
Monte Carlo
Simulations Using
Microsoft EXCEL®

Synthesis Lectures on
Mathematics & Statistics

Shinil Cho

Synthesis Lectures on Mathematics &
Statistics

Series Editor

Steven G. Krantz, Department of Mathematics, Washington University, Saint Louis, MO,
USA

This series includes titles in applied mathematics and statistics for cross-disciplinary
STEM professionals, educators, researchers, and students. The series focuses on new and
traditional techniques to develop mathematical knowledge and skills, an understanding of
core mathematical reasoning, and the ability to utilize data in specific applications.

Shinil Cho

Monte Carlo Simulations
Using Microsoft EXCEL®

Shinil Cho
La Roche University
Pittsburgh, PA, USA

ISSN 1938-1743 ISSN 1938-1751 (electronic)
Synthesis Lectures on Mathematics & Statistics
ISBN 978-3-031-33885-4 ISBN 978-3-031-33886-1 (eBook)
https://doi.org/10.1007/978-3-031-33886-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole
or part of thematerial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give
a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that
may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-33886-1

Preface

温温故故知知新新 (visiting old, learn new)
Another book on the Monte Carlo simulation? Yes, but this is a kind of book I wanted

to have when I was a student. It guides you to explore the fantastic world of Monte Carlo
simulations and acquire basic computational knowledge to create and run your own sim-
ulation programs. The intended readers are undergraduate to graduate students who are
interested in engaging in simulation projects. There are several frequently cited simulation
examples from probability distribution functions, computation of π-value, nuclear decay,
and random walks, which are extended to classical diffusion problems, quantum diffu-
sion Monte Carlo method, and Ising models along with descriptions of their procedures.
A brief introduction of quantum annealing for optimization utilizing Ising models, and
descriptions of chaos and fractals are also included with actual examples.

The programming language used in this book is the built-in Visual Basic for Appli-
cation (VBA) of EXCEL®. The language is simple for numerical computation and can
re-write legacy BASIC programs found in other renowned books. EXCEL’s data analysis
and chart capabilities are utilized for easier data analysis so that simulation codes are slim
to show the essential part of the Monte Carlo method. The VBA codes in this book are
not written in an elegant manner but the author attempts to present more descriptive codes
for further applications by the readers.

Traditionally there always a discussion of how to generate random numbers before
explaining simulation algorithms. While it is indeed critical to use “true” random num-
bers for random samplings, we conveniently use the EXCEL’s “quasi-random” number
generator, RND(). There is no discussion of the random number generator, nor estima-
tion of accuracy of the simulation results. As you learn more, these issues on simulations
should be considered for better results for research, referring to more advanced books.

Computer simulations are like “real” experiments. You may not get what you predict
at first. Still, it will be a scientist’s satisfaction to watch outputs from your own simulation
codes agree with theories. Have a wonderful simulation experience!

Pittsburgh, USA
Spring 2023

Shinil Cho

v

Contents

1 Probability Distribution Functions . 1
1.1 Electron Spins in Magnetic Field—Binomial Distribution 1

1.1.1 Configuration of Spin Array . 1
1.1.2 Simulation of Binominal Distribution . 2

1.2 Radioactive Decay—Poisson Distribution . 4
1.2.1 Decay Equation . 4
1.2.2 Binominal Distribution to Poisson Distribution 7

1.3 Gaussian Distribution . 8
1.3.1 Poisson to Gaussian . 8
1.3.2 Binominal to Gaussian . 9

1.4 White Noise—Uniform Distribution to Gaussian Distribution 10
1.5 Central Limit Theorem . 11
References . 13

2 Idea of Monte Carlo Simulations . 15
2.1 Calculation of π . 15
2.2 Calculation of Definite Integrals . 16
2.3 Radioactive Decay . 20
2.4 Random Walk . 20

2.4.1 One-Dimensional Random Walk . 21
2.4.2 Two-Dimensional Random Walk . 23

2.5 Percolation . 26
References . 31

3 Brownian Motion and Diffusion Equation . 33
3.1 Motion of a Particle Driven by Collisions with Surrounding Particles . . . 33

3.1.1 One-Dimensional Collision . 33
3.1.2 Two-Dimensional Collision . 34

3.2 Langevin Equation . 38

vii

viii Contents

3.3 Smoluchowski Equation to Diffusion Equation . 42
3.3.1 Smoluchowski Equation to Fokker-Plank Equation 42
3.3.2 Fokker Plank Equation to Diffusion Equation 44

3.4 Diffusion Process by Random Walk . 45
3.4.1 One-Dimensional Diffusion . 45
3.4.2 Two-Dimensional Diffusion . 45

3.5 Analytical Solution of One-Dimensional Diffusion Equation 49
3.5.1 Trial Function Method . 49
3.5.2 Spectral Method . 50

3.6 Numerical Analysis of One-Dimensional Diffusion Equation 52
3.6.1 Particle Diffusion . 53
3.6.2 Heat Conduction . 55
3.6.3 Analytical Solution of Heat Equation . 57

References . 61

4 Quantum Diffusion Monte Carlo Method . 63
4.1 One-Dimensional Infinite Potential Well . 63

4.1.1 Imaginary Time Schrödinger Equation . 63
4.1.2 A Particle in One Dimensional Potential Box 64

4.2 Quantum Diffusion Monte Carlo Method . 70
4.2.1 Basic Idea of Quantum Diffusion Monte Carlo Method 70
4.2.2 Harmonic Oscillator . 73
4.2.3 Three-Dimensional Harmonic Oscillator . 76
4.2.4 Hydrogen Atom . 77
4.2.5 Helium Atom . 78
4.2.6 Hydrogen Molecule . 79

4.3 Variational Monte Carlo and Path Integral Monte Carlo Methods 80
4.3.1 Variational Monte Carlo (VMC) Method . 81
4.3.2 Path Integral Monte Carlo (PIMC) Method . 86

References . 92

5 Metropolis–Hastings Algorithm for Ising Model . 93
5.1 Algorithm of Metropolis and Hastings . 94
5.2 Application to Ising Model . 97
5.3 One-Dimensional Ising Model . 99

5.3.1 Exact Solution . 99
5.3.2 Monte Carlo Simulation . 101

5.4 Two-Dimensional Ising Model . 107
5.5 Quantum Optimization Using Ising Model . 117

5.5.1 Optimization by Quantum Annealing . 117
5.5.2 Addition of Horizontal Field . 117
5.5.3 Traveling Salesman . 119

References . 120

Contents ix

6 Chaos and Fractal . 123
6.1 Chaos . 123

6.1.1 Lorentz Attractor . 124
6.1.2 Logistic Function . 124
6.1.3 Nonlinear Pendulum . 131
6.1.4 Nonlinear Double Pendulum . 134

6.2 Fractal . 138
6.2.1 Triadic Koch Curve . 139
6.2.2 Sierpinski Triangle . 141
6.2.3 Determination of Fractal Dimensions . 142
6.2.4 Note on Chaos and Fractal . 144
6.2.5 Mandelbrot Figure . 144

References . 146

Appendix . 147

1Probability Distribution Functions

Random phenomena are described with stochastic variables and associated probability
distribution functions. Stochastic variables take sets of possible values, and their proba-
bility distribution functions are maps of the stochastic variables that show the distributions
of what to be observed. The first chapter of this book overviews the frequently-appearing
probability distributions, including the binomial, the Poisson, the Gaussian, and the uni-
form distributions. Several examples from physics are used to describe these distribution
functions.

One of the important theorems of probability is the central limit theorem. A brief
explanation of the theme is: the sum of many independent stochastic variables is also
a stochastic variable, and tends to approach a Gaussian distribution with more and more
terms. Any probability distribution function follows this theorem. We confirm the theorem
with the probability distributions mentioned above.

1.1 Electron Spins in Magnetic Field—Binomial Distribution

1.1.1 Configuration of Spin Array

Imagine a horizontal array of N-free electron system [1]. If external magnetic field B is
applied to the spin system in the vertical direction, then each of the electron spins array
points either “up” or “down” in the z-direction with certain probabilities. Denote p as the
probability that a spin is up and q as the probability that it is down. Because each spin is
either up or down, the total probability must be one: p + q = 1. The spin state takes the
equal probability, p = q = 1/2, when B = 0.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Cho, Monte Carlo Simulations Using Microsoft EXCEL®,
Synthesis Lectures on Mathematics & Statistics,
https://doi.org/10.1007/978-3-031-33886-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33886-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-33886-1_1

2 1 Probability Distribution Functions

Among the N spins, suppose n spins are up and the remaining n’ = N − n spins are
down. What is the probability P(n) to have the configuration in the magnetic field B? It
is the product of the probability of each spin state from the first to the N th spin:

pp · · · pqq · · · q = pnqn
′ = pnqN−n (1.1)

If we concern only the number of up spins to be n out of the total number of spins, N,
we need to find the number of possible ways to pick n spins out of N spins. That number
is given by combinations, CN (n):

CN (n) = N !
n!(N − n)! . (1.2)

The probability P(n) we are seeking is, thus, given by

P(n) = CN (n)pnqN−n = N !
n!(N − n)! p

nqN−n (1.3)

This is the probability distribution function called the binomial distribution because
the expression appears in the binomial expansion:

(p + q)N =
N∑

n=0

N !
n!(N − n)! p

nqN−n (1.4)

Let’s simulate the probability distribution to investigate how this distribution function
looks like.

1.1.2 Simulation of Binominal Distribution

Consider an example of N = 12 free spins and p = q = 1/2. Why N = 12? We will
explain why N = 12 is the preferred choice of the simulation in Sect. 1.5. For simulating
the binominal distribution, we can flip a coin to set p (head) and q (tail). Alternatively,
we can use a computer to simulate the probability distribution by generating a random
number between 0 and 1, and making a up spin if the random numbers is less than 0.5,
and a down spin if the number is equal and more than 0.5. Using random numbers is much
more efficient to conduct the simulation many times. In this book, we use the EXCEL’s
built-in function, RND().

Figure 1.1 lists a VBA code which outputs the total numbers of up spins and down
spins out of the 12 spins in each trial. The total number of trials is 2,000 in this code.
Then, we analyze the output data by using [Histogram] of the pull-down menu [Data
Analysis] to make a tally of up spins. Next, we calculate the normalized probability to
obtain n-up spins, P(n) = [Frequency]/[Total number of trials], where
n = 0 to 12 (no up spin to all spins up).

1.1 Electron Spins in Magnetic Field—Binomial Distribution 3

Fig. 1.1 VBA code for acquiring number of up-spins form 2,000 trials

NOTE: Refer to Appendix A1.1 for enabling EXCEL’s VBA macro. The default setting
of [Data Analysis] is disabled. Refer to Appendix A1.2 for enabling the capability.

In Fig. 1.2, the smooth curve onset to the simulated probability distribution is the exact
binomial functions with N = 12 and p = q = 0.5. Although the binominal function is
discrete, we used a smooth curve for better graphical presentation. The random number-
based simulation represents the binominal probability distribution very well.

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12

N
or

m
al

ize
d

pr
ob

ab
ili

ty

Number of up spins

Binominal distribu�on (p=q=0.5)

Fig. 1.2 Binominal distribution of 12 spins of equal probabilities of up/down orientations

4 1 Probability Distribution Functions

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12

N
or

m
al

ize
d

pr
ob

ab
ili

ty

Number of up spins

Binominal distribu�on (p=0.25 & q=0.75)

Fig. 1.3 Binominal distribution of 12 spins of unequal probabilities of up/down orientations

A simulation of nonequal probabilities of p and q can be also performed by changing
the accepted range of random numbers for up spins. For example, if p = 0.25 and q =
0.75, when random numbers less than 0.25 as p, otherwise q:

If Rnd() < 0.25 Then

UP = UP + 1

Else

DN = DN + 1

End If

Figure 1.3 shows the simulated binomial of p = 0.25 and q = 0.75 with the exact
distribution.

1.2 Radioactive Decay—Poisson Distribution

1.2.1 Decay Equation

The radioactive decays can be described by the following differential equation

dN

dt
= −λN (1.5)

and its solution is an exponential function, N(t) = N0e−λt, where N(t) is the number of
active (i.e., not yet decayed) radioactive nuclei at time t, N0 is N(t = 0), and λ is the
decay constant [2].

1.2 Radioactive Decay—Poisson Distribution 5

Suppose we count of radioactive decays for, say, one-minute, and repeat the same mea-
surements several times, the measured counts fluctuate at each time because radioactive
nuclei decay randomly, and we do not know which and when the decay occurs. It is said
that the probability of observing n decays per unit time (at time t) follows the Poisson
distribution function

Pn(t) = vn

n! e
−v (1.6)

where n is the number of decays observed per unit time, and ν is the average number of
decays per unit time [3]. The ratio of the number of the active nuclei at time t, N(t), to
the total number of active nuclei at t = 0, N0, N(t)/N0 = e−λt, is called the decay rate,
but the decay rate is not the number of decayed radioactive nuclei decay per unit time at
time t. How can we obtain the Poisson probability from the exponential decay equation?

The Poisson distribution of the radioactive decay can be derived in the following way.
The mean life time of a radioactive nucleus is given by Tmean = ∫ ∞

0 tw(t)dt = 1/λ where
w(t)dt is the normalized probability of occurring a single decay in a time interval [t, t +
dt] or the normalized decay rate, which should be given by A ·N (t)/N0 = Ae−λt where A
is the normalization constant. Because the total probability must be 1, the normalization
constant can be calculated:

∞∫

0

w(t)dt = A

∞∫

0

e−λt dt = 1, and thus A = λ.

Therefore, the normalized probability of a single decay in [t, t + dt] is given by
w(t)dt = λe−λt dt .

Using w(t), the probability that no decay occurs in the time t is given by the following
probability distribution function:

P0(t) =
⎡

⎣1 −
t∫

0

w(t ′)dt ′
⎤

⎦ = e−λt . (1.7)

Next, suppose only a single decay occurs in time t. If the single decay occurs at time
t1 where t1 ≤ t, then no decay must be observed after t1 until t. Therefore, we obtain

P1(t) =
t∫

0

dt1w(t1)P0(t − t1) =
t∫

0

dt1
(
λe−λt1

)(
e−λ(t−t1)

)
= λte−λt . (1.8)

Suppose the probability that two decays occur in time t. Because the second decay is
not affected by the first decay, that is if the decay process is a Markov process, we can
apply Eq. (1.8) for each decay. Namely, if the first single decay occurs at time t1, and
the second single decay occurs at time t2 where t1 ≤ t2 ≤ t, the probability of the second

6 1 Probability Distribution Functions

decays at t2 in the time interval t− t1 is given by Eq. (1.8) with t replaced with t− t1.
In this way, we obtain the probability of two decays given by

P2(t) =
t∫

0

dt1w(t1)P1(t − t1)dt
′

=
t∫

0

dt1
(
λe−λt1

)(
λ(t − t1)e

−λ(ξ−t1)
)

= (λt)2

2
e−λt dt . (1.9)

Now, we apply the mathematical induction. Guessing from Eq. (1.9), we may assume
that the probability of occurring n-decays in time t, the first decay occurs at time t1, and
(n− 1) decays occur after t1. That is, the probability of n-decays, Pn(t), would be

Pn(t) = (λt)n

n! e−λt . (1.10)

With Eq. (1.10), the probability of (n + 1)-decays in the time t where the first decay
occurs at time t1, and n-decays occur after t1 is given by

Pn+1(t) =
t∫

0

dt1w(t1)Pn(t − t1) =
t∫

0

dt1
(
λe−λt1

)(λn(t − t1)n

n! e−λ(t−t1)
)

= (λt)n+1

(n + 1)!e
−λt .

(1.11)

Therefore, the probability of radioactive decay of n nuclei in time t is given by the
probability distribution

Pn(t) = (λt)n

n! e−λt . (1.12)

We are getting the Poisson function! Now, the average number of decays, ν, can be
calculated by

ν =
∑

n=0

nPn(t) =
∑

n=0

n(λt)n

n! e−λt = (λt)e−λt
∑

n=1

(λt)n−1

(n − 1)! = (λt)e−λt e+λt = λt .

(1.13)

Equation (1.13) means that, if we recall that the constant λ is the decay rate, i.e.,
the number of decays in time t should be given by λt. Because n/N is very small for
radioactive decays, n is usually close to the average of n. Thus, it may be replaced with
the average number of decays, ν.

We finally we obtain the Poisson distribution function (1.6) as the probability of
observing n-decays in a given time interval.

1.2 Radioactive Decay—Poisson Distribution 7

1.2.2 Binominal Distribution to Poisson Distribution

The Poisson distribution of observed number of radioactive nuclear decays can be also
derived from the binominal distribution we discussed in Sect. 1.1. Suppose the probability
of a single decay until time t is p, and then the probability of un-decay is q = 1− p. Of
the total N nuclei, the probability of decaying n nuclei (and thus not decaying the rest of
N− n nuclei) is given by pnqN−n. Recall that there are CN (n)-ways to select the n nuclei
from N nuclei, which is given by

CN (n) = N !
n!(N − n)! . (1.14)

Therefore, the probability of radioactive decay of n nuclei in time t is given by the
binominal distribution

P(n) = N !
(N − n)!n! p

nqN−n (1.15)

Now, because p = n/N is very small in terms of radioactive decays, n is usually close
to the average of n, i.e., ν, we use p ≈ v/N < < 1. Now, Eq. (1.15) can be rewritten as

P(n) = N !
(N − n)!n!

(ν

N

)n(
1 − ν

N

)N−n
. (1.16)

By using the Sterling’s approximation for an integer m, m! ≈ √
2πm · e−mmm , and an

approximation for exponential function, (1− ν
N)N ≈ lim

N→∞(1− ν
N)ν = e−ν , the binomial

distribution approaches to the Poisson distribution, P(n) = νn

n! e
−ν , when the probability

p of the binomial distribution is small in such a way that the product np remains finite.

Proof From Eq. (1.16) and the Stirling’s approximation, we obtain

P(n) ≈
√
N · e−N · NN

√
N − n · e−(N−n) · (N − n)(N−n)

1

n!
(ν

N

)n(
1 − ν

N

)N−n

≈
√

N

N − n

1

en
1

(
1 − n

N

)N−n

νn

n! e
−ν

(
1 − ν

N

)−n

≈
(
1 − ν

N

)−n

(
1 − n

N

) 1
2−n

νn

n! e
−ν ≈ νn

n! e
−ν.

�

8 1 Probability Distribution Functions

1.3 Gaussian Distribution

1.3.1 Poisson to Gaussian

When n is large, the Poisson distribution (1.6) approaches to the Gaussian distribution:

P(n) = 1√
2πσ

e− (n−ν)2

2σ2 (1.17)

where v is the mean value and σ is the standard deviation. We will find σ = √
v in this

case.

Proof If n > > 1, using the Sterling formula, n! ≈ √
2πn · e−nnnn, and

√
2πn ≈ √

2πν,
the Poisson distribution (1.16) becomes

P(n) ≈ 1√
2πν

(ν

n

)n+ 1
2
en−ν = 1√

2πν

e�

(
1 + �

ν

)ν+�+(1/2)
, where� = n − ν. (1.18)

Because

ln

(
1 + �

ν

)ν+�+(1/2)

=
(

ν + � + 1

2

)
ln

(
1 + �

ν

)
=

[(
�

ν

)
− 1

2

(
�

ν

)2
]

= � + �2

2ν
+ O(�3),

we obtain
(
1 + �

ν

)ν+�+(1/2) ≈ e�+(�2/2ν), and therefore,

P(n) = 1√
2πν

e�

(
1 + �

ν

)ν+�+(1/2)
= 1√

2πν
e−�2/2ν = 1√

2πν
e−(n−ν)2/2ν . (1.19)

�

This is the normalized Gaussian distribution with the mean ν, and the standard
deviation σ = √

ν.
Notice that the numerical difference between the Poisson and the Gaussian distributions

of the same n is actually subtle when the average value is ν ≥10 or so. Figure 1.4 shows
these probability distributions when ν = 10 where the curve is the Gaussian distribution
whereas the orange curve is the Poisson distribution.

1.3 Gaussian Distribution 9

Fig. 1.4 Poisson and Gaussian distributions of mean value = 10

1.3.2 Binominal to Gaussian

Since the Poisson distribution function can be derived from the binominal function, and
the Poisson distribution can be approximated by the Gaussian distribution, the binomial
distribution (1.4) should also approach to be Gaussian as n → ∞ (and pn → ∞). Using
the Sterling formula again, we obtain

P(n) = N !
n!(N − n)! p

nqN−n

= 1√
2πN

(n

N

)−n−(1/2)
(
N − n

N

)−M+n−(1/2)

pn(1 − p)N−m

= 1√
2πN

exp

[
−

(
n + 1

2

)
ln

(n

N

)
−

(
N − m + 1

2

)
ln

(
N − m

m

)

+n ln n + (N − n) ln(1 − p)].

By setting n = Np + ξ where ξ < < Np, and keeping the dominant terms, we obtain

P(n) = 1√
2πN

1√
p(1 − p)

exp

[
−1

2

ξ2

Np(1 − p)

]
= 1√

2πσ
e− (n−<n>)2

2σ2 (1.20)

where σ = √
Np(1 − p) and ξ = n − Np = n− < n >.

Equations (1.19) and (1.20) are consequences of the central limit theorem, which
states any probability distribution approaches to the Gaussian distribution. Accord-
ing to the central limit theorem, even a uniform probability distribution function will
approach to the Gaussian! We can generate a set of uniform random numbers using the

10 1 Probability Distribution Functions

RND()function, and investigate if the uniform distribution function approaches to the
Gaussian distribution.

1.4 White Noise—Uniform Distribution to Gaussian Distribution

Figure 1.5 lists a small VBA code to generate random numbers that follow the Gaussian
distribution, called inverse Gaussian random numbers. Twelve uniform random numbers
generated between −0.5 and +0.5 using the RND()function are added to make one ran-
dom number. The subtraction of 0.5 from each random number is to make the desired
range of random numbers. The distribution of many of such random numbers will form
the Gaussian distribution with the mean 0 and the standard deviation 1.

Alternatively, EXCEL’s built-in function, NORMINV(RND(),0,1), which generates
random numbers having the mean 0 and the standard deviation 1, can be called in a VBA
program. Figure 1.6 shows a VBA code that generates 2,000 inverse Gaussian random
numbers.

Figurer 1.7 shows the output from each of the inverse Gaussian random number. Both
can generate Gaussian random numbers to the same degree of precision. In both charts,
the broken orange lines show the normalized Gaussian distribution of the mean and the
standard deviation calculated from the data of each method.

Remark: The NORMINV() function was introduced in EXCEL 2010. The NORMINV func-
tion was available in earlier excel version. It is still available in excel 2016, and VBA of
EXCEL 2019 (and EXCEL 365) can only call the NORMINV() function. The calling the

Fig. 1.5 VBA Code for generating Gaussian random numbers from RND()-function

Fig. 1.6 VBA Code for generating inverse Gaussian random numbers from NORMINV()function

1.5 Central Limit Theorem 11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-4 -2 0 2 4

Pr
ob

ab
ili

ty

Sum of 12 random numbers

From 12
random
numbers

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-4 -2 0 2 4

Pr
ob

ab
ili

ty

Sum of 12 random numbers

From
InvNorm
func�on

Fig. 1.7 Inverse Gaussian random numbers generated by two different methods

NORMINV()function from a VBA code takes a much longer computation time, and a run
time error may occur when it is called from a numerically intensive program.

1.5 Central Limit Theorem

Why can the sum of 12 uniform random numbers represent the Gaussian distribution
with the mean 0 and the standard deviation 1? What will happened if we add 24 uniform
random numbers? We can find the answers by studying the central limit theorem.

For proving the central limit theorem, first, we define the moment and the characteristic
function of a probability distribution, p(x). We also use the Fourier transform [4]. The
mean value of the mth-power of a random variable, x, of a probability distribution p(x) is
called the mth-moment:

〈xm〉 =
∫

xm p(x)dx (1.21)

The first moment is the mean (average), 〈x〉, and the second moment appears in the
standard deviation σ = √〈x2〉 − 〈x〉2. The characteristic function, φ(k), which is the
Fourier transform of the probability distribution function, can generate the moments.

φ(k) =
+∞∫

−∞
dkeikx p(x) =

+∞∫

−∞
dkp(x)

[
1 + ikx − 1

2!k
2x2 − i

3!k
3x3 + · · ·

]

= 1 + ik〈x〉 − k2

2! 〈x
2〉 + · · · (1.22)

12 1 Probability Distribution Functions

Notice that the characteristic function for a Gaussian distribution has only the first and
the second moments:

φGauss(k) =
+∞∫

−∞
dxeikx

{
1√
2πσ

exp

[
− (x − 〈x〉)2

2σ 2

]}
= eik〈x〉 exp

(
−1

2
k2σ 2

)
. (1.23)

Now, define the arithmetic average the independent random variables of a probability
distribution function, p(x):

ξ = 1

n

n∑

i=1

xi . (1.24)

The new variable ξ is also a random variable. The central limit theorem states that the
probability distribution function, P(ξ), will be Gaussian with a sufficiently large n.

Proof Instead of P(ξ), we can use another probability distribution function, Q(ξ − 〈x〉),
where the random variable is shifted by its mean value, and thus Q(ξ − 〈x〉) = P(ξ).
Because the random variables {x1, x2, …, xn} are independent, the probability P(ξ) should
be given by the products of the probability of each random variable, p(xi), i.e., P(ξ) =
p(x1)p(x2) · · · p(xn). Similar to Eq. (1.22), the characteristic function of Q(ξ − 〈x〉) is
given by

	(k) =
+∞∫

−∞
dξeik(ξ−x)Q(ξ − 〈x〉)

=
+∞∫

−∞
exp

[
ik

n
{(x1 − 〈x〉) + (x2 − 〈x〉) + · · · + (xn − 〈x〉)}

]
p(x1)dx1 p(x2)dx2 · · · p(xn)dxn

=
+∞∫

−∞
exp

[
ik

n
(x1 − 〈x〉)

]
p(x1)dx1

+∞∫

−∞
exp

[
ik

n
(x2 − 〈x〉)

]
p(x2)dx2 · · ·

+∞∫

−∞
exp

[
ik

n
(xn − 〈x〉)

]
p(xn)dxn

=
[
φ

(
k

n

)]n
=

[
1 − 1

2
k2σ 2 + · · ·

]
→ e− 1

2 k
2σ 2

as n → ∞. (1.25)

Taking the inverse Fourier transform of the characteristic function, 	(k), we obtain
Q(ξ − x):

Q(ξ − x) = 1

2π

+∞∫

−∞

(k)e−ikcdk = 1√

2π(σ/
√
n)

exp

[
−1

2

(ξ − 〈x〉)2
(σ/

√
n)2

]
(1.26)

Equation (1.26) is a Gaussian distribution of the mean value < x > and the standard devia-
tion σ ′ = σ/

√
n. Therefore, any probability distribution function will approach to Gaussian

with a large number of the random variables of the probability distribution function. �

References 13

Table. 1.1 Gaussian
distribution with different σ

from uniform random numbers

n σ =
√

n
3 (0.25) σ from EXCEL’s STDEV.S-function

12 1.00 1.0240

24 1.41 1.4071

36 1.73 1.7174

48 2.00 2.0168

Example In Sect. 1.4, we create a Gaussian distribution of the mean 0 and the standard
deviation 1 by summing 12 uniform random numbers. From the central limit theorem, we
now understand why we get the specific distribution function.

A random number of uniform distribution between −0.5 and +0.5 has

〈x〉 = 0 and 〈x2〉 =
+0.5∫

−0.5

x2dx = 1

3
(0.25).

According to the central limit theorem, the sum of the n-terms of the uniform random
numbers {x1, x2, …, xn}, ξ = (x1 + x2 + · · · + xn)/n, has

〈ξ 〉 = 0 and σ =
√

〈x2〉 − 〈x〉2 =
√
n

3
(0.25). (1.27)

Table 1.1 shows the σ-values from Eq. (1.27) for several different n’s and the computed
σ-values from the average of 2,000 ξ’s. Computing the sum of 12 terms generates a useful
Gaussian distribution of the mean 0 and the standard deviation 1. This is the reason why
N = 12 is the magic number in the binomial and uniform distributions.

References

1. Reif F (2009) Fundamentals of statistical and thermal physics. Waveland Press, Long Grove, IL
2. Ling SI, Sanny J, Moebs W (2012) University physics, vol 3. Open Stax: Rice University. https:/

/openstax.org/details/books/university-physics-volume-3)
3. Buczy BM (2009) Poisson distribution of radioactive decay. https://www.semanticscholar.org/

paper/Poisson-Distribution-of-Radioactive-Decay-Buczyk/a60e5ede525d744017b6a295915b40
c111aa9e10

4. Cho S (2018) Fourier transform and its applications using microsoft EXCEL®. A Primer IOP
Concise Physics. Morgan & Claypool, San Rafael, CA

https://openstax.org/details/books/university-physics-volume-3
https://www.semanticscholar.org/paper/Poisson-Distribution-of-Radioactive-Decay-Buczyk/a60e5ede525d744017b6a295915b40c111aa9e10

2Idea of Monte Carlo Simulations

Science theories must be verified with experiments. However, there are many situa-
tions where actual experiments are not feasible. Sometimes, even if we can establish
an equation to describe a theoretical model, solving the equation would be impossible
or extremely challenging. To circumvent this, we may apply an approximation and/or
conduct numerical calculations of the model, which will be compared with experimental
data. We will also attempt to perform simulations of a theoretical model to predict its
outcomes. One of the efficient computational methods is called the Monte Carlo simu-
lation [1]. It applies “random samplings” to obtain statistically significant results rather
than attempting to perform whole computations for computational speed and efficiency. In
this charter, we describe several well-known mathematical examples of the Monte Carlo
method to study its basic idea.

2.1 Calculation of π

This is an example that would be the most-cited example of the Montero Carlo simulation
in articles and books [2]. Figure 2.1 depicts a square of unit length and a quarter of a
circle of the radius of the unit length. The area ratio of the quarter circle to the square is
π/4. In the Monte Carlo method calculates the ratio by randomly generating a point (x,
y) in the unit square (0≤x≤1 and 0≤y≤1)), and then determines if the point is within
the quarter circle. After repeating this step many times, and the calculate compute the
ratio of the number of points within the quarter circle, Nc, to the total number of points
generated, N, should be close to π/4 ≈ 0.7854:

Nc

N
→ π

4
as N → ∞ (2.1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Cho, Monte Carlo Simulations Using Microsoft EXCEL®,
Synthesis Lectures on Mathematics & Statistics,
https://doi.org/10.1007/978-3-031-33886-1_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33886-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-33886-1_2

16 2 Idea of Monte Carlo Simulations

Fig. 2.1 Area-ratio for
computing π

In an illustrative Fig. 2.1, there are numbers of randomly distributed points in a square
of unit length where N = 32 and Nc = 25 and Nc/N = 0.78125.

The computational procedure, which is called the hit-or-miss method, takes the
following steps:

(1). Generate of a point (x, y) of two random numbers of 0≤x≤1 and 0≤y≤1;
(2). Check if the point within the circles: if x2 + y2 ≤1, then add it to Nc, and calculate

the ratio Nc/N; and
(3). Repeat the above steps N-times.

With a sufficiently large N, the computed ratio should approach to π/4. Figure 2.2 lists the
VBA code we created. Here there are 50 sets of 1,000 random samplings in this code to
observe the transition of the ratio as the number of random samplings increase. The code
computes the result of the hit-and-error of 1,000 random samplings to accumulate the
number of points inside the quarter circle and calculates the ratio. This cycle is repeated
50 times.

Figure 2.3 is a chart of the computed result, using EXCEL’s option of [Scatter
with Smooth Lines and Markers] of the [Charts] menu. The dots of the chart
show the computed accumulated ratio at 1,000, 2,000, …, 50,000 samplings. The ratio
approaches to the target value although the convergence is slow.

2.2 Calculation of Definite Integrals

Definite integral,
∫ b
a f (x)dx , can be computed in a similar fashion described in Sect. 2.1

because the integral can be interpreted as the area under the curve f (x) in the interval of
a≤x≤b. For simplicity, we assume that the function f (x)≥0 and monotonous. By taking
randomly sampled points (x, y) in a rectangular area of (b− a) · Max f (x) where we
estimate the area under the curve f (x).

2.2 Calculation of Definite Integrals 17

Fig. 2.2 VBA code for Monte Carlo (hit-ot-miss) calculation of π

Fig. 2.3 Transition of area ratio while performing hit-or-miss method

Let’s calculate

I =
1∫

0

dx

1 + x2
= π

4
= 0.785398 . . . (2.2)

The integrant is monotonically decreasing in 0≤x≤1. Figures 2.4 and 2.5 are the VBA
code for this calculation and the transition of the computed value with more samplings.

18 2 Idea of Monte Carlo Simulations

Fig. 2.4 VBA code for computing integral by hit-or-miss method

Fig. 2.5 Transition of integral value while performing hit-or-miss method

The program checks if a point (x, y) randomly generated within a unit square is below
the curve of 1/(1 + x2), and then compute the ratio of the points below the curve to the
total points. The code computes the result of the hit-and-error at every 100 samplings,
repeating 500 times. The asymptotic value approaches to the theoretical value.

The Monte Carlo simulation provides another method for computing the integral.
Applying the mean value theorem for integrals,

2.2 Calculation of Definite Integrals 19

Fig. 2.6 Mean value theorem

b∫

a

f (x)dx = (b − a) < f (x) >, (2.3)

we can also compute the definite integral. If we can compute < f (x) > , the integral (2.5)
can be evaluated. How can we do that efficiently? The key idea is to perform the random
sampling to find the mean value, < f (x) > . That is, as illustrated in Fig. 2.4, applying the
“random sampling” of N points, < f (x) > can be evaluated by considering its values at N
abscissae, {xi}, chosen at random with equal probability anywhere within the interval [a,
b]. Then < f (x) > will be computed by the following equation:

< f (x) >= 1

N

N∑

i=1

f (xi)where a ≤ xi ≤ b. (2.4)

Figures 2.5 list the VBA code that outputs the result shown in Fig. 2.6. The out-
put approaches to 0.786. The code computes the result of the hit-and-error at every
100 samplings, repeating 500 times, and calculates the average at 100, 200, …, 50,000
samplings.

There are several techniques to reduce the variance and improving the efficiency and
the integral. However, they are beyond the scope of this book. If a reader is interested in
the nature of computational improvement, refer to books on computational physics [2].

20 2 Idea of Monte Carlo Simulations

Fig. 2.7 VBA code for computing integral based on random sampling

2.3 Radioactive Decay

As we described in Chap. 1, the radioactive decay is given by dN /dt = − λN, where λ

is the decay constant. We should be able to simulate the exponential decay N(t) using
a predetermined decay constant. The Monte Carlo simulation determines an event of
decayed/undecayed by generating a random number:

(1) if the random number is smaller than or equal to the pre-determined λ-value, then it
is decayed, and reduce the current number of undecayed nuclei N by 1;

(2) if the random number is larger than the λ-value, then it is undecayed, and keep the
same N;

(3) repeat steps 1 and 2 to output N(t) and calculate ln[N(t)]] until the desired number
of time-segments; and

(4) draw a graph of ln(N(t)) = ln(N(0))− λt, and find its equation. The slope value of
the equation should be the pre-determined λ-value.

Figures 2.7 and 2.8 are the simulation program we created, and its outputs. The λ-value
computed by the simulation is 0.0099, which is essentially the same as the pre-set value
0.01.

2.4 Random Walk

Random walk is a random process that traces a path of random steps known as a walker.
The walker’s displacement consists of successive random movements taking the pre-
determined step width. Because random walk can be applied to various physics models
we describe throughout this book, it is crucial to learn it. The Monte Carlo simulation
can compute random walk processes easily and efficiently.

