𝜏 ) which is the 

number whose dyadic notation is determined by these intended meanings. Next 
we associate a propositional formula prop [t] with the term t (the subscript m willm
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sometimes be omitted). Among the atoms of this formula are some of the atoms 
of t and the atoms of the variables which occur in t. This formula has the following 

property: 

Semantic Correctness of propm 

Let the term t of PV with variables x1, . . . , xn define the function f (x1, . . . , xn), and 

let 𝜏 be a truth assignment which satisfies prop [t] and such that when f is evalm

uated (according to the defining equations in PV) at xi = valm(xi, 𝜏 ), 1 ≤ i ≤ n, 
no value of any number appearing in the computation exceeds m in dyadic length. 
Then valm(t, 𝜏 ) = f (valm(x1, 𝜏 ), . . . , valm(xn, 𝜏 )). 

To define prop [t] in general in such a way that 6.1 holds, we start with the m

following special cases. 

propm[x] is 
m
& 
i=1 

Qi[x] ⊃ Qi−1[x], for each variable x. (6.2) 

propm[0] is 
m
& 
i=0 

¬Qi[0] (6.3) 

propm[s1(x)] is (6.4) 

(propm[x] 
m−1
& 
i=0 

(Pi+1[s1(x)] ≡ Pi[x]) 

&¬P0[s1(x)] 

&Q0[s1(x)] 
m−1
& 
i=0 

(Qi+1[s1(x)] ≡ Qi[x])) 

propm[s2(x)] is defined similarly. (6.5) 

t1,...,tkLet 𝜎 = be a substitution (regarded as a transformation) of terms for varix1,...,xk 

ables. The function 𝜓 takes a substitution and an atom of t into an atom of t𝜎, and 

is defined by the equations 𝜓(𝜎, Pi[t]) = Pi[t𝜎], and 𝜓(𝜎, Qi[t]) = Qi[t𝜎], where t𝜎 

is the term resulting when 𝜎 is applied to t. 𝜓 can be extended in an obvious way 
so that its second argument is any propositional formula in the atoms of various 
terms t. Thus 𝜓(𝜎, ¬A) = ¬𝜓(𝜎, A), and 𝜓(𝜎, (A ∘ B)) = (𝜓(𝜎, A)∘, A) ∘ 𝜓(𝜎, B)), where 

∘ is &, ∨, ⊃, or ≡. The formulas prop will satisfy the following property: m 

kt1,...,tkLet 𝜎 = . Then prop [t𝜎] ⇔ & prop [ti]&𝜓 (𝜎, prop [t]), where ⇔ can be x1,...,xk m m m
i=1 

read “is truth-functionally equivalent to”. 

For example, if t is s1(x) and 𝜎 is 0 , then this principle and 6.3, 6.4, say that x 

prop [s1(0)] is a conjunction of formulas, including ¬Qi[0], 1 ≤ i ≤ m, and m

¬P0[s1(0)], and Q0[s1(0)], and Qi+1[s1(0)] ≡ Qi[0], 0 ≤ i ≤ m − 1. These formu
las imply ¬P0[s1(0)], Q0[s1(0)], and ¬Qi[s1(0)], 1 ≤ i ≤ m, which completely specify 
the dyadic notation for s1(0) (=1). 
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Now suppose prop [f (x1, . . . , xk)] has been defined for all function symbols fm

is a certain set S. Then we can inductively define prop [t] for each term t built from m

0, variables, and function symbols in S by 

k
[ti] & 𝜓( 

t1, . . . , tk prop [f (t1, . . . , tk)] = & prop , prop [f (x1, . . . , xk)]) (6.7)m m m
i=1 x1, . . . , xk 

To complete the definition of prop [t] for all terms t, it suffices to show how to m

define prop [f (x1, . . . , xn)] for each of the two ways of defining new function symm

bols. First, suppose f is 𝜆x1, . . . , xnt𝜌, where prop [t] has been defined. Then the m

defining equation for f is f (x1, . . . , xn) = t, and we define 

prop [f (x1, . . . , xn)] is (6.8)m
m

(prop [t] & (Pi[f (x1, . . . , xn)] ≡ Pi[t])m
i=0

m
& (Qi[f (x1, . . . , xn)] ≡ Qi[t]))
i=0

The case in which f is defined by recursion on notation is more complicated, 
and is omitted for lack of space. This completes the definition of prop [t], for all m

terms t. 
Now suppose x1, . . . , xr is a list of all the variables appearing in the terms t and 

nu, and n, m are positive integers with n ≤ m. Then |t = u| is the propositional m 

formula 

((prop [t] & prop [u]) & (¬Qn+1[x1] & . . . &¬Qn+1[xr])) ⊃m m
m

( 
m
& Qi[t] ⊃ (Pi[t] ≡ Pi[u]) & (Qi[t] ≡ Qi[u]))
i=0 i=0

We say that m is a bounding value for n relative to t = u if the terms t and u can 

be evaluated by the relevant defining equations for all values of their variables of 
dyadic length n or less without having any value in the computation exceed m in 

dyadic length. 

Theorem 6.8 ER Simulation Theorem 

Suppose Π is a proof in PV of t = u. Then there is a polynomial p(m) (depending on 
nΠ) such that for all n, m, if m is a bounding value for n relative to t = u, then |t = u|m 

has an extended resolution proof of length at most p(m). 

The proof is by induction on the length of Π, and is omitted. 
Using this theorem, we can sketch the proof of the “only if” part of theorem 5.5. 

Thus suppose f is a p-verifiable proof system, and suppose F is a function sym
bol in PV which defines f , such that ⊢PV TR(F(x), y) = 1. Since all functions 
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used in defining F and TR are in L, it follows that one can find a polynomial q 

with natural number coefficients such that for all n, q(n) is a bounding value for 
n relative to TR(F(x), y) = 1, and q(n) → ∞. By theorem 6.8, there is a polyno

nmial p(n) such that |TR(F(x), y) = 1|q(n) has an ER proof of length at most p(q(n)), 
for all n. 

Now let P1, . . . , Pk be the atoms of some propositional formula A. A truth assign
ment 𝜏 to these atoms determines a number [𝜏 ] in a straightforward manner, 
and using a variable y for [𝜏 ], we can use the extension rule to introduce a set 
CL of clauses defining the atoms Pi[y] and Qi[y] in terms of the atoms P1, . . . , Pk. 

′ Thus any truth assignment 𝜏 which satisfies all clauses in CL must have the 

property that if 𝜏 is the restriction of 𝜏 ′ to P1, . . . , Pk, then [𝜏 ] is the value of y 
whose dyadic notation is represented by 𝜏 ′(Pi[y]), 𝜏 ′(Qi[y]), 1 ≤ i ≤ m, for suit

′′(LA),able m. Since any truth assignment 𝜏 ′′ satisfying def(A) must have 𝜏 ′′(A) = 𝜏 

one can see from the way TR is defined that there is an ER derivation of LA ≡ 

Q0[TR([A], y)] from def(A), CL, and, prop [TR([A], y)], for suitable m. Further, there m

is a polynomial r(n) such that for all formulas A, this ER derivation has length at 
most r([A]). 

Now suppose A has a proof a in the system f ; that is, suppose f (a) = [A]. Then by 
nthe valuation theorem 2.18, ⊢PV F(a) = [A], and one can verify that |F(a) = [A]|q1 (n) 

has an ER proof of length not exceeding p1(q1(n)), where n = |a|, for some polyno
mials P1 and q1. Putting this ER proof together with the ones in the preceding two 

paragraphs, and noting that the clauses in CL, def(prop [t]) for all terms t involved m

can be introduced by the extension rule, we come up with an ER proof g(a) of A of 
length not exceeding p2(|a|), for some polynomial P2. Thus ER(g(a)) = f (a) for all 
a, and since g(a) is in L, ER p-simulates f . 

To complete the proof of theorem 5.5 it is necessary to show ⊢PV ER(G(x)) = 

F(x), where G is a function symbol in PV defining g. This amounts to showing the 

above argument can be formalized in PV, which I will not do here. It is not hard 

to check, however, that the above argument is feasibly constructive, so that if one 

believes the verifiability thesis (1.1), the formalization is not necessary. 

7 PV as a Propositional Proof System 
Any formal system for number theory can be treated as a proof system for TAUT by 
regarding a proof of the formalization of tr ([A], y) = 1 as a proof of A. In particular, 
if Π is a proof in PV of TR ([A], y) = 1, then Π is a proof in PV of A. We can define a 

function pv in L which satisfies pv([Π]) = [A] if Π is a proof of A. Thus pv is a proof 
system for TAUT in the general sense defined in section 5. 

Theorem 7.1 The system pv is not p-verifiable. 
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Lemma 7.2 ⊢PV1 TR (PV(x), y) = 1 ⊃ PROOF([0 = 1], z) = 0 

The lemma says that the statement “if pv is p-verifiable, then PV is consis
tent” is provable in PV1. I prove the lemma by giving an informal argument for the 

implication which is readily formalized in PV1, using the techniques of section 4. 
By hypothesis, 

(1) tr(pv(m), n) = 1 for all m and n.
 

It is not hard to see that
 

(2)	 ⊢PV TR([P & ¬P], y) = 0. 

Now suppose PV is inconsistent, so that 

(3)	 ⊢PV 0 = 1.
 

Then from (2) and (3),
 

(4)	 ⊢PV TR([P & ¬P], y) = 1.
 

If Π is a proof in PV of (4), then
 

(5) pv([Π]) = [P & ¬P].
 

Combining (1) and (5), we have
 

(6) tr([P & ¬P], n) = 1, for all n. 

But (6) is absurd, since tr([P & ¬P], n) = 0. Hence our assumption that PV is 
inconsistent is untenable, so PV is consistent. 

From lemma 7.2, we see that if ⊢PV TR(PV(x), y) = 1, then ⊢PV1, CON(PV), so 

⊢PV CON(PV), violating theorem 4.4. Therefore pv is not p-verifiable. 

8 Conclusions and Future Research 
(1) There should be alternative formalizations of PV. These would make the ver
ifiability thesis (1.1) more convincing and make it easier to formalize arguments 
in PV. One such formalization should be a programming approach, where proving 

f (x) = g(x) amounts to proving the equivalence of two programs. 

(2) If one believes that all feasibly constructive arguments can be formalized in 

PV, then it is worthwhile seeing which parts of mathematics can be so formalized. 
I think that a good part of elementary number theory (such as the unique fac
torization theorem) can be formalized in PV, although the results will have to be 

e1 e2 ekformulated carefully. For example, the function p1 p2 . . . pk is not in L and so it is 
e1 e2 eknot definable in PV. However, the relation n = p1 p2 . . . pk is an L-relation, and its 

characteristic function is definable in PV. As another example of formulation prob
lems, it is hard to see at first how to formulate in PV the completeness of a proof 
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system for TAUT such as ER, since there is no function g in L taking an arbitrary 
tautology number [A] into an ER proof of A (unless P = NP). 

However, there is a function g in L which takes a code for a tautology A together 
with a list 𝜏1, . . . , 𝜏k of all truth assignments to A into an ER proof of A, and the 

equation ER(G([A*𝜏* . . . * 𝜏k])) = [A] should be provable in PV. This formulation 1 

of completeness says that given a formula A, together with a verification that all 
truth assignments to A make A true, one can find an ER proof of A. This statement 
certainly incorporates the information that every tautology has an ER proof. 

(3) The question that lead me to the system PV in the first place is the question of 
whether extended resolution is a super proof system. I conjecture that it is not. A 

possible approach to showing this is by proving some sort of converse to the ER 

simulation theorem (6.8). Specifically, I conjecture that the propositional formulas 
n|CON(PV)|q(n) have no ER proofs bounded in length by a polynomial in n, where 

q(n) is a bounding value for n relative to CON(PV). 

(4) It would be interesting to prove that a Frege system with substitution (see 

[CR74]) is not p-verifiable. A likely approach is to show that such a system p
verifiably simulates pv, which would mean that if such a system were p-verifiable, 
so would be pv, violating theorem 7.1. 
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Abstract 
This is largely an expository paper on the general theory of synchronous parallel 
computation. The models of parallel computers discussed include uniform circuit 
families, alternating Turing machines, conglomerates, vector machines, and par
allel random access machines. A classification of these models indicates the need 

for still more; so “aggregates” and “hardware modification machines” are intro
duced. The resources sequential time, space, parallel time, circuit size and depth, 
hardware size etc., are discussed and interrelated. Work in progress at Toronto is 
mentioned and basic open questions are listed. 

Towards a Complexity
 
Theory of Synchronous
 
Parallel Computation
 
Stephen A. Cook 

1 Introduction 
There is now a well developed computational complexity theory of sequential com
putation. The precisely “right” computer model is not completely clear, but the 

main contenders for this model do not differ markedly from each other in their 
computing efficiency. These contenders are multitape Turing machines, possibly 
with storage structures more general than linear tapes, and various versions of ran
dom access machines. Of these models, the storage modification machine (SMM) 
made popular by Schönhage [Sch79] carries the most conviction as a stable and 
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general model of a sequential computer; where we take sequential to mean the 

number of active elements is bounded in time. 
To be sure, there is a feeling that one step of an SMM may be a little too power

ful. It is hard to imagine a mechanism for reconnecting a given edge out of a node 

𝜈1 in the storage structure to a node 𝜈2 in one step, when the candidates for 𝜈2 from 

the perspective of the whole computation are unlimited. But the fact remains that if 
we restrict ourselves to fixed storage structures, there is no single structure or class 
of structures which seems to be just right. (Certainly multitape Turing machines 
are too restrictive.) On the other hand, for random access machine models one is 
never quite sure which set of operations should be primitive, and whether to charge 

more than one time unit for an operation capable of manipulating arbitrarily large 

integers. 
Whatever the sequential model, it is clear that the main resources of interest 

are time and space. Let me repeat that the differences among the leading models 
in the time and space needed to execute algorithms are minor. And the theory of 
sequential time and space complexity is a rich and interesting one. 

In the past few years it has become increasingly clear that the most powerful 
computers of the future will not be sequential but parallel. An entire processor can 

now be placed on a VLSI chip that is so small and cheap that it is not hard to imag
ine a machine of the future consisting of millions of such processors connected 

together and operating synchronously. The questions then become: How should 

the machine be organized and what can be done with the result? Hence the need 

for a theory of parallel computation. (A second motivation, of course, is that the 

human brain appears to be a parallel computer.) 
I should point out here that the theory I have in mind deals only with syn

chronous computers. There is indeed a great and interesting literature on asyn
chronous processes, and the theory has applications when the processes in 

question cannot easily be synchronized (such as distributed computer systems 
or operating systems). The theory discussed here assumes one parallel computer 
whose elements have been designed from scratch to operate synchronously. 

The first problem in this theory is to find the right mathematical model of a par
allel computer. The parallel models in the literature fall roughly into two classes: 
those with fixed structure and those with modifiable structure. The fixed struc
ture parallel models correspond to sequential machines with fixed storage struc
ture, namely Turing machines with “tapes” which may be more general than linear 
arrays, but cannot be modified. The parallel analogs of these include Borodin’s uni
form circuit families [Bor77], Goldschlager’s conglomerates [Gol78], [Gol77], and 

Hoover’s uniform infinite circuits [Hoo79]. 
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The modifiable sequential machines include SMM’s and random access 
machines (RAM’s). (Indirect addressing in a RAM gives the effect of a modifiable 

storage structure, and in fact RAM’s which can only add and subtract one are equiv
alent to SMM’s [Sch79].) The modifiable parallel machines include various parallel 
RAM’s, such as SIMDAG’s [Gol78] and P-RAM’s [SS79] and [FW78], as well as vector 
machines as defined in [PS78]. As yet no parallel analog of SMM’s has appeared, 
but a tentative candidate is introduced in Section 5. 

Fortunately, all these models are roughly equivalent from the point of view of 
computation time, in the sense that each can simulate another while at most cub
ing the computation time. In fact, the sets or functions computed by each in time 

SO(1) (i.e. time polynomial in S: this notation appears in [Pip79]) are the same as 
those computed by a Turing machine in space SO(1) for any well behaved time bound 

S. (This phenomenon was observed, for example, in [CS76], and called the “parallel 
computation thesis” in [Gol78].) 

This thesis can be made more specific as follows: For the fixed structure par
allel machines; namely, uniform circuit families, conglomerates, “aggregates” (see 

Section 4) and uniform infinite circuits (see [Hoo79]), 

parallel time (S) ⊆ DSPACE (S) ⊆ NSPACE (S) ⊆ parallel time (S2) (1.1) 

(See [HU79] for the meaning of DSPACE and NSPACE.) 
On the other hand, the modifiable parallel machines tend to be more powerful, 

and the inclusions become (at least for SIMDAG’s and the P-RAM’s of [FW78]): 

parallel time (S) ⊆ DSPACE (S2) ⊆ parallel time (S2). (1.2) 

(For SIMDAG’s, the stronger statement NSPACE (S) ⊆ parallel time (S) also holds 
[Gol78]). 

The modifiable parallel models that have been proposed so far all share the 

same problem as the sequential RAM models: The choice of primitive operations 
seems arbitrary, and most of these operations (such as shifts in vector machines 
and random access to global storage in P-RAM’s) seem too powerful to be prim
itive. Hence I propose a new modifiable parallel model: “Hardware Modification 

Machines” (HMM’s), to be the parallel analog of SMM’s. These are discussed in 

Section 5. 
Time and space are the fundamental resources in sequential complexity the

ory. What are their analogs in the parallel theory? Obviously, parallel time plays a 

fundamental role. The second important parallel resource, I think, should be hard
ware size; that is, the number of elements of a machine which are active during 
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a computation. For conglomerates, hardware size is the number of active finite 
state machines, and for vector machines it is the sum of the lengths of the vectors. 
For SIMDAG’s and P-RAM’s it corresponds roughly to the number of processors, 
although it should take into account the total memory used. For circuits, the circuit 
size is an upper bound on hardware size, but the traditional restriction that cir
cuits are acyclic disallows elements to be reused during a computation and hence 
may give an unrealistically large value for size. Hence “aggregates” are introduced 
in Section 4. These can be thought of either as circuits with cycles, or as finite 
conglomerates. 

Section 2 discusses two fundamental fixed structure parallel models; namely, 
uniform circuit families and alternating Turing machines. These turn out to be 
nearly equivalent. Section 3 gives examples which are log depth complete for deter
ministic log space, and hence may distinguish between two similar classes: deter
ministic log space and uniform log circuit depth. Section 4 discusses two fixed 
structure models useful for considering hardware size as well as parallel time; 
namely, conglomerates and aggregates. Section 5 introduces hardware modifica
tion machines, and Section 6 surveys other modifiable parallel models, such as vec
tor machines and parallel RAM’s. Section 7 discusses characterizations and inter
relationships between two complexity classes defined by simultaneous resource 
bounds; namely, NC and SC Finally, Section 8 lists some open problems. 

2 Circuits and Alternating Turing Machines 
Perhaps the simplest model for measuring the parallel time to compute a function 
is the combinational circuit (or simply a circuit). (See [Sav76] and [Pat76] for general 
discussions of circuits.) 

{ }
Notation Bn = f ∣ {0, 1}n → {0, 1} = the set of all Boolean functions of rank n. 

Definition A circuit 𝛼 with n inputs is a finite directed acyclic graph such that each node has a 
label from {x1, . . . , xn}∪ B0 ∪B1 ∪B2. A node labelled xi must have indegree zero, and 
is called an input node. A node 𝜈 with label g ∈ Bi must have indegree i, and one 
edge into 𝜈 is associated with each argument of g. Certain nodes are designated 
output nodes. When the variables xi are assigned values from {0, 1} every node 𝜈 
assumes a unique value in {0, 1}, so that 𝜈 computes some function f𝜈 of x1, . . . , xn. 
We say the circuit 𝛼 computes f if f = f𝜈 for some output node v. 

We shall assume that every node 𝜈 has a path from 𝜈 to some output. That is, 
we assume there are no syntactically superfluous nodes. 

Let c(𝛼) (the complexity of 𝛼) be the number of gates (i.e. nodes other than 
inputs) in 𝛼, and let d(𝛼) (depth of 𝛼) be the length of the longest path in 𝛼. If f ∈ Bn, 
then c(f ) = min {c(𝛼) ∣ 𝛼 computes f } and d(f ) = min {d(𝛼) ∣ 𝛼computes f }. 
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If A ⊆ {0, 1}*, then An = A ∩ {0, 1}n. We can regard An as a member of Bn by the 

convention An (x1, . . . , xn) = 1 iff (x1 . . . xn) ∈ An. A family {𝛼n} of circuits computes A 

iff 𝛼n computes An for all n, and each 𝛼n has a unique output node. 

Notation Let S, T : N+ → R. Then 

{ }
SIZE (T) = A ∣ ∃ {𝛼n} : {𝛼n} computes A and c(𝛼n) = O(T(n))

{ }
DEPTH (S) = A ∣ ∃ {𝛼n} : {𝛼n} computes A and d(𝛼n) = O(S(n))

We shall always assume T(n) > n and S(n)
 
These complexity classes are strange in that they include nonrecursive sets A. In
 

> log n. 

fact, by Lupanov’s result (see [Sav76]) SIZE (2n/n) = 2{0,1}
* 
, and by disjunctive nor

2{0,1}
* 

mal form DEPTH(n) = . Nevertheless they are mathematically interesting, 
and have intuitive significance especially for lower bound results. In particular, a 

proof that A ∉ DEPTH (S) means that no parallel computer with fixed circuitry 
could compute A in time O(S). This is because the parallel computation could 

be unwound to form a circuit with constant delay at each gate. Our assumption 

that circuits have bounded fan-in (in fact fan-in two) is justified by engineering 

experience that any general design for a gate with n inputs has a delay at least pro
portional to log n. On the other hand, Hoover [Hoo79] gives results that show that 
an assumption of fan-out two would not materially alter either the depth or the size 

complexity of a set A. 
Although the circuit depth to compute A is a reasonable lower bound on the par

allel time required, it is not a reasonable upper bound in general (unless we want 
parallel machines to compute nonrecursive sets). Borodin [Bor77] proposed mak
ing it reasonable by requiring that the family {𝛼n} computing A be uniform in some 

sense. The trouble is there is no clearly correct choice for the definition of uniform. 
(See Ruzzo [Ruz79a] for a discussion of various possibilities.) Here we shall adopt 
the following definition, which has gained some acceptance (see [Coo79], [Ruz79a], 
and [Pip79]): 

Definition A family {𝛼n} of circuits is uniform provided some deterministic Turing machine 

can compute the transformation 1n → �̄�n in space O(log c(𝛼n)). (Here �̄�n is a binary 
string coding the circuit 𝛼n in some reasonable fashion.) 

We can now define the uniform complexity classes 

{
USIZE (T) = A ∣ ∃ uniform {𝛼n} : {𝛼n} computes A and c(𝛼n) 

= O(T(n))}
{

UDEPTH (S) = A ∣ ∃ uniform {𝛼n} : {𝛼n} computes A and d(𝛼n) 

= O(S(n))} 
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Proposition 2.1 

Theorem 2.1 

Theorem 2.2 

Corollary 

Notice that the size c(𝛼n) is not mentioned in the definition of UDEPTH so it 
can be taken to be as large as possible consistent with d(𝛼n). In fact, every circuit of 
depth d with a unique output can be expanded into an equivalent tree circuit of size 

2d −1. Also, our assumption of no superfluous nodes implies that no unique-output 
circuit of depth d can have more than 2d − 1 nodes. This leads to the following 

The class UDEPTH (S) remains unchanged if the definition of uniform family {𝛼n} is 
changed to require that the transformation 1n → �̄�n be computable in deterministic 
space O(d(𝛼n)) instead of O(log(c(𝛼n))). 

The alternative definition of uniform is in fact the one given by Borodin [Bor77]. 
Borodin expresses the general thesis in [Bor77] that circuit size corresponds to 

Turing machine time and circuit depth corresponds to Turing machine space. (If 
we identify uniform circuit depth with parallel time, then the second assertion is 
an instance of the parallel computation thesis stated in Section 1.) One precise 

statement of Borodin’s thesis is the following: 

If [log T] is fully space constructible, then 

USIZE (TO(1)) = DTIME (TO(1)). 

If S is fully space constructible, then 

UDEPTH (SO(1)) = DSPACE(SO(1)). 

(See [HU79] for the definitions of constructible, DTIME and DSPACE. We have 

altered the definitions of the latter so they contain only subsets of {0, 1}*.) 
The first equation is easy in this crude form, and in fact can be made consider

ably more precise (see [Pip79]). 
The second equation is a consequence of the following result of Borodin [Bor77], 

which states that the inclusions (1.1) hold for uniform circuit depth. 

If S is fully space constructable, then 

UDEPTH (S) ⊆ DSPACE (S), and 

NSPACE ⊆ UDEPTH (S2). 

Savitch’s Theorem 

If S is fully space constructable, then NSPACE (S) ⊆ DSPACE (S2). 

Let us sketch the proof of theorem 2.2. The circuit value problem (see [HU79]) is 
the set of all binary strings encoding systems ⟨x1, . . . , xn; 𝛼⟩ where each xi ∈ {0, 1} 
and 𝛼 is a circuit whose unique output is 1 when its n inputs take on the values 
x1, . . . , xn. 
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Lemma 2.2 
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There is a deterministic Turing machine M which recognizes the circuit value problem, 
and on an input encoding ⟨x1, . . . , xn; 𝛼⟩, M uses space O(d(𝛼)). 

The idea is to perform a depth first search of 𝛼 from the output node taking left 
descendants first. M stores the number of the node 𝜈 currently examined, together 
with one symbol for each node on the path followed from the root to 𝜈. This sym
bol is either a marker L, if the search is proceeding on through the left input of the 

node; or the value of the left input if this value has been determined and the search 

is proceeding on to the right. 
The first inclusion of Theorem 2.2 follows from Lemma 2.1 and Proposition 2.1. 
To prove the second inclusion, recall that the graph reachability problem (GRP) 

(see [HU79]) is the set of all binary strings encoding the adjacency matrix of a 

digraph G on nodes {1, 2, . . . , N} such that G has a path from node 1 to node N. 

GRP ∈ UDEPTH (log2 n). 

The proof involves constructing a circuit which computes the transitive closure 

of a Boolean matrix by repeated squaring. The circuit has O(log n) stages, and each 

stage has depth O(log n) and computes the Boolean square of the matrix resulting 

from the previous stage. The circuit can be constructed by a deterministic Turing 

machine in space O(log n). 
Given a nondeterministic S space bounded Turing machine M and the input 

length n, a circuit 𝛼n is constructed which does the following on an input string 

w of length n. 𝛼n first computes the adjacency matrix A of the graph whose nodes 
are the possible configurations of M with an input of length n, and whose edges 
represent possible steps in a computation with input w. We can assume M has an 

initial configuration labelled 1 and a unique accepting configuration labelled N. 
𝛼n now solves the graph reachability problem for A according to Lemma 2.2. The 

solution to the problem is positive iff M accepts w. Using Lemma 2.2 it is not hard 

to see that 𝛼n has depth O(S2) and can be constructed in deterministic space O(S2) 
(in fact, space O(S)). 

Theorem 2.1 represents one way to make precise Borodin’s thesis that size cor
responds to time and depth to space. Alternatively, instead of making the circuit 
family {𝛼n} uniform one can make Turing machines nonuniform (see [Sch76]). We 

borrow from Pippenger’s terminology [Pip79]. Suppose g : {0, 1}* → {0, 1}*. We 

say that a (deterministic or non-deterministic) multitape Turing machine accepts 
A modulo g provided that M accepts A under the condition that in addition to the 

normal input x ∈ {0, 1}* on a read only input tape M is also provided with g (x) on a 

separate read only tape called the reference tape. The space used by M is the work 

tape space plus ⌈log |g(x)|⌉, where |w| is the length of w. (The term ⌈log |g(x)|⌉ was 
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not counted in [Pip79], but it should be, since it represents the amount of infor
mation stored by the position of the head on the reference tape.) The function g is 
length determined if g(x) depends only on |x|, and not otherwise on x. A nonuniform 

machine is a machine M together with a length determined function g. It accepts 
A provided it accepts A modulo g. We add (NONUNIFORM) after a complexity class 
to indicate the machines are allowed to be nonuniform. 

There is an alternative and more elegant definition of nonuniform space. We 

say that A is in DSPACE (S) (NONUNIFORM) provided there is a family {Fn} of finite 

automata, each with a two-way read only input tape, such that Fn recognizes An, and 

log |Fn| = O (S(n)), where |Fn| is the number of states of Fn. It is not hard to verify 
that this definition is equivalent to the one in the previous paragraph (recall our 
convention that S(n) > log n).
 

The above definition does not work for time. However, Les Valiant pointed out
 
that we could change the definition of nonuniform Turing machine to be a family 
{Mn} of Turing machines instead of a single Turing machine with a reference tape. 
The time complexity T(n) of such a family would be the maximum of |Mn| and the 

worst case running time of Mn on inputs of length n. The space complexity S (n) 
would be log |Mn| plus the worst case space used by Mn on inputs of length n. This 
gives the same definition of nonuniform space as before, but the nonuniform time 

is only the same up to application of a polynomial. 
In any case, theorems 2.1 and 2.2 have the following analogs for nonuniform 

machines: 

Theorem 2.3 

SIZE (TO(1)) = DTIME (TO(1)) (NONUNIFORM), and 

DEPTH (SO(1)) = DSPACE (SO(1)) (NONUNIFORM). 

Theorem 2.4 

DEPTH (S) ⊆ DSPACE (S) (NONUNIFORM), and 

NSPACE (S) (NONUNIFORM) ⊆ DEPTH (S2). 

To prove these results, the nonuniform machines simulate the circuits by let
ting g(x) provide a description of the circuit for inputs of length |x|. Conversely, 
a circuit family {𝛼n} can simulate a nonuniform machine by building into 𝛼n the 

value of g(x) for |x| = n. 
Note that the following nonuniform version of Savitch’s theorem is a conse

quence of Theorem 2.4: 



−
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Corollary 

NSPACE (S) (NONUNIFORM) ⊆ DSPACE (S2) (NONUNIFORM). 

In other words, a 2s-state 2NFA can be simulated by a 2O(s
2)-state 2DFA for inputs 

.< 2s 

A second interesting model of parallel computation, which falls in the fixed 

of length n −

structure category, is the alternating Turing machine (ATM) ([CS76], [Koz76], 
[CKS78]). An ATM is a generalization of a nondeterministic multitape Turing 

machine. A nondeterministic machine has existential states, for which there are 

several possible next states, and at least one of the alternatives must lead eventu
ally to an accepting state. In addition to existential states, an ATM also has universal 
states, for which all of the possible next states must lead to an accepting state. We 

define the accepting state to be a universal state with no successors. Every state 

is either universal or existential. Thus an accepting computation of an ATM M with 

input w is a finite tree whose nodes are labelled with configurations of M, such that 
i) every universal node (i.e. node whose configuration has a universal state) must 
have all possible next configurations as children, ii) every existential node must 
have at least one possible next configuration as a child, and iii) the root is the ini
tial configuration. In order for M to operate in sublinear time we assume it has 
“random access” to the bits of w instead of a read only input tape. That is, M has 
a special index tape, and when M writes an index i on the index tape and assumes 
one of a distinguished set of index states, the i-th symbol of the input w is placed 

on the index tape. We say M accepts w in time s and space l if there is an accepting 

computation of M with input w whose longest path from root to leaf is s or less, 
and such that no configuration in the computation has tapes of length exceeding 

l. The complexity classes for time and space for ATM’s are designated ATIME (S) 
and ASPACE (L), respectively, and we always assume S(n), L(n) > log n. 

As different as ATM’s may seem from uniform circuit families, there is a 

remarkably close correspondence between alternating time and circuit depth, and 

between alternating space and circuit size. Unfortunately, our definition of uni
form for circuits is too weak to express the correspondence precisely. Ruzzo gives a 

number of alternative definitions, of which the strongest is the following: {𝛼n} is UE 

uniform iff the connection language Lec can be recognized by a deterministic Turing 

machine in time O(log c(𝛼n)). Here LEC consists of those quadruples (n, g, p, x) such 
| < log c (𝛼n

in circuit 𝛼n back from gate g (L, R refer to left and right input, respectively) then 

′ is the gate reached by following the path p ∈ {L, R}* (where | ))that if g p

′ ′ g has label x if x ∈ B2, and g = x otherwise. (Assume n, g and x are expressed in 

binary notation.) 
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If we use the notation, for example, UeDEPTH (S) to indicate this notion of 
uniformity, then we have 

ATIME (S) = UEDEPTH (S), and 

ASPACE (L) = UESIZE (2O(L)), 

assuming S (n) can be computed in deterministic time S (n), and L (n) can be com
puted in deterministic time L (n) given n in binary notation. In fact, Ruzzo [Ruz79a] 
proves the stronger result that the equivalences hold simultaneously. Let us use the 

notation ATIME-SPACE (S, L) for the class of sets accepted simultaneously in time 

S and space L on an ATM, (note that this may be a proper subset of the intersec
tion of ATIME (S) and ASPACE (L)), and analogous notation for other simultaneous 
classes. Then 

Theorem 2.5	 ATIME-SPACE (S, L) = UEDEPTH-SIZE (S, 2O(L)), provided S and L are computable in 

deterministic time O(S). 

