
Xinyu Zhang · Jun Li · Zhiwei Li · 
Huaping Liu · Mo Zhou · Li Wang · 
Zhenhong Zou

Multi-sensor 
Fusion 
for Autonomous 
Driving



Multi-sensor Fusion for Autonomous Driving



Xinyu Zhang • Jun Li • Zhiwei Li • Huaping Liu •
Mo Zhou • Li Wang • Zhenhong Zou 

Multi-sensor Fusion 
for Autonomous 
Driving



Xinyu Zhang 
The School of Vehicle and Mobility 
Tsinghua University 
Beijing, China 

Zhiwei Li 
College of Information Science 
and Technology 
Beijing University of Chemical Technology 
Beijing, China 

Mo Zhou 
School of Vehicle and Mobility 
Tsinghua University 
Beijing, China 

Zhenhong Zou 
The School of Vehicle and Mobility 
Tsinghua University 
Beijing, China 

Jun Li 
School of Vehicle and Mobility 
Tsinghua University 
Beijing, China 

Huaping Liu 
Department of Computer Science 
and Technology 
Tsinghua University 
Beijing, China 

Li Wang 
School of Vehicle and Mobility 
Tsinghua University 
Beijing, China 

ISBN 978-981-99-3279-5 ISBN 978-981-99-3280-1 (eBook) 
https://doi.org/10.1007/978-981-99-3280-1 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore 
Pte Ltd. 2023 
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. 
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, 
Singapore 

Paper in this product is recyclable.

https://doi.org/10.1007/978-981-99-3280-1
https://doi.org/10.1007/978-981-99-3280-1
https://doi.org/10.1007/978-981-99-3280-1
https://doi.org/10.1007/978-981-99-3280-1
https://doi.org/10.1007/978-981-99-3280-1
https://doi.org/10.1007/978-981-99-3280-1
https://doi.org/10.1007/978-981-99-3280-1
https://doi.org/10.1007/978-981-99-3280-1
https://doi.org/10.1007/978-981-99-3280-1
https://doi.org/10.1007/978-981-99-3280-1


Foreword 

In recent years, the popularity of intelligent connected vehicles has continued to 
soar, and has entered a period of rapid development worldwide. The expected intel-
ligent of vehicles is based on existing vehicles and brings good automation based on 
connection methods through a new generation of mobile Internet technology. Such a 
development trend is still in the ascendant internationally, not only in the traditional 
automobile industry, but with the addition of Internet, communications, big data, 
and other enterprises to form a cross-border integrated corporate ecosystem. 

From a technical point of view, the basic principles of realizing autonomous driv-
ing can be divided into three aspects: ”sensors, data fusion, and 100% safe decision-
making.” Intelligent perception is the prerequisite for intelligent decision-making, 
and these two modules are inseparable from each other. As the pivotal foundation of 
autonomous driving, intelligent environment perception is the guarantee of driving 
safety and intelligence. The advanced three-dimensional environment perception 
system can promptly detect external things such as vehicles, pedestrians, obstacles, 
and roads that affect driving safety, and accurately obtain their information including 
three-dimensional position, size, driving direction, geometric shape, category, etc., 
to provide a basis for subsequent decision-making and control. Since it is difficult 
for a single detection means or sensor to robustly perceive complex scenes, the 
complementary advantages of multiple sensors can obtain more comprehensive and 
compatible driving environment information, thereby meeting the reliability and 
accuracy requirements of automated driving systems. 

In the case of using multiple sensing devices, information fusion is a prerequisite 
to ensure driving safety. Environment perception technology based on multi-sensor 
fusion can improve the redundancy and fault tolerance of the system, leading to 
guarantee the rapid and correct information decision-making. From an industrial 
point of view, fusion perception technology is also a very critical technology in 
the field of autonomous vehicles. Previously, ”Mims Consulting” reported that the 
demand for sensor fusion systems is expected to grow at a compound annual growth 
rate (CAGR) of approximately 19.4% in the next 5 years, and the market size is 
expected to reach 7.58 billion US dollars in 2023.

v



vi Foreword

Recently, with the rapid development of artificial intelligence especially machine 
learning techniques, the area of fusion-based perception has revealed possibilities 
of its potential. To the best of my knowledge, this is the first book for multi-
sensor fusion perception for autonomous driving. This work provides a good way 
of solving, in particular, the perception of autonomous driving under extreme 
conditions. 

This book provides readers with an intuitive understanding and exciting appli-
cations of multi-sensor fusion perception, which is expected to play a key role in 
autonomous driving. I believe this book will reveal enormous practical impact as 
well as scientific insights into the research and education of multi-data fusion in 
autonomous driving. 

Tsinghua University, Beijing, China Keqiang Li 
July, 2022



Preface 

Autonomous driving research becomes a hot spot in the continuous development of 
the automotive industry, and accurate acquisition of environmental information is a 
vital foundation in technology applications. With the development of digitization 
and intelligence, the multi-modal fusion of different types of sensor data is an 
inevitable trend to realize all-weather and all-scenario autonomous driving percep-
tion. Multi-sensor fusion is the use of computer technology to automatically analyze 
and synthesize information and data from multiple sources under certain criteria to 
complete the information processing procedure required for decision-making and 
estimation. 

In this process, it is required to make full use of multi-source data for reasonable 
control and use, while the ultimate goal of information fusion is to derive more 
useful information based on the separated observation information obtained by 
each sensor, through the multi-level and multi-view combination of information. 
This not only takes advantage of the cooperative operation of multiple sensors, but 
also comprehensively processes data from other information sources to improve the 
intelligence of the entire sensor system. Therefore, the research of multi-modal data 
fusion method deserves important academic and application value. 

Due to the different ways of recording information, there is often complemen-
tarity between different sensors, which can be used to improve the robustness of 
the perception model. Taking working conditions with poor lighting conditions as 
an example, it is difficult for RGB cameras to record effective information, while 
active sensing sensors, such as Light Detection and Ranging (LiDAR), Radar, and 
Depth Cameras, are not easily affected by external environmental conditions. For the 
sparse point cloud of LiDAR and Radar, the obtained low-resolution data is difficult 
to be used for high-precision detection, while RGB images can provide dense 
data. Consequently, understanding and using the relationship and complementarity 
between multi-modal data has become a critical issue for multi-modal data fusion.

vii



viii Preface

Data fusion in autonomous driving can play a role in multiple tasks, such 
as object detection, semantic segmentation, object tracking, and simultaneous 
localization and mapping. At present, the most common fusion mode in high-level 
autonomous driving is the fusion of LiDAR and RGB camera. The LiDAR point 
cloud can actively perceive objects in a larger range without being affected by the 
lighting conditions, while the color, texture, and other visual information provided 
by the RGB image can be used for higher-precision visual tasks. 

While the perception method based on multi-sensor fusion brings benefits to the 
autonomous driving system, it also derives a variety of problems and challenges, 
such as the calibration between multiple sensors, the response to sensor failures, 
and the exploration of more fusion methods. On the other hand, the existing 
fusion methods lack a unified and clear definition, and various algorithms still have 
differences in specific implementation details, resulting in the effect of the fusion 
step on the model that cannot be well reflected in the integration model. In general, 
the current progress has not yet clarified the promotion of multi-modal data fusion 
perception for autonomous driving technology, which requires in-depth discussion 
and analysis to support the development of autonomous driving technology. 

To meet the aforementioned challenges of autonomous driving fusion perception, 
the main body of the book is divided into three parts: Basic, Method, and Advance. 
The first part, Basic, Chaps. 1 and 2 start from the mechanism of data fusion, 
comprehensively review the development of automatic perception technology and 
data fusion technology, and give a comprehensive overview of various perception 
tasks based on multimodal data fusion. In the second part, Method, for various 
autonomous driving perception tasks, a series of innovative algorithms are proposed 
in Chaps. 3–6 to effectively improve the accuracy and robustness of autonomous 
driving-related tasks, and provide ideas for solving the challenges in multi-sensor 
fusion methods. Furthermore, in the third part, Advance, to transition from technical 
research to intelligent connected collaboration applications, Chaps. 7–9 propose 
a series of exploratory contents such as practical fusion datasets, vehicle-road 
collaboration, and fusion mechanisms. The last Chap. 10 summarizes this book and 
presents some prospects.