2.4 Random Walk 21

Fig. 2.8 Transition of integral values while performing random sampling

2.4.1 One-Dimensional Random Walk

Suppose a walker is initially at the origin, x(0) = 0, and moves along the straight line
where each step randomly takes±L. Assume the walker has a probability p of a step to
the right and a probability of q = 1− p of a step to the left. This is equivalent to the
binomial distribution. After N-steps, the distance from the initial position is given by

x(N) =
N∑

i=1

si where si = ±L, and thus, x2(N) =
(

N∑

i=1

si

)2

=
N∑

i=1

s2i +
N∑

i �= j

si s j .

(2.5)

If p = q = 1/2, the average x(N), < x(N) > , will be zero: < x(N) >= 1
N

∑N
i=1 si = 0,

and the product, sisj equals + L2 and− L2 when i �= j with equal probability, and thus

N∑

i �= j

〈si s j 〉 = 0, and < x2(N) >=
N∑

i=1

< s2i >= NL2. (2.6)

Defining the time interval for each step to be Δt, the time after N steps is given by t
= NΔt, and

< x2(N) >= NL2 =
(
L2

�t

)

(N�t) = Dt (2.7)

22 2 Idea of Monte Carlo Simulations

Fig. 2.9 VBA code for simulating radioactive decay

where t = NΔt, and D = L2/Δt. Equation (2.7) is called Einstein’s relation that appears in
his theory of Brownian movement [3]. Equation (2.7) states that the mean square distance,
< x2(N) > , from the starting point (x = 0) at N steps is proportional to time to take N
steps.

Figures 2.9 shows a VBA code that computes the positions of 100 independent walkers
at each Monte Carlo step. In this program, D = 1 because we set L = 1 and Δt = 1. The
step width is 1, and each walker moves±1, depending on the random number generated
by the RND()function. The program also computes the arithmetic average of the positions
of the 100 walkers at each step.

Figure 2.10 shows the positions of four walkers selected from the 100 walkers at each
step. Out of the four walkers, three of them moves similarly while one walker takes
quite different steps. This can be possible in a stochastic process. Figure 2.13 shows the
arithmetic average of x2, < x2 > , at each step, and the linear dependence on the number
of steps is clearly observed. The computed slope value is D = 1.0096. The computed
D-value is each simulation runs but consistent with D = L2/Δt = 1 (Figs. 2.11, 2.12).

2.4 Random Walk 23

Fig. 2.10 Time dependence of number of remaining radioactive nuclei

2.4.2 Two-Dimensional Random Walk

Two-dimensional random walk on a square lattice is essentially the same as two one-
dimensional random walks in two different directions orthogonal each other. If we
consider the random walk, using the one-dimensional case given by Eq. (2.5) for the x-
and the y- direction independently with the same step width, the distance to the position
(x(N), y(N)) at the N steps from the origin is given by

< r2(N) >=< x2(N) + y2(N) >= 2NL2 = 2Dt . (2.8)

The random walk on a square lattice is independent random walks in the two orthog-
onal directions with the same step size (±1) taken in the one-dimensional random walk.
The VBA code is listed in Appendix A2.1, and Fig. 2.14 shows the output from the code.
The slope value indicates < r2 > = dDt with d = 2, and D = 1.

If we consider a random walk in arbitrary two-dimensional direction with a randomly
changing angle θ to the x-axis, the position (x(n), y(n)) at n-steps is given by the set of
two equations:

⎧
⎪⎪⎨

⎪⎪⎩

x(n) = x(n − 1) + L cos θn = L
n∑

i=1
cos θi

y(n) = y(n − 1) + L sin θn = L
n∑

i=1
sin θi

(2.9)

where the angle θ i (i = 1, 2, …, n), randomly varies between 0 and 2π. The distance
after N-steps is

< r2(N) >=< x(N)2 + y(N)2 >= L2

⎡

⎣〈
(

N∑

i=1

cos θi

)2

〉 + 〈
(

N∑

i=1

sin θi

)2

〉
⎤

⎦ =
(
L2

�t

)

t

(2.10)

24 2 Idea of Monte Carlo Simulations

Fig. 2.11 VBA code of one-dimensional random walk

where t = NΔt. Figures 2.15 and 2.16 show a trace of the random walk of two-
dimensional space and the mean square distance from the origin obtained by the VBA
code listed in Fig. 2.17. In this simulation, L = 1 and Δt = 1 and ths D = L2/ Δt = 1.
The simulation outputs D = 0.9987. The “random-angle” walk has only a single random
variable, θ with no cross-term across the x and y coordinates. Thus, this, it is essentially
one-dimensional random walk. We describe the Brownian motion more in Chap. 3.

2.4 Random Walk 25

Fig. 2.12 Positions of four independent walkers at each step

Fig. 2.13 Time dependence of
mean square distance < x2 >

Fig. 2.14 Two-dimensional
random walk on square lattice

26 2 Idea of Monte Carlo Simulations

Fig. 2.15 Two-dimensional random walk pattern taking random angles

Fig. 2.16 Mean square
distance < r2 > from the origin
after N-steps

2.5 Percolation

Suppose a large porous rock is submerged under water for a long time, will the water
ever reach the center of the stone? The original percolation problem was proposed by
Broadbent and Hammersley [4]. A similar problem is that at what concentration of the
conductive particles in a medium placed between the conducting plates conducts elec-
tricity. Figure 2.18 illustrates schematic diagrams that model the electrical conductivity
between two plates and randomly placed metal particles between the plates. In these dia-
grams, the metal particles are replaced with cells formed in a square lattice. This model
is called a bond percolation. In this model, if two black cells are adjacent horizontally

2.5 Percolation 27

Fig. 2.17 VBA code for two-dimensional random walk using random angles

and/or vertically, they are connected whereas if they are adjacent diagonally, they are not
connected [5].

The medium has a certain threshold concentration (occupation rate) to establish a
conductive condition. In other words, once the concentration exceeds the threshold, the
medium becomes conductive. This change occurs suddenly and called a geometrical phase
transition. Our percolation model is a bond percolation on the square lattice of 400×400
cells of an EXCEL’s spread sheet, making some of the cells “occupied.” We change the
concentration of occupied cells, p, and observe how the occupied cells are connected from

28 2 Idea of Monte Carlo Simulations

Fig. 2.18 Schematic diagram of percolation problem

the top (Row 1) to the bottom (Row 100) of the spread sheet. Figures 2.19 shows the
VBA code created for this geometry.

We used a sub procedure (or subroutine) for repeatedly used codes. In the VBA code
of Fig. 2.19, there is a sub procedure, [RenumberClusters:].

Figure 2.20 shows the probability of connective state computed from the VBA code.
The probability abruptly increases once the concentration of occupied cells exceeds about
0.59. This is a geometrical phase transition. The theoretical critical concentration is known
to be pc = 0.5928, and we estimate pc = 0.593. Notice that the 400×400 square lattice
and the 40×40 square lattice appear to indicate the same pc although their transition
curves depend on the lattice size. More detailed computation indicates the probability
of connection has the concentration dependence of (p− pc)β where β = 5/36 near the
critical concentration [6, 7].

Figure 2.21 shows two screen shots of the computed bond patterns on 200×200 lattice
when p = 0.50 and 0.70. When p = 0.50, there are many clusters of variety of sizes, but
they are not large (“long”) enough to attain the end-to-end connection. When p = 0.70,
there is at least one large cluster that attains the end-to-end connection.

Practical note: We limited the lattice size 200×200 for optimal display on screen and
paper. Screen displays of 200×200 cells were reduced to 10%, and then took the screen
shots. Furthermore, we reduced the horizontal scales of the screen shots so that the cells
become square.

2.5 Percolation 29

Fig. 2.19 VBA code of bond percolation on square lattice

30 2 Idea of Monte Carlo Simulations

Fig. 2.20 Lattice size dependence on the critical concentration pc

Fig. 2.21 Clusters at p = 0.50 (left) and 0.70 (right) on 200×200 square lattice

References 31

References

1. Metropolis N (1987) The beginning of the Monte Carlo method. Los Alamos Science (Special
Issue dedicated to Stanislaw Ulam). https://library.lanl.gov/cgi-bin/getfile?00326866.pdf

2. Koonin SE (1987) Computational physics. Benjamin/Cummings, Menlo Park, CA
3. Einstein A (1998) Investigations on the theory of the brownian movement. Dover, New York, NY
4. Broadbent S, Hammersley J (1957) Percolation processes I. Crystals and mazes. Math Proc

Cambridge Philos Soc 53(3):629–641. https://www.cambridge.org/core/journals/mathematical-
proceedings-of-the-cambridge-philosophical-society/article/abs/percolation-processes/C00CC4
943F48228F8AC8031092FE84EC)

5. Site Percolation—Wolfram MathWorld. https://mathworld.wolfram.com/SitePercolation.html
6. Sykes MF, Glen M, Gaunt DS (1974) The percolation probability for the site problem on the tri-

angular lattice. J Phys A: Math Gen 7(9):L105–L108. https://iopscience.iop.org/article/10.1088/
0305-4470/7/9/002)

7. Smirnov S, Werner W (2001) Critical exponents for two-dimensional percolation. Math Res Lett
8:729–744 (arxiv, Cornell University). https://arxiv.org/abs/math/0109120v2

https://library.lanl.gov/cgi-bin/getfile?00326866.pdf
https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/percolation-processes/C00CC4943F48228F8AC8031092FE84EC
https://mathworld.wolfram.com/SitePercolation.html
https://iopscience.iop.org/article/10.1088/0305-4470/7/9/002
https://arxiv.org/abs/math/0109120v2

3Brownian Motion and Diffusion Equation

Brownian motion is random movement of particles such as pollen suspended in water
[1]. The random movement of particles is caused by collisions with surrounding small
particles. One of Einstein’s monumental works is a study of Brownian motion [2].

In this chapter, we describe several approaches to model Brownian motion:

1. a particle colliding with the surrounding particles (1-dimension and 2-dimensions),
2. stochastic equations that lead to diffusion equations,
3. random walks to model diffusion processes, and
4. analytical solutions for diffusion equations.

We also compute numerical solutions of equations of particle diffusion and heat flow with
given initial and boundary conditions. This approach is also applicable to Schrödinger
equations, which will be discussed in the next chapter.

3.1 Motion of a Particle Driven by Collisions with Surrounding
Particles

3.1.1 One-Dimensional Collision

The following description is inspired by the article by Ronlund [3]. Let’s describe a one-
dimensional elastic head-on collision between a target particle of mass M at velocity V
and an incident particle of mass m at average velocity v. Using the momentum and the
energy conservation laws, the velocities after a single collision are given by

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Cho, Monte Carlo Simulations Using Microsoft EXCEL®,
Synthesis Lectures on Mathematics & Statistics,
https://doi.org/10.1007/978-3-031-33886-1_3

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33886-1_3&domain=pdf
https://doi.org/10.1007/978-3-031-33886-1_3

34 3 Brownian Motion and Diffusion Equation

{
v′ = 2MV+(m−M)v

m+M = 2V+(ζ−1)v
1+ζ

V ′ = 2mv+(M−m)V
m+M = 2ζ+(1−ζ)V

1+ζ

(3.1)

where ζ = m/M.
Because the incident particles randomly collide with the target from either side, we

can define v = ±v0. After collisions of N times, the position and velocity of the target
particle are given by the following iteration formula:

xN = xN−1 + VN�t where VN = 2ζ + (1 − ζ)VN−1

1 + ζ
(3.2)

where Δt is the collision time, i.e., the time interval between two successive collisions.
In this collision process, we assume Δt is constant, and no simultaneous multiple colli-
sions occur. Since we assume the velocities of the incident particles are±v0, there are no
secondary collisions of the surrounding particles.

Figures 3.1 and 3.2 show a VBA code, and the result of < x2 > as a function of
the number of steps, N, where the number of steps, N = 1 to 5,000. The number of
target particles is 1,000 to compute < x2> . Except the motion at the beginning, < x2> is
proportional to the number of collisions N or the time t = NΔt. The initial transit motion
is very short in a realistic situation, and we will not observe it. Although selection of ζ

= m/M, Δt, and v0 determines the linear coefficient, the result always shows the linear
relationship as the consequence of one-dimensional random walk based on collisions.
Hence, the time dependence of < x2 > is equivalent to that of the random walker shown
in Fig. 2.13, and reveals the Einstein’s relation in the one-dimensional random walk that
we discussed in Sect. 2.4.1. In Fig. 3.4, the collision parameters are: ζ = 0.01, Δt =
0.01, v0 = 10, and NmaxΔt = 50.

3.1.2 Two-Dimensional Collision

A collision-based model on a plane should reflect more realistically to the motion of a
pollen particle floating on water. When we apply two-dimensional elastic collision to the
Brownian motion, the collisions are not necessarily head-on, and more detailed analysis
of collisions is required.

Suppose, in the laboratory frame, the incident particles have mass m and changes
the velocity �v to �v′ due to a single collision whereas the target particle has mass M
and changes the velocity �V to �V ′ due to the collision. The momentum and the energy
conservations are given by:{

m�v + M �V = m�v′ + M �V ′,
(1/2)mv2 + (1/2)MV 2 = (1/2)mv′2 + (1/2)MV ′ 2 (3.3)

3.1 Motion of a Particle Driven by Collisions with Surrounding Particles 35

Fig. 3.1 VBA code for one dimensional kinetic motion of Brownian particle

Fig. 3.2 Time dependence of < x2 > in one-dimensional random collisions

36 3 Brownian Motion and Diffusion Equation

Fig. 3.3 An incident particle
colliding with the target
particle in the target particle
frame

Figure 3.3 illustrates a collision of an incident particle in the frame of a target particle
where the velocity of the incident particle before and after a collision are given by the
relative velocities, �u = �v − �V and �u′ = �v′ − �V ′. No sizes of the incident particles
are considered as the incident particles are much smaller than the target. In this figure,
∠O1QP ′ = ∠P ′QO ′

1 = α, and θ = π − 2α, and the angle α can be considered as a
random variable between −π and + π, which represents non-head on collisions.

Now consider the collision in the center of mass frame. The center of mass before and
after a collision are given by

�rCM = m�r + M �R
m + M

and �r ′
CM = m�r ′ + M �R′

m + M
(3.4)

where �r , �r ′, �R, and �R′ are positions of the incident particle and the target particle before
and after a collision in the laboratory frame. From the set of Eqs. (3.4), the velocities of
the center of mass before and after a collision are given by

�vCM = m�v + M �V
m + M

and �v′
CM = m�v′ + M �V ′

m + M
(3.5)

where the velocities appeared in the above equations are

�vCM = d�rCM

dt
, �v′

CM = d�r ′
CM

dt
, �V = d �R

dt
, and �V ′ = d �R′

dt
.

Because of the Eq. (3.3) of momentum conservation, Eqs. (3.5) lead that the velocity
of the center of mass before and after a collision remains the same: �vCM = �v′

CM .
We now take several steps to obtain the iterative equation of the target particle in the

laboratory frame.

(i) Using the relative velocity of the incident particle to the target, �u = �v − �V , and
Eq. (3.5), �v and �V in the laboratory frame can be modified to the following equations:

3.1 Motion of a Particle Driven by Collisions with Surrounding Particles 37

{
�v = �vCM + M

m + M
�u = �vCM + ζ �u (3.6)

{
�V = �vCM − M

m + M
�u = �vCM − ζ �u (3.7)

where

ζ = M

m + M
. (3.8)

By the same token, the velocities of the incident and the target particles after a
collision are given by

�v′ = �v′
CM + ζ �u′ and �V ′ = �v′

CM − ζ �u′. (3.9)

(ii) Using Eqs. (3.6) to (3.9), Eq. (3.3) of the conservation of energy becomes

1

2
(�vCM + ζ �u)2 + 1

2
(�vCM − ζ �u)2 = 1

2

(�v′
CM + ζ �u′)2 + 1

2

(�v′
CM − ζ �u′)2. (3.10)

From Eq. (3.10), we obtain u2 = u’2, and thus u = u’.

(iii) The velocity of the target particle before a collision is given by Eq. (3.7), and thus,
�vCM = �V + ζ �u. Using �v′

CM = �vCM , we obtain the velocity of the target particle
after a collision:

�V ′ = �vCM − ζ �u′ = �V − ζ(�u′ − �u). (3.11)

If we can express the relative velocity �u′ after a collision with variables before
the collision, Eq. (3.11) can be the iterative equation to compute the velocity of the
target particle successively. Define unit vectors, �e‖ and �e⊥, which are parallel and
vertical to the relative velocity, �u, respectively. Referring to Fig. (3.3) and using u =
u’, the relative velocity after the collision, �u′, can be written as

�u′ = (u′�e‖) cos θ + (u′�e⊥) sin θ = (u�e‖) cos θ + (u�e⊥) sin θ. (3.12)

In Eq. (3.12), the unit vector �e‖ is along the relative velocity �u, i.e., (u�e‖) cos θ =
�u cos θ . Because the direction of the unit vector �e⊥ is π /2 from the direction of �u,
using the component expression of the relative velocity, �u = (ux , uy) and �e⊥ =
(e⊥x , e⊥y) in the laboratory frame, the components of u’�e⊥ = u �e⊥ in the laboratory
frame can be calculated by the rotational matrix:

38 3 Brownian Motion and Diffusion Equation

u′ �e⊥ = u�e⊥ = u

(
e⊥,x
e⊥,y

)
= u

(
cos(π/2) − sin(π/2)
sin(π/2) cos(π/2)

)(
e//x
e//y

)
=
(

−ue//y
ue//x

)
=
(

−uy
ux

)

(3.13)

(iv) Therefore, in the laboratory coordinates, using Eqs. (3.12) and (3.13), Eq. (3.11)
becomes

�V ′ = �V − ζ(�u′ − �u) = �V − ζ(u�e‖ cos θ + u�e⊥ sin θ − �u), (3.14)

or in the matrix form, we obtain

(
V ′
x

V ′
y

)
=
(
Vx
Vy

)
− ζ

(
ux cos θ − uy sin θ − ux
uy cos θ + ux sin θ − ux

)
=
(
Vx
Vy

)
+ ζ

(
ux (1 − cos θ) + uy sin θ

uy(1 − cos θ) − ux sin θ

)
.

(3.15)

Equation (3.15) will be our iteration equation for the two-dimensional collision-
based Brownian motion, and the position of the target particle will be given by
�x ′ = �x + �V ′�t after a single collision.

Figures 3.4 is a VBA code that uses the above iterative formula (3.15). For calculation of
the average distance, we used 4,000 iterations of the target particles. Notice that selection
of ζ = m/M, Δt, and v0 determines the linearity. In Fig. 3.4, the collision parameters are
ζ = 0.01, Δt = 0.01, v0 = 10, and the total number of collisions is 4,000.

Figure 3.5 is the trajectory of the two-dimensional trajectory of a target particle from
the above VBA code. The chart is drawn using [Scatter with Straight Lines].

Figure 3.6 shows the computed the mean square distance, < R2 > , from the VBA
code. Similar to the one-dimensional case, it reveals that R2 = Rx

2 + Ry
2 becomes a

linear function of the number of steps or time. In Fig. 3.6, < R2 > is proportional to d•t
and d = 2. This result is considered to be equivalent to Fig. 2.14 of the two-dimensional
random walk, indicating that the collision process can be modeled as the random walks.

3.2 Langevin Equation

The motion of a Brownian particle with mass M at velocity �v can be described by the
Langevin equation [4]. It is a Newton’s equation of motion, M d �v

dt = �K (t), where the
external force, �K (t), can be divided into two parts:

(1) the usual viscous drag on the particle, −βM �v, where, for a sphere of radius R,
Stokes’s law gives β = 6πRη/M and η is the coefficient of viscosity; and

3.2 Langevin Equation 39

 Nsteps = 4000 '# of collisions.
 NP = 4000 '# of systems of a Brownian particle.
 v0 = 10 'Speed of media particles.
 dt = 0.01 'Time interval between two successive collisions.
 Pi = 3.1415932654
 Cells(8, 5) = "# collisions"
 Cells(8, 6) = "x"
 Cells(8, 7) = "y"
 Cells(8, 9) = "Time"
 Cells(8, 10) = "<R^2>"
'Initial conditions starting at the origin:
 Cells(9, 5) = 0
 Cells(9, 6) = 0
 Cells(9, 7) = 0
 Cells(9, 9) = 0
 Cells(9, 10) = 0
'Initialization:
Randomize
 For i = 1 To NP
 X(i, 0) = 0
 Y(i, 0) = 0
 Vx(i, 0) = 0
 Vy(i, 0) = 0
 R2(i, 0) = 0
 Next i
 R2ave(0) = 0 'Initial <R^2>.
 For i = 1 To NP 'For each Brownian particle after one collision.
 If Rnd() < 0.5 Then
 v = v0
 Else
 v = -v0
 End If
 alpha = Pi * (2 * Rnd() - 1) 'Generate random angle.
 theta = Pi - 2 * alpha
 'Relative velocity:
 ux(i, 1) = v * Cos(alpha) - Vx(i, 0)
 uy(i, 1) = v * Sin(alpha) - Vy(i, 0)
 'Position after one collision:
 X(i, 1) = X(i, 0) + (Vx(i, 0) + M * ((1 - Cos(theta)) * ux(i, 1) + Sin(theta)
* uy(i, 1))) * dt
 Y(i, 1) = Y(i, 0) + (Vy(i, 0) + M * ((1 - Cos(theta)) * uy(i, 1) - Sin(theta)
* ux(i, 1))) * dt
 R2(i, 1) = X(i, 1) ^ 2 + Y(i, 1) ^ 2
 Next i
 For i = 1 To NP
 R2ave(1) = R2ave(1) + R2(i, 1)
 Next i
 R2ave(1) = R2ave(1) / NP '<R^2> after one collision.
 Cells(10, 5) = 1 * dt
 Cells(10, 6) = X(1, 1)
 Cells(10, 7) = Y(1, 1)
 Cells(10, 9) = R2ave(1)
 For j = 2 To Nsteps - 1 'Collision steps.
 R2ave(j) = 0
 For i = 1 To NP 'Brownian particles.
 If Rnd() < 0.5 Then
 v = v0
 Else
 v = -v0
 End If
 alpha = Pi * (2 * Rnd() - 1) 'Generate random angle.
 theta = Pi - 2 * alpha
 ux(i, j - 1) = v * Cos(alpha) - Vx(i, j - 1)
 uy(i, j - 1) = v * Sin(alpha) - Vy(i, j - 1)
 Vx(i, j) = Vx(i, j - 1) + M * (ux(i, j - 1) * (1 - Cos(theta)) + uy(i, j - 1) *
Sin(theta))
 Vy(i, j) = Vy(i, j - 1) + M * (uy(i, j - 1) * (1 - Cos(theta)) - ux(i, j - 1) *
Sin(theta))
 X(i, j) = X(i, j - 1) + Vx(i, j) * dt
 Y(i, j) = Y(i, j - 1) + Vy(i, j) * dt

Fig. 3.4 VBA code of 2-dimensional kinetic motion of Brownian particle

40 3 Brownian Motion and Diffusion Equation

Fig. 3.5 Two-dimensional trajectory of a particle due to collisions with surround particles

Fig. 3.6 Time dependence of < R2 >

(2) the other is a rapidly fluctuating stochastic force, M �F(t), representing the effect of
moving impacts on the particle.

We show that, starting with the Langevin equation, we can obtain Einstein’s relation

for Brownian motion. Using the explicit external force, �K (t) = M
(
−β �v + �F(t)

)
, the

equation of motion becomes

d �v
dt

= d2 �x
dt2

= −β �v + �F(t). (3.16)

From Eq. (3.16), consider the following equation:

�x · d �v
dt

= �x · d
2 �x
dt2

= −β �x · �v + �x · �F(t). (3.17)

3.2 Langevin Equation 41

Because

d2(�x)2
dt2

= d

dt

(
2�v · d �x

dt

)
= 2

(
d �x
dt

)2

+ 2�x · d
2 �x
dt2

,

we obtain

�x · d
2 �x
dt2

= 1

2

d2(�x)2
dt2

−
(
d �x
dt

)2

,

and the Eq. (3.17) becomes

�x · d
2 �x
dt2

= 1

2

d2(�x)2
dt2

−
(
d �x
dt

)2

= −β �x · �v + �x · �F(t). (3.18)

Therefore,

1

2

d2(�x)2
dt2

− (�v)2 = −1

2
β
d(�x)2
dt

+ �x · �F(t). (3.19)

Define

α =
〈
d(�x)2
dt

〉
,

and we obtain

dα

dt
− 3

kBT

M
= −βα (3.20)

where we used the uncorrelation relationship between �x and �F(t), i.e.,
〈
�x · �F(t)

〉
= 0.

With the equipartition theorem of thermodynamics, (1/2)M < v2 > = (1/2)d·kBT where
d = 1, 2, or 3 dimensions of the system, the solution of the differential Eq. (3.20) for α

is given by

α = 2dkBT

βM
+ ce−βt

where c is a constant. After a sufficiently long time, the exponential term should be
negligible, and the resultant solution will be

α =
〈
d(�x)2
dt

〉
= d

dt

〈
(�x)2〉 = d

2kBT

βM
, (3.21)

and thus

〈
(�x)2〉 = d

2kBT

βM
t = dDt where D = 2kBT

βM
. (3.22)

42 3 Brownian Motion and Diffusion Equation

Equation (3.22) is Einstein’s relationship we discussed in Sects. 2.4 and 3.1. There-
fore, the Langevin equation to model Brownian motion is an alternate expression of the
collision-based kinematics of the target particle and the random walk process.

3.3 Smoluchowski Equation to Diffusion Equation

3.3.1 Smoluchowski Equation to Fokker-Plank Equation

In this section, we do not concern what causes the random motion but want to describe
the positions of a Brownian particle as a function of time as a stochastic process. Let x
be the position of a randomly moving particle in one-dimension, and P(x1 | x2, t)dx2 be
the probability that the particle at x = x1 at t = 0 is forwarded to [x2, x2 + dx2] at time t.
Define an intermediate time t0 in the time interval [0, t], and the position in [y, y + dy] at
t0, and suppose a Brownian particle from x1 at t = 0 to x2 at time t via the intermediate
position y at t = t0, the following probabilities can be written:

P(x1|y, t0) for the step x1to y, and P(y|x2, t − t0) for the step y to x2. (3.23)

Thus, P(x1|x2, t) = P(x1|y, t0)P(y|x2, t − t0).
We assume the random motion is a Markov process: any event after a given time, t,

is not affected by any event before t. Then, taking all possibilities of the intermediate
positions, y, we obtain the Smoluchowski equation [5].

P(x1|x2, t) =
∫

P(x1|y, t0)P(y|x2, t − t0)dy. (3.24)

Form the Smoluchowski equation, we can derive a differential equation, called the Fokker-
Plank equation:

∂P(x1|x, t)
∂t

= − ∂

∂x
[A(x)P(x1|x, t] + 1

2

∂2

∂x2
[B(x)P(x1|x, t)] (3.25)

where A(x) = lim
�t→0

1
�t

∫
dξ(ξ − x)P(x |ξ, �t) and B(x) =

lim
�t→0

1
�t

∫
dξ(ξ − x)2P(x |ξ, �t) are called the drift term, and B(y) is the diffusion

term of the distribution, respectively [6].

Proof Let’s start with the Smoluchowski Eq. (3.24) with modification:

P(x1|y, t0 + �t) =
∫

P(x1|y − ξ, t0)P(y − ξ |y, �t)dξ (3.26)

3.3 Smoluchowski Equation to Diffusion Equation 43

where Δt will be a small time-increment and t = t0 + Δt. The Taylor expansion of the left
side gives the following expression to the first order:

P(x1|y, t0 + τ) = P(x1|y, t0) + ∂P(x1|y, t0)
∂t

�t,

where

∂P(x1|y, t0)
∂t

�t =
∫

P(x1|y − ξ, t0)P(y − ξ |y, �t)dξ − P(x1|y, t0) − P(x1|y, t0).
(3.27)

Setting z=y−ξ , the integrand of the righthand side becomes

P(x1|y − ξ, t0)P(y − ξ |y, �t) = P(x1|z, t0)P(z|z + ξ, �t),

which can be expanded to

P(x1|z, t0)P(z|z + ξ,�t) = P(x1|z, t0)P(z|z,�t) +
∑
n=1

(−1)n

n! ξn
∂n

∂zn
[P(x1|z, t0)P(z|z + ξ,�t)]

= P(x1|z, t0) − ξ
∂

∂z
[P(x1|z, t0)P(z|z + ξ,�t)] + 1

2
ξ2

∂2

∂z2
[P(x1|z, t0)P(z|z + ξ,�t)] − +...

(3.28)

Therefore, Eq. (3.27) becomes

∂P(x1|y, t0)
∂t

�t

=
∫

dξ

{
−ξ

∂

∂z
[P(x1|z, t0)P(z|z + ξ,�t)] + 1

2
ξ2

∂2

∂z2
[P(x1|z, t0)P(z|z + ξ,�t)]

}

= − ∂

∂ y

[
P(x1|y, t0)

∫
ξ P(y − ξ |y,�t)dξ

]
+ 1

2

∂2

∂ y2

[
P(x1|y, t0)

∫
ξ2P(y − ξ |y,�t)dξ

]
(3.29)

Taking the limit, Δt→0, we obtain the Fokker-Plank equation:

∂P(x1|y, t0)
∂t

= − ∂

∂ y

[
P(x1|y, t0) lim

�t→0

1

�t

∫
dξ(ξ)P(y − ξ |y, �t)

]

+ 1

2

∂2

∂ y2

[
P(x1|z, t0) lim

�t→0

1

�t

∫
dξ(ξ)2P(y − ξ |y, �t)

]

= − ∂

∂ y
[A(y)P(x1|y, t0)] + 1

2

∂2

∂ y2
[B(y)P(x1|y, t0)], (3.30)

where A(x) and B(x) are defined by

44 3 Brownian Motion and Diffusion Equation

A(y) = lim
�t→0

1

�t

∫
dξ(ξ)P(y − ξ |y,�t) and B(y) = lim

�t→0

1

�t

∫
dξ(ξ)2P(y − ξ |y,�t).

(3.31)

�

3.3.2 Fokker Plank Equation to Diffusion Equation

In a Brownian motion, P(x1|x, t) is a symmetric function of x− x1, corresponding to the
equal probability of movement to the right or to the left. This is called detailed balancing
condition. With this condition, the drift term, which is equal to the first moment should
be zero: A(x) = 0. If the diffusion term, B(x), is further independent of the position, the
Fokker-Plank Eq. (3.30) reduces to a diffusion equation:

∂P(x1|x, t)
∂t

= B

2

∂2P(x1|x, t)
∂x2

. (3.32)

This is a diffusion equation from which. we can obtain Einstein’s relation as follows.
With the probability distribution function, P(x |x, t) ≡ P(x, t), the average position is

given by < x(t) >= ∫
x P(x, t)dx . Consider the patrial time derivative of < x > :

∂ < x(t) >

∂t
=
∫

x
∂P(x, t)

∂t
dx . (3.33)

Using the right-side of diffusion Eq. (3.32) and the property,

P(x, t) → 0 and x
∂P(x, t)

∂t
→ 0 as x → ±∞,

we obtain

B

2

∫
x
∂2P(x, t)

∂x2
dx = B

2
x
∂P(x, t)

∂x

∣∣∣∣
+∞

−∞
− B

2

∫
∂P(x, t)

∂x
dx = 0. (3.34)

Thus,

∂ < x(t) >

∂t
=
∫

x
∂P(x, t)

∂t
dx = B

2

∫
x
∂2P(x, t)

∂x2
= 0, (3.35)

and hence < x > = constant. From the initial condition, x = 0 at t = 0, we have < x >
= 0.

Next, consider the partial time derivative of < x2 > :

3.4 Diffusion Process by Random Walk 45

∂ < x2(t) >

∂t
=
∫

x2
∂P(x, t)

∂t
dx = B

2

∫
x2

∂2P(x, t)

∂x2

= B

2
x2

∂P(x, t)

∂x

∣∣∣∣
+∞

−∞
− 2

B

2

∫
x

∂P(x, t)

∂x
dx

= −B P(x, t)|+∞−∞ + B = B (3.36)

Therefore, we obtain Einstein’s relation, < x2(t) > = Bt, whereB = 2D, from Eq. (3.36)
which originates from the Fokker-Plank equation.

Form the above arguments, we are now aware that the diffusion equation can derive
Einstein’s relation, and hence can be applied to describe Brownian motion. From the
argument of Sect. 2.4, the random walk can also derive Einstein’s relation. This means
we can also apply the random walk to diffusion processes to describe Brownian motion.
Therefore, the Monte Carlo simulation can be applied to Brownian motion and diffusion
processes by using random walk models.

3.4 Diffusion Process by Random Walk

In this section, we compute the dynamical distribution of diffusing particles. We compute
multiple random walks to each of which the Monte Carlo simulation is applied, and then
visualize the distribution of the random walkers.

3.4.1 One-Dimensional Diffusion

The VBA code for a single random walker (particles) listed in Fig. 2.11 can be modified
to multiple walkers to simulate the one-dimensional diffusion process. In the code of
Fig. 3.7, there are 5,000 random walkers to show their distributions at different times.

Figures 3.8 shows the normalized probability distribution of one-dimensional 5,000
walkers at 500 and 5,000 steps. The initial positions of the walkers are all at the origin.
The broken lines are Gaussian distribution functions fitted to the walkers’ distributions. In
Sect. 3.5 below, we show that the distribution function is Gaussian at a fixed time. As we
depict the analytical solution of one-dimensional diffusion equation in the next section,
we can verify these observations.

3.4.2 Two-Dimensional Diffusion

The VBA code shown in Fig. 3.9 is an extension of the single random walker code
on a two-dimensional plane without directional restriction as shown in Fig. 2.17. The

46 3 Brownian Motion and Diffusion Equation

Fig. 3.7 VBA code for one-dimensional diffusion by 5,000 random walkers

Fig. 3.8 Distribution of 1-dimensional random walkers at different steps

3.4 Diffusion Process by Random Walk 47

number of particles is 5,000, all of which are at the origin initially, and we calculated the
distributions of the walkers at 500, 2,500, and 5,000 steps.

Fig. 3.9 VBA code of two-dimensional random walks of 5,000 walkers

48 3 Brownian Motion and Diffusion Equation

Fig. 3.10 Distribution of 5000 walkers at 500 and 5,000 steps

Figure 3.10 shows the two-dimensional distribution of the 5,000 particles at 5,000 steps
where the distribution at 500 walks is onset with the same area scale.

Figure 3.11 shows the computed radial probability distributions of two-dimensional
random walkers at 500 and 5,000 walks. Broken lines are theoretical two-dimensional
radial probability functions, A·r·exp(-αr2) from Gaussian distribution functions exp(-αr2)
where constants A and α are optimized to each distribution. From this figure, we observe
that the walkers’ distribution is Gaussian at a given time. This means the two-dimensional
diffusion equation has a Gaussian solution, which leads to Einstein’s Relation. This was
also confirmed in Sect. 2.4.2.

3.5 Analytical Solution of One-Dimensional Diffusion Equation 49

Fig. 3.11 Radial probability distribution of random walkers at 500 and 5,000 steps

3.5 Analytical Solution of One-Dimensional Diffusion Equation

The analytical solution brings important insight to the simulations. Here, we have two
analytical solutions: the trial function method that is seen for finding the ground state of
the quantum mechanical harmonic oscillator [7], and the spectral method of applying the
Fourier transform [8].