Ruzzo shows the above result still holds when UE is replaced by U, provided 

S .> L2 

From their definition, ATM’s appear to model a restricted form of parallel 
computation, because the “processors” in the model are restricted to be Turing 

machines, and they must be organized in the form of an and-or-tree. This makes 
Theorem 2.5 all the more interesting. On the other hand, ATM’s are more pleas
ing in one way than circuit families, because there is no question of how to define 

uniform. Each ATM is automatically uniform. In fact, ATM’s may be the best can
didate proposed so far for defining parallel time, at least in the fixed structure 

category. But this remains to be seen. The one clear drawback of ATM’s is that 
they do not seem to have any resource that corresponds to hardware size (see 

Section 4). 

3 Log Depth vs Log Space 
As far as we know, the second inclusions in Theorems 2.2 and 2.4 cannot be 

improved, even when NSPACE is replaced by DSPACE. (Of course an improvement 
for NSPACE would improve Savitch’s theorem.) Taking S(n) = log n as the most 
basic case, it is interesting to look for examples of sets in DSPACE (log n) which 

do not appear to be in DEPTH (log n). Addition of n n-digit binary numbers, and 

multiplication of two n-digit binary numbers both can be done in O(log n) circuit 
depth (see [Sav76]), as can sorting n n-digit binary numbers (see [MP75]). On the 

other hand, the “cycle free problem” is in DSPACE (log n) but does not appear to be 

in DEPTH (log n). 
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The cycle free problem (CFP) is the set of all binary codes for symmetric Boolean 

N × N adjacency matrices A of undirected cycle-free graphs. 
One can define functions f : {0, 1}* → {0, 1}* computable in depth S (or uniform 

depth S) using circuits with several outputs. We say A1 is log depth reducible to A2 

(respectively uniformly log depth reducible) iff there is some function f computable 

in depth O(log n) (respectively uniform depth O(log n)) such that w ∈ A1 iff f (w) ∈ A2, 
for all w. We say A is log depth complete for the class S iff A ∈ S, and every A ′ ∈ S is 
log depth reducible to A. The uniform case is defined similarly. The main ideas in 

the proof of the following result appear in Hong [Hon80]. 

(a) CFP is uniformly log depth complete for DSPACE (log n). 
(b) CFP is log depth complete for DSPACE (log n) (NONUNIFORM). 

(a) DSPACE (log n) = UDEPTH (log n) iff CFP ∈ UDEPTH(log n). 
(b) DSPACE (log n) (NONUNIFORM) = DEPTH (log n) iff CFP ∈ DEPTH (log n). 

We note that because UDEPTH (log n) ⊆ DEPTH (log n), the first equation in the 

Corollary implies the second. This fact does not seem to be obvious without using 

the CFP. 
To prove CFP ∈ DSPACE (log n), Hong devised an algorithm for moving several 

pebbles around the input graph in an attempt to do a depth first search of each of 
its components. To prove that every 

A ∈ DSPACE (log n) 

is uniformly log depth reducible to CFP, one can, given an input w, define a graph 

whose nodes are C × {0, 1, . . . , T}, where C is the set of possible configurations of 
the Turing machine M with input w, where M accepts the complement of A in space 

O(log n), and T is an upper bound on the computation time. Two nodes (c, t) and 
′ ′ c , t ′) are adjacent iff either c → c ′ in one step and t ′ = t + 1, or c → c and t = t ′ + 1. 
If we let c0 be the initial configuration and cf be the unique accepting configura
tion, then we also add an edge between (c0, 0) and (cf , T). Using the fact that M is 
deterministic, it is not hard to see that M accepts w iff the graph has a cycle. 

A second example for which theorem 3.1 applies is GAP1: the graph reachabil
ity problem for directed graphs of outdegree one. The completeness of GAP1 for 
DSPACE (log n) is proved for reducibilities other than log depth in [Jon75] and in 

[HIM78]. The proof of theorem 3.1 for GAP1 is easier than for CFP. 
The following example is interesting, because it is complete for nonuniform 

log n space, but no one knows how to solve it in uniform log n space. 
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Definition	 The undirected graph reachability problem (URP) is the set of codes of symmetric 
adjacency matrices of graphs with nodes {1, 2, . . . , N} with a path from node 1 to 

node N. 

Theorem 3.2 URP is log depth complete for DSPACE (log n) (NONUNIFORM). 

That URP ∈ DSPACE (log n) (NONUNIFORM) follows from the existence of 
a short universal covering string for all n-node undirected connected oriented 

graphs of fixed degree (see [AKL+79]). The reducibility proof is similar to the above 

argument. 
Many interesting problems have O(log2 n) as the best known upper bound for 

both deterministic space and uniform depth. It is interesting to try to reduce these 

to each other via log depth or uniform log depth reducibility, so as to cut down 

the number of equivalence classes of problems classified by their depth complex
ity. For example, the directed graph reachability problem (GRP) is well known to 

be log space complete for NSPACE (log n) (see [HU79]). In fact, it is also uniform 

log depth complete for NSPACE (log n). Two other examples are finding the integer 
part of the quotient of two n-digit binary numbers, and raising an n-digit number 
to the power n. The best known upper bound for both problems for both space 

and depth is O(log2 n). Hoover [Hoo79] shows that each is log depth reducible to 

the other, although one of the reductions is not uniform. As a matter of interest, 
Hoover also points out that the base conversion problem (say converting binary 
notation to ternary) is in nonuniform depth O(log n) (because the powers of two in 

ternary can be built in), but the best space upper bound and uniform depth upper 
bound is O(log2 n). 

4 Conglomerates and Aggregates 
Uniform circuits and ATM’s are good models for measuring parallel time, but nei
ther is right for measuring the second important resource mentioned in the intro
duction, namely hardware size. What is needed is to allow circuits to have cycles. 
Goldschlager’s conglomerates [Gol78] satisfy this requirement. Briefly, a conglom
erate is an infinite collection {M0, M1, . . . , } of identical deterministic finite state 

machines connected together in some manner. Each machine has r > 1 inputs 
and one output, and the connection function f specifies for some inputs of some 

machines the output of which machine it is connected to. (Inputs left unconnected 

receive some fixed symbol b.) Cycles are allowed in the connection graph. Ini
tially at time 0, the first n machines M1, . . . , Mn store the symbols of the input 
string w1 w2 . . . wn, and all other machines start in the initial state q0. At subse
quent times 1, 2, . . . each machine assumes a new state and transmits output sym
bols in a manner determined by its input symbols and state at the previous step. 
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The conglomerate accepts its input if at any time machine M0 enters the special 
′ state q . 

The uniformity condition for conglomerates specifies that the connection func
tion f can be computed within some space bound P on a Turing machine, where 

f (i1, i2 . . . ik) = s, if machine Ms is reached by starting with M0 and tracing back via 

input i1 then input i2 of that machine, and so on. The linear space bound P(n) = n 

suffices in order for the inclusions (1.1) to hold when parallel time is taken to mean 

conglomerate time. We have not considered the question of which uniformity 
condition makes conglomerate time equivalent to uniform circuit depth. 

Goldschlager did not define or study the “hardware size” of a conglomerate 

computation. Rather than do that now, we present a new model (developed in 

Dymond [Dym80]) to study, called an aggregate which can be viewed either as like a 

finite conglomerate, or like a circuit with feedback. Similar objects have been called 

“sequential circuits” or “logical nets” in the switching theory literature. An aggre
gate has different input/output conventions than these, and we assume every gate 

has unit delay to avoid any possibility of ambiguous computations. We interpret 
the result as more a “parallel circuit” than a “sequential circuit”. 

More formally, an aggregate 𝛽n on inputs x1, . . . , xn is a directed graph (not nec
essarily acyclic) whose nodes have labels from B0 ∪ B1 ∪ B2 ∪ {x}. A node 𝜈 with label 
g ∈ Bi must have indegree i, and one edge into 𝜈 is associated with each argument 
of g. If a node 𝜈 has label x, then 𝜈 is an input node and must have indegree zero. 
Associated with each input node 𝜈 is a register R𝜈 consisting of ⌊log n⌋ nodes, which 

specifies which input xi is presented to x. There is a distinguished pair of nodes 
designated 𝜈0 and 𝜈1, called output nodes. A configuration of 𝛽n is an assignment of 
0 or 1 to each node 𝜈 of 𝛽n called the output of 𝜈. A computation of 𝛽n is a sequence 

C0, C1, . . . of configurations as follows. 

(a) All nodes in C0 have output 0 except any node labelled with the constant 
function 1 ∈ B0. 

(b) If 𝜈 has label g ∈ Bi, then in Ct+1 𝜈 has output equal to g applied to the input 
(s) of 𝜈 in Ct. 

(c) If 𝜈 is an input node, then 𝜈 has output 0 in Ct for t < ⌈log n⌉, and in general 
in Ct+⌈log n⌉𝜈 has output xi+1, where i is the value in binary notation of the 

register R𝜈 in Ct. 

The output of 𝛽n is defined to be the output of the node 𝜈0 in the first configu
ration Ct in which 𝜈1 has output 1. The running time t (𝛽n) of 𝛽n is the maximum 

over all inputs x1, . . . , xn of this index t. The hardware size h (𝛽n) is the number of 
nodes in 𝛽n. 
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The peculiar input conventions for aggregates need justification. The reason 

that inputs xi are not fed directly into aggregates as they are for circuits is that this 
would entail h (𝛽n) > n, whereas we are interested in sublinear hardware bounds 
(see theorem 4.1 below). In fact, the value of an input node 𝜈 could be computed 

from the index stored in R𝜈 using a decoding circuit of size O(n) and depth O(log n) 
(this is the reason we assume a delay of ⌈log n⌉ for R𝜈 to affect 𝜈). Our convention 

of not counting the size of the decoding circuit is similar to the convention of not 
counting the input tape in measuring the space used by an off line Turing machine. 
(One might imagine, for example, a large number of small aggregates sharing the 

same large decoding circuits.) 
Our input and output conventions could be modified slightly to allow aggre

gates to compute functions instead of to recognize sets. The particular bit com
puted of the function would be specified by a part of the input called the output 
specifier. Then aggregates could be cascaded to compute the composition of two 

functions in hardware size equal to the sum of the hardware sizes for each of the 

functions. The output 𝜈0 of the first aggregate 𝛽 would be connected to the input 
𝜈 ′ of 𝛽 ′ , and the register R𝜈 ′ of 𝛽 ′ would be connected to the output specifier of 𝛽. 
The timing conventions for the input 𝜈 ′ of 𝛽 ′ would be changed to allow for the 

uncertain delay between an input request and its answer (signalled by 𝜈1). 

Definition	 A family {𝛽n} of aggregates is uniform provided the transformation 1n → 𝛽n can be 

computed in deterministic space 

O(log h(𝛽  n) + log n). 

The complexity classes defined by uniform aggregate families of bounded 

hardware and bounded time and of nonuniform bounded time families can be 

characterized as follows: 

Theorem 4.1 Let H, S be fully space constructible functions with H(n), S(n) > log n. Then 

(a) UHARDWARE (H) = DSPACE (H), 
(b) HARDWARE (H) ⊆ DSPACE (H) (NONUNIFORM), 
(c) UAGTIME (S) = UDEPTH (S), 
(d) AGTIME (S) = DEPTH (S). 

This theorem shows that neither of the resources uniform hardware and uni
form aggregate time define new complexity classes in themselves. However, taken 

together they define apparently new and natural simultaneous complexity classes. 
Simultaneous resource bounds are discussed in Section 7. 

Proof sketch (a) and (b). A deterministic Turing machine can simulate an aggregate 

by updating a bit vector which has one bit for the output of each gate. A queue is 
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kept of the next ⌈log n⌉ input values for each input node 𝜈 to facilitate the update 

of these nodes. Note that there can be at most O(H(n)/ log n) input nodes 𝜈, since 

each has an associated register R𝜈 with ⌈log n⌉ gates. 
An aggregate can simulate a (uniform) deterministic Turing machine for inputs 

of length n by having a “box” of gates devoted to each work tape square. The box 
records the current contents of that tape square, and if scanned, it records the state 

of the Turing machine. The contents of the input tape is obtained by an input node 

𝜈, whose register R𝜈 is attached to a counter which records the input head posi
tion. This simulation does not work for nonuniform Turing machines, since the 

reference tape could have length exponential in the size of the aggregate. 

Proof sketch (c) and (d). An aggregate can be converted to a circuit by implement
ing each input node by the decoding circuit mentioned earlier. Then each gate 𝜈 is 
replaced by a set {⟨𝜈, t⟩ < S(n)} of gates. The gate ⟨𝜈, t + 1⟩ has inputs from 

⟨w1, t⟩ and ⟨w2, t⟩, where w1 and w2 are the inputs to 𝜈 in the aggregate. The circuit 
∣ < t0 −

output is ⟨𝜈0, S(n)⟩ (we can assume 𝜈0 retains its value in the aggregate once 𝜈1 = 1). 
To convert a circuit to an aggregate, construct an input node 𝜈i for each circuit 

input xi. The register R𝜈i has constant value i. Let 𝜈0 be the output node for the 

circuit, and let 𝜈1 be the end of a length S(n) chain of identity gates having the 

constant function 1 at the beginning. 
More details can be found in [Dym80]. 
The above theorem sheds some light on the old problem of to what extent feed

back in circuits helps reduce the number of required gates. The best result in that 
direction seems to be due to Rivest [Riv77] who gives examples showing a linear 
reduction in size, but only for a multiple output circuit. On the other hand, theo
rem 4 suggests that disallowing feedback might cause an exponential size blow up 

in some cases. For example, let A be a set which is log space linear time complete 

for DSPACE (n) (see Hong [Hon80] for a natural example). Then by equation (a), 
A can be recognized by an aggregate family of linear hardware size. On the other 
hand, as far as we know A requires exponential time on a Turing machine, so by 
theorem 2.1 it would follow that any uniform circuit family recognizing A has size 

at least 2n
𝜀 
for some 𝜀 > 0 (indeed 2Ω(n/ log2 n) by [Pip77]). In fact, we know of no way 

to reduce this bound even if we allow nonuniform circuit families. 
Of course in other cases a proof that disallowing feedback causes exponential 

size blow up would imply P ̸= NP. For example, SATISFIABILITY can be recognized 

in linear space and hence is recognized by an aggregate family with linear hard
ware. If P = NP, then SATISFIABILITY would be recognizable by polynomial size 

circuits. 
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We close this section with two little results about aggregates in the style “if 
horses can whistle then pigs can fly”. This style (but not these results) comes 
from the paper of Karp and Lipton [KL80]. The results are intriguing because 

the hypotheses consist of assumptions concerning the nonuniform complexity of 
classes and the conclusions assert uniform complexity bounds. 

Theorem 4.2 If	 P ⊆ HARDWARE (log n) then 

P ⊆ DSPACE (log n log log n) 

Proof sketch. Since the circuit value problem (CVP) is log space complete for P 

(see [HU79]), it suffices to prove CVP is in the second class given it is in the first 
class. Thus for each n we assume the existence of an aggregate 𝛽n which cor
rectly solves the CVP on inputs of length n, with h (𝛽n) = O(log n). A determinis
tic Turing machine M can represent and simulate a candidate 𝛽 ′ for 𝛽n in space n 

O(log n log log n), and in fact M can cycle through all such candidates 𝛽 ′ . There is n

no apparent way to determine in small space whether 𝛽 ′ gives the correct answer n 

for all inputs c of length n, but given a particular input c (i.e. circuit with inputs 
specified) M can check that 𝛽 ′ gives consistent answers for each gate g of c by simn 

ulating 𝛽 ′ three times, with c as input modified so that its output is each of the two n 

inputs to g and g itself. If 𝛽 ′ gives consistent answers for each gate of c, then 𝛽 ′ n	 n 

correctly gives the output of c (i.e. tells whether c ∈ CVP). 

Theorem 4.3 If	 NP ⊆ HARDWARE (log n) then 

NP ⊆ DSPACE(log log log n).n 

Proof sketch. It suffices to show that SATISFIABILITY is in the second class given it 
is in the first class. Reasoning as above, the Turing machine M can check whether 
a candidate aggregate 𝛽 ′ correctly tells whether a propositional formula F is sat-n 

isfiable by making 𝛽 ′ produce a satisfying assignment bit by bit, by plugging in n 

partial truth assignments to F and asking 𝛽 ′ about the result. The trouble is Mn 

cannot remember the partial assignments in small space. However, the problem 

of whether “the i-th bit is 1 in the lexocographically first assignment which 𝛽 ′ n 

says satisfies F” is in P. Thus by theorem 4.2 this bit can be determined in space 

O(log nlog log n), and M can determine whether this assignment satisfies F in small 
space. 

5 Hardware Modification Machines 
As mentioned in the introduction, there is a need to define a parallel model which 

is more powerful than an aggregate, in that it can modify its circuits, but less pow
erful than existing parallel RAM models, in that each unit of hardware can only 
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perform a bounded amount of work in one step. We shall call the new machine a 

hardware modification machine (HMM), since it is intended to be the parallel ana
log of the storage modification machine. An HMM consists of a finite collection of 
finite state machines connected together as in a conglomerate. At each step, each 

machine may, in addition to assuming a new state and transmitting output signals, 
modify its input connections. Specifically, it may detach any of its inputs and re
attach it to a new machine which it brings into the HMM, or it may re-attach it to 

an output of any machine which can be reached by a path of length at most two 

traced backwards from the input. 
One advantage of an HMM over circuits, aggregates, and conglomerates is that 

there is no question of uniformity. The machine is uniform because it constructs 
itself. 

An HMM can execute an algorithm like the one described in [FW78] to simulate 

a deterministic S space bounded machine in time O(S), and HMM time S can be 

simulated in deterministic space O(S2). Thus the inclusions (1.2) apply. 
The theory of HMM’s is developed in [Dym80]. 

6 Other Modifiable Models 
The first published parallel model introduced and compared in power to space 

bounded machines was the vector machine of Pratt and Stockmeyer [PS78]. A vec
tor machine is like a random access machine, except there are two distinct kinds of 
registers: index registers and vector registers. Addition, subtraction, and compari
son operations can be applied to both kinds of registers, and both can be accessed 

via index registers. In addition, bitwise Boolean operations can be applied to vector 
registers, and vector registers can be shifted by an amount specified by an index 
register. These shift operations allow the vectors to grow in length exponentially 
in the computation time, and hence the bitwise vector operations represent a high 

degree of parallelism. 
Pratt and Stockmeyer prove that vector machine time (S) ⊆ DSPACE (S2) and 

NSPACE (S) ⊆ vector machine time (S2), for suitable S(n) > log n. These inclusions 
are weaker than either 1.1 or 1.2. It seems that vector machines have some very pow
erful operations, such as the shift, which preclude linear space simulation of time. 
On the other hand, they are apparently not powerful enough to allow a linear time 

simulation of space. 
This aesthetic defect is balanced by other considerations. The model is a pleas

ant one, and is an extension of actual computer designs. Enough examples of 
vector machine algorithms are given in [PS78] to indicate the machine’s suitability 
for the programming of parallel algorithms. Simon [Sim77] proved the surpris
ing result that the power of vector machines is only increased by application of 
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a polynomial when no distinction is made between index registers and vector reg
isters, so that a vector register can be shifted by an amount specified by another 
vector register. 

The MRAM’s and CRAM’s of Hartmanis and Simon [HS74] are similar to vector 
machines, except they have only one type of register, and perform multiplication 

(or concatenation) instead of shifting. The time space simulation results are similar 
to those for vector machines. 

A number of other variations of parallel random access machines have been 

introduced. One example is Goldschlager’s SIMDAG [Gol78], which stands for sin
gle instruction stream, multiple data stream, global memory. This consists of a 

control processor (CPU) and an infinite sequence PPU0, PPU1, . . . of parallel pro
cessors, each connected to an infinite random access global memory. In addition, 
each parallel processor has a local infinite random access memory. The program 

is executed by the CPU, which can broadcast instructions to the active PPU’s. Each 

instruction broadcast is executed by the first k PPUi’s, where k is stored in some 

location of global memory. Each PPUi executes the same instruction, but the mem
ory locations accessed can be indexed by the subscript i, and so can be different for 
different PPUi’s. The simulations proved for SIMDAG’s are a little stronger than 1.2; 
namely, SIMDAGTIME (S) ⊆ DSPACE(S2), and NSPACE (S) ⊆ SIMDAGTIME (S). 
The reason that nondeterministic space S instead of just deterministic space S can 

be simulated in time O(S) is apparently because of a powerful SIMDAG instruction 

which allows any number of PPU’s to store into memory at once. If two or more 

try to store into the same location, the lowest numbered processor succeeds. This 
gives the effect of a huge fan-in being executed in one step. 

The P-RAM of Fortune and Wyllie [FW78] is similar to the SIMDAG, except differ
ent parallel processors can be executing different parts of their program at once, so 

it is “multiple instruction stream”. Also, there is no instruction comparable to the 

SIMDAG’s instruction which allows a potentially unbounded number of processors 
to try to store in a given location at once. Wyllie shows in [Wyl79] that the multiple 

instruction stream gives only a constant factor time advantage over SIMDAG’s. On 

the other hand, the unbounded fan-in for SIMDAG’s seems to be a real advantage, 
since the time space simulation results for P-RAM’s are those of 1.2; weaker than 

for SIMDAG’s. 
The PRAM’s of [SS79] have no global memory, but a given processor can initiate 

offspring processors. The time space simulation results in [SS79] are weaker than 

either 1.1 or 1.2. 
In conclusion, all the parallel models in this section have powerful instructions 

which cannot be considered primitive. 
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7 Simultaneous Resource Bounds 
In Section 2 we indicated that sequential time is roughly equivalent to uni
form circuit size, and sequential space is roughly equivalent to uniform cir
cuit depth. A natural question to ask is whether simultaneous time and space 

bounds are roughly equivalent to simultaneous uniform size and depth bounds. 
To be more specific, the well known class P can be characterized as either 
DTIME (nO(1)) or as USIZE (nO(1)), and “polylog space” is both DSPACE ((log n)O(1)) 
and UDEPTH ((log n)O(1)). If we use the notation DTIME-SPACE (T, S) to refer to the 

class of sets accepted by some deterministic Turing machine which runs both in 

time T and space S, then the class referred to as PLOPS (polynomial time and poly
log space) in [Coo79] (and now called SC by agreement among several authors), can 

be written DTIME-SPACE (nO(1), (log n)O(1)). Note that SC is presumably a proper 
subset of P ∩ DSPACE ((log n)O(1)). For example, the graph reachability problem 

(GRP) (see Section 2) is in the intersection class but not known to be in SC. 
The corresponding circuit-defined class is USIZE-DEPTH (nO(1), (log n)O(1)), 

which is called NC in [Coo79] and [Ruz79a] after Pippenger, who first characterized 

it (see theorem 7.1). Again NC is presumably a proper subset of the intersection 

class, although it is remarkably difficult to think of a natural example of some
thing in the intersection class but not in NC. (The universal set UPL defined below 

may be an artificial example.) 
Getting back to the original question, we now ask whether SC = NC? The answer 

is apparently no, because there are natural problems in NC which do not appear to 

be in SC. One example is GRP (or any other complete problem for NSPACE (log n)). 
Other examples are integer division and integer powering (see Section 3). (Techni
cally these should be made into recognition problems by specifying an index i as 
part of the input and asking whether the i-th output digit is 1.) And another class 
of examples are those context free languages which we don’t know how to put into 

SC (see theorem 7.5 below). 
Conversely, it is not so easy to find natural candidates for the difference set SC

NC. In fact, it is difficult to find sets in SC which are not clearly in DSPACE (log n) 
(and therefore in NC). Any universal deterministic context free language (DCFL) 
provides an example because of the result in [Coo79], but again Ruzzo proved that 
all CFL’s are in NC. 

One can still concoct artificial candidates for SC-NC. For example, a universal 
set UPL for SC2 (SC2 = DTIME-SPACE (nO(1), log2 n)) can be constructed as follows: 
Design a machine M which shuts itself off if it attempts to use more than log2 n 

space or n2 time. Let M on an input coding a pair (x, y) simulate machine number x 
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Theorem 7.1 

Theorem 7.2 

Theorem 7.3 

Theorem 7.4 

Theorem 7.5 

on input y; and accept iff neither its pace nor time bound is exceeded and machine 

x accepts y. Then UPL is log space complete for SC2 and does not appear to be in 

NC. 
We conclude that time and space together do not seem to be even roughly equiv

alent to uniform size and depth together. However, Pippenger [Pip79] proves that 
time and reversal together do correspond to size and depth together. Here the rever
sal of a computation of a multitape Turing machine is the number of times any of 
its heads changes direction (a hesitation is not a reversal). Pippenger proves 

NC = DTIME-REVERSAL (nO(1), (log n)O(1)). 

This is one characterization of NC, and Ruzzo [Ruz79a] points out several oth
ers. In fact, NC appears to be a very stable and interesting class. Intuitively, it is 
comprised of all problems which can be solved very rapidly on a parallel computer 
of feasible size. To make this statement more evident, we point out NC can also be 

characterized in terms of aggregates (see Section 4). 

NC = UHARDWARE-AGTIME (nO(1), (log n)O(1)). 

This follows immediately from the definition of NC and the discussion in 

Section 4 about converting circuits to aggregates and vice versa. 
I would like to mention three of Ruzzo’s [Ruz79a] characterizations of NC. First, 

Ruzzo gives several alternative definitions of uniform circuit family, including our 
definition in Section 2, and proves that NC remains the same for all of them. In par
ticular, NC remains unchanged when the strong definition of UE uniform is chosen. 
From this and theorem 2.5 Ruzzo concludes the second characterization: 

NC = ATIME-SPACE ((log n)O(1), log n). 

The third characterization is 

NC = AuxPDA TIME-SPACE (2
log nO(1) , log n). 

Here AuxPDA stands for auxiliary pushdown automaton. The theorem holds 
whether it is deterministic or nondeterministic. 

We now sketch the proof of another interesting Ruzzo result: 

Every context free language is in NC. 

Part of the interest of the proof is that it was apparently discovered using ATM’s 
(via theorem 7.3), which is an indication that ATM’s are a useful tool for discovering 

and expressing parallel algorithms. The proof of 7.5 follows the classical [LSH65] 
proof that every CFL is in DSPACE (log2 n), but needs a new idea. As in [LSH65], we 

assume the grammar is in Chomsky form, and try to verify the existence of a parse 

tree for the input string whose nodes have the form (𝜎, i, j) (which is valid if symbol 
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𝜎 generates the segment of the input between the i-th and j-th symbols inclusive). 
The ATM algorithm proceeds by guessing (via an existential state) a node (𝜎, i, j) 
which generates between one-third and two-thirds of the input string and then ver
ifies (via a universal state) that both (1) (𝜎, i, j) is a valid node, and (2) the original 
root is valid given (𝜎, i, j) is valid. These two subproblems are solved by executing 

the algorithm recursively. Since the depth of the recursion is O(log n), the alter
nating time is O(log2 n), but unfortunately a general recursive call to the algorithm 

must remember up to log n hypothesis nodes (𝜎1, i1, j1), . . . , (𝜎k, ik, jk), which require 

a total of Ω(log2 n) space to express, so theorem 7.3 does not apply. The new idea 

is to keep the number of hypothesis nodes down to two, by guessing at a common 

ancestor to two of them whenever three hypotheses would otherwise be formed. 
This keeps the space down to O(log n), so 7.3 applies. 

In addition to comparing time and reversal to size and depth, Pippenger also 

shows time and space together are roughly equivalent to size and width. To define 

the last resource, let us say a circuit is synchronous if its gates can be divided into 

levels such that all inputs to the gates at level l are either input nodes xi or are from 

gates at level l − 1. Then the width of a synchronous circuit is the maximum of the 

number of gates at any level. Pippenger also gives a suitable definition of width 

for nonsynchronous circuits and proves several relations among width, size, space 

and time, of which the following is a corollary: 

Theorem 7.6 SC = USIZE-WIDTH (nO(1), (log n)O(1)). 

Dymond [Dym80] extends Pippenger’s results to relate space and reversals to 

uniform width and depth. Two easy observations along these lines are that theo
rem 7.6 still holds if USIZE is replaced by UDEPTH, and SC remains unchanged if 
time is replaced by reversal in its definition. In addition, it is not hard to see that 
SC can be characterized in terms of aggregates as follows: 

Theorem 7.7 SC = UHARDWARE-AGTIME ((log n)O(1), nO(1)). 

This result shows an interesting duality with theorem 7.2. The question of 
whether NC = SC becomes the question of whether hardware size can be traded 

for computation time in uniform aggregates, without exponential blow up in the 

other resource. 

8 Open Questions 
Among the basic open questions in computational complexity are the problems 
of finding lower bounds for various resources for any simple interesting problem. 
In particular, for sequential complexity, we don’t have any nonlinear time lower 
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bounds nor any nonlogarithmic (i.e. 𝜔(log n)) space lower bounds on any natu
ral problem in the class NP. For parallel complexity, the same state of ignorance 

applies to nonlinear circuit size, and nonlogarithmic depth and hardware. Theo
rems 2.2 and 2.4 indicate that a nonlogarithmic lower bound on circuit depth may 
be weaker (and therefore easier to obtain) than such a bound on space, so the depth 

question deserves more attention. (There are already results which show the depth 

complexity of some simple problems cannot be log2 n+O(1): see Neciporuk [Nec̆66] 
and Hodes and Specker [HS74].) 

For simultaneous resource bounds, the situation is almost as wide open, 
although Borodin and Cook [BC80] have recently shown that sorting cannot be 

done simultaneously in linear time and logarithmic space. It would be interesting 

to get similar tradeoff results for other resource pairs, such as size versus depth and 

aggregate time versus hardware. Another problem is whether there exists any set 
whose minimum time complexity is at least, say, the square of its minimum space 

complexity (assuming the latter is at least Ω (n)). Similarly for uniform size versus 
uniform depth and aggregate time versus hardware size. (We do know by Lupanov’s 
result [Sav76] that most sets have (nonuniform) size exponential in depth. 

Finally, the questions concerning SC and NC mentioned in Section 7 are worth 

emphasizing. In particular, it would be nice to know whether one class is included 

in the other, and whether they are proper subsets of their (common) intersection 

class. 
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14
A Time-Space Tradeoff 
for Sorting on a General 
Sequential Model of 
Computation 
A. Borodin and S. Cook 

Abstract 
In a general sequential model of computation, no restrictions are placed on the 

way in which the computation may proceed, except that parallel operations are 

not allowed. We show that in such an unrestricted environment TIME⋅SPACE = 

Ω(N2/ log N) in order to sort N integers, each in the range [1, N2]. 

Key words 
time-space tradeoffs, conputational complexity, sorting, time lower bounds, space 

lower bounds 

1 Introduction 
Within the field of computational complexity, our inability to establish lower 
bounds on the complexity of “natural problems” stands in marked contrast to the 

progress that has been made in algorithmic design and analysis, and the progress 
in characterizing the central issues. To be fair, there are the following important 
exceptions: 
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1. Relative to an appropriate reducibility, a problem can be shown “hard” for an 

entire complexity class. Then diagonalization can be used to infer a correspond
ing complexity lower bound. For example, see the discussion in Aho, Hopcroft and 

Ullman [AHU74, Chapt. 11]. 
2. For certain natural but “structured” models of computation, we have a num

ber of interesting lower bounds. We use “structured” in the sense of Pippenger and 

Valiant’s [PV76] use of “conservative” to mean that the computation can only pro
ceed within a fixed mathematical structure (e.g., a partial order for comparison 

based models, a ring or field for algebraic complexity) and only uses the relations 
and functions within that structure for the computation (see also Borodin [Bor80]). 
For example, using comparison trees it is well known that sorting n elements 
requires at least n log n + O(n) comparisons. 