Preface ix

Fig. 1 Organization of the book: logical dependency among parts and chapters 

This book is suitable as a reference book for graduate students with a basic 
knowledge of machine learning as well as professional researchers interested in 
fusion perception and autonomous driving, and machine learning (Fig. 1). 

Beijing, China Xinyu Zhang 
July, 2022 Huaping Liu 

Jun Li



Acknowledgments 

This book refers to our research work at State Key Laboratory of Automotive 
Safety and Energy, Tsinghua University, Beijing, China, and State Key Laboratory 
of Intelligent Technology and Systems, TNLIST, China. 

Five years ago, we started looking into the challenging field of multi-sensor 
fusion perception. Starting from the multimodal perception research of Dr. Jianhui 
Zhao, post-doctoral fellows and researchers in the research group including Dr. 
Qifan Tan, and Shichun Guo have joined the field of fusion perception research. 
By designing various innovative fusion algorithms, we have gradually exploited the 
advantages of multi-sensor fusion in autonomous perception systems. We would 
like to thank everyone who have participated for their support, dedication, and 
cooperation. 

We would like to sincerely thank our interns Baowei Xu and Ganglin Tian 
for successfully applied multi-sensor information fusion to the detection of three-
dimensional targets and tracking, and the excellent results formed provided impor-
tant support for our research. In addition, we also thank our interns Shifan Zhu, 
Wenju Gao, and Yijin Xiong for their valuable help in multi-sensor calibration and 
fusion localization, which is a great inspiration to the authors. 

We would like to express our sincere gratitude to Yizhe Li, Dan Xia, and Haobo 
Yang, who have provided immense help with preparation of figures and with the 
proofreading of the book. 

The completion of this book cannot be separated from the strong support of 
Springer Publishing. We would like to thank our commissioning editors, Lanlan 
Chang and Veena Perumal, for their great supports. 

A great deal of this research was supported by the National High Technology 
Research and Development Program of China under Grant No. 2018YFE0204300 
and the National Natural Science Foundation of China under Grant No. 62273198. 

Tsinghua University, Beijing, China Xinyu Zhang 
July, 2022 Huaping Liu 

Jun Li

xi



Contents 

Part I Basic 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.1 Autonomous Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.2 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
1.3 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
1.4 Multi-Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
1.5 Public Datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 
1.6 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 
1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 

2 Overview of Data Fusion in Autonomous Driving Perception . . . . . . . . .  19 
2.1 A Brief Review of Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 
2.2 Fusion in Depth Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 
2.3 Fusion in Dynamic Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 
2.4 Fusion in Stationary Road Object Detection . . . . . . . . . . . . . . . . . . . . . . . . .  28 
2.5 Fusion in Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 
2.6 Fusion in Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 

Part II Method 

3 Multi-Sensor Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 
3.2 Line-Based Multi-Sensor Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 

3.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 
3.2.2 Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 

3.3 Challenges and Prospect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47 
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48

xiii



xiv Contents

4 Multi-Sensor Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 
4.2 LiDAR-Image Fusion Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52 

4.2.1 RI-Fusion Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 
4.2.2 Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 

4.3 RaDAR-LiDAR Fusion Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 
4.3.1 Preprocessing of 4D RaDAR Point Clouds . . . . . . . . . . . . . . . . . .  67 
4.3.2 Interaction-Based Multimodal Fusion (IMMF) . . . . . . . . . . . . . .  68 
4.3.3 Center-Based Multi-Scale Fusion (CMSF) . . . . . . . . . . . . . . . . . .  70 
4.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72 

4.4 Challenges and Prospect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 

5 Multi-Sensor Scene Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87 
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87 
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88 
5.3 Attention in Multimodal Fusion Segmentation. . . . . . . . . . . . . . . . . . . . . . .  89 

5.3.1 Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90 
5.3.2 Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95 

5.4 Adaptive Strategies in Multimodal Fusion Segmentation . . . . . . . . . . .  102 
5.4.1 MIMF Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102 
5.4.2 Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105 

5.5 Video Multimodal Fusion Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107 
5.5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108 
5.5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115 
5.7 Challenges and Prospect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117 

6 Multi-Sensor Fusion Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119 
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119 
6.2 GF-SLAM.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120 

6.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122 
6.2.2 Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131 

6.3 Lifelong Localization in Semi-Dynamic Environment . . . . . . . . . . . . . .  137 
6.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139 
6.3.2 Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143 

6.4 Challenges and Prospect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147 
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  148 

Part III Advance 

7 OpenMPD: An Open Multimodal Perception Dataset . . . . . . . . . . . . . . . . .  153 
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153



Contents xv

7.2 Automated Driving-Related Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  156 
7.2.1 Comprehensive Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  156 
7.2.2 Characteristic Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157 
7.2.3 Our Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158 

7.3 OpenMPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159 
7.3.1 Platform Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159 
7.3.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  160 
7.3.3 Collecting Route. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161 
7.3.4 Combine Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162 

7.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162 
7.4.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163 
7.4.2 Occlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165 
7.4.3 Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165 
7.4.4 Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165 

7.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  168 
7.5.1 Object Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  168 
7.5.2 Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171 

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173 

8 Vehicle-Road Multi-View Interactive Data Fusion . . . . . . . . . . . . . . . . . . . . .  177 
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177 
8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179 
8.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185 
8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189 

9 Information Quality in Data Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191 
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191 
9.2 Uncertainty in Data Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192 

9.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  196 
9.2.2 Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201 
9.2.3 Detection Model Degradation Under Noise . . . . . . . . . . . . . . . . . .  203 

9.3 Information in Data Fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209 
9.3.1 Multimodal Fusion Within the Context of 

Information Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211 
9.3.2 Multimodal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215 
9.3.3 Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218 

9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  226 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227 

10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231



Part I 
Basic 

This part of the book comprises two chapters. In Chap. 1, the basic concepts of 
autonomous driving and environment perception are presented. The historical devel-
opment of fusion perception technology and common datasets are also introduced. 
Chapter 2 serves as a basis of the whole book, by providing an overall review of 
multimodal fusion perception technologies in autonomous driving.



Chapter 1 
Introduction 

Abstract Autonomous driving is the product of the deep integration of the 
automobile industry and the new generation of information technology. Among 
them, environmental perception technology is one of the vital essential technologies 
for realizing automatic driving. It is the premise of realizing safe and intelligent 
driving in complex road conditions. Existing environmental perception technologies 
for autonomous vehicles are generally based on sensors such as vision sensors, 
millimeter-wave RaDARs, and LiDARs. This chapter aims to gain an understanding 
and mastery of autonomous driving perception and critical developments. 

1.1 Autonomous Driving 

Autonomous driving refers to vehicles equipped with advanced intelligent systems 
and various sensing devices (including cameras, RaDARs, navigation devices, 
etc.) enabling them to have functions such as complex environmental perception, 
intelligent decision-making, collaborative control, and execution. The autonomous 
driving system can achieve safe, energy-saving, and efficient driving and can 
eventually replace human operators. 

The classification scheme proposed by the Society of Automotive Engineers 
(SAE) J3016 document is currently a generally accepted standard, which divides 
autonomous driving technology into six levels from L0 to L5. The system at the 
L0–L2 level is defined as a “driver assistance system.” Regardless of whether the 
driver assistance feature is on or not, the driver is in complete control of the vehicle 
and is completely responsible for its safety with this degree of support. Common 
AEB active braking, lane departure warning, lane-keeping, ACC adaptive cruise, 
and other functions belong to this level of functions. The L3–L5 level system is 
usually defined as an “autonomous driving system.” When the system is activated at 
this level, the control of the vehicle is dominated by the vehicle. 

