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PREFACE

This is an introductory textbook on computer programming with the use of 
FORTRAN. It is designed for direct classroom use, for individual study, or 
as an aid to understanding concepts presented in the classroom. It is also 
meant to serve as a review book and as a reference manual. With one sig­
nificant exception (that of tape and disk file processing, of interest to ad 
vanced programmers only), the full language is discussed.

As much as some textbooks would lead the student to believe it. one does 
not become a programmer by learning a programming language statement 
by statement. One must learn to design the algorithm on which the program 
is to be based, to use the programming language in a methodical fashion to 
express thoughts rather than code in a helter-skelter manner, and to furnish 
a fully documented program. The best time to learn good programming 
habits is when one begins to program.

Thus, the emphasis here is on (1) methodical, structured design and the 
implementation of programs, and (2) the use of standard FORTRAN, 
which provides students with a transferable skill and allows them to create 
programs that are portable from one computer to another.

Students will learn how to design an algorithm via stepwise refinement of 
their initial idea of the problem solution. Both pseudocode and flowcharts 
are discussed as tools for algorithm design. (To the student who uses this 
text for self-instruction, I might say that I find pseudocode simpler and 
more pleasing to use.) The skill of algorithm design, once acquired, is appli­
cable to programming in any language.

Since its initial development in the years 1954—57, FORTRAN (an acro­
nym for “formula translation”) has been greatly expanded and has become 
a widely used general-purpose language. The many software translators 
written for it have provided ever new and modified features that have even­
tually made it difficult to transfer a program from one computer installa­
tion to another. To facilitate program portability, the first voluntary FOR­
TRAN standard was introduced in 1966. This standard corresponds to the 
FORTRAN IV version of the language.
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The needs of non-numeric areas of application and the growing sophisti­
cation of programming practices led to the adoption in April 1978 of a new 
FORTRAN standard. This new standard, called FORTRAN 77, is based 
to a large degree on the WATFOR and WATFIV compilers for the lan­
guage. Like the previous standard, FORTRAN 77 defines the full language 
and the subset language. The latter is rather close to the full language of the 
old standard. This book is based on the full FORTRAN 77 language.

FORTRAN 77 essentially incorporates FORTRAN IV, while it extends 
it in certain areas and clarifies certain ambiguities. Thus, almost any FOR­
TRAN IV program will run correctly under a FORTRAN 77 system (but 
not vice-versa, of course).

The main innovations of FORTRAN 77 are list-directed input/output, 
block IF constructs, string processing with CHARACTER data, more gen­
eral definitions of arrays and DO loops, and an extension of the capabilities 
for external file processing.

For a certain time, FORTRAN IV and FORTRAN 77 will coexist. The 
presentation offered in this book permits the programmer to use the systems 
based on FORTRAN IV and to take advantage of FORTRAN 77 facilities 
as well. The programming examples are presented with this point in mind. 
Certain instructions are also given for the use of WATFOR and WATFIV 
compilers.

O When the feature being described distinguishes FORTRAN 77 from 
FORTRAN IV or is available only in FORTRAN 77, the description is set 
off with triangular markers as illustrated here, unless the section heading 
makes this distinction clear. <]

In general, the programmer should strive to conform to the standard to 
make the program more readable and to ensure its portability. Therefore, 
the presentation in this book is based directly on American National Stan­
dard FORTRAN (X3.9-1978).

The programmer should design programs of clear structure, with clear 
and concise documentation through use of pseudocode or flowcharts, and 
through uniform commenting. Several complete programs are offered as ex­
amples.

Good programming practices are pointed out throughout the text; they appear 
inside boxes, as shown here.

This volume may be used as a textbook in a one-semester programming 
course. It applies to the CS1 and CS2 courses of the Association for Com­
puting Machinery Curriculum ’78. A companion book in such courses, also 
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in the Barnes & Noble Outline Series, is the author’s Introduction to Com­
puter Science. Two sources of problems with extensive commentaries are 
recommended in the bibliography at the end of the book.

I wish to thank my colleagues and students for creating the environment 
needed for the preparation of this work; I am particularly grateful to Pro­
fessor Abe Lockman of Rutgers University for his kind cooperation. My 
thanks also go to Jeanne Flagg of Barnes & Noble for her expert editorial 
assistance and to Janet Goldstein of Harper & Row for her superb efforts in 
seeing the book through production.

Vladimir Zwass
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INTRODUCTION 
TO THE COMPUTER

Computers as we know them today emerged in the 1940s. Since then they 
have entered most fields of human activity as tools for the processing and 
storage of information.

A computer is not an independent problem solver. Its operation is direct­
ed by a program constituted of a sequence of instructions. If we change the 
program, the function of the computer also changes. Thus, computers are 
general-purpose information processors.

Basic components of a computer system are the central processing unit 
(CPU), main and secondary memories, and input/output devices. In addi­
tion to this hardware, systems software is provided; that is a set of service 
programs that make it easier for users to run their programs.

The central processor of a computer is only able to execute instructions 
expressed in a binary code called the machine language of the computer. 
Programs are almost never written in this code: the tedium would be un­
bearable. It is much easier to program in the assembly language of the given 
computer; again, a considerable effort is required of the programmer, how­
ever, toward the management of the machine resources.

Higher level languages, such as FORTRAN, on the other hand, permit 
the programmer to concentrate on the problem itself and to express the so­
lution in a readable fashion. Before a program written in such a language 
may be executed, translation into the machine language is needed. This is 
performed by the computer itself under the control of a systems program, a 
translator. In the case of FORTRAN, the program is usually translated ful­
ly before execution is begun. The translator that performs this task is called 
a compiler.

A. WHAT A COMPUTER IS

A computer is a data-processing machine or, more generally, a machine for 
the manipulation of symbols. These symbols represent information of var­
ious kinds, for example, a number or a name.
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In its operation, the computer is directed by a program, that is, a se­
quence of instructions that determine the operations to be carried out by the 
machine. The program is the procedure for obtaining the desired results. To 
obtain the results, most programs require data.

EXAMPLE 1-1
(a) A program may be written to compute the square root of a non-neg- 

ative number.
The data item needed in this case is the number whose root is to 

be calculated. Thus, the program is general enough to compute the 
root of any number greater than or equal to 0; the data make the 
program specific to the task at hand.

(b) A program may be written to write mail solicitation letters in which 
the name and address of the prospect are inserted onto a preprinted 
form.

The file of names and addresses comprise the data for this pro­
gram. These data are non-numeric; they are text (character) data.

Computers are universal: change the program, and instead of computing 
the square root of a number, the computer will produce the solicitation let­
ters. Thus, the function of the computer at any moment is determined by 
the program it is executing.

The data make the program specific. Therefore, a program applies to a 
class of problems: it may be computing the square root of 15 or of 155.

B. ORGANISATION OF A COMPUTER

1. FLOW OF INFORMATION IN A COMPUTER
The capabilities (and cost) of computer systems vary widely. Their basic or­
ganization is, however, the same. Thus, a computer system includes a num­
ber of functionally separate devices that constitute its hardware. These 
comprise the central processing unit (CPU), at which the program instruc­
tions are directed, the memory sybsystem, where the instructions and data 
are stored, and input and output devices for communication with the envi­
ronment of the system.

The flow of information in a computer system is shown in Fig. 1—1.
An input device receives the information and places it in the main mem­

ory (memory is often called storage). The CPU of the computer actually 
executes the instructions by applying them to data (with the use of its arith­
metic-logic unit) and by directing the operation of other system units.

The intermediate and final results are stored in the main memory. As the 
execution of the program is progressing, the results may be communicated
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(e.g., disk)

FIGURE 1-1. Flow of information in computer systems

to the outside world via an output device. They may also be stored in mem­
ory, until the program has been fully executed, to be presented all at once.

Programs and/or data may be stored in memory for extensive periods of 
time in order to avoid introducing them repeatedly from an input device. To 
provide a large memory capacity at a reasonable cost, cheaper and slower 
secondary memory devices are used. Before the information stored there is 
brought to the attention of the CPU, it has to be transferred to the main 
memory.

For technological reasons, all the information handled by a computer sys­
tem is encoded internally as a string of 0’s and l’s, i.e., in binary represena- 
tion.

All the system components are electronic, with the exception of input/ 
output and most of the secondary memory devices. (These devices have me­
chanical elements.)

The following sections describe the components of a computer system in 
detail sufficient for programming in a higher level language such as FOR­
TRAN.

2. CENTRAL PROCESSING UNIT
The central processing unit (CPU) of the computer is designed to “compre­
hend” elementary instructions expressed in binary code. Three examples of 
such instructions are: add two numbers; compare two numbers and indicate 
the larger one; carry out the next instruction from a given memory location. 
This instruction code constitutes the machine language of the given com­
puter.

INTRODUCTION TO THE COMPUTER 3



A CPU consists of two functionally distinct parts: the control unit and the 
arithmetic-logic unit. The control unit directs the action of the system by 
carrying out the instructions and establishing their sequence according to 
the program. The arithmetic-logic unit (ALU) contains the circuitry need-, 
ed to perform the basic arithmetic operations and the logical ones (for ex­
ample, a comparison).

3. MEMORY
The main memory of a computer consists of a number of locations, called 
words, which contain instructions or data items. Every word consists of a 
uniform number of bits (holding 0 or 1) and has a unique address, its num­
ber in the memory. The CPU identifies (addresses) a given word in order ei­
ther to write into this location, storing new contents in it, or to read from it, 
fetching the contents of the word without erasing them. In this manner, the 
CPU can obtain the instructions and data for the program and subsequently 
store the results in memory.

From the programmer’s viewpoint, the main memory has the structure 
shown in Fig. 1-2.

ADDRESS

0

1

Word length 
(n bits)

w

FIGURE 1-2. Programmer’s view of the main memory

In order to extend the capacity of the main memory at a reasonable cost, 
computer systems usually have secondary (auxiliary) memories, selected 
from cheaper and slower types of storage than the main ones. Programs and 
data that are not expected to be needed soon by the CPU are stored there. 
The items contained in the secondary storage are usually accessible to the 
CPU only following their transfer to the main memory.

A typical secondary memory device is a magnetic disk. Much slower is a 
magnetic tape drive, also used.

4 PROGRAMMING IN FORTRAN

4



4. INPUT/OUTPUT DEVICES
A number of various input/output (I/O) devices serve the need of the com­
puter system for communication with the environment.

The most widely used input devices include card readers and the key­
boards attached to display or printing terminals. Output is most often dis­
played on a cathode ray tube (CRT) screen, similar to a television tube, or 
on a line printer, which prints one line (rather than a single character) at a 
time.

5. SYSTEMS SOFTWARE
The intermediary between computer users and hardware is systems soft­
ware, a set of programs that belongs to the configuration of a given comput­
er system and facilitates its use. The programs written by the computer us­
ers are called application software.

A user of the computer, during the process of program design and imple­
mentation, called programming, must specify the operations to be per­
formed by the computer. Natural languages, like English, used for human 
communication, are not fit for programming because of their ambiguity and 
lack of precision. On the other hand, programming in a machine language 
would be exceedingly tedious and would limit the applicability of programs, 
since they are not easily transferable to a different computer in this form 
(see Section C).

Users, therefore, program in programming languages, which must be 
translated into machine language. The computer itself performs this trans­
lation under the control of a systems program, a translator.

A program submitted to a computer system constitutes a job to be per­
formed and requires the use of system resources, both hardware and soft­
ware. The latter include the translators as well as utility programs (for ex­
ample, sorting routines) that have been written by systems programmers 
rather than by the users. In order to assign the needed resources to a pro­
gram and to mediate between the demands made by various users, a special 
systems program is required. This program, which manages all of the sys­
tem resources, including the users’ programs, is called a supervisor, execu­
tive, or operating system.

Extensive programs are required to manage data stored in some computer 
systems and to facilitate remote communication between a user and the sys­
tem or, frequently, between distantly located computers.

The operating system, along with language translators, programs for data 
management and telecommunication, and utility programs, constitute the 
essential systems software. User programs may be simpler due to the pres­
ence of this software.

INTRODUCTION TO THE COMPUTER 5



C. HIGHER LEVEL LANGUAGES
As already explained, in order to perform a task, the computer follows a 
sequence of orders. These orders are presented in the form of program 
instructions.

It was also explained that the hardware of the computer or, more precise­
ly, its central processor, “understands” only the instructions expressed in 
the machine language of the given computer model. A machine language 
instruction looks like this:

1000110010101110 
(a 16-bit word is assumed)

A part of the instruction specifies the operation to be performed (e.g., add, 
compare), and another part gives the addresses of the memory locations 
that hold the operands involved.

Programming in such binary code is extremely cumbersome: the pro­
grammer has to remember all the addresses of data and the binary codes of 
all of the operations. To modify such a program is an arduous chore.

To simplify the programmer’s work, every computer model (or series) has 
its own assembly language, a low level programming language that permits 
the programmer to refer to a data item with the use of a symbolic name (in­
stead of a binary address) and to use mnemonic, easy to remember, oper­
ation codes.

For example, the instruction shown above may look, in the assembly lan­
guage of this hypothetical machine, as follows:

ADD GROSS, SALES

An assembly language program is translated into machine language by a 
rather simple translator, called an assembler.

Low level programming languages have the advantage of efficient use of 
computer resources. They have, however, two essential disadvantages that 
significantly limit their use.

As a simple encoding of a machine language, assembly language is very 
remote from natural language and thus difficult to use. Since every instruc­
tion specifies an elementary operation, long and hard-to-read programs re­
sult. Thus, assembly languages are rather demanding of the programmer’s 
time.

Moreover, an assembly language is specific to a computer model. There­
fore, the programs written in an assembly language are not portable from 
one computer model (or series) to another.

For these reasons, programming is predominantly performed in higher 
level languages. These allow the programmer to present the program in a 
terse and machine-independent fashion. The languages are problem-orient­
ed rather than machine-oriented: very little knowledge of the machine orga­
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nization is required. Moreover, programs written in a higher level language 
are portable, although minor modifications may be required (see Section 
D).

The most commonly used general-purpose higher level languages, along 
with FORTRAN, are BASIC, COBOL, Pascal, and PL/I. The general fa­
cilities of these languages are to a significant degree similar; thus a solid 
knowledge of FORTRAN programming will make it rather simple to learn 
other languages.

D. HOW A PROGRAM IS PROCESSED

Since computers cannot directly execute the instructions of a higher level 
language program, it has to be translated before execution. A FORTRAN 
program is usually translated fully before its execution begins; such transla­
tion is called compilation. A compiler is said to translate the source pro­
gram (in a higher level language) into an object program (in machine lan­
guage); see Fig. 1-3.

In a 
higher level 

language

In machine 
language

In machine 
language, placed 

in proper memory 
locations

FIGURE 1-3. Stages of program processing

Another systems program, called a loader, then places the object pro­
gram into the main memory locations assigned to it. The loaded object pro­
gram is then executed.

As can be seen from the above discussion, what the computer does in re­
sponse to a program written in a higher level language depends to a degree 
on the compiler for this language used to translate the program. The com­
piler together with the hardware of the computer constitute the implemen­
tation of the language. It is desirable to limit the differences between imple­
mentations: ideally, a FORTRAN program should be executed identically 
in any implementation and thus be fully portable. In practice, even though 
FORTRAN has been standardized, minor differences exist.

As an alternative to compilation, a higher level language program may be 
interpreted: translated and executed statement by statement. This is done 
rather infrequently in the case of FORTRAN (see Chapter 3-A).

INTRODUCTION TO THE COMPUTER 7



ALGORITHMS AND 
THEIR PRESENTATION

Before writing a program in FORTRAN or any other programming lan­
guage, the programmer should design the algorithm on which the program 
will be based.

An algorithm is a procedure for arriving at the required results with the 
use of the available data. An algorithm is more succinct than a program; 
thus it is easier to design the algorithm of a problem solution first, instead 
of taking an immediate plunge into the details of FORTRAN coding.

Moreover, algorithms may be designed in a top-down fashion via their 
stepwise refinement. First, a general outline of the problem solution is es­
tablished; then it is refined (possibly in several stages) until the final form is 
obtained. Subsequently, the algorithm may be coded in FORTRAN or any 
other programming language.

Two widely used notations for algorithm presentation are flowcharts and 
pseudocode. Both of them lend themselves to stepwise refinement. Flow­
charts are a graphical tool. Pseudocode is a textual description of the algo­
rithm. It uses the same control structures that are employed in many higher 
level languages.

A deeper understanding of some of the structures presented in this chap­
ter will be acquired during the study of Chapters 4 and 7. Modular design 
of algorithms is subsequently discussed in Chapter 8.

A. ALGORITHMS AND THEIR STEPWISE REFINEMENT

The first step to take in solving a problem with the use of a computer is to 
establish the procedure for arriving at the needed results using the available 
data. Such a procedure, if it can be carried out by a computer, is called an 
algorithm.

Thus, an algorithm is a sequence of instructions that, when carried out, 
will result in the solution of the problem (or the class of problems).

8



Since algorithms operate on data, both those initially given and those ob­
tained during computation, the make-up of these data has to be established 
simultaneously with the design of the algorithm.

How do we specify an algorithm? To be presented to a computer, an algo­
rithm has to be specified as a program. For all but the most trivial problems 
we do not, however, begin by specifying the algorithm in a programming 
language.

Programming languages, even the higher level ones (like FORTRAN) re­
quire minute attention to detail both in specifying the actual operations to 
be carried out and in observing the conventions of the language (a comma 
here, a parenthesis there). Programs with thousands of instructions are 
quite common. It is impossible to write such a program without first design­
ing an accurate but more concise description of its operation. This descrip­
tion of the algorithm may then be refined, possibly in several stages until it 
may be converted into a program.

Algorithms are much easier to read than programs; they serve to commu­
nicate with people. Programs serve to give orders to computers.

The examples below show how very simple algorithms may be specified in 
English.

EXAMPLE 2-1
Problem

Determine the largest of three integers.
Algorithm: Initial Description

1. Compare the first and second integers and establish which is the 
larger one.

2. Compare the latter with the third integer; the larger is the result.
Thinking over this algorithm in more detail, we may refine this de­

scription as follows.
Algorithm: Refinement

1. Obtain (input) the first number; call it NUM1.
2. Obtain (input) the second number; call it NUM2.
3. Compare NUM1 with NUM2 and select the larger; if the numbers 

are equal, select NUM1. Call this number LARGE.
4. Obtain (input) the third number, call it NUM3,
5. Compare LARGE with NUM3 and select the larger; if the numbers 

are equal, select LARGE. Call this number LARGE.
6. Present (output) LARGE.
7. Stop.

Notes
Note that certain decisions in the design of an algorithm are made at the 
discretion of the designer (for example, step 4 may precede step 3; if two 
integers are equal in step 3, either may be selected). Other steps, how­
ever, cannot be changed without impairing the integrity of the algorithm 
(for example, step 4 must precede step 5).

ALGORITHMS AND THEIR PRESENTATION 9



EXAMPLE 2-2
A somewhat more complex problem is presented than that of the preced­
ing example.

Problem
Determine the largest of N integers, where N >2.

Analysis
Since the algorithm has to apply to any N greater than 2, N should be a 
parameter. Therefore, it will be one of the inputs to the program, along 
with the integers themselves.

Algorithm: Initial Description
1. Input N.
2. Input one by one N integers and keep the largest so far.
3. Output the kept integer.

Algorithm: Refinement
1. Input N.
2. Input first integer; call it NUM1.
3. Input second integer; call it LARGE.
4. Set up a counter of integers that have been read in; call it COUNT. 

Set COUNT equal to 2.
5. Compare NUM1 with LARGE; if NUM1 is greater than LARGE, 

set LARGE to equal NUM1. If COUNT equals N, output LARGE 
and stop; else increment COUNT by 1, input next integer, and call 
it NUM1; perform this step (step 5) again.

Notes
Note that this is not the intention of this problem to save the numbers in 
memory. Think about the way the numbers are called and the reason for 
this.

Follow through the algorithm with a few integers of your choice and 
convince yourself of its correctness.

The specification of algorithms in a natural language, like English, is in­
creasingly ambiguous and inconvenient as the problems become more com­
plex. Special algorithmic notations exist for the purpose. Two such nota­
tions, widely used, are flowcharts, a graphical method of algorithm 
specification, and pseudocode, somewhat easier to use and read. Both these 
notations are presented in the subsequent sections of this chapter. Before 
coding the program in a selected programming language, the programmer 
should design its algorithm in such a notation. Such an approach simplifies 
the design of programs. An algorithm presented in such a notation is also 
more readable than the program itself; it may serve to communicate with 
others or to you at a later time. Thus, such a description is a part of the pro­
gram documentation: a set of written material that explains the program 
and makes it a finished product.

As noted above and as may be observed in the examples, the design of an 
algorithm progresses from a more general to a more detailed description.
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This process of obtaining a detailed algorithm description from its initial 
general form is called stepwise refinement. Several stages of refinement 
may be needed; an algorithm is thus designed in a top-down fashion. The 
process stops when we are able to code directly from the algorithm.

Several examples of this process will be seen in this book.

B. FLOWCHARTS

A flowchart is a two-dimensional representation of an algorithm; the prede­
fined graphic symbols of a flowchart are used to indicate the various oper­
ations and the flow of control.

The most significant feature of flowcharts is a clear presentation of the 
flow of control in the algorithm, i.e., the sequence in which the algorithm 
operations are performed.

A basic set of established flowchart symbols is presented in Fig. 2-1. Six 
of these symbols are outlines (also called boxes) of various shapes. When 
used in a flowchart, they contain appropriate wording. The wording is made 
more precise as the flowchart for a given problem solution is developed. The 
remaining symbol, the flowline, determines the sequencing among the tasks 
represented by the outlines.

processing decision terminal

annolation flow linesconnector

FIGURE 2-1. Flowchart outlines

The symbols have the following meaning:

processing: one or more computational tasks are to be performed sequen­
tially;

input/output: data are to be read into the computer memory from an in­
put device or data are to be passed from the memory to an output de­
vice;

decision: two alternative execution paths are possible; the path to be fol­
lowed is selected during the execution by testing whether or not the 
condition specified within the outline is fulfilled;

terminal: appears either at the beginning of a flowchart (and contains the
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word “Start”), or at its conclusion (and contains “Stop”);
annotation: contains comments that promote the understanding of the al­

gorithm, or the description of data;
connector: makes it possible to separate a flowchart into parts; identical 

cross-reference symbols are placed in this outline where the flowline is 
interrupted and where it resumes;

flowlines: indicate the outline that is to be entered next.

A flowchart for the algorithm of Example 2-2 is presented in Fig. 2-2.

If the flowchart were to be separated into two parts at the point marked 
X, the connectors would be used as shown in Fig. 2-3.

Set COUNT = 2

FIGURE 2-3.
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Flowcharts allow the reader to follow the logic of the algorithm more 
easily than a linear description in English. The choice of the level of detail is 
at the discretion of the algorithm designer. During the refinement process 
more detail is gained.

An alternative to flowcharts, which does not require graphics, is discussed 
in the next section.

C. ESSENTIAL PROGRAMMING CONSTRUCTS AND
PSEUDOCODE

1. PSEUDOCODE IN PROGRAMMING
An algorithmic notation that is preferred by many to flowcharts is pseudo­
code. Pseudocode is a notation in which the structures for the control of the 
execution flow are superimposed on the more or less formal descriptions of 
data manipulation. The main convenience of pseudocode is that it may be 
read as a text; no graphics are needed. At the same time, pseudocode clearly 
presents the flow of control in the algorithm.

The same basic control structures that are used in programming lan­
guages are also used in pseudocode. Thus, the essential structures are pre­
sented here; they will be better understood at a later time, when used in 
FORTRAN programming. Since pseudocode does not include formal speci­
fications in the way programming does, various modifications of the forms 
shown here may be employed.

Both a pseudocoded algorithm and a program consist of a sequence of 
statements: orders for a computer action. A statement corresponds to a sen­
tence in a text written in a natural language.

The task of every algorithm and program is to manipulate data. The 
means for data manipulation is an assignment statement: an order for a cer­
tain expression to be evaluated and the value obtained to be assigned to a 
named memory location.

To read data into the computer memory, input statements are needed. To 
write out the results, we require output statements.

In a pseudocode description of an algorithm, the assignments as well as 
the input and output statements (and, possibly, less formal orders) are ex­
pressed with the level of detail desired by the programmer. As the stepwise 
refinement process progresses, more precision is injected. To organize the 
computation in a logical order, control structures are used.

Three basic control structures are sequence (begin-end), decision (if-then- 
else), and loop (while-do), t These, sufficient to present any algorithm, con­
stitute the fundamental means of a systematic programming process called

t In longhand, these keywords are usually underlined.
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structured programming. Additional control structures may be used to sim­
plify this process.

While these structures are not available directly in every higher level pro­
gramming language (for example, in FORTRAN only some exist), it is pos­
sible to construct them using the statements of the given language. The pro­
grammer will find that thinking in terms of these structures will produce 
clearly organized programs that are easy to write, read, and modify.

Comments are needed in an algorithm and in a program to explain these 
to a reader.

As will be seen in Chapter 8, larger algorithms and programs may be or­
ganized into functionally separate modules. These modules are identified in 
the process of stepwise refinement and treated as separate algorithms. Mod­
ular programming significantly aids in design and comprehension of more 
complex programs.

2. DATA MANIPULATION ‘
Computing consists of manipulating data. For example, an average of a set 
of integer numbers is obtained, or the names of employees are sorted in al­
phabetical order.

To manipulate a data item, we need to refer to it. It is most convenient to 
refer to a data item by a symbolic name. This name is associated by the 
software translator with the memory location where the value is stored. 
Such a named data item, whose value may vary during the program execu­
tion, is called a variable.

In Examples 2-1 and 2-2 we used several variable names. Note what 
an essential convenience this represents.

Aside from variables, fixed values, called constants, may be used in a pro­
gram (or algorithm).

The kind of value that a variable may acquire depends on its type. Thus, 
we may have an integer or a character variable. The type of the variable de­
termines also the operations that are applicable to it. (It does not make 
sense to add two names, does it?)

The types of the variables employed are specified by type declarations at 
the beginning of the program or algorithm.

To declare the type of two integer variables, for example, we will use a 
pseudocode statement (declaration):

Integer N, NUM

During the computation, a value may be given to a variable by an assign­
ment. The general form of the assignment statement is

variable *— expression
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where the arrow stands for “set to” or “assign.” The expression is evaluated 
(the way expressions are evaluated in algebra), and the value is assigned to 
the variable.

EXAMPLE 2-3
(a) In the flowchart of Fig. 2—2, instead of saying

Set COUNT = 2

we could use the assignment

COUNT <- 2

(b) In the same flowchart, instead of saying
Increment COUNT by 1 

we could use the assignment
COUNT <- COUNT + 1

As will be seen in Chapter 4, in FORTRAN the equal sign (=) is used to 
express assignment. The difference between the assignment and the alge­
braic equality should be, however, appreciated [look at the assignment in 
Example 2-3(b) above].

Note that if a variable name appears only in the expression on the right­
hand side of the assignment statement, the value of the variable is not 
changed.

If the value of a variable is a part of the given data, it is read in from an 
input device, e.g.,

Input NUM1, LARGE

To present (e.g., print or display) the results, an output statement is nec­
essary, e.g.,

Output LARGE

Comments, marked with initial asterisks, may be freely used to explain 
the algorithm. They do not influence the actions that will be carried out; 
they merely explain them. Comments are a necessary part of any algorithm 
or program.

EXAMPLE 2-4
The following is very simple.

Problem
Add two integers and present their sum.
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Algorithm

•SUM OF TWO INTEGERS IS OBTAINED
begin

Input NUM1, NUM2;
SUM «- NUM1 + NUM2;
Output NUM1, NUM2, SUM *FOR  ERROR CHECKING, ALL PRINTED*  

end

The structuring of algorithms is discussed in the following subsection.

3. BASIC CONTROL STRUCTURES
There are three essential control structures in programming: sequence, deci­
sion, and loop. These suffice to express the logic of any algorithm. For ease 
of expression, additional control structures are also used.

A. SEQUENCE

If a number of statements is to be carried out in the order they are present­
ed, this group of statements constitutes a sequence. To show this, the state­
ments are enclosed between two delimiters, begin and end, as follows:

begin
S.;
S2;

end

The enclosed statements are indented for readability. Semicolons sepa­
rate individual statements (the last one does not need a semicolon). Thus 
several statements may be placed on a single line.

The corresponding action may be expressed in the flowchart form as 
shown in Fig. 2—4.

FIGURE 2-4. Sequence (begin-end) structure
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Note that a complete algorithm constitutes a sequence of actions. It is 
therefore enclosed in begin and end delimiters.

Example 2—4 above illustrates the use of sequence.

B. DECISION

When the programmer needs to specify two alternative courses of action the 
decision construct is used. The choice of an alternative depends on the exis­
tence of a certain condition.

This construct expresses the following thought: “If a given condition ex­
ists, one action should be taken; otherwise the alternative action should be 
carried out.”

This construct has the following form:

if C then
S, 

else
S2

where C is the condition (e.g., LARGE > 5) and S! and S2 are statements 
or groups of statements.

If the condition C is true, then statement (or group) Sj is executed; other­
wise, if C is false, S2 is executed.

If Sj and/or S2 are groups of statements, they are enclosed in the begin 
and end delimiters.

The flowchart of the if-then-else construct is shown in Fig. 2-5.

then branch else branch

FIGURE 2-5. Decision (if-then-else) structure

EXAMPLE 2-5
The solution to the following problem will be developed throughout this 
section.

Problem
In a set of N integers, the positive numbers (including 0’s) and the nega­
tive numbers are to be separately counted.
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Use of Decision Construct
In order to process a given integer, the following statement will be incor­
porated in the algorithm:

if the integer is greater than or equal to 0 then 
increment the counter of positive integers by 1 

else
increment the counter of negative integers by 1

If the alternative to an action to be performed conditionally is no action, 
the else branch is empty (see this case in Example 2-7 below).

C. LOOP
The loop mechanism causes repeated execution of a sequence of statements 
while a certain condition is true. When the condition ceases to hold, control 
is passed to the statement following the last statement of the loop. Such re­
peated execution is called iteration.

If a loop is entered, the execution of the statements included in it should, 
after a finite time, cause the reversal of the condition that caused the entry. 
Otherwise an infinite loop would exist, representing a programming error. 
The program execution would have to be stopped by external means.

Several forms of this construct exist. The most useful is the while-do loop, 
whose general form is

while C do
S

where S is usually a group of statements delimited by begin and end.
The loop statement is executed as follows:

(1) Condition C is tested.
(2) If the condition exists, S is executed and control is returned to the 

while statement for the condition to be tested again; otherwise the 
statement following S is executed.

It follows from the above that the statements S should, after a certain 
number of iterations, reverse the condition C.

The flowchart of the while-do construct is shown in Fig. 2-6.

FIGURE 2-6. Loop (while-do) structure
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In Example 2-5 we need the following loop:
while fewer than N integers have been read in do

begin
read in the next integer;
increment the appropriate counter by 1;
increment the count of integers read so far by 1 

end

The three constructs begin-end, if-then-else, and while-do are used togeth­
er in an algorithm in accordance with its logic.

The following are two alternative presentations of the algorithm of Ex­
ample 2-5.

PSEUDOCODE
♦PROGRAM COUNTS POSITIVE AND NEGATIVE INTEGERS 
begin

Integer N, POSCNT, NEGCNT,!, NUM;
♦INITIALIZE

Input N; '
POSCNT <- 0; ’COUNT OF POSITIVE INTEGERS*
NEGCNT — 0; *COUNT  OF NEGATIVE INTEGERS*
I <- 0; ’COUNT OF INTEGERS READ IN*

♦COUNT
while I < N do

begin
I — I + 1;
Input NUM;
if NUM > 0 then

POSCNT <- POSCNT + 1
else

NEGCNT — NEGCNT + 1
end;

Output POSCNT, NEGCNT
end
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FIGURE 2-7.

In Fig. 2-7 the comments explain the technique; usually they are prob­
lem-oriented.

4. ADDITIONAL CONTROL STRUCTURES
To make the programming process easier, additional control structures are 
used. The following structures are discussed at appropriate points in this 
book:

repeat-until loop (Chapter 7-F-2);
indexed loop, native to FORTRAN (Chapter 7-E);
case (multiple choice) construct (Chapter 7-G).

In certain cases, when other alternatives are less satisfactory, an uncondi­
tional transfer of control (goto) may be used. This statement orders the ex­
ecution of a given statement regardless of its place in the algorithm (or pro­
gram). The flow of control then proceeds from this statement.

The general form of goto statement is

goto label
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A label is a symbolic address of a program statement. In pseudocode, it is 
written in front of the statement and often delimited with a special symbol 
(e.g., a semicolon). As we will see, in FORTRAN all labels are integer 
numbers.

EXAMPLE 2-6

The following statements may be included in an algorithm:

goto THERE

THERE: SUM — SMALL + LARGE

When the goto will be executed, control will pass to the statement la­
beled THERE. <

The use of a goto should follow a consideration and rejection of other 
structures for expressing the logic of the program. In many situations, an 
exit statement may be used instead: it transfers control out of a loop to the 
immediately following statement. This statement, whose use is illustrated in 
the binary search algorithm presented in Chapter 8-E, makes the reading of 
the algorithm easier.

In some languages lacking certain control structures, the goto statement 
is used to implement them in a program in a disciplined fashion. FOR­
TRAN is one of these languages. This does not, of course, influence the pre­
sentation of algorithms in terms of these structures.

D. EXAMPLE OF AN ALGORITHM

A relatively simple algorithm is presented here in some detail. Many others 
are discussed in later chapters.

EXAMPLE 2-7. EUCLID’S ALGORITHM
Problem

The greatest common divisor (GCD) of two positive integers is to be de­
termined. (The GCD of two integers is the largest integer by which both 
of them can be divided exactly.)
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Solution
The initial, verbal, solution is subsequently presented in a flowchart 
form, as well as in the alternative, pseudocode, form.

Solution: Verbal Description of the Algorithm
The larger integer is divided by the smaller one. If the remainder is 0, 
the smaller integer is the required result; otherwise the larger integer is 
discarded and the smaller integer is treated as the larger one and the re­
mainder as the smaller one, whereupon the procedure is repeated from 
the beginning.

Test
The algorithm is checked for the integers 12 and 46.

46 : 12 = 3, remainder = 10
12 : 10 = 1, remainder = 2
10 : 2=5, remainder = 0

GCD= 2

SOLUTION: INITIAL FLOWCHART OF THE ALGORITHM (FIG. 2-8)

FIGURE 2-8.
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SOLUTION: REFINED FLOWCHART (FIG. 2-9)

FIGURE 2-9.
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SOLUTION: PSEUDOCODE OF THE ALGORITHM
♦EUCLID’S ALGORITHM FOR FINDING GCD OF TWO POSITIVE
♦INTEGERS M AND N
begin

Integer M, N, TEMP, REM;
Input M, N;

♦DETERMINE THE LARGER INTEGER
if M < N then

begin
TEMP <- N;
N«— M;
M <- TEMP

end
else;

♦COMPUTE REMAINDER
REM - M - N*  (M 4 N);

♦KEEP DIVIDING AND INTERCHANGING UNTIL THE REMAINDER
♦BECOMES 0

while REM 0 do
begin

M «—N;
N <- REM;
REM «— M — N ♦ (M -5- N)

end;
Output N

end
Notes

1. Note that in order for the while statement to be executed, variable 
REM ought to have a value. Thus, it is necessary to repeat the state­
ment computing the remainder.

2. Convince yourself that the algorithm works correctly without the 
initial interchange of variable values if M < N. In this case, the in­
terchange occurs as the first iteration of the loop.

Do you think, however, that the algorithm is easier to understand as 
presented? Do you think the algorithm takes longer to execute as pre­
sented (count the number of tests and the number of assignments that 
will be performed in both cases)?
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3
FORTRAN PROGRAMS

While the essential features of the FORTRAN language are the same in ev­
ery system, some implementations introduce additional features or choose 
not to provide certain facilities postulated by the language standard. In the 
final count, this depends on the software translator, usually a compiler, used 
by the installation.

The programmer should be familiar with all such limitations as well as 
with the procedures necessary to submit and run a program. While most 
systems run FORTRAN programs as batch, some do provide interactive fa­
cilities.

It is extremely important to realize that programming involves more than 
just coding in FORTRAN. Before the actual coding, the programmer 
should analyze the problem and design the algorithm for its solution. The 
coded program ought to be checked out before the execution and then sys­
tematically tested and debugged with the use of the computer. The final 
product should be carefully documented.

A FORTRAN program has a fixed form, consisting of an ordered set of 
statements placed in their lines in a certain fashion, which ought to be 
strictly followed.

A. FORTRAN LANGUAGE AND ITS IMPLEMENTATION

A higher level language, FORTRAN is basically machine-independent, i.e., 
the make-up of a program ideally does not depend on the computer used to 
run it.

As described in the Preface, the new FORTRAN standard, FORTRAN 
77, coexists at this time with the old one, on which FORTRAN IV is based. 
A program written in conformance with the old standard will run correctly 
under the new one (but not the other way around). It is one of the purposes 
of this book to make it possible for you to write a program conforming to ei­
ther standard.
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It is suggested that you avoid using nonstandard (implementation-depen­
dent) features of the language unless important considerations prevail. A 
standard program is portable and more readable.

We have already seen in Chapter 1-D that FORTRAN programs are 
usually translated by compilers. The fate of a FORTRAN program in a 
computer system is presented in Fig. 3-1 (where the action of the loader, 
usually transparent to the programmer, is omitted). Since most frequently 
we submit the program to the computer for the compilation and subsequent 
execution, the data are presented together with the program.

FIGURE 3-1. Processing of a FORTRAN program

There exist many different FORTRAN compilers. Since standards are 
voluntary, some of these compilers offer additional features or drop some of 
the features established by the standard. Thus, if an advanced feature is 
used, the FORTRAN manual for the given system should be consulted; this 
is pointed out in certain cases in the text.

Certain compilers, such as WATFOR and WATFIV, are particularly 
suitable for debugging (rendering programs error-free): they compile quick­
ly and give helpful error messages. They do not produce very efficient ma­
chine code, however. At the other end of the compiler spectrum are optimiz­
ing compilers: the results of long compilations, they produce very efficient 
object code. An example is FORTRAN H of the IBM 360-370 systems. 
Most compilers fall in between these two categories.

Infrequently, FORTRAN is interpreted, i.e., translated and executed 
statement by statement, without the object program being produced. Such 
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practice (used in time-sharing systems), while convenient to the program­
mers, results in increased use of computer resources.

When a program is run initially, it often contains compilation errors 
(also known as syntax errors)-, erroneous use of the FORTRAN language 
itself, discovered by the compiler. (In a time-sharing system, translation er­
rors are indicated by the interpreter.) However, correct compilation does 
not mean that the program is correct; there may be errors in the algorithm 
itself leading to incorrect results. (After all, correct use of English does not 
ensure the soundness of the ideas expressed by the speaker.) The latter, ex­
ecution errors, should be expurgated through systematic testing of the pro­
gram, as discussed in the next section.

B. HOW TO PROGRAM

Programming is more than simply writing a program. It is rather a task of 
designing a correct and documented solution to a properly understood prob­
lem, then coding this solution as a program and convincing oneself in the 
correctness of this program. Several stages thus make up the programmer’s 
task. You will do well by systematically carrying out these steps.