3. On certain nonstructured but restricted models of computation we have a few 

results. For example, to recognize the set {w # wR} on a one-tape Turing machine 

requires Ω(n2) steps. 
A general sequential model of computation can be viewed as a string processing 

machine. While the input string may arise as the encoding of a set of mathemat
ical objects, there is no obligation to process these objects in ways prescribed by 
the mathematical structure. In this context complexity is measured as a function 

of the input (plus output) length. If we ignore “diagonalization based results”, the 

following barriers are well recognized: 

a. To establish a nonlinear lower bound on time. 

b. To establish a nonlogarithmic lower bound on space.1 

c. To establish a nonlogarithmic lower bound on depth (= parallel time). 

Having recognized these barriers, it might seem wise to see if we can at least 
show that for some problem we cannot simultaneously achieve (say) linear time 

and logarithmic space. Such a result already appears in Cobham [Cob66], where he 

shows that for recognizing the set of perfect squares (or for recognizing {w $ wR}) we 

must have T ⋅ S = Ω(n2) for any computational device (including a multitape T ⋅ M.) 
having a separate one head-read only input tape. Here T = number of steps, S = 

“capacity” = log2 (number of configurations the machine enters when processing 

all strings of length n). The concept of “capacity” introduced by Cobham seems to 

capture just that property of space which lends itself to lower bound analysis. But 
whereas we accept a capacity lower bound on one of Cobham’s general machines 
to be an “intrinsic” lower bound (i.e., independent of the choice of any reasonable 

computational models) on space requirements, we cannot say that a T ⋅ S = Ω(n2) 

1. That is, prove space is not O(log n). 
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lower bound has the same intrinsic quality, because of the restriction of having only 
one input head. More specifically, by easily adapting Cobham’s argument (based on 

Hennie’s [Hen65] crossing sequence technique), Tompa [Tom78] shows that sort
ing m numbers, each of length log m bits (hence n = m log m), requires T ⋅S = Ω(n2). 
But the proof literally states and shows that merging two lists of m sorted numbers 
would require the same lower bound. But for merging, the use of (say) two input 
heads would trivially (via a linear merge) permit a simultaneous linear time and 

logarithmic space merge. We are then led to the following question: Given k “ran
dom access” input heads, can we sort (say on a multitape T ⋅ M. or unit cost RAM) 
in simultaneous linear time and logarithmic space? The main result of this paper 
shows that indeed this is not possible. In fact we will establish a lower bound analo
gous to (and based upon) the lower bound of T ⋅S = Ω(n2) established for sorting in 

the structured context of “branching programs” by Borodin, et al. [BFK+79]. Specif
ically we show T ⋅ S = Ω(N2/ log N), N the number of inputs and N = Ω(n/ log n) 
where n is the input length. To the best of our knowledge this is a unique result in 

that it establishes a lower bound (without diagonalization) on a completely unre
stricted general model of computation. Unfortunately, we have not yet been able 

to establish a similar bound for a set recognition problem and we should also note 

that our methods do not appear applicable to Knuth’s [Knu72] problem of in situ 

sorting. 

2 The Formal Model and an Outline of the Proof 
In a general model of computation, we might be able to solve a given problem by 
processing the input string in a manner which is completely outside the mathe
matical domain within which the problem has been defined. For example, consider 
solving for the existence of a path on a graph by using Strassen’s matrix multipli
cation algorithm and modular arithmetic (see Fischer and Meyer [FM71]). It seems 
almost impossible to make sense out of the individual bit operations in terms of 
the original problems. 

The “fortunate” fact for sorting is that such a problem, with its explicit require
ment for “ongoing progress” (in the sense of having to output ranks) allows us to 

enjoy a structured view of the computation even though we are working within a 

general computational model. Indeed we shall try to mimic the proof for the struc
tured case [BFK+79]. That proof was based on the following intuitive idea: if we 

don’t compare many elements, then we can’t know the ranks of many elements for 
many input permutations. We will need a somewhat more involved argument to 

show an analogous statement for the general model. 
Before discussing the model, we should define the problem formally. We con

sider an input of the form x1 # x2# · · · # xN where each xi is an integer in [1, N2] and 
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Definition 

Main theorem 

is coded in binary. Hence the total length of the input is O(N log N). The sorting 

problem is to output a sequence of distinct pairs i1, r1; i2, r2; · · · ; iN , rN such that xij 
has rank rj. (Without loss of generality we can assume that xi’s are distinct.) As 
in Borodin et al. [BFK+79] we can define the k-ranking subproblem; namely, out
put a sequence i1, r1; · · · ; il, rl, l > k which correctly represents the ranks of l of the = 
xij ’s. (The l indices lj which are assigned ranks may be different for different input 
values.) 

This definition of sorting is not standard. Usually, one requires outputting the 

xt values in sorted order. However, for the model we are considering, any algorithm 

which sorts in this usual manner can be adapted to one which outputs pairs ⟨ij, rj⟩ 
by assuming that the index i has been concatenated onto xi as the low order bits. 
It will follow that a TIME ⋅ SPACE lower bound in our framework for inputs in the 

range [1, N2] will imply the same lower bound in the usual setting for inputs in the 

range [1, N3]. 
Our formal models are as follows: 

An R-way integer tree program is an R-ary tree (hereafter called an R tree), where each 

branch is labelled by elements of [1, R], and each internal node is labelled by some 

index i (referring to xi). The interpretation is that if the computation has proceeded 

to an internal node labelled by “xi” then it will continue to proceed along edge u 

iff xi = u. Output takes place at the leaves. In particular, it should now be clear to 

say how a computation tree solves the k-ranking problem, or more generally how 

a computation tree solves the k-ranking problem for some subset I of the possible 

inputs. The time complexity of a computation tree is its depth; that is, the maxi
mum number of times inputs are accessed in a computation. Since we assume all 
xi are distinct, any branch which has two edges with the same label u for distinct 
xi will be inaccessible. We assume these inaccessible paths have been pruned. 

An R-way integer branching program (hereafter called an R branching pro
gram) is the nonstructured analogue of a comparison branching program [Tom78]. 
Namely, it is a directed acyclic rooted graph with each nonsink node having out-
degree R, with the R out edges labelled 1, 2, · · · , R. Without loss of generality, we 

can assume that the graph is in levels and that an edge out of a node at level l is 
directed to a node at level l + 1. (See Tompa [Tom78] for a discussion of the anal
ogous assumption for comparison branching programs.) Outputs can now occur 
on any edge. The time complexity is again the depth and space = capacity = log2 

(number of nodes in the graph). We can now state: 

Let 𝜏 be an R branching program for sorting N integers and let R = R(N) = N2. Then 

T ⋅ S = Ω(N2/ log N) where T and S denote, respectively, the time and space complexity 
of 𝜏 . 
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Before proceeding to the proof, we should comment briefly on the generality 
of the model. Suppose we have a general computational machine with k read-only, 
“random access” heads. It should be clear that by assuming k = 1 we will only slow 

down the machine by at most a constant factor (i.e., k). Our tree and branching 

programs assume that we will know an entire input xi if we access any bit of that 
input. Hence, we are willing to ignore the log N factor it might cost to look at a 

given input. Each node of the computation graph represents a distinct state of the 

computation. Like Cobham [Cob66], it is profitable for us to ignore completely how 

(and if) the storage can be represented and manipulated. Again, we are willing to 

ignore the time spent manipulating the storage between accesses of the input. We 

thus argue that our model and the time and space measures are sufficiently gen
eral that any lower bounds do reflect an intrinsic property of the function (sorting) 
being computed. 

Having presented and justified the model, we can now informally sketch the 

proof. To do so, it is helpful to review the proof for the structured case [BFK+79]. 
The basic lemma in that proof states that a {<, >} comparison tree program on n 

inputs of depth (time) t can solve the k ranking problem for at most (t + 1)k(n − k)! 
input permutations. This lemma is applied with k = S = space. Thus for any c > 1, 
by making t = 𝛼n for 𝛼 sufficiently small, we can say that the S ranking problem 

has been solved for at most a fraction (1/c)S of the n! possible input permutations. 
Now if 𝜏 is a {<, >} branching program for sorting, we consider the computation at 
the ith “stage” = (i ⋅ = n/S. In going from stage i to stage i+1, we can only t)th step, i <

correctly calculate S more ranks for at most n!2S ⋅ (1/c)S input permutations, since 

there are at most 2S nodes at the ith stage, each of which can be considered the root 
of a tree program. Thus by an appropriate choice of t = Ω(n) we have c > 2 so that 
in going from stage i to stage i + 1 we have computed more than S new ranks for 
at most a fraction (1/d)S of all possible input permutations. It follows that we will 
need at least i = n/S stages to complete the computation, and hence T = Ω(n2/S). 

We want to establish the analog of the basic lemma, after which the rest of 
the proof follows exactly as before. We will show that for any c > 1, we can find 

suitable 𝛼 such that any R-tree program (R = N2) of depth t = 𝛼N can solve the 

S log N ranking problem for at most a fraction (1/c)S of the the possible inputs. In 

our case, that are N!(RN ) possible input sequences ⟨x1, . . . , xN ⟩ since we are assuming 

distinct {xi}. 
In viewing the proof of the structured case, we can observe that every path in a 

computation tree can successfully solve the k ranking problem for at most a frac
tion (t + 1)k/[n ⋅ (n − 1) · · · (n − k + 1)] of the permutations following that path. 
In our case, we can see that some short paths can be very successful; indeed if we 

discover that some xi = 1 (or xi = N2) on a given path, then we know the smallest 
(respectively, largest) element for every input sequence on that path. Moreover, if 
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we find some xi = 2 (and no xj seen so far is equal to 1) we still have a pretty good 

chance if we guess that xi is the smallest element. But, we can also see intuitively 
that our chance of guessing correctly as to which is the smallest element starts to 

decrease if we have only seen a few not so small numbers. 
So this will be our approach for establishing the analogous main lemma: We 

assert that, with sufficiently high probability, at a leaf of an R-tree program the 

elements that we have seen on this path will be “spread out” in such a way that 
there is only a small probability (i.e., for only a small fraction of all possible input 
sequences) that we will correctly output S ranks. 

3 The Proof of the Main Lemma 
Throughout this section we will be considering R tree programs 𝜏 such that each 

leaf 𝜃 of 𝜏 is labelled with a ranking sequence i1, r1; · · · ; il, rl, where l = l𝜃 may 
depend on the leaf 𝜃. We say 𝜏 solves the m ranking problem for an input sequence 
⟨x1, . . . , xN ⟩ provided this input leads to a leaf 𝜃 for which l𝜃 = 

> m, and all l𝜃 ranks 
are correctly specified (i.e., xij is the rjth smallest input, 1 < j < l𝜃). The follow= = 

1ing notation will be maintained: t < N is the depth of the R tree program 𝜏 (we = 2 

may asssume all paths in 𝜏 have length t by extending shorter ones if necessary), 

and f (k) stands for k[log N]. We will see that R = R(N) = N2 is sufficiently large 

for our purposes, and since all results hold a fortiori for larger R, we will assume 

R = N2. Our proofs will be formulated in the language of probability theory and 

= 

we will speak of a random input in the sense that any of the N!(RN ) possible input 
sequences are considered to be equally likely. 

We are now ready to state the main lemma, which says that any sufficiently 
shallow R tree program (regardless of its capacity) cannot output many ranks 
correctly. 

Lemma 1 For all c > 0 there is an 𝛼 > 0 such that for all 𝜏 with t < = 𝛼N and N sufficiently large, 
and for all k with f (k) <= t, the set I of inputs for which 𝜏 solves the 2f (k) ranking prob
lem satisfies #I/(N!(R = (1/c)

k . Restated: with probability at most (1/c)k , 𝜏 correctly N )) <

outputs 2f (k) or more ranks for a random input. 

Definition	 A set S = {xi1 , · · · , xit } of inputs is ⟨𝜌, k⟩ spread out if for every subset S ′ ⊆ S with 

#S ′ = f (k) there is a subset {y1, . . . , yk} (listed in increasing order) of S’ such that 

N > 2 is the number of input elements, k is a positive integer satisfying 2f (k) <= N, 

= 

Lemma 2 For all integers 𝛽 > 0 there is an 𝛼 > 0 such that, for all 𝜏 with t < 𝛼N and all k = 
with f (k) < t, P[𝜏 , k, 𝛽] < (1/N)k, where P[𝜏 , k, 𝛽] is the probability that a random = = 
input ⟨x1, . . . , xN ⟩ to 𝜏 will follow a path along which the accessed input elements are 
not ⟨𝛽R/N, k⟩ spread out. 

yj+1 − yj − 1> 𝜌, for 0 < = k. (Here y0= j < = 0 and yk+1 = R + 1.) 
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Lemma 3	 For all d > 0 there is an integer 𝛽 > 0 such that for all 𝜏 with N sufficiently large and 

for all k with 2f (k) < N if the accessed input elements ⟨xi1 , · · · , xit ⟩ at a leaf 𝜃 of 𝜏 are = 
⟨𝛽R/N, k⟩ spread out and the ranking sequence labelling 𝜃 contains at least 2f (k) ranks, 
then the fraction of those inputs leading to 𝜃 that are correctly ranked is at most (1/d)k . 

Lemma 1 follows from Lemmas 2 and 3 as follows. Choose d > 2c in Lemma 3= 
to get 𝛽 and apply Lemma 2 to get 𝛼. By Lemma 2 it does no harm to assume all 
leaves whose accessed inputs are not spread out always correctly solve the 2f (k) 
ranking problem, and the remaining leaves either output fewer than 2f (k) ranks or 
(by Lemma 3) are correct for too few inputs. 

Proof of Lemma 2. Every leaf 𝜃 of 𝜏 uniquely determines a t-tuple (xi1 , · · · , xit ) of 
accessed elements, written in the order in which they are accessed on the path 

to 𝜃. Conversely, every t-tuple of distinct integers in the interval [1, R] uniquely 
determines a leaf. Thus there is a one to one correspondence between leaves and 

t-tuples, and exactly a t! to one correspondence between leaves and sets of t dis
tinct integers from [1, R]. Further, any two leaves have the same number of input 
sequences (x1, . . . , xN ) leading to them. Therefore P[𝜏 , k, 𝛽] is just that fraction of 
sets of t distinct integers from [1, R] which are not ⟨𝛽R/N, k⟩ spread out. 

Divide the interval [1, R] into N equal subintervals called bins of length N each 

(recall R = N2). Let P̃ [t, N, k, 𝛿] be the probability that, when t balls are drawn (with
out replacement) from an urn of R balls numbered 1, 2, · · · , R, there exists some set 
of f (k) of the drawn balls which lie in at most 𝛿 bins2. We claim that P̃ [t, N, k, 𝛿] is 
an upper bound on P[𝜏 , k, 𝛽] where 𝛿 = k(𝛽 + 1) + 𝛽. For, if S is the set of t drawn 

balls and if every subset S ′ ⊆ S of f (k) balls lies in 𝛿 + 1 or more bins B1, . . . , B𝛿+1 

(listed in the order in which these intervals occur in [1, R]), then we can choose one 

ball from each of the k bins Bi(𝛽+1), 1 < = k, to form the required subset {y1, · · · , yk}= j <

in the definition of (𝛽R/N, k) = (𝛽N, k) spread out. This is because at least 𝛽 bins 
lie entirely to the left of y1, at least 𝛽 bins lie entirely to the right of yk, and any two 

adjacent yj’s are separated by at least 𝛽 bins (𝛽 bins equals 𝛽N elements). 
To estimate P̃[t, N, k, 𝛿], let p(bi) be the probability that a particular bin Bi has at 

least bi balls (after t are drawn). We claim that ∏𝛿 
i=1 p (bi) is an overestimate of the 

probability that a particular set of 𝛿 bins B1, · · · , B𝛿 get packed (respectively) with 

at least b1, · · · , b𝛿 balls. This is because the condition that a set of bins has some 

minimum number of elements can only decrease the probability that a particular 

2. Here is the essential place that the log N factor in our main result T ⋅ S = Ω(N2/ log N) enters 
the proof. Specifically, we cannot assert that P̃ would be sufficiently small if f (k) were O(k) rather 
than k log N. 
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bin has at least bi elements. Hence 

𝛿 

P̃[t, N, k, 𝛿] < ∑ 
N 

∏ p (bi) .= ( 𝛿 )(b1,···,b𝛿 i=1 
Σbi =f (k) 
> 0=bi

Here (N 
𝛿 ) gives the number of ways to choose a set of crowded bins, and the 

summation represents the number of ways to pack a set of crowded bins. 

Proof. The probability that a particular bin has exactly l balls is given by 

N N2 − N 
l l( l )( t − l ) Nl (N2 − N)

t−l
t! 2 2t< < tl <= ⋅ ⋅ = ( = (2𝛼)

l . 
N2 (N2 − t)t l! (t − 1)! = ( N ) N ) 

= 

( t ) 

Thus 

t b2 (𝛼)b 1 1<p(b) <∑ (2𝛼)l < for 𝛼 = ,= = (1 − 2𝛼 c ) 4cl=b 

We claim that for all c> 1 there is 𝛼 > 0 such that p(b) < = 𝛼N).= (1/c)
b (where t < 

assuming b = 
> 1. The claim is obvious if b = 0.
 

We thus have
 

N 𝛿 
<P̃[t, N, k𝛿] ∑ ∐ p (bi)= 𝛿 )b1+···+b𝛿 =f (k)( i=1 

= (f (k) + 1)
𝛿< N𝛿 ( 

1 )
f (k) 

c 

)
k⌈log N⌉ 

<(since f (k) < N, f (k) = k ⌈log N⌉) = N
2𝛿 ( 

1 
c 

(for 𝛿 = k (𝛽 + 1) + 𝛽) < N2k(𝛽+1)+2𝛽 ( 
1 

= Nlog c )
k 

<= ( N 
1 )

k 
for sufficiently large c. ■ 

{ }
Proof of Lemma 3. Let xi1 , . . . , xit , be the input elements accessed on the path 

< <to 𝜃. Suppose at 𝜃 the labels assert that xjv has rank rv for 1 v 2f (k). Note = = 
that we are not necessarily implying that any xjv ∈ {xi1 , · · · , xit } but, intuitively, one 

would expect a better chance at “guessing” the rank of an element which has been 

seen. Suppose that fewer than half of the indices for which 𝜃 assigns ranks are 

among the set {i1, · · · , it}. Then there is a set S of u = 
> k[log N] indices i for which 

𝜃 assigns a rank and whose corresponding value xi can be anything in the set 
{1, 2, · · · , R} − {xi1 , · · · , xit }. In particular, all u! possible orderings of the set {xi| i ∈ S} 
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are possible and equally likely, and a necessary condition that 𝜃 rank them prop
erly is that they be in the right order. Hence at most a fraction 1/u! of the inputs 
leading to 𝜃 are correctly ranked, and 1/u! < (1/d)k for sufficiently large N, since = 
u> k log N. 

The remaining case is that half or more (that is at least k[log N] = f (k)) of the 

indices for which 𝜃 assigns ranks are among the set {i1, · · · , it}. Let S’ be the set of 

= 

inputs at these indices (so #S ′ 

= 

> f (k)). Since {xi1 , · · · , xit 
there is a subset {y1, · · · , yk} of S’ such that yj+1 − yj − 1

= } is ⟨𝛽R/N, k⟩ spread out, 
> 𝛽R/N, 0 < = k, where = j < 

y0 = 0, yk+1 = R + 1. Let 𝜃 output the assertions that yi has rank rj, 1 < j < k.= = 
These assertions are equivalent to saying that exactly rj − rj−1 − 1 of the inputs lie 

in the open interval (yj−1, yj), 1 < = k + 1, where we understand that r0= j < = 0 and 

rk+1 = N +1. This in turn is equivalent to saying that exactly kj of the inputs which 𝜃 

does not access lie in the set Cj = (yj−1, yj) − {xi1 , · · · , xit }, where kj = rj − rj−1 − 1 − uj, 
and uj = #(yj−1, yj) ∩ {xi1 , … , xit } (i.e., uj is the number of inputs which 𝜃 knows to 

lie between yj−1 and yj). 
We have thus reduced our problem to a more traditional probability setting, 

namely that of the hypergeometric distribution (see Feller [Fel68, p. 43]). We have 

a population of size n = R − t, made up of ni elements of “color i” (i.e., member of 
the set Ci), 1 < = l = k + 1. We seek an upper bound on the probability = i <

n1 n2 nl 
k2 )

· · · 
(k1 )( (kl ) 

pk1 . . .kl = . (1) 
n 

(r ) 

that a sample (without replacement) of size r = N − t = ∑l
i=1 ki will contain exactly 

ki elements of color, i, 1 < i < l. The required bound is given by Lemma 4 below. = = 
For our application we have rni/n = (N −t)(̸= Ci)/(R−t)

= 

> (N −t)(𝛽R/N −t)/(R−t). 
> 

2
1 𝛽R/N for 𝛽 > 1. Thus 

= 
N2 so that 𝛽R/N − tBut t <= 

1 
2 N and furthermore3 R = = 

rni/n

= 

= 
> 𝛽/4 since N − t

on r, n, ni and l for Lemma 4 will be satisfied for sufficiently large N. Lemma 3 now 

follows from the following: 

> 2l𝛽, and n

> 1 
2 N. Further l − 1 = k <= N/ log N. Hence the constraints = 

Lemma 4 For all d > 0 there exists a 𝛽 > 0 such that if rni/n > 𝛽 for 1 < = l, r= i < > = 
2r, then for all k1, · · · , kl the hypergeometric distribution satisfies 

l1 
pk1 ···kl < .= ( d ) 

= 

3. This is the only place we need assume that R is as large as N2. 
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We need the following two lemmas to prove Lemma 4. Note that Lemma 5 states 
that the value of ki for which the hypergeometric distribution is maximal is close 

to the expected value rpi of the number of elements of color i obtained in r draws. 
If this optimal value were exactly rpi, the proof of Lemma 4 would be substantially 
simpler. 

Lemma 54 The values of ki in the maximal term of the hypergeometric distribution pk1 ···kl satisfy 

rpi − 1 < ki < rpi + (l − 1) pi + 1, (2)
1 + l/n 

where pi = ni/n, 1 < = l.= i <

Proof. For any pair (i, j) of distinct indices we calculate the ratio 

p · · · ki + 1, · · · , kj − 1 · · · (ni − ki) kj= . 
pk1,···,kl (ki + 1) (nj − kj + 1) 

A necessary condition for pk1,···,kl to be maximal is that the numerator does not 
<exceed the denominator, or (ni − ki)kj (ki + 1)(nj − kj + 1). If we divide by n= 

and rearrange this becomes 

ki − kj + 1<pikj = pjki + pj + . (3)
n 

If we sum (3) over all j ̸ = 1 and Σki = i and use the identities Σpi = r, then we obtain 

the left half of (2). Similarly, if we sum (3) over all i ̸ j we obtain the right-hand = 

side of (2). ■ 

= 
> z𝜀

. 

|𝜃|Lemma 6 For all 𝜀 > 0 there is a z𝜀 such that for all 𝜃 and for all z

= 

z
𝜃 |𝜃|> (1 + 𝜀)− 𝜃 

(1 + e
z ) 

= 

Note that z𝜀 does not depend on 𝜃. 

Proof. From elementary calculus we have limz→∞(1 + 𝜃/z)z = e𝜃 . Setting 𝜃 = 1 and 
> z𝜀.−1 we conclude (1 + 1/z)z = 

> (1 + 𝜀)−1 e and (1 − 1/z)z 
′ ′

= 

= 

= 

> (1 + 𝜀)−1 e−1 for z
|𝜃| |𝜃| ′ > (1 + 𝜀)− e𝜃 for z > z𝜀; i.e., 
′|𝜃| we have (1 + 𝜃/z)z = (1 + 𝜃/(z |𝜃|))zSetting z = z 

|𝜃|. ■for z = 
> z𝜀

4. Feller [Fel68, p. 171, Exercise 28] states a similar result for the multinomial distribution. Our 
proof is suggested by Feller’s hints. 
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Proof of Lemma 4. We have 

pk1 ···kl = (∏ ni!) r! (n − r)!/[n! ∏(ki!(ni − ki)!)]. 

√ < <Stirling’s approximation implies that 1/Co 2𝜋m (m/e)m /m! C0 for some = = 
constant C0 > 1 and all m > 1. Using this approximation for each factorial, and 

substituting rpi + 𝜃i for ki, 1 < i < 1, where pi = ni/n and 𝜃i has been chosen to = = 
maximize (1), we obtain 

<pk1 ···kl = ABC
3l+3, (4)0 

where 
√ 

(∏ ni) r (n − r)

= 

and 

ni(∏ ni ) rr (n − r)n−r 

= 

A (5)= 
∏( ) ( ) (( ) )l 1−2 + − −𝜋 𝜃 𝜃n rp n r pi i i i

B (6)= . 
nn ∏ [(rpi + 𝜃i)rpi+𝜃i ((n − r) pi − 𝜃i)(n−r)pi−𝜃i ] 

For (5) and (6) we have used the identity ni − ki = (n − r)pi − 𝜃i. Notice that all 
occurrences of e cancel, since Σni = n. 

Since Σpi = 1 and Σki = r, it follows that Σ 𝜃i = 0. This fact can be used to 

verify that if B ′ is the number obtained by substituting 0 for the two occurrences 
of 𝜃i in the denominator (but not in the exponents) in the expression for B, then 

B ′ = 1. Thus if we multiply and divide the denominator of (6) by ∏[(rpi)rpi+𝜃i 

((n − r)pi)(n−r)pi −𝜃i ] we can simplify and obtain 

l rpi +𝜃i (n−r)pi−𝜃i −1 
𝜃i 𝜃iB = ∏ .

[ ((1 + 
rpi ) (1 − 

(n − r) pi ) )]i=1 

Now we apply Lemma 6 and use the fact that (1 + 𝜃/z)𝜃 
= 
> 1 for all z > 0 and all 

1 < = i < = l. 

|𝜃i |𝜃 to obtain B < , provided = (1 + 𝜀)2 ∑ 

|𝜃i| (n − r) pi |𝜃i|and (7)= 

= 

==
 

=
 

= 

> z𝜀 > z𝜀 

< <By Lemma 5, we have |𝜃i| = lrpi/(n+l)+(l−1)pi +2, so |𝜃i| = 2lpi +2. By assumption, 
> 𝛽, (n − r)> r and r> 2l𝛽. Hence 

> rpi

rpi , 

we have rpi

𝛽 |𝜃i|(n − r) pi (8)> ,
4= 
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<|𝜃i| = 2lpi + 2,> 4z𝜀. Now summing the bound 
<we obtain Σ|𝜃i| = 4l, so 

B <= (1 + 𝜀)8l . (9) 

It remains to estimate A from (5). We rewrite the product Π in the denominator 
as the product of five factors: 

l𝜃i r 𝜃i∏(rpi) ⋅∏(1 + ⋅∏ ni ⋅ (1 − ⋅∏(1 − 
rpi ) n ) (n − r) pi ) 

. 

=so the provisos (7) are satisfied for 𝛽

= 

To estimate the first factor Πrpi, notice that ΣrPi = r, and each rpi

> 2−l. The same 

= 
> 𝛽 by assump

tion. With these constraints, this product obtains its minimum when all but one 

of the factors are as small as possible (namely 𝛽). Thus 

1
∏ (rpi) ( ( ) )l 1− l 1− −> 𝛽 𝛽r >= r𝛽l−1.

2 

From (8), we have 1 + 𝜃i/(rpi)

= 

= 
> 8, so Π(1 + 𝜃i/(rpi))

bound applies to the fifth factor and (since n > 2r) to the fourth. The third factor 
> 1 

2 for 𝛽= 

cancels with the numerator. Thus 

l 

A < = ( c )= [(2𝜋)
l−1 𝛽l−12−3l+1]

−1/2 < 1 

= 
> 𝛽C. Lemma 4 follows from this, (4) and (9). 

4 Proof of the Main Theorem 
As indicated earlier in the paper, we will follow the general argument used in the 

structured case. As in § 3, we again assume R = R(N) = N2. We let T denote the 

time (that is, the depth) of a branching program, and let S denote the space (that 
is, the capacity = log2 # nodes). Since we must clearly (by the simplest adversary 

for any c and 𝛽 ■ 

argument) have T === 
> N and S> log2 T, we have S> log2 N. Let us restate the main 

theorem. 

Theorem Let 𝜏 be an R branching program for sorting N integers. Then T ⋅ S = Ω(N2/ log N). 

Proof. Letting c = 4, use Lemma 1 to obtain 𝛼 for N sufficiently large. We will now 

consider 𝜏 in stages, where every stage represents t = [𝛼N] steps. 

For 1 < = N/(2f (S)), let Pi be the fraction of input sequences for which 𝜏 has= i <

output at least 2if (S) ranks by the end of the ith stage. We shall now prove 

S 
< 1

Pi = i ( 
. (*)

2 ) 
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For each node 𝜃 on the (i ⋅ t)th level ( = end of stage i) let Pi,𝜃 be the fraction 

of input sequences which lead to 𝜃 and for which 𝜏 outputs at least 2f (S) ranks 
during the i + 1st stage. If we expand the part of the (i + 1)st stage that is rooted 

at 𝜃 into an R tree, we see by Lemma 1 that (regardless of what has happened in 

earlier stages) Pi,𝜃 
< ( 1 )S. Since there are at most 2S nodes 𝜃 at level i ⋅ t, we have = 4 

< < ( 1 <Pi+1 = Pi + Σ𝜃Pi,𝜃 Pi + 2S ⋅ )S, or Pi+1 = Pi + ( 2
1 )S. This inequality holds for = 4 

0 < = N/(2(f (S)), if we define P0= i < = 0. The inequality (*) now follows by induction 

on i. 
Recall f (S) = S⌈log N⌉. If 2f (S) > N then S > N/2⌈log N⌉, so ST = Ω(N2/ log N) 

in this case. If 2f (S) < = ⌊N/(2f (S))⌋ in (*) to obtain since = N, then we can set i = i0 
<(S > log N) Pi0 (N/(2f (S))) ⋅ 1/N = 1/(2f (S)) < 1. Hence at stage i0 for some = = 

input, 𝜏 has output fewer than 2i0 f (S) < > i0t = ⌊N/(2f (S))⌋ ⋅ ⌊𝛼N⌋ = = N ranks, so T = 
Ω(N2/(S log N)) steps. ■ 

5 Conclusion 
In order to better appreciate the application of the main theorem, we offer the 

following example. 
Let M be any machine (say, a unit cost RAM or vector machine with opera

tions +, −, ×, ÷, ↑) whose inputs are accessed from a random access read-only input 
device. We only insist that there is a bound on the number of inputs accessible 

on a given computation step. Choose any “fair” definition of space, e.g., space = 

maxj ∑t
i=1 ⌈log(ri

j + 1)⌉ where ri
j is the contents of register i at time j and t is the 

largest register used. For such a machine the theorem yields T ⋅ S = Ω(N2/ log N). 
And, of course, the same result holds for multidimensional Turing machines, etc. 

Although the lower bound T ⋅ S = Ω(N2/ log N) established in this paper for 
a general model of computation differs by a log factor from the lower bound for 
the structured case [BFK+79], the upper bounds for the structured case apply 
unchanged. This is because a “structured algorithm” is a {< , >} branching pro
gram, and a comparison xi < xj over the domain [1, R] can be carried out on 

an R branching program in two time steps and R + 2 nodes. However, in order 
to be sure that the time and space of the simulating program are of the same 

order as the time and space of the original program, it is necessary to assume 

R = O(Nk) for some k. Under this assumption, the upper bound T ⋅ S = O(N2 log N), 
for Ω(log N) < S < O(N) recently established by Frederickson [Fre80] for a unit = = 
cost “structured” random access machine with suitable instructions applies to an 

R branching program. (Frederickson’s bound generalizes the one in [BFK+79]). It 
is worth noting that for “unstructured” (i.e., general) random access machines, 
the upper bound can be extended, using radix sort, to the case T = O(N) and 

S = O(N log N). 
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We thus have a log2 N discrepancy in the upper and lower bounds. We note that 
we can improve on the upper bounds when R = N+O(N), say by finding the missing 

elements. 
It seems to us, however, that the discrepancy in the bounds is far less impor

tant than the need to establish analogous results for a set-recognition problem; 
for example, determining if X ∩ Y = ∅. At the present time such a time-space result 
has not yet been established for the structured comparison model. We believe that 
our results suggest that proofs for the structured model may provide a framework 

for the general model. However, it must be noted that the less constructive variant 
of branching programs for “silent sorting” mentioned in Borodin et al. [BFK+79, 
Conclusion] becomes trivial in the general setting. 