In other words, autonomous driving entails that at least certain safety-critical 
control operations (such as steering, acceleration, and braking) can be accomplished 
automatically without the driver’s direct input. Autonomous driving vehicles gener-
ally use onboard sensors, GPS, and other communication technology equipment to 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
X. Zhang et al., Multi-sensor Fusion for Autonomous Driving, 
https://doi.org/10.1007/978-981-99-3280-1_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3280-1protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-981-99-3280-1_1
https://doi.org/10.1007/978-981-99-3280-1_1
https://doi.org/10.1007/978-981-99-3280-1_1
https://doi.org/10.1007/978-981-99-3280-1_1
https://doi.org/10.1007/978-981-99-3280-1_1
https://doi.org/10.1007/978-981-99-3280-1_1
https://doi.org/10.1007/978-981-99-3280-1_1
https://doi.org/10.1007/978-981-99-3280-1_1
https://doi.org/10.1007/978-981-99-3280-1_1
https://doi.org/10.1007/978-981-99-3280-1_1
https://doi.org/10.1007/978-981-99-3280-1_1


4 1 Introduction

obtain information, make decisions and plans for safety conditions, and implement 
control appropriately to a certain extent. 

The autonomous driving system is a comprehensive system that integrates 
advanced artificial intelligence and information control technology, combined with 
functions such as environmental perception, driving cognition, planning control, and 
advanced driving assistance systems. In response to driving requirements in multiple 
scenarios, the autonomous driving system has increasingly strict requirements for 
environmental perception. In the architecture of the autonomous driving system, the 
sensor layer is compared to the “eyes” of the vehicle, which includes the camera-
based vision sensor and RaDAR sensors such as millimeter-wave RaDAR, LiDAR, 
and ultrasonic RaDAR. The localization and attitude estimation of the vehicle body 
mainly rely on positioning sensors such as the Global Positioning System (GPS), 
BeiDou Navigation Satellite System (BDS), and inertial navigation system (INS). 
These sensors can obtain information about the vehicle, including driving velocity 
and attitude, and provide effective data for the positioning and navigation of the 
autonomous vehicle. 

Subsequently, based on the comprehensive processing of the data sensed by the 
sensor layer, autonomous decision-making and path planning tasks are performed, 
and the control instructions are passed to the bottom-level actuators to complete 
the entire autonomous driving process. The architecture of the autonomous driving 
system is shown in Fig. 1.1. 

Although each research unit has different divisions of the autonomous driving 
system architecture and different focuses in technical research, it covers seven 
aspects: sensors, perception, decision-making, control, human-computer interac-
tion, public services, and execution. 

Fig. 1.1 An architecture of the autonomous driving system



1.2 Sensors 5

Sensors: It is composed of RaDAR sensors, vision sensors, GPS, body sensors, 
etc., for collecting essential driving data. To realize the plug and play of these 
sensors, it is necessary to standardize the data format of various sensors. That is, 
to convert the unique data format of the sensor into a standard format that can 
be processed by the smart car. This layer sends the collected sensor data to the 
perception module for further processing. 

Perception: It performs the task of analyzing sensor data and realizing specific 
functions such as object detection, road segmentation, and body state estimation. 
As the first data processing module, it provides basic support for the planning and 
decision-making module. 

Decision-making: It mainly completes path planning and navigation. By ana-
lyzing the environmental data obtained from the perception module, the driving 
mode of the autonomous driving vehicle is determined. It determines the location 
of the vehicle on the fine electronic map and generates a driving trajectory based 
on the coordinates of the target point. At the same time, the influence of both 
human intervention and obstacle conditions on trajectory generation requires to be 
considered. 

Control: It controls the vehicle to follow the trajectory based on the trajectory 
data and the current vehicle status. In the meantime, it receives human intervention 
instructions to perform acceleration, deceleration, and steering operations. This 
layer directly outputs control commands to the accelerator, brake, and steering 
controllers of the vehicle. 

Human-computer interaction: It receives touch commands and emergency brak-
ing commands from the driver and outputs them to the control layer. Simultaneously, 
the environment and vehicle information will also be fed back through sound and 
images as a reference for the driver. 

Public services: It provides services for the above layers, including data com-
munication, data recording, map file reading, and writing. Execution: It is directly 
associated with the electronic control module of the vehicle and executes driving 
actions based on the received control commands, such as adding or subtracting the 
throttle, electric steering operation, and power control. 

1.2 Sensors 

In the autonomous driving system, the sensor hardware devices used for envi-
ronmental perception are diverse. Currently, the majority of sensor configuration 
schemes utilized in autonomous driving vehicles are frequently a combination of 
numerous models or equipment types. Generally, as the number of sensors rises, 
sensing precision and range synchronization improve, but costs rise. The sensors of 
autonomous driving vehicles can be divided into vision sensors, RaDAR sensors, 
positioning sensors, auditory sensors, and attitude sensors. For the environment 
perception task of autonomous driving, the most commonly used sensors are 
cameras, LiDARs, and millimeter-wave RaDARs.



6 1 Introduction

The visual sensor primarily involves the use of a camera to detect, track, 
and identify targets (vehicles, pedestrians, traffic signs). The specific function 
can be disassembled to perceive obstacles and drivable areas around the vehicle, 
understand the semantics of traffic signs and road markings, and understand the 
current driving scene. Compared with other sensors, industrial cameras required for 
computer vision are relatively mature in terms of technology. From the perspective 
of hardware, cameras have the characteristics of high stability, strong transmission 
ability, and strong anti-interference ability. Due to its price advantage, multiple 
cameras are widely used in the ADAS market to meet driving needs. 

As an active imaging RaDAR technology developed based on laser rangefinders, 
Light Detection and Ranging (LiDAR) emits and receives laser beams and analyzes 
the return time of the laser after encountering the target object to calculate the 
relative distance. In the meantime, based on the surface information of the target 
object collected in this process, various related data including the three-dimensional 
coordinates, reflectivity and texture, and the three-dimensional model can be quickly 
obtained. Therefore, a three-dimensional point cloud map of the entire environment 
can be established to achieve the purpose of environmental perception. Given the 
potentially short time of flight due to the speed of light, the measurement equipment 
is required to have very high accuracy. From the perspective of effects, the more the 
laser RaDAR beams (dimensions), the higher the measurement accuracy, and the 
higher the safety. 

The essence of the vehicle-mounted millimeter-wave RaDAR is a frequency-
modulated continuous-wave ranging RaDAR. With the characteristics of simple 
structure and small size, this type of RaDAR can obtain the relative distance and 
relative speed of the measured target at the same time. The basic principle of RaDAR 
is that when the transmitted continuous-frequency modulation signal encounters the 
target, it will generate an echo with a certain delay from the transmitted signal. After 
that, the frequency mixing process is performed by the mixer, and the result after 
mixing is related to the relative distance and relative speed of the measured target. 
The frequency bands of vehicle-mounted millimeter-wave RaDARs are mainly 
concentrated in the two frequency bands of 24GHz and 77GHz. For instance, 
the ESR millimeter-wave RaDAR developed by Delphi Corporation of the United 
States has the functions of mid-range scanning and long-range scanning at the same 
time. Adopting the continuous modulation method and applying the Doppler test 
principle, it can obtain the relative distance, angle, and speed of 64 targets within 
the farthest range of 174 m. 

1.3 Perception 

The main research direction of perception technology in autonomous driving is real-
time perception and understanding of the surrounding environment. This technology 
still faces the challenge of processing large amounts of data from multiple sensors, 
such as data from cameras, wireless communication devices, ranging RaDARs,



1.3 Perception 7

and infrared devices. The data of autonomous driving vehicles is usually collected 
by multiple sensors and preprocessed to form various features to detect and track 
static and dynamic targets in the environment. In addition, some inferences can be 
performed, such as vehicle behavior and scene understanding. The main function of 
environment perception is to realize the detection and tracking of lanes, roads, and 
traffic participants based on the onboard hardware system. 