(1) Make sure that you are solving the correct problem. Therefore, clearly 
define and analyze the problem before solving it.

(2) Using pseudocode or flowcharts, design the algorithm of the solution 
and the data. Several refinements may be needed, depending on the 
complexity of the problem.

(3) Code a readable program without leaving any details for a later clarifi­
cation. Using this book (and, if needed, consulting the language manual 
for your installation), make sure that you are correctly expressing the 
algorithm in FORTRAN. A program is made readable by:
• the use of comments to describe the purpose of meaningful sections of 

code and, in general, to help a reader understand the program
• the use of meaningful variable names
• avoiding tricky code (aim for clarity, not for “cleverness” in coding)
• the use of clear control structures rather than multiple undisciplined 

goto’s
• indentation of appropriate code segments and spacing
• keeping to a clear convention in assigning statement labels (num­

bers). '
This text contains many detailed stylistic remarks, set in boxes. Fol­

low them!
(4) Study and hand-check the program or its crucial fragments. {Hand­

checking consists in “playing the computer” by simulating the program 

FORTRAN PROGRAMS 27



execution by hand for a sample input.) Convince yourself also that your 
program will operate correctly under boundary conditions (e.g., if an 
input may range between -10 and 10, make sure that the program 
works for these two values) and in special cases (e.g., that a division by 
0 is avoided).

(5) Try to run the program with sample input data and remove any compi­
lation (syntax) errors.

Your compiler will generate diagnostic messages. Due to the nature 
of the compilation process (and, unfortunately, sometimes, to lack of 
care on the part of compiler writers), a single error may generate multi­
ple and/or misleading messages. Identify the crucial ones and, with the 
use of this text and, possibly, a FORTRAN manual for your installa­
tion, correct the offending statement(s). Remember that the computer 
is unforgiving: you cannot take liberties with even a comma.

The process of finding and correcting errors (bugs) is called debug­
ging.

(6) When no compilation errors are present, the program may actually be 
executed. Now it should be tested to demonstrate that it operates cor­
rectly. You will need to submit the input data in the allowed range 
(again, watch for the boundary conditions) and convince yourself that 
they are processed correctly.

For testing purposes, your program should echo (print out and iden­
tify) all the inputs. This provides echo check in testing: in beginners’ 
programs inputs are often read in incorrectly. Input values so displayed 
will also be a part of the documentation.

In most “real-world” programs it is also required that the program 
reject (print out an appropriate message and stop) any inputs outside 
the range defined in the problem.

The debugging process is continued to remove execution errors. The 
essential means of debugging is again hand checking. When a bug is 
discovered (through an error message or an incorrect result), you will 
have to work backward through the program to find its source. You will 
sometimes need temporarily to insert additional statements; usually 
these are output statements needed to print out certain values and mes­
sages that will help you to locate the source of the error. Be careful in 
correcting errors! Otherwise, compilation errors may appear again.

If your installation provides special software tools for debugging 
(such as debuggers or traces), by all means use them.

(7) The programmer’s task is completed only when the basic documenta­
tion is provided along with the successful run. The necessary documen­
tation includes:
• the algorithm expressed as pseudocode or flowchart (usually the last 

refinement suffices)
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• an appropriately commented program with a set of header comments 
that identify the program, name the author and state the date of com­
pletion, explain what the program does, possibly, very briefly state 
the algorithm or method employed, and explain the purpose of major 
variables

• a set of sample inputs with their corresponding outputs.

C. HOW TO RUN A PROGRAM

To run a program, a user is required to follow certain procedures. While the 
essence of these is similar in all systems of a given type (batch or time-shar­
ing), the details are specific to the installation and should be observed scru­
pulously. ,

A program, together with the appropriate control information, when sub­
mitted to the system is called a job.

FORTRAN programs are most often run in a batch environment, where 
the job is presented by the user together with the complete data required. 
After a certain interval, called turnaround time (on the order of minutes or 
hours, depending on the installation), the user obtains full results of the run. 
If changes are required, the user has to resubmit the job.

In some computer systems, an interactive environment is established via 
timesharing, a system in which a number of users have access to the com­
puter at the same time. The user then stays at the input/output terminal 
while the program is being run, presents the data as requested by the pro­
gram, and is able to make changes in the program on line, interacting with 
the computer, as it were.

1. IN A BATCH SYSTEM
FORTRAN jobs are most frequently run in a noninteractive environment: 
the program together with the requisite data are submitted as a card deck 
or presented in the same form through a terminal.

To run a FORTRAN program, a computer system requires certain infor­
mation from the programmer in the form of control cards. Although they 
depend on the installation, they have the following general sequence:

—ID control card: identifies the job and the user
—Control cards to request the use of the FORTRAN compiler and, possi­

bly, other system resources

Program statements
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—Control card(s) that delimits the 
program from the data

Data 

present only if 
the program 
needs to be 
supplied with data

—End-of-job control card

The exact format of control cards for the specific installation should be 
obtained. Special cards may have to be included to request certain nonstan­
dard facilities, like punching of the object deck (i.e. the compiled program), 
etc.

Most systems permit the user to save the program in the form of a file 
and subsequently recall it from the secondary memory (e.g., a disk) where it 
is stored.

2. IN A TIME-SHARING SYSTEM
In some installations, FORTRAN jobs are run in a time-sharing environ­
ment from a terminal. The following procedure is then followed:

(1) The user “logs onto the system” by presenting an ID number and 
password (the exact procedure depends on the installation).

(2) The user specifies that the program that follows is in FORTRAN.
(3) The FORTRAN program is entered: Each program line must have a 

sequence number (not related to any FORTRAN statement num­
bers). Each consecutive line is to be assigned a higher number, with 
the numbers reasonably spaced out (e.g., 10, 20, 30) to allow for a 
possible insertion of additional lines at a later time. At least one 
blank is to separate the identifying number from the rest of the line, 
e.g.,

100 25 FORMAT(1X, I2)

Here 100 is the sequence number and 25 is the statement number (label).

(4) The user orders the program to be run.
(5) According to the input (READ) statements in the program, the sys­

tem requests the data from the user by printing (or displaying) a 
question mark. The user then presents the requisite data via the ter­
minal.

Since it is difficult to remember, in general, which data have to be presented 
at a given stage, it is a good practice to incorporate into the program short 
messages requesting specific data.
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According to the output (PRINT or WRITE) statements in the 
program, the system prints (or displays) the results and messages to 
the user.

(6) If errors are detected, correction can be made by referring to the se­
quence number of the program line. Thus, a line may be deleted or 
replaced, or a line with a new number may be inserted. The insertion 
is done automatically according to the sequence number specified by 
the programmer. Editing facilities are usually available to modify the 
program.

(7) The program may be saved in the secondary memory as a file with a 
name assigned by the programmer. Subsequently, recalling the file 
by its name will be sufficient to run this program.

Every time-sharing system has a set of commands, to be employed by the 
user in order to perform a specific task, such as to store the program in the 
file library or to run the program. These should be studied and used with 
care and precision.

D. COMPONENTS OF A FORTRAN PROGRAM

A FORTRAN program consists of statements valid in that language and 
comments that explain the program without affecting its execution.

As further discussed in Chapter 8, FORTRAN statements may be 
grouped into independent program units: the main program and, if needed, 
a number of subprograms. We will further assume, until Chapter 8, that 
when we talk about a program, we mean the main program, which is the 
necessary part of it.

FORTRAN statements are also classified either executable or nonexecu­
table. Executable statements specify actions to be taken by the machine 
during the program execution; these are the assignment and input/output 
statements and the statements that control the flow of execution. Nonexecu­
table statements provide the information to the software translator (usually 
a compiler) or describe the format of data for input/output (FORMAT 
statements).

Certain nonexecutable statements (for example, type specifications) are 
constrained to appear before all executable statements in a program unit.

Program statements and comments have the composition corresponding 
to an 80-column punched card, the traditional input medium (see Fig. 3-2). 
This composition holds regardless of the actual medium used (e.g., a display 
terminal or papertape equipment).

A statement is placed into an 80-column line as follows:

columns 1-5: hold a label, if the statement has one; otherwise left 
blank. The program is easier to read if the labels are right-justified;
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column 6: blank, unless this is a continuation line; such lines are used if 
a statement does not fit into a single line, or in order to make the 
program more readable. Any character may indicate a continuation 
line (e.g., + or $).

columns 7-72: the statement itself;
columns 73-80: usually left blank; the content of these columns, if any, 

has no influence on the program execution. They may be used to 
identify certain statements for the programmer’s purposes.

ETTT

C fOi 
CaUMIMT

STft’tMEN' 
NUMBER

Op 0 0 0 

1[1 1 1 1 
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FIGURE 3-2. FORTRAN punched card

To be able to refer to a statement from another one, statement labels are 
used. A FORTRAN label (also called a statement number) is a positive in­
teger of one to five digits (unique within a program unit). Labels are ap­
pended to executable statements, in order to direct the flow of control in the 
program, and to FORMAT statements. Thus, only some statements in a 
program are labeled.

It is advisable that the programmer maintain a consistent method of assigning 
labels in the program. The numbers should increase down the program unit, 
with spacing out for insertions. A frequently used convention is to assign a se­
quence of labels 10, 20, 30, etc., to executable statements and a sequence of 
high numbers (such as, for example, 501, ..., 509, 511, ...) to FORMAT 
statements.

A continuation line, identified with any symbol other than the blank in 
column 6, provides for statements longer than 66 characters (columns 7- 
72). A single statement may be continued on up to 19 such lines.

Blanks may be used freely in a FORTRAN statement (i.e., in columns 
7-72) to improve its readability. In particular, they are used to indent cer­
tain groups of statements to show the logic of the program.



A comment line is identified as follows:

(1) there is a character C in column 1 (the only admissible way in FOR­
TRAN IV);

D> (2) an asterisk (♦) appears in column 1;
(3) the line is blank (i.e., its columns 1-72 are blanks). <

The length of a comment line is 72 characters; to extend it, another com­
ment line is appended.

Comment lines may appear anywhere in the program; they are only print­
ed or displayed, without influencing the execution.

The use of comments is one of the most important documentation techniques 
and should never be neglected.

Data, to be placed appropriately in the job sequence (see Section C-l), 
may appear anywhere in columns 1-80 of a line, in correspondence with the 
FORMAT statement that serves to read them in, or with the conventions of 
format-free input.

The make-up of a very simple FORTRAN program is shown in Fig. 3-3. 
A special FORTRAN coding form has been used for the purpose.

+These methods are valid in FORTRAN 77 only; in FORTRAN IV both lines must start with C.

FIGURE 3-3. A FORTRAN program (shown in a portion of a coding form)

Only the following characters may appear in a FORTRAN program ex­
cept as character data, to be discussed in Chapter 9, (they are said to consti­
tute the FORTRAN character set):
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(1) Alphanumeric characters: capital letters A-Z and digits 0-9;
(2) Special characters shown in Table 3-1.

TABLE 3-1. FORTRAN special characters

CHARACTER NAME OF CHARACTER CHARACTER NAME OF CHARACTER

blank ) right parenthesis
= equals » comma
+ plus decimal point
— minus $ currency symbol
♦
/

asterisk
slash
left parenthesis

> apostrophe
/
(

(single quote)
colon <]

Most FORTRAN statements are identified by special words, such as 
READ, WRITE, DO, etc., called keywords. Keywords are fixed for the 
language. A programmer needs, however, to create names for variables, ar­
rays, subroutines, etc. These are called symbolic names.

The rules for forming a symbolic name (e.g., a variable name) in FOR­
TRAN are the following:

(1) No more than six characters (but as few as one) are allowed.
(2) First character must be a letter.
(3) Only alphanumeric characters are allowed (i.e., only letters and dig­

its).

[> (4) In FORTRAN 77, any character other than the first may be a blank. <3

(5) Names, as much as possible, should describe the entity named.

EXAMPLE 3-1
These are valid symbolic names:

ITEM1, MULT, Z109, X

The following character sequences cannot be used as symbolic names in 
FORTRAN:

1XVZ

(the first character is a digit)
MULTIPLICAND

(too long)
CASH$

(contains a special character)
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PROCESSING OF 
NUMERICAL DATA. ESSENTIALS

Numerical (also called arithmetic) data are represented in FORTRAN by 
two essential data types: integer and real. Two other types of arithmetic 
data^-double precision and complex (available only in the full language)— 
are used in specialized applications.

Along with the arithmetic data, a FORTRAN program may use logical 
and character data types (character constants are available as a data type 
only in FORTRAN 77); their manipulation is discussed in Chapter 9.

The manipulation and simplified input/output of integer and real varia­
bles are discussed in this chapter. The discussion thus encompasses the fol­
lowing FORTRAN features: numerical type statements, arithmetic expres­
sions and assignment statement, list-directed input/output and elementary 
formatted input/output, and the make-up of a simple FORTRAN program.

The processing of numerical data is discussed further in Chapter 6; dis­
cussion of formatted input/output occurs in Chapter 5.

Meaningful programs are almost always built with the repetitive use of a 
number of their statements. Such programs must include statements that 
control the flow of program execution; these are described in Chapter 7.

ar

A. INTEGER AND REAL CONSTANTS

A constant is a value that does not change during the program execution. 
The two essential types of arithmetic constants in FORTRAN are integers 
and real numbers. These are also the values assumed by the two essential 
types of FORTRAN variables.

Data items of the integer type, which are whole numbers, are used to rep­
resent entities that cannot have fractional values.

EXAMPLE 4-1
To represent a Social Security number or the number of entries in a ta­
ble an integer constant is used.
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Real values, which may have fractional parts, are generally useful in a 
computation. Real constants must have decimal points (even though there 
may be no fractions), integers may not have them. Thus the two are distin­
guished. The plus sign is optional for positive constants.

EXAMPLE 4-2
5, -153, 0 are integer constants;
5., —153.12, 0. are real constants.

Integer and real values (of constants or variables) are represented differ­
ently in computers. The representation of an integer number is always ex­
act; a real value is only (very closely) approximated.

The range of both integer and real values is limited for a given computer 
system. Real numbers have a much wider range than integers. If large num­
bers have to be represented, the actual limits for the machine should be as­
certained; large numbers can almost always be accommodated as real val­
ues.

EXAMPLE 4-3
Most minicomputers can represent integers between —32,767 and 
32,767, while the magnitude of representable real numbers ranges ap­
proximately from —1038 to 1038.

In a real value, the number of significant digits (that is, other than trail­
ing 0’s or leading 0’s in a pure fraction) is also limited; all machines allow, 
however, for up to seven digits. This limitation sets a bound on the precision 
of a number. If greater precision than that afforded with the use of real val­
ues is required, a double precision data type should be used (see Chapter 6- 
E).

To represent a very small or a very large real number concisely, exponen­
tial (or scientific) notation may be used instead of the positional one. In 
such a representation, the exponent specifies the position of the decimal 
point, and the mantissa specifies the digits of the number; for example here 
0.155 is the mantissa and 5 and —2 are exponents:

15500 = 0.155 X 106
-0.00155 = -0.155 X 10‘2

In FORTRAN, X 10 is replaced by E, and the exponent is written in line 
as a signed integer. The above constants are therefore represented as:

0.155E5 and -O.155E-2
or .155E5 and -.155E—2

It is convenient to write such constants in the normalized form, with the 
first significant digit immediately to the right of the decimal point (as 
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shown above). The properties of integer and real constants are summarized 
in Table 4-1.

INTEGER AND REAL CONSTANTS 
(plus sign optional for positive constants)

TABLE 4-1.

integer constant real constant

no decimal point
within the range allowed by the 

computer (usually at least four 
or five digits)

always contains a decimal point 
within the range allowed by the computer

(very few problems exceed it) 
usually at least seven digits of precision 
scientific notation may be used, with E fol­

lowed by a signed integer representing 
the exponent

The following example illustrates the use of these constants:

EXAMPLE 4-4
valid integer constants: +7, 7, —7
valid real constants: 1.137, —55E+3, .55E—03
invalid constants: 5,371, .5IE
invalid as real constant: 17
invalid as integer constant: 5.1
probably invalid constants (limits of representation for your computer 

have to be ascertained): 53712345711, 0.12E+99

B. VARIABLES
A programmer may assign a symbolic name to a memory location. Such a 
location may then contain any value, unknown to the programmer before 
the program execution begins and possibly varying during execution. The 
value may be referred to simply by the name of the memory location that 
holds it. For example, instead of saying, “multiply the given value by 2,” we 
are able to say, “multiply whatever is in such-and-such location by 2.” 
Thus, we do not have to know the actual value!

Such an entity, with a value, a name, and of a definite type (for example, 
integer) is called a variable. By defining and using variables, the program­
mer can write programs in which the values of data items are not known be­
fore the execution. This actually distinguishes programming from calcula­
tion.
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Variable names are formed as any other symbolic names in FORTRAN 
according to the rules specified on p. 34. Therefore, such names as 
INCOME, PERCNT, or XI are legal variable names, while 1Y, 
MARRIED, 007, and X*Y  are not.

No two variables in the same program unit (for example, in the main pro­
gram) may have the same name.

Since the representations in memory of integer and real values differ, the 
programmer must specify the type of the variable. In FORTRAN, such 
specification may be accomplished implicitly or explicitly.

1. EXPLICIT SPECIFICATION
A type statement is used to specify the type of variables listed in it. The gen­
eral form of type statements for integer and real variablesf is

INTEGER variable name,.... variable name
REAL variable name,..., variable name

EXAMPLE 4-5
Examples of integer and real type statements are, respectively,

INTEGER STATE, COUNT, ZIP 
REAL LBS, PRESS

Type statements are nonexecutable. They request that the computer allo­
cate memory locations to store the values of the variables and assign names 
to these locations. Such statements, which describe data, are often called 
declarations. Type statements should precede all executable statements in a 
program unit.

2. IMPLICIT SPECIFICATION
A variable name starting with the letters I through N, unless specified oth­
erwise by a type declaration, refers to an integer variable. Likewise, a varia­
ble name starting with A through H or with O through Z refers to a real 
variable, unless overridden by explicit declaration.

This naming scheme may be changed with the use of the IMPLICIT 
statement, usually employed in the following general form:

IMPLICIT INTEGER (character-l-character-2)
IMPLICIT REAL (character-l-character-2)

This signifies that all variable names starting with one of the characters 
Detween character-1 and character-2 in the alphabetical sequence are of the 
type specified. This statement is to be placed before all the type specifica­
tions and executable statements in the given program unit.

fAs will be seen in later chapters, array and function names may also be included.
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EXAMPLE 4-6

(a) IMPLICIT REAL (A-Z)
specifies that all program variables are real,

(b) IMPLICIT INTEGER (A-P)
means that variables with names such as ANSWER, COUNT, 
LENGTH, PRESS are of integer type in this program unit.

In general, use the IMPLICIT statement only when all the variables in a pro­
gram are to be of a given type [as in Example 4-6(a)].

The alternative ways to specify variable types may be summarized as fol­
lows:

(1) with an explicit declaration of type, placed before executable state­
ments;

(2) with an IMPLICIT statement, declaring that the variables whose 
names start with given letters are of the given type;

(3) by starting the variable name with letters I through N for integer 
variables and with other letters for real variables.

Remember that a type declaration overrides the type implicitly specified 
by the starting letter of a variable name.

In specifying variables advantage should be taken of the full possible length of 
variable names (six characters). Thus, do not call the variable W, but 
WEIGHT, if this is what it stands for, so that the name as closely as possible 
describes the entity represented.

It is advisable to use explicit statements of type for all variables in the pro­
gram. This helps to avoid conflicts between the meaningful and implicit nam­
ing of variables and aids in reliable programming.

A variable has no value until one has been assigned to it either through 
initialization or as the result of the execution of an assignment or an input/ 
output statement.

C. ARITHMETIC ASSIGNMENT STATEMENTS

Arithmetic calculations are performed by means of arithmetic assignment 
statements. Such statements cause an expression to be evaluated and the re­
sult to be assigned to a variable (or an array element, as will be seen later).
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The order of the evaluation of an expression is determined by the relative 
precedence of its operands and by the use of parentheses.

While it is preferable to use expressions consisting entirely of integers or 
of real constants and/or variables, FORTRAN 77 and many variations of 
FORTRAN IV allow the programmer to employ also mixed-mode expres­
sions that include both of these.

1. GENERAL FORM
An arithmetic assignment statement, used to perform arithmetic in FOR­
TRAN, has the following general form:

variable = arithmetic expression

Thus, an assignment statement assigns a value to a variable (or, as will 
become clear in Chapter 6, to an array element). •

An arithmetic expression consists of one or more arithmetic constants 
and/or variable names joined pairwise by arithmetic operators. (As will be 
seen in Chapter 6, an array element may stand in place of a variable name.) 
Parentheses may be used to impose precedence of evaluation. An arithmetic 
expression is written like a formula of ordinary algebra.

It is crucial to appreciate that an equal (=) sign denotes an assignment 
(expressed in algorithmic notation as «—) rather than equality.

EXAMPLE 4-7
Statement

1 = 1+1

is meaningful and causes the value of the variable I to be incremented 
by 1.

During the execution of an assignment statement the following sequence 
of events occurs:

(1) The arithmetic expression is evaluated according to the rules of pre­
cedence (explained below).

(2) The value obtained is assigned to the variable whose name appears 
on the left-hand side of the assignment statement (i.e., placed in the 
memory location corresponding to this name).

Values of variables referenced only by the right-hand side of the assign­
ment statement remain unchanged; the previous value of the variable on the 
left-hand side is replaced by the new one.

EXAMPLE 4-8

These are some encodings of algebraic formulas as FORTRAN assign­
ment statements:
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ALGEBRAIC NOTATION FORTRAN

a + b
x = ' j c + a X = (A + B)/(C + D)

a + b . , x - ---------- 1- ac X = (A + B)/C + D

x = abd1 X = A»B*C**D

2. ORDER OF EVALUATION OF ARITHMETIC EXPRESSIONS
The order in which an expression is evaluated is determined by the relative 
precedence of the operators that appear in it, unless superseded by the use 
of parentheses—similar to the usage in algebra.

Five operations may be specified in a FORTRAN arithmetic expression. 
These are, with their corresponding operators, addition (+), subtraction 
(—), multiplication (♦), division (/), and exponentiation (**).  Only round 
parentheses may be used.

All operators have to be explicitly placed in the expression. No two opera­
tors may appear next to each other.

EXAMPLE 4-9
An algebraic equation
y = 2x3 - 5z + [x - z(7 - x)]

is expressed in FORTRAN as
Y = 2 * X ** 3 — 5 * Z + X * (X — Z *(7  — X))/(X + Z)

provided that X, Y, Z are program variables of an arithmetic type.

The usual algebraic order of precedence applies among the operators:

** highest precedence
* and / |
+ and — lowest precedence
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EXAMPLE 4-10
The expression

X - Y ♦♦ V/W ♦ Z

is evaluated in the order
X - Y ♦♦ V/W ♦ Z

I 
t 2 ,

3
4

In order to change this order of evaluation, parentheses are used. Paren­
theses should be matched; i.e., every left parentheses should have a corre­
sponding right parenthesis.

The overall order of expression evaluation is defined by the following 
rules:

(1) If parentheses are present, the contents of the innermost parentheses 
are evaluated first. Then the contents of the next enclosing parenthe­
ses are evaluated, and so on.

(2) If there are no parentheses, or within a matched pair of parentheses, 
the operations are performed in the following order of precedence: 

exponentiation;
multiplication and division; 
addition and subtraction.

(3) Operations of the same level of precedence are performed from left 
to right.

Blanks may be freely used to increase readability of an assignment statement.

A special consideration is that if two exponentiations follow one another 
in an expression, parentheses are necessary to define the order of evaluation. 
This means that to encode

(x'p 
we use

(X**Y)**Z

and to express
x1^1
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we use

X**(Y*»Z)

Since two operators may not abut, to encode 
x — z
- y 

we use

(X - Z)/(—Y)

EXAMPLE 4-11
It is convenient to represent the order of expression evaluation as a tree. 
Thus, the order of evaluation of the right-hand side in the assignment 
statement below is

RESULT = A + B / C »♦ D —(E / (F + G))

13

4 2

5

6
This order of evaluation may be represented by the tree in Fig. 4-1.

FIGURE 4-1.

currently innermost 
parentheses

currently innermost 
parentheses

operator of highest 
precedence

operator of highest 
precedence

left-to-right rule

no other operators
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This advice will help in your coding:
(1) When in doubt, use parentheses.
(2) If a complex arithmetic expression has to be coded, breaking it up into 

several assignment statements may increase the readability of your pro­
gram.

(3) In order to improve readability, you may surround every operator with a 
blank on each side.

3. TYPE OF ARITHMETIC EXPRESSION
The type of an arithmetic expression is determined by the type of constants 
and variables that appear in it. If an expression contains constants or varia­
bles of a single type, it will be evaluated to a result of this type. In a mixed­
mode expression containing both integer and real data types, integer oper­
ands are automatically converted to the real form and the result is a real 
number. The use of mixed-mode expressions often leads to effects unexpect­
ed by the programmer and should therefore be avoided.

A. INTEGER ARITHMETIC

If an expression contains only integer constants and variables, integer arith­
metic is used to evaluate it. In integer arithmetic integer division (division 
of two integer values) yields an integer value also. This occurs as the result 
of automatic truncation: the fractional part of the quotient is simply 
dropped.

EXAMPLE 4-12

(a) The execution of the assignment statement
I = 5/2

yields 2 as the value of the integer variable I.
(b) If K has the value of 3, and L the value of 5, 
then

M = K/L

yields M having the value 0.

EXAMPLE 4-13

Note that integer division may be used to distinguish between even and 
odd integers. If the expression

(K / 2) ♦ 2

evaluates to the value of K, then the value of K is even; otherwise it is 
odd.
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B. REAL ARITHMETIC

If an expression contains only real constants and variables, real arithmetic 
is used to evaluate it.

Since the representation of a real number in the computer memory has 
only finite precision, the results of real arithmetic are not entirely exact. Al­
though in an overwhelming majority of programming situations, the pro­
grammer does not have to consider this fact, one should be aware of this 
limitation, and act accordingly:

• Do not count with real variables instead of integers.
• Do not test for equality of real values, some of which are obtained 

through a computation, since 10./100. in computer arithmetic may not 
equal 0.1: Although it may be so printed, it may actually equal 
0.0999. ...

O c. MIXED-MODE EXPRESSIONS

Mixed-mode expressions contain both integer and real constants and/or 
variables. While not allowed by the “old” FORTRAN standard, these have 
been permitted by many compilers and are allowed by FORTRAN 77.

A mixed-mode expression with integer and real values is evaluated ac­
cording to the general rules of precedence. In any arithmetic operation in 
which one operand is integer and the other real, the integer is converted to 
the real number representation. (This does not change the value of the num­
ber itself but may affect the result.) Real arithmetic is then used.

The exception is exponentiation: an integer operand used to raise a real 
value to an integer power is not converted.

EXAMPLE 4-14
If the values of the integer variables are

- I = 2 J = 5,

while the value of a real variable is

R = 5.0

the following expression

I/J » R

evaluated, naturally, from left to right yields
2/5 » 5. = 0 » 5. = 0. » 5. = 0.

Note the sequence of conversions in this example. This final result will 
seldom be intended, and the mistake may be difficult to find in a compli­
cated expression.
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Note that if the order of the operands is different, namely,

R * l/J

we obtain
5. * 2/5 = 5. * 2./5 = 10./5 = 10./5. = 2.

which is what one would expect. (Some of the steps shown above indicate 
a conversion from integer to real representation.)

The use of mixed-mode expressions may bring results not expected by the pro­
grammer and should be avoided. If the programmer desires to convert an inte­
ger value to a real one, it should be done explicitly with the use of the intrinsic 
function FLOAT (see Chapter 6-C).

4. ASSIGNMENT STATEMENTS WITH TWO SIDES 
OF DIFFERENT TYPES

If the assignment statement has the following form

integer variable = real expression

or integer variable = mixed-mode (integer and real) expression

the sequence of events is

(1) The expression is evaluated and a real value is obtained.
(2) This result is truncated (i.e., its fractional part, if any, is dropped) 

and assigned to the integer variable.

If the assignment statement has the form:

real variable = integer expression

then:

(1) The expression is evaluated with the use of integer arithmetic.
(2) The representation of the result is converted to the representation of 

a real number, without change in value, and assigned to the real vari­
able.

EXAMPLE 4-15

(a) If I is an integer variable, the statement
I = 2.5

assigns the value 2 to I due to truncation.
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(b) Assume I and J are integer variables while A is real. If
1 = 2, J = 3

then
A = 1/J results in A = 0.
A = J/l results in A = 1.

(due to integer division).

This form of implicit conversion between variable types should be avoided in 
favor of explicit type conversion via intrinsic functions FLOAT and IFIX (see 
Chapter 6-C).

5. SUMMARY OF ASSIGNMENT RULES
The most important FORTRAN rules concerning arithmetic assignment 
statement are these:

(1) The value of the variable on the left-hand side is replaced by the val­
ue of the expression.

(2) An expression is evaluated in the order dictated by parentheses, oper­
ator precedence, and the left-to-right rule.

(3) If a real value is being assigned to an integer variable, the fractional 
part of this value is dropped.

(4) The result of the division of two integers is truncated.
(5) Mixed-mode expressions are to be avoided; in such expressions inte­

ger values are converted to the real form.
(6) Blanks may be used between operators and operands to increase 

readability.

D. SIMPLE INPUT/OUTPUT

To input program data, a FORTRAN programmer most frequently uses 
punched cards or a terminal keyboard. The output is presented as a printout 
or on the screen of a display terminal.

The simplest method of reading in the data needed by the program and 
delivering the program output is the so-called list-directed input/output. 
This technique does not offer the programmer any control over the layout of 
data. It is often used in a time-sharing environment, where such layout is 
difficult to control anyhow and is not important. List-directed input/output 
is a part of FORTRAN 77; many earlier compilers such as WATFOR and 
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WATF1V introduced it also (as so-called formal-free input/output), even 
though it was not a part of the old standard.

Complete mastery of input/output is gained by familiarity with format­
ted input/output, described in the Chapter 5. For the programmers whose 
systems do not provide list-directed input/output, a serviceable smattering 
of formatted input/output is presented in this section.

1. LIST-DIRECTED INPUT/OUTPUT (FORTRAN 77)
List-directed input/output provides the simplest method of accessing and 
delivering data by a program. It is particularly recommended for initial pro­
gramming work. The method relieves the programmer both of the task of 
specifying the format of data and of control over its layout. In a time-shar­
ing environment, where such control is most often difficult and unnecessary, 
this is a frequently used input/output method.

This method, standard in FORTRAN 77, was not a part of the old stan­
dard and thus of FORTRAN IV. As format-free input/output, it has been, 
however, widely implemented, in particular, in the popular WATFOR and 
WATFIV dialects. Before using it, ascertain whether your installation pro­
vides this facility.

A. INPUT

The general form of the input statement is
READ ♦, input list

where “input list” is a list of variable names (as will be discussed in Chapter 
6, it also may include array or array element names) separated by commas. 
For example,

READ ♦ , ITEM, CODE, VALUE1

The essential medium used for such input is a punched card (see Fig. 3-2).
Note that no asterisk (*)  is required by the WATFOR and WATFIV 

compilers.
The values of the variables listed must be presented by the programmer 

as data in the same order. The type of data must match the type of the vari­
ables.

The following rules will guide you in using list-directed input and present­
ing data:

(1) The data items presented for input should be separated by a comma 
and/or one or more blanks (spaces).

(2) Integer data may not have decimal points; real data ought to have 
them. Real numbers may be presented in positional or exponential 
form (see Chapter 4-A).
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(3) Each READ statement reads one card (or one line of data presented 
through a terminal). After a card has been read, it cannot be read 
again, “it has been passed.” A READ statement “uses up” the card 
it starts reading. Note that a READ statement without an input list 
simply causes a card to be skipped.

(4) If there are fewer variables on the input list than data items on the 
card read, the remaining data will be ignored.

If there are more variables on the input list than there are data 
items on the card, the next card is read by this READ statement. 
Further cards will be read until all the variables on the list are as­
signed values or until there are no more cards (unless an error condi­
tion, such as an integer variable being assigned a real value, is detect­
ed and the reading stops with an error indication).

EXAMPLE 4-16
Study carefully this “matching” of data with input lists (pitfalls 
abound).

The following READ statements are executed in this sequence in a 
program (implicit types are assumed):

10 READ ♦, I. J
20 READ ».
30 READ ♦, R, M, X
40 READ ♦, N

The following data are supplied:
card 1: 18, 1743
card 2: 133
card 3: 15.5, 23
card 4: .123E-17, 21, 21
card 5: 31

The following values are assigned to variables:

STATEMENT EXECUTED VALUES ASSIGNED CARDS READ

10 I = 18, J = 1743 1

20 — 2
The card is skipped—see 
rule (3).

30 R = 15.5, M = 23
X = .123E-17

3 and 4
Two last values on card 4 
are ignored—see rule (4).

40 N = 31 5
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Note that the card 4 has been read by statement 30 in order to com­
plete the assignment of values to its input list and has been “used up” by 
it without having been fully read.

To avoid mishaps, place (if possible) on each card only the data needed to sat­
isfy the READ statement that reads it in.

B. OUTPUT
The general form of the list-directed output statement is

PRINT *,  output list

where the output list may contain:

variable names;
array and array element names (to be discussed in Chapter 6);
characters enclosed in single quotes (');
expressions (not in all implementations).

These items are separated by commas or by spaces. Note that no asterisk 
(♦) is required by WATFOR and WATFIV compilers.

EXAMPLE 4-17
The statement

PRINT *,  'VALUE = RESIST, ' IF LOADED, THEN ', 2.»RESIST

will cause the following to be printed if the value of the variable RESIST 
is 17.34:

VALUE = 17.34 IF LOADED, THEN 34.68

Here the items are separated by commas.

The exact format of the printout (i.e., the print positions), over which the 
programmer has no control, depends on the implementation. The following 
rules apply:

(1) The characters enclosed in quotes will be printed exactly as specified, 
including blanks.

(2) In every implementation, a fixed number of columns is allocated for 
the value of each number. Integers are usually printed right-justified 
in this space. Real numbers will be printed in positional notation, or, 
if such printing will exceed the space allotted, in exponential notation 
(see Chapter 4-A).
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A number may be automatically rounded off to be fitted into the 
space allotted.

(3) The order in which the items are printed corresponds to their order 
on the output list.

The programmer should remember that all the variables whose names ap­
pear in the output list ought to have had values assigned to them before the 
PRINT statement is executed.

2. ELEMENTARY FORMATTED INPUT/OUTPUT
A serviceable, first-care introduction to formatted input/output for numeri­
cal computation is offered here. It is sufficient only for a novice program­
mer. A full discussion of the method is presented in Chapter 5.

To input data the following statement is used:

READ (unit number, FORMAT label) list of variables, separated by commas 

where the unit number in the case of a card-reader is 5 in most systems 
(check this for your system) and the FORMAT label is the statement num­
ber of the FORMAT statement that shows the layout of the data. For ex­
ample,

READ (5,501) I, J, K

may refer to the FORMAT statement
501 FORMAT(3I10)

To output data the following statement is used:
WRITE (unit number, FORMAT label) list of variables, separated by commas 

where the unit number is 6 in the case of a printer in most systems (check!).
This statement also always refers to a FORMAT; for example, 

WRITE (6,501) I, J, K

The order of data read or written corresponds to the order of variables in 
the list. If only integers or real values are to be read/written, the following 
simple method may be used.

To input or output up to eight integer numbers, punched on a single card 
or presented on a single line, use

label FORMAT(8I10)

For example, to input three numbers, we could use, instead of the statement 
501 above, the following statement:

501 FORMAT(8I10)
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To input up to eight real numbers, use
label FORMAT(8F10.0)

To output up to eight real numbers, use
label FORMAT (8G15.4)

provided that your printed page (or display) is at least 120 columns wide 
(each number will occupy 15 columns). The numbers will be printed (dis­
played) in positional notation, unless the number is very small or very large, 
in which case it will be printed in exponential notation (see Chapter 4-A).

The following apply to this simplified formatted input/output.

(1) You may use the same FORMAT for input and output, if applicable, 
by referring to its label in a READ and a WRITE statement.

(2) All labels of FORMAT statements in a program should be, of 
course, distinct. For a numbering convention see Chapter 3-C.

(3) Integer data presented for input must not have decimal points; real 
numbers ought to have them.

(4) Each integer or real number presented for input is assumed to occupy 
10 columns (8 X 10 = 80, the number of card columns). Integer 
numbers have to be right-justified in their fields (otherwise, the trail­
ing blanks will be considered 0’s!). Real numbers may be placed in 
their 10-column field in any position.

(5) An integer printed with the use of the above numbers occupies 10 
columns; a real number, 15 columns.

(6) Every READ statement causes a new card to be read; every WRITE 
statement causes a new line to be printed (displayed).

(7) Naturally, you may mix the input or output of integers and of real 
numbers. However, the type of data in the input or output should 
correspond to the FORMAT specification. To mix the numbers, you 
simply have to count them and to specify this count in the READ or 
WRITE statement accordingly, as shown in the example below.

EXAMPLE 4-18

(a) The following statements assign values to the real variables R and V 
and to the integer variable I in this order:

READ (5,515) R, V, I
515 FORMAT(2F1Q.O, 110)

This data card is used, where the numbers on top refer to column num­
bers:
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1 5 10 15 20 25 30
, I I I

34.315 -.221 -11

10 10 10

(b) The statements
WRITE (6,521) Z, K, L, Y

521 FORMAT(G15.4, 2110, G15.4)

will cause the following printout, assuming implicit types of variables 
and their respective values:

15 10 10 15

— 15.3721 4732 241 1.12001

Note that four fractional digits of a real number are printed.

E. MAKE-UP OF A SIMPLE FORTRAN PROGRAM

A FORTRAN program consists of at least one program unit—the main 
program. (As will be seen in Chapter 8, a program may also include subpro­
grams.)

Program statements are accompanied by control cards, as presented in 
Chapter 3-C.

The make-up of a program is as follows:

(1) Type statements (e.g., INTEGER or REAL) precede all executable 
statements.

(2) Executable statements are ordered in accordance with the program 
logic.

(3) The last two statements in the main program are
STOP—executable statement (it can, therefore, bear a label) which orders 

the program execution to be halted; and
END—a statement that delimits all others in every program unit.

[> In FORTRAN 77, it is possible to use as the first statement in the main 
program the statement

PROGRAM program name

where “program name” is a symbolic name assigned to the entire program. <] 

FORMAT statements may be placed anywhere in the program (follow­
ing the PROGRAM statement, if it is used).
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As a matter of style, it is suggested that every FORMAT statement be placed 
immediately after the first READ or WRITE statement that refers to it.

Comments may be placed anywhere in the program. In programs con­
forming to the old standard, these start with the letter C in column 1.

[> In FORTRAN 77, comments may start with an asterisk (*),  and blank 
lines may be used to provide readability. <j

Every program should contain comments explaining its purpose and logic.
A program should be preceded by a set of comments that constitute its 

header, as explained in Chapter 3-B.
All major steps in the program should be commented on in the terms of 

the problem being solved. However, too many comments should be avoided. 
The criterion is the degree to which the program may be read and under­
stood.

EXAMPLE 4-19
Only a very simple program can be produced without the use of state­
ments that alter the flow of control from sequential execution.

The example below is encoded both according to the old standard and 
in FORTRAN 77. Note that the first version is correct in both cases but 
not vice-versa.