In retrospect, we can see that our methods are quite “brute-force”. In particular, 
we do not make an essential use of an adversary. Rather what we have is basically 
a counting argument. Moreover, we do not make full use of the fact that space is 
limited throughout the computation; we only use the fact that it is restricted at cer
tain points of the computation. We suspect that the set recognition problems will 
entail a more sophisticated argument. 

A more general view of time-space complexity is captured in Cook’s class SC 

[Coo79, Coo80] (formerly PLOPS); that is, those problems for which there exist algo
rithms which run simultaneously in polynomial (sequential) time and logk (for some 

k) space. Obviously, any problem (e.g., sorting, X ∩ Y = ∅?, etc.) which is in log 

space, is also in SC. A central issue for computational complexity is to establish the 

conjecture (assuming it is true) that P ∩ (∪k DSPACE (logk)) ̸⊇ SC. Cook and Tompa 

(see Tompa [Tom78]) show that the structured branching program model (with 

either {=, ̸=} or {<, =, >} as the allowable comparisons) may provide a sufficiently 
general setting for this conjecture. 

Another important direction for future work lies in the related (but apparently 
different) question of size vs. depth. The recent work of Pippenger [Pip79], Ruzzo 

[Ruz79a], and Dymond and Cook [DC80], has focused attention on the stability and 

importance of the class NC; that is, those problems for which there are algorithms 
which run simultaneously in polynomial size (= sequential operations) and logk 

depth (= parallel time). Again, it is a central issue in complexity to establish the 

conjecture P ∩ (∪k parallel time (logk)) ̸⊇ NC. 
Motivated by the results of this paper, we would like to find a problem for which 

(say) size ⋅ depth = Ω(N2). Sorting will not suffice since we can sort simultaneously 
in log2 depth and N log2 N size using a Batcher sorting network. However, one is 
tempted to conjecture that any Boolean circuit for sorting which uses only k log N 

depth requires cN1+𝜀 size where c and 𝜀 will depend upon k. The class of problems 
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which are computable by a log depth, N logk N size circuit is a class of practical 
importance. We suspect that it will be difficult to prove that a given problem does 
not belong to this class. 
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15
We introduce the tree evaluation problem, show that it is in LogDCFL (and hence 

in P), and study its branching program complexity in the hope of eventually prov
ing a superlogarithmic space lower bound. The input to the problem is a rooted, 
balanced d-ary tree of height h, whose internal nodes are labeled with d-ary func
tions on [k] = {1, . . . , k}, and whose leaves are labeled with elements of [k]. Each 

node obtains a value in [k] equal to its d-ary function applied to the values of its 
d children. The output is the value of the root. We show that the standard black 

pebbling algorithm applied to the binary tree of height h yields a deterministic 
k-way branching program with O(kh) states solving this problem, and we prove that 
this upper bound is tight for h = 2 and h = 3. We introduce a simple seman
tic restriction called thrifty on k-way branching programs solving tree evaluation 

problems and show that the same state bound of Θ(kh) is tight for all h ≥ 2 for deter
ministic thrifty programs. We introduce fractional pebbling for trees and show 
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that this yields nondeterministic thrifty programs with Θ(kh/2+1) states solving the 

Boolean problem “determine whether the root has value 1”, and prove that this 
bound is tight for h = 2, 3, 4. We also prove that this same bound is tight for unre
stricted nondeterministic k-way branching programs solving the Boolean problem 

for h = 2, 3. 
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1 Introduction 
What follows is a nondecreasing sequence of standard complexity classes between 

AC0(6) and the polynomial hierarchy. 

AC0(6) ⊆ NC1 ⊆ L ⊆ NL ⊆ LogCFL ⊆ AC1 ⊆ NC2 ⊆ P ⊆ NP ⊆ PH (1) 

A problem in AC0(6) is given by a uniform family of polynomial size bounded depth 

circuits with unbounded fan-in Boolean and mod 6 gates. As far as we can tell 
an AC0(6) circuit cannot determine whether a majority of its input bits are ones, 
and yet we cannot provably separate AC0(6) from any of the other classes in the 

sequence. This embarrassing state of affairs motivates this article (as well as much 

of the lower bound work in complexity theory). 
We propose a candidate for separating NL from LogCFL. The tree evaluation 

problem FTd(h, k) is defined as follows. The input to FTd(h, k) is a balanced d-ary tree 

of height h, denoted Td
h (see Figure 1). Attached to each internal node i of the tree 

is some explicit function fi : [k]d → [k] specified as kd integers in [k] = {1, . . . , k}. 
Attached to each leaf is a number in [k]. Each internal tree node takes a value in [k] 
obtained by applying its attached function to the values of its children. The func
tion problem FTd(h, k) is to compute the value of the root, and the Boolean problem 

BTd(h, k) is to determine whether this value is 1. 

http://doi.acm.org/10.1145/2077336.2077337
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Figure 1 A height 3 binary tree T23 with nodes numbered heap style. 

It is not hard to show that a deterministic logspace-bounded polytime auxiliary 
pushdown automaton decides BTd(h, k), where d,h and k are input parameters. This 
implies by Sudborough [Sud78] that BTd(h, k) belongs to the class LogDCFL of lan
guages logspace reducible to a deterministic context-free language. The latter class 
lies between L and LogCFL, but its relationship with NL is unknown (see Mahajan 

[Mah07] for a recent survey). We conjecture that BTd(h, k) does not lie in NL. A proof 
would separate NL and LogCFL, and hence (by (1)) separate NC1 and NC2. 

Thus we are interested in proving superlogarithmic space upper and lower 
bounds (for fixed degree d ≥ 2) for BTd(h, k) and FTd(h, k). Notice that for each con
stant k = k0 ≥ 2, BTd(h, k0) is an easy generalization of the Boolean formula value 

problem for balanced formulas, and hence it is in NC1 and L. Thus it is important 
that k be an unbounded input parameter. 

We use Branching Programs (BPs) as a nonuniform model of Turing machine 

space: A lower bound of s(n) on the number of BP states implies a lower bound 

of Θ(log s(n)) on Turing machine space, but to go the other way, that is, to deduce 

BP size lower bounds from Turing machine space lower bounds, we would need to 

defeat a Turing machine supplied with an advice string for each input length. Thus 
BP state lower bounds are stronger than TM space lower bounds, but we do not 
know how to take advantage of the uniformity of TMs to get the supposedly easier 
lower bounds on TM space. In this article all of our lower bounds are nonuniform 

and all of our upper bounds are uniform. 
In the context of branching programs we think of d and h as fixed, and we are 

interested in how the number of states required grows with k. To indicate this point 
of view we write the function problem FTd(h, k) as FTh(k) and the Boolean problem d 

BTd(h, k) as BTh(k). For this it turns out that k-way BPs are a convenient model, d 

since an input for BTh(k) or FTh(k) is naturally presented as a tuple of elements in d d 

[k]. Each nonfinal state in a k-way BP queries a specific element of the tuple, and 

branches k possible ways according to the k possible answers. 
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It is natural to assume that the inputs to Turing machines are binary strings, so 

2-way BPs are a closer model of TM space than are k-way BPs for k > 2. But every 
2-way BP is easily converted to a k-way BP with the same number of states, and every 
k-way BP can be converted to a 2-way BP with an increase of only a factor of k in the 

number of states, so for the purpose of separating L and P we may as well use k-way 
BPs. 

Of course the number of states required by a k-way BP to solve the Boolean prob
lem BTd

h(k) is at most the number required to solve the function problem FTd
h(k). In 

the other direction it is easy to see (Lemma 2.3) that FTh(k) requires at most a factor d 

of k more states than BTh(k). From the point of view of separating L and P a factor of d 

k is not important. Nevertheless it is interesting to compare the two numbers, and 

in some cases (Corollary 5.2) we can prove tight bounds for both: For deterministic 
BPs solving height 3 trees they differ by a factor of log k rather than k. 

The best (i.e., fewest states) algorithms that we know for deterministic k-way BPs 
solving FTh(k) come from black pebbling algorithms for trees: If p pebbles suffice d 

to pebble the tree Td
h then O(kp) states suffice for a BP to solve FTh(k) (Theorem 3.4).d 

This upper bound on states is tight (up to a constant factor) for trees of height h = 2 

or h = 3 (Corollary 5.2), and we suspect that it may be tight for trees of any height. 
There is a well-known generalization of black pebbling called black-white peb

bling which naturally simulates nondeterministic algorithms. Indeed if p pebbles 
suffice to black-white pebble Td

h then O(kp) states suffice for a nondeterministic 
BP to solve BTh(k). However the best lower bound we can obtain for nondeterd 

ministic BPs solving BT23(k) (see Figure 1) is Ω(n2.5), whereas it takes 3 pebbles to 

black-white pebble the tree T23. This led us to rethink the upper bound, and we 

discovered that there is indeed a nondeterministic BP with O(k2.5) states which 

solves BT23(k). The algorithm comes from a black-white pebbling of T23 using only 
2.5 pebbles: It places a half-black pebble on node 2, a black pebble on node 3, 
and adds a half-white pebble on node 2, allowing the root to be black-pebbled 

(see Figure 2). 
This led us to the idea of fractional pebbling in general, a natural generaliza

tion of black-white pebbling. A fractional pebble configuration on a tree assigns 
two nonnegative real numbers b(i) and w(i) totalling at most 1, to each node i in 

the tree, with appropriate rules for removing and adding pebbles. The idea is to 

minimize the maximum total pebble weight on the tree during a pebbling proce
dure which starts and ends with no pebbles and has a black pebble on the root at 
some point. 

It turns out that nondeterministic BPs nicely implement fractional pebbling 

procedures: If p pebbles suffice to fractionally pebble Td
h then O(kp) states suffice 
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Figure 2	 An optimal fractional pebbling sequence for the height 3 tree using 2.5 pebbles, all 
configurations included (except the empty starting configuration). The gray half-circle 
means the white value of that node is .5, whereas unshaded area means absence of 
pebble value. So for example in the seventh configuration, node 2 has black value .5 
and white value .5, node 3 has black value 1, and the remaining nodes all have black 
and white value 0. 

for a nondeterministic BP to solve BTh(k). The idea is that if node i has a fraction d 

b(i) + w(i) pebbles then the corresponding BP configuration remembers a fraction 

b(i) + w(i) of the log k bits specifying the value of node i, where b(i) bits are verified 

and w(i) bits are conjectured. After much work we have not been able to improve 

upon this O(kp) upper bound for any d, h ≥ 2. We prove it is optimal for trees of 
height 3 (Corollary 5.2). 

We can prove that for fixed degree d the number of pebbles required to pebble 

(in any sense) the tree Td
h grows as Θ(h), so the p in the preceding best-known upper 

bound of O(kp) states grows as Θ(h). This and the following fact motivate further 
study of the complexity of FTh(k).d 
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Fact 1	 A lower bound of Ω(kr(h)) for any unbounded function r(h) on the number of states 
required to solve FTh(k) implies that L ≠ LogCFL (Theorem 3.1 and Corollary 3.3).d 

Proving tight bounds on the number of pebbles required to fractionally pebble 

a tree turns out to be much more difficult than for the case of whole black-white 

pebbling. However we can prove good upper and lower bounds. For binary trees of 
any height h we prove an upper bound of h/2 + 1 and a lower bound of h/2 − 1 (the 

upper bound is optimal for h ≤ 4). These bounds can be generalized to d-ary trees 
(Theorem 4.4). 

We introduce a natural semantic restriction on BPs which solve BTh(k) or FTh(k):d d 

A k-way BP is thrifty if it only queries the function f (x1, . . . , xd) associated with a 

node when (x1, . . . , xd) are the correct values of the children of the node. 
It is not hard to see that the deterministic BP algorithms that implement black 

pebbling are thrifty. With some effort we were able to prove a converse (for binary 
trees): If p is the minimum number of pebbles required to black-pebble Th then2 

every deterministic thrifty BP solving BT2 
h(k) (or FT2 

h(k)) requires at least kp states. 
Thus any deterministic BP solving these problems with fewer states must query 
internal nodes fi(x, y) where (x, y) are not the values of the children of node i. For 
the decision problem BT2 

h(k) there is indeed a nonthrifty deterministic BP improv
ing on the bound by a factor of log k (Theorem 5.1 (16)), and this is tight for h = 3 
(Corollary 5.2). But we have not been able to improve on thrifty BPs for solving any 
function problem FTh(k).d 

The nondeterministic BPs that implement fractional pebbling are indeed 

thrifty. However here the converse is far from clear: there is nothing in the defi
nition of thrifty that hints at fractional pebbling. We have been able to prove that 
thrifty BPs cannot beat fractional pebbling for binary trees of height h = 4 or less, 
but for general trees this is open. 

It is not hard to see that for black pebbling, fractional pebbles do not help. This 
may explain why we have been able to prove tight bounds for deterministic thrifty 
BPs for all binary trees, but only for trees of height 4 or less for nondeterministic 
thrifty BPs. 

We pose the following as another interesting open question. 

Thrifty Hypothesis Thrifty BPs are optimal among k-way BPs solving FTh(k).d 

Proving this for deterministic BPs would show L ̸= LogDCFL, and for nondeter
ministic BPs would show NL ̸= LogCFL. Disproving this would provide interesting 

new space-efficient algorithms and might point the way to new approaches for 
proving lower bounds. 
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The lower bounds mentioned before for unrestricted branching programs when 

the tree heights are small are obtained in two ways: first using the Nec̆iporuk 

method [Nec̆66] (or see Wegener [Weg00]), and second using a method that ana
lyzes the state sequences of the BP computations. Using the state sequence method 

we have not yet beat the Ω(n2) deterministic branching program size barrier 
(neglecting log factors) inherent to the Nec̆iporuk method for Boolean problems, 
but we can prove lower bounds for function problems which cannot be matched by 
the Nec̆iporuk method (Theorems 5.5, 5.6, 5.9, 5.10). For nondeterministic branch
ing programs with states of unbounded outdegree, we show that both methods 
yield a lower bound of Ω(n3/2) states (neglecting logs) for the decision problem 

BT23. 

1.1 Summary of Contributions 
—	 We introduce a family of computation problems FTh(k) and BTh(k), d, h ≥ 2,d d 

which we propose as good candidates for separating L and NL from appar
ently larger complexity classes in (1). Our goal is to prove space lower bounds 
for these problems by proving state lower bounds for k-way branching pro
grams which solve them. For h = 3 we can prove tight bounds for each d ≥ 2 

on the number of states required by k-way BPs to solve them, namely, (from 

Corollary 5.2); 

Θ(k(3/2)d−1/2) for nondeterministic BPs solving BT3(k),d

Θ(k2d−1/ log k) for deterministic BPs solving BT3(k),d

Θ(k2d−1) for deterministic BPs solving FT3(k).d

—	 We introduce a simple and natural restriction called thrifty on BPs solving 

FTd
h(k) and BTd

h(k). The best-known upper bounds for deterministic BPs solv
ing FTh(k) and for nondeterministic BPs solving BTh(k) are realized by thrifty d	 d 

BPs (although deterministic nonthrifty BPs can save a factor of log k states 
over deterministic thrifty BPs solving the decision problem BT2 

h(k)). Proving 

even much weaker lower bounds than these upper bounds for unrestricted 

BPs would separate L from LogCFL (see Fact 1 earlier). We prove that for 
binary trees deterministic thrifty BPs cannot do better than implement black 

pebbling (this is far from obvious).1 

—	 We formulate the Thrifty Hypothesis. Either a proof or a disproof would have 

interesting consequences. 

1. In Wehr [Weh11] coauthor Wehr solved an open problem in Gál et al. [GKM08] by adapting 

our thrifty lower bound proof to prove an exponential lower bound on the size of semantic 
incremental branching programs solving GEN. 
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—	 We introduce fractional pebbling as a natural generalization of black-white 

pebbling for simulating nondeterministic space bounded computations. We 

prove almost tight lower bounds for fractionally pebbling binary trees (The
orem 4.4). The best-known upper bounds for nondeterministic BPs solving 

FTh(k) come from fractional pebbling, and these can be implemented by d 

thrifty BPs. An interesting open question is to prove that nondeterministic 
thrifty BPs cannot do better than implement fractional pebbling. (We prove 

this for h = 2, 3, 4.) 

—	 We use a “state sequence” method for proving size lower bounds for branch
ing programs solving FTh(k) and BTh(k), and show that it improves on the d d 

Nec̆iporuk method for certain function problems. 

The next major step is to prove good lower bounds for trees of height h = 4. 
If we can prove the Thrifty Hypothesis for deterministic BPs solving the func
tion problem (and hence the decision problem) for trees of height 4, then we 

would beat the Ω(n2) limitation mentioned before on Nec̆iporuk’s method. See Sec
tion 6 (Conclusion) for this argument, and a comment about the nondeterministic 
case. 

1.2 Relation to Previous Work 
Taitslin [Tai05] proposed a problem similar to BT2 

h(k) in which the functions 
attached to internal nodes are specific quasigroups, in an unsuccessful attempt 
to prove NL ̸= P. 

Gál et al. [GKM08] proved exponential lower bounds on the size of restricted 

n-way branching programs solving versions of the problem GEN. Like our prob
lems BTh(k) and FTh(k), the best-known upper bounds for solving GEN come from d d 

pebbling algorithms. 
As a concrete approach to separating NC1 from NC2, Karchmer et al. [KRW95] 

suggested proving that the circuit depth required to compose a Boolean function 

with itself h times grows appreciably with h. They proposed the universal compo
sition relation conjecture, stating that an abstraction of the composition problem 

requires high communication complexity, as an intermediate goal to validate their 
approach. This conjecture was later proved in two ways, first [EIRS01] using inno
vative information-theoretic machinery and then [HW93] using a clever new com
plexity measure that generalizes the subadditivity property implicit in Nec̆iporuk’s 
lower bound method [Nec̆66, Weg00]. Proving the conjecture thus cleared the road 

for the approach, yet no sufficiently strong unrestricted circuit lower bounds could 

be proved using it so far. 
Edmonds et al. [EIRS01] noted that the approach would in fact separate NC1 

from AC1. They also coined the name Iterated Multiplexor for the most general 
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computational problem considered in Karchmer et al. [KRW95], namely compos
ing in a tree-like fashion a set of explicitly presented Boolean functions, one per 
tree node. Our problem FTh(k) can be considered as a generalization of the Iterd 

ated Multiplexor problem in which the functions map [k]d to [k] instead of {0, 1}d to 

{0, 1}. This generalization allows us to focus on getting lower bounds as a function 

of k when the tree is fixed. 
For time-restricted branching programs, Borodin et al. [BRS93] exhibited a fam

ily of Boolean functions that require exponential size to be computed by nonde
terministic syntactic read-k times BPs. Later Beame et al. [BSSV03] exhibited such 

functions that require exponential size to be computed by randomized BPs whose √
computation time is limited to o(n log n/ log log n), where n is the input length. 
However all these functions can be computed by polynomial size BPs when time is 
unrestricted. 

In the present article we consider branching programs with no time restriction 

such as read-k times. However the smallest size deterministic BPs known to us that 
solve FTd

h(k) implement the black pebbling algorithm, and these BPs happen to be 

(syntactic) read-once. 

1.3 Organization 
The article is organized as follows. Section 2 defines the main notions used in this 
article, including branching programs and pebbling. Section 3 relates pebbling and 

branching programs to Turing machine space, noting in particular that a k-way BP 

size lower bound of Ω(kfunction(h)) for BTh(k) would show L ̸= LogCFL. Section 4d 

proves upper and lower bounds on the number of pebbles required to black, black-
white, and fractionally pebble the tree Td

h. These pebbling bounds are exploited 

in Section 5 to prove upper bounds on the size of branching programs. BP lower 
bounds are obtained using the Nec̆iporuk method in Section 5.1. Alternative proofs 
to some of these lower bounds using the “state sequence method” are given in Sec
tion 5.2. An example of a function problem for which the state sequence method 

beats the Nec̆iporuk method is given in Theorems 5.5 and 5.9. Section 5.3 contains 
bounds for thrifty branching programs. 

2 Preliminaries 
We assume some familiarity with complexity theory, such as can be found in Gol
dreich [Gol08]. We write [k] for {1, 2, . . . , k}. For d, h ≥ 2 we use Td

h to denote the 

balanced d-ary tree of height h. 

Warning	 Here the height of a tree is the number of levels in the tree, as opposed to the 

distance from root to leaf. Thus T22 has just 3 nodes. 
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Definition 2.1 

2.1 

Definition 2.2 

We number the nodes of Td
h as suggested by the heap data structure. Thus the 

root is node 1, and in general the children of node i are (when d = 2) nodes 2i, 2i +1 
(see Figure 1). 

Tree Evaluation Problems 
Given: The tree Td

h with each nonleaf node i independently labeled with a function 

fi : [k]d → [k] and each leaf node independently labeled with an element from [k], 
where d, h, k ≥ 2. 

Function evaluation problem FTh(k): Compute the value v1 ∈ [k] of the root 1 of Td
h ,d 

where in general vi = a if i is a leaf labeled a and vi = fi(vj1 , . . . , vjd ) if the children 

of i are j1, . . . , jd. 

Boolean problem BTh(k): Decide whether v1 = 1.d 

Branching Programs 
A family of branching programs serves as a nonuniform model of a Turing 

machine. For each input size n there is a BP Bn in the family which models the 

machine on inputs of size n. The states (or nodes) of Bn correspond to the possible 

configurations of the machine for inputs of size n. Thus for s(n) ∈ Ω(log n), if the 

machine computes in space s(n) then Bn has 2O(s(n)) states. 
Many variants of the branching program model have been studied (see in par

ticular the survey by Razborov [Raz91] and the book by Ingo Wegener [Weg00]). 
Our definition that follows is inspired by Wegener [Weg00, p. 239], by the k-way 
branching program of Borodin and Cook [BC82] and by its nondeterministic vari
ant [BRS93, GKM08]. We depart from the latter, however, in two ways: nondetermin
istic branching program labels are attached to states rather than edges (because we 

think of branching program states as Turing machine configurations) and cycles 
in branching programs are allowed (because our lower bounds apply to this more 

general model2). 

Branching Programs 
A nondeterministic k-way branching program B computing a total function g : [k]m → 

R, where R is a finite set, is a directed rooted multigraph whose nodes are called 

states. Every edge has a label from [k]. Every state has a label from [m], except 
|R| final sink states consecutively labeled with the elements from R. An input 
(x1, . . . , xm) ∈ [k]m activates, for each 1 ≤ j ≤ m, every edge labeled xj out of every 

2. A BP with cycles can be simulated by an acyclic BP by at most squaring the number of states. 
Hence this distinction is not important for separating L and P. 
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state labeled j. A computation on input x⃗ = (x1, . . . , xm) ∈ [k]m is a directed path con
sisting of edges activated by ⃗x which begins with the unique start state (the root), 
and either it is infinite, or it ends in the final state labeled g(x1, . . . , xm), or it ends 
in a nonfinal state labeled j with no outedge labeled xj (in which case we say the 

computation aborts). At least one such computation must end in a final state. The 

size of B is its number of states. B is deterministic k-way if every nonfinal state has 
precisely k outedges labeled 1, . . . , k. B is binary if k = 2. 

We say that B solves a decision problem (relation) if it computes the character
istic function of the relation. 

A k-way branching program computing the function FTh(k) requires as input kd 
d 

many k-ary arguments for each internal node i of Td
h in order to specify the function 

fi, together with one k-ary argument for each leaf. Thus in the notation of Defini
dh−1−1tion 2.1, FTh(k): [k]m → R where R = [k] and m = ⋅ kd + dh−1. Also BTh(k):d d−1 d 

[k]m → {0, 1}. 
For fixed d, h we are interested in how the number of states required for a k-

way branching program to compute FTh(k) and BTh(k) grows with k. We define d d 

#detFstateshd(k) (respectively, #ndetFstates
h
d(k)) to be the minimum number of 

states required for a deterministic (respectively, nondeterministic) k-way branching 

program to solve FTh(k). Similarly we define #detBstateshd(k) and #ndetBstatesd
h(k)d 

to be the number of states for solving BTh(k).d 

The next lemma shows that the function problem is not much harder to solve 

than the Boolean problem. 

#detBstateshd(k) ≤ #detFstatesd
h(k) ≤ (k − 1) ⋅ #detBstateshd(k) 

#ndetBstateshd(k) ≤ #ndetFstatesd
h(k) ≤ (k − 1) ⋅ #ndetBstateshd(k) 

Proof. The left inequalities are obvious. For the others, we can construct a branch
ing program solving the function problem from a sequence of k − 1 programs 
solving Boolean problems, where the ith program determines whether the value 

of the root node is i. ■ 

Next we introduce thrifty programs, a restricted form of k-way branching pro
grams for solving tree evaluation problems. Thrifty programs efficiently sim
ulate pebbling algorithms, and implement the best-known upper bounds for 
#ndetBstateshd(k) and #detFstateshd(k), and are within a factor of log k of the best-
known upper bounds for #detBstateshd(k). In Section 5 we prove tight lower bounds 
for deterministic thrifty programs which solve BTh(k) and FTh(k).d d 
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Definition 2.4 

2.2 

Theorem 2.5 

Claim 

Thrifty Branching Program 

A deterministic k-way branching program which solves FTh(k) or BTh(k) is thrifty ifd d 

during the computation on any input every query fi (⃗x) to an internal node i of Th 
d 

satisfies the condition that ⃗x is the tuple of correct values for the children of node 

i. A nondeterministic such program is thrifty if for every input every computation 

which ends in a final state satisfies the aforesaid restriction on queries. 

Note that the restriction in the previous definition is semantic, rather than syn
tactic. It somewhat resembles the semantic restriction used to define incremental 
branching programs in Gál et al. [GKM08]. However we are able to prove strong 

lower bounds using our semantic restriction, but in Gál et al. [GKM08] a syntactic 
restriction was needed to prove lower bounds. 

One Function Is Enough 
It turns out that the complexities of FTh(k) and BTh(k) are not much different if d d 

we require all functions assigned to internal nodes to be the same.3 To denote this 
restricted version of the problems we replace F by F̂ and B by ^ FThB. Thus ^ (k) isd 

the function problem for Td
h when all node functions are the same, and ^ (k) isBTd

h 

the corresponding Boolean problem. To specify an instance of one of these new 

problems we need only give one copy of the table for the common node function
f̂ , together with the values for the leaves. 

Let N = (dh − 1)/(d − 1) be a constant denoting the number of nodes in the tree Td
h. 

Any Nk-way branching program B solving ^ FT^
d
h BTh(Nk) (respectively, ^ (Nk)) can be trans-d 

formed to a k-way branching program B solving FTh(k) (respectively, BTh(k)), where B d d 

has no more states than ^ B is deterministic. Also for each d ≥ 2B and B is deterministic iff ^
the decision problem BTd(h, k) is log space reducible to B̂Td(h, k) (where h, k are input 
parameters). 

Proof. Given an instance I of FTh(k) (or BTh(k)) we can find a corresponding d d 

instance Î of ^ (Nk) (or ^ (Nk)) by coding the set of all functions fi associated BThFTd
h 

d 

with internal nodes i in I by a single function ̂f associated with each node of ̂I. Here 

we represent each element of [Nk] by a pair ⟨i, x⟩, where i ∈ [N] represents a node 

in Td
h and x ∈ [k]. We want to satisfy the following claim. 

If a node i has a value x in I then node i has value ⟨i, x⟩ in ̂I. 

Thus if i is a leaf node, then we define the leaf value for node i in ̂I to be ⟨i, x⟩, 
where x is the value of leaf i in I. 

3. We thank Yann Strozecki, who posed this question. 
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We define the common internal node function f̂ as follows. If nodes i1, . . . , id 

are the children of node j in Td
h, then 

f̂ (⟨i1, x1⟩, . . . , ⟨id, xd⟩) = ⟨j, fj(x1, . . . , xd)⟩. (2) 

The value of ̂f is irrelevant (make it ⟨1, 1⟩) if nodes i1, . . . , id are not the children of j. 
An easy induction on the height of a node i shows that the preceding claim is 

satisfied. 
Note that the value x of the root node 1 in I is easily determined by the value 

⟨1, x⟩ of the root in ̂I. We specify that the pair ⟨1, 1⟩ has value 1 in [Nk], so I is a YES 

instance of the decision problem BTd
h(k) iff ̂ BThI is a YES instance of ^ (Nk).d 

To complete the proof of the last sentence in the theorem we note that the num
ber of bits needed to specify I is Θ(Nkd log k), and the number of bits to specify ̂I is 
dominated by the number to specify f̂ , which is O((Nk)d log(Nk)). Thus the trans
formation from I to ̂I is length-bounded by a polynomial in length of its argument, 
and it is not hard to see that it can be carried out in log space. 

Now we prove the first part of the theorem. Given an Nk-way BP B̂ solving 
^ (Nk) (respectively, ^ (Nk)) we can find a corresponding k-way BP B solving BTd

h FTd
h
 

BTh(k) (respectively, FTh(k)) as follows.
 d d 

The idea is that on input instance I, B acts like B̂ on input ̂I. Thus for each state q̂
in B̂ that queries a leaf node i, the corresponding state q in B queries i, and for each 

possible answer x ∈ [k], B has an outedge labeled x corresponding to the edge from 

q̂ labeled ⟨i, x⟩. If q̂ queries ̂f at arguments as in (2) (where i1, . . . , id are the children 

of node j) then q queries fj(x1, . . . , xd) and for each x ∈ [k], q has an outedge labeled 

x corresponding to the edge from q̂ labeled ⟨j, x⟩. If i1, . . . , id are not the children of 
j, then the node q is not necessary in B, since the answer to the query is always the 

default ⟨1, 1⟩. 
In case B̂ is solving the function problem ^ (Nk) then each output state labeled FTd

h 

⟨1, x⟩ is relabeled x in B (recall that the root of Td
h is number 1). Any output state q 

labeled ⟨i, x⟩ where i > 1 will never be reached in B (since the value of the root node 

of Î always has the form ⟨1, x⟩) so q can be deleted. For any edge in B̂ leading to q 

the corresponding edge in B can lead anywhere. ■ 

Similarly to Theorem 2.5 it is easy to see that the problems FTh(k) and BTh(k)d d 

can be reduced to the case that the degree d = 2 by increasing the height h by a 

factor of ⌈log2 d⌉ and increasing k to k ′ = kd ′ , where d ′ < d. The idea is to replace 

each node v in Td
h by a binary tree Tv of height ⌈log2 d⌉ whose first d leaves corre

spond to the d children of v. The value of the root of Tv is that of v, and the value of 
a nonroot internal node u of Tv is the tuple of values of the leaves of Tv which are 
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descendants of u. The function f ′ which corresponds to the node v in the binary v 

tree satisfies (assuming d is a power of 2) 

f ′(⟨x1, . . . , xd/2⟩, ⟨xd/2+1, . . . , xd⟩) = fv(x1, . . . , xd).v 

The function associated with a nonroot internal node of Tv just concatenates tuples 
with appropriate padding with 1’s. 

One goal of this article is to draw attention to the tree evaluation problem and to 

encourage further attempts at showing BTd(h, k) ∉ L. By the preceding paragraph 

this is equivalent to showing BT2(h, k) ∉ L, and by Theorem 2.5 this is equivalent 
to showing B̂Td(h, k) ∉ L. Further our suggested method is to try proving for each 

fixed h a lower bound of Ω(kr(h)) on the number of states required for a k-way BP 

to solve FTd
h(k), where r(h) is any unbounded function (see Corollary 3.3 to follow 

later). Again according to Theorem 2.5 (since N is a constant) technically speaking 

we may as well assume that all the node functions in the instance of FTh(k) are the d 

same. However in practice this assumption is not helpful in provinga lower bound. 
For example Theorem 5.10 states that k3 states are required for a deterministic k-
way BP to solve FT23(k), and the proof assigns three different functions to the three 

internal nodes of the binary tree of height 3. 

