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Preface 

Algorithm Competition Era 

In 2010, Kaggle, the world’s leading algorithm contest platform, introduced its first 
Forecast Eurovision Voting competition with a prize of $1000. In 2015, the first 
algorithm competition in China was held on Tianchi platform, with the title Ali 
Mobile Recommendation Algorithm, and the reward was 300,000 yuan, attracting 
more than 7000 competitors. In spite of the fact that algorithm competitions started 
later in China than in other countries, China has held 400 of the 1000 worldwide 
events in this field from 2015 onwards, witnessing an average annual growth rate of 
108.8%, a total of more than 1.2 million participants, and 280-million-yuan bonus. 
With such a high increase rate in the number of contests organized, the technical 
value, business value, and the inspiration for innovations accumulated from these 
algorithm competitions are incredible. 

Why Write 

Regarding the reason for writing this book, I would like to go back to a message sent 
to me by Xinglu Chen, the planning editor of the Posts and Telecom Press, on Zhihu 
(a Chinese question-and-answer website) on April 19, 2019. She said in the message 
that she had read many of my articles about algorithm competitions, and she knew 
that I had won many algorithm contests. Therefore, she was expecting me to publish 
a book about algorithm competitions. From the beginning of 2018, I already have 
created a column and started to share articles related to such contests. Along the way, 
I have been continuing to produce. These pieces of writing currently have seen a 
total of one million views. So, when I received the invitation to write a book on 
algorithm competitions, I deemed it a great recognition of my effort for sharing 
competition knowledge as well as to my achievement and accomplishment. I, thus,
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readily accepted the request and decided to title it Machine Learning Contests: A 
Guidebook. 

vi Preface

In order to complete the work, I invited Peng Liu, the champion and runner-up of 
many competitions in China, who is also my former teammate in a contest, to 
co-author. And Xinglu Chen recommended Qian to me, who was the grandmaster 
of the competition platform Kaggle, and was among the first batch of contestants in 
China. Considering that we excel in different parts, each of us is responsible for 
different chapters to ensure the quality of the work. 

Features of the Book 

The book is organized based on suggestions from many top competitors and our 
careful discussion. In fact, algorithm competitions cover a great variety of different 
aspects. However, what we try to do is to explore the most essential part of them, and 
then to explain actual cases by using modules of multiple domains, which is also a 
major feature of this work. The book is divided into the following five parts. 

Part I—Half the Work, Twice the Effect. This part focuses on the general 
process of algorithm competitions and introduces the core content and specific work 
of each part of a contest. Each chapter involved in this part is with a specific practical 
case for better illustration. 

Part II—Birds of a Feather Flock Together. This part mainly explains the 
problems related to user profiles. There is no denying that constructing a sound 
labeling system is the basis for user profiles and the key to solving relevant 
competition questions, such as customized recommendation and financial risk con-
trol, which all need to be based on user profiles. To enable readers to speed up their 
learning and grasp these competition questions, we will present a particular compe-
tition case, namely Elo Merchant Category Recommendation on the Kaggle 
platform. 

Part III—Learn from History to Create a Bright Future. This part concen-
trates on time series forecasting problems, first describing the common problem-
solving ideas and techniques for such issues, and then analyzing two specific cases— 
Global Urban Computing AI Challenge on the Tianchi platform and Corporación 
Favorita Grocery Sales Forecasting on Kaggle. 

Part IV—Precise Delivery, Optimized Experience. Most of the businesses 
related to Computational Advertising are good competition topics, and this part 
mainly demonstrates the core technologies and businesses of Computational Adver-
tising, including ad recall, ad ranking, and ad bidding. The real-world cases involved 
in this part are 2018 Tencent Advertising Algorithm Competition—Audience 
Lookalike Expansion, and TalkingData AdTracking Fraud Detection Challenge on 
Kaggle. 

Part V—Listen to What You Say and Understand What You Write. This part 
presents common tasks and technologies related to natural language processing; the



case shown is the well-known competition Quora Question Pairs on the Kaggle 
platform. 

Preface vii

This book is a systematic introduction to contests in the field of algorithms, not 
only explaining the theory behind the practice, but also elaborating in detail the 
guide to scoring and necessary skills needed from various angles, using different 
cases. 

Target Readers 

The potential readers of this book will be divided into three categories.

• Those who are interested in algorithmic contests. Interest is the biggest driving 
force. In order to make algorithm competitions more interesting and diverse, this 
book adds a lot of expanded and exploratory content, introducing and carrying 
out practice from multiple directions and in many fields.

• Those who want to study machine learning and explore practice on algorithms in 
depth. Taking part in an algorithm competition is the best way for practice, which 
could enhance understanding of theory. This is also what the book emphasizes.

• Those who major in Computer Science. Machine learning or the deep learning 
algorithm, as a hot career in the computer industry, is worth further study. This 
book provides a very good explanation to real situations to help readers know 
how and why. 

Welcome to Contact with Us 

In view of our limited time and level, there are inevitably errors and mistakes; if you 
find any problems while reading, please feel free to contact us by sending emails to 
fish_ml@foxmail.com. 

Beijing, China Wang He 
January 2023
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Part I 
Half the Work, Twice the Effect



Chapter 1
Guide to the Competitions

With the advent of the Internet era and the improvement made on computer hardware
capabilities, artificial intelligence (AI) has witnessed immerse growth in recent
years. The Internet era has brought a large amount of information, which truly is
the big data. In addition, the excellent performance of hardware has also greatly
enhanced the computing power of computers. The combination of the two makes it
very natural for artificial intelligence to flourish. As a traditional and highly inter-
pretable algorithm, machine learning also plays an important role in the troika of
artificial intelligence. After several discussions, the book was finally namedMachine
Learning Contests: A Guidebook, which was intended to help machine learning
beginners break away from various formulas and theories that are seemingly beau-
tiful but slightly boring through practical methods, so they can appreciate the
mysteries of machine learning in practical applications, among which contests are
in fact some of the most special exercises they can get.

The reason why a competition is highly recommended as a fundamental way to
put machine learning into practice is that it is really an excellent approach for people
to get started quickly with machine learning. For beginners in this field, they are not
equipped with enough skills yet to directly work in enterprises and cope with real
application scenarios, and the knowledge they gained from reading books is some-
what shallow after all. When it comes to competitions, people always think of
various math, physics, and chemistry contests in high school. These events have a
very high participation threshold and are available at home and abroad. In fact, a
good ranking in such contests guarantees that contestants get admission to well-
known colleges and universities both within and outside the country. Therefore, the
mentioning of competition always brings a daunting feeling. But in recent years, the
rise of artificial intelligence has spawned various algorithmic competitions that are
relatively friendly and much more interesting. The current trend of the times is that
people from all walks of life are seeking a way to survive the fierce competitions.
Taking advantage of advanced technology is certainly a good way to complete a
transformation; thus, some enterprises begin to seek the help of AI, and to solicit
excellent algorithm solutions from the society; in addition, researchers in the
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academic field are also eager to obtain corporate scenarios and data for algorithm
research, which has brought forth a variety of competition platforms. This book
mainly introduces readers to the competition experience in algorithms related to
machine learning.

4 1 Guide to the Competitions

For beginners who are interested in entering the machine learning field to engage
in research or relevant work, a competition is a practical choice with great cost-
effectiveness. It can be said to have no threshold at all since anyone is qualified to
participate. Of course, the organizers’ own employees are not allowed to take part in
the competitions, and even if they take part in, they cannot compete for the ranking
list. The various competitions can cover typical application scenarios in many
industries, so that participants can not only get training in practice, but also experi-
ence the magic brought by the implementation of machine learning in a variety of
industries, and even meet many experts in different areas during the competitions
and make some like-minded friends.

This chapter mainly introduces competitions from three aspects—competition
platforms, competition procedures, and competition types. Section 1.1 aims to
demonstrate well-known algorithm competition platforms both at home and abroad
to help readers quickly understand the competition channels. Section 1.2 illustrates
the general process of completing a machine learning algorithm competition, as well
as the functions and contribution of each module. More detailed content will be
given in Chaps. 2–6. Section 1.3 will show readers common competition types in
order to enable them to be thoroughly familiar with the applicable scenarios and
industry requirements for machine learning algorithm competitions.

1.1 Competition Platforms

The various contests we participate in are published by numerous competition
platforms, either large or small, such as the international Kaggle and the competition
platform in China—Alibaba Cloud Tianchi. You can find the competition events you
excel at or like on these platforms.

1.1.1 Kaggle

Mr. Andrew Ng, a master in the field of machine learning, once said that machine
learning was mostly just mathematical statistics, the data-related feature engineering
directly determined the upper limit of the model, and the algorithm just kept
approaching this upper limit. In the field of machine learning, there is a very vivid
analogy: the modeling process is like cooking, with the data being the ingredients,
the algorithm representing the cooking procedure, and the final taste of the dish
standing for the effect of the model. Watching many food videos, such as the famous
food documentaries A Bite of China and Once Upon a Bite broadcast by CCTV



(China Central Television), you will find that a large part of these films is about how
to obtain fresh ingredients. The old saying also says that you cannot make bricks
without straw, which implies the importance of ingredients. Analogous to the
machine learning algorithm competition, the importance of data is self-evident.
This is what the international competition platform Kaggle, which will be introduced
below, describes itself as: the home of data science.
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Fig. 1.1 Kaggle Page

Open the home page of Kaggle’s website and click Compete at the top. The
interface that appears is shown in Fig. 1.1. The left sidebar has five main parts
besides Home and More, namely Compete (competition unit), Data (data set), Code
(code notes), Communities (community discussion), and Courses (online courses).
As the world’s most popular data science competition website, its front page also
shows that here you can get access to all the data and code you need to complete data
science work. As of October 5, 2020, there are more than 50,000 data sets and more
than 400,000 public code notes. This book will focus on Kaggle's competition units.
Click Compete; what is presented is a list of all the competitions in history from top
to bottom. There will always be various contests in progress existing at the top. Click
on one of them casually, and you will also see the relevant information of the
competition, roughly Overview (general information), Data (data set), Code (code
notes), Discussion (community discussion), Leaderboard (ranking list), Rules (com-
petition rules), etc. Next, we will take the contest Microsoft Malware Prediction as
an example to elaborate the main elements of a competition. The home page of the
competition is shown in Fig. 1.2.

• Overview, which is the general information. Here is a brief overview of the
competition, which consists of four parts: Description, Evaluation, Prizes, and
Timeline.

– Description: It is the background introduction of the competition and infor-
mation about the organizers. The competition Microsoft Malware Prediction
wrote that malicious software was committed to circumventing traditional
security measures; Once a computer was infected by malicious software,
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Fig. 1.2 Home Page of Microsoft Malware Prediction Competition

criminals would hurt consumers and businesses in many ways. Microsoft has
more than 1 billion clients ranging from companies to customers, so it takes
this issue very seriously and has invested a lot of money to improve safety. As
part of its overall security strategy, Microsoft is working on the development
technology of data science community, so as to predict whether a machine will
soon be attacked by software intended to cause damage. As with the previous
malicious software challenge (Malware Challenge, 2015), Microsoft is pro-
viding Kaggle with an unprecedented set of malicious software data to
encourage it to make open-source progress in effective technology for
predicting malicious software. Can you help protect more than 1 billion
machines from damage?

– Evaluation: The criteria for judging the contest and the format of the sub-
missions will be listed here. Microsoft Malware Prediction competition uses
the area under the ROC curve (area under curve, i.e. AUC) of the predicted
probability and the real label as the model score, so this competition is a binary
classification problem.

– Prizes: It is shown here that the total bonus of this competition is 25,000 US
dollars, in which 12,000 US dollars for the champion accounts for almost half.
Generally speaking, 25,000 US dollars is a common amount in Kaggle prize-
winning competitions, and sometimes it can reach up to 100,000 US dollars. It
should be noted that this competition will have certain requirements for the
winners: after the competition is over, the winners need to submit the model-
ing scheme doc within the specified time period; Microsoft internal employees
are not allowed to take part in the contest. These are basically what most
competitions will require.

– Timeline: It mainly introduces the timeline of the competition. The deadline
for forming teams and submission DDL are quite important. Generally, a
competition lasts for 2–3 months, so it is very necessary to arrange the time
reasonably.

• Data. After understanding the background and tasks of the competition, partic-
ipants can begin to familiarize themselves with the data. The usual data format
will be in the form of a CSV wide table. There is a separate Data Description in
the Data section, where the data information of all sheets is usually given,
including the collection source, task description, and detailed meaning of each
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• Code. This part is where the open-source community of this competition is
located. Kaggle has become one of the world's largest data competition platforms,
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field. Take the competition Microsoft Malware Prediction as an example; its Data
Description is as follows.

The goal of the competition is to predict the probability of a Windows machine
being infected by a variety of malicious software families based on its different
characteristics. The organizers combine heartbeat and threat reports collected
by Windows Defender, Microsoft's endpoint protection solution, to generate a
telemetry dataset containing relevant attributes and machine infections. Each
row in this dataset corresponds to a machine and is uniquely identified by
MachineIdentifier. HasDetections are tags for machines that indicate whether
malicious software has been detected on the machine. Participants need to use
the information and tag training set in the train.csv to predict the
HasDetections value for each computer in the test.csv. The sampling method
used to create this data set is designed to meet certain business restrictions,
including user privacy and the time period during which the machine is
running. Detecting malicious software is essentially a time series forecasting
problem, but it has become more complicated due to the introduction of new
machines, online and offline machines, machines receiving patches, machines
receiving new operating systems, etc. The data set provided here has been
roughly divided by time. The complexity and sampling requirements men-
tioned above mean that you may see that your cross-validation, public leader-
board score, and private leaderboard score are not exactly the same! In
addition, this data set does not represent that in Microsoft customers'
machines, because it is sampled and contains a larger proportion of malicious
software.What participants should do first when getting involved in the com-

petition is to familiarize themselves with the questions and data, which often
contain many important details. Take the above topic as an example. The data
looks very simple. The organizers have clearly classified the training set and the
testing set, as well as the standard feature field and the label field. The task of the
event is also very clear; that is, to predict whether the machine will be infected by
malicious software. However, one point that cannot be ignored is mentioned in
the introduction: this question is essentially a time series forecasting problem.
The training set and testing set are only roughly divided according to time, and in
order to highlight the malicious software, the machine has carried out a certain
up-sampling of the positive sample. Therefore, this complexity and sampling will
bring great uncertainty to the modeling, resulting in slight difference in the ups
and downs of cross-validation, and in public leaderboard score and private
leaderboard score, which is reflected in the private leaderboard after the compe-
tition. Compared with the public leaderboard, its ranking fluctuates extremely
sharply.

thanks to its open-source features and discussion atmosphere. Here, you can see a
variety of exploratory data analysis (EDA), feature engineering, modeling
methods, and completely different code styles and personal preferences. Some



•

•

8 1 Guide to the Competitions

code even shows the score of this code on the list below its title. Here, participants
can learn all kinds of tools and code writing to their heart's content. In order to
achieve the same goal, players will also find more concise, elegant, and fast
implementations here. At the same time, they can integrate various modeling
methods and learn from others. Even in the competition circle, it is said that as
long as open source is well integrated, it is not a problem to win a silver medal.

• Discussion. Unlike Code, which undertakes the function of code notes, Discus-
sion is a real place for contestants to exchange ideas and discuss. There are few
codes here, but there are various QA (Q & A) and different understandings and
discovery to the competition. Here participants can freely discuss the relevant
experience of the competition with data science enthusiasts around the world,
which is even to explore and verify corresponding theories. You can see various
masters and even grandmasters, and the interaction between them is also very
exciting.
Leaderboard. It is used to display the ranking list, where all participants who
have successfully submitted the result document can find their place. The ranking
list is refreshed in real time, which can be said to be very stimulating for
participants who are head-scratching in a race against time. Kaggle's competitions
are usually divided into Public Leaderboard and Private Leaderboard, which are
often called A list and B list in the competition circle. This also shows a very
important concept in the field of machine learning, i.e., model generalization.
Although the existence of the real-time list facilitates the contestants, so that they
can constantly verify their ideas and compare the scores of different schemes, this
is only the results on the public leaderboard. One point that machine learning
modeling pays great attention to is the generalization performance of the model,
which can also be said to be its robustness. Only a model with strong robustness
can always maintain good results in future predictions, which is very important
for practical applications, so there is such a division as A list and B list. In a
general sense, the same batch of data is divided into two parts: one is used to
evaluate the A list score, and the other is used to assess the B list score.
Participants usually need to continuously revise and improve the modeling
scheme based on the A list score in the first stage of the competition. Finally,
they have two opportunities to choose the result file used to calculate the B list
score. The final ranking is based on the B list score. The generalization of
machine learning modeling is often a difficult and painful point. For some
competitions, the ranking on the A list and the B list would undergo earth-
shaking changes. There are often models of contestants’ overfitting the A list,
which means the model will perform very poorly on data other than that on the A
list. This is also the reason why people sometimes call artificial intelligence
modeling such as machine learning alchemy or metaphysics.
Rules. This section gives the relevant rules of the competition. These are more
detailed supplement to those in the Overview section. It is usually necessary to
pay attention to several important time points such as the opening time of the A
list evaluation at the beginning of the competition, the deadline for team merging,
and the time to switch to the B list. In addition, there are restrictions on the
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1.1.2.1 Registration
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number of team members, the total times of team submissions, the judgement on
what competition cheating is, and other prohibited behaviors. It is suggested that
participants should not only be familiar with the competition background and
content, but also know the competition rules well, so as not to accidentally violate
the competition rules and lead to wasted efforts.

Tianchi is a large big data intelligence platform in China. It opens high-quality
desensitized data sets (Ali data and third-party authorized data) and computing
resources to the society, attracts high-level talents from all over the world to create
excellent solutions, effectively helps the industry and government to solve business
pain points, and recruits and transports talents for enterprises. As the leader of
China's AI industry, Tianchi provides data intelligence solutions integrating brand,
ecology, talent, and computing power to create value for the industry. Since 2014,
Tianchi has successfully operated more than 400 data competitions of high specifi-
cation, covering 600,000 data developers in 98 countries and regions around the
world. The competition topics on the Tianchi platform are mainly to solve business
pain points in actual scenes, with strong practicality and applicability. In addition to
the machine learning algorithm competition involved in this book, there are also
innovative application competitions and program design competitions, and the
rewards are also very generous. See Fig. 1.3 for the Tianchi big data competition
platform.

Like most competition websites, in order to prevent cheating, such as creating a
ghost account, and ensure fair and just competition, platforms such as Tianchi need
users to register through their email or mobile phone number and upload personal
certificates for authority identification.

Fig. 1.3 Tianchi Big Data Competition Platform



10 1 Guide to the Competitions

1.1.2.2 Competition System

Tianchi is also composed of introduction to competition questions, open source
community, and other sections, and also has A list and B list. Unlike Kaggle, Tianchi
usually has preliminaries and semi-finals, and each has A list and B list respectively.
Tianchi's B list is usually a data change test, and it will last for a few days. Therefore,
compared with the A list, it is only shortened in time, while Kaggle's test data is
given in advance; only the part in A list is calculated when scoring, and finally two
are selected as the result file of the B list calculation. In addition, Tianchi is evaluated
at a fixed point in time during the preliminary round, that is, the offline round stage;
in the semi-round round, i.e., the platform round stage, the players debug the
algorithm locally and complete the model training, and submit the Docker image
of the inferential process, and then the prediction result generated by the image will
be evaluated in real time. Tianchi will also limit the number of submissions each day.
For one thing, the limit is to shorten the gap between the resource allocation of
different contestants and prevent some participants from gaining improper advan-
tages by virtue of their powerful computing resources, and for another, it is to
prevent contestants from relying too much on test results for modeling, which will
lead to the model falling into the mire of overfitting, thus making the model less
generalized and causing a lot of useless work.

1.1.2.3 Points

The design of Tianchi has points rules. In accordance with points or conditions, five
levels of titles are designed for participants. From low to high, they are data novice,
data geek, data god, data scientist, and data master. Tianchi will display the top
100 players according to their points, which is also a special practice of Tianchi.
Other competition platforms basically only display the top 100 on the leaderboard.

1.1.3 DF

DF (DataFountain) is a professional big data and artificial intelligence competition
platform designated by CCF (China Computer Federation), which has close ties with
academia. The DF platform categorized competitions according to technologies
(such as data mining, natural language processing, computer vision, etc.) and
industries (such as finance, medical care, Internet, security, electricity, entertain-
ment, transportation, smart cities, communications, industry, retail, society, automo-
biles, education, logistics, real estate, big data, etc.), closely connecting academia
and industry. Although the bonus amount may not be as large as that on other large
platforms, its understanding of segmentation of industries and diversification of
application scenarios are still very attractive.
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1.1.4 DC

The full name of the DC competition platform is DataCastle, which is a company
located in Chengdu, China. Its website structure and competition methods are similar
to those of Kaggle and Tianchi. What is unique of it is that it has a special part for
government-enterprise competitions. Usually, participants can see many related
entrepreneurial competitions supported by the government, state-owned enterprises,
and central enterprises on the DC platform. In addition to the algorithm competitions
that this book mentions, there are also creative contests.

1.1.5 Kesci

Kesci, whose Chinese name is Hejing Community, is a strategic cooperation plat-
form for the Big Data Challenge, an annual Chinese university and college computer
science competition. Compared with the DF platform and DC platform, Kesci can
also provide an online notebook training environment, which is more friendly to
some participants who do not have sufficient hardware resources.

1.1.6 JDATA

JDATA Zhihui platform is a competition platform under JD.com. Its section settings
are mostly similar to those of Tianchi and Kaggle, but the details are different. Every
spring is the peak time for JD.com's own competition events. It is interesting to note
that JD.com's competitions mainly involve e-commerce and logistics. They usually
customize some evaluation indicators. Participants need to consider their own
modeling solutions after receiving the wide table data, including building training
sets and testing sets, and selecting sample labels. The data quality and difficulty of
the competition questions are extremely high. Of course, there are many bonuses,
and college students also have the opportunity to get an “Express Entry” in campus
recruitment.

1.1.7 Corporate Websites

In addition to the domestic and foreign mainstream competition platforms listed
above, some companies will hold their own competitions; they do not cooperate with
the platforms, but build a simple website by themselves, such as Tencent's social
advertising algorithm competition; although there is only a website, this competition
is still very popular. In addition, there are FlyAI, AI Challenger, etc. Participants do

http://jd.com
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not need to know everything, but can follow some official accounts to learn the latest
relevant information of the competition, such as Coggle Data Science, Kaggle
Competition Book, Mapo Tofu AI, etc.
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1.2 Competition Procedures

How many steps does it take to successfully complete a competition? The answer is
three. First download the data, then run the results with code, and finally submit the
results. Of course, this is just kidding. Machine learning algorithm competition also
cannot escape the so-called routine, and after we sum up a lot of actual experience,
we roughly divide the whole process of completing a competition into five parts,
namely problem modeling, data exploration, feature engineering, model training,
and model integration, as shown in Fig. 1.4. Of course, there are still some prepa-
rations to be done before the competition, such as registering accounts, perfecting
personal information, and even real-name authentication; then click on the compe-
tition you want to participate in to sign up. This section only briefly introduces the
competition procedures, and the details will be discussed in Chaps. 2–6 of this book.

1.2.1 Problem Modeling

We believe that everyone still remembers that in the early days of the college
entrance examination, the teachers stressed the importance of examining the ques-
tions, and understanding the questions is always the first and foremost step. Accu-
rately making clear the meaning of questions can avoid many detours. In the problem
modeling of machine learning, not all data is in the form of feature tags, which can
already be directly added to the model training. In many cases, it is necessary to
analyze the data to abstract the modeling goals and solutions. Although the goal of
the competition is usually evident, not all competition data is in the form that can be
directly added to the training. Some competitions, such as those on JDATA Zhihui
platform, often have some evaluation methods different from general classification
and regression evaluation indicators. Participants often need to use the data provided
by the organizers to construct training sets and testing sets based on their under-
standing of the competition questions. This kind of competition greatly tests the
participants' problem modeling ability, which is also the difficulty of this kind of
contest. Now, the choice of problem modeling methods greatly affects the perfor-
mance of participants.

Fig. 1.4 Competition Procedures
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1.2.2 Data Exploration

Data exploration is one of the most important concepts in the field of machine
learning, customarily known as EDA (Exploratory Data Analysis). After under-
standing the game prompts and roughly knowing the way the problem is modeled,
participants need to combine the comprehension to the background business of the
game questions to see what the data looks like, whether the data matches the
description, what information the data contains, and the data quality. First of all,
contestants need to have a clear idea of the data, mainly the meaning, scope, and data
structure of the values of each field in the wide table. Then a deeper level is to
combine the labels to analyze the distribution state of features, the identical distri-
bution of the training set and the testing set, the business association between the
features, and the representation of implicit information, etc. In general, data explo-
ration is a connecting step, which can help participants better learn problem model-
ing and prepare for the feature engineering to be carried out next.

1.2.3 Feature Engineering

Like EDA, Feature Engineering is also an important concept in the field of machine
learning. Its name suggests that this is a module that can be called engineering.
Mr. Andrew Ng, a leading machine learning expert, once said in his famous CS229
machine learning course at Stanford University that machine learning was mostly
feature engineering; features determined the upper limit of the prediction effect of
machine learning, and the algorithm just kept approaching this upper limit; this
shows the importance of feature engineering. In fact, whether in competition or in
practical application, feature engineering is the module that takes the most time and
takes up most of the energy of modelers.

1.2.4 Model Training

After the model scheme is established according to the questions, relevant data
exploration is carried out according to the business understanding, and then the
feature engineering is gradually improved, the standard training set and testing set
structure can be obtained, and subsequently how to carry out model training can be
considered. In general machine learning algorithm competitions, most participants
prefer GDBT-like tree models. Of course, this is also because their effects are really
excellent. The commonly used tree models are mainly XGBoost and LightGBM.
Both models have scikit-learn interface functions, which are very easy to use. In
addition, sometimes the contestants need to use algorithms such as LR, SVM, and
RF, while other times they need to use deep learning models such as DNN, CNN,



RNN, and their derivative models, as well as the popular FFM in the advertising
field, etc. If the previous step takes the contestant’s own time and energy, then this
step, by comparison, mainly depends on the contestant's computing resources. Of
course, if it is not a particularly large amount of data, model training will generally
be fast. In addition to selecting the right model, this module of model training also
needs to spend time on parameter tuning. Although the effect is not very unusual or
distinctive as long as the parameters are not set outrageously, for many contestants,
even a little improvement in performance may mean an improvement in ranking.
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1.2.5 Model Integration

After all kinds of tedious and arduous attempts in the early stage, contestants can
finally come to the popular model integration, that is, the stage of finding teammates.
Each algorithm has its own advantages and limitations; therefore, by fostering
strengths and avoiding weaknesses, and integrating the advantages of each algo-
rithm, participants can make their model more effective. There are many ways to
model fusion, such as Stacking, weighted voting, etc., which will be described in
detail in Chap. 6. The reason why model fusion is called finding teammates is that in
the competition, every single contestant has great unique personal characteristics,
including different preference for problem modeling, feature engineering, model
training, and other processes, which leads to great variations in the schemes between
different contestants; in spite of this, the performance of model integration brought
by the differences is excellent, and the greater the difference, the better the effect
improvement. It is also recommended that if you do not have a particularly familiar
teammate, you can do it yourself first and go through the whole process alone. This is
also an exercise for yourself. In the later period, if you really have no idea and badly
need help, you can consider finding participants with similar results to form a team.
The importance of team strength in the competition is self-evident. Meanwhile,
setting up a team in the later stage means the results are submitted independently
by each team member in the early stage, which implies more opportunities for
verifying ideas. Reasonably making good use of the rules of the competitions is
allowed and advocated.

1.3 Competition Types

All kinds of dazzling competitions are exciting to try. Data competitions with many
categories can meet the different needs of distinct participants. At the same time,
they also promote the development of the AI + industry, which could enable all
sectors of society to actively explore artificial intelligence. Therefore, it is necessary
to introduce the common types of data competitions today. The following part will
focus on three aspects: data types, task types, and application scenarios.
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1.3.1 Data Types

The field of artificial intelligence can be roughly divided into three main directions:
computer vision (CV), natural language processing (NLP), and data mining (DM).
From the perspective of data types, the three can be simply distinguished. The field
of computer vision is mostly processing image data, which, of course, also includes
videos; natural language processing is mostly text data, involving word segmenta-
tion in various languages, etc. Both of them have received common attention from
academia and industry in recent years with the continuous improvement of computer
hardware performance and the rapid development of broadband networks. The
competition on Kaggle will give data types under the title, such as picture data,
audio data, text data, wide table data, etc. This book will concentrate on the related
competitions of traditional wide table data types. In traditional wide table data, there
are usually unique id indexes and feature columns that match samples. According to
the meaning, features can be divided into category features (such as user gender) and
numerical features (such as age, height, weight, etc.). The above features are in the
form of single-value features, in addition to multi-value features, such as the column
with user interests and hobbies, which can include fitness, running, and photography
at the same time. For this special multi-value feature, we have special processing
skills, which will also be explained in detail in Chap. 13.

1.3.2 Task Types

Competitions related to machine learning are mainly based on algorithms, and
occasionally there are scheme innovation and design competitions, etc. This book
will mainly explain machine learning algorithm related competitions, primarily
associated with supervised learning - that is, to carry out modeling according to
task requirements and through existing labeled training set data, so as to predict the
testing set data and give the results of the corresponding labels, and then to conduct
score evaluation. Task types can be roughly divided into classification and regres-
sion in accordance with the type of problem, and Chap. 2 will specifically give the
evaluation indicators of corresponding tasks.

1.3.3 Application Scenarios

When we mention application scenarios, we naturally think of the application of
machine learning in various industries, and the needs and pain points of the industry.
Throughout the major competition platforms, the main industries involved are
medicine, manufacturing product lines, finance, e-commerce, the Internet, etc.
Among them, the richness and diversity of user data in the Internet industry, as



well as the less encountered challenges such as medical ethics, have resulted in many
application scenarios, such as advertising, search, and recommendation, which are
the situations in which artificial intelligence is involved more today.
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1.4 Thinking Exercises

1. Please register your account and browse on Kaggle, Tianchi, DF, DC, Kesci,
JDATA, and other websites to get familiar with the content introduced in this
chapter.

2. What are the main parts of the complete competition procedures? What is the role
of each part in the procedure?

3. Take the scenes that come into contact with daily life as an example to list
5 applications that may use machine learning algorithms.



Chapter 2 
Problem Modeling 

After the contestants get the competition topic, the first thing they should consider is 
problem modeling, and at the same time complete the pipeline construction of the 
baseline model, so that they can get feedback on the results in the first place to 
facilitate the follow-up work. In addition, the existence of the competition depends 
on real business scenarios and complex data. Participants usually have many ideas 
about this, but there is always limitation on the times of online submissions for 
verification of results. Therefore, it becomes very important to reasonably segment 
the training set and verification set, and build a credible offline verification, which is 
also the basis for ensuring the generalization of the model. The problem modeling in 
the competition can be mainly divided into three parts: question understanding, 
sample selection, and offline evaluation strategy. This chapter first introduces the 
corresponding work of problem modeling from these three parts, and in the mean-
time explains the corresponding skills of using them as well as application codes. 
Then readers will be led to conduct a practice by using a real case, so that they could 
understand and apply what is learnt in this chapter. 

2.1 Understanding the Competition Question 

In fact, the aim of examining the competition question is to sort out the problem 
intuitively and analyze the method that the problem can be solved, the background of 
the game question, and the main pain points of the contest. To clarify what a contest 
is for, we should start from figuring out the competition task triggered by the contest 
background, understanding the business logic and what external data may be 
meaningful to the event, and having a preliminary comprehension of the game 
question data, such as knowing what data are related to the mission now, and what 
is the correlation logic between the data. Usually, the competition task will show the 
question background, game data, and evaluation indicators. This part of work for 
getting to know the game question will become an important part and a prerequisite
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of the competition; through the comprehension of the prompts and the analysis of the 
real business, we can use our own prior knowledge for preliminary analysis, well 
paving the way for the next part.

18 2 Problem Modeling

Fig. 2.1 User Repayment Forecast Business 

2.1.1 Business Background 

2.1.1.1 Go Deep into the Business 

The competition itself exists for specific scenarios, and many operations will vary 
greatly depending on a specific scenario. The scenario mentioned here refers to the 
business. So, how can we analyze the business? For example, to analyze the 
purchase behavior of users, here you need to know the purpose of the user's 
purchase, how the purchased products attract the user, the goods that the company 
can provide, whether the product is consistent with the user request, target user 
positioning, the user re-purchase rate, the user’s purchasing power, and the method 
of payment. In short, it is to consider and sort out this process either as a merchant or 
a user. 

Next, let’s take a more intuitive business comprehension to show the analysis 
process in the actual competition, as shown in Fig. 2.1. This is a competition 
question with the background of Internet financial credit business. The goal is to 
predict the repayment amount and date from the user side, that is, to predict the 
repayment situation of the user. If you consider it from the perspective of the 
merchant, the user's willingness and ability to repay will become the key factors 
affecting the repayment situation. Next, let's string the business lines together. First, 
when a user goes to borrow money, the merchant will consider the amount of money 
the user wants to borrow and whether the user has a tendency to cheat and historical 
borrowing; then, when the user successfully borrows money, the merchant will



consider the user's current debt situation, time left for repayment, and the salary day; 
finally, when the user successfully repays money, the merchant will analyze the 
user's overdue situation, remaining arrears, and current installments, etc. This sim-
ulates the basic business line. 
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What has been described above is how to carry out business understanding. In the 
following part, we will demonstrate how to closely combine the objectives of the 
competition with the business to bring benefits to the competition results. 

2.1.1.2 Be Clear About the Goals 

The real business covers a wider range of content than the competition, so the 
challenge goal is only part of it, and the real business also includes the data provided 
by the organizer. In the above example, the contest goal is to predict the user's 
repayment amount and date; the contestants, therefore, can first analyze the relevant 
business in accordance with this goal, that is, the factors that affect the user's 
repayment, etc., then feed the information in the business back to the competition 
objective, namely, the salary day, the total number of borrowings, etc. What closely 
connects the goal of the competition question with the real business is the data. With 
specific data, the characteristics can be extracted in line with the business to 
explicitly represent the repayment of users. Therefore, in order to further learn the 
competition, it is necessary to have a preliminary understanding of the data. 

2.1.2 Understanding Data 

We can divide data comprehension into two parts, the data base layer and the data 
description layer. Of course, in the problem modeling stage, you do not need to gain 
particularly deep mastery over the data; rather, you just need to do basic analysis. In 
the later data exploration stage, you can further understand the data and discover key 
information from the data.

• Data base layer. The quality of the original data sources provided by various 
competition organizers is mixed, and the data forms such as data types, storage 
formats, etc. are also varied. In order to further analyze and model, it is often 
necessary to clean, process, and calculate the original data sources. The data base 
layer focuses on the source, production process, retrieval logic, calculation logic, 
etc. of each data field. Only by comprehending these can each original field be 
correctly understood, selected, and used, thus processing and calculating more 
derived fields which are required. The final presentation of data is usually a data 
sheet.

• Data description layer. The data description layer mainly carries out statistical 
analysis and general description on the processed data base layer. The focus of 
this level is to summarize the overall data status through some simple statistics
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(such as mean value, maximum—minimum value, distribution, growing rate, 
trend, etc.) as much as possible, so that participants can clearly have a picture of 
the basic situation of the data. However, there is no uniform standard for which 
statistics are used, which depends on the specific scene presented by the data. For 
example, for time series problems, you can count their growth rate, trend, and 
period; for conventional numerical features, you can observe statistics such as 
their means, maximum and minimum values, and variances; for sample sets with 
multiple categories, you can use distributions, quantiles, etc. for description. 

Based on the above two levels of data exploration, participants can obtain a basic 
comprehension over the data, and these understandings will play a key role in the 
subsequent data preprocessing and feature extraction. 

2.1.3 Evaluation Indicators 

2.1.3.1 Classification Indicators 

The classification problem is not only a core concern that often appears in compe-
titions, but also a common machine learning issue in practical applications. It is 
much more difficult to evaluate the effect of classification problems than to assess 
the effect of regression problems. These two types of issues contain a variety of 
evaluation indicators. This book will put aside the traditional introduction method 
and combine practical applications to summarize the characteristics, advantages, and 
disadvantages of evaluation indicators to help participants obtain certain benefits in 
the competition. 

Common classification indicators in contests include error rate, accuracy, preci-
sion, (also known as precision rate), recall (also known as recall rate), F1-score, 
ROC curve, AUC, and logarithmic loss (logloss), etc. In fact, these indicators 
measure the effectiveness of the model, and they are related to each other, but 
their respective emphases are different. After we understand the definition of each 
indicator, we can figure out their differences and connections. The following part 
will briefly introduce the above indicators and give an example to illustrate these 
indicators. 

Error Rate and Accuracy 

In the classification problem, the error rate is the proportion of the number of 
samples with wrong classification results to the total number of samples, and the 
accuracy is the proportion of the number of samples with correct classification 
results to the total number of samples. That is, the error rate = 1 - accuracy.
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Precision and Recall 

Taking the simplest binary classification as an example, Fig. 2.2 shows the source of 
the definition of the confusion matrix, where TP, FN, FP, and TN represent the 
number of samples in their respective populations. 

The basic logic in it is to give a threshold value to the probability value predicted 
by the model. If the probability value exceeds the threshold, the sample is predicted 
to be 1 (Positive, positive class); otherwise the prediction is 0 (Negative, negative 
class).

• True Positive (TP): The prediction category is 1, the real category is 1, and the 
prediction is correct.

• False Positive (FP): The prediction category is 1, the real category is 0, and the 
prediction is wrong.

• True Negative (TN): The prediction category is 0, the real category is 0, and the 
prediction is correct.

• False Negative (FN): The prediction category is 0, the real category is 1, and the 
prediction is wrong. 

The precision rate P refers to the proportion of real positive samples in the samples 
judged by the classifier to be positive—that is, how many of all samples judged by 
the classifier to be positive are real positive samples, and the formula is defined in 
formula (2.1): 

P= 
TP 

TP þ FP ð2:1Þ 

It is easy to know that if only a single positive sample prediction is made and the 
prediction category is correct, 100% precision can be obtained through this formula. 
However, this is meaningless, which will make the classifier ignore data other than 
positive samples, so another indicator needs to be considered, that is, the recall 
rate R. 

Recall rate refers to the proportion of positive samples correctly judged by the 
classifier to the total positive samples, that is, how many of all positive samples are 
judged by the classifier as positive samples, defined as formula (2.2): 

Fig. 2.2 Confusion Matrix
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R= 
TP 

TPþ FN ð2:2Þ 

Precision and recall rate reflect two aspects of classifier performance. Relying on one 
of them alone cannot comprehensively evaluate the performance of a classifier. 
Generally speaking, you cannot have your cake and eat it too. The higher your 
precision rate, the lower the recall rate; on the contrary, the higher the recall rate, the 
lower the precision rate. Then, in order to balance the impact of precision and recall 
rate, a more comprehensive evaluation of a classifier will need the F1-score, the 
indicator that combines the two. 

F1-score 

Many machine learning classification problems are in need of both a high precision 
rate and a high recall rate at the same time, so you can consider using the harmonic 
average formula to weigh up these two indicators, so as to avoid the phenomenon of 
false high means because one is higher, and the other is lower while making use of 
arithmetic average. The F1-score can play such a role, and its definition is as formula 
(2.3): 

F1‐score= 2× 
P ×R 
Pþ R ð2:3Þ 

We can easily observe that its maximum value is 1 and its minimum value is 0. It is 
also very simple to build an evaluation code for calculating precision rate, recall rate, 
and F1-score. The specific implementation code is as follows: 

from sklearn.metrics import precision_score, recall_scroe, f1_score 
precision = precision_score(y_train, y_pred) 
recall = recall_scroe(y_train, y_pred) 
f1 = f1_score(y_train, y_pred) 

ROC Curve 

In addition to the above evaluation indicators, there is also a tool commonly used to 
measure the imbalance in classification, namely the ROC curve (receiver operating 
characteristic curve). The ROC curve is used to draw the TP rate and FP rate when 
different classification thresholds are used. Lowering the classification threshold will 
cause more samples to be classified as positive categories, thereby increasing the 
number of false positive cases and true positive cases. Figure 2.3 is a more typical 
ROC curve. In addition, the ROC curve and AUC are often used to evaluate the pros 
and cons of a binary classifier, so here is a question: now that there are so many 
evaluation indicators, why the ROC curve is still used? 

In actual data sets, there are often uneven positive and negative samples; that is to 
say, there are much more negative samples than positive samples (or the opposite is



true), and the distribution of positive and negative samples in the testing set may also 
change over time. The ROC curve has a good characteristic; that is, it can still remain 
unchanged in this case. However, the ROC curve is not common in competitions. On 
the contrary, AUC can be said to be our old friend and often appears in classification 
problems. 
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Fig. 2.3 TP Rate and FP 
Rate under Different 
Classification Thresholds 

AUC 

In the ranking business for Internet search, recommendation, and advertising, AUC 
is an extremely typical evaluation index. It is defined as the area under the ROC 
curve. Because the ROC curve is generally above the straight line y = x, the value 
range is between 0.5 and 1. The reason why AUC is used as an evaluation indicator 
is that the ROC curve cannot clearly explain which classifier has the better effect in 
many cases; for AUC, however, as a numerical value, the larger its value, the better 
the effect of the classifier will be. 

What is worth mentioning is the ranking characteristics of AUC. Compared with 
indicators such as precision rate and recall rate, the AUC index itself has nothing to 
do with the absolute value of the probability predicted by the model. It only focuses 
on the ranking effect between samples, so it is especially suitable to be used as an 
evaluation index for modeling ranking-related problems. AUC is a probability value. 
If we randomly select a positive sample and a negative sample, then the probability 
that the current classification algorithm will rank this positive sample in front of 
the negative sample according to the calculated score is the AUC value. Therefore, 
the larger the AUC value, the more likely the current classification algorithm will list 
the positive sample in front of the negative sample value, i.e., it can be better 
classified.
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In-depth Thought 
Now that the AUC has nothing to do with the score value predicted by the 
model, why is this a good feature? Suppose you use indicators such as 
precision and F1-score, and the score predicted by the model is a probability 
value, then you must choose a threshold to determine which samples are 
predicted to be 1 and which predictions are 0. Different threshold selection 
will lead to different precision rate, recall rate, and F1-score values, and AUC 
can directly use the model to predict the score itself by referring to the relative 
order, so that it is more useful. In the competition task, the contestants can 
even save the trouble of testing the threshold. 

Logarithmic Loss 

This indicator can be used to evaluate the probability output of the classifier. 
Logarithmic loss quantifies the accuracy of the classifier by punishing the wrong 
classification. Minimizing the logarithmic loss is basically equivalent to maximizing 
the accuracy of the classifier. In order to calculate the logarithmic loss, the classifier 
must provide a probability result, which means after the input samples are fed into 
the model, the probability value of each category (between 0 and 1) will be 
predicted, not just the most likely category. The standard form of the logarithmic 
loss function1 is shown in formula (2.4): 

logloss= - log P Y jXð Þ ð2:4Þ 

For the sample point (x, y), y is the real label, while in the binary classification 
problem, its value can only be 0 or 1. Suppose the real label of a sample point is yi, 
and the probability of taking yi = 1 for the sample point is yp, then the loss function 
of the sample point is as formula (2.5): 

logloss= -
1 
N 

i= 1 

yilog pi þ 1- yið Þ log 1- pið Þð 2:5Þ 

Let's think about this: AUC also only needs to give the probability value predicted by 
the model to calculate and measure the effect of the model, so what is the difference 
between logarithmic loss and it? 

Logarithmic loss mainly judges whether the probability predicted by the model is 
accurate enough. It pays more attention to the degree of coincidence with the 
observed data, while AUC evaluates the model's ability to rank positive samples in 
front. Since the two indicators have different emphases in evaluation, the

1 Unless otherwise specified, the log function in this book represents the logarithm with e as 
the base. 



participants will consider different issues and choose different evaluation indicators. 
For the problem of advertising CTR estimation, if you consider the effect of 
advertising ranking, you can choose AUC, which will not be affected by extreme 
values. In addition, the logarithmic loss reflects the average deviation, and it is more 
inclined to classify accurately the category with a large number of samples. 
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In-depth Thought 
Among the classification problems of various data competitions, AUC and 
logarithmic loss are basically the most common model evaluation indicators. 
In general, AUC and logarithmic loss are more commonly used than error rate, 
accuracy, precision rate, recall rate, and F1-score. Why is this? Because the 
prediction results of many machine learning models for classification prob-
lems are probability values. If you want to calculate the above indicators, you 
need to convert the probability into categories first, which requires setting a 
threshold by human. If the prediction probability of a sample is higher than this 
threshold, the sample will be classified into the corresponding category; if it is 
lower than this threshold, it will be put into another category. Therefore, the 
selection of the threshold greatly affects the calculation of the score, which is 
not conducive to the accurate evaluation of the effect of models from the 
contestants. By comparison, the use of AUC or logarithmic loss can avoid the 
trouble of converting the prediction probability into categories. 

2.1.3.2 Indicators of Regression 

Mean Absolute Error 

First of all, please consider the question of how to measure the effect of a regression 
model. What may occur to you naturally is using the mean of the residual (the 
difference between the real value and the predicted value), that is, the formula (2.6): 

residual y, y0ð Þ= 
1 
m 

n 

i= 1 

yi - y0 i ð2:6Þ 

However, there is a problem here. When the real value is distributed on both sides of 
the fitting curve, the residual can be positive or negative for different samples, and 
the direct addition will result in set-off against each other. Therefore, the method of 
using the distance between the real value and the predicted value is considered to 
measure the effect of the model, that is, the mean absolute error (MAE, Mean 
Absolute Error), also known as L1 norm loss, which is defined as in formula (2.7):
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MAE y, y0ð Þ= 
1 
m 

n 

i= 1 

yi - y0 i ð2:7Þ 

Although the mean absolute error solves the problem of positive and negative 
cancellation of residual sum, which can better measure the quality of regression 
model, the existence of absolute value leads to unsmooth function and cannot carry 
out derivation at certain points, which indicates the mean absolute error is not 
continuously differentiable in the second order, and the secondary derivative has 
always been 0. 

Extended Learning 
In XGBoost, the mean absolute error can be used as a loss function for model 
training, but due to its limitations, users usually choose Huber loss to replace 
it. So why do they choose Huber loss? Since the mean absolute error is not 
continuously derivable (not at 0), it is necessary to use the derivable objective 
function to approximate the mean absolute error. For the mean squared error 
(MSE) that will be discussed below, the gradient will decline as the loss 
decreases, making the prediction result more accurate. In this case, Huber 
loss is very useful. It will fall near the minimum due to the reduction of the 
layer. Compared to the mean square error, Huber loss is more robust to 
outliers. Therefore, Huber loss has combined the advantages of mean absolute 
error and mean square error. However, the problem of Huber loss may require 
us constantly adjust the hyper-parameter delta. 

Mean Squared Error 

What corresponds to the mean absolute error is the mean squared error (MSE, Mean 
Squared Error), also known as L2 norm loss, which is defined as formula (2.8): 

MSE y, y0ð Þ= 
1 
m 

n 

i= 1 

yi - y0 i 
2 ð2:8Þ 

Because the mean squared error is inconsistent with the dimension of the data label, 
in order to ensure the dimensional consistency, it is usually necessary to extract the 
square root of the mean squared error, which leads to the root mean squared error 
(RMSE).
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In-depth Thought 
So, what is the difference between the mean absolute error and the mean 
squared error? The mean squared error squares the error (the true value—the 
predicted value), so if the error is >1, the mean squared error will further 
increase the error. At this time, if there are outliers in the data, the error value 
will be large, and the square of the error will be much larger than the absolute 
value of the error. Therefore, compared with using the mean absolute error to 
calculate the loss, the model using the mean squared error will give more 
weight to the outliers. In other words, the mean squared error is sensitive to 
outliers, and the mean absolute error is insensitive to outliers. 

Root Mean Squared Error 

The root mean squared error is used to evaluate the quality of the regression model 
and will extract the square root of the mean squared error, which reduces the value of 
the error. Its definition is as formula (2.9): 

RMSE y, y0ð Þ= 
1 
m 

n 

i= 1 

yi - y0 ið Þ2 ð2:9Þ 

The values of the above-mentioned measures are all related to specific application 
scenarios, so it is difficult to define uniform rules to measure the quality of the model. 
Similarly, the root mean squared error also has certain flaws. For example, in the 
application scenario of Computational Advertising, when it is necessary to predict 
the traffic of advertisements, some outlier points may cause the root mean squared 
error index to become very poor, so even in 95 percent of the data samples, the 
model predicts well. If we do not choose to filter out outliers, we need to find a more 
appropriate indicator to evaluate the prediction effect of advertising traffic. The 
following will present the average absolute hundred percentage error (MAPE), 
which is a more robust evaluation indicator than the root mean squared error. This 
is equivalent to normalizing the error of each point, reducing the impact of individual 
outliers on absolute error. 

Average Absolute Percentage Error 

The average absolute percentage error (MAPE) and the second-order derivative of 
the average absolute error do not exist. But unlike the average absolute error, the 
average absolute percentage error not only considers the error between the predicted 
value and the real value, but also takes the ratio between the error and the real value 
into account. For instance, in the 2019 Tencent advertising algorithm competition, 
although the difference between the predicted value and the real value is the same,



0ð Þ=
m

i= 1
y0i

ð : Þ

due to the use of the average absolute percentage error to evaluate, the result 
would be: the larger the real value, the smaller the error. The definition of the 
average absolute percentage error is as formula (2.10): 
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MAPE y, y 
1 n yi - y0 i 2 10 

2.2 Sample Selection 

Even in real-world competitions, the data provided by the organizer may have 
quality problems that make participants very headache. This will undoubtedly 
have a great impact on the final prediction result, so it is necessary to consider 
how to select the appropriate sample data for training. Then how can we select the 
appropriate sample? Before answering this question, let's look at the specific reasons 
that influence the results. Here, four main reasons are summarized: the performance 
of the model is affected by a too large data set, noise and abnormal data lead to 
insufficient accuracy, redundant or irrelevant sample data do not bring benefits to the 
model, and uneven distribution of positive and negative samples leads to data skew. 

2.2.1 Main Reasons 

2.2.1.1 Too Large Data Set 

Machine learning algorithms related competitions involve application scenarios in 
all walks of life, and the amount of data is also different. The data magnitude of 
related competitions such as search recommendations and advertisements reaches 
tens of millions or even hundreds of millions, and excessive data sets seriously affect 
the rapid verification of various feature engineering and modeling methods. In most 
cases, our computing resources are limited, so we need to consider data sampling 
processing, and then model and analyze on smaller data sets. In addition, in specific 
business scenarios, it may be possible to filter out some data that is not meaningful 
for modeling, which can help improve model performance. 

2.2.1.2 Data Noise 

There are two main sources of data noise. One is that improper operation during data 
collection leads to errors in information representation, and the other is that the 
characteristics of the data itself have a reasonable range of jitter leading to noise and 
anomalies. The existence of data noise has both negative and positive sides. For one 
thing, the existence of noise will cause lower data quality and impact the effect of the



model; for another, we can also make the model more robust by introducing noisy 
data into the training set. In addition, if the source of the noise data is the first, it is 
necessary to see whether the correct data can be decoded accordingly, which 
sometimes greatly enhances the modeling effect. Therefore, when it is necessary to 
deal with noise data, please first consider whether it is caused by acquisition errors, 
and then weigh the generalization of the model against the current effect of the 
model. Sometimes denoising will lead to poor generalization performance of the 
model, and the effect of the model cannot be well guaranteed after changing the 
data set. 
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To remove noise, we must first identify the noise, and then take a variety of 
methods such as direct filtering or modifying the noise data. The noise data may be 
incorrect eigenvalues, such as missing eigenvalues, exceeding the range of eigen-
values, etc.; it may also be incorrectly labeled; an instance of this situation is that the 
positive sample of the binary classification problem is labeled as a negative sample. 
Many data denoising is an example of detecting and removing noise from training 
data. Section 3.1 will show specific approaches for removing noise or abnormal data. 

2.2.1.3 Data Redundancy 

In a general sense, data redundancy is a different concept than a too large data set. 
When you mention a data set, you will naturally think of a set of samples. Its size 
usually indicates the number of samples in the vertical direction, while data redun-
dancy focuses on describing the redundancy of data characteristics. The redundancy 
existing in the data will not only make a difference to the performance of the model, 
but also introduce noise and anomalies, which may have the adverse effect on the 
model. A typical solution to data redundancy is feature selection, which will be 
explained in Sect. 4.4. 

2.2.1.4 Uneven Distribution of Positive and Negative Samples 

In the machine learning scenario where the positive and negative samples of binary 
classification are not balanced, the data set is often relatively large. In order for the 
model to better learn the features in the data and make the model more effective, data 
sampling is sometimes required, which also avoids the trouble of insufficient 
computing resources due to the large data set. This is a relatively shallow under-
standing. More essentially, data sampling is to simulate random phenomena and 
simulate a random event according to a given probability distribution. In addition, 
there is a saying that a small number of sample points are used to approximate an 
overall distribution and characterize the uncertainty in the overall distribution. Most 
of the data provided by the competition is part of the real and complete data extracted 
by the organizer, and will ensure the consistency of the data distribution, reduce the 
difficulty of the competition, and guarantee efficiency. Furthermore, a subset (train-
ing set) can also be extracted from the overall sample data to approximate the



population distribution, and then the purpose of training model is to minimize the 
loss function on the training set. After training is completed, another data set (testing 
set) is needed to evaluate the model. Data sampling also has some advanced usage, 
such as performing oversampling or undersampling on samples, or constantly 
changing the distribution of samples to adapt to model training and learning when 
the target information remains unchanged, which is often used to solve the problem 
of unbalanced samples. 
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2.2.2 Accurate Methods 

In the competition, after getting the data, if it is found that the data has two 
situations—the data set is too large, and the positive and negative samples are 
unbalanced—it is necessary to give targeted solutions at the beginning; that is, 
how to deal with the following two problems: how to improve the model training 
speed in order to reduce costs when the amount of data is very large, and how to 
solve such problems through data sampling for scenarios where the positive and 
negative samples are unevenly distributed. 

First of all, for the first problem, the following two solutions are mainly 
recommended.

• Simple random sampling. The solution here is divided into non-replacement 
and replacement. The practice is relatively simple, so no specific further intro-
duction will be made.

• Stratified sampling. This method samples each category separately. This is a 
method of randomly selecting samples from different categories according to a 
specified proportion from a data set that can be divided into different subsets 
(or called layers or categories). Its advantages are the sample is more represen-
tative and the sampling error is relatively small; the disadvantage is the sampling 
process is more complicated than simple random sampling. 

For the second problem, there are mainly the following three solutions.

• Score weighting processing. The problem of uneven distribution occurs from 
time to time, including fraudulent transaction identification and email spam 
identification, etc., and the number of positive and negative samples varies 
greatly. Figure 2.4 illustrates the distribution of positive and negative samples 
of a certain competition, and the proportion of positive samples is only about 2%. 
Considering that the importance of positive samples is higher than that of 
negative samples, the corresponding score weights can be designed during 
model training and evaluation, so that the model can learn the parts that need 
attention. The scoring weighting method is a quite common one. Of course, 
different weighting methods can be selected in different application scenarios, 
such as the Micro Fscore index in the multi-classification problem and the 
Weighted Fscore index used in the KDD CUP 2019 competition. The two
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Fig. 2.4 Distribution of 
Target Variables 

evaluation indicators have different weights for different categories, and the 
prediction effect of the model can be improved by weighting different categories. 

The specific steps of this method are to first examine all samples and give them 
weights according to whether the samples meet a certain requirement. For example, 
in an unbalanced binary classification, if the sample label is 1, we will set its weight 
to w1 (custom); if the sample label is 0, we will set its weight to w2 (custom). Then 
the sample weights are substituted into the model for training and testing. 

The intuitive meaning of weighting is to assume that the value of a positive 
sample is greater than that of multiple negative samples from a business perspective. 
Therefore, it is hoped that the model can learn more key information from the 
positive samples during training. When it does not learn well, it should be punished 
more severely.

• Undersampling. It is to randomly select a portion of a sample category with 
larger samples and eliminate it, so that the target category of the final sample is 
not too unbalanced. Commonly used methods include random undersampling 
and Tomek Links, in which Tomek Links first finds two contrast class samples 
with very close indicators, and then removes the one with higher proportion of 
labels in such samples. This kind of algorithm can provide a very good decision 
boundary for the classifier.

• Oversampling. It mainly recombines the categories with fewer samples to 
construct new samples. Commonly used methods include random oversampling 
and SMOTE algorithm. SMOTE algorithm does not simply copy existing data, 
but generates new data based on the original data by using the algorithm. The 
schematic diagram of undersampling and oversampling is shown in Fig. 2.5.



32 2 Problem Modeling

Fig. 2.5 Undersampling and Oversampling 

2.2.3 Application Scenarios 

So, in what scenarios do you need to deal with the imbalance of the sample? The 
following gives some specific scenarios to help participants better deal with such 
problems.

• If the competition task has a particularly large demand for recall, or the prediction 
of each positive sample is far more important than the prediction of negative 
samples, then it is difficult to obtain better modeling results if no measures are 
taken at this time.

• If the evaluation index of the competition is AUC, then the participants will find 
in the actual contest process that the difference between processing and not 
processing the sample imbalance problem is not a big concern. But it is also 
like a fluctuation of a parameter. After combining the processed results with the 
unprocessed results, the evaluation index is generally slightly improved.

• If positive samples and negative samples are of the same significance or value in 
the competition task—that is, it is equally important to predict a positive sample 
correctly and predict a negative sample correctly—then it does not really matter if 
you do not do anything else at all. 

2.3 Offline Evaluation Strategy 

Usually in data competitions, participants cannot use all the data for training models, 
because doing so will result in no data set for offline verification of the effect of the 
model, and then will make it impossible to evaluate the prediction effect of the 
model. In order to solve this problem, it is necessary to consider how to slice the data 
and build a suitable offline verification set. For different types of problems, different 
offline verification methods are needed. This book roughly divides these problems 
into two types - strong time sequence and weak time sequence, and then determines 
the offline verification methods.
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Fig. 2.6 Time Series Segmentation Verification 

2.3.1 Strong Time Sequence Problems 

For the contest questions with obvious time series factors, it can be regarded as a 
strong timing problem, that is, the time of online data is after that of the offline data 
set. In this case, the data closest to the testing set in time can be used as the 
verification set, and the time range of the verification set is after the training set. 
Figure 2.6 is the time series segmentation verification method. 

For example, in the "Passenger Car Retail Volume Forecast" competition on the 
Tianchi platform, the preliminary competition provides Yancheng sales configura-
tion data of different types of cars from January 2012 to October 2017, requiring 
participants to predict Yancheng sales data for November 2017 for each type of car. 
This is a very obvious problem with time series factors, so we can choose the last 
month of the data set as the verification set, that is, data of 2017 October. 

2.3.2 Weak Time Sequence Problems 

The verification method of this kind of problem is mainly K-fold Cross Validation. 
According to the different values of K, different cross-validation methods will be 
derived, as follows. 

1. When K = 2, this is the simplest K-fold cross validation, that is, 2-fold cross-
validation. At this time, the data set is divided into two parts: D1 and D2. First, D1 
is the training set and D2 is the verification set; then, D2 is the training set and D1 
is the verification set. There are obvious disadvantages in the 2-fold cross 
validation, that is, the selection of the final model and parameters will greatly 
depend on the prior division method of the training set and the verification set. 
For different division methods, the results vary dramatically. 

2. When K = N, that is N-fold cross validation, which is called "Leave-one-out 
Cross Validation". The specific method is to use only one data as the testing set, 
and all other data as the training set, and repeat N times (N is the amount of data in 
the data set). The advantages and disadvantages of this method are obvious. Its 
positive sides are: first, it is not affected by the testing set and training set division



method, because each data has been tested separately; second, it uses N-1 data to 
train the model, and almost all the data is used to ensure that the deviation of the 
model is smaller. At the same time, its negative side is also obvious: that is, the 
computation is tremendous. If the data set is ten million levels, then it needs to be 
trained ten million times. 

3. In order to solve the defects of (1) and (2), we generally take K = 5 or 10 as a  
compromise, which is also the most common offline verification method used. 
For example, when K = 5, as shown in Fig. 2.7, we divide the complete training 
data into five parts, and use four parts of the data to train the model, and the last 
one part to evaluate the quality of the model. Then loop this process over five 
pieces of data in turn, and combine the five evaluation results obtained, such as 
averaging or voting. The following is a common cross-validation code, in which 
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The Verification Set Result 

Fig. 2.7 Five-fold Cross Validation 

the parameter NFOLDS is used to control the number of folds. The specific code 
is as follows: 

from sklearn.model_selection import KFold 
NFOLDS = 5 
folds = KFold(n_splits= NFOLDS, shuffle=True, random_state=2021) 
for trn_idx, val_idx in folds.split(X_train, y_train): 

train_df, train_label = X_train.iloc[trn_idx, :], y_train[trn_idx] 
valid_df, valid_label = X_train.iloc[val_idx, :], y_train[val_idx] 

2.4 Cases in Practice 

As a summary of this chapter, the following will cause readers to apply what they 
have learned in this chapter and conduct a classic Kaggle introductory competition 
actual practice—housing price forecast. The home page of the competition is shown 
in Fig. 2.8. This section includes the understanding of the competition questions and



offline verification. I hope that readers can quickly build a baseline (baseline) and get 
satisfactory results after understanding the content of this chapter, carefully analyz-
ing the business, and improving the offline evaluation work. 
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Fig. 2.8 Home Page of the Competition 

2.4.1 Understanding the Competition Question 

First of all, let’s get familiar with the business background of the next question. This 
contest demands predicting the final cost of housing. There are 79 variables in its 
data set, covering almost all aspects of Ames, Iowa housing. It can be seen that there 
are many factors that affect the cost of housing, as shown in Fig. 2.9. 

Among the above factors affecting housing prices, the followings are the key 
value factors.

• Location. Location is the key to high valuation. For example, being close to large 
business districts and famous schools or close to the city center may contribute to 
a relatively high housing price.

• Shape & Area. The more space and rooms a house has, and the more land a 
house occupies, the higher the valuation of it.

• Internal Structure. The latest utilities and add-ons (such as garages) are highly 
desirable factors influencing value.



36 2 Problem Modeling
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Fig. 2.9 Factors Affecting Housing Prices 

These preliminary understanding and business analysis are of great help to 
Chap. 4. Next, we will import the data and observe the basic information of the 
data to get a basic understanding, which will play a key role in the data 
preprocessing, feature extraction and so on afterwards. 

First, import the basic modules: 

import numpy as np 
import pandas as pd 
from sklearn.model_selection import KFold 
from sklearn.metrics import mean_squared_error 
from sklearn.preprocessing import OneHotEncoder 
import lightgbm as lgb 

Next, load the data: 

train = pd.read_csv('train.csv') 
test = pd.read_csv('test.csv') 

Then, look at the basic information of the data: 

train.describe() 

Finally, implement the basic processing of the data:



2.4 Cases in Practice 37

all_data = pd.concat((train,test)) 
all_data = pd.get_dummies(all_data) 
# Fill in missing values 
all_data = all_data.fillna(all_data.mean()) 
# Data splitting 
X_train = all_data[:train.shape[0]] 
X_test = all_data[train.shape[0]:] 
y = train.SalePrice 

This question uses the mean squared error as the evaluation index, and its 
calculation method is as formula (2.11): 

MSE y, y0ð Þ= 
1 
m 

n 

i= 1 

yi - y0 i 
2 ð2:11Þ 

2.4.2 Offline Verification 

The verification code is as follows: 

# K-fold cross validation 
from sklearn.model_selection import KFold 
folds = KFold(n_splits= 5, shuffle=True, random_state=2021) 

# model parameters 
params = {'num_leaves': 63, 'min_child_samples': 50, 

'objective': 'regression', 
'learning_rate':0.01,'boosting_type': 'gbdt', 'metric':'rmse'} 
for trn_idx, val_idx in folds.split(X_train, y): 

trn_df, trn_label = X_train.iloc[trn_idx, :], y[trn_idx] 
val_df, val_label = X_train.iloc[val_idx, :], y[val_idx] 
dtrn = lgb.Dataset(trn_df, label = trn_label) 
dval = lgb.Dataset(val_df, label = val_label) 
bst = lgb.train(params,dtrn, num_boost_round=1000, 

valid_sets=[dtrn, dval], 
early_stopping_rounds=100, verbose_eval=100) 

At this point, we have completed the basic problem modeling. We not only have a 
preliminary understanding of the problem, but also set up a baseline, which can 
quickly feed the prediction results back. Continuous optimization of the model based 
on the preliminary results is the important work afterwards. In the following 
chapters, we will take you to explore the data, discover the characteristics of the 
data, and acquire more useful information from them.
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2.5 Thinking Exercises 

1. Can the multi-classification problem be treated as a regression problem? What are 
the requirements for category labeling? 

2. At present, all the existing evaluation indexes are given. How can the loss 
function of these evaluation indexes (classification indexes and regression 
indexes) be realized? 

3. When solving the problem of unbalanced distribution of samples, try to use codes 
to implement sample weighting, category weighting, and sampling algorithm, 
and compare the score changes before and after the use of weights. 

4. When sampling unbalanced data sets, will it affect the independent identical 
distribution relationship between training sets and testing sets? 

5. When performing K-fold cross validation, is the larger the K value, the better? 
6. In most cases, we will choose to use K-fold cross validation, so why can K-fold 

cross validation help improve the effect?



Chapter 3 
Data Exploration 

Data exploration is one of the core modules of the competition. It runs through the 
competition and is also the key to the victory of many competitions. So, what is data 
exploration? What problems can be solved? First of all, three points should be made 
clear: that is, how to ensure that you are ready to use the algorithm model for the 
competition, how to choose the most appropriate algorithm for the data set, and how 
to define the characteristic variables that can be used for the algorithm model. 

Data exploration can help answer the above three questions and guarantee the 
best results of the competition. It is a way to summarize, visualize, and familiarize 
yourself with the important features of the data set. In general, data exploration can 
be divided into three parts: the first is pre-competition data exploration (i.e. data 
preliminary exploration), which helps us obtain a holistic understanding of the data 
and discover the problems existing in the data, such as missing values, outliers, and 
data redundancy, etc.; the second is data exploration during the competition, which 
discovers the characteristics of variables through analysis of data and helps extract 
valuable features, when it is possible to analyze from univariate, multivariate, and 
variable distribution; the last part is the analysis of the model, which can be divided 
into feature importance analysis and result error analysis, enabling us to find 
problems from the results and further optimize them. 

Data exploration is useful for us to find some features of the data, the correlation 
between the data, and is helpful for subsequent feature construction. This chapter 
will explain data exploration in combination with real competition cases. 

3.1 Preliminary Data Exploration 

Data preliminary exploration can be regarded as pre-competition data exploration, 
which mainly includes analysis ideas, analysis methods, and clear purposes. 
Through systematic exploration, we can deepen our comprehension of data. 
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3.1.1 Analytical Thinking 

In a real contest, it is best to use a variety of exploration ideas and methods to explore 
each variable and compare the results. After fully understanding the data set, you can 
enter the data preprocessing stage and feature extraction stage to convert the data set 
according to the desired business results. The goal of this step is to make sure that the 
data set is ready to be applied to machine learning algorithms. 

3.1.2 Analysis Methods 

The analysis of data exploration mainly adopts the following methods.

• Univariate visual analysis: providing summary statistics for each field in the raw 
data set.

• Multivariate visual analysis: used to understand the interaction between differ-
ent variables.

• Reduced-dimension analysis: making it easier to find the fields with the largest 
variance between characteristic variables in the data and meanwhile reducing the 
data dimension while retaining the maximum amount of information. 

By applying these methods, we can verify our assumptions in the competition and 
determine the direction of attempt in order to understand the problem and select the 
model and verify whether the data is generated as expected. Therefore, the distribu-
tion of each variable can be checked, some missing values can be defined, and finally 
possible ways to replace them can be found. 

3.1.3 Purpose Clarification 

It would be an irrational decision to skip the data exploration stage in a competition. 
Due to the rush to enter the algorithm model stage, many players often either omit 
the data exploration process completely or only do a very superficial analysis work. 
This is a very serious and common mistake for most contestants. This kind of 
inconsiderate behavior may lead to skewed data, outliers, and too many missing 
values. For the competition, this will produce some bad results as follows.

• Generate inaccurate models.
• Generate accurate models on wrong data.
• Choose the wrong variable for the model.
• Make use of resources inefficiently, including reconstruction of models. 

Being familiar with the possible negative effects helps us to clarify the main purpose 
of data exploration. First, data exploration is used to answer questions, test business



assumptions, and generate assumptions for further analysis. Second, you can also 
use data exploration to prepare the modeling data. The two have one thing in 
common, which is to give you a good understanding of your data, either getting 
the answers you need, or developing an intuition to explain the results of future 
modeling. 
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The purpose of data exploration is further visualized. The following are seven 
things that must be made clear in the data exploration phase. 

1. Basic information of data set: for example, how big the data is and what type 
each field is. 

2. Duplicate values, missing values, and outliers: whether removing duplicate 
values and missing values is serious, whether missing values have special 
meanings, and how outliers are to be discovered. 

3. Whether there is redundancy between features: For example, if the unit of 
height is expressed in both cm and m, this is redundancy. We can find redundant 
features through similarity analysis between features. 

4. Whether there is time information: When there is time information, analysis of 
correlation, trend, periodicity, and outliers is usually carried out, and potential 
data penetration problems may also be involved. 

5. Label distribution: For classification problems, make sure whether there is an 
uneven distribution of categories. For regression problems, make clear whether 
there are outliers, how the overall distribution is, and whether target transforma-
tion is needed. 

6. Distribution of training set and testing set: whether there are many feature 
fields in the testing set that do not exist in the training set. 

7. Univariate/Multivariate distribution: to be familiar with the distribution of 
features and the relationship between features and labels. 

When we have known why we need to conduct data exploration and understood the 
things that must be clear in data exploration, data exploration will become more 
purposeful. 

To start exploring the data, you first need to import the basic library, and then load 
the given data set. You may already know how to do this, but do not know where to 
start. Thanks to the pandas library for making it become a very simple task. First, 
import the package as pd, then use the read_csv () function, and pass the path and 
parameters where the data is to the function. The parameters involved can be used to 
ensure that the function can read the data correctly, and the first row of the data will 
not be interpreted as the column name of the data. 

One of the most basic steps in data exploration is to obtain a basic description of 
the data, and to acquire a basic sense of the data by getting a basic description of the 
data. The following methods are used to help us understand the data.

• DataFrame.describe(): View the basic distribution of data. Specifically, statis-
tics is carried out on each column of data; statistical values include frequency, 
mean, variance, minimum, percentiles, maximum, etc. It helps us quickly under-
stand the data distribution and find outliers and other information.



• DataFrame.head (): You can load the first five rows of the dataset directly.
• DataFrame.shape: Get the row and column situation of the data set.
• DataFrane.info (): You can quickly get a simple description of the dataset, such 

as the type of each variable, the size of the dataset, and missing values. 

The methods listed above can help us understand the basic information of the data. 
Next, we will show the powerful functions of these methods through specific 
operations. First, the situation of nunique and missing values is shown in a piece 
of code here: 
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72 

Feature Unique_values Percentage of missing values Percentage of values in the biggest category type 

PoolQC 3 99.520548 99.520548 object 

74 MiscFeature 4 96.301370 96.301370 object 

6 Alley 2 93.767123 93.767123 object 

73 Fence 4 80.753425 80.753425 object 

57 FireplaceQu 5 47.260274 47.260274 object 

3 LotFrontage 110 17.739726 17.739726 float64 

59 GarageYrBlt 97 5.547945 5.547945 float64 

64 GarageCond 5 5.547945 90.821918 object 

58 GarageType 6 5.547945 59.589041 object 

60 GarageFinish 3 5.547945 41.438356 object 

Fig. 3.1 Basic Distribution of Data 

stats = [] 
for col in train.columns: 

stats.append((col, train[col].nunique(), 
train[col].isnull().sum() * 100 / train.shape[0], 
train[col].value_counts(normalize=True, 
dropna=False).values[0] * 100, train[col].dtype)) 

stats_df = pd.DataFrame(stats, columns=['Feature', 'Unique_values', 
'Percentage of missing values', 
'Percentage of values in the biggest category', 'type']) 

stats_df.sort_values('Percentage of missing values', ascending= 
False)[:10] 

Figure 3.1 shows the basic information of the data generated by the above code. 
We find special variables from it for detailed analysis. Here we select variables with 
low nunique values and more missing values for observation. Generally, if nunique 
is 1, it does not have any meaning. It means that all values are the same, and there is 
no distinction, so it needs to be deleted. It can be found that some variables have 
many missing values, such as the missing proportion reaching more than 95% when 
we can consider deleting them. 

As shown in Fig. 3.2, the histogram can be used to demonstrate the distribution of 
missing values of variables more intuitively. The following is the specific generation 
code for the visualization map of missing values of variables:

http://datafrane.info
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Fig. 3.2 Distribution of Missing Values of Variables 

missing = train.isnull().sum() 
missing = missing[missing > 0] 
missing.sort_values(inplace=True) 
missing.plot.bar() 

3.2 Variable Analysis 

Next, we will conduct a more detailed analysis, not only for each variable, but also to 
analyze the relationship between variables and the correlation between variables and 
labels, as well as to conduct hypothesis tests to help us extract useful features. 

3.2.1 Univariate Analysis 

Univariate can be divided into label, continuous type, and category type.
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3.2.1.1 Labels 

There is no doubt that labels are the most important variable and the goal pursued by 
a competition. We should first observe the distribution of labels. For housing price 
forecast, the label SalePrice is a continuous variable. The basic description of this 
label is shown in Fig. 3.3. 

The basic information generation code is as follows: 

train['SalePrice'].describe() 

In Fig. 3.3, SalePrice looks pretty normal. Next, let's take a more detailed look at 
the distribution of SalePrice in a visual way. The relevant code is as follows: 

plt.figure(figsize=(9, 8)) 
sns.distplot(train['SalePrice'], color='g', bins=100, hist_kws= 
{'alpha': 0.4}) 

The obtained results are shown in Fig. 3.4. 
As you can see in Fig. 3.4, SalePrice has a deviation from the normal distribution, 

belongs to the right skewed type, and has a peak state, and some outliers of it are 
more than 500,000. We will eventually find a way to remove these outliers and come 
up with variables that can make the algorithm model learn well and conform to the 
normal distribution. The following code will perform a logarithmic conversion of 
SalePrice and generate a visual diagram. The conversion result is shown in Fig. 3.5: 

plt.figure(figsize=(9, 8)) 
sns.distplot(np.log(train['SalePrice']), color='b', bins=100, 
hist_kws={'alpha': 0.4}) 

3.2.1.2 Continuous Type 

Here we can first observe the basic distribution of continuous variables, as shown in 
Fig. 3.6. 

Fig. 3.3 Basic Description 
of the Label SalePrice 

count 
mean 
std 
min 
25% 
50% 
75% 
mas 

1460.000000 
180921.195890 
79442.502883 
34900.000000 

129975.000000 
163000.000000 
214000.000000 
755000.000000 

Name: SalePrice, dtype: float64
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Fig. 3.4 Distribution of SalePrice 

Similar to the way labels are viewed, histograms are mainly used here to observe 
the distribution of values, the frequency of occurrence of each value, etc. The 
following is the generation code for the distribution visualization diagram of con-
tinuous variables: 

df_num = train.select_dtypes(include = ['float64', 'int64']) 
df_num = df_num[df_num.columns.tolist()[1:5]] 
df_num.hist(figsize=(16, 20), bins=50, xlabelsize=8, ylabelsize=8) 

Next, a more scientific analysis is brought off, starting with correlation analysis. It 
is worth noticing that correlation analysis can only compare numerical features, so 
for letter or string features, you need to encode them first and convert them into 
numerical values before you can see what correlation there is between the features. 
In actual competitions, correlation analysis can well filter out features that are not 
directly related to labels, and this method can help achieve good results in many 
competitions. 

When we look at a visual chart of correlation analysis, we need to understand 
what the diagram represents and what information can be obtained from it. Please 
first learn the most basic concepts: positively correlated to and negatively correlated 
to.



46 3 Data Exploration

0.0 
10.5 11.0 11.5 12.0 

SalePrice 

12.5 13.0 13.5 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

Fig. 3.5 Logarithmic Conversion of SalePrice 
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Fig. 3.6 Distribution of Continuous Variables



• Positively correlated to: If an increase in one feature causes an increase in 
another, they are positively correlated. The value 1 indicates perfect positive 
correlation.