3.5.1 Trial Function Method

Let’s solve the diffusion equation

∂P(x1|x, t)
∂t

= D
∂2P(x1|x, t)

∂x2
(3.37)

using a trial function, P(x, t) = t−pF(μ) where μ = x2/4Dt .
From the trial function, we obtain:

∂P

∂t
= −pt−p−1F(μ) − μt−p−1 dF

dμ
,

∂P

∂x
= t−p dF

dμ

∂μ

∂x
= xt−p−1

2D

dF

dμ
,

∂2P

∂x2
= t−p−1

2D

dF

dμ
+ μt−p−1

D

d2F

dμ2 , (3.38)

50 3 Brownian Motion and Diffusion Equation

and thus, the diffusion Eq. (3.32) becomes

μ
d

dμ

(
dF

dμ
+ F

)
+ 1

2

(
dF

dμ
+ 2pF

)
= 0. (3.39)

Taking p = 1/2, the above equation becomes

μ
d

dμ

(
dF

dμ
+ F

)
+ 1

2

(
dF

dμ
+ F

)
= 0,

And, to satisfy the equation, we may set

dF

dμ
+ F = 0. (3.40)

A solution of the above equation is F(μ) = ce−μ, and we obtain

P(x, t) = t−pF(μ) = ct−1/2 exp

(
− x2

4Dt

)
. (3.41)

The normalization condition,
∫ +∞
−∞ P(x, t)dx = 1, determines the constant c to be c =

1/
√
4πD,

and the normalized probability distribution is given by

P(x, t) = 1√
4πDt

exp

(
− x2

4Dt

)
. (3.42)

For a fixed time, the distribution is Gaussian of the mean vale, < x > = 0, and the
standard deviation,σ = √

2Dt . Therefore, from σ 2 = 〈x2〉 − 〈x〉2, we obtain Einstein’s
relation, < x2 > = 2Dt.

3.5.2 Spectral Method

In the spectral method, the Fourier transform is applied to the diffusion equation. It was
indeed Joseph Fourier who applied the Fourier transform to heat transfer for the first time.
We define the Fourier transform of P(x, t) and the inverse Fourier transform as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
FT [P(x, t)] = 1√

2π

+∞∫
−∞

P(x, t)e−ikxdx ≡ ρ(k, t)

FT−1[ρ(k, t)] = 1√
2π

+∞∫
−∞

ρ(x, t)e+ikxdk = P(x, t)
(3.43)

By replacing P(x, t) with FT−1[ρ(k, t)], the diffusion Eq. (3.37) becomes

3.5 Analytical Solution of One-Dimensional Diffusion Equation 51

∂

∂t

⎡
⎣ 1√

2π

+∞∫
−∞

ρ(k, t)e+ikxdk

⎤
⎦ = D

∂2

∂x2

⎡
⎣ 1√

2π

+∞∫
−∞

ρ(k, t)e+ikxdk

⎤
⎦.

Thus,

1√
2π

+∞∫
−∞

∂ρ(k, t)

∂t
e+ikxdk = D

1√
2π

+∞∫
−∞

∂2

∂x2

(
ρ(k, t)e+ikx

)
dk

= D
1√
2π

+∞∫
−∞

ρ(k, t)[−k2]e+ikxdk. (3.44)

From the Fourier transform of Eq. (3.44), we obtain

1√
2π

+∞∫
−∞

dxe−ik′x

⎡
⎣ +∞∫
−∞

dk
∂ρ(k, t)

∂t
e+ikx

⎤
⎦

= D
1√
2π

+∞∫
−∞

dxe−ik′x
+∞∫

−∞
dkρ(k, t)[−k2]e+ikxdk. (3.45)

Since
+∞∫
−∞

ei(k−k′)xdx = 2πδ(k − k′) where δ(k − k′) is the Dirac delta function,

Eq. (3.45) becomes

∂ρ(k, t)

∂t
= −k2Dρ(k, t). (3.46)

This is the “decay equation” we analyzed in Sect. 2.3 in the k-space. Thus, its solution
is given by

ρ(k, t) = ρ0e
−k2Dt . (3.47)

The constant, ρ0, can be determined as follows. Taking the inverse Fourier transform
of the solution (3.47), we obtain

P(x, t) = 1√
2π

+∞∫
−∞

dkρ(k, t)e+ikxdk = 1√
2π

+∞∫
−∞

ρ0e
−k2Dte+ikxdk (3.48)

From Eq. (3.48) at t = 0, we obtain P(x, 0) = 1√
2π

+∞∫
−∞

ρ0e+ikxdk. Thus,

52 3 Brownian Motion and Diffusion Equation

FT [P(x, 0)] = 1√
2π

+∞∫
−∞

P(x, 0)e−ikxdk = ρ0
1√
2π

+∞∫
−∞

e−ikxdk = ρ0. (3.49)

For the initial condition P(x,0) = δ(x), we obtain

ρ0 = 1√
2π

+∞∫
−∞

δ(x)e−ikxdk = 1√
2π

,

and the solution, P(x, t), with the initial condition P(x,0) = δ(x) is given by Eq. (3.48):

P(x, t) = 1

2π

+∞∫
−∞

dke−k2Dte+ikx = 1

2π
e−(x2/4Dt)

+∞∫
−∞

dke−Dt
[
k−(i x/2Dt)2

]

= 1

2π
e−(x2/4Dt)

√
π

Dt
= 1√

4πDt
e−(x2/4Dt). (3.50)

This is the same as the solution (3.42) from the trial function method.

3.6 Numerical Analysis of One-Dimensional Diffusion Equation

In this section, we use a simplified notation of the diffusion Eq. (3.37):

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
. (3.51)

Differential Eq. (3.51) can describe various physical phenomena including particle
diffusion, and thermal conduction. Even the Schrödinger equation can be altered to the
diffusion equation as we will describe in Sect. 4.1. Although the particle diffusion can be
modeled by the Monte Carlo random walk as we have found in this chapter, Eq. (3.51)
can be also solved by carrying out the iterative computation with both the initial and
the boundary conditions that are specific to a model to be analyzed. In this section, we
solve the diffusion equation with two different boundary conditions for one-dimensional
particle diffusion and thermal conduction.

For the numerical computation, we need to obtain a difference equation from the
differential equation. From the Taylor expansion of a function u(x, t):

u(x, t + �t) = u(x, t) + (�t)
∂u(x, t)

∂t
+ 1

2
(�t)2

∂2u(x, t)

∂t2
+ · · · ,

u(x + �x, t) = u(x, t) + (�x)
∂u(x, t)

∂x
+ 1

2
(�x)2

∂2u(x, t)

∂x2
+ · · · ,

3.6 Numerical Analysis of One-Dimensional Diffusion Equation 53

u(x − �x, t) = u(x, t) − (�x)
∂u(x, t)

∂x
+ 1

2
(�x)2

∂2u(x, t)

∂x2
+ · · · , (3.52)

Thus, we obtain the first partial derivatives with respect to t and x:(
∂u(x, t)

∂t

)
≈ u(x, t + �t) − u(x, t)

�t
,(

∂u(x, t)

∂x

)
≈ u(x + h, t) − u(x, t)

�x
, (3.53)

And the second partial derivative with respect to x is given by(
∂2u(x, t)

∂x2

)
x=x

≈ 1

(�x)2
[u(x + h, t) + u(x − h, t) − 2u(x, t)]. (3.54)

Therefore, the diffusion Eq. (3.51) is now converted to

u(x, t + �t) − u(x, t)

�t
= D

1

(�x)2
[u(x + h, t) + u(x − h, t) − 2u(x, t)], (3.55)

and we can use the following iterative expression for numerical analysis:

u(x, t + �t) = u(x, t) + D
�t

(�x)2
[u(x + h, t) + u(x − h, t) − 2u(x, t)]. (3.56)

An important consideration for the numerical calculation is the condition on the posi-
tion increment, Δx, and the time increment, Δt. In order for computational stability, the
two increment parameters must satisfy

�x ≥ √
2D�t . (3.57)

The above condition relates to the spectral method discussed in Sect. 3.5.2. From
the spectral method, the probability distribution that follows the diffusion equation is
Gaussian with the mean zero and the standard deviation σ = √

2Dt . From the spread,
the distribution can be expected to have a spread about

√
2D�t during each time step,

Δt, of a numerical computation. The special step, say h, must be larger than the possible
spread to allow the distribution to spread. We can also infer that the condition (3.49) is
due to the intrinsic property of the “uncertainty” of the Fourier transform [9].

3.6.1 Particle Diffusion

Imagine a number of particles, ρ(x, t), diffuse along a one-dimensional tube. Suppose
we have 1,000 freely moving independent particles confined in a tube of length L, and

54 3 Brownian Motion and Diffusion Equation

initially they are all at one end of the tube (x = 0), i.e., ρ(0, 0) = 1,000. For the particle
diffusion with the initial condition, we have:

(1) Diffusion equation:

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
(3.58)

(2) Initial condition:

ρ(0, 0) = 1000, otherwise ρ(x, 0) = 0. (3.59)

What is the boundary condition for this problem? It is somewhat tricky. The particles
are confined in the one-dimensional box, and there is no particle in and out of the tube.
It is quite different from the “fixed number of particles” at the boundary. Although the
particles at x = 0 initially, they should be able to move freely inside the tube and the
number of particles remains the same in the tube. In this case, the boundary condition
should be ∂ρ(x,t)

∂x = 0 at both ends (x = 0 and L). It specifies that there is no particle
exchange across the boundaries. It is analogous to the “free-end” of a wave on a string.

Now, we need to write down the boundary condition, ∂ρ(x,t)
∂x = 0, in equations at x =

0 and L. By adding two equations of equation set (3.52) and replacing u(x, t) with ρ(x,
t), we obtain

∂ρ(x, t)

∂x
= ρ(x + h, t) − ρ(x − h, t)

2h
. (3.60)

Thus, the proper boundary conditions for no particle passing through at both ends are
given by the following equations:

⎧⎪⎪⎨
⎪⎪⎩

∂ρ(x, t)

∂x

∣∣∣∣
x=0

= ρ(h, t) − ρ(−h, t)

2h
= 0.

∂ρ(x, t)

∂x

∣∣∣∣
x=L

= ρ(L + h, t) − ρ(L − h, t)

2h
= 0.

(3.61)

Using the length and the time increments, L = N·h, x = j·h, t = k·�t, j = 0,1,2, …,
and k = 0,1, 2, …, the boundary conditions (3.61) become{

ρ(1, k) − ρ(−1, k) = 0 at x = 0.

ρ(N + 1, k) − ρ(N − 1, k) = 0 at x = L.
(3.62)

Because we only define 0≤x≤L, we must eliminate ρ(−1, k) and ρ(N + 1, k) from
the boundary conditions (3.62). Here is the tricky part. Similar to Eq. (3.56), the difference
equation for ρ(x, t) is given by

3.6 Numerical Analysis of One-Dimensional Diffusion Equation 55

ρ(j, k + 1) = ρ(j, k) + R[ρ(j + 1, k) + ρ(j − 1, k) − 2ρ(j, k)] (3.63)

where R = DΔt/h.
From Eqs. (3.63), we obtain{

ρ(0, k + 1) = ρ(0, k) + R[ρ(1, k) + ρ(−1, k) − 2ρ(0, k)]

ρ(N , k + 1) = ρ(N , k) + R[ρ(N + 1, k) + ρ(N − 1, k) − 2ρ(0, k)]
(3.64)

Combining the equations sets (3.62) and (3.64), we can eliminate ρ(−1, k) = ρ(1, k)
and ρ(N + 1, k) = ρ(N − 1, k), and the boundary conditions becomes{

ρ(0, k + 1) = ρ(0, k) + 2R[ρ(1, k) − ρ(0, k)].

ρ(N , k + 1) = ρ(N , k) + 2R[ρ(N − 1, k) − ρ(N , k)].
(3.65)

Figure 3.12 lists the VBA code for the particle diffusion analysis where we assume D
= 0.5, L = 25, h = 0.5, Δt = 0.1. The initial condition is given by Eq. (3.59), and the
boundary condition is given by Eq. (3.65).

Figure 3.13 shows the number of particles as a function of position in the cylinder at
t = 5, 15, and 50. The data dots are outputs from the VBA code. The broken lines are
computed distributions using Eq. (3.42) and the obtained number of particles at x = 0.
These distributions are Gaussian distributions (3.42) at fixed times. The tube length is 25
but Fig. 3.13 shows only part of the tube: 0≤x≤20.

3.6.2 Heat Conduction

Imagine a metal rod of length, L, has uniform temperature at 100°C initially. The rod is
then in thermal contact with a heat reservoir of temperature 0 °C at each end. What is the
temperature distribution, T (x, t), inside the rod at later time? The following heat equation
describes the problem:

(1) Heat equation:

∂T (x, t)

∂t
= D

∂2T (x, t)

∂x2
(3.66)

where D is the thermal diffusivity.

(2) Initial condition: T (x, 0) = 100 for 0 < x < L, and T(0,0) = T(L, 0) = 0.

56 3 Brownian Motion and Diffusion Equation

Fig. 3.12 VBA code for one-dimensional particle diffusion (N = 1000)

(3) Boundary condition: T (0, t) = T(L, t) = 0.

Figure 3.14 lists the VBA code for the thermal analysis where we assume D = 1, L = π,
Δx = 0.1, and Δt = 0.01.

Figure 3.15 shows the temperature distribution T (x, t) computed at t = 0, 0.05, 0.15,
0.30, and 0.60. The temperature distribution approaches to a sine-curve as heat transfer
progresses.

We also computed the numerical values of the analytical solution discussed below by
taking the first 4 terms (n = 4) at times selected in Fig. 3.15. The computed numerical
values (shown in dots) are superposed onto each curve in Fig. 3.15.

Figures 3.16 and 3.17 show the time dependence of temperature T (t) and ln(T (t)) at the
midpoint x = 1.57. Referring to the analytical solution given by Eq. (3.67) shown below,
the temperature stays at the initial value 100°C for a short while, then the temperature

3.6 Numerical Analysis of One-Dimensional Diffusion Equation 57

Fig. 3.13 Particle diffusion in a cylinder

starts decreasing “multi-exponentially” with the dominant term of n = 1. The higher terms
decrease rapidly.

3.6.3 Analytical Solution of Heat Equation

The analytical solution of the heat equation and the given initial and the boundary
conditions is given by

T (x, t) = 200

π

∞∑
n=1

[
1 − (−1)n

n

]
e−n2t sin(πx) (3.67)

where D = 1 and L = π. [10]
Let us derive the solution briefly. By setting T (x, t) = G(t)X(x) to separate the variables

x and t, we obtain.

58 3 Brownian Motion and Diffusion Equation

Fig. 3.14 VBA Code for heat conduction through a rod between two heat reservoirs

3.6 Numerical Analysis of One-Dimensional Diffusion Equation 59

Fig. 3.15 Heat conduction between through a conductive rod with fixed temperatures at both ends

Fig. 3.16 Time dependence of temperature at the midpoint of the rod

60 3 Brownian Motion and Diffusion Equation

Fig. 3.17 Logarithmic time dependence of temperature at the midpoint of the rod

X”(x) + λX(x) = 0 and G’(t) + λDG(t) = 0 where λ is the separation constant.

(1) X”(x) + λX(x) = 0: using the boundary condition, X(0) = X(L) = 0, we obtain

Xn(x) = c1 sin
(nπ

L x
)
where c1 is a constant, λ = (nπ /L)2, and n = 1, 2, 3, …

(2) G’(t) + λDG(t) = 0: using the obtained λ = (nπ /L)2,

Gn(t) = c2 exp

[
−D

(nπ

L

)2
t

]
.

Thus, the temperature T (x, t) is given by

T (x, t) =
∑
n

Gn(t)Xn(x) =
∑
n

Ane
−D(nπ

L)
2t sin

(nπ

L
x
)

where An = c1c2.
If we assume the initial condition T (x, 0) = f (x),

T (x, 0) = f (x) =
∑
n

An sin
(nπ

L
x
)
.

This is a sine-Fourier series, and the coefficient An is given by

An = 2

L

L∫
0

f (x) sin
(nπ

L

)
dx .

Therefore,

References 61

T (x, t) = 2

L

∑
n

⎡
⎣ L∫

0

f (x) sin
(nπ

L

)
dx

⎤
⎦e−D(nπ

L)
2t sin

(nπ

L
x
)
.

As the special case, f (x) = 100 at x = 0, L = π, D = 1, we obtain

An = 2

L

L∫
0

f (x) sin
(nπ

L

)
dx = 200

π

[
1 − (−1)2

n

]
,

and the solution of the heat Eq. (3.66) is given by

T (x, t) = 200

π

∑
n

[
1 − (−1)n

n

]
e−n2t sin(nx)

= 400

π

[
e−t sin(x) + 1

3
e−9t sin(9x) + 1

5
e−25t sin(5x) + 1

7
e−49t sin(7x) + · · ·

]
.

(3.68)

References

1. Philipse AP (2011) Notes on brownian motion. https://www.semanticscholar.org/paper/Notes-
on-Brownian-Motion-Philipse/0f300a40087bfa70882d823ab25b61ef2c47a6d4

2. Hellerman S (2005) Brownian motion and the atomic theory. https://www.physics.princeton.
edu/www/legacy/gransasso2006/lectures/einstein.pdf

3. Ronlund M-E (2011) Modeling brownian motion with elastic collisions. https://physics-archive.
wooster.edu/JrIS/Files/Ronlund_Web_Article.PDF

4. Pathria RK, Beale PD (2021) Statistical mechanics. Elsevier Science & Technology
5. Islam MA (2004) Einstein–Smoluchowski diffusion equation: a discussion. Phys Scr 70:120.

https://iopscience.iop.org/article/10.1088/0031-8949/70/2-3/008/pdf
6. Cross M (2006) Physics 123b statistical physics Fokker–Plank equation. http://www.pmaweb.

caltech.edu/~mcc/Ph127/b/index.html
7. Medved A, Davis R, Vasquea P (2020) Understanding fluid dynamics from Langevin and

Fokker–Plank equations. www.mdpi.com/2311-5521/5/1/40/html
8. Berntsson F (1999) A spectral method for solving the sideways heat equation. Inverse Problems

15:891. https://iopscience.iop.org/article/10.1088/0266-5611/15/4/305/meta
9. Cho S (2018) Fourier transform and its applications using Microsoft EXCEL®. A Primer IOP

Concise Physics. Morgan & Claypool, San Rafael, CA
10. Zill DG (2011) Advanced engineering mathematics, 4th edn. Jones and Bartlett Publishers,

Sudbury, MA

https://www.semanticscholar.org/paper/Notes-on-Brownian-Motion-Philipse/0f300a40087bfa70882d823ab25b61ef2c47a6d4
https://www.physics.princeton.edu/www/legacy/gransasso2006/lectures/einstein.pdf
https://physics-archive.wooster.edu/JrIS/Files/Ronlund_Web_Article.PDF
https://iopscience.iop.org/article/
http://www.pmaweb.caltech.edu/~mcc/Ph127/b/index.html
http://www.mdpi.com/2311-5521/5/1/40/html
https://iopscience.iop.org/article/10.1088/0266-5611/15/4/305/meta

4Quantum Diffusion Monte Carlo Method

There are a limited number of cases where we can find exact solutions through
Schrödinger equations [1]. By introducing the imaginary “fake” time, Schrödinger equa-
tions become “diffusion equations,” to which we can apply Monte Carlo simulations to
find their solutions.

In this chapter, first, we solve the first potential problem of quantum mechanics we
learn, a particle in one-dimensional infinite potential well, to describe how the Schrödinger
equation evolves with imaginary time to approach to a true wave function from an
assumed initial wave function. Second, we apply a radioactive decay equation to intro-
duce a way to compute the ground state of a particle in the on-dimensional box. This
approach is similar to what we disused in Sect. 2.3. Third, we describe sophisticated ran-
dom walkers’ Monte Carlo algorithms that can be applied to atoms and molecules to find
their ground states.

Note: In this chapter, we use an arbitrary unit system or the arbitrary unit (a.u.) sys-
tem where m = 1, � = 1, and e = 1 as well as the unit system of eV and Å used in
spectroscopy.

4.1 One-Dimensional Infinite Potential Well

4.1.1 Imaginary Time Schrödinger Equation

We focus on the one-dimensional potential well problem to introduce Schrödinger equa-
tion with the imaginary time. The time-independent Schrödinger equation is the given by

i�
∂ψ(x, t)

∂t
= Ĥψ(x, t) where Ĥ = −1

2
∇2 + V (x) (4.1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Cho, Monte Carlo Simulations Using Microsoft EXCEL®,
Synthesis Lectures on Mathematics & Statistics,
https://doi.org/10.1007/978-3-031-33886-1_4

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33886-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-33886-1_4

64 4 Quantum Diffusion Monte Carlo Method

For a real-value potential V (x), the wave function ψ(x) is a real function, and we write
the time-independent Schrödinger equation as

[
−1

2

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x) where

∫
ψ2dx = 1. (4.2)

Now, back to the time-dependent Schrödinger Eq. (4.1), if we replace the time variable
t with the imaginary time, τ = i�t = i t in a.u., the Schrödinger equation becomes

∂ψ(x, τ)

∂τ
= −Ĥψ(x, τ). (4.3)

Equation (4.3) can be regarded as a diffusion equation with the imaginary time τ . For
solving the one-dimensional diffusion equation by iteration, we can utilize the iteration
method described in Sect. 3.6. Taking a discrete short imaginary time increment, Δτ , the
time evolution of the wave function ψ(τ) can be given by

ψ(τ j+1, x) = ψ(τ j , x) +
(

∂ψ

∂τ

)
�τ. (4.4)

Combing Eqs. (4.3) and (4.4), we obtain

ψ(τ j , x) = ψ(τ j−1, x) − Ĥψ(τ j−1, x)�τ. (4.5)

Therefore, starting with a reasonably assumed initial wave function, ψ(τ 0, x), and
applying the iterative method using the iteration expression (4.5), the initial wave function
should evolve to the true wavefunction ψ(τ , x) as j→∞.

Energy E can be calculated from Eq. (4.2):

E = 〈ψ |Ĥψ〉 =
∫

dxψ(x)

[(
−1

2

d2

dx2
+ V (x)

)
ψ(x)

]

=
∫

dx

[
1

2

(
dψ

dx

)2

+ V (x)ψ2(x)

]
→

∑
k

(�x)

[
1

2

ψk − ψk−1

(�x)2
+ Vkψ

2
k

]
.

(4.6)

4.1.2 A Particle in One Dimensional Potential Box

Consider a particle in a one-dimensional infinite potential well:

V (x) = 0 if 0 ≤ x ≤ 1; and V (x) = ∞ if x ≤ 0 and x ≥ 1. (4.7)

The time-independent Schrödinger equation in a.u. is

4.1 One-Dimensional Infinite Potential Well 65

−1

2

d2ψ(x)

dx2
= Eψ(x) for 0 ≤ x ≤ 1; and otherwise ψ(x, t) = 0. (4.8)

The exact solution is well known, and given by ψn(x) = √
2 sin(nπx), n = 1,2, …,

and the ground state wavefunction and the energy (n = 1) are given by

ψ1(x) = √
2 sin(πx) and E1 = π/2 = 4.9348 . . . (4.9)

Let’s take the fake time approach. The Schrödinger equation with the imaginary time,
τ = it in a.u., is given by

∂ψ(x, τ)

∂τ
= 1

2

∂2ψ(x, τ)

∂x2
for 0 ≤ x ≤ 1; and otherwise ψ(x, t) = 0. (4.10)

As the initial wave function, we use a triangular wave function, ψ(τ 0, x) = x(1− x),
which satisfies the boundary condition,

ψ(0, τ) = ψ(1, τ) = 0

and should be relatively close to the exact wave function. We expect this initial triangular
wavefunction should evolve the exact same way or as a very similar wave function.

Following the derivation of the iterative expression (3.56), the second derivative with
respect to the coordinate can be given by

1

2

∂2ψ(x, τ)

∂x2
= 1

2

ψ ′(x + �x, τ) − ψ ′(x − �x, τ)

�x

= 1

2

ψ(x + �x, τ) + ψ(x − �x, τ) − 2ψ(x, τ)

�x2
(4.11)

where we used the first derivatives are given by

⎧⎪⎨
⎪⎩

ψ ′(x + �x, τ) ≈ ψ(x + �x, τ,) − ψ(x, τ)

�x
, and

ψ ′(x − �x, τ) ≈ ψ(x, τ) − ψ(x − �x, τ)

�x
.

(4.12)

Therefore, we obtain

ψ(τ j , x) = ψ(τ j−1, x) + �τ

(�x)2
[
ψ(τ j−1, x + �x) + ψ(τ j−1, x − �x) − 2ψ(τ j−1, x)

]
.

(4.13)

Once the normalized wave function is computed at each iteration, the energy E is
calculated by using Eq. (4.6). In this case, V (x) = 0 and the energy of the particle is

66 4 Quantum Diffusion Monte Carlo Method

E = 1

2

∑
k

[
ψ(xk, τ j) − ψ(xk−1, τ j)

]2
(�x)

. (4.14)

Figure 4.1 lists the VBA code that calculates and the ground state wave function and
energy. There are 20 points in the potential well to compute the wave function. The imag-
inary time increment is taken to Δτ = 0.0005 for the computational stability condition
(3.57) we discussed in Sect. 3.6.

Figure 4.2 shows the computed wave function at the selected points and the exact
solution. The broken line is the exact solution and the orange dots are the computed
wave function. The computed ground state energy with this code is E1 = 4.926 after

Sub Boxsub()
Cells(1,1) = "1D potential well (0<x<1) using imaginary time diffusion iteration"
 Dim phi(20) 'Wavefunction.
 N = 20 'Number of data points (x) in the potential well.
 h = 1 / N
 dtau = 0.0005 'Imaginary time interval.
 R = dtau / h ^ 2 'R=0.0005/0.0025 < 1: good for computation stability.
 NP = 100 'Number of iterations.
 Cells(4, 2) = "x"
 Cells(4, 3) = "phi(x)"
 Cells(4, 4) = "Exact Solution"
'Set the initial wave function. Boundary condition is phi(0)=phi(1)=0:
 For j = 0 To N
 x = j * h
 phi(j) = x * (1 - x)
 Next j
 GoSub Normalization 'Normalization of the initial wave function.
'Iteration to evolve the normalized initial wave function:
 For it = 1 To NP
 For j = 1 To N - 1
 PS = phi(j) + R * (phi(j - 1) + phi(j + 1) - 2 * phi(j))
 phi(j) = PS
 Next j
 GoSub Normalization 'Normalization of the wave function at j-iteration:
 E = 0 'Initialize energy.
 For k = 1 To N
 E = E + ((phi(k) - phi(k - 1)) ^ 2) / (2 * h)
 Next k
 Next it
 For j = 0 To N
 dx = j / N
 Cells(5 + j, 2) = dx
 Cells(5 + j, 3) = phi(j)
 Cells(5 + j, 4) = Sqr(2) * Sin(3.14159 * dx) 'Exact solution.
 Next j
 Cells(3, 2) = "Energy =": Cells(3, 3) = E
Exit Sub
'---
Normalization:
 Norm = 0
 For j = 0 To N
 Norm = Norm + phi(j) ^ 2
 Next j
 Norm = 1 / Sqr(h * Norm)
 For j = 1 To N
 phi(j) = phi(j) * Norm
 Next j
Return
'--
End Sub

Fig. 4.1 VBA code of a quantum particle in one-dimensional potential box

4.1 One-Dimensional Infinite Potential Well 67

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

W
av

e
fu

nc
�o

n

x

One-dimensional poten�al box

Exact solu�on

Itera�on by imaginary �me

Fig. 4.2 Exact solution of the ground state wave function and computed values

100 iterations. The computed energy and the wave function are in good agreement with
the exact solution (E0 = 4.9348). While a shorter imaginary time increment and more
iterations will produce even more accurate results, the computation time will be longer as
a result.

4.1.2.1 Alternative Approach Using Decay Equation
Comparing the imaginary time Schrödinger Eq. (4.3) with the radioactive decay Eq. (1.5),
we could use the idea of finding the decay constant by the “decay or not-decay” method
discussed in Sect. 2.3 to the one-dimensional potential well problem. As shown in
Fig. 2.10, the “decay constant” should correspond to the energy value of Eq. (4.3). Let’s
try to determine the ground state energy with the following steps.

(1) Select the potential well of the interval, |x | < 1/2, for easier computation.
(2) Create a uniform random distribution of walkers in |x | < 1/2 |x| < 1/2 as the initial

wave function.
(3) The walkers are moved in a step ds according to random numbers generated:

If Rnd() < 0.5 Then

x(j) = x(j) + ds

Else

x(j) = x(j) - ds

End If

(4) When a walker steps out the potential well, we simply eliminate it or move it outside
the well. Otherwise, keep the walker inside the well.

68 4 Quantum Diffusion Monte Carlo Method

(5) Repeat steps (1) to (4) to observe the number of walkers inside the well. The number
of walkers in the potential well follows the decay Eq. (4.2), and hence we should be
able to obtain the ground state energy as the “decay constant.”

Figures 4.3 and 4.4 show the VBA code and the result, respectively. In Fig. 4.4, from the
5th step, as the walkers are spreading out of the box, N(t) starts decreasing. We obtained
E1 = 4.9498 for the equation of logarithmic function of [N(t)/N(0)] which is a linear
function of time.

Sub SqWellDiff()
'Potential Box: V (i)= 0 for -w <x < w where w=0.5.
'The ground state energy = 4.9348 with m=1 and Dirac h =1.
'Fake time to simulate the quantum diffusion by random walk.
'Once walkers are |x|>w, they will be eliminated.
'Then, obtain the time-dependence of number of walkers in the box.
 Dim x(10000) As Double 'Positions of walkers.
 N0 = 5000 'Initial number of walkers.
 ds = 0.1 'Step width.
 dtau = ds * ds 'Imaginary time interval.
 MCs = 100 '# of Monte Carlo steps per walker.
 N = N0 '# of walkers after each random walk.
 w = 0.5 'Potential width.
 NoCount = 1000000 'Place walkers out of the potential box.
'Display initial values
 Cells(1, 2) = "Initial # of walkers": Cells(1, 5) = N0
 Cells(2, 2) = "Step length": Cells(2, 5) = ds
 Cells(3, 3) = "Time interval": Cells(3, 5) = dt
 Cells(3, 2) = "Number of Monte Carlo steps per walker": Cells(3, 5) = MCs
 Cells(6, 2) = "Time interval"
 Cells(6, 3) = "N/N0"
 Cells(6, 4) = "Log((N/N0)"
 For i = 1 To N0 'Define initial positions of walkers.
 x(i) = 0. 'All walkers are at the origin.
 Next i
'# of walkers at tau=0:
 Cells(7, 2) = 0
 Cells(7, 3) = N / N0
 Cells(7, 4) = Log(N / N0)
Randomize
For imcs = 1 To MCs
'Run random walks and eliminate walkers if they are outside the well (|x|>0.5).
 For j = 1 To N0
 If x(j) = NoCount Then
 GoTo Stopcount
 Else
 If Rnd() < 0.5 Then
 x(j) = x(j) + ds
 Else
 x(j) = x(j) - ds
 End If
 End If
 If Abs(x(j)) < w Then
 GoTo Stopcount 'Leave the walker if it is withing |w|.
 Else
 x(j) = NoCount 'If the walker is outside the box, move it to NoCount.
 N = N - 1 'Reduce # of walkers by 1.
 End If
 Cells(7 + j, 2) = dtau * j
Stopcount: Next j
 Cells(7 + imcs, 3) = N / N0
 Cells(7 + imcs, 4) = Log(N / N0)
Next imcs
End Sub

Fig. 4.3 Computed energy based on diffusion of random walkers

4.1 One-Dimensional Infinite Potential Well 69

y = -4.999x + 0.2095

-6

-5

-4

-3

-2

-1

0

1

0 0.2 0.4 0.6 0.8 1
Ln

(N
(t

)/
N

(0
))

Time

Random Walk in 1-Dim Box

ln(N(t)) = ln(N(0))−E0t
E0=4.999

Fig. 4.4 Time dependence of number of walkers in one-dim potential box

The distribution of walkers N(x) remaining in the potential box should represent the
wavefunction at a sufficiently long time when random walks are well sampled. However,
in this approach, the number of walkers continue decreasing, and we cannot wait for a
long time. In order to retain a certain number of walkers, a new set of parameters, e.g.,
N(0) = 8,000, ds = 0.02, and number of simulation runs MCs = 500, is used in the
VBA code to obtain an adequately sized N(x). Figure 4.5 is the normalized probability
of n(x) where the theoretical wave function given by Eq. (4.7) is onset to the walkers’
distribution. The number of remaining walkers is 2051 in this run. Some other methods
that retain n(x) need to be developed that require running along a Monte Carlo simulation.

For other potential energy systems, a more sophisticated approach of quantum diffusion
method is proposed. We describe the method in Sect. 4.2 that attempts to maintain the

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

-0.5 -0.3 -0.1 0.1 0.3 0.5

Pr
ob

ab
ili

ty

x

Par�cle in 1D poten�al bsox

Fig. 4.5 Simulated and exact ground state wave functions

70 4 Quantum Diffusion Monte Carlo Method

number of walkers and more careful consideration of the asymptotic behavior of the
ground state.

Similarity with the heat equation
If we compare the Schrodinger equation of a quantum particle in the one-dimensional
potential well with the heat Eq. (3.66) with a specific boundary and initial conditions,
the time dependence of the temperature distribution shown in Fig. 3.15 is mathematically
equivalent to the wave function of a particle in the one-dimensional potential well. The
dominant term of Eq. (3.68) will be the remaining term, after a sufficiently long time,
and the space part X(t) of the temperature has the same sine-function dependence of the
ground state wave function. In other words, the distribution of the random walkers shows
the ground state energy and wave function after many random walks.

4.2 Quantum Diffusion Monte Carlo Method

4.2.1 Basic Idea of Quantum Diffusion Monte Carlo Method

The imaginary time Schrödinger equation is a diffusion equation, and as we discussed
in Chap. 3, the random walk can be applied to analyze the diffusion equation. This ran-
dom walk based approach of a Monte Carlo simulation, called the quantum diffusion
Monte Carlo (QDMC) method, can be applied to the Schrödinger equation. The method
is also called “quantum random walk method.” However, there is a new concept, “quan-
tum walk”, which describes the stochastic transition of quantum states. In order to avoid
confusion, we use the term, “quantum diffusion Monte Carlo” in this book.

The description below is based on Gould and Tobocjeck [3] which is a simplified
version of Kosztin, Faber, and Schulten [4]. The basic idea is to move random walkers
with the imaginary time Schrödinger equation while retaining the number of walkers
while running the simulation so that the ground state energy as well as its wave function
may be estimated accurately.

Let’s start from scratch. The one-dimensional time-dependent Schrodinger equation in
a.u. (� = 1, m = 1, and e = 1) is given by

i�
∂ψ

∂t
= Ĥψ where Ĥ(x, t) = −1

2

∂2

∂x2
+ V (x). (4.15)

If we know the eigen values and corresponding eigne functions to be {En and ϕn(x);
n = 1, 2, ….}, the time-dependent wave function is given by

ψ(x, t) =
∑
n

cnϕn(x)e
−i Ent/� where E0 < E1 < E2 < . . . (4.16)

4.2 Quantum Diffusion Monte Carlo Method 71

The quantum diffusion Monte Carlo methods finds the ground state energy and its
wavefunction. The discussion below assumes that the potential V (x), and thus the eigen
functions are real functions. Using the imaginary time, τ = it, Eqs. (4.15) and (4.16)
become

∂ψ

∂τ
=

[
1

2

∂2

∂x2
− V (x)

]
ψ and ψ(x, t) =

∑
n

cnϕn(x)e
−Enτ . (4.17)

Therefore, we should obtain ψ(x, τ) → c0ϕ0(x)e−E0τ as τ →∞ because only the
ground state will be dominant. However, depending on the value of E0, you may not
obtain the ground state energy with this method:

(1) If E0 > 0, then ψ (x, τ → ∞) = 0;
(2) If E0 < 0, then ψ (x, τ → ∞) = ∞; and

(3) If E0 = 0, then ψ (x, τ → ∞) = c0ϕ0.

(4.18)

In order to establish the steady state of case (3), we add an arbitrary constant reference
energy, V ref, which is adjusted so that a computed steady state is close to the ground state;
if V ref = E0. Then ψ(x, τ → ∞) = c0ϕ0. Notice that the new potential energy, V(x)−
Vref , must be always positive. Although we can guess V ref to establish the steady state,
this procedure would not yield precise value of E0. Instead, we can estimate E0 by using
the following equation:

E0 =< V >=
∑

i ni V (xi)∑
i ni

(4.19)

where ni is the number of walkers at potion xi at time τ .