2.3 Pebbling 
The pebbling game for DAGs (Directed Acyclic Graphs) was defined by Paterson and 

Hewitt [PH70] and was used as an abstraction for deterministic Turing machine 

space in Cook [Coo74]. Black-white pebbling was introduced in Cook and Sethi 
[CS76] as an abstraction of nondeterministic Turing machine space (see Nordström 

[Nor09] for a recent survey). 
Here we define and use three versions of the pebbling game for DAGs with one 

root (i.e., one sink node). The first is a simple “black pebbling” game: A black peb
ble can be placed on any leaf (i.e., source node), and in general if all children of a 

node i (where a child of i is a node with an edge to i) have pebbles, then one of the 

pebbles on the children can be slid to i (this is a “black sliding move”). Any black 

pebble can be removed at any time. The goal is to pebble the root, using as few 

pebbles as possible. 
The second version is “whole” black-white pebbling as defined in Cook and 

Sethi [CS76] with the restriction that we do not allow “white sliding moves”. Thus 
if node i has a white pebble and each child of i has a pebble (either black or white) 
then the white pebble can be removed. (A white sliding move would apply if one of 
the children had no pebble, and the white pebble on i was slid to the empty child. 
We do not allow this.) A white pebble can be placed on any node at any time. The 

goal is to start and end with no pebbles, but to have a black pebble on the root at 
some time. 
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The third is a new game called fractional pebbling, which generalizes whole 

black-white pebbling by allowing the black and white pebble value of a node to 

be any real number between 0 and 1. However the total pebble value of each child 

of a node i must be 1 before the black value of i is increased or the white value of i is 
decreased. Figure 2 illustrates two configurations in an optimal fractional pebbling 

of the binary tree of height three using 2.5 pebbles. 
Our motivation for choosing these definitions is that we want pebbling algo

rithms for trees to closely correspond to k-way branching program algorithms for 
the tree evaluation problem. A black pebble on a node means that the correspond
ing branching program state knows the value of the node, and a white pebble 

(applicable to nondeterministic BPs) means that state has a specific conjecture for 
the value of the node (which must later be verified). A fractional pebble means that 
the state knows or conjectures that fraction of the log k bits is the value. 

We start by formally defining fractional pebbling, and then define the other two 

notions as restrictions on fractional pebbling. 

Pebbling 

A fractional pebble configuration on a rooted d-ary tree T is an assignment of a pair 
of real numbers (b(i), w(i)) to each node i of the tree, where 

0 ≤ b(i), w(i), (3) 

b(i) + w(i) ≤ 1. (4) 

Here b(i) and w(i) are the black pebble value and the white pebble value, respectively, 
of i, and b(i) + w(i) is the pebble value of i. The number of pebbles in the configura
tion is the sum over all nodes i of the pebble value of i. The legal pebble moves are 

as follows (always subject to maintaining the constraints (3), (4)): (i) For any node 

i, decrease b(i) arbitrarily. (ii) For any node i, increase w(i) arbitrarily. (iii) For every 
node i, if each child of i has pebble value 1, then decrease w(i) to 0, increase b(i) 
arbitrarily, and simultaneously decrease the black pebble values of the children of 
i arbitrarily. 

A fractional pebbling of T using p pebbles is any sequence of (fractional) pebbling 

moves on nodes of T which starts and ends with every node having pebble value 

0, and at some point the root has black pebble value 1, and no configuration has 
more than p pebbles. 

A whole black-white pebbling of T is a fractional pebbling of T such that b(i) and 

w(i) take values in {0, 1} for every node i and every configuration. A black pebbling is 
a black-white pebbling in which w(i) is always 0. 

Notice that rule (iii) does not quite treat black and white pebbles dually, since 

the pebble values of the children must each be 1 before any decrease of w(i) is 
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allowed. A true dual move would allow increasing the white pebble values of the 

children so they all have pebble value 1 while simultaneously decreasing w(i). In 

other words, we allow black sliding moves, but disallow white sliding moves. The 

reason for this (as mentioned before) is that nondeterministic branching programs 
can simulate the former, but not the latter. However white sliding moves are a nat
ural dual to black sliding moves and we give a formal definition and examples in 

Section 4.3. 
We use #pebbles(T), #BWpebbles(T), and #FRpebbles(T) respectively to denote 

the minimum number of pebbles required to black pebble T, black-white pebble 

T, and fractional pebble T. Bounds for these values are given in Section 4. For 
example for d = 2 we have #pebbles(T2 

h) = h, #BWpebbles(T2 
h) = ⌈h/2⌉ + 1, and 

#FRpebbles(T2 
h) ≤ h/2 + 1. In particular #FRpebbles(T23) = 2.5 (see Figure 2). 

3 Connecting TMS, BPS, and Pebbling 
Let FTd(h, k) be the same as FTh(k) except now the inputs vary with both h and k,d 

and we assume the input to FTd(h, k) is a binary string X which codes h and k and 

codes each node function fi for the tree Td
h by a sequence of kd binary numbers and 

each leaf value by a binary number in [k], so X has length 

|X | = Θ(dhkd log k). (5) 

The output is a binary number in [k] giving the value of the root. 
The problem BTd(h, k) is the Boolean version of FTd(h, k): The input is the same, 

and the instance is true iff the value of the root is 1. 
Obviously BTd(h, k) and FTd(h, k) can be solved in polynomial time, but we can 

prove a stronger result. 

Theorem 3.1 The problem BTd(h, k) is in LogDCFL, even when d is given as an input parameter. 

Proof. By Sudborough [Sud78] it suffices to show that BTd(h, k) is solved by some 

deterministic auxiliary pushdown automaton M in log space and polynomial time. 
The algorithm for M is to use its stack to perform a depth-first search of the tree 

Td
h, where for each node i it keeps a partial list of the values of the children of i on 

its stack, until it obtains all d values, at which point it computes the value of i and 

pops its stack, adding that value to the list for the parent node. 
Note that the length n of an input instance is about dhkd log k bits, so log n > 

d log k, so M has ample space on its work tape to write all d values of the children 

of a node i. ■ 

The best-known upper bounds on branching program size for FTh(k) grow as d 

kΩ(h). The next result shows (Corollary 3.3) that any lower bound with a nontrivial 
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dependency on h in the exponent of k for deterministic (respectively, nondetermin
istic) BP size would separate L (respectively, NL) from LogDCFL. 

For each d ≥ 2, if BTd(h, k) is in L (respectively, NL) then there is a constant cd and a 

function fd(h) such that #detFstateshd(k) ≤ fd(h)kcd (respectively, #ndetFstatesd
h(k) ≤ 

fd(h)kcd ) for all h, k ≥ 2. 

Proof. By Lemma 2.3 it suffices to prove this for #detBstateshd(k) and 

#ndetBstateshd(k) instead of #detFstateshd(k) and #ndetFstatesd
h(k). In general a 

Turing machine which can enter at most C different configurations on all inputs 
of a given length n can be simulated (for inputs of length n) by a binary (and hence 

k-ary) branching program with C states. Each Turing machine using space O(log n) 
has at most nc possible configurations on any input of length n ≥ 2, for some 

constant c. By (5) the input for BTd(h, k) has length n = Θ(dhkd log k), so there are at 
most (dhkd log k)c ′ possible configurations for a log space Turing machine solving 

BTd(h, k), for some constant c ′ . So we can take fd(h) = dc 
′ h and cd = c ′(d + 1). ■ 

Fix d ≥ 2 and any unbounded function r(h). If #detFstateshd(k) ∈ Ω(kr(h)) then 

BTd(h, k) ∉ L. If #ndetFstateshd(k) ∈ Ω(kr(h)) then BTd(h, k) ∉ NL. 

The next result connects pebbling upper bounds with upper bounds for thrifty 
branching programs. 

(i) If Th can be black pebbled with p pebbles, then deterministic thrifty branching d 

programs with O(kp) states can solve FTh(k) and BTh(k).d 

(ii) If Th can be fractionally pebbled with p pebbles then nondeterministic thrifty d 

branching programs can solve BTh(k) with O(kp) states.d 

Proof. Consider the sequence C0, C1, . . . C𝜏 of pebble configurations for a black 

pebbling of Td
h using p pebbles. We may as well assume that the root is pebbled 

in configuration C𝜏 , since all pebbles could be removed in one more step at no 

extra cost in pebbles. We design a thrifty branching program B for solving FTh(k)d 

as follows. For each pebble configuration Ct, program B has kp states; one state for 
each possible assignment of a value from [k] to each of the p pebbles. Hence B has 
O(kp) states, since 𝜏 is a constant independent of k. Consider an input I to FTh(k),d 

and let vi be the value in [k] which I assigns to node i in Td
h (see Definition 2.1). We 

design B so that on I the computation of B will be a state sequence 𝛼0, 𝛼1, . . . , 𝛼𝜏 , 
where the state 𝛼t assigns to each pebble the value vi of the node i that it is on. (If 
a pebble is not on any node, then its value is 1.) 

For the initial pebble configuration no pebbles have been assigned to nodes, so 

the initial state of B assigns the value 1 to each pebble. In general if B is in a state 
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𝛼 corresponding to configuration Ct, and the next configuration Ct+1 places a peb
ble j on node i, then the state 𝛼 queries the node i to determine vi, and moves to 

a new state which assigns vi to the pebble j and assigns 1 to any pebble which is 
removed from the tree. Note that if i is an internal node, then all children of i must 
be pebbled at Ct, so the state 𝛼 “knows” the values vj1 , . . . , vjd of the children of i, 
so 𝛼 queries fi(vj1 , . . . , vjd ). 

When the computation of B reaches a state 𝛼𝜏 corresponding to C𝜏 , then 𝛼𝜏 

determines the value of the root (since C𝜏 has a pebble on the root), so B moves to 

a final state corresponding to the value of the root. 
The argument for the case of whole black-white pebbling is similar, except now 

the value for each white pebble represents a guess for the value vi of the node it is 
on. If the pebbling algorithm places a white pebble j on a node at some step, then 

the corresponding state of B nondeterministically moves to any state in which the 

values of all pebbles except j are the same as before, but the value of j can be any 
value in [k]. If the pebbling algorithm removes a white pebble j from a node i, then 

′ the corresponding state has a guess vi for the value of i, and either i is a leaf, or all 
children of i must be pebbled. The corresponding state of B queries i to determine 

′ its true value vi. If vi ̸ i then the computation aborts (i.e., all outedges from the = v 
′ state have label vi ). Otherwise B assigns j the value 1 and continues. 

When B reaches a state 𝛼 corresponding to a pebble configuration Ct for which 

the root has a black pebble j, then 𝛼 knows whether or not the tentative value 

assigned to the root is 1. All future states remember whether the tentative value 

is 1. If the computation successfully (without aborting) reaches a state 𝛼𝜏 corre
sponding to the final pebble configuration C𝜏 , then B moves to the final state 

corresponding to output 1 or output 0, depending on whether the tentative root 
value is 1. 

Now we consider the case in which C0, . . . , C𝜏 represents a fractional pebbling 

computation. If b(i), w(i) are the black and white pebbled values of node i in con
figuration Ct, then a state 𝛼 of B corresponding to Ct will remember a fraction 

b(i)+w(i) of the log k bits specifying the value vi of the node i, where the fraction b(i) 
of bits are verified, and the fraction w(i) of bits are conjectured. In general these 

numbers of bits are not integers, so they are rounded up to the next integer. This 
rounding introduces at most two extra bits for each node in Td

h, for a total of at most 
2T extra bits, where T is the number of nodes in Td

h. Since the sum over all nodes 
of all pebble values is at most p, the total number of bits that need to be remem
bered for a given pebble configuration is at most p log k+2T, where T is a constant. 
Associated with each step in the fractional pebbling there are 2p log k+2T = O(kp) 
states in the branching program, one for each setting of these bits. These bits can 
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be updated for each of the three possible fractional pebbling moves (i), (ii), (iii) in 

Definition 2.6 in a manner similar to that for whole black-white pebbling. 
It is easy to see that in all cases the branching programs described satisfy the 

thrifty requirement that an internal node is queried only at the correct values for its 
children (or, in the black-white and fractional cases, the program aborts if an incor
rect query is made because of an incorrect guess for the value of a white-pebbled 

node). ■ 

d(k) = O(k#pebbles(Th 

d(k) = O(k#FRpebbles(ThCorollary 3.5 #detFstatesh d )) and #ndetFstatesh d )). 

4 Pebbling Bounds 

4.1 Previous Results 
We start by summarizing what is known about whole black and black-white peb
bling numbers as defined at the end of Definition 2.6 (i.e., we allow black sliding 

moves but not white sliding moves). 
The following are minor adaptations of results and techniques that have been 

known since work of Loui [Lou79], auf der Heide [adHei79], and Lengauer and Tar
jan [LT80] in the late ’70s. They considered pebbling games where sliding moves 
were either disallowed or permitted for both black and white pebbles, in contrast 
to our results that follow. 

We always assume h ≥ 2 and d ≥ 2. 

Theorem 4.1 #pebbles(Th) = (d − 1)h − d + 2.d 

Proof. For h = 2 this gives #pebbles(T2) = d, which is obviously correct. In general d 

we show #pebbles(Th+1) = #pebbles(Th) + d − 1, from which the theorem follows. d d 

The following pebbling strategy gives the upper bound: Let the root be node 1 
and the children be 2 . . . d + 1. Pebble the nodes 2 . . . d + 1 in order using the opti
mal number of pebbles for Th−1, leaving a black pebble at each node. Note that d 

for the black pebble game, the complexity of pebbling in the game where a pebble 

remains on the root is the same as for the game where the root has a black pebble 

on it at some point. The maximum number of pebbles at any point on the tree is 
d − 1 + #pebbles(Th−1). Now slide the black pebble from node 1 to the root, and d 

then remove all pebbles. 
For the lower bound, consider the time t at which the children of the root all 

have black pebbles on them. There must be a final time t ′ before t at which one 

of the sub-trees rooted at 2, 3, . . . , d + 1 had #pebbles(Th) pebbles on it. This is d 

because pebbling any of these subtrees requires at least #pebbles(Th) pebbles, by d 

definition. At time t ′ , all the other subtrees must have at least 1 black pebble each 
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on them. If not, then there is a subtree T which does not, and it would have to be 

pebbled before time t, which contradicts the definition of t ′ . Thus at timet ′ , there 

are at least #pebbles(Th) + d − 1 pebbles on the tree. ■d 

Theorem 4.2 For d = 2 and d odd: 

#BWpebbles(Td
h) = ⌈(d − 1)h/2⌉ + 1. (6) 

For d even: 

#BWpebbles(Td
h) ≤ ⌈(d − 1)h/2⌉ + 1. (7) 

When d is odd, this number is the same as when white sliding moves are allowed. 

Proof. We divide the proof into three parts: Part I proves (6) when d is odd, Part II 
proves (7) when d is even (which implies the upper bound for (6) when d = 2), and 

Part III proves the lower bound in (6) when d = 2. 
Part I. We show (6) when d is odd.
 
For h = 2 this gives #BWpebbles(T2) = d, which is obviously correct. In general
 d 

for odd d we show 

#BWpebbles(Th+1) = #BWpebbles(Td
h) + (d − 1)/2 (8)d 

from which the theorem follows for this case. 
For the upper bound for the left-hand side, we strengthen the induction hypoth

esis by asserting that during the pebbling there is a critical time at which the root 
has a black pebble and there are at most #BWpebbles(Th) − (d − 1)/2 pebbles on d 

the tree (counting the pebble on the root). This can be made true when h = 2 by 
removing all the pebbles on the leaves after the root is pebbled. 

To pebble the tree Th+1, note that we are allowed (d − 1)/2 extra pebbles d 

over those required to pebble Td
h. Start by placing black pebbles on the left-most 

(d − 1)/2 children of the root, and removing all other pebbles. Now go through 

the procedure for pebbling the middle principal subtree, stopping at the critical 
time, so that there is a black pebble on the middle child of the root and at most 
#BWpebbles(Th) − (d − 1)/2 pebbles on the middle subtree. Now place white pebd 

bles on the remaining (d−1)/2 children of the root, slide a black pebble to the root, 
and remove all black pebbles on the children of the root. This is the critical time 

for pebbling Th+1: Note that there are at most #BWpebbles(Th) pebbles on the tree d d 

(we removed the black pebble on the root of the middle subtree). 
Now remove the pebble on the root and remove all pebbles on the middle sub

tree by completing its pebbling (keeping the (d−1)/2 white pebbles on the children 
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in place). Finally remove the remaining (d − 1)/2 white pebbles one by one, simply 
by pebbling each subtree, and removing the white pebble at the root of the subtree 

instead of black-pebbling it. 
To prove the lower bound for the left-hand side of (8), we strengthen the induc

tion hypothesis so that now a black-white pebbling allows white sliding moves, and 

the root may be pebbled by either a black pebble or a white pebble. (Note that for 
the base case the tree Td 

2 still requires d pebbles.) Consider such a pebbling of Th+1 
d 

which uses as few moves as possible. Consider a time t at which all children of the 

root have pebbles on them (i.e., just before the root is black pebbled or just after a 

white pebble on the root is removed). For each child i, let ti be a time at which the 

tree rooted at i has #BWpebbles(Th) pebbles on it. We may assume d 

t2 < t3 < . . . < td+1. 

Let m = (d + 3)/2 be the middle child. If tm < t then each of the (d − 1)/2 sub
trees rooted at i for i < m has at least one pebble on it at time tm, since otherwise 

the effort made to place #BWpebbles(Th) pebbles on it earlier is wasted. Hence (8)d 

holds for this case. Similarly if tm > t then each of the (d − 1)/2 subtrees rooted at i 
for i > m has at least one pebble on it at time tm, since otherwise the effort to place 

Td
h pebbles on it later is wasted, so again (8) holds. 
Part II. We prove (7) for even degree d. 

#BWpebbles(Td
h) ≤ ⌈(d − 1)h/2⌉ + 1 

For h = 2 the formula gives #BWpebbles(T2) = d, which is obviously correct. For d

h = 3 the formula gives #BWpebbles(T3) = (3/2)d, which can be realized by black-d

pebbling d/2 + 1 of the root’s children and white-pebbling the rest. In general it 
suffices to prove the following recurrence. 

#BWpebbles(Th+2) ≤ #BWpebbles(Td
h) + d − 1 (9)d 

We strengthen the induction hypothesis by asserting that during the pebbling Th 
d 

of there is a critical time at which the root has a black pebble and there are at most 
#BWpebbles(Th) − (d − 1) pebbles on the tree (counting the pebble on the root). d 

This is easy to see when h = 2 and h = 3. 
We prove the recurrence as follows. We want to pebble Th+2 using d − 1 more d 

pebbles than is required to pebble Td
h. Let us call the children of the root c1, . . . , cd. 

We start by placing black pebbles on c1, . . . , cd/2. We illustrate how to do this by 
showing how to place a black pebble on cd/2 after there are black pebbles on nodes 
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c1, . . . , cd/2−1. At this point we still have d/2 extra pebbles left among the original 
′ ′ d − 1. Let us assign the names c1, . . . , cd to the children of cd/2. Use the d/2 extra 
′ ′ pebbles to put black pebbles on c1, . . . , cd/2. Now run the procedure for pebbling 

′ the subtree rooted at cd/2+1 up to the critical time, so there is a black pebble on 
′ cd/2+1. Now place white pebbles on the remaining d/2 − 1 children of cd/2, slide 

a black pebble up to cd/2, remove the remaining black pebbles on the children of 
′ cd/2, and complete the pebbling procedure for the subtree rooted at cd/2+1, so that 

subtree has no pebbles. Now remove the white pebbles on the remaining d/2 − 1 
children of cd/2. 

At this point there are black pebbles on nodes c1, . . . , cd/2, and no other pebbles 
on the tree. We now place a black pebble on cd/2+1 as follows. Let us assign the 

′′ ′′ names c1 , . . . , cd to the children of cd/2+1. Use the remaining d/2 − 1 extra pebbles 
′′ ′′ to place black pebbles on c1 , . . . , cd/2−1. Now run the pebble procedure on the sub

′′ ′′ tree rooted at cd/2 up to the critical time, so cd/2 has a black pebble. Now place white 

pebbles on the remaining d/2 children of cd/2+1, slide a black pebble up to cd/2+1, 
remove the remaining black pebbles on the children of cd/2+1, place white pebbles 
on the remaining d/2 − 1 children of the root, slide a black pebble up to the root, 
and remove the remaining black pebbles from the children of the root. 

This is now the critical time for the procedure pebbling Th+2. There is a black d 

pebble on the root, d/2 − 1 white pebbles on the children of the root, d/2 white 

pebbles on the children of cd/2+1, and at most #BWpebbles(Th) − d pebbles on the d 
′′ ′′ subtree rooted at cd/2 (we’ve removed the black pebble on cd/2), making a total of at 

most #BWpebbles(Th) pebbles on the tree. d 

Now remove the black pebble from the root and complete the pebble procedure 
′′ for the subtree rooted at cd/2 to remove all pebbles from that subtree. There remain 

d/2 − 1 white pebbles on the children of the root and d/2 white pebbles on the chil
dren of cd/2+1, making a total of d − 1 white pebbles. Now remove each of the white 

pebbles on the children of cd/2+1 by pebbling each of these subtrees in turn. Finally 
we can remove each of the remaining d/2 − 1 white pebbles on the children of the 

root by a process similar to the one used to place d/2 black pebbles on the chil
dren of the root at the beginning of the procedure (we now in effect have one more 

pebble to work with). 
Part III. Finally we give the lower bound for the case d = 2. 

#BWpebbles(T2 
h) ≥ ⌈h/2⌉ + 1 

Clearly 2 pebbles are required for the tree of height 2, and it is easy to show that 
3 pebbles are required for the height 3 tree. 
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In general it suffices to show that the binary tree T of height h + 2 requires at 
least one more pebble than the binary tree of height h. Suppose otherwise, and 

consider a pebbling of T that uses the minimum number of pebbles required for 
the tree of height h, and assume that the pebbling is as short as possible. Let t1 be 

a time when the root has a black pebble. For i = 3, 4, 5 there must be a time ti when 

all the pebbles are on the subtree rooted at node i. This is because node i must be 

pebbled at some point, and if the pebble is white then right after the white pebble 

is removed we could have placed a black pebble in its place (since we do not allow 

white sliding moves). 
Suppose that {t1, t3, t4, t5} are ordered such that 

ti1 < ti2 < ti3 < ti4 . 

Then t1 cannot be either ti3 or ti4 since otherwise at time ti2 there are no pebbles on 

the subtree rooted at node i1 and hence its earlier pebbling was wasted (since the 

root has yet to be pebbled). Similarly if t1 is either ti1 or ti2 then at time ti3 there are 

no pebbles on the subtree rooted at i4, and since the root has already been pebbled 

the later pebbling of this subtree is wasted. ■ 

Results for Fractional Pebbling 
The concept of fractional pebbling is new. Determining the minimum number p 

of pebbles required to fractionally pebble Td
h is important since O(kp) is the best-

known upper bound on the number of states required by a nondeterministic BP to 

solve FTh(k) (see Theorem 3.4). It turns out that proving fractional pebbling lower d 

bounds is much more difficult than proving whole black-white pebbling lower 
bounds. We are able to get exact fractional pebbling numbers for the binary tree of 
height 4 and less, but the best general lower bound comes from a nontrivial reduc
tion to a paper by Klawe [Kla85] which proves bounds for the pyramid graph. This 
bound is within d/2 + 1 pebbles of optimal for degree d trees (at most 2 pebbles 
from optimal for binary trees). 

Our proof of the exact value of #FRpebbles(T24) = 3 led us to conjecture that 
any nondeterministic BP computing BT24(k) requires Ω(k3) states. In Section 5 we 

provide evidence for that conjecture by proving that any nondeterministic thrifty 
BP requires O(k3) states. The lower bound for height 3 and any degree follows 

2 d− 1from the lower bound of Ω(k 
3

2 ) states for nondeterministic branching programs 
computing BT3(k) (Corollary 5.2).d

We start by presenting a general result showing that fractional pebbling can 

save at most a factor of two over whole black-white pebbling for any DAG (Directed 

Acyclic Graph). (Here the pebbling rules for a DAG are the same as for a tree, where 
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we require that every sink node (i.e., every “root”) must have a whole black pebble 

at some point.) We will not use this result, but it does provide a simple proof of 
weaker lower bounds than those given in Theorem 4.4 that follows shortly. 

Theorem 4.3	 If a DAG D has a fractional pebbling using p pebbles, then it has a black-white pebbling 
using at most 2p pebbles. 

Proof. Given a sequence P of fractional pebbling moves for a DAG D in which 

at most p pebbles are used, we define a corresponding sequence P ′ of pebbling 

moves in which at most 2p pebbles are used. The sequence P ′ satisfies the following 

invariant with respect to P. 

(♠) A node v has a black pebble (respectively, a white pebble) on it at time t with 

respect to P ′ iff b(v) ≥ 1/2 (respectively, w(v) > 1/2) at time t with respect to P. 
An important consequence of this invariant is that if at time t in P node v 

satisfies b(v) + w(v) = 1 then at time t in P ′ node v is pebbled. 
We describe when a pebble is placed or removed in P ′ . At the beginning, there 

are no pebbles on any nodes. P ′ simulates P as follows. Assume there is a certain 

configuration of pebbles on D, placed according to P ′ after time t − 1; we describe 

how P’s move at time t is reflected in P ′ . If in the current move of P, b(v) (respec
tively, w(v)) increases to 1/2 or greater (respectively, greater than 1/2) for some node 

v, then the current pebble, if any, on v, is removed and a black pebble (respectively, 
a white pebble) is placed on v in P ′ . Note that this is always consistent with the 

pebbling rules. If in the current configuration of P ′ there is a black (respectively, 
white) pebble on a vertex v, and in the current move of P, b(v) (respectively, w(v)) 
falls below 1/2, then the pebble on v is removed. Again, this is always consistent 
with the pebbling rules for the black-white pebble game and the fractional black-
white pebble game. For all other kinds of moves of P, the configuration in P ′ does 
not change. 

If P is a valid sequence of fractional pebbling moves, then P ′ is a valid sequence 

of pebbling moves. We argue that the cost of P ′ is at most twice the cost of P, and 

that if there is a point at which the root has black pebble value 1 with respect to P, 
then there is a point at which the root is black-pebbled in P ′ . These facts together 
establish the theorem. 

To demonstrate these facts, we simply observe that the invariant (♠) holds by 
induction on the time t for the simulation we defined. This implies that at any 
point t, the number of pebbles on D with respect to P ′ is at most the number of 
nodes v for which b(v) + w(v) ≥ 1/2 with respect to P, and is therefore at most twice 

the total value of pebbles with respect to P at time t. Hence the cost of pebbling D 

using P ′ is at most twice the cost of pebbling D using P. Also, if there is a time t at 
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which the root r has black pebble value 1 with respect to P, then b(r) ≥ 1/2 at time 

t, so there is a black pebble on r with respect to P ′ at time t. ■ 

The next result presents our best-known bounds for fractionally pebbling trees 
Th 
d . 

(d − 1)h/2 − d/2 ≤ #FRpebbles(Th) ≤ (d − 1)h/2 + 1d 

#FRpebbles(T3) = (3/2)d − 1/2d

#FRpebbles(T24) = 3 

We divide the proof into several parts. First we prove the upper bound. 

#FRpebbles(Td
h) ≤ (d − 1)h/2 + 1 

Proof. Let Ah be the algorithm for height h ≥ 2. It is composed of two parts, Bh and 

Ch. Bh is run on the empty tree, and finishes with a black pebble on the root and 

(d − 1)(h − 2) white half pebbles below the root (and of these (d − 1)(h − 3) lie below 

the rightmost child of the root). Next, the black pebble on the root is removed. 
Then Ch is run on the result, and finishes with the empty tree. Bh and Ch both use 

(d − 1)h/2 + 1 pebbles. 
A ′ h is the same as Ah except that it finishes with a black half pebble on the root. 

It does this in the most straight-forward way, by leaving a black half pebble after 
the root is pebbled, and so it uses (d − 1)h/2 + 1.5 pebbles for all h ≥ 3. 

B2: Pebble the tree of height 2 using d black pebbles. 
Bh, h > 2: Run A ′ h−1 on node 2 using (d − 1)(h − 1)/2 + 1.5 pebbles, and then 

on node 3 (if 3 ≤ d) using a total of (d − 1)(h − 1)/2 + 2 pebbles (counting the half 
pebble on node 2), and so on for nodes 2, 3 . . . , d. So (d −1)(h−1)/2+1+(d −1)/2 = 

(d − 1)h/2 + 1 pebbles are used when A ′ h−1 is run on node d. Next run Bh−1 on node 

d+1, using (d−1)(h−1)/2+1 pebbles on the subtree rooted at d+1, for (d−1)h/2+1 
pebbles in total (counting the black half pebbles on node 2, . . . , d). The result is a 

black pebble on node d + 1, (d − 1)(h − 3) white half pebbles under d + 1, and from 

earlier d − 1 black half pebbles on 2, . . . , d, for a total of (d − 1)(h − 2)/2 + 1 peb
bles. Add a white half pebble to each of 2, . . . , d, then slide the black pebble from 

d + 1 onto the root. Remove the black half pebbles from 2, . . . , d. Now there are 

(d − 1)(h − 2) white half pebbles under the root, and a black pebble on the root. 
C2: The tree of height 2 is empty, so return. 
Ch: The tree has no black pebbles and (d−1)(h−2) white half pebbles. Note that 

if a sequence can pebble a tree with p pebbles, then essentially the same sequence 

can be used to remove a white half pebble from the root with p + .5 pebbles. Ch 
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runs Ch−1 on node d + 1, resulting in a tree with only a half white pebble on each 

of 2, . . . , d. This takes (d − 1)h/2 + 1 pebbles. Then Ah−1 is run on each of 2, . . . , d 

in turn, to remove the white half pebbles. The first such call of Ah−1 is the most 
expensive, using (d − 1)(h − 1)/2 + 1 + (d − 1)/2 = (d − 1)h/2 + 1 pebbles. ■ 

As noted earlier, the tight lower bound for height 3 and any degree: 

#FRpebbles(Td
3) ≥ (3/2)d − 1/2 

2 d− 1follows from the asymptotically tight lower bound of Ω(k 
3

2 ) states for nondeter
ministic branching programs computing BT3(k) (Corollary 5.2). We do, however, d

have a direct proof of #FRpebbles(T23) ≥ 5/2. 

Proof. Assume to the contrary that there is a fractional pebbling with fewer than 

2.5 pebbles. It follows that no nonleaf node i can ever have w(i) ≥ 0.5, since the 

children of i must each have pebble value 1 in order to decrease w(i). Since there 

must be some time t1 during the pebbling sequence such that both the nodes 2 

and 3 (the two children of the root) have pebble value 1, it follows that at time t1, 
b(2) > 0.5 and b(3) > 0.5. Hence for i = 2, 3 there is a largest ti ≤ t1 such that 
node i is black-pebbled at time ti and b(i) > 0.5 during the time interval [ti, t1]. (By 
“black-pebbled” we mean at time ti − 1 both children of i have pebble value 1, so 

that at time ti the value of b(i) can be increased.) 
Assume without loss of generality that t2 < t3. Then at time t3 − 1 both 

children of node 3 have pebble value 1 and b(2) > 0.5, so the total pebble value 

exceeds 2.5. ■ 

Before we prove the lower bound for all heights, which we do not believe is tight, 
we prove one more tight lower bound. 

#FRpebbles(T2
4) ≥ 3 

Proof. Let C0, C1, . . . , Cm be the sequence of pebble configurations in a fractional 
pebbling of the binary tree of height 4. We say that Ct is the configuration at time 

t. Thus C0 and Cm have no pebbles, and there is a first time t1 such that Ct1+1 has a 

black pebble on the root. In general we say that step t in the pebbling is the move 

form Ct to Ct+1. In particular, if an internal node i is black-pebbled at step t then 

both children of i have pebble value 1 in Ct and node i has a positive black pebble 

value in Ct+1. 
Note that if any configuration Ct has a whole white pebble on some internal 

node then both children must have pebble value 1 to remove that pebble, so some 

configuration will have at least pebble value 3, which is what we are to prove. Hence 
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we may assume that no node in any Ct has white pebble value 1, and hence every 
node must be black-pebbled at some step. 

For each node i we associate a critical time ti such that i is black-pebbled at 
step ti and hence the children of i each have pebble value 1 in configuration Cti . 
The time t1 associated with the root (as earlier) is the first step at which the root is 
black-pebbled, and hence nodes 2 and 3 each have pebble value 1 in Ct1 . In general 
if ti is the critical time for internal node i, and j is a child of i, then the critical time 

tj for j is the largest t < ti such that j is black-pebbled at step t. 

Sibling Assumption We may assume without loss of generality (by applying an isomorphism to the tree) 
that if i and j are siblings and i < j then ti < tj. 

In general the critical times for a path from root to leaf form a descending chain. 
In particular 

t7 < t3 < t1. 