PROGRAM PRESENTED IN FORTRAN IV

C PROGRAM: CIRCLE
C AUTHOR: DATE:
C
C CIRCUMFERENCE AND AREA Or A CIRCLE WITH THE GIVEN RADIUS 
C ARE COMPUTED
C
C RADIUS - OF THE CIRCLE
C CIRCUM - CIRCUMFERENCE OF THS CIRCLE
C AREA - GF THE CIRCLE 
C

IMPLICIT REAL (A-Z) 
PI = 3.1416 
READ (5,501) RADIUS 

501 FORMAT(Fl0. 0)
CIRCUM = 2. * PI * RADIUS 
AREA = PI « RADIUS ** 2
WRITE (6,502) RADIUS, CIRCUM,AREA

502 FORMAT(3015.4) 
STOP 
END

54 PROGRAMMING IN FORTRAN



A sample output:

5. 3719 33. 7527 90 6581

PROGRAM IN FORTRAN 77, WITH LIST-DIRECTED INPUT/OUTPUT

PROGRAM CIRCLE
* AUTHOR: DATE:

* CIRCUMFERENCE AND AREA OF A CIRCLE WITH THE GIVEN RADIUS
* ARE COMPUTED

* RADIUS - RADIUS OF THE CIRCLE

IMPLICIT REAL (A-Z) 
PI = 3. 1416 
READ *,  RADIUS

* COMPUTE CIRCUMFERENCE AND AREA 
PRINT ■,  RADIUS, 2«P IRADIUS,  PIRADIUS«»2  
STOP

* * *

END

The same data card may be used for input in both programs. The same 
output is obtained, but layout depends on the implementation.
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FORMATTED INPUT/OUTPUT

The formatted method of data input and output consists of accompanying a 
READ or WRITE statement with a FORMAT statement that specifies the 
layout of data. As distinguished from list-directed (format-free) input/out- 
put, formatting gives the programmer complete control over the layout.

To input data, a FORTRAN programmer most frequently employs 
punched card equipment or a terminal keyboard; in the latter case the data 
are made to look the same as they do on a punched card. The output (i.e., 
results) are presented through a printer or a display. During program ex­
ecution, all data are assumed to be held in the main memory of the com­
puter.

When an application requires that large collections of data be maintained 
and processed by the computer system, external files are used. These are 
stored in secondary memory, i.e., on a tape or on a disk. This mode of data 
storage is employed chiefly in business data processing. FORTRAN fea­
tures supporting processing of external files have been significantly expand­
ed in FORTRAN 77. As they are advanced and specialized facilities, they 
are not discussed in this book.

All the other information necessary for formatted input/output of integer 
and real data is presented in this chapter.! The input/output of arrays and 
special types of numerical data is discussed in Chapter 6. The input/output 
of character and logical data is covered in Chapter 9.

A. CONCEPTS OF FORTRAN INPUT/OUTPUT

Input is used to assign values to variables; the value of constants is stated di­
rectly in the program itself. Similarly, the values of variables may be pre­
sented on output.!!

fThe details of formatted input/output presented in this chapter may be covered gradually as 
the reader moves on to the chapters that follow.

ft As will be seen in later chapters, the values of array elements and functions may also be 
read in or written.
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The essential medium for FORTRAN input is a punched card (see Fig. 
3—2). Cards used for FORTRAN input data may hold up to 80 alphanu­
meric characters in their 80 columns. If a terminal keyboard is used for in­
put, the card form is also followed.

The output from a FORTRAN program is mainly obtained on a printer. 
Usually, line printers have a line width of 132 characters, although narrow­
er printers may be used. If output is displayed on a terminal display, the line 
width is usually smaller. For all but the simplest of problems, a programmer 
should ascertain the width of the output available.

A single card of 80 columns (or its corresponding terminal line) is consid­
ered a physical record, simply called a record (of input). Similarly, a single 
line of the printer is a single output record.

As will be seen, FORTRAN input/output is designed in terms of reading 
input records and writing (printing) output records.

There are two essential methods of performing input/output in FOR­
TRAN:

(1) formatted input/output: This, the most frequently used method, 
gives the programmer control over the layout of data by formulating 
pairs of statements for every input or output operation: The first of 
these names the data, and the second specifies the layout (i.e., how 
the data are to be edited).

[> (2) list-directed input/output: a simplified method to read or print data, 
described in Chapter 4. A single statement is used to name the data 
concerned; the layout is automatic. This method is often used in 
time-sharing environments, where the layout is difficult to control 
and is of little interest. It is recommended for a beginning program­
mer since it avoids the complexities of formatting. <]

In both cases, the input is performed by a READ statement with its input 
list, which causes the next record to be accessed and the values in it to be as­
signed to the entities on the input list.

Output is performed by a-WRITE statement in the case of formatted in­
put/ output

[> and by a PRINT statement in list-directed input/output. <]

These statements cause the values of the entities on the output list to be 
printed (displayed) beginning with the next record, i.e., on the next line.

Formatted input/output is governed by a nonexecutable FORMAT state­
ment referred to by the executable READ or WRITE statement.
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B. READ AND WRITE STATEMENTS
To perform formatted input/output, the programmer has to include:

the input (READ) or the output (WRITE) statement with its input or 
output list;

a FORMAT statement that describes the layout of data to be read in or 
written out.

The general format of the input and output statements used most fre­
quently is

READ (unit number, FORMAT label) input list
WRITE (unit number, FORMAT label) output list

where

unit number: specifies the device to be used in the data transfer;
FORMAT label: refers to the FORMAT statement that controls this 

transfer;
input list: the list of variables (or array and array element names, as dis­

cussed in Chapter 6), whose elements are separated by commas;

O output list: similar to the input list; however, according to the FOR­
TRAN 77 standard it may also include quoted character strings or ex­
pressions, similar to the output list used in list-directed output (see Ex­
ample 4-17). <]

In either list, the items are specified in the order they are to be read (writ­
ten).

Usually, input is performed from the card-reader, a device which in al­
most all installations has the unit number of 5; output goes to the printer 
with unit number of 6 (however, make sure this is the case in your installa­
tion).

Examples of the above statements are
READ (5,501) I, J, A
WRITE (6,501) I, J, A

501 FORMAT(2I10, F10.2)

The READ statement is executed as follows: The next data record (usu­
ally a card) is obtained, and the values presented on it are assigned in se­
quence to the items on the input list; more than one card may be read to sat­
isfy the list. The cards are read, and the data are interpreted, in accordance 
with the FORMAT statement referred to.

The WRITE statement is executed as follows: The next record (i.e., line) 
is begun; if the device is a printer, this and possibly succeeding lines are 
printed with the values of items on the output list. The layout is in accor­
dance with the FORMAT statement referred to.
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C. FORMAT STATEMENT

FORMAT statements describe the form in which data are presented when 
being read in or, alternatively, when being displayed as output.

These nonexecutable statements may be placed anywhere in the program 
unit and must have labels so that READ/WRITE statements may refer to 
them. A single FORMAT may be used (i.e., referred to) by a number of 
READ and/or WRITE statements.

To make the program easier to read, adopt a standard way of placing and 
labeling FORMAT’S. It is suggested that the FORMAT statement be placed 
immediately after the first READ or WRITE that refers to it (alternatively, 
all FORMAT’S may be placed at the beginning or at the end of the program).

A convenient convention for the labeling of FORMAT’S is the following se­
quence, starting at the beginning of the program: 501, ..., 509, 511, ... .

The general form of FORMAT statement is

label FORMAT (format specification)

For example,
505 FORMAT(2I10, 3F10.2)

The format specification consists of a number of edit descriptors that in­
dicate the type and format of particular data items to be read or written, 
fixed text fragments to be written, and field separators and special symbols 
that describe the layout of data.

Thus, a record (card or line) is treated as consisting of fields, groups of 
one character columns. The FORMAT statement “edits” data into or from 
these fields; for this reason edit descriptors are also known as field 
descriptors.

Edit descriptors are separated by commas when only separation is intend­
ed. A slash, serving to complete a record (as discussed below) may also 
serve as a separator.

The next three sections present the most commonly used edit descriptors: 
I, F, E, and G. These are used for the input and output of integers (I), input 
and output of real numbers in positional or exponential notation (F, E, or 
G), and output of real numbers in exponential notation only (E).
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D. HOW TO READ AND WRITE INTEGERS

In order to input or output integers, use the edit descriptor of the general 
form

Iw
where'w specifies the width of the field, i.e., the number of columns in it. If 
more than one such field is desired in sequence, a repeat specification r may 
be used as follows:

rlw
For example,

3110

1. INPUT
The rules governing the input of integers (Iw) are the following:

(1) An integer constant should have no more than w digits, including the 
sign if present; it must not contain a decimal point.

(2) Any blanks! within the specified field are interpreted as 0’s. There­
fore, the number should be right-justified in its field.

(3) Plus signs may be omitted.

EXAMPLE 5-1
(a) A program contains the following statements:

READ (5,575) LENGTH
575 FORMAT(HO)

The integer variable LENGTH is assigned the value contained in 
the first 10 columns of the next data card. This value is interpreted 
according to the rules enumerated before this example.

(b) Statements
READ (5,503) I, J, K

503 FORMAT(I10, 2I4)

may be used to read the following card:

HO 14 14

53753 6789 22

(c) The following table further illustrates the input of integers:

t We will use □ to represent a blank in this chapter.
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APPEARANCE OF THE 
FIELD ON THE CARD

edit internal value
DESCRIPTOR (IN MEMORY)

57 
□ 57
-57
57D

12 57
13 57
13 -57
13 570 (probably not

intended)

Note that care is needed to have the integer no longer than w and right- 
justified in its field.

2. OUTPUT
The rules governing the output of integers (Iw) are the following:

(1) Integers are printed (displayed) right-justified in the field of width 
w.

(2) Only minus signs are printed; positive numbers are printed without 
signs.

(3) The first character of any line to be printed is used to control the 
printer carriage (see Section J of this chapter). Thus, this character 
will not actually be printed.

To start the new line in an ordinary, single-spaced fashion, it is 
simplest to insert “IX,” before other edit descriptors in a FORMAT 
statement used for output. This causes a blank to be inserted for car­
riage control, without this blank being printed [see Example 5-2(a)].

The space allotted (i.e., the field width w) should be sufficient to print the 
integer. If the space is too large, the portion of the field to the left of the 
number contains blanks. If the space is not sufficient, in most implementa­
tions the field is filled with special characters (e.g., ♦ or $).

The programmer should carefully allot sufficient space; 110 will almost always 
do.

EXAMPLE 5-2
(a) The following statements:

WRITE (6,531) L, M, N 
531 FORMAT(1X, 2I5, I8)

»

FORMATTED INPUT/OUTPUT 61



will cause this to be printed:

(We assume these values of the variables, of course )
Note the use of the leading IX descriptor, which specifies the ficti­
tious blank for carriage control.

(b) This table further exemplifies integer output:

INTERNAL VALUE 
(IN MEMORY)

EDIT PRINTED FIELD
DESCRIPTOR

57
-57
-57
-57

12 57
13 -57
15 DO-57
12 ♦*

E. HOW TO READ REAL NUMBERS

Three edit descriptors may be used to read in real numbers. Their general 
form is, respectively.

Fw.d, Ew.d, and Gw.d

where w specifies the total width of the field holding the real number and d 
specifies the number of digits to the right of the decimal point.

To specify more than one real number in sequence with any of these de­
scriptors, an integer repeat specification r may be used;

rFw.d, rEw.d, rGw.d

All three descriptors may be used to input a real number represented ei­
ther in positional or in exponential notation (see Chapter 4-A). Some non­
standard implementations (such as WATFOR and WATFIV, for example) 
limit the applicability of the F descriptor to the numbers in positional nota­
tion, however.

For example, the following numbers may be read in with these descrip­
tors:

13.5, -1217., — 1.531E—12, 123E5

Exponential notation is convenient in the case of very small or very large 
numbers.
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The use of these descriptors for output differs; a descriptor is often select­
ed for input with a view toward using the same FORMAT statement for 
output.

The rules governing the input of real numbers (F, E, or G mode), e.g., 
Fw.d, are the following:

(1) If the number itself contains a decimal point, the value of d in the de­
scriptor is ignored. Otherwise, it determines the position of the deci­
mal point. It is more reliable to place the decimal point in the num­
ber itself, if possible.

(2) Blanks within the field w are interpreted as 0’s.
(3) A number presented in positional notation does not have to be right- 

justified in its field, since its decimal point or the value of d delimits 
the decimal point. A number presented in exponential notation has to 
be right-justified; otherwise the trailing 0’s are considered a part of 
the integer exponent.

(4) In a number presented in exponential notation, the letter E may be 
omitted from the data, and the sign of the exponent may be used to 
indicate its position.

(5) In a number shown in exponential notation, if the mantissa contains 
no decimal point, the value of d determines its position as follows: 
(a) The total value of the number with the consideration of the expo­

nent is determined.
(b) The decimal point is shifted right or left according to the value 

of d.

EXAMPLE 5-3
(a) The following statements:

READ (5,535) A, B, C, D
535 FORMAT(2F10.2, E12.4, G14.2)

may be used to assign values to the real variables A, B, C, D from 
the following card:

Note that since all the fields contain decimal points, the specifica­
tion of d’s in the FORMAT does not influence the interpretation of 
values on the card. The values are assigned as punched on the card.
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(b) Further examples are tabulated below:

without decimal point on the card

APPEARANCE ON 
THE CARD

EDIT DESCRIPTOR 
(F, E, OR G)

INTERNAL VALUE 
(IN MEMORY)

with the decimal point on the card (d is ignored)

-35.1451 10.2 -35.1451
-3514.51E-2 11.2 -35.1451
□ □—3514.51E-2 13.2 -35.1451
□ -3514.51E-2D 13.2 -3514.51X10-*°  (!)
0-3514.51DDE2 13.2 -351451

(d determines the position of the decimal point)

□ -351451DD 10.2 -351451
□ □□-351451 10.2 -3514.51
□ □35145E-1 10.2 35.145

The last result was determined as follows: the value on the card is 35145 X 10 1 
= 3514.5; since d = 2, the value stored is 3514.5 X 10~2 = 35.145. Similarly,

nnO35145E2 10.2 35145

It is recommended that, whenever possible, the decimal point be placed direct­
ly in the input data. This makes the data readable on such a medium as a 
card. The programming is also simplified, since only the field length w has to 
be precisely stated in the edit descriptor.

F. HOW TO WRITE REAL NUMBERS

The three edit descriptors F, E, G used for input/output of real numbers 
differ with respect to the form of output they provide.

As with the integer output (see Section E), the first character in a line 
sent to a line printer should be a carriage control character.

1. OUTPUT IN POSITIONAL NOTATION
To output data in positional notation (without an exponent), an F edit de­
scriptor of the general form

Fw.d

is used; repeat specification may also be used (rFw.d).
Here, w specifies the width of the field in which the number is to be print­
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ed (displayed), while d determines the desired number of fractional digits to 
be printed (displayed).

The rules governing the output of real numbers in positional notation (F 
descriptor: Fw.d) are the following:

(1) The number is printed (displayed) right-justified in its field w.
(2) In general,

w > d + 3

is needed to provide for: the sign (only a minus is printed), 0 (if the 
number is purely fractional), and the decimal point.

(3) If the number of fractional digits in the number to be printed is larg­
er than d, then the number is rounded to the least significant digit as 
specified by d. Thus, d determines the precision of the number.

(4) If w is not sufficient, the number cannot be printed, and in most im­
plementations a special symbol (  or $, for example) is substituted 
for it.

*

When the unknown magnitude of the real number may be large and it is 
inconvenient to provide for it with the F edit descriptor, E or G descriptors 
should be used, as described in Sections F-2 and F-3.

EXAMPLE 5-4
(a) The following statements:

WRITE (6,525) X, Y
525 FORMAT(1X, 2F10.2)

cause, with the appropriate values of the variables, this printout:

10 10

-34.25 -0.13
______ —__ _______ ________ _________

(b) This table further exemplifies the output with an F edit descriptor.

INTERNAL VALUE 
(IN MEMORY)

EDIT DESCRIPTOR PRINTED FIELD COMMENTS

-33.241 F8.3 □ -33.241
-33.241 F8.1 □ □□-33.2 round-off
-33.241 F6.3 ****** 7 columns
-33. F8.1 □ □□-33.0 needed

-.1 F8.1 □ □□□-0.1

Naturally, edit descriptors for integer and real constants may be used in 
the same FORMAT statement to match the type of variables in the input/ 
output lists, as shown in the following example.
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EXAMPLE 5-5
In the following statements, assume implicit variable types:

READ (5,515) I, A, J, X, Y
515 FORMAT(I3, F10.2, 111, 2F7.2)

The following values will be correctly read in:

2. OUTPUT IN EXPONENTIAL NOTATION
To output very large or very small real numbers, exponential notation (see 
Chapter 4-A) is desirable. It permits the placing of the number in a shorter 
field in a standard (normalized) form.

In order to print a number in exponential notation, the E edit descriptor 
of the general form

Ew.d

is utilized.
The rules for the output of real numbers in exponential notation (Ew.d) 

are the following:

(1) The number is printed (displayed) right-justified in its field.
(2) The number is printed in the following form:

□o.mm . . . mEOee

d
w

Thus the mantissa of the number is always a fraction with the first 
significant digit different from 0 (i.e., the number is normalized). 
Only minus signs_are printed; otherwise the sign column is blank 
(this is shown as □).

(3) As in the case of the F descriptor, the number may be rounded off to 
the least significant digit of the mantissa as specified by d.

(4) Note that, in general, we should have

w > d + 7

which may be concluded from the printed form of the number shown 
in (2) above.
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EXAMPLE 5-6
(a) The following statements:

WRITE (6,571) X, Y 
571 FORMAT(1X, 2E10.3)

cause the printout below:

— 0.121E—03 0.550E12

10 10

(b) The output in exponential notation is further exemplified by the fol­
lowing table:

INTERNAL VALUE 
(IN MEMORY)

EDIT PRINTED
DESCRIPTOR FIELD

-33.241
-33.2
-33.241

.0051

E12.5 -0.33241E02
E12.5 -0.33200E02
E12.3 □□-0.332E 02 (note round-off)
E12.2 □□□□0.51E-02

3. FLEXIBLE OUTPUT (G EDIT DESCRIPTOR)
The F editing mode is, in general, the simplest to use and renders an output 
that is easiest to interpret. It is, however, awkward to use when the output 
of very small or very large unknown values is required. In this latter case we 
recommend the E mode for providing output in exponential form.

The G edit descriptor is used when the values that may be assumed by the 
variable to be printed out are not known when the program is being written, 
but are expected to be such that in the majority of cases they may be output 
in the preferable F mode, with the exception of some cases when the E mode 
may be required. t

The general form of the G edit descriptor is
Gw.d

On input, the G descriptor works precisely as the F descriptor would (see 
Section E above), reading in real numbers in both the positional and expo­
nential notations.

On output, it presents numbers that are “not too small and not too large” 
(the precise delimitation is outside of our scope here) the way an F descrip­
tor would; otherwise, it acts as E descriptor.

The use of the G mode is similar to the use of the E mode (on output, we 
need w > d + 7).
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G. HOW TO LEAVE BLANK SPACES

In order to skip n spaces (for example, to leave blank spaces on a printed 
line or to skip spaces on a card being read in), an X edit descriptor of the 
general form

nX

is used.

EXAMPLE 5-7
(a) We use the IX descriptor to provide for one space at the beginning 

of every line for carriage control (see Section J below), e.g.,
WRITE (6,514) K

514 FORMAT(1X, 110)

This blank does not appear on the line, however.
(b) Assuming implicit type variables, the statements

WRITE (6,525) I, A
525 FORMAT(4X, I5, 10X, F10.2)

will cause the following to be printed:

375 -3710.25

35 10 10

The first of the four blanks is used for carriage control.
Notes

1. Providing a larger field width for the first value to be printed in the 
given line than actually required by the number has the same effect 
as the initial X field. It is, however, less reliable.

2. It is not necessary to specify that blanks at the end of a line be pro­
vided; these columns are left blank automatically.

H. HOW TO SKIP LINES OR CARDS

A single FORTRAN statement may be used to handle more than one phys­
ical record (i.e., a line of print or a. card with input data). This is accom­
plished explicitly with the use of slashes (/).

A closing parenthesis in a FORMAT statement terminates the current 
record. This means, among other things, that after a FORMAT statement 
is fully used to transfer the data specified by the corresponding input or out­
put list (and the closing parenthesis is reached), the next sequential record 
is started.
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Within a FORMAT statement, a slash may be used to cause the transi­
tion to the next record. In order to skip a line (or a card during an output 
operation), two slashes are used. The first terminates the current record, 
and the second causes the next record to be skipped.

The rules of record handling with the use of slashes in FORMAT state­
ments are the following:

(1) If slashes are used at the beginning or at the end of a FORMAT 
statement, n slashes are required to skip n records (e.g., lines). This is 
so because the opening parenthesis causes the next record to be start­
ed, and the closing one terminates the current record.

(2) If slashes are used in the middle of a FORMAT statement, (n + 1) 
slashes are required to skip n records (since one slash is used to ter­
minate the current record).

(3) No commas are needed to surround a slash.

EXAMPLE 5-8
Note the following statements:
(a)

WRITE (6,543) I, J
543 FORMAT(1X, 110/ 1X, 110)

The two integers will be printed in two consecutive lines one under an­
other.
(b)

READ (5,517) R
517 FORMAT(//F10.2Z)

Two cards will be skipped, a real number will be read, and subsequently, 
after the present card is terminated, the next card will be skipped.

I. HOW TO PRINT FIXED TEXT

To make the information presented during the output self-explanatory, it is 
often desirable to include its verbal description. Such description, in the 
form of a text prepared by the programmer, may be included in the FOR­
MAT statement.

O FORTRAN 77 and many earlier implementations permit the following 
simple usage: In order to have the text printed, it is simply enclosed in apos­
trophes (single quotes) and placed in the FORMAT statement. If an apos­
trophe itself is to appear in the output, it is included in the FORMAT as a 
double apostrophe.
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EXAMPLE 5-9
(a) In order to place centrally on a 132-column line of the line printer 

the value of WEIGHT, with the explanation of what it signifies, the 
following statement may be used:

WRITE (6,589) WEIGHT
589 FORMAT(50X, 'WEIGHT OF CARGO IS F9.2, ' LBS')

(b) To simply print a text (e.g., a heading), we may use
WRITE (6, 571)

571 FORMAT(54X, 'RESULTS OF EXPERIMENT XZ50')

When apostrophe editing is not available, the alternative H edit descrip­
tor may be used. Its general form is

nHhh ... h
n

where n is the number of characters (represented by h) to be printed.

EXAMPLE 5-10
We may use

WRITE (6,525) MEASUR, TOTAL
525 FORMAT(5X, 8HTOTAL OF, I2, 8H EQUALS , F 10.2)

to print the following line 
TOTAL OF 3 EQUALS 123.41

Note
1. how the blanks are included in the printed text;
2. that the variable name TOTAL is independent of the word TOTAL 

in the text.

Since care has to be exercised in counting characters for their inclusion in an 
edit descriptor, apostrophe editing should be used whenever available.

J. HOW TO SKIP TO THE TOP OF THE NEXT PAGE AND, IN 

GENERAL, CONTROL THE PRINTER CARRIAGE

When a line printer is used as the output device, the first character of every 
line sent for printing has to be a blank or another carriage control charac­
ter, which is not printed.

It is usually desired that a new line be printed as the next line. This is 
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specified by the blank as the carriage control character and may be accom­
plished in one of the following ways:

(1) Include IX (or a wider blank field) as the first field descriptor in the 
FORMAT statement.

[> (2) Use 1HD (or when apostrophe editing is available) as the first 
field descriptor in the FORMAT. <]

(3) Provide too large a field width for the first number to be printed on a 
line (e.g., print 55 using 13).

Method (3) is error-prone (the number may happen to be too large) and 
should be avoided.

In general, to provide carriage control include-the following field in a 
FORMAT statement as the first for a line:

[> '' or 1H : write the immediate next line;
'0' or 1H0: advance two lines, i.e., skip one line;
T' or 1H1: skip to the top of the next page;

or 1H+: prevent line advancement, i.e., overprint the current line
(used in graphical applications).

Apostrophe editing, available in FORTRAN 77 and similar implementa­
tions, is preferable. <]

EXAMPLE 5-11
When these statements are executed:

WRITE (6,514)
• 514 FORMAT(1H1, 45X, 5HTITLE)
or 514 FORMAT('1', 45X, 'TITLE')

the new page is started; 45 blanks are skipped, and the word TITLE is 
printed.

K. MATCHING A FORMAT STATEMENT WITH AN INPUT OR 

OUTPUT LIST
A FORMAT statement may specify that several variables on the input or 
output list are to be edited in a repeating pattern. This is done by enclosing 
several edit descriptors in parentheses and providing a repeat specification 
before the group.
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EXAMPLE 5-12
(a) The statement

501 FORMAT(2(I10, F10.2))

is equivalent to the statement
501 FORMAT(I10, F10.2, HO, F10.2)

(b) The statement
555 FORMAT(1X, 3(3X, I5), E8.1)

is equivalent to the statement
555 FORMAT(4X, I5, 3X, I5, 3X, I5, E8.1)

The numeric edit descriptors I, F, E, G contained in a FORMAT state­
ment are used to transfer variables specified on the input or output lists of 
the corresponding READ or WRITE statements, respectively. These are 
applied from left to right, with the consideration of repeat specifications in 
front of the inner parentheses (if present).

If the number of variables in the input or output list is smaller than the 
number of the numeric edit descriptors in the corresponding FORMAT 
statement, the remaining descriptors are ignored. (This holds also for other 
edit descriptors, which will be introduced in later chapters.)

If the number of variables in the input or output list is greater than the 
number of descriptors, the FORMAT statement is reused. This means that 
when the closing parenthesis of the FORMAT statement is reached and 
there are variables remaining in the list:

(1) the current record (e.g., a card during an input) is terminated and 
the next record is started;

(2) the FORMAT statement is rescanned (reused, wholly or partially), 
until the input or output list is satisfied (or until a FORMAT error 
occurs). The reuse occurs as follows:
(a) If there are no other parentheses inside the enclosing parentheses 

of the FORMAT statement, the entire statement is reused.
(b) Otherwise, the FORMAT statement is reused from the left par­

enthesis that matches the rightmost right parenthesis within the 
overall enclosing parentheses of the statement (or from the re­
peat count, if it precedes it). For example, in the statement 
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will be reused, if needed

515 format<ix, I5 I 3(110, F10.7), I5)«——enclosing right 
parenthesis

reuse starts here

inner rightmost 
parenthesis

EXAMPLE 5-13
Implicit types of variables are assumed.
(a) Fewer variables than descriptors:

WRITE (6,514) J, K, R, P
514 FORMAT(1X, 2110 I 6E10.2)

The FORMAT will be executed as if it were
514 FORMAT(1X, 2I10/2E10.2)

(b) More variables than descriptors (input):
READ (5,541) K, A, L, B

541 FORMAT(I10, E14.2)

The entire FORMAT statement will be used twice; for it to work 
correctly, however, the values of variables L and B have to be 
punched on a separate (second) card.

(c) More variables than descriptors (output):
WRITE (6,517) K, L, R, M, Z

517 FORMAT(1X, 110, (1X, 110, F8.2))

The values of variables K, L, R will be printed on one line and the 
values of M and Z on the next. Note that the function of parenthe­
ses here is to set the reuse point.

Whenever possible, try to have the number of descriptors (repeated, if needed) 
match the number of variables on the input/output lists. This simplifies pro­
gramming and thus averts errors.

Also, unless other considerations preclude it, try to use the same field descrip­
tors for all program data of the given type. This practice will decrease the 
probability of error in the presentation of the data. For example,

512 FORMA T(3110)

is preferable to
512 FORMAT(I7, 110, 18)

unless you have to economize on space.
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L. USE OF INPUT/OUTPUT STATEMENTS TO CHECK FOR
ERRORS AND END OF INPUT DATA (FORTRAN 77)

FORTRAN 77 (as well as some earlier implementations) allows the pro­
grammer to check for special conditions such as an input/output error and 
end of data.

To check for an input/output error, the following is used:

READ (unit number, FORMAT label, ERR = label)
WRITE (unit number, FORMAT label, ERR = label)

where ERR = label specifies the label of the program statement to which 
the control is to revert if an error occurs. An input/output error takes place 
when the data cannot be read/written with the given edit descriptor; for ex­
ample, if a real number is encountered when an I edit descriptor is to be ap­
plied. If no ERR disposition is included in the READ or WRITE statement, 
the program will be terminated. For example, the statement

READ (5,512, ERR = 120)

specifies that if an input error occurs, the control is to pass to the program 
statement labeled 120. This and the following statements may print an error 
message and, possibly, attempt to correct the error.

To check for the end of input data, the following is used:
READ (device number, FORMAT label, END = label)

where END = label specifies the label of the statement to which the control 
is to pass if no more data are available to be read. This option is used, for 
example, when multiple cards are to be read, instead of including a special 
trailer (sentinel) data card as the last data card. In the latter case the pro­
gram would have to test the data in every card. If the END specifier is in­
cluded, the system automatically transfers control to the given program 
statement when the control card that signifies the end of the job (i.e., end of 
data, see Chapter 6-B-l) is encountered. Starting with this statement, all 
the data are available to the program.

Both ERR and END specifiers may be used in a READ statement, for 
example,

READ (5,577, ERR = 220, END = 50)
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PROCESSING OF NUMERICAL 
DATA. ADVANCED FEATURES

The discussion of the manipulation of numerical data is continued from 
Chapter 4. It should be appreciated, however, that the facilities introduced 
in the present chapter are used to process also nonnumerical data, as will be 
seen in Chapter 9.

The application and use of arrays—aggregates of data items of the same 
type and bearing the same name—are explained.

The use of the DATA statement for the initialization of variables and ar­
ray elements is discussed.

Frequently needed arithmetic (and other) routines are included in every 
FORTRAN system in the form of intrinsic (built-in) functions. Their use 
considerably simplifies the programmer’s task.

Two or more names may be assigned to the same memory location(s) 
with the use of the EQUIVALENCE statement. This, in certain cases, re­
sults in a saving of memory space and may make a program more readable.

Two special types of arithmetic data, double precision and complex, are 
sometimes applied.

A. ARRAYS

Arrays are ordered collections of data items of the same type and with the 
same name. Individual array elements are identified by their subscripts, 
which appear in parentheses after the array name. The number of sub­
scripts corresponds to the number of dimensions in the given array. In 
FORTRAN, arrays have to be declared in a type or a DIMENSION state­
ment before they may be used. An array declaration specifies the number of 
its dimensions and the size of each of them. The arrays are manipulated 
through their elements; uniform manipulation of array elements calls for 
the use of loops. The manipulation of individual array elements is similar to 
the manipulation of variables.
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FORTRAN arrays are stored in memory in the column order. A general 
tool for their input and output is the implied-DO list.

1. WHAT AN ARRAY IS
In order to manipulate a collection of data items in a uniform fashion, we 
may name them with a single name. Each item is then identified by its posi­
tion in the collection.

Such a collection of data items of the same type bearing a single name is 
called an array; individual data items are array elements. An array element 
has a value of a given type, like any variable; its other characteristic is, how­
ever, its position within the array. This position is identified by the sub­
scripts of the array element. In many respects an array element is an equiv­
alent of a variable and is thus often also called a subscripted variable.

An array element has as many subscripts as the array has dimensions; a 
subscript identifies the position of the element of the array along each di­
mension.

> The old FORTRAN standard allowed for arrays with up to three dimen­
sions. FORTRAN 77 allows up to seven dimensions in an array. <]

The use of arrays is understood best by considering their applications.

A. ONE-DIMENSIONAL ARRAYS

When a sequential ordering of a collection of data is required, a one-dimen­
sional array (also called a vector or linear array) is used. It corresponds to a 
vector in algebra.

EXAMPLE 6-1

We have a list of temperature measurements taken in a room every hour. 
In order to manipulate these data (e.g., to chart them or to find sta­
tistical measures) it is convenient to represent them as a real vector 
TEMP(I), where the subscript I indicates the number of the measure­
ment (see Fig. 6-1).

I = 1 67.11

I = 2 66.71

• •
• •
• •

I = 150 68.18

For example, 
the value of TEMP (2) is 66.71

FIGURE 6-1. A one-dimensional array (vector): TEMP(I)
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Note the dependence between the subscript of an array element (e.g., 
2), which serves to identify the element, and the value of the element 
(e.g., 66.71).

B. TWO-DIMENSIONAL ARRAYS

When an element of an array has to be classified according to two charac­
teristics, a two-dimensional array is used. Each of the two subscripts speci­
fies the position of the element according to the corresponding characteris­
tic.

EXAMPLE 6-2
The experiment described in Example 6-1 is modified so that the room 
temperature measurement taken every hour is triplicated (three copies, 
replicas, of every measurement are obtained).

For the reason of further processing, it is desired to identify every 
measurement by two characteristics: its number among the hourly mea­
surements and its position within the triple readings taken at this par­
ticular hour.

The array shown in Fig. 6-2 results:

Number of hourly 
measurement (I)

1

150

Number of replica (J) 
1 2 3

65.18 65.01 65.21 «- -TEMP(1, 3)

66.13 65.98 66.04

•
•

•

67.01 66.85 66.89

2

FIGURE 6-2. A two-dimensional array (matrix): TEMP(I, J)

Note that the first subscript (I) identifies the row of the array ele­
ment, and the second (J) identifies its column. For example, the second 
replica of the first measurement may be retrieved as TEMP(1, 2); its 
value is 65.01.

A two-dimensional array corresponds to an algebraic matrix and thus is 
often called a matrix; in mathematical notation the subscripts of an element 
are usually written below the line (e.g., TEMP12).
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C. THREE- AND HIGHER-DIMENSIONAL ARRAYS

When every data item collected in the array has three classifying character­
istics, three subscripts are needed to identify the element. A collection of 
such elements is a three-dimensional array.

EXAMPLE 6-3
The experiment of Examples 6-1 and 6-2 is further modified to measure 
the room temperature every hour, in triplicate, by measuring both at the 
floor and at the ceiling.

The results are then stored in a three-dimensional array that may be 
represented graphically as a cube (see Fig. 6-3).

where

TEMP (2,3,1)

number of replica (J)

FIGURE 6-3. A three-dimensional array: TEMP (I, J, K)

Note that the total number of elements (i.e., measurements in our 
case) equals I X J X K.

[> If more than three characteristics classify the elements of the array, high­
er-dimensional arrays may be used (if available in the given FORTRAN 
implementation). Such need arises rather infrequently.

2. DECLARATION OF ARRAYS
An array occupies a number of locations in the memory of a computer. 
Since in a FORTRAN system the allocation of memory space is performed 
during the compilation (translation) of the program, a declaration (i.e., a 
nonexecutable statement informing the compiler) is necessary to specify the 
type of the array and the maximum number of elements in it. This declara­
tion may be either a DIMENSION statement or an ordinary type state­
ment.
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The general form of the declaration is thus either of these:

DIMENSION array name(dimension specification),...
INTEGER array name (dimension specification),.,.
REAL array name (dimension specification),...

Arrays may be constituted of data of any type defined in FORTRAN, as 
will be seen later. Their declarations follow these rules.

(1) An array name is formed like any other symbolic name in FOR­
TRAN (see the list before Example 3—1) and has to be unique 
among the symbolic names in the program unit.

(2) A DIMENSION statement may be used to declare any number of 
arrays of various types. It does not define the type of the array, which 
thus has to be defined implicitly (through the starting letter) or ex­
plicitly. If a DIMENSION statement is used, in order to define ex­
plicitly the type of the array, its name {alone) is to be placed in an 
appropriate type statement.

(3) If an array is fully specified through a type statement, no DIMEN­
SION statement is required. Thus, the dimensions of the array have 
to be specified as integer constants either in a type or in a DIMEN­
SION statement, but not in both.

(4) A type statement (e.g., REAL) may contain any number of array 
and variable names.

(5) DIMENSION statements, which are nonexecutable, have to precede 
all executable statements in the program unit (e.g., they may be 
placed immediately after the type statements).

For example, to declare a two-dimensional real array of 1000 elements 
LIQUID(10, 100), we may use one of the two methods:

REAL LIQUID
DIMENSION LIQUID( 10, 100)

or
REAL LIQUIDf 10. 100)

Thus, both the type of the array and the number of its elements are speci­
fied.

It is more convenient to use type statements than DIMENSION statements to 
declare arrays, since always only one statement is required.
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Array dimensions are specified as follows:

(1) Dimensions have to be specified by integer constants.

[> (2) Up to three dimensions are allowed by the old standard, and up to 
seven by FORTRAN 77. <1

(3) Constants that specify particular dimensions have to be separated by 
commas.

(4) Dimensions are specified as their upper bounds (i.e., the highest val­
ues of the subscript). The lower bound is assumed to be 1.

For example, in the array LIQUID(10, 100) the first dimension ranges 
from 1 to 10 and the second from 1 to 100.

In the case of such specification, all the subscripts of array elements are 
positive and start at 1. The size of each dimension equals the value specified 
(i.e., the size of the dimension of LIQUID is 10). This is the only way to de­
clare arrays in FORTRAN IV.

D> FORTRAN 77 permits an alternative way to specify the dimensions of an 
array, stating their lower and upper bounds separated by a semicolon. 
Moreover, the subscripts of the array elements may have negative or zero 
values. For example, this is a legal array declaration in FORTRAN 77:

INTEGER WEIGHT!—5:25, 0:100), HEIGHT! 10, 5:90)

Such specification is sometimes desirable due to the meaning of the sub­
scripts in the problem context.

Note that the two methods of specification may be combined (for exam­
ple, the first dimension of the array HEIGHT implicitly ranges from 1 to 
10). When the two bounds are specified, the size of a dimension is equal:

upper bound — lower bound + 1 <1

EXAMPLE 6-4

The following are valid declarations of the integer array INCOME:
DIMENSION INCOME( 10, 25)

or
INTEGER INCOME! 10, 25)

(but not both!)
To declare a real array of the same name, we would have to use:
REAL INCOME
DIMENSION INCOME! 10, 25)

or, more simply,
REAL INCOME! 10. 25)
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The following declaration would be valid only in FORTRAN 77:
REAL INCOME(6;15, -24:0)

Be careful in declaring the size of an array. Obviously, it has to suffice for the 
application. Limit it to the space really necessary, however. A statement like

DIMENSION X( 100, 1000)

will almost certainly exceed the memory space available for your program.

3. SUBSCRIPTS AND ARRAY ELEMENTS
Arrays are manipulated through their elements. A single element is manip­
ulated in the same way as a variable.

To manipulate part or all of the array elements in the same fashion, loops 
are used (see Chapter 7) in order to implement the following construct

while there are more elements in the array do
begin

get the next array element;
manipulate it

end

An array element (subscripted variable) may be used essentially any­
where in place of an ordinary variable of the same type, i.e., in expressions 
and input or output lists, as mentioned in Chapters 4 and 5.

A particular array element is identified by its subscripts. As many sub­
script values as there are dimensions in the given array have to be specified. 
The values of the subscripts have to fall within the limits declared by the di­
mension specification for the array.

“Subscript out of bounds” is one of the most frequent errors in the manipula­
tion of arrays.