Proof With the reference potential V ref, the Schrödinger equation and the asymptotic wave
function are

∂ψ

∂τ
= 1

2

∂2ψ

∂x2
− [V (x) − Vref]ψ (4.20)

where

ψ(x, t) ∼ c0ϕ0(x)e
−(E0−Vref)τ . (4.21)

Because ∂ψ
∂x → 0 as τ →∞, by integrating Eq. (4.20) with respect to x, we obtain

∫
∂ψ

∂τ
dx = −

∫
[V (x) − Vref]ψdx . (4.22)

72 4 Quantum Diffusion Monte Carlo Method

From the asymptotic form (4.21), the wave function satisfies ∂ψ
∂τ

= −(E0 −Vref)ψ , and
thus, its integral is

∫
∂ψ

∂τ
dx = −

∫
(E0 − Vref)ψdx,

which should be the same as Eq. (4.22). Therefore, we obtain E0
∫

ψdx = ∫
V (x)ψdx ,

and thus

E0 =
∫
V (x)ψdx∫

ψdx
. (4.23)

Using the distribution of number of walkers, ni at x = xi, Eq. (4.23) can be also computed
from

E0 =
∑

ni V (xi)∑
ni

=< V > . (4.24)

�

The procedure of the QDMC simulation is now summarized as an extension of the
approach described in Sect. 4.1.2.

(1) Place the initial number of walkers, N0, at the initial positions {xi; i = 1, 2, …, N0}.
(2) Set Vref = ∑

V (xi)/N0.
(3) Pick a walker and move the walker by a step width Δs: + Δs or – Δs.

Notes:
(i) The time step must be (Δs)2 ≥ 2DΔτ for computational stabilization as we

discussed in Sect. 3.6. We take (Δs)2=Δτ because D=1/2 if we take �=1 and
m=1.

(ii) A step width Δs with the Gaussian modulation with the Gaussian inverse
cumulative distribution function of mean 0 may be also used in this step. The
corresponding EXCEL’s bult-in function is NORMINV(RND(),0,1)which we
discussed in Sect. 1.4. As we describe in Sect. 4.2.1, there is no significant
difference between these two steps.

(4) Compute ΔV = V (x)− V ref.
(5) Generate a random number r using the RND() function, and carry out the Monte

Carlo simulation to reach the smaller energy state:
(i) If ΔV > 0 and r < ΔV·Δτ , then remove the walker,
(ii) If ΔV < 0 and r < − ΔV·Δτ , then add another walker at the position, and
(iii) Otherwise, leave the walker.
NOTE: The above method is essentially the method of Metropolis & Hastings which
we will discuss in Chap. 5.

4.2 Quantum Diffusion Monte Carlo Method 73

(6) Repeat steps (3) to (5) for each of the N0 walkers, and calculate the mean potential
energy and the current number of the walkers using

Vref = 〈V 〉 = − a

N0�τ
(N − N0). (4.25)

NOTE: The parameter a is adjusted so that the number of the walkers will be about
the same. It is found that a is about �=1.

(7) Repeat steps (3) to (6) until < V > has reached a steady value.
(8) The distribution of walkers represents the wave function, and the normalized wave

function is given by

φ(xi) = Ni√∑
i
N 2
i

(4.26)

where N i is the number of walkers at xi. The number distribution can be calculated
by EXCEL’s [Histogram] (the frequency count at xi) of the [Data Analysis]
menu.

The above discussion is for one-dimensional systems but it can be augmented to three-
dimensional and multi-electron systems [4].

4.2.2 Harmonic Oscillator

The best potential system for this simulation is the one-dimensional harmonic oscillator
with V (x) = (1/2)x2 in a.u. The exact ground state energy is known: E0 = 1/2. Figures 4.6
shows the VBA code we created where we used N0 = 5,000, ds = 0.1, dtau = 0.01, and
run Monte Carlo steps 100,000 times. The initial distribution of walkers is a random
distribution in− w≤x≤ + w. The asymptotic curve of the energy approaches closely to
0.5 when w = 2 as shown in Fig. 4.6. Several different w values are selected for observing
its dependence on the result, and we observed no appreciable w-dependence.

Instead of simple “binary” random walks, we may also use a random walk with a Gaus-
sian probability distribution. Figure 4.7 shows the asymptotic behaviors of the ground state
energy E0 of the harmonic oscillator using the NormInv function (left) and the±ds
(right) for the Monte Carlo criterion:

74 4 Quantum Diffusion Monte Carlo Method

Sub Quantum1()
Cells(1, 1) = "One-dimensional harmonic oscillator by QDMC method."
'V (i)= 0.5*x(i)^2 'Potential energy.
 Dim x(40000) As Double
 N0 = 5000 'Desired number of walkers.
 ds = 0.1 'Step width.
 dtau = ds * ds 'Imaginary time step.
 MCs = 10000 '# of Monte Carlo steps per walker.
 N = N0 'Initial number of walkers equal to the desired number.
 w = 2 'Initial width of region for walkers.
 Vref = 0 'Reference potential for convergence.
'Display initial values:
 Cells(2, 2) = "Number of walkers at t=0": Cells(2, 5) = N0
 Cells(3, 2) = "Step length": Cells(3, 5) = ds
 Cells(4, 2) = "Number of Monte Carlo steps per walker": Cells(4, 5) = MCs
 For i = 1 To N 'Define initial positions of walkers.
 x(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within -1<x<+1.
 Vref = Vref + 0.5 * x(i) ^ 2 'Initial reference potential.
 Next i
 Vref = Vref / N 'Averaged reference potential.
 Esum = 0
 Cells(5, 2) = "MC steps"
 Cells(9, 1) = "MC steps"
 Cells(5, 3) = "N"
 Cells(5, 4) = "Energy"
 Cells(9, 2) = "Energy"
 Cells(5, 5) = "Vref"
 List = 0 'Index to output the energy value after every 1000 MC steps.
Randomize
For imcs = 1 To MCs
'Calculate V-Vref and generate random number using RND().
'Add/remove walkers.
'Walk sub procedure.
 GoSub QDiff1:
 Vave = Vsum / N 'Mean potential.
 Vref = Vave - (N - N0) / (N0 * dtau) 'New reference energy.
'Data accumulation:
 Esum = Esum + Vave
 If (imcs Mod 100) = 0 Then
 Energy = Esum / imcs
 Cells(6, 2) = imcs
 Cells(6, 3) = N
 Cells(6, 4) = Energy
 Cells(6, 5) = Vref
 Cells(10 + List, 1) = imcs
 Cells(10 + List, 2) = Energy
 List = List + 1
 End If
Next imcs
'Output for Ni-distribution (Histogram):
 Cells(9, 4) = "Bin"
 Cells(9, 5) = "Label of walkers"
 Cells(9, 6) = ”x(i)
 For ibin = -50 To 50
 Cells(60 + ibin, 4) = ibin / 10
 Next ibin
 For kk = 1 To N
 Cells(9 + kk, 5) = kk
 Cells(9 + kk, 6) = x(kk)
 Next kk
Exit Sub
'---
QDiff1:
 Ninit = N '# of walkers at beginning of trial.
 Vsum = 0
 For j = Ninit To 1 Step -1
 If Rnd() < 0.5 Then
 x(j) = x(j) + ds
 Else
 x(j) = x(j) - ds
 End If
 Potential = 0.5 * x(j) ^ 2 'Potential function.
 dV = Potential - Vref
 If dV < 0 Then
 If Rnd() < -dV * dtau Then 'Check to add walker.
 N = N + 1 'Add another walker.
 x(N) = x(j) 'New walker.
 Vsum = Vsum + 2 * Potential 'Factor of 2 since two walkers at x(i).
 Else
 Vsum = Vsum + Potential 'Leave the walker and add its potential.
 End If

Fig. 4.6 VBA code for one-dimensional harmonic oscillator

4.2 Quantum Diffusion Monte Carlo Method 75

 Else 'If dV >= 0,
 If Rnd() < dV * dtau Then 'then the walker needs to be removed.
 x(j) = x(N)
 N = N - 1 'Remove a walker and subtract its potential.
 Vsum = Vsum - Potential
 Else 'Otherwise, no change.
 Vsum = Vsum + Potential
 End If
 End If
 Next j
 Return
'--
End Sub
Function FND2CHI(R, A, Alpha, Beta) 'Laplacian = (2nd derivative)^2.
FND2CHI = FNCHID2(R, A, Alpha, Beta) + 2 * FNCHID(R, A, Alpha, Beta) / R
End Function
'---
Function FNF(R, A, Alpha, Beta) 'f(R)=exp(R/(Alpha*(1+Beta*R))).
FNF = Exp(R / (Alpha * (1 + Beta * R)))
End Function
'---
Function FNFD(R, A, Alpha, Beta) '1st derivative of FNF.
FNFD = FNF(R, A, Alpha, Beta) / (Alpha * (1 + Beta * R) ^ 2)
End Function
'---
Function FNFD2(R, A, Alpha, Beta) '2nd derivative of FNF.
FNFD2 = FNFD(R, A, Alpha, Beta) ^ 2 / FNF(R, A, Alpha, Beta) - 2 * Beta * FNF(R, A, Alpha,
Beta) / Alpha / (1 + Beta * R) ^ 3
End Function
'---
Function FND2F(R, A, Alpha, Beta) 'Laplacian = (2nd derivative)^2.
FND2F = FNFD2(R, A, Alpha, Beta) + 2 * FNFD(R, A, Alpha, Beta) / R
End Function
'---
Function FNDIST(x, y, z) 'Length of a position vector.
FNDIST = Sqr(x ^ 2 + y ^ 2 + z ^ 2)
End Function
'--

Fig. 4.6 (continued)

0.49

0.492

0.494

0.496

0.498

0.5

0.502

0.504

0 20000 40000 60000 80000 100000

En
er

gy

Steps

Step by dtau*NormInv

0.49

0.495

0.5

0.505

0.51

0.515

0 20000 40000 60000 80000 100000

En
er

gy

Steps

Step by ±ds

Fig. 4.7 Asymptotic behavior of simulated ground state energy of harmonic oscillator

NormInv:

x(j) = x(j) + ds*Application.WorksheetFunction.NormInv(Rnd(),0,1)

Discrete step ds:

If Rnd() < 0.5 Then

x(j) = x(j) + ds

Else

76 4 Quantum Diffusion Monte Carlo Method

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

-4 -3 -2 -1 0 1 2 3 4

Pr
ob

ab
ili

ty

x

One dimensional harmonic oscillator

Fig. 4.8 Distribution of random walkers in one-dimensional harmonic oscillator

x(j) = x(j) - ds

End If

Both methods converge the energy to about 0.497. Since the exact value is 0.500,
the estimated ground state energy is quite accurate although the computation time of the
NormInv is much longer.

Figure 4.8 shows the normalized distributions of the walkers using [Histogram] of
the [Data Analysis] menu. The exact wave function of the ground state is Gaussian.
The broken line is the Gaussian distribution function with the mean value and the standard
deviation calculated from the final walker distribution: < x > = 0, and σ = 1.003. Overall,
the simulation can extract the wave function of the harmonic oscillator very well.

4.2.3 Three-Dimensional Harmonic Oscillator

The VBA code can be modified for the three-dimensional harmonic oscillator by adding
y and z-coordinates. The potential energy for the three-dimensional harmonic oscillator is
given by

V (x, y, z) = −1

2

(
x2 + y2 + z2

)
(4.27)

The Monte Carlo criterion to add/remove walkers is applied to each coordinate inde-
pendently. The VBA code is listed in Appendix A2.2 where the walkers are uniformly
distributed in a given ranges at t = 0. In the code, the sub procedure, QDiff3, uses the
three-dimensional potential energy V (x, y, z), and the random walks are independently

4.2 Quantum Diffusion Monte Carlo Method 77

taken in the three directions. The estimated ground state energy from the simulation is
1.495, and the exact energy is 1.50. The three coordinates of the three-dimensional har-
monic oscillator are separable and the ground state wavefunction and the energy can be
computed by the one-dimensional simulation three times: E = Ex + Ey + Ez and ψ(x,y,
z) = ψ1(x)ψ2(y)ψ3(z).

4.2.4 Hydrogen Atom

The potential energy of a hydrogen atom is

V (x, y, z) = − 1√
x2 + y2 + z2

. (4.28)

The initial distribution of walkers is set to be a random placement of 9,000 walkers in
the intervals of− w≤x, y, z≤ + w where w = 2a0 and a0 = 1.398 is the Bohr radius in
a.u. (with e = 1, m = 1, � = 1). The random walks are carried out in the three directions
independently with a fixed step of ds = 0.1 and dτ = 0.01. The number of the Monte
Carlo steps, MCs, are repeated 4,000,000 times for each walker. It took almost 4 days to
complete the simulation with a notebook PC! Fig. 4.9 shows the asymptotic behaviors of
the ground state energy E0 of the hydrogen atom, which fluctuates at around− 0.4966.
This is a fairly accurate correlation with −0.5 of the exact solution. From Fig. 4.9, the
number of Mont Carlo steps would be sufficient if MCs is about 20,000 to find the ground
state energy.

-0.5

-0.495

-0.49

-0.485

-0.48

-0.475

-0.47
0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000

En
er

gy

Steps

Asymtotoc Behavior of
Ground State Energy of H-atom

Fig. 4.9 Asymptotic behavior of simulated ground state energy of hydrogen atom

78 4 Quantum Diffusion Monte Carlo Method

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

ize
d

va
lu

e

Radius

Ground state wave func�on of H-atom

Walker distribution at 4x10 6 steps.

Walker distribution at 4x10 5 steps.

Exact solu�on

Fig. 4.10 Radial wave function of hydrogen atom

While the ground state energy converges quickly as expected, the wavefunction does
not approach to the exact solution, (1/π·a03/2)exp[−r/a0], in the region of the smaller
radius. If the number of walkers and/or the simulation steps are used more, the variation
of distribution of the walkers becomes less while the overall distribution pattern has no
noticeable difference. Figure 4.10 shows the radial wave functions from simulations of
two different steps and the exact solution. The random walk step width defined with
InvNorm function also outputs very much similar results.

As Kosztin et al. point out that the error in the vicinity of the origin may be reduced by
optimizing N, ds, and the number of simulation steps. Because the coordinate variables
in the potential energy (4.24) are not independent, independent random changes of the
coordinates would take much longer time for the ground state wave function, which is
neither sparable, to reach more accurate function form [4].

4.2.5 Helium Atom

The potential energy of a helium atom is

V (x1, y1, z1, x2, y2, z2) = − 2√
x21 + y21 + z21

− 2√
x22 + y22 + z22

+ 1√
(x1 − x2)2 + (y1 − y2)2(z1 − z2)2

(4.29)

4.2 Quantum Diffusion Monte Carlo Method 79

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1
0 200000 400000 600000 800000 1000000

En
er

gy

Steps

He-atom

Fig. 4.11 Asymptotic behavior of simulated ground state energy of helium atom

We focus on the ground state energy for the two-electron system, and obtain E = −
2.80 in a.u. or −76.2 eV. The known value is −78.72 eV, and the simulation reasonably
estimates the ground state energy.

NOTE: Because EXCEL often had a run time error, “Unable to get the
NormInv property of the WorksheetFunction class”, for the potential
energy, we use the fixed step ds = 0.1 for random walks which are applied to each
walker at each direction of x, y, and z coordinates independently. Figure 4.11 shows the
asymptotic behavior of computed energy values where the initial random configuration of
walkers has the range of 20a0 where a0 is the Bohr radius. Figure 4.11 is the result of
8,000 walkers and 1,000,000 steps. The number of Mont Carlo steps would be sufficient
if the MCs are about 20,000 to find the ground state energy.

4.2.6 Hydrogen Molecule

Figure 4.12 shows the configuration of the hydrogen molecule, and the distances defined
are

r1L,R = |
r1 ± 1

2
Sẑ| and r12 = |
r1 −
r2|.

The potential energy of a hydrogen molecule is

80 4 Quantum Diffusion Monte Carlo Method

z S

r2R

r2L r1R

r1L

r12
e1 e2

p2p1

Fig. 4.12 Hydrogen molecule

V (
r) = − 1

r1L
− 1

r1R
− 1

r2L
− 1

r2R
+ 1

r12
+ ER (4.30)

where
r is a collectively expressed notation for the six coordinates of two electrons,
and ER is the inter-proton potential energy. With the Born–Oppenheimer approximation,
the inter-proton distance can be regarded as the constant compared with the electrons’
motions. The known average inter-proton distance is S = 1.9783 in a.u. or 0.79Å, and
thus ER = 1/S.

We also do not include small interactions due to the electron spins. The ground state of
the two-electrons in the molecule in an antisymmetric spin-singlet state. Then, the wave
function must be symmetric by the Pauli’s exclusion principle, and it can be chosen to be
positive everywhere.

The number of walkers is 8,000 each of which takes 100,000 steps. The simulated
ground state energy measures to be approximately E = − 1.144 in a.u. or −31.5 eV.
Compared with the known values,− 31.866 eV, is a fairly acceptable result. The number
of Monte Carlo steps required much more to find the ground state energy, reflecting the
complexity of the structure.

4.3 Variational Monte Carlo and Path Integral Monte Carlo
Methods

Variational Monte Carlo (VMC) and Path Integral Monte Carlo (PIMC) methods can be
applied to compute the ground state energy of many-electron atoms and molecules. The
VMC method assumes a trial wave function, and computes the energy from the trial
function. The choice of the trial function is the key to obtain a better energy estimation.
On the other hand, the PIMC method uses the idea of the imaginary time Schrödinger
equation to refine the trial function for more accurate evaluation of the energy. As we

4.3 Variational Monte Carlo and Path Integral Monte Carlo Methods 81

described the simplest example in Sect. 4.1, the imaginary time Schrödinger equation is
a “diffusion equation”, and the PIMC method creates a diffusion equation with a “drift”
term. Both methods can use several common sub procedures to make a trial function. We
evaluate the ground state energy of hydrogen molecule from both methods, following the
description of these methods found in the excellent book written by Koonin [2] and other
publications [5, 6].

4.3.1 Variational Monte Carlo (VMC) Method

The VMC method uses a trial function of the ground state of a hydrogen molecule φ(
r).
Suppose ψ(
r) is the exact ground state wave function. The variational energy is given by

Evar = 〈φ|Ĥ |φ〉
〈φ|φ〉 =

∫
d
rφ2(
r)

[
1
φ
Ĥφ

]
∫
d
rφ2(
r) =

∫
d
rw(
r)ε(
r)∫
d
rφ2(
r) (4.31)

where
r is a collectively expressed notation for the six coordinates of two electrons. From
the last expression of the above equation, the variational energy can be interpreted as the
average of an energy defined as

ε(
r) = 1

φ
Ĥφ with a weighting function w(
r) = φ2. (4.32)

where Ĥ = − �
2

2m

∑
i=1,2 ∇2

i + V (
r) is the Hamiltonian of a hydrogen molecule and the
potential energy has the form of Eq. (4.30).

The VMC method generates a configuration of electrons according to the weighting
function φ2, and then computes the average ε over the configuration. The trial function
should be a good approximation of the exact wave function ψ(
r). As we discussed in
Sect. 4.2.2, the true ground state wave function is symmetric and positive everywhere.
For a hydrogen molecule, the trial wave function can be constructed using: (1) wave
functions originated from the ground state wave function of the hydrogen atom, which is
given by ϕ(
r) = exp(−r/a0) where a0 is the Bohr radius, and (2) an interaction factor
between two electrons. The following trial function is constructed:

φ(
r1,
r2) = ϕ(
r1)ϕ(
r2) f (r12) (4.33)

where ϕ(
ri) = exp(−ri L/A)+exp(−ri R/A) represents an electron of i = 1 and 2 in each
molecular orbit around two protons. The suffixes, R and L, in the trial wave functions are
for the two protons as shown in Fig. 4.13. The parameter A is a variational parameter to
be determined as described below. The interaction third factor f (r12), is given by

82 4 Quantum Diffusion Monte Carlo Method

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

En
er

gy

Steps

H2 Molecule

Fig. 4.13 Asymptotic behavior of simulated ground state energy of hydrogen molecule

f (r12) = exp

[
r12

α(1 + βr12)

]
(4.34)

with two additional variational parameters α and β [7].
The parameters A and α can be determined with the condition imposed on the trail

wave function when each of the electrons is at close proximity of either the proton or
electrons become very close to each other (riL,R = 0, r2L,R = 0, or r12 = 0). While
executing the VMC method, the transition of the energy given by Eq. (4.32), ε, must be
consistently smooth with no sudden large variations. This means that the trial function
should be smooth and not diverge as riL,R = 0, r2L,R = 0, or r12 = 0 where the Coulomb
potential energy (4.30) becomes negative infinite. These constraining conditions indicate
that the parameter A in Eq. (4.34) should satisfy the following transcendental equation:

A = a0
1 + exp(−S/A)

(4.35)

where S is the inter-proton distance. The parameter A approaches to a0/2 when S > > 1.
The constraints also indicate α = 2a0 [2]. The remaining parameter β needs to be deter-
mined independently. The correlation term, f (r12), approaches to 1 when two electrons
are very close (r12 ~0), where the trail function does not diverge.

4.3 Variational Monte Carlo and Path Integral Monte Carlo Methods 83

Figure 4.14 lists the VBA code using the trial function (4.33). In this program, we
use the angstrom and electron-volt based unit. There are three control parameters for
computing averages to observe how the energy value changes: the number of ensembles
(NEnsemble), the number of samples in each ensemble (Size), and the number of
random samplings for each ensemble (SamplingFreq). The code varies the inter-proton
distance (S) and computes the energy to find the distance at which the energy becomes

Sub Variational()
Cells(1, 1) = "Variational Monte Carlo (VMC) methods for the ground state of a H2 molecule"
Dim SET(200, 4000) 'SET of 200 samplings of 200 ensembles, each of which has 20 samples.
Dim Weight(4000) 'Weight of each SET member; 200 ensembles x 20 samples.
Dim Config(200) 'Individual configuration.
Dim CSave(200) 'Save the individual configuration.
'Define physical constants:
 Cells(2, 1) = "Physical constants"
 HMratio = 7.6359 '(h-bar)^2/ mass.
 E2 = 14.409 '(Electron charge)^2.
 Bohr = 0.5299 'Bohr radius in angstrom.
'Define parameters in the wave function:
 Alpha = 2 * Bohr 'Parameter alpha in f(R)= EXP(R/(Alpha*(1+Beta*R))).
 Beta = 20 'Parameter beta in f(R)= EXP(R/(Alpha*(1+Beta*R))).
 ‘*** Run the code with different Beta-values to find the minimum energy.***
 Cells(3, 1) = "Parameters in wave function"
 Cells(5, 2) = "Parameter Alpha in f(R)= EXP(R/(Alpha*(1+Beta*R)))"
 Cells(5, 11) = Alpha
 Cells(6, 2) = "Parameter Beta": Cells(6, 11) = Beta
'Write control parameters:
 Cells(8, 1) = "Control parameters for simulation"
 Cells(10, 2) = "Metropolis step size (Delta)"
 Cells(10, 7) = 0.4: Delta = Cells(10, 7)
 Cells(11, 2) = "Time step for the VMC calculation (DT)"
 Cells(11, 7) = 0.01: DT = Cells(11, 7)
 Cells(12, 2) = "Number of thermalization steps (NTherm)"
 Cells(12, 7) = 150: NTherm = Cells(12, 7)
 Cells(14, 2) = "Number of ensembles to be run (NEnsemble)"
 Cells(14, 7) = 200: NEnsemble = Cells(14, 7)
 Cells(15, 2) = "Number of samples per ensemble (Size)"
 Cells(15, 7) = 20: Size = Cells(15, 7)
 Cells(16, 2) = "Sampling Frequency (SamplingFreq)"
 Cells(16, 7) = 200: SamplingFreq = Cells(16, 7)
For Ntrials = 1 To 20
 For SS = 50 To 120 'Change the interproton distance from 0.5 to 1.0 angstroms.
 S = SS / 100: S2 = S / 2 'S = interproton separation.
 A = Bohr 'Set parameter A-value at start.
 Aold = 0 'Parameter A in the wave functions exp(-r1R/A)+exp(-r1L/A) etc. satisfies the
equation below.
 Do Until Abs(A - Aold) < 0.000001
 Aold = A
 A = Bohr / (1 + Exp(-S / Aold))
 Loop
 Cells(4, 2) = "Parameter A in the wave function exp(-r1R/A)+exp(-r1L/A) etc."
 Cells(4, 11) = A
'---
Randomize
 GoSub StartingConfig 'Generate starting configuration.
 For Istep = 1 To NTherm
 GoSub Metropolis
 Next Istep
 SumE = 0 'Energy.
 For IEnsemble = 1 To NEnsemble 'Loop over ensembles.
 EnsembleE = 0 'Energy of an ensemble.
 For Istep = 1 To SamplingFreq * Size
 GoSub Metropolis 'Take a Metropolis step.
 If Istep Mod SamplingFreq <> 0 Then GoTo Skip1 'Measure energy.
 GoSub LocalEnergy 'Calculate epsilon.
 EnsembleE = EnsembleE + Epsilon
 'Cells(20, 2) = "Epsilon=": Cells(20, 6) = Epsilon
Skip1: Next Istep
 SumE = SumE + EnsembleE 'Refresh total sums.
 EnsembleE = EnsembleE / Size 'Ensemble average.
 'Cells(21, 2) = "Eigen value=": Cells(21, 6) = EnsembleE

Fig. 4.14 VBA code for variational Monte Carlo method (H2-molecule)

84 4 Quantum Diffusion Monte Carlo Method

 AvgE = SumE / (IEnsemble * Size) 'Average E.
 U = AvgE + E2 / S 'Net molecular potential energy.
 'Cells(22, 2) = "Grand average E =": Cells(22, 6) = AvgE
 'Cells(23, 2) = "Net molecular potential =": Cells(23, 6) = U
 Next IEnsemble
 Cells(25, 2) = "S": Cells(25, 3) = "U"
 Cells(26 + SS - 49, 2) = S: Cells(26 + SS - 49, 2 + Ntrials) = U
 Next SS
 Next Ntrials
Exit Sub
' ---
Metropolis:
 For i = 1 To SamplingFreq 'SamplingFreq = 200.
 CSave(i) = Config(i) 'Save current configuration.
 Config(i) = Config(i) + Delta * (Rnd() - 0.5) 'Generate trial configuration.
 Next i
 GoSub PHIandDISTANCE
 Wtrial = Phi * Phi
 If Wtrial / WT < Rnd() Then 'Reject if Wtrial is too small.
 For i = 1 To SamplingFreq 'Restore the old configuration.
 Config(i) = CSave(i)
 Next i
 Else:
 WT = Wtrial 'Refresh the weight if Wtrial is accepted.
 End If
Return
'---
LocalEnergy: 'Calculate epsilon (i.e., local energy) for a given configuration.
 GoSub PHIandDISTANCE 'Calculate phi and distance.
 R1DOTR12 = x1 * (x1 - x2) + y1 * (y1 - y2) + z1 * (z1 - z2)
 'Dot products to be used several times below.
 SR12Z = S * (z1 - z2)
 R1LDOTR12 = R1DOTR12 + SR12Z / 2
 R1RDOTR12 = R1DOTR12 - SR12Z / 2
 R2LDOTR12 = R1LDOTR12 - R12 ^ 2
 R2RDOTR12 = R1RDOTR12 - R12 ^ 2
'Kinetic energy:
TPOP = 2 * FND2F(x, y, z, R12, A, Alpha, Beta) / FNF(x, y, z, R12, A, Alpha, Beta)
TEMP = FND2CHI(x, y, z, R1R, A, Alpha, Beta) + FND2CHI(x, y, z, R1L, A, Alpha, Beta)
TPOP = TPOP + TEMP / (CHI1R + CHI1L)
TEMP = FND2CHI(x, y, z, R2R, A, Alpha, Beta) + FND2CHI(x, y, z, R2L, A, Alpha, Beta)
TPOP = TPOP + TEMP / (CHI2R + CHI2L)
TEMP = FNCHID(x, y, z, R1L, A, Alpha, Beta) * R1LDOTR12 / R1L
CROSS = (TEMP + FNCHID(x, y, z, R1R, A, Alpha, Beta) * R1RDOTR12 / R1R) / (CHI1L + CHI1R)
TEMP = -FNCHID(x, y, z, R2R, A, Alpha, Beta) * R2RDOTR12 / R2R
TEMP = TEMP - FNCHID(x, y, z, R2L, A, Alpha, Beta) * R2LDOTR12 / R2L
CROSS = CROSS + TEMP / (CHI2L + CHI2R)
TPOP = TPOP + 2 * FNFD(x, y, z, R12, A, Alpha, Beta) / FNF(x, y, z, R12, A, Alpha, Beta) *
CROSS / R12
TPOP = -0.5 * HMratio * TPOP 'Plank constant/mass coefficient.
'Potential energy and total energy:
 VPOP = -E2 * (1 / R1L + 1 / R1R + 1 / R2L + 1 / R2R - 1 / R12)
 Epsilon = TPOP + VPOP
Return
'--
PHIandDISTANCE: 'Calculate wave functions and distances for a given configuration.
 'NOTE: the total wave function is given by phi=(CH1R+CH1L)*(CHI2R+CHI2L)*F.
 x1 = Config(1): y1 = Config(2): z1 = Config(3) 'Positions of electrons.
 x2 = Config(4): y2 = Config(5): z2 = Config(6)
 R1L = FNDIST(x1, y1, z1 + S2, R, A, Alpha, Beta) 'Electron-proton distance.
 R1R = FNDIST(x1, y1, z1 - S2, R, A, Alpha, Beta)
 R2L = FNDIST(x2, y2, z2 + S2, R, A, Alpha, Beta)
 R2R = FNDIST(x2, y2, z2 - S2, R, A, Alpha, Beta)
 R12 = FNDIST(x1 - x2, y1 - y2, z1 - z2, R, A, Alpha, Beta) 'Inter-electron distance.
 F = FNF(x, y, z, R12, A, Alpha, Beta) 'Electron-electron function.
 CHI1R = FNCHI(x, y, z, R1R, A, Alpha, Beta) 'Electron-proton function.
 CHI1L = FNCHI(x, y, z, R1L, A, Alpha, Beta)
 CHI2R = FNCHI(x, y, z, R2R, A, Alpha, Beta)
 CHI2L = FNCHI(x, y, z, R2L, A, Alpha, Beta)
 Phi = (CHI1R + CHI1L) * (CHI2R + CHI2L) * F 'Total wavefunction.
Return
'---
StartingConfig: 'Generate a starting configuration.
 For i = 1 To SamplingFreq
 Config(i) = (Rnd() - 0.5) * A 'Initial positions of electrons.
 Next i
 Config(3) = Config(3) + S2 'Center electron 1 at right.
 Config(6) = Config(6) - S2 'Center electron 2 at left.
 GoSub PHIandDISTANCE 'Calculation of wave function.

Fig. 4.14 (continued)

4.3 Variational Monte Carlo and Path Integral Monte Carlo Methods 85

 WT = Phi^2 'Weight.
Return
'---
End Sub
'---
'Define several functions below:
'---
Function FNCHI(x, y, z, R, A, Alpha, Beta) 'Electron-proton wave function.
 FNCHI = Exp(-R / A)
End Function
'---
Function FNCHID(x, y, z, R, A, Alpha, Beta) '1st derivative of FNCHI.
 FNCHID = -FNCHI(x, y, z, R, A, Alpha, Beta) / A
End Function
'---
Function FNCHID2(x, y, z, R, A, Alpha, Beta) '2nd derivative of FNCHI.
 FNCHID2 = FNCHI(x, y, z, R, A, Alpha, Beta) / A ^ 2
End Function
'--
Function FND2CHI(x, y, z, R, A, Alpha, Beta) 'Laplacian = (2nd derivative)^2.
 FND2CHI = FNCHID2(x, y, z, R, A, Alpha, Beta) + 2 * FNCHID(x, y, z, R, A, Alpha, Beta) / R
End Function
'--
Function FNF(x, y, z, R, A, Alpha, Beta) 'f(R)=exp(R/(Alpha*(1+Beta*R))).
 FNF = Exp(R / (Alpha * (1 + Beta * R)))
End Function
'--
Function FNFD(x, y, z, R, A, Alpha, Beta) '1st derivative of FNF.
 FNFD = FNF(x, y, z, R, A, Alpha, Beta) / (Alpha * (1 + Beta * R) ^ 2)
End Function
'--
Function FNFD2(x, y, z, R, A, Alpha, Beta) '2nd derivative of FNF.
 FNFD2 = FNFD(x, y, z, R, A, Alpha, Beta) ^ 2 / FNF(x, y, z, R, A, Alpha, Beta) - 2 * Beta *
 FNF(x, y, z, R, A, Alpha, Beta) / Alpha / (1 + Beta * R) ^ 3
End Function
'--
Function FND2F(x, y, z, R, A, Alpha, Beta) 'Laplacian = (2nd derivative)^2.
 FND2F = FNFD2(x, y, z, R, A, Alpha, Beta) + 2 * FNFD(x, y, z, R, A, Alpha, Beta) / R
End Function
'--
Function FNDIST(x, y, z, R, A, Alpha, Beta) 'Length of a position vector.
 FNDIST = Sqr(x ^ 2 + y ^ 2 + z ^ 2)
End Function
'---

Fig. 4.14 (continued)

minimal. We also run this code for various β-value to find the lowest energy value and
the inter-proton distance for the minimum energy. In this VBA code, the titles of sub
procedures are intentionally written in bold to emphasize the common sub procedures to
the VBA code of the PIMC method. Functions defined in both codes are also common.

Figure 4.15 shows the ground state energy of hydrogen as a function of the inter-proton
distance S using the VMC method. The curve fitted to data points is drawn for illustration
purposes only. The ground state energy depends on the parameter β. It increases until β

= 20 or so, and then shows much less dependence for β > 20. The minimum energy we
obtained is −30.7 eV at around S = 0.73Å with the parameters α = 1.0598 and β = 20.
This is fairly close to the known value of −31.688 eV at 0.75 Å.

86 4 Quantum Diffusion Monte Carlo Method

-31

-30.5

-30

-29.5

-29

-28.5
0 0.2 0.4 0.6 0.8 1 1.2 1.4

En
er

gy
 (e

V)

Inter-proton distance ()

H2 molecule - Veria�onal Method

Fig. 4.15 The ground state energy as a function of the inter-proton distance with VMC method

4.3.2 Path Integral Monte Carlo (PIMC) Method

Starting with the same trail function as used in the VMC method, we refine it to the exact
state:

ψ(
r , t) = − exp

⎡
⎣

t∫
0

En(t
′)dt ′/�

⎤
⎦e−Ht/�φ(
r) (4.36)

In the above equation, En(t’) is an as-yet-undetermined c-number function. As long
as the exact state ψ0. As long as the trial function φ is not orthogonal, i.e., 〈ψ0|φ〉 �= 0,
ψ(
r , t) → ψ0(
r) as t→∞.

Now, consider a modification of the variational energy

E(t) = 〈φ|H |ψ(t)〉
〈φ|ψ(t)〉 =

∫
d
rφ(
r)ψ(
r , t)ε(
r)∫
d
rφ(
r)ψ(
r , t) (4.37)

where ε(
r) is defined as Eq. (4.32). Notice that E(0) = Evar is defined by Eq. (4.31), and
E(t) should approach to the exact ground state energy E0 as t→∞.

Define G(
r , t) = φ(
r)ψ(
r, t), then Eq. (4.37) becomes E(t) =
∫
d
rG(
r ,t)ε(
r)∫
d
rG(
r ,t) .