As one of the tasks in the field of computer vision, object detection is the basis 
of many other vision tasks, such as instance segmentation [8] and target tracking 
[10], aiming to detect each instance of different types of objects. Considering 
the availability of data and the richness of data features, it generally refers to 
target detection with RGB images as the main data. Typically, the detection result 
is expressed as the bounding boxes labeled on images to locate objects and 
the probability of object category properties [20]. According to the definition, it 
is usually required that the object detection algorithm first search for the area 
that may contain the target on the image and then classify the area, which is a 
multi-stage model. With the development of deep learning, a one-stage detection 
model is proposed, which can perform classification at the same time as detection, 
thereby increasing the detection speed. In addition, the detection methods are also 
inconsistent for different modal data. As multiple sensors such as LiDAR, RaDAR, 
and RGB-depth camera are applied to autonomous vehicles, it is also necessary to 
pay attention to methods based on point clouds provided by RaDAR, depth images, 
or other modal data in autonomous driving. For object detection on images, the 
accuracy of traditional methods is often inferior to deep learning methods, while 
the latter often requires large datasets and long-term training to learn features. For 
object detection on the point cloud, the advantage is that it can use three-dimensional 
spatial information for detection. However, the disadvantage is that the increase in 
spatial dimensions causes the point cloud data to be too sparse, resulting in poor 
model fitting effects [1]. The depth image, that is, the RGB image with distance 
information recorded by the depth camera [6, 15], combines the characteristics of 
the image and the point cloud, but it has not yet become the mainstream due to 
the insufficient performance of the camera. In summary, although object detection 
methods for multiple modal data are constantly being proposed, most of the models 
are still based on images. The current model mainly evaluates the effect by the 
coincidence of bounding boxes [17] and determines whether the prediction is correct 
by setting a threshold, namely, intersection over union (IoU). 

After object recognition, object tracking is a crucial processing step that tries 
to monitor the target of interest and generate its trajectory. According to the 
generation method of the motion trajectory, the object tracking algorithm can 
be divided into offline algorithm and online algorithm [14]. The offline tracking 
algorithm can use future frames to optimize the tracking results using global 
information. Nevertheless, the autonomous driving system itself requires real-time 
data processing; therefore, online monitoring techniques are typically employed. 
The online tracking algorithm accepts the sensor data and detection results of the 
current frame and historical frames and associates the detection results with the 
existing historical target trajectory [16]. In recent years, tracking methods based on



8 1 Introduction

correlation filtering and tracking methods based on deep learning have developed 
rapidly. Compared with traditional optical flow method, Kalman filter method, 
mean shift method, and other traditional algorithms, correlation filtering algorithm 
tracking has advantages in speed, while deep learning methods have higher accuracy 
[19]. The object tracking based on correlation filtering [5] can effectively implement 
correlation calculations through fast Fourier transform, and its calculation speed 
can often reach hundreds of frames per second. Due to the fact that this method 
typically relies on lower-level features, such as color and texture, its reliability 
and robustness are far inferior to those of methods based on deep learning. The 
tracking method based on deep learning has achieved better tracking effect than 
traditional methods, by using deep neural network to extract the deep features of 
the image. With the development of computer performance in recent years, object 
tracking methods based on deep learning can meet the real-time requirements of 
autonomous driving. Nevertheless, due to the peculiarities of autonomous driving 
scenarios, such as mutual occlusion and interaction between traffic participants, as 
well as frequent changes in the driving environment, single-modal data is frequently 
flawed, resulting in insufficient tracking trajectories. Therefore, some researchers 
overcome the problem of single-sensor data defects by considering the redundancy 
and complementarity of multi-sensor data. Different from object detection, the 
object tracking multi-sensor fusion algorithm can not only use different sensor data 
for multi-sensor fusion but also fuse the historical information of the sensor itself or 
cross-fuse the historical information of different sensors. 

1.4 Multi-Sensor Fusion 

Table 1.1 summarizes the types, functions, advantages, and disadvantages of several 
common sensors configured on autonomous driving vehicles. 

Regardless of whether it is a monocular camera, a binocular camera, a multi-
eye camera, or a depth camera, regardless of the number of pixels or sampling 
rate, it cannot solve all the problems of image processing. Due to the diversity 
and complexity of the road environment and weather, as well as the motion 
characteristics of autonomous driving vehicles, the camera is susceptible to many 
uncertain factors such as illumination, angle of view, scale, shadow, fouling, and 
background interference and target occlusion. In the process of autonomous driving, 
traffic elements such as lane lines and signal lights are worn to a certain degree, and 
reflections are normal, so there is no perfect camera. 

Radar sensors have strong robustness to interference factors such as light and 
color. LiDAR, millimeter-wave RaDAR, and ultrasonic RaDAR also have their 
advantages. However, the number/type of RaDAR installed and the high sampling 
frequency cannot completely solve the detection problems under severe weather 
conditions such as pit reflection, smoke and dust interference, rain, snow, and fog. It 
is also difficult to achieve true all-weather, all-time, and all-road conditions, which 
means that the RaDAR sensor is also imperfect.



1.4 Multi-Sensor Fusion 9

Ta
bl
e 
1.
1 

C
om

pa
ri
so
n 
of
 c
om

m
on
 s
en
so
rs
 c
on
fig

ur
ed
 o
n 
au
to
no
m
ou
s 
dr
iv
in
g 
ve
hi
cl
es
 

Se
ns
or
 

ty
pe
 

D
et
ec
tio

n 
di
st
an
ce
 (
m
) 

Pe
de
st
ri
an
 

de
te
ct
io
n 

O
bj
ec
t 

de
te
ct
io
n 

O
bj
ec
t 

re
co
gn
iti
on
 

Fu
nc
tio

n
A
dv
an
ta
ge
s

D
is
ad
va
nt
ag
es
 

C
am

er
a

50
�

�
�

R
el
y 
on

 m
ac
hi
ne
 v
is
io
n 

al
go

ri
th
m
s 
to
 d
et
ec
t a
nd

 
re
co
gn
iz
e 
th
e 

su
rr
ou
nd
in
g 
en
vi
ro
nm

en
t 

an
d 
ob

je
ct
s,
 d
et
ec
t t
he
 

di
st
an
ce
 o
f 
ob

st
ac
le
s 
in
 

fr
on
t, 
po
si
tio

ni
ng
 a
nd
 

en
vi
ro
nm

en
ta
l m

od
el
in
g 

A
bl
e 
to
 id

en
tif
y 
th
e 
ty
pe
 

of
 o
bj
ec
t a
nd
 th

e 
co
lo
r 
of
 

th
e 
si
gn

al
 li
gh

t; 
lo
w
 p
ri
ce
 

co
st
 

A
ff
ec
te
d 
by
 li
gh
t 

co
nd
iti
on
s;
 d
ep
en
ds
 o
n 

le
ar
ni
ng

 s
am

pl
es
 

L
iD
A
R

20
0

�
�

.×
St
at
ic
 o
bj
ec
t d

et
ec
tio

n,
 

dy
na
m
ic
 o
bj
ec
t d

et
ec
tio

n 
an
d 
tr
ac
ki
ng
, r
oa
d 

su
rf
ac
e 
de
te
ct
io
n,
 

po
si
tio

ni
ng
 a
nd
 

en
vi
ro
nm

en
ta
l m

od
el
in
g 

A
bl
e 
to
 d
et
ec
t m

os
t 

ob
je
ct
s,
 w
ith

 h
ig
h 

di
st
an
ce
 a
cc
ur
ac
y 

A
ff
ec
te
d 
by
 h
ea
vy
 r
ai
n,
 

he
av
y 
sn
ow

, a
nd
 o
th
er
 

se
ve
re
 w
ea
th
er
 

M
ill
im

et
er
-

w
av
e 

R
aD

A
R
 

17
0

.×
�

.×
M
ot
io
n 
de
te
ct
io
n 
of
 m

os
t 

ve
hi
cl
es
, m

os
tly

 u
se
d 
fo
r 

ad
ap
tiv

e 
cr
ui
se
 a
nd

 
co
lli
si
on

 w
ar
ni
ng

 