• Negative correlated to: If an increase in one feature causes a decrease in another, 
they are negatively correlated. The value - 1 implies a perfect negative 
correlation.
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Now suppose that feature A and feature B are completely positively correlated to 
each other, which means that the two features contain highly similar information 
with little or no difference in the information. This is called multiple linear for the 
two features contain almost the same information. 

When building or training models, if you use these two features at the same time, 
then one of them may be redundant. We should try to eliminate redundant features as 
much as possible, because it will make the training time longer and some other 
advantages will disappear. The following code is used to generate a similarity matrix 
diagram related to SalePrice: 

corrmat = train.corr() 
f, ax = plt.subplots(figsize=(20, 9)) 
sns.heatmap(corrmat, vmax=0.8, square=True) 

The similarity matrix diagram generated is shown in Fig. 3.7, from which vari-
ables with strong correlation to housing prices can be found. Among them, 
OverallQual (the general evaluation), GarageCars (garages), TotalBsmtSF (base-
ment area), GrLivArea (living area), and other characteristics are positively corre-
lated to SalePrice, which is also very consistent with our business intuition. From the 
similarity matrix, not only the relationship between housing price and variables, but 
also the relationship between variables can be found, so how to use the similarity 
matrix for analysis becomes the key point. 

3.2.1.3 Category Type 

As known to all, the purpose of data exploration is to help us understand data and 
build effective features. For example, if we find a feature that has a strong correlation 
with a label, then we can make a series of extensions around this strong correlation 
feature, specifically, cross-combinations such as strong correlation plus weak corre-
lation, strong correlation plus strong correlation, etc., to find out potential informa-
tion in higher dimensions. 

First, please observe the basic distribution of category variables, that is, the 
frequency of observing each attribute. According to the frequency, we can not 
only quickly find hot attributes and attributes that appear rarely, but also further 
analyze the reasons for this situation. For example, Taobao, often referred to as 
“Amazon of China”, has more female users than male users, which is mainly due to 
the platform's strong influence in the clothing and beauty business. This is from a



business perspective, and of course it may also be the reason for data sampling. The 
distribution of some category-based variables is visualized as shown in Fig. 3.8. 
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Fig. 3.7 Similarity Matrix (see also the color illustration) 

3.2.2 Multivariate Analysis 

Univariate analysis is too simple to dig out the internal connections between vari-
ables and obtain more fine-grained information, so multivariate analysis has become 
a must. Analyzing the relationship between characteristic variables helps to build 
better features while reducing the probability of building redundant features. Here 
we will select the characteristic variables that need special attention in this compe-
tition question for analysis. 

From the above similarity matrix, we have learnt that housing evaluation is 
positively correlated to SalePrice. Now please further expand the analysis to con-
sider whether there is a certain relationship between housing evaluation and housing 
location. Next, we will show the connection between the two visually. The specific 
implementation code is as follows:



plt.style.use('seaborn-white') 
type_cluster = train.groupby(['Neighborhood','OverallQual']).size() 
type_cluster.unstack().plot(kind='bar',stacked=True, colormap= 
'PuBu', figsize=(13,11), 
grid=False) 
plt.xlabel('OverallQual', fontsize=16) 
plt.show() 
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Fig. 3.8 Basic Distribution of Category Variables 

Figure 3.9 shows a bar chart of the evaluation distribution of different housing 
locations. We can find that the darker the color, the higher the evaluation. NoRidge, 
NridgHt, and StoneBr all have good evaluation. 

By looking at Fig. 3.10, we can further see what the SalePrice of houses in 
different locations is. 

Completely in line with our intuition, high-rated locations (NoRidge, NridgHt, 
and StoneBr) correspond to high SalePrice, which also indicates that housing 
location evaluation has a relatively strong correlation with housing price. In addition 
to proving that the original feature is strongly related to SalePrice through such 
analysis, how can new features be constructed through analysis? 

Since the combination of housing location and housing evaluation can lead to 
houses with higher selling prices, we can construct the cross-combination features of 
these two categories of features to make a more detailed description, and we can also 
construct the average housing price under this combination feature and so on.
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Fig. 3.9 Bar Chart of Evaluation Distribution of Different Housing Locations 

Fig. 3.10 SalePrice Box Diagram Corresponding to Different Housing Locations
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3.3 Model Analysis 

3.3.1 Learning Curve 

The learning curve is a widely used effect evaluation tool in machine learning. It can 
reflect the score changes of the training set and verification set in the training 
iteration and can help us quickly comprehend the learning effect of the model. We 
can observe whether the model is overfitting through the learning curve, so as to 
determine how to improve the model by judging the degree of fitting. 

A learning curve is widely applied in model evaluation in machine learning, and 
the model will gradually learn (optimize its internal parameters) along with the 
training iteration, such as neural network models. At this time, the indicators used 
to evaluate learning may be maximized (classification precision) or minimized 
(regression error), which also means that higher scores indicate more information 
learned, and lower scores mean less information acquired. Next, please look at some 
common shapes observed in the learning curve diagram. 

3.3.1.1 Underfitting Learning Curve 

Underfitting means that the model cannot learn the information presented by the data 
in the training set. Here, the learning curve of the training loss can be used to 
determine whether underfitting occurs. Under normal circumstances, the underfitting 
learning curve may be a flat line or has a relatively high loss, which indicates that the 
model cannot learn the training set at all. 

Figure 3.11 shows two common types of underfitting learning curves. The left 
figure shows that the fitting ability of the model is insufficient, and the figure on the 
right shows that it needs to reduce loss through further training. 
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Fig. 3.11 Underfitting Learning Curve (see also the color illustration)
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3.3.1.2 Overfitting Learning Curve 

Overfitting means that the model learns well from the training set, including statis-
tical noise or random fluctuations in the training set. The problem with overfitting 
lies in the more specialized the model is to the training data, the worse its general-
ization ability to the new data will be, which will lead to an increase in generalization 
error. The increase in generalization error can be measured by the performance of the 
model on the verification set. This often happens if the capacity of the model exceeds 
the capacity required by the problem and there is too much flexibility. This also 
happens if the model takes too long to train. 

As shown in Fig. 3.12, the left figure shows the overfitting learning curve. It can 
be seen that the verification set loss curve starts to increase after it decreases to a 
point, while the training set loss keeps decreasing. The right figure is a normal 
learning curve; there is neither underfitting nor overfitting. The loss of both the 
training set and the verification set can be reduced to a stable point, and the 
difference between the two final loss values is very small, from which it can be 
determined that the degree of fitting is good. 

3.3.2 Feature Importance Analysis 

Feature importance can be obtained through model training. For tree models (such as 
LightGBM and XGBoost), the importance score of the feature is obtained by 
calculating the information gain or the number of splits of the feature. For model 
LR and SVM, the feature coefficient is used as the feature importance score. Take 
LR as an example, each feature corresponds to a feature coefficient w; the larger the 
w, the greater the influence of the feature on the model prediction results, and the 
more significant the feature can be considered. We assume that the feature impor-
tance score and feature coefficient w are both used to measure the importance of 
features in the model and can play their role in feature selection. 
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Fig. 3.13 Feature Coefficients in Lasso Model Training 

The analysis of the importance of features can be used for business understand-
ing. Some strange features play a key role in the model and can help us better learn 
business operations. At the same time, if some features are unconventional, then we 
can also see that they may be overfitting features, etc. Figure 3.13 is the coefficient of 
each feature in the Lasso model training. It can be seen that there are both features 
with high coefficient and features with positive and negative correlation. 

In Fig. 3.13, the feature that has the highest positive correlation to SalePrice is the 
GrLivArea (housing area), which is very intuitive to us. The larger the housing area, 
the higher the selling price. There are also some location features, such as Street 
StoneBr, NridgHt and NoRidge, which also play a positive role. Of course, there are 
also many negative features. These negative features are meaningless and can 
usually be eliminated directly. 

3.3.3 Error Analysis 

Error analysis is the key to pinpointing problems through model prediction results. 
Broadly speaking, in regression problems, we look at the distribution of prediction 
results, while in classification problems, we look at confusion matrices, etc. This can



help us find out which samples or types of samples the model does not predict well 
enough to cause inaccurate results, then we can analyze the possible factors that 
cause the result errors, and finally correct the training data and models. 
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In real problems, error analysis becomes more detailed. For example, in a binary 
classification task of user default estimation, there are 200 wrong classification 
samples in the verification set result. Further analysis shows that 70% of the 
wrong classification samples are misjudgments caused by a large number of missing 
features. At this time, adjustments are needed. Not only can the prediction ability of 
the model be enhanced by creating more feature information that can describe these 
misjudgment samples, but also these misjudgment samples can be given higher 
weights in model training. 

3.4 Thinking Exercises 

1. This chapter only draws visual maps of some variables. Please try to draw 
distribution maps of other variables and observe them. 

2. There are many types of charts for data visualization, so it becomes difficult to 
choose charts that are suitable for certain data features or analysis objectives. This 
includes different analysis objectives such as trend analysis, multi-class compar-
ison, data connection, data distribution, etc. You can try to summarize the data 
characteristics and goals displayed by different charts. 

3. How can we draw the image of a confusion matrix? How can we locate the 
category with high error?



Chapter 4 
Feature Engineering 

In this chapter, we will introduce to you the key part in the algorithm competition 
that has the heaviest workload and that determines whether the contestants can get a 
good ranking—feature engineering. Andrew Ng once mentioned in his CS229 
machine learning course at Stanford University that machine learning was mostly 
feature engineering; features determined the upper limit of the prediction effect of 
machine learning, and the algorithm just kept approaching this upper limit. This 
shows the significance of feature engineering. Basically, participants will spend 80% 
of their time and energy on building feature engineering. During the application of 
machine learning, feature engineering is what between data and algorithms. Feature 
engineering is to transform the original data source into features, which in turn 
enable us to characterize samples from a variety of new dimensions. Features can 
better describe potential problems to the prediction model, thereby improving the 
accuracy of the model's predictive analysis of unseen data. High-quality features 
help to improve the generalization performance of the model as a whole, and features 
are largely associated with basic problems. Feature engineering is both a science and 
a fun art, which is why data scientists spend a lot of their time on data preparation 
before modeling while enjoying it. 

Feature engineering is mainly divided into four parts: data preprocessing, feature 
transformation, feature extraction, and feature selection. In this chapter, we will also 
introduce the corresponding work of feature engineering from these four parts, and at 
the same time give the using skills and application codes. 

4.1 Data Preprocessing 

In the algorithm competition, the data set we get may contain a large number of 
errors and omissions, either because of manual entry errors resulting in the existence 
of abnormal points that make the data “dirty”, or some sample information not able 
to be collected in practice. These errors and omissions information is very
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unfavorable to model training, and thus will make it impossible for models to learn 
more accurate rules from the data set. So, in most cases, the initial data is basically 
not directly used for model training, or even if it is used, you can only get a relatively 
bad result. If the data provided by the organizer is good enough, then the contestants 
are really very happy. The quality of the data directly determines the accuracy and 
generalization ability of the model, and at the same time affects its smoothness 
during feature construction. Therefore, in the case of the low quality of the data 
provided by the competition, it is necessary to preprocess the data and process all 
kinds of dirty data in a corresponding way, so as to obtain standard, clean, contin-
uous data for data statistics, data mining, etc. At the same time, we should also try to 
deal with the missing values depending on the situation, such as whether it needs to 
be filled, and if so, whether the mean or median should be filled, and so on. In 
addition, the data provided by some competitions and the corresponding storage 
methods may require more memory than the participants' own hardware conditions, 
so it is necessary to carry out certain memory optimization, which is also helpful for 
operation on larger data sets with limited memory space.
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4.1.1 Processing Missing Values 

No matter in competitions or in dealing with practical problems, it is often encoun-
tered that data sets have data missing. For example, information cannot be collected, 
the system fails, or users refuse to share their information, resulting in data missing. 
In the face of data missing problems, in addition to algorithms such as XGBoost and 
LightGBM that can directly handle missing values during training, many other 
algorithms (such as LR, DNN, CNN, RNN, etc.) cannot directly approach the 
problem of missing values. In the data preparation stage, it takes more time to 
cope with the trouble than in the algorithm construction stage, because operations 
such as filling in missing values need to be handled carefully to avoid errors in the 
processing process and prevent the model training effect from being influenced. 

4.1.1.1 Distinguishing Missing Values 

First, participants need to find the manifestation of missing values. In addition to 
None, NA, and NaN, missing values also include other special values used to 
represent missing numerical values, such as missing values filled with -1  or -
999. There is also a kind of business that looks like a missing value, but has practical 
significance, which requires special way to handle. For example, users who do not 
fill in the “marital status” item may be more sensitive to their privacy and should be 
set to a separate category, such as using the value 1 to indicate married, the value 0 to 
indicate unmarried, and the value -1 to indicate unfilled; users who do not fill in the 
“driving experience” item may not have a car, so it is reasonable to fill it with 
0. When the missing values are found, they need to be filled reasonably according to



the information that the missing values may contain in different application 
scenarios. 
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4.1.1.2 Processing Method 

Data missing can be divided into loss of category features and loss of numerical 
value features, and their filling methods are quite different. For the case of missing 
category features, a new category is usually filled, which can be 0, -1, negative 
infinity, etc. For the loss of numerical value features, the most basic method is filling 
means, but this method is more sensitive to outliers, so you can choose to fill in 
medians, because this method is not sensitive to outliers. In addition, when filling 
data, be sure to consider whether the selected filling method will affect the accuracy 
of the data. A summary of the filling method is as follows.

• For category features: you can choose the most common type of filling method, 
namely filling the modal number; or directly fill in a new category, such as 0,-1, 
negative infinity.

• For numerical value features: you can fill in the average, median, modal 
number, maximum, minimum, etc. Which statistical value to choose requires 
specific analysis of specific problems.

• For ordered data (such as time series): you can populate adjacent values next or 
previous.

• Model predictive filling: Ordinary filling is only the normal state of a result and 
does not consider the influence of the interaction between other features. The 
column containing the missing value can be modeled and the result of the missing 
value can be predicted. Although this method is more complex, the final result is 
intuitively better than what could be achieved through direct filling, but the effect 
in actual competitions needs to be specifically tested. 

4.1.2 Dealing with Outliers 

In real data, it is often found that after one or some fields (features) are sorted 
according to a certain variable (such as the time in the time series problem); it could 
be observed that some values are much higher or lower than other values within a 
certain range. There are also some unnormal situations, such as the age of being 0 or 
more than 100 among ad clickers. We can regard all these as outliers, and their 
existence may have a negative effect on the performance of the algorithm.
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4.1.2.1 Looking for Outliers 

Before dealing with outliers, we first need to find outliers. Here we summarize two 
commonly used methods for outliers of numerical features. 

The first method is to find outliers through visual analysis. Simply using scatter 
plots, we can clearly observe the existence of outliers. Points that deviate seriously 
from dense areas can be treated as outliers, as shown in Fig. 4.1. 

The second is to find outliers through simple statistical analysis, that is, to judge 
whether there are abnormalities in the data according to basic statistical methods. For 
example, quartile interval, extreme difference, average deviation, standard deviation, 
etc. This method is suitable for mining numerical data of single variables, as shown 
in Fig. 4.2. 
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Extended Thinking 
Discrete outliers (all values outside the definition range of discrete attributes 
are outliers), knowledge-based outliers (e.g. height 10 m), etc. can be treated as 
category missing values. 

4.1.2.2 Coping with Outliers

• Delete records containing outliers. This approach has the advantage of elimi-
nating the uncertainty caused by samples containing outliers but has the disad-
vantage of reducing the sample size.

• Regarding outliers as missing values. Treat outliers as missing values and use 
the method of missing value processing to process them. This method has the 
advantage of centralizing outliers into one category and increasing the availability 
of data; the disadvantage is that confusing outliers with missing values will affect 
the accuracy of data.

• Average values (medians) correction. The outlier can be corrected using the 
average value corresponding to the same category, with the same advantages and 
disadvantages as “regarding outliers as missing values”.

• Do not process. Data mining is performed directly on data sets with outliers. The 
effectiveness of this method depends on the source of the outlier. If the outlier is 
caused by an input error, it will have a negative impact on the effectiveness of 
data mining. If the outlier is only a record of the real situation, direct data mining 
can retain the most authentic information. 

4.1.3 Optimizing Memory 

In competitions related to machine learning, the data involved in the competition 
questions is often large, and the participants' own computer hardware conditions are 
limited, so there are often memory errors in the code due to insufficient memory, 
which brings troubles to the participants. Therefore, it is necessary to introduce some 
methods that help optimize memory and run the code to the maximum. Here we will 
introduce two common methods of Python—memory recycling mechanism and 
numerical type optimization.

• Memory recycling mechanism. In Python's memory recycling mechanism, the 
gc module mainly uses “referencing counting” to track and recycle garbage. On 
the basis of referencing counting, it can also solve the problem of circular 
references that may be generated by container objects through “mark sweep”, 
and further improve the efficiency of garbage recycling by “intergenerational 
recycling” to exchange space for time. In general, when we delete some variables, 
we use gc.collect () to free up memory.
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• Numerical type optimization. The data storage formats commonly used in 
competitions are csv and txt, which need to be read as tabular data, namely 
DataFrame format, when processing. This requires the use of pandas toolkit for 
operations; pandas can represent numerical data as NumPy arrays at the bottom 
and make them continuously stored in memory. This storage method not only 
consumes less space, but also allows us to quickly access data. Because pandas 
use the same number of bytes to represent each value of the same type, and the 
NumPy array stores the number of these values, pandas can quickly and accu-
rately return the number of bytes consumed by columns of numeric value types. 

Many data types in pandas have multiple subtypes, and they can use fewer bytes to 
represent different data. For example, float types have subtypes such as float16, 
float32, and float64. The numeric part of these type names indicates how many bits 
this type uses to represent data. An int8 data type uses 1B (8bit) to store a value, 
which can represent 256 (28 ) binary values, which means that we can use this 
subtype to act as values between -128 and 127 (including 0). 

We can use np.iinfo class to confirm the minimum and maximum values of each 
int subtype. The code is as follows: 

import numpy as np 
np.iinfo(np.int8).min 
np.iinfo(np.int8).max 

Then, we can judge the subtype to which the feature belongs by selecting the 
minimum value and maximum value of the features in a column. The code is as 
follows: 

c_min = df[col].min() 
c_max = df[col].max() 
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: 

df[col] = df[col].astype(np.int8) 

In addition, without affecting the generalization performance of the model, for 
category variables, if the number of encoded IDs is large, extremely discontinuous, 
and there are relatively fewer types, they can be encoded from 0 again (natural 
number coding), which can also reduce the memory occupancy of variables. For 
numerical variables, memory occupancy is often excessive due to floating-point 
numbers. It can be considered to normalize the minimum and maximum values first, 
then multiply them by 100, 1000, etc., and then round them up. This not only can 
retain the size relationship between the same variables, but also greatly reduce 
memory occupancy.
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4.2 Feature Transformation 

After the data preprocessing is completed, sometimes the contestants need to make 
some numerical transformations on the features, and in the real world competition, 
many original features cannot be directly used, so some adjustments need to be made 
to help the contestants better construct the features. 

4.2.1 Non-dimensionalization Processing of Continuous 
Variables 

Non-dimensionalization refers to the conversion of data of different specifications to 
the same specification. Common non-dimensional processing methods include stan-
dardization and interval scaling method. The premise of standardization is that the 
eigenvalues obey the normal distribution. After standardization, the eigenvalues 
obey the standard normal distribution. The interval scaling method uses boundary 
value information to scale the value interval of features to a specific range, such as 
[0, 1]. 

Single feature transformation is the key to building some models (such as linear 
regression, KNN, and neural networks), and has no effect on models related to 
decision trees. This is also one of the reasons why the decision tree and all its derived 
algorithms (random forest, gradient boost) are becoming increasingly popular. There 
are also some purely engineering reasons, that is, when regression prediction is 
made, logarithmic processing of the target can not only reduce the data range, but 
also compress the variable scale to make the data more stable. This conversion 
method is only a special case, usually driven by the desire to adapt the data set to the 
requirements of the algorithm. 

However, data requirements are not only imposed by parameterization methods. 
If features are not normalized, for example, when the distribution of one feature is 
located near 0 and the range does not exceed (-1,1), while the distribution range of 
another feature can reach the order of magnitudes of hundreds of thousands, it will 
cause features whose distribution is located near 0 to become completely useless. 

Here is a simple example: suppose the task is to predict the cost of apartments 
based on two variables: the number of rooms and the distance to the city center. The 
number of apartments rarely exceeds 5, and the distance to the city center can easily 
reach several kilometers. At this moment, it is not possible to use models such as 
linear regression or KNN, and these two variables need to be normalized.
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• Standardization. The simplest conversion is standardization (or zero—mean 
normalization). Standardization requires calculating the mean and standard devi-
ation of a feature, and its formula is expressed as formula (4.1) where μ is the 
mean and σ is the standard deviation.

x0 = 
x- μ 
σ

ð4:1Þ 

• Interval scaling. There are many ideas for interval scaling. The common one is to 
use two maximum values to scale, so that all points can be scaled within a 
predetermined range, i.e. [0, 1]. The formula for interval scaling is expressed as 
formula (4.2): 

Xnorm = 
X-Xmin 

Xmax -Xmin 
ð4:2Þ 

4.2.2 Data Transformation of Continuous Variables 

4.2.2.1 log Transformation 

Performing log transformation can make the skew data close to the normal distribu-
tion, because most machine learning models cannot handle non-normally distributed 
data well, such as right skewed data. You can apply log (x + 1) conversion to correct 
the skew, where the purpose of adding 1 is to prevent the data from equaling 0 while 
ensuring that x is all positive. Taking logarithms does not change the nature and 
correlation of the data but compresses the scale of variables. Doing so not only 
makes the data more stable, but also weakens the collinearity, heteroscedasticity, etc. 
of the model. 

Extended Learning 
cbox-cox transformation—a method to automatically find the best normal 
distribution transformation function. This method is not commonly used in 
competitions, and readers who are interested in it can learn about it. 

4.2.2.2 Discretization of Continuous Variables 

The discretized features have strong robustness to abnormal data, making it easier to 
explore the correlation of the data. For example, the result of discretizing the age 
feature is: if the age is greater than 30, it is 1; otherwise, it is 0. If this feature is not 
discretized, then an abnormal data “age 300 years old” will cause great interference



to the model. After discretization, we can also cross-combine the features. Com-
monly used discretization is divided into unsupervised type and supervised type. 
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Fig. 4.3 GBDT + LR 
Models

• Unsupervised discretization. The bucketing operation can discretize continuous 
variables and smooth the data at the same time, that is, reduce the influence of 
noise, generally being divided into two bucketing methods: equifrequency and 
isometry.

• Equifrequency. The boundary value of the interval is selected so that each 
interval contains approximately the same number of variable instances. For 
example, if it is divided into 10 intervals, each interval should contain about 
10% of the instances. This bucketing method can transform the data into a 
uniform distribution.

• Isometry. Divide the instances from the minimum to the maximum into N equal 
parts, and the spacing of each part is equal. Only the boundary is considered here, 
and the number of instances per equal part may vary. Isometry can maintain the 
original distribution of the data, and the more intervals, the better the original 
appearance of the data will be.

• Supervised discretization. This type of method has a good ability to distinguish 
between targets. It is commonly applied to return leaf nodes for discretization by 
using the tree model. In the GBDT + LR classic model shown in Fig. 4.3, GDBT 
is used first to convert continuous values into discrete values. The specific method 
is to use all continuous values and label output in the training set to train 
LightGBM, and train two decision trees in total; the first tree has 4 leaf nodes, 
and the second tree has 3 leaf nodes. If a sample falls on the third leaf node of the 
first tree or falls on the first leaf node of the second tree, then its code is 0010 
100, with a total of 7 discrete features, of which there will be two positions with a 
value of 1, corresponding to the position of the sample placement in each tree. 
Eventually we will get num_trees * num_leaves dimensional features.
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4.2.3 Category Feature Transformation 

In real data, features are not always numerical values, but may also be categories. For 
discrete category features, there are generally two situations: natural number 
encoding (features are meaningful) and one-hot encoding (features are meaningless).

• Natural number encoding. A list of meaningful category features (that is, with 
sequential relationships) can be coded with natural numbers, and their relation of 
sequence can be preserved by referring to order of natural numbers. In addition, 
when features are not represented by numbers but by letters or symbols, etc., they 
cannot be directly “fed” into the model as training labels, such as age, education, 
etc. At this time, it is necessary to convert the feature values into numbers first. If 
there are K values in a list of category features, then after natural number coding, 
you can get numbers with values of {0, 1, 2, 3, . . .  , K- 1}, that is, each category 
is assigned with a number. The advantages of doing so are low memory con-
sumption and fast training time. The disadvantage is that some feature informa-
tion may be lost. The following two common ways of encoding natural numbers 
are given.

• Call a Function in sklearn: 

from sklearn import preprocessing 
for f in columns: 
le = preprocessing.LabelEncoder() 
le.fit(data[f])

• Custom Implementation (fast): 

for f in columns: 
data[f] = data[f].fillna(-999) 
data[f] = data[f].map(dict(zip(data[f].unique(), range(0, 

data[f].nunique()))))

• One-hot encoding. When the category feature is meaningless (that is, there is no 
order relationship), you need to use one-hot encoding. For example, 
red > blue > green does not represent anything. After one-hot encoding, the 
value of each feature corresponds to a one-dimensional feature, and the final 
result is a 0~1 matrix with the number of samples × the number of categories. You 
can directly call the API in sklearn.
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4.2.4 Irregular Feature Transformation 

In addition to numerical features and category features, there is another type of 
irregular feature that may contain a lot of information about the sample, such as the 
ID card number. According to the provisions on citizenship ID numbers in the 
“National Standard GB 11643-1999” of the People's Republic of China, the citizen-
ship identification number is a feature combination code, consisting of a 17-digit 
ontology code and a one-digit verification code. The order from left to right is: 
six-digit address code, eight-digit date of birth code, three-digit sequence code and 
one-digit verification code. Among them, the odd number of the sequence code is 
distributed to men and the even number is distributed to women. The verification 
code is a verification code calculated according to ISO 7064:1983. MOD 11-2 
verification code based on the previous 17 digits. Therefore, we can obtain the user's 
birthplace, age, gender, and other information from the ID number. Of course, the ID 
number involves the user's privacy, and it is impossible for the organizer to provide 
this information in the competition, so it is only an example. 

4.3 Feature Extraction 

Machine learning models are difficult to identify complex patterns; it is especially 
difficult to learn information that interacts with different combinations of features, so 
we can create some features based on intuitive analysis of the data set and business 
understanding to help the model learn effectively. We will introduce the feature 
extraction method of structured data below. (Structured data consists of clearly 
defined data types, while unstructured data consists of data that is not easy to search, 
such as audio, video, and pictures.) 

4.3.1 Statistics Features Related to Categories 

Category features can also be called discrete features. In addition to the specific 
meaning of each category attribute, continuous statistical features can also be 
constructed to mine more valuable information, such as constructing features such 
as target coding, count, nunique, and ratio. In addition, it is also possible to construct 
more fine grained features through cross combinations between category features. 

4.3.1.1 Target Coding 

Target coding can be understood as encoding category features with the statistics of 
target variables (labels), that is, supervised feature construction according to target



variables. If it is a classification problem, you can count the number of positive 
samples, the number of negative samples, or the proportion of positive and negative 
samples; if it is a regression problem, then you can count the target mean, median, 
and extreme values. Target coding can be a good substitute for category features or 
as a new feature. 
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Fig. 4.4 Five-fold Cross Statistics Construction Features 

When using target variables, it is very important not to reveal any information 
about the verification set. All features based on the target code should be calculated 
on the training set, and the testing set should be constructed from the complete 
training set. More strictly, when we count the features of the training set, we need to 
use the K-fold cross statistics method to construct the target code features, so as to 
prevent information leakage to the greatest extent. As shown in Fig. 4.4, we divide 
the sample into five parts. For each part of the data, we will use the other four parts to 
calculate the frequency, proportion, or mean value of the target variable 
corresponding to the value of each category. Simply put, the unknown data (one 
part) takes features from the known data (four parts). 

Target coding methods are usually effective for low-cardinality category features, 
but for high-cardinality category features, there may be a risk of over-fitting. 
Because there will be some categories with very low frequency, the statistical results 
are not representative. Generally, we will add smoothness to reduce the risk of over-
fitting. When handled properly, whether it is a linear model or a nonlinear model, 
target coding is the best coding method and feature construction method. In order to 
help you better understand, the five-fold cross statistics is implemented by the 
following code: 

folds = KFold(n_splits=5, shuffle=True, random_state=2020) 
for col in columns: 

colname = col+'_kfold' 
for fold_, (trn_idx, val_idx) in enumerate(folds.split(train, 
train)): 

tmp = train.iloc[trn_idx] 
order_label = tmp.groupby([col])['label'].mean() 
train[colname] = train[col].map(order_label) 

order_label = train.groupby([col])['label'].mean() 
test[colname] = test[col].map(order_label)
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4.3.1.2 count, nunique, ratio 

These three categories are often used to construct category features in competitions. 
The count (counting feature) is used to count the frequency of occurrence of category 
features. The structure of nunique and ratio is relatively complicated, and it often 
involves a joint structure of multiple category features. For example, in the adver-
tisement click-through rate forecast problem, for the user ID and advertisement ID, 
the use of nunique can reflect the range of the user's interest in the advertisement, that 
is, how many kinds of advertisement IDs the user ID has seen; the use of ratio can 
indicate the user's preference level for a certain type of advertisement; that is, the 
ratio of the frequency of user ID clicking on a certain type of advertisement ID to the 
frequency of user clicking on all AD IDs is calculated. Of course, this also applies to 
other problems, such as malicious attacks, anti-fraud, and credit scores, which need 
to construct behavior information or describe distribution information. 

4.3.1.3 Cross Combination Between Category Features 

Cross combinations can describe more fine grained content. Crossover combination 
of category features is a very important task in competitions, so that good nonlinear 
feature fitting can be performed. As shown in Fig. 4.5, user age and user gender can 
be combined into new features such as "age _ gender". Generally, we can combine 
two categories or three category features, also known as second-order combinations 
or third-order combinations. Simply put, it is to perform Cartesian product opera-
tions on two category features to generate new category features. In the real data, 
there may be many category features. If you have 10 category features and consider 
all the second-order cross combinations, you can produce 45 combinations. 

Not all combinations need to be considered. We will analyze from two aspects. 
The first is the business logic. For example, the combination of the user's operating 
system version and the user's city is meaningless. Then there is the cardinality of

Fig. 4.5 Cross 
Combination between 
Category Features



category features. If the cardinality is too large, many categories may appear only 
once. In a round of training, each category will only be trained once. Obviously, the 
confidence level of the weight corresponding to the feature is very low.
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4.3.2 Numerical Correlation of Statistical Features 

The numerical features mentioned here, we think, are continuous, such as housing 
price, sales volume, number of clicks, number of comments, and temperature, etc. 
Unlike category features, the value of a numerical feature is meaningful, and usually 
can be directly “fed” to the model for training without processing. In addition to 
various transformations of numerical features in advance, there are some other 
common ways to construct numerical features.

• Cross combination between numerical features. Unlike the cross combination 
between category features, typically, the cross combination of arithmetic opera-
tions such as addition, subtraction, multiplication, and division will be performed 
on numerical features. This requires us to combine business understanding and 
data analytics to construct, rather than make a violent construction without 
thinking twice. For example, if you give the size of the housing (in square meters) 
and the selling price, you can construct the average price per square meter. Or 
given the user's monthly consumption amount in the past three months, you can 
construct the total consumption amount and average consumption amount in 
these three months to reflect the user's overall consumption ability.

• Cross combination between category features and numerical features. In 
addition to the cross combination between different category features and that 
between different numerical features, cross combination between category fea-
tures and numerical features can also be constructed. Such features usually 
calculate some statistics of numerical features in a certain category in category 
features, such as mean, median, and extreme values.

• Row-by-row statistics of related features. This approach is somewhat similar to 
feature crossover, where information about multi-column features is combined. 
However, row statistics will contain more columns when constructed, and 
directly count multiple columns by row, such as the number of 0, null values, 
positive and negative values, or mean, median, extreme values, or sum, etc. 
Multi-column features may be the amount of consumption and electricity con-
sumption per month, and in industrial data those can be the temperature and 
concentration of each stage of chemical experiments. For these data containing 
multi-column related features, we all need to analyze the changes of multi-
column values and extract valuable features from them.
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4.3.3 Time Features 

In real data, the time characteristic usually given is the timestamp attribute, so you 
need to separate it into multiple dimensions first, such as year, month, day, hour, 
minute, and second. If your data source comes from different geographic data 
sources, you also need to use time zones to standardize the data. In addition to the 
basic time features separated, the time difference feature may also be constructed, 
i.e., the calculated numerical difference between the time of each sample and a future 
time, so that the gap is the time difference of the UTC, thereby converting the time 
characteristic into a continuous value, such as the time difference between the date of 
the user's first behavior and the date of registration of the user, and the time 
difference between the user's current behavior and the user's last behavior. 

4.3.4 Multiple-Valued Features 

In an actual competition, you may encounter a situation where each row in a column 
of features contains multiple attributes, which is a multiple-valued feature. For 
example, the interest category in the 2018 Tencent Advertising Algorithm Compe-
tition contains five interest feature groups, and each interest feature group contains 
several interest IDs. For multiple-valued features, sparsity or vectorization can 
usually be performed. This operation generally occurs in natural language 
processing. For example, after text segmentation, TF-IDF, LDA, NMF, etc. are 
used for processing. Here, multiple-valued features can be regarded as the results 
after the word segmentation of the text, with the same processing afterwards. 

As shown in Fig. 4.6, the most basic way to deal with multiple-valued features is 
to expand completely, that is, to expand the n attributes contained in this list of 
features into an n dimensional sparse matrix. Using the CountVectorizer function in

Fig. 4.6 Multiple-valued Feature Processing Method



sklearn, multiple-valued features can be easily expanded, by only taking into 
account the frequency of each attribute in this feature.
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There is also another case. For example, in the 2020 Tencent advertising algo-
rithm contest, it is necessary to predict the user's attribute tab according to the user's 
historical click behavior. At this time, the user's click sequence is particularly 
important. When we construct the user's corresponding historical click sequence, 
in addition to using the above-mentioned TF-IDF and other methods, we can also 
extract the embedded representation of goods or advertisements in the click 
sequence, such as using Word2Vec, DeepWalk, and other methods to obtain the 
embedding vector representation. Because we want to extract a single feature of the 
user, we can aggregate statistics on the embedded vectors in the sequence. This 
method is essentially based on the assumption that the goods or advertisements 
clicked by the user are equally important, which is a relatively crude way of 
processing. We can introduce time attenuation factors, or use sequence models 
such as RNN, LSTN, GRU, and apply NLP methods to solve them. 

So far, the construction method of basic type features has been given. Of course, 
there are still many types that have not been mentioned, such as spatial features, time 
series features, and text features, as well as clustering and dimensionality reduction 
methods, which we will introduce in detail in the following chapters while dealing 
with specific problems. 

4.4 Feature Selection 

As shown in Fig. 4.7, when we add new features, we need to verify whether it can 
indeed improve the accuracy of model prediction to determine whether useless 
features are not added, because this will only increase the complexity of the 
algorithm operation. At this time, it is necessary to automatically select the optimal

Fig. 4.7 Feature Selection Process



The following code is used to solve the problem that features do not have correlation
with labels, extracting similar features of top 300 according to the calculation of
Pearson correlation coefficient:

subset of the feature set through the feature selection algorithm to help the model 
provide better performance. The feature selection algorithm is used to identify and 
delete unnecessary, irrelevant, and redundant features from the data, which may 
reduce the accuracy and performance of the model. The methods of feature selection 
mainly include prior feature correlation analysis and posterior feature importance 
analysis.
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4.4.1 Feature Correlation Analysis 

Feature correlation analysis uses statistics to score the correlation between features. 
Features are sorted according to scores, either retained or deleted from the data set. 
Correlation analysis methods are usually for single variables and independently 
consider features or dependent variables. Common feature correlation analysis 
methods include Pearson correlation coefficient, chi-square test, mutual information 
method, and information gain. These methods are very fast and convenient to use but 
ignore the relationship between features and the relationship between features and 
models.

• Pearson correlation coefficient. This method can not only measure the linear 
correlation between variables and solve the problem of collinear variables, but 
also measure the correlation between features and labels. Collinear variables refer 
to the high correlation between variables, which reduces the learning usability, 
interpretability, and generalization performance of the testing set of the model. 
Obviously, these three features are all we want to add, so removing collinear 
variables is a valuable step. We will establish a basic threshold for deleting 
collinear variables (depending on the number of features you want to retain), 
and then delete one from any pair of variables higher than this threshold. 

def feature_select_pearson(train, features): 
featureSelect = features[:] 
# Perform Calculation of Pearson Correlation Coefficient 
corr = [] 

for feat in featureSelect: 
corr.append(abs(train[[feat, 'target']].fillna(0).corr().values 
[0][1])) 

se = pd.Series(corr, index=featureSelect).sort_values 
(ascending=False) 
feature_select = se[:300].index.tolist() 
# Return Training Set after Feature Selection 
return train[feature_select]



• It is not a measure method, and there is no way to normalize it, so the results on

•

4.4.2 Feature Importance Analysis
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• Chi-square test. It is used to test the correlation between the characteristic 
variable and the dependent variable. For classification problems, it is generally 
assumed that the feature independent of the label is an independent feature, and 
the chi-square test happens to be able to perform the independence test, so it is 
suitable for feature selection. If the test result is that a certain feature is indepen-
dent of the label, the feature can be removed. Chi-square formula is as formula 
(4.3):

χ2 = 
A-Eð Þ2 

E
ð4:3Þ 

• Mutual information method. Mutual information is a measure of the relation-
ship between two variables in a joint distribution. It can also be used to evaluate 
the correlation between two variables. The reason why the mutual information 
method can be used for feature selection can be explained from two aspects: 
based on KL divergence and based on information gain. The greater the mutual 
information, the higher the correlation between the two variables will be. Mutual 
information formula is shown as formula (4.4): 

MI xi, yð Þ= 
xi2 0, 1f gy2 0, 1f g  

p xi, yð Þ log p xi, yð Þ  
p xið Þp yð Þ ð4:4Þ 

The p (xi, y), p (xi), and  p (y) here are all obtained from the training set. It is not very 
convenient to use mutual information directly for feature selection for the following 
two main reasons. 

different data sets cannot be compared. 
It is not very convenient to calculate continuous variables (X and Y are sets, xi and 
y are discrete values). Usually, continuous variables need to be discretized first, 
and the results of mutual information are very sensitive to the way of 
discretization. 

A feature selection method often used in real-world competitions is to evaluate the 
importance score of features based on the tree model. The higher the importance 
score of the feature, the more times the feature is used in the model to build a 
decision tree. Here we take XGBoost as an example to introduce three calculation 
methods (weight, gain, and cover) for the tree model to evaluate the importance of 
features. (LightGBM can also return feature importance.)
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• The weight calculation method. This method is relatively simple. It calculates 
the number of times a feature is selected as a split feature in all trees and uses this 
as a basis for evaluating the importance of the feature. The code example is as 
follows: 

params = { 
'max_depth': 10, 
'subsample': 1, 
'verbose_eval': True, 
'seed': 12, 
'objective':'binary:logistic' 

} 

xgtrain = xgb.DMatrix(x, label=y) 
bst = xgb.train(params, xgtrain, num_boost_round=10) 
importance = bst.get_score(fmap = '',importance_type='weight')

• The gain calculation method. gain represents the average gain. When evaluating 
the importance of a feature, gain is used to represent the sum of the information 
gains of the feature as a split node in all trees and then divided by the frequency of 
occurrence of the feature. The code example is as follows: 

importance = bst.get_score(fmap = '',importance_type='gain')

• The cover calculation method. cover is more complicated. Its specific meaning 
is the coverage rate of the feature to each tree, that is, the sum of the second 
derivatives of the sample where the feature is assigned to the node, and the 
standard of feature measurement is the average coverage value. The code exam-
ple is as follows: 

importance = bst.get_score(fmap = '',importance_type='cover') 

Using Skills 
Although feature importance can help us quickly analyze the importance of 
features in the model training process, it cannot be used as an absolute 
reference basis. In general, as long as features do not lead to over-fitting, we 
can select features with high importance for analysis and expansion. For 
features with low importance, we can consider removing them from the feature 
set, then observe the offline effect and make further judgment.



from sklearn.feature_selection import RFE

from sklearn.linear_model import LogisticRegression
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4.4.3 Encapsulation Methods 

The encapsulation method is a time-consuming feature selection method. The 
selection of a set of features can be regarded as a search problem, in which different 
combinations are prepared, evaluated, and compared to find the optimal feature 
subset. The search process, such as the best priority search, can be systematic; it 
can also be random, such as random hill climbing algorithm, or heuristic methods, 
such as adding and deleting features by searching forward and backward (similar to 
pre-pruning and post-pruning algorithms). The following describes two commonly 
used encapsulation methods.

• Heuristic method. Heuristic methods are divided into two types: forward search 
and backward search. Forward search, to put it bluntly, is to incrementally select 
one of the remaining unselected features and add it to the feature set. When the 
number of features in the feature set reaches the initial threshold, it means 
greedily selecting the feature subset with the smallest error rate. Since there is 
incremental addition, there will be incremental subtraction. The latter is called 
backward search; that is, starting from the complete set of features, one feature is 
deleted and evaluated at a time until the number of features in the feature set 
reaches the initial threshold, and the best feature subset is selected. 

We can also expand on this basis. Because the heuristic method will lead to 
local optimization, a simulated annealing method is added to improve it. This 
method does not discard the newly added feature because it cannot improve the 
effect but adds weights to it and puts it into the selected feature set. 

This heuristic method has been carried out in the competition and is a time-
consuming and resource-consuming operation. In most cases, it can be used when 
the online and offline gains are the same and the data set magnitude is not large.

• Recursive elimination feature method. Recursive elimination feature method 
uses a base model for multiple rounds of training. Each round of training will first 
eliminate the features of several weight coefficients, and then conduct the next 
round of training based on the new feature collection. You can use the RFE class 
of the feature_selection library for feature selection. The code example is as 
follows: 

# Recursive Elimination Feature Method, Return Data after Feature Selection 
# Parameter estimator is the Base Model 
# Parameter n_features_to_select is the Number of Features Selected 
RFE(estimator=LogisticRegression(),n_features_to_select=2). 
fit_transform(data, target)
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Using Skills 
When using encapsulation methods for feature selection, training with full data 
is not the wisest choice. Big data should be sampled first, and then encapsu-
lation methods should be used for small data. 

The above three feature selection methods need to be selected or combined in 
accordance with real problems. It is recommended to give priority to feature 
importance, followed by feature relevance. In addition, there are some uncommon 
feature selection methods, such as the very classic null importance feature selection 
method on Kaggle. 

Models are sometimes really stupid. Many features that are not associated with 
the target tag at all can also be associated with the target tag. Features that are falsely 
associated with the testing set will cause over-fitting, which will have a negative 
impact. After that, feature importance analysis will become less reliable. So, how can 
we distinguish whether a feature is useful in feature importance analysis? 

The idea of null importance is actually very simple, that is, to feed the constructed 
features and correct labels into the tree model to obtain a feature importance score, 
then to feed the features and disrupted labels into the tree model to obtain a feature 
importance score, and then to compare the two scores. If the former does not exceed 
the latter, then this feature is a useless feature. 

4.5 Practical Cases 

With the content foreshadowing of Chaps. 2 and 3, we can then carry out the actual 
practice operation of the feature engineering part. Here is mainly a brief review of 
what we have learned in this chapter, but there are also many feature engineering 
skills that are not usually used, but please rest assured that in the link for later actual 
practice in competitions, we will conduct more detailed application practice. 

4.5.1 Data Preprocessing 

The main work at this stage might be data cleaning, and timely processing of missing 
values and outliers. Execute the following code to perform basic data reading, delete 
feature columns with missing values greater than 50%, and fill in the missing 
features of the object type:
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Fig. 4.8 Display of Street Distribution 

test = pd.read_csv("../input/test.csv") 
train = pd.read_csv("../input/train.csv") 
ntrain = train.shape[0] 
ntest = test.shape[0] 

data = pd.concat([train, test], axis=0, sort=False) 
# delete feature columns with missing values greater than 50% 
missing_cols = [c for c in data if data[c].isna().mean()*100 > 50] 
data = data.drop(missing_cols, axis=1) 

# fill in the missing features of the object type 
object_df = data.select_dtypes(include=['object']) 
numerical_df = data.select_dtypes(exclude=['object']) 

object_df = object_df.fillna('unknow') 

Next, fill in the numerical features with the median: 

missing_cols = [c for c in numerical_df if numerical_df[c].isna().sum 
() > 0] 

for c in missing_cols: 
numerical_df[c] = numerical_df[c].fillna(numerical_df[c].median 
()) 

For the extremely uneven distribution of attributes in the features, such as the 
existence of an attribute that accounts for more than 95%, it is also necessary to 
consider whether to delete it. The Street shown in Fig. 4.8 is one such feature, with 
others such as Heating, RoofMatl, Condition2, and Utilities also belonging to this 
type. 

The following is the feature deletion code: 

object_df = object_df.drop 
(['Heating','RoofMatl','Condition2','Street','Utilities'],axis=1)
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4.5.2 Feature Extraction 

The feature extraction stage will construct specific features from multiple angles, and 
each feature constructed has practical significance. 

4.5.2.1 Basic Feature Construction 

When the housing was built is also a factor that affects the price of it. When 
constructing this feature, it is found that there is data with a sales date (YrSold) 
smaller than the construction date (YearBuilt), which needs to be adjusted for this 
anomaly. Specifically, change the sales date of the anomaly data to the maximum 
year (2009) of the sales date in the data set. Here is the specific code for constructing 
the feature: 

numerical_df.loc[numerical_df['YrSold'] < numerical_df 
['YearBuilt'], 'YrSold' ] = 2009 
numerical_df['Age_House']= (numerical_df['YrSold'] - numerical_df 
['YearBuilt']) 

Next, construct business-related features, such as summing BsmtFullBath and 
BsmtHalfBath in the original feature, summing FullBath and HalfBath, summing the 
first floor area (1stFlrSF), the second floor area (2ndFlrSF), and the basement area to 
represent the structural information of the housing. The code is as follows: 

numerical_df['TotalBsmtBath'] = numerical_df['BsmtFullBath'] + 
numerical_df['BsmtHalfBath']*0.5 

numerical_df['TotalBath'] = numerical_df['FullBath'] + numerical_df 
['HalfBath']*0.5 
numerical_df['TotalSA'] = numerical_df['TotalBsmtSF'] + numerical_df 
['1stFlrSF'] + 

numerical_df['2ndFlrSF'] 

4.5.2.2 Feature Encoding 

Features of object class cannot directly participate in model training, they need to be 
encoded first, and there are many coding methods for category features. So, how to 
choose the coding method becomes the key. 

First, it is necessary to distinguish category features: for ordinal features with 
big-small relationship, 0-N mapping conversion can be performed, that is, natural 
number coding; for features without such relationship, one-hot coding, or frequency 
(count) coding can be performed. The code for feature extraction is as follows: 

bin_map = {'TA':2,'Gd':3, 'Fa':1,'Ex':4,'Po':1,'None':0, 
'Y':1,'N':0,'Reg':3,'IR1':2,'IR2':1,
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'IR3':0,"None" : 0,"No" : 2, "Mn" : 2, 
"Av": 3,"Gd" : 4,"Unf" : 1, "LwQ": 2, 
"Rec" : 3,"BLQ" : 4, "ALQ" : 5, "GLQ" : 6} 

object_df['ExterQual'] = object_df['ExterQual'].map(bin_map) 
object_df['ExterCond'] = object_df['ExterCond'].map(bin_map) 
object_df['BsmtCond'] = object_df['BsmtCond'].map(bin_map) 
object_df['BsmtQual'] = object_df['BsmtQual'].map(bin_map) 
object_df['HeatingQC'] = object_df['HeatingQC'].map(bin_map) 
object_df['KitchenQual'] = object_df['KitchenQual'].map(bin_map) 
object_df['FireplaceQu'] = object_df['FireplaceQu'].map(bin_map) 
object_df['GarageQual'] = object_df['GarageQual'].map(bin_map) 
object_df['GarageCond'] = object_df['GarageCond'].map(bin_map) 
object_df['CentralAir'] = object_df['CentralAir'].map(bin_map) 
object_df['LotShape'] = object_df['LotShape'].map(bin_map) 
object_df['BsmtExposure'] = object_df['BsmtExposure'].map(bin_map) 
object_df['BsmtFinType1'] = object_df['BsmtFinType1'].map(bin_map) 
object_df['BsmtFinType2'] = object_df['BsmtFinType2'].map(bin_map) 
PavedDrive = {"N" : 0, "P" : 1, "Y" : 2}object_df['PavedDrive'] = 
object_df['PavedDrive'].map(PavedDrive)# select the remaining object features 
rest_object_columns = object_df.select_dtypes(include = ['object']) 
# perform one-hot coding 
object_df = pd.get_dummies(object_df, columns = rest_object_columns. 
columns) 
data = pd.concat([object_df, numerical_df], axis=1, sort=False) 

We have not carried out all kinds of violent extraction operations, but mainly 
guided everyone to extract features from the business, in order to enable everyone to 
master the skills and usage methods of feature extraction, and there will be more 
feature extraction methods in the following cases. 

4.5.3 Feature Selection 

This section will use the correlation evaluation method for feature selection. This 
method is a kind of correlation analysis, which can filter out features whose 
similarity is greater than a certain threshold and reduce feature redundancy. The 
following creates an auxiliary function for correlation evaluation: 

def correlation(data, threshold): 
col_corr = set() 
corr_matrix = data.corr() 
for i in range(len(corr_matrix.columns)): 

for j in range(i): 
if abs(corr_matrix.iloc[i, j]) > threshold: # comparison of similarity 
score and threshold 

colname = corr_matrix.columns[i] # get column name 
col_corr.add(colname) 

return col_corr
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all_cols = [c for c in data.columns if c not in ['SalePrice']] 
corr_features = correlation(data[all_cols], 0.9) 

It is generally difficult to quantify the determination of the threshold, which can 
be considered from the perspective of the total feature quantity and the overall 
similarity score. For example, if our machine does not allow too many features to 
be used, we can use this as a basis to determine the feature retention quantity, which 
is also a relatively flexible value. Feature sets under different thresholds can be 
retained for training to assist in improving the fusion results of the model. 

4.6 Thinking Exercises 

1. How can we choose from the average, median, and mode when filling the missing 
values of numerical features? 

2. In feature selection, there is another type of feature selection method based on 
penalty terms, which includes L1 regularity and L2 regularity. So, what is the 
difference between these two regularities? How can you choose from them? 

3. How many parts is the whole feature project mainly divided into? What are the 
main contents of each part? 

4. How are numerical features, category features, and irregular features respectively 
defined? Please give examples. 

5. In the process of data cleaning, how could we select the method of outlier 
processing? 

6. Why should memory be optimized and what optimization methods are available? 
7. Please give examples to illustrate the meaning of count, nunique, and ratio. 
8. Under what circumstances do we need to carry out feature transformation? 
9. When selecting features, should the feature correlation analysis method or the 

feature importance analysis method be selected?



Chapter 5 
Model Training 

This chapter will introduce the common models used in algorithm competitions. 
Good models can help us approach the upper limit of scores. The optional models are 
mainly divided into three types: linear models, tree models, and neural networks. 
There is a saying that there is no best model, but only the most suitable model, so in 
this chapter, we will illustrate the application scenarios suitable for their 
corresponding models and give the using skills and application codes. 

5.1 Linear Models 

This section will demonstrate two linear reduction methods: Lasso regression and 
Ridge regression. The difference between these two linear regression models only 
lies in how to penalize and how to solve the overfitting problem. Then the mathe-
matical forms, advantages and disadvantages, and application scenarios of the two 
models will be explained accordingly. 

5.1.1 Lasso Regression 

The full name of Lasso is least absolute shrinkage and selection operator, which is to 
optimize ordinary linear regression using L1 regularization. By penalizing or limit-
ing the sum of the absolute values of the estimated values, some coefficients can be 
made zero, so as to achieve the effect of feature coefficients and feature selection. 
This is convenient when we need some automatic selection for features and vari-
ables, or when we deal with highly relevant predictors, because the regression 
coefficients of a standard regression are usually too large. The mathematical form 
of Lasso regression is as in the formula (5.1): 
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min Y -Xθk k2 2 þ λ θk k1 ð5:1Þ 

In this formula, λ is the coefficient of the regularization item (penalty term). By 
changing the value of λ, the penalty term can be more or less controlled, that is, the 
L1 norm of θ. The bigger the value of λ, the greater the influence of the penalty term 
will be, and vice versa. 

5.1.1.1 Code Implementation 

You can directly call the sklearn library to implement Lasso regression, where the L1 
regular parameter selected is 0.1. 

from sklearn.linear_model import Lasso 
lasso_model = Lasso(alpha = 0.1, normalize = True) 

5.1.2 Ridge Regression 

Ridge regression is an optimization of ordinary linear regression using L2 regular-
ization, and a penalty term is set for the weight coefficient of features. 

Its mathematical form is as formula (5.2): 

min Y -Xθk k2 2 þ λ θk k2 2 ð5:2Þ 

It is basically the same as the loss function of Lasso regression, except that the 
penalty term is modified to the L2 norm of the θ. 

5.1.2.1 Code Implementation 

Ridge regression can be implemented directly by calling the sklearn library: 

from sklearn.linear_model import Ridge 
Ridge_model = Ridge(alpha=0.05, normalize=True) 

5.1.2.2 Problem Discussion 

Now that we have a preliminary understanding of Lasso regression and Ridge 
regression, let's consider an example. Suppose we now have a very large data set 
containing 10,000 features. Only some of these features are related. Then think about



which regression model should be used for training, Lasso regression or Ridge 
regression? 
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If we use Lasso regression for training, then the difficulty encountered is mainly 
that when there are relevant features, Lasso regression retains only one of the 
features while setting other relevant features to zero. This may lead to the loss of 
some information, thus reducing the accuracy of model prediction. 

If you choose Ridge regression, although it can reduce the complexity of the 
model, it will not reduce the number of features, because Ridge regression will never 
make the coefficient zero, but only minimize the coefficient. Nevertheless, this is not 
conducive to feature reduction. In the face of 10,000 features, the model will still be 
very complex, so it may lead to poor model performance. 

All things considered, what is the solution to this problem? You can choose 
Elastic Net Regression for extended learning. 

5.2 Tree Models 

This section will illustrate the common tree models in the competition. These models 
are simple to use and can bring high returns. The tree model can be divided into 
random forest (RF) and gradient boosting decision tree (GBDT). The biggest 
difference between the two is that the former is parallel while the latter is serial. In 
the gradient boosting decision tree section, we will introduce three most popular tree 
models in competitions now: XGBoost, LightGBM, and CatBoost. Being able to use 
these three models flexibly is a necessary skill in the competition. Next, the math-
ematical form, advantages and disadvantages, details of usage, and application 
scenarios of various tree models will be explained in detail. 

5.2.1 Random Forest 

In short, the random forest algorithm is to integrate multiple decision trees together 
through the idea of integrated learning. The decision tree here can be a classifier, and 
there is no correlation between each decision tree. The random forest algorithm votes 
on the results of multiple decision trees to get the final result, which is also the 
simplest bagging idea. Random forest is a model based on nonlinear trees, which can 
usually provide accurate results. 

5.2.1.1 Construction Process of Random Forest 

The construction process of random forest is shown in Fig. 5.1. 
The specific process is as follows.
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Fig. 5.1 Construction Process of Random Forest 

1. Suppose the number of samples in the training set is N. N samples are randomly 
selected with return; that is, the samples can be repeated, and then a decision tree 
is trained with the N samples obtained. 

2. If there are M input variables (features), specify a number m (column sampling) 
much smaller than M, so that m input variables will be randomly selected from 
M input variables for each split. Then select the best splitting variable from the 
m variables chosen (split based on information gain, information gain ratio, Gini 
index, etc.). 

3. Repeat step (2) to split each node without pruning to maximize the growth of 
nodes (the condition for stopping splitting is that all samples of nodes belong to 
the same class). 

4. Construct a large number of decision trees through steps (1) to (3), and then 
summarize these decision trees to predict new data (vote and select on classifi-
cation problems and calculate the mean value of regression problems). 

5.2.1.2 Advantages and Disadvantages of Random Forest 

Random forest has obvious advantages: it can not only solve classification and 
regression problems, but also deal with category features and numerical features at 
the same time; it is not easy to overfit, and the risk of overfitting is reduced by 
averaging the decision tree; it is very stable—even if a new data point appears in the 
data set, the whole algorithm will not be affected too much. The new data point will 
only affect one decision tree, and it is difficult to affect all decision trees. 

Many shortcomings are relatively speaking. Although the random forest algo-
rithm is more complex and costly than the decision tree algorithm, it has natural 
parallel property and can be trained quickly in a distributed environment. Gradient 
boosting trees need to continuously train residuals, so the results are more accurate, 
but random forest is less easy to overfit and more stable, which is also due to its 
bagging characteristics.
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5.2.1.3 Code Implementation 

from sklearn.ensemble import RandomForestClassifier 
rf = RandomForestClassifier(max_features='auto', oob_score=True, 
random_state=1, n_jobs=-1) 

5.2.2 Gradient Boosting Decision Tree 

Gradient boosting decision tree (GBDT) is based on the boosting improvement. In 
the boosting algorithm, a series of base learners need to be generated serially, 
learning one tree at a time, and the learning goal is the residual of the previous 
tree. Like AdaBoost, the gradient boosting decision tree is also based on the gradient 
descent function. The gradient boosting decision tree algorithm has proved to be one 
of the most mature algorithms in the boosting algorithm set. It is characterized by 
increased estimation variance, more sensitive to noise in the data (both of which can 
be reduced by using subsamples), and due to non-parallel operations, the computa-
tional cost is significant, so it is much slower than random forest. 

The gradient boosting decision tree is the foundation of XGBoost, LightGBM, 
and CatBoost, and its principle will be briefly introduced here. We know that the 
GBDT is an additive model of boosting, which is a combination of K models. Its 
form is as formula (5.3): 

yi = 
K 

k = 1 

f k xið Þ, f k 2 F ð5:3Þ 

Generally speaking, the loss function describes the relationship between the 
predicted value y and the real value y. The gradient boosting decision tree is based 
on the residual (yi - Fxi , Fxi is the previous model) to continuously fit the training 
set. The square loss function is used here. Then for n samples, it can be written as 
formula (5.4): 

L= 
n 

i= 1 

l yi, yið Þ ð5:4Þ 

Still further, the objective function can be written as in the formula (5.5): 

Obj= 
n 

i= 1 

l  yi, yið  Þ þ  
K 

k= 1 

Ω f kð  Þ ð5:5Þ



Here Ω represents the complexity of the base model. If the base model is a tree
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model, the depth of the tree, the number of leaf nodes, and other indicators can reflect 
the complexity of the tree. 

For boosting, it uses a forward optimization algorithm, that is, to gradually 
establish a base model from the front to the back to approximate the objective 
function; the specific process is as formula (5.6): 

y0 i = 0 

y1 i = f 1 xið Þ= y0 i þ f 1 xið Þ  
y2 i = f 1 xið Þ þ  f 2 xið Þ= y1 i þ f 2 xið Þ  
⋮ 

yt i = 
t 

k = 1 

f k xið Þ= yt- 1 
i þ f t xið Þ  

ð5:6Þ 

Then how can a new model be learned in each step of the approximation process? 
The key to the answer is still in the objective function of the gradient boosting 
decision tree, that is, the addition of new models is always for the purpose of 
optimizing goal function. Rewrite the objective function as formula (5.7): 

Objt = 
n 

i= 1 

l yi, y
t 
i þ 

t 

i= 1 

Ω f ið Þ  

Objt = 
n 

i= 1 

l yi, y
t- 1 
i þ f t xið Þ  þΩ f tð Þ þ constant 

ð5:7Þ 

Expand Taylor formula (5.6) to second order as formula (5.8): 

Objt = 
n 

i= 1 

l yi, y
t- 1 
i þ gif t xið Þ þ  1 

2 
hif

2 
t xið Þ  þ Ω f tð Þ þ  constant ð5:8Þ 

Remove the constant term to obtain formula (5.9): 

Objt ≈ 
n 

i= 1 

gif t xið Þ þ  1 
2 
hif

2 
t xið Þ  þ Ω f tð Þ ð5:9Þ 

The reason for removing the constant term is that the constants in the function do not 
work in the process of function minimization. As a result, the optimization objective 
function of the gradient boosting decision tree becomes very unified. It only depends 
on the first and second derivatives of each data point on the error function, and then 
obtains an overall model according to the addition model.
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5.2.3 XGBoost 

XGBoost is an integrated machine learning algorithm based on decision trees, and it 
uses gradient boost as the framework. At the SIGKDD 2016 conference, Chen 
Tianqi and Carlos Guestrin published the paper “XGBoost: A Scalable Tree 
Boosting System”, which has caused a sensation throughout the field of machine 
learning and has gradually played a dominant role in Kaggle and data science field. 
XGBoost also introduces the boosting algorithm. 

In addition to its successful performance in accuracy and computational effi-
ciency, XGBoost is also a scalable solution. Due to important adjustments to the 
initial tree boost GBM algorithm, XGBoost represents a new generation of GBM 
algorithms. 

5.2.3.1 Main Characteristics

• Using the sparse sensing algorithm, XGBoost can take advantage of sparse 
matrices, saving memory (no dense matrices are required) and reducing compu-
tation time (zero values are handled in a special way).

• Approximate tree learning (weighted quantiles sketches) is a kind of learning 
method that can obtain approximate results, but it saves a lot of time than 
complete branch cutting exploration does.

• Perform parallel computing on one machine (using multithreading in the search 
for the best segmentation phase) and similar distributed computing on multiple 
machines.

• Use an optimization method called out-of-core computing to solve the problem of 
taking too long to read data on disks. Divide the data set into multiple blocks and 
store them on disks. Use a separate thread to read data from disk and load it into 
memory. In this way, reading data from disks and completing data calculation in 
memory can run in parallel.

• XGBoost can also effectively deal with missing values, and automatically learn 
the segmentation direction for the missing values during training. The basic idea 
is to let the missing values be segmented to the left and right nodes of the decision 
tree respectively in each segmentation, then select the segmentation direction 
with large gain by calculating the gain score to split, and finally learn an optimal 
default segmentation direction for the missing values of each feature. 

5.2.3.2 Code Implementation 

Input: training set X_train, training set label y_train 
verification set X_valid, verification set label y_valid 
testing set X_test 
Output: trained model model, testing set result y_pred



import xgboost as xgb 
params = {'eta': 0.01, 'max_depth': 11,'objective': 'reg:linear', 
'eval_metric': 'rmse' } 
dtrain = xgb.DMatrix(data=X_train, label=y_train) 
dtest = xgb.DMatrix(data=X_valid, label=y_valid) 
watchlist = [(train_data, 'train'), (valid_data, 'valid_data')] 
model=xgb.train(param, train_data, 

num_boost_round=20000, 
evals=watchlist, 
early_stopping_rounds=200, 
verbose_eval=500) 

y_pred = model.predict(xgb.DMatrix(X_test), ntree_limit=model. 
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best_ntree_limit) 

5.2.4 LightGBM 

LightGBM is an open-source project developed by a Microsoft team on Github. The 
LightGBM algorithm with high-performance has the advantages of being able to be 
distributed and quickly process large amounts of data. Although LightGBM is based 
on decision trees and XGBoost, it also follows other different strategies. XGBoost 
uses a decision tree to split a variable and explore different cut points on that variable 
(tree growth strategy by level), while LightGBM focuses on splitting by leaf node in 
order to get a better fit (this is tree growth strategy by leaf). This allows LightGBM to 
quickly get a good data fit and generate a solution that can replace XGBoost. 
Algorithmically, XGBoost calculates the split structure of the decision tree as a 
graph, using breadth-first search (BFS), while LightGBM uses depth-first search 
(DFS). 

5.2.4.1 Main Characteristics

• Higher accuracy and shorter training time than XGBoost.
• Supporting parallel tree enhancement, providing better training speed than 

XGBoost even on large datasets.
• By using histogram algorithm to extract continuous features into discrete features, 

amazing fast training speed and low memory usage are realized.
• Achieve higher accuracy by using segmentation by leaves instead of by levels, 

speed up the process of objective function convergence, and capture the under-
lying patterns of training data in a very complex tree. Use num_leaves and 
max_depth hyperparameters to control overfitting.



5.2 Tree Models 89

5.2.4.2 Code Implementation 

import lightgbm as lgb 
params = {'num_leaves': 54,'objective': 'regression','max_depth': 
18, 

'learning_rate': 0.01,'boosting': 'gbdt','metric': 
'rmse','lambda_l1': 0.1} 
model = lgb.LGBMRegressor(**params, n_estimators = 20000, nthread = 
4, n_jobs = -1) 
model.fit(X_train, y_train, 

eval_set=[(X_train, y_train), (X_valid, y_valid)], 
eval_metric='rmse', 
verbose=1000, early_stopping_rounds=200) 

y_pred = model.predict(X_test, num_iteration=model.best_iteration_) 

5.2.5 CatBoost 

CatBoost is a GBM algorithm open-sourced by the Russian search engine Yandex in 
July 2017. Its most powerful point is that it can use a strategy that mixes one-hot 
coding and average coding to deal with category features. 

The method used by CatBoost to encode category features is not a new method. It 
is mean-value coding, which has become a feature engineering method and is widely 
used in various data science competitions, such as Kaggle. Mean-value coding, also 
known as likelihood coding, impacts coding, or target coding, can converts labels to 
numbers based on them, and associate them with target variables. If it is a regression 
problem, the label is converted based on the typical average target value of the level; 
if it is a classification problem, then only the target classification probability of the 
label (the target probability depends on the value of each category) is given. Mean-
value coding may seem like a simple and smart feature engineering trick, but in fact 
it also has side effects, mostly overfitting, because it will bring target information 
into the prediction. 

5.2.5.1 Main Characteristics

• Class features are supported, so we do not need to preprocess class features 
(e.g. by label encoding or one-hot encoding). In fact, CatBoost doc says not to 
use one-hot coding during preprocessing because “it will affect the training speed 
and result quality”.

• A new gradient boosting mechanism (Ordered Boosting) is proposed, which can 
not only reduce the risk of overfitting, but also greatly improve the accuracy.

• Support GPU training out of the box (just set task_type = "GPU").
• Combination category features are used in the training, and the connection 

between features is used to greatly enrich the feature dimensions.
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5.2.5.2 In-depth Comprehension of Feature Combinations 

Another powerful feature of CatBoost is that when the tree splits to select nodes, the 
combination between all category features can be taken into account; that is, the 
combination of two category features can be combined. The specific approach is: not 
to consider the combination of category features during splitting for the first time, 
and then consider the combination between category features during later splitting, 
using the greedy algorithm to generate the best combination, and then converting the 
combined category features into numerical features. CatBoost will use the two sets 
of values obtained by splitting as category features to participate in the subsequent 
feature combination to achieve a more fine-grained combination. 

5.2.5.3 Code Implementation 

from catboost import CatBoostRegressor 
params = {'learning_rate': 0.02,'depth': 13,'bootstrap_type': 
'Bernoulli', 

'od_type': 'Iter', 'od_wait': 50, 'random_seed': 11} 
model = CatBoostRegressor(iterations=20000, eval_metric='RMSE', 
**params) 
model.fit(X_train, y_train, eval_set=(X_valid, y_valid), 

cat_features=[], use_best_model=True, verbose=False) 
y_pred = model.predict(X_test) 

Each type of tree model has its own distinctive features. Next, we will deeply 
understand these tree models from four aspects—the growth strategy of decision 
trees, gradient deviation, category feature processing, and parameter comparison— 
to help participants better apply them to competitions. 

5.2.5.4 More Functions 

CatBoost currently also supports input text features, so there is no need to perform 
cumbersome operations to obtain standardized input and then feed it to the model as 
before. Text features are marked the same way as category features—just assign a 
list of text variable names to the text_features during training. So, how does 
CatBoost handle text features internally? In fact, the operation is very conventional. 
CatBoost converts the input text features into numerical features internally. The 
specific process is word segmentation, dictionary creation, and text features 
converted into multi-valued numerical features. The following processing method 
can choose more items, such as fully expanding into Boolean 0/1 features, or 
performing word frequency statistics.
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5.2.6 In-Depth Comparison of Models 

XGBoost, LightGBM, and CatBoost are three very core tree models. This section 
will analyze them because there are countless relationships between the three. Only 
by clarifying the relationships can we make better use of these three models. 

5.2.6.1 Decision Trees Growth Strategy 

Figure 5.2 lists the three ways a decision tree grows. 
XGBoost uses level-wise level-by-level growth, which can split leaves of the 

same layer at the same time, thus performing multi-threaded optimization. It is not 
easy to over-fit, but many leaf nodes have low split gain, which will affect 
performance. 

LightGBM uses leaf-wise splitting method. Each time, the node with the greatest 
gain is selected from the current leaf for splitting, and the loop iterates, but it will 
grow a very deep decision tree, resulting in over-fitting. At this time, you can adjust 
the parameter max_depth to prevent over-fitting. 

CatBoost uses an oblivious-tree (symmetric tree), which makes the nodes growth 
mirrored. Compared with traditional growth strategies, oblivious-tree can easily fit 
the scheme and quickly generate models. This tree structure plays a regularization 
role and is not easy to over-fit. 

5.2.6.2 Gradient Bias 

The boosting tree algorithms in XGBoost and LightGBM are biased gradient 
estimates, and the data used in the gradient estimates are the same as the data used 
in the current model, which will lead to data leakage and overfitting. 

CatBoost has improved the boosting tree algorithm to convert the original biased 
gradient estimate to the unbiased gradient estimate. The specific approach is to use 
all training sets (except article i) to build model Mi, and then use data from article 1 to

Fig. 5.2 Growth Pattern of a Decision Tree



article i - 1 to build a correction tree M, which is accumulated to the original model 
Mi.
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5.2.6.3 Category Features Processing 

XGBoost does not deal with category features, so we need to perform one-hot 
coding, count coding, and target coding according to the actual situation of the data. 

LightGBM directly supports category features without the need for one-hot 
expansion. Here, the segmentation method of many-vs-many is used to deal with 
category features, and the time complexity of searching for the best segmentation 
point can be controlled to the linear level, which is almost the same as the original 
one-vs-other method. The algorithm first sorts according to the label mean value 
corresponding to each category (i.e. avg(y) = Sum(y)/Count(y)), and then enumer-
ates the best segmentation points in turn according to the sorting results. Different 
from the segmentation method of numerical features, it regards a certain category as 
one category and then regards all other categories as one category. 

CatBoost takes a more nuanced approach to category features. While LightGBM 
may require more coding for category features, CatBoost can choose not to use 
redundant coding. 

The implementation process is to randomly order the input sample set first, and 
then, for a certain value in the category feature, average it based on the class label 
that precedes the sample while converting the feature of each sample to a numerical 
type. All class feature results are performed as shown in the formula (5.10) opera-
tion, so that they are converted into numerical results. 

p- 1 
j= 1 xσj ,k = xσp,k × Yσj þ a ×P 

p- 1 
j= 1 xσj ,k = xσp,k þ a ð5:10Þ 

Here [] is the indicator function; take 1 when two elements in square brackets are 
equal and take 0 when not equal. a (a > 0) is the weight of a priori value p, and it is a 
common practice to add a priori value, which helps to reduce noise obtained from 
low-frequency categories and reduce overfitting. For regression problems, take the 
average value of the label as a priori value; for classification problems, take the 
probability of the occurrence of a positive class as a priori value. 

5.2.6.4 Parameters Comparison 

As shown in Fig. 5.3, the parameters of the tree model are compared from three 
aspects, namely, three types of parameters used to control overfitting, to control 
training speed, and to adjust category characteristics. Here only some important 
parameters are enumerated, and there are a large number of useful parameters that 
will not be introduced one by one.
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Fig. 5.3 Comparison of Core Parameters 

Fig. 5.4 Neural Networks Hidden Layer 

Output Layer 

Input Layer 

5.3 Neural Networks 

If you want to go further in the competition, then neural networks are also models 
that must be mastered. Generally speaking, as the amount of data that we have 
continues to increase, the possibility of neural networks defeating traditional 
machine learning models will also increase. 

First, there is an example of the cost of a house to show the functional details of 
neural networks. Specifically, the price of a house should be estimated according to 
certain functions of the house. If detailed information such as the area of the house, 
its location, and the number of bedrooms is provided, and the task is to estimate the 
price of the house, then neural networks will be the most appropriate method under 
this situation. 

The simple structure of neural networks is described in Fig. 5.4. It has three 
different types of layers: the input layer, the hidden layer, and the output layer. Each 
hidden layer can contain any number of nerve cells (nodes). The number of nodes in



the input layer is equal to the number of features used in the prediction problem 
(there are 3 features in the above example, namely, housing area, location, and 
number of bedrooms). The number of nodes in the output layer is equal to the 
number of values to be predicted (there is 1 value to be predicted in the above 
example, that is, housing price). Next, let's try to go a little deeper and understand 
what is happening in each node. 
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Fig. 5.5 Structural Details 
of Input Layer Nodes 

Fig. 5.6 Using Activation 
Functions for Input Layer 
Results 

As shown in Fig. 5.5, in each node of the input layer, the input elements x, weight 
w, and bias b are used as inputs, and z is calculated and output. Constructing these 
values into a matrix can make the calculation easier and more efficient. What are 
weights and biases? These two values are first randomly initialized values from 
Gaussian distribution, which are used to calculate the output of input nodes. We 
adjust these values to make neural networks fit the input data. 

As shown in Fig. 5.6, after calculating the value z, we use the activation function 
σ for z. The activation function is used to introduce some nonlinearity to the model. 
If we do not apply any activation function, the output result can only be a linear 
function, and may not be able to successfully map complex inputs to outputs. 

The input of the node in the hidden layer is the output of the node in the previous 
layer. The final output layer predicts a value and compares the value with the known 
value (the real value) to calculate the loss. Intuitively, the loss represents the error 
between the predicted value and the real value. 

The whole process first calculates each variable and the weight of each layer and 
calculates the error (forward propagation), then traverses each layer through back 
propagation to measure the error contribution of each connection, and finally slightly 
adjusts the weight and bias of the connector to reduce the error to ensure correct 
prediction of the output results. 

So far, we have had a basic understanding of neural networks. Next, we will 
introduce multilayer perceptrons, convolutional neural networks, and recurrent 
neural networks.
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5.3.1 Multilayer Perceptions 

The multilayer perceptron (MLP) can also be called deep neural networks (Deep 
Neural Networks, DNN), which is a neural network with multiple hidden layers. 
Even if a single perceptron has a certain fitting ability, the multilayer perceptron will 
definitely have a stronger fitting ability and can be used to solve more complex 
problems. 

As shown in Fig. 5.7, the most basic structure of the multilayer perceptron is 
given, mainly divided into the input layer, the hidden layer, and the output layer. The 
different layers of the multilayer perceptron are all fully connected (fully connected 
means that any single nerve cell in the I layer must be connected to any nerve cell in 
the I + 1  layer). Next, three main parameters need to be studied in detail: weight, 
bias, and activation function. 

5.3.1.1 Weight and Bias 

The weight is used to indicate the connection strength between nerve cells, and the 
size of the weight indicates the possibility. The bias is set to correctly classify 
samples, which is an important parameter in the model, that is, to ensure that the 
output value calculated through the input cannot be activated casually. 

5.3.1.2 Activation Function 

The activation function can play the role of non-linear mapping and can limit the 
output amplitude of nerve cells to a certain range, generally between (-1,1) or (0,1). 
Commonly used activation functions are sigmoid, tanh, ReLU, etc. Among them, the 
sigmoid function can map the number between (-1,+1) to the range of (0,1), and 
the rest of the functions are not introduced too much here. 

Fig. 5.7 Structure of the Multilayer Perceptron
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5.3.1.3 Code Implementation 

def create_mlp(shape): 
X_input = Input((shape, )) 
X =Dense(256, activation='relu')(X_input) 
X = Dense(128, activation='relu')(X) 
X = Dense(64, activation='relu')(X) 
X = Dense(1, activation='sigmoid')(X) 
model = Model(inputs=X_input, outputs=X) 
model.compile(optimizer='adam', loss='binary_crossentropy', 
metrics=['accuracy']) 
return model 

mlp_model = create_mlp(x_train.shape[0]) 
mlp_model.fit(x=x_train, y=y_train, epochs=30, batch_size=512) 

5.3.2 Convolutional Neural Networks 

Convolutional neural networks (CNN) are similar to multi-layer perceptrons, and the 
difference between the two lies in the different network structures. The proposal of 
convolutional neural networks is inspired by biological processing processes, and its 
structure is similar to that of animal visual cortex. Convolutional neural networks are 
widely used in the field of computer vision, such as facial recognition, automatic 
driving, image segmentation, etc., and have achieved excellent results in various 
competition cases. Convolutional neural networks have two major characteristics.