4.3 Variational Monte Carlo and Path Integral Monte Carlo Methods 87

The exact energy E(t→∞) can be computed from the average of the energy ε(
r) over
the distribution function G(
r , t). Therefore, a Monte Carlo evaluation of E(t) requires a
“SET” of N configurations {
r1, . . . ,
rN } distributed according to G(
r , t) through which
E(t) can be estimated by the average across the N configurations.

E(t) ∼ 1

N

N∑
i=1

ε(
ri). (4.38)

How do we generate the SET of N configuration? An allocation using the uniform
random numbers can be applied. Starting with G(
r , 0) = φ(
r)ψ(
r , 0) = [

φ(
r)]2. (Note:
We assumed the real wave function for the real potential energy), the time evolution can

be obtained from �
∂ψ
∂t =

(
En − Ĥ

)
ψ , and G(
r , t) = φ(
r)ψ(
r , t) satisfies the following

time-evolution equation:

∂G(
r , t)
∂t

= φ(
r)∂ψ(
r, t)
∂t

= 1

�

[
En(t) − φ(
r)Ĥ 1

φ(
r)
]
G(
r , t)

= �

2m

∂2G(
r , t)
∂
r2 − ∂

∂
r
[
D(
r)G(
r , t)] − 1

�

[
ε(
r) − En(t)

]
G(
r , t)

(4.39)

where

D(
r) = �

m

1

φ(
r)
∂φ(
r)

∂
r = �

m

∂ ln φ(
r)
∂
r (4.40)

is the drift term, which tends to keep G(
r , t) confined to regions where φ(
r) is large. The
time evolution of G over a short time from t to t + Δt can be represented by the path
integral formula:

G(
r , t + �t) =
∫

d
r ′P(
r ,
r ′; �t)G(
r ′, t) (4.41)

where the integral kernel is given by

P(
r ,
r ′; �t) = exp
{−[

ε(
r) − En(t)
]
�t/�

}

×
(m

2π��t

)3
exp

{
−[
r −
r ′ − D(
r ′)�t

]2
2��t/m

}
. (4.42)

88 4 Quantum Diffusion Monte Carlo Method

In the integral kernel, the first exponential term acts to keep the system in regions
of space where ε is most negative, and the second exponential term acts to diffuse the
system about
r ′ through a normalized Gaussian probability with variance, �Δt/m, and
mean, DΔt.

A configuration at time t at point generates a contribution to
r ′ generates to G(
r , t+�t)
equal to P(
r ,
r ′; �t). This is generalized by placing in the new SET a configuration

r chosen according to the distribution exp

{
−[
r−
r ′−D(
r ′)�t]2

2��t/m

}
, and then weighting the

importance of this configuration by exp
{−[

ε(
r) − En(t)
]
�t/�

}
.

Figure 4.16 lists the VBA code that runs PIMC to find the ground stare energy of
hydrogen molecule. In the VBA code, several sub procedure codes to define a trial
wave function are common to the VMC code of Fig. 4.14. They are [Metropolis:],
[LocalEnergy:], [PHIandDISTANCE:], and [StartingConfig:]. Similar to the
code of VMS, three parameters for computing averages are used to observe how the
energy value changes: the number of ensembles (NEnsemble), the number of samples
in each ensemble (Size), and the number of random samplings (SamplingFreq). The
PIMC code changes the inter-proton distance (S) to obtain the distance that provides the
minimum energy. We also run this code for various β-value to find the lowest energy
value and the inter-proton distance for the minimum energy.

Figure 4.17 show the ground state energy as a function of the inter-proton distance
when α = 1.0598 and β = 20. Compared with the VMC method, the PIMC method
yields a better result of approximant −31.7 eV at 0.75 Å, consistent with the known
values. The curve fitted to data points is drawn for illustration purposes only. The ground
state energy shows some dependence on the parameter β. Similar to the case of the VMC
method, it increases until β = 20 or so, and then shows much less dependence for β >
20.

4.3 Variational Monte Carlo and Path Integral Monte Carlo Methods 89

Sub PIMC()
Cells(1, 1) = "Path Integral Monte Carlo (PIMC) methods for the ground state of a H2 molecule"
Dim SET(6, 50) 'SET of 6 simulations of 10 ensembles, each of which has 5 samples.
Dim Weight(50) 'Weight of each SET member; 10 ensembles x 5 samples = 50.
Dim Config(6) 'Individual configuration.
Dim CSave(6) 'Save the individual configuration.
Dim Drift(6) 'Drift vector of individual configuration.
'Define physical constants:
 Cells(2, 1) = "Physical constants are in the natural units"
 HMratio = 7.6359: '(h-bar)^2/ mass.
 E2 = 14.409 '(electron charge)^2.
 Bohr = 0.5299 'Bohr radius.
'Define parameters in the wave function:
 Cells(3, 1) = "Parameters in wave function"
 Cells(4, 2) = "Parameter A in the wave function exp(-r1R/A)+exp(-r1L/A) etc ":
 Alpha = 2 * Bohr 'Parameter in f(R)=EXP(R/(Alpha*(1+Beta*R))).
 Beta = 20 'Parameter f(R)=EXP(R/(Alpha*(1+Beta*R))).
 ‘*** Run the code with different Beta-values to find the minimum energy.***
 Cells(5, 2) = "Parameter Alpha in f(R)=EXP(R/(Alpha*(1+Beta*R)))": Cells(5, 15) = Alpha
 Cells(6, 2) = "Parameter Beta": Cells(6, 15) = Beta
'Write control parameters:
 Cells(8, 1) = "Control parameters for simulation"
 Cells(10, 2) = "Metropolis step size (Delta)"
 Cells(10, 7) = 0.2: Delta = Cells(10, 7)
 Cells(11, 2) = "Time step for the Path Integral Monte Carlo calculation (DT)"
 Cells(11, 7) = 0.02: DT = Cells(11, 7)
 Cells(12, 2) = "Number of thermalization steps (NTherm)"
 Cells(12, 7) = 140: NTherm = Cells(12, 7)
 Cells(13, 2) = "Number of SETs (NSET)"
 Cells(13, 7) = 30: NSET = Cells(13, 7)
 Cells(14, 2) = "Number of ensembles to be run (NEnsemble)"
 Cells(14, 7) = 10: NEnsemble = Cells(14, 7)
 Cells(15, 2) = "Number of samples per ensemble (Size)"
 Cells(15, 7) = 5: Size = Cells(15, 7)
 Cells(16, 2) = "Sampling Frequency (SamplingFreq)"
 Cells(16, 7) = 6: SamplingFreq = Cells(16, 7)
 Cells(25, 2) = "S"
 Cells(25, 3) = "U"
'---
For Col = 1 To 2
 For SS = 50 To 120
 S = SS / 100: S2 = S / 2 'S = interproton separation.
 A = Bohr 'Set parameter A-value at start.
 Aold = 0 'Parameter A in the wave function, exp(-r1R/A)+exp(-r1L/A) etc., satisfies the
equation below.
 Do Until Abs(A - Aold) < 0.000001
 Aold = A
 A = Bohr / (1 + Exp(-S / Aold))
 Loop
 Cells(4, 15) = A
'---
Randomize
'PIMC calculation. Thermalization and data-taking.
 Cells(18, 2) = "PIMC calculation with time step= "
 Cells(18, 6) = DT
 GoSub InitialSET
'Calculate multiplication factors to be used several times (DT=0.01 is the time step):
 HBMDT = HMratio * DT
 SQDT = Sqr(HBMDT)
 For Istep = 1 To NTherm
 GoSub StepSET
 Next Istep
 SumE = 0 'Energy.
 For IEnsemble = 1 To NEnsemble 'Loop over Ensembles.
 EnsembleE = 0
 For Istep = 1 To SamplingFreq * Size
 GoSub StepSET 'Take a time step.
 If Istep Mod SamplingFreq <> 0 Then GoTo Skip1 'Same times measure energy
 EnsembleE = EnsembleE + Epsilon
 'Cells(20, 2) = "Epsilon=": Cells(20, 3) = Epsilon
Skip1: Next Istep
 SumE = SumE + EnsembleE 'Update total sums.
 EnsembleE = EnsembleE / Size 'Ensemble average.
'Cells(21, 2) = "Eigen value=": Cells(21, 3) = EnsembleE
 AvgE = SumE / (IEnsemble * Size) 'Average E.
 U = AvgE + E2 / S 'Net molecular potential energy.
'Cells(22, 2) = "Grand average E =": ells(22, 4) = AvgE
'Cells(23, 10) = SumA / (IEnsemble * Size * SamplingFreq)
 Next IEnsemble

Fig. 4.16 VBA code for path integral Monte Carlo method (H2-molecule)

90 4 Quantum Diffusion Monte Carlo Method

 Cells(SS - 23, 2) = S: Cells(SS - 23, 20 + Col) = U
 Next SS
Next Col
Exit Sub
' ---
Metropolis:
For i = 1 To SamplingFreq 'SamplingFreq = 6.
CSave(i) = Config(i) 'Save current configuration.
Config(i) = Config(i) + Delta * (Rnd() - 0.5) 'Generate trial configuration.
Next i
 GoSub PHIandDISTANCE
 Wtrial = Phi ^ 2
 If Wtrial < WT * Rnd() Then 'Reject if trial phi is too small.
 For i = 1 To SamplingFreq 'Restore the old configuration.
 Config(i) = CSave(i)
 Next i
 Else:
 WT = Wtrial 'Update the weight.
 End If
Return
'---
LocalEnergy: 'Calculate epsilon (i.e., local energy) for a given configuration.
 GoSub PHIandDISTANCE 'Calculate phi and distance.
R1DOTR12 = x1 * (x1 - x2) + y1 * (y1 - y2) + z1 * (z1 - z2) 'Dot products to be used several
times below.
SR12Z = S * (z1 - z2)
R1LDOTR12 = R1DOTR12 + SR12Z / 2
R1RDOTR12 = R1DOTR12 - SR12Z / 2
R2LDOTR12 = R1LDOTR12 - R12 ^ 2
R2RDOTR12 = R1RDOTR12 - R12 ^ 2
'Kinetic energy
TPOP = 2 * FND2F(R12, A, Alpha, Beta) / FNF(R12, A, Alpha, Beta)
TEMP = FND2CHI(R1R, A, Alpha, Beta) + FND2CHI(R1L, A, Alpha, Beta)
TPOP = TPOP + TEMP / (CHI1R + CHI1L)
TEMP = FND2CHI(R2R, A, Alpha, Beta) + FND2CHI(R2L, A, Alpha, Beta)
TPOP = TPOP + TEMP / (CHI2R + CHI2L)
TEMP = FNCHID(R1L, A, Alpha, Beta) * R1LDOTR12 / R1L
CROSS = (TEMP + FNCHID(R1R, A, Alpha, Beta) * R1RDOTR12 / R1R) / (CHI1L + CHI1R)
TEMP = -FNCHID(R2R, A, Alpha, Beta) * R2RDOTR12 / R2R
TEMP = TEMP - FNCHID(R2L, A, Alpha, Beta) * R2LDOTR12 / R2L
CROSS = CROSS + TEMP / (CHI2L + CHI2R)
TPOP = TPOP + 2 * FNFD(R12, A, Alpha, Beta) / FNF(R12, A, Alpha, Beta) * CROSS / R12
TPOP = -0.5 * HMratio * TPOP 'Plank constant/mass coefficient.
'Potential energy and total energy
VPOP = -E2 * (1 / R1L + 1 / R1R + 1 / R2L + 1 / R2R - 1 / R12)
Epsilon = TPOP + VPOP
Return
'--
PHIandDISTANCE: 'Calculate wave functions and distances for a given configuration.
'NOTE: the total wave function is given by phi=(CH1R+CH1L)*(CHI2R+CHI2L)*F.
x1 = Config(1): y1 = Config(2): z1 = Config(3) 'Positions of electrons.
x2 = Config(4): y2 = Config(5): z2 = Config(6)
R1L = FNDIST(x1, y1, z1 + S2) 'Electron-proton distance.
R1R = FNDIST(x1, y1, z1 - S2)
R2L = FNDIST(x2, y2, z2 + S2)
R2R = FNDIST(x2, y2, z2 - S2)
R12 = FNDIST(x1 - x2, y1 - y2, z1 - z2) 'Inter-electron distance.
F = FNF(R12, A, Alpha, Beta) 'Electron-electron function.
CHI1R = FNCHI(R1R, A, Alpha, Beta) 'Electron-nucleus function.
CHI1L = FNCHI(R1L, A, Alpha, Beta)
CHI2R = FNCHI(R2R, A, Alpha, Beta)
CHI2L = FNCHI(R2L, A, Alpha, Beta)
Phi = (CHI1R + CHI1L) * (CHI2R + CHI2L) * F 'Total wavefunction.
Return
'---
StepSET:
Ebar = 0: Wbar = 0 'Zero E and weight sum.
 For ISET = 1 To NSET 'Loop over SET.
 For k = 1 To SamplingFreq 'Acquire a configuration.
 Config(k) = SET(k, ISET)
 Next k
GoSub DriftVector
 For k = 1 To SamplingFreq
 v = Rnd()
 ETA = Application.WorksheetFunction.NormInv(v, 0, 1) 'Generate a gaussian random number.
 Config(k) = Config(k) + Drift(k) + ETA * SQDT
 Next k
GoSub LocalEnergy 'Calculate new local energy.
'Weight(ISET) = Weight(ISET) * Exp(-Epsilon * DT)

Fig. 4.16 (continued)

4.3 Variational Monte Carlo and Path Integral Monte Carlo Methods 91

Weight(ISET) = Exp(-Epsilon * DT)
Ebar = Ebar + Weight(ISET) * Epsilon
Wbar = Wbar + Weight(ISET)
 For k = 1 To SamplingFreq
 SET(k, ISET) = Config(k)
 Next k
 Next ISET
Epsilon = Ebar / Wbar 'Weighted average energy.
Norm = NSET / Wbar 'Renormalize weights.
 For ISET = 1 To NSET
 Weight(ISET) = Norm * Weight(ISET)
 Next ISET
Return
'--
DriftVector:
 GoSub PHIandDISTANCE 'Calculate the trial function.
'Calculate factors to be used several times for Electron 1.
FACTA = HBMDT * (FNCHID(R1L, A, Alpha, Beta) / R1L + FNCHID(R1R, A, Alpha, Beta) / R1R) /
(CHI1L + CHI1R)
FACTB = HBMDT * (FNCHID(R1L, A, Alpha, Beta) / R1L - FNCHID(R1R, A, Alpha, Beta) / R1R) /
(CHI1L + CHI1R)
FACTE = HBMDT * FNFD(R12, R, Alpha, Beta) / FNF(R12, A, Alpha, Beta) / R12
Drift(1) = FACTA * x1 + FACTE * (x1 - x2) 'Drift for electron 1
Drift(2) = FACTA * y1 + FACTE * (y1 - y2)
Drift(3) = FACTA * z1 + FACTB * S2 + FACTE * (z1 - z2)
'Calculate factors to be used several times for electron 2
FACTA = HBMDT * (FNCHID(R2L, A, Alpha, Beta) / R2L + FNCHID(R2R, A, Alpha, Beta) / R2R) /
(CHI2L + CHI2R)
FACTB = HBMDT * (FNCHID(R2L, A, Alpha, Beta) / R2L - FNCHID(R2R, A, Alpha, Beta) / R2R) /
(CHI2L + CHI2R)
Drift(4) = FACTA * x2 - FACTE * (x1 - x2) 'Drift for electron 2.
Drift(5) = FACTA * y2 - FACTE * (y1 - y2)
Drift(6) = FACTA * z2 + FACTB * S2 - FACTE * (z1 - z2)
Return
'---
InitialSET:
 GoSub StartingConfig 'Generate configuration at t=0.
For Istep = 1 To NTherm 'Thermalization.
 GoSub Metropolis
Next Istep
 For Istep = 1 To 10 * NSET 'Generate the SET.
 GoSub Metropolis
 If Istep Mod 10 <> 0 Then GoTo Skip2
 ISET = Istep / 10
 For k = 1 To SamplingFreq
 SET(k, ISET) = Config(k)
 Next k
Skip2: Next Istep
 For ISET = 1 To NSET 'Set all weight 1.
 Weight(ISET) = 1
 Next ISET
Return
'--
StartingConfig: 'Generate a starting configuration.
For i = 1 To SamplingFreq
Config(i) = (Rnd() - 0.5) * A 'Initial positions of electrons
Next i
Config(3) = Config(3) + S2 'Center electron 1 at right
Config(6) = Config(6) - S2 'Center electron 2 at left
 GoSub PHIandDISTANCE 'Calculation of wave function
 WT = Phi^2 'Weight
Return
'---
End Sub
'---
'Define several functions below.
'---
Function FNCHI(R, A, Alpha, Beta) 'Electron-proton wave function.
FNCHI = Exp(-R / A)
End Function
'---
Function FNCHID(R, A, Alpha, Beta) '1st derivative of FNCHI.
FNCHID = -FNCHI(R, A, Alpha, Beta) / A
End Function
'---
Function FNCHID2(R, A, Alpha, Beta) '2nd derivative of FNCHI.
FNCHID2 = FNCHI(R, A, Alpha, Beta) / A ^ 2
End Function
'--

Fig. 4.16 (continued)

92 4 Quantum Diffusion Monte Carlo Method

-32

-31.5

-31

-30.5

-30

-29.5

-29
0 0.2 0.4 0.6 0.8 1 1.2 1.4

En
er

gy
 (e

V)

Inter-proton distance ()

H2 molecule - PIMC

Fig. 4.17 The ground state energy as a function of the inter-proton distance with PIMC method

References

1. Liboff RL (2003) Introductory quantum mechanics. Addison-Wesley, Boston, MA
2. Koonin SE (1987) Computational physics. Benjamin/Cummings, Menlo Park, CA
3. Gould H, Tobochnik J (1996) An introduction to computer simulation methods. Addison-Wesley,

Edmonton, Canada
4. Kosztin I, Faber B, Schulten K (1996) Introduction to the diffusion Monte Carlo method. Am J

Phys 64:633. https://arxiv.org/abs/physics/9702023
5. Tao P (2016) An introduction to quantum monte carlo methods. A Primer IOP Concise Physics.

Morgan & Claypool, San Rafael, CA
6. Traynor CA, Anderson JB (1990) A quantum Monte Carlo calculation of the ground state energy

of the hydrogen molecule. J Chem Phys 94:3657. https://aip.scitation.org/doi/abs/10.1063/1.
459737

7. Drummond ND, Towler MD, Needs RJ (2004) Jastrow correlation factor for atoms, molecules,
and solids. Phys Rev B70:235119. https://arxiv.org/abs/0801.0378

https://arxiv.org/abs/physics/9702023
https://aip.scitation.org/doi/abs/10.1063/1.459737
https://arxiv.org/abs/0801.0378

5Metropolis–Hastings Algorithm for Ising
Model

Models in statistical physics have vast degrees of freedom and finding exact solutions
are very challenging. One such system is the Ising model, which is simple yet provides
essential physics of magnetic systems [1, 2]. Although we can find an exact solution for
the one-dimensional Ising model, it requires sophisticated mathematics to obtain exact
solutions for two and three-dimensional cases. In the past, many scientists attempted to
solve the Ising models unsuccessfully, and we expressed such efforts in a term, “Ising dis-
ease.” Instead of seeking exact solutions, various approximations and other computational
methods such as series expansion of thermodynamic functions and Padé approximation
have been proposed to analyze the critical phenomena of the Ising model [3]. Yet another
approach to the Ising model is using a Monte Carlo simulation to observe the temperature
or the magnetic field dependence of the spin dynamics. One of the well-known Monte
Carlo algorithms proposed by Metropolis and Hastings [4] is very useful for the Ising
model. Although it was not so easy to perform the simulations when the processing speed
of computers were slow, we can now apply simulations by using personal computers at
home. Nowadays, even an animated spin dynamics can be observed on the Internet [5].

In this chapter, we introduce the Metropolis–Hastings algorithm. Once we do, we
apply the Metropolis–Hastings algorithm to the one-dimensional Ising model and compare
the simulation outcomes with the exact solutions to validate the simulation program. In
addition, we simulate the two-dimensional Ising model of the square lattice to demonstrate
the critical behavior of the Ising model by expanding the simulation program of the one-
dimensional case.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Cho, Monte Carlo Simulations Using Microsoft EXCEL®,
Synthesis Lectures on Mathematics & Statistics,
https://doi.org/10.1007/978-3-031-33886-1_5

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33886-1_5&domain=pdf
https://doi.org/10.1007/978-3-031-33886-1_5

94 5 Metropolis–Hastings Algorithm for Ising Model

Related to the Ising model, we also introduce quantum annealing. Recent develop-
ment of quantum computation is remarkable. There are two types of quantum computers:
quantum gate base and quantum annealing base computations [6]. The latter uses the Ising
model to model and solve optimization problems in various fields. We describe the basic
idea of quantum annealing and how optimization problems are converted to the Ising
model.

5.1 Algorithm of Metropolis and Hastings

The microscopic state of a thermodynamic system is always changing even when the
thermodynamic system is in thermal equilibrium with a heat reservoir of temperature β =
1/kBT. Suppose a possible microscopic state at temperature β have an internal energy, Ej

where j = 1, 2, 3, ….., which, in principle, can be calculated from the Hamiltonian of the
system. The Gibbs–Boltzmann (GB) distribution function expresses the probability that
the internal energy of the thermodynamic system is Ej, and is proportional to exp(−βEj)
[7]. With the GB distribution, the mean value of a thermodynamic variable, Q, is given
by

〈Q〉 =
∑

j Q j e−βE j

∑

j
e−βE j

=
∑

j
PGB({E j })Q j where = {Qi j ; j = 1, 2, . . .

}
, (5.1)

where

PGB({E j }) = e−βE j

Z(β)
(5.2)

is the Gibbs–Boltzmann (GB) distribution function, and its denominator, Z(β) =
�exp(−βEj) is called the partition function of the system at temperature β.

If we can calculate the partition function, we will be able to obtain the thermodynamics
functions. However, because of the complexity of the thermodynamic system, we often
cannot calculate the GB distribution function or the thermodynamic functions without
approximations. Other than applying approximations, we may find the equilibrium state
of a modeled thermodynamic system by simulation.

Because the thermodynamic state at a given temperature takes the lowest energy for the
given temperature, we can start the simulation with an arbitrary (randomly chosen) initial
state, and then randomly generate a next trial state with a certain transition probability to
observe if the energy change makes the system energy lower. Repeat this process until we
find a lowest energy state of the system, expecting that a series of the trial-and-error (or
hit-or-miss) steps will eventually come to the true equilibrium state. One of the simulation
algorithms proposed by Metropolis and Hastings is simple and effective, and especially
appropriate to the Ising model. Below is the brief description of their algorithm.

5.1 Algorithm of Metropolis and Hastings 95

The transition of thermodynamic state is considered to be a Markov process. That is,
the present state, collectively denoted as { �Xn}, where n indicates the number of present
transition step, is determined only by the state of the immediately previous step, { �Xn−1}.
Suppose the transition { �Xn−1}→{ �Xn} occurs with the transition probability denoted as
Mn(�Xn| �Xn−1). Similar to the argument of deriving the Poisson distribution in Sect. 1.2.1,
the probability to have the configuration of the state, Pn(�Xn), is given by

Pn(�Xn) =
∑

{ �Xn−1}
Mn(�Xn| �Xn−1)Pn−1(�Xn−1). (5.3)

Because
∑

{Xn}
Pn(�Xn) = 1, Eq. (5.3) must satisfy the normalization condition

∑

{ �Xn},{ �Xn−1}
Mn

(�Xn| �Xn−1

)
Pn−1(�Xn−1) = 1. (5.4)

We are aiming to find a method where the system configuration eventually will reach
the thermodynamically equilibrium state with given external parameters including tem-
perature and magnetic field. If we find the probability of the stable equilibrium state,
Pequilibroum(�X), , it should be the GB distribution function (5.2). From Eq. (5.3), once
the step reaches the equilibrium state, the probability function, Pequilibrium(�X), should be
steady with no more change in Eq. (5.3). Therefore, the equilibrium state should satisfy

Pequilibrium(�Xn) =
∑

{ �Xn−1}
Mn(�Xn| �Xn−1)Pequilibrium(�Xn−1). (5.5)

Because the GB distribution function (5.2) is for the equilibrium state, it also satisfies

PPG(�Xn) =
∑

{ �Xn−1}
Mn(�Xn| �Xn−1)PPG(�Xn−1). (5.6)

We want to determine PGB(�X) from the above equation. However, with only Eq. (5.6),
we cannot determine PGB(�X). We need an additional condition, which is provided by
what we call the condition of detailed balancing. Having detail balancing means that the
probability of the transition, Mn(�Xn| �Xn−1), and the probability of the backward transition,
Mn(�Xn−1| �Xn), is the same in the equilibrium state:

Mn(�Xn−1| �Xn)PPG(�Xn) = Mn(�Xn| �Xn−1)PPG(�Xn−1). (5.7)

The transition probability Mn(�Xn−1| �Xn) proposed by Metropolis and Hastings is

Mn(�Xn| �Xn−1) = min

(

1, e
−β
(
E(�Xn)−E(�Xn−1)

))

(5.8)

96 5 Metropolis–Hastings Algorithm for Ising Model

where min (1, q) means to take the smaller value between 1 and q. E(�Xn) is the internal
energy of the system of the present state { �Xn}. The transition probability (5.8) indeed
satisfies the detailed balancing condition.

Proof

(i) If E(�Xn) > E(�Xn−1), then Mn(�Xn| �Xn−1) = e
−β
(
E(�Xn)−EW (�Xn−1)

)

.

With this condition of the Hamiltonian, Eq. (5.8) becomes Mn(�Xn−1| �Xn) = 1. Thus, we
obtain the detailed balancing condition,

Mn(�Xn| �Xn−1)

Mn(�Xn−1| �Xn)
= e

−β
(
E(�Xn)−E(�Xn−1)

)

= PGB(�Xn)

PGB(�Xn−1)
(5.9)

(ii) If E(�Xn) ≤ E(�Xn−1), in a similar manner, we also get the detailed balancing condition.

Because exp(−βE) is the probability that the internal energy of the system is E,

e
−β
(
E(�Xn)−E(�Xn−1)

)

= e−βE(�Xn)/e−βE(�Xn−1)

is the ratio of probabilities of the present state, { �Xn}, to the previous state, { �Xn−1}. Thus,
Eq. (5.8) means that we determine that transition probability to be:

1. 1 if e−βE({ �Xn}) < e−βE({ �Xn−1}); and
2. e

−β
(
E(�Xn)−E(�Xn−1)

)

if e−βH(�Xn) ≥ e−βH(�Xn−1). �

If E(�Xn) ≤ E(�Xn−1), then e−βE(�Xn) ≤ e−βE(�Xn−1) and the internal energy decreases or
remains the same by the transition { �Xn−1}→{ �Xn}. This is the preferred transition, and
we accept it. On the other hand, if E(�Xn) > E(�Xn−1), the internal energy increases,

then p = e
−β
(
E(�Xn)−E(�Xn−1)

)

is less than 1, and the transition step is accepted with the
probability p. This can be done by comparing p with a uniform random number r in the
interval [0, 1], and accepting the step if r < p.

Computational steps of the Metropolis algorithm are now summarized:

1. Initial microscopic configuration of the system. It is often created by a random
configuration.

2. Calculate the transition probability with the following steps (i) to (vi):
(i). Make a random trial configuration change;

5.2 Application to Ising Model 97

(ii). Compute the change in the energy of the system, ΔE = Enew – Eprevious, from
the Hamiltonian H;

(iii). ΔE≤0, then accept the trial configuration change and go to step 3;
(iv). If ΔE > 0, then compute p = exp(−βΔE);
(v). Generate a random number, r, where 0≤ r≤1; and
(vi). If r≤p, then accept the new configuration; otherwise, keep the previous

configuration.
3. Determine value of the thermodynamic variables.
4. Repeat steps 2 and 3 to acquire a sufficient number of configurations (thermalization

cycles).
5. Periodically calculate averages over system configurations to observe how the internal

energy changes.

In the next section, we describe the Ising model and apply the Metropolis and Hastings
algorithm.

5.2 Application to Ising Model

The Ising model is a model of the structure of a magnetic substance where spontaneous
magnetic polarization in the same direction giving rise to a macroscopic magnetic field
[2, 7]. The model is an array of N-lattice sites, where n = 1, 2, 3, …, N with the periodic
boundary condition. Each lattice site has a spin half variable si (i = 1, 2, …., N): si = +
1 or− 1. The energy of the system in a given configuration of N spins, {si}, is given by

EI {si } ≡ Es = −
∑

i 	= j

Ji j si s j − B
∑

i

si (5.10)

where Jij is a magnetic coupling constant, J, only for the nearest neighbor spin pairs,
otherwise zero. Notice if J > 0, the Ising model represents ferromagnetism whereas if J
< 0, it is anti-ferromagnetism.

The partition function is calculated as

Z(B, T) =
∑

s1

∑

s2

· · ·
∑

sN

exp[−βEI {si }] where β = 1/kBT . (5.11)

The Helmholtz free energy, the system energy, the heat capacity, the magnetization,
and the magnetic susceptibility can be calculated by the partition function:

F(B, β) = − 1

β
ln Z(B, T) (5.12)

U (B, β) = 〈EI (B, β)〉 = 1

Z

∑

s

Ese
−βEs = − ∂

∂β
ln Z (5.13)

98 5 Metropolis–Hastings Algorithm for Ising Model

C(B, β) = ∂U (B, β)

∂T
= −kBβ2 ∂U (B, β)

∂β

= −kBβ2

[

− 1

Z2

∂Z

∂β

∑

S

Ese
−βEs − 1

Z

∑

S

E2
s e

−βEs

]

= −kBβ2[〈E2
s

〉− 〈Es〉2
] ≡ −kBβ2(�E)2

(5.14)

〈M(B, β)〉 = 1

Z

∑

s

Mse
−βEs = 1

β

∂

∂B
ln Z (5.15)

χ(B, β) = ∂〈M〉
∂B

= − 1

Z2

∂Z

∂B

∑

S

Mse
−βEs − 1

Z

∑

S

βM2
s e

−βEs

= β
(〈
M2〉− 〈M〉2) ≡ β(�M)2

(5.16)

where
∂Z

∂B
=
∑

s

βMse
−βEs . (5.17)

In the computer simulation, we compute the arithmetic average of < M > , < M 2 >
, < E > , and < E2 > , from which we compute (ΔE)2 and (ΔM)2 to calculate the heat
capacity and the susceptibility using Eqs. (5.16) and (5.17).

We now apply the Metropolis algorithm to the Ising model of N spins. The algorithm
seeks the lowest energy state by flipping the randomly sampled spin state and to see
if the system energy decreases. This approach is particularly suitable because the spin
interaction is limited to the nearest neighbor in the Ising model, and the change in the
energy can be calculated locally within the nearest neighbor interactions. For the Ising
model, the Metropolis algorithm takes the following steps:

1. Select an initial configuration of N spins, { �X0} = {si0; i = 1, 2, …., N}. The simplest
initial configuration is the “random” where each spin is choses to be + 1 or− 1 ran-
domly. This can be done easily by generating random numbers. The periodic boundary
condition is better to reduce the effect of the size of the system to be simulated.

2. Choose a single spin at random. Flip the spin, and calculate the change in energy
of the system, ΔE, and apply the transition probability p = exp(−βΔE) referring to
Eq. (5.29) for the one-dimensional and Eq. (5.30) for the two-dimensional models.
(i) If ΔE < 0, then accept the change, and go to step 3.
(ii) If ΔE > 0, then accept the change with the probability p with the following rule:

(a) Generate a random number r (0 ≤ r ≤ 1) using RND(), and if r ≤ p, accept
the new spin configuration; and

(b) Otherwise, retain the previous configuration.
3. Repeat Step 2 (many times).

5.3 One-Dimensional Ising Model 99

4. Calculate the averages of the magnetization and the energy, the magnetic susceptibility,
and the heat capacity.

5. Output the result.

5.3 One-Dimensional Ising Model

For a one-dimensional Ising model, we can obtain the exact solution of the partition func-
tion from which analytical forms of the thermodynamic functions can be obtained without
advanced mathematics. For validating the simulation program, we compute the numerical
values of the thermodynamic variables from the Metropolis and Hastings algorithm, and
compare them with the exact solution.

5.3.1 Exact Solution

We describe the matrix method proposed by Kramers and Wannier in 1941 [8]. Define a
2×2 matrix, P, whose matrix elements are given by

〈
s|P|s′〉 = exp

[

β

(

Jss′ + 1

2
B(s + s′)

)]

.

The explicit form of the matrix is

P =
[

〈+1|P| + 1〉 〈+1|P| − 1〉
〈−1|P| + 1〉 〈−1|P| − 1〉

]

=
[
eβ(J+B) e−β J

e−β J eβ(J−B)

]

. (5.18)

With the matrix P, the partition function can be written as

Z(B, T) =
∑

s1

∑

s2

· · ·
∑

sN

exp

[

β

N∑

k=1

(

Jsksk+1 + 1

2
B(sk + sk+1)

)]

=
∑

{s}
〈s1|P|s2〉〈s2|P|s3〉 · · · 〈sN |P|s1〉 =

∑

s1

〈
s1|PN |s1

〉
= Tr

[
PN
]
.

(5.19)

If we diagonalize the matrix P to find its eigenvalues, λ+ and λ−, where λ+ > λ−,
then

Tr
[
PN
]

= λN+ + λN− . (5.20)

The two eigen values are solution of λ2 − 2λeβJcosh(βB) + 2sinh(2βB) = 0, and they
are

100 5 Metropolis–Hastings Algorithm for Ising Model

λ± = eβ J
[

cosh(βB) ±
√

sinh2(βB) + e−4β J

]

. (5.21)

Notice that the partition function Z(B, β) = λN+ + λN− = λN+
(
1 + (λ−/λ+)N

) → λN+
as N → ∞, and the Helmholtz free energy per spin is given by

f (B, β) ≡ − 1

β
ln λ+ = −J − 1

β
ln

[

cosh(βB) +
√

sinh2(βB) + e−4β J

]

. (5.22)

From the Helmholtz free energy, the magnetization per spin is given by

M(B, β) = ∂ f

∂B
= sinh(βB)
√
sinh2(βB) + e−4β J

. (5.23)

The susceptibility is given by χ(B, β) = ∂M

∂B
= β cosh(βB)e−4β J

[
sinh2(βB) + e−4β J

]3/2 . (5.24)

Because the temperature and the magnetic field always appear as βJ and βB in
thermodynamic functions, for computational purpose, we define the susceptibility as

χ̃(B, β) ≡ 1

β
χ(B, β) = cosh(βB)e−4β J

[
sinh2(βB) + e−4β J

]3/2 . (5.25)

The internal energy, Ẽ(B, β) ≡ βU (B, β) is given by

Ẽ(B, β) = −
⎡

⎣β J +
βB sinh(βB)

(
cosh(βB) +

√
sinh2(βB) + e−4β J

)
− 2β Je−4β J

√
sinh2(βB) + e−4β J

(
cosh(βB) +

√
sinh2(βB) + e−4β J

)

⎤

⎦

= E1 + E2 + E3

(5.26)

where

E1 = −β J

E2 = − βB sinh(βB)
√
sinh2(βB) + e−4β J

E3 = 2β Je−4β J

√
sinh2(βB) + e−4β J

(
cosh(βB) +

√
sinh2(βB) + e−4β J

)

The heat capacity is

5.3 One-Dimensional Ising Model 101

C̃(B, β) ≡ 1

kB
C(B, β) = −β2 ∂U

∂β
= −β2 ∂

∂β

(
Ẽ

β

)

= Ẽ − β
∂ Ẽ

∂β

=
[

E1 − β
∂E1

∂β

]

+
[

E2 − β
∂E2

∂β

]

+
[

E3 − β
∂E3

∂β

]

.

(5.27)

Calculations of these temperature derivatives are straight forward but lengthy in the
expressions.