EXAMPLE 6-5
Following the type statement

REAL LIQUID(10, 100), DOUBLE

an element of the array LIQUID may be used as follows:
DOUBLE = 2. » LIQUID(5, 15)
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Note that in the array declaration the parenthesized numbers signify di­
mensions of the array, while in an executable statement they are sub­
scripts of the particular array element. For example, the statement

TRIPLE = 3. * LIQUID! 10, 100)

refers to the last element of the array.

A subscript may be an integer constant or variable or, in general, an inte­
ger expression.

O FORTRAN 77 permits any integer-valued expression to be used as sub­
script, while FORTRAN IV limits it to the following forms:

variable ± constant
constant * variable
constant-1 ♦ variable ± constant-2

If a subscript is other than a constant, first the value of this subscript is 
obtained during the program execution. Only then is the value of the array 
element manipulated.

EXAMPLE 6-6
If J is an integer variable whose current value is 2, TEMP(2) and 
TEMP(3*J —4) refer to the same element of the array TEMP.

4. HOW FORTRAN ARRAYS ARE STORED IN MEMORY
The elements of arrays declared in FORTRAN programs are stored in con­
secutive memory locations so that their leftmost subscripts vary most rapid­
ly. For a vector, this is the natural way of element storage.

EXAMPLE 6-7
The elements of the vector declared

REAL GRADES! 10)

are stored in this order:
GRADES! 1), GRADES(2)......... GRADES! 10)

For a two-dimensional array (matrix), this is the column order of stor­
age: the array is stored column by column.

EXAMPLE 6-8
The elements of the matrix declared as follows:

INTEGER PRESS(2, 3)

are stored in this order:
PRESS! 1, 1). PRESS(2, 1), PRESS! 1, 2), PRESS(2, 2), PRESS! 1, 3), PRESS(2, 3)
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This storage order determines the order of the input/output of arrays as 
described below.

5. INPUT/OUTPUT OF ARRAYS
To input or output a single array element, it is placed on the appropriate in­
put or output list, as a variable would be.

EXAMPLE 6-9

If J is an integer variable with a defined value and LIQUID is a real ar­
ray, these are valid statements:

READ (5,511) V, LIQUID(5, J)
511 FORMAT(F10,0, 5X, F12.4)

To input or output the entire array, its name without any subscripts may 
be placed in the appropriate input or output list. (This is one of the few 
cases when an array name may appear in a program by itself). The array 
elements have to be presented for input in the FORTRAN storage order 
(see Section A-4 above); they also appear in this order during output.

The input/output process is controlled by the FORMAT statement in the 
case of formatted input/output.

EXAMPLE 6-10
For the input of the entire array SALES that has been declared as

INTEGER SALES(50, 50)

the statements
READ (5,553) SALES

553 FORMAT(8F10,2)

may be used.
This FORMAT statement corresponds to the placement of eight array 

elements per card. The FORMAT statement will be used repeatedly un­
til the entire 2500-element array SALES has been read in. This means 
that 313 cards will be read, the last of which contains only four data 
items. Had we used

553 FORMAT(F10.2)

only one data item would have to be placed on each card, and 2500 
would have been required.

The general method of array input/output is the implied-DO list,} a con­
struct that is placed in an input or output list and has one of two general 
forms:

(array-name(index), index = initial value, final value)

t Since the implied-DO list is a special case of the FORTRAN loop (DO) construct, some 
readers may find it helpful to consult Chapter 7-E on some of the more detailed points.
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or, rarely,
(array-name(index), index = initial value, final value, increment)

For example,
READ (5,543) (TEMP(I), I = 1, 100)

or
WRITE (6,517) (TEMP(K), K = 1, 100, 2)

Such lists imply that the values of the array elements are to be read or 
written beginning with the subscript of the initial value and ending with the 
subscript of the final value. If no increment is included, it is assumed to be 
1, otherwise the next values of the subscript are obtained by adding this in­
crement to the previous value. When the resulting subscript becomes great­
er than the final value, the input or output stops. This method may be used 
to input or output the whole or a part of an array in a desired order.

EXAMPLE 6-11

(a)
READ (5,505) (ARR(I), I = 1, 50)

will input the array elements in the following order:
ARR(1), ARR(2).........ARR(50)

(b)
WRITE (6,505) (ARR(3, J), J = 4, 20, 5)

will output the elements of the two-dimensional array in the following 
order:

ARR(3, 4), ARR(3, 9), ARR(3, 14), ARR(3, 19)

[> In FORTRAN IV, all index values should be integer constants or variables 
greater than 0. FORTRAN 77 allows also the use of expressions (see Chap­
ter 7).

Since the implied-DO list represents a special use of the DO loop con­
struct, minor differences exist in its definition between the old standard and 
FORTRAN 77. The latter allows for a more general form of index values 
and guards from empty loops. For a precise description of the DO loops in 
FORTRAN 77, see Chapter 7-E. <]

A single index may be used to control input or output of more than one 
array, as shown in the following example.
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EXAMPLE 6-12
The statement

WRITE (6,505) (M, K, X(M), Y(M, 3), M = 2, 4)

will cause the output of data items in the following order.
2, K, X(2), Y(2, 3), 3, K, X(3), Y(3, 3), 4, K, X(4), Y(4, 3)

Note that the value not controlled by the index is simply repeated (which 
may be desired during an output, but almost never during an input). The 
implied-DO list may be placed anywhere in the input or output list in keep­
ing with the desired order of input or output, which proceeds from the left 
to the right of the list.

EXAMPLE 6-13
This important example stresses that the value is assigned to a variable 
immediately after input:

READ (5,505) M, (X(l), I = 1, M)

is a valid statement. The length of the array X is known when its input 
starts, since the value of M has been read in beforehand.

The statement below is, however, invalid:
READ (5,505) (M, X(l), I = 1, M)

since the implied-DO list constitutes a single entity.

Implied-DO lists may be nested (placed within one another) to transfer 
the contents of multidimensional arrays. A set of parentheses and a comma 
are needed for every index.

The innermost index changes fastest. This is illustrated by the following 
example.

EXAMPLE 6-14
The following statement reads in a two-dimensional array in column or­
der (which should be used to present input data, since it is the order in 
which arrays are stored in FORTRAN):

READ (5,505) ((X(l, J), I = 1, 5), J = 1, 10)

which results in the following order:
X(1, 1), X(2, 1)........X(5, 1),X(1, 2),X(2, 2)........ X(5, 2)........ X(5, 10)

On the other hand, this statement causes the row order output of the 
same array:

WRITE (6,505) ((X(l, J), J = 1, 10), I = 1, 5)

in the following order:
X(1, 1), X(1, 2)........X(1, 10),X(2, 1)........ X(2, 10)........ X(5, 10)
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The following statement reads in a three-dimensional array in column 
order:

READ (5,505) (((Y(l, J. K), I = 1, 5). J = 1, 10), K = 1, 25)

Note the matching of parentheses and the use of commas in nested DO 
lists.

If formatted input/output is used, the layout of data on the external me­
dium (e.g., cards or print lines) is described by the corresponding FOR­
MAT statement. The closing parenthesis of this FORMAT statement ter­
minates the current record (as explained in Chapter 5-K). The new records 
are started until the input or output list is exhausted (or an error occurs).

EXAMPLE 6-15
(a) The statement

READ (5,505) (LENGTH(I), 1=1, 100)

with
505 FORMAT(IW)

will read 100 cards with the value of one array element on a card. 
On the other hand, with

505 FORMAT(5I10)

20 cards will be read, with five values per card.
(b) The statements

WRITE (6,507) ((ARR(I, J), J = 1, 8), I = 1, 10)
507 FORMAT(1X, 8F9.2)

will cause 10 lines to be printed, with one eight-element row of the 
array ARR per line.

B. INITIALIZATION OF VARIABLES AND ARRAY ELEMENTS

Before the value of a variable or of an array element is used, it has to be de­
fined. This means that no variable may appear, for example, in an expres­
sion or in an output list before it acquires a value.

The failure to assign a value to a variable (or array element) before its use is 
one of the most common programming mistakes.

A variable or an array element may be assigned a value during the pro­
gram execution. Most frequently it is done in one of the following ways: 
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by an assignment statement in which this variable or an array element 
appears on the left-hand side;

by a READ statement in which it appears on the input list.

It is sometimes desirable to preassign certain values when the program is 
being written, instead of reading them in during the execution. A DATA 
statement provides such an alternative way of assigning values to variables 
and array elements. Thus, a DATA statement serves to initialize variables 
and arrays: their values are assigned before the program execution starts. 
This statement has the following general form:

DATA list of variable, array element, or array names/list of values to be assigned/

[> These two lists may be repeated after a comma (the comma is optional in 
FORTRAN 77).

Standard FORTRAN IV does not allow the placing of array names in a 
DATA statement; thus the individual array elements have to be listed in or­
der to be initialized. <]

For example,
DATA 1/5/, A(3), A(7)/25.1, 14.2/

initializes the variable I to 5 and the array elements A(3) to 25.1 and A(7) 
to 14.2.

In the assignment of values, the following hold:

(1) The type of values to be assigned has to correspond to the type of 
variables or arrays.

(2) The same value may be assigned to a number of entities by prefacing 
it with the integer that specifies the number of repetitions and an as­
terisk (i.e., n).*

(3) An array name stands for all of its elements in the column order.
(4) The number of entities in the first list must equal the number of val­

ues in the second one.

EXAMPLE 6-16
The following illustrates the use of the DATA statement:

INTEGER I, ARR(10, 15)
REAL X, Y, VAL(2)
DATA I, ARR, X, Y/125, 150*0,  0.31E-3, 1.2/, VAL(1),

+ VAL(2)/0.,0.5/

Establish the correspondence between the entities and the values.

> In FORTRAN 77, implied-DO lists (see Chapter 6-A-5) may be used in 
the lists of variables and array elements; for example,

DATA (VAL(I), 1= 11, 100)/90»0./
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Since old FORTRAN IV does not allow implied-DO lists or array names to 
appear in the first list, explicit listing of all array elements to be initialized 
must occur. O

Nonexecutable DATA statements have to be placed after specification 
statements such as type statements.

(1) It is a good practice to place the DATA statement immediately after 
specification statements (e.g., following DIMENSION statements).

(2) The DATA statement only initializes the value of a variable or an array 
element before the execution. If this value is subsequently changed during 
the execution, the effect of the DATA statement ceases, since it cannot be 
executed. The use of DATA statements to initialize variables often leads 
to mistakes flowing from the programmer’s failure to recognize this fact.

The DATA statement is particularly useful when employed to assign names 
to the values that will remain constant throughout the program execution. In 
particular, it may serve to avoid “magic numbers” in the program, i.e., con­
stants whose significance is unknown to the reader. Thus, for example, the 
statement

DATA PI/3.14/

will help in understanding the program in which the constant value is used.

C. INTRINSIC FUNCTIONS

Certain programming tasks, such as, for example, computing a square root 
or an exponential of a real number, frequently repeat themselves. In order 
to simplify programmers’ work, sequences of statements that perform these 
tasks have been written by the designers of the FORTRAN system and 
have been included as built-in modules.

Thus, FORTRAN provides a number of predefined (built-in) program 
modules that compute a single value when presented with one or more other 
values, called arguments. These modules, each performing a particular task, 
are called intrinsic functions. Most of these functions compute certain 
mathematical functions or perform type conversions.

Modular programming in FORTRAN is described as a general facility in 
Chapter 8. Since the intrinsic functions do not have to be defined by the 
programmer, their use is very simple. They may be used essentially any­
where in the program instead of variables of the same type. A function ref­
erence has the following general form:

function name (argument(s)) 
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where the number of arguments and their types are fixed for any given 
function (see Table 6-1).

For example,
X = SQRT(Y)

In general, an argument may be an expression of the given type and as 
such may itself contain function references. For example, in the assignment 
statement

DISCR = SQRT(B »«2-4. »A» FLOAT(K))

the real function SQRT is used; its argument contains a reference to an­
other function, FLOAT. The value that results from the evaluation of a 
function is assigned to its name (here, SQRT).

FORTRAN 77 specifies both the so-called generic and the specific name 
for a function. When the same computation is required for different types of 
values, different specific functions are used (see the special functions in Ta­
ble 6-1). In FORTRAN 77, a single generic name may be used instead, 
with the translator substituting automatically the required specific name.

FORTRAN IV and other implementations of the old standard use only 
specific names. <]

It is advisable to use the specific names for the reason of program portability.

The most useful functions of integer and real arguments are presented in 
Table 6-1. FORTRAN systems also contain a number of functions operat­
ing on other numeric data types. The functions of character arguments are 
discussed in Chapter 9.

Note the following:

(1) Most functions require a single argument. If more than one argu­
ment is required, all arguments are of the same type.

(2) All the functions presented in Table 6-1, with the exception of con­
versions, render the result (i.e., acquire the value) of the same type as 
the argument(s).

Use the functions IFIX and FLOAT for explicit conversions, to avoid mixed­
mode expressions and assignment statements with two sides of different types.

When a function reference is used in an expression, the value of the func­
tion is obtained as the matter of first-order precedence.
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TABLE 6-1. Important intrinsic functions of integer and real arguments

GENERIC NAME SPECIFIC NAME TYPE AND TYPE OF FUNCTION
(FORTRAN 77 (FORTRAN 77 NUMBER OF FUNCTION PERFORMED

ONLY) AND ARGUMENTS (RESULT)
FORTRAN IV)

algebraic functions

SQRT SQRT real, 1 real square root: \/x~'
EXP EXP real, 1 real exponential: e*
LOG ALOG real, 1 real natural log: log x
LOG 10 ALOGIO real, 1 real common log: logn>x

important trigonometric functions
(the arguments should be expressed in radians; 1 radian =±57°

SIN SIN real, 1 real sine
COS COS real; 1 real cosine
TAN TAN real, 1 real tangent

special functions

ABS IABS integer, 1 integer absolute value: | x |
ABS real, 1 real absolute value: | x |

MAX MAXO integer, >2 integer largest value
AMAX1 real, >2 real largest value

MIN MINO integer, >2 integer smallest value
AMIN1 real, >2 smallest value

MOD MOD integer, 2 integer v arg-1—integer part of
AMOD real, 2 real J (arg-1/arg-2) *arg-2

conversions between integer and real values

INT IFIX real, 1 integer truncate fraction
REAL FLOAT integer, 1 real convert to real

(no value change)

EXAMPLE 6-17

Some of the functions of Table 6—1 are used here. 
Assume implicit variable types.

V = EXP(SQRT(X)) represents v = e'^'

Z = AMAX1(2. ♦ A, 5.) represents z = max(2a,5)
V = SQRT(FLOAT(IABS(K - 3))) represents v = \/| Jt—31 '
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D. MEMORY SHARING THROUGH THE USE
OF EQUIVALENCE!

It is sometimes desired to have more than one symbolic name referring to 
the same memory location. For example, we may want to have two variable 
names referring to the same entity or an alternative name referring to a part 
of an array. This, arranged with the use of the EQUIVALENCE statement, 
occurs essentially in two distinct situations.

(1) Provision of alternative names for the same data;
(a) A part of an array has a special meaning within a program and is 

to be manipulated separately from the rest of the array. For ex­
ample, in an array that holds the series of temperature readings 
taken at 10-minute intervals within 24 hours, the nightly data 
are to be processed separately [see Example 6-18(c) below],

(b) Due to an oversight, two distinct names are used in a program 
for the same entity (a variable or an array). Temporarily, until 
the oversight is corrected, an EQUIVALENCE statement may 
be used to make the two names refer to the same location(s).

(2) Saving memory space; the following situation may call for the use of 
an EQUIVALENCE statement: Two arrays of the same (or approxi­
mately the same) size are required by a given program. One of them 
is utilized at the beginning of the program and is then no longer 
needed; the second is used afterwards. The same space (or the larger 
of the two required) may be assigned to the two arrays, since they 
never use the space simultaneously.

Since FORTRAN compilers allocate the space for arrays statical­
ly (with a minor exception), i.e., before the program execution be­
gins, this usage results in a memory saving.

The EQUIVALENCE statement should be used with great care as it often 
leads to subtle, and hence difficult to find, mistakes. Unless you have an im­
portant reason to do so (e.g., lack of memory space), do not use it.

The EQUIVALENCE statement has the following general form:

EQUIVALENCE (equivalence list), ..., (equivalence list)

where an equivalence list may include names of variables, array elements,

t This and the remaining two sections of this chapter may be skipped without loss of continu­
ity.
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or arrays separated by commas. The entries in every such list are thus made 
to refer to the same item. For example,

EQUIVALENCE (K, L). (ARR(10), BLOCK(20))

> The old standard requires that all array subscripts be integer constants; 
FORTRAN 77 allows as subscripts also expressions that include only inte­
ger constants. <3

The nonexecutable EQUIVALENCE statement is placed before all ex­
ecutable statements in the program unit (for example, after the type and 
DIMENSION statements). In a subprogram (see below in Chapter 8), 
dummy arguments may not appear in an EQUIVALENCE statement.

Every equivalence list ought to include at least two names that are thus 
made equivalent. In this fashion, every list (if there is more than one) estab­
lishes a separate equivalence among the entities named in it.

While the programmer is not precluded from placing in the same equiv­
alence lists items of different types, such use should be reserved for excep­
tional situations.

The EQUIVALENCE statement ensures that the entities specified in a 
list refer to the same locations. Since arrays are always placed in consecu­
tive locations in the column-first order (see Chapter 6-A-4), when arrays 
or their elements are specified in an equivalence list, the remaining array 
elements are also made equivalent in the order of their placement in mem­
ory.

When an array name alone is placed in an equivalence list, its first ele­
ment is associated with others [see Example 6-18(b) below].

EXAMPLE 6-18
(a) The statements

REAL X, Y(50)
EQUIVALENCE (X, Y(23))

give the element with the subscript 23 of the array Y the alternative 
name X.

(b) The statements
INTEGER ITEM(30), GRADES(20)
EQUIVALENCEfITEM, GRADES(11))

establish the following correspondence:
HEM( 1) ITEM (2) ... ITEM(20) . . . ITEM(30) 

t t t
GRADES(1). . . GRADES(11) GRADES(12) . . . GRADES(20)

Thus, these arrays overlap in memory.
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(c) We have temperature readings taken at 10-minute intervals over a 
24-hour period starting at 1 p.m. It is desired to identify the mea­
surement taken during the night (11 p.m.-7 a.m.). This is accom­
plished as follows:

REAL TEMP(145), NIGHT(49)
EQUIVALENCE (TEMP(60), NIGHT( 1))

Thus, we do not need to duplicate the contents of the array TEMP, but 
instead assign an alternative name NIGHT to its part.

Since an EQUIVALENCE statement assigns alternative names to actual 
elements, it cannot attempt to establish a physically impossible correspon­
dence.

EXAMPLE 6-19
The following EQUIVALENCE statement makes contradictory de­
mands:

REAL A(5), B(10)
EQUIVALENCE (A, B(3)), (A(2), B)

Analyze it.

E. DOUBLE PRECISION DATA

In some applications, the precision (i.e., the number of significant digits) 
available with the use of real data in a given system is not sufficient. In this 
case, double precision constants, variables, and arrays may be employed in­
stead. While the exact number of significant digits in double precision data 
depends on the implementation, it is usually about double the precision of 
real data, and thus at least 14.

Do not use double precision needlessly since such values usually occupy twice 
the memory space of real data and take longer for the computer to manipu­
late.

A double precision constant is written in exponential form, with the letter 
D separating the exponent from the mantissa (instead of E as in a real num­
ber—see Chapter 4-A). For example,

123.4567100012D—8

where the letter D indicates that the number preceding it should be multi­
plied by 10 to the power of the number that follows D.
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Double precision variables and arrays have to be explicitly declared with 
a DOUBLE PRECISION type statement:

DOUBLE PRECISION GAMMA, DELTA(10, 10)

To input or output double precision data, a D edit descriptor is used; it 
has the general form

Dw.d

and operates precisely as the E descriptor (see Chapter 5-E and 5-F), the 
only difference being that the exponent is separated by D instead of E on 
the input or output medium.

Double precision expressions are evaluated according to the usual rules 
(see Chapter 4-C).

> If an implementation allows for mixing double precision and real data 
types (as FORTRAN 77 does), the representation of the real number is 
automatically converted to double precision, without change in value. <]

If an assignment of a double precision value to a real variable is per­
formed, the value is truncated.

Several intrinsic functions deal with double precision values; some of 
these should be used for explicit conversions between them and real data.

F. COMPLEX DATA

A complex number z

z = a + bi

consists of two values, its real (a) and imaginary (b) parts. (The word 
“real” has here a special meaning.) If a pair of real numbers is declared to 
constitute a single complex number, it may be read in as such, manipulated 
automatically according to the rules of complex arithmetic, and the results 
may be presented as output.

A complex constant is an ordered pair of real-type constants, separated 
by a comma and enclosed in parentheses. For example, two complex con­
stants are

(5.371,3.111) (2.1E-9.55.3)

Complex variables and arrays have to be explicitly declared with a COM­
PLEX type statement, for example,

COMPLEX IMPEDN, ARR(50, 3)

A complex data item is treated for the purposes of input/output as two 
real-type numbers.
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EXAMPLE 6-20
The following sequence of statements:

COMPLEX IMPEDN 
READ (5,511) IMPEDN 

511 FORMAT(F10.2, 5X, F10.2)

assigns a value to the complex variable IMPEDN.

Any real-type edit descriptor (F, E, or G) may be used in accordance 
with the rules specified for real numbers (see Chapter 5-E and 5-F).

Real-type operands may be mixed with complex ones; the former are then 
automatically converted to complex form with a zero imaginary part. Ex­
plicit conversions with special intrinsic function are preferred.
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CONTROL OF
PROGRAM EXECUTION FLOW

The statements that control execution flow are essential to any nontrivial 
program. They make it possible to provide alternative paths for program ex­
ecution (a decision construct) and to provide for reuse of program state­
ments to achieve a cumulative effect (a loop).

The following are the essential statements native to FORTRAN that con­
trol the execution flow:

GOTO (unconditional transfer of control)
STOP and CONTINUE
logical IF

£> block IF construct in FORTRAN 77 <]

DO
computed GOTO
arithmetic IF

The basic constructs of structured programming may be easily built as 
follows:

O if-then-else: available directly in FORTRAN 77 as the block IF con­
struct; otherwise may be built with logical IF statements; <]

while-do and repeat-until loops: built with logical IF statements;
indexed loop: available directly as the DO loop; 
case: built with a computed GOTO statement.

A. UNCONDITIONAL TRANSFER OF CONTROL (GOTO)

When the next statement to be executed in a program is different than the 
next one in the text of the program, the

GOTO label
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statement is inserted to divert the flow of control to the statement bearing 
the given label.

Thus the GOTO (sometimes written as GO TO) statement causes the 
control to branch around one or more program statements; for example,

GOTO 30 20 X = X + 1.

30 X ■ X + 1. GOTO 20

The goal of a GOTO statement can only be an executable statement. 
After the unconditional control transfer, the program execution continues 
from the statement to which the control has been transferred..

EXAMPLE 7-1
A practicable, but undesirable, way to stop the execution of a FOR­
TRAN program is for it to run out of input data: when a READ state­
ment is executed and no more data are found, the program is stopped. In 
the following problem this—not recommended—method is employed to 
illustrate the use of the GOTO statement.

Problem
For every record (i.e., card)—each one holds three real numbers—the 
average value is to be obtained.

Solution
The flowchart of the solution is shown in Fig. 7-1.

y/Output the header.
— See Note 1

AVER*-  (VAL1 + VAL2 + VAL3)/3

/ Output VAL1, VAL2, VAL3, AVER

FIGURE 7-1.
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The program follows.
C PROGRAM: AVERAGE
C AUTHOR: GATE
C
C AVERAGES ARE COMPUTED FOR SETS OF 3 REAL NUMBERS
C (PROGRAM STOPS BY RUNNING OUT OF DATA - NOT RECOMMENDED)
C
C VAL1, VAL2, VAL3 - NUMBERS TO BE AVERAGED
C AVER - AVERAGE OF 3 NUMBERS
C

IMPLICIT REAL (A-Z)
C PRINT HEADER ON NEW PAGE

WRITE (6,501)
501 FORMAT!'1', 25X, 'NUMBERS', 17X, 'AVERAGE')

C
C OBTAIN NUMBERS AND PRINT THEM WITH THEIR AVERAGE

10 READ (5,502) VAL1,VAL2, VAL3
502 FORMAT(3F10. 2)

AVER = (VAL1 + VAL2 + VA.L3) / 3.
WRITE (6,503) VAL1, VAL2, VAL3, AVER

503 FORMATdOX, 3 (F10. 2, 2X ), F10. 2)
GOTO 10
STOP
END

A sample printout:

NUMBERS AVERAGE
15. 10 13. 10 12 40 13. 53
16. 70 5. 90 4. 10 8. 90
9. 60 0 30 0. 70 3. 53

Notes
1. Looking at the flowchart of Fig. 7-1, we observe that there seems to 

be no provision for program termination. If it were indeed so, the pro­
gram would be in an infinite loop. In our case, however, the program 
will be terminated by the FORTRAN system when it runs out of 
data: if there are TV sets of three numbers each, the statement labeled 
10 will be executed TV + 1 times. During the last execution of this 
statement the program will be terminated. It is, however, improper to 
rely on such features of the system.

2. What are the methods of ensuring that the execution will terminate 
correctly when the number of records is not known beforehand?

a. If it is available, as in FORTRAN 77, use the END = option in 
the READ statement (see Chapter 5-L).

b. Otherwise, include as the last data card a trailer (sentinel) card 
that contains a special data item, which cannot be one of the pro­
cessed items. Then, use an IF statement (see Section D below) to 
check for it before computing the average value.

3. Note that the statements between 10 and GOTO 10 have been in­
dented: this makes it easier to see the structure of the program.
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In a flowchart, GOTO is shown simply as a flowline.

Undisciplined use of GOTO’s should be avoided, in particular, in transferring 
execution flow backward. Before using a GOTO, think whether the program 
logic cannot be more clearly expressed without it. Unconditional transfer of 
control often confuses the logic of the program and makes it difficult to under­
stand, test, and modify. "•

As will be seen later in this chapter, the GOTO statement may be used to 
implement several control structures not available directly in FORTRAN. 
Such disciplined use of GOTO’s helps to organize a FORTRAN program into 
a readable text. For a general discussion of control structures to be used in 
programming, see Chapter 2.

B. CONTINUE STATEMENT

An executable statement of the general form

label CONTINUE

may be used anywhere in the program where a labeled executable statement 
is needed. (While the statement does not have to be labeled, its essential 
function is that of a label carrier.)

This statement does not in itself change any values or influence the flow 
of control. It is used as a delimiting statement in several control structures 
presented in this chapter.

EXAMPLE 7-2
In this code fragment

GOTO 10

10 CONTINUE

all the statements between GOTO and CONTINUE are skipped.
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C. TERMINATION OF EXECUTION

The program is terminated when the statement
STOP

is executed.
There may be several such executable statements in the program text; in 

that case it is convenient to use an alternative form:
STOP n

where n is an integer of five or fewer digits. When the first STOP statement 
is encountered by the program execution flow, the program is terminated 
and the number n is printed; thus the programmer knows which STOP ter­
minated the program.

The last statement in the text of a program (or a program unit, see Chap­
ter 8) must be

END

When encountered, it terminates the execution of the program (or program 
unit). The END statement cannot be labeled; i.e., no transfer of control is 
possible to this statement.

In the main program, always precede the END statement with the STOP 
statement, even through the END statement itself will cause termination.

D. DECISION

A decision construct is used to specify two alternative paths in the program 
execution. One of these paths is selected during the program execution in 
accordance with the truth or falsity of the condition stated in the decision. 
By nesting decision constructs within one another, a choice can be made 
among several execution paths.

[> In FORTRAN 77, a powerful tool for implementing general decision 
constructs is block IF (IF-THEN-ELSEIF-ELSE-ENDIF). In the absence 
of this mechanism, the logical IF statement is used to implement decisions. <]

Additional FORTRAN statements that may serve to implement decision 
and case constructs are presented in Section G.
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1. GENERAL FORM OF THE DECISION CONSTRUCT
When two alternative execution paths are to be specified in a program, 
a decision construct is used. It allows the programmer to present the 
statements to be executed in either case and the condition that has to be 
tested for the selection. The flowchart symbol for the construct is shown in 
Fig. 7-2.

FIGURE 7-2. Decision construct

This construct may be described in pseudocode as follows:

if the condition C is true then
statement(s) S, shall be executed 

else
statement(s) S2 shall be executed

EXAMPLE 7-3
The selection of the larger of two numbers NUM1 and NUM2 is pre­
sented in pseudocode as:
if NUM1 > NUM2 then

MAX NUM 1
else

MAX «- NUM2

If the decision involves either executing certain statements or doing noth­
ing (again, depending on a condition), the flowchart of Fig. 7-3 results.

FIGURE 7-3. A special case of the decision construct
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EXAMPLE 7-4
To obtain the absolute value of a number NUM, we may use the follow­
ing construct:
if NUM < 0 then

NUM ♦----- NUM
else;

The decisions may also be nested; i.e., the statements Si and/or S2 may be 
decision constructs themselves, and so forth. It is convenient, while pro­
gramming in FORTRAN, to nest conditions in the False branch, as will be 
discussed below in this section.

Too “deep” a nesting should be avoided, as it makes programs difficult to 
read. Try not to nest beyond the level of 3.

2. CONDITIONS
To express conditions we use logical expressions, whose value is either True 
or False. A simple condition is a relation: two arithmetic expressions con­
nected by a relational operator. In some cases, the arithmetic expression 
may be simply a constant or a variable.

Relational operators are specified in FORTRAN as shown in Table 7-1.

TABLE 7-1. FORTRAN relational operators. Note that a relational operator is 
surrounded by periods.

RELATION ALGEBRAIC 
NOTATION

FORTRAN

less than < .LT.
less than or equal to ,LE.
equal to = .EQ.
not equal to * ,NE.
greater than or equal to .GE.
greater than > .GT.

Never test real values that include some obtained through a computation 
for equality. Since their representations in the computer are only approxi­
mations, the actual equality may never occur. Test for their difference being 
as small as you desire.
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EXAMPLE 7-5

(a) The following test on integer variables L, M, and N:
L**2 —4 * M » N .EQ. 0

checks whether
/2 - 4mn = 0

(b)To test whether two real variables X and Y have close enough 
values to be considered equal, we may use this condition:

X - Y ,LE. 0.000001

When a more complex condition is to be expressed, relations may be 
joined by logical operators .OR. or .AND. . A unary logical operator .NOT. 
may also be applied to a relation. The truth table for these operators is 
shown as Table 7-2.

TABLE 7-2. Truth table for logical operators, where P and Q are relations

VALUES OF RELATIONS RESULT OF OPERATION

P Q .NOT. P P .AND. Q P .OR. Q

.FALSE. .FALSE. .TRUE. .FALSE. .FALSE.

.FALSE. .TRUE. .TRUE. .FALSE. .TRUE.
.TRUE. .FALSE. .FALSE. .FALSE. .TRUE.
.TRUE. .TRUE. .FALSE. .TRUE. .TRUE.

The logical constants (.TRUE, and .FALSE., according to FORTRAN 
notation) are further discussed in Chapter 9-C.

O FORTRAN 77 allows for the use of two additional logical operators, .EQV. 
and .NEQV., the first of which corresponds to logical equivalence and the 
second to exclusive-or operations. <d

It is easy to think of the three basic logical operators as follows:

.NOT. inverts the value of a relation. If the value is .TRUE., it becomes 
.FALSE, and vice-versa.

The condition whose two relations are joined by .OR. is .TRUE, if either 
of the relations is .TRUE..

The condition whose two relations are joined by .AND. is .TRUE, only if 
both relations are .TRUE..

Thus, a compound condition may be any logical expression that evaluates 
to .TRUE, or .FALSE. The rules of precedence in this evaluation are the 
following.
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(1) arithmetic operations in the following order:
exponentiation (**);
multiplication (*)  and division (/);
addition (+) and subtraction (—);

(2) relational operators (all of equal precedence);
(3) logical operators in the following order:

.NOT.

.AND.

.OR.

Parentheses may be used to change this order of precedence; operations 
of equal precedence are performed from left to right.

Parenthesize not only when in doubt, but also to make the condition easier to 
understand.

EXAMPLE 7-6
(a) To encode the following:

both K and L are negative while M is not positive, 

the following condition may be used
(K .LT. 0) AND. (L .LT. 0) .AND. (M .LE. 0)

Notes
1. This is more readable than the equivalent:

K LT. 0 AND. L LT. 0 AND. M .LE. 0

2. A frequent error is to write
K AND. L .LT. 0.

You can avoid such errors if you remember that the logical operands 
apply only to logical values, while K and L are numerical.

(b) To encode

the square root of A is greater than 5 while B lies between 10 and 15 exclu­
sively

we may write
(SQRT(A) GT. 5.) .AND. (B GT. 10. .AND. B .LT. 15.)

Note that the numerical intrinsic functions may, of course, be used 
in a logical expression.
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3. BLOCK IF AS A DECISION CONSTRUCT IN FORTRAN 77
One of the major distinctions of FORTRAN 77 in comparison with FOR­
TRAN IV is the block IF mechanism, which allows for a general and read­
able design of decision constructs.

Make sure that your system includes this feature; otherwise use the alterna­
tives presented in the next section.

To implement the flowchart of Fig. 7-2, the following block IF structure 
is used:

IF (condition) THEN
statement(s) to be executed if the condition is True

ELSE
statement(s) to be executed if the condition is False

ENDIF

This construct is executed as follows:

(1) The condition is evaluated.
(2) If the value obtained is .TRUE., only the statements between the 

THEN and ELSE keywords are executed; otherwise the statements 
following ELSE are executed. Thus, only one group of statements is 
selected for execution.

(3) After the execution of either group of statements, control passes to 
the statement following ENDIF.

The following rules are to be observed.

(1) The ELSE statement (optional, as will be explained below) has to ap­
pear as the only word in its line.

(2) The ENDIF statement, also the only word in its line, delimits the en­
tire construct.

(3) No control transfers (for example, through a GOTO) are allowed 
into the block IF construct. (Only transfers to the IF statement itself 
or to the ENDIF are legal.)

(4) The statements in the THEN and in the ELSE clauses are to be indented 
for readability by the same number of spaces; for example, five (see the 
example below).
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EXAMPLE 7-7
The following is a part of a larger tax computation problem. A certain 
income-related tax is paid at a percentage rate (RATE1) on income up 
to a certain sum (LEVEL) and at a different rate (RATE2) above this 
sum. The tax value is to be computed for a given taxpayer; the number 
of taxpayers whose incomes are, respectively, smaller and greater than 
LEVEL is to be counted.

Since these magnitudes are likely to be changed from year to year, 
RATE1, RATE2, and LEVEL are variables.

The following pseudocode fragment (presumably incorporated in a 
larger program) expresses the logic of the solution.
•THE TAX RATE ON INCOME BELOW LEVEL IS RATE1, ABOVE 
♦LEVEL: RATE2
Real INCOME, TAX, LEVEL, RATE1, RATE2, FIXED;
Integer LOW, HIGH;
LOW «- 0; HIGH «- 0; ‘TAXPAYER COUNTS*

FIXED — LEVEL ♦ RATE1/100;

if INCOME < LEVEL then
begin

TAX «- INCOME • RATE1/100;
LOW «- LOW + 1

end
else

begin
TAX <- FIXED + (INCOME - LEVEL) * RATE2/100;
HIGH ♦—HIGH +1

end

In FORTRAN 77 code we have
REAL INCOME, TAX, LEVEL, RATE1, RATE2, FIXED 
INTEGER LOW, HIGH
LOW = 0
HIGH = 0

FIXED = LEVEL » RATE1/100.

106 PROGRAMMING IN FORTRAN



IF (INCOME LE. LEVEL) THEN
TAX = INCOME * RATE 1/100.
LOW = LOW + 1

ELSE
TAX = FIXED + (INCOME - LEVEL) * RATE2/100.
HIGH = HIGH + 1

ENDIF

Note that if an edit description F?.2 is used to output the value of the 
tax, the value will be printed rounded off to the closest cent.

In financial computations, most often this rounded value in dollars 
and cents has to be obtained (and not only printed as such). This may be 
accomplished as follows:

TAX = FLOAT (IFIX ((TAX + 0.005) * 100.))/100.

Analyze it.

Among the statements to be executed in either branch of a block IF there 
may, naturally, be other block IF constructs.

The ELSE clause in the block IF construct is optional. To implement the 
flowchart of Fig. 7-3 we use

IF (condition) THEN
statements to be executed if the condition is True

ENDIF

If the condition is false, this block IF causes no statements to be executed.
If several different conditions have to be tested (rather than two mutually 

exclusive conditions), a nested IF - THEN - ELSEIF - ELSE structure is 
used. The nesting may occur only in the ELSE clause as shown in the flow­
chart of Fig. 7-4.

FIGURE 7-4. Nested IF - THEN - ELSE construct
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This is accomplished with the use of the following construct.

IF (condition - 1) THEN
S>

ELSEIF (condition - 2) THEN
S2

ELSEIF (condition - n) THEN 
S„

ELSE

ENDIF
Sn+1

During the execution of this construct, the conditions are tested from top 
to bottom; when the first condition i whose value is .TRUE, is encountered, 
S( is (are) executed and control passes to the statement following ENDIF.

If no condition is .TRUE., the statement(s) Sw+i following ELSE is (are) 
executed. Here also the ELSE clause may be omitted. Thus if no condition 
is found .TRUE., no statement will be executed.

In keeping with the free use of blanks in FORTRAN, ELSEIF and 
ENDIF may be written as ELSE IF and END IF, respectively.

EXAMPLE 7-8
To compute and classify into four brackets a tax to be paid by individ­
uals, the following self-explanatory block IF construct may be used.

REAL INCOME, TAX
INTEGER BRACKT

♦ INCOME - RELATED TAX IS COMPUTED
IF (INCOME IE. 5000.) THEN

TAX = 0.
BRACKT = 1

ELSEIF (INCOME GT. 5000. AND. INCOME .LE. 10000.) THEN 
TAX = .10 * (INCOME - 5000.) 
BRACKT = 2

ELSEIF (INCOME .GT. 10000. AND. INCOME .LE. 20000.) THEN 
TAX = 50. + .15 ♦ (INCOME - 10000.) 
BRACKT = 3

ELSE
♦ INCOME IS GREATER THAN $20000

TAX “ 200. + .25 ♦ (INCOME - 20000.)
BRACKT = 4

ENDIF
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These good practices are suggested in the use of nested block IF constructs.
(1) The tests should be ordered in a clear fashion: a logically obvious se­

quence should be followed.
(2) The test most likely to succeed should be placed first. This makes for effi­

cient computation by preventing superfluous testing. If this contradicts 
(1) in a particular case, decide which is more important: efficiency or rea­
dability.

(3) In programs that are to be reused with some regularity, there should be 
additional tests for bad data (e.g., negative or suspiciously low or high 
INCOME in the example above).

(4) Be careful about the boundary conditions; for example is it .LT. or .LE. 
that you want? Otherwise, some data may “slip through” all tests.

(5) Conditions should be written as clearly as possible, with the use of paren­
theses where helpful.

(6) Make sure that every IF is matched by ENDIF.
(7) Indent the statements within each clause; for example, by five spaces.

The following program illustrates the use of block IF constructs.