• It can effectively reduce the dimension of a large amount of data into a small 
amount of data and simplify complex problems. In most scenarios, dimensional-
ity reduction will not affect the result. For example, if there is a cat in an image, 
after reducing the pixels of the image from 1000 to 200, even the naked eyes will 
not recognize the cat as a dog by mistake, nor does the machine.

• It can effectively retain image features and conform to the principles of image 
processing. When flipping, rotating, or changing the position of an image, 
convolutional neural networks can effectively identify which images are similar. 

As shown in Fig. 5.8, the most basic structure of convolutional neural networks is 
given. It is mainly divided into three layers: convolution layer, pooling layer 
(sampling layer), and fully connected layer. The three layers perform their respective 
duties. The convolution layer is responsible for extracting features, the pooling layer 
is responsible for feature selection, and the fully connected layer is responsible for 
classification. The fully connected layer is the neural network we mentioned earlier, 
so only the convolution layer and the pooling layer will be introduced in detail.
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Fig. 5.8 Structure of Convolutional Neural Networks 

Fig. 5.9 Convolution Layer Operation 

5.3.2.1 Convolutional Layer 

The convolution layer is used to extract local features in the image, which can 
effectively reduce the data dimension. As shown in Fig. 5.9, suppose that the RGB 
image size of our input is 32 × 32, the actual size of the input will be 32 × 32 × 3 
because there are channels for 3 colors. Then select a 5 × 5 convolution kernel for 
convolution calculation, and contain three channels, so each time you extract a 
5 × 5 × 3 size square, set the extraction step (stride) to 1, and do not fill to the 
outside (padding = 0), and finally you can get a feature map of 28 × 28 × 1. 

5.3.2.2 Pooling Layer 

The pooling layer is used for feature selection. Compared with the convolution layer, 
the data dimension can be reduced more effectively, which can not only greatly 
reduce the amount of computation, but also effectively avoid overfitting. For exam-
ple, when the data passes through the convolution layer to obtain a 28 × 28 × 1 
feature map, we set the stride size to 2 and the convolution kernel size to 2 × 2, and 
then obtain a new feature map of 14 × 14 × 1 through the maximum pooling layer/



average pooling layer, as shown in Fig. 5.10. With the introduction to the basic 
structure above, we can use keras to construct our own convolutional neural 
networks. 
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Fig. 5.10 Maximum/Average Pooling Layer (convolution kernel size is 2 × 2; stride size is 2) 

5.3.2.3 Code Implementation 

def create_cnn(): 
X_input = Input((28,28,1)) 

X = Conv2D(24,kernel_size=5,padding='same',activation='relu') 
(X_input) 
X = MaxPooling2D()(X) 
X = Conv2D(48,kernel_size=5,padding='same',activation='relu') 
(X_input) 
X = MaxPooling2D()(X) 
X = Flatten()(X) 

X = Dense(128, activation='relu')(X) 
X = Dense(64, activation='relu')(X) 
X = Dense(1, activation='sigmoid')(X) 

model = Model(inputs=X_input, outputs=X) 
model.compile(optimizer='adam', loss='binary_crossentropy', 
metrics=['accuracy']) 

return model 

cnn_model = create_cnn() 
cnn_model.fit(x=x_train, y=y_train, epochs=30, batch_size=64)
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5.3.3 Recurrent Neural Networks 

The recurrent neural network (RNN) is an extension of neural networks and excels 
better at modeling and processing sequence data. For traditional feedforward neural 
networks, the input is generally a fixed-length vector and cannot process variable-
length sequence information. Even if the sequence is processed into a fixed-length 
vector through some methods, the model is difficult to capture the long-distance 
dependencies in the sequence. Recurrent neural networks process serialized data by 
serializing nerve cells. Since each nerve cell can use its internal variables to store the 
sequence information previously entered, the entire sequence is condensed into an 
abstract representation, which can be classified, or new sequences can be generated. 

When processing sequence data and completing classification decisions or regres-
sion estimates with sequence data, recurrent neural networks are very effective, and 
they are usually used to solve tasks related to sequence data, mainly including 
natural language processing, speech recognition, machine translation, time series 
forecast, etc. Of course, recurrent neural networks can also be used for 
non-sequence data. 

The basic structure of recurrent neural networks is shown in Fig. 5.11. It consists 
of a nerve cell receiving input, generating an output, and returning the output to 
itself, as shown in Fig. 5.11 (1). At each time step t (also called a frame), the 
circulating nerve cell receives input xt and its own previous time stride ht-1. We  
can expand (1) into a network according to the timeline, as shown in (2) in Fig. 5.11 

Expressed by the formula as follows: 

yt = g V � htð Þ  
ht = f U � Xt þ W � ht- 1ð Þ ð5:11Þ 

In the formula, V is the weight matrix from the hidden layer to the output layer, U is 
the weight matrix from the input layer to the hidden layer, and W is also the weight 
matrix, which represents that the last value of the hidden layer is the weight of this 
input. In addition, X is the input layer, h is the hidden layer, and y is the output layer. 

ht 

h0 h1 h2 h3 hT 

yTy1 

x1 x2 x3 

y2 y3 

xt 

Θhh 

Θxh 

fΘ fΘ fΘ fΘ 

(1) (2) 

Fig. 5.11 Recurrent Neurons (1); Expand in Time Sequence (2)
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Sequence related models extended by recurrent neural networks include LSTM, 
GRU, etc., which will also be introduced and applied in later chapters. 

5.3.3.1 Code Implementation 

Different from other models, the input data of recurrent neural networks contain 
sequence information. For example, if we want to classify a movie review, we need 
to preprocess it. If the text length is inconsistent, we need to use pad_sequences to 
truncate it to ensure that the length of each sample sequence is consistent. The 
following gives a simple implementation code, in which X_train is pre-processed 
training set. 

def create_rnn(): 

emb = Embedding(10000, 32) # 10000 means the total number of words, 32 means 
the output dimension 
X = SimpleRNN(32)(emb) 
X = Dense(256, activation='relu')(X) 
X = Dense(128, activation='relu')(X) 
X = Dense(1, activation='sigmoid')(X) 

model = Model(inputs=X_input, outputs=X) 
model.compile(optimizer='adam', loss='binary_crossentropy', 
metrics=['accuracy']) 

return model 

rnn_model = create_rnn() 
rnn_model.fit(x=x_train, y=y_train, epochs=30, batch_size=64) 

5.4 Practical Cases 

This section only needs to select multiple models to run the results. The models 
given above are not complete. Verification methods will also be added here to make 
the results more reliable. The results of multiple models can be compared and 
analyzed to help optimize the integration part of the model. 

# following on to the code, construction training set, and testing set of the practical case in Chapter 5 
x_train = data[:ntrain][all_cols] 
x_test = data[ntrain:][all_cols] 
# log the selling price 
y_train = np.log1p(data[data.SalePrice.notnull()]['SalePrice']. 
values)
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5.4.1 XGBoost 

The more conventional five-fold cross validation is used here, 

import xgboost as xgb 
from sklearn.model_selection import KFold 
kf = KFold(n_splits=5, shuffle=True, random_state=2020) 
for i, (train_index, valid_index) in enumerate(kf.split(x_train, 
y_train)): 
trn_x, trn_y, val_x, val_y = x_train.iloc[train_index], y_train 
[train_index], 

x_train.iloc[valid_index], y_train[valid_index] 

params = {'eta': 0.01, 'max_depth': 11,'objective': 'reg:linear', 
'eval_metric': 'mae' } 

dtrain = xgb.DMatrix(data=trn_x, label=trn_y) 
dtest = xgb.DMatrix(data=val_x, label=val_y) 

watchlist = [(dtrain, 'train'), (dtest, 'valid_data')] 

model=xgb.train(params, dtrain, 
num_boost_round=20000, 
evals=watchlist, 
early_stopping_rounds=200, 
verbose_eval=500) 

5.4.2 Multilayer Perceptions 

Before constructing a multi-layer perceptron, it is necessary to ensure that there are 
no missing values in the data and to perform regularization processing. Here, the data 
set is randomly segmented for offline verification. 

from sklearn.preprocessing import StandardScaler 
x_train = x_train.fillna(0) 
x_train = StandardScaler().fit_transform(x_train) 

from sklearn.model_selection import train_test_split 
trn_x, val_x, trn_y, val_y = train_test_split(x_train, y_train, 
random_state = 2020) 

def create_mlp(shape): 
X_input = Input((shape,)) 

X = Dropout(0.2)(BatchNormalization()(Dense 
(256, activation='relu')(X_input))) 
X = Dropout(0.2)(BatchNormalization()(Dense 
(128, activation='relu')(X)))



X = Dropout(0.2)(BatchNormalization()(Dense 
(64, activation='relu')(X))) 
X = Dense(1)(X) 

model = Model(inputs=X_input, outputs=X) 
model.compile(optimizer='adam', loss='mse', metrics=['mae']) 

return model 

mlp_model = create_mlp(trn_x.shape[1]) 
mlp_model.fit(x=trn_x, y=trn_y, validation_data = (val_x, val_y), 

epochs=30, batch_size=16) 
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The models given so far are relatively easy to implement, which helps to quickly 
feed the results back. Comparing with the offline results of XGBoost (average 
absolute error: 0.08×, after the result is logarithmic) and the multilayer perceptron 
(average absolute error: 0.21×), it is found that the effect of the latter is much worse, 
and it is difficult for the multilayer perceptron to achieve a better result with more 
than 2000 training data. 

5.5 Thinking Exercises 

1. In the Lasso regression and Ridge regression section, we know that L1 and L2 can 
reduce the risk of overfitting. So, what is the appropriate value of this parameter? 

2. When the tree model splits, it can actually look at the cross-combination stage of 
features. Is it necessary to construct a cross feature to feed the tree model? 

3. This chapter introduces the core parameters of the tree model, and there are still 
many that have not been introduced. Please try to analyze the relationship 
between the parameters and in which step of the algorithm the specific parameters 
appear, so as to deepen the understanding of the parameters. 

4. There are still many commonly used activation functions. When training deep 
learning related models, different activation functions still have a great impact on 
the results. Try to sort out the advantages and disadvantages of activation 
functions such as sigmoid, tanh, ReLU, leaky ReLU, SELU, and GELU and 
their corresponding applicable scenarios.



Chapter 6 
Model Integration 

This chapter will introduce to you the key steps to improve performance in the 
algorithm competition. This is also the typical method in the final stage, that is, 
model integration (or integrated learning). Model integration is carried out by 
combining the advantages of different sub-models. Of course, this is in an ideal state. 

This chapter is mainly divided into three parts: building diversity, training process 
integration, and training result integration. Model integration is often the key to 
winning the competition. In contrast, model integration with differences can often 
bring great improvement to the results. Although model integration cannot always 
play a great role every time you use it, but in terms of usual competition experience, 
we have come to a conclusion that model integration will bring more or less help in 
most cases. In the competitions, especially when the final results are not much 
different, the method of model integration will often become one of the keys to 
success. In different types of competitions, it is hard for us to guarantee which 
method will definitely be better than the others; evaluation indicators often have to 
be based on online results. It just implies that the more model integration methods 
you know, the higher the probability of winning in the end. Therefore, in this 
chapter, we will also introduce the application scenarios of different model integra-
tion methods from these three parts, and at the same time give the using skills and 
application codes. 

6.1 Building Diversity 

This section will introduce three ways to construct diversity in model integration, 
namely feature diversity, sample diversity, and model diversity. Diversity refers to 
the difference between sub-models, which can be constructed by reducing the 
homogeneity of sub-model integration. Good diversity helps to improve the effect 
of model integration. 
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6.1.1 Characteristic Diversity 

Constructing multiple feature sets with differences and establishing models sepa-
rately can make the features exist in different hyperspaces, so that the multiple 
models established will have different generalization errors, and the final model 
integration can play a complementary role. In the competition, the feature sets 
between teammates are often different, and in the case of little difference in their 
scores, direct model integration will usually ensure helpful effects or results. 

In addition, max_features in random forest, colsample_bytree in XGBoost, and 
feature_fraction in LightGBM are all used to sample features in the training set, 
which is to build feature diversity in essence. 

6.1.2 Sample Diversity 

Sample diversity is also a common model integration method in competitions. The 
diversity here mainly comes from different sample sets. The specific method is to cut 
the data set into multiple parts, and then build models separately. We know that 
many tree models will be sampled during training; the main purpose of doing so is to 
prevent overfitting, so as to improve the accuracy of prediction. 

Sometimes the data set is not divided into multiple parts randomly but is divided 
according to the specific competition data. It is necessary to consider how to divide 
the data to construct the maximum data difference and use the segmented data to 
train the models respectively. 

For example, in the Tianchi "Global Urban Computing AI Challenge", the 
competition training set contains a total of 25-day subway records of card swiping 
data from January 1 to January 25, 2019, and it is required to predict the average 
passenger flow volume per ten minutes at each subway station on January 
26 (January 26, 2019 is Saturday). Obviously, there is a big difference in the 
distribution of traffic volume between weekdays and weekends. At this time, there 
will be a problem. If you only keep the weekend data for training, you will waste a 
lot of data; if you keep all the data for a week, it will have a certain impact on the 
workday data. At this time, you can try to build two sets of different samples to train 
the model separately; that is, the overall data is kept as one group and the weekend 
data as the other group. Of course, the score after the model integrated will be greatly 
improved. 

6.1.3 Model Diversity 

Different models have different ability to express data. For example, FM can learn 
the cross information between features and has strong memory; the tree model can



handle continuous features and discrete features (such as LightGBM and CatBoost) 
well, and it is also robust for outliers. The integration of these two types of models 
with different data assumptions and representation capabilities will definitely 
achieve certain results. 
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For competitions, traditional tree models (XGBoost, LightGBM, CatBoost) and 
neural networks all need to be tried one by one, and then the models already tried are 
integrated together as the model with differences. 

More Diversity Methods 
In addition to what is mentioned in this section, there are many other ways to 
build diversity, such as training target diversity, parameter diversity, and loss 
function selection diversity, which can produce very good results. 

6.2 Training Process Integration 

There are two ways to model integration. The first is training process integration, 
such as the random forest and XGBoost we know. Based on these two models, 
multiple decision trees are constructed in training for integration. The multiple 
decision trees here can be regarded as multiple weak learners. Among them, random 
forest is aggregated by Bagging, and XGBoost is fused by Boosting. 

6.2.1 Bagging 

The idea of bagging is very simple, that is, to take data with return (Bootstrapping) 
from the training set; these data form a sample set, which also ensures that the size of 
the training set remains unchanged, and then the sample set is used to train the weak 
classifier. Repeat the above process many times and take the average value or use the 
voting mechanism to obtain the final result of model integration. The schematic 
diagram of the above process is shown in Fig. 6.1. 

Fig. 6.1 Bagging Process
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When we train models on different sample sets, Bagging reduces the variance of 
the classifier by reducing the difference between errors. In other words, Bagging can 
reduce the risk of overfitting. The efficiency of the Bagging algorithm comes from 
the different training data. There are great differences between the models, and the 
errors of the training data can cancel each other out in the process of weighted fusion. 
Of course, here you can choose the same classifier for training, or you can choose 
different classifiers. In addition, Bagging-based algorithms include Bagging meta-
estimator and random forest. 

6.2.2 Boosting 

It is no exaggeration to say that the idea of boosting is in fact not difficult to 
understand. First train a weak classifier and record the samples of the wrong class 
of this weak classifier, and at the same time give this weak classifier a certain weight; 
then establish a new weak classifier. The new weak classifier trains based on the 
previously recorded error samples. Similarly, we also give this classifier a weight. 
Repeat the above process until the performance of the weak classifier reaches a 
certain index. For example, when the newly established weak classifier does not 
significantly improve the accuracy rate, the iteration will stop. Finally, multiply these 
weak classifiers by the corresponding weights and add them all together to get the 
final strong classifier. In fact, there are many algorithms based on Boosting, includ-
ing Adaboost, LightGBM, XGBoost, and CatBoost. 

6.3 Training Result Integration 

The second way of model integration is the training result fusion, which is mainly 
divided into weighting method, stacking, and blending. These methods can effec-
tively improve the overall prediction ability of the model and are also methods that 
participants must master in the competition. 

6.3.1 Weighting Method 

The weighting method is very effective for a series of tasks (such as classification 
and regression) and evaluation indicators (such as AUC, MSE, or Logloss). For 
example, we have 10 algorithm models that all predict the results. The results are 
directly averaged, or given different weights to each algorithm, and then the fusion 
result is obtained. The weighting method can usually reduce overfitting because the 
results of each model may have some noise. The weighting method can smooth the 
noise and improve the generalization of the model.



6.3 Training Result Integration 107

6.3.1.1 Classification Problems 

For classification problems, it is important to note that the output ranges of different 
classifiers are consistent because the prediction results output can be 0/1, or proba-
bilities between 0 and 1. In addition, voting is also a special weighting method, 
assuming that three models each output three sets of results: 

1010110011 
1110110011 
1110110011 

As long as the weights of the three results are consistent, the final fusion result is 
1110110011 no matter the voting method (the minority is subordinate to the 
majority) or the weighting method (fixing 0.5 as the threshold) is used. 

6.3.1.2 Regression Problems 

For regression problems, if the weighting method is used, it will be very simple. Here 
we mainly introduce the algorithm average and geometric average. So, why are there 
two choices? It is mainly because of the evaluation index. In the 2019 Tencent 
Advertising Algorithm Competition, the effect of choosing geometric average is far 
better than that of choosing arithmetic average. This is because the scoring rule is the 
symmetric mean absolute percentage error (SMAPE). At this time, if you choose 
arithmetic average, the result of model integration will be too large. This does not 
conform to the intuition of the mean absolute percentage error. The smaller the 
value, the greater the impact on the score will be, and the arithmetic average will lead 
to greater errors. Therefore, choosing geometric average can make the result biased 
towards small values. 

SMAPE= 
1 
n 

n 

t = 1 

Ft -Atj j  
Ft þ Atð Þ=2 ð6:1Þ

• Arithmetic average. The integration method based on arithmetic average is the 
most commonly used in the algorithm, because it is not only simple, but also has a 
high probability of obtaining good results every time the algorithm is used. The 
formula is as follows (6.2): 

pred= 
pred1 þ pred2 þ⋯þ predn 

n
ð6:2Þ

• Geometric average. According to many contestants, weighting based on geo-
metric average is not used much in the algorithm, but in actual situations, 
sometimes the model integration effect based on geometric average is slightly 
better than that based on arithmetic average.
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pred= pred1 þ pred2 þ ⋯þ predn 
n ð6:3Þ 

6.3.1.3 Sorting Problems 

The main task in a general recommendation question is to sort the recommendation 
results. Common evaluation indicators include mAP (mean Average Precision), 
NDCG (Normalized Discounted Cumulative Gain), MRR (Mean Reciprocal 
Rank), and AUC. MRR and AUC will be explained here. 

MRR 

Given the recommendation result q, if the position of q in the recommendation 
sequence is r, then MRR (q) is 1/r. It can be seen that if the product recommended to 
the user hits in the recommendation sequence, the higher the position of the hit, the 
higher the score. Obviously, the significance of ranking results is not the same for 
different positions, so we not only need to carry out weighted fusion, but also need to 
make the results biased towards small values. Under such conditions, the results 
must be converted, and then integrated by using the weighting method. In general, 
the conversion method used is log transformation. The basic idea is as follows. 

First, enter three prediction result files. Each prediction result file contains 
M records. Each record corresponds to N prediction results, and finally the integrated 
results of the three prediction result files will be output. The internal details can be 
divided into the following two steps. 

Step 1: Count the positions of all recommended commodities (a total of 
N commodities) recorded in the three prediction result files; For instance, the 
recommended position of commodity A in the first file is 1, the recommended 
position of it in the second file is 3, and it does not appear in the third file. In this 
context, we calculate the score of commodity A as log1 + log3 + log(N + 1), where 
we use N + 1 to represent the condition of not appearing. In other words, in the 
N recommended products, the product A cannot be found, so it can only be N + 1.  

Step 2: Sort the commodities in each record by the scores calculated, from small 
to large, and take the top N as the final recommended result of this record. 

AUC 

As a ranking index, AUC generally uses the integration idea of ranking means, using 
relative order to replace the original probability value. Many competitions with AUC 
as the index have achieved very good results. The following two steps are what in a 
using process.



6.3 Training Result Integration 109

Step 1: Sort the probability of classification in each classifier, and then use the 
ranking value (rank) obtained after ranking each sample as the new result. 

Step 2: Calculate the arithmetic average value of the ranking value of each 
classifier as the final result. 

6.3.2 Stacking Integration 

Although it is simple to use the weighting method for integration, it requires manual 
labor to determine the weights, so a more intelligent way shall be considered to learn 
the weights of each classifier through a new model. Here we assume that there are 
two layers of classifiers. If a specific base classifier in the first layer mistakenly learns 
a certain area of the feature space, this wrong learning behavior may be detected by 
the second layer classifier, which, like the learning behavior of other classifiers, can 
correct inappropriate training. The above process is the basic idea of stacking 
integration. 

Two points should be paid attention to here: first, the new models constructed are 
generally simple models, such as linear models like logistic regression; second, 
using multiple models for stacking integration will have better results. 

Stacking integration uses the prediction results of the base model as the input of 
the second-level model. However, we cannot simply use the complete training set 
data to train the base model, which will create the risk that the base classifier will 
already "see" the testing set during prediction, resulting in an over-fitting problem 
when providing the prediction results. Thus, we should use out-of-fold to predict the 
results, that is, making use of K-fold cross validation to predict the results. Here we 
divide the stacking integration into two parts: the training phase and the testing phase 
and will show the specific operation of each part in the form of a flow chart. The 
training phase is shown in Fig. 6.2. 

In Fig. 6.2, we use a five-fold cross validation method for each model, then we 
can obtain the prediction probability results of the complete verification set, and 
finally splice the N-column probability results and the training set labels obtained 
into a second-layer training sample, so that the second-layer model can be trained. 
After that, we use the model trained during the five-fold cross validation (such as 
model 1, which can be trained to obtain 5 different model 1) as the training of the 
testing set. 

As shown in Fig. 6.3, the testing phase will use the model trained in the training 
phase. First, the testing set will be predicted using the 5 models obtained from model 
1, and then the 5 probability results will be obtained by weighted average to obtain a 
probability result—probability 1. Then the above operations are also performed on 
model 2 to model N in turn, and finally N probability results are obtained. Regard 
these N results as the testing samples of the second layer, and then use the model 
obtained from the second layer training to predict the testing samples of the second 
layer to get the final result.
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Fig. 6.3 Testing Phase of Stacking Integration 

Extended Learning 
Please think about the linear stacking of feature weighting; you can refer to the 
corresponding paper "Feature-Weighted Linear Stacking two layer stacking", 
which is actually an extension of the traditional stacking integration method in 
depth. The probability value is obtained through the traditional stacking 
integration method, and then this value is spliced with the basic feature set 
to reconstitute a new feature set for a new round of training. 

6.3.3 Blending Integration 

Unlike stacking integration, which uses K-fold cross validation to obtain prediction 
results, blending integration is to build a holdout set and use disjoint data sets for 
different layers of training, which can greatly reduce the risk of overfitting. Suppose 
we construct two layers of blending, divide the training set into two parts (train_one 
and train_two) at a ratio of 5:5, and the testing set is test. 

The first layer uses train_one to train multiple models and merges the prediction 
results of this model for train_two and test into the original feature set, as the feature 
set of the second layer. The second layer uses train_two feature set and labels to train 
the new model, and then predicts the test to obtain the final integration result.
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6.4 Practical Cases 

This section will take you through the operation of Stacking integration, which 
requires the construction of multiple model prediction results, generally more than 
3. Here we choose ExtraTreesRegressor, RandomForestRegressor, Ridge, and Lasso 
as the base classifiers, and Ridge as the final classifier. First import some new 
packages: 

from sklearn.ensemble import ExtraTreesRegressor 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.metrics import mean_squared_error 
from sklearn.linear_model import Ridge, Lasso 
from math import sqrt 
# still use five-fold cross validation 
kf = KFold(n_splits=5, shuffle=True, random_state=2020) 

Then build a functional class of the model in sklearn, initialize the parameters and 
then train and predict. This code is very reusable. We recommend that you continue 
to improve the construction, constructing your own set of repositories. 

class SklearnWrapper(object): 
def __init__(self, clf, seed=0, params=None): 

params['random_state'] = seed 
self.clf = clf(**params) 

def train(self, x_train, y_train): 
self.clf.fit(x_train, y_train) 

def predict(self, x): 
return self.clf.predict(x) 

Then, encapsulate the cross validation function; the reusability of this code is also 
very frequent: 

def get_oof(clf): 
oof_train = np.zeros((x_train.shape[0],)) 
oof_test = np.zeros((x_test.shape[0],)) 
oof_test_skf = np.empty((5, x_test.shape[0])) 

for i, (train_index, valid_index) in enumerate(kf.split(x_train, 
y_train)): 

trn_x, trn_y, val_x, val_y = x_train.iloc[train_index], 
y_train[train_index], 

x_train.iloc[valid_index], y_train[valid_index] 
clf.train(trn_x, trn_y) 
oof_train[valid_index] = clf.predict(val_x) 
oof_test_skf[i, :] = clf.predict(x_test)



oof_test[:] = oof_test_skf.mean(axis=0) 
return oof_train.reshape(-1, 1), oof_test.reshape(-1, 1) 
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Next is the part of the code trained and predicted by the base classifier, which can 
predict the verification set results and testing set results of the four models, and assist 
the last step of the stacking integration operation: 

et_params = { 
'n_estimators': 100, 
'max_features': 0.5, 
'max_depth': 12, 
'min_samples_leaf': 2, 

} 
rf_params = { 
'n_estimators': 100, 
'max_features': 0.2, 
'max_depth': 12, 
'min_samples_leaf': 2, 

} 
rd_params={'alpha': 10} 
ls_params={'alpha': 0.005} 
et = SklearnWrapper(clf=ExtraTreesRegressor, seed=2020, 
params=et_params) 
rf = SklearnWrapper(clf=RandomForestRegressor, seed=2020, 
params=rf_params) 
rd = SklearnWrapper(clf=Ridge, seed=2020, params=rd_params) 
ls = SklearnWrapper(clf=Lasso, seed=2020, params=ls_params) 

et_oof_train, et_oof_test = get_oof(et) 
rf_oof_train, rf_oof_test = get_oof(rf) 
rd_oof_train, rd_oof_test = get_oof(rd) 
ls_oof_train, ls_oof_test = get_oof(ls) 

The final part is the Stacking part. It uses the ridge model. Of course, you can also 
try more complex models such as the tree model: 

def stack_model(oof_1, oof_2, oof_3, oof_4, predictions_1, predictions_2, 
predictions_3, predictions_4, y): 
train_stack = np.hstack([oof_1, oof_2, oof_3, oof_4]) 
test_stack = np.hstack([predictions_1, predictions_2, predictions_3, 

predictions_4]) 

oof = np.zeros((train_stack.shape[0],)) 
predictions = np.zeros((test_stack.shape[0],)) 
scores = [] 

for fold_, (trn_idx, val_idx) in enumerate(kf.split(train_stack, y)): 
trn_data, trn_y = train_stack[trn_idx], y[trn_idx] 
val_data, val_y = train_stack[val_idx], y[val_idx]



clf = Ridge(random_state=2020) 
clf.fit(trn_data, trn_y) 

oof[val_idx] = clf.predict(val_data) 
predictions += clf.predict(test_stack) / 5 

score_single = sqrt(mean_squared_error(val_y, oof[val_idx])) 
scores.append(score_single) 
print(f'{fold_+1}/{5}', score_single) 

print('mean: ',np.mean(scores)) 

return oof, predictions 

oof_stack , predictions_stack = stack_model(et_oof_train, rf_oof_train, 
rd_oof_train, ls_oof_train, et_oof_test, rf_oof_test, rd_oof_test, 
ls_oof_test, y_train) 
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After comparing the final effect, it can be seen that the stacking integration is 
0.13157, and the optimal base classifier is 0.13677, which has an improvement of 
about five thousandths, indicating that the model integration still has a certain effect. 
In addition, we also carried out a common weighted average fusion scheme, with a 
score of only 0.13413, which showed that the effect was relatively poor. 

6.5 Thinking Exercises 

1. There are also many methods to construct diversity, such as training target 
diversity, parameter diversity, and loss function selection, which can all produce 
very good results. Please sort out and summarize more methods. 

2. Intuitively, stacking integration can bring good results. However, why will the 
effect of stacking integration sometimes deteriorate? Is it a problem of base model 
selection, or is it because the number of layers is not enough? Please analyze what 
factors will affect the final fusion results. 

3. Try to build the framework of stacking integration and make it reusable, which is 
convenient for participants to call flexibly in the competition.



Part II 
Birds of a Feather Flock Together



Chapter 7 
User Profiles 

As the old saying goes, thousands of people have thousands of quite different faces. 
It is true that everyone in the world is a unique individual. Just as no two leaves of 
any plants are identical in the world, there are no identical people in the world either. 
After the birth, people begin to have their own unique labels, such as their last name, 
who their parents are, where their home is, when they come to the world, and what 
kind of life journey they are about to embark on. The more you experience, the more 
obvious your uniqueness becomes. Even if among siblings, there will always be 
times when they live independently, and differences will emerge. Loneliness, a 
description of the state of mind, is an eternal theme in one's life. As long as you 
find a soul mate, you will no longer be alone. However, not being alone is not equal 
to not feeling lonely. Due to the huge differences and individual uniqueness between 
individuals, the analysis and study of individuals might be very complicated, even 
impossible, and unnecessary. Therefore, psychology and sociology are mostly about 
group characteristics, and occasionally the study of individual abnormal behaviors is 
just to trace the source based on the existing results. 

Even today when it has witnessed explosion of Internet information and the era of 
so-called big data artificial intelligence, the information that can be obtained from a 
person's digital records is still only a part of their life, and others simply cannot fully 
know what they are thinking and what they will do in the future. Of course, there is 
no need to be too pessimistic. If you can make good use of the recorded information, 
you can also understand a person to a certain extent. Therefore, based on only a 
certain level of data, some individual profiles can be produced, which can be used to 
describe the general differences between groups and individuals from a specific 
perspective. Having said so much, what does this have to do with the user profile 
discussed in this chapter? First of all, it is necessary to clarify who the users in the 
user profile are: data collectors (that is, product providers) often develop a product 
for people to use, and these users are the users of the data collectors. In order to 
promote the product while continuing to maintain and improve the user experience, 
data collectors will need to mine the data generated by user operations, so as to 
discover the behavioral preferences of groups and even individuals, forming a
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so-called profile at the data level. More broadly speaking, an image can be formed of 
any group, such as a region, an era, a community of groups, etc.
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The popularity of smart phones has attracted people to play with them during 
most of their leisure time. Various apps have generated a large amount of recorded 
data about user behavior, which has laid the foundation for the formation of user 
profiles. Therefore, machine learning algorithms based on user profiles have many 
application scenarios, and the competitions of such scenarios also become important 
events. This chapter will explain from five parts: what the user profile is, tagging 
system, user profile data features, user profile application, and thinking exercises. 

7.1 What Are User Profiles 

There is no denying the fact that when thinking of a person, whether on the surface or 
subconsciously, one will actually have a general impression for the person, such as 
the figure and face, social attributes, personality cultivation, interests and hobbies, 
etc. Although the general impression in one's mind can also be regarded as a portrait 
with relatively subjective consciousness, it is obviously not the user profile for 
business analysis and data mining to be discussed in this section. 

The user profile mentioned in machine learning is usually based on the given data 
to describe the user portraits and behaviors, then extract the user's personalized 
indicators, next analyze the possible group commonalities, and apply them to 
various business scenarios. In the Internet era, there are a lot of user-oriented 
products and data collection is relatively easy, which promotes the application of 
machine learning in user-oriented aspects, and user profile is the most important part. 
In all kinds of machine learning algorithm competitions, the mining of user data 
always occupies a place, so user profiles often haunt the competitions and play an 
indispensable role. Next, we will introduce the composition of user profiles and how 
to use user profiles in the competitions. 

7.2 Tagging System 

The core of user profiles is actually to "tag" users, which means to tag the behavioral 
characteristics of users, making it possible for enterprises to take advantage of the 
tags in a user profile to analyze the user's social attributes, living habits, consumer 
behavior, and other information, and then apply such information into commercial 
use. Building a tagging system has become the key for enterprises to empower more 
business, and the tagging system is also the content to be introduced in detail in this 
section, specifically from three aspects, namely, the tag classification method, multi-
channel access to tags, and the tagging system framework.
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7.2.1 Tag Classification 

As shown in Fig. 7.1, the tag classification method is shown by analyzing the 
features of a user. 

7.2.2 Multi-Channel Access to Tags 

According to the tag acquisition method, tags can be divided into three types: fact 
tag, rule tag, and model tag. The tag acquiring method can also be regarded as a 
feature obtaining method. With the help of these three methods, features that can 
represent user characteristics, commodity features, or data characteristics can be 
extracted from the original data source. 

7.2.2.1 Fact Tags 

Fact tags are the easiest to obtain, directly from the original data source, such as 
gender, age, membership level, and other fields. Of course, it is also possible to 
extract fact labels after simple statistic work on the original data source, such as the 
number of user behaviors, and total consumption. 

7.2.2.2 Rule Tags 

Rule tags are widely used. They are tags generated by multiple rules set by operators 
and data personnel through joint negotiation. They are characterized by direct, 
effective, and flexible, low computational complexity, and high interpretability. 
They are mainly used for more intuitive and clearer user-related tags, such as

Fig. 7.1 Tag Classification Method



geographical affiliation, family type, age, etc. The technical knowledge used is 
mainly mathematical statistics knowledge, such as basic statistics, numerical strat-
ification, probability distribution, mean analysis, variance analysis, etc.
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Fig. 7.2 Rule Tags Classification 

As shown in Fig. 7.2, the final rule tag is mainly generated by logical operation 
and function operation on a single or multiple indicators, which is divided into three 
parts: user behavior, user preference, and user value. If you are interested, you can 
conduct deeper operations on users. 

7.2.2.3 Model Tags 

Model tags are insight tags generated by secondary processing after model 
processing such as machine learning and deep learning, for example, predicting 
user status, predicting user credit score, dividing interest groups and classifying 
comment text, etc. The results obtained through these processes are model tags. It is 
characterized by high degree of synthesis and complexity. Most tags need to 
construct corresponding mining index system in a targeted way first, and then rely 
on classical mathematical algorithms or models to carry out comprehensive calcu-
lation among multiple indexes to obtain model tags, which often requires a combi-
nation of multiple algorithms to build models. 

As shown in Fig. 7.3, based on the model tags, the RFM model can be used to 
measure user value and user profitability, build user behavior information modeling



to predict user lifetime change, forecast user credit scores through models, and use 
graph embedding or user hierarchical model to divide interest groups. In addition, 
there are many ways to get tags through the model. 

7.2 Tagging System 121

Fig. 7.3 Model Tags Classification 

Fig. 7.4 Tagging System Framework 

7.2.3 Tagging System Framework 

With a preliminary comprehension of tagging classification and acquisition, we can 
connect them together to form a basic tagging system framework, including 
extracting bottom layer data to empower business applications. 

As shown in Fig. 7.4, the whole tagging system framework is divided into four 
parts: data source, tag management, tag hierarchy classification, and tag service 
empowerment.
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7.3 User Profile Data Features 

Whether it is building a user profile or conducting an algorithm competition, data is 
the core of creating benefits. Broadly speaking, the data source of user profiles is user 
data, commodity data, and channel data. For example, user transaction data and 
behavior data can be obtained from e-commerce websites and WeChat platform 
(WeChat is a Chinese multi-purpose instant messaging, social media, and payment 
app), and user attributes data can be obtained from the user system on the platform. 
These data exist in various forms, and by understanding of the data form, statistics, 
coding, and dimension reduction can be carried out to extract effective features. 
Then these features can be used to construct the tags we need. In this section, we will 
introduce common data forms and some feature extraction methods for competitions 
related to user profiles. 

7.3.1 Common Data Forms 

In a variety of competitions, data forms and formats are diverse. This section takes 
the user profile as an example to roughly divide the relevant fields of data into four 
common data forms: numerical variables, category variables, multi-value variables, 
and text variables. Each variable has a corresponding processing method. It should 
be emphasized that these variables are aimed at the user level; that is, all sample data 
is distinguished by using the user as the unique primary key, and each user has only 
one record. The reason for using this example is that the data required for machine 
learning models based on user profiles are usually presented in the form of a user 
pool, and the user's tags are subjected to corresponding feature learning. The data 
given in the actual competition may be very complex, and even describes the user's 
behavior in the form of dotting records. At this time, participants are often required 
to construct and extract user attributes, which involves better application skills. 

7.3.1.1 Numerical Variables 

The most common numerical variable is continuous variable, which refers to vari-
ables with numerical meaning, such as age, height, weight, etc. shown in Fig. 7.5, 
and others such as consumption expenditure, traffic accumulation, etc. 

7.3.1.2 Category Variables 

Category variables refer to variables with category identification, such as gender, 
nationality, city, etc. These variables record the inherent attributes of users, as shown 
in Fig. 7.6.
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Fig. 7.5 Continuous Variables 

Fig. 7.6 Category Variables 

Fig. 7.7 Multi-valued Variables 

7.3.1.3 Multi-valued Variables 

Multi-valued variables refer to variables for which users have multiple values in a 
certain dimension, such as hobbies, dressing styles, movies they have watched, etc. 
Due to their special structure, such variables cannot be directly applied to the model 
and need to be processed with special data structures such as sparse matrix, as shown 
in Fig. 7.7. 

7.3.1.4 Text Variables 

Text variables (shown in Fig. 7.8) are variables that use text records, such as a user's 
comment on an item or a purchase. Handling such variables requires some tools of 
natural language processing, such as the Chinese word segmentation tool jieba.
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Fig. 7.8 Text Variables 

Next, we will introduce some common feature extraction methods to enable 
readers to better solve problems when facing competitions related to user profiles, 
specifically, text mining algorithms, magical embedded representations, and simi-
larity calculation methods. 

7.3.2 Text Mining Algorithm 

For basic raw data such as frequent user tag sets, shopping evaluation, etc., in 
addition to common statistical features, it is also possible to extract features based 
on text mining algorithms, and at the same time preprocess and clean the raw data 
sources, so as to achieve the effect of matching and identifying user data. This 
section will introduce common text mining algorithms LSA, PLSA, and LDA, all of 
which are unsupervised learning methods. 

7.3.2.1 LSA 

LSA (Latent Semantic Analysis) is a non-probabilistic topic model related to word 
vectors, which is mainly used for topic analysis of docs. Its core idea is to discover 
the topic-based semantic relationship between docs and words through matrix 
decomposition. Specifically, the doc set is represented as a word - doc matrix, and 
the word - doc matrix will undergo SVD (singular value decomposition) to obtain 
the topic vector space and the representation of doc in the topic vector space. 

The specific use of LSA is also very simple. We will take the data in the 2020 
Tencent Advertising Algorithm Contest as an example. First, construct the ID series 
(creative_id) of the advertising material clicked by the user, and then perform 
TF-IDF calculations. Finally, the results are obtained through SVD. The implemen-
tation code is as follows: 

from sklearn.feature_extraction.text import TfidfVectorizer 
from sklearn.decomposition import TruncatedSVD 
from sklearn.pipeline import Pipeline 
# extract the point-and-click series by users 
docs=data_df.groupby(['user_id'])['creative_id'].agg(lambda x:" 

".join(x)).reset_index()['creative_id']



# tfidf + svd 
tfidf = TfidfVectorizer() 
svd = TruncatedSVD(n_components=100) 
svd_transformer = Pipeline([('tfidf', tfidf), ('svd', svd)]) 
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lsa_matrix = svd_transformer.fit_transform(documents) 

7.3.2.2 PLSA 

The PLSA (Probability Latent Semantic Analysis) model is actually proposed to 
overcome some of the potential shortcomings of the LSA model. The PLSA model 
gives LSA a probabilistic interpretation through a generative model. The model 
assumes that every doc contains a series of possible potential topics, and every word 
in the doc is not dreamt up but generated through a certain probability under the 
guidance of potential topics. 

7.3.2.3 LDA 

LDA (Potential Dirichlet Allocation) is a probabilistic topic model, which has 
nothing to do with word vectors. The topic of each doc in the doc set can be given 
in the form of a probability distribution. By analyzing a batch of doc sets and 
extracting their topic distribution, topic clustering or text classification can be carried 
out according to the topic distribution. At the same time, it is a typical bag-of-words 
model, that is, a doc is composed of a group of mutually independent words, and 
there is no sequence relationship between words. 

7.3.3 Magic Embedded Representation 

It is no exaggeration to say that anything that can form a network structure can have 
an embedding representation, and the embedded representation can convert high-
dimensional sparse feature vectors into low-dimensional dense feature vectors to 
represent. The concept of embedding was originally widely used in the field of NLP, 
and has now been extended to other applications, such as e-commerce platforms. 
E-commerce platforms regard a user's behavior sequence as a sentence composed of 
a series of words, such as a user clicking sequence and a purchase sequence and 
obtain embedded vectors about goods after training. This article mainly introduces 
the classic Word2Vec and the DeepWalk method in network representation learning.
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Fig. 7.9 Simple Version of Word2Vec Model 

7.3.3.1 Word Embedding Word2Vec 

Word2Vec is often used in competitions and can bring unexpected effects. It is very 
important to master its principle. Word2Vec trains word vectors according to the 
relationship between contexts. There are two training modes, namely Skip-Gram 
(Skip-Gram model) and CBOW (continuous bag-of-words model). The main differ-
ence between the two lies in the difference between the input layer and the output 
layer. Simply put, Skip-Gram uses a word as input to predict its context; CBOW uses 
the context of a word as input to predict the word itself. 

As shown in Fig. 7.9, Word2Vec is essentially a fully connected neural network 
with only one hidden layer, which is used to predict words with a large degree of 
association with a given word. The size of the model glossary is V, the dimension of 
each hidden layer is N, and the connection between adjacent nerve cells is fully 
connected. 

The input layer in Fig. 7.9 is a one-hot vector that converts a word into a given 
word, and then converts the word into a {x1, x2, x3, . . .  xv} sequence. Only one value 
in this sequence is 1, and the others are all 0; simply map the sequence in the hidden 
layer through the weight matrix WV×N between the input layer and the hidden layer; 
there is a weight matrix W′N×V between the hidden layer and the output layer, and the 
score of each word in the glossary is obtained by calculating the weight; finally the 
probability result of each word is output using the softmax activation function. Next, 
let’s look at the specific model structure of Skip-Gram and CBOW. 

As shown in Fig. 7.10, Skip-Gram predicts a given sequence or context based on 
the current word. Assume that the target word entered is xk, the defined context 
window size is c, and the corresponding context is {y1, y2, y3, . . .  yc}. These y are 
independent of each other.
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Fig. 7.10 Skip-Gram 

Figure 7.11 is the model structure of the CBOW, which defines the context 
window size as c, and the context word as {x1, x2, x3, . . .xc}. The current word is 
predicted through the word in the context, and the corresponding target word is y. 

Word2Vec is very convenient to use—just call the gensim package directly, and 
pay attention to several specific parameters, such as window size, model type 
selection, and vector length of the generated word. 

The choice of Skip-Gram and CBOW can be roughly based on the following 
three points: CBOW is much faster than Skip-Gram in training because CBOW 
predicts the word itself based on context, only requiring adding other words in the 
window as input to implement prediction. No matter how big the window is, it only 
needs one calculation; compared to Skip-Gram, CBOW can better represent com-
mon words; Skip-Gram can also represent rare words or phrases in a small number of 
training sets. 

7.3.3.2 Graph Embedding DeepWalk 

In many scenarios, data objects have not only sequence relationships, but also graph 
or network structure relationships, while Word2Vec can only extract embedding 
representations under sequence relationships but cannot obtain graph-related infor-
mation crossing the original sequence relationships. In order to span from “one-



dimensional” relationships to “two-dimensional” relationships, graph embedding 
has become a new research direction, the most influential of which is DeepWalk. 
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Fig. 7.11 CBOW 

Fig. 7.12 DeepWalk Procedure 

As shown in Fig. 7.12, the DeepWalk algorithm mainly includes three parts. First, 
the graph network is generated. For example, the commodity graph network is 
constructed via the user clicking sequence or purchasing commodity sequence. 
The commodities in the sequence are connected by lines and used as the edge of 
the graph. The commodities are used as points, so that a certain commodity point can 
be associated with a large number of domain commodities; then a random walk is 
performed based on the graph network to obtain the co-occurrence relationship 
between nodes in the network, generating a commodity sequence in accordance



with the walk length; finally, the generated sequence is input as a sentence to Skip-
Gram for word vector training, and the graph embedding representation of the 
commodity is obtained. 

7.3 User Profile Data Features 129

For ease of understanding, the code description of DeepWalk is given below: 

def deepwalk_walk(walk_length, start_node): 
walk = [start_node] 
while len(walk) <= walk_length: 

cur = walk[-1] 
try: 

cur_nbrs = item_dict[cur] 
walk.append(random.choice(cur_nbrs)) 

except: 
break 

return walk 

def simulate_walks(nodes, num_walks, walk_length): 
walks = [] 
for i in range(num_walks): 

random.shuffle(nodes) 
for v in nodes: 

walks.append(deepwalk_walk(walk_length=walk_length, 
start_node=v)) 

return walks 

if __name__ == "__main__": 
# Step 1: generate the graph network (omitted) 
# Construct item_dict and save nodes relationship between nodes, namely, 

dictionary structure storage, with key as the node, value as the 
field 

# Step 2: generate commodities sequence through DeepWalk 
nodes = [k for k in item_dict] # Node Sets 
num_walks = 5 #  Rounds of random walk 
walk_length = 20 # Length of random walk 
sentences = simulate_walks(nodes, num_walks, walk_length) # Sequence set 

# Step 3: train commodities word vectors through Word2Vec 
model = Word2Vec(sentences, size=64, window=5, min_count=3, 
seed=2020) 

Extended Learning 
The derivation of Item2Vec for Word2Vec and more graph embedding 
method, such as LINE, Node2Vec, and SDNE, are all worth studying. From 
the traditional Word2Vec to the embedded representation in the recommen-
dation system, and then to the gradual transition to graph embedding today, 
these embedding methods are all widely used.
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7.3.4 Similarity Calculation Method 

Feature extraction based on similarity calculation includes Euclidean distance, 
cosine similarity, Jaccard similarity, etc. It is helpful to extract the similarity of 
users, products, and text. After the embedding representation of users and products, 
the word segmentation representation of text, and various sparse representations 
have been obtained, the similarity calculation of these vector representations can be 
performed. Similarity-based calculation has been widely used in applications such as 
user hierarchical clustering, customized recommendation, or advertising. 

7.3.4.1 Euclidean Distance 

Euclidean distance is the easiest way to understand distance calculation. It is the 
distance formula between two points in two-dimensional, three-dimensional or 
multi-dimensional space. In n-dimensional space, for vectors A = [a1, a2, . . ., an], 
B = [b1, b2, . . ., bn], the formula used is formula (7.1): 

d A,Bð Þ= 
n 

i= 1 

ai, bið Þ2 ð7:1Þ 

The code for implementing Euclidean distance is as follows: 

def EuclideanDistance(dataA, dataB): 
# np.linalg.norm for norm calculations, the default is two-norm, which is equivalent to 

finding the square root of the sum of squares 
return 1.0 / ( 1.0 + np.linalg.norm(dataA - dataB)) 

7.3.4.2 Cosine Similarity 

First of all, the included angle cosine of the sample data is not an included angle 
cosine in the true geometric sense. In fact, the former is just borrowing the name of 
the latter and becomes an algebraic sense of the "included angle cosine", which is 
used to measure the difference between sample vectors. The smaller the included 
angle, the closer the cosine value is to 1, and vice versa, approximating -1. See 
formula (7.2) for the included angle cosine between vector A and vector B above: 

cos θ= 

n 

i= 1 
ai × bið Þ  

n 

i= 1 
a2 i × 

n 

i= 1 
b2 i 

ð7:2Þ 

The codes for cosine similarity are implemented as follows:



def Cosine(dataA, dataB): 
sumData = np.dot(dataA, dataB) 
denom = np.linalg.norm(dataA) * np.linalg.norm(dataB) 
# regularize to the range of [0,1] 
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return ( 1 - sumData / denom ) / 2 

7.3.4.3 Jaccard Similarity 

Jaccard similarity is generally used to measure the difference between two sets. The 
idea is that the more elements two sets share, the more similar they will be. In order 
to control their value range, we can add a denominator, that is, all the elements 
owned by the two sets. The Jaccard similarity formula for set C and set D is shown in 
formula (7.3): 

J C,Dð Þ= 
C \ Dj j  
C [ Dj j  = 

C \ Dj j  
Cj j þ Dj j- C \ Dj j ð7:3Þ 

The code for Jaccard similarity is implemented as follows: 

def Jaccard(dataA, dataB): 
A_len, B_len = len(dataA), len(dataB) 
C = [i for i in dataA if i in dataB] 
C_len = len(C) 
return C_len / ( A_len + B_len - C_len) 

Extended Learning 
More similarity calculation methods include Pearson Correlation Coefficient, 
Adjusted Cosine Similarity, Hamming Distance, Manhattan Distance, 
Levenshtein Distance, etc. 

7.4 Application of User Profiles 

The reason why user profiles are worth studying and learning is that they have a wide 
range of application scenarios, and the user behavior in the Internet era can generate 
a large amount of data for analysis and modeling, which also provides good 
conditions for user profiles. Although many companies have different emphases in 
considering user profiles, after all abstracted for analysis, these profiles can be 
divided into several categories as shown in Fig. 7.13.
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Fig. 7.13 Application scenario of user profile 

7.4.1 User Analysis 

DAU and MAU are two words that can be heard from time to time. They are usually 
used to describe the number of people who are active online every day or every 
month. They are important evaluation indicators for Internet products. Although 
each product has more or less targeted user groups at the beginning of the design, the 
product will always face a variety of challenges after going online, including users’ 
referral, activation, retention, figuring out what the characteristics of new users, and 
whether the attributes of core users have changed, which are all difficult problems 
that need to be analyzed and studied. Therefore, it is necessary to constantly do user 
profile analysis, refine crowd characteristics, and then continuously optimize product 
performance and UI interaction. 

1. The competition "User's Purchase Forecast of Stores under the Category" of JD. 
com on JDATA platform in 2019 provided data information from users, mer-
chants, commodities, and other aspects, including information of merchants and 
the content of the goods themselves, comment information, and rich interaction 
between users and merchants. Players were required to build prediction models of 
relevant categories in the user's purchase of merchant’s goods through data 
mining technology and machine learning algorithms, output matching results of 
users, shops, and commodity categories, and provide high-quality target groups 
for users to invite new users. In essence, it is the matching work of goods 
searching for users, providing suitable goods for would-be users, enlarging the 
conversion rate of user types, and facilitating the promotion of platform GMV. 

2. Tencent Advertising "2020 Tencent Advertising Algorithm Contest" was also 
focused on the user's behavior information, that was, using the user's interaction 
behavior in the advertising system as input to predict the user's demographics 
attributes (such as age, gender, occupation, etc.). For example, for practitioners 
who lacked user information, inferring user attributes based on their own system 
data could help them achieve intelligent targeting or audience protection on a 
wider population. Although the information filled in by the user might be

http://jd.com
http://jd.com
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falsified, it was difficult to falsify the user's behavior habits. Fully mining the 
user's interaction behavior was helpful to verify the user's attribute characteristics. 

7.4.2 Precision Marketing 

E-commerce is always among the top ten apps for smartphone downloads. The 
convenience of online shopping and the wide variety of products greatly enhance 
users' shopping experience. Using users' historical consumption behavior for user 
profiling can show users' consumption preferences, so that e-commerce platforms 
can quickly and accurately respond to users' needs when users need to purchase 
items, and merchants can easily find their own seed users. In addition to e-commerce 
search, recommendation systems and advertising also belong to the category of 
precision marketing. On the major competition platforms of machine learning, 
competitions on user-oriented precision marketing emerge one after another. The 
following is a brief introduction to the algorithm competition examples of user 
profile in precision marketing. 

1. The first championship of the competition career of the two co-authors of this 
book, Wang He and Liu Peng, was won in the "2018 HKUST iFLYTEK AI 
Marketing Algorithm Competition" held on the DC competition platform. The 
organizer is iFLYTEK AI Marketing Cloud, which is affiliated to iFLYTEK CO., 
LTD. Based on years of deep cultivation of artificial intelligence technology and 
big data accumulation, it endows marketing intelligence and innovative brain, 
and helps advertisers with a sound product matrix and a full range of services. AI 
realizes the overall improvement of marketing efficiency and creates a new 
ecology of digital marketing. With the rapid development of iFLYTEK AI 
Marketing Cloud, it has accumulated a large amount of advertising data and 
user data. How to effectively use these data to predict the user's advertising click 
probability is a key issue in the application of big data in precision marketing, and 
it is also the core technology that all intelligent marketing platforms must have. 
This competition provides a large amount of advertising data from iFLYTEK AI 
Marketing Cloud. The contestants need to build a prediction model through 
artificial intelligence technology to estimate the user's advertising click probabil-
ity, that is, to predict the advertising click probability under the condition of given 
advertising, media, users, contextual content, and other information related to 
advertising click. Although this competition also belongs to the field of advertis-
ing, the two co-authors have made good achievements by digging deep into the 
user profile through the user tag set given, accurately linking users with 
advertisements. 

2. Tencent Advertising "2018 Tencent Advertising Algorithm Contest" is based on 
Look-alike (similar crowd expansion), based on seed users, that is, advertisers' 
existing consumers, through a certain algorithm evaluation model, to find out 
potential consumers similar to existing consumers, in order to effectively help 
advertisers to tap new customers and expand business. This topic will provide
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participants with hundreds of seed groups, user characteristics corresponding to a 
large number of candidate groups, and advertising characteristics corresponding 
to seed groups. Participants need to predict whether the promising user of the seed 
package belongs to the score of the seed package. The higher the score, the more 
likely the promising user is to be a potential user to be extended in a certain 
package. In the process of mining similar groups, Look-alike mainly relies on the 
user's basic attributes and the behavioral information they have, which requires a 
huge data stock as the source of analysis. 

7.4.3 Areas of Risk Control 

In addition to the application mentioned in the previous two sections, user profile 
also has a special type of application scenario, which is the risk control problem in 
the financial field. This type of scenario mainly focuses on the user's economic 
situation and evaluates the user's ability to repay loans in combination with dimen-
sions such as credit registry. In the era of mobile payment, electronic payment has 
replaced cash flow, and at the same time enables people's various consumption 
behaviors to be automatically recorded, which generates a large amount of transac-
tion statement and provides support for evaluating the consumer's consumption 
ability and credit. Related competition cases are as follows. 

1. "Group Image of Consumers - Intelligent Scoring of Credits" of the DF compe-
tition platform. Under the big background of the rapid development of the social 
credit standard system, China Mobile, as a communication operator, has massive, 
extensive, high-quality, and time-sensitive data. Breaking the traditional credit 
scoring method, how to intelligently score customers based on rich big data is a 
difficult problem for China Mobile and Newland Technology Group to tackle key 
problems at present. China Mobile Fujian Company has provided sample data 
(desensitized) for a certain month in 2018, including multi-dimensional data such 
as customers' various communication expenditures, arrears, travel conditions, 
consumption places, social contacts, personal interests, etc. Participants are 
required to accurately evaluate users' consumption credit scores through analysis 
and modeling, using machine learning and deep learning algorithms. 

2. "PPDAI 4th Magic Mirror Data Application Contest". This competition is based 
on the Internet financial credit business as the background, considering that the 
amount of a single underlying asset in the Internet financial credit business is 
small and complex and diverse, which brings huge fund management pressure to 
lenders or institutions, the contestants need to use the data provided to predict the 
daily repayment amount of the asset portfolio in the future for a period of time. 
The competition topic covers common problems in the financial field such as 
credit default prediction and cash flow prediction and is also a complex timing 
problem and multi-objective prediction problem. The organizer provides infor-
mation such as basic information of users borrowing money, user profile tag list, 
borrowing and repayment behavior log of users, attribute table of borrowing, etc.
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The above two competitions are about typical risk control problems on credit scoring 
and cash flow prediction respectively, and the characteristics of problems in the field 
of risk control are very obvious. First, the business has high explanatory require-
ments on the model and certain requirements on timeliness, which requires partic-
ipants to learn to weigh the complexity and precision of the model and optimize the 
algorithm kernel appropriately in actual modeling. Second, there are various busi-
ness models, each of which has a very high connection with the business objectives, 
and it is often necessary to build appropriate models according to the business. 
Third, the proportion of negative samples is very small, which is one of the main 
fields of balanced learning algorithm. 

7.5 Thinking Exercises 

1. Do you think the user profile is used to reflect the commonness or individuality of 
users? Why? 

2. Think about how the algorithm and operation team will draw a profile of you with 
the app you use every day. 

3. There are also many text mining algorithms. Try to sort out the calling methods of 
these algorithms and get familiar with the parameter setting according to the 
principle. 

4. Embedding methods are widely used. In addition to Word2Vec and DeepWalk, 
what are other embedding algorithms? What is the specific principle? 

5. There are many methods to calculate similarity, but it is not easy to retrieve what 
is the most similar or the top N similar from a large amount of data. Is there any 
good retrieval algorithm then?



Chapter 8 
Case Study: Elo Merchant Category 
Recommendation 

This chapter will take the Kaggle platform's 2019 Elo Merchant Category Recom-
mendation competition (as shown in Fig. 8.1) as an example to explain the real-
world practice related to user profiles and illustrate the complete process and pre-
cautions of real cases end to end. This chapter is mainly divided into the following 
parts: question understanding, data exploration, feature engineering, model selec-
tion, model integration, efficient scoring, and summarizing competition questions, 
the common organizational structures of all chapters involving case studies in this 
book, as well as important components of a competition process. I believe that under 
the guidance of this book, readers can quickly become familiar with the competition 
process and apply it in practice. 

8.1 Understanding the Competition Question 

There's a saying that goes, “Sharpening your axe will not delay your job of chopping 
wood.” Before the competition, we should fully understand the relevant information 
of the competition questions and know the needs behind them, so as to achieve the 
purpose of correctly examining the questions. 

8.1.1 Competition Background 

Imagine that when you are hungry in an unfamiliar place and want to find something 
delicious, will you get a restaurant recommendation that is exclusively 
recommended based on your personal preferences, and will the recommendation 
also be accompanied by the discount information provided by your credit card 
provider for nearby restaurants? 
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Fig. 8.1 Elo Merchant Category Recommendation Competition 

Currently, Elo, one of Brazil's largest payment brands, has established a partner-
ship with merchants to provide customers with information on promotions or 
discounts. But are these promotions beneficial to both customers and merchants? 
Do customers like their event experience? Can merchants see duplicate transactions? 
Personalization is the key to answer these questions. 

Elo has built machine learning models to understand customers' preferences, 
ranging from food to shopping, in the most important aspects in a customer’s 
lifetime. But so far, those learning models have not been specifically tailored for 
individuals or personal data, which is why this competition is held. 

In this competition, participants are required to develop algorithms to identify and 
provide individuals with the most relevant opportunities by finding signs of cus-
tomer loyalty. Your opinions will improve the lives of customers, help Elo reduce 
unnecessary activities, and create accurate and correct experiences for customers. 

8.1.2 Competition Data 

In order to ensure privacy and information security, all data in this competition are 
simulated and fictitious data or desensitized data, not real customer data. Specifi-
cally, the following data files are included.

• train.csv: training set.
• test.csv: testing set.
• sample_submission.csv: an example of a correct and standardized submission 

document, containing all the card_id that the contestant needs to predict
• historical_transactions.csv: the transaction history of credit cards (card_id) at a 

given merchant; for each credit card, it contains up to three months of its 
transaction history.

• merchants.csv: additional information for all merchants (merchant id) in the 
dataset

• new_merchant_transactions.csv: the shopping data of each credit card at the 
new merchant, including up to two months of data

• Data_D ictionary.xlsx: the description file of the data dictionary that provides 
the field meanings of the above sheets, including the corresponding instructions



There are so many data files provided in the competition. Which are
indispensable for completing the modeling?

for train, historical_transactions, new_merchant_period, and merchant; I believe 
the contestants are as confused as the author about what this 
new_merchant_period is, and will continue to read. 
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8.1.3 Competition Task 

The task is to train the model by using the customer's historical transaction records 
and the information data of the customer and the merchant, and to finally predict the 
loyalty scores of all credit cards in the testing set. 

8.1.4 Evaluation Indicators 

In this competition, the root mean square error (RMSE) is used as the evaluation 
indicator to calculate the results submitted by the participants. The specific calcula-
tion method is as formula (8.1): 

RMSE= 
1 
n 

n 

i= 1 

yi - yið Þ2 ð8:1Þ 

Here yi is the loyalty score predicted by the participants for each credit card, and yi is 
the true loyalty score of the corresponding credit card. 

8.1.5 Competition FAQ 

At least train.csv and test.csv are required. These two files contain card_id of all 

credit cards that will be used for training and testing. In addition, 
historical_transactions.csv and new_merchant_transactions.csv contain the transac-
tion records of every single credit card. 

How can participants use the rest of the data? 

train.csv and test.csv contain the card_id of all credit cards and information about 
the credit card itself (such as when the card is activated in the first month, etc.). In 
addition, train.csv also includes the target value of some customers, that is, the exact



csv and merchants.csv, because as described above, these two files contain the
transaction records of each credit card, so by combing transaction records with the
merchant, additional information such as the merchant level can be provided.

will cause computer lagging. Of course, it should be noted that the data format of
Excel itself will also affect the presentation of files, such as scientific counting, text,
and date.

competition questions and build analysis logic. By referring to the field information
table Data_D ictionary.xlsx provided by the organizer of the competition, you can

loyalty score of these customers. historical_transactions.csv and 
new_merchant_transactions.csv are designed to be combined with train.csv, test. 
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8.2 Data Exploration 

I believe that many contestants, like the writer, still feel a little confused even after 
reading all the contents of Sect. 8.1. As the old saying goes, “Talk is cheap; show me 
the data”. No words are as realistic as directly understanding the data. I believe many 
problems can be solved by observing and analyzing the data. In the field of data 
mining, there is a proper term called exploratory data analysis (EDA, which is called 
"data exploration" in this book). This can not only help participants understand the 
real meaning of the topic of the competition and achieve a grasp of the general 
situation of the data, but also play a guiding role in the following feature engineering 
and modeling, further enhancing participants' comprehension of the business and 
application of technology. Therefore, the first thing we need to do is to explore the 
data set. After reading this, some readers may have begun to try to actuate “code 
power”. Before writing the code, I would like to suggest, if possible, take advantage 
of Excel, a powerful spreadsheet tool to open various files provided by the compe-
tition and get an intuitive feeling. This topic enables us to directly view train.csv, 
test.csv, sample_submission.csv, and Data_D ictionary.xlsx. Generally speaking, 
files over 50 MB are not convenient to be opened directly with Excel, because it 

8.2.1 Field Category Meaning 

Before exploring the data, participants should first clarify the introduction to each 
data file and the meaning of the fields in the file in order to understand the 

see the fields and their meanings in the five data files as follows. 

8.2.1.1 Fields and Meanings in train.csv and test.csv

• card_id: a unique credit card ID, for example C_ID_92a2005557;
• first_active_month: the month of the first purchase with a credit card, in the 

format of YYYY-MM, such as 2017-04;



the new_merchant_period eld in Data_Dictionary.xlsx. At the same time, please
check the correctness of the data. Then you will find that the card_id of the training
set and the testing set are unique values, and the card_id of the training set and the

8.2.1.2 Fields and Meanings in historical_transactions.csv 
and new_merchant_transaction.csv

• card_id: a unique credit card identifier, i.e., credit card ID, for example 
C_ID_415bb3a509;

• month_lag: the month from the reference date, for example, [-12, -1], [0,2];
• purchase_date: shopping date (time), such as 2018-03-11 14:57:36;
• category_3: anonymous category feature 3, such as A/B/C/D/E;
• installments: the quantity of goods purchased, for example, 1;
• category_1: anonymous category feature 1, such as Y/N;
• merchant_category_id: product type ID (anonymized), for example, 307;
• subsector_id: product category group ID (anonymized), for example, 19;
• merchant_id: product ID (anonymized), such as M_ID_b0c793002c;
• purchase_amount: standardized purchase amount, for example, -0.557574;
• city_id: city ID (anonymized), for example, 300;
• state_id: state ID (anonymized), for example, 9;
• category_2: anonymous category feature 2, for example, 1. 

8.2.1.3 Fields and Meanings in merchants.csv

• merchant_id: a unique product identifier, i.e., the product ID, such as 
M_ID_b0c793002c;

• merchant_group_id: commodity group (anonymized), for example, 8353;
• merchant_category_id: product type ID (anonymized), for example, 307;
• subsector_id: product category group ID (anonymized), for example, 19;
• numerical_1/2: anonymous numerical features 1/2, for example, -0.057471;
• category_1: anonymous category feature 1, such as N/Y;
• most_recent_sales_range: the sales level in the most recent active month, such 

as A, B, C, D, E (The level decreases in turn);
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• feature_1/2/3: anonymous credit card discrete features 1/2/3, for example, 3;
• target: loyalty numerical score calculated 2 months after historical and evaluation 

period; loyalty score target column, for example, 0.392913. 

By looking at the meaning of the above fields, it can be seen that all three features are 
anonymous credit card discrete fields, and there is a month of first purchase, and 
target is the loyalty score calculated quantitatively two months after the historical 
and evaluation period. It should be noted that the evaluation period here should refer 
to the information in the new_merchant_transactions.csv, and it also corresponds to 

fi

testing set are not repeated.



distribution is adopted at the same time, the contestants will be pleasantly surprised
to find that the target column has an extreme outlier -33.219281, accounting for
approximately 1%. In the following modeling tasks, the contestants will gradually
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• most_recent_purchases_range: the level of number of transactions in the most 
recent active month, such as A, B, C, D, E (The level decreases in turn);

• avg_sales_lag3/6/12: average monthly income for the past 3, 6, and 12 months 
divided by the income in the previous active month, for example, -82.13;

• avg_purchases_lag3/6/12: average monthly trading volume in the past 3, 6, and 
12 months divided by the transaction volume in the previous active month, for 
example, 9.6667;

• active_months_lag3/6/12: the number of active months in the past 3, 6, and 
12 months, for example, 3;

• category_4: anonymous category feature 4, such as Y/N. 

8.2.2 Field Value Status 

After combing the fields and meanings of each table file, participants can specifically 
view the specific value status of each field in each table. In general, in addition to the 
meaning of the field, the value type of the field should be determined in combination 
with the meaning of the field. There are two types: characters (object) and numerical 
values (int, float). Attention should be paid to whether the meaning of the field is 
discrete or not and whether the value of the field is a numerical value. There is no 
inevitable connection. Because the value of a discrete field may be a numerical 
value, such as a city_id field, although its values are all numerical types, there is no 
relationship of comparing which is big and small between them; the value of a 
numerical field may also be a character, such as a most_recent_sales_range field. 
Although its values are of character types, you can obviously feel which is greater 
than another, that is the relationship between them. 

No matter what type the field is, participants need to be mainly concerned about 
two aspects: one is the missing value situation, and the other is the approximate 
value range and distribution of the field. The focus of discrete features is the number 
distribution of eigenvalues, while numerical features need to pay attention to their 
value range and abnormal values, off-group points, etc. Here, the target column of 
this competition is listed as an example, and the target column is of continuous 
values. The method describe of pandas.series can be used to analyze its value range 
and interval. 

What is interesting is if the value_counts method of analyzing discrete feature 

realize the importance and particularity of this discovery.



the model can be generalized. The veri cation set has a variety of selection ways

As shown in Fig. 8.2, the univariate distribution display of the elds

5

8.2.3 Difference in Data Distribution 

There are three special data set titles in the field of machine learning, namely training 
set, verification set, and testing set. The model learns the correlation between 
features and tags from the training set, and uses the verification set to evaluate, so 
as to avoid over-fitting and under-fitting. After learning to an appropriate extent, the 
model can be applied to the testing set for prediction. In order to make the prediction 
effect of the model excellent, one of the prerequisites is that the data distribution of 
the training set, verification set, and testing set should be similar, especially the joint 
distribution of features and tags being consistent, so that the correlation learned by 

fi
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according to different modeling tasks. Usually, modeling tasks that do not involve 
time sequence can randomly divide a data set into training sets and verification sets; 
the testing set can only be divided by the distribution or joint distribution of some 
features because there is no way to know the tag, which is the target column. This 
question will take train.csv and test.csv as examples to explore and analyze the 
differences in data distribution. 

fi

first_active_month, feature_1, feature_2, and feature_3—in train.csv and test.csv 
shows that the absolute quantity distribution shapes on all univariates are extremely 
similar in the training set and the testing set. Further examination of the relative 
proportion distribution is needed to obtain a more accurate conclusion. The
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Fig. 8.2 Feature Distribution Difference between Training Set and Testing Set



univariate proportion distribution of these four fields will continue to be displayed as 
shown in Fig. 8.3.
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As can be seen from Fig. 8.3, the relative proportion distribution shape on all 
univariates of the training set and the testing set is basically the same, so it is 
assumed that the training set is generated in the same way as the testing set, and 
the joint distribution can continue to be verified as a factual basis for strengthening 
this conjecture. 

It should be noted that there is an imprecision in the above analysis by the means 
of drawing—that is, the univariate value range of the training set and the testing set 
may not be exactly the same—so drawing two lines on the same graph may make 
mistakes, such as offset. Curious readers can verify by themselves whether the 
abscissas of the two are exactly the same. If not, what will happen when you run 
the same drawing code? In the following joint distribution verification, we will solve 
this problem. 

When looking at the joint distribution of multi-variables, a scatter plot can usually 
be used, but the four fields here are all discrete features, and the scatter plot is not 
suitable for continuing the idea of drawing univariate diagram above, so contestants 
can splice the two variables together to transform the joint distribution of multi-
variables into univariate distribution, and the results are shown in Fig. 8.4. 

After correcting the omission, participants can find that the joint distribution of 
the two variables of the training set and the testing set is also generally the same, 
which implies that the training set and the testing set are generated in the same way; 
that is, the training set and the testing set are the result of randomly dividing the same
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variable and four-variable distributions. Assuming that this conjecture about the

pants define the training set, testing set, and modeling objectives;
historical_transactions.csv and new_transactions.csv have the same fields, but they
are different in time, providing participants with rich customer transaction informa-

need to combine the merchant’s basic information table and the customer transaction

In order to facilitate the subsequent feature extraction and keep the data clean and
tidy, participants can complete the corresponding data cleaning while exploring the

8.2.5.1 train.csv and test.csv 

test.csv. Generally, having only one missing value has little influence, and this field

rel

8.2.5.2 merchants.csv 

The processing steps are as follows:
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batch of data. Participants who are interested in this can keep verifying the three-

training set and the testing set is true, it will greatly increase participants' confidence 
in subsequent feature engineering, enabling them to have an overall grasp of the 
modeling method. 

8.2.4 Table Correlation 

From the above exploration, it can be seen that train.csv and test.csv help partici-

tion; merchants.csv describes the business situation of the merchants. Participants 

records table to conduct data mining on the user's consumption behavior, in order to 
find as rich relevant information as possible in the target column, thus achieving 
excellent prediction effect. 

8.2.5 Data Preprocessing 

data. For different data, the processing skills are also varied, but the purpose is 
always to clear the obstacles for the subsequent feature extraction. Only the detailed 
steps are given here. Please refer to the eda.ipynb in the attached resources of this 
book for the specific code. 

These two tables only have one missing value in the first_active_month field of the 

is of character type, so it needs to be encoded. Considering that it has a sequence 
ationship in essence, it can be encoded by dictionary ordering. 
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1. Divide discrete field category_cols and continuous field numeric_cols according 
to business meaning; 

2. Perform dictionary ordering and encoding of discrete fields in character type; 
3. In order to make it more convenient to statisticize, the missing values are 

processed, and the discrete fields are uniformly filled with -1; 
4. Positive infinite values are found in exploring discrete fields, which is unaccept-

able for feature extraction and models, so infinite values need to be processed, and 
the maximum value is used to replace them here; 

5. There are many ways to deal with the missing values of discrete fields. Here, the 
average value is used for filling first, and then optimization is needed later; 

6. Remove columns that duplicate those in the transaction record table and the 
duplicate records of the merchant_id. 

8.2.5.3 new_merchant_transactions.csv and historical_transactions.csv 

The processing steps are as follows: 

1. In order to unify the processing, the two tables are first spliced together, and then 
be further distinguished by the condition—month_lag > =  0; 

2. Divide discrete fields, continuous fields, and time fields; 
3. Carry out dictionary ordering and encoding of character discrete fields and filling 

of missing values by imitating the processing method of merchants.csv; 
4. Process the time period. For simplicity, extract the information of month, day of 

the week (weekdays and weekend), and time period (morning, afternoon, eve-
ning, and before dawn); 

5. Perform dictionary ordering and coding of newly generated discrete fields of 
months with purchase; 

6. After processing the tables of merchant information and transaction records, these 
tables are merged for the convenience of unified calculation of features, and then 
the corresponding field types are re-divided. 

8.3 Feature Engineering 

After basic data exploration, I believe the contestants already have a good compre-
hension to the data and the tasks of the competition. The focus of this competition is 
to mine the relationship between various transaction behaviors of users and target 
columns, thus achieving a good model learning effect and enabling the model to 
accurately predict the loyalty scores of users in testing sets. Therefore, this is a topic 
that pays attention to the profile of credit card users' local consumption preferences. 
By finding similar users in training sets to analogize the loyalty scores of users of 
testing sets, high-value groups can be distinguished to provide decision support for 
merchants and credit card banks, and the shopping experience of consumers can be 
improved at the same time. Therefore, feature engineering can focus on the portrait



simulate frequency with the purchase quantity and use the expense as money. This
question not only has a wide range of modeling objectives, but also its data structure
has typical characteristics; that is, it mainly uses tables recording user behavior

8.3.1 General Features

it is to know the purchase quantity and expense of the user for every value-taking in
each category eld.

features[card] = {}

of users' transaction behavior, that is, the quantification of users' shopping behavior 
in various dimensions, such as the expense and purchase quantity in the latest 
month, etc. 

In the field of profiles for evaluating user values, there is a classic RFM theory, 
namely Recent, Frequency, and Money. Combined with the previous data explora-
tion, participants should be able to clarify the feasibility of this theory. Here we will 
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(historical_transactions.csv, merchants.csv, and new_merchant_transactions.csv) 
for information mining. Next, we will introduce two methods of feature extraction, 
one is to use python's native dictionary structure to extract general features, and the 
other is to use pandas, the powerful data processing tool's statistical function to 
extract business features. 

The key-value structure of the dictionary provides a good mapping relationship that 
is easy to use. The feature extraction here can take the user as the key-value of the 
first layer, the feature field as the key-value of the second layer, and then convert the 
dictionary into pandas. DataFrame format after the statistics are completed; in short, 

fi

First, create a dictionary to store the generated statistical features and assign 
values to each card_id: 

features = {} 
card_all = train['card_id'].append(test['card_id']).values.tolist() 
for card in card_all: 

Second, record the index of each field so that the target value can be directly 
obtained when processing by rows: 

columns = transaction.columns.tolist() 
idx = columns.index('card_id') 
category_cols_index = [columns.index(col) for col in category_cols 
numeric_cols_index = [columns.index(col) for col in numeric_cols] 

Then, extract and update the features of the corresponding fields by rows: 

# record the running time 
s = time.time() 
num = 0



for num_ind in numeric_cols_index:

gc.collect()

df = pd.DataFrame(features).T.reset_index()
del features
cols = df.columns.tolist()

converted.

for i in range(transaction.shape[0]): 
va = transaction.loc[i].values 
card = va[idx] 
for cate_ind in category_cols_index: 
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col_name = '&'.join([columns[cate_ind], va[cate_ind], 
columns[num_ind]]) 

features[card][col_name] = features[card].get(col_name, 0) 
+ va[num_ind] 

num += 1 
if num%1000000==0: 

print(time.time()-s, "s") 
del transaction 

Finally, convert the dictionary into a characteristic DataFrame table structure and 
reset the column name of the table. 

df.columns = ['card_id'] + cols[1:] 

After the table is generated, the training set and testing set can be spliced for 
subsequent model training. In order to distinguish from subsequent features, the 
feature set is named dict here, and the complete code is dict.ipynb in the code 
resources. 