β
∂E1

∂β
= β J E1 − β

∂E1

∂β
= 0,

β
∂E2

∂β
= −βB sinh(βB) + (βB)2 cosh(βB)

√
sinh2(βB) + e−4β J

+ βB sinh(βB)
{
βB sinh(βB) − 2β Je−4Jβ

}

[√
sinh2(βB) + e−4β J

]3 ,

β
∂E3

∂β
= 2β J (1 − 4β J)e−4β J

[√
sinh2(βB) + e−4β J

]2 + cosh(βB)
√
sinh2(βB) + e−4β J

− 2(β J)e−4β J

[[√
sinh2(βB) + e−4β J

]2 + cosh(βB)
√
sinh2(βB) + e−4β J

]2 [A],

where

[A] = 2βB sinh(βB) cosh(βB) − 4β Je−4β J

+βB sinh(βB)

√

sinh2(βB) + e−4β J

+cosh(βB)
{
βB sinh(βB) cosh(βB) − 2β Je−4β J

}

√
sinh2(βB) + e−4β J

.

(5.28)

5.3.2 Monte Carlo Simulation

For validating our simulation program, we check the magnetic field dependence of
thermodynamic functions at a fixed temperature. We also investigate the temperature
dependence at nearly zero-field. The exact values of the thermodynamic functions are
computed separately from the VBA codes from Eqs. (5.23), (5.25), (5.26), and (5.28)
using Autofill of EXCEL.

The probability used in the Metropolis algorithm, p = exp(−βΔE), for the one-
dimensional chain is given by

p = e−βEI ({strial })+βEI ({sold }) = e−2βsi (J · f +B) where f = si−1 + si+1. (5.29)

102 5 Metropolis–Hastings Algorithm for Ising Model

Table 5.1 Possible nearest neighbor spin configurations of one-dimensional Ising model

si−1- si–si+1
● = ↑: up spin
◌ = ↓: down spin

f = si−1 + si+1 −2βsi(J·f + B) p = e−2βsi (J · f +B)

si = + 1 (●)

●-●-● − 2 − 4βJ− 2βB e−4βJ−2βB

●-●-◌ 0 − 2βB e−2βB

◌-●-◌ + 2 4βJ− 2βB e4βJ−2β)

si = − 1 (◌)

●-◌-● − 2 4βJ + 2βB = − (4βJ−
2βB)

e4βJ+2βB = 1/ e−(4βJ+2βB)

●-◌-◌ 0 2βB e2βB = 1/ e−2βB

◌-◌-◌ + 2 − 4βJ + 2βB = − (4βJ−
2βB)

e−(4βJ−2βB) = 1/ e4βJ−2βB

There are several possible local spin configurations among three spins, si−1, si, and
si+1. Table 5.1 lists all possible local configurations and the corresponding f -values. In
this table, the upward arrow and the downward arrow represent up spins (−1) and down
spins (+1).

Figure 5.1 shows the VBA code of the Ising chain where the temperature is fixed at
βJ = 0.1, which is a constant JJ in the code, while varying the magnetic field, βB,
which is a variable B in the code. The periodic boundary condition, s1 = sN, is used
for reducing the size effect. The VBA code can be also modified to fix the field and
vary the temperature, and the temperature dependence with the near zero-field can be
obtained easily. The VBA code computes average values of thermodynamic functions
after thermalizations of “SamplingFreq” times per ensemble of Nx-spin chain, and
then computes the “ensemble” averages. The number of ensembles is given by “Size.”
The code repeats the simulation “SIM” times to compute the average thermodynamic
functions of SIM runs.

Figures 5.2, 5.3, 5.4, 5.5 show the exact solutions (broken lines) and simulation
results (dots) of thermodynamic functions of a system of 3,000 spins (Totspins)
with the periodic boundary condition. We compute averages of repeated thermalizations
(SamplingFreq) 30,000 times per ensemble. The number of ensembles of spin systems
(Size) is 400. The range of magnetic field is −3.0≤βB≤ + 30.0 and the temperature
is fixed at βJ = 0.1. Simulations using spin chains with these simulation parameters less
than listed here imply that higher-order of thermodynamic functions require a greater
number of spins, thermalizations and a larger number of ensembles of spin systems. Fur-
thermore, with the same numbers of spins and thermalizations, the averages using more
ensembles show less variations. In other words, while the outputs of magnetization and

5.3 One-Dimensional Ising Model 103

energy were very much replicated as shown in these figures, susceptibility and heat were
not.

Figures 5.6, 5.7, 5.8 show the temperature dependence of the energy, the susceptibil-
ity, and the heat capacity with near zero-field (βB = 0.001). The near-zero field needs
to be used because there is no spontaneous magnetization in the one-dimensional Ising
model. The system parameters are the same: 3,000 spins with the periodic boundary con-
dition, averages of 400 samples each of which repeated thermalizations 30,000 times. The
magnetization is not shown here because of the absence of the spontaneous magnetization.

From Eqs. (5.23)–(5.28), the exact solutions at B = 0 are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(β, 0) = 0,

χ̃(β, 0) = 1

β
χ(β, 0) = e2β J ,

Ẽ(β, 0) = βU (β, 0) = −β J tanh(β J),

C̃(β, 0) = C(β, 0)

kB
= (β J)2sech2(β J).

The exact solutions and the simulation outputs are shown in broken lines and dots,
respectively. Although the simulations are conducted with a small B-field, their outputs
follow over all tendencies of the thermodynamic functions at zero-field.

Sub Ising1DS()
Cells(1, 1) = "Metropolis Simulation of the 1D Ising Model."
'S(i)is the spin state +/-1 where i = 1, 2, ..., Nx.
'R(2+F/2, (S+3)/2) is the flip probability where the spin is S, and
'the sum of the n.n. spins is F given by F=0, +/-2 for 1-dim (3 ways):
'2+F/2=3 if F=2, 2+F/2=2 if F=0, and 2+F/2=1 if F=-2.
'Note: (S+3)/2=2 if S=1 and (S+3)/2=1 if S=-1.
'Calculate magnetization (M), susceptibility (Chi), enemy (U), and
'Heat capacity (Cb) vs B-field.
Dim S(4000) As Integer 'Spin lattice S(x).
Dim R(3, 2) 'Flip probab. where the spin is S and the sum of neighboring spins is F.
 Nx = 3000
 Totspins = Nx: 'A spin lattice has Nx spins.
 SIM = 5 '# of running simulation program.
 SamplingFreq = 30000 'Sampling freq. of thermal sweeps at each simulation run.
 Size = 400 '# of ensembles of spin chains to compute the ensemble average.
 Cells(10, 2) = "B"
 Cells(10, 3) = "M per spin"
 Cells(10, 4) = "Theory"
 Cells(10, 5) = "Energy"
 Cells(10, 6) = "Chi"
 Cells(10, 7) = "Cb"
 Count = 0 'For writing the thermodynamic variables.
JJ = 0.1 'Spin coupling constant: JJ=J/kT.
For BB = -30 To 30
 B = BB / 10 'External magnetic field from -3.0 to +3.0 by step 0.1.
 Cells(2, 1) = "Nx=": Cells(2, 2) = Nx: '# of spins in the x-direction: cell B2.

'Display parameters:
 Cells(2, 4) = "JJ=": Cells(2, 5) = JJ
 Cells(3, 4) = "B=": Cells(3, 5) = B

'# of ensembles, # of samples, the sample size, and the current sampling frequency:

Fig. 5.1 VBA Code of magnetic field dependence of one-dimensional Ising model

104 5 Metropolis–Hastings Algorithm for Ising Model

 Cells(2, 7) = "SIM": Cells(2, 8) = SIM
 Cells(2, 10) = "# of Ensembles": Cells(2, 11) = Size
 Cells(3, 10) = "Freq": Cells(3, 11) = SamplingFreq

'Names of thermodynamic variables:
 Cells(2, 13) = "TotE="
 Cells(3, 13) = "Mag="
 Cells(2, 17) = "Chi="
 Cells(2, 21) = "Cb="

'Calculate the flip probability for given JJ and B:
 For i = 1 To 3
 R(i, 2) = Exp(-2 * (JJ * (2 * i - 4) + B)) 'F=2*i-4.
 R(i, 1) = 1 / R(i, 2)
 Next i

'Cleaning up the spins on screen:
 Cells(5, 1) = ""
 Cells(5, 1).Interior.Color = RGB(255, 255, 255) 'White.
 For i = 1 To Nx
 Cells(6, i).Interior.Color = RGB(255, 255, 255) 'White.
 Next i

'Run the simulation by "SIM" times for given JJ and B.
'Each run has "SamplingFreq" times of thermalization to calculate thermal variables.
'Repeat this step by "Size" times, and then calculate the averages.
 'Initialize thermodynamic variables:
 SumM = 0 'M
 SumM2 = 0 'M^2
 SumE = 0 'Energy
 SumE2 = 0 'E^2
 SumChi = 0 'Susceptibility
 SumCb = 0 'Specific heat

Randomize
For Irun = 1 To SIM 'Run this program SIM times.
 Cells(5, 1).Interior.Color = RGB(255, 0, 0) 'Cell in RED.
 'This cell will be displayed "FINAL" once the simulation will be completed.

'Randomize the spin lattice S(i) where i=1 to Nx, and display the result on screen.
'Use the periodic boundary condition.
 For i = 1 To Nx 'Horizontal loop only.
 If i > 1 Then
 Im = i - 1
 Else
 Im = Nx
 End If
 If Rnd() < 0.5 Then
 S(Im) = 1
 Cells(6, 2 + i).Interior.Color = RGB(0, 0, 0) 'Black is spin up.
 Else
 S(Im) = -1
 Cells(6, 2 + i).Interior.Color = RGB(255, 255, 255) 'White is spin down.
 End If
 Next i

'Initialize M and E before start ensemble-thermalization at each simulation run:
 EnsembleM = 0 'Magnetization (M) per ensemble.
 EnsembleM2 = 0 'M^2 per ensemble.
 EnsembleE = 0 'Energy (E) per ensemble.
 EnsembleE2 = 0 'E^2 per ensemble.
 For isweep1 = 1 To Size
 For isweep2 = 1 To SamplingFreq 'Loop over sweeps in a ensemble.
 GoSub Thermalization 'Do a thermalization sweep of the lattice.
 Next isweep2
'Calculate E and M for this lattice after each thermalization:
 Mag = 0 'Zero magnetization for this lattice.
 SumSS = 0 'Zero sum of interaction with right and left neighbors.
 For i = 1 To Nx 'Horizontal loop.
 If i > 1 Then

Fig. 5.1 (continued)

5.3 One-Dimensional Ising Model 105

 Im = i - 1
 Else
 Im = Nx
 End If
 Mag = Mag + S(i) 'Sum of Magnetization.
 SumSS = SumSS + S(i) * S(Im) 'Sum of interactions.
 Next i
 E = (-JJ * SumSS - B * Mag): 'Energy.
 'Update ensemble sums:
 EnsembleM = EnsembleM + Mag
 EnsembleM2 = EnsembleM2 + Mag ^ 2
 EnsembleE = EnsembleE + E
 EnsembleE2 = EnsembleE2 + E ^ 2

 Next isweep1
'Compute & display ensemble/total E, M, Chi, Cb:
 'Ensemble average:
 EnsembleM = EnsembleM / Size
 EnsembleM2 = EnsembleM2 / Size
 EnsembleE = EnsembleE / Size
 EnsembleE2 = EnsembleE2 / Size
 Chi = Abs(EnsembleM2 - EnsembleM ^ 2)
 Cb = Abs(EnsembleE2 - EnsembleE ^ 2)
 'Update total sums:
 SumM = SumM + EnsembleM
 SumM2 = SumM2 + EnsembleM ^ 2
 SumE = SumE + EnsembleE
 SumE2 = SumE2 + EnsembleE ^ 2
 SumChi = SumChi + Chi
 SumCb = SumCb + Cb

Next Irun
'Display the spin lattice after running program by SIM-times for given B and JJ:
 GoSub Lattice
 'Total average values:
 TotE = SumE / SIM
 M = SumM / SIM
 Chi = SumChi / SIM
 Cb = SumCb / SIM
 'Display total values per spin:
 Cells(2, 14) = TotE / Totspins
 Cells(3, 14) = M / Totspins
 Cells(2, 18) = Chi / Totspins
 Cells(2, 22) = Cb / Totspins

Cells(5, 1).Interior.Color = RGB(255, 255, 255) 'White after completing simulations.
Cells(5, 1) = "FINAL" 'Simulation completed.
 GoSub Lattice 'Mapping latest spin map.
 Count = Count + 1 'Index to write outputs in sequence.
 Cells(10 + Count, 2) = B
 Cells(10 + Count, 3) = Cells(3, 14)
 Cells(10 + Count, 4) = Cells(2, 14)
 Cells(10 + Count, 5) = Cells(2, 18)
 Cells(10 + Count, 6) = Cells(2, 22)
Next BB

Exit Sub
'--
Thermalization:
'Subroutine to run a Metropolis thermalization sweep of the lattice.
 For i = 1 To Nx
 If i < Nx Then
 Ip = i + 1
 Else
 Ip = 1 'i index of "+x" neighbor.
 End If
 If i > 1 Then

Fig. 5.1 (continued)

106 5 Metropolis–Hastings Algorithm for Ising Model

 Im = i - 1
 Else
 Im = Nx 'i index of "-x" neighbor.
 End If
 SPIN = S(i) 'Spin at site (i).
 F = S(Ip) + S(Im) 'Sum of 2 neighbor spins.
 If Rnd() > R(2 + F / 2, (3 + SPIN) / 2) Then
 GoTo NoFlip 'No spin flip.
 Else
 S(i) = -SPIN 'Flip the spin.
 End If

NoFlip: Next i
Return
'---
Lattice:
 'Display the spin patterns on screen.
 For i = 1 To Nx
 If S(i) = 1 Then
 Cells(6, 2 + i).Interior.Color = RGB(0, 0, 0) 'Black is spin up.
 Else:
 Cells(6, 2 + i).Interior.Color = RGB(255, 255, 255) 'White is spin down.
 End If
 Next i

Return
'--
End Sub

Fig. 5.1 (continued)

-1.5

-1

-0.5

0

0.5

1

1.5

-4 -3 -2 -1 0 1 2 3 4M
(β
B)

Magne�c field (βB)

Magne�za�on per spin

Simula�on

Exact solu�on

Fig. 5.2 B-field dependence of magnetization of Ising chain (N = 3,000) at a fix temperature

5.4 Two-Dimensional Ising Model 107

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

-4 -3 -2 -1 0 1 2 3 4
βU

T(β
B
)

Magne�c field (βB)

Energy per spin

Exact solu�on

Simula�on

Fig. 5.3 B-field dependence of energy of Ising chain (N = 3,000) at a fix temperature

Fig. 5.4 B-field dependence of magnetic susceptibility of Ising chain (N = 3,000) at a fix temper-
ature

5.4 Two-Dimensional Ising Model

The one-dimensional VBA code can be augmented to the two-dimensional model on
a square lattice. We see if the simulation of the two-dimensional Ising model exhibits
spontaneous magnetization and the critical phenomena with the zero-field. The critical
temperature is known to be βcJ = kBTc/J = 2.269 for the two-dimensional Ising model

108 5 Metropolis–Hastings Algorithm for Ising Model

Fig. 5.5 B-field dependence of heat capacity of Ising chain (N = 3,000) at a fix temperature

Fig. 5.6 Temperature dependence of energy of Ising chain (N = 3,000) at near zero-field

on a square lattice. The essential part of the two-dimensional case is the ratio of the
probabilities before and after flipping one spin. Similar to the one-dimensional model
(Table 5.2),

H({st }) − H({s}) = −2Jsi, j (si, j+1 + si, j−1 + si+1, j + si−1, j) − 2Bsi (5.30)

p = w({st })
w({s}) = e−H({st })+H({s}) = e−2si (J · f +B)

5.4 Two-Dimensional Ising Model 109

Fig. 5.7 Temperature dependence of susceptibility of Ising chain (N = 3,000) at near zero-field

Fig. 5.8 Temperature dependence of heat capacity of Ising chain (N = 3,000) at near zero-field

where f = si, j+1 + si, j−1 + si+1, j + si−1, j (5.31)

Figure 5.9 shows the VBA code for the two-dimensional Ising on 96×96 square lat-
tice. The VBA code computes the temperature dependence of thermodynamic functions
(M, U, χT, and CT) with B = 0 field. The temperature range is 1.0≤βJ≤3.0. Sampling
frequency (thermalization cycle) is 20,000 per computational ensemble, and the ensemble
size = 200 of spin lattices. The VBA code computes average values of thermodynamic
functions after thermalizations of “SamplingFreq” times per ensemble, and then com-
putes the ensemble averages. The number of ensembles is given by “Size.” The code
repeats the simulation “SIM” times to compute the average thermodynamic functions of
SIM runs. In this code, we set SIM = 1.

In Figs. 5.9, 5.10, 5.11, 5.12, 5.13, the Ising system is a 96×96 square lattice. There
are 20,000 thermalizations for each of 300 ensembles of spin lattices with “near zero”

110 5 Metropolis–Hastings Algorithm for Ising Model

Table 5.2 Possible nearest neighbor spin configurations of Ising square lattice

si,j-1
si−1,j -si,j-si+1,j
si,j+1
Legend

● = ↑: up spin
◌ = ↓: down spin

f = si, j+1

+si, j−1

+si+1, j

+si−1, j

f = 2I − 6
− 2βsi(J·f + B)

R = e−2βsi (J · f+B)

If si,j = 1, then R(↑) = e−2[βJf +βB]

◌
◌ ● ◌
◌

−4 I = 1; f = − 4
− 2[βJ(−4) + βB]

e−2[βJ(−4)+βB]

● ◌
◌ ● ◌ & ◌ ● ◌
◌ ●

−2 I = 2; f = − 2
− 2[βJ(−2) + βB]

e−2[βJ(−2)+βB]

◌ ◌
● ● ◌ & ◌ ● ●

◌ ◌

−2 I = 2; f = − 2
− 2[βJ(−2) + βB]

e −2[βJ(−2)+βB]

● ◌
◌ ● ◌ & ● ● ●

● ◌

0 I = 3; f = 0
− 2[βJ(0) + βB]

e−2[βJ(−2)+βB]

● ◌
● ● ◌ & ● ● ◌
◌ ●

0 I = 3; f = 0
− 2[βJ(0) + βB]

e−2[βJ(0)+βB]

● ◌
◌ ● ● & ◌ ● ●

◌ ●

0 I = 3; f = 0
− 2[βJ(0) + βB]

e −2[βJ(0)+βB]

● ◌
● ● ● & ● ● ●

◌ ●

+2 I = 4; f = + 2
− 2[βJ(2) + βB]

e−2[βJ(2)+βB]

● ●

◌ ● ● & ● ● ◌
● ●

+2 I = 4; f = + 2
− 2[βJ(2) + βB]

e−2[βJ(2)+βB]

●

● ● ●

●

+4 I = 5; f = + 4
− 2[βJ(4) + βB]

e−2[βJ(4)+βB]

If si,j = − 1, then R(↓) = e−2βsi (J · f +B) = e2β(J · f+B) = 1/e−2β(J · f +B) = 1/R(↓)

field. The sudden changes of the magnetization, the susceptibility and the heat capacity
are caused by the phase transition of the Ising model. The onset graphs show detail tem-
perature dependence near the critical temperature βcJ with the same simulation condition.
Similar to the phase transition of percolation we discussed in Sect. 2.5, the lattice size
does not affect the transition temperature but the change in steepness of the translation

5.4 Two-Dimensional Ising Model 111

Fig. 5.9 VBA code for two-dimensional Ising model on 96×96 square lattice at zero field

112 5 Metropolis–Hastings Algorithm for Ising Model

Fig. 5.9 (continued)

5.4 Two-Dimensional Ising Model 113

Fig. 5.9 (continued)

114 5 Metropolis–Hastings Algorithm for Ising Model

Fig. 5.9 (continued)

in the magnetization and the susceptibility are remarkable. In particular, the susceptibility
changes by a factor of 800 to 900 in the 96×96 lattice whereas it does by factor of 200
to 300. The larger size of a spin lattice better but the computation time increases expo-
nentially. It took almost nine days to complete the superposed figures using a notebook
PC!

Fig. 5.10 Spontaneous magnetization of Ising square lattice (96×96) near critical temperature

5.4 Two-Dimensional Ising Model 115

Fig. 5.11 Susceptibility of Ising model on square lattice (96×96) near critical temperature

Fig. 5.12 Heat Capacity of Ising model on square lattice (96×96) near critical temperature

The exact solution of the two-dimensional Ising model shows the critical temperature
βcJ = 2.269. The phase transitions of the magnetization (M), the susceptibility (χT), and
the heat capacity (CB) near the critical temperature are expressed as the critical exponents,
α, β, and γ :

M ~(T c − T)−β where β = 1/8.
χT ~ |T − T c|−γ where γ = 7/4 (divergence).
CB ~ |T − T c|−α where α ~0 (cusp or logarithmic divergence).
Calculation of the critical exponents from the simulation results is beyond our scope.

Interested readers should refer to the monumental books [3].
Figure 5.14 shows a pattern of spontaneous magnetization of a 200×200 square lattice

at a temperature slightly lower than the critical temperature, βJ = kBT/J = 2.30. The
thermalization cycles are 240,000. In this figure, the black cells indicate spin up states,

116 5 Metropolis–Hastings Algorithm for Ising Model

Fig. 5.13 Internal energy of Ising model on square lattice (96×96) near critical temperature

Fig. 5.14 Spin map (200×
200) just below the critical
point (βJ = 2.30)

with the temperature still slightly below the critical temperature. There are many spin-up
clusters of different sizes formed while the net magnetization is still close to zero. At
the critical point, these clusters are connected together and several large clusters abruptly
appear to establish the spontaneous magnetization as the theory of critical phenomena
describes [2]. Recall that, in the percolation geometry phase transition, a similar sudden
change in the cluster size occurs to cause the geometrical phase transition.

5.5 Quantum Optimization Using Ising Model 117

5.5 Quantum Optimization Using Ising Model

5.5.1 Optimization by Quantum Annealing

The Metropolis algorithm finds the minimum energy state of the Ising spins by flipping
a randomly sampled spin, and then compute the system energy if the energy becomes
smaller. If it does, keep the spin flipped, and the simulation repeats this flipping step to
lower the temperature gradually until the energy becomes the minimum or close to the
minimum. This gradual energy-minimizing step is equivalent to the temperature lowering
step, and hence, it is called simulated (classical) “annealing.” Recently, the Ising model
can be applied various optimization models with quantum mechanical approach, which is
called “quantum annealing” [9].

Quantum annealing efficiently finds the ground state energy [10]. In the classical near-
est neighbor Ising model, the sets of the coupling constant {J ij}, which may be a constant
in some cases, and the external magnetic field is the same for all spins. In the quantum
annealing, we minimize the eigenvalue of the Hamiltonian operator where the Ising spins
should be expressed as an operator with a set of local interactions {J ij} and local external
fields {hi}:

Ĥ({σ }) = −
∑

i 	= j

Ji j σ̂
z
i σ̂ z

j −
∑

i

hi σ̂
z
i (5.32)

where σ̂ z is a Pauli’s spin matrix. The complete set of Pauli’s spin matrices are:

σ̂ x =
[
0 1

1 0

]

, σ̂ y =
[
0 −i

i 0

]

, and σ̂ z =
[
1 0

0 −1

]

. (5.33)

The up-spin and down-spin are respectively expressed as |↑ > and |↓ > , which are
eigen vectors the spin matrix σ̂ z :

σ̂ z | ↑〉 =
[
1 0

0 −1

][
1

0

]

=
[
1

0

]

= | ↑〉 and σ̂ z | ↓〉 =
[
1 0

0 −1

][
0

1

]

=
[

0

−1

]

= −| ↓〉.
(5.34)

5.5.2 Addition of Horizontal Field

In the classical Monte Carlo method, we prepare a random spin configuration at first.
At each site, the spin state takes either up or down. In quantum annealing, we make a
superposition of the spin up and down states at each site. The superposed up/down spin

118 5 Metropolis–Hastings Algorithm for Ising Model

states of a single spin is called a qbit [11]. The quantum annealing creates qbits in the
following ways.

Consider the superposed spin states:

|+〉 = 1√
2
(| ↑〉 + | ↓〉) and |−〉 = 1√

2
(| ↑〉 − | ↓〉). (5.35)

They are eigen states of the Pauli’s spin matrix σ̂ x :

σ̂ x |+〉 = 1√
2
|+〉 and σ̂ x |−〉 = − 1√

2
|−〉. (5.36)

Therefore, by applying a strong external field in the horizontal direction, we can create
the superposed state for each spin. In other words, the superposed spin states are eigne
states of a Hamiltonian that has the horizontal magnetic field. In order to create superposed
spin states at start, the quantum annealing adds a strong horizontal external field term to
the original Hamiltonian. The additional field term, called the quantum fluctuation term,
can be expressed as

Ĥ1 = −�(t)
∑

i

σ̂ x
i . (5.37)

Then, quantum annealing takes the following steps for optimization:

(1) We find the initial eigen values of the quantum fluctuation term, Ĥ1(t = 0), to create
the superposed spin states, |
(t) > .

(2) Apply the Schrödinger equation of the Hamiltonian,Ĥ = Ĥ0 + Ĥ1

i�
∂

∂t
|
(t)〉 = Ĥ(t)|
(t)〉 (5.38)

(3) Observe the time evolution by slowly decreasing Γ (t) to reduce the fluctuation term
Ĥ1:

(4) If the reduction of Γ (t) is slow, we expect that the time evolution is also slow and
thus adiabatic [12]. Then, the state |
(t) > at each time is very close to the ground
state |�t > of the Hamiltonian at the time.

(5) Continue the step (3) with a gradual reduction of Γ (t), and if we find the eigne states
and eigen values of Ĥ0 after vanishing Ĥ1, the annealing is completed and the eigen
state is closed to the ground state of Ĥ0.

The time varying total Hamilton would be like

Ĥ(t) = �(t)Ĥ0 − �(T)
∑

i

σ̂ x
i (5.39)

5.5 Quantum Optimization Using Ising Model 119

where coefficients Ξ (t) and Γ (t) determine the time dependence of the Hamiltonian
(5.39). At t = 0, staring with Ξ (0) = 0 and Γ (0) = 1, Ξ (t) increases to 1 while Γ (t)
decreases to zero. For example, we could set linear time dependence Ξ (t) = ζ t/T and
Γ (t) = γ (1− t)/T where ζ and γ are constants, and T is a predetermined sufficiently
long time. At t = T, Ξ (T) = 1 and Γ (T) = 0, and

Ĥ(t) = �(t)
∑

i

σ̂ x
i at t = 0 and Ĥ(T) = Ĥ0 at end (t = T)

According to the adiabatic theorem, the eigen state stays in the ground state at each
time if the change of the Hamiltonian (5.39) is slow enough. Thus, the final ground state
at t = T will be the solution of the optimization problem expressed by the Hamiltonian
(5.32).

5.5.3 Traveling Salesman

Once an optimization problem is expressed in terms of an Ising model, quantum annealing
can be performed. As an example of how to obtain an Ising- Hamiltonian, a popular
problem of quantum annealing, the traveling salesman problem, will be explained [13].

Suppose there are five cities (A, B, C, D, and E) a salesman must visit. The distances
between each pair of cities are given. Each city is visited only once, and no multiple cities
can be visited at the same time. How do you find the shortest traveling distance, starting
from city A? For example, A→C→E→B→D→A can be charted as shown in Table
5.3.

In this table. Each element can be expressed 0 or 1. Let us denote the element to be
qc,i = 0 or 1 where the suffix c is the city name and i is the order of visiting cities. In
this case, i = 1, 2, 3, 4, or 5. Define the distance between two successively visiting cities
C and D as δcd then the total traveling distance is given by

L =
∑

c,d

5∑

i=1

δcdqc,i qd,i+1 (5.40)

Table 5.3 An example route of traveling salesman visiting five cities

Visit A B C D E
1st 1 0 0 0 0
2nd 0 0 1 0 0
3rd 0 0 0 0 1
4th 0 1 0 0 0
5th 0 0 0 1 0

Back to 1st 1 0 0 0 0

C
●

A ●

B ● ● E

● D

120 5 Metropolis–Hastings Algorithm for Ising Model

The optimization task is: “Select each qc,i to find minimum L.” Recall that (i) each
city will be visited just once; and (ii) only one city can be visited at once. These can be
formulated as follows:

(i)
∑

i

(
qc,i − 1

)2 = 0 at each city c; and (5.41)

(ii)
∑

c

(
qc,i − 1

)2 = 0 at each i .

Therefore, the optimization can use the method of Lagrange multipliers:

H0 =
∑

c,d

5∑

i=1

δcdqc,i qd,i+1 + α
∑

c

∑

i

(
qc,i − 1

)2 + β
∑

i

∑

c

(
qc,i − 1

)2 (5.42)

where α and β are positive constants. Replacing {q; q = 0 or 1} with the Ising spins
{sz; sz = ±1} and using the relationship q = (1 + sz)/2, this problem becomes an Ising
model with the given Hamiltonian.

Now, in the quantum annealing, we minimize the eigenvalue of the Hamiltonian opera-
tor where the Ising spins should be expressed as an operator using the Pauli’s spin matrix
σ̂ z . Excluding a constant term, the Hamiltonian is found to be

Ĥ0 =
∑

c,d

∑

i=1

δcd σ̂
z
c,i σ̂

z
d,i+1 + α

∑

c

∑

i

(
σ̂ z
c,i − 1

)2 + β
∑

i

∑

c

(
σ̂ z
c,i − 1

)2
. (5.43)

This is the Hamiltonian to be optimized for this problem.
Demonstration of actual quantum annealing is beyond the scope of this book. For

details of quantum annealing, refer to [14]. The quantum optimization has been imple-
mented by D-Wave’s quantum annealing computer [15]. There are also simulation
programs of quantum annealing available [16, 17]. Interested readers should visit their
websites.

References

1. Ising E (1925) Beitrag zur theorie des ferromagnetismus. Z Phys 31:253–258
2. Taroni A (2015) 90 years of the Ising model. Nat Phys 11:997. https://www.nature.com/articles/

nphys3595
3. Stanley HE (1982) Introduction to phase transitions and critical phenomena. Oxford Univer-

sity Press, New York, NY. Also, refer to Stanley H, 1972, Introduction to phase transitions and
critical phenomena. Am J Phys 40:927. https://doi.org/10.1119/1.1986710

4. Robert CP, The Metropolis-Hastings algorithm. https://arxiv.org/pdf/1504.01896.pdf
5. There is an interesting animated simulation. Simulation of the Ising model. http://mattbierbaum.

github.io/ising.js/

https://www.nature.com/articles/nphys3595
https://doi.org/10.1119/1.1986710
https://arxiv.org/pdf/1504.01896.pdf
http://mattbierbaum.github.io/ising.js/

References 121

6. Kadowaki T, Nishimori H (1998) Quantum annealing in the transverses Ising model. Phys Rev
E58:5255. https://arxiv.org/abs/cond-mat/9804280

7. Gould H, Tobochnik J (2010) Statistical and thermal physics. Princeton University Press,
Princeton, NJ

8. Huang K (1991) Statistical mechanics. Wiley, Hoboken, NJ
9. Morita J, Nishimori H (2008) Mathematical foundation of quantum annealing. J Math Phys

49:125210. https://doi.org/10.1063/1.2995837
10. Neven H (2015) When can quantum annealing win? https://ai.googleblog.com/2015/12/when-

can-quantum-annealing-win.htm
11. Cho S (2022) Quantum computation and quantum information simulation using Python. A

Premier IOP Concise Physics. Morgan & Claypool, San Rafael, CA
12. Childs A (2008) The quantum adiabatic theory. http://www.cs.umd.edu/~amchilds/teaching/

w08/l18.pdf
13. Little JDC, Murty KG, Sweeny DW, Krel C (1963) An algorithm for the traveling salesman

problem. https://doi.org/10.1287/opre.11.6.972
14. Moriwaki K (2022) Exploration of Quantum computing: solving optimisation problem using

quantum annealer. https://towardsdatascience.com/exploration-of-quantum-computing-solving-
optimisation-problem-using-quantum-annealer-77c349671969

15. D-Wave (2023) Unblock the power of practical quantum computing today. https://www.dwa
vesys.com/

16. McCaffrey J (2022) Quantum-inspired annealing using C# or Python. https://visualstudiomag
azine.com/articles/2022/01/20/quantum-inspired-annealing.aspx

17. Wildqat tutorial. https://github.com/shinmorino/wildqat

https://arxiv.org/abs/cond-mat/9804280
https://doi.org/10.1063/1.2995837
https://ai.googleblog.com/2015/12/when-can-quantum-annealing-win.htm
http://www.cs.umd.edu/~amchilds/teaching/w08/l18.pdf
https://doi.org/10.1287/opre.11.6.972
https://towardsdatascience.com/exploration-of-quantum-computing-solving-optimisation-problem-using-quantum-annealer-77c349671969
https://www.dwavesys.com/
https://visualstudiomagazine.com/articles/2022/01/20/quantum-inspired-annealing.aspx
https://github.com/shinmorino/wildqat

6Chaos and Fractal

Although chaos and fractals are not stochastic processes, we find many interesting phe-
nomena caused by their distinct behaviors. For example, chaos is relevant to resonance
phenomena in a nonlinear oscillation, and fractal closely relates to the scaling theory of
phase transitions. This chapter introduces several computer-generated patterns of chaos
and fractals to demonstrate their characteristics without using the Monte Carlo method.
Besides scientific curiosity, it’s fun to create and watch chaos and fractals on screen!

6.1 Chaos

What is chaos anyway? Like its name suggests, chaos is an irregular dynamic behavior of
a system that has a relatively small degree of freedom. It is a deterministic process, but a
slight change of the initial condition causes dramatic variations in the following dynamics,
making our prediction very difficult. Edward Lorenz found that his model of weather
patterns, called Lorentz attractor, showed significantly different dynamic patterns when a
set of parameters are slightly different [1]. Another example is that in the logistic mapping,
which is a single simple parameter in the population variation of a species, also causes
a very unpredictable change [2]. Other examples are nonlinear oscillations in mechanics
and electronics that often exhibit chaotic behaviors. These almost-unpredictable changes
are called the butterfly effect: the sensitive dependence on initial conditions, and a small
change in one state of a deterministic nonlinear system can result in large differences in
a later state.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Cho, Monte Carlo Simulations Using Microsoft EXCEL®,
Synthesis Lectures on Mathematics & Statistics,
https://doi.org/10.1007/978-3-031-33886-1_6

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33886-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-33886-1_6

124 6 Chaos and Fractal

6.1.1 Lorentz Attractor

An attractor is a point in the phase space that is used to describe a systems’ dynamic
tendency to evolve from an arbitrary initial condition. Lorentz attractor forms from a set
of relatively simple three nonlinear equations based on fluid dynamics. It exhibits very
interesting and complicated dynamic patterns. In the coupled equations shown below,
which are cited from Edward Lortentz’s study on his weather model, where P is the
Prandti number representing the ratio of the fluid viscosity to its thermal conductivity, R
is the difference in temperature between the top and the bottom of the system, and B is
the ratio of the width to height of the box where the system flows. Lorentz used P = 10,
R = 28, and B = 8/3.

⎧
⎪⎨

⎪⎩

dx
dt = P(y − x)
dy
dt = Rx − y − xz
dz
dt = xy − Bz

(6.1)

We apply the Runge–Kutter method [3] to compute {x(t), y(t), and z(t)} to produce
the trajectories of the attractor. Figure 6.1 lists the VBA code we created.