EXAMPLE 7-9
Problem

Obtain roots of a quadratic equation.
Pseudocode of the Solution Algorithm

♦ROOTS OF A QUADRATIC EQUATION: AX2 + BX + C = 0
♦ARE COMPUTED
begin

Input A, B, C;
Output A, B, C;
if A=0 and B=0 then

Output “LOOK AT THE COEFFICIENTS”
else

if A=0 then
begin

XP----- C/B; Output XI
end

else
if C=0 then

begin
Xl<----- B/A; X2<- 0; Output XI, X2

end
else

begin
DISCR<— B**2  - 4*A*C;
if DISCR > 0 then •
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begin
XI— (-B+VDISCR)/(2’A);
X2— (—B— VDISCR)/(2*A);

* THERE ARE TWO ROOTS
ELSEIF (C. EQ. 0. ) THEN

WRITE (6,505) -B / A, 0.
505 FORMAT(' Xl=', £10.2, 5X, 'X2='. E10 2)

Output XI, X2 
end 

else 
begin

XREAL— -B/(2*A);
XIMAG— V|DISCR|7(2*A);
XI— (XREAL,+XIMAG):
X2— (XREAL,-XIMAG);
Output XI, X2 

end 
end

end

The program is encoded with the use of FORTRAN 77 features, it 
will not run in a FORTRAN IV implementation.

Note the changes introduced in the code as compared to the pseudo­
code. These aim to avoid duplicating computations and thus to increase 
the efficiency of the code. Since the pseudocode is a part of documenta­
tion, it aids in the program understanding; note that the pseudocode it­
self is self-commenting: a reader familiar with quadratic equations needs 
no explanations.

PROGRAM ROOTS
■ » AUTHOR: DATE:

» ROOTS OF QUADRATIC EQUATION
* AX2  - 3X + C = 0**
* ARE COMPUTED

■ » A, B,C - EQUATION COEFFICIENTS
* DISCR - DISCRIMINANT OF THE EQUATION

IMPLICIT REAL (A-Z)
READ (5, 501 ) A, B, C

501 F0RMATC3E10. 2)
WRITE(6, 502) A, B, C

502 FORMAT ( ' E10.2, 2X, 'B=', E10. 2, 2X, 'C=', E10 2)

* CHECK WHETHER EQUATION IS "C-u”
IF (A. EQ. 0. .AND. 3. EQ. 0 ) THEN

WRITE (6,503)
503 FORMAT(' LOOK AT THE COEFFICIENTS!')

ELSEIF (A.EQ.0. ) THEN

■» A SINGLE ROOT
WRITE (6,504) -C / B

504 F0RMAT(' X=', E10 2)
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ELSE
DISCR = B 2 - 4 « A * C
TWO A =2. o- A
RTDISC = SORT(ASS(DISCR)) / TWOA
BTWOA = -B / TWOA
IF (DISCR. GE. 0. ) THEN

* TWO REAL ROOTS
WRITE (6,505) BTWOA + RTDISC, BTWOA - RTDISC 

ELSE
WRITE (6,506) BTWOA,RTDISC,BTWOA, -RTDISC 

506 FORMAT ( ’ Xl = (', E10 2, ', ', E10 2, 'll', 5X,
+ 'X2- (', E10. 2, E10. 2, 'I)')

END IF 
END IF 
STOP
END

The printout below corresponds to the case of two imaginary roots 
(this is indicated by I following the second component of each coeffi­
cient).

A= 0. 20E+01 3= 0. 20E+01 C= 0. 20E+01
Xl= ( -0. 50E-»00, 0.87E+00I) X2= ( -0. 50E+00, -0. 87E+00I )

4. CONSTRUCTING DECISIONS WITH THE LOGICAL 
IF STATEMENT

The old FORTRAN standard did not contain the block IF construct; thus it 
is not available in FORTRAN IV or in such compilers as WATFOR and 
WATFIV. When these compilers are used, the logical IF statement is em­
ployed to implement decision construct. This statement is available, of 
course, also in FORTRAN 77.

The logical IF statement allows for the conditional execution of a single 
statement. It has the general form:

IF (condition) contingent statement

where the condition is stated as a logical expression (see Chapter 7-D-2). 
The contingent statement may be almost any executable statement (most 
important statements excluded are other IF statements and DO state­
ments).

The logical IF statement is executed as follows.

(1) The condition is evaluated.
(2) If the value of the condition is .TRUE., the contingent statement is 

executed; otherwise, the next statement in the program text is ex­
ecuted (as if the logical IF statement did not exist).
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If the block IF construct is available, as in FORTRAN 77, it is preferred for 
use as the general decison construct. In this case, the logical IF statement is 
used infrequently. In the opposite case it constitutes the essential tool for im­
plementing decision constructs.

The following example presents situations in which the logical IF state­
ment is the desired tool.

EXAMPLE 7-10
(a) To implement the flowchart in Fig. 7-5

FIGURE 7-5.

we may use the following statement:
IF (M .GT. 0) L = L + 10

Note that a single logical IF statement suffices for the entire structure.
(b) To keep reading in data until a special trailer card with a value 

equal to that of a variable NOMORE is encountered, we may use 
the following loop:

10 READ (5,533) ITEM
533 FORMAT(F10.2)

IF (ITEM EQ. NOMORE) GOTO 20

loop body

GOTO 10
20 . . .

In the absence of the block IF construct in a given FORTRAN imple­
mentation, the logical IF statement is used to design the general decision 
construct of Fig. 7-2. This is accomplished by placing a GOTO as the con­
tingent statement:
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IF (.NOT. (condition)) GOTO label-1

S,

GOTO label-2
label-1 CONTINUE

S2

label-2 CONTINUE

where S, and S2 represent any number of statements, possibly including oth­
er decision constructs.

If “deep” nesting makes the logic difficult to follow, consider the possibility of 
using the case construct (see Chapter 7-G).

Note that condition C of the flowchart in Fig. 7-2 has to be inverted, so 
that statement(s) St will be executed when C is .TRUE, and statement(s) S2 
will be executed when C is .FALSE..

The construct presented above should serve as a model that may be modi­
fied in actual programming. For example, a simple condition may be invert­
ed without the use of .NOT..

EXAMPLE 7-11
(a) (.NOT. (M .EQ. 0)) is equivalent to (M .NE. 0)
(b) (.NOT. (A .GT. B)) is equivalent to (A .LE. B)

The use of CONTINUE statements is optional and together with inden­
tation (for example, by five spaces) serves to stress the structure.

If a single statement is to be included in either branch, we may code the 
construct as two statements:

IF (condition) S!
IF (.NOT. (condition)) S2

While the repetition of the condition testing causes a certain inefficiency, 
this is more readable than its alternative, with two GOTO’s.

Note that the following two statements would be incorrect in this case:

IF (condition) S!
S2

since the statement(s) S2 will be executed regardless of the value of the con­
dition.
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EXAMPLE 7-12
The following is a recoding of Example 7-8 with the use of a logical IF:

REAL INCOME, TAX 
INTEGER BRACKT

C INCOME-RELATED TAX IS COMPUTED
IF (INCOME .GT. 5000.) GOTO 10

TAX = 0.
BRACKT = 1
GOTO 40

10 IF (.NOT. (INCOME .GT. 5000. .AND. INCOME LE. 10000.))GOTQ 20
TAX = .10 * (INCOME - 5000.)
BRACKT = 2
GOTO 40

20 IF (,NOT.(INCOME .GT. 10000. .AND. INCOME .LE. 20000.))GOTQ 30
TAX = 50. + .15 » (INCOME - 10000.)
BRACKT = 3
GOTO 40

30 CONTINUE
C INCOME IS GREATER THAN $20000

TAX = 200. + .25 » (INCOME -20000.)
BRACKT = 4

40 CONTINUE

Note that for the sake of readability some CONTINUE statements were 
omitted.

To implement a special case of decision construct without the else branch, 
shown in Fig. 7-3, we may use the following sequence:

IF (.NOT. (condition)) GOTO label

S

label CONTINUE

The need for the construct “if a condition occurs, deal with it, otherwise 
continue” arises frequently in programming. For example, in a sorting pro­
gram: “if items are out of order, exchange them,” or in handling exceptional 
situations such as encountering too large a value among the input data: “if 
this is an exception, deal with it.”

EXAMPLE 7-13

To obtain roots of a quadratic equation, the program of Example 7-9 is 
coded in FORTRAN IV, strictly following the conventions of the old 
standard. The program will run also in an implementation following 
FORTRAN 77 standard. Note that the FORTRAN 77 code is shorter 
and more readable.
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C PROGRAM ROOTS
C AUTHOR: DATE.
C 
C ROOTS OF QUADRATIC EQUATION 
C AX**2  - BX + C = 0
C ARE COMPUTED
C 
C A, B, C - EQUATION COEFFICIENTS
C XI, X2 - ROOTS OF THE EQUATION
C DISCR - DISCRIMINANT OF THE EQUATION 
C 

IMPLICIT REAL (A-Z) 
READ (5, 501 ) A, B, C 

501 F0RMAT(3E10. 2) 
WRITE (6,502) A, B, C

502 F0RMAT(3H A=, E10.2, 2X, 2HB=, E10. 2, 2X. 2HC=, E10.2) 
C 
C CHECK WHETHER THE EQUATION IS •‘C=0"

IF ( . NOT. (A. EQ. 0. .AND. B. EQ. 0. ) ) GOTO 10 
WRITE (6,503) 

503 F0RMAT(26H LOOK AT THE COEFFICIENTS!) 
GOTO 50 

C 
10 IF (A. NE 0. ) GOTO 20 

C 
C A SINGLE ROOT 

XI = - C / B 
WRITE (6,504) XI 

504 F0RMAT(3H X=, E10. 2)
GOTO 50 

C 
C THERE ARE TWO ROOTS 

20 IF (C.NE.0.) GOTO 30 
XI = - B / A 
X2 = 0. 
WRITE (6,505) XI, X2 

505 F0RMAT(4H Xl = , E10.2, 5X, 3HX2=, E10. 2)
GOTO 50 

30 CONTINUE 
C GENERAL CASE 

DISCR = B »*  2 - 4. * A * C 
TWOA = 2. * A 
RTDISC = SORT(ABS(DISCR)) / TWOA 
BTWOA = - B / TWOA 
IF (DISCR LT. 0 ) GOTO 40 

C 
C TWO REAL ROOTS 

XI = BTWOA + RTDISC 
X2 = BTWOA - RTDISC 
WRITE (6, 505) XI, X2 
GOTO 50 

40 CONTINUE
C 
C TWO COMPLEX ROOTS 

X2IMAG = - RTDISC 
WRITE (6,506) BTWOA,RTDISC,BTWOA, X2IMAG

506 F0RMAT(6H Xl= (, E10.2, 1H,, E10.2, 2HI), 5X, 
+ 5HX2= (, E10. 2, 1H, , E10.2, 2HI))

50 CONTINUE 
STOP 
END
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E. INDEXED (DO) LOOP
A loop allows for a repeated use of a sequence of statements. Such use is 
called iteration. As the statements within the loop are executed, values of 
certain variables are changed and thus the multiple execution of these state­
ments (which are called loop body) has a cumulative effect.

The looping facility native to FORTRAN, i.e., available as a statement, 
is the DO statement. It controls a DO loop, which is an indexed loop based 
on updating the value of the index variable (called also a DO-variable) by a 
constant number each time the loop is executed and testing the value 
against a preset limit. If the limit has been exceeded, the iteration is 
stopped.

The implementation of the more general while-do and repeat-until loops 
with the use of logical IF statements is discussed in the next section.

1. GENERAL FORM OF DO STATEMENT
The DO statement provides the facility of the indexed loop. In such a loop, 
iteration (repeated execution of the loop body) is continued while the index 
variable, regularly incremented, remains within a preset limit. The DO 
statement itself maintains the value of the index variable (called also the 
DO-variable) and checks for the completion of iteration. The general form 
of the DO statement is

DO label DO-variable = initial value, limit, increment

optional
For example,

DO 50 I = LESS, MORE, 10
DO 10 K = 5, 80

The following describes this statement.

(1) The label is attached to the last statement in the loop body. This 
statement delimits the loop body and thus it cannot precede the DO state­
ment in the program text. This last statement must be an executable state­
ment other than almost any statement controlling execution flow (in par­
ticular, it must not be another DO or a GOTO statement).

The range of the DO loop extends from its DO statement through the 
statement bearing the label referred to. (See box on p. 117.)

(2) The DO-variable controls the iteration. It may not be an array ele­
ment.

The variable names I, J, K are used most often for integer DO-variables. It is 
good to reserve them for this purpose.

116 PROGRAMMING IN FORTRAN



It is strongly recommended that the last statement in every loop be a CON­
TINUE.

By indenting the loop body (e.g., by five spaces) we obtain the following 
standard form for an indexed loop in FORTRAN, where, again, the incre­
ment is optional:

DO label DO-variable = initial value, limit, increment

optional 
loop body

label CONTINUE

For example
DO 10 I = 1, 50, 2 

X = X + 1.
10 CONTINUE

(3) If no increment is specified, the default value of 1 is used.
(4) The initial value is assigned to the DO-variable when the loop is en­

tered. Subsequently, every time the last statement in the range of the loop is 
executed, control is returned to the DO statement. The value of the DO-var­
iable is incremented. If it does not exceed the limit (in the case of a positive 
increment), the loop body is entered again. If the limit is exceeded, on the 
other hand, the loop is entered no more and control passes to the statement 
following it. This execution sequence is presented as a flowchart in Fig. 7-6.

FIGURE 7-6. Flowchart representation of a DO loop in FORTRAN 77 and cer­
tain FORTRAN IV systems for a positive increment
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> Many FORTRAN IV compilers cause the test to be performed after the 
loop body and after the incrementing of the DO-variable (at the point 
marked X in Fig. 7-6), rather than before the body (see the next section). <

(5) No assignment may be made to the DO-variable within the range of 
the loop. Its value is defined exclusively by the iteration process.

The values of the limit and the increment, once determined when the loop 
is entered, do not change.

O In FORTRAN IV, a DO-variable must be of integer type. Correspondingly, 
its initial value, limit, and increment may be exclusively integer constants or 
variables; their value must be greater than 0. Also, the first statement fol­
lowing the DO statement must be executable.

In FORTRAN 77, the DO-variable may be of integer, real, or double 
precision type. Correspondingly, so may be its initial value, limit, and incre­
ment. If the type of these differs from the type of the DO-variable, they are 
converted to its type. Moreover, any of these three values may be repre­
sented by an expression.

The initial value and the limit may be positive, negative, or 0. The value 
of increment may be positive or negative. In the case of a negative incre­
ment, the condition of the decision statement shown in Fig. 7-6 is inverted 
to read

DO-variable < limit

FORTRAN 77 also permits as an option the use of a comma between the 
label and the DO-variable in a DO statement.

The differences between the old and the new standards are further dis­
cussed in the next section. <]

The DO loop has no established flowchart symbol as an entity. Its con­
stituent outlines may be used as in Fig. 7-6. A frequently employed conve­
nient representation of the DO loop is shown in Fig. 7-7.

I flowchart of
the loop body I 

I

FIGURE 7-7. A convenient representation of a DO loop: DO 10 K = 5, 80, 5
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The value of the DO-variable may be used within the loop, as in Example 
7-14 below, or serve only as a counter, as in Example 7-15.

EXAMPLE 7-14

The following loop may be used to obtain the sum INTSUM of the first 
K integers:

INTSUM = 0
DO 10 I = 1, K

INTSUM = INTSUM + I
10 CONTINUE

Note that a well-known formula for the sum of the arithmetic progres­
sion may have been used instead.

EXAMPLE 7-15
The following program computes the average of a set of real numbers 
that are obtained as input data.

C PROGRAM MEAN
C AUTHOR: DATE:
C
C MEAN VALUE OF A SET OF REAL NUMBERS IS COMPUTED 
C
C COUNT - OF NUMBERS TO BE AVERAGED
C VALUE - OF THE REAL NUMBER BEING READ IN
C SUM - OF ALL REAL NUMBERS READ
C AVER MEAN (AVERAGE) VALUE 
C

INTEGER COUNT 
REAL VALUE,AVER,SUM

C HOW MANY NUMBERS ARE TO BE PROCESSED? 
READ (5,501) COUNT

501 FORMAT(IIO) 
C IS THERE ANY INPUT?

IF (COUNT .EQ 0) GOTO 20
C COMPUTE THE MEAN 

SUM = 0.
DO 10 I = 1,COUNT 

READ (5,502) VALUE
502 FORMAT(F10. 2)

WRITE (6,503) VALUE
503 FORMATdX, F10.2)

SUH = SUM + VALUE 
10 CONTINUE

AVER = SUM / FLOAT(COUNT) 
WRITE (6,504) AVER

504 FORMAT(' THE MEAN VALUE IS', F10.2)
GOTO 30

C
C THERE IS NO INPUT 

20 WRITE (6, 505)
505 FORMAT(' NO INPUT DATA')

30 STOP 
END
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A sample output is shown below.
22. 10
13. 40
55. 10
17. 30
47. 60

THE MEAN VALUE IS 31 10

Notes
1. It is assumed that the input data are not to be stored, since no further 

processing is required. If, on the other hand, we needed to place the 
data in memory, an array would be used. All the input data are, how­
ever, echoed (printed out), which is helpful in debugging.

2. The program is robust: it prints a special message if the count of in­
put data is 0. In many instances it is important to thus provide for 
special cases.

A DO loop is particularly suitable for processing of arrays; as a matter of 
fact, such processing is the essential rationale of DO loops. This is illustrat­
ed by Example 7-16 and Examples 7-25 and 7-26, of nested loops.

EXAMPLE 7-16
To determine the value and the ordinal number of the largest element in 
a real array ARR consisting of K elements, we may use the following 
code fragment:

c 
c

TOP IS THE VALUE OF THE LARGEST ELEMENT OF ARR
AND TOPIND ITS POSITION IN THE ARRAY

IMPLICIT INTEGER (A-Z)
TOP = ARR(1)
TOPIND = 1
DO 20 I = 2, K

IF (ARR(I) .LE. TOP) GOTO 10 
TOP = ARR(I) 
TOPIND = I

10 CONTINUE
20 CONTINUE

For efficiency’s sake, it is advisable to perform all the loop-invariant com­
putations (i.e., those not influenced by the loop) outside of the loop. The 
clarity of the code should not be sacrificed for a trivial efficiency gain, how­
ever (and, in many cases, the compiler removes the invariant computations 
outside).

EXAMPLE 7-17
This code fragment

DO 10 I - 1, K
ITEMS(I) = (5 » MARKS - LOAN) » I 

10 CONTINUE
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should be coded for efficient execution as
NOTES = 5 ♦ MARKS - LOAN
DO 10 I = 1, K

ITEMS(I) = NOTES ♦ I
10 CONTINUE

All temporary variables should, if possible, be meaningful in terms of the 
problem.

Example 7-18 further illustrates the use of DO loops.

EXAMPLE 7-18
Problem

Find the value of a polynomial of degree N for a given X.
Solution

Since the degree of a polynomial is the highest power that appears in it, 
we have
P(X) = 4, + A.X + + ... + /V.A71-1 + Ajr

In order to evaluate this polynomial for any X, we have to carry out 
the following number of multiplications:
1+2 + 3+ ... + (N - 1) + N = N(N-1)/2

and N additions.
Since multiplications are time-consuming operations, it is wise to use 

for the computation the following equivalent representation of a polyno­
mial, called Horner’s rule:
P(X) = Ao + X(A, + X(A, + ... + X(A„., + X/ln)...)

Starting our computation with the inner parentheses, we are thus able 
to obtain a higher power of X from the already obtained lower power. 
Thus, the computational complexity becomes N multiplications and N 
additions.

The following program is the implementation of the formula for poly­
nomials of degree 50 or less.
C PROGRAM: POLYNOMIAL
C AUTHOR: DATE:
C
C VALUE Dr POLYNOMIAL IN X OF DEGREE UP TO 50
C IS COMPUTED WITH THE USE OF HORNER'S RULE
C
C N - DEGREE OF POLYNOMIAL
C A(I) - COEFFICIENTS OF POLYNOMIAL
C POLYN - VALUE OF POLYNOMIAL
C

INTEGER N
REAL X, A(51)
READ (5,501) N, X, (A(I ), I = 1,N + 1) 

501 F0RMATU2, F10. 2/ (8F10. 2))
WRITE (6,502) X, (A(I), I = 1,N + 1)
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502 FORMATS X='< F10 27 ' COEFFICIENTS ARE '/
+ (12F10.2))

C
C VALUE OF THE POLYNOMIAL IS COMPUTED

POLYN = 0
DO 10 I = 1<N + 1

POLYN = POLYN * X + A(N +2-1)
10 CONTINUE

WRITE (6,503) POLYN
503 F0RMAT(15X, 'VALUE OF POLYNOMIAL IS', F16.2)

STOP
END

A sample printout is shown below.

X = 2 00
COEFFICIENTS ARE:

2. 05 3. 10 1.25 4. 12 7. 50
VALUE OF POLYNOMIAL IS 166 21

Notes
1. Note how the coefficients of the polynomial are retrieved from the ar­

ray A(I).
2. The use of expressions as the limits in DO loops is allowed by 

FORTRAN 77, but not by the old standard. Thus, in FORTRAN 
IV an additional variable has to be introduced and assigned the value 
N+ 1.

2. COMPATIBILITY AND DIFFERENCES BETWEEN FORTRAN 
77 AND FORTRAN IV IN THE USE OF DO LOOPS

It is important to note the following similarities and differences between the 
new and the old FORTRAN standards and to study the corresponding ex­
amples of programming techniques.

In FORTRAN IV, the limit of the DO-variable, as presented in the DO 
statement, has to be greater than its initial value (since only positive incre­
ments are permitted). However, a compiler cannot, in general, check for the 
conformance to this rule, since both the initial value and the limit may be 
variables and their values may be unknown before program execution.

Thus, most pre-FORTRAN-77 compilers would execute once a loop 
whose DO-variable limit is smaller than the initial value! One must be care­
ful of this when using such a compiler and check for this condition with a 
logical IF statement before the DO statement (see Example 7-22).

In FORTRAN 77, a DO statement may result in a so-called inactive 
loop, which is simply ignored. This happens when:

increment > 0 and limit < initial value
or increment < 0 and limit > initial value

Since FORTRAN 77 allows the use of real and double precision values to 
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control the loop, the number of times the loop is executed (called iteration 
count) is computed as follows:

integer part of [(limit — initial value + increment)/increment]

If this value is negative, the iteration count is 0 and the loop is inactive.

EXAMPLE 7-19
(a) The loop controlled by

DO 10 K = 5, 80

will be executed
(80 - 5 + 1)/1 = 76 

times.
(b) The following loop, permissible exclusively in FORTRAN 77,

DO 20 A = 75.5, - 3.5, - 0.5

will be executed
(-3.5 - 75.5 - 0.5)/(—0.5) = 159 

times.

In FORTRAN IV, if the loop is completed (i.e., a transfer of control has 
not occurred out of it), the value of the DO-variable is undefined. In FOR­
TRAN 77, it retains the last value assigned^ to it during the loop execution 
(see the flowchart of Fig. 7-6).

EXAMPLE 7-20
If the following statements are executed:

DO 101 - 1, 5
J = l

10 CONTINUE ■

then, according to the FORTRAN 77 standard, J = 5 while 1 = 6 (since 
the DO-variable was incremented and found too large for another iter­
ation, according to the flowchart of Fig. 7-6).

If the program is written for a FORTRAN system implementing the old 
(FORTRAN IV) standard or if compability with such systems is desired, 
the following should be observed.

(1) The DO-variable should be of integer type, and its initial value, limit, 
and increment should be integer constants or variables, all greater than 0.

Necessary conversions may be performed if these limitations on the DO 
variable are undesirable in a particular program, as illustrated in Example 
7-21.
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EXAMPLE 7-21
(a) It is desired to have the DO-variable in the range from N which is 

greater than 1 to 1, with the increment of —1. The following loop 
may be implemented:

DO 200 I = 1, N
K = N - I + 1

C IN THE REMAINING PART OF THE LOOP BODY,
C K IS USED AS THE LOOP INDEX

200 CONTINUE

(b) It is desired to implement the loop of Example 7-19(b) under the re­
strictions of the old standard. The following statements accomplish 
this task:

DO 20 I = 7, 165
A = (158. - FLOAT(l))/2.

C IN THE REMAINING PART OF THE LOOP BODY, A 
C IS USED AS THE LOOP INDEX

20 CONTINUE

Note that the initial value of the redefined control variable A is 75.5 and 
its limit is —3.5. The iteration count remains, as in Example 7—19(b): 
(165 - 7 + 1)/1 = 159

(c) The limitations on the initial value, limit, and increment to be an in­
teger constant or an unsubscripted variable may be circumvented as 
shown by this code fragment:

INIT = IFIX(VALUE(I))
LIMIT = 5 + MORE - LESS
DO 20 K ~ INIT, LIMIT

(2) The value of the limit should not exceed the initial value. This may be 
arranged very simply as shown in this example.

EXAMPLE 7-22

To ensure that the initial value of the DO-variable is no greater than its 
limit, the following may be done:

IF (INIT .GT. LIMIT) GOTO 30
DO 20 I = INIT, LIMIT

20 CONTINUE
30 CONTINUE
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(3) It must not be assumed that the DO-vanable has any meaningful val­
ue after the normal completion of a DO loop.

If it is desirable to retain the value of the DO-variable, it may be stored in 
a different variable. Note that this is accomplished with the use of variable 
J in Example 7-20. The value thus obtained is the last one actually used in 
iteration. Thus it differs from the value automatically retained in FOR­
TRAN 77 by the value of the increment.

3. TRANSFER OF CONTROL AND DO LOOPS
The following limitations hold on the transfer of control from and into a DO 
loop.

(1) It is forbidden to jump (transfer control) into the body of a loop from 
the outside code. From the outside, only the transfer of control to the 
DO statement itself is allowed.

(2) It is allowed to exit the loop before its full completion (see Example 
7-23 below) by transferring control out of it.

(3) The transfer of control within the range of a DO loop is, of course, 
allowed.

If the programmer desires to skip the rest of the statements between the 
given one and the end of the loop body, the transfer should be to the last 
statement of the loop (CONTINUE, as a matter of style) and not to the 
DO statement (see Example 7-24 below). If the control were transferred to 
the DO statement, the execution of the loop would be restarted and thus we 
would have an “infinite loop.”

These rules are illustrated in Fig. 7-8.

illegal transferslegal transfers

FIGURE 7-8. Legal and illegal control transfers
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The following examples illustrate the use of some legal control transfers.

EXAMPLE 7-23
An array SALARY declared as

REAL SALARY(5000)

is known to have a single element whose value exceeds 100,000. To find 
this value and its place in the array (already in memory), the following 
statements may be used:

DO 10 I = 1, 5000
IF (SALARY(I) GT. 100000.) GOTO 20

10 CONTINUE
20 WRITE (6,501) SALARY(I), I

501 FORMAT('THE AMOUNT'. F10.2, 'HAS BEEN FOUND IN POSITION ', I4)

Note that the loop is exited as soon as the desired item is found.

EXAMPLE 7-24
It is desired to print all the values of the array SALARY of Example 7- 
23 that exceed 20,000 and their places in the array. The following se­
quence is used:

DO 30 I = 1, 5000
IF (SALARY(I) .LE. 20000.) GOTO 20

WRITE (6,502) SALARY(I), I
502 FORMAT; 1X.F10.2, 5X, I4)

20 CONTINUE
30 CONTINUE

Avoid control transfers other than to the CONTINUE statement delimiting 
the loop or to the statement immediately following it (if exit is desired).

4. NESTED DO LOOPS
Program logic often requires that a DO loop be placed within another DO 
loop. This practice, called nesting of DO loops, may be continued beyond 
the level of two. The following rules govern nesting.

(1) DO loops must not overlap: one loop must fully contain the other 
one. Nested loops may, however, share the last statement, which is 
referred to in the DO statement of each loop.

It is recommended that every loop have as a closing statement its own 
CONTINUE. For readability’s sake, the loop body of every loop should be 
indented, for example, by five spaces.
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(2) Every DO loop must have its own DO-variable.
(3) The inner loop is fully executed during each iteration of the next-out­

er loop.

EXAMPLE 7-25
Consider the following nested DO loops:

ITER = 0
DO 20 I = 1, N

DO 10K » 1, M
ITER = ITER + 1

10 CONTINUE
20 CONTINUE

Here, the outer loop is executed N times while the inner loop is 
executed N*M  times, since it is iterated M times during each of the N 
iterations of the outer loop. Thus, the value of ITER at the end of the ex­
ecution equals the value of N*M.

Nested loops are frequently used to manipulate multidimensional arrays, 
as illustrated by the following example.

EXAMPLE 7-26
This code fragment is self-explanatory.

C ARRAY SALES (I, J) REPRESENTS SALES OF EACH OF THE 50 DISTRICTS
C IN EVERY ONE OF 30 REGIONS OF A COMPANY
C

REAL SALES(30, 50), REGSAL(30), TOTAL
DATA REGSAL/30^0./, TOTAL/0./

C OBTAIN REGIONAL SALE VOLUMES AND TOTAL VOLUME FOR THE COMPANY 
DO 20 I = 1, 30

C FOR EVERY REGION
DO 10 J = 1, 50

REGSAL(I) = REGSAL(I) + SALES0, J)
10 CONTINUE

C FOR THE COMPANY
TOTAL = TOTAL + REGSAL(I)

20 CONTINUE

Study the use of DO-variables in this example.

In the case of nested DO loops, the limitations on the transfer of control 
explained in the Section F-3 above fully apply. Thus, it is prohibited to 
jump from an outer loop into an inner one, but it is legal to do the opposite. 
In an outer loop, it is entirely correct to branch around an inner one. These 
rules apply to any depth of nesting. The rules are illustrated in Fig. 7-9; all 
the principles shown in Fig. 7-8 also hold.
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legal transfers illegal transfers

DO

CONTINUE

FIGURE 7-9. Legal and illegal control transfers in nested loops.

The following example illustrates nested loops; study the use of the DO- 
variables in it.

EXAMPLE 7-27 (SELECTION SORT)
Sorting and searching of data are the most common computer applica­
tions. There exist, therefore, numerous algorithms to perform these 
tasks. This is one of simpler sorting algorithms.

Problem
A set of integers is to be sorted. Ascending order is desired: the larger 
the number, the higher it should stand in the final list.

Solution
The largest number of the set is selected and exchanged with the number 
with the highest index (i.e., standing in the top place in the list). Subse­
quently, the largest number of the remaining set is selected and ex­
changed with the number with the next highest index, etc. For N num­
bers, this step (pass over the numbers) is repeated N— 1 times, since the 
smallest number is automatically placed in the position with the lowest 
index.
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Application of this method to an array of integers is shown below.

i = N —» -8 21«-i ,21, 21 21 I numbers
0 0 14«-i ,14, 14 J exchanged

-10 -10 -10 0<—। , 0 ,
14 14 o«-J -10 <—1 -8«-i sorting

i = 1 —> 21 -8«-J -8 -8 -10«—> boundary
during
the pass

unsorted after after after after
array pass 1 pass 2 pass 3 pass 4

(sorted
array)

An initial form and a refinement of the selection sort algorithm are 
presented in Figs. 7-10 and 7-11 (the DO loop symbol of Fig. 7-7 is uti­
lized). The program follows.

Find A(INDEX), 
the largest of I items

A(I)—integer array to be sorted 
N—number of items in the array

|___ ____ Perform N—1 passes

Interchange
A(I) and A(INDEX)

y
( Stop

FIGURE 7-10. Initial form of selection sort algorithm
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FIGURE 7-11. Refinement of selection sort algorithm

C PROGRAM. SELECTION
C AUTHOR: DATE:
C
C SELECTION SORT IN ASCENDING ORDER
C
C A<I> - ARRAY TO BE SORTED
C N - NUMBER OF ITEMS TO BE SORTED
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C MAX - LARGEST ITEM FOUND DURING THE GIVEN PASS 
C INDEX - POSITION OF THE ABOVE ITEM IN THE ARRAY
C

IMPLICIT INTEGER (A-Z)
DIMENSION A(1OO)

C INPUT UNSORTED ARRAY AND ECHO IT 
READ (5,501) N, (A(I), I = 1,N) 

501 FORMAT!13/ (8110))
WRITE (6,502) (A(I), I = 1,N)

502 FORMAT!10X, 'UNSORTED ARRAY'/ (12X, 110)) 
C
C PERFORM N-l PASSES OVER THE ITEMS 

DO 30 I = U, 2,-1
C FIND THE LARGEST ITEM ON THIS PASS 

MAX = A(1) 
INDEX = 1 
DO 20 J = 1,I

IF (A(J) .LE. MAX) GOTO 10 
MAX = A(J) 
INDEX = J

10 CONTINUE
20 CONTINUE

C PLACE THE ITEM FOUND IN ITS FINAL POSITION 
TEMP = A(INDEX ) 
A(INDEX) = A(I) 
A(I) = TEMP

30 CONTINUE 
C 
C OUTPUT THE SORTED ARRAY 

WRITE (6,503) (A(I), I = 1,N)
503 FORMATdlX, 'SORTED ARRAY'/ ( 12X, 110)) 

STOP
END

A sample output:

UNSORTED ARRAY 
ISO 

-123456 
1000 
-400 

15 
3 

24 
0 

255000 
-500 

SORTED ARRAY 
-123456 

-500 
-400 

0 
3 

15 
24 

150 
1000 

255000
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Notes
1. To grasp better the mechanism of this sorting method, apply it to a 

set of numbers.
2. Note that we are performing (TV-1) passes over the set of numbers, 

while, on the average, performing TV/2 comparisons on each pass 
(close to TV at the beginning, close to 1 at the end). Thus, the compu­
tational complexity of this sort is on the order of TV2.

3. In one of the DO statements, advantage was taken of a FORTRAN 
77 feature: negative increments. If your FORTRAN system does not 
provide this, Example 7-21(a) shows how to modify the code.

F. GENERAL LOOPS IN FORTRAN

Frequently, an indexed loop such as the DO loop is not adequate to repre­
sent the condition for the iterative execution of the loop body.

In most general terms, the programmer often desires that the loop body 
be executed while a certain condition holds. This is expressed by the while- 
do loop. In other cases, it is more convenient to think of the loop body being 
repeatedly executed unitl a certain condition arises. This is a repeat-until 
loop.

Both of these constructs may be implemented without difficulty in FOR­
TRAN with the use of the logical IF statement.

1. WHILE-DO LOOP
The flowchart of this construct is shown in Fig. 7-12.

FIGURE 7-12. while-do loop. The loop body ultimately changes the value of the 
condition to False.

Note that the loop body is “protected”: if the condition does not hold 
when it is first tested, the loop body is not executed at all. Therefore, this 
construct is relatively safe in use.

A while-do loop may be constructed in FORTRAN as follows with the 
use of a logical IF statement:
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10 IF(.NOT.(condition)) GOTO 20

loop body
(which will reverse the value of 
the condition)

GOTO 10
20 CONTINUE

To present a condition, a logical expression (see Chapter 7-D-2) is used, 
as usual in a logical IF statement.

Indent the loop body (for example, by five spaces).

Note that, opposite to a DO loop, the condition will not be reversed auto­
matically here. Thus, unless the programmer provides for its reversal in the 
loop body, an “infinite loop” may result. This is shown in the following ex­
ample.

EXAMPLE 7-28
If we wanted to program the loop

DO 10 1=1,5 
K = K + I 

10 CONTINUE

as a while-do loop, we would have to provide for the updating of the DO- 
variable as follows:

10 IF(.NOT.(I ,LE. 5)) GOTO 20
K = K + I 
1 = 1+1 
GOTO 10 

20 CONTINUE

or, for the first line:
IF(I.GT.5) GOTO 20

This example is, of course, an illustration. For a regular updating of a 
loop control variable by a fixed increment we always use DO loops.

The following example illustrates the use of a while-do loop in conjunc­
tion with a DO loop.
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EXAMPLE 7-29 (ENHANCED BUBBLE SORT)
Problem

As in Example 7-27, a set of integers is to be sorted in ascending order.
Solution
Verbal Description of the Algorithm

A bubble sort consists of a pairwise comparison of adjacent numbers 
starting at one end of an array of numbers. The pair is exchanged if the 
numbers are in the opposite order to the desired one. One pass through 
all the numbers does not, in general, suffice. Passes are repeated until, on 
the last pass, no exchanges are necessary. This confirms that the num­
bers are in order.

Application of this algorithm to a sample array of numbers is shown 
below.

The consecutive passes are:

N — 13 17—i 17 17 17
10 13 13 13 13

-10 10 10 10 10
17 -10 2n 2 2 signifies

-15 2<- -10 -3-i -3 “bubbling
2 -15 -3q -10 1 -10

1 — -3 -3 -15 -15 -15

unsorted after after after after
array pass 1 pass 2 pass 3 pass 4

(no exchanges)

The details of pass 1 follow:

13
10

13
10

13
10

13
10

13
10

13
17—i

17H
13—

-10 -10 -10 -10 17—। 10—J 10 no
17 17 17 17n -10—1 -10 -10 exchange

-15 -15 2*~] 2—1 2 2 2
2 2-| -15*- 1 -15 -15 -15 -15—i «—

-3 —3—1 -3 -3 -3 -3 -3—1 exchange
following 4—'

initial 1st 2nd 3rd 4th 5th 6th
order comparison
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Since numbers “bubble up” to take their final place in the array, the 
algorithm is so named.

It may be observed that the last number moved up during any pass ar­
rives at its final position. An enhanced bubble sort is a bubble sort with a 
time-saving provision based on this observation: we do not move beyond 
the number that was moved last at the previous pass. Moreover, if the 
last number was moved into the position second from “the bottom,” the 
sort has been completed and there is no necessity to make any additional 
pass without any exchanges.

PSEUDOCODE. INITIAL DESCRIPTION
♦BUBBLE SORT
begin

Input array;
’ while exchanges are expected do

perform next pass over the array;
Output (sorted) array 

end

PSEUDOCODE. REFINEMENT
♦ENHANCED BUBBLE SORT IN ASCENDING ORDER
begin

Input array;
mark LIMIT; ♦LIMIT—INDEX OF THE LAST ITEM

TO BE COMPARED*
♦PERFORM CONSECUTIVE PASSES

while exchanges are expected do
begin

start at the bottom;
♦PERFORM A SINGLE PASS

while below LIMIT and LIMIT 1 do
begin

compare pairwise and exchange
if necessary;

move to next pair
end;

mark new LIMIT
end;

Output (sorted) array
end
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This algorithm is encoded in the following program

C PROGRAM: BUBBLE
C AUTHOR: DATE:
C 
C ENHANCED BUBBLE SORT
C IN ASCENDING ORDER
C 
C A(I) - ARRAY TO BE SORTED 
C N - NUMBER OF ITEMS TO BE SORTED
C LIMIT - POSITION OF THE LAST ITEM TO BE CONSIDERED
C DURING THIS SORTING PASS
C LAST - POSITION OF THE LAST ITEM MOVED DURING THIS PASS 
C

IMPLICIT INTEGER (A-Z)
DI MENS ION A(100)

C INPUT UNSORTED ARRAY AND ECHO IT 
READ (5,501) N, (A(I), 1=1,N) 

501 FORMAT(13/ (8110)) 
WRITE(6,502) (A(I), 1=1,N)

502 FORMAT(10X, 'UNSORTED ARRAY'/ (12X, 110)) • 
C 
C MARK LIMIT

LIMIT = N
C PERFORM CONSECUTIVE PASSES

10 IF (LIMIT . LE. 1) GOTO 40
LAST = 0

C PERFORM A SINGLE PASS
DO 30 I = 1,LIMIT - 1

C EXCHANGE THE PAIR IF NECESSARY
IF (A(I) . LE. A(I+1>) GOTO 20 

TEMP = A(I ) 
A(I) = A(1 + 1) 
A(1+1> = TEMP 
LAST = I

20 CONTINUE
30 CONTINUE

C MARK NEW LIMIT
LIMIT = LAST 
GOTO IO

40 CONTINUE 
C 
C OUTPUT THE SORTED ARRAY 

WRITE (6,503) (A(I), I = 1,N) 
503 FORMATdlX, 'SORTED ARRAY'/ ( 12X, I10>) 

STOP 
END

136 PROGRAMMING IN FORTRAN



A sample output;

UNSORTED ARRAY 
5678?