For each i > 1 we define bi and wi to be the black and white pebble values of node 

i at the critical time of its parent. Thus for all i > 1 

bi + wi = 1. (10) 

Now let p be the maximum pebble value of any configuration Ct in the pebbling. 
Our task is to prove that p ≥ 3. 

After the critical time of an internal node i the white pebble values of its two 

children must be removed. When the first one is removed both white values are 

present along with pebble value 1 on two children, so 

w2i + w2i+1 + 2 ≤ p. 

In particular for i = 1, 3 we have 

w2 + w3 + 2 ≤ p, (11) 

w6 + w7 + 2 ≤ p. (12) 

Now we consider two cases, depending on the order of t2 and t7. 

Case I. t2 < t7. Then by the Sibling Assumption, at time t7 (when node 7 is 
black-pebbled) we have 

b2 + b6 + 2 ≤ p. (13) 
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Now if we also suppose that w6 is not removed until after t1 (CASE IA) then when 

the first of w2, w6 is removed we have 

w2 + w6 + 2 ≤ p 

so adding this equation with (13) and using (10) we see that p ≥ 3 as required. 
However if we suppose that w6 is removed before t1 (CASE IB) (but necessarily 

after t2 < t3) then we have 

b2 + b3 + w6 + 2 ≤ p. 

then we can add this to (11) to again obtain p ≥ 3. 
Case II. t7 < t2. Then t6 < t7 < t2 < t3 so at time t2 we have 

b6 + b7 + 2 ≤ p 

so adding this to (12) we again obtain p ≥ 3.	 ■ 

To prove the general lower bound, we need the following lemma. 

Lemma 4.5	 For every finite DAG there is an optimal fractional pebbling in which all pebble values 
are rational numbers. (This result is robust independent of various definitions of peb
bling; for example with or without sliding moves, and whether or not we require the root 
to end up pebbled.) 

Proof. Consider an optimal fractional pebbling algorithm. Let the variables bv,t and 

wv,t stand for the black and white pebble values of node v at step t of the algorithm. 

Claim	 We can define a set of linear inequalities with 0-1 coefficients which suffice to ensure that 
the pebbling is legal. 

For example, all variables are nonnegative, bv,t + wb,t ≤ 1, initially all variables 
are 0, and finally the nodes have the values that we want, node values remain the 

same on steps in which nothing is added or subtracted, and if the black value of a 

node is increased at a step then all its children must be 1 in the previous step, etc. 
Now let p be a new variable representing the maximum pebble value of the algo

rithm. We add an inequality for each step t that says the sum of all pebble values 
at step t is at most p. 

Any solution to the linear programming problem: Minimize p subject to all of 
the preceding inequalities gives an optimal pebbling algorithm for the graph. But 
every LP program with rational coefficients has a rational optimal solution (if it 
has any optimal solution). ■ 
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Now we can prove the lower bound for all heights. 

#FRpebbles(Td
h) ≥ (d − 1)(h − 1)/2 − 1/2 = (d − 1)h/2 − d/2 (14) 

We conjecture that the upper bound given in Theorem 4.4 is tight. It seems like 

proving this should not be much harder than proving the lower bound for black-
white pebbling Td

h. However we have not even been able to prove the weaker lower 
bound (14) directly. The present proof derives the lower bound from Klawe’s result 
(Theorem 4.8). 

Proof. The degree d and height h of the tree are fixed throughout this proof, so we 

will write just T instead of Td
h . 

The high-level strategy for the proof is as follows. We transform T into a 

DAG G such that a lower bound for #BWpebbles(G) gives a lower bound for 
#FRpebbles(T). To analyze #BWpebbles(G), we use a result by Klawe [Kla85], who 

shows that for any DAG H that satisfies a certain “niceness” property (Defini
tion 4.12), #BWpebbles(H) can be given in terms of #pebbles(H) (and the relation
ship is tight to within an additive constant less than one). This helps since the 

black pebbling cost is typically easier to analyze. In our case, G does not satisfy 
the niceness property as-is, but just by removing some edges from G (which can
not increase the black or black/white pebbling cost), we get a new DAG G ′ that is 
nice. We then compute #pebbles(G ′) exactly, which by Klawe’s result yields a lower 
bound on #BWpebbles(G ′) ≤ #BWpebbles(G), and hence on #FRpebbles(T). 

We first motivate the construction G and show that the whole black-white 

pebbling number of G is related to the fractional pebbling number of T. 

We will use Lemma 4.5 to show that the following “discretized” fractional peb
bling cost is almost the same as the fractional pebbling cost #FRpebbles when the 

parameter c is large enough. 

Discretized Fractional Pebbling 

For positive integer c, let #FRpebblesc(H) be the cost of fractionally pebbling H 

when only the following moves are allowed. 

—	 For any node v, decrease b(v) or increase w(v) by 1/c. 
—	 For any node v, including leaf nodes, if all the children of v have value 1, then 

increase b(v) or decrease w(v) by 1/c. 

By Lemma 4.5, we can assume all pebble values are rational, and if we choose c 
large enough it is not a restriction that pebble values can only be changed by 1/c. 
Sliding moves are not allowed in the discretized game, but it is easy to see that 



290 Chapter 15 Pebbles and Branching Programs for Tree Evaluation 

Figure 3 G for the height 3 binary tree with c = 3. 

increases the cost by at most 1 (compared to fractional pebbling with black sliding 

moves). Hence we have the following fact. 

Fact 2 #FRpebbles(T) ≥ #FRpebblesc(T) − 1 for sufficiently large c. 

Now let c be an arbitrary positive integer. We show how to construct G = Gc.4 We 

will split up each node of T into c nodes, so that the discretized fractional pebbling 

game on T corresponds to the whole black-white pebbling game on G.5 Specifically, 
the cost of the whole black-white pebble game on the new graph will be exactly c 
times the cost of the discretized game on T. 

The idea is to use c whole-pebble-taking nodes to “simulate” each fractional-
pebble-taking node of T. For example, if c = 20 and we have a configuration of T 

where node u has black value 4/20 and white value 6/20, then in the corresponding 

configuration of G, 4 (respectively, 6) of the 20 nodes dedicated to simulating u are 

whole black (respectively, white) pebbled. More precisely, in place of each node v of 
′ T, G has c nodes v[1], . . . , v[c]; having any c ≤ c of those nodes pebbled simulates v 

having value c ′/c in the discretized fractional pebbling game. In place of each edge 

(u, v) of T is a copy of the complete bipartite graph (U, V), where U contains nodes 
u[1] . . . u[c] and V contains nodes v[1] . . . v[c]. To clarify: if u is a parent of v in the 

tree, then all the edges go from V to U in the corresponding complete bipartite 

graph. Finally, a new “root” is added at height h + 1 with edges from each of the c 
6nodes at height h. 

4. We don’t write the subscript since c is fixed throughout the argument. 

5. For an example, see Figure 3. 

6. The reason for this is quite technical: Klawe’s definition of pebbling is slightly different from 

ours in that it requires that the root remain pebbled. Adding a new root forces there to be a time 
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So every node in G at height h − 1 and lower has c parents, and every internal 
(i.e., nonleaf) node except for the root has dc children. By construction we get:7 

Fact 3 #FRpebblesc(T) ≥ (#BWpebbles(G) − 1)/c. 

From Facts 2 and 3, our goal follows if we can show 

#BWpebbles(G) ≥ c((d − 1)(h − 1) + 1)/2 + 1. 

For that we will use Theorem 4.8 (from Klawe [Kla85]), stated next. The state
ment of the theorem depends on Klawe’s definition of nice DAGs (Definition 4.12), 
which is stated later when we finally get around to proving that a DAG is nice 

(Proposition 4.12.1). 

Theorem 4.8 [Kla85] 
If H is a nice DAG, then 

#BWpebbles(H) ≥ ⌊#pebbles(H)/2⌋ + 1. 

G is not nice in Klawe’s sense. We will delete some edges from G to produce a 

nice DAG G ′ and then we will analyze #pebbles(G ′). Note that deleting edges cannot 
increase the black-white pebbling cost, and so we have the next fact. 

Fact 4 #BWpebbles(G ′) ≤ #BWpebbles(G). 

The following definition will help in explaining the construction of G ′ as well 
as for specifying and proving properties of certain paths. 

Definition 4.9 For u ∈ G, let T(u) be the node in T from which u was generated (i.e., T(u)[i] = u 
′ ′ ′ for some i ≤ c). For v, v ∈ T, we say v <T v if v is visited before v in an inorder 

′ ′ traversal of T. For u, u ∈ G, we say u <G u if T(u) <T T(u ′) or if for some v ∈ T, 
′ i < j ≤ c have u = v[i], u = v[j]. 

G ′ is obtained from G by removing c − 1 edges from each internal node except 
the root, as follows (for an example, see Figure 4). For each internal node v of T, 
consider the corresponding nodes v[1], v[2], . . . , v[c] of G. Remove the edges from 

v[i] to its i − 1 smallest and c − i largest children. So in the end each internal node 

of G ′ except the root has c(d − 1) + 1 children. 
By Theorem 4.8 (with H = G ′ ) and Fact 4, it now remains to lower bound 

#pebbles(G ′) (Proposition 4.9.1 with c even), and then show that G ′ is nice (Propo
sition 4.12.1). 

when all c of the height h nodes, which represent the root of T, are pebbled. This affects the 

relationship between #FRpebblesc(T) and #BWpebbles(G) very slightly, as indicated by Fact 3. 

7. For clarification, we note that #BWpebbles(G)/c ≥ #FRpebblesc(T). 
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Figure 4 G ′ for the height 3 binary tree with c = 3. 

Proposition 4.9.1 #pebbles(G ′) = c((d − 1)(h − 1) + 1). 

It will be convenient to rewrite the expression as (c − 1) + c(d − 1)(h − 1) + 1. The 

upper bound is attained using a simple recursive algorithm similar to that used for 
Td
h (Theorem 4.1). 
For the lower bound, consider the earliest time t when all paths from a leaf to the 

root are blocked (a path is blocked if at least one of its nodes is pebbled). Figure 5 

is an example of the type of pebbling configuration that we are about to analyze. 
The last pebble placed must have been placed at a leaf, since otherwise t − 1 would 

be an earlier time when all paths from a leaf to the root are blocked. Let PBN be a 

newly blocked path from a leaf to the root (the BottleNeck path). Consider the set 

S = {u ∈ G ′ ∣ u is a child of a node in PBN and u ∉ PBN} 

8of size (c − 1) + c(d − 1)(h − 1). 

Claim 1	 There is a set of pairwise node-disjoint paths {Pu}u∈S such that for every u ∈ S, Pu is a 

path from a leaf to u and Pu does not intersect PBN. 

Assuming Claim 1 holds, we get that at time t − 1, for every u ∈ S there must be 

at least one pebble on Pu, since otherwise there would still be an open path from 

a leaf to the root at time t. Also counting the leaf node that is pebbled at time t 
gives (c − 1) + c(d − 1)(h − 1) + 1 pebbles. Hence, to complete the proof of Proposi
tion 4.9.1, it just remains to prove Claim 1, and for that task we will benefit from a 

couple more simple definitions: 

8. S has c − 1 nodes at height h and c(d − 1) nodes at heights 1, . . . , h − 1. See Figure 5, where the 

pebbled nodes are the nodes in S plus one leaf node not in S. 
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Figure 5 A possible black pebbling bottleneck of G ′ for the height 3 binary tree with c = 3. 

Definition 4.10	 For u ∈ G ′ , the left-most (respectively, right-most) path to u is the unique path 

from some leaf to u that is determined, starting at u, by moving to the smallest 
(respectively, largest) child at every level.9 

Definition 4.11	 For any path P from a leaf to a height l node u, for l ′ ≤ l let P(l ′) be the height l ′ 

node on P. 

Recall the ordering on the nodes of G (which we extend to G ′ ) from Defini
tion 4.9. For each u ∈ S at height l, if u is less than (respectively, greater than) PBN(l) 
then make Pu the left-most (respectively, right-most) path to u. Intuitively, we are 

choosing Pu so that it moves away from PBN as quickly as possible. Now we need to 

show that the paths {Pu}u∈S ∪ {PBN} are pairwise node-disjoint. The following fact is 
clear from the definition of G ′ . 

Fact 5	 For any u, v ∈ G ′ , if u < v then the smallest child of u is not a child of v, and the 

largest child of v is not a child of u. 

First we show that Pu and PBN are node-disjoint for every u ∈ S. The following 

lemma will help now and in the proof of Proposition 4.12.1. 

Lemma 4.11.1	 For u, v ∈ G ′ with u < v, if there is no path from u to v or from v to u, then the left-most 
path to u does not intersect any path to v from a leaf, and the right-most path to v does 
not intersect any path to u from a leaf. 

Proof.	 Suppose otherwise and let P ′ be the left-most path to u, and P ′ a path to vu	 v 

that intersects P ′ . Since there is no path between u and v, there is a height l, one u

9. Equivalently: if u is at height l then the left-most (respectively, right-most) path to u is the length 

l path u1, . . . , ul such that ul = u and ui is the smallest (respectively, largest) child of ui+1 for all 
i ∈ {1, . . . , l − 1}. 
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greater than the height where the two paths first intersect, such that P ′ (l), P ′(l) areu v

defined and P ′ (l) < Pv′(l). But then from Fact 5 P ′ (l − 1) ̸ v(l − 1), a contradiction. = P ′ u u

The proof for the second part of the lemma is similar. ■ 

That Pu and PBN are disjoint follows from using Lemma 4.11.1 on u and the 

sibling of u in PBN. 
Next we show that for distinct u, v ∈ S, the paths Pu and Pv do not intersect. Let 

us first show that Pu does not contain v, and by symmetry we will have that Pv does 
not contain u. Suppose for the sake of contradiction that Pu contains v, and without 
loss of generality assume Pu is the left-most path to u (the other case is symmetric). 
Since u ̸ (l − 1) = v and Pu= v, there must be a height l ≤ height(u) such that Pu (l) 
is a parent of v. From the definition of S, we know PBN(l) is also a parent of v. Since 

we assumed Pu is the left-most path to u, it must be that Pu(l) < PBN(l). But then 

Fact 5 tells us that v cannot be a child of PBN(l), a contradiction. So we have shown 

that Pv does not contain u, and by symmetry Pu does not contain v. Now suppose 

that Pu and Pv intersect at some node other than u or v. Then there is a height l, 
one greater than the height where they first intersect, such that Pu(l) ̸= Pv(l). Now, 
observe that Pu and Pv are both left-most paths or both right-most paths, since oth
erwise in order for them to intersect they would need to cross PBN (which we showed 

does not happen). But then from Fact 5 Pu(l − 1) ̸= Pv(l − 1), a contradiction. 
That completes the proof of Claim 1 and hence of Proposition 4.9.1. We now just 

need to prove Proposition 4.12.1 and then apply Klawe’s Theorem 4.8. 

Definition 4.12 A DAG H is nice if the following conditions hold. 

(1) If u1 and u2 are sibling nodes10 in H then the cost of black pebbling u1 is equal 
to the cost of black pebbling u2. 

(2) If u1 and u2 are siblings, then there is no path from u1 to u2 or from u2 to u1. 

(3) If u, u1, . . . , um are nodes none of which has a path to any of the others, then 

there are node-disjoint paths P1, . . . , Pm such that Pi is a path from a leaf to 

ui and there is no path between u and any node in Pi. 

Proposition 4.12.1 G ′ is nice. 

Proof. Property 2 is obviously satisfied. 
For Property 1, the argument used to give the black pebbling lower bound of 

(c − 1) + c(d − 1)(h − 1) + 1 can be used to give a lower bound of c(d − 1)(h ′ − 1) + 1 

10. That is, they have a parent in common. 



4.3 

Theorem 4.13 

4 Pebbling Bounds 295 

for the cost of black pebbling any node at height h ′ ≤ h.11 Moreover that bound is 
easily shown to be tight. 

For Property 3, we can choose Pi to be the left-most (respectively, right
most) path from ui if ui is less than (respectively, greater than) u. We then use 

Lemma 4.11.1 on each pair of nodes in {u, u1, . . . , um}. ■ 

White Sliding Moves 
In the definition of fractional pebbling (Definition 2.6) we allow black sliding 

moves but not white sliding moves. To allow white sliding moves we would add 

a clause. 

(4) For every internal node i, decrease w(i) to 0 and increase the white pebble value 

of each child of i so that each child has total pebble value 1. 
We did not include this move in the original definition because a nondetermin

istic k-way BP solving FTh(k) or BTh(k) does not naturally simulate it. The natural d d 

way to simulate such a move would be to verify the conjectured value of node i (con
jectured when the white pebble was placed on i) by comparing it with fi(vj1 , . . . , vjd ), 
where j1, . . . , jd are the children of i. But this would require the BP to remember a 

(d + 1)-tuple of values, whereas potentially only d pebbles are involved. 
White sliding moves definitely reduce the number of pebbles required to peb

ble some trees. For example the binary tree T23 can easily be pebbled with 2 pebbles 
using white sliding moves, but requires 2.5 pebbles without (Theorem 4.4). The 

next result shows that 8/3 pebbles suffice for pebbling T24 with white sliding moves, 
whereas 3 pebbles are required without (Theorem 4.4). 

The binary tree of height 4 can be pebbled with 8/3 pebbles using white sliding moves. 

Proof. The height 3 binary tree can be pebbled with 2 pebbles. Use that sequence 

on node 2, but leave one third of a black pebble on node 2. That takes 7/3 pebbles. 
Put black pebbles on nodes 12 and 13. Slide one third of a black pebble up to node 6. 
Remove the pebbles on nodes 12 and 13. Put black pebbles on nodes 14 and 15; this 
is the first configuration with 8/3 pebbles. Slide the pebble on node 14 up to node 7. 
Remove the pebble from 15. Put 2/3 of a white pebble on node 6. Slide the black peb
ble on node 7 up to node 3. Remove one third of a black pebble from node 6. Put 
2/3 of a white pebble on node 2; the resulting configuration has 8/3 pebbles. Slide 

the black pebble on node 3 up to the root. Remove all black pebbles. At this point 
there is 2/3 of a white pebble on both node 2 and node 6. Put a black pebble on 

node 12 and one-third of a black pebble on node 13, another bottleneck. Slide the 

11. The only change is in the size of the set of nodes S. For the root, which is at height h + 1, S has 
size (c − 1) + c(d − 1)(h − 1), whereas for a height h ′ ≤ h node, S has size c(d − 1)(h ′ − 1). 
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2/3 white pebble on node 6 down to node 13. Remove the pebbles from nodes 12 

and 13. Finally, use 8/3 pebbles to remove the 2/3 white pebble from node 2. ■ 

5 Branching Program Bounds 
In this section we prove tight bounds (up to a constant factor) for the number 
of states required for both deterministic and nondeterministic k-way branching 

programs to solve the Boolean problems BTh(k) for all trees of height h = 2 and d 

h = 3. (The bound is obviously Θ(kd) for trees of height 2, because there are d + kd 

input variables.) For every height h ≥ 2 we prove upper bounds for determinis
tic thrifty programs which solve FTh(k) (Theorem 5.1, (15)), and show that these d 

bounds are optimal for degree d = 2 even for the Boolean problem BTh(k) (Thed 

orem 5.11). We prove upper bounds for nondeterministic thrifty programs solving 

BTd
h(k) in general, and show that these are optimal for binary trees of height 4 or 

less (Theorems 5.1 and 5.15). 
For the nondeterministic case our best BP upper bounds for every h ≥ 2 come 

from fractional pebbling algorithms via Theorem 3.4. For the deterministic case 

our best bounds for the function problem FTh(k) come from black pebbling via the d 

same theorem, although we can improve on them for the Boolean problem BT2 
h(k) 

by a factor of log k (for h ≥ 3). 

Theorem 5.1 BP Upper Bounds 
For all h, d ≥ 2 

#detFstateshd(k) = O(k(d−1)h−d+2),	 (15) 

#detBstateshd(k) = O(k(d−1)h−d+2/ log k), for h ≥ 3, (16) 

d(k) = O(k(d−1)(h/2)+1).#ndetBstatesh	 (17) 

The first and third bounds are realized by thrifty programs. 

Proof. The first and third bounds follow from Theorem 3.4 (which states that peb
bling upper bounds give rise to upper bounds for the size of thrifty BPs) and from 

Theorems 4.1 and 4.4 (which give the required pebbling upper bounds). 
To prove (16) we use a branching program which implements the following algo

rithm. Here we have a parameter m, and choosing m = ⌈log kd−1 − log log kd−1⌉ suf
fices to show #detBstateshd(k) = O(k(d−1)(h−1)+1/ log kd−1), from which (16) follows. 
We estimate the number of states required up to a constant factor. 

(1) Compute	 v2 (the value of node 2 in the heap ordering), using the black 

pebbling algorithm for the principal left subtree. This requires k(d−1)(h−2)+1 

states. Divide the k possible values for v2 into ⌈k/m⌉ blocks of size m. 
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(2) Remember the block number for v2, and compute v3, . . . , vd+1. This requires 
× k(d−1)(h−2)+1k/m × kd−2 = k(d−1)(h−1)+1/m states. 

(3) Remember	 v3, . . . , vd+1 and the block number for v2. Compute 

f1(a, v3, . . . , vd+1) for each of the m possible values a for v2 in its block 

number, and keep track of the set of a’s for which f1 = 1. This requires 
kd−1 × k/m × m × 2m = kd2m states. 

(4) Remember just the set of possible a’s (within its block) from before (there 

are 2m possibilities). Compute v2 again and accept or reject depending on 

whether v2 is in the subset. This requires k(d−1)(h−2)+12m states. 

The total number of states has order the maximum of k(d−1)(h−1)+1/m and 

k(d−1)(h−2)+12m, which is at most 

k(d−1)(h−1)+1/(log kd−1 − log log kd−1) 

for m = log kd−1 − log log kd−1.	 ■ 

We combine the preceding upper bounds with the Nec̆iporuk lower bounds in 

Section 5.1, Figure 6, to obtain the following. 

Corollary 5.2 Tight bounds for height 3 trees 
For all d ≥ 2 

#detFstates3 d(k) = Θ(k2d−1) 

#detBstates3 d(k) = Θ(k2d−1/ log k) 

#ndetBstates3 d(k) = Θ(k(3/2)d−1/2). 

Model Lower bound for FTh(k) Lower bound for BTh(k)d d 

dh−2−1 k2d−1dh−2 −1 k2d−1Deterministic k-way ⋅⋅ 3(d−1)2 log k4(d−1)2 

branching program 

Deterministic binary dh−2−1 dh−2−1 k2d⋅ k2d = Ω(n2/(log n)2) ⋅ = Ω(n2/(log n)3)4d(d−1) log k5(d−1)2branching program 
√Nondeterministic k dh−2−1 k 

3
2 
d − 1 dh−2−1 k 

3
2 
d − 1 2⋅ 2 log k2d−2 2d−2 ⋅ 

way BP 
√Nondeterministic bi dh−2−1 dh−2−1 

2d−2 ⋅ k 
3
2 
d log k = Ω(n3/2/ log n) 2d−2 ⋅ k 

3
2 
d = Ω(n3/2/(log n)3/2)

nary BP 

Figure 6	 Size bounds for k large enough, expressed in terms of n = Ω(kd log k) in the binary 
cases, obtained by applying the Nec̆iporuk method. Rectangles indicate optimality in k 
when h = 3 (Corollary 5.2). Improving any entry to Ω(kunbounded f (h)) would prove L � P 
(Corollary 3.3). 
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5.1 

Theorem 5.3 

Remark 5.4 

The Nec̆iporuk Method 
By applying the Nec̆iporuk method to a k-way branching program B computing 

a function f : [k]m → R, we mean the following well-known steps [Nec̆66] (see 

Wegener [Weg00]). 

(1) Upper bound the number N(s, v) of (syntactically) distinct branching pro
grams of type B having s nonfinal states, each labeled by one of v variables. 

(2) Pick a partition {V1, . . . , Vp} of [m]. 
|Vi|(3) For 1 ≤ i ≤ p, lower bound the number rVi (f ) of restrictions fVi : [k] → R of 

f obtainable by fixing values of the variables in [m]\Vi. 

(4) Then size (B) ≥ |R| + ∑1≤i≤p si, where si = min{s : N(s, |Vi|) ≥ rVi (f )}. 

The Nec̆iporuk method still yields the strongest explicit binary branching pro
n2gram size lower bounds known today, namely Ω ( (log n)2 ) for the deterministic 

case [Nec̆66] and Ω ( 
n3/2 

log n ) for the nondeterministic case ([Pud87a], see Razborov 
[Raz91]). It is known that the previous lower bounds are the best that can be 

obtained using the Nec̆iporuk method. For the deterministic case this is stated with 

proof hints in Wegener [Weg87, p. 422]. An argument for the nondeterministic case 

is made in Beame and McKenzie [BM12]. 

Applying the Nec̆iporuk method yields Figure 6. 

Our Ω(n3/2/(log n)3/2) binary nondeterministic BP lower bound for the BTh(k) prob-d 

lem and in particular for BT23(k) applies to BP “state-size” defined here as the num
ber of states in the BP. By comparison, Pudlak’s Ω(n3/2/ log n) lower bound [Pud87a, 
Raz91] (for a different Boolean function) applies to the “edge-size” of the closely 
related switching and rectifier network model, where “edge-size” is defined as the 

number of (labeled) edges in the network. Because switching and rectifier networks 
can also use unlabeled edges, any k-way nondeterministic BP with state-size S can 

be simulated by a network of edge-size at most kS (regardless of the BP outde
gree). Pudlak’s Ω(n3/2/ log n) bound thus applies as well to the number of states in 

a binary nondeterministic BP computing his function, and his bound is the best 
that the Nec̆iporuk method can achieve [BM12]. 

Proof of Theorem 5.3. We have Nk-way(s, v) ≤ vs ⋅ (s + |R|)sk for the number of deterdet 

+1)sk ministic BPs and Nk-way (s, v) ≤ vs ⋅ (|R| ⋅ (2s)sk for nondeterministic BPs having nondet

s nonfinal states, each labeled with one of v variables. To see the latter bound, note 

that edges labeled i ∈ [k] can connect a state S to zero or one state among the 

final states and can connect S independently to any number of states among the 

nonfinal states. 
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The only decision to make when applying the Nec̆iporuk method is the choice 

of the partition of the input variables. Here every entry in Figure 6 is obtained using 

the same partition (with the understanding that a k-ary variable in the partition is 
replaced by log k binary variables when we treat 2-way branching programs). 

We will only partition the set V of k-ary FTh(k) or BTh(k) variables that pertain to d d 

internal tree nodes other than the root (we will neglect the root and leaf variables). 
Each internal tree node has d − 1 siblings and each sibling involves kd variables. 
By a litter we will mean any set of d k-ary variables that pertain to precisely d such 

siblings. We obtain our partition by writing V as a union of 

dh−2 − 1
kd ⋅ Σh

i=
−
0
3di = kd ⋅ 

d − 1 

litters. (Specifically, each litter can be defined as 

{fi(j1, j2, . . . , jd), fi+1(j1, j2, . . . , jd), . . . , fi+d−1(j1, j2, . . . , jd)} 

for some 1 ≤ j1, j2, . . . , jd ≤ k and some d siblings i, i + 1, . . . , i + d − 1.) 
Consider such a litter L. We claim that |R|kd 

distinct functions fL : [k]d → R can be 

induced by setting the variables outside of L, where |R| = k in the case of FTh(k) andd 

|R| = 2 in the case of BTh(k). Indeed, to induce any such function, fix the “descend 

dants of the litter L” to make each variable in L relevant to the output; then, set the 

variables pertaining to the immediate ancestor node 𝜈 of the siblings forming L to 

the appropriate kd values, as if those were the final output desired; finally, set all 
the remaining variables in a way such that the values in 𝜈 percolate from 𝜈 to the 

root. 
It remains to do the calculations. We illustrate two cases. Similar calculations 

yield the other entries in Figure 6. 

Nondeterministic k-way branching programs computing FTh(k). Here |R| = k. In a cord 

rect program, the number s of states querying one of the d litter L variables must 
satisfy 

kk
d ≤ Nk-way (k + 1)sk (2s)sk ≤ ss k2sk (2s)sk (s, d) ≤ ds ⋅ ⋅ ⋅ ⋅nondet

since d ≤ s (because FTh(k) depends on all its variables), and thus d 

kd log k ≤ s(log s + 2k log k) + s2k. 

d−1√
Suppose to the contrary that s < (k 2 log k)/2. Then 

d − 1 log log k 2ks(log s + 2k log k) + s2k < s ( 
log k + + 2k log k) 

+ s
2 2 

< s(sk) + s2k < kd log k 



300 Chapter 15 Pebbles and Branching Programs for Tree Evaluation 

d−1 √
for large k and all d ≥ 2, a contradiction. Hence s ≥ (k 2 log k)/2. Since this 
holds for every litter, recalling step 4 in the Nec̆iporuk method as described prior 
to Theorem 5.3, the total number of states in the program is at least 

dh−2 − 1 √ dh−2 − 1 √d−1	 3d 
2 − 1k + kd ⋅ ⋅ (k 2 log k) /2 ≥ ⋅ k 2 log k.

d − 1	 2d − 2 

Nondeterministic binary (i.e., 2-way) branching programs deciding BTh(k). Here |R| = d 

2. When the program is binary, the d variables in the litter L become d log k Boolean 

variables. The number s of states querying one of these d log k variables then 

satisfies 

2k
d ≤ N2-way	 24s+2s2(s, d log k) ≤ (d log k)s ⋅ (2 + 1)2s ⋅ (2s)2s < (s log k)s ⋅nondet

since d ≤ s and thus 

kd ≤ s log s + s log log k + 4s + 2s2 ≤ 3s2 + 5s log log k. 

It follows that s ≥ k
d 
2 /2. Hence the total number of states in a binary nondetermin

istic program deciding BTh(k) is at least d 

dh−2 − 1 kd/2 dh−2 − 1 3d dh−2 − 1 (kd log k)3/2 

kd ⋅	 ⋅ ≥ ⋅ k 2 = ⋅ = Ω(n3/2/(log n)3/2),
d − 1 2 2(d − 1) 2(d − 1) (log k)3/2 

where n = Θ(kd log k) is the length of the binary encoding of BTh(k). ■d 

The next two results together with Theorems 5.9 and 5.10 show limitations 
on the Nec̆iporuk method that are not necessarily present in the state sequence 

method. We include these to support our hope that the latter method and its gen
eralizations have the potential to break the quadratic limitation in proving lower 
bounds using the Nec̆iporuk method. 

Let Childrenh(k) have the same input as FTh(k) with the exception that the root d	 d 

function is deleted. The output is the tuple (v2, v3, . . . , vd+1) of values for the chil
dren of the root. Childrenh(k) can be computed by a k-way deterministic BP with d

O(k(d−1)h−d+2) states using the same black pebbling method which yields the bound 

(15) in Theorem 5.1. 

Theorem 5.5	 For any d, h ≥ 2, the best k-way deterministic BP size lower bound attainable for 
Childrenh(k) by applying the Nec̆iporuk method is Ω(k2d−1).d

Proof. The function Childrenh(k) : [k]m → R has m = Θ(kd). Any partition d

{V1, . . . , Vp} of the set of k-ary input variables thus has p = O(kd). Claim: for each i, 
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the best attainable lower bound on the number of states querying variables from 

Vi is O(kd−1). 
Consider such a set Vi, | | = v ≥ 1. Here |R| = kd, so the number Nk-way(s, v)Vi det 

of distinct deterministic BPs having s nonfinal states querying variables from Vi 
satisfies 

Nk-way )sk ≥ (1 + kd)sk ≥ kdsk (s, v) ≥ 1s ⋅ (s + |R| .det 

Hence the estimate used in the Nec̆iporuk method to upper bound Nk-way(s, v) willdet 

be at least kdsk. On the other hand, the number of functions fVi : [k]
v → R obtained 

by fixing variables outside of Vi cannot exceed kO(k
d ) since the number of variables 

outside Vi is Θ(kd). Hence the best lower bound on the number of states querying 

variables from Vi obtained by applying the method will be no larger than the small
est s verifying kck

d ≤ kdsk for some c depending on d and k. This proves our claim 

since then this number is at most s = O(kd−1). ■ 

Let SumModd
h(k) have the same input as FTd

h(k) with the exception that the root 
function is preset to the sum modulo k. In other words the output is v2 + v3 + · · · + 

vd+1 mod k. 

The best k-way deterministic BP size lower bound attainable for SumMod32(k) by apply
ing the Nec̆iporuk method is Ω(k2). 