L
es
s 
af
fe
ct
ed
 b
y 
ra
in
, 

sn
ow

, a
nd
 f
og
; l
ow

er
 c
os
t 

Po
or
 d
et
ec
tio

n 
of
 

pe
de
st
ri
an
s



10 1 Introduction

Different types of sensors have their own advantages and disadvantages, and 
neither the “millimeter-wave RaDAR + camera” solution nor the “3D LiDAR” 
solution could be unique. The various configuration schemes seem to be competing, 
but they are complementary, inspiring, and supplementing each other. For differ-
ent sensing tasks, different sensor types and models are required. To fulfill the 
driving task, it is not essential to configure all of the most expensive and many 
sensors. Sensor configuration should be task-oriented, that is, targeted selection and 
combination to achieve the most cost-effective optimal configuration. At the same 
time, for autonomous vehicles to achieve safe driving, multi-sensor collaboration 
and information redundancy must be guaranteed. Therefore, multiple sensors are 
often required to work collaboratively and complement each other’s advantages. 
Various sensors cooperate with each other to input the collected environmental data 
in the form of pixels and point clouds. Furthermore, artificial intelligence algorithms 
are used for extraction, processing, and fusion, to further form a complete driving 
situation around the vehicle, and provide a basis for the behavioral decision-making 
of autonomous driving vehicles. 

For object detection tasks, according to Di Feng et al. [7], data fusion occurs 
at different stages of the object detection model; thus, the fusion method can be 
divided into early fusion, middle fusion or deep fusion, and late fusion. Specifically, 
early fusion focuses on the fusion of original data or data that has only been 
preprocessed, and late fusion fuses the calculation results of multiple branches of 
the model to obtain the final result. Combining the characteristics of early fusion 
and late fusion, middle fusion combines the data of multiple modalities or their 
corresponding feature maps for continued analysis. Middle fusion can not only exist 
in the intermediate steps of the model but can also run through the entire model. 
The three types of fusion are also known as data-level fusion, feature-level fusion, 
and decision-level fusion in other publications [13]. However, in the deep learning 
model with multi-level and multi-model combination, the result of model branching 
is also the intermediate feature of the whole model [3]. Most fusion methods are 
classified as middle fusion, which leads to the lack of discrimination in the division 
method by stage. To distinguish the degree of model fusion more intuitively, a 
classification scheme for fusion methods is produced from the perspective of fusion 
levels, namely, data fusion, feature fusion, result fusion, and auxiliary estimation, 
as  shown in Fig. 1.2. According to the proposed classification method, the division 
of the fusion method is no longer based on the sequence of the fusion steps in the 
model, but the role of the fusion result in the model. Moreover, the division of fusion 
will not be restricted by the form of the fusion data, which more intuitively reflects 
the effect of the fusion operation on the model. 

Similarly, for object tracking tasks, multi-sensor fusion mainly occurs at three 
levels, data-level fusion, feature-level fusion, and decision-level fusion, as shown 
in Fig. 1.3. Zhang et al. [18] considered the RGB and TIR modalities and used the 
DiMP tracker [4] as a benchmark to quantitatively analyze and verify the effect of 
three different fusion levels on the performance of the fusion tracking algorithm. 
Linder et al. [11] fused HOG features and depth features in four different tracking 
algorithms [2, 9, 12] and proved that these four tracking algorithms have different



1.5 Public Datasets 11

Fig. 1.2 Examples of different levels of fusion for object detection 

Fig. 1.3 Examples of different levels of fusion for object tracking 

degrees of improvement. The pervious experiments all indicate that the performance 
of tracking algorithms based on sensor fusion has been improved and, compared to 
data-level fusion and decision-level fusion, feature-level fusion improves tracking 
performance more significantly. 

1.5 Public Datasets 

In recent years, deep learning has made great progress in scene understanding. Deep 
learning can automatically learn object features based on labeled data. The more 
labeled data used for training and the more comprehensive the features of various 
types of objects are included, the more sufficient the features that the deep learning



12 1 Introduction

network can learn. For complex object features, deep learning can be fitted with 
huge parameter models, while it is often difficult for people to display and define 
complex target features completely and accurately. 

High-quality annotation data is the fuel that drives deep learning algorithms, 
and there are currently a large number of open-source datasets based on unmanned 
platforms: 

(1) The KITTI dataset was co-founded by the Karlsruhe Institute of Technology 
in Germany and the Toyota Technological Institute at Chicago, which is 
currently one of the largest computer vision algorithm evaluation datasets in the 
autonomous driving scenario in the world. This dataset contains rich and diverse 
sensor data (such as binocular cameras, 64-line LiDAR, etc.) and a large number 
of calibration true values (including detection of 2D and 3D label frames and 
tracking of trajectories). To cover more real driving conditions, the collected 
scenes mainly include urban areas, villages, and highways. Each image has 
a maximum of 15 cars and 30 pedestrians and various degrees of occlusion 
and interception. The entire dataset consists of 389 pairs of stereo images and 
optical flow diagrams, 39.2 km visual ranging sequence, and more than 200k 3D 
annotated object images, which are sampled and synchronized at a frequency 
of 10 Hz. The types of tasks that can be studied based on this dataset include 
stereo evaluation, optical flow evaluation, visual odometry, 3D object detection 
and tracking, lane detection, semantic segmentation, etc. 

(2) Waymo, an autonomous driving company under Google’s parent company 
Alphabet, has open-sourced its autonomous driving database named Waymo 
Open Dataset to help the research community achieve breakthroughs in 
machine perception and autonomous driving technology. The dataset covers 
dense urban and suburban environments in Phoenix, Arizona, Washington, 
California, etc. and captures data under various driving conditions (including 
day and night, dawn and dusk, and sunny and rainy days). The Waymo 
acquisition platform is equipped with 5 cameras and 5 LiDARs, which collected 
3000 driving records with a total of 600,000 frames. Vehicles, pedestrians, 
cyclists, and signs have been carefully labeled, with approximately 12 million 
3D labels and 1.2 million 2D labels, while 113k LiDAR object trajectories and 
160k camera image trajectories have been generated. All truth boxes contain 
tracking identifiers that support object tracking, and such consecutive frames 
can facilitate researchers to develop models to track and predict the behavior of 
other road users. These data can help researchers make progress in the fields of 
scene adaptation, scene understanding, and behavior prediction. 

(3) The nuScenes dataset is a large-scale autonomous driving dataset established by 
the autonomous driving company nuTonomy. It collects data from six cameras, 
one LiDAR, and five millimeter-wave RaDARs, which is the only dataset with 
RaDAR data that can be found at present. This dataset consists of 1000 scenes; 
each scene is 20 s in length, including high traffic density (such as intersections 
and construction sites), rare objects (such as ambulances and animals), and 
potentially dangerous traffic conditions (such as the chaotic crossing of roads),



1.5 Public Datasets 13

maneuvering (such as changing lanes, turning, and stopping), etc. The nuScenes 
dataset contains 1.4 million images, 400,000 LiDAR scans, and 1.1 million 
three-dimensional bounding boxes. 