Figures 6.2, 6.3, 6.4, 6.5, 6.6 and 6.7 show traces of x(t), y(t), z(t), {x(t), y(t)}, {y(t),
z(t)}, and {x(t), z(t)}. The dynamics of the system is chaotic; they are somewhat “peri-
odic” but oscillation amplitudes vary irregularly. Traces x(t) and y(t) are similar but they
randomly change both periods and amplitudes. Trace z(t) maintains a relatively same
period while the amplitude varies periodically to some extent. As the result, they exhibit
distinct oscillational behaviors, which are vividly shown in the xy, yz, and xz trajecto-
ries. Two points on the attractor that are near each other at one time will be arbitrarily
far apart at later times. It is not easy to predict exactly where the system locates on the
attractor without knowing the exact initial conditions. This explains why weather can
differ drastically with a slight change of initial conditions.

6.1.2 Logistic Function

The logistic function models the population of a species with limited potential of growth.
Examples include a bacteria growth in a test-tube, and a nuclear chain reaction in a reactor.
They follow the differential equation for yield describes the population change.

dP

dt
= γ P(1 − βP). (6.2)

The second term of the above equation, −γβP2, is added to the exponential growth
equation, dP/dt = γP, limits the growth. The solution of Eq. (6.2) is given by

6.1 Chaos 125

Sub Attractor()
Cells(1,1)=”Lorentz Attractor”
'Compute a set of three coupled differential equations using the Rung-Kutter method.
 'dx/dt=P(y-x), dy/dt=Rx-y-xz, and dz/dt=xy-Bz.
 'Parameters of the equations:
 P = 10: R = 28: B = 8 / 3
 t = 0 'Initial value of t.
 x = 1: y = 1: z = 20 'Initial position (x and y).
 h = 0.0025 'Time increment.
 n = 10000 'Iteration number = n.
'Write labels and initial value in cells:
 'Labels:
 Cells(3, 2) = "Initial t"
 Cells(3, 3) = "Initial x"
 Cells(3, 4) = "Initial y"
 Cells(3, 5) = "Initial z"
 'Initial Values and increment read from cells:
 Cells(4, 2) = t
 Cells(4, 3) = x
 Cells(4, 4) = y
 Cells(4, 5) = z
 Cells(4, 9) = h
 'Parameter names:
 Cells(10, 2) = "t"
 Cells(10, 3) = "x"
 Cells(10, 4) = "y"
 Cells(10, 5) = "z"
 'Rung-Kutta parameters:
 For i = 0 To n
 Cells(i + 11, 2) = t
 Cells(i + 11, 3) = x
 Cells(i + 11, 4) = y
 Cells(i + 11, 5) = z

lx1 = gx(P, R, B, t, x, y, z)
ly1 = gy(P, R, B, t, x, y, z)
lz1 = gz(P, R, B, t, x, y, z)

lx2 = gx(P, R, B, t + h / 2, x + h * lx1 / 2, y + h * ly1 / 2, z + h * lz1 / 2)
ly2 = gy(P, R, B, t + h / 2, x + h * lx1 / 2, y + h * ly1 / 2, z + h * lz1 / 2)
lz2 = gz(P, R, B, t + h / 2, x + h * lx1 / 2, y + h * ly1 / 2, z + h * lz1 / 2)

lx3 = gx(P, R, B, t + h / 2, x + h * lx2 / 2, y + h * ly2 / 2, z + h * lz2 / 2)
ly3 = gy(P, R, B, t + h / 2, x + h * lx2 / 2, y + h * ly2 / 2, z + h * lz2 / 2)
lz3 = gz(P, R, B, t + h / 2, x + h * lx2 / 2, y + h * ly2 / 2, z + h * lz2 / 2)

lx4 = gx(P, R, B, t + h, x + h * lx3, y + h * ly3, z + h * lz3)
ly4 = gy(P, R, B, t + h, x + h * lx3, y + h * ly3, z + h * lz3)
lz4 = gz(P, R, B, t + h, x + h * lx3, y + h * ly3, z + h * lz3)

 t = t + h
 x = x + h * (lx1 + 2 * lx2 + 2 * lx3 + lx4) / 6
 y = y + h * (ly1 + 2 * ly2 + 2 * ly3 + ly4) / 6
 z = z + h * (lz1 + 2 * lz2 + 2 * lz3 + lz4) / 6

 Next i
End Sub
'---
Function gx(P, R, B, t, x, y, z)

'dx/dt=gx
 gx = P * (y - x)
End Function
'---

Fig. 6.1 VBA code of strange attractor

126 6 Chaos and Fractal

Function gy(P, R, B, t, x, y, z)
 'dy/dt=gy
 gy = R * x - y - x * z
End Function
'---
Function gz(P, R, B, t, x, y, z)
 'dz/dt=gz
 gz = x * y - B * z
End Function

Fig. 6.1 (continued)

-20

-15

-10

-5

0

5

10

15

20

0 5 10 15 20 25Po
si�

on
 x

Time

x-component of trajectory

Fig. 6.2 Time dependence of x-coordinates of strange attractor

-30

-20

-10

0

10

20

30

0 5 10 15 20 25Po
si�

on
 y

Time

y-component of trajectory

Fig. 6.3 Time dependence of y-coordinates of strange attractor

6.1 Chaos 127

0
5

10
15
20
25
30
35
40
45
50

0 5 10 15 20 25

Po
si�

on
 z

Time

z-component of trajectory

Fig. 6.4 Time dependence of z-coordinates of strange attractor

-30

-20

-10

0

10

20

30

-20 -15 -10 -5 0 5 10 15 20

y

x

XY-trajectory

Fig. 6.5 Trajectory projected on xy-plane

P(t) = εγ eγ t

1 + γβεeγ t
(6.3)

where ε is a constant to be determined by the initial condition. Notice that P(t) approaches
to its saturated value, 1/β, i.e., Pmax = 1/β.

128 6 Chaos and Fractal

0

5

10

15

20

25

30

35

40

45

50

-30 -20 -10 0 10 20 30

z

y

YZ-trajectory

Fig. 6.6 Trajectory projected on yz-plane

0
5

10
15
20
25
30
35
40
45
50

-20 -15 -10 -5 0 5 10 15 20

z

x

XZ-trajectory

Fig. 6.7 Trajectory projected on xz-plane

Differential Eq. (6.2) does not show a chaotic behavior, but the following difference
equation derived from Eq. (6.2) exhibits chaos.

�P

�t
= Pn+1 − Pn

�t
= γ Pn(1 − βPn)

6.1 Chaos 129

or

Pn+1 = Pn + γ Pn(1 − βPn)�t = (1 + γ�t)Pn

(

1 − γ�t

1 + γ�t
βPn

)

. (6.4)

The logistic equation can be obtained from the above Eq. (6.4). Let α = 1+ γ�t and
xn = (γ�tβ/α)Pn , and we obtain the logistic equation:

{
xn+1 = αxn(1 − xn)

tn = t0 + n�t
(6.5)

where 0 < x < 1 because Pmax = 1/β.
In order to find the dynamic behavior of x(t), we define y(x) = x and f (x) = αx(1−

x). These functions have two fixed points, 0 and x∞, that satisfy x∞ = α x∞(1− x∞),
and thus x∞ = 1− 1/α. We also define εn = xn− x∞ or xn = εn + x∞ where xn is the
position at the n-steps. If n > > 1 and εn < < 1, then from Eq. (6.5), we obtain

εn+1 + x∞ = xn+1 = α(εn + x∞)(1 − εn − x∞), (6.6)

and the above equation becomes

εn+1 = α(1 − 2 x∞ − εn)εn because x∞ = α x∞(1 − x∞) from equation (6.5). (6.7)

Since εn < < 1, we drop the εn
2 term from Eq. (6.7) and obtain

εn+1 = α(1 − 2 x∞)εn = (2 − α)εn . (6.8)

From Eq. (6.8), if |2− α|<1, i.e., 1 < α < 3, the difference between εn+1 and εn becomes
smaller and smaller, i.e., εn+1 →0. Otherwise εn is unstable. More detail analysis finds
that x will be.

(1) stably monotonic decreases if 0 < α < 1;
(2) stably monotonic increases if 0 < α≤2;
(3) stably damping if 2 < α≤3;
(4) stably oscillates between two values if 3 < α≤1 + √

6; and
(5) periodically or randomly oscillates, exhibiting chaos if 1 + √

6 < α < 4.

Figure 6.8 shows the VBA code that generates x(n = 1000)-values as a function of the
α-value (α = 0.1 to 3.95 by step 0.01). It is called a bifurcation diagram. Figure 6.9 plots
x(n = 1000) generated by the VBA code. The initial value is x(0) = 0.1. For illustrating
the α-dependence of the behavior of x(t), on Fig. 6.9, we added typical x(n)-traces of
the above cases where 0≤n≤500 for α = 0.8, 1.8, 2.8, 3.2, and 3.6. Those traces are
produced using EXCEL’s Autofill function as shown in Fig. 6.10.

130 6 Chaos and Fractal

Sub LogiMap()
Cells(1,1)=”Bifurcation diagram with different initial values”
 Dim x(1001)
 Dim y(1001)
 x(0) = 0.1 ‘Initial value
 y(0) = 0.2 ‘Initial value
 k = 0 ‘Index to list x(1001) and y(1001)
 N = 1000 ‘1000 iterations
 For Alpha = 10 To 395 ‘Alpha-values
 Alpha = AA / 100
 For i = 0 To N
 x(i + 1) = Alpha * x(i) * (1 - x(i))
 y(i + 1) = Alpha * y(i) * (1 - y(i))
 Next i
 k = k + 1
 Cells(2 + k, 2) = Alpha
 Cells(2 + k, 3) = x(1001)
 Cells(2 + k, 4) = y(1001)
 Next Alpha
End Sub

Fig. 6.8 VBA code for generating x-vales at the 100th iteration with different initial values

0<α≤1
Monotonically
decreasing.

1<α≤2
Monotonically
increasing.

Stably damping.

Stably oscillates
between two
values. Periodically or

randomly
oscillates,
exhibiƟng
chaos.

2<α≤3

1+√6<α<4

3<α≤1+√6

Parameter α

Fig. 6.9 Bifurcation diagram of α-dependence of x(n = 1000)

In the VBA code of Fig. 6.8, there are two curves generated with different initial
values: x(0) = 0.1 and y(0) = 0.2. As shown in Fig. 6.11 below, both x(1000) and y(1000)
are the same if α≤3, independent of their initial conditions. On the other hand, they take

6.1 Chaos 131

=F1*B3*(1-B3)

=C3

Fig. 6.10 Iterative computation of x(n) using autofill

-0.2
0

0.2
0.4
0.6
0.8

1
1.2

0 1 2 3 4

x(
10

00
)

α

x(1000) with x(0)=0.1

-0.2
0

0.2
0.4
0.6
0.8

1
1.2

0 1 2 3 4

x(
10

00
)

α

y(1000)) with y(0)=0.2

Fig. 6.11 α-value dependence of x-values starting with different initial values

quite different values in the chaotic region of α > 3. When α > 1 + √
6, they oscillate

chaotically.

6.1.3 Nonlinear Pendulum

Non-linear oscillations exhibit interesting chaotic oscillatory phenomena in mechanics and
electronics. For example, when we add the external driving force and a damping term to a
single pendulum, its dynamics become very complicated. Let us investigate the pendulum
described by the following equation:

d2θ

dt2
= −g

�
sin θ − D

dθ

dt
+ FD sin(Dt) (6.9)

where g is the gravitational constant, � is the pendulum length, D is the damping factor,
and FD is the external driving force [4]. We apply the Runge–Kutter method to analyze
the dynamics. Figure 6.12 lists the VBA code.

As shown in Figs. 6.13 and 6.14, with different setting of the external force, FD, the
angular frequency, ω, dramatically varies as the angular displacement, θ, varies, and the

132 6 Chaos and Fractal

Sub NonlinearPendulum()
Cells(1,1)=”Nonlinear forced oscillation”
'd(2)tehta/dt(2)=-(g/lng)*sin (theta)-D*sin(theta)/dt+F*sin(Omega*t).
 g = 9.8 'Gravitational constant.
 Leng = 9.8 'String length.
 Damping = 0.5 'Damping factor =D.
 Force = 1.2 'External driving force = F.
 Omega = 2 / 3 'Frequency of external driving force.
 pi = 3.141592654 'Period = 2 * pi
'Initial time:
 t = 0
'Initial values of x:
 theta1 = 0.2
 theta2 = theta
'Initial value of angular frequency w=d(theta)dt:
 w = 0
'Time increment:
 h = 0.02
'Iteration n (n*h = range of x; 0 to 5 by step h=0.02):
 n = 5000
'Writing labels and initial value in cells:
'Labels:
 Cells(3, 1) = "Initial t"
 Cells(3, 2) = "Initial angle"
 Cells(3, 3) = "Initial angl.freq"
 Cells(3, 4) = "Delta t"
 Cells(3, 5) = "D"
 Cells(3, 6) = "Ext F"
 Cells(3, 7) = "Ext freq"
'Initial values and increment:
 Cells(4, 1) = t
 Cells(4, 2) = theta1
 Cells(4, 3) = w
 Cells(4, 4) = h
 Cells(4, 5) = Damping
 Cells(4, 6) = Force
 Cells(4, 7) = Omega
 Cells(6, 2) = "t"
 Cells(6, 3) = "theta"
 Cells(6, 4) = "w" 'Angular frequency.
 'Rung-Kutta parameters:
 For i = 0 To n
 Cells(i + 7, 2) = t
 Cells(i + 7, 3) = theta1
 Cells(i + 7, 5) = theta2
 Cells(i + 7, 4) = w
 k1 = d(t, theta, w)
 l1 = f(Damping, Force, Omega, t, theta, w)

 k2 = d(t + h / 2, theta + h * k1 / 2, w + h * l1 / 2)
 l2 = f(Damping, Force, Omega, t + h / 2, theta + h * k1 / 2, w + h * l1 / 2)

 k3 = d(t + h / 2, theta + h * k2 / 2, w + h * l2 / 2)
 l3 = f(Damping, Force, Omega, t + h / 2, theta + h * k2 / 2, w + h * l2 / 2)

 k4 = d(t + h, theta + h * k3, w + h * l3)
l4 = f(Damping, Force, Omega, t + h, theta + h * k3, w + h * l3)

 t = t + h
 theta1 = theta1 + h * (k1 + 2 * k2 + 2 * k3 + k4) / 6
 w = w + h * (l1 + 2 * l2 + 2 * l3 + l4) / 6

 If theta1 > pi Then theta2 = theta - 2 * pi 'Keep the theta value.
 If theta1 < -pi Then theta2 = theta + 2 * pi 'within the range -pi to +pi.
 Next i
End Sub
'--

Fig. 6.12 VBA code for nonlinear pendulum

6.1 Chaos 133

Function f(Damping, Force, Omega, t, theta, w)
 'f=dw/dt
 f = -Sin(theta) - Damping * w + Force * Sin(Omega * t)
End Function
'---
Function d(t, theta, w)
 'd=d(theta)/dt
 d = w
End Function

Fig. 6.12 (continued)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1.5 -1 -0.5 0 0.5 1 1.5

An
gu

la
r V

el
oc

ity
 (ω

)

Angle (θ)

Trajectory when FD=0.6

Fig. 6.13 Trajectory on the phase space when FD = 0.6

trajectories in the phase space are considerably different. When FD = 0.6, after the short
transient that depends on the initial condition, θ (0) and ω(0), the pendulum settles into a
stable periodic trajectory in phase space (ω vs θ), and the final trajectory is independent
of the initial condition.

When FD = 1.2, the trajectory in the phase space is random but deterministic. It is
very much in the region of chaos. The trajectory shown in Fig. 6.14 has multiple orbits
that are nearly closed but persists for only a few cycles or so, and then jumps to a different
region of the phase space. This chaotic behavior is also seen in Figs. 6.5, 6.6 and 6.7 of
the Lorentz attractor. The dynamic range of this chaotic trajectory is much wider than
that of the non-chaotic case, indicating that how the dynamic of chaos is wild.

134 6 Chaos and Fractal

-3

-2

-1

0

1

2

3

-15 -10 -5 0 5 10 15

An
gu

la
r V

el
oc

ity
 (ω

)

Angle (θ)

Trajectory when FD=01.2

Fig. 6.14 Trajectory on the phase space when FD = 01.2

6.1.4 Nonlinear Double Pendulum

A nonlinear double pendulum reveals much more complexity in its oscillation pattern.
Figure 6.15 shows the double pendulum used to demonstrate its dynamics.

The equations of motion can be obtained from the Lagrangian [5]. Referring to the
above figure, the coordinates of mass points m1 and m2 are

(x1, y1) = (�1singθ1, �1(1 − cos θ1)), and

(x2, y2) = (�1singθ1 + �2 sin θ2, �1(1 − cos θ1) + �2(1 − cos θ2)). (6.10)

The Lagrangian of the system is given by

L = 1

2
m1

(
ẋ21 + ẏ21

) + 1

2
m2

(
ẋ22 + ẏ22

) − (m1gy1 + m2gy2)

Fig. 6.15 Double pendulum

θ1

θ2

ℓ 1

ℓ 2

y

x

m1 (x1, y1)

m2 (x2, y2)

6.1 Chaos 135

= 1

2
m1�

2
1θ̇

2
1 + 1

2
m2

{
�21θ̇

2
1 + �22θ̇

2
2 + 2�1�2θ̇1θ̇2 cos(θ1 − θ2)

}

− (m1 + m2)�1g(1 − cos θ1) − m2�2g(1 − cos θ2). (6.11)

From Lagrange equations:

d

dt

[
∂L

∂θ̇1

]

− ∂L

∂θ1
= 0 and

d

dt

[
∂L

∂θ̇2

]

− ∂L

∂θ2
= 0, (6.12)

we obtain a set of coupled equations:
{

θ̈1 + M�21θ̈2 cos(θ1 − θ2) + M�21θ̇
2
2 sin(θ1 − θ2) + 	 sin θ1 = 0

θ̈2 + �21θ̈1 cos(θ1 − θ2) − �21θ̇
2
1 sin(θ1 − θ2) + 	

�21
sin θ2 = 0,

(6.13)

where M = m2
m1+m2

, �21 = �2
�1
, and 	 = g

�1
.

For computational purpose, we express Eqs. (6.13) in simple forms:
{

θ̈1 = α1θ̈2 + β1

θ̈2 = α2θ̈1 + β2
(6.14)

where
{

α1 = −M�21 cos(θ1 − θ2) and β1 = −M�21θ̇
2
2 sin(θ1 − θ2) − 	 sin θ1.

α2 = −�21 cos(θ1 − θ2) and β2 = �21θ̇
2
1 sin(θ1 − θ2) − 	

�21
sin θ2.

(6.15)

Separating θ̈1 and θ̈2 of Eqs. (6.14), we obtain
{

θ̈1 = α1β2+β1
1−α1α2

θ̈2 = α2β1+β2
1−α1α2

. (6.16)

Figure 6.16 lists the VBA code of the dynamics of the double pendulum of Eq. (6.16).
The double pendulum exhibits very complicated trajectories with variations of parameters
of the pendulum, including lengths, the mass ratio, and the initial conditions.

Figure 6.17 shows two trajectories of the upper and the lower masses with slightly
different initial conditions of the lower pendulum. The trajectory in black is for the upper
mass and the one in broken orange is for the lower mass. The parameter values are: �1

= 9.8, �2 = 0.98, M = 0.5, 	 = 1, θ1(0) = 0.95π, θ2(0) = 0.60π, and ω1(0) = 0.
The ω2(0)-values are shown in the Fig. 6.17. Both figures are drawn for the same time
interval, and we can see the trajectories with ω2(0) = 0.2 change very rapidly.

136 6 Chaos and Fractal

Sub DoublePendRK()
Cells(1,1)=”Chaos of the Nonlinear double pendulum using the Rung-Kutter method”
 lng1 = 9.8
 lng21 = 0.1
 lng2 = lng1 * lng21
 M = 0.5 'M=m2/(m1+m2)=0.5 when m1=m2.
 omega0 = 1 'omega1=g/lng1.
 h = 0.0066 'For increment in RK-method.
 cn = 1000 'Total # of steps of RK-method.
 n = 1 'Index for outputting all coordinates at every 20-steps.
 pi = 3.141592654
'Initial conditions:
 t = 0
 theta1 = pi * 0.95
 theta2 = pi * 0.7
 omega1 = 0
 omega2 = 0.25
 x1 = lng1 * Sin(theta1)
 y1 = lng1 * Cos(theta1)
 x2 = x1 + lng2 * Sin(theta2)
 y2 = y1 + lng2 * Cos(theta2)
 Cells(9, 1) = "Time": Cells(10, 1) = t
 Cells(9, 2) = "Theta1": Cells(10, 2) = theta1
 Cells(9, 3) = "Theta2": Cells(10, 3) = theta2
 Cells(9, 4) = "x1": Cells(9, 10) = "x1"
 Cells(9, 5) = "y1": Cells(9, 11) = "y1"
 Cells(9, 6) = "x2": Cells(9, 12) = "x2"
 Cells(9, 7) = "y2": Cells(9, 13) = "y2"
 Cells(9, 4) = "x1": Cells(10, 4) = x1: Cells(10, 10) = x1:
 Cells(9, 5) = "y1": Cells(10, 5) = -y1: Cells(10, 11) = -y1:
 Cells(9, 6) = "x2": Cells(10, 6) = x2: Cells(10, 12) = x2:
 Cells(9, 7) = "y2": Cells(10, 7) = -y2: Cells(10, 13) = -y2:
'g1=d(omega1)/dt=(A1B2+B1)/D
'g2=d(omega2)/dt=(A2B1+B2)/D
'D=1-A1A2
'f1=d(theta1)/dt = omega1
'f2=d(theta2)/dt = omega2
For i = 1 To cn
 L11 = g1(t, theta1, theta2, omega1, omega2, M, lng21, omega0)
 K11 = f1(t, theta1, theta2, omega1, omega2, M, lng21, omega0)

L21 = g2(t, theta1, theta2, omega1, omega2, M, lng21, omega0)
K21 = f2(t, theta1, theta2, omega1, omega2, M, lng21, omega0)

L12 = g1(t + h / 2, theta1 + h * L11 / 2, theta2 + h * L21 / 2, omega1 + h * K11 /
2, omega2 + h * K21 / 2, M, lng21, omega0)
K12 = f1(t + h / 2, theta1 + h * L11 / 2, theta2 + h * L21 / 2, omega1 + h * K11 /
2, omega2 + h * K21 / 2, M, lng21, omega0)

L22 = g2(t + h / 2, theta1 + h * L11 / 2, theta2 + h * L21 / 2, omega1 + h * K11 /
2, omega2 + h * K21 / 2, M, lng21, omega0)
K22 = f2(t + h / 2, theta1 + h * L11 / 2, theta2 + h * L21 / 2, omega1 + h * K11 /
2, omega2 + h * K21 / 2, M, lng21, omega0)

L13 = g1(t + h / 2, theta1 + h * L12 / 2, theta2 + h * L22 / 2, omega1 + h * K12 /
2, omega2 + h * K22 / 2, M, lng21, omega0)
K13 = f1(t + h / 2, theta1 + h * L12 / 2, theta2 + h * L22 / 2, omega1 + h * K12 /
2, omega2 + h * K22 / 2, M, lng21, omega0)

L23 = g2(t + h / 2, theta1 + h * L12 / 2, theta2 + h * L22 / 2, omega1 + h * K12 /
2, omega2 + h * K22 / 2, M, lng21, omega0)
K23 = f2(t + h / 2, theta1 + h * L12 / 2, theta2 + h * L22 / 2, omega1 + h * K12 /
2, omega2 + h * K22 / 2, M, lng21, omega0)

L14 = g1(t + h, theta1 + h * L13, theta2 + h * L23, omega1 + h * K13, omega2 + h *

Fig. 6.16 VBA code for dynamics of double pendulum

6.1 Chaos 137

K23, M, lng21, omega0)
K14 = f1(t + h, theta1 + h * L13, theta2 + h * L23, omega1 + h * K13, omega2 + h *
K23, M, lng21, omega0)

L24 = g2(t + h, theta1 + h * L13, theta2 + h * L23, omega1 + h * K13, omega2 + h *
K23, M, lng21, omega0)
K24 = f2(t + h, theta1 + h * L13, theta2 + h * L23, omega1 + h * K13, omega2 + h *
K23, M, lng21, omega0)

 t = t + h

 omega1 = omega1 + h * (K11 + 2 * K12 + 2 * K13 + K14) / 6
 omega2 = omega2 + h * (K21 + 2 * K22 + 2 * K23 + K24) / 6
 theta1 = theta1 + h * (L11 + 2 * L12 + 2 * L13 + L14) / 6
 theta2 = theta2 + h * (L21 + 2 * L22 + 2 * L23 + L24) / 6
 x1 = lng1 * Sin(theta1)
 y1 = lng1 * Cos(theta1)
 x2 = x1 + lng2 * Sin(theta2)
 y2 = y1 + lng2 * Cos(theta2)
 Cells(10 + i, 1) = t
 Cells(10 + i, 2) = theta1
 Cells(10 + i, 3) = theta2
 Cells(10 + i, 4) = x1
 Cells(10 + i, 5) = -y1
 Cells(10 + i, 6) = x2
 Cells(10 + i, 7) = -y2
 If i Mod 20 = 0 Then
 Cells(10 + n, 10) = x1
 Cells(10 + n, 11) = -y1
 Cells(10 + n, 12) = x2
 Cells(10 + n, 13) = -y2
 Else
 GoTo Skip
 End If
 n = n + 1
 Skip: Next i
End Sub
'---
Function A1(t, theta1, theta2, omega1, omega2, M, lng21, omega0)
 A1 = -M * lng21 * Cos(theta1 - theta2)
End Function
'---
Function A2(t, theta1, theta2, omega1, omega2, M, lng21, omega0)
 A2 = -lng21 * Cos(theta1 - theta2)
End Function
'---
Function B1(t, theta1, theta2, omega1, omega2, M, lng21, omega0)
 B1 = -M * lng21 * Sin(theta1 - theta2) * (omega2) ^ 2 - omega0 * Sin(theta1)
End Function
'---
Function B2(t, theta1, theta2, omega1, omega2, M, lng21, omega0)
 B2 = lng21 * Sin(theta1 - theta2) * (omega1) ^ 2 - omega0 * Sin(theta2) / lng21
End Function
'--
Function D(t, theta1, theta2, omega1, omega2, M, lng21, omega0)
D = 1 - A1(t, theta1, theta2, omega1, omega2, M, lng21, omega0)

End Function
'---
Function g1(t, theta1, theta2, omega1, omega2, M, lng21, omega0)
 'g1=d(omega1)/dt the second time derivative of theta1.
 g1 = (A1(t, theta1, theta2, omega1, omega2, M, lng21, omega0) * B2(t, theta1,
theta2, omega1, omega2, M, lng21, omega0) + B1(t, theta1, theta2, omega1, omega2, M,
lng21, omega0)) / D(t, theta1, theta2, omega1, omega2, M, lng21, omega0)
End Function
'---

Fig. 6.16 (continued)

138 6 Chaos and Fractal

Function g2(t, theta1, theta2, omega1, omega2, M, lng21, omega0)
 'g2=d(omega2)/dt= the second time derivative of theta2.
 g2 = (A2(t, theta1, theta2, omega1, omega2, M, lng21, omega0) * B1(t, theta1,
theta2, omega1, omega2, M, lng21, omega0) + B2(t, theta1, theta2, omega1, omega2, M,
lng21, omega0)) / D(t, theta1, theta2, omega1, omega2, M, lng21, omega0)
End Function
'---
Function f1(t, theta1, theta2, omega1, omega2, M, lng21, omega0)
 'f1=d(theta1)/dt
 f1 = omega1
End Function
'---
Function f2(t, theta1, theta2, omega1, omega2, M, lng21, omega0)
 'f2=d(theta2)/dt
 f2 = omega2
End Function

Fig. 6.16 (continued)

Near Chaos Chaos

-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15

y

x

Trajectories with ω2(0)=0.01

Lower Pendulum

-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15

y

x

Trajectories with ω2(0)=0.2

Lower PendulumUpper Pendulum

Upper Pendulum

Fig. 6.17 Chaotic behaviors of double pendulum

6.2 Fractal

In nature, we notice many geometrical shapes that form themselves by similar shapes
across different scales. For example, tree branches, leaf veins, lighting patterns, ria coast-
lines have such geometrical shapes. Mandelbrot proposed the concept of fractal to provide
a parameter that characterizes the geometrical complexity [6]. Recursion of self-similar
patterns is the prime characteristics of fractals. Fractals also bring interesting aspects in
physics. Random walks, the percolation problem, and the Ising model we discussed in
this book can be identified as fractals because their trajectories and patterns look alike the
same across different time scales.

6.2 Fractal 139

6.2.1 Triadic Koch Curve

Abstract fractals can be generated by a computer computing a simple equation repeatedly.
For example, Fig. 6.18 shows a popular self-similar fractal figure called a triadic Koch
curve [7]. It can be constructed in the following manner.

(1) The first stage of drawing the Koch curve starts with a straight line of length L as the
first-order curve.

(2) The second-order curve is derived from the first-order curve by replacing the straight
section with four segments of length L/3, oriented with respect to the first-order
section.

(3) The third-order curve is drawn from the second-order curve by replacing each of its
straight sections by four more segments with length L/32.

(4) The fourth and higher-order curves are drawn in a similar manner.

In short, at each stage, the displacement of the middle third of each segment is direction
that increases the area under the curve.

The Koch curve can be generated with a VBA code listed in Fig. 6.19. The code
generates x and y coordinates of the Koch curve up to the order 5. There are 4,097 data
points for the order of 5, and 16,385 points for the order of 6! The chart shown in Fig. 6.18
is generated in the [Scatter with Straight Line] format.

A fractal is a geometrical shape that displays a property of self-similarity, a geometric
shape that can be reduced to smaller parts, with each smaller part being a reduced copy
of the whole. This is clearly observed in the Koch Curve. Other than the overall size of

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Koch Curve

Fig. 6.18 Triadic Koch curve of orders 1 to 5

140 6 Chaos and Fractal

Sub Koch()
Cells(1, 1)=”Triadic Koch Curve”
 xi = 0 'Stating point (xi, yi).
 yi = 0
 xf = 1 'Ending point (xf, yf).
 yf = 0
 Order = 5 'Fractal order.
 pi=3.141592654
 Range("A:B").Clear
 Cells(1, 1) = "x"
 Cells(1, 2) = "y"
 Call Draw(xi, yi, xf, yf, Order) 'Call the fractals drawing.
'Acquire the row number of the ending point (xf, yf):
 lngRow = Cells(Rows.Count, 1).End(xlUp).Row + 1
'Writing the ending point (xf, yf):
 Cells(lngRow, 1) = xf
 Cells(lngRow, 2) = yf
End Sub
'--
Sub Draw(xi, yi, xf, yf, Order)
'Acquire the row number of the fractal points:
 lngRow = Cells(Rows.Count, 1).End(xlUp).Row + 1
 dx = (xf - xi) / 3
 dy = (yf - yi) / 3
 x1 = xi + dx
 y1 = yi + dy
 x2 = xf - dx
 y2 = yf - dy
' Rotate line segment(dx, dy) by 60 degrees and add to (x1, y1):
 xmid = 0.5 * dx - Sin(pi / 3) * dy + x1
 ymid = Sin(pi / 3) * dx + 0.5 * dy + y1
 If Order > 0 Then 'Lower the Order by 1.
 Call Draw(xi, yi, x1, y1, Order - 1)
 Call Draw(x1, y1, xmid, ymid, Order - 1)
 Call Draw(xmid, ymid, x2, y2, Order - 1)
 Call Draw(x2, y2, xf, yf, Order - 1)
 Else
 Cells(lngRow, 1) = xi
 Cells(lngRow, 2) = yi
 Cells(lngRow + 1, 1) = x1
 Cells(lngRow + 1, 2) = y1
 Cells(lngRow + 2, 1) = xmid
 Cells(lngRow + 2, 2) = ymid
 Cells(lngRow + 3, 1) = x2
 Cells(lngRow + 3, 2) = y2
 End If
End Sub

Fig. 6.19 VBA code of Koch curve generating up to order 5

the figure, fractals have no characteristic lengths unlike a simple geometrical shape such
as a triangle, a square, and a cube. How can we sort out this kind of infinitely recurring
geometries?

The distinct characterization of fractals is its dimension. There are several specific
definitions of fractal dimensions. In this book, we use the fractal dimension proposed by
Felix Hausdorff [8]. His fractal dimension is a statistical quantity that characterizes how
a fractal appears to fill space. For instance, the Hausdorff dimension of a single point is
zero, of a line segment (L) is 1, of a square (A) is 2, and of a cube (V) is 3.

For the Koch curve, its dimension would be between 1 and 2 because the curve is not
a simple line in the two-dimensional plane but not entirely occupy on the plane even if

6.2 Fractal 141

the order of the curve keeps increasing indefinitely. Therefore, the fractal dimension of
the Koch curve should be less than 2 but larger than 1. How can we obtain the formula
to calculate the fractal dimension? The key is the length scaling.

6.2.2 Sierpinski Triangle

Another example of a fractal is Sierpinski triangle [9]. Figure 6.20 shows a Sierpinski
triangle of order 7 where the scale of the spreadsheet display is reduce to 26%. The
geometry looks like a two-dimensional mosaic of equilateral triangles, which starts with
one large equilateral triangle, subdivided recursively into smaller (self-similar) equilateral
triangles. Figure 6.21 is the VBA code to generate the Sierpinski tringle.

Fig. 6.20 Sierpinski triangle of order 1 to 7

142 6 Chaos and Fractal

Sub S_Triangle
Cells(2, 2) = "Sierpinski Triangle"
 x1 = 40: y1 = 40 'Staring position
 size = 1000 'Size of the largest triangle.
 n = 7 'Order of recursion.
 Call drawSierpinski(x1, y1, size, n)
End Sub
'---
Sub drawSierpinski(x1, y1, size, n)
 Pi = 3.141592654
 x2 = x1 + size
 x3 = x1 + size / 2
 y2 = y1
 y3 = y1 + size * Sin(Pi / 3)
 If n > 0 Then
 Call drawSierpinski(x1, y1, size / 2, n - 1)
 Call drawSierpinski(x3, y3, size / 2, n - 1)
 Call drawSierpinski(x2, y2, size / 2, n - 1)
 Else
 Call drawTriangle(x1, y1, x2, y2, x3, y3)
 End If
End Sub
'--
Sub drawTriangle(x1, y1, x2, y2, x3, y3)
'Connect 3 points with lines to form a triangle. Lines are black.
 ActiveSheet.Shapes.AddLine(x1, y1, x2, y2).Line.ForeColor.RGB = RGB(0, 0, 0)
 ActiveSheet.Shapes.AddLine(x2, y2, x3, y3).Line.ForeColor.RGB = RGB(0, 0, 0)
 ActiveSheet.Shapes.AddLine(x3, y3, x1, y1).Line.ForeColor.RGB = RGB(0, 0, 0)
End Sub

Fig. 6.21 VBA code of Sierpinski triangle of order 7

6.2.3 Determination of Fractal Dimensions

Suppose we measure the line segment L with a ruler of unit length 1. Next, use another
ruler of unit length ε to measure the same line segment. Suppose the length is L’ using
the ruler of the unit length ε, we have a scale conversion given by L→L’ = L/ ε. The
scale conversion from 1 to ε have the following relationships for line (1-dimension), area
(2-dimension), volume (3-dimension), and general geometry (d-dimension) as shown in
Table 6.1.

From the d-dimensional geometry, we obtain
(1

ε

)d = V ′
d

Vd
. Thus, the dimension d can

be calculated by

Table 6.1 Scale conversions
Dimension Scale conversion

1 L→ε−1L = L’

2 A→ε−2A = A’

3 V →ε−3 V = V’

d Vd→ε−dVd = Vd’

6.2 Fractal 143

d = log
(
V ′
d/Vd

)

log(1/ε)
. (6.17)

We call the dimension d of Eq. (6.17) the fractal dimension. The fractal dimension of
Koch curve can be calculated in the following way:

(1) Take the line segment of the second-order as the length unit 1;
(2) Then, the total length of the Koch curve of order 2 is L = 42;
(3) If we scale the length unit to ε = 1/3, it means that we measure the total length with

the unit of the line segment of the third order;
(4) If the length of our measuring unit is reduced by a factor of 3, the number of segments

is increased by a factor of 4, i.e., L’ = 43; and
(5) d = log(L ′/L)

log(1/ε) = log 4
log 3 = 1.26 . . .