456
-1100
-125
3000 
-15 

4 
0 

10 
-500 

-1000 
-4000 

2500000 
-80000 

123456000 
SORTED ARRAY 

-80000 
-4000 
-1100 
-1000 
-500 
-125 
-15 

0 
4 

10 
456 

3000 
5678? 

2500000 
123456000

2. REPEAT-UNTIL LOOP
Sometimes the loop body has to be executed once before the condition may 
be tested. This leads to the repeat-until loop whose flowchart is shown in 
Fig. 7-13.

FIGURE 7-13. The repeat-until loop. The loop body ultimately changes the value 
of the condition to True.
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The FORTRAN implementation of the repeat-until loop is 

10 CONTINUE

loop body
(which will reverse the value of
the condition stated below)

IF(.NOT.(condition)) GOTO 10

Indent the loop body (for example, by five spaces).

A typical situation in which this construct is applicable is shown in the 
following example.

EXAMPLE 7-30
The values of the elements of a one-dimensional real array WEIGHT 
are only positive. We do not know the length of the array and thus we 
will count the number of elements while reading them in. This is accom­
plished by this code fragment, assuming that the trailer is a negative 
number:

i = o
10 CONTINUE

1 = 1+1
READ (5,501) WEIGHT(I)

501 FORMAT(E12.2)
IF(WEIGHT(I) GE. 0.) GOTO 10

C DETERMINE THE ACTUAL LENGTH OF ARRAY
LENGTH = 1-1

Note that the declared dimension of the array has to be 1 longer than 
its actual length.

For another illustration of the repeat-until use, see Example 8—13.
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G. COMPUTED GOTO AND MULTIPLE CHOICE

To select one of several execution paths by testing the value of an integer 
variable (or, in FORTRAN 77, an integer expression in general), a comput­
ed GOTO statement may be used. The general form of the computed 
GOTO statement is

GOTO(label-l, label-2, ..., label-n), integer expression

For example,
GOTO (40, 20. 10, 20, 30). NUMBER

If the value of the integer expression is between 1 and n, this value deter­
mines to which label the execution control is passed.

[> FORTRAN IV allows exclusively for an unsubscripted integer variable in­
stead of an integer expression. FORTRAN 77 makes the use of the comma 
after the closing parenthesis optional. O

This statement is executed as follows:

(1) The value of the expression is obtained.
(2) If this value i is such that

1 i < n

then the next statement executed is the one bearing label-z. If the val­
ue of this expression is

i < 1 or i > n

then the control passes to the statement following the computed 
GOTO in the program text.

For example, if the value of the variable NUMBER in the sample state­
ment above is 3, the next statement executed is the one with the label 10.

The computed GOTO statement is used to implement the case (multiple 
choice) construct, used in structured programming to select one of several 
alternative execution paths. In this construct, control has to pass to a com­
mon point from any path. Thus, to implement the construct in FORTRAN, 
it is necessary to use simple GOTO’s as shown in Example 7-31 below.

In most case.s, the program logic is more transparent if the labels used by the 
computed GOTO are placed each on a CONTINUE statement, with every 
branch being indented (for example, by five spaces).
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EXAMPLE 7-31
Problem

The number of adults in various weight categories is to be established 
(with the view toward printing a bar chart, for example).

The weights range from 81 to 269 lb (all the data supplied are as­
sumed to be correct). The following weight categories are selected: 
(1) less than 100 lb;
(2) from 100 to just less than 140 lb;
(3) from 140 to just less than 180 lb;
(4) from 180 to just less than 220 lb;
(5) 220 lb or more.

The data are presented one item per card and delimited by a trailer 
with a negative number.

Solution
The flowchart is shown in Fig. 7-14 below (the outline selected for the 
case construct is non-standard).

FIGURE 7-14.
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The following program is an encoding of this flowchart.

C PROGRAM: WEIGHT
C AUTHOR. DATE:
C 
C PROGRAM TALLIES WEIGHTS BY CATEGORIES

c WEIGHT - OF AN ADULT (RANGE: FROM 81 TO 259 LBS)
c COUNT!1) - NUMBER OF ADULTS WEIGHING LESS THAN 100 LBS
c COUNT!2) - li from 100 to less than 140 lbs
c C0UNT(3) - II " 140 " 180 LBS
c COUNT(4) - " 180 " 220 LBS
c COUNT!5) - 220 LBS OR MORE

REAL WEIGHT 
INTEGER C0UNT(5) 
DATA C0UNT/5*0Z  

C 
C OBTAIN NEXT WEIGHT 

10 READ (5,501) WEIGHT 
501 FORMAT (F5. 1)

C DETERMINE THE WEIGHT CATEGORY 
C 

GOTO (20,30,40,50,60,60) (IFIX (WEIGHT) - 60) / 40 + 1 
C 
C LAST CARD REACHED - EXIT 

GOTO 80 
20 CONTINUE

I = 1 
GOTO 70 

30 CONTINUE
I = 2 
GOTO 70 

40 CONTINUE
I = 3 
GOTO 70 

50' CONTINUE 
I = 4 
GOTO 70 

60 CONTINUE
1 = 5 

70 CONTINUE
C 
C TALLY THE WEIGHT 

COUNT(I) = COUNT(I) + 1 
C OBTAIN NEXT WEIGHT 

GOTO 10 
80 CONTINUE 

C OUTPUT RESULTS 
WRITE (6,502) (COUNT(I), I = 1,5) 

502 FORMAT!' LESS THAN 100', 2X, 'FROM 100 TO 140', 2X, 
+ 'FROM 140 TO 180', 2X, 'FROM 180 TO 220', 2X,
+ 'MORE THAN 220'/ 4X, 5(15, 11X))

STOP 
END

This is a sample output: ’

LESS THAN 100 FROM 100 TO 140 FROM 140 TO ISO FROM ISO TO 220 MORE THAN 220 
1112 0

CONTROL OF PROGRAM EXECUTION FLOW 141



Notes
1. The same program could be designed with logical IF statements, but 

the logic would be less transparent (try it!).
2. If a FORTRAN 77 system is not available, the expression used in the 

computed GOTO has to be assigned to an intermediate variable and 
used as such.

H. USE OF ARITHMETIC IF STATEMENT

When a threeway branch is desired, an arithmetic IF statement may be 
used. It has the following general form:

IF (arithmetic expression) label-1, label-2, label-3

where the expression may be of integer, real, or double precision type. For 
example,

IF (2 * J — M) 10, 20, 10

This statement is evaluated as follows:

(1) The arithmetic expression is evaluated.
(2) If the value of the expression is negative, control is transferred to the 

statement bearing label-1; if this value is 0, control goes to the state­
ment with the label-2; if the value is positive, to label-3.

All three target statements have to be executable, but not necessarily dis­
tinct. For example, the statement above tests, in effect, for

2 * J - M .EQ. 0

The (nonstandard) flowchart of the arithmetic IF statement is shown in 
Fig. 7-15.

FIGURE 7-15. Arithmetic IF statement

While this statement may be found useful in numerical computations, the 
programmer should consider using logical IF statements instead. The arith­
metic IF tends to obscure the logic of the program.
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EXAMPLE 7-32

In a program used to obtain roots of a quadratic equation, the following 
approach may be used:

IF (B ♦♦ 2 — 4. » A » C) 10, 20, 30
10 CONTINUE

C COMPLEX ROOTS

Si

GOTO 40
20 CONTINUE

C IDENTICAL REAL ROOTS

GOTO 40
30 CONTINUE 

C DISTINCT REAL ROOTS

S3

40 CONTINUE

Note the indentation and the use of CONTINUE statements em­
ployed to make this structure more readable.
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8
MODULAR 
PROGRAMMING IN FORTRAN

The programmer needs a facility that serves to break up a program into 
functionally independent modules, in FORTRAN called program units. 
Modules communicate by exchanging data. A purposeful program design 
with such units is called modular programming.

Modular programming has the following advantages over straight-line 
coding of larger programs:

• A modular program is easier to design and implement, particularly if 
the designer uses the stepwise refinement method.

• A modular program, if well documented, is easier to understand.
• A modular program is easier to modify, since we may deal only with the 

modules affected by the modification.
• An overall programming effort lends itself to a better organization if 

more than one programmer is involved.
• Multiple use of tested modules (as an alternative to the code repetition) 

in a program results in increased program reliability as well as saving of 
programming effort and memory space.

While hard-and-fast rules cannot be offered, the length of a program unit 
should not exceed 50-100 statements.

Program units include the main program (always present) and subpro­
grams. Two essential types of subprograms may accompany the main pro­
gram: subroutines and (external) functions. These are independent modules 
with their own names whose code is included along with that of the main 
program.

A subprogram is executed when it is invoked by the main program or by 
another subprogram.
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Both subroutines and functions may be used to compute any number of 
values. Good programming practices, however, demand the use of subrou­
tines when several results are to be obtained, and the use of functions when 
a single value to be assigned to the name of the function is computed.

Two program units communicate either through arguments stated in the 
argument list of the subprogram being invoked and/or through commonly 
accessible data. In the case of a function, the invoking program unit also re­
ceives data via the function name.

As additional facilities, intrinsic functions (discussed in Chapter 6-C) 
and statement functions (one-liners included in the code of the program unit 
where they are used) are available.

To initialize a named block of commonly accessible data, a BLOCK 
DATA subprogram may be utilized. Its use is rather infrequent.

A. GENERAL DISCUSSION OF FORTRAN PROGRAM UNITS

A FORTRAN program consists of at least a main program that always re­
ceives control when the program execution is started. In a larger program, 
functionally separate sequences of statements may be identified. These will 
be cast into subprograms, which are executed only when invoked by the 
main program or other subprograms. A subprogram, once defined, may be 
used several times during the program execution.

The main program and the subprograms are called program units (see 
Fig. 8-1 for the classification).

The two most important types of subprograms are subroutines and (ex­
ternal) functions. Subroutine and function subprograms perform their own 
computations and may return the results to the program unit that invoked 
them. Subroutine, the most general and useful type of subprogram, may be 
used to compute any number of values and present them to the invoking 
program. The invocation of subroutine is termed subroutine call; it consti­
tutes a separate statement.

The use of functions is somewhat limited: a function is essentially utilized 
to obtain a single value, which the function assigns to its own name (al­
though a function may also compute several values). The function name ac­
quires a value as the result of its invocation; thus no separate call is required 
to the function. The function name may be simply used in place of a varia­
ble of the same type; we then speak of function reference.

For simplicity’s sake, we sometimes speak of both subroutines and func­
tions being “called.” After its execution has been completed, a subroutine 
or a function returns control to the place of call; this is the return from a 
subprogram. <
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program unit 
(may be separately written, 

translated, and tested)

procedure 
(used by the main program, 

or another procedure, 
for a specific task)

BLOCK DATA

classification 
in the program 

make-up

subprogram

(also called external
procedures)

(external)subroutine
function

FIGURE 8-1. Classification of program units and procedures in FORTRAN

main program

procedure subprograms

intrinsic 
function

statement 
function

classification of 
subordinated 

executable units

Since a subroutine or a function is called upon to perform a computation, 
it most often needs to acquire certain data from the invoking program unit 
and to pass certain results back to it. Such communication between pro­
gram units occurs either by passing of arguments or by sharing common 
data. In the case of a function, a single result is passed back as the value of 
the function name.

Including a procedure subprogram in a program involves three actions.

• It has to be defined, i.e., programmed.
• It has to be invoked, i.e., used.
• The provision has to be made for passing the data, if necessary, to and 

from it.

Subprograms are placed immediately after the main program in a FOR­
TRAN job. Thus, the “program statements,” presented as a component of a 
FORTRAN job in Chapter 3-C-l, are expanded as shown:

control cards
[main program]
[subprogram-1]

[subprogram-N]
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control card(s) to delimit program from data

Thus, the subprograms are placed after the main program.

> In FORTRAN 77, the main program may also begin with a PROGRAM 
statement of the general form:

PROGRAM name

where “name” is a symbolic name (of up to six alphanumeric characters be­
ginning with a letter). This name is assigned to the main program and may 
not be used in it for any other purpose. <]

Subprograms begin depending on their nature, with a SUBROUTINE, 
FUNCTION, or BLOCK DATA statement (described further in this chap­
ter). Thus, the main program may be distinguished by not beginning with 
either of these. Every program unit ends with an END statement.

Subprograms may be placed in any order, following the main program. 
Subroutines and functions are executed exclusively as the result of their in­
vocations; following its execution, a subprogram returns control to the place 
of the invocation. A BLOCK DATA subprogram is not executable; it is 
used to assign initial values to data items in named common blocks during 
the translation of the program.

EXAMPLE 8-1
A certain program consists of a main program and two subroutines— 
SORT, which sorts an array in ascending order, and EXCHANGE, 
which exchanges the values of two variables. The hypothetical order of 
invocations is illustrated in Fig. 8-2.

FIGURE 8-2. HereO indicates a corresponding call and return.

Note the various possibilities of invocations.
In the job make-up, it does not matter whether the subroutine SORT 

precedes EXCHANGE or vice-versa.
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The dependence between program units in a particular program may be 
presented in a structure chart, which shows which subprograms are invoked 
by which program units. A structure chart is accompanied by an interface 
table, which specifies the data passed between the program units, through 
the interfaces between the units, as it were. (See Table 8-3 on p. 180.)

Example 8-1 will be represented as follows:

FIGURE 8-3. A structure chart

FORTRAN prohibits recursive calls: a subprogram may not invoke itself. 
Neither is it possible for a subprogram to invoke itself indirectly, through 
intermediate subprograms.

Every subprogram is an independent program unit, with its own data dec­
larations, if needed. This means that all the variable and array names and 
all labels used in a program unit are local to it: these names are not known 
in other program units. Therefore, the same names and labels may be used 
in several units. Thanks to this, the program units may be coded indepen­
dently.

During the use of subroutines and functions, values may be assigned to 
variables or array elements of the invoked subprogram by the invoking pro­
gram unit. Conversely, a subroutine may assign values to variables or array 
elements named in the call as actual arguments. Data may also be passed 
through variables and arrays placed in common blocks. This is what is 
meant by communication between program units.

Subroutines and external functions are the essential procedures (invoked 
instruction sequences performing specific tasks) available in FORTRAN. 
Aside from these, two other kinds of procedures exist in FORTRAN (see 
Fig. 8-1): intrinsic functions and statement functions.

Intrinsic functions are built into the language itself; i.e., they are provided 
as part of the translator for the language and do not have to be defined by 
the programmer who uses them. Their use is described in Chapter 6-C, and 
some of them are mentioned in other of the books chapters, which deal with 
the subject matter to which these functions pertain (e.g., character process­
ing in Chapter 9).

Statement functions are one-line statements embedded in program units 
and thus not independent program units themselves (see Section H of this 
chapter).
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B. SUBROUTINES

The subroutine is the most general type of subprogram: it may serve to cal­
culate any number of results.

The program unit that calls a subroutine may communicate data to it as 
the values of actual arguments or through common blocks, discussed in Sec­
tion D of this chapter. After the subroutine has been executed, the results 
are passed back to the calling program unit, also through the arguments or 
common blocks.

1. HOW TO DEFINE A SUBROUTINE
A subroutine is a separate program unit composed of the SUBROUTINE 
statement followed by the body of the subroutine and terminated by the 
END statement.

A subroutine definition has thus the following general form:
SUBROUTINE subroutine name(list of dummy arguments)

statements of the subroutine

RETURN
END

A subroutine name is formed, like any FORTRAN symbolic name, of up to 
six alphanumerical characters, the first one being a letter. It has no type, 
since no value may be assigned to it.

The list of dummy arguments specifies the names by which the data 
items passed by the calling program and/or to be passed to it are known in 
the subroutine. Thus, these are essentially variable or array names. Dummy 
arguments are place-holders for the actual arguments supplied by the call­
ing unit. Argument passing is discussed in detail in Section B-3.

If no arguments are to be passed, this list is absent. Thus two general 
forms of the SUBROUTINE statement exist:

SUBROUTINE subroutine name(argument-l,..., argument-n)
or SUBROUTINE subroutine name

For example
SUBROUTINE FIND(ARR, ELMNT)

or SUBROUTINE OBTAIN -

Since a subroutine is an independent program unit, all variable and array 
names used in it are local: they are not known in other units of the program.
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Thus, their type must be specified explicitly or implicitly in the subroutine 
itself (according to the rules presented in Chapter 4-B). The dimensions of 
the arrays used by a subroutine must also be declared in it (see Chapter 6- 
A). In the case of arrays which are arguments, variable dimensions may be 
specified and their values passed to the subroutine as arguments, as dis­
cussed further in this section.

Variables and/or arrays used in a subroutine may be

• dummy arguments
• parts of common blocks shared with other program units
• or local entities, which exist exclusively in the subroutine^

The labels used in a subroutine are local; the same labels may be used in 
other program units.

The execution of a RETURN statement causes the return of control to 
the calling program unit. Thus, this statement is used to stop the subroutine 
execution.

A subroutine may contain more than one RETURN statement if its logic 
so requires, which is analogous to the main program having more than one 
STOP statement.

The END statement delimits the subroutine.

O FORTRAN 77 does not require a RETURN statement before END; the 
old standard does, however. It is a good practice to include the RETURN 
statement. <]

2. HOW TO USE (CALL) A SUBROUTINE
To use a subroutine, i.e., to cause its execution, a CALL statement has to be 
included in the calling program unit. The general form of the CALL state­
ment is

CALL subroutine name(list of actual arguments)

Corresponding to the SUBROUTINE statement of the invoked subrou­
tine, the argument list may be absent; for example,

CALL FINDfSET, MEMBER)
CALL OBTAIN

This executable statement may be placed anywhere in the calling unit 
where other executable statements may be placed.

Since one of the goals of writing subroutines is their multiple use, natu­
rally several CALL’S to the same subroutine may be contained in a given

fThe values of these local variables and arrays are not, in general, saved between the invocations 
of a subroutine (although some implementations may save them). 
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program unit or other program units of the program, with the exception of 
the given subroutine itself.

The actual arguments listed in the CALL statement must correspond in 
number and type to the dummy arguments listed in the corresponding SUB­
ROUTINE statement. This has to be so because the actual and dummy ar­
guments are associated with one another by their positional correspondence: 
the first actual argument with the first dummy argument, etc. The actual 
and the dummy argument in the same position in their respective lists refer 
to the same entity (a variable or an array).

EXAMPLE 8-2

The following illustrates the association of arguments in CALL state­
ments with those in SUBROUTINE statements. We assume that these 
statements are contained in a certain program:
REAL SET(IOO), MEMBER

CALL FIND(SET, MEMBER)

• a real
array

a real 
variable

SUBROUTINE FIND(ARR, ELMNT) 
REAL ARR(IOO), ELMNT

Dummy arguments are the names used in the subroutine for the entities 
(such as variables and arrays) whose values are passed to the subroutine by 
the calling unit or vice-versa. The actual arguments are the values passed to 
the subroutine (which may have to be obtained when the CALL is execut­
ed) or the names used for entities to be evaluated by the subroutine. Some­
times, an actual argument serves both purposes. To understand better argu­
ment passing, read Section B-3.

Be very careful that the list of actual arguments in the CALL to a subroutine 
matches the list of dummy arguments in its SUBROUTINE statement. A 
mismatch of the two is a very frequent error. A tool that helps ensure that 
these two lists match is the interface table of the program, which should ac­
company its structure chart (as will be seen in Example 8-20).
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In certain cases, it is advantageous to communicate with a subroutine 
through a common block along with or instead of an argument list (see Sec­
tion D of this chapter).

The following sequence of events occurs when a subroutine is called:

(1) All expressions contained in the actual argument list are evaluated, 
and thus all available values of actual arguments are obtained.

(2) The actual arguments stated in the CALL are associated with the 
dummy arguments listed in the SUBROUTINE statement, as dis­
cussed in the next section.

(3) The subroutine is executed.
(4) When a RETURN (or, in its absence, the END) statement is en­

countered during the subroutine execution, control returns to the 
statement following the CALL in the invoking program unit.

All the values that have been assigned by the subroutine to the dummy 
parameters that correspond to such actual parameters as variables, array 
elements, or arrays, are available to the invoking unit.

Subroutine call is illustrated with the following trivial example.

EXAMPLE 8-3

C SERIES OF DIFFERENCES OF TWO INTEGERS IS OBTAINED 
C

IMPLICIT INTEGER (A-Z)
10 READ (5,501, END = 20) INTI. INT2

501 FORMAT(2I10)
CALL SUBTR(INT1, INT2, DIFF)
WRITE (6,502) INTI. INT2, DIFF

502 FORMAT(3(5X, 110)) 
GOTO 10

20 STOP 
END 

C
C DIFFERENCE OF TWO INTEGERS IS OBTAINED 
C

SUBROUTINE SUBTR(NUM1, NUM2, MINUS) 
C

IMPLICIT INTEGER (A-Z)
MINUS = NUM1 - NUM2 
RETURN 
END

The subroutine SUBTR obtains the values of INTI and INT2 from the 
main program and passes back to it the value of MINUS, known in that 
program unit as DIFF.
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In a flowchart, subroutine calls are shown as in Fig. 8—4.

Call 
SUBTR

FIGURE 8-4. A flowchart outline of a subroutine call

A subroutine itself is flowcharted as an independent program unit. An 
annotation outline (see Chapter 2) may be used to specify the actual argu­
ments in the call and the dummy arguments in the subroutine as shown in 
Fig. 8-5. The arguments, if few, may also be placed in the call outline itself.

FIGURE 8-5. Use of annotation outlines to specify arguments

Subroutine SUBTR

NUM1 all
NUM2 integer

MINUS variables

3. HOW ARGUMENTS ARE PASSED
During a subroutine call, the actual arguments listed in the CALL state­
ment are associated with the dummy arguments listed in the SUBROU­
TINE statement that heads the subroutine called. Through this association, 
data may be passed to the subroutine from the calling program unit and 
vice-versa.

The association means that the dummy arguments acquire the values pos­
sessed by their corresponding actual arguments at the time of the call.f In 
turn, when the return from the subroutine occurs, the actual arguments re­
ferring to variables, array elements, or arrays may acquire values assigned 
to their corresponding dummy arguments in the subroutine.

fActually, in FORTRAN implementations, argument passing is most frequently performed 
by reference. Thus, if the actual argument is a single value, its address is passed to the subroutine. 
If the actual argument is an array, the address of its first element is passed.
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The association between the actual and dummy arguments is made by 
their positional correspondence. This means that if the calling statement

CALL ANYSUB (ACT 1, ACT2, ACT3)
refers to t t t

SUBROUTINE ANYSUB (DUM1, DUM2, DUM3)

then the shown association occurs.
This is illustrated by the following extremely simplified example.

EXAMPLE 8-4

ADDING ROUTINE

SUBROUTINE ADD(DUM1, DUM2. DUM3)
DUM3 = DUM1 + DUM2
RETURN
END

C 5-AND-7 ADDER 
ACT1 = 5. 
ACT2 = 7. 
CALL ADD(ACT1, ACT2, ACT3) 
PRINT ♦, ACT3 
STOP
END

Note that the first two arguments serve to present values to the sub­
routine and the third one serves to present the results of its computation 
to the main program.

Due to the nature of the argument association, the actual arguments 
must correspond in number and type to the dummy arguments.

Argument passing provides versatility for subroutines; every call may 
present its own actual arguments as shown in the example below.

EXAMPLE 8-5
Observe these two calls to a single subroutine. (Here the circled numbers 
indicate call-return combinations.)

main program

Z =

A = 17.5
CALL COMPUT(5.5, A, C)
X = 0.
DO 10 I = 1, 20 (

ARR(I) = FLOAT(I)
10 CONTINUE

CALL COMPUT(ARR(3), X, D)

(2)~~ ------- RETURN
END

SUBROUTINE COMPUT(X, Y, Z)
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The following occurs during the execution of the presented fragment 
of the main program:

The subroutine COMPUT is called twice. During the first call, the 
subroutine acquires the values

X = 5.5 Y = 17.5

and through the dummy argument Z assigns a value to the variable C in 
the main program.

During the second call, the subroutine acquires the values
X = 3. Y = 0.

and upon return assigns through the dummy argument Z a value to the 
variable D in the main program.

Note that since the symbolic names in the main program are indepen­
dent of the symbolic names in a subroutine, the variable name X used in 
the subroutine refers to an entirely different location than the same 
name refers to in the main program. The use of the same name should be 
regarded simply as a coincidence.

Table 8-1 shows the essential! entities that may appear in the corre­
sponding positions in the two argument lists.

TABLE 8-1. Possible argument list correspondences

ACTUAL ARGUMENTS DUMMY ARGUMENTS
(in the calling program unit) (in the called program unit)

‘ may not 
constants serve as 
expressions output

. arguments
variables (only unsubscripted) 

variables
array elements

array names array names

Some subroutines have no arguments at all.

The following rules apply:

(1) If the actual argument is an expression, it is evaluated immediately 
before the transfer to the subroutine occurs.

f Also a function or a subroutine name may be passed as an argument. This very infrequently 
used capability is beyond the scope of our discussion.
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(2) If the actual argument is an array element, its subscript (which may 
be an expression) is evaluated immediately before the transfer to the 
subroutine. Thus is selected a definite array element that does not 
change throughout the subroutine execution (but its value may, of 
course, change).

Some arguments are used to pass data to the subroutine; these are often 
informally called input arguments (see the first two arguments in Example 
8-5). Some arguments are used to pass results to the calling program upon 
the return from the subroutine. These are called output arguments (e.g., the 
third argument in Example 8-5). Sometimes, an argument serves to pass a 
value to the subroutine during the call and then a result back to the calling 
program in return.

It is a good programming practice to avoid “two-way” arguments that pass 
values in both directions. Strict subdivision into input and output arguments 
makes for easier testing of subroutines and helps to avoid errors.

Any actual argument that is expected to present a value to a subroutine, 
must, naturally, acquire it in the calling program before the call.

The dummy arguments corresponding to the actual arguments, which are 
constants and expressions, may not be used to pass values back to the call­
ing program (what sense would it make to try to assign a new value to a 
constant?).

The following illustrates a simple use of a subroutine.

EXAMPLE 8-6
Problem

A set of integer numbers is sorted in descending order. We are to reorder 
it into ascending order.

In other words, assuming that the numbers are placed in the array 
ITEMS, we have to change this order:
ITEMS (1) > ITEMS(2) > ... > ITEMS(N)

to this:

ITEMS (1) < ITEMS(2) < . . . < ITEMS(N)

Solution
The pseudocode of the solution is
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♦REORDERING ALGORITHM 
begin

Integer N, ITEMS;
Input N, ITEMS(LN);
I *— 1;
while I N/2 do 

begin
Can EXCHGE(ITEMS(I), ITEMS(N-I+1));
I —1+1 

end 
end 
♦VALUES OF TWO VARIABLES ARE EXCHANGED 
Subroutine EXCHGE(K, L) 
begin

Integer K, L, TEMP;
TEMP — K;
K — L;
L «- TEMP 

end

A corresponding FORTRAN program follows.

C PROGRAM: INVERT
C AUTHOR: DATE:
C 
C A DESCENDING LIST IS REORDERED INTO THE ASCENDING ONE 
C 
C ITEMS!I) - ITEMS TO BE REORDERED 
C N - LIST LENGTH 
C 

IMPLICIT INTEGER !A-Z) 
DIMENSION ITEMS!100) 
READ !5, 501) N, ! ITEMS! I), I = LN) 

501 F0RMATII4 / !8I10)) 
WRITE !6,502) !ITEMS!I), 1= 1,N) 

502 FORMAT!' ORIGINAL LIST' / !2X, 110)) 
C 
C IF THE NUMBER OF ITEMS IS ODD, THE MIDDLE ITEM STAYS IN PLACE 

DO 10 I 1 LN / 2 
CALL EXCHGE!ITEMS!I), ITEMS!N - I + 1)) 

10 CONTINUE 
WRITE !6,503) !ITEMS!I), I = 1,N) 

503 FORMAT!' INVERTED LIST'/ !2X, 110)) 
STOP 
END

C 
C VALUES OF TWO INTEGER VARIABLES ARE EXCHANGED 
C

SUBROUTINE EXCHGE!K, L) 
C 

IMPLICIT INTEGER !A-Z) 
TEMP = K 
K = L 
L = TEMP 
RETURN 
END
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A sample printout: 
original list 

50000 
4555 
2000 

123 
50 

9 
5 
0 

-47 
-300 

-12500
INVERTED LIST 

-12500 
-300 
-47 

0 
5 
9 

50 
123 

2000 
4555 

50000

When an array is passed as an argument, its dimensions have to be de­
clared (e.g., by a DIMENSION or a type statement) in both the calling 
program unit and in the subroutine. The size of the array that appears as 
the dummy argument may equal or be smaller than the size of the array 
which is the actual argument.

EXAMPLE 8-7
This main program:

REAL SCORES(IOO), MEAN, DEV

CALL STAT(SCORES, MEAN, DEV)

calls this subroutine:
SUBROUTINE STAT(RESLTS, MEAN, DEV) 
REAL RESLTS(IOO), MEAN, DEV

MEAN = . . , 
DEV = . . .

RETURN
END
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The subroutine, presumably, computes statistical information on a 
number of scores.

The size of the dummy array RESLTS could be smaller than 100, but 
not greater.

For multidimensional arrays, use can be made of the fact that the arrays are 
stored in a column order in memory (as described in Chapter 6-A-4) to “re­
structure” an array in the subroutine. Such usage leads to difficulty in locat­
ing errors and should be avoided. Thus, if fixed array dimensions are declared 
in both the calling and the called program unit, they should be the same ex­
cept, possibly, for arrays with a single dimension.

Significant flexibility may be attained in FORTRAN programming 
through the use of adjustable dimensions. An array in a subprogram is said 
to have adjustable dimensions if the array itself, as well as its dimensions, 
are passed to the subprogram as arguments. This means that in the subpro­
gram the array is declared with variable dimensions. Thus, the subprogram 
becomes general enough to manipulate arrays of any size.

The program unit that calls the subprogram using an array with adjust­
able dimensions (or another unit higher in the chain of calls) needs to speci­
fy fixed dimensions for the array that is the actual argument corresponding 
to the dummy array with adjustable dimensions. Also, the value of dimen­
sions passed should conform to the rule that the size of a dummy array may 
not exceed the size of the corresponding actual array.

EXAMPLE 8-8
Two matrices may be added if they have the same number of rows and 
the same number of columns. To add two integer matrices of any size, 
the following subroutine may be used:

C TWO INTEGER MATRICES, MAT1 AND MAT2, ARE ADDED
C TO OBTAIN A MATRIX MATRES

SUBROUTINE MATADD(MAT1, MAT2, MATRES, M, N)
C

INTEGER MAT1(M, N), MAT2(M, N), MATRES(M, N)
DO 20 I = 1, M

DO 10 J = 1, N
f MATRES(I, J) = MAT1(I, J) + MAT2(I, J)

10 CONTINUE
20 CONTINUE

RETURN 
END

This subroutine may be called by a program unit containing the fol­
lowing statements:
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INTEGER PURCH 1(200, 20). PURCH2(200, 20). PuRTOT(200, 20), 
+ SALES1(50, 100), SALES2(50, 100), SALTOT(50, 100)

CALL MATADD(PURCH1, PURCH2, PURTOT, 200, 20)

CALL M AT ADD( SALES 1, SALES2, SALTOT, 50, 100)

The example below illustrates a number of possibilities in argument pass­
ing.

EXAMPLE 8-9
The following is a legitimate subroutine call, provided that all the values 
necessary to compute the input arguments (marked I) are assigned be­
fore the CALL. Values of the output arguments (marked f) will be as­
signed by the subroutine.

INTEGER HIGH, LOW, COLLCT(50)

SUBROUTINE EVAL(X, Y,

CALL EVAL(5, 3*SQRT(FLOAT(LOW)). LOW, COLLCT, COLLCT(HIGH - LOW))

V, ASSEMB, Z)
INTEGER X, Y, V, Z, ASSEMB(50)

RETURN 
END

C. FUNCTIONS

The essential purpose of an external function (or, for short, a function) is to 
return to the invoking unit a single value that is assigned to the name of the 
function during its execution. If the function has to compute additional val­
ues, it is possible to pass them to the invoking program unit through out­
put arguments or common memory areas, as in the case of subroutines. In 
these cases, the use of a subroutine instead of a function is advisable, how­
ever.
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1. HOW TO DEFINE A FUNCTION
A function is a separate program unit composed of a FUNCTION state­
ment, followed by the body of the function, and terminated by an END 
statement. Thus, a function definition has the following general form

type FUNCTION function name (list of dummy arguments) 

optional optional

statements of the function, where a value is 
. assigned to the name of the function

RETURN
END

Since a value has to be assigned to the function name, this name (unlike 
practice with a subroutine) has to be of a definite type. Any legal FOR­
TRAN type may be specified or, alternatively (but not both!), the type of 
the function may be specified in a type statement in the function itself. 
With integer and real functions, it is also possible to use implicit specifica­
tions: if the function name starts with I through N, it is an integer function; 
otherwise the function is real. The function name is formed like any other 
symbolic name in FORTRAN.

EXAMPLE 8-10
These are three equivalent ways of specifying a real function:

REAL FUNCTION W0RK(X, M)

or
FUNCTION W0RK(X, M)
REAL WORK, . . .

or
FUNCTION W0RK(X, M)

The list of dummy arguments specifies the names by which the actual ar­
guments listed in the function reference (“call”) are known in the function 
itself.

> Most implementations of FORTRAN IV require that a function have at 
least one argument, so that a reference to it may be distinguished from a 
variable.

In FORTRAN 77, a function without arguments is denoted as follows 
(where type is optional):

type FUNCTION function name ( )

MODULAR PROGRAMMING IN FORTRAN 161



The type of all variables and arrays used by the function has to be speci­
fied in it, independent of the specifications in other program units. The ar­
ray dimensions must also be declared; in the case of arrays that are argu­
ments, variable dimensions may be specified and their values passed as 
arguments (see Section B-3 above). All variable and array names and la­
bels used in a function are local to it.

A value of the appropriate type has to be assigned to the function name 
before control returns to the program unit that invoked the function.

When a function execution is started, the function name has no value. In 
the function itself, this name is used simply as a variable name of the same 
type would be used.

EXAMPLE 8-11
A value may be assigned to an integer function BUSY as follows:

INTEGER FUNCTION BUSY(X, Y) 
REAL X, Y

READ », BUSY
IF (BUSY GT. 10) BUSY = IFIX(X + Y)

BUSY = 2 * BUSY - BUSY »*  2

RETURN
END

Note that the name of this integer function is used as a name of an in­
teger variable would be used.

The execution of a RETURN statement returns control to the invoking 
program unit. Several RETURN’S may be contained in a function body; the 
first encountered during the function execution returns control.

The END statement delimits the function.

> FORTRAN 77 does not require a RETURN statement before END; the 
old standard does. It is a good practice to include it.

2. HOW TO USE A FUNCTION
A function is used simply by reference to it, i.e., by placing: 

function name (list of actual arguments)

optional 
essentially anywhere, where a variable may be used to render a value of the 
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same type as this function. The type of a function (like the type of a varia­
ble) has to be specified explicitly or implicitly in the program unit that uses 
the function. To specify the type of the function explicitly, its name alone 
(without the arguments) has to be listed in an appropriate type statement.

Typically, functions are used in expressions, for example, on the right­
hand side of an assignment.

EXAMPLE 8-12
If we have defined a function

INTEGER FUNCTION BUSY(X, Y)

it may be, for example, referenced (invoked) as follows: *
LOAD = 25 ♦ BUSY(A, 27.3)

or WRITE (6, 507) BUSY(C, D)
or IF (BUSY(ARR( 10), 1.543) .GT. 1) GOTO 10

Note that X and Y are real variables, while the function BUSY itself 
is of integer type and has to be listed in an INTEGER statement in the 
program unit that uses this function:

INTEGER BUSY

The discussion of argument passing, i.e., the association of actual and 
dummy arguments, presented in Section B-3 of this chapter, applies to 
functions as well as subroutines. The essential goal of function use, however, 
is to obtain a single value that is assigned to the function name.

The use of functions with output arguments and, in general, the use of func­
tions to pass any values to the invoking program unit other than through the 
function name lowers the readability of the program, leads to obscure errors, 
and should be avoided.

To communicate with a function, common blocks may be used along with 
or instead of arguments (see Section D of this chapter).

The use of functions is illustrated by the following example.

EXAMPLE 8-13
Problem

Cubic roots of a collection of real numbers are to be calculated'with pre­
cision of IO'5.

Solution
A function CUBRT is designed to calculate the cubic roots with the use 
of the Newton-Raphson method: successive approximations to the root 
are computed until the desired precision is reached. The precision is de­
termined as the difference between two successive approximations.
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The computation formula for the cubic root of X is 
Rn+i= \(2R„ +£) 

J t\.n

where
Rn+X is the current approximation to the root value
Rn is the previous approximation

For computer computations, the first approximation is taken to be X 
itself:

R°=X

The pseudocode of the function CUBRT follows.
* SUCCESSIVE APPROXIMATIONS “NEXT” ARE COMPUTED TO THE
* CUBIC ROOT OF X USING PREVIOUS APPROXIMATION “CUBRT” 
Real Function CUBRT(X)
begin

Real X, NEXT;
♦ THE ORIGINAL VALUE IS THE FIRST APPROXIMATION

NEXT — X;
repeat

begin
CUBRT —NEXT;
NEXT — (2»CUBRT + X/CUBRT»»2)/3 

end
until | CUBRT - NEXT | <.000001;
CUBRT — NEXT

end

The program follows.

C PROGRAM. CUB1CS
C AUTHOR: DATE.
C
C CUBIC ROOTS ARE OBTAINED FOR A COLLECTION OF NUMBERS
C
C ROOTEE - NUMBER WHOSE ROOT IS NEEDED
C

IMPLICIT REAL (A-Z)
WRITE (6,501)

501 FORMAT(' CUBIC ROOT OF', 8X, 'IS')
C

10 READ (5,502,END = 20) ROOTEE
502 FCRMAT(F12. 5)

WRITE (6,503) ROOTEE, CUBRT<ROOTEE)
503 F0RMAT(3X, F12 5, 3X, F12 5)

GOTO 10
C

20 STOP
END

164 PROGRAMMING IN FORTRAN



CUBIC ROOTS ARE OBTAINED WITH PRECISION E-5 
USING NEWTON-RAPHSON METHOD

C 
C 
C
C

REAL FUNCTION CUBRT(X)
C

IMPLICIT REAL (A-Z)
C THE ORIGINAL VALUE SERVES AS THE FIRST APPROXIMATION 

NEXT = X
10 CONTINUE

CUBRT = NEXT
NEXT = <2. * CUBRT + X / CUBRT *•»  2) / 3.