(4) The Cityscapes dataset was jointly launched in 2015 by three German compa-
nies including Daimler, which is the urban landscape dataset, which provides 
image segmentation datasets in an unmanned driving environment. It is used to 
evaluate the performance of vision algorithms in the semantic understanding of 
urban scenes. The Cityscapes dataset contains 50 cities with different scenes, 
different backgrounds, and street scenes in different seasons, which provides 
5000 finely labeled images, 20,000 roughly labeled images, and 30 types 
of labeled objects. This dataset is currently recognized as one of the most 
authoritative and professional image semantic segmentation evaluation sets in 
the field of autonomous driving. It focuses on the understanding of the urban 
road environment in real scenarios, and the task is more difficult and closer to 
popular requirements such as autonomous driving. 

(5) In March 2018, Baidu’s large-scale autonomous driving dataset ApolloScape 
was opened, and it is committed to providing more practical data resources and 
evaluation standards for autonomous driving technology researchers around the 
world. The acquisition platform is equipped with two LiDARs and six cameras. 
ApolloScape has opened 147,000 frames of pixel-level semantic annotation 
images, including hundreds of thousands of frames of pixel-level semantic 
segmentation and high-resolution image data for perceptual classification and 
road network data, as well as corresponding pixel-by-pixel semantic annota-
tions, covering a 10KM area around 3 sites from 3 cities. Moreover, each area 
was repeatedly collected under different weather and lighting conditions. By 
adding more sensors to expand the diversity of data, it is committed to creating 
a platform with the highest degree of real-world reproduction and the most 
abundant scenes. ApolloScape is currently the 3D autopilot public dataset in 
the industry, with the most complex environment, the most accurate labeling, 
and the largest amount of data. In terms of data quality, the precision of data 
labels in ApolloScape exceeds that of the same type of KITTI and Cityscapes 
datasets. 

(6) In 2020, AI labeling company Scale AI and Hesai Technology jointly released 
a dataset called PandaSet. Combining the advantages of hardware and annota-
tions, it is a high-quality dataset for L5 autonomous driving. The sensor suite for 
data collection mainly includes one mechanical LiDAR, one solid-state LiDAR, 
five wide-angle cameras, and one telephoto camera, which fully captures the 
complex and changeable environmental factors in urban areas. The dataset 
includes more than 48,000 camera images and 16,000 LiDAR scanned point 
cloud images. The most challenging driving conditions in level 5 autonomous 
driving are covered, including all-day light conditions and weather conditions. 
In addition, the complex urban environment, dense traffic and pedestrians, 
buildings, greening, and other facilities are also considered in this dataset. 
Nowadays, autonomous driving datasets are still dominated by pictures and



14 1 Introduction

LiDAR, but as more companies join, the public datasets will become more and 
more abundant. 

As research investment in autonomous driving continues to grow, public datasets 
are expected to become more abundant. The development of autonomous driving 
datasets is currently focused on several key areas. Firstly, more scenarios and 
contexts can be added to improve the adaptability and generalization of models. 
Secondly, multiple types of datasets can be integrated to increase the quality and 
stability of data, facilitating the creation of comprehensive solutions and robust 
evaluation of autonomous driving tasks. Lastly, the promotion of dataset sharing 
and open-source approaches can help accelerate the development and diffusion of 
autonomous driving technologies. 

1.6 Challenges 

The Defense Advanced Research Projects Agency (DARPA) of the United States 
held the Grand Challenge in 2004 and 2005 and the Urban Challenge in 2007 to 
test and promote the development of intelligent driving technology. In the 2004 
competition, participating vehicles were required to successfully traverse 200 miles 
of rugged and varied terrain within 10 h, but none of the teams ran the entire 
course. In 2005, the race was held in the Nevada desert in the Southwestern United 
States. It was consistent with the previous rules and required autonomous vehicles 
to complete the race’s prescribed route within 10 h. The entire race route will 
not exceed 175 miles, with artificial obstacles added in addition to the natural 
terrain. The Stanley driverless car from Stanford University finally successfully 
traversed 132 miles of rugged desert with a best time of 9 h and 55 min and became 
the champion of this competition. Two participating teams from Carnegie Mellon 
University, Red Team and Red Team Too, ranked second and third with 9 h 59 
min and 10 h 04 min, respectively. Another team that successfully traversed was 
TerraMax, which scored 27 h and 15 min. For the 2007 competition, which required 
vehicles to be able to drive fully automatically in urban road environments and obey 
traffic rules, Carnegie Mellon University’s Boss driverless car was the winner. 

In 2008, the National Natural Science Foundation of China (NSFC) proposed 
a major research program on “Cognitive Computing of Audiovisual Information,” 
which started a boom in domestic research on intelligent driving technology. Since 
2009, the National Natural Science Foundation of China has hosted the “Future 
Challenge” every year. The purpose is to use the competition as the carrier to 
encourage major domestic universities and research institutes to integrate and 
innovate to develop artificial intelligence and intelligent driving technology. The 
competition takes the development of an intelligent driving vehicle verification 
platform with natural environment perception and intelligent behavior decision-
making capabilities as the main form, to promote technical seminars and industrial 
applications, by testing the research results through autonomous driving in a real



1.6 Challenges 15

Fig. 1.4 The closed test site of the autonomous vehicle in Changshu 

road environment. Starting with the fifth competition in 2013, it was held in 
Changshu, Jiangsu Province, and included two parts: a suburban road test and an 
urban road test to evaluate the completion of testing tasks by driverless vehicles 
according to 4S standards (i.e., Safety, Smartness, Smoothness, and Speed). The 
road environment is more complex and diverse, adding arch bridges, tunnels, ramp 
entrances, and school entrances to the commonly encountered obstacle cars, slow-
moving cars, and temporary road blockage scenarios in the driving process. The 
ability to intelligently perceive traffic signs, pedestrians, vehicles, and objects and 
the ability to control autonomous decision-making and correct behavior are the 
focus of the assessment. 

In particular, for the tenth edition of the competition in 2020, the validation 
of a mixed manned and unmanned driving test was performed for the first time, 
where multiple unmanned vehicles interact with multiple manned vehicles. As 
shown in Fig. 1.4, more than ten test scenarios are set up in the nine-grid test 
area, including traffic markings and signs, traffic signals, non-motorized mixed 
road sections, pedestrian avoidance sections, construction road closed turnaround 
sections, construction bypass obstacle sections, simulated tunnel sections, simulated 
rain sections, rural simple road sections, and real traffic convergence. Compared 
with highways, urban roads require participating teams to consider interaction and 
decision-making capabilities in complex scenarios of autonomous driving vehicles. 
On the basis of improving the open-source digital map of the test area, the semantic



16 1 Introduction

topology map was introduced for the first time to complete the natural interactive 
navigation application test. Meanwhile, with autonomous travel services as the 
background, the technical maturity of driverless commercial applications has been 
fully verified. 

1.7 Summary 

The main key technologies of autonomous vehicles include environment perception, 
path planning, driving cognition, decision-making, and control. As the first part of 
autonomous driving, the environment perception system is equipped with onboard 
sensors to collect road environment information inside and around the vehicle. 
Onboard sensors have been able to provide rich perception data for autonomous 
driving, but they still have some limitations that prevent them from achieving full-
scene applications. For instance, vision sensors have poor adaptability to changes 
in light, ultrasonic RaDAR has limited detection range, and the high cost of LiDAR 
with poor adaptability to disturbances such as rain, snow, and fog. 

Due to their respective limitations, single-modal sensing is difficult to completely 
solve the problem of accurate perception of objects in complex traffic environments. 
To ensure the integrity of collected information and driving safety, two or more 
multi-source heterogeneous sensors are often installed on autonomous driving 
vehicles. The environment perception method based on multimodal data can 
effectively improve the completeness of autonomous driving data and the accuracy 
of environment perception, which should be studied in depth. Environmental 
perception tasks involve target classification, recognition, and tracking, and the 
difficulties of different task solutions are various. Aiming at the above difficulties, 
this book focuses on the research of environment perception methods based on 
the characteristics of multimodal data. Based on the automatic joint calibration 
algorithm, the study of object classification, recognition, and tracking based on 
multimodal data features provides a theoretical basis and feasible methods for 
the perception system of intelligent driving cars, which has great theoretical and 
practical significance. 