As Fig. 6.20 shows, the Sierpinski triangle [9] is closer to two-dimensional geometry.
However, the triangle does not fill the two-dimensional space. Therefore, its fractal dimen-
sion must be larger than that of 1 and smaller than 2. In addition, its fractal dimension
is larger than that of the Koch curve. A recent article observes a fractal dimension in a
resistance network which forms a Sierpinski triangle [10]. It is not a computer simulation
but determines that the fractal dimension of the Sierpinski triangle is 1.585.

Figure 6.22 shows a pattern of the two-dimensional random walk that leads Eq. (2.8),
taking 100,000 step width of±1 using the VBA code listed Appendix A2.1. The onset
pattern is for the step width of±0.01. Observe that they are self-similar, and the patterns
will eventually fill the two-dimensional plane. Therefore, the random walk has the fractal
dimension 2 according to Hausdorff.

In the patterns of the percolation shown in Fig. 2.21, there are connected regions
of various sizes near the critical concentration just below pc = 0.5928. A large-scale
computation shows that, at pc = 0.5928, there are large clusters that establish percolation.
These clusters are called percolation clusters. The percolation clusters are self-similar,
and the fractal dimension is 1.89 for a two-dimensional space [11].

As shown in Fig. 5.13, the spin patterns of the two-dimensional Ising model near the
phase transition have many of similar shapes. The two-dimensional Ising model has mul-
tiple spin-up regions just before appearing the spontaneous magnetization at the critical
temperature. These “islands” are self-similar, and at the critical point, they are connected
at once to cause the critical phenomena. The foundation of the scaling theory of the critical
phenomena is the self-similarity of fractals. The detailed description of critical phenomena
is beyond our scope and the interested readers should refer to reference herein [12, 13].

144 6 Chaos and Fractal

-200

-150

-100

-50

0

50

100

150

200

250

300

-100 0 100 200 300 400 500 600

y

x

Two-dimensional random walk on a square laƫce

Fig. 6.22 Two-dimensional random walk of 100,000 steps

6.2.4 Note on Chaos and Fractal

Depending on the initial conditions of the recursion procedure, fractal patterns will be
significantly changed. In this sense, fractals can be regarded as a chaotic system. Referring
Figs. 6.5, 6.6 and 6.7, we observe that trajectories are consistent in similar patters with
different sizes. We might point out that the chaos that have self-similar pattern are also
fractals, although there are many systems that are chaotic but not fractals. It seems we
have not seen strong enough evidence that fractals and chaos are a single entity looking
from different sides.

6.2.5 Mandelbrot Figure

Last, but not least, Fig. 6.23 is an example of the Mandelbrot figure. The figure is gener-
ated by the VBA code listed in Fig. 6.24. To display the whole figure without changing
the cell size in advance, the screen display is reduced to 10%, and the horizontal scale
of the image is also readjusted so that each cell becomes a square. It is amazing that the
complex geometry of the Mandelbrot can be generated with a small set of recursions.

6.2 Fractal 145

Fig. 6.23 Mandelbrot figure

Sub Mandelbrot1()
Cells(1,1)=”Mandelbrot figure”
Dim x, y, px, py As Double
Dim BL As Boolean
 For ia = 0 To 200
 For ib = 0 To 200
 x = 0
 y = 0
 BL = True
 For ic = 0 To 200
 px = x
 py = y
 x = px ^ 2 - py ^ 2 + ia / 50 - 2
 y = 2 * px * py + ib / 50 - 2
 If x ^ 2 + y ^ 2 > 4 Then
 Cells(ib + 1, ia + 1).Interior.Color = (1 - (1 - ic / 100) ^ 9) * 255
 BL = False
 Exit For
 End If
 Next ic
 If BL Then Cells(ib + 1, ia + 1).Interior.Color = 0
 Next ib
 Next ia
End Sub

Fig. 6.24 VBA code of generating the Mandelbrot figure

There is a wonderful gallery of Mandelbrot gallery [14]. Create and watch these images.
It’s fun!

146 6 Chaos and Fractal

References

1. Sprott JC (2009) Simplifications of the Lorentz Attractor. Nonlinear Dyn, Psychol, Life Sci
13(3):271–278. https://sprott.physics.wisc.edu/pubs/paper327.pdf

2. Logistic Map—College of art and science. Drexel University. http://einstein.drexel.edu/~bob/
PHYS750_NLD/ch2.pdf

3. Liengme BV (2016) EXCEL® VBA for physicist. A Primer IOP Concise Physics. Morgan &
Claypool, San Rafael, CA

4. Giordano NJ (1977) Computational physics. Prentice Hall, Upper Saddie River, NJ
5. Landau LD, Lifshitz EM (1976) Mechanics. Elsevier, Amsterdam, Netherland
6. Fractal Foundation, What are fractals? https://fractalfoundation.org/resources/what-are-fractals/
7. Riddle LK (2022) Classic iterated function systems. https://larryriddle.agnesscott.org/ifs/ifs.htm
8. Wolfman MathWorld (2023) Hausdorff dimension. https://mathworld.wolfram.com/Hausdorff

Dimension.html
9. The Sierpinski Triangle—Fractals—Mathigon. https://mathigon.org/course/fractals/sierpinski
10. Creffield C (2022) Fractals on a benchtop: observing fractal dimension in a resistor network.

Phys Teacher 60
11. Voss RF (1984) The fractal dimension of percolation cluster hulls. J Phys A: Math Gen 17:L373.

https://iopscience.iop.org/article/10.1088/0305-4470/17/7/001/pdf
12. Ma S-K (1976) Modern theory of critical phenomena. Taylor & Francis, London, UK
13. Cambier JL, Nauenberg M (1986) Distribution of fractal clusters and scaling in the Ising model.

Phys Rev B 34:8071. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.34.8071
14. Mandelbrot Gallery—Pretty math pictures. https://prettymathpics.com/mandelbrot-gallery/

https://sprott.physics.wisc.edu/pubs/paper327.pdf
http://einstein.drexel.edu/~bob/PHYS750_NLD/ch2.pdf
https://fractalfoundation.org/resources/what-are-fractals/
https://larryriddle.agnesscott.org/ifs/ifs.htm
https://mathworld.wolfram.com/HausdorffDimension.html
https://mathigon.org/course/fractals/sierpinski
https://iopscience.iop.org/article/10.1088/0305-4470/17/7/001/pdf
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.34.8071
https://prettymathpics.com/mandelbrot-gallery/

Appendix

A1 EXCEL Options

The following description is for Microsoft® OFFICE 2019 / 365 but should be the same
for other (and legacy) Windows-based MS OFFICES.

A1.1 Enabling VBA Macro

EXCEL macro is a Visual Basic (VB) programing environment. Appendix A2 lists addi-
tional VBA codes created for this book. Those who are interested in EXCEL macros,
refer to IOP Concise Series [1, 2].

Take the following steps to enable EXCEL’s macro capability:

(1) Go to [Trust Center].
(2) From [Option], go to [Trust Center], and click on [Trust Center

Settings…] of [Excel Options] in [Microsoft Excel Trust Center]
(Fig. A.1).

(3) Select [Macro Settings] and check [Enable all macro (not
recommended; potentially dangerous code can run)] in order
to use this capability. Click [OK] to complete the setting (Fig. A.2).

(4) In the menu, click on [View] and click on [Macros] to select [View Macros] and
create a macro program (Fig. A.3).

(5) After entering a macro name, we can create its source code using a built-in editor
(Fig. A.4).

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
S. Cho, Monte Carlo Simulations Using Microsoft EXCEL®,
Synthesis Lectures on Mathematics & Statistics,
https://doi.org/10.1007/978-3-031-33886-1

147

https://doi.org/10.1007/978-3-031-33886-1

148 Appendix

Fig.A.1 EXCEL options for enabling macro

Fig.A.2 Macro settings

NOTE: When you save the EXCEL file with a VBA code, be sure to select
“Excel-Macro Enabled Workbook (*.xlsm)” from the “Save as type:”
box below the “File name:” box otherwise the VBA code cannot be re-used.

Appendix 149

Fig.A.3 Macro entry

Fig.A.4 Macro editor

A1.2 Adding “Data Analysis”

For analyzing data output from simulation programs, we often need to compute the prob-
ability. EXCEL can make a tally easily by using the [Histogram] option in the [Data
Analysis Tools]. Unfortunately, the option is not in the default setting and must be
added. Here is how to do it.

From the [File] menu, select [options] to display the “EXCEL Options” screen.
Click on [Add-ins] to display the following screen (Fig. A.5).

150 Appendix

Fig.A.5 EXCEL options screen

Next, click on [Go] to display available add-ins, and then check [Analysis
ToolPak], [Analysis ToolPak - VBA], and [Solver Add-in] (Fig. A.6).

A2.3 Autofill

Autofill is a very useful EXCEL tool that is frequently used for scientific calculations,
we often use it to add sequential numbers and supplemental calculations. Here is a simple
example that enters integer 0, 1, 2, 3, …. in Column A.

(1) Input 0 in Cell A1.
(2) Enter = A1 + 1 in Cell A2 and press <Enter>. The value of Cell A2

becomes 1.
(3) Place the cursor in Cell A2 and hit<Enter>. The cell is emphasized.

Appendix 151

Fig.A.6 Available add-ins

(4) Click on the fill handle (a small solid square at the lower right corner). The cursor
becomes a plus sign (+). While pressing the right mouse button, drag the cursor to
the cells below in Column A until reaching the desired integer value (Fig. A.7).

Fig.A.7 Autofill

152 Appendix

A2 VBA Codes

This is a collection of VBA codes that not referred to.

A2.1 Two-Dimensional Random Walk on a Square Lattice

A single walker of 100,000 steps. The code outputs the coordinate (x, y) at each step. We
used [Scatter with Straight Line] to draw the chart shown Fig. 6.20.

Sub RandomWalk()
Cells(1, 1) = "Trace of two-dimensional random walk"
 Step = 1: Cells(2, 1) = "Step=": Cells(2, 2) = Step
 Nsteps = 100000: Cells(3, 1) = "Nsteps=": Cells(3, 2) = Nsteps 'Number of total steps.
'Initial position:
 x = 0
 y = 0
'Writing (x,y) of a single walker:
 Cells(1, 6) = "Steps"
 Cells(1, 7) = "x"
 Cells(1, 8) = "y"
For j = 1 To Nsteps
 Cells(1 + j, 6) = j
 Next j
Randomize
'Start at the origin:
 Cells(2, 6) = 0 'Step number.
 Cells(2, 7) = 0 'x-coordinate.
 Cells(2, 8) = 0 'y-coordinate.
 For j = 1 To Nsteps
 Cells(4, 1) = "Current step": Cells(4, 3) = j
 If Rnd() < 0.5 Then
 x = x + 1
 Else
 x = x - 1
 End If
 If Rnd() < 0.5 Then
 y = y + 1
 Else
 y = y - 1
 End If
 Cells(2 + j, 7) = x
 Cells(2 + j, 8) = y
 Next j
End Sub

A2.2 Ground State of Three-Dimensional Harmonic Oscillator by QDMC
Method

The initial placements of 5,000 walkers are within −4≤x, y, z≤ + 4. Each walker
has 100,000 steps. The positions of each walker at 100,000 steps are analyzed using
[Histogram].

Appendix 153

Sub Quamtum2()
Cells(1, 1) = "3D Harmonic oscillator by Quantum Diffusion"
'V (i)= 0.5*(x(i)^2 + y(i)^2 + z(i)^2)
Dim x(40000) As Double
Dim y(40000) As Double
Dim z(40000) As Double
 N0 = 5000 'Preset number of walkers.
 ds = 0.1 'Step length.
 dtau = ds * ds 'Imaginary time step.
 mcs = 100000 '# of Monte Carlo steps per walker.
 N = N0 'Initial number of walkers equal to desired number.
 R = 1
 w = 4 * R 'Initial width of region for walkers.
 Vref = 0 'Reference potential.
'Display initial values:
 Cells(1, 2) = "Preset number of walkers"
 Cells(1, 5) = N0
 Cells(2, 2) = "Step length"
 Cells(2, 5) = ds
 Cells(3, 2) = "Number of Monte Carlo steps per walker"
 Cells(3, 5) = mcs
 Randomize
 For i = 1 To N 'Define initial positions of walkers.
 x(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w.
 y(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w.
 z(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w.
 Vref = Verf + 0.5 * (x(i) ^ 2 + y(i) ^ 2 + z(i) ^ 2)
 Next i
 Vref = Vref / N
 Esum = 0
 Cells(5, 2) = "MC steps"
 Cells(9, 1) = "MC steps"
 Cells(5, 3) = "N"
 Cells(5, 4) = "Energy"
 Cells(9, 2) = "Energy"
 Cells(5, 5) = "Vref"
List = 0 'For writing MC steps and energy.
For imcs = 1 To mcs
'Calculate V-Vref and generate random number in the unit interval.
'Add/remove walkers.
'Walk sub procedure:
 GoSub QDiff3:
 Vave = Vsum / N 'Mean potential.
 Vref = Vave - (N - N0) / (N0 * dtau) 'New reference energy.
'Data accumulation:
 Esum = Esum + Vave
 If (imcs Mod 1000) = 0 Then
 Cells(6, 2) = imcs
 Cells(6, 3) = N
 Energy = Esum / imcs
 Cells(6, 4) = Energy
 Cells(10 + List, 1) = imcs
 Cells(10 + List, 2) = Energy
 List = List + 1
 Cells(6, 5) = Vref + ER
 End If
Next imcs
'Output for histogram:
 Cells(9, 4) = "Bin"

A2.3 Ground State of Hydrogen Atom by QDMC Method

The initial placements of 9,000 walkers are within −6a0 ≤x, y, z≤ + 6a0 where a0
is the Bohr radius. Each walker has 4,000,000 steps. The positions of each walker
at 4,000,000 steps are analyzed using [Histogram] and [Scatter] to draw the
normalized distributions of walkers shown in Fig. 4.9.

154 Appendix

Sub Hatom()
Cells(1, 1) = "Hydrogen atom by Quantum Diffusion"
'V (i)= -1/r
Dim x(10000) As Double
Dim y(10000) As Double
Dim z(10000) As Double
Dim r(10000) As Double
 N0 = 9000 'Desired number of walkers.
 ds = 0.1 'Step length.
 dtau = ds * ds 'Imaginary time step.
 mcs = 4000000 '# of Monte Carlo steps per walker.
 N = N0 'Initial number of walkers equal to desired number.
 Bohr = 1.398 'Bohr radius.
 w = 6 * Bohr 'Initial width of region for walkers.
 Vref = 0 'Reference potential.
'Display initial values:
 Cells(2, 2) = "Preset number of walkers" : Cells(2, 5) = N0
 Cells(3, 2) = "Step length" : Cells(3, 5) = ds
 Cells(4, 2) = "Number of Monte Carlo steps per walker" : Cells(4, 5) = mcs
Randomize
 For i = 1 To N 'Define initial positions of walkers.
 x(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w.
 y(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w.
 z(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w.
 Vref = Vref - 1 / Sqr(x(i) ^ 2 + y(i) ^ 2 + z(i) ^ 2)
 Next i
 Vref=Vref/N
 Esum = 0
 Cells(5, 2) = "MC steps"
 Cells(9, 1) = "MC steps"
 Cells(9, 2) = "Energy"
 Cells(5, 3) = "N"
 Cells(5, 4) = "E"
 Cells(5, 5) = "Vref"
List = 1 'Index for listing energy at every 1000 steps.
For imcs = 1 To mcs
'Calculate V-Vref and generate random number in the unit interval
'Add/remove walkers
'Walk sub procedure
 GoSub Hatom:
 Vave = Vsum / N 'Mean potential.
 Vref = Vave - (N - N0) / (N0 * dtau) 'New reference energy.
'Data accumulation
 Esum = Esum + Vave
 For i = 1 To N
 r(i) = Sqr(x(i) ^ 2 + y(i) ^ 2 + z(i) ^ 2)
 Next i
 If (imcs Mod 1000) = 0 Then
 Cells(6, 2) = imcs
 Cells(6, 3) = N
 Energy = Esum / imcs
 Cells(6, 4) = Energy
 Cells(9 + List, 1) = imcs
 Cells(9 + List, 2) = Energy
 Cells(6, 5) = Vref
 List = List + 1
 End If
Next imcs
'Create the radial coordinate
 For ibin = 1 To 500
 Cells(10 + ibin, 4) = ibin / 10
 Next ibin
'Output for histogram
 Cells(9, 4) = "Bin"
 Cells(9, 5) = "Walker #"
 Cells(9, 6) = "r(i)"
 For kk = 1 To N
 Cells(9 + kk, 5) = kk
 Cells(9 + kk, 6) = r(kk)
 Next kk
Exit Sub
'---
Hatom:
 Ninit = N '# of walkers at beginning of trial.
 Vsum = 0
 For j = Ninit To 1 Step -1
 If Rnd() < 0.5 Then
 x(j) = x(j) + ds
 Else
 x(j) = x(j) - ds
 End If
 If Rnd() < 0.5 Then
 y(j) = y(j) + ds
 Else
 y(j) = y(j) - ds
 End If
 If Rnd() < 0.5 Then
 z(j) = z(j) + ds

Appendix 155

 Else
 z(j) = z(j) - ds
 End If
 Potential = -1 / Sqr(x(j) ^ 2 + y(j) ^ 2 + z(j) ^ 2)
 dV = Potential - Vref
 If dV < 0 Then
 If Rnd() < -dV * dtau Then 'Check to add walker.
 N = N + 1 'Add another walker.
 x(N) = x(j) 'New walker (x).
 y(N) = y(j) 'New walker (y).
 z(N) = z(j) 'New walker (z).
 Vsum = Vsum + 2 * Potential 'Factor of 2 since two walkers at r(i).
 Else
 Vsum = Vsum + Potential 'Only do old walker.
 End If
 Else
 If Rnd() < dV * dtau Then 'Check to remove walker.
 x(j) = x(N)
 y(j) = y(N)
 z(j) = z(N)
 N = N - 1 'Remove walker.
 Vsum = Vsum - Potential
 Else 'Keep the walker.
 Vsum = Vsum + Potential
 End If
 End If
 Next j
Return
'---
End Sub

A2.4 Ground State of Helium Atom by QDMC Method

The initial placements of 8,000 walkers are within −20a0 ≤x1,2, y1,2, z1,2 ≤ + 20a0 where
a0 is the Bohr radius. Each walker has 1,000,000 steps.

Sub Helium()
Cells(1, 1) = "Helium atom by Quantum Diffusion"
'V (i)= -2/r1-2/r2+1/r12
Dim x1(10000) As Double
Dim y1(10000) As Double
Dim z1(10000) As Double
Dim x2(10000) As Double
Dim y2(10000) As Double
Dim z2(10000) As Double
 N0 = 8000 'Preset number of walkers.
 ds = 0.1 'Step length.
 dtau = ds * ds 'Imaginary time step.
 mcs = 1000000 '# Monte Carlo steps per walker.
 N = N0 'Initial number of walkers equal to desired number.
 R = 1.398 'Bohr radius in a.u.
 w = 20 * R 'Initial width of region for walkers.
 Vref = 0 'Reference potential.
'Display initial values:
 Cells(2, 2) = "Desired number of walkers": Cells(2, 5) = N0
 Cells(3, 2) = "Step width": Cells(3, 5) = ds
 Cells(4, 2) = "Number of Monte Carlo steps per walker": Cells(4, 5) = mcs
Randomize
 For i = 1 To N 'Define initial positions of walkers.
 x1(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w.
 y1(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w.
 z1(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w.
 x2(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w.
 y2(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w.
 z2(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w.
Vref = Vref - 2 / Sqr(x1(i) ^ 2 + y1(i) ^ 2 + z1(i) ^ 2) - 2 / Sqr(x2(i) ^ 2 + y2(i) ^ 2 +
z2(i) ^ 2) + 1 / Sqr((x2(i) - x1(i)) ^ 2 + (y2(i) - y1(i)) ^ 2 + (z2(i) - z1(i)) ^ 2)
 Next i
 Vref = Vref / N
 Esum = 0
 Cells(5, 2) = "MC steps"
 Cells(9, 1) = "MC steps"
 Cells(9, 2) = "Energy"
 Cells(5, 3) = "N"
 Cells(5, 4) = "E"
 Cells(5, 5) = "Vref"

156 Appendix

List = 1 'Index for listing energy at every 1000 steps.
For imcs = 1 To mcs
'Calculate V-Vref and generate random number in the unit interval
'Add/remove walkers
'Walk sub procedure
 GoSub He:
 Vave = Vsum / N 'Mean potential.
 Vref = Vave - (N - N0) / (N0 * dtau) 'New reference energy.
'Data accumulation:
 Esum = Esum + Vave
 If (imcs Mod 1000) = 0 Then
 Cells(6, 2) = imcs
 Cells(6, 3) = N
 Energy = Esum / imcs
 Cells(6, 4) = Energy
 Cells(6, 5) = Vref
 Cells(9 + List, 1) = imcs
 Cells(9 + List, 2) = Energy
 List = List + 1
 End If
Next imcs
‘Output coordinates:
 Cells(9, 5) = "x1"
 Cells(9, 6) = "y1"
 Cells(9, 7) = "z1"
 Cells(9, 9) = "x2"
 Cells(9, 10) = "y2"
 Cells(9, 11) = "z2"
 For kk = 1 To N
 Cells(9 + kk, 5) = x1(kk)
 Cells(9 + kk, 6) = y1(kk)
 Cells(9 + kk, 7) = z1(kk)
 Cells(9 + kk, 9) = x2(kk)
 Cells(9 + kk, 10) = y2(kk)
 Cells(9 + kk, 11) = z2(kk)
 Next kk
Exit Sub
'---
He:
Ninit = N '# of walkers at beginning of trial.
Vsum = 0
 For j = Ninit To 1 Step -1
 If Rnd() < 0.5 Then
 x1(j) = x1(j) + ds
 Else
 x1(j) = x1(j) - ds
 End If
 If Rnd() < 0.5 Then
 y1(j) = y1(j) + ds
 Else
 y1(j) = y1(j) - ds
 End If
 If Rnd() < 0.5 Then
 z1(j) = z1(j) + ds
 Else
 z1(j) = z1(j) - ds
 End If
 If Rnd() < 0.5 Then
 x2(j) = x2(j) + ds
 Else
 x2(j) = x2(j) - ds
 End If
 If Rnd() < 0.5 Then
 y2(j) = y2(j) + ds
 Else
 y2(j) = y2(j) - ds
 End If
 If Rnd() < 0.5 Then
 z2(j) = z2(j) + ds
 Else
 z2(j) = z2(j) - ds
 End If
 Potential = -2 / Sqr(x1(j) ^ 2 + y1(j) ^ 2 + z1(j) ^ 2) - 2 / Sqr(x2(j) ^ 2 + y2(j) ^ 2 +
z2(j) ^ 2) + 1 / Sqr((x2(j) - x1(j)) ^ 2 + (y2(j) - y1(j)) ^ 2 + (z2(j) - z1(j)) ^ 2)
 dV = Potential - Vref
 If dV < 0 Then
 If Rnd() < -dV * dtau Then 'Check to add walker.
 N = N + 1 'Add another walker.
 x1(N) = x1(j) 'New walker (x1).

Appendix 157

 y1(N) = y1(j) 'New walker (y1).
 z1(N) = z1(j) 'New walker (z1).
 x2(N) = x2(j) 'New walker (x2).
 y2(N) = y2(j) 'New walker (y2).
 z2(N) = z2(j) 'New walker (z2).
 Vsum = Vsum + 2 * Potential 'Factor of 2 since two walkers at r(i).
 Else
 Vsum = Vsum + Potential 'Only do old walker.
 End If
 Else
 If Rnd() < dV * dtau Then 'Check to remove walker.
 x1(j) = x1(N)
 y1(j) = y1(N)
 z1(j) = z1(N)
 x2(j) = x2(N)
 y2(j) = y2(N)
 z2(j) = z2(N)
 N = N - 1 'Remove walker.
 Vsum = Vsum - Potential
 Else
 Vsum = Vsum + Potential
 End If
 End If
 Next j
Return
'---
End Sub

A2.5 Ground State of Hydrogen Molecule by QDMC Method

The VBA code is similar to that of He-atom. The initial placements of 8,000 walkers are
within −4R≤x1,2, y1,2, z1,2 ≤ + 4R where R is the average inter-proton distance. Each
walker has 1,0000,000 steps. The inter-proton energy, ER, must be added to the potential
energy. In this code, ER = 1/R.

Sub Hmolecule()
Cells(1, 1) = "Hydrogen molecule by Quantum diffusion Monte Carlo method"
'V (i)= -1/SQRT(r1-R/2)-1/SQRT(r1+R/2)-1/SQRT(r2-R/2)-1/SQRT(r2+R/2)+1/SQRT(r12).
'R = dimensionless inter-proton distance (1.398).
Dim x1(10000) As Double
Dim y1(10000) As Double
Dim z1(10000) As Double
Dim x2(10000) As Double
Dim y2(10000) As Double
Dim z2(10000) As Double
 N0 = 8000 'Initial total number of walkers.
 ds = 0.1 'Step width.
 dtau = ds * ds 'Imaginary Time step.
 mcs = 1000000 '# of Monte Carlo steps per walker.
 N = N0 'Initial number of walkers equal to desired number.
 R = 1.9783 'Average distance between two protons in a.u.
 ER = 1 / R 'Proton-proton potential energy.
 w = 4 * R 'Initial width of region for walkers.
 Vref = 0
'Display initial values:
 Cells(2, 2) = "Initial number of walkers" : Cells(2, 5) = N0
 Cells(3, 2) = "Step width" : Cells(3, 5) = ds
 Cells(4, 2) = "Number of Monte Carlo steps per walker" : Cells(4, 5) = mcs

Randomize
 For i = 1 To N 'Define initial positions of walkers.
 x1(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w.
 y1(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w.
 z1(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w.
 x2(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w.
 y2(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w
 z2(i) = (2 * Rnd() - 1) * w 'Walkers are randomly distributed within a distance w.
Vref = Vref - 1 / Sqr((x1(i) - R / 2) ^ 2 + y1(i) ^ 2 + z1(i) ^ 2) - 1 / Sqr((x1(i) + R / 2) ^
2 + y1(i) ^ 2 + z1(i) ^ 2) - 1 / Sqr((x2(i) - R / 2) ^ 2 + y2(i) ^ 2 + z2(i) ^ 2) - 1 /
Sqr((x2(i) + R / 2) ^ 2 + y2(i) ^ 2 + z2(i) ^ 2) + 1 / Sqr((x2(i) - x1(i)) ^ 2 + (y2(i) -
y1(i)) ^ 2 + (z2(i) - z1(i)) ^ 2)
 Next i
 Vref = Vref / N
 Esum = 0
 Cells(5, 2) = "MC steps"
 Cells(9, 1) = "MC steps"

158 Appendix

 Cells(5, 3) = "N"
 Cells(5, 4) = "E"
 Cells(9, 2) = "Energy"
 Cells(5, 5) = "Vref"
List = 1 'For listing energy at every 1000 steps.
For imcs = 1 To mcs
'Calculate V-Vref and generate random number in the unit interval.
'Add/remove walkers.
'Walk sub procedure:
 GoSub H2:
 Vave = Vsum / N 'Mean potential.
 Vref = Vave - (N - N0) / (N0 * dtau) 'New reference energy.
'Data accumulation:
 Esum = Esum + Vave
 If (imcs Mod 1000) = 0 Then
 Cells(6, 2) = imcs
 Cells(6, 3) = N
 Energy = Esum / imcs
 Cells(6, 4) = Energy
 Cells(9 + List, 1) = imcs
 Cells(9 + List, 2) = Energy
 Cells(6, 5) = Vref
 List = List + 1
 End If
Next imcs
'Output coordinates:
 Cells(9, 5) = "x1"
 Cells(9, 6) = "y1"
 Cells(9, 7) = "z1"
 Cells(9, 9) = "x2"
 Cells(9, 10) = "y2"
 Cells(9, 11) = "z2"
 For kk = 1 To N
 Cells(9 + kk, 5) = x1(kk)
 Cells(9 + kk, 6) = y1(kk)
 Cells(9 + kk, 7) = z1(kk)
 Cells(9 + kk, 9) = x2(kk)
 Cells(9 + kk, 10) = y2(kk)
 Cells(9 + kk, 11) = z2(kk)
 Next kk
Exit Sub
'--
H2:
Ninit = N '# of walkers at beginning of trial.
Vsum = 0
 For j = Ninit To 1 Step -1
 If Rnd() < 0.5 Then
 x1(j) = x1(j) + ds
 Else
 x1(j) = x1(j) - ds
 End If
 If Rnd() < 0.5 Then
 y1(j) = y1(j) + ds
 Else
 y1(j) = y1(j) - ds
 End If
 If Rnd() < 0.5 Then
 z1(j) = z1(j) + ds
 Else
 z1(j) = z1(j) - ds
 End If
 If Rnd() < 0.5 Then
 x2(j) = x2(j) + ds
 Else
 x2(j) = x2(j) - ds
 End If
 If Rnd() < 0.5 Then
 y2(j) = y2(j) + ds
 Else
 y2(j) = y2(j) - ds
 End If
 If Rnd() < 0.5 Then
 z2(j) = z2(j) + ds
 Else
 z2(j) = z2(j) - ds
 End If
Potential = -1 / Sqr((x1(j) - R / 2) ^ 2 + y1(j) ^ 2 + z1(j) ^ 2) - 1 / Sqr((x1(j) + R / 2) ^ 2
+ y1(j) ^ 2 + z1(j) ^ 2) - 1 / Sqr((x2(j) - R / 2) ^ 2 + y2(j) ^ 2 + z2(j) ^ 2) - 1 /

Appendix 159

Sqr((x2(j) + R / 2) ^ 2 + y2(j) ^ 2 + z2(j) ^ 2) + 1 / Sqr((x2(j) - x1(j)) ^ 2 + (y2(j) -
y1(j)) ^ 2 + (z2(j) - z1(j)) ^ 2) + ER
 dV = Potential - Vref
 If dV < 0 Then
 If Rnd() < -dV * dtau Then 'Check to add walker.
 N = N + 1 'Add another walker.
 x1(N) = x1(j) 'New walker.
 y1(N) = y1(j) 'New walker.
 z1(N) = z1(j) 'New walker.
 x2(N) = x2(j) 'New walker.
 y2(N) = y2(j) 'New walker.
 z2(N) = z2(j) 'New walker.
 Vsum = Vsum + 2 * Potential 'Factor of 2 since two walkers at r(i).
 Else
 Vsum = Vsum + Potential 'Only do old walker.
 End If
 Else
 If Rnd() < dV * dtau Then 'Check to remove walker.
 x1(j) = x1(N)
 y1(j) = y1(N)
 z1(j) = z1(N)
 x2(j) = x2(N)
 y2(j) = y2(N)
 z2(j) = z2(N)
 N = N - 1 'Remove walker.
 Vsum = Vsum - Potential
 Else
 Vsum = Vsum + Potential
 End If
 End If
 Next j
Return
'--
End Sub

References

1. Liengme BV (2016) EXCEL® VBA for physicist. A Primer IOP Concise Physics Morgan &
Claypool, San Rafael, CA

2. Cho S (2021) Numerical calculation for physics laboratory projects using microsoft EXCEL®.
A Primer IOP Concise Physics. Morgan & Claypool, San Rafael, CA

	Preface
	Contents
	1 Probability Distribution Functions
	1.1 Electron Spins in Magnetic Field—Binomial Distribution
	1.1.1 Configuration of Spin Array
	1.1.2 Simulation of Binominal Distribution

	1.2 Radioactive Decay—Poisson Distribution
	1.2.1 Decay Equation
	1.2.2 Binominal Distribution to Poisson Distribution

	1.3 Gaussian Distribution
	1.3.1 Poisson to Gaussian
	1.3.2 Binominal to Gaussian

	1.4 White Noise—Uniform Distribution to Gaussian Distribution
	1.5 Central Limit Theorem
	References

	2 Idea of Monte Carlo Simulations
	2.1 Calculation of π
	2.2 Calculation of Definite Integrals
	2.3 Radioactive Decay
	2.4 Random Walk
	2.4.1 One-Dimensional Random Walk
	2.4.2 Two-Dimensional Random Walk

	2.5 Percolation
	References

	3 Brownian Motion and Diffusion Equation
	3.1 Motion of a Particle Driven by Collisions with Surrounding Particles
	3.1.1 One-Dimensional Collision
	3.1.2 Two-Dimensional Collision

	3.2 Langevin Equation
	3.3 Smoluchowski Equation to Diffusion Equation
	3.3.1 Smoluchowski Equation to Fokker-Plank Equation
	3.3.2 Fokker Plank Equation to Diffusion Equation

	3.4 Diffusion Process by Random Walk
	3.4.1 One-Dimensional Diffusion
	3.4.2 Two-Dimensional Diffusion

	3.5 Analytical Solution of One-Dimensional Diffusion Equation
	3.5.1 Trial Function Method
	3.5.2 Spectral Method

	3.6 Numerical Analysis of One-Dimensional Diffusion Equation
	3.6.1 Particle Diffusion
	3.6.2 Heat Conduction
	3.6.3 Analytical Solution of Heat Equation

	References

	4 Quantum Diffusion Monte Carlo Method
	4.1 One-Dimensional Infinite Potential Well
	4.1.1 Imaginary Time Schrödinger Equation
	4.1.2 A Particle in One Dimensional Potential Box

	4.2 Quantum Diffusion Monte Carlo Method
	4.2.1 Basic Idea of Quantum Diffusion Monte Carlo Method
	4.2.2 Harmonic Oscillator
	4.2.3 Three-Dimensional Harmonic Oscillator
	4.2.4 Hydrogen Atom
	4.2.5 Helium Atom
	4.2.6 Hydrogen Molecule

	4.3 Variational Monte Carlo and Path Integral Monte Carlo Methods
	4.3.1 Variational Monte Carlo (VMC) Method
	4.3.2 Path Integral Monte Carlo (PIMC) Method

	References

	5 Metropolis–Hastings Algorithm for Ising Model
	5.1 Algorithm of Metropolis and Hastings
	5.2 Application to Ising Model
	5.3 One-Dimensional Ising Model
	5.3.1 Exact Solution
	5.3.2 Monte Carlo Simulation

	5.4 Two-Dimensional Ising Model
	5.5 Quantum Optimization Using Ising Model
	5.5.1 Optimization by Quantum Annealing
	5.5.2 Addition of Horizontal Field
	5.5.3 Traveling Salesman

	References

	6 Chaos and Fractal
	6.1 Chaos
	6.1.1 Lorentz Attractor
	6.1.2 Logistic Function
	6.1.3 Nonlinear Pendulum
	6.1.4 Nonlinear Double Pendulum

	6.2 Fractal
	6.2.1 Triadic Koch Curve
	6.2.2 Sierpinski Triangle
	6.2.3 Determination of Fractal Dimensions
	6.2.4 Note on Chaos and Fractal
	6.2.5 Mandelbrot Figure

	References

	 Appendix
	A1 EXCEL Options
	A1.1 Enabling VBA Macro
	A1.2 Adding “Data Analysis”
	A2.3 Autofill

	A2 VBA Codes
	A2.1 Two-Dimensional Random Walk on a Square Lattice
	A2.2 Ground State of Three-Dimensional Harmonic Oscillator by QDMC Method
	A2.3 Ground State of Hydrogen Atom by QDMC Method
	A2.4 Ground State of Helium Atom by QDMC Method
	A2.5 Ground State of Hydrogen Molecule by QDMC Method

	References