IF <ABS(CUBRT - NEXT) .CT. .000001) GOTO 10
CUBRT = NEXT 
RETURN 
END

A sample output:

CUBIC ROOT OF IS
1 00000 1 00000

271. 2578? 6 47333
3.00000 1.44225

27. 00000 3. 00000

D. COMMUNICATION THROUGH COMMON BLOCKS

As discussed above in this chapter, independent program units may commu­
nicate by passing explicitly listed arguments. The alternative method of 
communication between program units is through common blocks: memory 
areas, accessible to more than one program unit in a given program. Thus, 
common blocks hold global data.

To establish such a shared memory area, a COMMON declaration is 
used. The types of common blocks may be established: blank common, a 
single unnamed area accessible to all program units where it is declared, 
and named common, an area bearing a name and also accessible only to 
those program units where it is declared. The entire program may have only 
a single blank common area, but a number of named common blocks, acces­
sible only to the modules with “the need to know.”

Common blocks may be used in preference to explicit parameter passing 
when a number of arguments are shared among several program units. 
Thus, long argument lists are avoided.

Common blocks should not be used needlessly instead of explicit argument 
passing. Their use may lead to errors difficult to locate.
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The data in named common blocks may be initialized by a DATA 
BLOCK subprogram (see Section F of this chapter); it is not possible to ini­
tialize data in the blank common block.

1. BLANK COMMON BLOCKS
Ordinarily, blank common blocks are used. The general format of the non­
executable COMMON statement, when used to establish the blank com­
mon block for the given program, is

COMMON list of variable and/or array names (or array declarators)

For example, these two statements together describe the common block in a 
certain program:

REAL X, Y(100, 50), W, Z
COMMON X, Y, W(21), Z

As a nonexecutable specification statement, this statement is placed be­
fore all the executable statements in the given program unit. For example, 
COMMON statements may be placed following the type and DIMEN­
SION statements.

An array declarator (i.e., the array name together with the parenthesized 
dimensions) may be placed either in the type statement, in the DIMEN­
SION statement, or in COMMON, but in not more than one place.

Preferably, place the array declarator in the appropriate type statement, for 
example,

INTEGER ARRAY(100)
COMMON ARRAY

or, if the type of the array is implicitly defined by its name, in the COMMON 
statement, for example,

COMMON ITEMS(25)

Different names may be used for the items listed in COMMON in var­
ious program units. The items are associated by positional correspondence. 
Thus, the types of items in the same relative position in various program 
units should be the same.

EXAMPLE 8-14

In the program with the structure shown in Fig. 8—6, the following com­
mon block may be declared.
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FIGURE 8-6.

main program: COMMON X, Y, Z( 100)
subroutine EFFORT: COMMON A, B, C( 100)
function WORK: COMMON E, F, G( 100)

Thus, the same array is called Z in the main program, C in the sub­
routine, and G in the function.

A common block constitutes a single area in memory, even though it is 
accessible to several program units. This method may be used along with 
explicit argument passing, but a dummy argument may not appear in a 
COMMON statement.

EXAMPLE 8-15
The following example illustrates simultaneous use of the two means of 
communication: argument passing and common blocks.

C THIS IS THE MAIN PROGRAM 
INTEGER IND, CLASS(10) 
REAL MARKS(50)
COMMON CLASS, MARKS, IND 
CALL EVAL(5)

STOP 
END 

C
SUBROUTINE EVAL(PERF) 
INTEGER PERF, JOB(IO), PAR 
REAL GRADES(50)
COMMON JOB, GRADES, PAR

RETURN 
END

MODULAR PROGRAMMING IN FORTRAN 167



The corresponding layout of the blank common block is shown here

name used in
main program CLASS MARKS IND

array of 
10 integers

array of
50 real numbers

an 
integer

name used in JOB GRADES PAR
subroutine EVAL

The fact that the blank common block is a single memory area has the 
following implications.

(1) The length of COMMON areas in various program units may differ; 
the positional correspondence has to be, however, maintained.

This means that only the item(s) appearing last in a COMMON 
statement may be dropped in certain program units where it is de­
sired.

EXAMPLE 8-16
Consider the program of Example 8-14. It would be legal to have the 
following declarations:

subroutine EFFORT: COMMON A, B
function WORK: COMMON E

Naturally, if such communication were wanted, it should be accom­
plished through explicit argument passing.

It would be illegal to have, for example, in subroutine EFFORT:
COMMON A, C(100)»

If conforming to the rule of positional correspondence creates 
problems, “artificial” variables/arrays of appropriate type may be 
provided in a COMMON declaration to “fill the gaps.”

(2) Restructuring of arrays in the common block is possible but should 
be treated with utmost care. For example, what is a two-dimensional 
array in one program unit may be considered a linear array in an­
other, once the FORTRAN memory allocation scheme for arrays is 
considered (see Chapter 6-A-4).

EXAMPLE 8-17

If all variables and arrays are of the same type, the following are legal 
declarations in a certain program:
Main program: COMMON K(3), L, M(2)
Subroutine: COMMON NT, N(2, 2)
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This memory layout results:
name used in
main program K(l) K(2) K(3) L M( 1) M(2)

name used in NT N(l, 1) N(2, 1) N(l, 2) N(2, 2) not accessible 
subroutine to subroutine

Note how error-prone is such usage.

(3) Entities in a blank common block may not be initialized by a DATA 
statement (or a BLOCK DATA subprogram).

(4) A blank common block exists throughout program execution. Once a 
program unit with an access to blank common stores a value there, 
any other unit with an access will find it there (unless it has been 
modified in the meantime).

(5) Several blank COMMON declarations may be provided in a pro­
gram unit; their effect is equivalent to having a single aggregate one.

EXAMPLE 8-18
When placed in the same program unit, these two declarations:

COMMON WIDTH( 10)
COMMON LENGTH

are equivalent to
COMMON WIDTH! 10), LENGTH

2. NAMED COMMON BLOCKS
A program may contain only a single blank common block that is shared by 
all program units with the corresponding COMMON declaration. If it is 
desired to have certain other data blocks shared by some, but not all, pro­
gram units, named common blocks are established (they are also called la­
beled common).

The general form of the COMMON statement, when used to establish 
named common blocks, is

COMMON/block name/common block list... /block name/common block list 

where a common block list consists of variable and/or array names (or ar­
ray declarators), separated by commas.

Each list enumerates the items located in the block whose name is en­
closed in slashes.

For readability, insert a couple of blanks before every “opening” slash.
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For example,
COMMON /DESCR/LENGTH(5), WEIGHT /AGE/CLASS( 10)

The rules of the use of the COMMON statement presented for the blank 
common in the preceding section apply.

The named common facility restricts access to parts of the overall com­
mon area to only those programs that need to use the data contained there­
in.

The same name of the common block has to be used in all program units 
that are sharing it, while the names used to refer to the variables and arrays 
located in the block may differ among these program units.

Along with the access to a named common block (or several such blocks), 
a program unit may have access to the blank common area of the program. 
A single COMMON statement may be used to establish access to both. In 
such a statement, if the blank common is listed first, its name is simply 
omitted; otherwise, the blank common is provided with a “blank name” of 
/ /. For example, the statements

COMMON ABC(10), LOC /DUES/X(5) /MEMB/A, B 
and

COMMON /DUES/X(5) //ABC(10), LOC /MEMB/A, B

declare the same common blocks, the blank common containing ABC(10), 
LOC.

Since a single blank common exists for the program, it may be declared 
only once in the given program unit.

EXAMPLE 8-19
We have a program with the structure shown in Fig. 8-7.
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In fulfillment of this structure the following COMMON statements will 
be contained in the program units:
Main program: COMMON a, B(1O) /BL1 /C(25) /BL2/D(50), E
Subroutine COMP: COMMON V, W( 10) /BL2/X(50), Y
Subroutine PLACE: COMMON Z /BL1/R(25) /BL3/P(15, 15)
Subroutine OBTAIN: COMMON /BL3/S( 15, 15)

Implicit variable and array types are assumed.
Each program unit may access only the common blocks declared in it.

The access map is shown in Table 8-2.

TABLE 8-2. Access map to common blocks and names used for the variables 
and arrays located in them

BLANK COMMON NAMED COMMON BLOCKS

program unit BL1 BL2 BL3

Main program A, B(10) C(25) D(50), E no access
Subroutine COMP V, W(10) no access X(50), Y no access
Subroutine PLACE Z R(25) no access P(15, 15)
Subroutine OBTAIN no access no access no access S(15, 15)

The following rules apply to every named common block.

(1) The rule of positional correspondence within each block applies as in 
the blank common.

(2) The length of every named common block bearing the same name 
must be the same in every program unit (note that this distinguishes 
the named common from the blank common).

(3) The values of the entities in a named common block may be initia­
lized with a BLOCK DATA subprogram (see Section F). This can­
not be done for a blank common block.

(4) A named common block exists only throughout the execution of the 
program unit where it is declared.

If it happens to be declared in the main program (as BL1 or BL2 in Ex­
ample 8-19), it exists throughout the execution of the entire program and 
thus behaves in this respect like a blank common (see the section above). If, 
however, it is declared in a subprogram, it is established when the first sub­
program with such a declaration is entered and destroyed when the return 
from this subprogram occurs. It exists, however, in all the subprograms in­
voked by the given one, where it is declared. For example, block BL3 in Ex­
ample 8-19 exists only during the execution of the subroutine PLACE 
(which includes the execution of the subroutine OBTAIN). Had it been also 
declared in the subroutine COMP, no values could have been transmitted in 
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it to the subroutine PLACE, since it would have been destroyed after the re­
turn from either of these subroutines to the main program.

O In FORTRAN 77, the contents of a named common block area may be pre­
served with a SAVE statement (such discussion is beyond our scope here) <]

E. EXAMPLE WITH APPLICATION OF BINARY SEARCH

This section presents an example of the design and documentation of a larg­
er modular program.

EXAMPLE 8-20
Problem

A program for periodical maintenance of a payroll file is to be produced.
The maintenance program is not to produce payroll; its task is to up­

date the payroll file by introducing into it the changes that have taken 
place during the week, so that the payroll may be produced subsequent­
ly. Relatively few such changes are to be expected.

A simple program is desired, even at a cost of certain execution time 
inefficiencies. To provide for future extensions to the system, a highly 
modular system is to be designed.

System Analysis
The payroll file will consist of employee records, placed one to a card. 
Each record will contain the following fields (data items):
SOCSEC—employee Social Security number
RATE—hourly wage rate
HOURS—number of hours worked
DEDUCT—number of tax deductions

The file is ordered (sorted) in the ascending order of SOCSEC. This 
field, which uniquely identifies a record, is the key of the file.

Records of the payroll file, called further master records, will have the 
make-up shown:

name of field SOCSEC RATE HOURS DEDUCT

FORMAT HO F10.2 F10.2 110
descriptor

Note the selection of a uniform field width of 10: this simplifies man­
ual processing of cards.

The changes to be made during the updating of a master file are col­
lected in the transaction file, whose records are accumulated between the 
update runs. There are three kinds of transaction records: Modify 
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(“hourly rate went up” or “employee worked 4 hours fewer than usual”), 
Delete (“employee was separated”), and Insert (“new employee was 
hired”).

A transaction file also contains a single record per card. The nature of 
the transaction is distinguished by the ID field of the record. The trans­
action file, composed of transaction records, is not sorted.

Transaction records have the make-up shown.
(a) Modify:
name KEY ID TRRATE TRHRS TRDED FIELD

1 1/2/3

descriptor
(b) Delete:

no no F10.2 F10.2 no 110

name KEY ID -

2

descriptor
(c) Insert:

no no

name KEY ID TRRATE TRHRS TRDED

3

descriptor no no F10.2 F10.2 no

In the case of the Modify transaction, the field to be modified is iden­
tified by FIELD (e.g., if FIELD = 2, the new value of HOURS is giv­
en). Thus, if two fields of a master record are to be modified (deemed to 
be rare), two transaction records are presented. The SOCSEC cannot be 
modified.

The other transaction record fields correspond to the master record 
fields as follows:

KEY <----- » SOCSEC
TRRATE «----- ♦ RATE

TRHRS ♦-----♦ HOURS
TRDED •----- ► DEDUCT

ALGORITHM. INITIAL FORM
Due to the small number of transaction records and the desire to keep 
the program simple, the transaction file will not be sorted. This calls for 
the following algorithm.
♦Maintenance of sorted master file
begin

Input master file;
Process all transactions against master file;
Output new master file

end
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ALGORITHM. FIRST REFINEMENT
♦Maintenance of sorted master file
begin

Input master file;
♦Process all transactions against master file

while there are more transactions do
begin

Input next transaction;
Search for the master record with the key 

specified by the transaction;
if transaction is Modify then 

Modify master record 
else

if transaction is Delete then
Delete master record

else
♦transaction is Insert *
Insert new master record

end;
Output new master file 

end

At this point the need for five modules has been identified: The main 
program (to read in transactions), and Search, Delete, Insert, and Modi­
fy modules. The dependence among these is shown in the structure chart 
(see Fig. 8-9, where the Search module is called BINSRC as the result 
of further analysis).

We conclude that a search algorithm is needed to find the position in 
the file of a master record identified by its key. Since the master file is 
sorted, binary search may be employed, as explained below.

BINARY SEARCH
The purpose of a search is to locate in a file a record identified by its key.

If there is no dependence between the position of a record in the file 
and the value of its key, then there is no alternative to a sequential 
search: starting with the first record, the keys of the records in the file 
are compared with the given key until the needed record is found (or un­
til the end of the file is reached without the record having been found).

Sequential search is inherently slow; a successful search requires on 
the average N/2 comparisons in a file holding N records.

Much faster is the binary search, applicable exclusively to files sorted 
on the key used in the search. Binary search resembles a procedure we 
would use to look up a word in an unfamiliar dictionary. Let us assume 
the file is sorted in ascending order. First, the middle of the file is 
checked: if our look-up key is smaller than that in the middle of the file, 
the search has to continue in the first half of the file; if our key is larger 
than the middle one, the search will be confined to the second half of the 
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file. We then search the selected half in the same way by checking its 
middle record, etc. The search is completed when our key equals the one 
of the file record.

Binary search requires, on the average, about log2 N comparisons to 
find a record in a file of N records; it is thus much faster than sequential 

. search.
The following is the pseudocode of the search routine.

•Binary search:
*A file consisting of N records,
•with the keys KEY(I), is searched for the key GIVEN.
•The value of INDEX is the position of the record with this
• key in the file; if INDEX = 0, the file does not contain such a record.

Subroutine BINARY(KEY, N, GIVEN, INDEX)
begin

Integer N, KEY(I), GIVEN, INDEX, LOW, HIGH;
LOW <— 1; * the lowest position in the subfile being searched *
HIGH «— N; * the highest position in the subfile being searched *

* The position INDEX of the record with the key GIVEN in
* the file is determined
SRC: while LOW < HIGH do

begin
INDEX (LOW + HIGH) -r 2; * integer division*
if GIVEN < KEY(INDEX) then

HIGH «- INDEX - 1 • look in the first half*
else

if GIVEN > KEY(INDEX) then
LOW «— INDEX + 1 *look  in the second half*

else
exit SRC ‘found*

* value of INDEX is returned
end;

if LOW > HIGH then *not  found*
INDEX — 0

else
end

Note that exit statement causes the transfer of control past the construct 
bearing the label indicated, that means, in our case, past the entire 
while-do construct.

The use of this subroutine is illustrated, with the following list of steps 
during binary search for N = 9, GIVEN = 300.

MODULAR PROGRAMMING IN FORTRAN 175



BEFORE FIRST 
COMPARISON

BEFORE SECOND 
COMPARISON

BEFORE THIRD 
COMPARISON

—LOW
' 5 ' 5 5

21 21 21
73 73 73

124 124 124
INDEX—* 241 241 241

300 ' 300 ' —J300 ;
450 — 450 450
™^^HIGH 701 701

U-715_| 715
LOW = 1 LOW = 6 LOW = 6

HIGH = 9 HIGH = 9 HIGH = 6
11+91INDEX = |-Lyr|= 5 INDEX = |^| = 7 INDEX = ^-^]= 6

^integer 
part of •-

This subroutine will be adapted for use in our payroll system.

ALGORITHM. FINAL REFINEMENT
The interfaces between the modules (i.e., arguments and global blocks) 
are more precisely specified in the interface table to follow. Common 
blocks are denoted with Global statements.
* Maintenance of sorted master file for payroll application 
begin

Integer N, GIVEN, INDEX;
Global MASTER(I); * records of master file *

* Input master file
N<— 0; * N — number of records in master file*
while there are more master records do

begin
Input next master record;
N<—N + 1

end;
* Process all transactions against master file

while there are more transactions do
begin

Input next transaction (its key is GIVEN);
* Find the position (INDEX) of the master record with key GIVEN;
* if no such record exists, INDEX is the position of the
* immediate preceding record

Call BINSRC(N, GIVEN, INDEX);
if transaction is Modify then

Call MODIFY(INDEX, transaction record)
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else
if transaction is Delete then

begin
Call DELETE(INDEX, N), N — N - 1 

end
else * transaction is Insert *

begin
Call INSERT(INDEX, new record, N); N «—N 4-1 

end
end;

* Output new master file
while N > 0 do

begin
Output next master record; N — N - 1

end
end
* The position (INDEX) of the record with the key GIVEN in
* the file MASTER with key SOCSEC is determined.
* If the record is not found, INDEX is the position of the
* record with the immediate smaller key.
Subroutine BINSRC(N, GIVEN, INDEX)
begin

Integer N, GIVEN, INDEX;
Global MASTER(I); ’every record contains a field SOCSEC(I) *
LOW — 1;
HIGH — N;

SRC: while LOW «£ HIGH do
begin

INDEX — (LOW 4- HIGH) -e- 2;
if GIVEN < SOCSEC(INDEX) then

HIGH — INDEX - 1 
else

if GIVEN > SOCSEC(INDEX) then
LOW — INDEX 4- 1

else
exit SRC

end;
* If search is unsuccessful, INDEX is to be the position of
* the record with the immediate smaller key

if LOW > HIGH then
INDEX *— HIGH * check that this is so! *

else
end
* A master record is modified
Subroutine MODIFY(INDEX, transaction record)

• begin
Integer INDEX;
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Global MASTER(l);
appropriate field of MASTER(INDEX) «- new value from 

transaction record 
end 
* A master record is deleted 
Subroutine DELETE(INDEX, N) 
begin

Integer INDEX, N;
Global MASTER(I);

* Move down the records following the position INDEX
I — INDEX;
while I < N do 

begin
MASTER(I) MASTER(I + 1); I •— I + 1 

end 
end
* A master record is inserted following the record in the position INDEX 
Subroutine INSERT(INDEX, new record, N) 
begin

Integer INDEX;
Global MASTER(I);

* Make space for new record by moving up the records that 
* will follow it

I’-N;
while I > INDEX + 1 do

begin
MASTER(I + 1) — MASTER(I); I *—I - 1 

end;
* Place the new record

MASTERfINDEX + I) <— new record 
end

Note that the subroutines DELETE and INSERT call for a large 
amount of data movement. This is warranted if few transactions are to 
be processed and a simple system is desired.

In a more elaborate system, the transaction file would be sorted before 
the updating run. Instead of reading in the master file fully before the 
run, it would have been read in incrementally as needed to process the 
transactions. Simultaneously, the new master would be created on the 
output device.

REPRESENTATION OF RECORDS IN FORTRAN
Records (nodes), i.e., data structures consisting of fields with their own 
names, are represented in FORTRAN as a set of arrays, with each array 
representing a single field.

Thus, the representation of our master file in FORTRAN is as shown 
in Fig. 8-8.
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INDEX

array names 
SOCSEC RATE HOURS DEDUCT

allocated)

FIGURE 8-8. A record representation in FORTRAN

As can be seen from Fig. 8-8, a single record consists of the ordered 
set of array elements with the same subscript values in their respective 
arrays.

STRUCTURE CHART AND INTERFACE TABLE
Our program (such larger programs are often called systems) is further 
described by its structure chart, which shows the dependence between 
the modules (program units) and the interface table that specifies the 
data items passed as arguments and stored in global (common) areas.

A structure chart of the program is shown in Figure 8-9.

FIGURE 8-9. Structure chart
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The interface table (Table 8-3) refers to the interfaces as numbered in 
the structure chart. The names of the actual arguments are given.

TABLE 8-3. Interface table

INTERFACE 
NUMBER

INPUT 
ARGUMENTS

OUTPUT 
ARGUMENTS

ACCESS TO 
COMMON BLOCKS

1 KEY, N INDEX, FOUND /IDENT/, /ATTRIB/
2 INDEX, TRRATE, /ATTRIB/

TRHRS, TRDED, FIELD

3 INDEX, N /IDENT/, /ATTRIB/

4 INDEX, N, KEY, 
TRRATE, TRHRS, 

TRDED

/IDENT/, /ATTRIB/

Common blocks: /IDENT/SOCSEC
/ATTRIB/RATE, HOURS, DEDUCT

FORTRAN PROGRAM
The following is the FORTRAN implementation of the payroll mainte­
nance program. The program is documented by its own text, the pseudo­
code, the structure chart, and the interface table.

Note that certain error-checking facilities have been included.

C PROGRAM: PAYROLL
c AUTHOR: DATE:
C
C PAYROLL FILE LOCATED ON CARDS IS MAINTAINED 
C
C N - NUMBER OF MASTER RECORDS
C SOCSEC - SOCIAL SECURITY NUMBER - KEY
C RATE - HOURLY WAGE RATE - TRRATE
C HOURS - HOURS WORKED - TRHRS
C DEDUCT - NUMBER OF TAX DEDUCTIONS - TRDED
C ID - TRANSACTION ID
C INDEX - POSITION OF RECORD AFFECTED BY TRANSACTION
C FIELD - TO BE MODIFIED
C FOUND - IS THE RECORD IN FILE?
C
C 

INTEGER KEY, ID. TRDED, FIELD, INDEX, N, 
+ SOCSEC(500), DEDUCT(500)

REAL TRRATE, TRHRS, RATE(500), H0URS(500)
COMMON /IDENT/SOCSEC /ATTRIB/RATE,HOURS,DEDUCT

C
C INPUT MASTER FILE 

N = 0
10 CONTINUE 

N - H + 1 
READ (5,501) SOCSEC(N), RATE(N), HOURS(N), DEDUCT(N) 

501 FORMATdlO, 2F10. 2, 110)
IF (SOCSEC(N) NE. 0) GOTO 10 
N = N - 1
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c 
c 
c

OBTAIN AND PROCESS NEXT TRANSACTION

20 CONTINUE
READ (5,502,END=70) KEY, ID, TRRATE, TRHRS,TRDED, 

+ FIELD
502 F0RMAT!2I10, 2F10. 2, 2110)

WRITE (6,502) KEY, ID. TRRATE, TRHRS, TRDED,

c 
c 
c

+ FIELD

FIND THE CORRESPONDING MASTER RECORD

c CALL BINSRCCKEY, N, INDEX, FOUND)

c 
c

GOTO (30,40,50), ID

NO SUCH TRANSACTION 
PRINT *,  'ERRONEOUS TRANSACTION CODE', KEY

c 
c

GOTO 60 .

RECORD IS TO BE MODIFIED
30 CONTINUE

IF (.NOT. FOUND) THEN 
PRINT *,  'ATTEMPT TO MODIFY NONEXISTENT', 

+ ' RECORD', KEY
GOTO 60 

END IF 
CALL MODIFY!INDEX, TRRATE, TRHRS, TRDED, FIELD)

c 
c

GOTO 60

RECORD IS TO BE DELETED
40 CONTINUE

IF (.NOT. FOUND) THEN 
PRINT ■*,  'ATTEMPT TO DELETE NONEXISTENT', 

+ ' RECORD', KEY
GOTO 60 

END IF 
CALL DELETE!INDEX, N) 
N = N - 1

c 
c

GOTO 60

RECORD IS TO BE INSERTED
50 CONTINUE

IF (FOUND) THEN 
PRINT 'ATTEMPT TO INSERT RECORD WITH',

' DUPLICATE KEY', KEY
GOTO 60

END IF
CALL INSERT! INDEX, bl, KEY, TRRATE,

+ TRHRS, TRDED)
N = N + 1

60 CONTINUE
GOTO 20

70 CONTINUE
c 
c
c 
c

OUTPUT NEW MASTER FILE
(IT IS ASSUMED THAT '2' IS THE DEVICE CODE
OF THE CARD PUNCH)
WRITE (2,501) (SOCSEC(I), RATE(I), HOURS!I),

+ DEDUCT!I), 1=1,N)
STOP
END
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C POSITION (INDEX) OF RECORD WITH THE KEY 'GIVEN'
C IS DETERMINED. IF SUCH RECORD IS NOT FOUND,INDEX
C IS THE POSITION OF THE PRECEDING RECORD 
C

SUBROUTINE BINSRC(GIVEN, N, INDEX, FOUND)
C
C BINARY SEARCH TECHNIQUE IS USED
C INPUT ARGUMENTS;
C GIVEN - KEY SEARCHED FOR
C N - NUMBER OF RECORDS IN FILE
C OU I PUT ARGUMENTS:
C INDEX - OF THF GIVEN (IF FOUND) OR PRECEDING RECORD
C FOUND - HAS THE RECORD BEEN FOUND?
C OTHER VARIABLES:
C SOCSEC(I) - FILE KEY
C LOW, HIGH - THE LOWEST ANO THE HIGHEST INDEX CONSIDERED 
C

IMPLICIT INTEGER (A-Z) 
LOGICAL FOUND 
COMMON /IDENT/SOCSEC(500)

C
LOW = 1 
HIGH = N

C BY HALVING THE SUBFILE SEARCHED. LOOK FOR THE 'GIVEN' 
10 IF (LOW CT. HIGH) GOTO 20

INDEX = (LOW + HIGH)/2
IF (GIVEN LT SCCSEC(INDEX)) HIGH = INDEX - 1
IF (GIVEN GT. SCOSEC(INDEX)) LOW = INDEX + 1
IF (GIVEN .EQ.
GOTO 10

SCCSEC(INDEX)) GOTO 20

20 CONTINUE 
C 
C DETERMINE WHETHER SEARCH WAS SUCCESSFUL; IF NOT, 
C OBTAIN POSITION OF THE PRECEDING RECORD

IF (LOW.LE.HIGH) THEN 
FOUND = .TRUE.

ELSE 
FOUND = .FALSE. 
INDEX = HIGH 

END IF 
RETURN 
END 

C 
C MODIFY A RECORD

SUBROUTINE MODIFY(INDEX, NEWRAT, NEWHRS, NEWDED, FIELD) 
C 
C INPUT ARGUMENTS:
C INDEX - OF TH:- RECORD TO BE MODIFIED 
C FIELD - TO EE MODIFIED 
C NEWRAT, NEWHRS, NEWDED - NEW VALUES OF DATA ITEMS 
C

INTEGER INDEX, FIELD, NEWDED
REAL NEWRAT, NEWHRS, RATE(SOO), HOURS(500), DEDUCT(500)
COMMON /ATTRIB/RATE, HOURS, DEDUCT 

C
GOTO (10,20,30), FIELD

10 RATE(INDEX) = NEWRAT 
RETURN
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20 CONTINUE 
HOURS<INDEX) = NEWHRS 
RETURN

30 CONTINUE 
DEDUCT(INDEX) = NEWDED 

RETURN 
END 

C 
C DELETE A RECORD 
C 

SUBROUTINE DELETE(INDEX, N) 
C 
C INPUT ARGUMENTS:
C INDEX - OF RECORD TO BE DELETED 
C N - NUMBER OF RECORDS IN FILE 
C

INTEGER INDEX, N, S0CSEC(500), DEDUCT(500> 
REAL RATE(500), HOURS(500) 
COMMON /IDENT/SOCSEC /ATTRIE/RATE, HOURS, DEDUCT 

C 
C MOVE RECORDS DOWN 

DO 10 I = INDEX, N - 1 
SOCSEC(I) = SOCSEC(1+1) 
RATE(I) = RATE(1+1) 
HCURS(I) = HOURS(1+1) 
DEDUCT(I) = DEDUCT(I+1) 

10 CONTINUE 
RETURN 
END 

C 
C INSERT A RECORD 
C 

SUBROUTINE INSERT(INDEX, N, NEWSS, NEWRAT, NEWHRS, NEWDED) 
C 
C INPUT ARGUMENTS: ,
C INDEX - OF THE RECORD PRECEDING THE ONE TO BE INSERTED 
C N - NUMBER OF RECORDS IN FILE 
C NEWSS, NEWRAT, NEWHRS, NEWDED - FIELDS OF NEW RECORD 
C 

INTEGER INDEX, N, NEWSS, NEWDED, SOCSEC(500), DEDUCT(500) 
REAL NEWRAT, NEWHRS. RATE(500), HOURS(500) 
COMMON /IDENT/SOCSEC /ATTRIB/RATE, HOURS, DEDUCT 

C 
C MOVE RECORDS TO FOLLOW THE HEW ONE UP 

DO 10 I = N, INDEX+1, -1 
SOCSEC(1+1) = SOCSEC(I) 
RATEU + l) = RATE(I) 
HOURS(I+1) = HOURS(I) 
DEDUCT(I+1) = DEDUCT(I) 

10 CONTINUE 
C 
C INSERT NEW RECORD 

SOCSEC(INDEX+1) = NEWSS 
RATE(INDEX+1) = NEWRAT 
HOURS(INDEX+1) = NEWHRS 
DEDUCT(INDEX+1) ■ NEWDED 
RETURN 
END
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When these transactions were processed.

187610002
334566780
403400000
800000000

1
0 00
8 50

0 00
0 00

40. 00
0. 00

0
0

0

1
0
0
0

against 135467452 12. 50 36. CO 2

this 187610002 9 50 45. 25 4
334566780 10 00 36. COold master 404890324 10. 00 40. CO 1

file, 412389730 10. 50 42. 50 5
this error 0 0 00 0 00 0

-> ATTEMPT TO DELETE NONEXISTENT RECORD 800000000message 135467452 12. 50 36. CO
and this 187610002 13 00 45. 25 4
new master 403400000 8 50 40. CO cl

404890324 10. 00 40. CO 1
412389730 10. 50 42. 50 5

were generated.

F. BLOCK DATA SUBPROGRAMS

To initialize variables and arrays in a named common block, a separate pro­
gram unit, called BLOCK DATA, has to be used. (Data in blank common 
blocks cannot be initialized.) This subprogram has the following general 
form:

BLOCK DATA
nonexecutable statements such as: type statements

DIMENSION
COMMON
EQUIVALENCE

DATA statement(s)
END

Note the absence of RETURN statement.

O FORTRAN 77 permits the naming of this subprogram, e.g., BLOCK 
DATA VALUES, and thus the use of several such subprograms with differ­
ent names in a single program (but no more than one without a name).

This subprogram, consisting entirely of nonexecutable statements, is pro­
cessed independently during the program translation.

One BLOCK DATA statement may serve to initialize data in several 
named common blocks. A named common block has to be specified fully in 
a BLOCK DATA subprogram, even when this subprogram is used to initia­
lize only some of its entities.
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A BLOCK DATA subprogram always includes a DATA statement that 
actually initializes the data (see Chapter 6—B). Other statements in the sub­
program are the specification statements needed to describe the type of the 
entities and to declare the dimensions of the arrays.

EXAMPLE 8-21

This subroutine uses the named common block PERF:
SUBROUTINE WORK(X, Y)
REAL GRADES(20), VALUE, X, Y
COMMON/PERF/GRADES(20), VALUE, Z

RETURN
END

This BLOCK DATA subprogram, enclosed with the subroutine 
WORK, initializes GRADES and Z:

BLOCK DATA
REAL GRADES(20), VALUE, Z
COMMON /PERF/GRADES(20), VALUE, Z
DATA GRADES/20*!/,  Z/17./
END

G. MULTIPLE ENTRY AND RETURN POINTS (FORTRAN 77)

Multiple entry points in a subprogram and multiple return points in a call­
ing program are features available only in the new standard, FORTRAN 
77.

1. MULTIPLE ENTRIES TO A SUBPROGRAM
A subprogram (function or subroutine) is usually executed beginning with 
the first executable statement in its text. However, ENTRY statement(s) 
may be placed in the subprogram to provide one or more alternative entry 
points. The ENTRY statement has the following general form:

ENTRY entry point name (list of dummy arguments)

when present

For example,
ENTRY HERE(X1, X2)

The execution of the subprogram begins with the ENTRY statement 
named in the invocation and proceeds until a RETURN or the END state­
ment is reached.

The list of dummy arguments of an ENTRY statement may be wholly 
different from the list stated in the SUBROUTINE or the FUNCTION 
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statement of the subprogram This list has to agree, however, with the list of 
actual arguments in the invocation (call).

If an ENTRY statement is placed in a subrotine, it is treated like a SUB­
ROUTINE statement (see Section B-l of this chapter); in an external 
function it is treated like a FUNCTION statement (see Section C-l of this 
chapter).

Every ENTRY statement defines, as it were, a separate subprogram as a 
part of the body of another subprogram.

EXAMPLE 8-22
A correspondence between entry points and calls for two program units 
is shown in Fig. 8-10.

PROGRAM USE SUBROUTINE COMPUT (X, Y,

END

Z)

FIGURE 8-10.

An ENTRY statement may not be placed within a DO loop or an IF- 
THEN-(ELSEIF)-ENDIF construct. ,

2. MULTIPLE RETURNS TO A CALLING PROGRAM UNIT
When a RETURN statement in a subroutine is executed, control passes to 
the statement following the CALL. In FORTRAN 77, alternate return 
points from a subroutine (never a function) may be specified as follows:

(1) In the CALL statement, the return points are listed as labels of state­
ments in the calling program, each label preceded by an asterisk, for 
example,

CALL WORK(X, Y, *100,  *240)

These labels indicate first, second, etc., return points.
(2) In the subroutine

(a) the SUBROUTINE statement contains asterisks in positions 
corresponding to the alternate return points listed in the actual 
argument list; for example,

SUBROUTINE WORK(A, B, ♦, *)
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(b) the RETURN statements are numbered, with the number indi­
cating the desired return point; for example,

RETURN 2

If this statement is encountered during the execution of our subroutine 
WORK, control will return to the statement with label 240 in the calling 
program.

EXAMPLE 8-23

In these two program units, the execution of the RETURN statements 
shown would cause the transfer of control to the indicated statements in 
the calling program.

PROGRAM FIGURE SUBROUTINE OBTAIN(M, N, », *, *)

H. STATEMENT FUNCTIONS

If a certain expression is to be used several times in a given program unit, 
albeit with different variables and/or array elements, a statement function 
consisting of a single assignment statement may be defined to compute its 
value.

Since a statement function is used to compute a value of a single expres­
sion, it resembles an assignment statement. The statement that defines the 
statement function is placed within the program unit where the function is 
to be used; the function is undefined in other program units.

The use of a statement function is similar to that of an external or an in­
trinsic function; i.e., a function is invoked simply by reference to it.

The usefulness of this feature is quite limited.
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1. HOW TO DEFINE A STATEMENT FUNCTION
A statement function is defined by a single statement of the following form: 

statement function name (list of dummy arguments) = expression

optional

For example,
VARIAN(AV, VAL) = (X - AV) ♦♦ 2 / VAL

The following explains the definition of a statement function.

(1) The statement is to be placed after all nonexecutable specification 
statements in the program unit (i.e., after type, DIMENSION, etc., 
statements) and before the first executable statement.

Surround this statement with comments; it is easy to miss when reading the 
program.

(2) The statement function is defined only in the program unit where the 
statement is located.

(3) The value of the function is assigned to its name; hence the type of 
this name has to be specified explicitly or implicitly.

(4) Dummy arguments ought always to be variable names; they serve 
as place-holders for the actual arguments that are passed to the 
statement function. Thus they are not known elsewhere in the pro­
gram unit. Even if there are no dummy arguments, the parentheses 
stay: ( ).

(5) The expression is evaluated in the usual fashion, with the actual ar­
guments substituted for the dummy ones.

> FORTRAN IV disallows the use of array elements in the expression; this 
limitation has been dropped in FORTRAN 77.

All other values needed to evaluate the expression are obtained at the 
point of reference. For example, when the function VARIAN above is used, 
the values of AV and VAL will be passed as arguments, but the value of 
variable X will be obtained as usual.

2. HOW TO USE A STATEMENT FUNCTION
A statement function is used, like any other function, by placing 

statement function name (list of actual arguments)

optional
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essentially anywhere where a variable of the same type may be used to ob­
tain a value.

When such use is made, the actual arguments (which may be, for exam­
ple, expressions) are evaluated if needed and substituted for the dummy ar­
guments in corresponding positions. Then the function is evaluated at the 
point of reference, and the obtained value is substituted for it. Thus, the 
usual correspondence between the actual and the dummy argument list in 
type and number of arguments should be maintained.

EXAMPLE 8-24
A program unit may include the following statements:

REAL A, B, C, V, W, X, Y, Z
C FUNCTION DISCR COMPUTES THE DISCRIMINANT OF A QUADRATIC
C EQUATION

DISCR(A, 8, C) = B *»  2 - 4. ♦ A * C
C

IF (DISCR(X, Y, Z) .LT. 0) GOTO 10

V = 2. + SQRT(DISCR(2., V, W))
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PROCESSING OF CHARACTER 
STRINGS AND LOGICAL DATA

FORTRAN was initially developed to express algorithms for numerical 
data processing. Thus, its facilities for the manipulation of character strings 
or, in other words, text, were originally rudimentary.

FORTRAN IV and other systems conforming to the previous standard 
do not provide explicit facilities for string processing. It is, however, possible 
to manipulate character strings by storing them in arrays of other data 
types, usually in integer arrays.

With the passage of time, computers have been increasingly called upon 
to process symbolic information such as printed text. The need has arisen to 
expand FORTRAN in this direction.

FORTRAN 77, the new standard, provides character data as a distinct 
data type, together with facilities for their manipulation. In this, the new 
standard follows the WATFIV modification of old FORTRAN; this is also 
the most significant expansion of the language by the new standard.

In the present chapter, both character processing in systems resembling 
FORTRAN IV and that in FORTRAN 77 systems are discussed. While 
for the sake of program portability the new standard allows for text process­
ing using the indirect techniques presented in Section A, programs written 
in FORTRAN 77 ought to employ explicit CHARACTER type data, 
which practice promotes clarity and succinctness.

Logical data may be manipulated in FORTRAN as a distinct data type. 
This type of data, with only two possible values—.TRUE, and .FALSE.— 
leads to simpler algorithms and processing efficiencies in certain applica­
tions.

A. PROCESSING OF CHARACTER STRINGS AS DATA OF
OTHER TYPES (FORTRAN IV)

In the FORTRAN implementations that follow the old (1966) standard, 
and thus in FORTRAN IV, there is no provision for explicit processing of 
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text through the use of a distinct data type.
Thus, characters are stored as so-called Hollerith constants in locations 

corresponding to integer, real, or logical variables and arrays. It is most 
convenient, and thus generally practiced, to store character strings in inte­
ger variables and arrays. Usual arithmetic operations are, of course, mean­
ingless in the case of such entities. To manipulate these entities, we may as­
sign the value of one character-valued entity to another one, or use a 
comparison in a logical IF statement.