8.3.2 Business Features 

The advantage of universal feature extraction based on dictionary structure is that it 
can be read and processed by row, regardless of speed or memory, and it can also 
quantify the user behavior under each subclass. However, its disadvantages are also 
obvious; that is, it requires a fixed data structure and will produce higher-
dimensional results. Another solution is to use the groupby method of the pandas 
tool for statistics. This method is much simpler but needs higher memory perfor-
mance because all data needs to be loaded. It should be noted that in order to meet 
the statistical needs of pandas, missing values and discrete fields are no longer 

At the same time, two features are added. These two features are related to the 
time interval between the user's two purchases. They are depicted in terms of day and 
month respectively. The code is as follows: 

transaction['purchase_day_diff'] = transaction.groupby("card_id") 
['purchase_day'].diff() 
transaction['purchase_month_diff'] = transaction.groupby 
("card_id")['purchase_month'].diff()



df.columns = cols[:1] + [co+'_hist' for co in cols[1:]]

df = pd.merge(df, df2, how='left',on='card_id')

df2 = transaction.groupby('card_id').agg(aggs).reset_index()

df = pd.merge(df, df2, how='left', on='card_id')

the field of CountVector and NLP. Different from the previous dict and groupby,
here only part of the discrete fields is used for word frequency statistics. CountVector

multivariate joint distribution.

First, set the corresponding statistics you want to obtain according to the type of 
fields and give the corresponding field list to prepare for subsequent calculations. 
This method has clear logic and more comprehensive feature structure: 
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aggs = {} 
for col in numeric_cols: 

aggs[col] = ['nunique', 'mean', 'min', 'max','var','skew', 'sum'] 
for col in categorical_cols: 

aggs[col] = ['nunique'] 
aggs['card_id'] = ['size', 'count'] 

cols = ['card_id'] 
for key in aggs.keys(): 

cols.extend([key+'_'+stat for stat in aggs[key]]) 

Then, perform calculations and statistics separately for 
new_merchant_transactions.csv, historical_transactions.csv, and the whole time 
period, to obtain statistical features from multiple angles: 

df = transaction[transaction['month_lag']<0].groupby('card_id'). 
agg(aggs).reset_index() 

df2 = transaction[transaction['month_lag']>=0].groupby('card_id'). 
agg(aggs).reset_index() 
df2.columns = cols[:1] + [co+'_new' for co in cols[1:]] 

df2.columns = cols 

It can be seen that the number of features counted by the groupby method will be 
much less, and the statistics of various user behaviors will be concentrated. In order 
to distinguish it from subsequent features, the feature set here is named groupby. 

8.3.3 Text Features 

In addition to the conventional features mentioned above, this competition question 
can also extract a class of features, which is based on the TF-IDF vector features in 

is similar to the features in the dict part, while TF-IDF is a supplement to the 

First, the corresponding fields are processed into a standard input format, and then 
the relevant methods in sklearn are called for calculation. It should be noted that this



8.3.4 Feature Selection

There are two common feature selection methods, one is ltering feature selection,

8.4 Model Training

part of the feature uses the sparse matrix structure of scipy, so it is different from dict 
and groupby while processing. 
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fi

and the other is feature importance selection. The former uses some statistical 
correlation coefficients for filtering, while the latter selects through the feature 
importance in the model evaluation process. Broadly speaking, the function of 
feature selection is mainly to improve the speed and accuracy of model training. In 
Sect. 8.4, model training will be conducted for different feature selection methods 
and the final offline and online results will be compared. 

After preparing the basic features, participants can begin to try the whole process of 
model training and prediction. In order to introduce some processing skills to 
participants as much as possible, this section will introduce the whole process of 
three models (random forest, LightGBM, and XGBoost) and combine different 
feature selection methods and parameter tuning methods at the same time. 

8.4.1 Random Forest 

The first is the random forest model in the sklearn library. The full process of this 
model is divided into four modules: reading data, feature selection, parameter tuning, 
and training prediction. The elements of the model are composed of dict and groupby 
in Sect. 8.3.4. The feature selection uses the Filter method based on Pearson 
correlation coefficient calculation to obtain the first 300 features, and the parameter 
tuning uses the sklearn library's GridSearch. 

First of all, read the specified feature set and testing set that have been constructed 
in advance and splice the data set. The specific code is as follows: 

def read_data(debug=True): 
NROWS = 10000 if debug else None 
train_dict = pd.read_csv("preprocess/train_dict.csv", nrows=NROWS) 
test_dict = pd.read_csv("preprocess/test_dict.csv", nrows=NROWS) 
train_groupby = pd.read_csv("preprocess/train_groupby.csv", 

nrows=NROWS) 
test_groupby = pd.read_csv("preprocess/test_groupby.csv", 

nrows=NROWS)



if co in train_groupby.columns and co!='card_id':

featureSelect.remove(fea)

# remove duplicate columns 
for co in train_dict.columns: 
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del train_groupby[co] 
for co in test_dict.columns: 

if co in test_groupby.columns and co!='card_id': 
del test_groupby[co] 

train = pd.merge(train_dict, train_groupby, how='left', 
on='card_id').fillna(0) 
test = pd.merge(test_dict, test_groupby, how='left', on='card_id'). 
fillna(0) 
return train, test 

Then use the Filter method based on Pearson correlation coefficient calculation to 
take the first 300 features for selection. 300 here is a number taken at will. Partic-
ipants can try several more numbers to choose the best one. The specific code is as  
follows: 

def feature_select_pearson(train, test): 
features = [f for f in train.columns if f not in ["card_id","target"]] 
featureSelect = features[:] 
# remove those with missing values exceeding 99% 
for fea in features: 

if train[fea].isnull().sum() / train.shape[0] >= 0.99: 

# perform Pearson correlation coefficient calculation 
corr = [] 
for fea in featureSelect: 

corr.append(abs(train[[fea, 'target']].fillna(0).corr().values 
[0][1])) 

se = pd.Series(corr, index=featureSelect).sort_values 
(ascending=False) 

feature_select = ['card_id'] + se[:300].index.tolist() 
return train[feature_select + ['target']], test[feature_select] 

Then there is the parameter tuning based on grid search. Grid search is actually a 
permutation set over different parameters and different values, and it may be 
necessary to manually iterate the parameter space several times according to the 
tuning results. Of course, each iteration is adding the unsearched parameter area 
based on the previous best parameter; the specific code is as follows: 

def param_grid_search(train): 
features = [f for f in train.columns if f not in ["card_id","target"]] 
parameter_space = { 

"n_estimators": [80], 
"min_samples_leaf": [30], 
"min_samples_split": [2], 
"max_depth": [9], 
"max_features": ["auto", 80] 

}



scoring="neg_mean_squared_error")

# configure as parameter tuning of mse 
clf = RandomForestRegressor( 

criterion="mse", 
min_weight_fraction_leaf=0., 
max_leaf_nodes=None, 
min_impurity_decrease=0., 
min_impurity_split=None, 
bootstrap=True, 
oob_score=False, 
n_jobs=4, 
random_state=2020, 
verbose=0, 
warm_start=False) 

grid = GridSearchCV(clf, parameter_space, cv=2, 
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grid.fit(train[features].values, train['target'].values) 

print("best_params_:") 
print(grid.best_params_) 
means = grid.cv_results_["mean_test_score"] 
stds = grid.cv_results_["std_test_score"] 
for mean, std, params in zip(means, stds, grid.cv_results_ 

["params"]): 
print("%0.3f (+/-%0.03f) for %r"% (mean, std * 2, params)) 

return grid.best_estimator_ 

Finally, model training and prediction are carried out according to the best result 
of parameter tuning. Here, five-fold cross-validation is selected, and attention is paid 
to saving the cross prediction results of the training set and the prediction results of 
the testing set, which can be used in Sect. 8.5. 

def train_predict(train, test, best_clf): 
features = [f for f in train.columns if f not in 

["card_id","target"]] 
prediction_test = 0 
cv_score = [] 
prediction_train = pd.Series() 
kf = KFold(n_splits=5, random_state=2020, shuffle=True) 
for train_part_index, eval_index in kf.split(train[features], train 
['target']): 

best_clf.fit(train[features].loc[train_part_index].values, 
train['target'].loc[train_part_index].values) 

prediction_test += best_clf.predict(test[features].values) 
eval_pre = best_clf.predict(train[features].loc[eval_index]. 

values) 
score = np.sqrt(mean_squared_error(train['target'].loc 

[eval_index].values, 
eval_pre)) 

cv_score.append(score) 
print(score) 
prediction_train = prediction_train.append(pd.Series( 

best_clf.predict(train[features].loc[eval_index]),



pd.Series(prediction_train.sort_index().values).

results of the training set and the model prediction results of the testing set. The two
are retained to prepare for subsequent model integration. A total of three files need to

submission_randomforest.csv.

8.4.2 LightGBM

index=eval_index)) 
print(cv_score, sum(cv_score) / 5) 
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to_csv("preprocess/train_randomforest.csv", index=False) 
pd.Series(prediction_test / 5).to_csv("preprocess/ 
test_randomforest.csv", 
index=False) 
test['target'] = prediction_test / 5 
test[['card_id', 'target']].to_csv("result/ 
submission_randomforest.csv", 
index=False) 
return 

The last step here is to use five-fold cross validation. It not only can avoid the 
over-fitting of the model to the training set, but also can make the prediction results 
of the model to the testing set more robust. There is also an incidental benefit that it 
can be used to generate Stacking integration features, that is, the cross-prediction 

be saved: train_randomforest.csv, test_randomforest.csv, and 

After the prediction result comes out, submit it for test and get the specific score. 
The cross validation score is 3.68710936, whose public score (public ranking list, 
commonly known as A list) submitted is 3.75283 (2867/4127), while the private 
score (hidden list, commonly known as B List) is 3.65493 (2814/4127). 

Perform LightGBM modeling by using the same feature set as that of random forest 
model. The four modules of the whole process of the LightGBM model and the 
random forest model are same, with the data reading stage being exactly like each 
other. The difference is that the wrapper method is used in the feature selection stage, 
and the hyperopt framework is chosen in the parameter tuning stage. 

8.4.2.1 Feature Selection 

Here, the feature importance is mainly used to select the first 300 features for 
modeling training, and this number can also be changed according to the modeling 
effect. The specific code is as follows: 

def feature_select_wrapper(train, test): 
label = 'target' 
features = [f for f in train.columns if f not in ["card_id","target"]] 
# configure the training parameter of models



bst = lgb.train(params_initial, train_part, num_boost_round=NBR,
valid_sets=[train_part, eval],

params_initial = { 
'num_leaves': 31, 
'learning_rate': 0.1, 
'boosting': 'gbdt', 
'min_child_samples': 20, 
'bagging_seed': 2020, 
'bagging_fraction': 0.7, 
'bagging_freq': 1, 
'feature_fraction': 0.7, 
'max_depth': -1, 
'metric': 'rmse', 
'reg_alpha': 0, 
'reg_lambda': 1, 
'objective': 'regression' 

} 
ESR = 30 
NBR = 10000 
VBE = 50 
kf = KFold(n_splits=5, random_state=2020, shuffle=True) 
fse = pd.Series(0, index=features) 
for train_part_index, eval_index in kf.split(train[features], train 
[label]): 

train_part = lgb.Dataset(train[features].loc[train_part_index], 
train[label].loc[train_part_index]) 

eval = lgb.Dataset(train[features].loc[eval_index], 
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train[label].loc[eval_index]) 

valid_names=['train', 'valid'], 
early_stopping_rounds=ESR, verbose_eval=VBE) 

fse += pd.Series(bst.feature_importance(), features) 

feature_select = ['card_id'] + fse.sort_values(ascending=False). 
index.tolist()[:300] 

print('done') 
return train[feature_select + ['target']], test[feature_select] 

8.4.2.2 Parameter Tuning 

Hyperopt is a sklearn Python library that performs serial and parallel optimization on 
the search space. The search space can be real values, discrete values, and condi-
tional dimensions, providing an interface for transferring parameter spaces and 
evaluation functions. Currently supported optimization algorithms are random 
search, simulated annealing, and TPE (Tree of Parzen Estimators). Compared with 
grid search, hyperopt can often obtain better parameter results in a relatively short 
time. The specific code is as follows: 

def params_append(params): 
params['objective'] = 'regression' 
params['metric'] = 'rmse'



'min_child_samples': hp.choice('min_child_samples', list(range

space=params_space,
algo=tpe.suggest,

params['bagging_seed'] = 2020 
return params 

def param_hyperopt(train): 
label = 'target' 
features = [f for f in train.columns if f not in ["card_id","target"]] 
train_data = lgb.Dataset(train[features], train[label], silent=True) 
def hyperopt_objective(params): 

params = params_append(params) 
print(params) 
res = lgb.cv(params, train_data, 1000, nfold=2, stratified=False, 

shuffle=True, 
metrics='rmse', early_stopping_rounds=20, verbose_eval=False, 
show_stdv=False, seed=2020) 

return min(res['rmse-mean']) 
# set the spatial region for parameters 
params_space = { 

'learning_rate': hp.uniform('learning_rate', 1e-2, 5e-1), 
'bagging_fraction': hp.uniform('bagging_fraction', 0.5, 1), 
'feature_fraction': hp.uniform('feature_fraction', 0.5, 1), 
'num_leaves': hp.choice('num_leaves', list(range(10, 300, 10))), 
'reg_alpha': hp.randint('reg_alpha', 0, 10), 
'reg_lambda': hp.uniform('reg_lambda', 0, 10), 
'bagging_freq': hp.randint('bagging_freq', 1, 10), 
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(1, 30, 5))) 
} 
params_best = fmin( 

hyperopt_objective, 

max_evals=30, 
rstate=RandomState(2020)) 

return params_best 

For the output of results, grid search is very different from hyperopt. The former 
outputs the best classifier with parameters, while the latter outputs the best parameter 
dictionary. 

8.4.2.3 Training Prediction 

Finally, the training and prediction of the LightGBM model are carried out in the 
same way, and the prediction result of the final training set and the prediction result 
of the testing set are also obtained by using the five-fold cross validation method as 
follows: 

def train_predict(train, test, params): 
label = 'target' 
features = [f for f in train.columns if f not in ["card_id","target"]] 
params = params_append(params)



cv_score.append(score)

csv", index=False)
return

are also saved, and the CV score and online submission score are recorded. The

kf = KFold(n_splits=5, random_state=2020, shuffle=True) 
prediction_test = 0 
cv_score = [] 
prediction_train = pd.Series() 
ESR = 30 
NBR = 10000 
VBE = 50 

for train_part_index, eval_index in kf.split(train[features], train 
[label]): 

train_part = lgb.Dataset(train[features].loc[train_part_index], 
train[label].loc[train_part_index]) 

eval = lgb.Dataset(train[features].loc[eval_index], 
train[label].loc[eval_index]) 

bst = lgb.train(params, train_part, num_boost_round=NBR, 
valid_sets=[train_part, eval], 
valid_names=['train', 'valid'], 
early_stopping_rounds=ESR, verbose_eval=VBE) 

prediction_test += bst.predict(test[features]) 
prediction_train = prediction_train.append(pd.Series( 

bst.predict(train[features].loc[eval_index]), 
index=eval_index)) 
eval_pre = bst.predict(train[features].loc[eval_index]) 
score = np.sqrt(mean_squared_error(train[label].loc[eval_index]. 
values, 

eval_pre)) 
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print(cv_score, sum(cv_score) / 5) 
pd.Series(prediction_train.sort_index().values).to_csv( 

"preprocess/train_lightgbm.csv", index=False) 
pd.Series(prediction_test / 5).to_csv("preprocess/test_lightgbm. 
csv", index=False) 
test['target'] = prediction_test / 5 
test[['card_id', 'target']].to_csv("result/submission_lightgbm. 

The train_lightgbm.csv, test_lightgbm.csv, and submission_lightgbm.csv files 

cross-validation score is 3.6773062. The public score is 3.73817 (2786/4127) and 
the private score is 3.64490 (2719/4127). The scores have been improved compared 
with those in Sect. 8.4.1, and more optimizations will be made to achieve more 
breakthrough in the score. 

8.4.3 XGBoost 

The two models above only use two sets of features—dict and groupby. The 
XGBoost model in this section will try to add nlp features to the training, and



meanwhile skip the feature selection stage to consider using the feature set for 
modeling; the parameter tuning framework is replaced by beyesian. 

The first step is still to read the data; the difference is that the previous feature set 
and nlp features need to be merged into a sparse matrix; the specific code is as 
follows: 

def read_data(debug=True): 
print("read_data...") 
NROWS = 10000 if debug else None 
# read two sets of features - dict and groupby - obtained in the feature 

engineering stage 
train_dict = pd.read_csv("preprocess/train_dict.csv", nrows=NROWS) 
test_dict = pd.read_csv("preprocess/test_dict.csv", nrows=NROWS) 
train_groupby = pd.read_csv("preprocess/train_groupby.csv", 

nrows=NROWS) 
test_groupby = pd.read_csv("preprocess/test_groupby.csv", 

nrows=NROWS) 
# remove duplicate columns 
for co in train_dict.columns: 

if co in train_groupby.columns and co!='card_id': 
del train_groupby[co] 

for co in test_dict.columns: 
if co in test_groupby.columns and co!='card_id': 

del test_groupby[co] 
train = pd.merge(train_dict, train_groupby, how='left', 

on='card_id').fillna(0) 
test = pd.merge(test_dict, test_groupby, how='left', on='card_id'). 

fillna(0) 
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features = [f for f in train.columns if f not in ["card_id","target"]] 
# read nlp related features obtained in the feature engineering stage 
train_x = sparse.load_npz("preprocess/train_nlp.npz") 
test_x = sparse.load_npz("preprocess/test_nlp.npz") 

train_x = sparse.hstack((train_x, train[features])).tocsr() 
test_x = sparse.hstack((test_x, test[features])).tocsr() 
print("done") 
return train_x, test_x 

Then there is the parameter tuning stage. Unlike hyperopt, beyesian parameter 
adjustment is optimized by maximizing the evaluation score, and the root mean 
square error of the evaluation indicator should be as small as possible. Therefore, the 
negative root mean square error is used as the optimization goal. The specific code is 
as follows: 

def params_append(params): 
params['objective'] = 'reg:squarederror' 
params['eval_metric'] = 'rmse' 
params["min_child_weight"] = int(params["min_child_weight"]) 
params['max_depth'] = int(params['max_depth']) 

return params



'min_child_weight': (1, 30),

def param_beyesian(train): 
train_y = pd.read_csv("data/train.csv")['target'].values 
train_data = xgb.DMatrix(train, train_y, silent=True) 

def xgb_cv(colsample_bytree, subsample, min_child_weight, max_depth, 
reg_alpha, eta, reg_lambda): 
params = {'objective': 'reg:squarederror', 

'early_stopping_round': 50, 
'eval_metric': 'rmse'} 

params['colsample_bytree'] = max(min(colsample_bytree, 1), 0) 
params['subsample'] = max(min(subsample, 1), 0) 
params["min_child_weight"] = int(min_child_weight) 
params['max_depth'] = int(max_depth) 
params['eta'] = float(eta) 
params['reg_alpha'] = max(reg_alpha, 0) 
params['reg_lambda'] = max(reg_lambda, 0) 
print(params) 
cv_result = xgb.cv(params, train_data, num_boost_round=1000, 

nfold=2, seed=2, stratified=False, shuffle=True, 
early_stopping_rounds=30, verbose_eval=False) 

return -min(cv_result['test-rmse-mean']) 
xgb_bo = BayesianOptimization( 
xgb_cv, 
{'colsample_bytree': (0.5, 1), 
'subsample': (0.5, 1), 
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'max_depth': (5, 12), 
'reg_alpha': (0, 5), 
'eta':(0.02, 0.2), 
'reg_lambda': (0, 5)} 
) 
# init_points means the initial point, n_iter means iteration times(i.e. sampling number) 
xgb_bo.maximize(init_points=21, n_iter=5) 
print(xgb_bo.max['target'], xgb_bo.max['params']) 
return xgb_bo.max['params'] 

Finally, it is the training prediction part of the XGBoost model. Perform the five-
fold cross-training in the same way, and the three files train_xgboost.csv, 
test_xgboost.csv, and submission_xgboost.csv are saved at the same time. The 
specific code is as follows: 

def train_predict(train, test, params): 
train_y = pd.read_csv("data/train.csv")['target'] 
test_data = xgb.DMatrix(test) 

params = params_append(params) 
kf = KFold(n_splits=5, random_state=2020, shuffle=True) 
prediction_test = 0 
cv_score = [] 
prediction_train = pd.Series() 
ESR = 30 
NBR = 10000



print(cv_score, sum(cv_score) / 5)
pd.Series(prediction_train.sort_index().values).to_csv(

pd.Series(prediction_test / 5).to_csv("preprocess/test_xgboost.

integration to improve the score. Here is another point the contestants need to know;
that is, in machine learning competitions, the power of teams and open source is

there is great difference in modeling methods between different individuals, so they

VBE = 50 
for train_part_index, eval_index in kf.split(train, train_y): 

train_part = xgb.DMatrix(train.tocsr()[train_part_index, :], 
train_y.loc[train_part_index]) 

eval = xgb.DMatrix(train.tocsr()[eval_index, :], train_y.loc 
[eval_index]) 

bst = xgb.train(params, train_part, NBR, [(train_part, 'train'), 
(eval, 'eval')], 

verbose_eval=VBE, maximize=False, 
early_stopping_rounds=ESR, ) 

prediction_test += bst.predict(test_data) 
eval_pre = bst.predict(eval) 

prediction_train = prediction_train.append(pd.Series(eval_pre, 
index=eval_index)) 

score = np.sqrt(mean_squared_error(train_y.loc[eval_index]. 
values, eval_pre)) 

cv_score.append(score) 
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"preprocess/train_xgboost.csv", index=False) 

csv", index=False) 
test['target'] = prediction_test / 5 
test[['card_id', 'target']].to_csv("result/submission_xgboost. 

csv", index=False) 
return 

8.5 Model Integration 

After completing feature engineering and model training, participants may find that 
their scores are still unsatisfactory. In order to introduce the relevant skills of the 
machine learning competition as briefly and broadly as possible, this chapter uses the 
more generally used method (copy and paste) during competitions instead of for-
mulating an extremely detailed plan for the competition questions. That is not the 
purpose of this book. What can be observed is that the score of a single model does 
seem to be high. This section will try model weighted integration and stacking 

extremely strong. One individual's thinking, time, and energy are often limited, and 

can often bring together great integration benefits. In addition, most competitions, 
especially the Kaggle competition, allow participants to freely discuss and even open 
source of codes, which is also a good resource for increasing score. You can 
integrate your own algorithms and open-source solutions to get better scores.



Chapter of this book has clearly explained the principle of weighted integration of 
results. The results obtained by the three single models in Sect. can be given 8.4 

6 

speci c scores can be obtained: public score being 3.73135 (2741/4127) and private

of the training set and the testing set. This result can be regarded as the extraction and

private score—3.60871 (90/4127).
Due to limited pages, this section only lists the weighted integration results with

low scores and the stacking integration results with high scores. Readers who want to

integration under the same conditions. Since this competition is entitled regression

8.6 Efficient Scoring

The scores obtained so far are still not very ideal. We need to learn more about some
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8.5.1 Weighted Integration 

weights according to scores and correlations, and then submitted. After submission, 
fi

score being 3.63741 (2646/4127). 
The specific weight calculation method is data ['randomforest'] * 0.2 + data 

['lightgbm'] * 0.3 + data ['xgboost'] * 0.5. 

8.5.2 Stacking Integration 

When training the three models mentioned above, the stacking features of the 
corresponding models are generated incidentally, that is, the model prediction results 

compression of the feature set information, combined with an open-source scheme 
of a higher score (note that this open-source code has several bugs, which will not 
affect the use after making corresponding changes) to perform feature splicing and 
integrated modeling. Adding the stacking features corresponding to XGBoost, the 
best performing model in the three models above, to the training process can produce 
a model with sound scores: specifically, public score—3.68825 (878/4127) and 

discover more can try and compare the results of weighted integration and Stacking 

problem and there are outliers, stacking integration is better than weighted integra-
tion. For stacking integration code, please refer to the integration techniques in Sect. 
8.6.2 below. 

important tools, such as feature selection methods, parameter tuning methods, and 
some core tree models. In this section, the features and final results will be optimized 
to efficiently improve the scores.
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8.6.1 Feature Optimization 

In the final scheme, features are extracted mainly around 
new_merchant_transactions.csv and historical_transactions.csv. Features include 
five parts: basic statistical features, global card_id features, card_id in the last two 
months, second-order features, and supplementary features. These features primarily 
contain the features included in the feature engineering designed by most contes-
tants. Next, the work done on each feature is introduced in detail. 

8.6.1.1 Basic Statistical Features 

Features in this part are mainly aggregated (groupby) statistics with card_id as the 
key, and this part of features are extracted from data sets—new_transactions.csv, 
historical_transactions.csv (authorized_flag is 1), and historical_transactions.csv 
(authorized_flag is 0) respectively. The specific aggregation method and statistical 
dimensions are shown in the following code: 

def aggregate_transactions(df_, prefix): 

df = df_.copy() 

df['month_diff'] = ((datetime.datetime.today() - df 
['purchase_date']).dt.days)//30 
df['month_diff'] = df['month_diff'].astype(int) 
df['month_diff'] += df['month_lag'] 

df['price'] = df['purchase_amount'] / df['installments'] 
df['duration'] = df['purchase_amount'] * df['month_diff'] 
df['amount_month_ratio'] = df['purchase_amount'] / df['month_diff'] 

df.loc[:, 'purchase_date'] = pd.DatetimeIndex(df 
['purchase_date']). 

astype(np.int64) * 1e-9 
agg_func = { 

'category_1': ['mean'], 
'category_2': ['mean'], 
'category_3': ['mean'], 
'installments': ['mean', 'max', 'min', 'std'], 

'month_lag': ['nunique', 'mean', 'max', 'min', 'std'], 
'month': ['nunique', 'mean', 'max', 'min', 'std'], 
'hour': ['nunique', 'mean', 'max', 'min', 'std'], 
'weekofyear': ['nunique', 'mean', 'max', 'min', 'std'], 
'dayofweek': ['nunique', 'mean'], 
'weekend': ['mean'], 
'year': ['nunique'], 
'card_id': ['size','count'], 
'purchase_date': ['max', 'min'], 
'price': ['mean','max','min','std'],



}
for col in ['category_2','category_3']:

=

of user behavior, such as the time difference between the last transaction and the first
transaction, the time difference between the credit card activation date and the first

of the user card_id; the statistics of variables related with purchase_amount (mean/
sum/std/median) are aggregated, with card_id as the key; besides, some pivot-related

'duration': ['mean','min','max','std','skew'], 
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'amount_month_ratio':['mean','min','max','std','skew'], 

df[col+'_mean'] df.groupby([col])['purchase_amount']. 
transform('mean') 
agg_func[col+'_mean'] = ['mean'] 

agg_df = df.groupby(['card_id']).agg(agg_func) 
agg_df.columns = [prefix + '_'.join(col).strip() for col in agg_df. 
columns.values] 
agg_df.reset_index(drop=False, inplace=True) 

return agg_df 

8.6.1.2 Global card_id Features 

This feature is extracted from data sets of new_transactions.csv, 
historical_transactions.csv (authorized_flag is 1), and historical_transactions.csv 
(authorized_flag is 0) respectively. It mainly includes statistics related to the time 

transaction; aggregate statistics (mean/sum) of authorized_flag and month_diff 
statistics, with card_id as the key; use card_id as the key to gather, integrate, and 
calculate nunique of state_i, city_id, installments, merchant_id, 
merchant_category_id, etc., and construct the relative value of nunique obtained 
above and card_id frequency, in order to reflect the behavior purity (range of scatter) 

features are also built. 

8.6.1.3 card_id in the Last Two Months 

This feature is extracted only for historical_transactions.csv data sets. This part has 
many similar features to the global card_id feature; the main difference lies in the 
time range, and here more attention is paid to the recent changes in user behavior. 

8.6.1.4 Second-order Features 

Extract this part of features only for historical_transactions.csv data set; the premise 
is to first construct first-order features (nunique, count, sum, etc.); the specific 
extraction structure is as follows: 

for col_level1,col_level2 in tqdm_notebook(level12_nunique): 
# first-order extracts nunique features



level1.reset_index(inplace =True)
# construct aggregate statistics features, with card_id as the key (second-order features)

order_label = train.groupby([f])['outliers'].mean()
for df in [train, test]:

df[colname] = df[f].map(order_label)

# cross statistical features on series features of hist and new, a part of which is presented below
df['card_id_total'] = df['hist_card_id_size']+

level1 = df.groupby(['card_id',col_level1])[col_level2]. 
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nunique().to_frame(col_level2 + '_nunique') 

level2 = level1.groupby('card_id')[col_level2 + '_nunique'].agg 
(['mean', 'max', 'std']) 

level2 = pd.DataFrame(level2) 
level2.columns = [col_level1 + '_' + col_level2 + '_nunique_' + col 

for col in 
level2.columns.values] 

level2.reset_index(inplace = True) 
cardid_features = cardid_features.merge(level2, on='card_id', 

how='left') 

8.6.1.5 Supplementary Features 

Most of these features have business significance. For example, in order to better find 
outliers (i.e. labeled -33.219281), the mean coding feature about whether the 
prediction target is outlier is constructed. There are also some cross statistical 
features on series features of hist and new. 

train['outliers'] = 0 
train.loc[train['target'] < -30, 'outliers'] = 1 
train['outliers'].value_counts() 
for f in ['feature_1','feature_2','feature_3']: 

colname = f+'_outliers_mean' 

df['new_card_id_size'] 
df['card_id_cnt_total'] = df['hist_card_id_count']+ 

df['new_card_id_count'] 
df['card_id_cnt_ratio'] = df['new_card_id_count']/ 

df['hist_card_id_count'] 

8.6.2 Integration Skills 

8.6.2.1 Single Mode Result 

After feature optimization, cross validation is used for offline verification, and 
LightGBM, XGBoost, and CatBoost models are used for training and result predic-
tion to obtain the offline verification score, public score, and private score. Here,



oof[val_idx] = clf.predict_proba(X[val_idx])[:,1]
predictions += clf.predict_proba(X_test)[:,1] / folds.n_splits

LightGBM, XGBoost, and CatBoost models are packaged into a function with the 
following code: 

def train_model(X, X_test, y, params, folds, model_type='lgb', 
eval_type='regression'): 

oof = np.zeros(X.shape[0]) 
predictions = np.zeros(X_test.shape[0]) 
scores = [] 
# perform five-fold cross-validation 
for fold_n, (trn_idx, val_idx) in enumerate(folds.split(X, y)): 

print('Fold', fold_n, 'started at', time.ctime()) 
# determine the model selected according to model_type 
if model_type == 'lgb': 

trn_data = lgb.Dataset(X[trn_idx], y[trn_idx]) 
val_data = lgb.Dataset(X[val_idx], y[val_idx]) 
clf = lgb.train(params, trn_data, num_boost_round=20000, 

valid_sets=[trn_data, val_data], 
verbose_eval=100, early_stopping_rounds=300) 

oof[val_idx] = clf.predict(X[val_idx], num_iteration=clf. 
best_iteration) 

predictions += clf.predict(X_test, num_iteration=clf. 
best_iteration) / 

folds.n_splits 
if model_type == 'xgb': 

trn_data = xgb.DMatrix(X[trn_idx], y[trn_idx]) 
val_data = xgb.DMatrix(X[val_idx], y[val_idx]) 
watchlist = [(trn_data, 'train'), (val_data, 'valid_data')] 

clf = xgb.train(dtrain=trn_data, num_boost_round=20000, 
evals=watchlist, early_stopping_rounds=200, 
verbose_eval=100, params=params) 
oof[val_idx] = clf.predict(xgb.DMatrix(X[val_idx]), 

ntree_limit=clf.best_ntree_limit) 
predictions += clf.predict(xgb.DMatrix(X_test), 

ntree_limit=clf.best_ntree_limit) / folds.n_splits 
# for CatBoost model, the codes for regression task and 

classification task is quite different, and need to be run separately 
if (model_type == 'cat') and (eval_type == 'regression'): 

clf = CatBoostRegressor(iterations=20000, 
eval_metric='RMSE', **params) 

clf.fit(X[trn_idx], y[trn_idx], 
eval_set=(X[val_idx], y[val_idx]), 
cat_features=[], use_best_model=True, verbose=100) 

oof[val_idx] = clf.predict(X[val_idx]) 
predictions += clf.predict(X_test) / folds.n_splits 

if (model_type == 'cat') and (eval_type == 'binary'): 
clf = CatBoostClassifier(iterations=20000, 

eval_metric='Logloss', **params) 
clf.fit(X[trn_idx], y[trn_idx], 

eval_set=(X[val_idx], y[val_idx]), 
cat_features=[], use_best_model=True, verbose=100)

8.6 Efficient Scoring 165



0.9,

X_test = test[fea_cols].values
# use LightGBM model for regression prediction

prediction results, and the prefix predictions represents the testing set results. These
results will be used for model integration.

þ þð Þ
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print(predictions) 
if eval_type == 'regression': # perform regression scorning 
scores.append(mean_squared_error(oof[val_idx], y[val_idx]) 

**0.5) 
if eval_type == 'binary': # perform classification scoring 
scores.append(log_loss(y[val_idx], oof[val_idx])) 

print('CV mean score: {0:.4f}, std: {1:.4f}.'.format(np.mean 
(scores), 

np.std(scores))) 
return oof, predictions, scores 

With the above functions, using LightGBM, XGBoost, and CatBoost models will 
become very convenient. The input parameter model_type decides which model to 
choose, eval_type decides whether it is a binary classification task or a regression 
task. Let's look at the code used: 

lgb_params = {'num_leaves': 63, 'min_data_in_leaf': 32, 
'objective':'regression', 

'max_depth': -1, 
'learning_rate': 0.01, "min_child_samples": 20, "boosting": 

"gbdt", 
"feature_fraction": 0.9, "bagging_freq": 1, "bagging_fraction": 

"bagging_seed": 11, "metric": 'rmse', "lambda_l1": 0.1, 
"verbosity": -1} 
folds = KFold(n_splits=5, shuffle=True, random_state=4096) 
# extract training set and testing set by feature columns 
X_train = train[fea_cols].values 

oof_lgb, predictions_lgb, scores_lgb = train_model(X_train, X_test, 
y_train, 

params=lgb_params, folds=folds, model_type='lgb', 
eval_type='regression') 

By doing this, the XGBoost model and the CatBoost model can be trained, and 
the prediction results can be obtained. The prefix oof represents the verification set 

8.6.2.2 Weighted Integration 

Use weighted integration as the basic integration method. The following formula is 
used to assign the same weight to the three single-model results: 

Weighted average= LightGBM XGBoost CatBoost =3



print("-" * 10 + "Stacking " + str(fold_) + "-" * 10)
clf = BayesianRidge()

print('mean: ',np.sqrt(mean_squared_error(y, oof)))

8.6.2.3 Stacking Integration 

Stacking integration is only performed on the results of the three models 
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Fig. 8.5 Comparison of Results of Various Schemes 

(LightGBM, XGBoost, CatBoost) here. Of course, this is far from enough. In the 
actual competition, more results with differences can be constructed for integration, 
not limited to model differences, and there are feature differences. The comparison 
of results under a single model and two integration methods is shown in Fig. 8.5. 

It is obvious that the private score of weighted integration has the best effect, but 
the public score has not been improved. The relatively stable is stacking 
integration—both public score and private score of it have been greatly improved. 
At present, the result of weighted integration can reach 82 in the hidden list, and of 
course this ranking can be improved. 

The specific code for stacking integration of the prediction results of LightGBM 
model, XGBoost model, and CatBoost model is as follows: 

def stack_model(oof_1, oof_2, oof_3, predictions_1, predictions_2, 
predictions_3, y, 
eval_type='regression'): 

train_stack = np.vstack([oof_1, oof_2]).transpose() 
test_stack = np.vstack([predictions_1, predictions_2]).transpose() 
from sklearn.model_selection import RepeatedKFold 
folds= RepeatedKFold(n_splits=5, n_repeats=2, random_state=2020) 

oof = np.zeros(train_stack.shape[0]) 
predictions = np.zeros(test_stack.shape[0]) 

for fold_, (trn_idx, val_idx)in enumerate(folds.split(train_stack, y)): 
print("fold n° {}".format(fold_+1)) 
trn_data, trn_y = train_stack[trn_idx], y[trn_idx] 
val_data, val_y = train_stack[val_idx], y[val_idx] 

clf.fit(trn_data, trn_y) 
oof[val_idx] = clf.predict(val_data) 
predictions += clf.predict(test_stack) / (5 * 2) 

if eval_type == 'regression':



The input parameters oof_1, oof_2, and oof_3 correspond to the prediction results
of the veri cation set of the three models respectively, and the predictions_1, pre-
dictions_2, and predictions_3 respectively correspond to the prediction results of the

an outlier (if it is equal to the extreme outlier -33.219281, it is 1, which means it is

regression model after removing outliers. Of course, you can also build these two
types of models with single mode rst, and then use Stacking integration to get the

non-outlier regression model; the above three types of models are all obtained by
Stacking integration.

Scheme 1: categorization model result × (-33.219281) + (1 - categorization

Scheme 2: the result of Scheme 1 × 0.5 + regression model for full data × 0.5

scheme 1 is 3.67542 (150/4127) and its private score is 3.60636 (59/4127); the
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if eval_type == 'binary': 
print('mean: ',log_loss(y, oof)) 

return oof, predictions 

fi

testing set of the three models. 
The above code can be used for the integration of regression tasks and the 

integration of classification tasks at the same time, and the specific input parameters 
eval_type need to be set. As for the model, BayesianRidge is the final model, 
because the model structure is very simple and is not easy to over-fit. 

8.6.2.4 Trick Integration 

First build two models, one is a categorization model that predicts whether a value is 

an outlier; otherwise, it is 0, which means it is not an outlier), and the other is a 

fi

final result. 
Next, the final integration scheme is based on the above categorization model that 

predicts whether a value is an outlier, the regression model for full data, and the 

model result) × non-outlier regression model result 

The scores of these two schemes have been greatly improved. The public score of 

public score of scheme 2 is 3.67415 (136/4127) and its private score is 3.60414 
(35/4127). 

8.7 A Summary of the Competition Questions 

8.7.1 More Options 

8.7.1.1 Top 1 Scheme 

The top1 scheme demonstrated the trick integration that the champion team used, 
which could directly improve the score by 0.015 in the local CV. At first, in the



could be considered to train a regression model after removing samples containing
extreme outliers, and at the same time construct a binary categorization model based

model after removing outliers. It could be specifically explained as: the probability
of the binary classification result being an outlier multiplied by the outlier plus the

discussion section of Kaggle, it was found that more than half of the root mean 
square error of modeling was caused by extreme outliers -33.219281. Therefore, it 
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on using whether the data was extreme outliers as the objective of prediction. This 
was also the final scheme adopted by the champion, which mainly integrated the 
prediction results of the two types of models with the following formula: 

train['final'] = train['bin_predict'] * (-33.21928) + (1 - train 
['bin_predict']) * 

train['no_outlier'] 

In this formula, train['bin_predict'] was the probability that the data was an 
extreme outlier -33.219281; no_outlier was the prediction result of the regression 

multiplication of the probability that the binary classification result was not an outlier 
and the prediction result of the model without outliers. 

Of course, there is also a more direct method to deal with outliers—after the 
prediction is completed, the minimum value of the outliers is directly changed before 
being tackled. However, this method is relatively risky and has no actual value for 
use, so it is not recommended. Interested readers can have a try to see the effect. 

8.7.1.2 Top 5 Scheme 

The team ranked 5th introduced the detailed scheme and how each type of model 
was combined. The team first created thousands of features, and more than 
100 remained after feature selection. Figure 8.6 shows the overall scheme frame-
work of the 5th team.

Fig. 8.6 Overall Framework of the Scheme



ous layer of binary classi cation model, perform regression modeling with the
prediction results higher than the 0.015 threshold. The main features of this model
come from the results predicted by the previous layer of binary classification

avoid post-processing.

relevant information in the near future needs to be considered and investigated by
readers. To some extent, the second scheme—groupby—contains part of R infor-
mation, while nlp mainly uses CountVector and TF-IDF. What should be noticed is
that the data structures and types required by the three are different, which leads to a

Overall, this contest question is a relatively standard data mining and machine
learning modeling problem. The distribution of the training set and the testing set

The following part describes in detail what is involved in the framework.

• Regression model, using full data in training;
• The binary categorization model used to predict whether the data is extremely 

outliers (bank cards without duplicate transactions in the testing set), whose 
prediction results will be divided according to a threshold of 0.015, in order to 
create two regression models (low probability and high probability) of the second 
layer;

• Low probability regression model—based on the prediction results of the previ-
ous layer of binary categorization model, regression modeling is carried out 
according to the prediction results lower than the 0.015 threshold. Since this is 
a relatively sparse part of the prediction results, the final integration weight is 0.4.

• High probability regression model—based on the prediction results of the previ-
fi
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model and the regression model, plus some other features. This model helps to

• In the final submission, the prediction results from the low probability regression 
model and the high probability regression model are integrated first, and then the 
result of the regression model in step 1 is integrated. 

8.7.2 Knowledge List 

8.7.2.1 Feature Engineering 

There are three main types of features used in this chapter, namely RFM, groupby, 
and nlp, using dictionaries, pandas. DataFrame, and sparse matrix respectively to 
carry out extraction. The RFM model only simulates the use of F and M, and the 

slight difference in pre-processing. In the aspect of feature selection, the filter 
method based on Pearson correlation coefficient and the wrapper method based on 
the importance of model features are tried. Finally, pandas. DataFrame and scipy. 
sparse are used during modeling. 

8.7.2.2 Parameter Tuning



own consumption behavior, and then use the machine learning algorithm to train and

In view of the limited space, this chapter does not introduce the two algorithms of
CatBoost and Word2Vec. CatBoost is also a decision tree model, which is special in
that it directly supports the modeling and calculation of discrete elds and text elds,
thus saving a lot of preprocessing time. By comparison, Word2Vec is also a classic

the model can understand.

their past behavior and behavior of other similar customers.
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is highly coupled so that participants only need to focus on characterizing the user's 

predict. The actual practice of this chapter uses three parameter tuning frameworks, 
namely grid search, hyperopt, and beyesian. They have their own characteristics. In 
order to quickly find a better parameter combination, participants can only randomly 
sample part of the data for debugging. 

8.7.3 Extended Learning 

fi fi

algorithm in the field of NLP, which also processes text into numerical vectors that 

In addition, this section will recommend some similar game questions as an 
extension of the learning content in order to deepen the understanding of such 
competition questions. 

8.7.3.1 Santander Product Recommendation 

The homepage of this competition question is shown in Fig. 8.7. 
In order to meet the needs of a series of financial decisions, Santander Bank 

provides loan services to customers through personalized product recommendations, 
predicting which products existing customers will use in the next month based on 

The question is based on the purchase records of the Spanish Santander Bank in 
the first 17 months and the user attributes to predict the most likely items to be 
purchased by each user in June 2016 (need to give the predicted 7 items and arrange 
them according to the probability; the evaluation indicator is MAP@7). This is a 
typical recommendation competition, which builds a model based on the user's 
historical behavior information. This behavior information is the key information

Fig. 8.7 Santander Product Recommendation



products lag features, products existing period, average purchase time difference of
products, time after the last purchase of products, the value of 20 products last

neighborhood-based collaborative filtering are not the best way to solve click-
through rate prediction.

The model uses common tree models and NN, which are all fine, and then uses
the last 20% of the data in the set as the verification set. The characterizing portion is

to characterize the user's interests and habits and can also be used to build rich 
user tags. 

Basic ideas: This kind of problem extracts mainly historical features, such as
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month, the number of products purchased last month, etc., and some raw features. 
The model uses the basic XGBoost and LightGBM (not yet available in 2016), 
calculates the user's new purchase probability for each product, that is, row_num * 
n_classes, and finally sorts the probability and extracts the top 7 products for each 
user. In this way, a baseline scheme can be obtained, and then optimization is mainly 
carried out for feature amplification, how to model (offline verification scheme), 
model selection, and post-processing. 

8.7.3.2 WSDM—KKBox’s Music Recommendation Challenge 

The homepage of this competition question is shown in Fig. 8.8. 
This is the 11th ACM International Conference on Web Search and Data Mining 

(WSDM 2018) Challenge, which used data sets provided by KKBOX to build a 
better music recommendation system. This challenge requires players to predict the 
possibility of repeated listening to a song when the user's first observable listening 
event is triggered within a time window. If a repeated listening event is triggered 
within one month after the user's first observable listening event, the target is marked 
as 1; otherwise, it is marked as 0. The same rule applies to testing sets. 

Basic ideas: The champion team introduced that the contest task was similar to 
the click-through rate (CTR) prediction. Relistening is like buying, and listening for 
the first time is like clicking. Compared with "recommendation", "click-through rate 
prediction" is a more accurate keyword (because CTR prediction and CVR predic-
tion share similar models), so methods such as potential factor-based or 

Fig. 8.8 WSDM—KKBox’s Music Recommendation Challenge



the target coding, counting features, the last time an individual listened to a song
(categories combined with features such as msno, msno + genre_ids, msno + com-
poser), the next time an individual will hear a song, and the time span between the
last time one listened to a song and the present, considering the feature combination
construction of different granularities at the same time.
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Part III 
Learn from History to Create a Bright 

Future



Chapter 9 
Time Series 

There is a very old story about time series analysis. In ancient Egypt 7000 years ago, 
people recorded the ups and downs of the Nile River day by day to form a time 
series. After long-term observation of this time series, people found that the ups and 
downs of the Nile River were very regular. Thanks to mastering the laws of ups and 
downs, agriculture in ancient Egypt developed rapidly. This method of obtaining 
laws of intuition from observing sequences is the descriptive analysis method. In the 
development of time series analysis methods, applications in the fields of economy, 
finance, engineering and so on have always played an important promoting role, and 
every step of the development of time series analysis is inseparable from the 
application. 

Time series analysis has always received much attention. The most classic contest 
"Makridakis Competitions" focus on time series forecasting problems. It has been 
held for five times, the first in 1982 and the fifth in 2020, nearly 40 years apart. This 
challenge aims to evaluate and compare the accuracy of different prediction methods 
and solve the problem of times series forecasting. 

In competitions, we often encounter tasks related to time series analysis, such as 
what the index will happen in the next day/week/month, more specifically, 
predicting the traffic of advertising impressions in the following 2 weeks, and 
predicting the time of users to buy goods and stock trading time, etc. Of course, it 
is far more than that; we can use different methods to deal with these prediction tasks 
after summarizing them, according to the required prediction quality and the length 
of the prediction cycle. 

This chapter will be divided into four parts, which introduce time series analysis, 
time series patterns, feature extraction methods, and model diversity. 
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9.1 What Is Time Series 

This section will give a brief introduction to time series analysis, including the 
simple definition, common questions, cross-validation, and basic rule methods, to 
help everyone have a basic understanding of time series analysis and a general idea 
of solving problems. 

9.1.1 Simple Definition 

Let's start with the definition of time series analysis, which is a series of data points 
indexed (or listed or illustrated) in chronological order. Therefore, the data that 
makes up the time series consists of relatively definitive timestamps. Compared with 
random sample data, more additional information (such as time trends, change 
information, etc.) can be extracted from the time series data. 

Different from the random observation sample analysis discussed in most other 
statistical data, the analysis of time series is based on the following assumptions: the 
data value of the label in the data file represents continuous measurement values at 
equal intervals, such as traffic within one hour, sales volume within one day, etc. 
Assuming that there is a correlation in the data, then find the corresponding corre-
lation through modeling, and use it to predict the future data trend. 

9.1.2 Common Questions 

As one of the most common competition topics, competitions related to times series 
forecasting can be subdivided into many questions. Through the summary of 
previous competitions, these questions can be summarized into univariate time series 
and multivariate time series from the perspective of variables, and then these 
problems can be concluded into single-step prediction and multi-step prediction 
according to different prediction objectives. 

9.1.2.1 Univariate and Multivariate Time Series 

Univariate time series has only a single time-dependent variable, so it is only 
affected by time factors. This kind of problem focuses on analyzing the changing 
characteristics of data, which are affected by factors such as correlation, trend, 
periodicity, and circularity. This type of problem is relatively rare and can generally 
be regarded as part of multivariate time series i.e., only considering the influence of 
time on labels. See Fig. 9.1 for an example.
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Fig. 9.1 An Example of 
Univariate Time Series 

Fig. 9.2 An Example of Multivariate Time Series 

Multivariate time series has multiple time-dependent variables. In addition to 
being affected by time factors, it is also affected by other variables. For example, the 
forecast of product sales may be affected by a series of variables such as category, 
brand, and promotion. This kind of problem is more common and requires more 
factors to be considered, so the challenge is also greater. See Fig. 9.2 for an example. 

9.1.2.2 Single-step Prediction and Multi-step Prediction 

The single-step prediction problem is relatively basic. Just adding a time unit to the 
time basis of the training set can be used as a testing set. In fact, it is a common 
regression problem, but the input variable is no longer an independent feature 
variable, but a feature variable that will be affected by historical data over time. 
As shown in Fig. 9.3, if the testing set only has time of t + 1, then it is a single-step 
prediction; if it has time span of t + 1 to  t + n, it is a multi-step prediction. 

The multi-step prediction problem is more complicated. It is to add multiple time 
units as testing sets on the basis of the time of the training set. There are many 
solutions to this problem: first, based on single-step prediction, each time the 
predicted value is added to the training set as the real value to predict the next 
time unit, this will lead to error accumulation, especially if there is a large error at the 
beginning, then the prediction effect will become worse and worse; second, directly 
predict the results of all testing sets, that is, as a multi-output regression problem, so 
that although the problem of error accumulation is avoided, it will increase the 
difficulty of model learning because it requires the model to learn a many-to-many 
system, thus increasing the training difficulty.
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Fig. 9.3 Data Set Division 

9.1.3 Cross Validation 

Before starting to build the model, we should consider how to carry out offline 
verification. For the stability of the results, we choose cross validation. But how can 
we perform cross validation for the time series? Since the time series contain a time 
structure, it is generally necessary to pay attention to the situation that data penetra-
tion cannot occur in the fold while retaining this structure. If a randomized cross 
validation is carried out, then all the time correlation between the tag values will be 
lost, resulting in data penetration. Fortunately, there is still a suitable method for 
dealing with time series problems. This approach is called rolling cross validation, as 
shown in Fig. 9.4. 

This cross validation method is quite simple. We first train the model with the 
data from the initial time to the time t, then perform offline validation with the data 
from the time t to the time t + n, and calculate the score of the evaluation index; next, 
extend the training sample to the time t + n, and verify with the data from the time 
t + n to the time t + 2n; repeat this process continuously until the last available tag 
value is reached. The number of verification times can be freely controlled, and 
finally the average value of the verification results is calculated to obtain the final 
offline verification results. 

9.1.4 Basic Rules and Methods 

In time series related competitions, rule-based methods are often used to solve 
problems. Due to noise in the data or some unexpected situations, the model cannot 
learn all the information. At this time, rule-based methods may be helpful. Here we 
mainly introduce two common rule-based prediction methods: weighted averaging 
and exponential smoothing. 

9.1.4.1 Weighted Averaging 

Weighted averaging is to first obtain the values of the most recent N time units in the 
data. If the data has strong periodicity (cycles are days, weeks, months, seasons, 
etc.), you can also consider the extraction under link relative ratio, that is, the values 
of the corresponding units yesterday, last week, last month, last season; and then 
make a simple weighting calculation on the extracted subset, usually the closer the 
data to the current time, the greater the data importance. In terms of how to select the



Þ ð

ð

N value, short-term historical data is generally considered, because the correlation of 
the data is higher in the short term. The weighted average is calculated by the 
formula (9.1); 
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Fig. 9.4 Rolling Cross validation 

yt = 
1 
N 

w1 × yt- 1 þ w2 × yt- 2 þ w3 × yt- 3 þ⋯þ wN × yt-Nð 9:1Þ 

Here N is the computation period, w is the weight of each time unit, and y is the value 
of the current time unit. 

It is difficult to select the N value and determine the weight, because there are too 
many possibilities, especially for the weight. Therefore, we can use offline verifica-
tion to conduct a simple linear search to determine the N value and weight. The 
following formula (9.2) optimizes the search method for offline verification: 

θ= argmax 
θ

N 

i= 1 

score yi, predið Þ 9:2Þ 

9.1.4.2 Exponential Smoothing 

In the problem of times series forecasting, the closer the time point to the prediction 
unit is, the more important it is. For example, if there are sales data for nearly 10 days 
now, the data on the 10th day will have the most impact on the prediction of sales on 
the 11th day. In addition, the farther the data is from the testing set, the closer its 
weight is to 0. Decay the weight of each time unit according to the exponential level



and perform the final weighting computation. This method is called exponential 
smoothing. The formula is (9.3): 
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yt = a 
t 

n= 0 

1- að Þn yt- n ð9:3Þ 

Wherein yt is the value obtained by exponential smoothing at the time point of t, and 
y 
t-n is the actual value at the time of t - n. a is an adjustable hyperparameter value, 
which is taken between 0 and 1. It can also be called a attenuation memory factor. It 
can be seen from formula (9.3) that the larger the value of a, the faster the model 
"forgets" the historical data. 

To some extent, exponential smoothing is like a moving average method with 
infinite memory (the smoothing window is large enough) and exponentially decreas-
ing weights. The calculation results obtained by an exponential smoothing can be 
expanded beyond the data set and range, so it can also be used for prediction. 

Extended Learning 
If you think about the two rule-based methods described above, you will find 
that the forecast result will neither be higher than the historical high nor lower 
than the historical low. There will obviously be unrealistic occasions. For 
example, if the automotive industry becomes sluggish and the sales volume of 
passenger cars decreases year by year, then the sales this year will definitely be 
lower than that of last year. The reason is that the trend is not taken into 
account. Therefore, we can use the secondary exponential smoothing linear 
trend method to predict passenger car sales. There is also the triple exponential 
smoothing, which can predict time series with both trend and seasonality. It is 
based on the algorithms of single exponential smoothing and secondary 
exponential smoothing. 

9.2 Time Series Patterns 

Solving the time series problem first requires understanding of the key data patterns, 
and then representing these patterns by extracting features. Four types of time series 
patterns are mainly introduced here: trend, periodicity, correlation, and randomness. 
Through the comprehension of these patterns, the direction of feature extraction and 
model selection can be found.

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/how-the-automotive-industry-is-accelerating-out-of-the-turn
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9.2.1 Trend 

Trend is the change of data that continues to rise or fall over a long period of time. Of 
course, this is not only limited to linear rise or fall, but also can be periodic up or 
down. Trend appears in many types of time series forecasting problems, such as sales 
volume forecasting, various types of traffic forecasting, financial related 
forecasting, etc. 

So, how can trends be expressed using features? It should be performing feature 
construction based on the change of data for the most part, usually starting from the 
first-order trend and second-order trend to construct. The first-order trend is mainly 
the data difference and proportion of adjacent time units, which are used to reflect the 
change degree of data from adjacent time units. The second-order trend is further 
constructed on the basis of the first-order trend, which can reflect the speed of 
changing of the first-order trend. 

Figure 9.5 shows the stock prices of Google and Microsoft from 2006 to 2018. 
The abscissa is the date, and the ordinate is the share price. On the whole, the stock 
prices of both companies have witnessed a certain upward trend, but Google's is 
more obvious. 

9.2.2 Periodicity 

Periodicity refers to the repeated fluctuations in a period of time series, which is the 
result of various factors such as climatic conditions, production conditions, holidays, 
and people's customs. Many time series forecasting problems are cyclical; for 
example, temperature change forecasting will be affected by seasonal cycles, and 
subway traffic forecasting will be influenced by morning and evening rush hours or 
weekday and weekend cycles. 

Periodicity can be expressed month on month or week on week, that is, the data 
values of the same period last month and those of the same period last week are used

Fig. 9.5 Trends in Stock 
Prices of Google and 
Microsoft



as characteristics respectively, because if there is periodicity, the label values of the 
same period may be more similar. Since there is periodicity, then the time features 
can also show periodicity, such as constructing the position of the current time in the 
period in which it is located, and the time difference between the current time and the 
peak in the period in which it is located.
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As shown in Fig. 9.6, the horizontal axis is the time (date), and the vertical axis is 
the volume of viewing ads (traffic), illustrating the real mobile game data, which is 
used to investigate the advertising traffic viewed per hour and the daily in-game 
monetary expenditures. It is obvious that the data is repeated in a one-day cycle. 

9.2.3 Correlation 

Correlation in time series is also called autocorrelation. It describes that there is often 
a positive correlation or negative correlation in a certain period of sequence, and 
there will be a great correlation between the time points before and after. It is because 
of this correlation that the future becomes predictable. 

The performance of correlation can be described by the label values of the 
neighboring moments, such as directly using the label values of the last moment 
and the last two moments as a feature. In addition, the statistical value of multiple 
moments in history can be used as a feature to reflect recent changes. 
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Fig. 9.6 Traffic of Ads Viewing
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9.2.4 Randomness 

Randomness describes random disturbances other than the above three modes. Due 
to the uncertainty of the time series, there will always be some accidents or noises, 
resulting in irregular fluctuations in the time series. For example, the stock market is 
a typical scenario with huge randomness, with complex historical dependence and 
nonlinear time series. Randomness is difficult to predict and is the place that brings 
the greatest errors. As shown in Fig. 9.7, which visualizes the demand for a product 
in Kaggle's M5 Forecasting—Accuracy competition, it is obvious that there are four 
anomalies that are difficult to predict compared to the overall demand. 

For randomness, it can be solved by simple exception labeling, such as special 
dates, activities, etc. You can also preprocess to change the original data source by 
first removing these outliers due to randomness, and then correcting them. 

9.3 Feature Extraction Methods 

Competitions related with time series have different feature extraction methods, 
mainly focusing on the delay of time series (i.e. historical information data). The 
feature extraction methods here can be further divided into historical translation and 
window statistics. In addition, the sequence entropy feature and other additional 
features will be introduced. 
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Fig. 9.7 Changes in Demand for Commodities
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9.3.1 Historical Translation 

Time series data have a context. For example, yesterday's sales volume is likely to 
affect today's sales volume, and tomorrow's weather temperature will be affected by 
today's temperature. In other words, the more similar labels in the time series, the 
higher the correlation. We can use this feature to construct historical translation 
features, that is, to directly use historical records as features. Specifically, if the 
current time is t, then the value of moments like t - 1, t - 2, ..., t - n can be used as 
the feature. This value can be a label value, or a value related to the label value. For 
example, if the forecast target is passenger car sales, then passenger car production 
and GDP related to passenger car sales can be used as features. 

As shown in Fig. 9.8, for the unit of time d, by directly taking the value of the time 
d- 1 as a feature, you can use shift () to complete the translation operation in a direct 
way, where shift (1) means to translate 1 unit to the right, and shift (-1) means to 
translate 1 unit to the left. In this way, the value corresponding to each moment in the 
second row will all be used as the feature corresponding to the time in the first row. 

9.3.2 Window Statistics 

Unlike historical translation to extract features from a single sequence unit, window 
statistics is to extract features from multiple sequence units. Window statistics can 
reflect the status of sequence data within the interval, such as the maximum, 
minimum, mean, median, and variance within the window, etc. 

The window size is not fixed, and various attempts can be made. If it is a time 
series in days, it is a good decision to choose 3 days, 5 days, 7 days, 14 days as the 
window size for statistics. As shown in Fig. 9.9, if 3 is selected as the window size, 
then for the unit d time, the statistics are based on d- 3 to  d- 1 time as the window. 

Fig. 9.8 Historical Translation



10

9.3 Feature Extraction Methods 187

Fig. 9.9 Window Statistics 
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Fig. 9.10 Time Series Visualization 

9.3.3 Sequence Entropy Characteristics 

The concept of entropy was first applied to thermodynamics to measure 
the unavailability of energy in a system. The greater the entropy, the higher the 
unavailability of energy, and vice versa. Its physical meaning is a measure of the 
degree of confusion or complexity in a system. Similarly, in time series analysis, 
entropy can be used to describe the certainty and uncertainty of the series. As shown 
in Fig. 9.10, a visual display of two time series is given, namely (1, 2, 1, 2, 1, 2, 1, 2, 
1, 2, 1) and (1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1). 

If the mean, variance, median, and other results of the two sequences are counted 
separately, they will be found to be equal, so the statistical features have no 
distinction between the two time series, and it is difficult to mine the stability of 
the sequence. Just because of this, the concept of entropy is introduced to describe 
the sequence, and the calculation formula is as formula (9.4): 

entropy Xð Þ= -
N 

i= 1 

P x= xif g lnP x= xif g ð9:4Þ 

9.3.4 Other Features 

In addition to historical translation, window statistics, and sequence entropy fea-
tures, there are many features that are often used. We summarize them into two 
categories: temporal features and statistical features. 

Temporal features: such as hours, days, weeks, months, a certain period of the day 
(such as morning, noon), a few days before a certain day, whether it is a holiday, etc.
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Statistical features: The primary statistical characteristics include maximum 
(max), minimum (min), mean, median, variance, standard variance, skewness, and 
kuriosis, etc. In addition, there are first-order difference, second-order difference, 
proportion correlation and other characteristics. 

9.4 Model Diversity 

There are still many models that can be tried for times series forecasting. This section 
will introduce traditional time series models, tree models, and deep learning models. 
You can try all these methods in the competition. By doing so, if there is no accident, 
you can not only find a good single model, but also prepare for the final integration. 

9.4.1 Traditional Time Series Model 

ARIMA (autoregressive integrated moving average model) is a common time series 
model. At the same time, ARIMA consists of three parts—AR, MA, and I, and 
contains three key parameters—p, q, and d. Here AR is an autoregressive model, p is 
the number of autoregressive terms, indicating the number of lagging observations 
included in the model; MA is a moving average model, q is the size of the moving 
average window, and d is the number of differences performed to become a 
stationary sequence; I (represents "integral") indicates that the data value has been 
replaced by the difference between the current value and the previous value (and the 
differential process may have been performed more than once). 

The triple exponential smoothing mentioned earlier is based on the description of 
data trends and seasonality, while the ARIMA model mainly describes the interre-
lationship between data. The purpose of the three parts in ARIMA is to make the 
model easier to fit historical data and to obtain higher accuracy in a larger time series. 
The following code simply implements the ARIMA model: 

from statsmodels.tsa.arima_model import ARIMA 
model = ARIMA(train, order=(p,d,q) ) 
arima = model.fit() 
pred = arima.predict(start= len(train), end= len(train)+L) 

It can be noticed that the use of the ARIMA model is very convenient. The code is 
divided into three parts: creating the model, training the model, and making pre-
dictions. In addition to preparing the one-dimensional sequence tag value, it is also 
necessary to determine the parameters p, d, and  q. Besides, the L in the prediction 
part means the length unit of the prediction. 

Parameter Determination P, d, and q are all non-negative integers. The selection 
of p and q can be determined according to the ACF (autocorrelation coefficient)



diagram and the PACF (partial autocorrelation coefficient) diagram. First, the 
d-order difference is performed to convert the time series data into a stationary 
time series, and then the ACF diagram and the PACF diagram of the stationary time 
series are obtained respectively. By analyzing these two diagrams, the best order p 
and order number q are obtained. 
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Extended Learning 
SARIMA (seasonal autoregressive integrated moving average model) is an 
extension to ARIMA. This model can use univariate data including trend and 
seasonality for times series forecasting. 

9.4.2 Tree Model 

Tree models (XGBoost, LightGBM, etc.) are relatively general models that can 
show great power even in many competitions related to time series. Tree models 
are very suitable when trends and seasonality are relatively stable, and noise is low. 
Of course, some processing can be used to reduce the trend of time series and make it 
stable. In Chap. 10, the tree model will be used as a baseline scheme to complete 
basic predictions. 

Extended Learning 
The methods to convert time series into stationary series include logarithmic 
processing, first-order difference, seasonal difference, etc. In most situations, 
the stationarity adjustment is performed first, then training, and finally the 
result can be converted. These three methods can be used alone or in 
combination. 

9.4.3 Deep Learning Model 

The deep learning model can give more possibilities to times series forecasting, such 
as automatic learning of time dependence and automatic processing of time struc-
tures such as trends and seasonality. The deep learning model can also process large 
amounts of data, multiple complex variables, and multi-step operations, and extract 
sequence models from input data, which can provide great help to times series 
forecasting. This article mainly introduces how to use convolutional neural networks 
and long-term, short-term memory networks to solve the problem of times series 
forecasting and provides specific implementation codes. At the same time, this 
section will present more attempts and applications of deep learning in times series 
forecasting.
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9.4.3.1 Convolutional Neural Network 

The convolutional neural network (CNN) is a kind of neural networks designed to 
effectively process image data. It can automatically extract features from original 
input data. This ability can be applied to times series forecasting problems, that is, a 
series of observations are regarded as a one-dimensional image, and then the image 
is read and extracted as the most significant element. Convolutional neural networks 
also support multivariate inputs and multivariate outputs, and can learn complex 
functional relationships, but do not require models to learn directly from lagging 
observations. On the contrary, the model can learn feature representation from the 
input sequence most relevant to the prediction problem, i.e. automatically identify, 
extract, and refine salient features from the original input data, which are directly 
related to the prediction problem to be modeled. 

As shown in Fig. 9.11, it is a structural diagram based on one-dimensional 
convolutional neural networks to solve the times series forecasting problem. First, 
an n × k matrix is initialized, where n represents the length of the time slice and 
k represents the number of features. Then, the first layer is a convolution masking 
layer, which defines multiple filters to extract features. Next, the maximum pooling 
layer is used to reduce the complexity of output data and prevent data overfitting. 
Finally, the output result is obtained through a fully connected layer. 

The following is a reference code for solving times series forecasting problems 
with keras-based convolutional neural networks: 

import numpy as np 
import pandas as pd 
from sklearn.model_selection import train_test_split 
from keras import optimizers 
from keras.models import Sequential, Model 
from keras.layers.convolutional import Conv1D, MaxPooling1D 
from keras.layers import Dense, LSTM, RepeatVector, TimeDistributed, 
Flatten 
# data preparation, divide training set and verification set in chronological order 
# data means data set, features mean feature set, label represents tags

Fig. 9.11 Structure Diagram of Times Series Forecasting Based on One-dimensional 
Convolutional Neural Networks



X_train, X_valid, y_train, y_valid = train_test_split(data[features], 
data[label], 

test_size=0.2, random_state=2020, shuffle=True) 
# the format of input data is [sample, time step, feature] 
X_train = X_train.values.reshape((X_train.shape[0], 1, X_train.shape 
[1])) 
X_valid = X_valid.values.reshape((X_valid.shape[0], 1, X_valid.shape 
[1])) 
# network design 
# use a convolution masking layer and a maximum pooling layer 
# the filter mapping is then smoothed before being interpreted by the fully connected layer and 
prediction results output 
model_cnn = Sequential() 
model_cnn.add(Conv1D(filters=64, kernel_size=2, activation='relu', 

input_shape=(X_train.shape[1], X_train.shape[2]))) 
model_cnn.add(MaxPooling1D(pool_size=2)) 
model_cnn.add(Flatten()) 
model_cnn.add(Dense(50, activation='relu')) 
model_cnn.add(Dense(1)) 
model_cnn.compile(loss='mean_squared_error', optimizer='adam') 
# fitting network 
model_cnn.fit(X_train, y_train, validation_data=(X_valid, y_valid),
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epochs=20, verbose=1) 

9.4.3.2 Long-term and Short-term Memory Network 

Long-term & short-term memory network (LSTM) is a special kind of recurrent 
neural network (RNN), which is more suitable for longer time series. It is composed 
of a group of cells with the characteristics of memory data series. These cells have 
the function of storing data series. Long short-term memory network is suitable for 
processing time series data and can capture the dependency between current obser-
vations and historical observations. 

As shown in Fig. 9.12, it is a schematic diagram of the long-term and short-term 
memory network, in which the output of each node will be used as the input of other

Fig. 9.12 Schematic Diagram of Long and Short-term Memory Network Structure



nodes; arrows indicate signal transmission (data transmission), blue circles indicate 
pointwise operation (i.e. point-by-point operation), such as node summation, green 
boxes indicate the network layer (neural networks layer) for learning, the two lines 
merged indicate connection, and the separated two lines indicate that information is 
copied into two duplicates and transmitted to different locations. Specifically, the 
input part consists of ht-1 (convolution masking layer at time t - 1) and xt (feature 
vector at time t); the output part is ht; and the main line part consists of Ct-1 and Ct.
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The following is a reference code for solving times series forecasting problems 
with keras-based long-term and short-term memory networks: 

# network design 
model_lstm = Sequential() 
model_lstm.add(LSTM(50, activation='relu', 
input_shape=(X_train.shape[1], X_train.shape[2]))) 
model_lstm.add(Dense(1)) 
model_lstm.compile(loss='mean_squared_error', optimizer='adam') 
# fitting network 
model_lstm.fit(X_train, y_train, validation_data=(X_valid, 

y_valid), epochs=20, verbose=1) 

9.5 Thinking Exercises 

1. When making times series forecasting, under what circumstances is the effect of 
rule-based method better than that of a model? 

2. How can the rule-based method be combined with the model in a better way? 
3. Correlation feature extraction is mainly to extract the nearest label directly as a 

feature. So, how can the extracted time interval be determined? 
4. Why can long-term and short-term memory networks solve the problem of long-

time series dependence better than recurrent neural networks?



Chapter 10 
Case Study: Global Urban Computing AI 
Challenge 

This chapter will use a question in the 2019 Tianchi Competition (namely “Global 
Urban Computing AI Challenge: Metro Passenger Flow Forecast”, as shown in 
Fig. 10.1) as a real-world case for issues related to time series analysis, mainly 
including question understanding, data exploration, feature engineering, and model 
training. In particular, in the part of the case study, besides providing a general idea 
for solving problems, what is more important is to guide everyone to learn the 
thinking process in different types of competition questions, and finally to sort out 
and further extend the knowledge, that is, the summary of competition questions. 

10.1 Understanding the Competition Question 

This section aims to let readers quickly understand the basic content of this actual 
case. In addition to the common background introduction, question data, and 
evaluation indicators, it also contains two unique parts: the question FAQ and the 
baseline plan. When facing a type of questions for the first time, asking questions and 
making assumptions helps to discover the core content and difficulties of the 
problem. The baseline plan allows us to quickly obtain offline and online feedback, 
and then continuously try and optimize. 

10.1.1 Background Introduction 

In 2019, the Hangzhou Municipal Public Security Bureau jointly launched the first 
Global Urban Computing AI Challenge with Alibaba Cloud Intelligence, and the 
title of this challenge was finally selected as “Metro Passenger Flow Forecast”. At  
present, the subway is one of the main means of transportation for urban travel, and 
the sudden increase in passenger flow in subway stations is extremely easy to cause
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congestion, triggering large passenger flow hedging, and causing potential safety 
hazards. Therefore, subway operation departments and public security organs 
urgently need to deploy corresponding security strategies in advance with the help 
of flow prediction technology to ensure the safe travel of passenger.
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Fig. 10.1 Global urban computing AI challenge 

The competition was titled “Metro Passenger Flow Forecast”. Participants needed 
to predict the future passenger flow changes of the station by analyzing the historical 
data of swiping card in the subway stations, and the prediction results could help 
passengers choose a more reasonable travel route, thus avoiding traffic jams. This 
might help subway operation departments and public security organs to deploy 
station security measures in advance, etc., and finally realize the use of big data 
and artificial intelligence technologies to empower future urban safe travel. 

10.1.2 Competition Data 

The competition opened 25 days of subway card swiping data from January 1, 2019 
to January 25, 2019, involving 3 lines, 81 subway stations, and about 70 million 
pieces of data. These data were used as training data (Metro_train.zip) for players to 
build subway station passenger flow prediction models. After decompressing the 
training data, you could get 25 csv files, which stored the daily card swiping data, 
and the file name was prefixed with record. For example, the data of swiping card of 
all lines and all stations on January 1, 2019 were stored in the record_2019-01-01. 
csv file, and so on. The competition also provided road network maps, which were 
the connection relationship sheets between various subway stations, which were 
stored under Metro_roadMap.csv for players to use. 

During the test phase, the competition would provide data records of card swiping 
of all stations on all routes on a certain day. Players needed to predict the number of 
people entering and leaving each station from 00:00 to 24:00 (in units of 10 min) in 
the following day.



The label of this competition needs to be built by contestants themselves. How
can modeling enable them to achieve the greatest forecasting accuracy possible
on a given data set?
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In the qualifying round, the competition provided the card swiping data record on 
January 28, 2019 as testing set A (testA_record_2019-01-28.csv), and the contes-
tants needed to predict the passenger flow of each subway station (in units of 10 min) 
throughout the day on January 29, 2019. In the knockout and final rounds, other 
batches of data would be updated as testing set B and testing set C respectively. 

10.1.2.1 Users’ Card Swiping Data Sheet (record_2019-01-xx.csv)

• In the record_2019-01-xx.csv file, except for the first line, each line contains a 
user’s record of swiping card.

• For userID, the user identity cannot be uniquely identified when payType is 
3, that is, this userID may be used by more than one person, but it can be regarded 
as that of the same user during each entry and exit. For payType with other 
values, the corresponding userID can uniquely identify a user. 

Road Network Map (Metro_roadM ap.csv) 

The competition provides a connection relationship sheet between subway stations. 
The corresponding adjacency matrix is stored in the roadM ap.csv, which contains 
an 81 × 81 matrix roadMap. In the roadM ap.csv file, the first row and the first 
column represent the subway station ID (stationID), with column values ranging 
from 0 to 80 and row values ranging from 0 to 80. Wherein, roadMap [i] [j] = 1 
suggests the station with stationID of i is directly connected to the station with 
stationID of j; roadMap [i] [j] = 0 indicates the two stations with stationID of i and 
stationID of j are not connected to each other. 

10.1.3 Evaluation Indicators 

The evaluation indicator is used to judge whether the contestant’s prediction is 
accurate. Here, the mean absolute error is used to evaluate the prediction results of 
the number of people entering and leaving the station separately, and then the final 
score is obtained by averaging the two. 

10.1.4 Competition FAQ



tion smoothing. We can try these methods one by one and compare the advantages
and disadvantages.

January 25 and that of January 28 are used as the training set for modeling. The data
on January 26 and January 27 (weekend) are not officially provided.
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Constructing the traffic label for entering and leaving the subway station is the 
first task of this competition. After observing the data for the first time, you will find 
that there are certain problems: for example, there are records where the traffic of  
entering and leaving the subway station before dawn is not 0, or there are certain 
differences in the data of different subway stations. In order to ensure the stability of 
the results, it may be possible to try to process the flow of entering and leaving the 
subway station in accordance with the subway stations (regularized, standardized, 
etc.). 

There are too many factors affecting the flow of subway stations, such as 
multiple subways arriving at the same station at the same time, emergencies, 
grand events, etc. So, how can outliers be dealt with to ensure the stability of the 
model? 