Proof. The function SumMod23(k) : [k]m → R has m = Θ(k2). Consider a set Vi in any 
partition {V1, . . . , Vp} of the set of k-ary input variables, |Vi| = v. Here |R| = k, so the 

number Nk-way(s, v) of distinct deterministic BPs having s nonsink states querying det 

variables from Vi satisfies 

Nk-way )sk ≥ (1 + k)sk ≥ ksk (s, v) ≥ 1s ⋅ (s + |R| .det 

If Vi contains a leaf variable, then perhaps the number of functions induced by set
ting variables complementary to Vi can reach the maximum kk

2
. Nec̆iporuk would 

conclude that k states querying the variables from such a Vi are necessary. Note 

that there are at most 4 sets Vi containing a leaf variable (hence a total of 4k 

states required to account for the variables in these 4 sets). Now suppose that Vi 
does not contain a leaf variable. Then setting the variables complementary to Vi 
can either induce a constant function (there are k of those), or the sum of a con
stant plus a variable (there are at most k ⋅ |Vi| of those) or the sum of two of the 

variables (there are at most |Vi|2 of those). So the maximum number of induced 
2functions is |Vi| = O(k4). The number of states querying variables from Vi is found 

by Nec̆iporuk to be s ≥ 4/k. In other words s = 1. So for any of the at least p − 4 
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Definition 

sets in the partition not containing a leaf variable, the method gets one state. Since 

p − 4 = O(k2), the total number of states accounting for all the Vi is O(k2). ■ 

The State Sequence Method 
Here we give alternative proofs for some of the lower bounds given in Section 5.1. 
These proofs are more intricate than the Nec̆iporuk proofs but they do not suffer a 

priori from a quadratic limitation. The method also yields stronger lower bounds 
for Children42(k) and SumMod23(k) (Theorems 5.9 and 5.10) than those obtained by 
applying Nec̆iporuk’s method (Theorems 5.5 and 5.6). 

#ndetBstates32(k) ≥ k2.5 for sufficiently large k. 

Proof. Consider an input I to BT23(k). We number the nodes in T23 as in Figure 1, and 

let vIj denote the valueof node j under input I. We say that a state in a computation 

on input I learns vIj if that state queries f I (v2
I
j, v

I ) (recall 2j, 2j + 1 are the children j 2j+1

of node j). 

Learning Interval 
Let B be a k-way nondeterministic BP that solves BT23(k). Let 𝒞 = 𝛾0, 𝛾1, · · · , 𝛾T be a 

computation of B on input I. We say that a state 𝛾i in the computation is critical if 
one or more of the following holds. 

(1)	 i = 0 or i = T. 
(2)	 𝛾i learns vI 2 and there is an earlier state which learns v3 I with no intervening 

state that learns vI 2. 
(3)	 𝛾i learns vI 3 and no earlier state learns v3 I unless an intervening state learns 

vI 2. 

We say that a subsequence 𝛾i, 𝛾i+1, · · · 𝛾j is a learning interval if 𝛾i and 𝛾j are 

consecutive critical states. The interval is type 3 if 𝛾i learns vI 3, and otherwise the 

interval is type 2. 
The reason for the assymetry in the previous definition is that the initial state 𝛾0 

of B may learn neither vI 2 nor vI 3, in which case the initial learning interval is type 2. 
Since the tree T23 has a symmetry which interchanges nodes 2 and 3, we may assume 

without loss of generality that 𝛾0 does not query the function f3 and hence it does 
not learn vI 3 no matter what the input I. Thus a type 2 learning interval begins with 

I	 I𝛾0 and/or a state which learns v2, and never learns v3 until the last state. A type 3 
learning interval begins with a state which learns vI 3 and never learns vI 2 until the 

last state. 
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Now let B be as earlier, and for j ∈ {2, 3} let Γj be the set of all states of B which 

make a query of the form fj(x, y) for some x, y ∈ [k]. We will prove the theorem by 
showing that for large k 

√
|Γ2| + |Γ3| > k2 k. (18) 

For r, s ∈ [k] let Fr,s yes be the set of inputs I to B whose four leaves are labeled r, 
s, r, s respectively, whose middle node functions f2 

I and f I are identically 1 except 3 

f2 
I (r, s) = vI 2 and f3 I (r, s) = vI 3, and f1 I (vI 2, v3I ) = 1 (so vI = 1). Thus each such I is a “YES 1 

input”, and should be accepted by B. 
Note that for fixed r, s, each member I of Fr,s yes is uniquely specified by a triple 

I I I I(v2, v3, f1 
I ) where f1 

I (v2, v3) = 1 (19) 

and we assume f I : [k] × [k] → {0, 1}, so Fr,s yes has exactly k2(2k
2−1) members.1 

For j ∈ {2, 3} and r, s ∈ [k] let Γrj 
,s be the subset of Γj consisting of those states 

which query fj(r, s). Then Γj is the disjoint union of Γrj 
,s over all pairs (r, s) in [k]×[k]. 

Hence to prove (18) it suffices to show 

√
Γr,s Γr,s| | + | | > k (20)2 3 

for large k and all r, s in [k]. We will show this by showing 

Γr,s Γr,s(| | + 1)(| + 1) ≥ k/2 (21)2 3 

for all k ≥ 2. (Note that given the product, the sum is minimized when the 

summands are equal.) 
For each input I in Fr,s yes we associate a fixed accepting computation 𝒞(I) of B on 

input I. 
Now fix r, s ∈ [k]. For a, b ∈ [k] and f : [k] × [k] → {0, 1} with f (a, b) = 1 we use 

(a, b, f ) to denote the input I in Fr,s yes it represents as in (19). 
To prove (21), the idea is that if it is false, then as I varies through all inputs 

(a, b, f ) in Fyes
r,s there are too few states learning vI = a and vI = b to verify that 2 3 

f (a, b) = 1. Specifically, we can find a, b, f, g such that f (a, b) = 1 and g(a, b) = 0, 
and by cutting and pasting the accepting computation 𝒞(a, b, f ) with accepting 

′ computations of the form 𝒞(a, b ′ , g) and 𝒞(a , b, g) we can construct an accepting 

computation of the “NO input” (a, b, g). 
We may assume that the branching program B has a unique initial state 𝛾0 and 

a unique accepting state 𝛿ACC. 
For j ∈ {2, 3}, a, b ∈ [k] and f : [k] × [k] → {0, 1} with f (a, b) = 1 define 𝜙j(a, b, f ) 

to be the set of all state pairs (𝛾, 𝛿) such that there is a type j learning interval in 
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𝒞(a, b, f ) which begins with 𝛾 and ends with 𝛿. Note that if j = 2 then 𝛾 ∈ (Γr,s ∪ {𝛾0})2 

and 𝛿 ∈ (Γr3
,s ∪ {𝛿ACC}), and if j = 3 then 𝛾 ∈ Γr3

,s and 𝛿 ∈ (Γr2
,s ∪ {𝛿ACC}). 

To complete the definition, define 𝜙j(a, b, f ) = ∅ if f (a, b) = 0. 
For j ∈ {2, 3} and f : [k] × [k] → {0, 1} we define a function 𝜙j[f ] from [k] to sets 

of state pairs as 

𝜙2[f ](a) = ⋃ 𝜙2(a, b, f ) ⊆ S2, 
b∈[k] 

𝜙3[f ](b) = ⋃ 𝜙3(a, b, f ) ⊆ S3, 
a∈[k] 

where S2 = (Γr2
,s ∪ {𝛾0}) × (Γr3

,s ∪ {𝛿ACC}) and S3 = Γr3
,s × (Γr2

,s ∪ {𝛿ACC}). 
For each f the function 𝜙j[f ] can be specified by listing a k-tuple of subsets of 

|Sj |Sj, and hence there are at most 2k distinct such functions as f ranges over the 

2k
2 |S2 |+|S3 |Boolean functions on [k] × [k], and hence there are at most 2k( ) pairs of 

functions (𝜙2[f ], 𝜙3[f ]). If we assume that (21) is false, we have |S2| + |S3| < k. Hence 

by the pigeonhole principle there must exist distinct Boolean functions f, g such 

that 𝜙2[f ] = 𝜙2[g] and 𝜙3[f ] = 𝜙3[g]. 
Since f and g are distinct we may assume that there exist a, b such that f (a, b) = 1 

and g(a, b) = 0. Since 𝜙2[f ](a) = 𝜙2[g](a), if (𝛾, 𝛿) are the endpoints of a type 2 

learning interval in 𝒞(a, b, f ) there exists b ′ such that (𝛾, 𝛿) are the endpoints of a 

type 2 learning interval in 𝒞(a, b ′ , g) (and hence g(a, b ′) = 1). Similarly, if (𝛾, 𝛿) are 

endpoints of a type 3 learning interval in 𝒞(a, b, f ) there exists a ′ such that (𝛾, 𝛿) are 
′ the endpoints of a type 3 learning interval in 𝒞(a , b, g). 

Now we can construct an accepting computation for the “NO input” (a, b, g) 
from 𝒞(a, b, f ) by replacing each learning interval beginning with some 𝛾 and end

′ ing with some 𝛿 by the corresponding learning interval in 𝒞(a, b ′ , g) or 𝒞(a , b, g). 
(The new accepting computation has the same sequence of critical states as 
𝒞(a, b, f ).) This works because a type 2 learning interval never queries v3 and a type 

3 learning interval never queries v2. 
This completes the proof of (21) and the theorem.	 ■ 

Theorem 5.8	 Every deterministic branching program that solves BT23(k) has at least k3/ log k states 
for sufficiently large k. 

Proof. We modify the proof of Theorem 5.7. Let B be a deterministic BP which 

solves BT23(k), and for j ∈ {2, 3} let Γj be the set of states in B which query fj (as 
before). It suffices to show that for sufficiently large k 

|Γ2| + |Γ3| ≥ k3/ log k.	 (22) 
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For r, s ∈ [k] we define the set Fr,s to be the same as Fr,s yes except that we remove 

the restriction on f1 I . Hence there are exactly k22k
2 
inputs in Fr,s . 

As before, for j ∈ {2, 3}, Γj is the disjoint union of Γr,s for r, s ∈ [k]. Thus to prove 

(22) it suffices to show that for sufficiently large k and all r, s in [k] 

Γr,s Γr,s| | + | | ≥ k/ log k. (23)2 3 

We may assume there are unique start, accepting, and rejecting states 𝛾0, 𝛿ACC, 𝛿REJ . 
Fix r, s ∈ [k]. 

For each root function f : [k] × [k] → {0, 1} we define the functions 

𝜓2[f ] : [k] × (Γr,s ∪ {𝛾0}) → (Γr,s ∪ {𝛿ACC, 𝛿REJ })2 3 

𝜓3[f ] : [k] × Γr,s → (Γr,s ∪ {𝛿ACC, 𝛿REJ })3 2 

by 𝜓2[f ](a, 𝛾) = 𝛿 if 𝛿 is the next critical state after 𝛾 in a computation with input 
(a, b, f ) (this is independent of b), or 𝛿 = 𝛿REJ if there is no such critical state. Simi
larly 𝜓3[f ](b, 𝛿) = 𝛾 if 𝛾 is the next critical state after 𝛿 in a computation with input 
(a, b, f ) (this is independent of a), or 𝛿 = 𝛿REJ if there is no such critical state. 

The pair of functions (𝜓2[f ], 𝜓3[f ]) is distinct for distinct f. 

For suppose otherwise. Then there are f, g such that 𝜓2[f ] = 𝜓2[g] and 𝜓3[f ] = 

𝜓3[g] but f (a, b) ̸ g(a, b) for some a, b. But then the sequences of critical states = 

in the two computations C(a, b, f ) and C(a, b, g) must be the same, and hence 

the computations either accept both (a, b, f ) and (a, b, g) or reject both. So the 

computations cannot both be correct. 
Γr,s Γr,sFinally we prove (23) from the claim. Let s2 = | | and let s3 = | |, and let 2 3 

s = s2 + s3. Then the number of distinct pairs (𝜓2, 𝜓3) is at most 

(s3 + 2)k(s2+1)(s2 + 2)ks3 ≤ (s + 2)k(s+1) 

and since there are 2k
2 
functions f we have 

2k
2 ≤ (s + 2)k(s+1) 

so taking logs, k2 ≤ k(s + 1) log(s + 2) so k/ log(s + 2) ≤ s + 1, and (23) follows. ■ 

Recall from Theorem 5.5 that applying the Nec̆iporuk method to Children42(k) 
yields a nonoptimal Ω(k3) size lower bound and from Theorem 5.6 that applying 

it to SumMod23(k) yields a nonoptimal Ω(k2) lower bound. The next two results 
improve on these bounds using the state sequence method. The new lower bounds 
match the upper bounds given by the pebbling method used to prove (15) in 

Theorem 5.1. 
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Theorem 5.9 Any deterministic k-way BP for Children42(k) has at least k4/2 states. 

Proof. Let E4true be the set of all inputs I to Children42(k) such that f2 
I = f3 I = +k 

(addition mod k), and for i ∈ {4, 5, 6, 7} f I is identically 0 except for f I (v2
I
i, v

I ).i i 2i+1

Let B be a branching program as in the theorem. For each I ∈ E4true let 𝒞(I) be 

the computation of B on input I. 
For r, s ∈ [k] let Er,s 4true be the set of inputs I in E4true such that for i ∈ {4, 5, 6, 7}, 

vI = r and vI = 4true is completely s. Then for each pair r, s each input I in Er,s 2i 2i+1
 

specified by the quadruple vI 4, v5I , vI 6, v7I , so |Er,s | = k4.
4true

For r, s ∈ [k] and i ∈ {4, 5, 6, 7} let Γr,s be the set of states of B that query fi(r, s),i 

and let 

Γr,s = Γr,s ∪ Γr,s ∪ Γr,s ∪ Γr,s . (24)4 5 6 7 

The theorem follows from the following claim. 

Claim 1 |Γr,s| ≥ k2/2 for all r, s ∈ [k]. 

To prove Claim 1, suppose to the contrary for some r, s. 

|Γr,s| < k2/2 (25) 

We associate a pair 

IT(I) = (𝛾I , vi ) 

with I as follows: 𝛾I is the last state in the computation 𝒞(I) that is in Γr,s (such a 
Istate clearly exists), and i ∈ {4, 5, 6, 7} is the node queried by 𝛾I . (Here vi is the value 

of node i). 
We also associate a second triple U(I) with each input I in Er,s 4true as follows. 

{
(vI 4, vI 5, vI 3) if 𝛾I queries node 4 or 5 

U(I) = 
(vI 6, v7I , vI 2) otherwise 

Claim 2 As I ranges over Er,s .4true, U(I) ranges over at least k3/2 triples in [k]3 

To prove Claim 2, consider the subset E ′ of inputs in Er,s whose values for 4true 

nodes 4,5,6,7 have the form a, b, a, c for arbitrary a, b, c ∈ [k]. For each such I in 

E ′ an adversary trying to minimize the number of triples U(I) must choose one of 
the two triples (a, b, a +k c) or (a, c, a +k b). There are a total of k3 distinct triples of 
each of the two forms, and the adversary must choose at least half the triples from 
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one of the two forms, so there must be at least k3/2 distinct triples of the form U(I). 
This proves Claim 2. 

On the other hand by (25) there are fewer than k3/2 possible values for T(I). 
Hence there exist inputs I, J ∈ Er,s ̸ U(J) but T(I) = T(J). Since 4true such that U(I) = 

JU(I) ̸ = vi (where i is the node queried by 𝛾I= U(J) but vI = 𝛾J ) it follows that either i 

vI J J̸ 2 or vI = v3, so I and J give different values to the function Children42(k). But = v ̸2 3 

since T(I) = T(J) if follows that the two computations 𝒞(I) and 𝒞(J) are in the same 

state 𝛾I = 𝛾J the last time any of the nodes {4, 5, 6, 7} is queried, and the answers 
JvI = vi to the queries are the same, so both computations give identical outputs. i 

Hence one of them is wrong. ■ 

Any deterministic k-way BP for SumMod23(k) requires at least k3 states. 

Proof. We adapt the previous proof. Now Er,s is the set of inputs I to SumMod23(k) 
such that for i ∈ {2, 3}, f I is identically one except possibly for f I (r, s), and vI = vI = ri i 4 6 

I I I Iand v = v = s. Note that an input to Er,s can be specified by the pair (v2, v3), so Er,s 5 7 

has exactly k2 elements. Define 

Γr,s = Γr,s ∪ Γr,s 2 3 . 

Now we claim that an input I in Er,s can be specified by the pair (𝛾I , vI ), where 𝛾I isi 

the last state in the computation 𝒞(I) that is in Γr,s, and i ∈ {2, 3} is the node queried 

by 𝛾I . 
The claim holds because (𝛾I , vI ) determines the output of the computation, i 

which in turn (together with vIi ) determines v
I
j , where j is the sibling of i. 

From the claim it follows that |Γr,s| ≥ k for all r, s ∈ [k], and hence there must be 

at least k3 states in total. ■ 

Thrifty Lower Bounds 
Recall (Definition 2.4) that a thrifty branching program can only query fi (⃗x) if ⃗x is 
the correct vector of values for the children of node i. 

Theorem 5.11 next shows that the upper bound given in Theorem 5.1 (15) is 
optimal for deterministic thrifty programs solving the function problem FTh(k) ford 

d = 2 and all h ≥ 2. Theorem 5.15 shows that the upper bound of k3 given in The
orem 5.1 (17) is optimal for nondeterministic thrifty programs solving the Boolean 

problem BTh(k) for d = 2 and h = 4 (it is optimal for h ≤ 3 by Theorem 5.2). We d 

have not been able to extend this last result to h > 4. 

For any h, k, every deterministic thrifty branching program solving BT2 
h(k) has at least 

kh states. 
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Fix a deterministic thrifty BP B that solves BT2 
h(k). Let E be the inputs to B. Let 

|Vars|Vars be the set of k-valued input variables (so |E| = k ). Let Q be the states of B. 
If i is an internal node then the i variables are fi(a, b) for a, b ∈ [k], and if i is a leaf 
node then there is just one i variable li. We sometimes say “fi variable” just as an 

in-line reminder that i is an internal node. For q ∈ Q let var(q) be the input variable 

that q queries. Let node be the function that maps each variable X to the node i 
such that X is an i variable, and each state q to node(var(q)). When it is clear from 

the context that q is on the computation path of an input I, we just say “q queries 
i” instead of “q queries the thrifty i variable of I”. 

Fix an input I, and let P be its computation path. If q is a state on P we say that 
I visits q. Let n be the number of nodes in the tree. We will choose n states on P as 
critical states for I, one for each node. Note that I must visit a state that queries 
the root (i.e., queries the thrifty root variable of I), since otherwise the branch
ing program would make a mistake on an input J that is identical to I except12 

I	 If1 
J (v2I , v3) := 1 − f1 I (v2, v3I ); hence J ∈ BT2 

h(k) iff I ∉ BT2 
h(k). So, we can choose the root 

critical state for I to be the last state on P that queries the root. The remainder of 
the definition relies on the following small lemma. 

Lemma 5.12	 For any input J and internal node i, if J visits a state q that queries i, then for each child 

j of i, there is an earlier state on the computation path of J that queries j. 

Proof. Suppose otherwise, and without loss of generality assume the previous 
Jstatement is false for j = 2i. For every a ̸ v2i there is an input Ja that is identi= 

cal to J except vJa = a. But the computation paths of Ja and J are identical up to q,2i 
Ja Jaso Ja queries a variable fi(a, b) such that b = v2i+1 and a ≠ v2i, which contradicts 

the thrifty assumption. ■ 

Now we can complete the definition of the critical states of I. For i an internal 
node, if q is the node i critical state for I then the node 2i (respectively, 2i+1) critical 
state for I is the last state on P before q that queries 2i (respectively, 2i + 1). 

We say that a collection of nodes is a minimal cut of the tree if every path from 

root to leaf contains exactly one of the nodes. Now we assign a black pebbling 

sequence to each state on P, such that the set of pebbled nodes in each config
uration is a minimal cut of the tree or a subset of some minimal cut (and once 

it becomes a minimal cut, it remains so), and any two adjacent configurations are 

either identical, or else the later one follows from the earlier one by a valid pebbling 

move. (Here we allow the removal of the pebbles on the children of a node i as part 

12. We assume the root function f1 : [k] × [k] → {0, 1}. 
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of the move that places a pebble on i.) This assignment can be described inductively 
by starting with the last state on P and working backwards. Note that implicitly we 

will be using the following fact. 

For any input I, if j is a descendant of i then the node j critical state for I occurs 
earlier on the computation path of I than the node i critical state for I. 

The pebbling configuration for the output state has just a black pebble on the 

root. Assume we have defined the pebbling configurations for q and every state 
′ ′ following q on P, and let q be the state before q on P. If q is not critical, then we 

make its pebbling configuration be the same as that of q. If q ′ is critical then it must 
′ query a node i that is pebbled in q. The pebbling configuration for q is obtained 

from the configuration for q by removing the pebble from i and adding pebbles to 

2i and 2i + 1 (if i is an internal node; otherwise you only remove the pebble from i). 
Now consider the last critical state in the computation path PI that queries a 

height 2 node (i.e., a parent of leaves). We use rI to denote this state and call it the 

supercritical state of I. The pebbling configuration associated with rI is called the 

bottleneck configuration, and its pebbled nodes are called bottleneck nodes. The 

two children of node(rI ) must be bottleneck nodes, and the bottleneck nodes form 

a minimal cut of the tree. The path from the root to node(rI ) is the bottleneck path, 
and by Fact 6 it cannot contain any bottleneck nodes. Since the bottleneck nodes 
form a minimal cut, each of the h−1 nodes on the bottleneck path has one or more 

distinct bottleneck nodes as descendants, and node(rI ) has two such descendants, 
namely its two children. Hence there must be at least h bottleneck nodes. 

Here is the main property of the pebbling sequences that we need. 

For any input I, if nonroot node i with parent j is pebbled at a state q on PI , then 
′ the node j critical state q of I occurs later on PI , and there is no state (critical or 

otherwise) between q and q ′ on PI that queries i. 

Let R be the states that are supercritical for at least one input. Let Er be the 

inputs with supercritical state r. Now we can state the main lemma. 

|Vars|For every r ∈ R, there is an surjective function from [k] −h to Er. 

|Vars|The lemma gives us that |Er | ≤ k −h for every r ∈ R. Since {Er}r∈R is a partition 
|Vars|−hof E, there must be at least |E|/k = kh sets in the partition, that is, there must 

be at least kh supercritical states. So the theorem follows from the lemma. 
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Proof. Fix r ∈ R and let D := Er. Let isc := node(r). Since r is thrifty for every I in D, 
D D I D I Dthere are values v and v2isc+1 such that v = v and v = v2isc+1 for every 2isc 2isc 2isc 2isc+1 

I in D. The surjective function of the lemma is computed by a procedure Inter-
Adv that takes as input a [k]-string (the advice), tries to interpret it as the code of 
an input in D, and when successful outputs that input. We want to show that for 

|Vars|every I ∈ D we can choose advI ∈ [k] −h such that InterAdv(advI ) ↓= I (i.e., the 

procedure terminates and returns I). 
The idea is that the procedure InterAdv traces the computation path P starting 

from state r, using the advice string advI when necessary to answer queries made 

by each state q along the path. By the thrifty property, the procedure can “learn” 
the values a, b of the children of i = node(q) (if i is an internal node) from the query 
fi(a, b) of q. Each such child that has not been queried earlier in the trace saves one 

advice value for the future. By Fact 7 the parent of each of the h bottleneck nodes will 
be queried before the node itself, making a total savings of at least h values in the 

advice string. After the trace is completed, the remaining advice values complete 

the specification of the input I ∈ Er. 
In more detail, for each input I in D we consider the execution of the procedure 

using the advice string advI tailored for I. We maintain a current state q, a partial 
function v * from nodes to [k], and a set of nodes UL (the L stands for “learned”). 
Once we have added a node to UL, we never remove it, and once we have added 

v *(i) := a to the definition of v *, we never change v *(i). We have reached q by fol
lowing the same computation path that input I follows starting from r. So initially 
q = r. In general, if v *(i) = a ↓ (i.e., v *(i) is defined and has value a) for some a then 

we have determined this either from reading some element of advI or by querying 

the parent of i and using the thrifty property. Initially v * is undefined everywhere. 
As the procedure goes on, we may often have to use an element of the advice in 

order to set a value of v *; however, by exploiting the properties of the critical state 

sequences, when given the complete advice advI for I there will be at least h nodes 
UL 
I that we “learn” without directly using the advice. Such an opportunity arises 

when we visit a state that queries some variable fi(b1, b2) and we have not yet com
mitted to a value for at least one of v *(2i) or v *(2i + 1) (if both then, we learn two 

nodes). When this happens, we add that child or children of i to UL. So initially UL 

is empty. There is a loop in the procedure InterAdv that iterates until |UL| = h. 
Note that the children of isc will be learned immediately. Let v *(D) be the inputs in 

D consistent with v *, that is, I ∈ v *(D) iff I ∈ D and vI = v *(i) for every i ∈ Dom(v *).i 

Following is the complete pseudocode for InterAdv. We also state the most 
important of the invariants that are maintained. 
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Procedure InterAdv(⃗a ∈ [k]*): 
1:	 q := r, UL := ∅, v * := undefined everywhere. 
2:	 Loop Invariant: If N elements of ⃗a have been used, then 

|Dom(v *)| = N + |UL|. 
3:	 while |UL| < h do 

4: i := node(q) 
5: if i is an internal node and 2i ∉ Dom(v *) or 2i + 1 ∉ Dom(v *) then 

6: let b1, b2 be such that var(q) = fi(b1, b2). 
7: if 2i ∉ Dom(v *) then 

8: v2(2i) := b1 and UL := UL + 2i. 
9: end if 
10: if 2i + 1 ∉ Dom(v *) and |UL| < h then 

11: v *(2i + 1) := b2 and UL := UL + (2i + 1). 
12: end if 
13: end if 
14: if i ∉ Dom(v *) then 

15: let a be the next unused element of ⃗a 

16: v *(i) := a. 
17: end if 
18: q := the state reached by taking the edge out of q labeled v *(i). 
19:	 end while 

20:	 let ⃗b be the next |Vars| − |Dom(v *)| unused elements of ⃗a. 
21:	 let I1, . . . , I|v *(D)| be the inputs in v *(D) sorted according to some globally 

fixed order on E. 
|Vars|−|Dom(v *)|22:	 if ⃗b is the t-largest string in the lexicographical ordering of [k] , 

13and t ≤ |v *(D)|, then return It. 

Note that the algorithm may hang at line 18 if q is a terminal state. This can only 
happen if the advice string ⃗a does not correspond to any input in D. 

kDom(v *) |Vars|−|Dom(v * )|If the loop finishes, then there are at most |E|/| | = k inputs 
in v *(D). So for each of the inputs I enumerated on line , there is a way of setting ⃗a 

so that I will be chosen on line 22. 
|Vars|−hRecall we are trying to show that for every I in D there is a string advI ∈ [k]

such that InterAdv(⃗a) ↓= I. This is easy to see under the assumption that there is 

|Vars|−|Dom(v *)|13. See after this code for argument that |v *(D)| ≤ k . 
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such a string that makes the loop finish while maintaining the loop invariant; since 

the loop invariant ensures we have used |Dom(v *)| − h elements of advice when we 

reach line , and since line is the last time when the advice is used, in all we use 

at most |Vars| − h elements of advice. To remove that assumption, first observe 

that for each I, we can set the advice to some advI so that I ∈ v *(D) is maintained 

when InterAdv is run on ⃗aI . Moreover, for that advI , we will never use an element 
of advice to set the value of a bottleneck node of I, and I has at least h bottleneck 

nodes. Note, however, that this does not necessarily imply that UL 
I (the h nodes UL 

we obtain when running InterAdv on advI ) is a subset of the bottleneck nodes of I. 
Finally, note that we are of course implicitly using the fact that no advice elements 
are “wasted”; each is used to set a different node value. ■ 

Corollary 5.14 For any h, k, every deterministic thrifty branching program solving BT2 
h(k) has at least 

∑2≤l≤h kl states. 

Proof. The previous theorem only counts states that query height 2 nodes. The 

same proof is easily adapted to show there are at least kh−l+2 states that query 
height l nodes, for l = 2, . . . , h. ■ 

Theorem 5.15 Every nondeterministic thrifty branching program solving BT24(k) has Ω(k3) states. 

Proof. As in the proof of the Theorem 5.7 we restrict attention to inputs I in which 

the function fi associated with each internal node i satisfies fi(x, y) = 1 except pos
sibly when x, y are the values of its children. For r, s ∈ [k] let Er,s be the set of all 
such inputs I such that for all j ∈ {4, 5, 6, 7}, vI 2j = r and vI 2j+1 = s (i.e., each pair of 
sibling leaves have values r, s), and f1 is identically 1 (so I is a YES instance). Thus I 
is determined by the values of its 6 middle nodes {2, 3, 4, 5, 6, 7}, so 

|Er,s| = k6. 

Let B be a nondeterministic thrifty branching program that solves BT24(k), and let 
Γ be the set of states of B which query one of the nodes 4, 5, 6, 7. We will show 

|Γ| = Ω(k3). 
For r, s ∈ [k] let Γr,s be the set of states of Γ that query fj(r, s) for some j ∈ {4, 5, 6, 7}. 

We will show 

√
|Γr,s| + 1 ≥ k/ 3. (26) 

Since Γ is the disjoint union of Γr,s for all r, s ∈ [k], it will follow that |Γ| = Ω(k3) as 
required. 
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For each I ∈ Er,s let 𝒞(I) be an accepting computation of B on input I. Let tI 1 be 

the first time during 𝒞(I) that the root f1 is queried. Let 𝛾I be be the last state in Γr,s 

before t1 I in 𝒞(I) (or the initial state 𝛾0 if there is no such state) and let 𝛿I be the first 
state in Γr,s after t1 I (or the ACCEPT state 𝛿acc if there is no such state). 

We associate with each I ∈ Er,s a tuple 

U(I) = (u, 𝛾I , 𝛿I , x1, x2, x3, x4), 

where u ∈ {1, 2, 3} is a tag, and x1, x2, x3, x4 are in [k] and are chosen so that 
U(I) uniquely determines I (by determining the values of all 6 middle nodes). 

ISpecifically, x1 = vi , where i is the node queried by 𝛾I (or i = 4 if 𝛾I = 𝛾0). 
Let 𝒮(I) denote the segment of the computation 𝒞(I) between 𝛾I and 𝛿I (not 

counting the action of the last state 𝛿I ). This segment always queries the root 
f1(v2, v3), but does not query any of the nodes 4, 5, 6, 7 except 𝛾I may query node i. 

Next we partition Er,s into three sets Er,s , Er,s , Er,s according to which of the nodes 1 2 3 

v2, v3 that 𝒮(I) queries. (The tag u tells us that I lies in set Eu
r,s.) 

Let node j ∈ {2, 3} be the parent of node i (where i is defined earlier) and let 
j ′ ∈ {2, 3} be the sibling of j. 

— Er,s consists of those inputs I for which 𝒮(I) queries neither v2 nor v3.1 

— Er,s consists of those inputs I for which 𝒮(I) queries vj ′ .2 

— Er,s consists of those inputs I for which 𝒮(I) queries vj but not vj ′ .3 

To complete the definition of U(I) we need only specify the meaning of x2, x3, 
x4. The idea is that the segment 𝒮(I) will determine (using the definition of thrifty) 
the values of (at least) two of the six middle nodes, and x1, x2, x3, x4 will specify the 

remaining four values. We require that x1, x2, x3, x4 must specify the value of any 
node (except the root) that is queried during the segment, but the state that queries 
the node determines the values of its children. 

In case the tag u = 1, the computation queries f1(v2, v3), and hence determines 
v2, v3, so x1, x2, x3, x4 specify the four values v4, v5, v6, v7. 

In case u = 2, the computation queries fj ′ at the values of its children, so x1, x2, 
x3, x4 do not specify the values of these children, but instead specify v2, v3. 

In case u = 3, x1, x2, x3, x4 do not specify the value of the sibling of node i and 

do not specify vj ′ , but do specify vj and the values of the other level 2 nodes. 

If I, J ∈ Er,s and U(I) = U(J), then I = J. 