References 

1. Arnold, E., Al-Jarrah, O.Y., Dianati, M., Fallah, S., Oxtoby, D., Mouzakitis, A.: A survey on 
3d object detection methods for autonomous driving applications. IEEE Trans. Intell. Transp. 
Syst. 20(10), 3782–3795 (2019) 

2. Arras, K.O., Grzonka, S., Luber, M., Burgard, W.: Efficient people tracking in laser range 
data using a multi-hypothesis leg-tracker with adaptive occlusion probabilities. In: 2008 IEEE 
International Conference on Robotics and Automation, pp. 1710–1715. IEEE (2008)



References 17

3. Bai, M., Mattyus, G., Homayounfar, N., Wang, S., Lakshmikanth, S.K., Urtasun, R.: Deep 
multi-sensor lane detection. In: 2018 IEEE/RSJ International Conference on Intelligent Robots 
and Systems (IROS), pp. 3102–3109. IEEE (2018) 

4. Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for 
tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 
6182–6191 (2019) 

5. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive 
correlation filters. In: 2010 IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, pp. 2544–2550. IEEE (2010) 

6. Eitel, A., Springenberg, J.T., Spinello, L., Riedmiller, M., Burgard, W.: Multimodal deep 
learning for robust RGB-D object recognition. In: 2015 IEEE/RSJ International Conference 
on Intelligent Robots and Systems (IROS), pp. 681–687. IEEE (2015) 

7. Feng, D., Haase-Schütz, C., Rosenbaum, L., Hertlein, H., Glaeser, C., Timm, F., Wiesbeck, W., 
Dietmayer, K.: Deep multi-modal object detection and semantic segmentation for autonomous 
driving: datasets, methods, and challenges. IEEE Trans. Intell. Transp. Syst. 22(3), 1341–1360 
(2020) 

8. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Simultaneous detection and segmentation. 
In: European Conference on Computer Vision, pp. 297–312. Springer (2014) 

9. Jafari, O.H., Mitzel, D., Leibe, B.: Real-time RGB-D based people detection and tracking for 
mobile robots and head-worn cameras. In: 2014 IEEE International Conference on Robotics 
and Automation (ICRA), pp. 5636–5643. IEEE (2014) 

10. Kang, K., Li, H., Yan, J., Zeng, X., Yang, B., Xiao, T., Zhang, C., Wang, Z., Wang, R., Wang, 
X., et al.: T-cnn: Tubelets with convolutional neural networks for object detection from videos. 
IEEE Trans. Circuits Syst. Video Technol. 28(10), 2896–2907 (2017) 

11. Linder, T., Breuers, S., Leibe, B., Arras, K.O.: On multi-modal people tracking from mobile 
platforms in very crowded and dynamic environments. In: 2016 IEEE International Conference 
on Robotics and Automation (ICRA), pp. 5512–5519. IEEE (2016) 

12. Linder, T., Girrbach, F., Arras, K.O.: Towards a robust people tracking framework for service 
robots in crowded, dynamic environments. In: Assistance and Service Robotics Workshop 
(ASROB-15) at the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) (2015) 

13. Luo, J., Yang, Y.: An overview of target detection methods based on data fusion. Control 
Decision 35(1), 1–15 (2020) 

14. Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., Kim, T.K.: Multiple object tracking: a 
literature review. Artif. Intell. 293, 103,448 (2021) 

15. Mees, O., Eitel, A., Burgard, W.: Choosing smartly: adaptive multimodal fusion for object 
detection in changing environments. In: 2016 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 151–156. IEEE (2016) 

16. Xu, Y., Zhou, X., Chen, S., Li, F.: Deep learning for multiple object tracking: a survey. IET 
Comput. Vis. 13(4), 355–368 (2019) 

17. Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.: Unitbox: an advanced object detection network. 
In: Proceedings of the 24th ACM International Conference on Multimedia, pp. 516–520 (2016) 

18. Zhang, L., Danelljan, M., Gonzalez-Garcia, A., van de Weijer, J., Shahbaz Khan, F.: Multi-
modal fusion for end-to-end rgb-t tracking. In: Proceedings of the IEEE/CVF International 
Conference on Computer Vision Workshops, pp. 0–0 (2019) 

19. Zhang, X., Ye, P., Leung, H., Gong, K., Xiao, G.: Object fusion tracking based on visible and 
infrared images: a comprehensive review. Inf. Fusion 63, 166–187 (2020) 

20. Zou, Z., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey. Preprint (2019). 
arXiv:1905.05055



Chapter 2 
Overview of Data Fusion in Autonomous 
Driving Perception 

Abstract In autonomous driving, research on data fusion has influential academic 
and application value. This chapter is proposed to summarize the data fusion 
methods of autonomous driving in recent years. Firstly, the development of deep 
object detection and data fusion in autonomous driving is introduced, as well as 
existing reviews. From three aspects of multimodal object detection, fusion levels, 
and calculation methods, the cutting-edge progress in this field is comprehensively 
shown. Finally, open issues are discussed, and the performance, challenges, and 
prospects are summarized. 

2.1 A Brief Review of Deep Learning 

Convolutional neural networks (CNNs) are one of the most efficient and powerful 
deep learning models for image processing and understanding. Compared to the 
multi-layer perceptron (MLP), the CNN is shift-invariant, contains fewer weights, 
and exploits hierarchical patterns, making it highly efficient for image semantic 
extraction. The end-to-end trained hidden layers of a CNN consist of convolutional 
layers, batch normalization layers, activation layers, and pooling layers. This 
hierarchical structure extracts image features with increasing abstract levels and 
receptive fields, enabling the learning of high-level semantics. 

The point cloud is a set of data points, which are LiDAR’s measurements 
of the detected object’s surface. In terms of data structure, the point cloud is 
sparse, irregular, orderless, and continuous. Point cloud encodes information in 3D 
structures and in per-point features (reflective intensities, color, normal, etc.), which 
is invariant to scale, rigid transformation, and permutation. These characteristics 
made feature extractions on the point cloud challenging for existing deep learning 
models, which require the modifications of existing models or developing new 
models. Therefore, this section focuses on introducing common methodologies for 
point cloud processing. 

Volumetric representation based: The volumetric representation partitions the 
point cloud into a fixed-resolution 3D grid, where features of each grid/voxel 
are hand-crafted or learned. This representation is compatible with standard 3D 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
X. Zhang et al., Multi-sensor Fusion for Autonomous Driving, 
https://doi.org/10.1007/978-981-99-3280-1_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3280-1protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-981-99-3280-1_2
https://doi.org/10.1007/978-981-99-3280-1_2
https://doi.org/10.1007/978-981-99-3280-1_2
https://doi.org/10.1007/978-981-99-3280-1_2
https://doi.org/10.1007/978-981-99-3280-1_2
https://doi.org/10.1007/978-981-99-3280-1_2
https://doi.org/10.1007/978-981-99-3280-1_2
https://doi.org/10.1007/978-981-99-3280-1_2
https://doi.org/10.1007/978-981-99-3280-1_2
https://doi.org/10.1007/978-981-99-3280-1_2
https://doi.org/10.1007/978-981-99-3280-1_2


20 2 Overview of Data Fusion in Autonomous Driving Perception

convolution. Several techniques have been proposed in [21] to reduce overfittings 
and orientation sensitivity and capture internal structures of objects. However, the 
volumetric representation loses spatial resolution and fine-grained 3D geometry dur-
ing voxelization which limits its performance. Furthermore, attempts to increase its 
spatial resolution (denser voxels) would cause computation and memory footprint 
to grow cubically, making it unscalable. 