There are indeed many effects brought about by special factors. For such prob-
lems, common methods include exception removal, exception marking, and excep-

10.1.5 Baseline Scheme 

After understanding the content of the previous sections, we can start the basic 
modeling. The baseline scheme does not need to be too complicated, as long as it can 
give a correct result. This can also be seen as establishing a simple framework first, 
and then filling and optimizing in the following steps. Here, the card swiping data on 
January 29 is used as the testing set, and the card swiping data from January 1 to 

10.1.5.1 Data Preparation 

The following is the specific code for data reading and time unit conversion: 

import numpy as np 
import pandas as pd. 
from tqdm import tqdm 
Import lightgbm as lgb 
# read data 
path ='./input/' 
for i in tqdm(range(1,26)): 
if i < 10: 

train_tmp = pd.read_csv(path + 'Metro_train/record_2019-01-0' + 
str(i) + '.csv')



data['time_10_minutes'] = data['time'].astype(str).apply(lambda x: t

(['stationID','time_10_minutes']).
size().to_frame('outNums').reset_index()

else: 
train_tmp = pd.read_csv(path + 'Metro_train/record_2019-01-' + str 

(i) + '.csv') 
if i == 1: 

data = train_tmp 
else: 

data = pd.concat([data, train_tmp],axis=0,ignore_index=True) 

Metro_roadMap = pd.read_csv(path + 'Metro_roadMap.csv') 
test_A_record = pd.read_csv(path + 'Metro_testA/testA_record_2019-

01-28.csv') 
test_A_submit = pd.read_csv(path + 'Metro_testA/testA_submit_2019-

01-29.csv') 
data = pd.concat([data, test_A_record],axis=0,ignore_index=True) 

# convert data into that with units of 10 minutes 
def trans_time_10_minutes(x): 

x_split = x.split(':') 
x_part1 = x_split[0] 
x_part2 = int(x_split[1]) // 10 
if x_part2 == 0: 

x_part2 = '00' 
else: 

x_part2 = str(x_part2 * 10) 
return x_part1 + ':' + x_part2 + ':00' 

data['time'] = pd.to_datetime(data['time']) 
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rans_time_10_minutes(x)) 

Next, construct the flow of entering stations (inNums) and flow of exiting stations 
(outNums) and aggregate them directly: 

data_inNums = data[data.status == 1].groupby 
(['stationID','time_10_minutes']). 

size().to_frame('inNums').reset_index() 
data_outNums = data[data.status == 0].groupby 

10.1.5.2 Key Part: Building a Training Set 

The training set is still very troublesome to construct. Careful observation of the data 
shows that if a station does not have traffic counting for a certain period of time, then 
the data for this period of time is missing and needs to be filled by the players. The 
construction process is as follows: 

stationIDs = test_A_submit['stationID'].unique() 
times = [] 
days = [i for i in range(1,26)] + [28, 29] 
for day in days:



x: filltime(x))

if day < 10: 
day_str = '0' + str(day) 

else: 
day_str = str(day) 

for hour in range(24): 
if hour < 10: 

hour_str = '0' + str(hour) 
else: 

hour_str = str(hour) 
for minutes in range(6): 

if minutes == 0: 
minutes_str = '0' + str(minutes) 

else: 
minutes_str = str(minutes * 10) 

times.append('2019-01-' + day_str + ' ' + hour_str +':' + 
minutes_str + ':00') 

# compute the Cartesian product 
from itertools import product 
stationids_by_times = list(product(stationIDs, times)) 
# construct new data set 
df_data = pd.DataFrame() 
df_data['stationID'] = np.array(stationids_by_times)[:,0] 
df_data['startTime'] = np.array(stationids_by_times)[:,1] 
df_data = df_data.sort_values(['stationID','startTime']) 
df_data['endTime'] = df_data.groupby('stationID')['startTime']. 

shift(-1).values 

def filltime(x): 
x_split = x.split(' ')[0].split('-') 
x_part1_1 = x_split[0] +'-'+x_split[1]+'-' 
x_part1_2 = int(x_split[2]) + 1 
if x_part1_2 < 10: 

x_part1_2 = '0' + str(x_part1_2) 
else: 

x_part1_2 = str(x_part1_2) 

x_part2 = ' 00:00:00' 
return x_part1_1 + x_part1_2 + x_part2 
# fill in missing values 
df_data.loc[df_data.endTime.isnull(), 'endTime'] = 
df_data.loc[df_data.endTime.isnull(), 'startTime'].apply(lambda 
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df_data['stationID'] = df_data['stationID'].astype(int) 

After the above operation, the data has become very neat, in units of 10 min. This 
is also helpful for subsequent feature extraction. The complete training set is shown 
in Fig. 10.2. 

Next, combine the data for flow of entering and exiting stations: 

data_inNums.rename(columns={'time_10_minutes':'startTime'}, 
inplace=True) 
data_outNums.rename( columns={'time_10_minutes':'startTime'}, 
inplace=True)



df_data['inNums'] = df_data['inNums'].fillna(0)
df_data['outNums'] = df_data['outNums'].fillna(0)

['time'].dt.minute // 10

df_data = df_data.merge(data_inNums, on=['stationID', 'startTime'], 
how='left') 
df_data = df_data.merge(data_outNums, on=['stationID', 'startTime'], 
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Fig. 10.2 The complete 
training set 

how='left') 

10.1.5.3 Feature Extraction 

In the baseline section, only some basic features can be extracted. For time series 
forecasting problems, simple time features and historical translation features are 
mainly extracted. The following is the specific code for extracting time-related 
features: 

# time-correlated features 
df_data['time'] = pd.to_datetime(df_data['startTime']) 
df_data['days'] = df_data['time'].dt.day 
df_data['hours_in_day'] = df_data['time'].dt.hour 
df_data['day_of_week'] = df_data['time'].dt.dayofweek 
df_data['ten_minutes_in_day'] = df_data['hours_in_day'] * 6 + df_data 

del df_data['time'] 

The features used to describe the position information of the current time in the 
cycle are very routine and their functions are also very large. For example, the week 
feature (day_of_week) helps to find similarities with the same number of weeks, 
similar to periodicity and correlation descriptions. The following is the specific code 
for extracting historical translation features:



# historical translation features 
df_data['bf_inNums'] = 0 
df_data['bf_outNums'] = 0 
for i, d in enumerate(days): 

If d == 1: 
continue 
df_data.loc[df_data.day==d, bf_inNums] = df_data.loc[df_data. 

day==days[i-1], inNums] 
df_data.loc[df_data.day==d, bf_outNums] = df_data.loc[df_data. 
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day==days[i-1], outNums] 

10.1.5.4 Model Training 

In order to quickly generate a reliable and stable result, we choose to use the 
LightGBM model; the offline verification method adopts a time series verification 
strategy, and the card swiping data of January 28 is used as the verification set. The 
code for model training is as follows: 

# preparation of training set and verification set 
cols = [f for f in df_data.columns if f not in 

['startTime','endTime','inNums','outNums']] 
df_train = df_data[df_data.day<28] 
df_valid = df_data[df_data.day==28] 

X_train = df_train[cols].values 
X_valid = df_valid[cols].values 

y_train_inNums = df_train['inNums'].values 
y_valid_inNums = df_valid['inNums'].values 
y_train_outNums = df_train['outNums'].values 
y_valid_outNums = df_valid['outNums'].values 
# start training 
params = {'num_leaves': 63,'objective': 

'regression_l1','max_depth': 5, 
'learning_rate': 0.01,'boosting': 'gbdt','metric': 

'mae','lambda_l1': 0.1} 
model = lgb.LGBMRegressor(**params, n_estimators = 20000, nthread = 

4, n_jobs = -1) 
model.fit(X_train, y_train_inNums, 

eval_set=[(X_train, y_train_inNums), (X_valid, 
y_valid_inNums)], 

eval_metric='mae', 
verbose=100, early_stopping_rounds=200) 

Only the flow of entering station is trained here, and the same operation could be 
used for training the flow of leaving. In this way, the basic score result can be 
obtained (the mean absolute error scores corresponding to the flow of entering and 
exiting stations are 19.6167 and 19.0041). There are still many points that can be 
optimized. In the following work, these optimization points will be gradually 
discovered, the structure and scores of the baseline scheme will be updated, and 
finally the scores will be ranked better with breakthroughs.
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10.2 Data Exploration 

In the data exploration part, there are obvious differences in the analysis methods for 
different business problems. In the time series forecasting problem, the key to data 
analytics lies in the analysis of time series patterns (trend, periodicity, correlation, 
and randomness), and the discovery of data features in multiple patterns. 

10.2.1 Preliminary Research on Data 

10.2.1.1 Traffic Flow Data 

Figure 10.3 shows the basic traffic data, which is clean data that can be directly used 
for training and can construct time-related features from multiple dimensions. 

Since it is a time series forecasting problem, the data naturally has a strong 
correlation with time. Figures 10.4 and 10.5 show the changes in the traffic flow 
of entering and exiting subway stations with stationID from 0 to 9 in time series, 
respectively. The data for January 1, 2019 (Tuesday) is selected. 

In fact, there are some particularities in the data on January 1, 2019. Although it is 
a weekday, it is New Year’s Day and belongs to a holiday. In the later analysis, we 
can observe the difference between it and other data. 

10.2.1.2 Road Network Map 

The competition provides a connection relationship table between subway stations, 
as shown in Fig. 10.6; it is an 81×81 matrix, with the column “Unnamed: 0” 
excluded. 

Some preliminary assumptions can be made here. For subway transfer stations, 
especially stations with more adjacent stations (such as three adjacent stations and

Fig. 10.3 Basic traffic data



four adjacent stations), assume that their traffic is relatively high; for transfer stations 
with only one adjacent station, it can be directly determined as the starting/terminal 
station, which is generally a relatively remote place with relatively low traffic.
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Fig. 10.4 Display of entering stations traffic on January 1, 2019. (see also the color illustration) 

Fig. 10.5 Display of exiting stations traffic on January 1, 2019. (see also the color illustration) 

10.2.2 Model Analysis 

As mentioned in Chap. 9, to solve the time series problem, we first need to 
understand the key data patterns, and then express these patterns by extracting 
features. In addition, we also introduce 4 patterns, namely, trend, periodicity,



correlation, and randomness. This section will also focus on these four aspects of 
data analytics. 
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Fig. 10.6 Road network map data 

Fig. 10.7 Display of periodic visualization

• Trend. Trend is a common pattern in time series, and many things in real life 
include trend changes. Hangzhou subway traffic changes are no exception, such 
as the traffic from the start of the morning to the morning rush hour, or the traffic 
near the Christmas.

• Periodicity. We try to find the characteristics of periodicity from the data. As 
shown in Fig. 10.7, the abscissa and ordinate represent the time indicator 
(date, unit: second) and the flow of entering stations (inNums, unit: person),
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respectively. It shows the traffic entering the subway stations with stationID from 
0 to 9 in chronological order. The data selected here is from January 1, 2019 to 
January 28, 2019. 

A closer look at the purple lines and blue lines (stationID 4 and stationID 9 respec-
tively) in Fig. 10.7 shows that the time interval between each of these lines reaching 
the peak entering traffic is exactly 1 day, which means that 1 day is the most obvious 
cycle. It should be noted that January 1, at the beginning, is a holiday, and then the 
following 3 days are workdays. This further leads to the conclusion: the distribution 
of traffic data on weekdays and weekends is different, and special attention should be 
paid to this point when modeling. 

Since Fig. 10.7 is a bit dense, the next step is to conduct a more detailed analysis. 
Select a subway station with stationID 4 and compare its traffic flow of entering 
station on weekdays and weekends in detail. The following code is used to generate a 
traffic comparison chart at different times on Fridays and Saturdays: 

tmp = df_data.loc[(df_data.day.isin([4,5]))] 
tmp.loc[tmp.stationID == 4].pivot_table(index='hours_in_day', 

columns='day',values='inNums').plot(style='o-') 

The generated results are shown in Fig. 10.8. The abscissa and ordinate respec-
tively represent time (unit: hour) and traffic flow of entering station. After comparing 
this traffic of each hour on Friday (day = 4) and Saturday (day = 5), it is easy to find 
that the time periods that see significant difference on Friday and Saturday are from 
7 to 8 o’clock and from 17 to 19 o’clock, which happen to be the peak periods of 
entering the station. Therefore, the difference is mainly caused by the early and late 
peaks of working days. On the whole, it is also a cyclical change.

• Correlation. Generally speaking, correlation is prominent in two neighboring 
time units. For example, without cyclical influence, when the time interval is 
shorter, the traffic entering and leaving the station will be more similar. As shown 
in Fig. 10.9, the abscissa is time (unit: hour) and the ordinate is the traffic of

Fig. 10.8 Comparison of 
traffic at different times on 
Friday and Saturday
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Fig. 10.9 Comparison of 
traffic at different times on 
Thursday and Friday 

Fig. 10.10 The 
particularity of traffic on  
new year’s day 
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entering the station. This shows the incoming traffic of the subway on Thursday 
and Friday. The coincidence degree between the two lines is very high, which is 
very consistent with the concept of short-term correlation. In addition, comparing 
two similar moments in a day, it will be found that if special factors (morning and 
evening rush hours) are not considered, the more adjacent the moments, the more 
similar the traffic.

• Randomness. Random data changes are not easy to determine. Emergencies and 
special dates can lead to randomness. For example, it is difficult to predict the 
subway traffic on New Year’s Day. As can be seen from Fig. 10.10, the subway 
traffic on New Year’s Day is very different from that on other dates, which will 
bring difficulties to modeling and require special approach.

10.3 Feature Engineering 

The content of this section is very important, all of which relies on my actual 
operation in the competition. The structure is clear, and it is easy to be optimized.
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10.3.1 Data Preprocessing 

Before formally extracting features, the data with large differences in the data 
distribution of the testing set (i.e. data of weekends and New Year’s Day) is removed 
to ensure the consistency of the overall data distribution, and this part of the data is 
also removed first in the final scheme. The specific code is as follows: 

# remove data of weekends and New Year’s Day 
df_data = df_data.loc[((df_data.day_of_week < 5) & (df_data.day != 

1))].copy() 
# keep the date 
retain_days = list(df_data.day.unique()) 
# re-compute rank to facilitate subsequent feature extraction 
days_relative = {} 
for i,d in enumerate(retain_days): 

days_relative[d] = i + 1 
df_data['days_relative'] = df_data['day'].map(days_relative) 
#### visualization code #### 
dt = [r for r in range(df_data.loc[df_data.stationID==0, 

'ten_minutes_in_day'].shape[0])] 
fig = plt.fig. (1,figsize=[12,6]) 
plt.ylabel('inNums',fontsize=14) 
plt.xlabel('date',fontsize=14) 
for i in range(0,10): 

plt.plot(dt, df_data.loc[df_data.stationID==i, 'inNums'], 
label = str(i)+'stationID' ) 

plt.legend() 
# generate vector diagram 
plt.savefig("inNums_of_stationID.svg", format="svg") 

Run the above code and generate a visual diagram as shown in Fig. 10.11, 
specifically excluding the traffic data of weekends, so that the rest are data for 
workdays with similar traffic distribution. 

10.3.2 Strong Correlation Features 

The strong correlation information was mainly generated in the same time period of 
different days, so we constructed the features of flow for entering and exiting stations 
with a 10-min granularity and a 1-h granularity respectively. Considering the 
fluctuation of the flow before and after corresponding time periods, we added the 
flow characteristics before and after a certain period, or a certain two periods before 
and a certain two periods after. In addition, we also constructed the flow in the 
corresponding period of the previous n days. Further, taking into account the strong 
correlation between adjacent stations, we added the traffic characteristics of the 
corresponding time period of the two adjacent stations. The correlation code is as 
follows:
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Fig. 10.11 A visualization display with only workday data retained 

def time_before_trans(x,dic_): 
if x in dic_.keys(): 

return dic_[x] 
else: 

return np.nan 

df_feature_y['tmp_10_minutes'] = df_feature_y['stationID'].values 
* 1000 + 

df_feature_y['ten_minutes_in_day'].values 
df_feature_y['tmp_hours'] = df_feature_y['stationID'].values * 1000 + 

df_feature_y['hours_in_day'].values 

for i in range(1, n): # through the last n days 
d  =  day - i  
df_d = df.loc[df.days_relative == d].copy() # data of the day 

# feature 1: traffic flow of entering and exiting the station in this time period in the past (same 
time period, 10-minute granularity) 

df_d['tmp_10_minutes'] = df['stationID'] * 1000 + df 
['ten_minutes_in_day'] 

df_d['tmp_hours'] = df['stationID'] * 1000 + df['hours_in_day'] 
# Here, sum is used as a statistic, and mean, median, Max, min, STD and other statistics can be 

further considered 
dic_innums = df_d.groupby(['tmp_10_minutes'])['inNums'].sum(). 

to_dict() 
dic_outnums = df_d.groupby(['tmp_10_minutes'])['outNums'].sum(). 

to_dict() 
df_feature_y['_bf_' + str(day-d) + '_innum_10minutes'] = 

df_feature_y['tmp_10_minutes'].map(dic_innums).values 
df_feature_y['_bf_' + str(day-d) + '_outnum_10minutes'] = 

df_feature_y['tmp_10_minutes'].map(dic_outnums).values 

# feature 2: traffic of entering and exiting stations during this period in the past (1-hour 
granularity) 

dic_innums = df_d.groupby(['tmp_hours'])['inNums'].sum().to_dict()



dic_outnums = df_d.groupby(['tmp_hours'])['outNums'].sum(). 
to_dict() 

df_feature_y['_bf_' + str(day-d) + '_innum_hour'] = 
df_feature_y['tmp_hours'].map(dic_innums).values 

df_feature_y['_bf_' + str(day-d) + '_outnum_hour'] = 
df_feature_y['tmp_hours'].map(dic_outnums).values 

# feature 3: traffic of entering and exiting stations in the first 10 minutes 
df_d['tmp_10_minutes_bf'] = df['stationID'] * 1000 + df 

['ten_minutes_in_day'] - 1 
df_d['tmp_hours_bf'] = df['stationID'] * 1000 + df['hours_in_day']- 1 
# sum statistic 
dic_innums = df_d.groupby(['tmp_10_minutes_bf'])['inNums'].sum 

().to_dict() 
dic_outnums = df_d.groupby(['tmp_10_minutes_bf'])['outNums'].sum 

().to_dict() 
df_feature_y['_bf1_' + str(day-d) + '_innum_10minutes'] = 

df_feature_y['tmp_10_minutes'].agg(lambda x: 
time_before_trans(x,dic_innums)).values 

df_feature_y['_bf1_' + str(day-d) + '_outnum_10minutes'] = 
df_feature_y['tmp_10_minutes'].agg(lambda x: 
time_before_trans(x,dic_outnums)).values 

# feature 4: traffic of entering and exiting stations in the first hour 
dic_innums = df_d.groupby(['tmp_hours_bf'])['inNums'].sum(). 

to_dict() 
dic_outnums = df_d.groupby(['tmp_hours_bf'])['outNums'].sum(). 

to_dict() 
df_feature_y['_bf1_' + str(day-d) + '_innum_hour'] = 

df_feature_y['tmp_hours'].map(dic_innums).values 
df_feature_y['_bf1_' + str(day-d) + '_outnum_hour'] = 

df_feature_y['tmp_hours'].map(dic_outnums).values 

for col in ['tmp_10_minutes','tmp_hours']: 
del df_feature_y[col] 
return df_feature_y
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Please observe the code carefully. When the characteristics of a certain day in 
history is constructed, it already contains periodically related features, such as the 
traffic entering and leaving the station at the corresponding time in the previous few 
weeks, and the statistical characteristics of the granularity of 10 min/1 h at the 
corresponding time in the previous few weeks. 

Now please consider a problem. Section 10.1.5 does not deal with the problem of 
distribution differences caused by periodicity, which will have a great impact on the 
construction of features. The data of two adjacent days are correlated and affected by 
weekdays and weekends, so many noise features will be extracted. Confronted with 
this problem, we have a variety of ideas for modeling, such as removing weekend 
data to ensure consistency, retaining weekend data to enhance feature-related 
descriptions, and also considering a variety of modeling results.
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Extended Thinking 
As long as the data exists, it is reasonable. No modeling method is necessarily 
good. We are more about balancing the impact of the data on the modeling 
results. Although there are differences in data distribution, it is just because of 
the relationship between features. The new date will bring new feature com-
binations and lead to new modeling results. 

10.3.3 Trend Features 

Finding out trend is also the key for us to extract features. The definition of trend 
features we mainly construct is as follows: 

A diff nþ 1ð Þ=A nþ 1ð Þ-A nð Þ, A= in or out 

That is the difference between the data before and after the period. The data here can 
be either flow of entering the station or that of exiting the station. Similarly, we have 
taken into account the present period corresponding to each day, the corresponding 
prior period, etc. Of course, we can also consider the ratio, which is defined as 
follows: 

A ratio nþ 1ð Þ=A nþ 1ð Þ=A nð Þ, A= in or out 

This type of features is also very useful in actual competitions. These features are 
mainly used to assist the model to learn the change of trends. Generally speaking, the 
first-order trend feature and the second-order trend feature are constructed, wherein 
the first-order trend feature is the difference or ratio of data for adjacent time units, 
reflecting the changing trend; the second-order trend feature is the difference for the 
first-order trend feature, reflecting the speed of trend changing. 

10.3.4 Station-Related Features 

Since the objective is to predict the traffic flow of a subway station (stationID), more 
information from the station itself can be collected. What is mainly gathered is the 
heat of different stations and that of the combination of stations with other features. 
This type of feature is mainly used to describe entity information and is indispens-
able in real competitions. The following is the specific implementation code for 
constructing station-related features, mainly constructing frequency features (count) 
and category number features (nunique):



def get_stationID_fea(df): 
df_station = pd.DataFrame() 
df_station['stationID'] = df['stationID'].unique() 
df_station = df_station.sort_values('stationID') 
# related to nunique 
tmp1 = df.groupby(['stationID'])['deviceID'].nunique(). 

to_frame('stationID_deviceID_nunique').reset_index() 
tmp2 = df.groupby(['stationID'])['userID'].nunique(). 

to_frame('stationID_userID_nunique').reset_index() 

df_station = df_station.merge(tmp1,on ='stationID', how='left') 
df_station = df_station.merge(tmp2,on ='stationID', how='left') 

# combine with stationID; get the feature of count 
for pivot_cols in tqdm_notebook(['payType','hour', 
'days_relative','ten_minutes_in_day']): 
tmp = df.groupby(['stationID',pivot_cols])['deviceID'].count(). 
to_frame('stationID_'+pivot_cols+'_cnt').reset_index() 
df_tmp = tmp.pivot(index = 'stationID', columns=pivot_cols, 
values='stationID_'+pivot_cols+'_cnt') 
cols = ['stationID_'+pivot_cols+'_cnt' + str(col) for col in df_tmp. 

columns] 
df_tmp.columns = cols 
df_tmp.reset_index(inplace = True) 
df_station = df_station.merge(df_tmp, on ='stationID', how='left') 
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return df_station 

10.3.5 Feature Enhancement 

It is a very important job to strengthen the constructed features. For example, in the 
2019 Tencent Advertising Algorithm Competition, the new statistical features were 
required to be further expanded. Imagine if you treat the newly constructed feature as 
an unreal value and then cross it with the real value, then theoretically you can get a 
value close to the real value. This is just a direction. We can also perform cross-
combination or aggregate statistics on the newly constructed features to get a more 
profound feature description. 

The following will be specific feature enhancement. On the basis of correlation 
features, windows of different sizes are selected for summation and mean statistics, 
and differential features are extracted from window statistical features to obtain 
trend-related features: 

columns = ['_innum_10minutes','_outnum_10minutes','_innum_hour','_ 
outnum_hour'] 
# compute the sum and mean for the flow in the past n days 
for i in range(2,left): 

for f in columns: 
colname1 = '_bf_'+str(i)+'_'+'days'+f+'_sum' 
df_feature_y[colname1] = 0



for d in range(1,i+1): 
df_feature_y[colname1] = df_feature_y[colname1] + 

df_feature_y['_bf_'+ 
str(d) +f] 

colname2 = '_bf_'+str(d)+'_'+'days'+f+'_mean' 
df_feature_y[colname2] = df_feature_y[colname1] / i 

# differential features for the mean value of flow in the past n days 
for i in range(2,left): 

for f in columns: 
colname1 = '_bf_'+str(d)+'_'+'days'+f+'_mean' 

colname2 = '_bf_'+str(d)+'_'+'days'+f+'_mean_diff' 
df_feature_y[colname2] = df_feature_y[colname1].diff(1) 
# process the first hour in the first day 
df_feature_y.loc[(df_feature_y.hours_in_day==0)& 
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(df_feature_y.ten_minutes_in_day==0), colname2] = 0 

10.4 Model Training 

This section will be the optimize solutions from handling the models. As a time 
series forecasting problem, there are still quite a lot of models to choose from, such 
as traditional time series models, tree models, and deep learning models. Parameter 
adjustment is also part of model selection. This section will optimize the parameters 
of the LightGBM model in order to further improve the score. 

10.4.1 LightGBM 

The LightGBM model same as the baseline scheme is used here to facilitate 
comparison of effects. The main differences before and after optimization lie in 
multi-angle feature extraction and adjustment of individual parameters of the model 
(learning_rate and feature_fraction). 

Compared with the mean absolute error scores corresponding to entering and exiting 
stations in the baseline scheme, which are 19.6167 and 19.0041 respectively, the 
present mean absolute error scores for entering and leaving stations in the optimized 
scheme are 12.6477 and 13.1619 respectively, both having been greatly improved. 
There are three main reasons, namely, data preprocessing, feature extraction, and model 
parameter adjustment. If, in terms of importance, feature extraction has the greatest 
impact on the results, model parameter adjustment is only the icing on the cake. 

10.4.1.1 Feature Importance Feedback 

We know that the tree model can feed the importance score of features back, so let’s 
take a look at the importance score of the LightGBM model. Execute the following 
code to visually display the importance score of features:



import matplotlib.pyplot as plt 
import seaborn as sns 
import warnings 
warnings.simplefilter(action='ignore', category=FutureWarning) 

feature_imp = pd.DataFrame(sorted(zip(model.feature_importances_, 
cols)), 

columns=['Value','Feature']) 

plt.figure(figsize=(20, 10)) 
sns.barplot(x="Value", y="Feature", data=feature_imp.sort_values 

(by="Value", 
ascending=False)[:20]) 

plt.title('LightGBM Features Importance') 
plt.tight_layout() 
plt.show() 
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Fig. 10.12 LightGBM feature importance score 

The resulting results are shown in Fig. 10.12, sorted from high to low in 
importance. 

10.4.1.2 Feature Selection Based on Importance Score 

In addition to measuring the importance of features, the feature importance score can 
also be used for feature selection, and features with high importance scores can be 
retained. Next, compare the effects of this type of feature selection method. Here, the 
features with importance of top100 are extracted, and then the model is retrained to 
compare the mean absolute error score of traffic entering and leaving stations:



new_cols = feature_imp.sort_values(by="Value", 
ascending=False)[:100]['Feature'].values.tolist() 
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After experimental feedback, the mean absolute error scores of the scheme after 
feature selection are 12.6248 and 13.1509. Compared with the previous ones, there 
is not much improvement, but the number of features has been reduced from 262 to 
100, eliminating a large number of redundant features, and the overall performance 
has been greatly improved. 

10.4.2 Time Series Model 

In time series problems, it is a perfect choice to use time series models such as 
recurrent neural networks, LSTM, and GRU. Such models can automatically extract 
information related to time series and reduce the time-consuming work of manually 
constructing a large number of time series features. 

Here we choose to use the LSTM model and then go through multiple layers of 
fully connected layers. In order to make the model more generalized, Batch Nor-
malization and Dropout are also added. Generally, these two parts will be added 
while performing modeling related to deep learning, to make the model more robust. 
For Batch Normalization, we can use normalization to pull the more and more 
skewed distribution back to the normalized distribution, making the gradient larger, 
thereby accelerating the convergence speed of model learning and avoiding the 
problem of gradient disappearing. The modeling code is as follows: 

from keras.models import Sequential 
from keras.layers.core import Dense, Dropout, Activation 
from keras.layers.normalization import BatchNormalization 
from keras.layers import LSTM 
from keras import callbacks 
from keras import optimizers 
from keras.callbacks import ModelCheckpoint, EarlyStopping, 

ReduceLROnPlateau 

def build_model(): 
model = Sequential() 
model.add(LSTM(512, input_shape=(X_train.shape[1],X_train. 

shape[2]))) 
model.add(BatchNormalization()) 
model.add(Dropout(0.2)) 

model.add(Dense(256)) 
model.add(Activation(activation="relu")) 
model.add(BatchNormalization()) 
model.add(Dropout(0.2)) 

model.add(Dense(64)) 
model.add(Activation(activation="relu"))



model.add(BatchNormalization()) 
model.add(Dropout(0.2)) 
model.add(Dense(16)) 
model.add(Activation(activation="relu")) 
model.add(BatchNormalization()) 
model.add(Dropout(0.2)) 
model.add(Dense(1)) 
return model 
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The above code is also very versatile and can show good results in general time 
series forecasting problems. Next, let’s look at how to compile and train the model. 
Here, early stopping can also be performed like in a tree model: 

# the compiling section 
model = build_model() 
model.compile(loss='mae', optimizer=optimizers.Adam(lr=0.001), 

metrics=['mae']) 
# callback function 
reduce_lr = ReduceLROnPlateau( 

monitor='val_loss', factor=0.5, patience=3, min_lr=0.0001, 
verbose=1) 

earlystopping = EarlyStopping( 
monitor='val_loss', min_delta=0.0001, patience=5, verbose=1, 

mode='min') 
callbacks = [reduce_lr, earlystopping] 
# the training section 
model.fit(X_train, y_train_inNums, batch_size = 256, epochs = 200, 

verbose=1, 
validation_data=(X_valid,y_valid_inNums), callbacks=callbacks ) 

The above simple and clear code can result in a good score. As shown in 
Fig. 10.13, the mean absolute error score of offline traffic flow of entering is 
13.2967. There are also many areas that can be optimized here, such as adjusting 
the network structure and parameters. Let’s simply adjust a parameter. Note that in 
the training section, there is a particularly important parameter—shuffle, which is 
used to set whether to break up the data before each round (epoch) of iteration. False

Fig. 10.13 Demonstration of the training process of the LSTM model



is the default. If it is set to True, the mean absolute error score of offline traffic flow 
of entering can reach 12.9747.
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10.5 Reinforcement Learning 

Endless learning should be reflected in this book. Simply solving problems is not the 
ultimate goal. The primary objective of this book is to be able to consider different 
solutions for optimization, learn different problem-solving ideas, and be able to 
“draw inferences from one instance” in different competition questions. 

10.5.1 Sequential Stacking 

Although this kind of modeling method is rarely used in time series prediction 
problems, its power is very obvious, and the rationality of the modeling method is 
indispensable. Specifically, because there are some unknown singular values in 
historical data. For example, some large-scale activities will cause a sudden increase 
in traffic at certain sites at certain times, and the impact of these data is very 
significant. Another example is that there are differences between the distribution 
of data far from the current time and the current data. 

In order to reduce the impact of singular value data, we use sequential stacking to 
solve the problem. If there is a big gap between the predicted results of the model and 
the real results, then such data is abnormal. Next, let’s learn the modeling ideas of 
sequential stacking and discover its value. First, the structure of the scheme is given, 
as shown in Fig. 10.14. Through the following operations, what is offline and online 
can both be steadily improved. 

Figure 10.14 is the part of timing stacking that constructs intermediate features. In 
order to ensure that the verification set does not have the problem of data crossing, 

Fig. 10.14 Constructing intermediate features in sequential stacking
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First use the data before January 28 for model training; then use the complete data 
for prediction to obtain intermediate features (temporal stacking features); finally 
splice the intermediate features with the rest of the features and select the data closer 
to the testing set as the training set (January 10 to January 28). The specific 
implementation code is as follows: 

# training set preparation 
y_inNums = df_data[df_data.day<28]['inNums'].values 
y_outNums = df_data['outNums'].values 
df_train = df_data[df_data.day<28][cols].values 
df_data = df_data[cols].values 
# model training 
params = {'num_leaves': 63,'objective': 'regression_l1','max_depth': 5, 

'feature_fraction': 0.9, 'learning_rate': 0.05,'boosting': 
'gbdt','metric': 

'mae','lambda_l1': 0.1} 
model = lgb.LGBMRegressor(**params, n_estimators = 1500, nthread = 4) 
model.fit(df_train, y_inNums) 
# intermediate features 
inNums_stacking = model.predict(df_data) 

This code is divided into two parts, namely, intermediate feature acquisition and 
merging intermediate features and training. 

Without adjusting any parameters, the average absolute mean of traffic entering 
and exiting stations after merging intermediate features can lead to a score of 
12.5814. The time interval of this question is not too large. I believe that with the 
expansion of the time interval of the data set, the final effect of the optimization 
strategy of sequential stacking will be better and better. 

Tips 
The process of constructing intermediate features here is a simplified version. 
You can also use K-fold cross-validation to obtain intermediate features, and 
then splice the remaining features to determine the final training set interval for 
final training. 

10.5.2 Top Scheme Analysis 

After all, the content that this chapter can introduce in detail is limited. I hope readers 
can learn more excellent ideas and programs in the future. This section will introduce 
more top programs to expand their ideas.
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10.5.2.1 Top 1 Scheme 

In addition to the traditional LightGBM model, the champion also used the NMF 
model, which is mainly used to take into account the relationship between passenger 
inflow and outflow volume at each station. Note that if the interval is 10 min, the 
passenger inflow matrix and passenger outflow matrix for the same period are 
different. However, if the interval is 1 day, the passenger inflow matrix and passen-
ger outflow matrix for the whole day are basically the same. Then the NMF model is 
transformed, and the two matrices W and H are obtained by non-negative matrix 
factorization. The hidden variables can be understood as the representations of the 
respective stations learned by the algorithm. At the same time, the matrices A and B 
of the learning trend are added, and the loss function is optimized to train the 
parameters of W, H, A, and B. 

The extracted features are mainly divided into three categories: conventional 
features, location determination features, and subway network features. Among 
them, location determination features are station location features obtained from 
subway passenger flow changes during working hours, rest hours, rush hours, and 
weekend leisure hours, such as whether a station belongs to a working area or a 
residential area, etc. The characteristics of the subway network mainly refer to some 
ideas in the SNA (social network analysis), and transform centrality, betweenness, 
closeness, etc., not only to measure the location and physical relationship between 
subway stations, but also to measure the flow of passengers between stations. Due to 
time constraints and not very familiar with Hangzhou Metro, there is no road_map 
station given by the organizer corresponding to the real Hangzhou Metro station. It is 
recommended to refer to the strategies of other teams, as well as the real stations of 
Hangzhou Metro to extract features or introduce peripheral POI data, relevant POI 
corresponding event data, etc., in order to improve the final accuracy of forecasting. 

10.5.2.2 Top 2 Scheme 

The runner-up team only used the LightGBM model in the aspect of model. 
However, considering the strong periodicity of the data in this topic, two models 
were constructed, namely the full data model and the model of previous 2 days data, 
and finally the results were integrated. I also designed a time series weighted 
regression model, introducing similarity calculations of different dates to determine 
the weight when weighting. The final result is weighted by the results of the 
LightGBM model and the time series weighting regression model. 

In terms of features, we have also made a more detailed attempt, mainly divided 
into original features, statistical features, and derived features. In the derived char-
acterizing portion, the time difference between the peak time of entering and leaving 
the station, the change trend of the flow of people in the first 2 days, and the fixed 
number of people entering and leaving the station within a fixed time range every 
day are obtained through the user ID (this feature can effectively exclude the 
influence of the fixed number of people on the model, so that the training model 
pays more attention to the number of random trips and reduces errors), and the rest of 
the features are conventional.
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10.5.3 Relevant Questions Recommendation 

There are still quite a lot of competition questions related to time series forecasting, 
and there are fixed methods, such as the pattern analysis of time series and the way to 
extract features from multiple angles, but often some different operations are brought 
about due to different businesses and data. Next, we will recommend a few classic 
competition questions. I believe that after in-depth comparison and learning of 
multiple competition questions, we can easily deal with such problems. 

10.5.3.1 2019 Tencent Advertising Algorithm Competition: Advertising 
Exposure Estimation 

The title of this algorithm competition originates from the real business product of 
Tencent’s advertising business for advertisers—advertisement exposure estimation. 
The purpose of advertisement exposure estimation is to provide advertisers with 
future reference to the advertisement exposure effect when advertisers create new 
advertisements and modify advertisement settings. Through this estimation refer-
ence, advertisers can avoid aimless attempts for optimization, effectively shorten the 
optimization cycle of advertisements, reduce trial and error costs, and make the 
advertisement effect reach their expected range as soon as possible. 

This competition provides n-day historical exposure data of ads (sampled on a 
specific traffic), including the traffic characteristics corresponding to each exposure 
(temporal and spatial information such as user features and advertising place), as 
well as the settings and competitiveness scores of exposure of advertisements; the 
testing set is a new batch of advertisement settings (some are brand-new advertise-
ment IDs, and some have modified the settings for old advertisement IDs), requiring 
an estimate of the daily exposure of this batch of advertisements. 

Basic ideas: There are still quite a lot of schemes for this question, and each type 
of scheme can get the previous ranking. Here are three kinds, namely, traditional tree 
model, deep learning model, and rule-based strategy. The feature aspect mainly 
focuses on time series correlation for prediction, and the extraction idea is mainly 
considered from two parts: historical information and overall information, and what 
is more detailed is the statistical features of the day before the present day, the latest 
5 days, five-fold cross-validation statistics, and all days except that day. In specific 
competitions, we will find a large number of new ad IDs in the testing set. New ads 
have no historical information, so how to construct the characteristics of new ads, 
and how to describe the history and integrity of new ads becomes the key to scoring. 

We do fuzzy feature construction here. Although we do not know the historical 
information of the new advertisement, we know the historical information of the old 
advertisement contained under the advertisement account ID. Therefore, by com-
bining the advertisement account ID with the advertisement winning rate of the old 
advertisement, we can construct the average and median of the advertisement 
winning rate under the advertisement account ID. In this way, we get the statistical



value of the advertisement winning rate of the new advertisement under the adver-
tisement account ID. 
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Fig. 10.15 Home page of web traffic time series forecasting competition 

10.5.3.2 Kaggle Competition: Web Traffic Time Series Forecasting 

This question (the home page of the question is shown in Fig. 10.15) belongs to the 
multi-step time series forecasting problem, and the time span is very large. This 
problem has always been one of the most challenging problems in the field of time 
series. Specifically, this question provides the daily traffic of approximately 145,000 
Wikipedia articles in the past year or so and requires the contestants to predict the 
traffic of these articles in the following 3 months. 

The competition is divided into two stages and will include predictions of actual 
future events. In the first stage, the rank list will be scored based on historical data; in 
the second stage, participants’ submissions will be scored based on real future 
events. 

The training set data consists of about 145,000 time series, including data from 
July 1, 2015 to December 31, 2016. Each of the time series represents the number of 
daily views of different Wikipedia articles. The first stage of the ranking is based on 
the traffic from January 1, 2017 to March 1, 2017. The second stage will use training 
data as of September 1, 2017. The final ranking of the competition will be predicted 
based on the daily article views of each article in the data set during the period from 
September 13, 2017 to October 13, 2017. 

Basic ideas: Simply using the rule-based method in this competition enables 
contestants to get a silver medal. Of course, the rule-based strategy should be 
considered very carefully (periodicity, trend, and similarity representation). For 
most time series forecasting problems, this method can play a certain role. Even if 
it is not the final scheme, it can also be used as one of the ideas for extracting 
features. The model scheme can be roughly divided into three categories: RNN 
seq2seq, convolutional neural networks, and median method prediction (turning the 
prediction target into forecasting the median).



Chapter 11 
Case Study: Corporación Favorita Grocery 
Sales Forecasting 

This chapter is based on a classic competition question—commodity sales 
forecasting—on the 2018 Kaggle competition platform, that is, the Corporación 
Favorita Grocery Sales Forecasting shown in Fig. 11.1. This is also the second actual 
practice for issues related to series analysis. Similarly, the content also mainly 
includes problem understanding, data exploration, feature engineering, and model 
training. As an international competition topic, there are many contents worth 
digging deeply. In addition to giving general ideas for solving problems, this chapter 
is more important to guide everyone to make different attempts, avoid fixed mindset, 
and finally sort out knowledge points and make further extension, which means to 
summarize competition questions. 

11.1 Understanding the Competition Question 

11.1.1 Background Introduction 

In brick-and-mortar grocery stores, the relationship between sales volume forecast-
ing and customer purchase volume is always subtle. If sales volume forecasts are 
higher and customers purchase less, then the grocery store will have an excessive 
backlog of goods, especially having a greater impact on perishable goods; if sales 
volume forecast is small and customers purchase more, then the goods will be sold 
out quickly and the customer experience will deteriorate in a short period of time. 

The problem becomes more complicated as retailers continue to add new loca-
tions and new products, and the variety of seasonal tastes and the unpredictability of 
product marketing keep increasing. Corporación Favorita, a large grocery retailer in 
Ecuador, also knows this very well. It operates hundreds of supermarkets and sells 
more than 200,000 kinds of goods. 

So Corporación Favorita challenged the Kaggle community to build a model that 
could accurately predict the sales volume of goods. Corporación Favorita currently
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relies on subjective predictions to back up data and rarely executes plans through 
automated tools. They are very looking forward to providing enough correct goods 
at the right time through machine learning to better satisfy customers.
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Fig. 11.1 Home page of corporación favorita grocery sales forecasting 

11.1.2 Competition Data 

This competition requires predicting unit sales of thousands of items sold in different 
stores of the Ecuadorian retailer Corporación Favorita. The training data provided by 
the competition questions include date, store (store_nbr), item (item_nbr), whether 
an item participates in promotion (onpromotion, about 16% of the values in the file 
are missing) and unit sales (unit_sales); other documents include supplementary 
information, which may be useful for modeling. The competition questions contain 
more documents, and the following is a brief introduction to each document. Stores. 
csv: details of stores, such as location and type.

• items.csv: products information, such as category, whether the product is perish-
able, etc. Special attention should be paid to the fact that perishable products have 
a higher rating than other products.

• Transactions.csv: the transaction volume of each store on different dates (only 
dates within the time range of training data are included).

• Oil.csv: Daily oil price. This data is related to sales volume, because Ecuador is 
an oil-dependent country, and its economic health is extremely vulnerable to oil 
prices.

• Holidays_events.csv: data on holidays in Ecuador. Some of these holidays may 
be transferred to another day (from a weekend to a working day), similar to 
compensatory holidays. 

11.1.3 Evaluation Indicators 

The submitted content is evaluated according to the normalized weighted root mean 
square logarithmic error (NWRMSLE), and the calculation method is as formula 
(11.1):



Þ
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NWRMSLE ¼ 
n 
i¼1wi ln ŷi þ 1ð Þ- ln yi þ 1ð Þð 2 

n 
i¼1wi 

ð11:1Þ 

For the line i of the testing set, ŷi is the predicted unit sales volume of the goods, yi is 
the real unit sales volume, and n is the total number of lines of the testing set, and the 
weight wi can be found in the file items.csv. The weight of perishable goods is 1.25, 
and the weight of other items is 1.00. 

This regression evaluation index is different from the common mean absolute 
error (MAE) and mean square error (MSE). Eq. (11.1) converts the sales volume and 
gives different weights to different commodities. Finally, the square root of the result 
is calculated. 

11.1.4 Competition FAQ 

I 

How can the phenomenon of data crossing in time series forecasting be 
prevented? 

n time-related modeling problems, the most important thing to pay attention to is 
data crossing. There are many times when we will add future information as a feature 
in the modeling process if we pay little attention, which will lead to serious 
overfitting, making the difference between online and offline scores become larger, 
and often there will be inconsistent online and offline evaluation results. Here are 
two most typical crossing cases: 

1. Suppose we need to predict whether the user watched a video, the testing set 
needs to predict the probability of the user watching video B at 10:10 on April 
16, but through the data in the training set, it is found that the user was watching 
video A at 10:09 on April 16, and also watching video A at 10:11. Then it is 
obvious that at 10:10, there was a high probability that the user did not watch 
video B. Through future information, it is easy to judge that at 10:10 on April 
16, the user did not watch video B. 

2. Assuming that we need to predict the amount of money the user spent on a bank 
card on August 17, but the training set has given the user’s bank card balance on 
August 16 and August 18, then we can easily know what the user spent on August 
17. The above two examples are obvious data traversal situations. At this time, we 
should filter out future data information and train the model with only 
historical data. 

I 

How can the noise problem in the training set and testing set be solved or 
anticipated? 

n the training set of time series problems, there will be noise more or less, which 
will have a great impact on modeling. Here we divide the noise into three categories:
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random noise, local obvious noise/local singular value, and noise caused by long 
time. The noise in the testing set is similar to that in the training set. The testing set 
data for this question covers a relatively large time range of more than 10 days, and 
includes some special times, such as the end of the month (the payday), which may 
cause certain difficulties in prediction. 

How do you understand the variable onpromotion and what impact might 
it have? 

We have found a strange variable onpromotion in this question. First, this is a 
crossing variable because it contains future promotion information; second, this 
variable has 16% missing data, and all rows where unit_sales is 0 in the training 
set are omitted. That is to say, a large part of onpromotion information is also lost, 
but as long as onpromotion information appears, our model will think that unit_sales 
is not 0 under many circumstances, so the model will be biased. 

11.1.5 Baseline Scheme 

With the above understanding, you can start the basic modeling. The baseline 
scheme does not need to be too complicated and can give a correct result. In fact, 
you can also think of this process as building a simple framework first, and then 
filling and optimizing it. 

11.1.5.1 Data Reading 

The relevant code for reading the data set is as follows: 

import pandas as pd 
import numpy as np 
from sklearn.metrics import mean_squared_error 
from sklearn.preprocessing import LabelEncoder 
import lightgbm as lgb 
from datetime import date, timedelta 

path = './input/' 
df_train = pd.read_csv(path+'train.csv', 

converters={'unit_sales':lambda u: np.log1p(float(u)) if float(u) > 
0 else 0}, 

parse_dates=["date"]) 
df_test = pd.read_csv(path + "test.csv",parse_dates=["date"]) 
items = pd.read_csv(path+'items.csv') 
stores = pd.read_csv(path+'stores.csv') 
# type conversion 
df_train['onpromotion'] = df_train['onpromotion'].astype(bool) 
df_test['onpromotion'] = df_test['onpromotion'].astype(bool)
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In the above code, first log1p () preprocessing is performed on the unit_sales. The 
advantage of this is that data with large skewness can be converted and compressed 
into a smaller interval, and finally log1p () preprocessing can play a role in smooth-
ing the data. In addition, the same processing is performed on the unit_sales in the 
evaluation index part, and this part of the operation is also preprocessing. 

Another operation is to process the date, converting the time string in the table file 
into a date format. Early processing not only facilitates subsequent operations, but 
also reduces the amount of code. 

11.1.5.2 Data Preparation 

The data set contains data from 2013 to 2017. The time span is very large, and there 
will be a lot of uncertainty in the 4 year development process. When using too long-
term data to predict the future, there will be a certain amount of noise and there will 
be differences in distribution, which can also be found in Sect. 11.2. In addition, due 
to performance considerations, only data for 2017 will be used as the training set. 
Execute the following code to filter the data before 2017: 

df_2017 = df_train.loc[df_train.date> = pd.datetime(2017,1,1)] 
del df_train. 

Next, the basic data format conversion is carried out, and finally the store, goods 
and time are used as indexes to construct a data table of whether the promotion is 
promoted or not, so as to carry out statistics related to promotion or not. This 
construction method is conducive to feature extraction afterwards. The relevant 
codes are as follows: 

promo_2017_train = df_2017.set_index(["store_nbr", "item_nbr", 
"date"])[["onpromotion"]].unstack(level=-1).fillna(False) 

promo_2017_train.columns = promo_2017_train.columns. 
get_level_values(1) 

promo_2017_test = df_test.set_index(["store_nbr", "item_nbr", 
"date"])[["onpromotion"]].unstack(level=-1).fillna(False) 

promo_2017_test.columns = promo_2017_test.columns. 
get_level_values(1) 

promo_2017 = pd.concat([promo_2017_train, promo_2017_test], axis=1) 
df_2017 = df_2017.set_index(["store_nbr", "item_nbr", 
"date"])[["unit_sales"]].unstack(level=-1).fillna(0) 

df_2017.columns = df_2017.columns.get_level_values(1) 

11.1.5.3 Feature Extraction 

The historical translation feature and the window statistical feature are the core 
features of the time series forecasting problem. Here, only the historical translation 
feature (one unit) and the window statistical feature of different window sizes are
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extracting features: 
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def get_date_range(df, dt, forward_steps, periods, freq='D'): 
return df[pd.date_range(start=dt-timedelta 

(days=forward_steps), periods=periods, 
freq=freq)] 

The following feature extraction is mainly carried out around the get_date_range 
function just implemented, which is very general. Its entry parameters df, dt, 
forward_steps, periods, and freq are the data source method, start time, historical 
span, period, and frequency extracted by the window respectively. The specific code 
for feature extraction is as follows: 

def prepare_dataset(t2017, is_train=True): 
X = pd.DataFrame({ 

# the historical translation feature; the sales of the day 1, day 2, and day 3 
"day_1_hist": get_date_range(df_2017, t2017, 1, 1).values.ravel(), 
"day_2_hist": get_date_range(df_2017, t2017, 2, 1).values.ravel(), 
"day_3_hist": get_date_range(df_2017, t2017, 3, 1).values.ravel(), 
}) 

for i in [7, 14, 21, 30]: 
# the window statistical feature; sales diff/mean/meidan/max/min/std 
X['diff_{}_day_mean'.format(i)] = get_date_range(df_2017, t2017, i, 

i).diff(axis=1).mean(axis=1).values 
X['mean_{}_day'.format(i)] = get_date_range(df_2017, t2017, i, 

i).mean(axis=1).values 
X['median_{}_day'.format(i)] = get_date_range(df_2017, t2017, i, 

i).mean(axis=1).values 
X['max_{}_day'.format(i)] = get_date_range(df_2017, t2017, i, 

i).max(axis=1).values 
X['min_{}_day'.format(i)] = get_date_range(df_2017, t2017, i, 

i).min(axis=1).values 
X['std_{}_day'.format(i)] = get_date_range(df_2017, t2017, i, 

i).min(axis=1).values 

for i in range(7): 
# average weekly sales for the first 4 weeks and first 10 weeks 
X['mean_4_dow{}_2017'.format(i)] = get_date_range(df_2017, t2017, 
28-i, 4, 

freq='7D').mean(axis=1).values 
X['mean_10_dow{}_2017'.format(i)] = get_date_range(df_2017, t2017, 
70-i, 10, 

freq='7D').mean(axis=1).values 

for i in range(16): 
# whether the following 16 days are with promotion activities 
X["promo_{}".format(i)] = promo_2017[str(t2017 + 

timedelta(days=i))].values.astype(np.uint8) 
if is_train: 

y = df_2017[pd.date_range(t2017, periods=16)].values 
return X, y 

return X
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As can be seen from the above code, the baseline scheme only extracted historical 
translation, window statistics, statistical features of the first N weeks, whether the 
next 16 days are promotional days and type features, etc. The overall structure is 
very simple. 

Among them, special attention should be paid to the statistical characteristics of 
the first N weeks, especially the parameter part of the get_date_range function where 
freq = ‘7D’ indicates that the extraction interval (frequency) is 7 days, the periods 
4 indicates that the extraction is done in 4 cycles, and 28-i (the value of i is 0, 1, 2, 3, 
4, 5, 6) is the historical span. When i takes 1, it represents the calculation 4 day 
average sales for dates 2017-06-08, 2017-06-15, 2017-06-22, and 2017-06-29. 

Next, determine the interval for extracting features, and introduce how the 
training set, verification set, and testing set extract features respectively: 

X_l, y_l = [], [] 
t2017 = date(2017, 7, 5) 
n_range = 14 
for i in tqdm(range(n_range)): 
delta = timedelta(days=7 *  i)  
X_tmp, y_tmp = prepare_dataset(t2017 - delta) 
X_l.append(X_tmp) 
y_l.append(y_tmp) 

X_train = pd.concat(X_l, axis=0) 
y_train = np.concatenate(y_l, axis=0) 
del X_l, y_l 

# The training set takes the data from July 26th to August 10th 

X_val, y_val = prepare_dataset(date(2017, 7, 26)) 
# The data of the testing set is taken from August 16th to August 31st 

X_test = prepare_dataset(date(2017, 8, 16), is_train=False) 

When dealing with the problems of time series forecasting, how to choose the 
verification set is very important. The testing set contains the data from August 16 to 
August 31, 2017, and the starting time is Wednesday. Because the verification set 
must not only be close to the testing set in time, but also conform to the periodic 
distribution, it is most appropriate to choose the data from July 26 to August 
10, 2017 as the verification set; that is, the starting time is Wednesday and the 
ending time is Thursday. In addition, considering the stability of the verification set, 
multiple rounds of rolling verification can be carried out, i.e. one verification set can 
be selected 1 week or several weeks apart, such as the data from July 19 to August 3. 

Another question worth considering is why you choose to use 7 days as a cycle to 
construct training data and extract features. Will this waste a lot of data? In order to 
clarify the rationality of using 7 days as a cycle, you can choose different cycles for 
experimental comparison. For example, changing the cycle to 1 day is to extract 
7 × 16 days of data. It will be found that this not only greatly increases the training 
time of the model, but also the score is not as good as before. To solve this problem, a 
reasonable explanation is that taking 7 days as a cycle can well ensure the periodicity
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of the data set, and the data set has the same distribution as the verification set and the 
testing set. 

11.1.5.4 Model Training 

Here, LightGBM is used as the base model to predict the unit sales volume of goods 
in the next 16 days. There are many modeling methods for the multi-step prediction 
in problems related to time series forecasting: first, based on single-step prediction, 
the predicted value is added to the training set as the real value to predict the next 
unit, but this will lead to error accumulation. If there is a large error at the beginning, 
the effect will become worse and worse; second, directly predict the results of all 
testing sets, that is, as a multiple-output regression problem, so that although the 
problem of error accumulation can be avoided, it will increase the difficulty of model 
learning, because the model needs to learn a many-to-many system, which will raise 
the difficulty of training. We temporarily choose the first modeling method to build a 
baseline scheme: 

params = { 
'num_leaves': 2**5 - 1, 
'objective': 'regression_l2', 
'max_depth': 8, 
'min_data_in_leaf': 50, 
'learning_rate': 0.05, 
'feature_fraction': 0.75, 
'bagging_fraction': 0.75, 
'bagging_freq': 1, 
'metric': 'l2', 
'num_threads': 4 
} 
MAX_ROUNDS = 500 
val_pred = [] 
test_pred = [] 

for i in range(16): 
print("====== Step %d ======" % (i+1)) 
dtrain = lgb.Dataset(X_train, label=y_train[:, i]) 
dval = lgb.Dataset(X_val, label=y_val[:, i], reference=dtrain) 
bst = lgb.train( 

params, dtrain, num_boost_round=MAX_ROUNDS, 
valid_sets=[dtrain, dval], verbose_eval=100) 

val_pred.append(bst.predict(X_val, num_iteration=bst. 
best_iteration or MAX_ROUNDS)) 
test_pred.append(bst.predict(X_test, num_iteration=bst. 
best_iteration or MAX_ROUNDS)) 

Until now, the basic baseline scheme has been set up. In terms of feature 
extraction and model training, there is no consideration of too complicated opera-
tions. The final score is 0.51837 (721/1624) for the public score and 0.52798
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(695/1624) for the private score. In real business scenarios, such a scheme can 
already achieve good prediction results, and the rest of the work is continuous data 
analytics, feature extraction, and model tuning. 

11.2 Data Exploration 

11.2.1 Preliminary Research on Data 

There are still a lot of data tables in this competition. This section mainly takes you to 
understand the structure and basic situation of each table one by one. Analyzing the 
basic table is the initial work of the whole data analytics, which helps to clarify the 
relationship between tables and tables. 

11.2.1.1 Data Sheet Train 

The following code will show the basic information of the training set, including the 
number of attributes (nunique) of each feature, the proportion of missing values, the 
proportion of maximum attributes, and the feature type. 

stats = [] 
for col in train.columns: 

stats.append((col, train[col].nunique(), 
round(train[col].isnull().sum() * 100 / train.shape[0], 3), 
round(train[col].value_counts(normalize=True, dropna=False). 
values[0] * 100,3), train[col].dtype)) 

stats_df = pd.DataFrame(stats, columns=['features ', 'the number of attributes 
', 'the proportion of missing values ', 'the proportion of maximum attributes ', 'feature type 
']) 
stats_df.sort_values('the proportion of missing values ', ascending=False) 
[:10] 

As shown in Fig. 11.2, you can have a general understanding of the basic 
information in the train.csv. The number of attributes refers to the number of 
categories included in the feature, and the maximum proportion of attributes refers 
to the proportion of the most frequently occurring attributes to the total data volume. 
In addition, the size of the train.csv file is larger than 5.6 GB, which contains 
115,497,040 pieces of data. 

11.2.1.2 Test.csv 

As shown in Fig. 11.3, there are no missing values in the test.csv, which is larger 
than 106.1 MB and contains 3,370,464 pieces of data.



230 11 Case Study: Corporación Favorita Grocery Sales Forecasting

Features Attributes No. Proportion of 
Missing Values 

Proportion of 
Maximum Attributes 

Feature Types 

onpromotion 2 17.257 76.519 object 

id 125497040 0.000 0.000 int64 

date 1684 0.000 0.094 object 

store_nbr 54 0.000 2.799 int64 

item_nbr 4036 0.000 0.067 int64 

unit_sales 258474 0.000 18.682 float64 

Fig. 11.2 Basic Information in train.csv 

Fig. 11.3 Basic Information in test.csv 

Fig. 11.4 Basic Information in transactions.csv 

11.2.1.3 Transactions.csv 

As shown in Fig. 11.4, there are no missing values in the transactions.csv, which is 
larger than 1.9 MB and contains 83,488 pieces of data.
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11.2.1.4 Items.csv 

As shown in Fig. 11.5, there are no missing values in the items.csv, which is larger 
than 118.2 KB and contains 4100 pieces of data. 

11.2.1.5 Stores.csv 

As shown in Fig. 11.6, there are no missing values in the stores.csv, which is larger 
than 2.2 KB and contains 54 pieces of data. 

11.2.1.6 Oil.csv 

The information in this data sheet is daily oil prices, including data from January 
1, 2013 to August 31, 2017. 

Fig. 11.5 Basic Information in items.csv 

Fig. 11.6 Basic Information in stores.csv
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11.2.1.7 holidays_events.csv 

The information in this data sheet is vacation data for Ecuador, which contains 
350 records. As shown in Fig. 11.7, where locale indicates the region involved in the 
vacation, description indicates the description related to the vacation, and transferred 
indicates whether the vacation is transferred. 

11.2.2 Univariate Analysis 

11.2.2.1 Train.csv:Date 

Figure 11.8 shows the daily sales volume, which is divided into three parts: total unit 
sales), promotional sales (On Promotion), non-promotional sales volume (Not On 
Promotion). It can be seen that the total unit sales volume has increased significantly 
every year, which may be because the company is growing. In addition, it can be 
found that there are basically daily sales records for promotion and non-promotion, 
and some records are empty, approximately before the second quarter of 2014. 

There are also some data that show cliff-like decline or significant growth, which 
may be affected by other special factors, such as oil prices, holidays, or natural 
disasters, etc. These factors should also be considered in specific structural 
characteristics. 

11.2.2.2 Train.csv:store_nbr 

Next, analyze the store_nbr (store number) in the training set file. As shown in 
Fig. 11.9, the store number with the highest transaction frequency is 44, which is 

Fig. 11.7 Basic Information in holidays_events.csv
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Fig. 11.8 Change of sales volume of different dates 

Fig. 11.9 Transaction frequency of stores in the training set 

close to 3.5 million, and the store number 52 has the lowest transaction frequency. 
These may be caused by store type, business location, business hours, or promotion 
intensity. 

11.2.2.3 Train.csv:item_nbr 

Figure 11.10 shows the distribution of transaction frequency of different commod-
ities through line graphs. It can be found that the number of transactions of 
commodities varies greatly, with the maximum number of transactions being more 
than 80,000 and the minimum number being only a few. In fact, this is also in line 
with intuition. For example, the sales volume of fast-moving consumer goods is
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Fig. 11.10 Trading frequency of commodities in training set 

Fig. 11.11 Distribution of perishable or non-perishable commodities 

generally better, while the sales volume of less commonly used and expensive 
commodities will be much worse. 

11.2.2.4 Items.csv:Perishable 

Now look at the balance between Perishable and Non-perishable goods, as shown in 
Fig. 11.11. At present, we only have a simple understanding of the single variable, 
and then we will analyze the distribution of perishable goods in different households 
or different stores.
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11.2.2.5 Oil.csv: Dcoilwtico 

This is a very interesting data set, which contains daily oil prices. Since Ecuador is an 
oil-dependent country, we can try to understand the relationship between commodity 
sales and oil prices. The knowledge contained here is largely related to economics. 

Figure 11.12 shows the changes in oil prices from 2013 to 2017. In addition to the 
lack of records of oil price on a few dates, the overall oil price has changed 
significantly in several stages, such as the trough in early 2015, the trough in early 
2016, the oil price from 2013 to the first half of 2014 being between 80 and 
100 yuan, and the oil price from the beginning of 2015 to the second half of 2017 
being mostly within 50 yuan. In addition, it can be clearly seen that the oil price 
changes in 2017 are basically stable, so consider selecting only the data of 2017 as 
training sets int the phase of modeling. 

11.2.2.6 Stores.csv:State 

Figure 11.13 shows the distribution of the number of stores in each state through a 
vertical graph, including a total of 16 states. Among them, Guayas and Pichincha 
have the most stores—Pichincha has 19 stores (the largest number), Guayas has 
11 stores, and other states have no more than 3 stores. 

11.2.2.7 Stores.csv:City 

Feature city is also a very important. It has its own unique entity information. As 
shown in Fig. 11.14, the stores.csv file contains a total of 22 different cities, of which 
Guayaquil and Quito have more stores. As can be seen from the graph, the number of 
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Fig. 11.13 Distribution of the number of stores in each state 

Fig. 11.14 Distribution of the number of stores in each city 

stores (store count) in different cities is quite different, probably due to the different 
levels of economic development in different regions. 

11.2.3 Multivariate Analysis 

This section mainly analyzes the relationship between variables and variables, and 
that between variables and labels. On the one hand, it explores the distribution 
relationship between variables; on the other hand, it explores whether variables
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and labels are distinguishable, or whether there is some characteristics different from 
what we get through our intuition. 

11.2.3.1 Variables and Variables 

First analyze the holidays_events.csv file. Figure 11.15 shows the regional distribu-
tion of different holiday types. It is illustrated that the Holiday type occurs most 
frequently, and most Holidays occur in Local. Most of the other holiday types occur 
in National. 

11.2.3.2 Variables and Labels (the Label of this Competition Question is 
Sales Volume) 

Let’s first look at the relationship between store (stroe_nbr) and sales volume. As can 
be seen from Fig. 11.16, the total sales volume corresponding to different stores is 
different. For example, the sales volume of Store 44 and Store 45 is very high, while 
the sales volume of Store 22 and Store 52 is very low. Referring to Fig. 11.9, it can 
be found that the sales volume of most stores with high transaction frequency is also 
relatively high. Of course, it may also be affected by the price of the product itself, 
promotional activities, and economic factors. 

Since there are too many categories of commodities (item_nbr), the relationship 
between commodities and sales volume is shown in the box chart here, as shown in 
Fig. 11.17. The figure ignores specific commodities and only considers the distribu-
tion of commodity sales volume after aggregation. The sales volume of different 

Additional 

Holiday EventType 

Bridge Work Day EventHoliday 
0 

20 

40 

60 

80 

locale 
Local 
Regional 
National 

C
ou

nt
 o

f H
ol

id
ay

 E
ve

nt
s 

100 

120 

140 

Transfer 

Fig. 11.15 Regional distribution of different holiday types



238 11 Case Study: Corporación Favorita Grocery Sales Forecasting

Fig. 11.16 Distribution of sum of sales volume corresponding to different stores 

Fig. 11.17 Distribution of sales volume for different commodities 

commodities varies greatly, with more than 80% below 1,000,000 and only a small 
portion above 1,000,000. 

An important parameter in the evaluation index affects the importance of the 
product in the scoring stage, that is, whether it is perishable (perishable). The weight 
of perishable products is 1.25, and the weight of other items is 1.00. Next, let’s see 
how the sales volume of the two types of products will vary over time. 

From Fig. 11.18, it can be concluded that the sales volume of non-perishable 
goods is higher, and perishable goods have better stability and lower jitter. The 
overall growth or decline trends of the two are basically the same. However, 
perishable goods have higher weights, so a single perishable commodity has a 
greater impact on the score than a single non-perishable commodity in the evaluation
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Fig. 11.18 Distribution of sales for perishable and non-perishable commodities 

stage. You can consider adding perishable features or adding sample weights in the 
model training stage. 

Extended Learning 
This section of data analytics does not show the visual analysis of all variables, 
combinations of variables and variables, and combinations of variables and 
labels. However, in general, we can find that many of the analyses are still in 
line with our prior judgment, and there is also some information that can only 
be learned after performing visual analysis. For the time series forecasting 
problem, the most important thing is the change of the target over time, so in 
the extended learning section, I hope you will continue to explore the changes 
of different variables over time and analyze the change tendency of unit sales 
to see if there will be unexplained phenomena. 

11.3 Feature Engineering 

The content of this section is very important and is the key to getting high scores in 
this competition. It will start with the idea of feature extraction, and finally explain 
the feature enhancement method, which is clear and easy to optimize. In addition, it 
will also take readers to practice efficient feature selection methods to improve the 
performance of the overall training. 

Figure 11.19 is a visual display of the daily sales volume of goods with an 
item_nbr of 502,331, of which the part to be predicted is that after August 
15, 2017. From this line graph, we can also see the three core patterns of the time 
series prediction problem, namely periodicity, trend, and similarity. The cycle of



sales volume change is 1 week, which is still very obvious in the figure, so it is 
meaningful to extract more features related to multiples of seven, such as sales 
volume last week, sales volume last week, and average sales volume on the Nth day 
in the last 3 weeks. Of course, it is necessary to predict and consider changes in 
trends and similarities more accurately, periodically determine the approximate sales 
volume at this moment, adjust the increase or decrease of future sales volume 
through trends, and ensure the recent sales volume through similarities. 
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Fig. 11.19 The core idea of feature extraction 

In the problem of time series forecasting, micro and macro changes should also be 
considered. If item_nbr sales volume is a sales volume description from a micro 
perspective, then the sales volume aggregation corresponding to store_nbr, class, 
and city can be regarded as a sales volume description from a macro perspective. If a 
store experiences a general depression this year, then such condition is related to 
every commodity it sells. The high sales volume of first-tier cities indicates that the 
sales volume of commodities is also very high. Macro changes in sales volume will 
not be affected by local commodity anomalies and can well reflect the overall change 
trend. Therefore, more expansion will be carried out in the specific feature extraction 
stage, describing the sales volume step by step from micro to macro. 

11.3.1 Historical Translation Features 

The historical translation feature is to extract information with similarity, and the 
basic historical translation is to use the sales volume of t - 1 time unit as the feature of 
the t-th time unit. Generally speaking, the time interval for feature extraction is 
within 1 month, because in the specific construction of features, data that is too far 
apart in time not only does not have similarity, but also brings noise. 

for i in range(1,31): 
# the historical translation feature, sales volume of the first N days 
X[“day_{}_hist”.format(i)] = get_date_range(df_2017, t2017, i, 1). 
values.ravel().
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11.3.2 Window Statistical Features 

There are two types of window statistics constructed here. The first is the window 
statistics N days before the structural feature day, and the second is the window 
statistics of the i-th day of the week in the N weeks before the structural feature day. 
The second one is more difficult to understand; why is it in weeks? Why only the i-th 
day of the week is selected? This can be explained from the perspective of period-
icity. A complete periodicity can ensure that the statistics have practical significance, 
and a high degree of similarity in time units in a cycle can be guaranteed for selecting 
the same i-th day every week. 

In addition to counting the traditional mean, median, extreme values, and vari-
ance in the window, the difference calculation before and after the sequence in the 
window can also be performed and the mean can be counted. Another thing that 
needs to be introduced is the power function attenuation weighting, which is similar 
to the exponential weighted average. The weight gradually decays over time, and 
these methods are often used as rule-based strategies. 

11.3.2.1 Window Statistics N Days before the Structural Feature Day 

The basic code is given below: 

# The mean of the difference between the forward and backward values 
X['before_diff_{}_day_mean'.format(i)] = get_date_range(df_2017, 
t2017-timedelta(days=d), i, i).diff(1,axis=1).mean(axis=1).values 

X['after_diff_{}_day_mean'.format(i)] = get_date_range(df_2017, 
t2017-timedelta(days=d), i, i).diff(-1,axis=1).mean(axis=1). 

values 
# exponential decay summation 
X['mean_%s_decay_1' % i] = (get_date_range(df_2017, t2017-timedelta 

(days=d), 
i, i) * np.power(0.9, np.arange(i)[::-1])).sum(axis=1).values 

# mean/meidan/max/min/std 
X['mean_{}_day'.format(i)] = get_date_range(df_2017, t2017-

timedelta(days=d), 
i, i).mean(axis=1).values 

X['median_{}_day'.format(i)] = get_date_range(df_2017, t2017-
timedelta(days=d), 

i, i).median(axis=1).values 
X['max_{}_day'.format(i)] = get_date_range(df_2017, t2017-timedelta 
(days=d), 

i, i).max(axis=1).values 
X['min_{}_day'.format(i)] = get_date_range(df_2017, t2017-timedelta 
(days=d), 

i, i).min(axis=1).values 
X['std_{}_day'.format(i)] = get_date_range(df_2017, t2017-timedelta 
(days=d), 

i, i).std(axis=1).values



The basic code is given below:
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Among them, we need to pay attention to the two parameters i and d. The 
parameter i means the window size, and d means crossing d days in the historical 
direction. It can be explained as: first cross d days in the historical direction to reach a 
certain time unit, and then count the eigenvalues of this time unit on day i in the past. 
In order to ensure periodicity in actual operation, the value of d is 0, 7, 14, and the 
value of i is 3, 4, 5, 6, 7, 10, 14, 21, 30, 90, 110, 140, 356. 

11.3.2.2 Window Statistics of Day i of Each Week in the First N Weeks 
Before the Structural Day 

for i in range(7): 
# sales volume of day i of each week in the first N weeks 
for periods in [5,10,15,20]: 
steps = periods * 7 
X['before_diff_{}_dow{}_2017'.format(periods,i)] = get_date_range 

(df_2017, 
t2017, steps-i, periods, freq='7D').diff(1,axis=1).mean(axis=1). 

values 
X['after_diff_{}_dow{}_2017'.format(periods,i)] = get_date_range 

(df_2017, 
t2017, steps-i, periods, freq='7D').diff(-1,axis=1).mean 

(axis=1).values 
X['mean_{}_dow{}_2017'.format(periods,i)] = get_date_range 

(df_2017, t2017, 
steps-i, periods, freq='7D').mean(axis=1).values 

X['median_{}_dow{}_2017'.format(periods,i)] = get_date_range 
(df_2017, t2017, 

steps-i, periods, freq='7D').median(axis=1).values 
X['max_{}_dow{}_2017'.format(periods,i)] = get_date_range 

(df_2017, t2017, 
steps-i, periods, freq='7D').max(axis=1).values 

X['min_{}_dow{}_2017'.format(periods,i)] = get_date_range 
(df_2017, t2017, 

steps-i, periods, freq='7D').min(axis=1).values 
X['std_{}_dow{}_2017'.format(periods,i)] = get_date_range 

(df_2017, t2017, 
steps-i, periods, freq='7D').std(axis=1).values 

It is necessary to pay attention to the three parameters i, periods, and steps. The 
parameter i indicates the day i of the week, periods indicates the first N cycles, and 
steps-i indicates the start date.
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Fig. 11.20 Hierarchical 
relationship 

11.3.3 Structural Granularity Diversity 

However, in the actual feature extraction, besides constructing the combination of 
stores and commodities, the combination of first-order and second-order features 
such as item_nbr, store_nbr, city, class, store_class, city_class, etc. are also 
considered. 

So how can we determine whether the two features can be combined? The main 
basis is the degree of sparsity and hierarchical relationship. If each attribute is unique 
after the combination of the two features, then this feature combination is very 
sparse, and this feature has no structural significance; as shown in Fig. 11.20, it is a  
hierarchical diagram of each field in the stores.csv. The state and city fields have a 
hierarchical relationship, and the number of attributes after the combination of the 
two is consistent with the number of city attributes, so the combination of state and 
city is meaningless. 

11.3.4 Efficient Feature Selection 

A large number of features can be constructed in the time series forecasting problem. 
For historical translation features, you can consider translating in any feasible unit; 
for window statistical features, you can consider counting in different window sizes. 
If constructed in this way, the overall feature may reach thousands. So many features 
will lead to feature redundancy, and features containing noise may be constructed. In 
order to solve this problem, we choose to use the tree model to generate feature 
selection methods of feature importance and perform online and offline score 
verification. 

Generating features through the tree model has certain interpretability, which is 
also a common method in the competition world and in real world practice. This part 
will also explore the effect of selecting the number of features according to the 
importance of features through experiments. Here only the training data of 6 training



windows are extracted, and the offline score comparison of top500, top1000, 
top2000, tail2000 features and complete features are compared respectively. Also, 
only the offline score of the first day of the verification set needs to be noticed. 
Execute the following code to generate a score visualization diagram of feature 
importance: 
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Fig. 11.21 Feature importance score 

import matplotlib.pyplot as plt 
fig, ax = plt.subplots(figsize=(10,10)) 
lgb.plot_importance(bst, max_num_features=20, ax=ax, 

importance_type='gain') 
plt.show() 

The generated result is shown in Fig. 11.21, which helps us quickly understand 
the importance of features in model training. 

The experimental code is as follows: 

# the order of feature importance 
imps = sorted(zip(X_train.columns, bst.feature_importance("gain")), 

key=lambda x: x[1], reverse=True) 
# extract top500 features 
top_500 = [items[0] for items in imps[:500]] 
# the offline score of the first day of the verification set 
dtrain = lgb.Dataset(X_train[top_500], label=y_train[:, 0], 

weight=train_weight) 
dval = lgb.Dataset(X_val[top_500], label=y_val[:, 0], 

reference=dtrain, 
weight=val_weight) 

bst = lgb.train(params, dtrain, num_boost_round=MAX_ROUNDS, 
valid_sets=[dtrain, dval], verbose_eval=100)
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Fig. 11.22 Scores display 
of extracting feature sets of 
different parts 

After comparing several rounds of experiments, as shown in Fig. 11.22, it can be 
noticed that the effect of extracting top2000 features is the best (the score is 
0.277435), and the effect of extracting tail2000 features is the worst (the score is 
0.318104), which clearly shows that obtaining feature importance scores through the 
tree model is effective. 

11.4 Model Training 

This section will optimize the scheme from the model side. For time series prediction 
problems, there are still many models to choose from, such as traditional time series 
models, tree models, and deep learning models. This section selects LightGBM, 
LSTM, and Wavenet as the final models of the scheme, and will also learn model 
integration to make the final ranking of a higher level. 

11.4.1 LightGBM 

Although the model used here is the same as that used in the baseline scheme, it is 
optimized here. First, a weight is set for each sample because the evaluation index 
will be perishable. Then, the historical translation features, window statistical fea-
tures, and granularity diversity features mentioned in Sect. 11.3 are added, which



basically contain most of the features that can be extracted from the time series 
forecasting problem. 

246 11 Case Study: Corporación Favorita Grocery Sales Forecasting

# the sample weight construction part 
item_perishable_dict = dict(zip(items['item_nbr'],items 
['perishable'].values)) 
train_weight = [] # weight of the training set 
val_weight = [] # weight of the verification set 

items_ = df_2017.reset_index()['item_nbr'].tolist() * n_range 
for item in items_: 

train_weight.append(item_perishable_dict[item] * 0.25 + 1) 
items_ = df_2017.reset_index()['item_nbr'].values 
for item in items_: 

val_weight.append(item_perishable_dict[item] * 0.25 + 1) 

# add the sample weight and specify the category feature 
dtrain = lgb.Dataset(X_train, label=y_train[:, i], 
weight=train_weight) 
dval = lgb.Dataset(X_val, label=y_val[:, i], reference=dtrain, 
weight=val_weight) 
bst = lgb.train(params, dtrain, num_boost_round=MAX_ROUNDS, 

valid_sets=[dtrain, dval], verbose_eval=100) 

Compared with the baseline scheme, the public score is 0.51837 (721/1624) and 
the private score is 0.52798 (695/1624). After more detailed feature extraction, 
modeling strategy adjustment, adding sample weights, and specifying category 
features, the score of the model has been greatly improved. Specifically, the public 
Score is 0.51319 (497/1624), and the private score is 0.51571 (13/1624). 

11.4.2 LSTM 

In the problem of time series forecasting, the author still chooses the most popular 
LSTM model. Compared with the LightGBM model, the number and granularity of 
features extracted by the LSTM model will be greatly reduced, mainly because it has 
the capability to extract sequence information from historical data. By comparison, 
the characteristics of tree models such as LightGBM cannot extract historical 
information by themselves, requiring a large number of artificial features. 

This section first gives the basic network structure. BatchNormalization and 
Dropout methods will be used in the training process to help improve the general-
ization of the model. The following are the specific codes implemented to build the 
LSTM model: 

def build_model(): 
model = Sequential() 
model.add(LSTM(118, input_shape=(X_train.shape[1],X_train.shape 
[2])))
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model.add(BatchNormalization()) 
model.add(Dropout(0.2)) 

model.add(Dense(64)) 
model.add(Activation(activation="relu")) 
model.add(BatchNormalization()) 
model.add(Dropout(0.2)) 

model.add(Dense(16)) 
model.add(Activation(activation="relu")) 
model.add(BatchNormalization()) 
model.add(Dropout(0.2)) 
model.add(Dense(1)) 
model.compile(loss='mse', optimizer=optimizers.Adam(lr=0.001), 
metrics=['mse']) 
return model 

The modeling method of LSTM is basically the same as the previous one, which 
is also the result of 16 training sessions to obtain 16 units in the testing set, and only 
the weight of the training sample is added during the training. In addition, it should 
be noted that the label is converted by subtracting the label mean, mainly for scaling 
processing and reducing the jitter of the prediction result. The following is the 
implementation code of 16 times of training and 16 times of forecasting: 

for i in range(16): 
y_mean = y_train[:, i].mean() 
# compilation part 
model = build_model() 
# callback function 
reduce_lr = ReduceLROnPlateau( 

monitor='val_loss', factor=0.5, patience=3, min_lr=0.0001, 
verbose=1) 
earlystopping = EarlyStopping( 

monitor='val_loss', min_delta=0.0001, patience=3, verbose=1, 
mode='min') 
callbacks = [reduce_lr, earlystopping] 
# the training part 
model.fit(X_train, y_train[:, i]-y_mean, batch_size =4096, epochs = 

50, verbose=1, 
sample_weight=np.array(train_weight), 
validation_data=(X_val, y_val[:, i]-y_mean), 
callbacks=callbacks, shuffle=True) 

val_pred.append(model.predict(X_val)+y_mean) 
test_pred.append(model.predict(X_test)+y_mean) 

The score of the LSTM model is also very good, with a public score of 0.51431 
(557/1624) and a private score of 0.52067 (116/1624), which can be used for model 
integration. 