1. PRINTING OF FIXED TEXT
To print a fixed text, it is included in a FORMAT statement with an H edit 
descriptor, as discussed in Chapter 5-1; for example,

WRITE (6,514)
514 FORMAT(10X, 11HTEMPERATURE)

The string of the form

nHhh ... h
n characters

is known as a Hollerith constant.

Most pre-FORTRAN-77 compilers allow Hollerith constants to be pre­
sented instead in single quotes, e.g.,

514 FORMAT(10X, 'TEMPERATURE')

This option should be used if available.

2. HOW TO HANDLE VARIABLE CHARACTER DATA
Since FORTRAN IV does not provide character data as a distinct data 
type, character strings have to be stored in variables and arrays of integer, 
real, or logical type. Usually, integer variables and arrays are employed for 
this purpose. Thus, a variable or an array of integer type is assigned Holler­
ith (i.e., character) data. This may occur as the result of:

(1) initialization with a DATA statement, for example,
DATA NAME/4HJOHN/

(2) input/output with the use of an A edit descriptor (see Section 4 be­
low);

(3) assignment of the value of another integer variable holding character 
data (note that assignment of a numerical value to a variable holding 
characters does not make sense);

(4) passing of a Hollerith constant as an actual argument through a call 
to a subroutine whose corresponding dummy argument is of the inte­
ger type.

PROCESSING OF CHARACTER STRINGS & LOGICAL DATA 191



It is the programmer’s responsibility to remember which entities hold 
character data and to manipulate them accordingly.

3. HOW CHARACTERS ARE STORED IN MEMORY
Characters are represented in computer memory with the use of character 
codes. Expressed in such a code, a single character occupies seven or eight 
bits of storage (for example, in one of the two most popular codes, the char­
acter “A” reads 11000001).

The number of bits in a single memory location depends on the computer 
model. Very frequently this number is 16 (in the case of most minicom­
puters) or 32 (in the case of many large machines, such as IBM 360-370 
mainframes).

If we assume an eight-bit character code, a single location may thus store 
up to two or four characters (in general, one to ten characters are stored in 
a location by various computer models). Whenever the number of charac­
ters stored in such a location is smaller than this maximum, the characters 
are placed on the left, and the rest of the location is filled with the code im­
age of a blank (space), which is one of the characters, of course.

A memory location may be given a name in the program and thus become 
a variable or an array element. Its contents may be accordingly obtained or 
modified. As discussed in the previous section, to store character data we 
usually set up integer variables and arrays. If the string to be stored fits into 
a single location, a variable may be used to hold it; longer strings are stored 
in one-dimensional arrays (see next section).

EXAMPLE 9-1

Assuming that our computer stores four characters per location and that 
the value of the variable NAME is JOHN, we have:

NAME

J o H N

where the entire box represents symbolically the contents of a single 
memory location.

If the value of the array element NAMES(5) is JOE, we have
NAMES (5)

J O E □ *-
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4. INPUT AND OUTPUT OF CHARACTER STRINGS
To read in or to write variable character data, the A edit descriptor of the 
general form

Aw

is used in a FORMAT statement (see Chapter 5 for the discussion of for­
matted input/output).

The field width w here is the number of characters being read in or writ­
ten out.

As described in the previous section, a single memory location of a given 
computer, corresponding to a single variable or array element, may hold a 
fixed number n of characters.

The following rules hold:

(1) If w » n, all w characters are placed into the variable during input or 
written out from it during output.

(2) If w < n
(a) during input, the characters are placed in the leftmost w posi­

tions of the variable, with the remaining (n - w) positions filled 
with blanks;

(b) during output, the characters in the w leftmost positions in the 
variable are transferred.

(3) If w > n
(a) during input, only the rightmost n characters of the field con­

taining w characters are placed in the variable;
(b) during output, the entire contents of the variable are transferred 

to occupy the rightmost n positions in the field of width w whose 
remaining (w — n) positions on the left are blanks.

EXAMPLE 9-2
Our computer allows a maximum of two characters per location (n = 2).
(a) The following statements:

READ (5,525) 1NIT, MIDDLE, LAST
525 FORMAT(A2, A1, A6)

are used to read the card that holds, starting with its leftmost col­
umn,

W.C.FIELDS

As the result, the above three integer variables acquire the following 
values:

INIT HOLDS W. MIDDLE HOLDS cD LAST HOLDS DS

where □ is a blank.
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(b) The following statements;
WRITE (6,593) NONS1, NONS2, NONS3

593 FORMAT(1X, A2, A1, A6, 8H.SAID HE)

are used to print the following values of three integer variables;
NONS1 holds IT NONS2 holds IS NONS3 holds SO

The printed line will read
IT I SO, SAID HE

2 16 8H

To avoid error-prone complexity:
(1) use integer variables and arrays to store character data;
(2) do not use a width w > n;
(3) whenever possible, place the same number of characters in a single var­

iable (or array element) throughout the program; for example, Al, A2, 
or A4. If you use the Al descriptor, the program will be executable by 
any computer.

To store a longer string, linear (one-dimensional) arrays are used; for 
example, if a 40-character string is to be stored with two characters to 
an array element, it may be read in using an implied-DO list (see Chapter 
5-A-5):

READ (5,523) (LINE(I), I = 1, 20)
523 FORMAT(20A2) •

assuming that the entire string is contained on a single card.

5. MANIPULATION OF CHARACTER STRINGS
If a variable or an array element contains characters, its value may be 
meaningfully assigned to another character-valued variable or array ele­
ment.

Thus, referring to Example 9—2(b), the result of the statement ■
NONS1 = NONS2

is the assignment of the string IS to variable NONS1.
Also, two-character strings may be compared with the use of a logical IF 

statement. The notion of “greater” (or “smaller”) is determined in this case 
by the numerical representation of characters in the character code of the 
computer. All character codes ensure that the letters of the alphabet are in 
order (A<B< .. . <Z), all digits are in order (0<l< ... 9), and a blank 
is smaller than letters and digits. The ordering of the characters by their 
coded representations is called a collating sequence.

194 PROGRAMMING IN FORTRAN



The following example performs the comparison of two strings. Charac­
teristically, strings are stored in integer linear arrays and processed with the 
use of DO loops.

EXAMPLE 9-3

Compare two arbitrary strings to determine their equality or sequence.
The program coded in conformance with the FORTRAN IV standard 

is

C PROGRAM: STRINGS
C AUTHOR. DATE;
C 
C TWO STRINGS ARE COMPARED
C . (STRINGS ARE NOT TO EXCEED 200 CHARACTERS) 
C 
C FIRST - STRING 
C SECOND - STRING 
C 

INTEGER FIRST(200), SECOND(200)
C READ IN AND ECHO BOTH STRINGS, POSSIBLY WITH TRAILING BLANKS 

READ (5,501) (FIRST(I),I = 1,200)
501 FORMAT(BOAl) 

READ (5,501) (SECOND(I).I = 1,200) 
WRITE (6,502) (FIRST(I).I = 1,200) 

502 FORMATdX, 100A1 ) 
WRITE (6,502) (SECOND(I), I = 1,200) 

C 
C COMPARE STRINGS UNTIL FIRST DISTINGUISHING CHARACTER 
C IS ENCOUNTERED 

DO 10 I = 1,200 
IF (FIRST(I) LT. SECOND(I)) GOTO 20 
IF (FIRST!I) GT. SECOND(I)) GOTO 30 

10 CONTINUE 
C 

WRITE (6,503)
503 FORMAT!/ ' STRINGS ARE EQUAL') 

STOP 
20 CONTINUE 

WRITE (6.504)
504 FORMAT(/ ' FIRST STRING PRECEDES SECOND') 

STOP 
30 WRITE (6, 505)

505 FORMAT!/ ' FIRST STRING FOLLOWS SECOND') 
STOP 
END

Here are the results of two sample runs, 
run 1:

THIS IS THE FIRST STRING

THIS IS THE SECOND STRING
input strings

FIRST STRING PRECEDES SEC0140
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run 2:
THIS IS THE SECOND STRING

THIS IS THE SECOND STRING

STRINGS ARE EQUAL

In some programming problems, the length of the string may change as a 
result of its processing, for example, due to the replacement of a part of the 
string—a substring—by a longer one. In these cases, the current length of 
the string has to be maintained as a separate integer variable in order to, for 
example, write out the string from the array that holds it.

B. STRING PROCESSING WITH CHARACTER DATA
IN FORTRAN 77

FORTRAN 77 introduced character data as a distinct type, thus enabling 
the programmer to declare character variables, arrays, and functions. The 
essential operation defined on strings is their concatenation; another oper­
ation possible is the extraction of a substring from a string. A number of in­
trinsic functions are provided to simplify string processing.

At the same time, FORTRAN 77 makes it possible to use implicit string 
processing methods, described in Section A of this chapter. This makes for 
portability of programs conforming to the old standard. With the facilities 
described here available, the programmer does not, however, normally re­
sort to the embedding of character data in variables (or arrays) of other 
types.

1. CHARACTER CONSTANTS
A character constant is a sequence (string) of one or more characters en­
closed in apostrophes (single quotes), e.g.,

'JOHN' " 'HERE IS' '2+2=4' 'CAN"T'

The two delimiting apostrophes are not a part of the string.
As shown in the last example above, whenever an apostrophe is contained 

in the string itself, it is to be represented by the programmer as a double 
apostrophe.

2. HOW TO DECLARE ENTITIES OF THE CHARACTER TYPE 
To declare variables, arrays, or functions whose value is a character string, 
the CHARACTER type statement is used. In FORTRAN, every charac­
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ter-valued entity must have a fixed length (number of characters), specified 
by the programmer in the appropriate CHARACTER statement.

The CHARACTER statement has the following general form:
CHARACTER list of variable, array, and/or function names, with their length 

specifications

The length of each entity, i.e., the number of characters in its value, must 
be specified in this list by *N,  where N is an integer constant greater than 
0. If the CHARACTER statement has an “overall” length specification fol­
lowing the keyword CHARACTER, it applies to each entity without its 
own length. If no length specification at all is given for an entity, its length 
is assumed to be 1; for example,

CHARACTER *10  FIRST, MIDDLE »2, LAST, JOBS(5) *20

As a type statement, the CHARACTER statement may be used to de­
clare dimensions of arrays. For arrays, the length of each element is speci­
fied (thus, arrays always consist of elements of equal length). The “overall” 
length specification may be optionally followed by a comma.

EXAMPLE 9-4

(a)
CHARACTER *10  FIRST, MIDDLE *2,  LAST, JOBS(5) »20

declares
variables FIRST and LAST of length 10;
variable MIDDLE of length 2;
array JOBS with five elements, each having the length 20.

(b)
CHARACTER HE, SHE

declares variables HE and SHE of length 1 each.

The CHARACTER type statement is placed before all executable state­
ments (usually, among other type statements).

The length of the entity does not change during program execution.!
Once declared in a CHARACTER statement, an entity may not be as­

signed a numeric value or be used as an operand in a numeric expression.
The dimensions of a character-valued array may be declared in a sepa­

rate DIMENSION statement (but not in both the DIMENSION and the 
CHARACTER statements). The type of a character-valued function may 
instead be declared in its FUNCTION statement.

f Owing to this, memory allocation in FORTRAN may be performed statically (by the com­
piler), since the number of locations needed to store all the program data is known before the ex­
ecution starts.
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An IMPLICIT statement (see Chapter 4-B) may be used to declare that 
all the names of variables, arrays, and functions beginning with a given let­
ter are of the CHARACTER type and of the given length; e.g.,

IMPLICIT CHARACTER *10  (A-Z)

In a function or a subroutine subprogram, the length of a dummy argu­
ment may be left unspecified by being declared with the symbols (*).  In 
such a case, the length of the corresponding actual argument will be used 
following the invocation of the subprogram. Also, the length of a character­
valued function may be left similarly unspecified; it has to be, however, 
specified in the program unit that invokes the function.

EXAMPLE 9-5
The main program contains the following statements:

CHARACTER *50  STRING, INVERT, NEXT

NEXT = INVERT(STRING)

This program unit invokes a function that inverts the order of charac­
ters in the variable STRING:

CHARACTER ♦(*)  FUNCTION INVERT(ORIGIN)
CHARACTER ORIGIN »(♦)

Thus, a string of any length may be processed by the function (where 
it is called ORIGIN). The inverted string will be assigned to the func­
tion name, INVERT.

If a character variable or array is to be placed in a COMMON block, the 
entire block may contain exclusively character entities.

3. INPUT AND OUTPUT OF CHARACTER STRINGS
For the formatted input and output of character strings, we use the A edit 
descriptor discussed in Section A-4 of this chapter.

However, in the case of CHARACTER type data, the length of a charac­
ter-valued variable is not limited by the capacity of a single memory word. 
The length of such a variable or array element is defined in the appropriate 
CHARACTER declaration and is to be, in general, matched by the width 
field w and Aw (unless the data are to be read or written partially).
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EXAMPLE 9-6

To input the value of the variable NAME declared
CHARACTER *25  NAME

we will use
READ (5,511) NAME

511 FORMAT(A25)

or
511 FORMAT(A20)

provided that the name is placed in the 20 leftmost columns of the data 
card.

List-directed input and output, which do not require the use of a FOR­
MAT, may be used in FORTRAN 77 (see Chapter 4-D). In this case, the 
programmer has no control over the layout of printed data; it is fixed for the 
given implementation.

4. MANIPULATION OF STRINGS
Character variables and array elements may be initialized with a DATA 
statement (see Chapter 6-B); for example,

CHARACTER NAME *4,  TABLE(3, 10) *7
DATA NAME/'J0HN7, TABLE/30*'NOTHING'/

Character variables and array elements may be assigned a value in an as­
signment statement; for example,

NAME = 'JOHN'

or
NAME = FIRST

assuming that FIRST is also a character variable.
If the value of a “shorter” variable is assigned to a “longer” variable, it is 

padded on the right with blanks. If, conversely, a “longer” value is assigned 
to a “shorter” variable, extra characters on the right are dropped.

EXAMPLE 9-7
Variables NAME1 and NAME2 are declared as follows:

CHARACTER NAME1 *6,  NAME2 *2

Following the execution of the assignment statements
NAME1 = 'JOHN'
NAME2 = 'JOHN'

the value of NAME1 is 'JOHNDD', and the value of NAME2 is 'JO'.
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Two character strings may be joined together by the concatenation oper­
ator // (double slashes).

EXAMPLE 9-8
If the value of FIRST is 'JOHN', following the execution of the assign­
ment statement

NAME = FIRST // ' SMITH'

the value of NAME is 'JOHN SMITH' (provided that the length of 
NAME is 10).

A substring is a continuous part of a string. A substring name is formed 
as follows:

character variable name (beginning : end),
e.g.,

NAME(2:4)

or
character array element name (beginning : end),

e.g.,
LINE(3) (15:20)

The “beginning” and the “end” are the positions of the first and last 
character of the substring within the string; they must be positive integer 
constants or integer expressions that evaluate to such constants. Their val­
ues should satisfy the following inequality:

1 beginning < end < length of the string

If the values of the beginning and the end are equal, they refer to a single 
character.

EXAMPLE 9-9

Assuming that the value of variable OFFER is 'CUP OF TEA', and the 
value of I is 8:

the value of OFFER(5:6) is 'OF';
the value of OFFER(3:3) is 'P';
the value of OFFER(I:I+2) is TEA'.

A substring name may appear on either side of an assignment statement. 
In this fashion, a substring of a string may be replaced by another substring 
of the same length.
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EXAMPLE 9-10

(a) Using the variable OFFER of Example 9—9, with the assignment 
statement

OFFER(1:3) = 'MUG'

we produce the new value of OFFER, which is 'MUG OF TEA'.
(b) Assuming that the value of OFFER is 'CUP OF TEA' and TEMP is 

a character variable of length 3, the following sequence of state­
ments

TEMP = OFFER(8:10)
OFFER(8:10) = 0FFER(1:3)
OFFER(1:6) = TEMP // ' INZ

produces a new value of OFFER, namely, 'TEA IN CUP'.

If a substring is to be replaced by another of a different length, a DO loop 
is used to move the characters on the right-hand side of the replacement to 
the left (if the new string is shorter) or to the right (if the new string is long­
er). Of course, the length of the variable that holds the string should be no 
shorter than the new, longer, string.

Using the concatenation operator, character entities, and intrinsic func­
tions with character arguments (see next section), we may build character 
expressions that may appear on the right-hand side of a character assign­
ment statement (see Example 9-10).

The following restriction applies to the character assignment statements: 
no character position that is being assigned a value may appear on the 
right-hand side of the assignment statement. This means, for example, that 
the following assignment statement is illegal:

OFFER(1:5) = OFFER(5:10)

since the position 5 appears on both sides of the assignment statement.
Two character strings may be compared with the use of the same rela­

tional operators that are used to compare numerical values; thus, conditions 
may be formed and employed in logical IF statements (see Chapter 7-D) 
for comparison of character values.

EXAMPLE 9-11
The availability of character variables of an arbitrary specified length 
simplifies programming. For example, if two strings are specified as fol­
lows:

CHARACTER »200 FIRST, SECOND
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the DO loop of Example 9-3 may be replaced by:
IF (FIRST LT. SECOND) GOTO 20
IF (FIRST GT. SECOND) GOTO 30

C STRINGS ARE EQUAL

C FIRST STRING PRECEDES SECOND 
20 CONTINUE

C FIRST STRING FOLLOWS SECOND 
30 CONTINUE

As already explained, characters are represented with the use of a char­
acter code in which a distinct bit pattern corresponds to every representable 
character. Such a code establishes a collating sequence of characters: their 
order of precedence in terms of their binary representation. Thus, character 
strings may be compared (and sorted, if necessary) like ordinary integers. 
Any collating sequence is appropriate for FORTRAN string processing, so 
long as all letters of the alphabet are in order, all digits are in order, and a 
blank precedes (“is smaller than”) the letters and the digits.

Two character codes are used most frequently (depending on the comput­
er model): ASCII and EBCDIC. In ASCII, the collating sequence is in in­
creasing order; blank, digits, characters; in EBCDIC: blank, characters, 
digits.

EXAMPLE 9-12

In any character code recognized by the FORTRAN 77 system:
'THIS' .LT. 'THAT' has the value .TRUE.;
'7' .GT. '3' has the value .TRUE.;
'BLANK ' .LT. 'BLANKS' has the value TRUE.;
'21' .GT. '54' has the value .FALSE..

Additionally, intrinsic functions are provided for comparison of strings in 
the ASCII collating sequence, independent of the actual character code 
used in the given computer model. These functions, discussed in the next 
section, may be used instead of relational operators to ensure that the pro­
gram is portable among various computer models.

5. INTRINSIC FUNCTIONS FOR STRING MANIPULATION
A number of intrinsic (built-in, see Chapter 6-C) functions are provided in 
FORTRAN 77 to operate on arguments of character type.
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The function

LEN (character expression)

computes the length of the string represented by the character expression.
The function

INDEX(C1; C2)

locates the position of the string C2 in the string CP In general, both C2 and 
Ci may be character expressions.

The function

INDEX

(1) returns an integer value, indicating the starting position of C2 in Q if 
it appears there as a substring.

(2) If C2 occurs in Q more than once, the position of the leftmost occur­
rence is indicated.

(3) If C2 does not occur in C1; the function returns the value 0.

EXAMPLE 9-13

(a)
LEN (THIS IS A STRING')

returns the value 16.
If we assume that the value of the variable OFFER is
'CUP OF TEA', then

LEN (OFFER)

has the value of 10;
LEN ('BIG ' //OFFER)

has the value of 14.
(b)

INDEX('TARTAN', 'TAN')
equals 4;

INDEX(TARTAN', TA')

equals 1;
If OFFER has the value 'CUP OF TEA',

INDEX(OFFER, 'COFFEE')

equals 0.

Four intrinsic functions are provided to supplant the relational operators. 
They compare the string values “lexically,” according to the ASCII collat­
ing sequence, i.e., without regard to the computer model. The two argu­
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ments Cj and C2 of each of these functions may be any character expres­
sions.

These functions are presented in Table 9-1; the acronym LGE, for exam­
ple, stands for “lexically greater or equal.”

TABLE 9-1. Intrinsic functions for lexical comparison.

INTRINSIC FUNCTION RETURNS THE VALUE .TRUE. IF

LGE(Ct, C,) string Ci equals or follows string C2

LGT(C„ C.) string Ci follows string C2

LLE(C„ C,) string C, equals or precedes string C2

LLT(Clt C,) string C] precedes string C2

If the operands are of unequal length, the shorter operand is considered 
as if it were extended to the right with blanks to match the length of the 
longer operand.

EXAMPLE 9-14
Assuming that the value of the character variable NAME is 'JOHN', 
(a) the statement

IF (LLT(NAME, 'PETER')) GOTO 40

will cause a transfer of control;
(b) the statement

IF (LGEfNAME, 'JILL')) GOTO 20

will also cause control transfer.

The following example illustrates character manipulation.

EXAMPLE 9-15

C THE FUNCTION DETERMINES THE LENGTH OF A STRING
C WITHOUT THE TRAILING BLANKS

INTEGER FUNCTION NUMCHR(STRING)
CHARACTER STRING »(*)

C SEARCH FROM RIGHT FOR THE FIRST NON-BLANK
DO 10 NUMCHR = LEN(STRING), 1, -1

IF (STRING(NUMCHR:NUMCHR) .NE. '') GOTO 20
10 CONTINUE
20 RETURN

END

Observe how the length is returned as the value of the function name.
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C. LOGICAL DATA AND THEIR PROCESSING

To express conditions on which the flow of control in a program is predicat­
ed we use logical expressions (see Chapter 7-D-2). These expressions can 
assume only one of two values: .TRUE, or .FALSE..

In FORTRAN, logical constants, variables, arrays, and functions may be 
declared and manipulated with the use of logical operations.

There are only two logical constants (and thus two values of logical varia­
bles and array elements); these are written in FORTRAN as

.TRUE, and .FALSE.

To declare a logical variable or array, the following type statement is 
used:

LOGICAL list of variable, array and/or function names

As usual, arrays may be fully specified in a type statement; for example, 
LOGICAL ANSWER, QUIZ(10, 20)

The essential tool for the manipulation of logical data is the assignment 
statement of the following form:

logical variable 
or logical expression

element of logical array

Logical expressions are formed and evaluated according to the rules ex­
plained in Chapter 7-D-2. These expressions include, in the order of prece­
dence, the following operators:

arithmetic;
relational: .LT., .LE., .EQ., .NE., .GE., .GT.;
logical: .NOT., .AND., .OR.

The truth table for the logical operators is presented as Table 7-2.

[> FORTRAN 77 includes two additional logical operators: .EQV. and 
.NEQV., of which the latter is known in logic as exclusive - or, and the for­
mer is its inverse (logical equivalence). <3

A logical variable may be initialized with a DATA statement; for exam­
ple,

LOGICAL PRED
DATA PRED/.FALSE./

A logical function may be defined; for example, 
LOGICAL FUNCTION TEST(X, Y)
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For the input and output of logical values, the Lw edit descriptor is used 
(see Chapter 5 for the general discussion of formatted I/O), where w is the 
length of the field occupied by the data item.

On input, the leading character in this field must be the letter T (for 
TRUE) or F (for FALSE), optionally preceded by blanks and a period. 
Thus, one may use .TRUE, and .FALSE, (or T and F if space is being con­
served) to read in the desired values.

On output, (w — 1) blanks, followed by the letter T or F, will be present­
ed.

Logical data are used, as explained before, to control the flow of execu­
tion. In certain problems, however, the presentation of program data in the 
form of logical data appears more natural; moreover, storage and manipula­
tion time may be reduced in comparison with integer representations. The 
following example illustrates such use of logical data.

EXAMPLE 9-16
Problem

Students have responded to a “yes-no” quiz of 20 questions; each correct 
answer is worth 5 points. A grading program is to be designed to process 
the responses.

Solution
The responses of every student are encoded on a single card. This card is 
compared with the master card with correct responses, and the total 
score for each student is arrived at.

Pseudocode of the Algorithm

•GRADING
begin

Input correct answers;
while there are more student cards do

begin
Input next student card;
SCORE — 0;
while less than 20 answers do 

if answer is correct then 
SCORE — SCORE + 5 

else;
Output student ID, answers, SCORE 

end
end
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PROGRAM
C PROGRAM. GRADING
C AUTHOR: DATE.
C
C STUDENT ANSWERS ARE GRADED ACCORDING TO THE MASTER 
C
C MASTERCI) - CORRECT ANSWERS
C ANSWRS(I) - STUDENT ANSWERS
C STDID - STUDENT ID NUMBER
C SCORE - STUDENT'S SCORE
C

INTEGER STDID,SCORE
LOGICAL MASTER(50),ANSWRS(50) 

C
C INPUT MASTER WITH CORRECT ANSWERS 

READ (5,501) (MASTER(I),I = 1,20)
501 FORMAT(20L1)

C PRINT HEADER 
WRITE (6,502)

502 FORMAT ('1'. 4X, 'STUDENT ID', 19X, 'ANSWERS', 25X, 'SCORE'/) 
C
C INPUT AND GRADE STUDENT ANSWERS

10 READ (5, 503,ENO = 30) STDID, (ANSWRS(I),I = 1,20)
503 FORMAT(110, 20L1) 

SCORE = 0 
DO 20 I = 1,20

IF ((ANSWRS(I) AND MASTER(I)) .OR.
+ (.NOT. ANSWRS(I) .AND. .NOT. MASTER(I)))
+ SCORE = SCORE + 5

20 CONTINUE
WRITE (6,504) STDID, (ANSWRS(I),I = 1,20), SCORE

504 F0RMAT(5X, 110, 5X, 20L2, 110)
GOTO 10

30 STOP 
END

The printout corresponding to this master
TTTTTFFFFFTTTTTFFFFF

is
STUDENT ID ANSWERS SCORE

378976545 TTTTTTTTTTTTTTTTTTTT 50
456435678 FFFFFTTTTTFFFFFTTTTT 0
300047562 FFFFFFFFFFFFFFFFFFFF 50
156789230 TTTTTFFFFFTTTTTFFFFF 100

PROCESSING OF CHARACTER STRINGS & LOGICAL DATA 207



SUGGESTED FURTHER READING
An advanced text on FORTRAN programming is
Hughes, C. E., Pfleeger, C. P., and Rose, L. L.: Advanced Programming Tech­

niques—A Second Course in Programming Using FORTRAN, Wiley, New York, 
1978.

To gain deeper understanding of programming constructs and computer systems, the 
student may use

Zwass, V.: Introduction to Computer Science, Barnes & Noble, New York, 1981.

Important matters of programming style and ensuring program correctness are dis­
cussed in

Kemighan, B. W., and Plauger, P. J.: The Elements of Programming Style, 2nd ed., 
McGraw-Hill, New York, 1978.

Ledgard, H. F., and Chmura, L. J.: FORTRAN with style, Hayden, Rochelle Park, 
N.J., 1978.

Van Tassel, D.: Program Style, Design, Efficiency, Debugging, and Testing, 2nd ed., 
Prentice-Hall, Englewood Cliffs, N.J., 1978.

as sources of many programming problems, with discussion and solution aids, may 
serve

Teague, R.: Computing Problems for FORTRAN Solutions, Harper & Row, San 
Francisco, 1972.

Maurer, H. A., and Williams, M. R.: A Collection of Programming Problems and 
Techniques, Prentice-Hall, Englewood Cliffs, N.J., 1972.
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Address, 4
A descriptor, 193-94, 198-99
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control structures of, 16-21
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defined, 8-9
flowchart presentation of, 8, 11-13
natural language (English) 

presentation of, 9-10
pseudocode presentatipn of, 8, 13­

14
stepwise refinement of, 11

Alphanumeric characters, 34
.AND. (logical operator), 103
Apostrophe, 34, 69-70, 191, 196
Argument, 146

correspondence, 151
passing, 153-60
See also Actual arguments;

Dummy arguments
Arguments of instrinsic functions, 88­

89
Arithmetic;

assignment statements, see 
Arithmetic assignment 
statements

data, 35
expression, 40-46
operators, 41

Arithmetic assignment statements, 
14-15, 39-47 

general form of, 40-41 
order of evaluation of, 41-44 
rules of, 47 
types of, 44-47

Arithmetic IF statement, 142-43 
Arithmetic-logic unit (ALU), 4 
Array, 75-88 

declarations, 78-81 
dimensions, 76, 80, 197 '
elements, 76, 81-82 
input/output, 83-86 
names, 79 
storage order, 82 
subscripts, 76, 81-82

ASCII character code, 202, 203
Assembler, 6
Assembly language, 6
Assignment, 14
Assignment statements: 

arithmetic, see Arithmetic 
assignment statements 

character (FORTRAN 77), 199, 
201

logical, 205

Batch system, 29-30
begin-end (sequence) construct, 16-17 
Binary representation, 3
Bit, 4, 192
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Blank common blocks, 166-69
Blanks, 32, 42, 68
BLOCK DATA statement, 184-85
BLOCK DATA subprogram, 146, 

147, 171, 184-85
Block IF constructs (FORTRAN 77), 

105-9, 112
IF-THEN-ELSEIF-ELSE-ENDIF 

in, 107
Built-in functions, see Instrinsic 

functions

CALL statement, 150-52
Card, punched, 57
Card reader, 5
Carriage control, 70-71
case (multiple choice) construct, 139— 

42
Central processing unit (CPU), 2-4, 6
Character, 192

code, 192, 202
constant, 196
data (FORTRAN 77), 196-204
expression, 201
processing, see Character strings, 

processing of
set, 33-34

CHARACTER statement 
(FORTRAN 77), 196-97

Character strings, processing of, 190- 
204

in FORTRAN IV, 191-96
in FORTRAN 77, 196-204

Coding form, 33
Collating sequence, 194, 202
Column order of storage, 82
Commands, 31
Comments, 15-16, 29, 33
Common blocks, 165-72, 198

blank, 166-69
named, 169-72

COMMON statement, 166, 169
Compilation (syntax) errors, 27, 28
Compilers, 7, 28
Complex data, 94-95
COMPLEX statement, 94-95
Computed GOTO statement, 139-42
Computers, facts about, 1-7
Concatenation of strings, 200
Conditions, 102—4
Constants, 14, 35-37
Continuation lines, 32

CONTINUE statement, 99, 113-14, 
117

Control cards (information), 29-30
Control unit, 4

Data, 2, 9, 33
DATA statement, 87-88, 184-85,

191, 199, 205
D descriptor, 94
Debugger, debugging, 28
Decision constructs, 17-18, 100-15 

block IF statement (FORTRAN 
77) as, 105-11

conditions in, 102-4
forms of, 101-2
logical IF statement as, 11-15
nested, 102, 107

Declaration, 38
DIMENSION statement, 79-81, 166,

197
Disk, magnetic, 4, 30
Display terminal, 5, 57
Documentation of a program, 10, 28-

29
DO (indexed) loops, 116-32

DO statements in, 116-22
FORTRAN IV versus FORTRAN

77, 122-25
nested, 126-32
transfer of control and, 125-26

DO statement, 116-22
Double precision data, 93-94
DO-variable, 116
Dummy arguments, 149-51, 161,

167, 188, 198
See also Subroutines

EBCDIC character code, 202
E descriptor, 62-64, 66-67
Edit descriptors, 59-68, 70-73 

defined, 59
END specifier, in FORMAT 

(FORTRAN 77), 74, 98
END statement, 53, 100, 147, 150
ENTRY statement (FORTRAN 77), 

185-86
EQUIVALENCE statement, 91-93 
EQV. (logical operator), 103, 205 
Errors, 27-28, 74
ERR specifier, in FORMAT 

(FORTRAN 77), 74
Euclid’s algorithm, 21-24
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exclusive-or, 205
Execution of a program, 7 
exit construct, 21, 175 
Exponential notation, 36 
Exponents, 36
Expression, 14-15

arithmetic, 40-46
character, 201
logical, 102-4, 205

External functions, see Functions

.FALSE, (logical constant), 103
F descriptor, 62-66
Field descriptor, 59
File, 172

master, 172
transaction, 172

File library, 30, 31
Flowchart, 11, 153
Flowline, 11, 99
Flow of control, 11
Format-free input/output, 48

See also List-directed input/output
FORMAT statement, 51-54, 59 

reuse of, 72-73
Formatted input/output, 56-74 

concepts of, 56-57 
errors and end of input data in, 

checking for, 74
of integers and real numbers, 60- 

67
READ, WRITE, and FORMAT 

statements in, 58-59, 72-74 
skipping spaces, lines, and to next 

page in, 68-71
Function(s), 145, 160-65, 197, 205 

name, 161-62
reference, 145, 162-65, 188-89
See also Instrinsic functions

FUNCTION statement, 161

G descriptor, 62-64, 67
Generic function name (FORTRAN 

77), 89-90
Global data, 165
goto (unconditional control transfer) 

construct, 20-21, 27
GOTO statement, 96-99 

avoidance of, 99 
computed, 139-42

Hand-checking, 27

Hardware, 2, 6
H descriptor, 70, 71, 191
Higher level programming languages, 

6-7, 14
Hollerith constant, 191 

See also H descriptor
Horner’s rule, 121

I descriptor, 60-62
IF statement: 

arithmetic, 142-43 
logical, 11-15, 132, 201-2 
See also Block IF construct

if-then-else (decision) construct, 17-
18, 101

1F-THEN-ELSEIF-ELSE-ENDIF, 
107

Implementation of a language, 7, 25- 
27

IMPLICIT statement, 38, 198
Implied-DO list (loop), 83-86

index of, 83-85
Inactive loop, 122
Indentation, 27, 32
Indexed loop, see DO loop
INDEX function, 203
Index (DO-) variable, 116
Infinite loop, 98, 125, 133
Initialization, 87
Input arguments, 156
Input list, 58

See also Array
Input/output (I/O), see Formatted 

input/output; List-directed 
input/output

Input/output devices, 2, 5
Instruction, 2, 6
Integer:

arithmetic, 44
data, 35-37
division, 44
input/output, 60-62

INTEGER statement, 38, 79 
Interface table, 148, 151, 179-80 
Interpretation, 7, 26-27 
Intrinsic functions, 88-90, 148

for string manipulation 
(FORTRAN 77), 202-4

Invocation, 145, 185
See also Function—reference

Iteration, 18, 116 
See also Loop
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Job, 5

Key, 174
Keyboard input, 57
Keyword, 57

Label, 21, 32
Labeled common (named common 

block), 169-72
L descriptor, 206
LEN function (FORTRAN 77), 203
Lexical comparison, 203-4
Line printer, 5, 57
List-directed input/output, 48, 199
Loader, 7
Local:

data, 150
names, 149-50

Locations (words), 4
Logical:

constant, 205
data, processing of, 205-7
expression, 102-4, 205
operators, 103-4, 205

Logical IF statement, 111-15, 132, 
201-2

LOGICAL statement, 205
Loop, 18

See also DO loop; repeat-until loop; 
while-do loop

Machine language, 3, 6
Magnetic:

disk, 4, 30
tape, 4

Main program, 145
Mantissa, 36
Matrix, 77
Memory (storage):

main, 2, 4
secondary (auxiliary), 3, 4

Mixed-mode expressions, 45-46, 89
Modular programming, 144-89 

common blocks in, 165-72, 184-85 
example, with application of binary 

search, 172-84
functions in, 145, 160-65
program units in, 145-48 
statement functions in, 187-89 
subroutines in, 145, 149-60

Multiple choice (case) construct, 139— 
42

Named common blocks, 169-72 
.NEQV. (logical operator), 103, 205 
Newton-Raphson iteration, 163-65 
Normalization, 36, 66
.NOT. (logical operator), 103
Numerical data, processing of, 35-55, 

75-95
arithmetic assignment statements 

in, 39-47
arrays in, 75-88
double precision and complex data 

in, 93-95
input/output in, 37-53 
intrinsic functions in, 88-90 
variables in, 37-39

Object program (code), 7
Operating system (supervisor), 5 
.OR. (logical operator), 103
Outline, in flowchart, 11
Output arguments, 156
Output list, 58

Parameter, see Argument
Parentheses, 41-42
Portability, 6-7
Precedence rules, 41-42

arithmetic, 41-42
logical, 103-4

Precision, 36, 45, 65, 93
Printer, 5, 57
PRINT statement (FORTRAN 77), 

50-51
Procedure, 146, 148
Program:

defined, 2
documentation, 10
make-up of simple FORTRAN, 

53-55
processing, stages of, 7 
units, in modular programming, 

145-48 '
Programming languages, 5, 9 

higher level, 6-7, 14 
See also Assembly language

PROGRAM statement (FORTRAN 
77), 53, 147

Pseudocode, 13-14

Quote, see Apostrophe

Range of values, 36
Readability of programs, 27
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READ (formatted), 58
READ * (FORTRAN 77), 48 49
Real:

arithmetic, 45
data, 36-37
input/output, 62-67

REAL statement, 38, 79
Records, representation in

• FORTRAN of, 178-79
Records of input/output, 57, 68
Recursive call, 148
Relation, 102
Relational operators, 102
Repeat specification, 60, 62, 71-72
repeat-untii loop, 137-38
Return, from subprogram, 145, 147, 

162
RETURN statement, 149-50, 152, 

186-87
Reuse of FORMAT statement, 72-73
Rounding, 65, 66

SAVE statement (FORTRAN 77), 
172

Search, 174
binary, 174-76
sequential, 174

Sentinel (trailer), 74, 98, 112
Sequence (begin-end), construct, 16-

17
Sequence number, 30-31
Slash (/) in FORMAT, 68-69
Software, 5
Sort, 128

ascending, 128
bubble, 134-37
selection, 128-32

Source program (code), 7
Specific function name (FORTRAN

77), 89-90
Statement, 13, 31-34

executable, 31
nonexecutable, 31, 38
number (label), 21, 32

Statement functions, 148, 187-89
Static memory allocation, 91
Stepwise refinement, 11, 144
STOP statement, 53, 100
Storage, see Memory
String, see Character strings, 

processing of
Structure chart, 148, 179
Structured programming, 13-14

Subprograms, 145-48 
multiple entries to and returns from 

(FORTRAN 77), 185-87
Subroutine(s), 145, 149-60 

argument passing and, 154-60 
call, 145 
defining, 149-50

SUBROUTINE statement, 149-53
Subscripted variables, 76, 81-82
Substring, 200
Supervisor (operating system), 5
Symbolic name, 34
Symbolic processing, see Character 

strings, processing of
Syntax (compilation) errors, 27, 28

Testing of programs, 27-28
Text, fixed, 69-70, 191
Text processing, see Character 

strings, processing of
Time-sharing system, 29-31, 47
Top-down design, see Stepwise 

refinement
Trailer (sentinel), 74, 98, 112
Translator, 5, 7
Tree, 43
.TRUE, (logical constant), 103
Truncation, 44, 46
Truth table, 103
Turnaround time, 29
Type:

of data, 14 
declarations, 14 
statements, 38, 79, 166, 196-97

Unconditional control transfer (goto) 
constructs, 20-21, 27

Utility programs, 5

Variable, 14, 37
name, 34, 38-39

Variable dimensions, see Adjustable 
dimensions

Vector, 76

WATFIV, 26, 48, 190
WATFOR, 26, 48
while-do (loop) construct, 18-20, 

132-37, 175
Words (locations), 4
WRITE (formatted), 58

X descriptor, 68
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