Inequality (26) (and hence the theorem) follows from the claim, because if √
|Γr,s| + 1 < k/ 3 then there would be fewer than k6 choices for U(I) as I ranges 
over the k6 inputs in Er,s . 
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To prove the claim, suppose U(I) = U(J) but I ̸= J. Then we can define an accept
ing computation of input I which violates the definition of thrifty. Namely follow 

the computation 𝒞(I) up to 𝛾I . Now follow the segment of 𝒞(J) between 𝛾I and 𝛿I , 
and complete the computation by following 𝒞(I). Notice that the segment of 𝒞(J) 
never queries any of the nodes 4, 5, 6, 7 except for vi, and U(I) = U(J) (together 
with the definition of Er,s) specifies the values of the other nodes that it queries. 
However, since I ̸= J, this segment of 𝒞(J) with input I will violate the definition of 
thrifty while querying at least one of the three nodes v1, v2, v3. ■ 

6 Conclusion 
The Thrifty Hypothesis states that thrifty branching programs are optimal among 

k-way BPs solving FTh(k) (the tree evaluation problem for balanced degree d trees of d 

height h). This implies that the black pebbling method is optimal for the determin
istic case. Proving this would separate L from P (Corollary 3.3). Even disproving the 

hypothesis would be interesting, since it would show that one can improve upon 

this obvious application of pebbling. 

Open Problem 1	 Prove or disprove the Thrifty Hypothesis. 

Corollary 5.2 gives tight lower bounds for FTh(k) for trees of height 3, thus prov-d 

ing the Thrifty Hypothesis for this case. The next important step is to extend these 

bounds to height 4 trees. The upper bound given in Theorem 5.1 (15) for the height 
4 function problem FT4(k) for deterministic BPs is O(k3d−2). If we could match this d 

with a similar lower bound when d = 4 (e.g., by using a variation of the state 

sequence method in Section 5.2) this would yield Ω(k10) states for the function prob
lem and hence (by Lemma 2.3) Ω(k9) states for the Boolean problem BT44(k). Since 

the input length n = O(k4 log k), this would break the Nec̆iporuk Ω(n2) barrier for 
branching programs (see Section 5.1). 

Open Problem 2	 Establish the complexity of deterministic branching programs solving the tree 

evaluation problem for height 4 trees. 

For nondeterministic BPs, the upper bound given by Theorem 5.1 for the 

Boolean problem for height 4 trees is O(k2d−1). This comes from the upper bound 

on fractional pebbling given in Theorem 4.4, which we suspect is optimal. For h = 4 

and degree d = 3, the corresponding lower bound for nondeterministic BPs for 
BT34(k) would be Ω(k5). Since the input length n = O(k3 log k), a proof would break 

the Nec̆iporuk Ω(n3/2) barrier for nondeterministic BPs. 

Open Problem 3	 Establish the complexity of nondeterministic branching programs solving the tree 

evaluation problem for height 4 trees. 

The next two problems seem to be more accessible than the first three. 
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Open Problem 5 

Open Problem 6 
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Improve Theorem 4.4 to get exact bounds on the number of pebbles required to 

fractionally pebble Td
h, preferably with a direct proof. 

The preceding problem is important since we conjecture that fractional peb
bling algorithms yield optimal nondeterministic thrifty algorithms for tree evalu
ation (and indeed optimal with “thrifty” omitted). 

Generalize Theorem 5.15 to get good lower bounds for nondeterministic thrifty BPs 
solving BT2 

h(k) for h > 4. 

The proof of Theorem 5.11, which states that deterministic thrifty BPs require at 
least kh states to solve BT2 

h(k), is taken from Wehr [Weh10]. That paper also proves 
the same lower bound for the more general class of “less-thrifty” BPs, which are 

allowed to query fi(a, b) provided that either (a, b) correctly specify the values of 
both children of i, or neither a nor b is correct. 

Wehr [Weh10] also calculates (k + 1)h as the exact number of states required to 

solve FT2 
h(k) using the black pebbling method, and proves that this number cannot 

be beaten by any k-way deterministic BP when h = 2. In fact, we have not been 

able to beat this BP upper bound by even one state, for any h and any k using any 
method. 

Prove or disprove the hypothesis that for all h ≥ 2 and for all sufficiently large k, 
every deterministic BP solving FT2 

h(k) requires at least (k + 1)h states.14 

In Wehr [Weh11], Wehr generalizes the tree evaluation problem to the DAG eval
uation problem DEkG for each rooted DAG G and k ≥ 2, and proves that every thrifty 
deterministic BP solving DEkG has at least k

p states, where p is the black pebble cost 
of G (i.e., the minimum number of pebbles required to black-pebble the root of 
G). This generalizes our Theorem 5.11, which applies to the case that G is a bal
anced binary tree. (Wehr uses his result to prove an exponential lower bound on 

the size of semantic incremental branching programs solving GEN, answering an 

open question in Gál et al. [GKM08].) 
This suggests generalizing the thrifty hypothesis to rooted DAGs. This would 

imply that for each rooted DAG G with black pebble cost p, every deterministic k-
way BP solving DEkG has Ω(kp) states, where the constant implied by Ω depends on 

G. The obvious deterministic k-way BPs coming from the black pebbling algorithm 

for G that uses the minimum number of pebbles p have Θ(kp) states. We do not 
know how to do better than this for any G. 

14. Wehr [Weh12] has shown that (k +1)h is exactly optimal among deterministic thrifty read-once 

BPs solving FT2 
h(k). The upper bound comes from black pebbling. 
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Open Problem 7	 Find a rooted DAG G and a family ⟨Bk⟩ of deterministic k-way BPs, where Bk solves 
DEkG and has o(kp) states. 
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tions based on these classes, with a particular focus on low levels of Grzergorczk’s 
hierarchy of primitive recursive functions [Grz53]. While much of the survey is pre
sented in a style more familiar from recursion theory—in particular the use of 
inductive definitions of classes of functions and relations—there is also a focus 
on how these classes correspond to classes characterized by resource-bounded 

Turing machines (and related models). This latter focus is already present in con
temporary work, such as Cobham’s inductive characterization of the poly-time 

computable functions [Cob65] and Ritchie’s of those computable in linear space 

[Rit63]. 
Most significantly, with respect to the P vs NP problem, Cook discusses the 

relationship between Cobham’s class ℒ of polynomial time functions and Ben
nett’s class, denoted by ℒ+ in the notes, of extended positive rudimentary functions, 
defined in his (unpublished) thesis [Ben62]. In particular, the following facts are 

observed or proved by Cook: 

Cook’s Berkeley Notes 
Bruce M. Kapron 

“A survey of classes of primitive recursive functions” gives a summary of mate
rial presented by Steve Cook in the University of California, Berkeley, course Math 

290, Sect. 14, January 1967. The notes were carefully typed up and copies were 

distributed at the University, but they were never formally published. 
The notes present a survey of subrecursive function classes, and classes of rela

1. The class of relations corresponding to ℒ+ is equal to that obtained by 
closing the relations in ℒ under bounded existential quantification. 

2.	 ℒ+ corresponds to those functions Turing-machine computable in nonde
terministic polynomial time. 

3.	 ℒ ⊆ ℒ+ 

Finally, he conjectures that the inclusion (3) is proper but observes that it “may be 

difficult to prove”. 
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While Cobham’s class ℒ is quite familiar in current complexity theory and cor
responds to the class FP of functions computable in polynomial time1, Bennett’s 
class is not as well-known and requires some elucidation. As described in Section 

1 of the notes, for any class of relations, there is an associated class of functions, 
namely those whose graph is in the class of relations and that are bounded by a 

function “from some appropriate class.” In this way, ℒ+ is defined to be the class 
of functions that are poly-bounded and whose associated relation is extended pos
itive rudimentary. We will not define this latter notion as it is quite technical and 

not needed for the current discussion. In particular, from (1) we know that this class 
is equal to the bounded existential closure of P, which is in fact equal to NP, char
acterized as those problems for which the existence of a solution may be verified 

in polynomial time. 
We may now consider (2). While there is some ambiguity here as the notes do 

not give a formal definition, if we use the fact that in Bennett’s thesis and in the 

Berkeley notes the functions considered are total, Cook’s notion of nondetermin
istic function computability corresponds to the class NPSVt of total single-valued 

functions computable in nondeterministic polynomial time, a class later defined 

formally by Book, Long, and Selman [BLS84]. So the claim in (2) is that the func
tions in NPSVt are exactly those that are poly-bounded and have a graph that is in 

NP, a fact that may be easily verified. 
In summary, (1) and (2) give an equivalence between the extended positive rudi

mentary relations and the class NP and between the associated class of functions 
and the class now known as NPSVt. A missing link here is a characterization of the 

class NP via nondeterministic polynomial time Turing machines. This is most likely 
due to the focus on computability of (total) functions. Rather than giving a separate 

machine characterization for deciding relations (or, in more modern terminology, 
language recognition), in the notes this notion is reduced to computability of the 

characteristic function of the relation, as described in Section 1. Recall that the 

characteristic function of a relation takes the value 1 for an input when the rela
tion holds for this input and 0 otherwise. However, the class of relations having a 

characteristic function in NPSVt is not equal to NP. A characterization of NP may be 

obtained through the use of partial characteristic functions that, rather than taking 

the value 0, are undefined in case the relation does not hold for given inputs. With 

this modification, we can show that NP is the class of relations corresponding to 

1. Note that notation FP is ambiguous and may (say in the setting of search complexity) denote 

those multi-valued functions for which there is a polynomial time algorithm that for any input 
returns some correct value. 
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NPSV, the class of partial single-valued functions computable in nondeterministic 
polynomial time. 

We are left with the question of how Cook’s conjecture relates to the P vs NP 

problem. Given the mappings between classes given above, (3) states that FP ⊆ 

NPSVt, and the conjecture is that this inclusion is proper. We can use the fact that 
NPSVt = FPNP∩coNP [HHN+93], where the latter denotes the class of functions that 
are computable in polynomial time using an oracle for a problem in NP ∩ coNP. 
This means that if P = NP, then FP = NPSVt since in this case NP ∩ coNP = P. 
So Cook’s conjecture certainly implies that P ≠ NP, and in fact implies the osten

FPNP∩coNPsibly stronger conjecture that P ≠ NP ∩ coNP. Furthermore, if FP = , 
then P = PNP∩coNP because the assumption implies that the characteristic func
tion of any language in PNP∩coNP is in FP, and so the language itself is in P. Now 

by a result of Brassard [Bra79], PNP∩coNP = NP ∩ coNP, so FP = FPNP∩coNP implies 
P = NP ∩ coNP, and we can conclude that Cook’s conjecture is in fact equivalent 
to the conjecture that P ≠ NP ∩ coNP. 

The fact that we obtain this sort of equivalence is again due the setting of total 
functions. In the partial case, it is known that PF = NPSV iff P = NP, where PF is 
the class of partial functions computable in polynomial time [SMB83]. 

It is interesting to note that around the same time, Edmonds [Edm65a, Edm65b] 
addressed the question of the equality of P and NP ∩ coNP from the perspective 

of obtaining “good algorithms” for combinatorial optimization problems having 

“good characterizations,” although he so did in a somewhat informal setting. 
Although the notes do not directly address the P vs NP problem, they still 

introduce a number of steps of great importance to the subsequent theory, most 
notably the question of the power of nondeterminism for polynomial-time Tur
ing machines, as well as the connection between the characterization of NP in 

terms of efficient verification of solutions and nondeterministic polynomial time 

computability (modulo the missing link described above.) 
Apart from their relevance to the P vs NP problem, the notes also contain 

another well-known question relevant to subsequent work in complexity. Among 

the open questions appearing in Section 6 is whether the context-sensitive relations 
are closed under complementation. As Kuroda [Kur64] had shown that these cor
respond to the relations decidable in nondeterministic linear space, the question 

was resolved by the closure of nondeterministic space under complement, a result 
obtained independently by Immerman [Imm88] and Szelepcsényi [Sze88]. 
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All functions considered here take tuples of non-negative integers into non
negative integers. We use the notation x for x1, … , xp, where p is usually not 
specified. 

Relations vs. functions If ℱ is a class of functions, then ℛℱ , the ℱ -relations, is the 

class of relations whose characteristic function is in ℱ . Conversely, if ℛ is a class 
of relations, then it is possible to associate a class ℱ of functions with ℛ by saying 

f ∈ ℱ iff first the relation y = f (x) is in ℛ, and second f is bounded by a function 

from some appropriate class. For example, in case ℛ is the class of constructive 

arithmetic relations the appropriate class of bounding functions turns out to be 

the class of polynomials. If we start with a class ℱ of functions which includes the 

function x = y and is closed under substitution and limited minimalization, then 

the class of functions associated with ℛℱ is again precisely ℱ , provided the class of 
bounding functions is chosen to be cofinal (see below) with ℱ . On the other hand, 
suppose we start with a class ℛ of relations which includes the identity relation 

and is closed under explicit transformation and the Boolean operations. If we pass 
to the associated class ℱ of functions using any bounding class which includes the 

constant function ℐ, then ℛℱ is precisely ℛ. 

Cofinal Classes Two classes ℱ0 and ℱ1 are cofinal if for every f ∈ ℱi there is a 

g ∈ ℱi−1 such that f (x) ≤ g(x) for all x (i = 0, 1). 

A Survey of Classes of 
Primitive Recursive 
Functions 
Stephen A. Cook 

1 Basic Notions 

© Stephen Cook and Bruce Kapron.
 
Unpublished. Appears as a preprint https://eccc.weizmann.ac.il/report/2017/001/
 

https://eccc.weizmann.ac.il/report/2017/001/
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Explicit Transformation A class ℱ of functions is closed under explicit transfor
mation if, whenever g ∈ ℱ , there is an f ∈ ℱ such that f (x) = g(t) holds identically, 
where each ti is either an xj or a constant. For example, perhaps f (x1, x2, x3) = 

g(x3, 2, x3, x1). Similarly for classes of relations. 

Substitution ℱ is closed under substitution if it is closed under both explicit
 
transformation and composition.
 

Boolean Operations The three Boolean operations are negation (complementa
tion), finite conjunction (intersection), and finite disjunction (union). These apply
 
to relations.
 

Bounded (i.e. limited) quantification The two operations ∃≤ and ∀≤ apply to rela
tions, and are defined as follows: (∃≤R)(x, y) holds iff R(x, z) holds for some z ≤ y,
 
and (∀≤R)(x, y) holds iff R(x, z) holds for all z ≤ y.
 

Bounded (i.e. limited) recursion f is defined from g, h, k by limited recursion
 

provided the following holds for all x, y.
 

f (x, 0) = g(x)
 

f (x, y + 1) = g(x, f (x, y), y)
 

f (x, y) ≤ k(x, y)
 

m-adic notation (We always assume m ≥ 2 when speaking of m-adic notation). 
The m-adic notation for the positive integer n is the unique string dkdk−1 … d0 of 
digits from the alphabet {1, 2, … , m} such that 

k 
in = ∑ dim . 

l=0 

The m-adic notation for 0 is the empty string. Switching back and forth from m-adic 
to m-ary (radix) notation involves very little computation. m-adic (as opposed 

to m-ary) notation sets up a one-one correspondence between strings and non
negative integers. The ordering induced on strings by their m-adic value is the one 

determined first by length, and among strings of the same length, the ordering is 
lexicographical. 

Bounded (i.e. limited) recursion on notation f is defined from g, h1, … , hm, and k 

by limited recursion on (m-adic) notation provided the following hold for all x, y. 

f (x, 0) = g(x)
 

f (x, y * i) = hi(x, f (x, y), y), i = 1, 2, … , m
 

f (x, y) ≤ k(x, y)
 

Here * is the m-adic concatenation function. 
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Subpart quantification The two operations ∃m ∀m apply to relations and are 

defined as follows. (∃mR)(x, y) holds iff R(x, z) holds for some z whose m-adic nota
tion is a consecutive substring (possibly all or empty) of the m-adic notation for y, 
and (∀mR)(x, y) holds iff R(x, z) holds for all such z. 

2 The Grzegorczyk Hierarchy 
(See Grzegorczyk [Grz53]) This is a sequence ℰ0 ⊆ ℰ 1 ⊆ … of classes of func
tions whose union is precisely the class of primitive recursive functions. First let 
us define a sequence 𝜉0(x, y), 𝜉1(x, y), … of functions by 

𝜉0(x, y) = y + 1 
⎧ x if n = 0⎪⎪⎪⎪ DEFINE SUCH THAT FUNCTION IS 

𝜉n+1(x, 0) = ⎨ 0 if n = 1 [ALWAYS THERE ]⎪⎪⎪⎪ 1 if n > 1⎩ 
𝜉n+1(x, y + 1) = 𝜉n(x, 𝜉n+1(x, y)). 

Note that 𝜉1(x, y) = x + 1, 𝜉2(x, y) = xy and 𝜉3(x, y) = xy. Then ℰn can be defined as 
the least class including the functions x + 1 and 𝜉n, and closed under substitution 

and limited recursion. Grzegorczyk showed that ℰ3 is just ℰ , the class of elemen
tary functions of Kalmár. Each class is closed under limited minimalization and 

(at least for n ≥ 2) limited recursion on notation, and the class of ℰn relations is 
closed under the Boolean operations and bounded quantification for all n. ℰn+1 

contains ℰn properly for all n, and the class of ℰn+1 relations contains the class or 
ℰn relations, at least for n ≥ 2. 

Theorem 1 was proved by Ritchie [Rit63], and theorem 2 was stated by Cobham 

[Cob65] and can be proved by Ritchie’s methods. The theorems provide interest
ing characterizations for the functions of ℰn in terms of their computation time 

and storage requirements. 

Notation If Z is a Turing machine which computes a function f (x) in m-adic nota
tion, 𝜏Z (x) (the tape function for Z) is the number of tape squares used by Z in 

evaluating f at x, and 𝜎(x) (the time function for Z) is the number of steps required 

by Z to evaluate f at x. 

Theorem 1	 f (x) ∈ ℰ2 iff there are constants C1 and C2 and a Turing machine Z which computes f in 

m-adic notation such that 

𝜏Z (x) ≤ C1(∑ ℓ(xi)) + C2 * 
i 

for all x. (Here ℓ(xi) is the length of the m-adic notation for xi). 
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Theorem 2 (a) If n ≥ 3, then f (x) ∈ ℰn iff there is a Turing Machine Z which computes f and a 

function g ∈ ℰn such that 𝜏Z (x) ≤ g(x) for all x. 
(b) Same as (2), with 𝜎Z (x) replacing 𝜏Z (x). 

Remark 2 Of course Theorem 2 is equally valid if the functions g are chosen from some class 
of functions cofinal with ℰn instead of ℰn itself. For example, the class 

{𝜉n1 (max x, c1) + c2 | c1, c2 positive integers} 

is cofinal with ℰn , n ≥ 0. 

Remark 3 Shepherdson-Sturgis machines. Theorems 1 and 2 remain valid when other com
puter models are used besides Turing machines, provided 𝜏Z and 𝜎Z are defined 

properly; and in particular the Turing machines may have several taps and sev
eral read/write heads per tape. The unlimited register machines of Shepherdson 

and Sturgis [SS63] will do as the computer model, provided 𝜏Z(x) is taken to be the 

length of the m-adic notation of the maximum number occurring in any register 
during the course of the computation with input x. Then (*) in Theorem 1 is equiv
alent to requiring that the numbers in each register of the machine be bounded by 
polynomials1 in x, which in turn is equivalent (since ℰ2 is cofinal with the polynomi
als) to requiring that the members of each register be bounded by some member of 
ℰ2. In fact, in general for n ≥ 2, ℰn consists exactly of those functions computable 

by some Shepherdson-Sturgis machine in which the numbers in all registers are 

bounded by some member of ℰn . 

Remark 4 There is no known characterization of ℰ2 in terms of 𝜎Z (x) analogous to the char
acterizations of ℰn for n > 2 state in theorem 2. This is one reason for introducing 

the class ℒ defined in the next section. 

3 Computation Time and Limited Recursion on Notation 
Cobham [Cob65] introduced the class ℒ of functions which is defined in terms of 
computation time. A function f (x) is in ℒ iff there is a Turing machine Z which 

computes f in m-adic notation and a polynomial P(t) such that 

𝜎Z(x1, … , xn) ≤ P(ℓ(x1), … , ℓ(xn)) 

for all x. Cobham stated the following characterization of ℒ. 

1. Robert Elschlager points out that the numbers can always be bounded by max x if the function 

computed is a characteristic function 
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Theorem 3	 ℒ is the least class of functions containing Si(x), 1 = 1, … , m, xℓ(y) and closed under sub
stitution and limited recursion on notation. Here Si(x) is x * i (the ith m-adic successor 
function.) 

The proof is similar to the proof of theorem 1. The class ℒ is independent of 
the choice of m since a Turing machine can convert from m-adic to n-adic notation 

sufficiently rapidly. 
The class ℒ, characterizable in terms of computation time requirements, is a 

natural analog of ℰ2, characterizable in terms of storage requirements. Note the 

parallel between theorems 1 and 3, contrasting limited recursion with limited 

recursion on notation. 
ℰ2 does not contain ℒ because the function xℓ(y) in ℒ grows too fast to be in ℰ2, 

but it is not known whether ℒ ⊇ ℰ2. Cobham points out that the function f (n) = 

the nth prime is known to be in ℰ2, but suggests that it is too time consuming to 

compute to be in ℒ, that ℒ and ℰ2 are probably incomparable. Similarly, it is a good 

guess that the ℒ-relations and ℰ2-relations are incomparable, or at least the former 
should not include the latter. 

Extended Positive Rudimentary Functions, ℒ+ . These were introduced by 
Bennett [Ben62], p. 67, and can be defined as the class of functions associated with 

the extended positive rudimentary relations (see section 5), where the bounding 

functions are taken to be those of the form x(ℓ(y))
n+c for arbitrary constants n and c. 

Bennett states that this class of functions, which we might call ℒ+, is closed under 
substitution and limited recursion on notation, and since ℒ+ certainly contains 
x + 1 and xℓ(y), we can conclude 

ℒ ⊆ ℒ+ 

Whereas ℒ can be characterized as consisting of those functions whose Tur
ing machine computation time is bounded by a polynomial in the lengths of the 

arguments, ℒ+ has the same characterization except that we must allow the Turing 

machines to be non-deterministic. It seems likely that this non-determinism 

increases the computing power of the machine, but this may be difficult to prove. 

4 The Ritchie Hierarchy 
Ritchie [Rit63] introduced a sequence ⟨Fi⟩ of classes of functions satisfying 

ℰ2 ⊆ F1 ⊆ F2 ⊆ ⋯ ⊆ ℰ3 
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Fi consists of just those functions computable by a Turing machine Z whose tape 

function 𝜏Z satisfies 

𝜏Z (x) ≤ fi−1(K(max x, 1)) (**) 

for some constant K , where f0(x) = x, f1(x) = 2x, and in general fi+1(x) = 2fi (x). For 
i ≥ 2, (**) is equivalent to requiring 𝜏Z(x) be bounded by some member of Fi−1, 
since for each i the class of functions {fi(K(max x, 1)) | Ka positive integer} is cofinal 
with Fi. Because of the latter characterization, Ritchie called the functions in Fi the 

“predicatively computable functions"; i.e., one always knows that the tape function 

for a member of Fi is bounded by some member of the class Fi−1, which has already 
been “obtained". 

Since the class {fi(K(max x, 1)) | i, Kpositive integers} is cofinal with ℰ3, it follows 
from theorem 2 that 

∞ 

⋃ Fi = ℰ3 (elementary functions) 
i=1 

Also, by theorem 1, each Fi contains ℰ2 properly. Ritchie used a diagonal argument 
to show that the Fi-relations are properly contained in the Fi+1-relations for all i. 

Each class Fi is closed under explicit transformation, but none is closed under 
composition or limited recursion. Bennett [Ben62], p. 74 points out the following 

characterization of F1 follows from Ritchie’s work: f ∈ Fi iff f (x) = g(x, f1(K max x) 
for some g ∈ ℰ2 and integer K 

5 Other Classes 
All of the following classes except the context-sensitive relations (and languages) 
are discussed by Bennett [Ben62]. Smullyan [Smu61] introduced the m-rudimentary 
relations and the constructive arithmetic relations. 

m
Notation x * y is the number whose m-adic notation is the concatenation of the 

m-adic notations for x and y. 

The Strictly m-rudimentary relations are the least class of containing the three 
m

place relation x * y = z and closed under explicit transformation, the Boolean 

operations, and subpart quantification. Bennett states that these are distinct for 
each m. 
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m
The positive m-rudimentary relations are the least class containing x * y = z and 

closed under explicit transformation, conjunction, disjunction, subpart quantifi
cation, and ∃≤. Bennett shows these form the same class for each m. 

The Strongly m-rudimentary relations are those relations R such that both R and 

¬R are positive m-rudimentary. 
This class is independent of m and is closed under explicit transformation, the 

Boolean operations, and subpart quantification (Bennett). 
m

The m-rudimentary relations are the least class of relations containing x * y = z 
and closed under explicit transformation, the Boolean operations and bounded 

quantification. 

The constructive arithmetic relations are the least class containing the two three-
place relations x + y = z and x − y = z and closed under explicit transformation, 
the Boolean operations, and bounded quantification. 

Bennett’s main result in chapter I of [Ben62] is that this class is the same as the 

class of m-rudimentary relations for each m. 

The extended positive m-rudimentary relations are those of the form 

(∃y ≤ gk(x))R(x, y) 

(ℓ(max x))kwhere R(x, y) is positive m-rudimentary, k is an integer, and gk(x) = m , ℓ(z) 
is the length of the m-adic notation for z. 

Using Theorem 3 in section 3 and Bennett’s discussion pp. 62-67 it is easily 
shown that this class is (independent of m) precisely the closure of Cobham’s class 
of ℒ-relations under the operation ∃≤. The class is also closed under disjunction, 
conjunction, explicit transformation, and subpart quantification. 

A context-sensitive language is the set of strings over some alphabet generated by 
a semi-Thue system of whose productions u → v satisfy ℓ(u) ≤ ℓ(v). Kuroda [Kur64] 
characterized these languages as those recognizable by some non-deterministic 
Turing machine whose tape function is bounded by some linear function of the 

length of the input string. This characterization suggests that a context sensitive 

relation be defined as one recognizable in the same way. Using m-adic notation we 

can consider these context sensitive relations to be relations on integers, and it is 
easy to see the resulting class of relations will not depend on m. Then by Theorem 1, 
we find that the ℰ2 relations are a subclass of the context sensitive relations. 

Spectra The spectrum of a formula of the first order predicate calculus with equal
ity is the set of all cardinalities of its finite models. Bennett generalized the notion 

of spectrum of formula from such a theory to a many-sorted theory of types by 
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defining the spectrum of a formula from such a theory as the relation which is true 

on those types of integers which are the cardinalities of the basic domains of indi
viduals for some finite model of the sentence. He denotes by 𝒮n the class of spectra 

of nth order formulas. 
Bennett’s main result is the following (p. 116, 125). 

Theorem 4 (a) For each n ≥ 1 and m ≥ 2, 𝒮2n−1 is the class of relations of the form (∃y ≤ 

g(x))R(x, y) where g(x) = fn((max(x))j) for some j ≥ 1 (see Sec. 4 for fn) and R is 
strictly m-rudimentary. 

(b) The same as (4) except R may be chosen to be any extended positive rudimentary 
relation. 

(c) For each n ≥ 1, 𝒮2n is the class of relations of the forms (∃y ≤ g(x))R(x, y) where 
R is constructive arithmetic and g(x) = fn((max(x))j) for some j ≥ 1. 

(d) For each n ≥ 1, 𝒮n is a subclass of 𝒮n+1 and a proper subclass of 𝒮n+2 . 
(e) ⋃∞ 

n=1 𝒮n is the class of ℰ3 (elementary)-relations. 
(f) The F1-relations are a subclass of 𝒮3, and for each n ≥ 2, 𝒮2n−2 is a subclass of 

the Fn-relations, which in turn are a subclass of 𝒮2n+1. Moreover, for no n, p ≥ 1 
is 𝒮p identical with the class of Fn-relations. 

(g) The constructive arithmetic relations form a proper subclass of 𝒮2, and the 
extended positive rudimentary relations form a proper subclass of 𝒮1 . 

6 Summary of Facts and Open Questions 
The chart on the next page indicates the inclusion relationships among most of the 

classes of relations discussed earlier. A line from one class to one above it indicates 
the higher class contains the lower. If the inclusion is known to be proper, the line 

is so labelled. The numbers on the lines refer to the following list of sources for the 

proofs of inclusion. 

Sources 

1, 8. Stated by Bennett, p. 13 
2, 3. Bennett, p. 13 Immediate from definitions 
4 Bennett, p. 75 Follows immediately form the definitions and the fact that 

ℰ2-relations are closed under explicit transformation, the Boolean 

operations, and limited quantification 

5 Kuroda [Kur64] and Theorem 1. 
6 Theorem 4, part (4), Kuroda’s characterization of context-sensitive 

languages, and an easy argument. 
7,11 Theorem 4 (Bennett). 
9,10 See under definition of extended positive rudimentary relations. 



6 Summary of Facts and Open Questions 333 



334 Chapter 17 A Survey of Classes of Primitive Recursive Functions 

Closure under operations of relation classes All the classes of relations discussed 

previously are closed under explicit transformation, subpart quantification, dis
junction, and conjunction. This follows from the definitions either directly or by 
easy arguments. The following table indicates which classes are known to be closed 

under negation, ∃ ≤ and ∀ ≤. It is tempting to argue that where a “?” appears 
the answer is probably most often “no”, partly from intuition, and partly because 

plenty of techniques for proving positive results are known, but very few for proving 

negative results are known. 

One of the more interesting questions is whether the positive m-rudimentary 
relations are closed under negation. If the answer is yes, then this class is the same 

as the class of constructive arithmetic relations, so 𝒮2n−1 = 𝒮2n for all n ≥ 1, so 𝒮n 

would be closed under negation for all n. 

negation ∃ ≤ ∀ ≤ Source 

ℰn-relations, n ≥ 0 

Fn-relations, n ≥ 1 
ℒ-relations 
Strictly m-rudimentary relations 
Positive m-rudimentary relations 
Constructive arithmetic relations 
Extended positive rudimentary relations 
Context sensitive relations 
𝒮n , n odd 

𝒮n , n even 

yes yes yes Grzegorczck [Grz53] 
yes yes yes See section 4 

yes ? ? See section 3 
yes no no 

? yes ? Bennett, p. 13 
yes yes yes 
? yes ? Bennett, p. 62 

? yes yes See definition, Sec. 5 

? yes yes 
Bennett, p. 124 

yes yes yes 

Functions Each of the classes ℰn , n ≥ 0, Fn, n ≥ 1, ℒ, ℒ+ is closed under explicit 
transformation, composition, and limited recursion on notation. In addition, all 
except Fn and possibly ℒ and ℒ+ are closed under limited recursion. 
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brief definitions and pointers to the literature. Information on bounded arithmetic 
and proof complexity can be found in the books by Krajíček, Bounded Arithmetic, 
Propositional Logic, and Complexity Theory [Kra95] and Proof Complexity [Kra19], 
and Cook’s own Logical Foundations of Proof Complexity [CN10], co-authored with 

Nguyen. 
More information about the P vs NP problem and the theory of NP-

completeness can be found in several sources. Fortnow’s book The Golden Ticket 
[For13] provides a good introduction to the area, as do the surveys “P=NP” [Aar16] 
by Aaronson and “P, NP and mathematics—A computational complexity perspec
tive” [Wig06] and “Knowledge, creativity and P versus NP” [Wig09] by Wigderson. 
Sipser’s “The history and status of the P versus NP question” [Sip92] presents the 

state of the problem as it stood in 1992. Finally, Cook’s “The P versus NP problem” 
[Coo06a], written for the Clay Mathematics Institute’s Millennium Problems site, 
gives his own overview of the area. 

Previously published biographical information about Steve Cook may be found 

in the book Out of Their Minds [LS98] by Lazere and Shasha, as well as in an inter
view with Cook, done on behalf of the Charles Babbage Institute by Philip Frana, 
that appeared in Communications of the ACM in 2021 [Fra12]. 

Further Reading 

There are a number of excellent sources for readers who would like to learn 

more about computational complexity theory. These include Arora and Barak’s 
Computational Complexity: A Modern Approach [AB09], Du and Ko’s Theory of 
Computational Complexity [DK14], Goldreich’s Computational Complexity: A Concep
tual Perspective [Gol08], Papadimitriou’s Computational Complexity [Pap94b], and 

Wegener’s Complexity Theory [Weg05]. The Complexity Zoo, found at complexity-
zoo.net, contains entries for the complexity classes referred to in this volume, with 

https://complexityzoo.net/
https://complexityzoo.net/
https://www.claymath.org/millennium-problems/p-vs-np-problem
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