In fact, there are many optimization directions in the model part, and the most 
basic one is to determine the number of hidden layers of deep neural networks. 
Theoretically, the deeper the number of layers, the stronger the ability of the fitting



function, and the better the prediction effect of the model, but in fact, the deeper 
number of layers may lead to overfitting, while increasing the training difficulty, 
making it difficult for the model to converge. Of course, in order to better determine 
the number of layers, a simple experimental comparison was carried out next. 
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The experiment compared the deep neural network structures of 8 layers and 
4 layers (in order to obtain the experimental results quickly, only the scores of the 
first day of the verification set are compared). Among them, the offline evaluation 
score of 8 layers is 0.2790 and that of 4 layers is 0.2795, which are basically the 
same. However, in terms of running time, 8 layers are more than three times that of 
4 layers. In view of this, using a 4-layer deep neural network structure can not only 
achieve the same effect for the score as using 8-layer, but also have very efficient 
running time. 

Extended Learning 
In addition to determining the number of hidden layers, you can also select the 
number of nerve cells. Using too few nerve cells in the hidden layer will lead to 
underfitting. Using too many nerve cells may lead to overfitting. When the 
number of nodes in the neural network is too large (the information processing 
capacity is too high), the limited information contained in the training set is not 
enough to train all nerve cells in the hidden layer, which will lead to 
overfitting. In addition, even if the training set contains enough information, 
too many nerve cells in the hidden layer will increase the training time, making 
it difficult to achieve the desired effect. Obviously, it is very important to 
choose the right number of hidden layer nerve cells. 

11.4.3 Wavenet 

Although the Wavenet model basically did not appear in this competition, the 
runner-up contestant achieved a good second place by using this model. Since it 
has such great power, we might as well get to know this model. 

In 2016, Google DeepMind published “WaveNet: A generative model for raw 
audio” on ISCA. The Wavenet model is a sequential generative model originally used 
for speech generation modeling. Compared with traditional ARIMA, Prophet, 
LightGBM, or LSTM, Wavenet model has unique advantages in solving time series 
forecasting problems. It is a time series model based on convolutional neural networks, 
and its core is the extended Dilated Casual Convolutions, as shown in Fig. 11.23. 

The Wavenet model can correctly handle the time sequence and can handle long-
term dependencies, thus avoiding model explosion. The specific implementation 
code is as follows: 

def build_model(shape_): 

def wave_block(x, filters, kernel_size, n): 
dilation_rates = [2**i for i in range(n)]



x = Conv1D(filters = filters, kernel_size = 1, padding = 'same')(x) 
res_x = x 

for dilation_rate in dilation_rates: 
tanh_out = Conv1D(filters = filters, 

kernel_size = kernel_size, padding = 'same', 
activation = 'tanh', dilation_rate = dilation_rate)(x) 

sigm_out = Conv1D(filters = filters, 
kernel_size = kernel_size, padding = 'same', 
activation = 'sigmoid', dilation_rate = dilation_rate)(x) 

x = Multiply()([tanh_out, sigm_out]) 
x = Conv1D(filters = filters, 

kernel_size = 1, padding = 'same')(x) 
res_x = Add()([res_x, x]) 

return res_x 

inp = Input(shape = (shape_)) 
x = wave_block(inp, 32, 3, 8) 
x = wave_block(x, 64, 3, 4) 
x = wave_block(x, 118, 3, 1) 

out = Dense(1, name = 'out')(x) 

model = models.Model(inputs = inp, outputs = out) 

return model 
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Fig. 11.23 Dilated casual convolutions 

The training part of the model is basically the same as before, but the format of the 
label needs to be adjusted. At the same time, in order to shorten the training time, the 
batch_size and epochs have also been adjusted. The code is as follows: 

model.fit(X_train, y_train[:, i].reshape((y_train.shape[0], 1, 1)), 
batch_size = 4096, epochs = 5, verbose=1, 
sample_weight=np.array(train_weight), 
validation_data=(X_val, y_val[:, i].reshape((y_val.shape[0], 1, 1))), 
callbacks=callbacks, shuffle=True) 

Compared with the previous LSTM model, if you do not use GPU for training, it 
will take a lot of time. However, the final result is also good. If you want to get better 
scores, you have to continue to optimize.
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11.4.4 Model Integration 

This part can use a simple weighted average, which is also the fusion method used by 
the vast majority of the top-ranked teams in this competition, which is not only 
effective, but also simple and intuitive. Specifically, the optimal score of the 
LightGBM model and the optimal score of the LSTM model are fused, and the 
weight is roughly determined according to the online score, that is, the final result is 
0.7 × the optimal score of the LightGBM model +0.3 × the optimal score of the 
LSTM model. Finally, the public score is 0.51089 (119/1624) and the private score 
is 0.51456 (6/1624), which shows that the score of the model after integration has 
been significantly improved. If the results of the Wavenet model are added and the 
characterizing portions of the three models are refined, the score will be improved 
even more greatly. 

11.5 A Summary of the Competition Question 

11.5.1 More Schemes 

11.5.1.1 Top 1 Scheme 

In terms of models, the champion team used LightGBM and NN models, and they 
had constructed many of them. These models had differences in features or sample 
selection. In terms of data, the champion team only used data for 2017 to extract 
features and build samples. Specifically, the training set used data from May 
31, 2017 to July 19, 2017 or that from June 14, 2017 to July 19, 2017 (different 
models used different data sets), and the verification set used data from July 26, 2017 
to August 10, 2017. 

The characteristics of the structure of champion team were generally divided into 
basic features and statistical features, of which the basic features included category 
features, promotion features, and cycle-related features. Statistical features were 
taken as the main scoring features, and some methods (mean, maximum, standard 
deviation, difference, etc.) were used to count some target values (sales volume, 
promotion, etc.) of different keys (item_nbr, store_nbr, store_nbr_class, etc.) in 
different time windows. 

11.5.1.2 Top 2 Scheme 

The runner-up team used the Wavenet model and introduced the division of the 
training set and verification set. The randomly sampled sequence with a length of 
128 was fed into the model in small batches, and then the start of the target date was 
randomly selected. As a result, it could be said that the model would see different



data in each training iteration. Because the total data set was about 170,000 
(seq) × 365 days, we believed that the Wavenet model trained in this way could 
handle the overfitting problem well. The verification method they adopted was step 
by step and kept the verification data of the last 16 days. 
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The runner-up team also found that on July 1, 2015, September 1, 2015, October 
1, 2015, and November 27, 2016, many items began to have unit_sales records, but 
the difficulty was not knowing when most new items in the test data began to have 
this record. By examining the promotional information, it was found that the 
promotional information with new items was only in the data on August 30 and 
August 31. By looking at the data on October 1, 2015 or November 27, 2016, those 
“old new items” would be displayed on the day of the promotion (not before). 
Therefore, the runner-up team believed that most new items would have unit_sales 
records starting on August 30 and August 31. Before that, only some new commod-
ities might have been sold. In this regard, models were not used to predict to prevent 
overfitting, but only some regular values were used to verify the loss calculation for 
those “old new commodities”. 

11.5.1.3 Top 3 Scheme 

The third-place team built three models, namely LightGBM, CNN, and GRU 
models, which had almost equal weights when the models were merged. If you 
only look at a single model, the GRU model has a better prediction effect than other 
models. 

In the above scheme sharing, the third-place team highlighted that in the time 
series forecasting problem, two important things are validation and bagging. 
Through correct verification, that was, to simulate the split of the training set and 
testing set, future information disclosure problems caused by data breakdown would 
be avoided. 

In view of this, in the specific split method, only the history of 80 corresponding 
sales days for each “item and store pair” is recorded for the training set, and the next 
16 sales days are used as the verification set. The division of the training set and the 
verification set is always from Tuesday to Wednesday, which is guaranteed to be the 
same as the division of the original testing set and is designed to capture weekly 
dynamics. 

In the above partitioning mode, the model is trained and the optimal number of 
iterations of the model is estimated, and then the model is retrained by splicing 
verification sets to use the latest information. 

Regarding bagging, the third-place team will train each model 10 times, each time 
initializing different weights, so the results are different. Averaging them can help 
improve the solution, especially when dealing with an uncertain future. Another 
bagging method is to predict the target after each training period (including the initial 
period), and then average these prediction results, which will also greatly improve 
the final result.
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11.5.2 Knowledge Points 

Sorting out knowledge points is also an important task after the competition, which 
can be roughly divided into sorting out key schemes and sorting out core codes. The 
core of this competition lies in feature engineering. If this part of the effort is done 
enough, then the results will be very good; the part of sorting out codes is mainly to 
optimize the code, improve its readability and modularization, so as to facilitate the 
reuse of it in the competition afterwards. This section mainly summarizes the feature 
extraction methods in feature engineering and tries to show the best and complete 
time series feature extraction ideas. 

11.5.2.1 Time Characteristic 

Year, quarter, month, week, day, hour, etc. are the basic time characteristics. Of 
course, the day can also be divided into morning, noon, afternoon, evening, late 
night, and before dawn. 

There is also a class of time characteristics, which is the record of a certain time 
span, such as a certain interval of time, a few days from a certain day, the time 
difference between performing a certain action the last N times and the next N times. 

11.5.2.2 Time Series Features 

Time series features can be divided into historical translation and window statistics, 
which are also the core part of time series forecasting. 

Historical translation requires only simple translation, such as taking the sales 
volume on the 1st, 2nd, 3rd, 7th, and 14th days in history as the characteristics of 
the day. 

Window statistics is first to determine the window size, and then aggregate 
statistics; the specific statistical methods are mean, median, extreme values, percen-
tiles, deviation, skewness, and kurtosis, etc. First-order difference or second-order 
difference can also be performed within the time window, and then the difference 
values will be aggregated. 

11.5.2.3 Cross Features 

Cross features are generally divided into three categories, namely, combinations of 
category features and category features, combinations of category features and 
continuous features, and combinations of continuous features and continuous fea-
tures. The combination of category features and category features is equivalent to 
Cartesian product, such as combining days and hours to obtain a certain hour of a 
specific day; the combination of category features and continuous features is



generally a polymerization operation; the combination of continuous features and 
continuous features includes those of year-over-year and month-on-month, first-
order difference, and second-order difference, etc. 
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11.5.2.4 Advanced Features 

Such features are generally obtained by traditional time series models, such as AR, 
ARMA, ARIMA, Prophet, etc. Such models only fit the prediction results based on 
historical target variables, and the prediction results can be regarded as high-level 
features combined with the final feature set. 

11.5.3 Extended Learning 

This section will recommend some competitions related to commodity sales as an 
extension of the learning content, in order to deepen the understanding of this type of 
competition questions, and to understand and find out which pits need to be paid 
attention to and which problem-solving routines need to be mastered in different 
commodity sales problems. 

11.5.3.1 Kaggle’s M5 Forecasting: Accuracy—Estimate the Unit Sales 
of Walmart Retail Goods 

This competition (shown in Fig. 11.24) is to predict the unit sales of Walmart retail 
goods. The competition provides hierarchical information on the data (state, store, 
dept., and item) and from January 29, 2011 to June 19, 2016. The goal is to predict 
the sales volume of different commodities in the next 28 days. 

Basic ideas: The modeling scheme of the contest question is basically divided 
into two types: recursive and non-recursive. The first type is to cycle and predict the 
sales volume of each day in the next 28 days. The predicted sales volume (day t + 1)  
is also merged into the training set to continue to predict the next sales volume 
(day t + 2), or the predicted sales volume can be used as a feature; the second type

Fig. 11.24 Home page of m5 forecasting—accuracy—estimate the unit sales of walmart retail 
goods



will not expand the training set. When predicting the sales volume on day t + 1, only 
the sales volume from day of start to day t is used as training data for training and 
forecasting.
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Fig. 11.25 Home page of predict future sales competition 

11.5.3.2 Predict Future Sales on Kaggle Platform 

The data of the Predict Future Sales competition (shown in Fig. 11.25) is a time 
series data set composed of daily sales data, which is provided by a Russian 
company. It includes stores, goods, prices, and daily sales for 34 consecutive 
months. It is required to predict the sales volume of each product in each store in 
the 35th month. The evaluation index is the root mean square error. 

Basic ideas: This competition is entitled the conventional commodity sales 
prediction problem, involving a total of 60 stores which are located in 31 cities. 
The main work focuses on data exploration and feature engineering. When 
constructing features, it is necessary to consider the feature combinations of different 
fine grains, which is very similar to the competition questions mentioned in this 
chapter. 

11.5.3.3 IJCAI-17 Customer Flow Forecast of WOM Merchants 

With the popularity of mobile positioning services, Alibaba and Ant Financial 
Services Group have gradually accumulated a large amount of online and offline 
transaction data from users and merchants. The O2O platform “Word of Mouth” of 
Ant Financial uses these data to provide merchants with back-end business intelli-
gence services including transaction statistics, sales analysis, and sales recommen-
dations. For example, Word of Mouth is committed to providing sales forecasts for 
each merchant. 

Based on the forecast results, merchants can optimize operations, reduce costs, 
and improve the user experience. In this competition, the data provided is payment 
data of Ant Financial, which specifically provides the user’s browsing and payment 
history, as well as relevant information of the merchant. By giving the past daily 
traffic counting of the store (brick and mortar store), daily traffic flow of the store in 
the following 14 days is predicted.
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Basic ideas: If this competition question is used today, it will be a more 
conventional question. However, in 2017, it would be a very novel competition 
question. There were not many similar schemes for reference. The top players also 
gave a variety of ideas for solving the problem. The champion used a weighted 
integration of the results of the time series weight model and the tree model, in which 
the time series weight model was a rule method that took into account the combi-
nation of constant factors, time attenuation factors, week factors, and weather 
factors. Even in today it is a very detailed rule-based method; the tree model uses 
XGBoost and random forest. It is particularly important to note that the contestants 
perform a 1.1 time amplification for the prediction results customer traffic counting 
of the Black Friday.
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Chapter 12 
Computational Advertising 

In the early days of China’s Internet boom, there were mysterious BAT giants 
famous in all corners of the country, namely Baidu (B), Alibaba (A), and Tencent 
(T), which occupied the top of search engines, e-commerce, and social software. 
Recently, TDJ (TikTok, DiDi, JD.com) appeared. In the 1980s and 1990s, what was 
happening in the entertainment circle of Hong Kong (China) dominated the enter-
tainment industry in mainland China, and all kinds of kings, queens, and superstars 
surged, all thanks to media such as television, radio, and posters. From 2010 
onwards, with the emergence of 4G mobile Internet, smart end points, and the 
development of the film and television industry, the way people chase stars has 
also changed, and it is not known since when famous actors and singers were called 
stars, and were divided into A-list, B-list . . .  D-list. With this rapid change, traffic 
flow has gradually become a standard to measure the popularity of stars, and stars 
with massive traffic flow are different from traditional stars and have formed a new 
group. Top traffic is the praise of A+ list stars. The reason why traffic is so valued is 
that it can be monetized and has great potential value. 

12.1 What Is Computational Advertising 

Imagine, on a morning when you are preparing to go to work, you will be surrounded 
by ads. After entering the elevator, you will be flanked by posters advertising 
programming education and the New Year’s Shopping Festival; when you are 
about to ride a shared bicycle, you can find the sign of a certain App on the bike; 
the big screens flanking the subway corridor all show the flagship device just 
launched by a famous brand. In today’s highly developed commercial civilization, 
there will be advertisements where there are people moving, because the existence of 
people indicates there is traffic flow. No matter whether there is a certain difference 
between the type of advertisement and the advertising material, they can both 
monetize the traffic flow. Even though there are more and more advertising patterns
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under the market economy, its essence is still based on traffic. For example, 
businesses ask for celebrity endorsement with the help of the traffic of stars, who 
themselves can achieve traffic monetization by charging advertising fees; the content 
and form of ads is also a kind of traffic, which is based on the public consensus of the 
target consumer or popular culture. In addition, the channel of advertising will affect 
the size of the traffic, which in turn affects making money from traffic. Mobile 
Internet has spawned many new nouns, of which a pair of nouns different from 
traditional sales methods are offline and online. Most of the contents introduced in 
this chapter are applicable to online scenarios. Advertising is realized by means of 
traffic, while computational advertising is to allow advertising to get access to more 
traffic.

260 12 Computational Advertising

Computational Advertising refers to the use of big data analysis and modeling, so 
that advertising can cover a wide range of areas and customers will be exposed to 
accurate, multi-span ads, enabling the same advertisement to reach as much effective 
traffic and more people interested in the corresponding advertising as possible. In 
this way, with the same cost, the advertising effect can be as good as possible; 
therefore, products and services can achieve more commercial success. With the 
gradual development of big data, artificial intelligence, and the Internet of Things in 
human society, the significance and possibility of computational advertising will 
become increasingly higher. 

12.1.1 Main Issues 

The purpose of computational advertising is to find as many traffic channels and 
target consumers as possible on the basis of controlling the cost within a certain 
range, so as to carry out commercial monetizing. The key is to use big data and 
artificial intelligence for targeted delivery, which involves computational advertis-
ing’s three-factors (as shown in Fig. 12.1), that is, the interaction between

Fig. 12.1 Three factors for computational advertising



advertisers, platforms, and consumers. For advertisers, they want to rely on the 
platform to promote their products, by investing a certain cost to promote the 
product, so as to increase sales and turnovers; the platform charges advertisers 
promotion fees, in order to better build their platforms, serving consumers more 
excellently and effectively; consumers can filter out the types of advertising they are 
not interested in while enjoying other free services provided by the platforms. In fact, 
in essence, it is the consumers who feed the advertisers and the platforms.
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Therefore, the main problem that computational advertising needs to solve is how 
to coordinate the interests of the three parties, that is, the interests of advertisers, 
platforms, and consumers. In response to this problem, many core technologies have 
emerged, such as bidding strategies between advertisers and advertisers, and those 
between advertisers and platforms, the technology to predict user click-through rates 
or conversion rates enabling the platform to deliver appropriate advertisements to 
users, and the technology to optimize advertising scheduling and control budgets to 
support operations related to advertisers and platforms. 

12.1.2 Architecture of Computational Advertising System 

Although there are great differences in details between computational advertising 
systems of different companies or different businesses, there are still general parts in 
terms of the architecture of these computational advertising systems. Here, three 
major parts are mainly introduced, namely, online delivery engines, distributed 
computing platforms (offline), and stream computing platforms (online), as shown 
in Fig. 12.2. The online delivery engine carries out advertisement retrieval, adver-
tisement sorting, and revenue management according to the relevant information 
such as users and contexts corresponding to the advertisement request of the Web 
server, and finally transfers the relevant records to the distributed computing plat-
form and stream computing platform; the distributed computing platform periodi-
cally processes the data in the past period of time in a batch processing manner to 
obtain offline user tags and CTR models and features, and then stores these in the 
database for use when making online delivery decisions; the stream computing 
platform is responsible for dealing with the data in a short period of time, obtaining 
real-time user tags and model parameters, and also storing these in a database for use 
in making online delivery decisions. 

12.1.2.1 Online Delivery Engines

• Advertisement retrieval: when the Web server sends an advertisement request, the 
system searches for qualified advertisements from the advertisement index list 
according to the page label or user label of the advertisement position. The 
advertisement retrieval stage mainly uses the recall rate as the evaluation index.
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Fig. 12.2 Architecture of computational advertising system 

A high recall rate means that the possibility of missing advertisements that may be 
clicked by users can be avoided.

• Advertisement sorting: when multiple advertisers snatch an advertising space, it 
is necessary to estimate the benefits that may be generated by placing each 
advertisement, i.e. calculating the eCPM value, and then sorting the advertisers 
from high to low according to the value. 

12.1.2.2 Distributed Computing Platforms

• Behavior targeting: this module is used to find out the user behavior attributes in 
the advertisement delivery log, endow users with various tags and store them in a 
structured label library for subsequent advertisement delivery.

• Click-through rate modeling: the function of this module is to train and obtain the 
parameters and corresponding features of the click-through rate model on a 
distributed computing platform, and then load them into the cache to assist the 
advertisement delivery system in making decisions. 

12.1.2.3 Stream Computing Platforms

• Real-time audience targeting: the function of this module is to process the user 
behavior and advertisement delivery logs that have occurred in a short period of 
time into real-time user tags in time to assist the advertisement retrieval module.
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For the online computational advertising system, this part is of greater signifi-
cance for improving the effect.

• Real-time click feedback: this module is also real-time feedback of changes in 
user behavior and ad placement logs, mainly generating real-time click-through 
rate-related features to assist the ad sorting module. In many cases, capturing 
short-term behavior records can better reflect the user’s preference information, 
and the effect of ad placement is more significant. 

12.2 Advertising Types 

In order to maximize benefits and continuously meet a wide variety of needs, 
advertising types are constantly updated and iterated, and their development and 
evolution process is shown in Fig. 12.3. This section will introduce advertisement 
types according to the development of advertising business models, including CPT 
advertising, targeted advertising, bidding ads, and programmatic trade advertising. 

12.2.1 Contract Advertising 

CPT advertising and targeted advertising can be collectively referred to as contract 
advertising, and contract advertising can be specifically divided into advertisement 
with non-targeted contract transaction and coarse-grained targeted contract transac-
tion. CPT advertising is billed at a time cost, and advertisers buy out advertising 
spots within a period at a fixed price to display their own advertising, such as splash 
ads, rich media advertising, or drop-down keywords in app stores; as for the targeted 
advertising, advertisers select the interest labels they want to deliver, and then the 
algorithm matches them with the corresponding audience and then advertises. 

12.2.2 Bidding Advertising 

After the generation of targeted advertising, the market develops in the direction of 
refinement; more and more advertisers participate, and targeted labels are becoming 
increasingly accurate. To improve revenue, media owners have introduced the

Fig. 12.3 Evolution of advertising types



bidding ads mode. In this mode, media owners no longer promise the amount of 
display to advertisers in the form of contracts but adopt the scheme of “the highest 
price gets” to decide which advertisement to display each time, so that media owners 
can compare prices on different advertisements in real time, to maximize revenue. 
This model also gives birth to advertising products such as ADN (advertising 
network) and ATD (advertising transaction terminal).
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12.2.3 Programmatic Trade Advertising 

The further development of bidding ads gave birth to the mode of real time bidding 
(RTB), which enabled advertisers to select their target audience in each advertise-
ment display in real time and participate in bidding. Later, a series of ad exchanges 
with RTB as the core gradually evolve into a model that relies on programs to 
complete ad exchange decisions between machines. Therefore, this kind of adver-
tising is called programmatic trade advertising, and the related advertising products 
that have been spawned include DSP, SSP, ADX, DMP, etc. 

Computational advertising technology is the key to supporting the advertising 
application business. It can mainly coordinate the interest relationship between 
advertisers, platforms, and consumers. There are three core technologies in compu-
tational advertising, namely, advertisement recall, advertisement ranking and adver-
tisement bidding. These technologies can not only ensure that advertisements are 
placed in the right crowd, but also ensure the interests of advertisers and platforms. 

12.3 Advertising Recall 

Advertising recall is advertising retrieval. The main work in this stage is to retrieve 
backup advertisements that meet the delivery conditions from the advertising index 
(Ad index) according to user or commodity attributes and page context attributes. 
The recall (retrieval) methods that will be used are also varied. Next, let’s look at the 
specific recall methods. 

12.3.1 Advertising Recall Modules 

The modules of advertisement recall are divided into the following three parts.

• Boolean expression recall: Boolean expressions are combined according to the 
targeted labels set by advertisers. In the huge, targeted label system, advertisers 
recall the targeted audience of advertisements according to the Boolean expres-
sions composed of users’ interests, age, and gender.
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Fig. 12.4 TDM depth tree structure 

• Vector retrieval recall: this technology can be divided into three types. The first 
is to obtain the vector representation of the advertisement through traditional 
Word2Vec, Item2Vec, or Node2Vec, and then recall the targeted group through 
similarity calculation. Its characteristics are simple to implement and are strong in 
expression. The second is to obtain the vector representation of the advertisement 
through the deep learning model. For example, YouTube DNN uses the deep 
learning model to map the advertisement, user, and other information to a vector, 
and then to recall the targeted group through the vector’s nearest neighbor 
retrieval algorithm. There is also a classic DSSM double tower model (it will 
be described in detail in sect. 12.3.2).

• Recall based on TDM (Tree-based Deep Match model): this is a large-scale 
(above 10 million) recommendation system algorithm framework based on deep 
learning, independently developed by the Precisely Targeted Advertising Algo-
rithm team in Alibaba. This technology combines deep learning model and tree 
structure search to solve the balance between high-performance requirements in 
the recall problem and the use of complex models for content search. This 
technique can transform the recall problem into a process of classification and 
screening layer by layer. With the help of the hierarchical retrieval nature of the 
tree, the time complexity can be reduced to the logarithmic level. If the target 
recommendation number is K, the total number of goods is N, then the time 
complexity is O(K logN). 

As shown in Fig. 12.4, each leaf node of the depth tree corresponds to an item in the 
data, while non-leaf nodes represent a collection of items. Such a hierarchical 
structure intuitively reflects the item architecture from coarse to fine granularity.



At this time, the recommendation task is converted into how to retrieve a series of 
leaf nodes from the depth tree and return these leaf nodes as the items that the user is 
most interested in. It is worth mentioning that although the tree shown in Fig. 12.4 is 
a binary tree, there is no such limitation in practical applications. 
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Of course, in addition to the above three, there are many recall methods, such as 
classic system filtering, recall based on graph calculation, recall based on Knowl-
edge Graph, etc. In addition, the current recall strategy is mostly a combination of 
multi-channel recall and weight retrieval, and in actual business, it is often a 
combination of recall methods of more than ten channels. 

12.3.2 DSSM Semantic Recall 

This section will introduce a semantic modeling method based on deep neural 
networks—DSSM (Deep Structured Semantic Model), which is proposed by a 
paper published by Microsoft on the similarity calculation model of Query and 
Doc. In the advertisement recall problem, this multi-tower structure constructs 
different towers for user-side features and advertisement-side features respectively. 
After multiple layers of full connection, the embedding vectors of the last output 
layer are spliced together and then input to the softmax function. Moreover, the 
output vector is in the same vector space, which can directly calculate the similarity 
between Query and Doc through point multiplication or cosine function and perform 
advertisement retrieval. Next, let’s look at the network structure of DSSM, as shown 
in Fig. 12.5. 

1. First, the input layer converts the Query (or User) vector and the Doc (or Item) 
vector (one-hot encoding) into embedding vectors. The original paper proposes a 
special embedding method called word hashing for English input to reduce the 
dictionary scale. When embedding for Chinese, we can use the Word2Vec class 
for routine operations. 

2. Next is the presentation layer. After embedding, the word vector is mapped 
through multiple layers of full connection to obtain the semantic feature vector 
representation for Query and Doc. 

3. Finally, the matching layer calculates the cosine similarity of the Query vector 
and the Doc vector to obtain the similarity, and then performs softmax normal-
ization to obtain the final index posterior probability P. The training target fits the 
positive sample of the click to P as 1, and vice versa fits P as 0. 

This method is also widely used in recall and ranking problems in search, recom-
mendation, and other fields. The biggest feature of the two-tower model is that the 
user side and the advertising side are two independent sub-networks, the two towers 
can be cached separately, and only the vectors in the cache need to be taken out for 
similarity calculation during online recall. Retrieving and matching vectors is a very 
time-consuming job, and the retrieval efficiency can be improved through the nearest



search method. Using common python packages such as Annoy and Faiss can easily 
deal with such scenarios. 
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Fig. 12.5 Network structure of DSSM 

12.4 Advertising Sorting 

Advertising sorting is the fundamental part of computational advertising. Its main 
function is to calculate the eCPM (effective cost per mile) of the advertisement 
backup set sent by the advertisement recall module, and sort it backwards according 
to the size of the obtained value. The calculation of eCPM depends on the click-
through rate calculated offline by the audience targeting platform. Since the final ads 
are all from the results of sorting, this module is very important, and it is also a place 
for various algorithm models and strategies to play their role. 

12.4.1 Click-Through Rate Prediction 

Click-through rate (CTR) prediction is one of the most important algorithm modules 
to help advertising. At the same time, it is also crucial in industrial applications such



Þ

Þ

as information retrieval, recommendation systems, and online advertising systems. 
To a certain extent, click-through rate represents the user’s experience. For example, 
in the recommendation system of the e-commerce platform, a major sorting target 
GMV (gross merchandise value) can be disassembled into traffic × click rate × 
conversion rate × the guest unit price, which shows that click rate is an important 
factor to optimize the sorting target. 
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The click-through rate prediction task can be abstracted into a binary classifica-
tion problem, that is, to put an advertisement to the user, and then predict the 
probability of the user clicking on the advertisement. When an advertisement is 
displayed in front of the consumer, the proportion of click behavior generated by the 
link of the advertisement can be reflected in two indicators according to the different 
delivery methods. One is click rate: 

Click- through rate= number of clicks timesð Þ=number of exposures timesð  

Obviously, the higher the click rate, the better the effect of ad placement. The other is 
the conversion rate (CVR), which is a further extension of the click rate. It represents 
whether consumers have further completed the corresponding conversion behavior 
on the basis of clicking on the advertisement link; that is, the conversion rate is the 
proportion of customers who pay or sign up to customers who click ads, whose 
definition is similar to the click rate: 

Conversion rate= number of conversions timesð Þ=number of exposures timesð  

Similarly, the higher the conversion rate, the better the effect of ad placement. 
Problems related to click-through rate also often appear in competitions. For 

example, the IJCAI 2018 Alimama (A separate marketing platform that serves 
Alibaba) Advertising Prediction Algorithm Competition, Tencent Advertising Algo-
rithm Competition, and the iFLYTEK AI Marketing Algorithm Competition are all 
competitions around click-through rate, and such competitions often face a large 
number of discrete features and feature combinations. The following will give 
common solutions to these problems and introduce common models. 

12.4.2 Feature Processing 

Feature engineering has always received much attention in the competition, which of 
course also includes the feature engineering of the click-through rate prediction 
problem. The data in the advertising business is not only rich, but also has very high 
dimensions, which requires extremely high accuracy. In addition to the model, there 
are also many skills to learn in feature processing.
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12.4.2.1 Feature Crossing Combination 

There are a lot of category features in the click-through rate problem, such as user 
tags, advertising tags, etc., so extracting fine-grained feature expression becomes the 
key, such as the combination of user occupation and advertising type: programmers 
_ anti alopecia advertising. Of course, you can also combine the three category 
features to construct more fine-grained features. 

12.4.2.2 Processing of Continuous Features 

Continuous features have practical statistical significance, such as the number of user 
behaviors, ad impressions, etc., though these features can be directly fed into the 
model for training. However, the importance of features in different intervals may be 
different. Continuous features default to the importance of features. There is a linear 
relationship between the degree and feature values, but in practice there is often a 
nonlinear relationship between the two; that is, the importance of feature values in 
different intervals is not the same. 

Here a neural networks model will be introduced—key-value memory, which is 
used to realize the mapping from floating-point numbers to vectors. As shown in 
Fig. 12.6, the input of this model is a dense feature q, and the output is a feature 
vector v, realizing the feature space conversion from one-dimension to multi-
dimensions. 

The specific steps in Fig. 12.6 are as follows. 
Key addressing section: addressing procedures, where the softmax function is 

used, as shown in formula (12.1). Calculate the probability value of each memory 
selected above. 

Fig. 12.6 Model structure of key-value memory
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wi ¼ softmax 
1 

q- ki þ e- 15j j ð12:1Þ 

Attention Section: Different parts of key addression have different feature impor-
tance, so Attention is used to give different weight probabilities. 

Value-reading Section: Perform the weighted sum under the weight of the 
previous step to obtain the answer information. 

v ¼ 
N 

i¼1 

wivi 

12.4.2.3 Smooth Click Rate 

When constructing features related with the click-through rate, the calculation is 
often biased due to sparse data. For example, if an advertisement is delivered 
100-times and there are 2 clicks, the click-through rate is 2%. However, when the 
advertisement is put in 1000-times, and the click-through rate is only 10-times, then 
the click-through rate is 1% at this time, which is only a half of the former. 
Therefore, the calculation result will be corrected by smoothing, i.e. adding a 
relatively large constant to the numerator and denominator, which can alleviate 
low exposure data, highlight high exposure data, such as popular advertisements 
and commodities, and fill in cold start samples. 

Bayesian smoothing is often used for processing. The basic idea is to select a prior 
distribution with a smooth distribution, and then use the prior distribution to find the 
final smooth distribution in some way, as shown in formula (12.2). 

SmoothCTR ¼ C þ α 
I þ αþ β ð12:2Þ 

Here, C is the number of clicks, I is the exposure, α and β are calculated by Bayesian 
smoothing. 

12.4.2.4 Vectorized Representation 

Many traditional feature extraction methods have limited characterization ability; 
therefore, we will try to use some embedded representation methods (such as 
Word2Vec, DeepWalk, etc.) or through deep learning models to learn embedded 
vector representation, as shown in Fig. 12.7. For example, extract the user history 
click advertisement sequence, combine all the user sequences into a text input to 
Word2Vec for advertisement vector training, and finally a vectorized representation 
of the advertisement will be obtained. Of course, you can also get the vector 
representation of the user by exposing the user sequence through the advertisement.
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Fig. 12.7 Advertising embedding vector extraction process 

Fig. 12.8 FM model structure 

12.4.3 Common Models 

Click-through rate prediction is an extremely important part in the field of recom-
mendation systems and Computational Advertising. The prediction effect will 
directly affect the user experience and advertising revenue. In order to continuously 
improve performance, the update iteration of related models is also very fast. 
Because this field has the characteristics of large amount of data and highly sparse 
features, most of the model improvements are optimized around these characteris-
tics. Here we will introduce FM, Wide & Deep, DeepFM, and DIN, the four quite 
classic models that have evolved from different directions. 

12.4.3.1 FM: Factorization Machines (2010) Implicit Vector Learning 
Improves Model Expression 

FM (Factorization Machine) can be said to be a very classic algorithm in the field of 
recommendation systems and computational advertising. It is improved on the basis 
of the LR model. Its model structure is shown in Fig. 12.8. The LR model is an early



model used for advertising click-through rate or conversion rate problems. The 
traditional LR model cannot learn the cross information between features, but it 
can only rely on a large amount of physical effort to construct features. Faced with 
this difficulty, FM came into being. It can not only directly introduce second-order 
feature combinations but can also calculate the weight of feature combinations. 
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FM solves the above problems by learning the interaction of pairs of features in 
the potential feature space. In the feature space, each feature has a hidden vector 
associated with it, and the interaction between the two features is the inner product of 
their respective hidden vectors. In FM, the model can be expressed as formula 
(12.3): 

φ w, xð Þ ¼  w0 þ 
n 

i¼1 

wixi þ 
n 

i¼1 

n 

j¼iþ1 

Vi,Vj xixj ð12:3Þ 

Wherein, 

Vi,Vj ¼ 
k 

f¼1 

vi,f � vj,f 

Since FM will learn all cross-combination features, which will definitely contain 
many useless combinations. These combinations will introduce noise and thus 
reduce the performance of the model. Therefore, in general, we cannot directly put 
all category features into the model. Certain feature selection should be carried out 
first to reduce the risk of introducing noise. 

In addition, FM cannot learn the information of the feature field (Field) when 
performing feature combination, which means it cannot perceive the existence of the 
feature field, that is, the feature combination uses the same hidden vector. Obviously, 
this will appear very rough, and features belonging to the same feature field and 
different feature fields should use different hidden vectors when combining. In order 
to improve this, FFM (Field-aware Factorization Machine) was born. 

The idea of FFM is to divide the original potential space into many smaller 
potential spaces and use one of them according to the feature domain. For example, 
in terms of “male” and “basketball”, “male” and “cosmetics”, the potential role of the 
combination of these two features is different, and it is very necessary to introduce 
the concept of feature field. In FFM, the model can be expressed as formula (12.4). 

φ w, xð  Þ ¼  w0 þ 
n 

i¼1 

wixi þ 
n 

i¼1 

n 

j¼iþ1 

Vi, f 2 ,Vj, f 1 xixj ð12:4Þ 

Here, fj is the feature field to which the feature j belongs. If the length of the hidden 
vector is k, then there are n × f × k quadratic parameters of FFM, which is much more 
than n × k of the FM model. In addition, because the hidden vector is related to the 
feature field, it cannot simplify the quadratic term in the FFM expression, and its 
prediction complexity is O(kn2 ).
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12.4.3.2 Wide & Deep: Wide and Deep Learning (2016)—Memory 
and Generalization Information Complementation 

The core idea of the Wide & Deep model is to combine the memory ability of linear 
models and the generalization ability of deep neural networks models to improve the 
performance of the overall model. The feature combination that can learn high-
frequency co-occurrence from historical data is the model’s memory ability, and the 
model’s generalization ability represents the model’s ability to use correlation and 
transitivity to explore feature combinations that have never appeared in historical data. 
The Wide & Deep model combines memory ability and generalization ability and has 
successfully landed in the scene of Google Play store, becoming a classic model. 

As shown in Fig. 12.9, the Wide & Deep model structure consists of Wide and 
Deep. The Wide part is mainly a generalized linear model (such as LR). The linear 
model usually inputs one-hot sparse representation features or continuous features 
for training. The Wide model can efficiently realize memory ability through cross 
features to achieve the purpose of accurate recommendation; the Deep part can be 
simply understood as a common structure where embedding vectors combine with 
multi-layer perceptron (MLP), and the generalization ability of the model can be 
realized through the learned low-dimensional dense embedding vectors. Even for 
commodities that have not appeared in history, you can get good recommendations. 

The training of the Wide & Deep model adopts joint training, and its training error 
will be fed back to the linear model and the deep neural networks model at the same 
time for parameter update, so the weight update of a single model will be affected by 
the influence of both the Wide part and the Deep part on the training error of the 
model. The mathematical representation of the Wide & Deep model is as formula 
(12.5): 

Ywide&deep ¼ sigmoid wT 
wide � x,φ xð Þ½ � þ  wT 

deep � a lð Þ þ b ð12:5Þ 

In the formula above, b represents bias; a(l) represents the last layer of output of the 
Deep model; x represents the original input feature. Please note that there is also a

Fig. 12.9 Wide & deep model structure



ϕ(x), which is the feature intersection of the original feature. The outputs of the Wide 
and Deep parts are combined by weighting, and the final output is performed through 
the logistic loss function.
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12.4.3.3 DeepFM: Deep Factorization Machines (2017)—Introducing 
Implicit High-Order Cross Information of Neural Networks 
Based on FM 

The similarities between DeepFM and Wide & Deep are both considered from the 
Wide and Deep parts at the same time. The difference is to be able to better capture 
cross feature information. DeepFM uses FM as the model of the Wide part. Tradi-
tional linear models cannot extract high-order combined features, but the effect 
achieved by manually discovering feature cross combinations is very limited, so 
FM is used as the model of the Wide part to make full use of its ability to extract 
feature cross combinations. 

As shown in Fig. 12.10, FM and Deep share input vectors and dense embedding 
vectors, which make training not only faster, but also more accurate. In contrast, in 
the Wide & Deep model, the input vector is very large, which contains a large 
number of artificially constructed and paired combination features, which will 
undoubtedly increase the computational complexity of the model. 

The physical implication given by the DeepFM paper is that the FM part is 
responsible for the first-order features and second-order cross features, and the deep 
neural network part is responsible for the high-order cross features above the second 
order. Formula (12.6) gives the output formula of the FM model, and formula (12.7) 
gives the prediction result expression of the DeepFM model: 

Fig. 12.10 DeepFM model structure
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YFM ¼ w0 þ 
n 

i¼1 

wixi þ 
n 

i¼1 

n 

j¼iþ1 

Vi,Vj xixj ð12:6Þ 

YDeepFM sigmoid YFM YDNN 12:7 

12.4.3.4 DIN: Deep Interest Network (2018)—A Deep Learning Model 
Integrating the Attention Mechanism 

DIN (Deep Interest Network) adaptively learns the representation of user interest 
from the historical behavior of a particular advertisement by designing a local 
activation unit, which greatly improves the expressiveness of the model. 

The structure of the DIN model is shown in Fig. 12.11. One part is the basic 
model, and the other part is an improved model after adding Attention (attention 
mechanism). The basic model is an embedded vector combined with a multi-layer 
perceptron, which first converts different features into corresponding embedded 
vector representations, and then splices the embedding vectors of all features 
together, and finally inputs them into a multi-layer perceptron for calculation. In 
order to ensure the fixed-length input to the multi-layer perceptron, the basic model 
uses pooling, which is generally the vector sum and/or vector average, to perform 
sum and mean pooling operations on the embedding vectors of commodities in the 
user’s historical behavior sequence. 

However, there are great limitations. For each recommended product to be 
predicted, whether the product is clothes, cosmetics, electronic products, etc., the 
user’s representation vector is determined to be unchanged, which will result in 
indiscriminate recommendation. We know that in the e-commerce scene, users’ 
interests are various. With the migration of time or other situations, the change of 
users’ interests and the existence of unrelated behaviors cannot help with the click 
rate prediction. Therefore, we should consider setting different weights, such as 
changing the weights according to the change of time, but this cannot completely 
solve the problem. 

In order to solve the above-mentioned problem, Alimama’s algorithm team 
proposed DIN. This model adjusts the processing of the user’s click on the product 
sequence, and the other parts have not changed. The core idea is that in the pooling 
part, the weights of the products related to the recommendation are set to be larger, 
and the weights of the products not related to the recommendation are set to be 
smaller. This is an idea of Attention, which makes the products to be recommended 
interact with each product in the click sequence to calculate the attention mechanism 
score. 

The key point of DIN is the design of the local activation unit. DIN will calculate 
the correlation weight of the product to be recommended and the product in the 
user’s recent historical behavior sequence and use this weight as a weighting 
coefficient to carry out sum pooling for the embedded vectors of the product in 
these behavior sequences. The user’s interest is represented by this weighted sum
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vector. The calculation formula for the representation of user interest is as formula 
(12.8):
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Vu ¼ 
n 

i¼1 

wi ×Vi ¼ 
n 

i¼1 

G Vi,Vað Þ×Vi ð12:8Þ 

Here Vu is the user’s embedding vector, Va is the embedding vector of the product to 
be recommended, Vi is the embedding vector of the user’s i-th behavior, and G (Vi, 
Va) is Attention. You can see that the candidate embedding vector will be used in the 
user’s behavior sequence. The embedding vector of each product calculates a 
weight, and the final weighted sum is the user’s interest representation. 

The seemingly perfect representation of user interest actually has some short-
comings. The user’s interest is constantly evolving, while the user’s interest 
extracted by DIN is independent and unrelated and does not capture the dynamic 
evolution of interest; in addition, the user’s explicit behavior is used to express the 
user’s implicit interest, and its accuracy cannot be guaranteed. In this regard, 
Alimama’s algorithm team proposed DIEN (Deep Interest Evolution Network), 
which replaced the Attention and sum pooling parts of DIN with sequential model 
and attention. However, due to the complexity of the network structure, it will bring 
difficulties to engineering applications. 

12.5 Advertising Bidding 

There may be hundreds or even more companies that provide the same product and 
service; so, how can we determine the priority of them at this time? In response to 
this, the platform side has invented a bidding ranking with mixed reviews based on 
its own interests. Simply put, whoever pays more will be given priority to displaying 
their ads. This model of tying search and bidding has pros and cons. The simple logic 
is certainly efficient, but the effectiveness of this method still needs to be checked. In 
particular, the one-size-fits-all approach to all searches leads to higher risks in some 
specific industries. For example, a scandal of hospital ads published in a browser was 
revealed, which had an extremely bad impact on the browser. For advertisers, 
platforms, and consumers, consumers are relatively vulnerable groups. The strategy 
of search bidding ignores the quality and adaptability of advertisements. The search 
matching of platforms can only reach the granularity of keywords and cannot 
provide personalized services for thousands of people. Everyone is a unique indi-
vidual. The adoption of group strategy will inevitably lead to poor consumer 
experience. At the same time, advertisers will push up costs in bidding and transfer 
them to consumers in disguised forms. Even if the platform can earn a lot of 
advertising expenses for a while, it is difficult to maintain it for a long time. 

Usually in the advertising auction mechanism, the actual exposure of the adver-
tisement depends on the size of the traffic coverage of the advertisement and the 
relative competitiveness level in the competitive ads. The former depends on the



crowd orientation of the advertisement (the number of users matching the 
corresponding characteristics), the size of the advertisement material (the advertising 
space matched), and the setting items such as delivery time and budget; the factors 
that affect the latter mainly include bidding, advertising quality (such as pCTR/ 
pCVR, etc.), and control strategies for user experience. Generally speaking, the basic 
competitiveness can be expressed by 
eCPM = 1000 × cpc_bid × pCTR = 1000 × cpa_bid × pCTR × pCVR (cpc and 
cpa represent cost per conversion mode and cost per acquisition mode respectively). 
In summary, the size of advertising traffic coverage determines the number of times 
the advertisement can participate in the competition and the competition object, and 
the relative competitiveness level determines the probability of the advertisement 
winning in each competition, and the two jointly determine the daily exposure of the 
advertisement. 
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Fig. 12.12 Advertising auction process 

As shown in Fig. 12.12, the retrieved advertisements are sorted by eCMP 
computation, and then diversity filtering is performed to obtain the advertisements 
to be placed. Of course, eCMP only reflects the basic competitiveness, and will 
usually be combined with factors such as advertisement quality for final calculation. 

Ad impression, as its name implies, is the number of advertisements exposed in 
front of consumers. It can be calculated either by the number of people or by person 
times, but it should be noted that the dimension of calculation should be consistent 
with the subsequent click-through rate and conversion rate. The relationship between 
ad impressions and the effect of ad placement is not absolutely proportional, as 
shown in Fig. 12.13. Generally, the effect of moderate exposure is the best, neither 
too little nor too much. In the 2019 Tencent Advertising Algorithm Contest, the task 
is to estimate the daily exposure of future ads, providing historical n-day ad 
impression data (sampling a specific traffic), including the traffic characteristics 
corresponding to each impression (user attributes, ad space, and other temporal 
information) as well as the settings and competitiveness scores of ads exposed. It 
is worth mentioning that Wang He, the co-author of this book, and his team won the 
championship of the contest. The competition will be analyzed and explained in 
depth in Chap. 13.
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Fig. 12.13 Relationship between ad impressions and effect of ad placements 

This chapter takes the actual computational advertising field as the background, 
and introduces the advertising system framework, advertising types, and advertising 
core technologies. From the perspective of competition, computational advertising 
can conduct in-depth study around the quantitative indicators of advertising, so as to 
clarify the costs and benefits of advertisers and platforms and force the model to be 
improved. Since this book focuses on the actual practical application related to 
machine learning competitions, it mainly considers the online placement and appli-
cation of computational advertising, and there are some exclusive evaluation indi-
cators in this field to evaluate the effect of placements. For a certain product and 
service, the process from the birth of the concept to the landing on the consumer is 
relatively long and involves a lot of consideration. The corresponding computational 
advertising is mainly divided into three stages. First, the advertisement should be 
displayed in front of the consumers, which is the so-called impressions, so that the 
consumers can see the advertisement; secondly, consumers who are interested in this 
advertisement will click on it and browse the advertisement content and its 
corresponding product and service; finally, consumers who have the desire to buy 
will make corresponding paid transactions or register for use. In order to facilitate 
advertisers and platforms to analyze and count the effect of advertising, the three 
stages are respectively provided with three indicators—exposure, click-through rate, 
and conversion rate. Although the definitions of the three are different, they are all 
rooted in the number of consumers who carry out the corresponding operations. 
Except for exposure, which consumers cannot choose on their own, click and 
conversion are both spontaneous behaviors of consumers.
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12.6 Thinking Exercises 

1. What are the significant similarities and differences between computational 
advertising and ordinary advertising? 

2. Please briefly describe the advantages and disadvantages of computational adver-
tising under the search bidding mode. 

3. Please think about how the platform should negotiate with advertisers on the 
pricing strategy of advertising fees through various indicators of advertising. 

4. Please carefully observe the advertising pages pushed to you by 10 apps you use 
most frequently. Can you find out what they have in common? 

5. The combination of GBDT and LR is also a classic model in click-through rate 
prediction. How do they combine with each other then? 

6. There is another important part of computational advertising that is not men-
tioned, that is, advertisement detection. This part is often accompanied by 
cheating and anti-cheating problems. What is the specific modeling method?



Chapter 13 
Case Study: 2018 Tencent Advertising 
Algorithm Competition—Audience 
Lookalike Expansion 

This chapter will take the second Tencent Advertising Algorithm Competition in 
2018 (as shown in Fig. 13.1) as an example to analyze the practical cases related to 
computational advertising and will explain the complete process and precautions of 
the cases in detail. This chapter is mainly divided into six parts, namely, competition 
question understanding, data exploration, feature engineering, model training, model 
integration, and contest question summary. This is not only the organizational 
structure of all chapters of case examples in this book, but also an important process 
for a competition. I believe that under the guidance of this book, you can quickly 
become familiar with the competition process and apply what you have learnt into 
practice. 

13.1 Understanding the Competition Question 

As the saying goes, sharpening your axe will not delay your job of chopping wood. 
Before the competition, you should fully understand the information related to the 
competition questions, know the needs behind these questions, and then achieve the 
purpose of examining the questions correctly. This competition is based on Audi-
ence Lookalike Expansion of computational advertising problems. The contestants 
are lucky because the organizer of the contest have the largest social platform in 
China. Both the quality of the data they provide, and the professionalism of the 
competition are impeccable. The content of this section is also mostly from the 
official description of the competition questions given by Tencent. 
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Fig. 13.1 2018 tencent advertising algorithm competition 

Fig. 13.2 Audience lookalike expansion 

13.1.1 Competition Background 

Advertising based on social relationships (that is, social advertising) has become one 
of the fastest growing types of advertising in the Internet advertising industry. 
Tencent social ad platform is a commercial ad platform that relies on Tencent’s 
rich social products, rooting in Tencent’s massive social data, and using powerful 
data analytics, machine learning, and cloud computing capabilities to create a service 
for tens of millions of businesses and hundreds of millions of users. Tencent social 
ad platform has always been committed to providing accurate and efficient adver-
tising solutions, and complex social scenarios, diverse advertising forms, and huge 
user data have brought considerable challenges to achieve this goal. In order to 
overcome these challenges, Tencent social advertising platform is also constantly 
trying to find better algorithms for data mining and machine learning. 

The topic of this algorithm competition originates from a real advertising product 
in Tencent’s social advertising business—Audience Lookalike Expansion (later 
referred to as Lookalike). The purpose of this product is to find other groups similar 
to the target group from a large number of people based on the target group provided 
by advertisers, in order to achieve the goal of audience expansion, as shown in 
Fig. 13.2. 

In an actual advertising business application scenario, Lookalike can find poten-
tial consumers similar to these existing consumers from the target consumers based 
on the existing consumers of advertisers, so as to effectively help advertisers reach 
new customers and extend their business. At present, Lookalike is based on the first-
party data provided by advertisers and the effect data of advertising (that is, the seed 
population mentioned later), combined with Tencent’s rich data tags. Through the 
mining of deep neural networks, it has realized the function of expanding



high-quality potential customers with similar characteristics for multiple advertisers 
simultaneously, online in real time. The working mechanism of Lookalike is shown 
in Fig. 13.3. 
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Fig. 13.3 How lookalike works 

13.1.2 Competition Data 

The question data (desensitized) extracted for this competition is that for certain 
30 consecutive days. Usually, the data file can be divided into four parts: training set 
file, testing set file, user feature file, and advertisement feature file corresponding to 
the seed package. These four parts are introduced separately below.

• Training set file train.csv: Each row in this file represents a training sample, and 
the fields are separated by commas. The format is "aid, uid, label", where aid is 
used to uniquely identify an advertisement; uid is used to uniquely identify a user; 
label is the sample label with a value of +1 or -1; + 1 is the seed user, and -1 is  
the non-seed user. In order to simplify the question, a seed package corresponds 
to only one aid, and the two are one-to-one correspondence.

• Testing set file test.csv: Each line in this file represents a test sample, and the 
fields are separated by commas in the format “aid, uid”. The meaning of two 
fields is the same as that of the training set file.

• User feature file userFeature.data: Each line in this file represents a user’s 
feature data, with a vertical line “|” between each field fields; the format is “uid | 
features”. Among them, features are composed of many feature_group, and each 
feature_group represents a feature group; the multiple feature groups are also 
separated by a vertical line “|” in the format “feature_group1 | feature_group2 | 
feature_group3 |...”. If a feature group consists multiple values, it is separated by 
spaces as in the format “feature_group_name fea_name1 fea_name2 ...”, and the 
fea_name in it adopts the format of data numbering.

• The advertisement feature file adFeature.csv corresponding to the seed 
package: the format of each line in this file is “aid, advertising serId, campaignId, 
creativeId, creativeSize, adCategoryId, productId, productType “. The first field 
aid is used to uniquely identify an advertisement, and the remaining fields are
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advertisement features, separated by commas. For data security reasons, we 
encrypt uid, aid, user features, and advertisement features as follows. 

– uid: Randomize the number of each uid from 1 to n to generate an 
unduplicated encrypted uid - n is the total number of users (Assuming that 
the number of users is one million, all users are randomly scattered and 
arranged, and the sequence number after the arrangement is used as the 
user’s uid. The value range of the sequence number is [1, one million]). 

– aid: Refer to uid’s encryption method to generate encrypted aid. 
– User features: refer to the encryption method of uid to generate encrypted 

fea_name. 
– Ad features: refer to the encryption method of uid to generate encrypted fields. 

Next, the values of user features and advertising features will be explained.

• Description of value selection of user features 

– Age: segmentation representation; Each number represents an age group; 
– Gender: male, female; 
– Marital status: single, married, etc. (multiple states can coexist); 
– Education background: doctor, master, undergraduate, high school, junior 

high school, primary school; 
– Consumption ability: high and low; 
– Geographical location (LBS): Each number represents a geographical 

location; 
– Interest category: Mining different data sources to obtain 5 interest feature 

groups, which are represented by interest 1, interest 2, interest 3, interest 4, and 
interest 5. Each interest feature group contains several interest IDs; 

– Keywords: Mining different data sources to obtain three keyword feature 
groups which are represented by kw1, kw2 and kw3 respectively. Each 
keyword feature group contains several keywords that users are interested in 
which can be more than interest categories. Fine grain indicates user 
preferences; 

– Topics: Use LDA algorithm to mine user preference topics. Specifically, mine 
different data sources to obtain 3 topic feature groups, which are represented 
by topic1, topic2, and topic3; 

– Recent app installation behavior (appIdInstall): including apps installed in the 
last 63 days, where each app is represented by a unique ID; 

– appIdAction: The ID of the app with a high user engagement rate; 
– Internet connection type (ct): Wi-Fi, 2G, 3G, 4G; 
– Operating system (os): Android, iOS (version number is not distinguished); 
– Mobile telecommunication operator (carriers): mobile, Unicom, telecommu-

nications, others; 
– Real estate (house): having real estate, not having real estate.



• Description of value selection of advertisement features 

– Advertisement ID (aid): Advertisement ID corresponds to specific advertise-
ments. Advertising refers to the advertising creativity (or advertising mate-
rials) created by advertisers and the settings related to advertising display, 
including the basic information of the advertisement (advertising name, deliv-
ery time, etc.), promotion objectives, delivery platforms, advertising specifi-
cations, advertising creativity, advertising audience (that is, targeting settings 
of advertisements), advertising bids, and other information; 

– Advertiser ID: The account structure is divided into four levels: account, 
promotion plan, advertisement, and material. Advertisers and accounts are 
one-to-one correspondence; 

– Campaign ID: The promotion plan is a collection of advertisements (similar to 
the folder function of a computer). Advertisers can place advertisements with 
the same conditions such as the promotion platform, budget limit, and whether 
to deliver at a constant speed in the same promotion plan for management; 

– Material ID (creativeId): advertising content that is directly displayed to users. 
There can be multiple groups of materials under one advertisement; 

– Material size (creativeSize): The material size ID is used to identify the size of 
the advertising material; 

– Ad category (adCategoryId): Ad classification ID, using the ad classification 
system; 

– Product ID (productId): the ID of the product promoted; 
– Product type (productType): The product type corresponding to the advertis-

ing target (such as commodities corresponding to JD.com, corresponding
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download in Apps). 

13.1.3 Competition Tasks 

Lookalike automatically finds a similar audience, called the extended audience 
reach, among the candidate population provided by the advertiser through compu-
tation based on the seed population (also known as the seed package). This compe-
tition question will provide the contestants with hundreds of seed population, user 
characteristics corresponding to a large number of candidate audiences, and adver-
tising characteristics corresponding to the seed population. For the sake of business 
data security, all data have been desensitized. The entire data sets are divided into 
training sets and testing sets. In the training set, users belonging to the seed group as 
well as those not belonging to the seed population are calibrated respectively 
(i.e. positive and negative samples) in the candidate group. The model prediction 
will detect whether the contestant’s algorithm can accurately calibrate whether the 
users in the testing set belong to the corresponding seed package. The seed popula-
tion corresponding to the training set and the testing set is exactly the same. What is 
shown in Fig. 13.4 is the distribution of the population groups.

http://jd.com
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Fig. 13.4 Distribution of 
population groups 

In order to test whether the contestant’s algorithm can learn users and seed groups 
well, this competition requires participants to submit results that include the scores of 
candidate population for various seed groups belonging to the seed group (the higher 
the score, the more likely the candidate population is to be potential look-alike 
expansion users of this seed group). The seed groups provided by the preliminary 
and semi-final are the same except for the difference in order of magnitude. 

13.1.4 Evaluation Indicators 

If there is a relevant effect action (such as clicking or converting) after advertising to 
similar users extended is conducted, it is considered a positive example; if there is no 
effect behavior, it is considered negative. Each seed population to be evaluated will 
provide the following information: the advertisement ID (aid) corresponding to the 
seed population group, the ad characteristics, and the corresponding candidate group 
set (including the uid and user features of each candidate user). Contestants need to 
calculate the scores of users in the testing set for each seed group; the game will 
calculate the AUC index for each seed population group accordingly and use the 
average AUC value of all m seed groups to be evaluated as the final evaluation index; 
the formula is as in (13.1): 

1 
m 

m 

i= 1 

AUCi ð13:1Þ 

wherein AUCi represents the AUC value of the i-th seed population group.



What is the essential task of this competition?

progressively. Of course, exposing ads can not only bring direct user conversion to
advertisers, but also be a disguised form of marketing to advertisers’ brands and
popularity.

Different functions can be used according to the analysis needs. The functions
commonly used in pandas packages are read_csv (), head (), describe (),
value_counts (), plot (), shape, etc.

csv (training set), test1.csv (testing set), test1_truth.csv (testing set label), adFeature.
data (basic attribute of advertisements), and userFeature.csv (basic information of
users).
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13.1.5 Competition FAQ 

The basic task of the competition question is to carry out accurate user matching of 
the future advertisement push based on the previous advertisement push and the user 
click records, so as to improve the click-through rate by the users for the push ads, 
thus improving the conversion rate, bringing commercial value to advertisers, and 
charging ads marketing fees. 

There are several evaluation indicators in Internet advertising. What is the 
correlation between these indicators? 

The first indicator is exposure, which refers to the number of times one advertise-
ment is exposed to the users, that is, how many users have been the push ads; the 
second indicator is the number of clicks after the user sees the advertisement, that is, 
how many users click and come to the advertisement page; the third indicator is the 
conversion. If users see the advertisement and purchase corresponding products, the 
number of this part of users is the conversion. It can be seen that the exposure, click-
through rate, and conversion form an inverted pyramid structure, that is, decreasing 

13.2 Data Exploration 

This section will analyze and interpret the available information and data provided 
by the competition to explore possible modeling ideas. Generally speaking, if 
memory allows, contestants can generally use common third-party python open-
source packages such as jupyter notebook, pandas, and numpy to explore data. 

13.2.1 Public Data Sets for the Competition 

Take the data of the preliminary as an example, the data set files provided are train.
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13.2.2 Training Sets and Testing Sets 

The training set and the testing set only list the ID column and the label column. For 
this part, the data set publicly provided by Tencent also gives the real label of the 
testing set. Participants need to make it clear that this is a problem of two primary 
keys for matching the users with advertisements. Therefore, you can properly view 
the overlap between aid and uid in the training set and the testing set to determine the 
difference between the training set distribution and the testing set distribution. 

13.2.2.1 Distribution Differences 

First of all, it is necessary to confirm that there are no missing values in the training 
set or in the testing set, and the proportion of positive samples in the training set is 
4.8%, which is probability the data obtained after a certain sampling since it is hard 
for the click rate in actual business to reach this level. Then merge and count the 
unique values of aid and uid deduplicated in the training set and testing set respec-
tively, as shown in Table 13.1. 

It can be seen that less than 18% of the uid in the testing set appears in the training 
set, while the aid appears all the same in the testing set and in the training set. In fact, 
this is also in line with business logic—that is, in the case of a short period of time to 
maintain the same type of advertising, probability matching is predicted based on the 
click effect of the existing launch for users who have not been pushed the adver-
tisement, thereby increasing the number of clicks, and bringing commercial benefits. 

After the value difference of the single primary key is checked, it is necessary to 
confirm that the value of the two primary keys is also unique, that is, to confirm that 
the combination of aid and uid is unique. The unique representation here has only 
one definite label value. The code verification is as follows: 

train_nunique = train[['uid', 'aid']].drop_duplicates().shape[0] 
test1_nunique = test1[['uid', 'aid']].drop_duplicates().shape[0] 
all_nunique = test1[['uid', 'aid']].append(train[['uid', 

'aid']]).drop_duplicates().shape[0] 
assert train_nunique == train.shape[0] 
assert test1_nunique == test1.shape[0] 
assert train_nunique + test1_nunique == all_nunique 

Finally, according to the above analysis, there is still a lack of logical closed loop, 
that is, whether the distribution of advertisement ID placed in the training set and the 
testing set is the same. The verification result is shown in Fig. 13.5. 

Table 13.1 Distribution of uid and aid 

Train_nunique Test_nunique all_nunique Duplicates inbag_ratio (%) 

uid 7883466 2195951 9686953 392464 18 

aid 173 173 173 173 100
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Fig. 13.5 Distribution of 
advertisement ids released 
in training set and testing set 
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Fig. 13.6 Advertising attributes data display 

As can be seen from Fig. 13.5, the distribution of advertisements in the training 
set and the testing set is basically the same. Therefore, the focus is to examine the 
degree of interest of different users in the same advertisement, or it can be said that 
the participants need to find out the characteristics of the user group of the same 
advertisement, and then discover more users who may be interested in the adver-
tisement by taking advantage of the existing click data, which is the theme of this 
competition—Audience Lookalike Expansion. 

13.2.3 Advertising Attributes 

Use pandas. DataFrame ().head () method to display the basic data. As shown in 
Fig. 13.6, although all the data have been desensitized, it does not prevent partici-
pants from understanding the meaning of each field. Section 13.1.2 has listed 
detailed descriptions of advertisement features. Participants can view the data by 
themselves under the help of the instructions.
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13.2.4 User Information 

Since the format of the user feature file is .data, which is not conducive to the direct 
analysis and statistics by the contestants, it is converted into a .csv format file first. 
The specific operation code is as follows: 

# Check whether the file path already exists 
if os.path.exists('data/preliminary_contest_data/userFeature. 
csv'): 

user_feature=pd.read_csv('data/preliminary_contest_data/ 
userFeature.csv') 

else: 
userFeature_data = [] 
with open('data/preliminary_contest_dataa/userFeature.data', 
'r') as f: 

for i, line in enumerate(f): 
line = line.strip().split('|') 

userFeature_dict = {} 
for each in line: 
each_list = each.split(' ') 
userFeature_dict[each_list[0]] = ' '.join(each_list[1:]) 

userFeature_data.append(userFeature_dict) 
if i % 1000000 == 0: 

print(i) 
user_feature = pd.DataFrame(userFeature_data) 

user_feature.to_csv('data/preliminary_contest_data/ 
userFeature.csv', 

index=False) 

After converting the raw data source into pandas.dataframe format, the analysis 
becomes very convenient. Due to too many fields, only some fields are shown in 
screenshots here, as shown in Fig. 13.7. In addition to the user ID uid, other fields are 
user attributes. The user atrribues are divided into univariate attributes and multi-
variate attributes. Age, gender, marriageStatus, education, consumptionAbility, and 
LBS are univariate attributes with only one value per user. Interest 2, interest 5, and 
kw2 are multivariate attributes where each user will have multiple values. The 
processing of multivariate attributes will use algorithms related to natural language 
processing, which will be explained in Sect. 13.3. 

13.2.5 Feature Splicing of Data Sets 

After becoming familiar with the training set, testing set, advertising attributes, user 
information, participants are able to comprehend the relationship between these table 
files, i.e., using the ID columns of the training set and testing set as the basis to 
associate the advertising attributes with user information, and to form a wide table of 
features with ID columns and tags in the conventional sense; the remaining features 
can be directly used for modeling, but multivariate attribute features may require 
additional processing.
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Fig. 13.7 Display of basic user features 

Because the original data source is relatively large, for some participants who 
have just started, they may not have enough computing resources readily available to 
use. Therefore, in order to facilitate participants to quickly understand and run a 
successful demo, this book conducts 1% random sampling of the training set and 
testing set in this round, so that the big data problem is converted into a small data 
problem, and participants can quickly carry out relevant data exploration, feature 
engineering, and model building. After the scheme is determined here, if there are 
enough resources, you can perform full data modeling. Here are the codes 
implemented for random sampling and data splicing: 

train = train.sample(frac=0.01, random_state=2020).reset_index 
(drop=True) 
test1 = test1.sample(frac=0.01, random_state=2020).reset_index 
(drop=True) 
test1['label'] = -2 
# Extract user information for the existing training sets and testing sets 
user_feature = pd.merge(train.append(test1), user_feature, 

how='left', on='uid').reset_index(drop=True) 

# Splicing advertising information 
data = pd.merge(user_feature, ad, how='left', on='aid') 

# Perform label conversion to facilitate the differentiation of training sets and testing sets 
data['label'].replace(-1, 0, inplace=True) 
data['label'].replace(-2, -1, inplace=True) 

At the same time, in order to facilitate modeling, it is necessary to replace the -1 
representing negative samples in the sample label with 0 and record the real labels of 
the testing set at the same time, so as to verify and compare the subsequent modeling. 
The display of label distribution is shown in Fig. 13.8.
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Fig. 13.8 Display of label 
distribution 

Then distinguish feature categories according to the univariate and multivariate 
attributes of features. The distinguishing methods are as follows: 

cols = train.columns.tolist() 
cols.sort() 
se = train[cols].dtypes 
# multivariate attributes 
text_features = se[se=='object'].index.tolist() 
# univariate attributes 
discrete_features = se[se!='object'].index.tolist() 
discrete_features.remove('aid') 
discrete_features.remove('uid') 
discrete_features.remove('label') 

Finally, it can be concluded that there are 16 multivariate features text_features in 
the data set, namely appIdAction, appIdInstall, ct, interest1, interest2, interest3, 
interest4, interest5, kw1, kw2, kw3, marriageStatus, os, topic1, topic2, topic3, and 
14 discrete_features univariate features, which are LBS, adCategoryId, advertising 
Id, age, campaignId, carrier, consumptionAbility, creativeId, creativeSize, educa-
tion, gender, house, productId, productType. Since the handling of different types of 
characteristics is very different, making simple distinctions makes it easier to work 
more efficiently later. 

13.2.6 Basic Modeling Ideas 

Through simple data exploration and splicing of table files, participants will be able 
to perceive that this data structure is very clear. In fact, there are two types of 
features, namely, multivariable text features text_features and univariate discrete 
features discrete_features. Therefore, this chapter will consider a novel modeling



idea, which is to introduce a CatBoost model that can directly support text_features 
for modeling. 
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13.3 Feature Engineering 

This section will perform some feature extraction on the basis of data exploration. 
The data of this competition is very representative. Except for the ID column and the 
tag column, the other columns are feature columns, and the feature columns here are 
all discrete columns, including multivariate features and univariate features. This 
data organization form and the organization form of Chap. 8 are two typical 
scenarios. The raw data in Chap. 8 is some user behavior records, which need to 
be designed and extracted before modeling. Of course, it does not mean that the 
actual cases in this chapter do not need feature design and extraction; rather it is just 
because the feature engineering here will be somewhat different from that in Chap. 8. 
This section will take the data of the 2018 Tencent Advertising Algorithm Compe-
tition as an example to illustrate another set of commonly used feature design and 
extraction schemes, in which classic features and business features are used to 
extract information from univariate fields, while text features are aimed at multivar-
iate fields. 

13.3.1 Classic Features 

Intuitively speaking, ordinary models (such as LR, RF, GDBT, etc.) cannot distin-
guish and process univariate discrete features during training. Therefore, such 
features need to be transformed so that they can be characterized by continuous 
columns with large and small meanings, and then use models for quantitative 
differentiation and study. This section will introduce the meanings and extraction 
methods of three common statistical features. 

13.3.1.1 Count Feature 

This is a simple counting feature, which can measure the frequency of occurrence of 
a univariate discrete field and indicate whether a certain attribute of the sample is 
suitable to the majority or minority. The pandas.series value_counts () method is 
usually used for frequency statistics. The count coding feature corresponds to the 
countVectorizer used for multivariate fields introduced in Sect. 13.3.3, which is most 
obvious in the data value distribution such as the long tail distribution. Reflected in 
this competition, the count coding feature is called the exposure feature, which can 
be the exposure of a single field or a combination of multiple fields. The following



part takes some univariate feature fields in this data set as examples to give the raw 
input data and the output exposure feature. 
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Fig. 13.9 Training set raw input data 

Fig. 13.10 Exposure features output 

Figure 13.9 shows a portion of the input data: 
Figure 13.10 shows a portion of the output data: 
Take the exposure_age field as an example. The sample values of age are 1, 2, and 

5, and the corresponding numbers are 26,029, 25,245, and 26,179 respectively. The 
other fields have similar meanings. The exposure_age_and_gender is the combina-
tional counting of age and gender. Only one univariate feature field is needed to 
calculate the univariate exposure feature, and two univariate feature fields are needed 
to calculate the exposure feature above the second order. In this way, the value that 
does not have the size relationship is mapped into the quantity value, which can 
intuitively demonstrate whether the user belongs to the majority or minority, for 
example, in the dimension of age. Participants will realize that this can reflect the age 
difference of users to a certain extent. On this basis, you can even calculate third-
order features and features of higher order, which is of course easy to cause 
dimension explosion. This is also the essence of the N-Gram algorithm for text 
feature extraction in the field of natural language processing. 

13.3.1.2 Nunique Feature 

The second type of feature is the number of attribute values feature nunique, which 
refers to the number of attribute values after the intersection of two univariate fields.



The two univariates can have an inclusion relationship or be independent of each 
other. Usually, when two univariates have an inclusion relationship and the number 
of attribute values between different branches varies greatly, the modeling effect is 
more obvious. For example, if the user’s geographic location attribute, that is, the 
LBS, contains desensitized city ID and subway line information, it is possible to add 
additional information mined by the geographic location attribute to the user, since it 
is generally believed that cities with more subway lines have more prosperous 
economies and may have larger population. 
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Fig. 13.11 The nunique feature output 

The output nunique feature is shown in Fig. 13.11. Observing the 
nunique_adCategoryId_in_LBS feature column, it can be noticed that to some 
extent, this column can reflect the adCategoryId distribution range of different 
LBS. This is the representation of LBS at the adCategoryId level, which in turn 
can be characterized at the LBS level. However, this part of information is also only 
a first-order expression, and both the including items and the items being included 
for this type of feature can be extended at a higher order. 

13.3.1.3 Ratio Feature 

The ratio feature can be constructed by making use of the interaction between the 
two features during the construction of the second-order feature mentioned above in 
the count coding feature part. The calculation result of the count coding feature and 
the nunique feature are both integers. Unlike these two, the value obtained by 
calculating the ratio feature is a decimal between 0 and 1. If the nunique feature 
can reflect the influence of the distribution range of the feature, then the ratio feature 
can reflect the proportion, or preference level. 

13.3.2 Business Features 

Section 13.3.1 has introduced the three classic features of count coding, nunique, 
and ratio. This section will introduce another statistical feature that requires tags 
basing on this competition question, namely the business feature. This feature may 
be used in the classification model. In fact, it is the label distribution ratio of different 
values for each discrete field, which is reflected in this competition as the click-
through rate.
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13.3.2.1 Click-Through Rate Features 

Before introducing click-through rate features, we must first clarify two concepts— 
over-fitting and leakage. Over-fitting refers to the model’s over-learning of the 
training set during training, resulting in poor generalization performance, especially 
when the distribution of the training set and the testing set, especially the joint 
distribution of features and tags, is quite different. Leakage means that when the 
model is trained, the features are mixed with tag information, which leads to tagging 
as part of the features to some extent. Therefore, the model has excellent learning 
effect. However, the problem is that the tags of the testing set should have been 
unknown and there may be distribution differences, which will also lead to poor or 
even extremely poor generalization performance of the model, as well as over-fitting. 
Therefore, extreme care should be taken when using labels to extract and process 
related features. It is necessary to strengthen the expression of features on labels without 
over-expression, which will lead to over-fitting and leakage of label information. 

In order to avoid label leakage to a certain degree, the idea of five-fold cross 
validation can be used for cross click rate statistics, so that the click-through rate 
characteristics of each sample obtained do not use the information of its label. The 
specific algorithm steps are as follows: 

1. The training set is randomly divided into n equal parts; 
2. The click-through rate feature corresponding to each training set obtained in step 

(1) is statistically mapped by the remaining n-1 training sets, and the click-
through rate feature mapping result of one testing set is obtained at the same time; 

3. After step (2) is completed, the click-through rate feature corresponding to the 
entire training set can be obtained, and the click-through rate feature mapping 
result of the testing set is averaged for n times of different n-1 training sets; then 
the click-through rate feature corresponding to the testing set can be obtained. 

Next, the specific implementation code is given. Special attention should be paid to 
the fact that only the first-order click-through rate feature is given here, i.e. the 
original category feature is directly constructed, and the click-through rate feature 
after the cross combination of the category feature is not given. 

# Step 1 
n_parts = 5 
train['part'] = (pd.Series(train.index)%n_parts).values 

for co in cat_features: 
col_name = 'ctr_of_'+co 
ctr_train = pd.Series(dtype=float) 
ctr_test = pd.Series(0, index=test.index.tolist()) 
# Step 2 
for i in range(n_parts): 

se = train[train['part']!=i].groupby(co)['label'].mean() 
ctr_train = ctr_train.append(train[train['part']==i][co].map 
(se)) 
ctr_test += test[co].map(se) 

train_df[col_name] = ctr_train.sort_index().fillna(-1).values 
test_df[col_name] = (ctr_test/5).fillna(-1).values
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13.3.3 Text Features 

The above two sections have introduced some feature extraction methods for 
univariate discrete fields. However, there is another category of multivariate discrete 
fields in the competition introduced in this chapter, such as interests, keywords, and 
topics. How to process such fields and perform feature engineering are also worth 
discussing. This section will introduce relevant algorithms of natural language 
processing and process such fields as text features. Figure 13.12 shows the fields 
of interest. 

The following is the basic preparations before extracting text features: mainly 
importing the library and initializing the data set: 

from scipy import sparse 
from sklearn.feature_extraction.text import CountVectorizer, 
TfidfVectorizer 
from sklearn.preprocessing import OneHotEncoder,LabelEncoder 
from sklearn.decomposition import TruncatedSVD 
train_sp = pd.DataFrame() 
test_sp = pd.DataFrame() 

Let’s first look at the sparse matrix structure of the scipy library, which is a data 
storage method different from pandas.DataFrame(). The sparse matrix is character-
ized by its high total dimension, but each user only has a value in a small part of it, so 
it will not take up too much memory while maintaining ultra-high dimensions. Next, 
the sparse matrix features will be generated from three aspects. 

13.3.3.1 OneHotEncoder 

OneHotEncoder, also known as one-hot coding, refers to the encoding process of 
univariate discrete fields to form a sparse matrix structure. Simply put, it is to change 
a univariate discrete field with a unique value of n into an n-dimensional vectors of 
0 and 1, and then store it as a sparse matrix structure. The DataFrame format is used 
here for codes implementation:

Fig. 13.12 Multi-valued 
feature interest1



ohe = OneHotEncoder() 
for feature in cat_features: 

ohe.fit(train[feature].append(test[feature]).values.reshape(-1, 
1)) 
arr = ohe.transform(train[feature].values.reshape(-1, 1)) 
train_sp = sparse.hstack((train_sp, arr)) 
arr = ohe.transform(test[feature].values.reshape(-1, 1)) 
test_sp = sparse.hstack((test_sp, arr))
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After one-hot encoding, the original single variable discrete field that does not 
have a quantization size relationship is converted into multiple continuous fields 
represented by 0 and 1, which can be directly used for logical regression models 
(LR) and other models that do not directly support discrete fields. 

13.3.3.2 CountVectorizer 

Likewise, since univariate discrete fields can convert continuous features of 0 and 
1 values, multivariate discrete fields also have corresponding conversion methods, 
namely CountVectorizer. It makes perfect sense to count each field of multivariate 
separately to represent the number of occurrences of samples on a certain value. Of 
course, the data of this competition will not be repeated because of the multiple 
values of a single user on features such as interest, so the converted value is still only 
0 or 1. The specific implementation code is given below: 

cntv=CountVectorizer() 
for feature in text_features: 

cntv.fit(train[feature].append(test[feature])) 
train_sp = sparse.hstack((train_sp, cntv.transform(train 
[feature]))) 
test_sp = sparse.hstack((test_sp, cntv.transform(test 
[feature]))) 

13.3.3.3 TfidfVectorizer 

TfidfVectorizer is a statistical vector related to word frequency. Its similarity with 
CountVectorizer is that their feature dimensions are the same. The difference 
between them is that CountVectorizer calculates the number of values of an attribute 
in different dimensions, while TfidfVectorizer calculates frequency. The importance 
of an attribute increases in proportion to the number of times it appears in a sample, 
but at the same time it will decrease inversely as appearing more frequently in the 
entire data set. The specific code is as follows. Special attention should be paid to the 
fact that TfidfVectorizer () contains parameters, but they are default parameters, that 
is, no settings are made.



tfd = TfidfVectorizer() 
for feature in text_features: 

tfd.fit(train[feature].append(test[feature])) 
train_sp = sparse.hstack((train_sp, tfd.transform(train 

[feature]))) 
test_sp = sparse.hstack((test_sp, tfd.transform(test[feature]))) 
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So far, participants may have a question naturally: that is, the approach of this 
section will undoubtedly produce ultra-high dimensional features, which may cause 
performance problems. In view of this risk, in addition to using sparse matrix as the 
storage structure of data, there is also an auxiliary method to reduce dimension to a 
certain extent, remove redundant extremely sparse dimensions, or map features to 
low-dimensional space through feature transformation, thus realizing optimization 
of calculation speed and memory occupancy. 

13.3.4 Feature Dimension Reduction 

13.3.4.1 TruncatedSVD 

The sklearn (scikit-learn) is a powerful machine learning Python open source 
package, which is consisted of various commonly used modules. The feature 
decomposition module contains multiple algorithms for feature dimension reduction 
to deal with different types and forms of features. In this book, in order to facilitate 
participants to quickly become familiar with the algorithm process and skills, the 
competition data (about 10 W data) was sampled in advance. However, participants 
who have undergone text feature processing will find that their feature dimensions 
explode to 25 W +, which will bring great performance challenges to modeling. 
Therefore, a certain degree of dimension reduction can be considered first. The 
decomposition module in the sklearn package has a TruncatedSVD arithmetic 
operator for dimension reduction of sparse matrix structures, which can specify the 
number of features of the principal component for matrix output. Its usage is similar 
to that of text feature processing operators. Here are the codes implemented for 
TruncatedSVD usage: 

svd = TruncatedSVD(n_components=100, n_iter=50, random_state=2020) 
svd.fit(sparse.vstack((train_sp, test_sp))) 

cols = ['svd_'+str(k) for k in range(100)] 

train_svd = pd.DataFrame(svd.transform(train_sp), columns = cols) 
test_svd = pd.DataFrame(svd.transform(test_sp), columns = cols) 

In addition to SVD, there are many dimension reduction methods that can be 
used, such as PCA (Principal Components Analysis), LDA (Linear Discriminant 
Analysis), and NMF (Non-negative Matrix Factorization), etc. These methods have 
great differences in the specific dimension reduction process, indicating that differ-
ent dimension reduction methods have the possibility of common use.
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13.3.5 Feature Storage 

It should be noted that in order to achieve better results in the competition, the field 
information in the testing set is usually added to the computation and processing of 
features, but in actual business applications, this approach is impossible to achieve, 
and some competitions will explicitly require that the field information of the testing 
set should not be used for feature engineering. After the feature processing in the 
previous sections, in addition to the original data features, three other feature files are 
generated. As shown in Fig. 13.13, a description of all feature files is given. 

13.4 Model Training 

13.4.1 LightGBM 

The LightGBM model is able to support category features during training, but the 
premise is that LabelEncoder coding processing needs to be performed first. Feature 
module includes LabelEncoder for univariate discrete fields, and SVD is the sparse 
matrix feature of multivariate discrete fields after dimension reduction processing. 
Combine the two with the LightGBM model and use a five-fold cross validation 
method to train the model. Finally, the verification set evaluation score of the model 
is 0.67922 (AUC index), and the testing set evaluation score is 0.61864. 

It is obvious that the training set has over-fitting phenomenon; that is, the testing 
set evaluation score is much lower than the verification set evaluation score, which 
may be caused by the feature over-fitting in the feature module and the information 
loss after SVD dimension reduction. 

Fig. 13.13 Description of the feature file
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13.4.2 CatBoost 

Catboost is also one of the most commonly used models, because it directly supports 
the processing and modeling of text features, that is, multivariable field features, and 
can be trained and modeled using only the raw data source. It also uses the way of 
five-fold cross-validation to train the model, and the verification set score of the 
model is 0.64900 and the testing set score is 0.66501. 

13.4.3 XGBoost 

CatBoost is able to directly support text features (text_features) and category 
features (cat_features) because of the sparse processing of these fields within the 
model. Therefore, the relevant operators of the sklearn package can be used for 
processing in the outer layer first, and then XGBoost can be used for modeling. The 
verification set score of the model is 0.67905, and the testing set score is 0.67671. 

13.5 Model Integration 

13.5.1 Weighted Integration 

A simple weighted integration is carried out according to the score of the testing set. 
The specific calculation method is: RandomForest result × 0.2 + LightGBM result × 
0.3 + XGBoost result × 0.5. The verification set score of the model is 0.68147, and 
the testing set score is 0.68208. It can be seen that the effect of weighted integration 
is still relatively obvious, and there is no need for complicated operations. 

13.5.2 Stacking Integration 

Stacking structures have many alternatives. In this competition, we choose to use 
verification results and prediction results of LightGBM model and XGBoost model 
as the eigenvalues, and CatBoost model will be the final model, playing the role of 
training and prediction. This is because CatBoost model can obtain good prediction 
effect even in the case of only taking advantage of the original features with its 
relatively strong prediction ability. The following will specifically show the univer-
sal implementation code of Stacking integration which is often used: 

def stack_model(oof_1, oof_2, oof_3, pred_1, pred_2, pred_3, y, 
eval_type='regression'): 

# oof_1、 oof_2、 oof_3 are results of verification sets of the three models 
# pred_1、 pred_2、 pred_3 are results of testing sets of the three models



# y  is the truth label of training sets, eval_type is the task type 
train_stack = np.vstack([oof_1, oof_2, oof_3]).transpose() 
test_stack = np.vstack([pred_1, pred_2, pred_3]).transpose() 

from sklearn.model_selection import RepeatedKFold 
folds = RepeatedKFold(n_splits=5, n_repeats=2, random_state=2020) 

oof = np.zeros(train_stack.shape[0]) 
predictions = np.zeros(test_stack.shape[0]) 

for fold_,(trn_idx,val_idx) in enumerate(folds.split(train_stack,y)): 
print("fold n° {}".format(fold_+1)) 
trn_data, trn_y = train_stack[trn_idx], y[trn_idx] 
val_data, val_y = train_stack[val_idx], y[val_idx] 
print("-" * 10 + "Stacking " + str(fold_) + "-" * 10) 
clf = BayesianRidge() 
clf.fit(trn_data, trn_y) 

oof[val_idx] = clf.predict(val_data) 
predictions += clf.predict(test_stack) / (5 * 2) 

if eval_type == 'regression': 
print('mean: ',np.sqrt(mean_squared_error(y, oof))) 

if eval_type == 'binary': 
print('mean: ',log_loss(y, oof)) 

return oof, predictions 
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Here, oof_1, oof_2, and oof_3 are the corresponding results of verification sets of 
the three models, and pred_1, pred_2, and pred_3 are the results of testing sets of the 
three models. As a general stacking framework, there are no specific constraints on 
the three models. The two parts are spliced separately to obtain one training set and 
one testing set with only three feature columns, and then the training set is fed into 
the BayesianRidge model for training; the final results are then stored in advance. 

The final model verification set score is 0.70788, and the testing set score is 
0.67445. It can be seen that the offline score of stacking integration is usually higher, 
but a consistent result that has been improved cannot be obtained on the testing set 
due to overfitting and other reasons. 

13.6 A Summary of the Competition Question 

13.6.1 More Schemes 

13.6.1.1 GroupByMean 

As what has been mentioned above, click-through rate features are extracted by 
combining univariate discrete fields with tags. From this point, it can be thought that 
the 0 and 1 columns similar to tags are obtained after sparse matrixing of multivariate 
discrete fields. Therefore, statistics can be done to compute the mean of the value of



the univariate discrete field in a multivariate discrete field, namely groupby 
(cat_features) [text_features] .mean (). For example, when the value for age is 
5, compute the proportion of people with an interest ID of 109 for interest1 in the 
group. 
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13.6.1.2 N-Gram 

When extracting CountVectorizer features, the book uses the default parameter, that 
is, ngram = (1,1). It has not tried to take a higher-order N-Gram for statistics. The 
higher-order N-Gram essentially adds a layer of combination of features, so that 
information belonging to the same multivariable discrete field is tied together, such 
as identifying who likes running and cycling at the same time. 

13.6.1.3 Graph Embedding 

This kind of method is mainly used to extract vector representations of categories 
such as uid or aid, which can well mine user and advertisement information from the 
graph structure. Those uid or aid that have homogeneity or isomorphism in the graph 
can also be represented by the embedded vectors. Figure 13.14 shows two embedded 
vector extraction methods for DeepWalk. 

13.6.2 Sorting Out Knowledge Points 

13.6.2.1 Feature Engineering 

As for feature engineering, this chapter introduces common feature extraction 
methods from three aspects: classical features, business features, and text features. 
Among them, the classical features are mainly interactive statistics between univar-
iate discrete fields, including count coding, nunique and ratio features; the business 
features part introduces the click-through rate features combined with industry 
scenarios and domain knowledge, which are also features that need to be combined 
with tags; the text features portion introduces several different ways to generate

Fig. 13.14 Process of extracting embedding vectors



sparse matrices, which are especially useful when dealing with large-scale univariate 
and multivariate discrete fields.
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13.6.2.2 Modeling Ideas 

The competition question in this chapter represents a typical data organizing form 
and table data structure. For this kind of data, a relatively common feature engineer-
ing method can be abstracted. This is also one of the reasons why this competition 
question is used in this book to explain the case of computational advertising. The 
principle of Lookalike is to find potential users who are similar to the users who have 
clicked on the advertisement by taking advantage of the marketing results of 
previous advertisements, so as to achieve continuous exposure and clicks of adver-
tisements. Therefore, the focus should be on finding similarities between users, 
especially the joint similarity in all dimensions. Unfortunately, machine learning is 
limited by feature engineering and cannot achieve the best results, while deep 
learning neural networks can perform nested combination and nonlinear function 
fitting on text fields, so the neural networks model had better performance in this 
competition. 

13.6.3 Extended Learning 

This competition requires participants to provide and submit the scores that show the 
candidate users of various seed population groups in the testing set belong to the 
corresponding seed groups (the higher the score, the more likely the candidate users 
are to be potential look-alike users of a certain seed group); then, can the probability 
of users clicking on an advertisement be regarded as a click-through rate prediction 
problem? This is very similar to 2017 Tencent Advertising Algorithm Contest. The 
basic feature construction method and model selection are the same. The difference 
is that there is no time-related information in the user behavior sequence of the 2018 
Tencent Advertising Algorithm Competition, which lacks a lot of time-related 
features. Of course, this is also caused by business of Lookalike. 

13.6.3.1 2017 Tencent Advertising Algorithm Contest: Conversion Rate 
Prediction of Mobile App Advertising 

Computational advertising is one of the most important business models of the 
Internet. The effect of advertisement delivery is usually measured from three aspects: 
exposure, clicks, and conversion. Most advertising systems are limited by the 
function of returning advertising effect data and can only be optimized by using 
exposure or clicks to measure the effect of ad delivery. Tencent Social Ads makes 
the most of its unique capabilities in user identification and conversion tracking data



to help advertisers track the conversion result after advertising, trains the predicted 
conversion rate model (pCVR) based on advertising conversion data, and introduces 
pCVR factors in advertising ranking to optimize the effect of ad delivery and 
improve ROI. This question takes mobile App ads as the research target and predicts 
the probability of activation of App ads after they are clicked: pCVR = P (conver-
sion = 1 | ad, user, context); that is, given the advertisement, user, and context, 
predict the probability that the App ad will be activated after being clicked. The 
industry has always attached more importance to the research of advertisement click-
through rate conversion (CTR), and the current application is relatively mature. 
Tencent’s prediction of advertisement conversion rate (CVR) in this competition is 
unique. The competition has high research value both in academic research and 
industry application fields. 
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Basic ideas: 2017 Tencent Algorithm Contest is an early CTR contest, and many 
methods are worth learning from, including a lot of classic operations. In terms of 
models, most players chose the tree model and FFM model, and then combined 
various Stacking combinations to get the final result. At that time, the model used for 
predicting advertising clicks was relatively simple since the DeepFM, xDeepFM, 
AFM, etc. used today came out late. 

In terms of feature construction, they are also similar, such as basic features, user 
category features, advertising category features, context features, interaction fea-
tures, and other features. The focus here is on other features, which can be called 
trick features, specifically including the conversion of the user’s repeated clicks on 
the day, the time difference between the first and last items of the repeated samples 
on the day (the feature variables are the same), and the repeated samples on the day 
are sorted by time. 

p= f 
f - 1 0:1ð Þ þ  f - 1 0:15ð Þ þ  f - 1 0:08ð Þ  

3 
= 0:1067 ð13:2Þ 

The champion’s plan has great innovations in the model. In addition to the tree 
model, wide & deep, and PNN, it also uses an improved and innovative NFFM 
model, and the single model score is higher than that of the third place on the list. 
The final model integration method used is weighted average integration, but it is 
integrated after logit inversion. To be specific, first substitute the results of each 
model into the sigmoid inverse function, then get the mean, and finally use the 
sigmoid function for the mean value. Compared with the common weighted average, 
this method is more suitable for situations with small differences in results. 

# sigmoid function 
def f(x): 

res = 1 / ( 1 + np.e ** ( -x ) ) 
return res 

# sigmoid inverse function 
def f_ver(x): 

res = np.log( x / ( 1 - x ) ) 
return res



Chapter 14 
Case Study: TalkingData AdTracking 
Fraud Detection Challenge 

This chapter centers on the typical anti click fraud competition question of a contest 
held on the Kaggle competition platform in 2018, i.e., TalkingData AdTracking 
Fraud Detection Challenge (as shown in Fig. 14.1), which will also be used as the 
second practical case for issues related to computational advertising. The main 
content includes competition question understanding, data exploration, feature engi-
neering, model training, and competition question summary. In fact, when selecting 
the competition question to be analyzed, the joint authors discussed many times, 
because the advertising field not only involved a lot of core technologies, but also 
had a variety of competition questions available for discussion. In the end, we took 
data quality, knowledge points that can be covered, and the popularity of competi-
tion questions as the main criteria for selection and finally decided to choose this 
competition question. 

14.1 Understanding the Competition Question 

14.1.1 Background Introduction 

Fraud risks are everywhere. For companies that advertise online, enormous click 
fraud incidents may occur, resulting in a sea of abnormal click data appearing, 
wasting a lot of money. Being able to identify fraudulent clicks can greatly reduce 
costs. In China, more than 1 billion intelligent mobile devices are being used every 
month. 

TalkingData is a relatively large independent big data service platform, with 
focus on more than 70% of China’s mobile devices, handling 3 billion click events 
per day, 90% of which may be fraudulent. The current approach the platform 
provides to developers of an app to prevent click fraud is to evaluate the click 
process of users in their product portfolio and mark IP addresses that generate
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numerous click events but never install the app in the end. Using this information, 
developers have established IP address blacklists and device blacklists.
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Fig. 14.1 Home page of TalkingData AdTracking fraud detection challenge 

Aiming to be able to foresee click fraud so that anti-fraud efforts could prevent it 
from happening, TalkingData launched algorithm challenges on the Kaggle com-
munity to further develop solutions. In the second contest cooperated with Kaggle, 
the contestants faced the challenge of constructing an algorithm that could predict 
whether users would download the app after clicking on the app’s advertisement. To 
support the contestants in modeling, the organizers provided a data set containing 
approximately 200 million click events in 4 days. 

14.1.2 Competition Data 

This competition question provides the training data with a sample size of nearly 
190 million, including data from November 6, 2017 to November 9, 2017. Each data 
record is an ad click event. The variables (features) involved in the training set are as 
follows.

• ip: the IP address where the click event occurs;
• app: app ID provided by the advertiser;
• device: the user’s mobile device ID;
• os: the operating system version ID of the user’s mobile device;
• channel: advertising delivery channel ID;
• click_time: click time (UTC time), the format is yyyy-mm-dd hh: mm: ss;
• attributed_time: If the user clicks and downloads the app, then this is the time of 

downloading the App;
• is_attributed: whether the user has downloaded the app after clicking, which is 

the target variable. 

14.1.3 Evaluation Indicators 

The competition requires participants to submit the probability that users will 
eventually download the app and calculate the AUC value based on this as a judging 
criterion.



The initial size of the raw data source set has reached 4 GB. What difficulties
will this bring to the competition?

portions of negative sample data first, and then integrated, usually leading to
unexpected results.

can be started. The initial baseline scheme constructed does not need to be too
complicated, as long as it can give a correct result.
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14.1.4 Competition FAQ 

In real competitions, a too large data set often restricts operations. If the memory 
configuration is not sufficient, not only may the data set fail to load, but also the 
memory must be used sparingly during feature construction. Therefore, when 
writing code, you should optimize the writing; otherwise the memory will explode 
if you are not careful, or the code will run for several hours before it is over; when 
training the model, there will also be great limitations; for example, the parameters of 
the model can no longer be adjusted so arbitrarily, and the loss of time must be taken 
into account in determining the learning rate, iteration number, and early stopping; 
further, as for verification method, five-fold cross validation becomes quite labori-
ous, and it will be more efficient to use the leave-one-out method. 

What if the distribution of positive and negative samples is extremely 
unbalanced? 

This is also a common problem in the field of recommendation advertising; the 
general solution to it is to carry out data sampling, and the most commonly used 
approach is random sampling; to be specific, when the sample distribution is not 
balanced, it is random negative sampling, which could be illustrated as randomly 
sampling a certain percentage of negative sample data, and then using this part of 
negative sample data and complete positive sample data to complete feature extrac-
tion and the final model training. Special attention should be paid to the fact that in 
the model integration stage, the model is trained and predicted with different pro-

14.1.5 Baseline Scenario 

With the preliminary properties described in Sect. 14.1.2, the basic modeling work 

14.1.5.1 Data Reading 

The relevant code for reading data is as follows:



dtype=dtypes)

read table data directly, then the integer column will default to int64 and the oating-
point column to float64, obviously a waste of space for those integer values between
-128 and 127. This problem is solved by optimizing memory.

data = pd.concat([train, test], axis=0)

In particular, due to limited memory space, it is necessary to delete the original
training set and testing set after the training set and the testing set are merged, and
then use gc.collect () to release memory.

import gc 
import time 
import numpy as np 
import pandas as pd 
from sklearn.model_selection import train_test_split 
import xgboost as xgb 

path = './input/' 
train_columns = ['ip', 'app', 'device', 'os', 'channel', 'click_time', 
'is_attributed'] 
test_columns = ['ip', 'app', 'device', 'os', 'channel', 'click_time', 
'click_id'] 
dtypes = {'ip' : 'uint32', 'app' : 'uint16', 'device' : 'uint16', 'os' : 
'uint16', 
'channel' : 'uint16', 'is_attributed' : 'uint8', 'click_id' : 
'uint32'} 
train = pd.read_csv(path+'train.csv', usecols=train_columns, 
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test = pd.read_csv(path+'test_supplement.csv', usecols=test_ 
columns, dtype=dtypes) 

There is a skillful operation when reading data, that is, optimizing memory. If you 
fl

14.1.5.2 Preparing Data 

First, merge the training set and the verification set, and delete the redundant vari-
ables before that to ensure that there will be no errors when merging. The specific 
operation code is as follows: 

# training set 
y_train = train['is_attributed'].values 
# delete redundant variables 
del train['is_attributed'] 
sub = test[['click_id']] 
del test['click_id'] 
# merge the training set and the testing set 
nrow_train = train.shape[0] 

del train, test 
gc.collect()
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14.1.5.3 Feature Extraction 

For the kind of problems discussed in this chapter, simple statistical features can play 
a big role, because these features have business significance; for example, the count 
coding feature can reflect the degree of clout or activity, the nunique feature can 
reflect the breadth of certain variables, and the ratio feature can describe the range 
ratio, etc. Then, simply construct the count coding feature as part of the basic feature, 
and the click time feature click_time, which can be converted into various types. The 
code is as follows: 

for f in ['ip','app','device','os','channel']: 
data[f+'_cnts'] = data.groupby([f])['click_time'].transform 
('count') 

data['click_time'] = pd.to_datetime(data['click_time']) 
data['days'] = data['click_time'].dt.day 
data['hours_in_day'] = data['click_time'].dt.hour 
data['day_of_week'] = data['click_time'].dt.dayofweek 

train = data[:nrow_train] 
test = data[nrow_train:] 
del data 
gc.collect() 

14.1.5.4 Model Training 

The relevant code for training model is as follows: 

params = { 'eta': 0.2, 
'max_leaves': 2**9-1, 
'max_depth': 9, 
'subsample': 0.7, 
'colsample_bytree': 0.9, 
'objective': 'binary:logistic', 
'scale_pos_weight':9, 
'eval_metric': 'auc', 
'random_state': 2020, 
'silent': True } 

trn_x, val_x, trn_y, val_y = train_test_split(train, y_train, 
test_size=0.2, 

random_state=2020) 
dtrain = xgb.DMatrix(trn_x, trn_y) 
dvalid = xgb.DMatrix(val_x, val_y) 
del trn_x, val_x, trn_y, val_y 
gc.collect() 
watchlist = [(dtrain, 'train'), (dvalid, 'valid')] 
model = xgb.train(params, dtrain, 200, watchlist, 

early_stopping_rounds = 20, 
verbose_eval=10)
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Fig. 14.2 Display of the XGBoost training process 

As a baseline scheme, not too many features are constructed in it. In terms of 
model training, in order to get the result feedback quickly, the data is directly divided 
into two parts in a ratio of 8:2, and the learning rate is also adjusted to be relatively 
high, also in order to get the results in a short time. Figure 14.2 is the score feedback 
during model training, which needs to focus on the valid-auc score, and then use the 
trained model to predict the testing set results, and finally get the online score. 

After training the model, it is necessary to predict the results of the testing set and 
submit the final results. The implementation code is as follows: 

dtest = xgb.DMatrix(test[cols]) 
sub['is_attributed'] = None 
sub['is_attributed'] = model.predict(dtest, ntree_limit=model. 
best_ntree_limit) 
sub.to_csv('talkingdata_baseline.csv', index=False) 

The final score of the online private score is 0.96854, and the online public score 
is 0.96566. The current baseline plan ranks 1995/3946 in the private leaderboard, so 
it seems that there is still a lot of room for improvement; therefore, you can set a 
short-term goal: strive to get the silver medal. This chapter will also give more 
directions that can be tried, and we will advance towards the gold medal together. 

14.2 Data Exploration 

14.2.1 Preliminary Research on Data 

14.2.1.1 Base Display 

Figure 14.3 shows the training set data to help quickly grasp the internal structure of 
the data set.
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0 83230 3 1 13 0379 2017-11-06 14:32:21 

1 17357 3 1 19 0379 2017-11-06 14:33:34 

2 35810 3 1 13 0379 2017-11-06 14:34:12 

3 45745 14 1 13 0478 2017-11-06 14:34:52 

4 161007 3 1 13 0379 2017-11-06 14:35:08 

ip app device os channel click_time is_attributed 

Fig. 14.3 Display of training set data 

14.2.1.2 Label Distribution 

The implementation code of building a bar chart visualization for label distribution: 

plt.figure() 
fig, ax = plt.subplots(figsize=(6,6)) 
x = train['is_attributed'].value_counts().index.values 
y = train["is_attributed"].value_counts().values 
sns.barplot(ax=ax, x=x, y=y) 
plt.ylabel('Number of values', fontsize=12) 
plt.xlabel('is_attributed value', fontsize=12) 
plt.show() 

First observe the label distribution. As shown in Fig. 14.4, the positive and 
negative sample distribution of the labels of the training set is extremely unbalanced, 
with the positive sample accounting for about 0.247%, even not reaching 1%. In 
Sect. 14.4, the problem of unbalanced label distribution will be optimized, usually 
undersampling negative samples and oversampling positive samples. In large-scale 
data sets, undersampling negative samples is the most common choice and can solve 
performance problems. 

14.2.1.3 Variable Distribution 

Next, observe the basic distribution of the variables of the remaining features, as 
shown in Fig. 14.5. Here we mainly show the number of unique values of the feature 
variables ip, app, device, os, and channel. The analysis for remaining univariates is 
in Sect. 14.2.2.
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Fig. 14.4 Label 
distribution map 

Fig. 14.5 Display of the number of unique values after taking the logarithm 

14.2.2 Univariate Analysis 

14.2.2.1 Attribute Distribution of Univariates 

Understanding the distribution of univariate attributes helps us to establish a basic 
understanding of features. This question mainly involves category features, and 
generally we will observe the count distribution of each attribute.
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First analyze the IP address. The following is the implementation code for 
generating visualization maps of the top 10 IP addresses with most downloads: 

tmp = train.groupby('ip').is_attributed.sum() 
data_plot = tmp.nlargest(10).reset_index() 
data_plot.columns=('IP', 'Downloads') 
data_plot.sort_values('Downloads', ascending = False) 
plt.figure(figsize = (8,5)) 
sns.barplot(x = data_plot['IP'], y = data_plot['Downloads']) 
plt.ylabel('Downloads', fontsize=16) 
plt.xlabel('IP', fontsize=16) 
plt.title('Top 10 bigest downloader', fontsize = 15) 

The generated result is shown in Fig. 14.6. Note that there’s a huge gap between 
the downloads at top 10 IP addresses. 

In addition, simple statistics have been carried out, and the result is shown in 
Fig. 14.7. 70% of IP addresses have seen downloading only once (once), 18% of IP 
addresses have experienced downloading several times (multiple times), and 12% of 
IP addresses have no download happening (no), showing a very obvious long tail 
distribution. IP addresses can also be of great help to model prediction. 

Extended Thinking 
Although downloads vary significantly and can be used as a good feature, the 
downloads and download rate (predictive target) are not necessarily positively 
correlated to each other; for example, 100,000 clicks trigger 1000 downloads, 

(continued)

Fig. 14.6 Top 10 IP addresses for downloads



and 200 clicks cause 100 downloads. Although the former has a high quantity 
of download, the download rate of it is far lower than that of the latter. 
Therefore, there is a part of deviation if the download is used as a feature. A 
more comprehensive approach is to construct features of times of clicks and 
download rate to assist the model in better training.
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Fig. 14.7 Proportion of 
download categories 

Similarly, you can also use a similar method to analyze other distributions of 
univariates and observe the relationship between quantities of clicks and downloads. 
There may be some apps that are rarely clicked at ordinary times, but as long as users 
click on these apps, they will probably download them. 

14.2.2.2 The Relationship Between Univariates and Labels 

Comparing the relationship between a single variable and a label is one of the 
operations that can best find out the value of a variable. If there is a difference 
between the attributes of the variable—that is, if the distribution of is_attributed is 
inconsistent, then this variable can be regarded as a valuable feature; otherwise, it 
needs to continue to dig deeper. Next, through a piece of code, the density distribu-
tion relationship between the feature variables app, device, os, and channel and the 
label is_attributed is realized, and then visualized, as shown in Fig. 14.8.
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Fig. 14.8 Density distribution diagram of positive and negative samples of univariates 

cols = ['app','device','os','channel'] 
train1 = train[train['is_attributed'] == 1][train['day'] == 8] 
train0 = train[train['is_attributed'] == 0][train['day'] == 8] 

sns.set_style('whitegrid') 
plt.figure() 
fig, ax = plt.subplots(2, 2, figsize=(16,16)) 
i = 0 
for col in cols: 

i  += 1 
plt.subplot(2,2,i) 
sns.distplot(train1[col], label="is_attributed = 1") 
sns.distplot(train0[col], label="is_attributed = 0") 
plt.ylabel('Density plot', fontsize=12) 
plt.xlabel(col, fontsize=12) 

plt.show()
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Fig. 14.9 Density distribution of positive and negative samples at different times 

As can be noticed from Fig. 14.8, there are differences in the density distribution 
between the four variables and the labels, and the proportion of positive and negative 
samples among different attributes in the variables is different, which also shows that 
the feature variables have certain degree of distinction. 

In addition to the above characteristics, the impact of time on tags is often very 
large. For example, the download rate of an app at night and the download rate of it 
at noon may vary. Not only in this competition question, similar recommendations 
and advertising scenarios are also affected by time, resulting in big differences in 
CTR and CVR. Therefore, time is also an important object which needs analyzing. 

As shown in Fig. 14.9, first extract the features of day and hour, and then compare 
the density distribution differences of is_attributed labels. It is obvious that the 
density distribution of positive and negative samples in the unit of day is completely 
consistent, while the density distribution in the unit of hour shows variance to some 
extent. 

Drawing a heat map using the following code can more clearly illustrate the 
change of download probability over time: 

grouped_df = train.groupby(["day", 
"hour"])["is_attributed"].aggregate("mean").reset_index() 

grouped_df = grouped_df.pivot('day', 'hour', 'is_attributed') 

plt.figure(figsize=(12,6)) 
sns.heatmap(grouped_df) 
plt.show() 

The result is shown in Fig. 14.10, where the abscissa is in hours and the ordinate 
is in days. It is explicit that there are differences in download rates at different times. 
For example, the download rate after 13 o’clock is relatively low (the darker the 
color, the lower the download rate). In addition, it can also be found that the data on 
the day 6 and day 9 are incomplete. In the case where data is not complete, the 
construction of count under the unit of day and other related features requires special 
processing, such as scaling the data amount.
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Fig. 14.10 Display of download rates at different times 

14.2.3 Multivariate Analysis 

This section will carry out more complex analysis work, combining multiple vari-
ables to explore more valuable information in the data, such as combining ip and 
app, which contributes to understanding the distribution of the apps under different 
ips. Statistical features constructed after combining multiple variables, such as 
count-related features, can reflect the preference level of the same IP over different 
apps. It is assumed that the higher the frequency of the same combination, the closer 
the connection between the combinations. If ip, app, and os are combined, the 
information reflected will be more detailed, and the data granularity at this time is 
also very fine. 

Multiple variables are combined, and the count of the feature of the multivariate 
after combination is computed; the result is shown in Fig. 14.11, where the abscissa 
is the frequency (count), and the ordinate is the density distribution (distribution). It 
can be clearly seen that the multivariate combination features related to frequency 
obey the long tail distribution, and there are certain differences in the density 
distribution between positive and negative samples. 

14.2.4 Data Distribution 

Accurate understanding of the distribution of data is of great help to structural 
features and data modeling. In competitions, it is often encountered that the online 
and offline evaluation scores are inconsistent. Under such circumstance, the first



thing to observe is whether the data distribution is consistent. The data here 
specifically refers to that in the training set (verification set) and testing set. 
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Fig. 14.11 Density distribution of positive and negative samples after multivariate combination 

First, let’s introduce a concept—Covariate Offset. Covariate refers to the input 
variables (features) of the model, and covariate offset means that the input variables 
of the training set and testing set have different data distributions—that is, the data 
variables have shifted. However, what we expect is that the input variables of the 
training set and the testing set are equally distributed, which is also conducive to the 
prediction of the model. However, it is difficult to achieve this goal in real scenarios. 

For example, the training set contains 30% app1, 40% app2, and 30% app3, while 
the testing set contains 10% app1, 20% app2, and 70% app3. Obviously, the two 
data sets have different proportions of app categories, that is, the distribution of input 
variables is different, which is the covariate offset. Next, there is a specific analysis 
of this through a visual way, as shown in Fig. 14.12. 

As shown in Fig. 14.12, there are certain variance in the proportions of each 
variable on the training set and on the testing set, especially the variable channel. In 
addition, observing the density distribution map of variables, it can be found that the



numbers of unique values (unique count) of variables corresponding to the training 
set and the testing set also differ from each other, which indicates that many 
attributes in variables only exist in the training set, but not in the testing set. 
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Fig. 14.12 Density distribution of variables in training set and testing set 

As shown in Fig. 14.13, the distribution of features of different days and different 
hours on the training set and the testing set also varies, because the time intervals of 
the two data sets are inconsistent, which is the main reason for the difference. 
Therefore, the influence of time units should be considered when constructing 
features. 

14.3 Feature Engineering 

For problems related to CTR and CVR, there are many associated features, such as 
statistical features of different granularities (count, nunique, ratio, rank, lag, etc.), 
target coding, embedding features, etc., and different granularities are combinations



of features in first-order, second-order or multi-order. Although these rich features 
all have their own significance and value, the amount of data in this question is too 
large to meet all the feature requirements. Therefore, how to select the most 
important features from a large number of features is particularly important. This 
section will introduce the four core features, namely statistical features, time differ-
ence features, ranking features, and target coding features. These features contribute 
positively to the final score largely and are also features contestants often use in 
competitions. 
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Fig. 14.13 Density distribution by days and hours of training set and testing set 

14.3.1 Statistical Features 

Here, the core feature of this question, namely statistical feature groupby, will be 
constructed. Specifically, the first-order and second-order combinations of the five 
original category features (ip, os, app, channel, device) will be built, and then 
aggregated to obtain features of count, nunique, and ratio. The following is the 
first-order and second-order feature construction code, where the extracted first-
order features consist count and ratio, and the second-order features contain count, 
nunique, and ratio. 

# first-order features count, ratio 
for f in tqdm(['ip','app','device','os','channel']): 

data[f+'_cnts'] = data.groupby([f])['click_time'].transform 
('count') 

data[f+'_cnts'] = data[f+'_cnts'].astype('uint32') 
data[f+'_ratio'] = (data[f].map(data[f].value_counts()) / len 

(data) * 
100).astype('uint8') 

# second-order feature count 
cols = ['ip','app','device','os','channel'] 
for i in tqdm(range(0, len(cols)-1)): 

for j in range(i+1, len(cols)): 
f1, f2 = cols[i], cols[j]



data[f1+'_'+f2+'_cnts'] = 
data.groupby([f1,f2])['click_time'].transform('count') 

data[f1+'_'+f2+'_cnts'] = data[f1+'_'+f2+'_cnts'].astype 
('uint32') 

# second-order features nunique, ratio 
for f1 in tqdm(['ip','app','device','os','channel']): 

for f2 in ['ip','app','device','os','channel']: 
if f1 != f2: 

data[f1+'_'+f2+'_nuni'] = data.groupby([f1])[f2]. 
transform('nunique') 

data[f1+'_'+f2+'_nuni'] = data[f1+'_'+f2+'_nuni'].astype 
('uint32') 

data[f1+'_'+f2+'_ratio'] = (data.groupby([f1,f2]) 
['click_time']. 

transform('count') / data.groupby([f1]) 
['click_time'].transform('count') * 100).astype('uint8') 
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Of course, multi-level feature combinations can also be carried out to obtain 
information of different fine grains, such as third-order combinations of ip, app, and 
device. However, special attention should be paid at this time. The granularity of the 
constructed features cannot be too fine. Generally, features that are too fine cannot be 
directly put into the model. Such features can be called high-dimensional sparse 
features. The confidence level of the weights corresponding to such features is very 
low (many such feature combinations only appear once), which generally requires 
conversion or compression processing. 

14.3.2 Time Difference Features 

The time difference (time-delta) feature is also one of the core features of this 
competition. Specifically, the temporal difference between the first n clicks and the 
next n clicks of each click event can be extracted as a feature. The specific 
implementation code of the time-delta feature is as follows: 

for cols in [['ip','os','device','app'],['ip','os','device', 
'app','day']]: 

for i in range(1,6): 
data['ct'] = (data['click_time'].astype(np.int64)//10**9). 

astype(np.int32) 
name = '{}_next_{}_click'.format('_'.join(cols), str(i)) 

data[name] = (data.groupby(cols).ct.shift(-i)-data.ct).astype 
(np.float32) 

data[name] = data[name].fillna(data[name].mean()) 
data[name] = data[name].astype('uint32') 

name = '{}_lag_{}_click'.format('_'.join(cols), str(i)) 
data[name] = (data.groupby(cols).ct.shift(i)-data.ct).astype 

(np.float32) 
data[name] = data[name].fillna(data[name].mean())



data[name] = data[name].astype('uint32') 

data.drop(['ct'],axis=1,inplace=True) 
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So why does the time difference feature work? First of all, this feature can reflect 
the frequency of the user’s activities; secondly, from the business perspective, the 
time difference between the users’ clicking on an app can be used to reflect the 
possibility of downloading the app by the users. If you click on the same app many 
times in a short period of time, then the possibility of downloading will be greater. 
The extraction of such features is very skillful and can be regarded as a trick feature, 
which can play a role in many competitions at the same time. 

According to this characteristic of time difference, it is also possible to construct a 
marking feature of successively clicking. There are no more than three types of 
clicking on one app by users: the first click, intermediate clicks, and the last click. As 
you can imagine, when we browse the app store, the last click is often the time when 
users are most likely to download. The specific implementation code is as follows: 

subset = ['ip', 'os', 'device', 'app'] 
data['click_user_lab'] = 0 
pos = data.duplicated(subset=subset, keep=False) 
data.loc[pos, 'click_user_lab'] = 1 
pos = (~data.duplicated(subset=subset, keep='first')) & data. 

duplicated(subset=subset, 
keep=False) 

data.loc[pos, 'click_user_lab'] = 2 
pos = (~data.duplicated(subset=subset, keep='last')) & data. 

duplicated(subset=subset, 
keep=False) 

data.loc[pos, 'click_user_lab'] = 3 

14.3.3 Ranking Features 

Literally, the ranking feature has a strong traversal nature, which is mainly based on 
the number of interactions between the user and the app. The code for constructing 
the ranking feature is as follows: 

for cols in tqdm([['ip','os','device','app'],['ip','os','device', 
'app','day']]): 

name = '{}_click_asc_rank'.format('_'.join(cols)) 
data[name] = data.groupby(cols)['click_time'].rank 

(ascending=True) 

name = '{}_click_dec_rank'.format('_'.join(cols)) 
data[name] = data.groupby(cols)['click_time'].rank 

(ascending=True)
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14.3.4 Target Coding Features 

The target coding feature is a feature that directly presents entity information, that is, 
the target-based probability distribution feature. Because of its direct relationship 
with labels, it is necessary to avoid data traversal problems when constructing target 
coding features. In data sets containing direct time series information, statistical 
historical information is used as the current feature; in data sets without time series 
information, it is sufficient to use the common K-fold cross statistics. The code for 
constructing target coding features is as follows: 

for cols in tqdm([['ip'], ['app'], ['ip','app'], ['ip','hour'], 
['ip','os','device'], 

['ip','app','os','device'], ['app','os','channel']]): 
name = '_'.join(cols) 
res = pd.DataFrame() 
temp = data[cols + ['day', 'is_attributed']] 
for period in [7,8,9,10]: 
mean_ = temp[temp['day']<period].groupby(cols) 

['is_attributed'].mean(). 
reset_index(name=name + '_mean_is_attributed') 

mean_['day'] = period 
res = res.append(mean_, ignore_index=True) 

data = pd.merge(data, res, how='left', on=['day']+cols) 

14.4 Model Training 

14.4.1 LR 

The LR model has always been a benchmark model for click-through rate prediction 
problems, and is widely used by virtue of its simplicity, easy parallel implementa-
tion, and strong interpretability. However, due to the limitations of the linear model 
itself, it cannot handle the nonlinear relationship between features and targets, so the 
prediction effect of the model relies heavily on the feature engineering experience of 
algorithm engineers. The code for constructing LR model is as follows: 

from sklearn.linear_model import LogisticRegression 
model = LogisticRegression(C=5, solver='sag') 
model.fit(trn_x, trn_y) 
val_preds = model.predict_proba(val_x)[:,1] 
preds = model.predict_proba(test_x)[:,1] 

In the end, the online private score is 0.82260, and the online public score is 
0.79545. It can be found that the effect of the LR model is difficult to meet the 
expected requirements under the same characteristics. However, the LR model is



often used as a second-level learner in stacking integration, which can reduce the risk 
of overfitting and learn the linear relationship between features and targets. 
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14.4.2 CatBoost 

At first, the CatBoost model was proposed mainly to solve the problem of category 
features. It was the high-quality category coding and feature crossover ability that 
made it popular. Since the CatBoost model appeared relatively late, it could be called 
a young algorithm, which slowly made a name for itself in the second half of 2017. 
Therefore, CatBoost cannot be seen in this competition. Next, CatBoost modelling 
will be performed, and the construction code is as follows: 

from catboost import CatBoostClassifier 
params = {'learning_rate':0.02, 'depth':13, 'l2_leaf_reg':10, 

'bootstrap_type':'Bernoulli', 
'od_type': 'Iter','od_wait': 50,'random_seed': 

11,'allow_writing_files': False} 
clf = CatBoostClassifier(iterations=20000, eval_metric='AUC', 
**params) 
clf.fit(trn_x,trn_y, eval_set=(trn_x, trn_y), 

cat_features=categorical_features, 
use_best_model=True, 
early_stopping_rounds=20, 
verbose=10) 

In the end, the offline verification set score is 0.9850, the online private score is 
0.97538, and the online public score is 0.97655. 

14.4.3 LightGBM 

This section chooses a very stable LightGBM model. In addition, the percentage of 
positive samples of this competition question is 0.247%, and the label distribution is 
extremely unbalanced, so this section will try to carry out negative sampling 
processing, and judge from practice whether the overall training performance can 
be improved under the condition that the score is basically unchanged. 

14.4.3.1 Full Data 

In order to be able to obtain higher scores, two trainings will be conducted: the first 
training uses the data records of the seventh day and the eighth day as the training set 
and the data records of the ninth day as the verification set; the second time of



training first obtains the optimal number of iterations from the first training, and then 
uses the data records of the seventh, eighth, and ninth days as the training set to train 
and make the final prediction. The specific implementation code is as follows: 

trn_x = data[data['day']<9][features] 
trn_y = data[data['day']<9]['is_attributed'] 
val_x = data[data['day']==9][features] 
val_y = data[data['day']==9]['is_attributed'] 

params = { 'min_child_weight': 25, 
'subsample': 0.7, 
'subsample_freq': 1, 
'colsample_bytree': 0.6, 
'learning_rate': 0.1, 
'max_depth': -1, 
'seed': 48, 
'min_split_gain': 0.001, 
'reg_alpha': 0.0001, 
'max_bin': 2047, 
'num_leaves': 127, 
'objective': 'binary', 
'metric': 'auc', 
'scale_pos_weight': 1, 
'n_jobs': 24, 
'verbose': -1, 
} 

train_data = lgb.Dataset(trn_x.values.astype(np.float32), 
label=trn_y, 

categorical_feature=categorical_features, 
feature_name=features) 

valid_data = lgb.Dataset(val_x.values.astype(np.float32), 
label=val_y, 

categorical_feature=categorical_features, 
feature_name=features) 

clf = lgb.train(params, train_data, 10000, 
early_stopping_rounds=30, 
valid_sets=[test_data], 
verbose_eval=10 

) 
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Then, the training set and the testing set are merged. Because the training set is 
expanded, the optimal number of iterations is expanded 1.1 times, and finally the 
trained model is used to predict the results of the testing set. 

trn_x = pd.concat([trn_x, val_x], axis=0, ignore_index=True) 
trn_y = np.r_[trn_y, val_y] 
# Here the two matrices are joined by columns, that is, adding the two 

matrices up and down, requiring the same number of columns, similar to 
concat() in pandas 

del val_x



del val_y 
gc.collect() 
train_data = lgb.Dataset(trn_x.values.astype(np.float32), 

label=trn_y, 
categorical_feature=categorical_features, 

feature_name=features) 
trees = 400 
clf = lgb.train(params, 

train_data, 
int(trees * 1.1), 
valid_sets=[train_data], 
verbose_eval=10 
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) 

14.4.3.2 Negative Sampling Data 

When optimizing negative sampling, it should be noted that negative sampling needs 
to be performed after feature extraction is completed for all data. If negative 
sampling is performed before feature extraction, it will affect the true description 
of the original data source distribution, and the features constructed in this way do 
not have real meaning. 

The following gives a random negative sampling code; after sampling of negative 
samples, the model can be trained directly. 

# negative sampling is performed on the training set 
df_train_neg = data[(data['is_attributed'] == 0)&(data['day'] < 9)] 
df_train_neg = df_train_neg.sample(n=1000000) 

# merge into new data sets 
df_rest = data[(data['is_attributed'] == 1)|(data['day'] >= 9)] 
data = pd.concat([df_train_neg, df_rest]).sample(frac=1) 
del df_train_neg 
del df_rest 
gc.collect() 

14.4.4 DeepFM 

DeepFM is also a classic model used in CTR, CVR problems, and its structure is a 
combination of FM and deep neural networks, as shown in Fig. 14.14. Therefore, 
DeepFM not only has the ability of FM to automatically learn cross features, but also 
introduces implicit high-order cross information of neural networks. In the specific 
implementation part of DeepFM, it is mainly divided into three parts: FM layer, 
DNN layer, and Liner layer. Finally, the results of the three parts are spliced together 
and input to the output layer to obtain the final results. 

The following is the specific implementation code of DeepFM:
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Fig. 14.14 Network structure diagram of DeepFM 

from tensorflow.keras.layers import * 
import tensorflow.keras.backend as K 
import tensorflow as tf 
from tensorflow.keras.models import Model 
from keras.callbacks import * 

def deepfm_model(sparse_columns, dense_columns, train, test): 
# the processing part of sparse features 
sparse_input = [] 
lr_embedding = [] 
fm_embedding = [] 
for col in sparse_columns: 

_input = Input(shape=(1,)) 
sparse_input.append(_input) 
nums = pd.concat((train[col], test[col])).nunique() 
embed = Embedding(nums, 1, embeddings_regularizer=tf. 

keras.regularizers.l2(0.5))(_input) 
embed = Flatten()(embed) 

lr_embedding.append(embed) 
embed = Embedding(nums,10,embeddings_regularizer=tf. 

keras.regularizers.l2(0.5))(_input) 
reshape = Reshape((10,))(embed) 
fm_embedding.append(reshape) 

# FM processing layer 
fm_square = Lambda(lambda x: K.square(x))(Add()(fm_embedding)) 
square_fm = Add()([Lambda(lambda x:K.square(x))(embed) for embed 

in fm_embedding]) 
snd_order_sparse_layer = subtract([fm_square, square_fm]) 
snd_order_sparse_layer = Lambda(lambda x: x * 0.5) 

(snd_order_sparse_layer)



# processing of numerical features 
dense_input = [] 
for col in dense_columns: 

_input = Input(shape=(1,)) 
dense_input.append(_input) 

concat_dense_input = concatenate(dense_input) 
fst_order_dense_layer = Activation(activation="relu") 

(BatchNormalization()(Dense(4)(concat_dense_input))) 

# splicing of linear parts 
fst_order_sparse_layer = concatenate(lr_embedding) 
linear_part = concatenate([fst_order_dense_layer, 

fst_order_sparse_layer]) 

# splicing the FM embedding vectors with the numerical features and then "feeding" into the 
FC part after together 

concat_fm_embedding = concatenate(fm_embedding) 
concat_fm_embedding_dense = concatenate([concat_fm_embedding, 

fst_order_dense_layer]) 
fc_layer = Dropout(0.2)(Activation(activation="relu" 

)(BatchNormalization()(Dense(128)(concat_fm_ 
embedding_dense)))) 

fc_layer = Dropout(0.2)(Activation(activation="relu") 
(BatchNormalization()(Dense(64)(fc_layer)))) 

fc_layer = Dropout(0.2)(Activation(activation="relu") 
(BatchNormalization()(Dense(32)(fc_layer)))) 

# output layer 
output_layer = concatenate([linear_part, 

snd_order_sparse_layer, fc_layer]) 
output_layer = Dense(1, activation='sigmoid')(output_layer) 

model = Model(inputs=sparse_input+dense_input, 
outputs=output_layer) 

return model
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The following is the code of the final training phase, which is divided into data 
conversion, compilation, callback function, and training. The overall structure is 
very common. 

train_sparse_x = [trn_x[f].values for f in categorical_features] 
train_dense_x = [trn_x[f].values for f in numerical_features] 
train_label = [trn_y] 
valid_sparse_x = [val_x[f].values for f in categorical_features] 
valid_dense_x = [val_x[f].values for f in numerical_features] 
valid_label = [val_y] 
# compilation part 
model = deepfm_model(categorical_features, numerical_features, 

trn_x, val_x) 
model.compile(optimizer="adam", 

loss="binary_crossentropy", 
metrics=["binary_crossentropy", tf.keras.metrics.AUC



(name='auc')]) 
# callback function 
file_path = "deepfm_model.h5" 
checkpoint = ModelCheckpoint( 
file_path, monitor='val_auc', verbose=1, save_best_only=True, 

mode='max', save_weights_only=True) 
earlystopping = EarlyStopping( 

monitor='val_auc', min_delta=0.0001, patience=5, verbose=1, 
mode='max') 

callbacks = [checkpoint, earlystopping] 

hist = model.fit(train_sparse_x+train_dense_x, 
train_label, 
batch_size=8192, 
epochs=50, 
validation_data=(valid_sparse_x+valid_dense_x, valid_label), 
callbacks=callbacks, 
shuffle=True) 
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The above is the complete and runnable code of the DeepFM model. The overall 
implementation is still very simple, and you can get results that are very different 
from the tree model in the first two sections. 

14.5 A Summary of the Competition Question 

Throughout the competition process, we tried many feature extraction methods and 
different models. In addition to them, the more important part is the summary of the 
competition question. This section will introduce the solutions of the top ranked 
players, sort out the key knowledge points, and take you to learn and know more 
about similar competitions together. 

14.5.1 More Schemes 

14.5.1.1 Top 1 Scheme 

The champion used multiple LightGBM models and neural networks models in 
terms of models and performed weighted integration. Different from most players, 
the champion player carried out negative sampling processing in the model training 
phase, that was, selecting all positive samples (is_attributed == 1), and negative 
samples of the same sample size, which meant that 99.8% of the negative samples 
were discarded. It could be noticed that the performance of the model was not greatly 
affected (the feature engineering part was to extract features on all data, not only on 
the data after sampling). In addition, different proportions of negative samples were



sampled first to train the models respectively, and then the models were integrated. 
The final result would be improved (i.e. 5 models were trained and each model 
sampled different random seeds), and the training time of the models could be 
greatly reduced. 
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In the verification phase, the data of November seventh and November eighth 
were selected for training, and the data of November ninth was used for verification. 
After obtaining parameters such as the number of iterations, the model was re-trained 
on the data of November seventh to November 9th. There were 646 features in the 
data set. The score after fusing the five LightGBM models was 0.9833 on the online 
public leaderboard and 0.9842 on the online private leaderboard. The final submis-
sion scheme was a weighted average based on ranking, which combined 
7 LightGBM models and 1 neural networks model, and the online public leaderboard 
score was 0.9834. 

In the aspect of feature engineering, it mainly included aggregation statistics, the 
number of clicks (count feature) for the groupby feature construction in the next 1 h 
and 6 h, the calculation of time difference between forward and backward clicks for 
groupby feature construction, and average download rate of historical click time for 
groupby feature construction. In addition, for the combination of classification vari-
ables (20 in total), LDA, NMF, LSA were used to get embedding features (embed-
ding), and n_component was set to 5, so that each method could get 100 features, and 
finally a total of 300 features (LDA, NMF, PCA). 

14.5.1.2 Top 2 Scheme 

The runners-up also chose the LightGBM model and the neural network model in 
terms of models. The best single model was LightGBM, with an online private 
leaderboard score of 0.9837, and the private lb. score of the best neural network 
model was 0.9834 (for classification variables, a Dot_Product layer was used to feed 
continuous features into the FC layer). In terms of model integration, everyone in the 
runner-up team trained a LightGBM and neural network model. There were a total of 
6 models. The results of these 6 models could be directly weighted and averaged. 

As for the model training and verification, the runner-up also performed negative 
sampling processing, and the specific proportion of negative sampling was not 
informed. Feature extraction was performed on all data, and then the features were 
merged into the sampled samples; that was, the features were constructed first and 
then sampled, and finally five-fold cross-validation was used for offline model 
evaluation. 

Regarding feature engineering, statistical features were mainly constructed 
through aggregation, such as count, cumcount, nunique, and time difference fea-
tures. There was also a special feature that combined IP addresses in apps, os, and 
channels respectively and calculated the number of clicks of each attribute, and then 
attributes of high-frequency were directly selected as category features.



Specific features Descriptions

14.5 A Summary of the Competition Question 333

Table 14.1 Description of different feature types 

Feature 
types 

User 
Information 

Age, gender, occupation, user level, 
interest preference 

Extract the basic information features 
on the user side 

Ad 
Information 

Advertising types, advertising mate-
rials, advertisers, advertising industry 

Extract the basic information features 
on the user side 

Context Advertising space type, operator, 
advertising location 

Extract the basic characteristics of con-
text information 

First-order 
Features 

count、nunique、rank、target 
encoding 

The most basic statistical features all 
have structural significance 

Second-
order 
Features 

Cross-combine count, ratio, groupby, 
target encoding 

Perform cross-combination for a sec-
tion of features to obtain more fine-
grained feature description, and of 
course, cross-combination of third or 
higher orders can also be carried out 

Time 
Correlation 

Time feature (year, month, day, hour), 
time series features (historical statis-
tics), time difference feature 

Time information appears in many log 
data sets; time related statistics often 
can find out a lot of useful information 

Embedding 
Features 

Word2Vec, Graph embedding, TF-IDF, 
combined with PCA, LDA and other 
text to find out algorithms 

Extract the entity representation vectors 
of the user or AD 

14.5.1.3 Top 3 Scheme 

In terms of models, the players who took the third place also chose the LightGBM 
model and the neural network model. The difference was that the team constructed 
many neural network models with different structures to increase the diversity of the 
models, such as modeling the time series information of clicks through circular 
neural networks, adding res-links to the FC layer, etc. Stacking integration was used 
in the model integration stage, and the output results of the model were used as 
features, combined with more new features to continue to participate in training. 

With regard to feature engineering, 23 features were mainly used, of which the 
most important was the time difference feature, which extracted the time difference 
between the first 5 clicks and the last 5 clicks of each click event as a feature. In 
addition to the app, device, os, channel features in the original data source, there 
were also hour features and statistical features. 

14.5.2 Sorting Out Knowledge Points 

This section will sort out the feature extraction methods of CTR/CVR related 
competition questions in computational advertising in detail. When extracting fea-
tures, you not only need to face very rich and high-dimensional data, but also have 
extremely high accuracy requirements for the results. Table 14.1 will describe 
different feature types.
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Fig. 14.15 Home page of competition question of IJCAI 2018 Alimama search ad conversion 
forecast 

14.5.3 Extended Learning 

This competition can be regarded as a competition related to CTR/CVR. The focus 
of this type of competition is on feature engineering and models. Feature engineering 
is mainly feature extraction, such as aggregate statistical features, target coding 
features, and embedding-related features. There are a variety of choices in models, 
mainly models related to ad click-through rate prediction, such as FM, FFM, 
DeepFM, Wide & Deep, etc. Next, similar classic competition questions will be 
given to help further understand such competition questions and achieve the effect of 
solving problems at ease. 

14.5.3.1 IJCAI 2018 Alimama Search Ad Conversion Forecast 

The first competition topic is “Alimama Search Ad Conversion Forecast” (the home 
page of the competition topic is shown in Fig. 14.15). The competition topic askes 
participants to build a forecast model through artificial intelligence technology, so as 
to predict the user’s purchase intention, that is, to provide five types of information 
related to historical advertisement click events: users (user), advertising products 
(ad), search terms (query), context information (context), and shops (shop), and to 
predict the probability of purchase behavior (pCVR) of the next advertisement. 

Combined with the business scenarios of Taobao platform and different traffic 
characteristics, the official definitions of the following two types of challenges are: 
daily conversion rate forecast (in the preliminary round) and conversion rate forecast 
for special dates (in the final round). 

Basic ideas: The difficulty of this question lies in the conversion rate estimation 
for special dates during the quarter final, which not only requires the accuracy of the 
forecast results, but also asks for effective offline verification. In the preliminary 
round, the data of the last day can be used as the verification set, and the rest as the



training set. Due to the need to estimate the conversion rate of the special date, and 
the difference between the special date—day 7- and days before is relatively large, so 
the data of the first half day of the seventh day is used for training, and the data of the 
last 2 h of it is used as the verification set. 
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The specific modeling scheme can be roughly divided into three categories: 

1. Only the data of the first 7 days are used to predict, and the data of the last day is 
used for offline verification. Because the data distribution of the training set and 
the testing set is different, the effect of this scheme is relatively poor. 

2. Only the data of the last half day is used to predict; thus, the data information of 
the first 7 days will be lost. 

3. The champion uses the transfer learning method, first using the data of the first 
7 days to train and predict, merging the obtained results into the last half day, and 
then using only the data of the last half day to complete the final training and 
prediction. In this way, not only can the information of the first 7 days be retained, 
but also the predicted result is closer to what in the last day. 

The features constructed in this question can be roughly divided into original 
features, statistical features (count, nunique, mean, etc.), time difference features 
(between the last n clicks and the next n clicks), segmented features (discrete 
continuous features such as hour, score, rate, etc.), probability features (conversion 
rate and proportion calculation), etc. 

14.5.3.2 2018 iFLYTEK AI Marketing Algorithms Competition 

This competition provides a large amount of advertising data from iFLYTEK AI 
marketing cloud. Participants are required to construct a prediction model by taking 
advantage of artificial intelligence technology and estimate the probability of users 
clicking on advertisements, that is, to provide advertising, media, users, contextual 
information related to advertising click events, and to predict the probability of 
user’s clicking advertisements. 

This is also a question about CTR forecast. For such questions, the dominant 
factor for whether an advertisement is clicked is the users, followed by advertising 
information. So, what we need to do is to fully dig the information of users and user 
behavior, and then the information of advertisers, advertisements, etc. The evalua-
tion index of this question is logarithmic loss. 

Basic ideas: The difficulty of the question is the processing of user_tags multi-
valued features. Because it contains the attribute information of the users, it is very 
important to be able to perfectly express user_tags (extract effective attributes and 
reduce redundancy). For the processing of multi-valued features, the most basic 
thing is to use CountVectorizer for expansion, and then use chi-square test for 
feature selection. Another more efficient way is to use LightGBM feature importance 
analysis to extract top tags, which is a certain degree of improvement compared to 
chi-square test. There is also the click-through rate feature, because this feature



contains time information, so extracting historical click-through rates as features can 
largely avoid data overfitting and leakage. 
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Moreover, the competition data lacks the key information of user ID (uid), which 
makes it difficult to clearly establish a user profile. Therefore, how to fully find out 
the information contained in the user tag is crucial. There are still some anonymous 
data in the data. At this time, it is necessary to fully understand and analyze the data, 
and even try to perform reverse encoding according to business understanding, in 
order to point out the direction for feature engineering. In the modeling process, the 
interaction between user tags and other information is fully considered, the use of 
dimension and memory is reduced by using stacking to extract feature information, 
and the advertisement and user interaction information are fully discovered, so that 
the model can remain relatively stable in tests both in A and B list.



Part V 
Listen to What You Say and Understand 

What You Write



Chapter 15
Natural Language Processing

With the continuous development of social platforms and content platforms, it has
become increasingly common to use the Internet as a carrier for content dissemina-
tion. The application of recommendation systems, computational advertising, user
profile analysis, and other related technologies make it possible to screen massive
information streams for personalized information. In all data, the use of multimodal
data (text, images, audio, video, and structured data, etc.) makes it more likely to
predict more accurately. Text data, as the main information carrier of the content
platform, has also become an indispensable data type for the above technologies, and
how to use text data is the core problem to be solved in natural language processing.

15.1 Development of Natural Language Processing

The development of natural language processing can be divided into three stages:

1. From 1950 to 1970, a stage based on experience and rules;
2. From 1970 to 2008, a stage based on statistical methodology;
3. From 2008 till now, a stage based on deep learning technology.

At stage (1) (the early stage), Turing test was regarded as a test standard to judge the
level of artificial intelligence. As part of Turing test, the recognition of natural
language input started the research on natural language processing. At this stage,
template construction and grammar analysis based on empiricism and artificial rules
became the mainstream of growth and progress. However, due to timeliness and
variability of languages and the fact that setting rules depended extremely on
linguists and relevant knowledge in the field, fixed rules often could not cover
language recognition in most common scenarios.

At stage (2), with the popularization of computers and the development of the
Internet, statistical methods appeared as a new scheme under the background of the
accumulation of a large amount of data. The traditional scheme required a large
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number of manual operations to summarize knowledge; the statistical method
replaced this scheme and was applied to all kinds of industrial natural language
processing scenarios, obtaining relatively good effect. However, the statistical
methods that could be adopted at this stage, such as Bayesian model, bag of words
model/TF-IDF, N-Gram language model, etc., were only able to handle some tasks
that were not particularly complex. For tasks that contained rich language informa-
tion, complex language structures, and contextual scenarios, this method was still
very mediocre.
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At stage (3), many deep learning algorithms have been applying to natural
language processing. The early word embedding model and the subsequent devel-
opment of convolutional neural networks and recurrent neural networks have played
a very important role for this time period, greatly improving the accuracy baseline of
the original statistical method and achieving more generalized effects in different
fields (such as translation, voice recognition, and other tasks). In the current latest
environment, the self-attention mechanism models like transformer structures are
applicable to a sea of data, which could then generate training models. This ability
further helps natural language processing to develop, which has even achieved
baseline scores that exceed what human can get on some tasks.

15.2 Common Scenarios of Natural Language Processing

The goal of natural language processing technology is to recognize human language
through various electronic machines such as computers, so as to understand human
intentions. Natural language processing can better free labor from complicated tasks
in some specific fields. Take Taobao as an example; dialog systems can analyze and
identify customer questions, locate customer needs, and provide answers to
corresponding questions or specific operations of the purchase process, thus saving
merchants a lot of repetitive labor and time cost. In the vehicle-mounted voice
system, the voice recognition system is combined with the natural language
processing system to free up the hands of drivers while driving and provide
corresponding services (such as wayfinding, playing music, etc.).

According to different task scenarios, the technologies used in the development
of natural language will vary significantly. This section will introduce several
common natural language processing tasks.

15.2.1 Classification and Regression Tasks

This kind of task is also the most common task in traditional machine learning. How
to vectorize natural language features and use traditional or deep learning models to
train predictions are the main concerns of this type of task. Its typical tasks include



semantic analysis, sentiment analysis, intention recognition, etc., usually involving
text representation and model selection.
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15.2.2 Information Retrieval, Text Matching,
and Other Tasks

Information retrieval, text matching, Q & A, and other tasks need to predict a large
number of Q-Q, Q-A pairings. The focus of this type of problem is how to use data
feature construction as well as how to select appropriate models to realize rapid
retrieval and matching between text and text. The common work of searching based
on keywords is actually a special subcategory of this category of task. And more
complex matching based on semantics and even logical judgment is still a problem
that has aroused great concern within the academic and industrial circles.

15.2.3 Sequence to Sequence, Sequence Labeling

This kind of problem pays more attention to the generation and annotation of
sequences. Its common tasks consist of voice and text interconversion, machine
translation, name entity recognition, etc. The methods used are usually deep learning
CNN, RNN, transformer structure, etc. In addition, in appropriate scenarios, it will
also be used in combination with other traditional models such as CRF,
MRF, HMM.

15.2.4 Machine Reading

Machine reading is a method of giving questions and text, and then finding out the
answers that meet the requirements from the text according to the questions. In the
past, traditional methods often had limitations in data and technical means and did
not achieve the desired results. With the continuous development of deep learning
and pre-training language models, an increasingly number of latest technologies are
applied to the field of machine reading. By mining the semantics of the context, the
attention mechanism is used to identify the answers to questions in specific
scenarios.

Natural language processing technology is usually not applied independently, but
integrates other feature data, and cooperates with other media, structured data, etc. to
fulfill multimodal data prediction.
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15.3 Common Technologies of Natural Language
Processing

For different tasks, the feature generation scheme of natural language processing
also differs greatly. According to the characteristics of the task to be solved, how to
choose the data processing method and model should be considered first. Although
deep learning has a very high prediction upper limit, it does not mean that traditional
natural language feature processing will be abandoned in normal applications. What
is the opposite is in some tasks with high requirements on response time, model
complexity and size, and model interpretability, traditional statistical-based feature
extraction methods and machine learning models will play an extremely important
role. Next, we will list some common text feature extraction methods.

15.3.1 Feature Extraction Based on Bag-of-Words
and TF-IDF

The bag-of-words model is the simplest and most direct feature extraction method.
This model is often applied to the field of information retrieval. The bag-of-words
model usually ignores the context relationship of words in the text and assumes that
words are context-independent. Such assumptions can well characterize the infor-
mation of the entire sentence by the frequency of word occurrence without losing a
certain prediction accuracy.

By constructing a dictionary of corpus, the originally discrete word set can be
characterized as a sparse vector with dictionary size.

For example, when we have the following two statements:

We have noticed a new sign in to your Zoho account.
We have sent back permission.

Then the dictionary structure for these two sentences is:

{'We': 2, 'have': 2, 'noticed': 1, 'a': 1, 'new': 1, 'sign': 1, 'in': 1,
'to': 1, 'your': 1, 'Zoho': 1, 'account.': 1, 'sent': 1, 'back': 1,
'permission.': 1}

The BOW features generated by the two statements are: [1, 0, 1, 1, 1, 1, 0, 0, 1,
1, 1, 1, 1] and [0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0].

By vectorizing the discrete features in the above way, traditional machine learn-
ing models (such as logistic regression models, neural network models, tree models,
SVM, etc.) can be used for training.

The bag-of-words model only considers whether a word appears in a sentence or
not but does not take into account the importance of the word itself in the sentence.



Therefore, the TF-IDF method is proposed. The value of TF × IDF is used to weight
each word that appears. The word has better representation ability in the text.
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TF is calculated as: the number of occurrences of words in a sentence/the total
number of words in a doc.

IDF is calculated as: log (total number of docs/total number of docs containing
words).

After calculating TF and IDF based on the above two formulas, multiply the two
to obtain TF-IDF. Among the algorithms that characterize the meaning of sentences
by constructing sparse matrices, the bag of words model BOW and TF-IDF methods
have the advantages like simplicity, ease of use, and fast speed. At the same time, the
disadvantages are also obvious; that is, when the text corpus is scarce and the
dictionary size is greater than the text corpus, due to the lack of sufficient corpus
for feature construction, the statistical information basis for the representation of
words will be insufficient and therefore will lead to overfitting of the model in the
training process.

15.3.2 N-Gram Models

In natural language processing, the representation of sentences is an important issue.
Early statistics-based methods proposed such a scheme: there is a sentence S(w1, w2,
w3, . . . wn), where wi represents the word in the sentence. It is required to calculate
the occurrence probability p(S) of the sentence, and its expression function is
p(S) = p (w1) × p (w2) × p (w3) × . . . × p (wn). The Markov hypothesis is added to
the prefix of this public formula. Assuming that the occurrence probability of the
current word is only related to the first n words, the N-Gram model can be modified
to p (S) = p (w1) × p (w2| w1) × . . . × p (wn | wn-1). Combining the concepts of
N-Gram models and bag-of-words models can further improve the forecasting
ability of text features.

BOW and TF-IDF models can be combined with N-Gram models to generate
additional sparse feature vectors by constructing Bi-Gram, Tri-Gram, etc. The
constructed features are better than those BOW and TF-IDF features using
Uni-Gram, having more representational capabilities and being able to obtain certain
contextual information, but they still cannot handle long sequence dependence well.

15.3.3 Word Embedding Models

There is an unsolved problem in the bag-of-words model: if synonyms appear in
different texts, then when calculating the similarity of this type of text or making
predictions, there will be occasions when it is not be possible to identify the semantic
words with similar contexts if the training data does not contain a large number of
annotations.
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Fig. 15.1 Structure of CBOW and skip-gram algorithms

The later appeared word embedding model solves this kind of problem well, and
the currently commonly used word vector algorithms include Word2Vec, glove,
fastText, etc. In addition, for the pre-training of Chinese word vectors, there is also
the AI Lab word vector disclosed by Tencent.

A prior assumption of word vectors is that the information of the current word can
be inferred from the context, so it has good generalization ability for some rare
words, polysemous words, and even common misspelled words, etc. Taking
Word2Vev as an example, the common model training methods are divided into
two algorithms: CBOW and Skip-Gram, as shown in Fig. 15.1.

The word vector matrix generated by training will record the vectors generated by
each word training in the form of a query table. These vectors correspond to different
tasks and can play different feature extraction roles as follows.

• In the traditional feature extraction, a weighted summation method can be used to
sum the vectors of all words in the sentence, and finally generate a sentence vector
that can be used to characterize the sentence. Sentence vectors can be used to
calculate the cosine similarity between text and text, etc.

• As the initialization parameters of the word embedding layer of the deep learning
natural language processing model, higher accuracy can be obtained than what is
obtained by the model trained by the end-to-end method.

• Construct the feature of aggregate class similarity of the matching task, which can
be used for word-level similarity calculation and calculate the statistical numer-
ical construction features such as average value, median value, maximum value,
and minimum value based on different dimensions.
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15.3.4 Context-Sensitive Pre-training Models

Although the word embedding model can solve the problem of different words
having the same or nearly the same meaning, in actual natural language processing
task scenarios, even same words often have different meanings in a variety of
context scenarios. The result of the word embedding model is the static vector of
the word. We often need to use in-depth learning models to construct context
relations on the basis of this vector, which leads to the research on context-related
pre-training models. The development of this type of model is highly related to the
word vector model. From the early ELMo model built based on bi-directional
Bi-LSTM to the GPT and BERT structural models constructed by introducing
Multi-Head Attention mechanism, all of them use the Seq2Seq language model,
apply massive text data, adopt language models or autoencoder modes to train the
context semantics of words, thereby encoding and compressing a sea of text seman-
tic information in the sequence model.

Existing context-sensitive pre-training models include: ELMo, GPT, BERT,
BERT-wwm, ERNIE_1.0, XLNet, ERNIE_2.0, RoBERTa, ALBERT, ELECTRA.
Next, we will list some common sequence models.

• ELMo models. ELMo is a language model trained in the form of an
autoregressive language model. The essence of an autoregressive language
model is to predict the next word through the input text sequence. By continu-
ously optimizing the accuracy of the prediction, the model gradually learns the
semantic relationship of the context. The structure of the ELMo model includes
the forward direction LSTM layer and the reverse LSTM layer, and could achieve
better prediction results by optimizing the next word of forward direction and the
reverse next word respectively.

• GPT models. After Google announced the Multi-Head Attention mechanism and
the transformer structure, GPT applied them to the pre-training of language
models. GPT models adopt the forward transformer structure, remove the
decoder, and use the autoregressive language model for training just like ELMo
models. Compared with the ELMo pre-training model, the GPT structure based
on massive data training greatly exceeds the original benchmark at that time.

• BERT/RoBERTa models. Unlike ELMo models and GPT models using
autoregressive language model, BERT models use autoencoder mode for train-
ing, and the model structure contains forward and reverse transformer structures.
In order to reduce the information overflow caused by bidirectional Transformer
structure and autoencoder mode, BERT introduces MLM (Masked Language
Model) in the training process, and 15% of the entries (tokens) in the pre-training
will be obscured. For these 15% tokens, there is an 80% probability of using
[MASK] replacement, a 10% probability of random replacement, and a 10%
probability of remaining the same. This replacement strategy plays a regulariza-
tion role in the model training process and can prevent the BERT model from
learning the word in the “future” during training due to its two-way Self-Attention
structure, and thus from causing overfitting.
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• RoBERTa models. It was proposed by Facebook. It has removed NSP (Next
Sentence Prediction) mechanism from the BERT model, modified the MLM
mechanism, adjusted its parameters, and finally obtained the accuracy beyond
original BERT models.

• ERNIE models. Baidu optimized the pre-training of Chinese data on the basis of
BERT models and added three levels of pre-training on the basis of BERT: Basic-
Level Masking (the first layer), Phrase-Level Masking (the second layer), and
Entity-Level Masking (the third layer). They add prior knowledge from the three
levels of words, phrases, and entities respectively to improve the prediction
ability of the model on Chinese corpus.

• BERT/RoBERTa-wwm. This kind of model was released by the Joint Labora-
tory of Harbin Institute of Technology and iFLYTEK. It is not a new model in the
strict sense; wwm (whole word mask) is a training strategy. In the MLM strategy
mentioned in the original BERT paper, it has a certain randomness and will mask
out the word pieces of the original word. By comparison, in the wwm strategy,
after the word pieces to which the same word belongs are hidden, other parts of
the same word will also be masked out together, which ensures the integrity of the
word without affecting its independence.

As for the application of context-sensitive pre-training models, massive data can be
used to pre-train the language model first, and then carry out finetune on its
downstream tasks. Compared with end-to-end training methods, choosing a suitable
pre-training model can usually achieve better results, but this does not mean that the
pre-training model can achieve the same effect on all tasks. The final effect is closely
related to the training corpus, training strategies, and the fields to which the down-
stream tasks belong in the pre-training process of the model. For upstream models
and downstream tasks with huge differences in their fields, the results of fine tuning
do not achieve the expected results, and in some cases are even worse than the results
obtained by using word vector + Bi-LSTM.

15.3.5 Common Deep Learning Model Structures

Pre-training models can usually bring high accuracy benefits, but their complex
model structure also brings additional time cost for training and prediction. Com-
pared with complex pre-training models such as BERT, the use of general
convolutional neural networks and recurrent neural networks to train models has a
wider range of applications in practice. These model structures are simpler, the
number of parameters is less, and the training and inference time is shorter.

The following part describes common deep learning models and corresponding
structures.

• TextCNN. This model is characterized by its simple structure, fast training and
prediction speed, and higher accuracy than traditional models. Its design concept
is derived from the N-Gram model, which uses multi-scale convolution kernels to
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Fig. 15.2 TextCNN model structure

simulate the operation of the N-Gram model on the text, and finally merges before
making prediction, suitable for short texts and corpus with obvious phrase
structures. Its structure is shown in Fig. 15.2.

• LSTM, Bi-LSTM/Bi-GRU + Attention. These are very typical bidirectional
recurrent neural network structures. In recurrent neural networks, both the LSTM
layer and the GRU layer have very good time series fitting ability, and the model
after the Attention mechanism is added to weight the state values at different
times, which can further improve the prediction ability of the model and is
relatively suitable for texts with complex semantic contexts.

The LSTM module is a recurrent neural networks structure module, and its
structure diagram is shown in Fig. 15.3. Compared with the ordinary cyclic neural
networks module, LSTM alleviates the gradient disappearance in the training



process, and its added “gate” structure is used to control the memory, output,
forgetting state, which is conducive for the model to obtain better results in long
sequences.

By arranging the sequence forward and backward, and using Bi-LSTM (bidi-
rectional LSTM), the reverse coding information that cannot be obtained by
LSTM can be obtained, which increases the fitting ability of the model. The
Attention mechanism is analyzed in principles. It is an operation that weights the
different states of words in a sentence. From the most primitive weighted average,
it has gradually developed into the most popular Self-Attention, etc. Its core idea
has always been to use the similarity matrix of the word to carry out calculation,
so as to adjust the weight corresponding to the word in the sentence, thereby
allowing the weighted sum of the word to be used as the output or the input of the
next layer. The model constructed by combining Bi-LSTM and the Attention
layer can better train the input text.

• DPCNN. TextCNN structure can simulate the N-Gram models and has the ability
to extract phrases from words. However, when faced with texts with complex text
structures, rich semantics, or strong context dependence (such as words or
phrases with long sequence head-to-tail dependence), TextCNN often fails to
achieve good results, which is caused by the capacity of its shallow structure
itself. Therefore, it is necessary to adopt a deeper convolutional neural network
structure—DPCNN, which draws on the concept of residual block from the
ResNet structure to simulate the layer-by-layer extraction of image features in
the CV task, which is relatively suitable for long text and text with complex
grammatical structures. Its structure is shown in Fig. 15.4.
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Fig. 15.3 LSTM structure diagram

15.4 Thinking Exercises

1. If you want to design a dialog system, what should you design and what model
should you apply?



15.4 Thinking Exercises 349

Fig. 15.4 DPCNN
structure

2. What task does the core of natural language processing technology solve? Which
can be used in applications, and which cannot?

3. If the timeliness, storage medium, and inference time of a task are all restricted,
how should models be selected and designed?



Chapter 16 
Case Study: Quora Question Pairs 

This chapter will take the Quora Question Pairs competition on the Kaggle compe-
tition platform (as shown in Fig. 16.1) as an example to explain the text matching 
case of natural language processing. Quora is a question-and-answer SNS website, 
similar to Zhihu (a Chinese question-and-answer website), which provides social 
question-and-answer services. There are many questions created by users on the 
Quora platform, and these questions often contain a lot of repetitive content; there 
will also be related questions, or the same type of questions being asked many times. 
In the scenario of real business, the above phenomenon often disperses the flow of 
high-quality answers, so it is necessary to match the same problems in business, so as 
to normalize repeated problems. 

16.1 Understanding the Competition Question 

Although the type of competition of text matching in natural language processing 
has similarities with the traditional ML problems, it also has its own unique 
characteristics. The feature construction and model selection of this competition 
are often different from those of other tasks, requiring additional reserved knowledge 
of feature engineering. 

16.1.1 Competition Background 

For question-and-answer platforms such as Zhihu in China and Quora, whether they 
can integrate high-quality answers determines whether their traffic is centralized. For 
repeated questions, it is difficult to integrate the answers manually or simply by 
extracting and matching keywords. For problems containing complex semantics and 
grammar, unexpected situations often occur according to their features. For example,
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if the method of matching sentence segmentations or phrases is adopted, even if 
more than 90% of the contents in the sentence are the same, matching cannot be 
completed as long as there are opposite semantics or different keywords.
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Fig. 16.1 Home page of quora question pairs competition 

Considering these situations, further manual processing of text features should be 
carried out, or a deep learning model that can capture such features should be 
adopted to build the whole scheme. 

16.1.2 Competition Data 

After downloading the data compression file from the official website and 
decompressing it, the specific fi les obtained are train.csv (training set), test.csv 
(testing set), sample_submission.csv (correct and standardized example submission 
file, containing all card_id that needs to be predicted by the contestant), Train.csv. 
zip, and Test.csv.zip. 

16.1.3 Competition Tasks 

Predict whether the competition questions on the Quora platform repeat each other, 
that is, predict the probability of repetition of question1 and question2 in the test. 
csv file. 

16.1.4 Evaluation Indicators 

This competition uses logarithmic loss for computation, and the specific computa-
tion code is as follows: 

import numpy as np 
def log_loss(y,pred): 

return -np.mean(y * np.log(pred) + (1 - y) * np.log(1 - pred))



How can we better grasp the tasks related to natural language processing?

efficiency, as well as scenes with rough sorting and other requirements for efficiency
that are greater than the accuracy requirements when traditional ML plus manual
feature extraction methods tend to have higher priority.

• The number of words in the text dictionary, analysis of stop words: to determine
the word vector or deep learning pre-training model used

• Key words, word clouds, etc.: to visually understand the hot content of the text
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16.1.5 Competition FAQ 

For problems related to natural language processing, we can start from two 
aspects. One is to perform model construction and training by using traditional 
ML methods, namely artificial extraction features, based on statistics and related 
technologies in the field of natural language processing; the other is to consider using 
the deep learning model for model training and optimization, automatically 
extracting features, which can save a lot of physical work of preprocessing. 

I 

For natural language processing, deep learning is currently popular. Is it 
necessary to master traditional methods? 

t is necessary to use in-depth learning to solve problems related to natural 
language processing, often because its high computer performance depends on the 
response speed (the more complex the model, the slower the speed of training and 
inference), and cannot meet some instantaneous response requirements. Outside the 
competition, you often encounter scenes with strict requirements for response 

16.2 Data Exploration 

For data exploration of text types, the following aspects can be considered:

• The number of samples. The number of samples for each training set and 
verification set;

• The maximum and minimum length of the text, and the distribution map of the 
length. This aspect determines the efficiency of model training. In the process of 
training deep learning models, it is not always necessary to use the longest sample 
length as the text truncation length. Appropriate selection of the truncation length 
according to the text length distribution helps to improve the speed of model 
training, and sometimes can also improve accuracy (reduce overfitting);



['is_duplicate'].mean()*100, 2)))

The result is:
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16.2.1 Field Category Meaning 

As shown in Fig. 16.2, the meaning of the each field in the data set is described. 

16.2.2 Basic Quantity of Data Sets 

First, analyze the total amount of data and judge whether the labels are evenly 
distributed. This part will decide what model will be selected as well as whether 
there will be a potential overfitting situation in training. If the sample size is too 
small, you need to add more prior knowledge or use a better pre-training model to 
make up for lack of model training samples and choose better data enhancement 
methods as well. The specific code is as follows: 

print('Total number of question pairs for training: {}'.format(len 
(df_train))) 

print('Total number of question pairs for tes 的 ting: {}'.format(len 
(df_test))) 

print('Duplicate pairs: {}%'.format(round(df_train 

qids = pd.Series(df_train['qid1'].tolist() + df_train['qid2']. 
tolist()) 

print('Total number of questions in the training data: {}'.format(len 
(np.unique(qids)))) 

print('Number of questions that appear multiple times: 
{}'.format(np.sum(qids.value_counts() > 1))) 

Total number of question pairs for training: 404290 
Total number of question pairs for testing: 2345796 
Duplicate pairs: 36.92%

Fig. 16.2 Field meaning description



knowledge may not be automatically identified from the sample set, and therefore
needs to be compensated by using pre-training models or artificial structural features.
Through analysis, we have found that there is a certain imbalance in the labels in the

normed=True, alpha=0.5,

Total number of questions in the training data: 537933 
Number of questions that appear multiple times: 111680 

From the operation result above, it can be seen that the quantity degree of the 
training set and verification set in the data are above the 100,000 level, which is not 
very large for a natural language processing task. Some of the potential prior
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training set, with repeated data accounting for 36.92% of the total samples. Whether 
this finding will impact the verification of logarithmic loss functions needs to be 
further verified by the training model. 

16.2.3 Distribution of Text 

This section first needs to determine whether the text length maintains a consistent 
distribution in the training set and testing set, and at the same time has the need to 
find out the longest and shortest text. If there is empty text, some processing is 
required. By observing the distribution of text length, we will try to find an effective 
and reasonable text truncation length. 

For English text, there are character level and word level distributions. Let’s look 
at the two types of distributions. 

The distribution code at the character level is as follows: 

train_qs = pd.Series(df_train['question1'].tolist() + 
df_train['question2'].tolist()).astype(str) 

test_qs = pd.Series(df_test['question1'].tolist() + 
df_test['question2'].tolist()).astype(str) 

dist_train = train_qs.apply(len) 
dist_test = test_qs.apply(len) 
plt.figure(figsize=(15, 10)) 
plt.hist(dist_train, bins=200, range=[0, 200], color=pal[2], 

normed=True, 
label='train') 

plt.hist(dist_test, bins=200, range=[0, 200], color=pal[1], 

label='test') 
plt.title('Normalised histogram of character count in questions', 

fontsize=15) 
plt.legend() 
plt.xlabel('Number of characters', fontsize=15) 
plt.ylabel('Probability', fontsize=15) 

The length distribution of character text in the training set and testing set is shown 
in Fig. 16.3.



normed=True, alpha=0.5,
label='test')

The distribution code at word level is as follows: 

dist_train = train_qs.apply(lambda x: len(x.split(' '))) 
dist_test = test_qs.apply(lambda x: len(x.split(' '))) 

plt.figure(figsize=(15, 10)) 
plt.hist(dist_train, bins=50, range=[0, 50], color=pal[2], 

normed=True, label='train') 
plt.hist(dist_test, bins=50, range=[0, 50], color=pal[1], 
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Fig. 16.3 Length distribution of character text 

plt.title('Normalised histogram of word count in questions', 
fontsize=15) 

plt.legend() 
plt.xlabel('Number of words', fontsize=15) 
plt.ylabel('Probability', fontsize=15) 

The length distribution of word text in the training set and testing set is shown in 
Fig. 16.4. 

From Figs. 16.3 and 16.4, it can be generally concluded that the length of the text 
basically maintains the same distribution on the training set and the testing set. In the 
above analysis process, we have carried out the maximum length truncation, using 
200 as the threshold at the character level and 50 as the threshold at the word level. It 
is explicit that in the process of analyzing the length distribution of the character text, 
the longest length of the text exceeds 200, but the number of samples in this part is



these samples, print them out, and visualize them, and observe what these particu-
larly short samples are. Is it noise, or is there a special sample? In addition, it is
necessary to consider whether the appearance of particularly short text will in uence

e

txt_tmp = ' '.join(train_qs.values.tolist())+' '.join(test_qs.

very small, and the same is true for the word text. At the same time, there are samples 
with text lengths close to 0 or being 0. Readers who have interest can further analyze 
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the subsequent feature construction or model training, and the missing value inter-
polation or filling should be done in advance to avoid errors in code. 

16.2.4 Number of Words and Word Cloud Analysis 

Calculating the number of words helps to better understand the text and can 
preliminarily judge things like the proper nouns in the text. In Sect. 16.2.3, w  
have analyzed the distribution of word text, and next we will analyze word text from 
the aspects of size and content. The code is as follows: 

values.tolist()) 
words = set(txt_tmp.lower().split(' ')) 
print('max number of words is %s'%len(words)) 
# get the result 
# max number of words is 327537



wc = WordCloud(background_color='white',scale=32)

generated is shown in Fig. 16.5.
We will find an interesting phenomenon in Fig. 16.5. Words such as “best”,

difference , and will appear more frequently. Whether these words are accurately

As can be seen from the code result, the total number of words on the training set 
and testing set of this sample is about 320,000, which is relatively small in the 
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Fig. 16.5 The word cloud 
generated 

quantity degree. It is almost one-tenth of that of the commonly used Word2Vec, 
glove, fastText, and other pre-training word vectors. Therefore, it may be necessary 
to use more external data or pre-training word vectors to enrich the semantics of text 
content. 

The code for generating the word cloud is as follows: 

import matplotlib.pyplot as plt 
from sklearn.datasets import fetch_20newsgroups # Import the data set that 

comes with SkLearn 
import jieba 
from wordcloud import WordCloud 

newsgroups_train = fetch_20newsgroups(subset='train') 
text = newsgroups_train.data 
text = ' '.join(text) 

wc.generate(text) 
plt.axis('off') 
plt.imshow(wc) 
plt.show() 

With the help of the word cloud, we can simply draw a set of hot words to 
understand which words are the most popular in the corpus. Many samples of these 
words may dominate the evaluation indicators of the model. The word cloud 

“ ” “ ” 

classified in subsequent model predictions may influence the final score. 

16.2.5 Preprocessing Text Data Based on Traditional Means 

For text data, the preprocessing methods will differ due to different ways of using 
traditional methods and deep learning models. Here, some text preprocessing 
methods are listed for different scenarios.



you can use the corpus that comes with the nltk package. The code is as follows:

def stem_str(x,stemmer=SnowballStemmer('english')):

the words. For some important words, when using traditional feature engineering
construction methods such as TF-IDF, it is often impossible to recognize character-
level misspellings, and these words have a great contribution to the forecast accuracy

For the feature construction of text, first of all, stop words, such as “can”, “is”, 
“are”, should be removed. Since such words appear in almost all sentences, they 
often affect the feature construction. For example, it will have a certain impact on the 
construction of TF-IDF features or other features based on TF-IDF features. You can 
try to remove stop words to get better results. For the problem of English stop words, 
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from nltk.corpus import stopwords 
stops = set(stopwords.words("english")) 

The following is an optional operation. Since there are still various tense prob-
lems in the English corpus, you can also try (not a must) to use the stem extractor 
(stemer) that comes with the nltk package. The nltk package provides two different 
stemmers. Which specific stemmer to choose is determined according to how well 
you use it. No matter which one is applied, the goal is to convert English words in 
different tenses into the same stem. The specific code is as follows: 

from nltk.stem.porter import PorterStemmer 
from nltk.stem.snowball import SnowballStemmer 

x = text.re.sub("[^a-zA-Z0-9]"," ", x) 
x = (" ").join([stemmer.stem(z) for z in x.split(" ")]) 
x = " ".join(x.split()) 
return x 

Meanwhile, the errors of some words can also be corrected through manual effort. 
For cases where there are misspellings and synonyms, the editing distance can be 
used to make a simple recall of English words, and then manually re-label or replace 

and need special processing. 

16.2.6 Preprocessing Text Data Based on Deep Learning 
Models 

Text data preprocessing based on the deep learning model is also divided into two 
parts, which are not the same as those considered in Sect. 16.2.5; it is often not 
necessary to take into account too many ways to deal with stop words or stems here. 

The first is the training method of deep learning model which uses word vector 
convolution neural networks or recurrent neural networks. Such method has made 
great progress in the past few years. Adjusting the model structure based on the 
model and selecting better pre-trained word vectors are the core concerns for such 
methods to obtain better results. Therefore, pre-processing needs to reduce the



re-pre-training, fine-tuning and formulation of training strategies for the model.
In addition, for the Chinese BERTmodel, its Tokenizer (an analyzer) does not use

the Word Segment mechanism in English words; rather, it uses every single Chinese

such as sentence embedding, it is also necessary to figure out how to build text
similarity at word level and sentence level and other ways to achieve semantic
matching expressions. The following part will introduce some common feature

16.3.1 Common Text Features

proportion of oov (out of vocabulary) in the words for the selected pre-training 
model, and make all words appear in the pre-trained word vectors as much as 
possible. For those words that do not appear in the pre-trained word vectors, you 
can consider using Word2Vec or glove word vector trained by yourself to find 
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similar words that exist in the dictionary by comparing the similarity between words 
and then replace them. The replacement of such oov enables the deep learning model 
scheme based on the pre-trained word vector to get a very large room for 
improvement. 

The second is the training method based on pre-training sequence models. In 
recent years, from the development of transformer to GPT-3, the pre-training and 
migration of the deep learning model based on transformer on massive data sets have 
made considerable progress in natural language processing. Models such as BERT, 
RoBERTa, and GPT rarely have scenes containing oov due to the internal Word 
Segment mechanism, so they do not need to perform a large number of word 
replacement operations like the scheme of depth learning model does on the basis 
of pre-trained word vectors. This kind of model is more often deployed in the 

character as a token for training. 

16.3 Feature Engineering 

The Quora Question Pairs mentioned in this chapter is a text matching task under the 
natural language processing category. In the scene of text matching, participants will 
not only need to consider extracting the features of the text itself, but also think about 
constructing the relationship between text. How to express “text and text are 
semantically similar” is the biggest challenge for feature engineering regarding 
this proposition. 

For the feature engineering that traditional machine learning models need to 
utilize, in addition to using TF-IDF\ word embedding to build original features 

construction schemes for text matching tasks. 

The simplest way to build features is to use bag of word (bow) or TF-IDF to build 
sparse features for model training and forecast.



values.tolist())

However, for text matching, simply splicing the sparse features of question1 and

The method of setting up sparse features using TF-IDF can also refer to the 
sklearn package mentioned in the previous chapters of this book. The code is as 
follows: 

from sklearn.feature_extraction.text import TfidfVectorizer 
len_train = df_train.shape[0] 

data_all =pd.concat([df_train,df_test]) 

max_features = 200000 
ngram_range = (1,2) 
min_df = 3 
print('Generate tfidf') 
feats= ['question1','question2'] 
vect_orig = TfidfVectorizer(max_features=max_features, 

ngram_range=ngram_range, 
min_df=min_df) 

corpus = [] 
for f in feats: 

data_all[f] = data_all[f].astype(str) 
corpus+=data_all[f].values.tolist() 

vect_orig.fit(corpus) 

for f in feats: 
train_tfidf = vect_orig.transform(df_train[f].astype(str). 
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test_tfidf = vect_orig.transform(df_test[f].astype(str).values. 
tolist()) 

pd.to_pickle(train_tfidf,path+'train_%s_tfidf_v2.pkl'%f) 
pd.to_pickle(test_tfidf,path+'test_%s_tfidf_v2.pkl'%f) 

In the above code, the maximum number of words that can be used (equivalent to 
the dimension of the sparse vector) can be limited by adjusting the size of the 
max_features. In some scenarios, limiting the dimension plays a role in reducing 
the dimension and decreasing the occurrence of overfitting. The exact number of 
words that need to be limited requires debugging of super parameters, where the 
default is 200,000; use pickle to cache the generated features to obtain the TF-IDF 
sparse features of question1 and question2. 

At the same time, ngram_range = (1,2) is a more critical parameter setting. The 
settings of ngram_range parameters affect the choice of N-Gram by the vectorizer, that 
is, the maximum and minimum N-Gram values that can be used by the text TF-IDF 
features it constructs. When the upper limit of ngram_range is set to 2, unigram and 
bigram term features will be created; when set to 3, unigram, bigram, and trigram 
features will be generated. The larger the upper limit value of the ngram_range 
parameter, the higher the dimension of backup features generated will be. 

For text classification in natural language processing, a sparse TF-IDF feature 
plus a linear model (LR, Linear SVM) might be enough as a baseline scheme.



weighted average or summation of words. This type of feature matrix can be directly 
trained and used by the tree model due to its fixed dimensions (usually around 200 to 
300 dimensions). The specific scheme will be discussed in Sect. 16.3.2. 

the syntactic level, the keyword set level or the semantic level.
The following will list some methods of similarity computation to construct
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question2 together, and then using linear model training cannot guarantee good 
results, because the linear model cannot capture the nonlinear relationship between 
text features in question1 and question2. 

For tree models such as XGBoost and LightGBM, if the training set and testing 
set are sparse, then the efficiency and accuracy of model training will be a challenge, 
because the training process of the tree model will involve the computation of the 
division and gain of leaf nodes. When the dimension of the sparse matrix is too high, 
even models such as XGBoost and LightGBM that use parallel training methods 
often suffer from low training efficiency due to dimension explosion. Therefore, a 
better method is to generate relevant features by constructing the relationship 
between text and text, and then carry out subsequent model training. 

In short, here, on the basis of constructing TF-IDF features, the sparse matrix can 
be reduced to a dense matrix, which is also very suitable for feeding tree models for 
training. Specific dimensionality reduction methods can be LSI (latent semantic 
index, equivalent to Truncated SVD), or other topic models. Readers can consider 
using the decomposition module provided in the sklearn package to try to reduce the 
dimension of the TF-IDF and try to do it by yourself to compare the verification 
accuracy of the TF-IDF features and the data model after dimension reduction. 
Common decomposition modules include the use of Truncated SVD, NFM, and 
LDA methods, where LDA can be used as a topic model to extract topic features or 
as a dimensionality reduction method. 

In addition to text representation methods such as topic models, another text 
representation method uses pre-trained word vector model to construct sentence-
level features and obtains a dense feature matrix with fixed dimensions through 

16.3.2 Similarity Features 

Neither the original TF-IDF features nor the dimension-reduced LSI features nor the 
Topic Model features can solve the above-mentioned correlation problems or the 
phenomenon that the same type of problems have been raised many times. There-
fore, it is necessary to adopt one or more text similarity matching methods to 
construct the similarity of texts at different levels. This kind of similarity can be at 

similarity features from different angles. 

16.3.2.1 The First Method of Constructing Similarity Features 

The simplest way to build text similarity features is to compute them based on edit 
distance or set similarity. The common practice is to calculate jaccard distance and 
dice distance. The following is the calculation code:



d = try_divide(2*intersect, union)

original text with the similar text after removing the stop words, and in some cases,
both characteristics can be used at the same time to improve the accuracy.

def calc_cosine_dist(text_a,text_b,metric='cosine'):

def get_jaccard(seq1, seq2): 
"""Compute the Jaccard distance between the two sequences `seq1` and 

`seq2`. 
They should contain hashable items. 

The return value is a float between 0 and 1, where 0 means equal, and 1 
totally 

different. 
""" 

set1, set2 = set(seq1), set(seq2) 
return 1 - len(set1 & set2) / float(len(set1 | set2)) 

def get_dice(A,B): 
A, B = set(A), set(B) 
intersect = len(A.intersection(B)) 
union = len(A) + len(B) 
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return d 

Of course, there are many other ways. 
The biggest advantage of calculation based on set similarity is that it is efficient 

and can well express the similarity between two texts from the sentence level. For 
jaccard distance and dice distance, sentence patterns and stop words need to be taken 
into account when constructing similarity features. When there are a lot of same stop 
words in the two sentence patterns, features constructed using set similarity will be 
highly similar, resulting in decline in resolution of features. Therefore, in the process 
of using set similarity, it is suggested to first compare the characteristics of the 

16.3.2.2 The Second Method of Constructing Similarity Features 

The second method is to construct the angle of two vectors or Euclidean distances 
based on TF-IDF features. The similarity obtained by directly calculating the cosine 
included angles or Euclidean distances using the sparse matrix of TF-IDF features 
can characterize the similarity of vectors to a certain extent. Because TF-IDF features 
directly express the importance of the word level, it contains more semantic infor-
mation and has a higher degree of distinction between important words and 
unimportant words than set similarity. You can use the TF-IDF file we have 
generated to carry out the construction. The code is as follows: 

return pairwise_distances(text_a, text_b, metric=metric)[0][0] 

The above code can be used to calculate the similarity between vectors. The 
similarity type can be cosine included angle or Euclidean distance. After getting the 
function to calculate the similarity, we can implement the following operations:



train_question1_tfidf = pd.read_pickle(path+'train_question1_tfidf. 
pkl') 

test_question1_tfidf = pd.read_pickle(path+'test_question1_tfidf.pkl') 
train_question2_tfidf = pd.read_pickle(path+'train_question2_tfidf. 

pkl') 
test_question2_tfidf = pd.read_pickle(path+'test_question2_tfidf.pkl') 

train_tfidf_sim = [] 
for r1,r2 in zip(train_question1_tfidf,train_question2_tfidf): 

train_tfidf_sim.append(calc_cosine_dist(r1,r2)) 
test_tfidf_sim = [] 
for r1,r2 in zip(test_question1_tfidf,test_question2_tfidf): 

test_tfidf_sim.append(calc_cosine_dist(r1,r2)) 
train_tfidf_sim = np.array(train_tfidf_sim) 
test_tfidf_sim = np.array(test_tfidf_sim) 
pd.to_pickle(train_tfidf_sim,path+"train_tfidf_sim.pkl") 
pd.to_pickle(test_tfidf_sim,path+"test_tfidf_sim.pkl") 
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This is based on the pairwise_distances function of the sklearn package to build 
features, which is actually a slower feature building function. A better way is to 
directly use the sparse function of the scipy library to perform dot product opera-
tions, which can get results faster and avoid the pressure caused by the for loop. 
Readers can think about how to use the scipy library to build their own sparse matrix 
cosine similarity calculation method. 

16.3.2.3 The Third Method of Constructing Similarity Features 

The third method depends on word vectors, which will appear in vector space to 
some extent. The word_a + word_b is similar to word_c + word_d. In other words, 
the vector at sentence level is generated by summing or averaging the word vectors, 
and then the sum of angles is measured by using the sentence vector, which could 
also characterize the similarity degree of the text. 

The advantage of this method is that the semantic information based on word 
vectors is richer than TF-IDF features. Due to the pre-training information of 
external data, for polysemy cases that cannot be handled by TF-IDF features, the 
similarity based on embedding vectors has stronger representation capabilities. 

When using word vectors, there are many alternatives. First, you can use 
pre-training models, such as Word2Vec, glove, fastText, and other commonly 
used and informative pre-training models; secondly, you can use the existing corpus 
on Quora platform to which you have access to self-training, in order to capture some 
context information that may be missed in the pre-training scene; thirdly, you can 
also consider the way to calculate the similarity after the weighted summation of 
multiple embedding vectors, so that multiple embedding vectors can be integrated 
together, and the obtained similarity information is relatively more precise. 

Convert the embedding matrix built into a dictionary and maintain it through the 
mapping relationship between words and embedding vectors. Before calculating the



similarity, you can try to weight words with IDF values, or if there are predefined 
weighting coefficients, you can also weight words that need to be emphasized. In 
some scenarios, it is weighted based on IDF values. Similarity has stronger ability to 
forecast, but it does not ensure 100% correct prediction. You still need to have a try. 
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The corresponding computing code is as follows: 

def calc_w2v_sim(row,embedder,idf_dict=None,dim=300): 
''' 
Calc w2v similarities and diff of centers of query\title 
''' 

a2 = [x for x in row['question1'].lower().split() if x in embedder. 
vocab] 

b2 = [x for x in row['question2'].lower().split() if x in embedder. 
vocab] 

vectorA = np.zeros(dim) 
for w in a2: 

if w in idf_dict: 
coef = idf_dict[w] 

else: 
coef = idf_dict['default_idf'] 

vectorA += coef*embedder[w] 
if len(a2)!=0: 

vectorA /= len(a2) 

vectorB = np.zeros(dim) 
for w in b2: 

if w in idf_dict: 
coef = idf_dict[w] 

else: 
coef = idf_dict['default_idf'] 

vectorB += coef*embedder[w] 
if len(b2)!=0: 

vectorB /= len(b2) 

return (vectorA,vectorB) 

Suppose we use a pre-trained word vector with a dimension of 300. Here we 
construct a function calc_w2v_sim, whose parameter row is the original text 
containing question1 and question2; the parameter idf_dict is optional, representing 
a dictionary, which can calculate the item in advance, use it to store the IDF 
coefficient of each word, and then output two sentence vectors after weighting. 

The vectorA and vectorB returned by the function can be directly used as 
sentence-level semantic features. After splicing, they participate in the training. By 
calculating the cosine angle or Euclidean distance between the two sentence vectors 
of A and B, features with the ability to characterize sentence similarity are obtained. 
According to experience, such features usually have relatively strong representa-
tional ability. Whether both distance measures should be calculated depends on the 
contribution of the feature to the model after it is constructed, and whether it helps to 
improve the evaluation index. In addition, there is a certain risk that there will be 
over-fitting after both distance measures are used.
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16.3.3 Further Application of Word Vectors: Unique Word 
Matching 

In addition to the above-mentioned text sentence matching based on word vectors, 
another usage of word vectors is to measure the difference in the semantics of text 
details. In Sect. 16.3.2, we have introduced various methods of vectorizing sentences 
and calculating similarity in order to determine the degree of difference between 
sentences. However, under normal circumstances, the part that computes the differ-
ence between text sentences is exactly where there are no repeated words in the 
sentence. 

For example: 
Do you know apple? 
Do you know banana? 
Do you know machine learning? 
In these three sentences, the questions of the first two sentences mainly focus on a 

type of fruit, while the last sentence focuses on a subject. When the sentence pattern 
of a text paragraph is the same, how to judge the similarity of the different parts of 
the remaining words and sentences is another factor that needs to be considered for 
text matching. 

The code to deduplicate is as follows: 

def distinct_terms(lst1, lst2): 
lst1 = lst1.split(" ") 
lst2 = lst2.split(" ") 
common = set(lst1).intersection(set(lst2)) 
new_lst1 = ' '.join([w for w in lst1 if w not in common]) 
new_lst2 = ' '.join([w for w in lst2 if w not in common]) 

return (new_lst1,new_lst2) 

With the use of the distinct_terms function, the repeated parts of the input text 
string can be removed, only the unique words are retained, and their sequence is 
maintained. Then you can use the feature calculation method of sentence vectors in 
Sect. 16.3.2 to calculate and generate the same feature again. 

16.3.4 Further Application of Word Vectors: Pairwise 
Matching of Words 

Another advanced method of using word vectors for matching is do the pairwise 
matching of word-to-word. There is a possibility that the similarity between 
sentences does not depend on the sentence vector similarity after the weighting 
and summing of all the words in the whole sentence; rather, it can be derived from 
the similarity between the words of the two sentences. In other words, we can first 
calculate the Cartesian product of words between two sentences to obtain the word



similarity between the two sentences, and then use statistical methods to generate a 
series of feature values such as the maximum, minimum, mean, and median of word 
similarity. This set of features can usually better characterize the similarity of the 
sentence as a whole. Compared with the sentence vector similarity, it contains more 
complementary information. 
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16.3.5 Other Similarity Calculation Methods 

In addition to the common word vector algorithms such as Word2Vec, you can also 
use Doc2Vec to directly generate sentence text features (there is Doc2Vec’s inter-
face in the gensim package), or you can use the simhash method to compute the 
similarity of the text. For more details about the simhash method, you can refer to a 
paper “Detecting Near-duplicates for web crawling” published by Google in 2007. 

In short, any method that can be deployed to assess the similarity between 
sentences can be used as a feature engineering scheme for training text matching 
scenes via a traditional machine learning model. 

16.4 Model Training 

The processes for training and parameter adjustment of common machine learning 
models have been described in the previous sections, and this section will introduce 
more deep learning models. In the development of natural language processing, there 
have been a variety of deep learning models based on convolutional neural networks, 
recurrent neural networks, and attention (attention mechanism). Today, BERT-like 
models are constantly refreshing various benchmarks in the field of natural language 
processing with their large pre-training data sets and weight parameters. 

Taking text matching as an example, the deep learning model used can be divided 
into two types: representation-based and interaction-based. Both models can use the 
deep learning model structure related to the natural language processing mentioned 
in the previous chapter as the backbone models. Generally speaking, the training 
efficiency of representation-based model is higher, but the final result is worse than 
that founded on the interaction-based model. 

Before explaining the differences between the two, let’s list some common 
natural language processing models, and then explore some structural differences 
between representation-based and interaction-based models. 

16.4.1 TextCNN Model 

The first is the shallow TextCNN model, which is the simplest (and more frequently 
used in the engineering scenario) model in natural language processing scenarios.
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A shallow TextCNN model consists of three components, namely, the embedding 
layer, the shallow cnn layer, and the output layer. In common natural language 
processing scenarios, the convolution layer usually used is one-dimensional convo-
lution without considering paragraphs. Here we use PyTorch to build our TextCNN 
model. The code is as follows: 

import torch 
import torch.nn as nn 
import torch.nn.functional as F 
from torch.autograd import Variable 

class TextCNN(nn.Module): 
def __init__(self, args): 

super(TextCNN, self).__init__() 
self.args = args 

self.embed = nn.Embedding(args.sequence_length, args.embed_dim) 
self.convs1 = nn.ModuleList([nn.Conv2d(1, args.kernel_num, 

(ks, args.embed_dim)) for ks in args.kernel_sizes]) 
self.dropout = nn.Dropout(args.dropout) 
self.fc1 = nn.Linear(len(args.kernel_sizes) * args.kernel_num, 

args.class_num) 

def forward(self, x): 
x = self.embed(x) # (batch_size, sequence_length, embedding_dim) 
if self.args.static: 

x = torch.tensor(x) 
x = x.unsqueeze(1) # (batch_size, 1, sequence_length, 

embedding_dim) 
# # input size (N,Cin,H,W) output size (N,Cout,Hout,1) 
x = [F.relu(conv(x)).squeeze(3) for conv in self.convs1] 
x = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in x] 
x = torch.cat(x, 1) # (batch_size, len(kernel_sizes)*kernel_num) 
x = self.dropout(x) 
logit = self.fc1(x) 
return logit 

The structure of the model is very simple. The output of the embedding layer is 
used to connect multiple convolution layers with convolution kernels of different 
sizes. The output of the convolution layer passes through the maximum pooling layer 
and then splices to connect the output layer. Such a model structure integrates the 
operation of the convolution layer in deep learning and simulates an artificial extrac-
tion of N-Gram through convolution calculation. The size of the convolution kernel 
here represents the range of the convolution calculation sliding window, which is 
somewhat equivalent to taking N-Gram trem to create a new phrase. The model will 
automatically learn such a feature extraction behavior by updating parameters. 

Because only one layer of convolutional neural networks is used in parallel, even if 
multiple convolutional kernels of different sizes are used, the efficiency of the model 
will not be affected. At the same time, convolutional calculation operations like 
N-Gram can effectively extract local phrase features of text. Therefore, TextCNN is 
very suitable for scenarios that require fast response and have certain requirements for 
prediction accuracy (better than traditional TF-IDF + linear models).
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16.4.2 TextLSTM Model 

This is also the most widely used and simplest recurrent neural network model in 
natural language processing scenarios. Because recurrent neural networks such as 
LSTM and GRU have the ability to fit sequences, and natural language processing is 
a very typical sequence data scenario, TextLSTM (or TextGRU) and TextCNN are 
often deployed together as a baseline reference for a deep learning model. 

The code used to build the TextLSTM model is as follows: 

class TextLSTM(nn.Module): 

def __init__(self, args): 
super(TextLSTM, self).__init__() 
self.hidden_dim = args.hidden_dim 
self.batch_size = args.batch_size 

self.embeds = nn.Embedding(args.vocab_size, args. 
embedding_dim) 

self.lstm = nn.LSTM(input_size=args.embedding_dim, 
hidden_size=args.hidden_dim, 
num_layers=args.num_layers, 
batch_first=True, bidirectional=True) 

self.hidden2label = nn.Linear(args.hidden_dim, args. 
num_classes) 

self.hidden = self.init_hidden() 

def init_hidden(self): 
h0 = Variable(torch.zeros(1, self.batch_size, self. 

hidden_dim)) 
c0 = Variable(torch.zeros(1, self.batch_size, self. 

hidden_dim)) 
return h0, c0 

def forward(self, sentence): 
embeds = self.embeds(sentence) 
# x = embeds.view(len(sentence), self.batch_size, -1) 
lstm_out, self.hidden = self.lstm(embeds, self.hidden) 
y = self.hidden2label(lstm_out[-1]) 
return y 

In this TextLSTM, the embedding layer is connected to the LSTM layer. The 
LSTM layer we use here is a bidirectional LSTM. The specific code of this layer is as 
follows: 

nn.LSTM(input_size=args.embedding_dim, 
hidden_size=args.hidden_dim, 
num_layers=args.num_layers, 

batch_first=True, bidirectional=True)
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Here bidirectional = True means that LSTM includes both forward and reverse 
directions. Bidirectional LSTM has stronger sequence fitting ability than unidirec-
tional LSTM, and usually the backward sequence contains additional information 
that cannot be captured in the forward sequence. The decision-making layer of the 
TextLSTM model only uses the last state output of the bidirectional LSTM as input. 
In the model discussed in the following sections, there will be other solutions to 
optimize TextLSTM for how to make the decision-making layer obtain better input 
representation. 

16.4.3 TextLSTM with Attention Model 

Neither taking the last layer of LSTM output nor performing pooling for all state 
outputs of LSTM can well capture the importance of features in different temporal 
states, so Attention (Attention Mechanism) comes into being. The goal of Attention 
is that the model can give different degree of attention to each word of the sentence 
during the training process, and then increase or decrease the importance of each 
word by weighting, in order to improve the overall accuracy of the model. Compared 
with pooling operations or taking the last state output of the LSTM, Attention can 
highlight the role of important words in the model training and prediction process 
without losing long-term information (using the last state will result in loss). Here 
will take the simplest weighted sum Attention as an example to introduce a simple 
Attention layer and its modification for the TextLSTM model. The code is as 
follows: 

class SimpleAttention(nn.Module): 
def __init__(self,input_size): 

super(SimpleAttention,self).__init__() 
self.input_size = input_size 

self.word_weight = nn.Parameter(torch.Tensor(self.input_size)) 
self.word_bias = nn.Parameter(torch.Tensor(1)) 
self._create_weights() 

def _create_weights(self, mean=0.0, std=0.05): 
self.word_weight.data.normal_(mean, std) 
self.word_bias.data.normal_(mean, std) 

def forward(self,inputs): 
att = torch.einsum('abc,c->ab',(inputs,self.word_weight)) 
att = att+self.word_bias 
att = torch.tanh(att) 

att = torch.exp(att) 
s = torch.sum(att,1,keepdim=True)+1e-6 
att = att / s 
att = torch.einsum('abc,ab->ac',(inputs,att)) 

return att
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In the above code, a weight matrix is constructed, and each state dimension of the 
output is normalized to the (0,1) interval, so that each time state (the position of the word) 
has a corresponding weight. In the PyTorch program, we can use Einstein summation to 
calculate the tensor of any dimension, simplifying the complexity of our code. 

The corresponding TextLSTM model can be modified to: 

class TextLSTMAtt(nn.Module): 

def __init__(self, args): 
super(TextLSTMAtt, self).__init__() 
self.hidden_dim = args.hidden_dim 
self.batch_size = args.batch_size 

self.embeds = nn.Embedding(args.vocab_size, args.embedding_dim) 
self.lstm = nn.LSTM(input_size=args.embedding_dim, 

hidden_size=args.hidden_dim, num_layers=1, 
batch_first=True, bidirectional=True) 

self.simple_att = SimpleAttention(args.hidden_dim*2) 

self.hidden2label = nn.Linear(args.hidden_dim*2, args. 
num_classes) 

self.hidden = self.init_hidden() 
def init_hidden(self): 

h0 = Variable(torch.zeros(1, self.batch_size, self. 
hidden_dim)) 

c0 = Variable(torch.zeros(1, self.batch_size, self. 
hidden_dim)) 

return h0, c0 
def forward(self, sentence): 

embeds = self.embeds(sentence) 
# x = embeds.view(len(sentence), self.batch_size, -1) 
lstm_out, self.hidden = self.lstm(embeds, self.hidden) 
x = self.simple_att(lstm_out) 
y = self.hidden2label(x) 
return y 

Under normal circumstances, the model works better with Attention. 

16.4.4 Self-Attention Layer 

Transformer structures or models that use multi-head-attention mostly employ the 
Self-Attention layer and gain the ability to fit longer text through the block stack 
built by the Self-Attention layer. The Self-Attention layer itself can also be taken out 
separately to build weighting operations in deep CNN/RNN models. In essence, the 
Self-Attention layer first calculates the word similarity matrix of the input query, and 
then uses this matrix to generate weighting coefficients to re-weight the input query 
to improve its ability to capture word-level interaction information. Without using 
any convolutional neural networks or recurrent neural networks, a layer of Self-



Attention can usually only capture the interaction information between any two 
words, with a computational complexity of O(n2 ), which has a lower computational 
efficiency than the weighted sum Attention in Sect. 16.4.3. Models such as Trans-
formers obtain the similarity matrix between phrases by continuously stacking the 
blocks of the Self-Attention layer to increase complexity. 
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Here are some more complex Self-Attention layer structures: 

class MatchTensor(torch.nn.Module): 
def __init__(self,size_a,size_b,channel_size=8,max_len=10): 

super(MatchTensor,self).__init__() 
self.size_a=size_a 
self.size_b=size_b 
self.channel_size=channel_size 
self.max_len = max_len 

self.M = nn.Parameter(torch.Tensor(channel_size,size_a, 
size_b).to(device)) 

self.W = nn.Parameter( 

torch.Tensor(channel_size,size_a+size_b,max_len).to(device)) 
self.b = nn.Parameter(torch.Tensor(channel_size).to(device)) 

self._create_weights() 

def _create_weights(self, mean=0.0, std=0.05): 
self.M.data.normal_(mean, std) 
self.W.data.normal_(mean, std) 
self.b.data.normal_(mean, std) 

def forward(self, x1,x2): 

matching_matrix = torch.einsum('abd,fde,ace->afbc',[x1, self.M, 
x2]) 

tmp = torch.cat([x1,x2],2) 
linear_part = torch.einsum('abc,fcd->afbd',[tmp,self.W]) 
matching_matrix = matching_matrix+linear_part+self.b.view( 

self.channel_size,1,1) 
matching_matrix = F.relu(matching_matrix) 

return matching_matrix 

class SelfMMAttention(nn.Module): 
def __init__(self,input_size,max_len=100,channel_size=3): 

super(SelfMMAttention,self).__init__() 
self.input_size = input_size 
self.channel_size = channel_size 
self.max_len = max_len 
self.match_tensor = MatchTensor(input_size,input_size, 

channel_size,max_len) 
self.V = nn.Parameter(torch.Tensor(max_len,channel_size).to 

(device))



self._create_weights() 

def _create_weights(self, mean=0.0, std=0.05): 
self.V.data.normal_(mean, std) 

def forward(self,inputs,mask=None,output_score=False): 

batch_size,len_seq,embedding_dim = inputs.size() 
x = self.match_tensor(inputs,inputs) 

att_softmax = torch.tanh(x) 

att_softmax = torch.softmax(att_softmax,dim=1) 
x = torch.einsum('abc,adbe->adc',[inputs,att_softmax]) 

if output_score: 
return x,att_softmax 
return x 
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In the above code, the MatchTensor structure constructs a calculation layer to 
calculate the similarity matrix between any two input sequences and uses the 
calculation layer to add weight in the subsequent Self-Attention layer. For the 
calculation of the similarity matrix, there are usually many complex methods, such 
as matrix dot product, concat, Euclidean distance, and cosine included angle. 

Using Self-Attention can usually achieve better results than using weighted 
summation Attention, but it is also more time-consuming. 

16.4.5 Transformer and BERT Family of Models 

Before the release of Transformer structures, sequence pre-training models such as 
ELMo were regarded as the SOTA structure at that time. The LSTM hierarchical 
structure was pre-trained in a semi-supervised way instead of only pre-training word 
vectors, so that the obtained pre-training model can capture the context of different 
inputs. This is an effect that cannot be got only by pre-training word vectors. 
However, models such as BERT, GPT, and RoBERTa are large-scale mass corpus 
pre-training models realized by stacking Transformer block layers as encoders. By 
using a large amount of pre-training data, the semantic and syntax information is 
compressed and represented in the super-large-scale parameters of the model. 

The use of the BERT models is relatively convenient. PyTorch’s third-party 
package provides a complete BERT model implementation, whose code is as follows: 

# coding: UTF-8 
import torch 
import torch.nn as nn 
from pytorch_pretrained import BertModel, BertTokenizer 
class Config(object): 

""" configuration parameters """ 
def __init__(self, dataset):



self.model_name = 'bert' 
self.train_path = dataset + '/data/train.txt' # training set 
self.dev_path = dataset + '/data/dev.txt' # verification set 
self.test_path = dataset + '/data/test.txt' # testing set 
self.class_list = [x.strip() for x in open( 

dataset + '/data/class.txt').readlines()] # class list 
self.save_path = dataset + '/saved_dict/' + self.model_name + '. 

ckpt' 
# result of model training 

self.device = torch.device('cuda' if torch.cuda.is_available() 
else 'cpu') 

# device 

print('device',self.device) 
self.require_improvement = 1000 # If the effect is not improved after 1000batch, 

the training will be finished in advance 
self.num_classes = len(self.class_list) 
print('num_classes',self.num_classes) # category number 
self.num_epochs = 10 # epoch number 
self.batch_size = 32 # size of mini-batch 

self.pad_size = 100 # length of each sentence after being processed (fill in short and 
cut long) 

self.learning_rate = 5e-5 # learning rate 
self.bert_path = './bert_pretrain' 

self.tokenizer = BertTokenizer.from_pretrained(self.bert_path) 
self.hidden_size = 768 

class Model(nn.Module): 
def __init__(self, config): 

super(Model, self).__init__() 
self.bert = BertModel.from_pretrained(config.bert_path) 
for param in self.bert.parameters(): 

param.requires_grad = True 
self.fc = nn.Linear(config.hidden_size, config.num_classes) 

def forward(self, x): 
context = x[0] # the sentence input 
mask = x[2] 
# carrying out mask for padding, with the same size as the sentence, the padding being 

represented by 0 
# for example: [1, 1, 1, 1, 0, 0] 
_, pooled = self.bert(context, attention_mask=mask, 

output_all_encoded_layers=False) 
out = self.fc(pooled) 
return out 
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The above code is the simplest model to complete classification or regression 
tasks based on BERT. Load the pre-trained BERT model parameters by calling the 
BertModel package in the pytorch_pretrained library. BertModel can not only load 
the native Google BERT model, but also use RoBERTa, ERNIE, RoBERTa-wwm-
ext, and other pre-training models which employ the BERT structure but have 
different training schemes.
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16.4.6 Differences Between Representation-Based 
and Interaction-Based Deep Learning Models 

The models introduced in the previous sections can be used as the backbone models 
for training text matching models. The differences between the two models intro-
duced in this section can be explained by the two small graphs in Fig. 16.6. 

The representation-based deep learning model usually connects the input text to 
the recurrent neural network layer or the convolutional neural network layer, then 
obtains a one-dimensional text representation through pooling or flatten operations, 
and at last calculates the final output result through the representation matching 
layer. Usually, the weight parameters of the convolutional neural networks layer or 
the recurrent neural network layer used for one-dimensional feature vector extraction 
can be reused, and the input text 1 and input text 2 can simultaneously obtain the 
representation vector result through the representation layer. 

The following is a simple Siamese Network (twin network, one of the deep 
learning models based on representation) in accordance with the combination of 
LSTM and Attention. The code is as follows: 

class SpatialDropout1D(nn.Module): 
def __init__(self,p=0.5): 

super(SpatialDropout1D,self).__init__() 
self.p = p 
self.dropout2d = nn.Dropout2d(p=p) 

def forward(self,x): 
# b,h,c 
x = x.permute(0,2,1) 
# b,c,h 
x = torch.unsqueeze(x,3) 
# b,c,h,w 
x = self.dropout2d(x) 
x = torch.squeeze(x,3)

Fig. 16.6 Models comparison



x = x.permute(0,2,1) 

return x 
class LSTM_ATT(torch.nn.Module): 

def __init__(self,embedding_dim=200,hidden_dim=128, 
voacb_size=10000,target_size=66,embedding_matrix=None, 

layer_num = 1,num_heads=40): 
super(LSTM_ATT,self).__init__() 
self.hidden_dim=hidden_dim 
self.voacb_size=voacb_size 
self.target_size=target_size 
self.embedding_dim = embedding_dim 
self.layer_num = layer_num 
self.num_heads = num_heads 
self.embed_scale = np.sqrt(embedding_dim) 

if embedding_matrix is not None: 
self.emb = nn.Embedding.from_pretrained( 

torch.FloatTensor(embedding_matrix),freeze=True) 
print('use pretrained embedding') 
else: 

self.emb = nn.Embedding(voacb_size,embedding_dim) 

self.dropout = SpatialDropout1D(0.15) 
embedding_dim = int(embedding_dim/2) 
self.embedding_dim = embedding_dim 
self.lstm=nn.LSTM(input_size=embedding_dim, 

hidden_size=hidden_dim,batch_first=True, 
bidirectional=True,num_layers=1) 

self.simple_att = SimpleAttention(hidden_dim*2) 

self.out = nn.Sequential( 
nn.LayerNorm(hidden_dim*2), 
nn.Linear(hidden_dim*2, target_size), 
) 

self.log_softmax=torch.nn.LogSoftmax(dim=1) 

def init_hidden(self,batch_size=None): 

h0 = torch.zeros((2*self.layer_num,batch_size, 
self.hidden_dim),dtype=torch.float32).to(device) 
h0 = Variable(h0) 
c0 = torch.zeros((2*self.layer_num,batch_size, 
self.hidden_dim),dtype=torch.float32).to(device) 
c0 = Variable(c0) 

return (h0, c0) 
def forward(self,x,mask=None): 

x = self.emb(x) 
x = self.dropout(x) 
x, _ = self.lstm(x) 
x = self.simple_att(x) 
x = self.out(x) 

return x
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What we have done at the beginning is building a LSTM_ATT model, which is a 
standard single-text input model with an input and output that can be used as 
regression or classification tasks. In order to transform it and adapt it to a twin 
neural network (Siamese Network), we need to inherit it and reuse some of its 
attributes. The code is as follows: 

class LSTM_ATT_SIA(LSTM_ATT_AM): 

def forward(self,x,x1,mask=None): 

x = self.emb(x) 
x = self.dropout(x) 
x, _ = self.lstm(x) 
x = self.simple_att(x) 

x1 = self.emb(x1) 
x1 = self.dropout(x1) 
x1, _ = self.lstm(x1) 
x1 = self.simple_att(x1) 

x = F.cosine_similarity(x, x1) 

return x 

By reusing the LSTM_ATT class, inputting x and x1 at the same time is 
accomplished, then the same LSTM_ATT model is used as the backbone model 
(framework) and is mapped into a one-dimensional text vector, and finally cosine 
similarity is calculated and output. 

The use of twin neural networks has its unique strengths, such as simple model 
construction, reuse of text categorization models, and high training efficiency. 
Compared with the deep learning model based on interaction, twin neural networks 
do not need to interact at the sequence level, so it is very simple for GPUs to carry 
out parallel training, which is suitable for some scenarios where the text is relatively 
simple, the matching is time-sensitive, and the accuracy is not too high. 

The deep learning model based on interaction has more complex prior assump-
tions. For the deep learning model based on representation, because the operation of 
calculating similarity occurs at the final output layer, the text will be compressed into 
vectors before calculation. In this process, the word-level sequences of input text 
1 and input text 2 have no perception of each other. For some texts, the interaction 
between word and word pairs may be useful, and the deep learning model based on 
representation will not be able to construct the characteristics of such information. 
The capture of word-level similarity or interactive information is the focus of the 
deep learning model based on interaction. Its core idea is to make input text 1 and 
input text 2 interact with each other in advance through the Attention mechanism. 
The generated similarity matrix can be used for subsequent classification tasks to 
determine whether the text matches or not. 

Take the deep correlation matching model DRMM as an example. DRMM is a typical 
deep learning model based on interaction. The following carefully decomposes the com-
position logic of the Attention mechanism by observing the code. The code is as follows:
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"""An implementation of DRMM Model.""" 
import typing 

import keras 
import keras.backend as K 
import tensorflow as tf 

from matchzoo.engine.base_model import BaseModel 
from matchzoo.engine.param import Param 
from matchzoo.engine.param_table import ParamTable 

class DRMM(BaseModel): 
""" 
DRMM Model. 
Examples: 

>>> model = DRMM() 
>>> model.params['mlp_num_layers'] = 1 
>>> model.params['mlp_num_units'] = 5 
>>> model.params['mlp_num_fan_out'] = 1 
>>> model.params['mlp_activation_func'] = 'tanh' 
>>> model.guess_and_fill_missing_params(verbose=0) 
>>> model.build() 
>>> model.compile() 

""" 

@classmethod 
def get_default_params(cls) -> ParamTable: 

""":return: model default parameters.""" 
params = super().get_default_params(with_embedding=True, 

with_multi_layer_perceptron=True) 
params.add(Param(name='mask_value', value=-1, 

desc="The value to be masked from inputs.")) 
params['optimizer'] = 'adam' 
params['input_shapes'] = [(5,), (5, 30,)] 
return params 

def build(self): 
"""Build model structure.""" 

# Scalar dimensions referenced here: 
# B = batch size (number of sequences) 
# D = embedding size 
# L = `input_left` sequence length 
# R = `input_right` sequence length 
# H = histogram size 
# K = size of top-k 

# Left input and right input. 
# query: shape = [B, L] 
# doc: shape = [B, L, H] 

# Note here, the doc is the matching histogram between original 
query 

# and original document. 
query = keras.layers.Input( 

name='text_left',



shape=self._params['input_shapes'][0]
)
match_hist = keras.layers.Input(

name='match_histogram',
shape=self._params['input_shapes'][1]

)
embedding = self._make_embedding_layer()
# Process left input.
# shape = [B, L, D]
embed_query = embedding(query)
# shape = [B, L]
atten_mask = tf.not_equal(query, self._params['mask_value'])
# shape = [B, L]
atten_mask = tf.cast(atten_mask, K.floatx())
# shape = [B, L, D]
atten_mask = tf.expand_dims(atten_mask, axis=2)
# shape = [B, L, D]
attention_probs = self.attention_layer(embed_query,

atten_mask)

# Process right input.
# shape = [B, L, 1]
dense_output = self._make_multi_layer_perceptron_layer()

(match_hist)

# shape = [B, 1, 1]
dot_score = keras.layers.Dot(axes=[1, 1])(

[attention_probs, dense_output])

flatten_score = keras.layers.Flatten()(dot_score)

x_out = self._make_output_layer()(flatten_score)
self._backend = keras.Model(inputs=[query, match_hist],

outputs=x_out)

@classmethod
def attention_layer(cls, attention_input: typing.Any,

attention_mask: typing.Any = None
) -> keras.layers.Layer:

"""
generate the input of Attention
:param attention_input: input tensor .
:param attention_mask: enter the mask of the tensor .
: returns: the result of the tensors masked out .
"""
# shape = [B, L, 1]
dense_input = keras.layers.Dense(1, use_bias=False)

(attention_input)
if attention_mask is not None:
# Since attention_mask is 1.0 for positions we want to attend and
# 0.0 for masked positions, this operation will create a tensor
# which is 0.0 for positions we want to attend and -10000.0 for
# masked positions.

# shape = [B, L, 1]
dense_input = keras.layers.Lambda(
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lambda x: x + (1.0 - attention_mask) * -10000.0, 
name="attention_mask" 
)(dense_input) 

# shape = [B, L, 1] 
attention_probs = keras.layers.Lambda( 

lambda x: tf.nn.softmax(x, axis=1), 
output_shape=lambda s: (s[0], s[1], s[2]), 
name="attention_probs" 
)(dense_input) 

return attention_probs
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The deep learning model  based on interaction is usually more accurate than the deep 
learning model based on representation, but its efficiency is lower. How to choose 
between them in the using process still needs to be judged according to the actual 
situation. However, for model integration, both are backup models that can be used. 

16.4.7 A Special Deep Learning Model Based on Interaction 

When training BERT family models or all models with Self-Attention as the core 
layer, there is a special operation that can greatly simplify the model building 
method. Specifically, during the training process, you can simply splice input text 
1 and input text 2 into a new long text 3, and directly put long text 3 into the model as 
input text, so that the entire task is converted from text matching to text binary 
classification. Only fine-tuning of a mode of BERT category is needed to achieve the 
effect of text matching. 

The reason why the above-mentioned special operation can be carried out is that 
the deep learning model based on interaction is essentially a mutual Attention 
operation on the input text. The BERT model uses multi-head attention as the 
basis in its own block layer and calculates the similarity matrix of the text itself on 
world levels. Therefore, this special using skills of the model can be approximately 
regarded as an interaction-based deep learning model operation. And making use of 
this operation training model usually contributes to better accuracy and higher 
efficiency than what is achieved by twin neural networks that adopt BERT model 
as the backbone model. 

16.4.8 Translation Enhancement of Deep Learning 
Text Data 

Broadly speaking, for image tasks, images can be enhanced after various rotations, 
offsets, and scaling, and data can also be enhanced during training through mix-up 
techniques, etc. The meaning behind the enhancement is to increase the robustness 
of the model, and to make the model better generalized by adding more specious 
images.
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For text data, operations such as truncation, translation, and extraction can usually 
be performed, but due to the uncertainty of the length of the text content, the 
thresholds for truncation, translation, and extraction are often difficult to set, and it 
is likely that the expected enhancement effect cannot be achieved. In this regard, a 
trickier method is to translate and flip back the corpus that needs training by using an 
open-source machine translation model or a public interface. The text thus obtained 
can increase the diversity of the text while keeping certain semantic information 
unchanged. Attention should be paid to using popular languages and commonly used 
foreign languages for translation as much as possible in this process. The enhance-
ment effect of using unpopular languages is poor and even counterproductive. 

16.4.9 Preprocessing of Deep Learning Text Data 

In order to use depth learning models, text data needs to be converted into 
corresponding word coding values, so as to obtain the word vector of its mapping 
relationship in the embedding layer. Here we take the training of BERT model as an 
example to show the code for preprocessing its text: 

def build_dataset(config): 

def load_dataset(path, pad_size=32): 
contents = [] 
with open(path, 'r', encoding='UTF-8') as f: 

for line in tqdm(f): 
lin = line.strip() 
if not lin: 

continue 
try: 

content, label = lin.split('\t') 
label = int(label) 
label = config.le.transform([label])[0] 

except Exception as e: 
continue 

token = config.tokenizer.tokenize(content) 
token = [CLS] + token 
seq_len = len(token) 
mask = [] 
token_ids = config.tokenizer.convert_tokens_to_ids(token) 

if pad_size: 
if len(token) < pad_size: 
mask = [1] * len(token_ids) + [0] * (pad_size - len(token)) 

token_ids += ([0] * (pad_size - len(token))) 
else: 

mask = [1] * pad_size 
token_ids = token_ids[:pad_size] 
seq_len = pad_size 

contents.append((token_ids, int(label), seq_len, mask)) 
return contents



train = load_dataset(config.train_path, config.pad_size)
dev = load_dataset(config.dev_path, config.pad_size)
test = load_dataset(config.test_path, config.pad_size)
return train, dev, test

class DatasetIterater(object):
def __init__(self, batches, batch_size, device,shuffle=False):

self.batch_size = batch_size
self.batches = batches
self.n_batches = len(batches) // batch_size
self.residue = False # record if the number of batch is an

integer
self.shuffle=shuffle
if len(batches) % self.n_batches != 0:

self.residue = True
self.index = 0
self.device = device

def _to_tensor(self, datas):
x = torch.LongTensor([_[0] for _ in datas]).to(self.device)
y = torch.LongTensor([_[1] for _ in datas]).to(self.device)

# Pad length (if the length exceeds pad_size, set this
parameter to pad_size)

seq_len = torch.LongTensor([_[2] for _ in datas]).to(self.
device)

mask = torch.LongTensor([_[3] for _ in datas]).to(self.
device)

return (x, seq_len, mask), y

def __next__(self):
if self.residue and self.index == self.n_batches:

batches = self.batches[self.index * self.batch_size:
len(self.batches)]

self.index += 1
batches = self._to_tensor(batches)
return batches

elif self.index > self.n_batches:
self.index = 0
raise StopIteration

else:
batches = self.batches[self.index * self.

batch_size: (self.index + 1) *
self.batch_size]

self.index += 1
batches = self._to_tensor(batches)
return batches

def __iter__(self):
if self.shuffle:

np.random.shuffle(self.batches)
return self
def __len__(self):
if self.residue:

return self.n_batches + 1
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else: 
return self.n_batches 

def build_iterator(dataset, config,shuffle=False): 
iter = DatasetIterater(dataset, config.batch_size, config. 

device,shuffle) 
return iter 
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In the above code, the data iteration class DataIterator is constructed, and its 
function is to carry out iterative loading of data. In the actual training process, we 
first splice text 1 and text 2, and the splicing relationship between the two needs to be 
separated using a special symbol [sep]. The amount of data may be very large, and it 
cannot be fully loaded into memory at one time. At this time, the data iterator 
DataIterator can be constructed to carry out iterative training of small batches of 
data loading. 

16.4.10 Training of BERT Model 

In model training, there is also a skill about data enhancement. We can employ the 
pre-trained word vector model to set a random ratio in the training process of the 
model by setting a threshold, randomly use the most similar word calculated by 
taking the word vector similarity as a synonym word on the premise of satisfying the 
similarity threshold, and perform sentence-level text replacement to increase the 
variability of the text. The code is as follows: 

def synonyms_augmentation(texts,tokenizer,aug_rate=0.2, 
sample_size=3): 

candidate_texts = texts[:int(len(texts)*aug_rate)] 
raw_texts = texts[int(len(texts)*aug_rate):] 
new_texts = [] 
for idx,text in enumerate(candidate_texts): 

words = text.split(' ') 
indices = np.random.choice(len(words), size=sample_size) 
flag=0 
for idx in indices: 

word = words[idx] 

res = word_syn_dict.get(word,[]) 
if len(res)>0: 

res_idx = np.random.choice(len(res), size=1)[0] 
syn_word,syn_score = res[res_idx] 

if syn_score>0.75 and syn_word in tokenizer.word_index: 
words[idx] = syn_word 
flag+=1 

text = ' '.join(jieba.cut(''.join(words)))



new_texts.append(text) 
texts = list(new_texts)+list(raw_texts) 

return texts 
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However, this method will lead to certain errors, which may cause the model to 
learn the wrong relationship because the selected synonyms have opposite semantics 
(the text that should not be matched after replacement is trained as a matching label), 
so it is necessary to strictly control the enhancement rate and the threshold value. In 
addition, increasing the weight in the training process can be used as further 
solutions for optimization. 

Since we cannot directly enhance the semantics of the model at the word token 
level, we can carry out adversarial learning on the parameters of the BERT 
pre-training model, and further improve the generalization ability of the model by 
adding certain disturbances and noise errors during the training process. As early as 
2016, Goodfellow proposed FGM, which increased the perturbations as follows: 

radv = ε � = gk k2 
g =∇xL θ, x, yð Þ  

The newly added adversarial samples are: 

xadv = x þ radv 

By adding adversarial samples, it can be compared with the image transformation 
operation in the category of CV task training to achieve the effect of data enhance-
ment. The corresponding code is: 

class FGM(): 
def __init__(self, model): 

self.model = model 
self.backup = {} 

def attack(self, epsilon=0.9, emb_name=["word_embeddings"]): 
# the paremater emb_name should be changed into the parameter name 

of embedding in you model 
for name, param in self.model.named_parameters(): 

if param.requires_grad and any([p in name for p in emb_name]): 
self.backup[name] = param.data.clone() 
norm = torch.norm(param.grad) 
if norm != 0: 

r_at = epsilon * param.grad / norm 
param.data.add_(r_at) 

def restore(self, emb_name=["word_embeddings"]): 
# the paremater emb_name should be changed into the parameter name 

of embedding in you model 
for name, param in self.model.named_parameters(): 

if param.requires_grad and any([p in name for p in emb_name]): 
assert name in self.backup



param.data = self.backup[name] 
self.backup = {} 
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The training function code of the model is as follows: 

def train(config, model, train_iter, dev_iter, test_iter): 
if hasattr(config,'loss_type'): 

loss_type = config.loss_type 
else: 

loss_type='cce' 

if loss_type=='bce': 
loss_function = nn.BCEWithLogitsLoss() 

else: 
loss_function = nn.CrossEntropyLoss() 

start_time = time.time() 
model.train() 

param_optimizer = list(model.named_parameters()) 
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] 
optimizer_grouped_parameters = [ 

{'params': [p for n, p in param_optimizer if not any(nd in n for nd in 
no_decay)], 

'weight_decay': 0.05}, 
{'params': [p for n, p in param_optimizer if any(nd in n for nd in 

no_decay)], 
'weight_decay': 0.0}] 

optimizer = BertAdam(optimizer_grouped_parameters, 
lr=config.learning_rate, 
warmup=0.05, 
t_total=len(train_iter) * config.num_epochs) 
total_batch = 0 # record how many batches are carried out 
dev_best_loss = float('inf') 
last_improve = 0 # record the batch number of the last verification set loss reduction 
flag = False # record whether the effect has not been improved for a long time 
model.train() 
fgm = FGM(model) 
for epoch in range(config.num_epochs): 
print('Epoch [{}/{}]'.format(epoch + 1, config.num_epochs)) 
for i, (trains, labels) in enumerate(train_iter): 

outputs = model(trains) 

model.zero_grad() 
if loss_type=='bce': 

bs = labels.size()[0] 
labels_one_hot = torch.zeros(bs, config.num_classes). 
to(config.device).scatter_(1, labels.view(-1,1), 1) 
loss = loss_function(outputs,labels_one_hot) 
else: 

loss = loss_function(outputs,labels) 

loss.backward() 
fgm.attack()



outputs_adv = model(trains) 
loss_adv = loss_function(outputs_adv,labels) 
loss_adv.backward() 
fgm.restore() 

optimizer.step() 
if total_batch % 100 == 0: 
# output the effect on the training set and validation set after a certain number of rounds, 

which is used to display the current effect and cache it 
# model weight 
true = labels.detach().cpu() 
predic = torch.max(outputs.data, 1)[1].cpu() 
train_acc = metrics.accuracy_score(true, predic) 
dev_acc, dev_loss = evaluate(config, model, dev_iter) 
if dev_loss < dev_best_loss: 

dev_best_loss = dev_loss 
torch.save(model.state_dict(), config.save_path) 
improve = '*' 
last_improve = total_batch 

else: 
improve = '' 

time_dif = get_time_dif(start_time) 
msg = 'Iter: {0:>6}, Train Loss: {1:>5.2}, Train Acc: {2:>6.2%}, Val 

Loss: {3:>5.2}, Val Acc: {4:>6.2%}, Time: {5} {6}' 
print(msg.format(total_batch, loss.item(), train_acc, dev_loss, 

dev_acc, time_dif, improve)) 
model.train() 

total_batch += 1 
if total_batch - last_improve > config.require_improvement: 

# if the number exceeds 1000Batch but the loss of validation sets does not decrease, the 
training is terminated 

print("No optimization for a long time, auto-stopping...") 
flag = True 
break 

if flag: 
break 

test(config, model, test_iter) 
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During the training process, the code for adversarial attack of the word vector part 
by using FGM is as follows: 

gm.attack() 
outputs_adv = model(trains) 
loss_adv = loss_function(outputs_adv,labels) 
loss_adv.backward() 
fgm.restore() 

In the whole training process, we should pay attention to the following contents as 
much as possible:



no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] 
optimizer_grouped_parameters = [ 

{'params': [p for n, p in param_optimizer if not any(nd in n for nd in 
no_decay)], 

'weight_decay': 0.05}, 
{'params': [p for n, p in param_optimizer if any(nd in n for nd in 

no_decay)], 
'weight_decay': 0.0}] 

optimizer = BertAdam(optimizer_grouped_parameters, 
lr=config.learning_rate, 
warmup=0.05, 
t_total=len(train_iter) * config.num_epochs) 
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This part of the code is mainly to adjust the finetune learning rate of the model, the 
percentage of warmup, and the number of training rounds. 

The parameters of the BERT model will affect the convergence effect of the 
model to a certain extent, so it is necessary to adjust the parameters to find out the 
appropriate configuration before model training. The main parameters involved 
include weight_decay, learning_rate, and warmup. When the percentage setting of 
warmup is not available, it may even cause the BERT model to fail to converge 
during the training process. 

In addition, in the training process of the BERT model, attention must be paid to 
the size of the batch_size used for training. According to different scenes and text 
lengths, the value of the batch_size should be appropriately reduced or increased to 
maximize the use of video memory capacity. 

Generally speaking, for the Medium model of BERT class, the use of single card 
at 2080ti level can meet most of the training scenarios, but if you need to use large 
sales of BERT model, you need to consider increasing the number of graphics cards, 
through multi-card training, to meet its dependence on video memory. 

16.5 Model Integration 

Under normal circumstances, the traditional model training scheme of natural 
language processing can adopt the integration strategy mentioned in the previous 
chapters, use weighted average, bagging, or stacking schemes for model integration, 
and train multiple models to construct meta-features, and two-layer models to output 
results. 

For deep learning models, due to their own model complexity and time consump-
tion, stacking scheme is not recommended for multi-fold cross-training of them. 
Under this condition, weighted average is a common scheme to merge the results of 
deep learning models.
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16.6 A Summary of the Competition Question 

16.6.1 More Schemes 

16.6.1.1 Other Solutions to Pre-training Models 

For deep learning models to be adopted, BERT family models are not the only 
selection. Rather, you can consider the most recent models including but not limited 
to RoBERTawmm-ext, GPT, GPT3, etc. 

16.6.1.2 Other Schemes for Artificial Feature Extraction 

For traditional text features extracted manually, schemes such as simhash and 
wordnet can also be adopted to calculate the degree of similarity between sentences 
or words, and at the same time judge the length gap of the text, count the punctuation 
marks in the text, and construct N-Gram terms for the text in advance. Schemes such 
as TF-IDF feature similarity calculation can also increase the generalization ability 
of the model. 

16.6.1.3 The Pattern Mining of Problems 

You can use Python code for sentence mining of problems and construct one-hot 
features to join the model for training. 

16.6.1.4 Other Models of Traditional Machine Learning 

Since tree models such as XGBoost and LightGBM are not suitable for training 
sparse features, and feature interactions cannot be captured with traditional linear 
models, FM models (Factorization Machine) can be employed for training, which 
not only effectively combines the feature interactions of polynomial degree 2, but 
also guarantees the linear time complexity O(kn) calculated by itself to a certain 
extent, where k is the hidden_dim of the FM model. 

16.6.2 Sorting Out Knowledge Points 

16.6.2.1 Feature Engineering 

There are three main types of features used in this chapter, namely, the original 
features of the text, the statistical features of the text, and the similarity features of 
the text.
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16.6.2.2 In-Depth Learning 

This chapter lists the construction of a variety of deep learning models for common 
natural language processing, the model construction based on PyTorch framework, 
and pre-training BERT model, etc. 

16.6.2.3 Modeling Ideas 

On the whole, the competition topic mentioned in this chapter is a relatively standard 
data mining and machine learning modeling problem. The distribution of its training 
set and testing set is highly coupled, so that participants only need to focus on 
depicting the user’s own consumption behavior, and then train and predict the model 
through machine learning algorithm. 

16.6.3 Extended Learning 

For natural language processing models, in addition to the problems encountered in 
the Quora Question Pairs competition on the Kaggle platform, there are many other 
issues in practice. One of the most common problems data engineers in the industry 
encounter is how to build a model that meets both the online timeliness requirements 
and the accuracy requirements. Facing these issues, large-scale pre-training models 
like BERT with large parameters often cannot complete millisecond-level responses 
under given hardware conditions, and the TextCnn model that can achieve this 
timeliness requirement cannot capture the deeper semantic relationships and infor-
mation behind the text during the training process due to its own complexity. 

How to choose a suitable middle value between the predictive power of the model 
and the operating efficiency is a problem that often needs to be considered when 
building a model. Without thinking about enhancing hardware, the industry has 
proposed many common solutions to improve the efficiency of the model, such as 
tailoring the model or using a relatively small model for model distillation. 

Here, additional problems related to model distillation are expanded. Common 
model distillation methods include output-based distillation and layer-by-layer dis-
tillation. For some tasks that require online efficiency and need to improve accuracy 
as much as possible, you can consider first using the BERT model for training to get 
a teacher model, and then building a convolutional neural network model or a 
recurrent neural network model as a student model for distillation. For the distillation 
of labels, it is often impossible to choose the appropriate evaluation index—what 
kind of loss function to use to assess that the teacher model and the student model are 
“similar”—resulting in unsatisfactory distillation results.
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Therefore, there is another GAN-based distillation training scheme, in which 
there is no need to define a loss function to evaluate the degree of similarity, but let 
the discriminator learn it by itself. The following is a code based on the LSTM model 
to distill the BERT pre-training results, which uses DRAGAN (Deep Regret Ana-
lytic GAN) to transform the loss function of GAN and obtain better distillation 
results: 

if config.do_train: 
early_stop_rounds = 20 
best_loss = 999 
patient_count = 0 
for epoch in trange(int(200), desc="Epoch"): 

tr_loss = 0 
tr_loss_D = 0 

nb_tr_examples, nb_tr_steps = 0, 0 
lr_scheduler.step() 

model.train() 
tr_gen = test_batch_generator(data_tr,batch_size=batch_size, 

shuffle=True,maxlen=config.MAX_SEQUENCE_LENGTH, 
tokenizer=tokenizer,bert_pred = bert_prediction_tr, 
use_mlm=config.use_mlm, 
use_synonym_aug=config.use_synonym_aug) 

step = 0 
fgm = FGM(model) 
for batch in tr_gen: 

input_ids,label_ids,bert_pred_tr = batch[0],batch[1],batch[2] 
input_ids = torch.LongTensor(input_ids).to(device) 
label_ids = torch.LongTensor(label_ids).to(device) 
if bert_pred_tr is not None: 

bert_pred_tr = torch.FloatTensor(bert_pred_tr).to(device) 

bs = input_ids.size()[0] 

if config.use_distill: 
def train_discriminator(model,model_discriminator, 

input_ids,label_ids,bert_pred_tr, 
lambda_=0.25,K=5.0): 

logits = model(input_ids) 

real_teacher_label = np.ones(bert_pred_tr.size()[0]) 
fake_student_label = np.zeros(logits.size()[0]) 

bin_label = np.concatenate([real_teacher_label, 
fake_student_label]) 
bin_label = torch.FloatTensor(bin_label).to(device) 

label_ids_class = torch.cat([label_ids,label_ids]) 

x = torch.cat([bert_pred_tr,logits])



D_real,real_classification = model_discriminator
(bert_pred_tr)

D_real_loss = loss_function_discriminator(D_real,
torch.FloatTensor(real_teacher_label).to(device))

D_fake,fake_classification = model_discriminator(logits)
D_fake_loss = loss_function_discriminator(D_fake,
torch.FloatTensor(fake_student_label).to(device))

out_classification = torch.cat([real_classification,
fake_classification])
loss_clf = loss_function_classification(out_classification,
label_ids_class)

""" DRAGAN Loss ( gradient penalty term ) """
alpha = torch.rand((bs, 1))
alpha = alpha.to(device)
x_p = bert_pred_tr + 0.5 * bert_pred_tr.std() *
torch.rand(bert_pred_tr.size()).to(device)

differences = x_p - bert_pred_tr
interpolates = bert_pred_tr + (alpha * differences)
interpolates.requires_grad = True
pred_hat,_ = model_discriminator(interpolates)

gradients = grad(outputs=pred_hat,
inputs=interpolates,
grad_outputs=torch.ones(pred_hat.size()).to(device),

create_graph=True, retain_graph=True,
only_inputs=True)[0]

gradient_penalty=lambda_*((gradients.view(gradients.size()[0],
-1).norm(2, 1) - 1) ** 2).mean()

loss_bin = (D_real_loss + D_fake_loss) + gradient_penalty

return loss_bin,loss_clf

loss_bin,loss_clf = train_discriminator(model,
model_discriminator,

input_ids,label_ids,bert_pred_tr)
loss_discriminator = loss_bin*0.5+loss_clf*0.5
loss_discriminator.backward()
optimizer_D.step()

tr_loss_D += loss_discriminator.item()

def train_student(model,model_discriminator,
input_ids,label_ids,bert_pred_tr,K=5.0):
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logits = model(input_ids)
out_bin,out_classification = model_discriminator(logits)

real_student_label = Variable(torch.ones(
bert_pred_tr.size()[0]).to(device))

if config.multi_bin:
label_ids_one_hot = torch.zeros(bs, target_size).to

(device).
scatter_(1, label_ids.view(-1,1), 1)

loss = loss_function(logits,label_ids_one_hot)
else:
loss = loss_function(logits,label_ids)

loss2 = loss_function_distil(logits,bert_pred_tr)

loss_clf = loss_function_classification(
out_classification,label_ids)

loss_bin = loss_function_discriminator(out_bin,
real_student_label)

return loss,loss2,loss_bin,loss_clf

loss,loss2,loss_bin,loss_clf = train_student(model,
model_discriminator,input_ids,label_ids,bert_pred_tr,)

loss = loss+loss2+loss_bin*0.5-loss_clf*0.5

loss.backward()

if config.use_adv:
fgm.attack()
loss,loss2,loss_bin,loss_clf = train_student(model,

model_discriminator,input_ids,label_ids,bert_pred_tr)
loss_adv = loss+loss2+loss_bin*0.5-loss_clf*0.5
loss_adv.backward()
fgm.restore()

else:
logits = model(input_ids)

if config.multi_bin:
label_ids_one_hot = torch.zeros(bs, target_size).to(device).

scatter_(1, label_ids.view(-1,1), 1)
loss = loss_function(logits,label_ids_one_hot)
loss.backward()

else:
loss = loss_function(logits,label_ids)
loss.backward()

if config.use_adv:
fgm.attack()
logits_adv = model(input_ids)
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loss_adv = loss_function(logits_adv,label_ids) 
loss_adv.backward() 

fgm.restore() 

tr_loss += loss.item() 

torch.nn.utils.clip_grad_norm(model.parameters(),2) 
optimizer.step() 

nb_tr_examples += input_ids.size(0) 
nb_tr_steps += 1 

model.zero_grad() 
if config.use_distill: 

model_discriminator.zero_grad() 

step+=1 

tr_loss /= nb_tr_steps 
tr_loss_D /= nb_tr_steps 
model.eval() 
eval_loss,eval_acc = evaluation(data_te,model) 
if best_loss>eval_loss: 

best_loss = eval_loss 
torch.save(model.state_dict(), dump_path+generator_file_name) 
if use_distill: 

torch.save(model_discriminator.state_dict(), 
dump_path+discriminator_file_name ) 

patient_count = 0 
else: 

if patient_count>=early_stop_rounds: 
break 

else: 
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