Index/tree representation based: To alleviate constraints between high spatial res-
olution and computational costs, adapted-resolution partition methods that leverage 
tree-like data structures, such as k-d tree [9] and octree [11], are proposed. By 
dividing the point cloud into a series of unbalanced trees, regions can be partitioned 
based on their point densities. This allows regions with lower point densities to have 
lower resolutions, which reduce unnecessary computation and memory footprint. 
Point features are extracted along with the pre-built tree structure. 

2D view representation based: 2D views/multi-views are generated by projecting 
the point cloud to multiple 2D view planes. These rendered multi-view images 
can be processed by standard 2D convolutions, and features from these views 
are aggregated via view-pooling layers. Thus, the permutation-invariant problem 
is solved by transforming point cloud to images and the translation-invariant is 
achieved by aggregating features from different views. Qi et al. [22] combined 
the volumetric representation with multi-views generated via sphere rendering. 
Unfortunately, 2D view methods lose the 3D geometry information during the view 
rendering and struggle with per-point label prediction. 

Graph representation based: Point clouds can be represented as graphs, and 
convolution-like operation can be implemented on graphs in the spatial or spectral 
domain. For graph convolution in the spatial domain, operations are carried out by 
MLPs on spatially neighboring points. Spectral-domain graph convolutions extend 
convolutions as spectral filtering on graphs through the Laplacian spectrum. 

Point representation based: Point representation-based methods consume the 
point cloud without transforming it into an intermediate data representation. Early 
works in this direction employ shared multi-layer perceptrons (MLPs) to process 
point cloud [22], while recent works concentrated on defining specialized convolu-
tion operations for points [8]. 

One of the pioneering works of direct learning on point clouds is the PointNet 
[20], which employs an independent T-Net module to align point clouds and shared 
MLPs to process individual points for per-point feature extraction. The computation 
complexity of the PointNet increases linearly with the number of inputs, making 
it more scalable compared with volumetric-based methods. To achieve permutation 
invariance, point-wise features are extracted by shared MLPs which are identical 
for all points. These features are aggregated by symmetric operations (i.e., max 
pooling), which are also permutation invariant. The feature extraction process of the 
PointNet is defined as: 

.G({x1, · · · , xn}) ≈ fsym(h(x1), · · · , h(xn)) (2.1)



2.2 Fusion in Depth Completion 21

where x represents input points, h represents the per-point feature extraction 
function (i.e., shared MLPs), .fsym represents a symmetric function (i.e., max 
pooling), and g is a general function that we want to approximate. 

However, the PointNet fails to extract local interpoint geometry at different 
levels. To mitigate this challenge, Qi et al. [22] extended the PointNet to extract 
features from different levels by grouping points into multiple sets and apply 
PointNets locally. To reduce the computational and memory cost of the PointNet++, 
the RandLA-Net stacked the random point sampling modules and attention-based 
local feature aggregation modules hierarchically to progressively increase receptive 
field while maintaining high efficiency. Unlike PointNet-based methods, the spatial 
relationship between points is explicitly modeled in point-wise convolutions. Point-
wise convolutions aim to generalize the standard 2D discrete convolution to the 
continuous 3D space. The main challenge is to replace the discrete weight filter in 
standard convolution with a continuous weight function. This continuous weight 
function is approximated using MLPs in PointConv [26] and correlation functions 
in KPConv [24] and PCNN [1]. More specifically, the PCNN defines convolution 
kernels as 3D points with weights. A Gaussian correlation function that takes the 
coordinates of the kernel point and input point is used to calculate the weighting 
matrix at any given 3D coordinates. The KPConv follows this idea but instead 
uses a linear correlation function. Furthermore, KPConvs are applied on local point 
patches hierarchically, which are similar to the concepts of standard CNNs. This 
general point-wise convolution C at an input point .x ∈ R

3 in 3D continuous space 
is defined as: 

.(F ∗ h)(x) =
∑

xi∈Nx

h(xi − x)fi (2.2) 

where h is the per-point kernel function which calculates the weighting matrix given
the coordinates of input points and kernel points. . xi and . fi are the ith neighboring 
points of x and their corresponding features (intensity, color, etc.). . Nx are all the 
neighboring points of the input point x, which are determined using k-NN or radius 
neighborhoods. 

2.2 Fusion in Depth Completion 

Depth completion aims to up-sample sparse irregular depth to dense regular depth, 
which facilitates the downstream perception module. Depth completion can reduce 
the drastic uneven distributions of points in a LiDAR scan. For instance, far-away 
objects represented by a hand full of points are up-sampled to match their closer 
counterparts. To achieve this, high-resolution images are often employed to guide 
the 3D depth up-sampling. The depth completion task can be represented as: 

.ω∗ = argω min ζ(f (x;ω),G) (2.3)



22 2 Overview of Data Fusion in Autonomous Driving Perception

where the network .f (.) parametrized by . ω predicts the ground truth G, given  the  
input x. The loss function is represented as .ζ(., .). 

The idea behind image-guided depth completion is that dense RGB/color 
information contains relevant 3D geometry. Therefore, images can be leveraged as 
a reference for depth up-sampling. 

Signal-level fusion: In 2018, Ma et al. [14] presented a ResNet [7]-based 
autoencoder network that leverages RGB-D images (i.e., images concatenated with 
sparse depth maps) to predict dense depth maps. However, this method requires 
pixel-level depth ground truth, which is difficult to obtain. To solve this issue, 
Ma et al. presented a model-based self-supervised framework that only requires 
a sequence of images and sparse depth images for training. This self-supervision is 
achieved by employing sparse depth constrain, photometric loss, and smoothness 
loss. However, this approach assumes objects to be stationary. Furthermore, the 
resulting depth output is blurry, and input depth may not be preserved. To generate 
a sharp dense depth map in real time, Cheng et al. fed RGB-D images to a 
convolutional spatial propagation network (CSPN). This CSPN aims to extract 
the image-dependent affinity matrix directly, producing significantly better results 
in key measurements with lesser runtime. In CSPN++, Cheng et al. proposed to 
dynamically select convolutional kernel sizes and iterations to reduce computation. 
Furthermore, CSPN++ employs weighted assembling to boost its performance. 

Feature-level fusion: Jaritz et al. presented an autoencoder network that can 
perform either depth completion or semantic segmentation from sparse depth maps 
and images without applying validity masks. Images and sparse depth maps are 
first processed by two parallel NASNet-based encoders [32] before fusing them 
into the shared decoder. This approach can achieve decent performance with very 
sparse depth inputs (eight-channel LiDAR). Wang et al. designed an integrable 
module (PnP) that leverages the sparse depth map to improve the performance 
of existing image-based depth prediction networks. This PnP module leverages 
gradient calculated from sparse depth to update the intermediate feature map 
produced by the existing depth prediction network. El-desokey et al. presented a 
framework for unguided depth completion that processes images and very sparse 
depth maps in parallel and combine them in a shared decoder. Furthermore, 
normalized convolutions are used to process highly sparse depth and to propagate 
confidence. Valada et al. extended one-stage feature-level fusion to multiple stages 
of varying depths of the network. Similarly, GuideNet [23] fuse image features to 
sparse depth features at different stages of the encoder to guide the up-sampling 
of sparse depths, which achieves top performance in the KITTI depth completion 
benchmark. The constraint of these approaches is the lack of large-scale datasets 
that have dense depth ground truth. 

Multi-level fusion: Van Gansbeke et al. further combine signal-level fusion and 
feature-level fusion in an image-guided depth completion network. The network 
consists of a global and a local branch to process RGB-D data and depth data in 
parallel before fusing them based on the confidence maps. 

Compared with the RGB image, dense depth disparity from stereo cameras 
contains richer ground truth 3D geometry. On the other hand, LiDAR depth is sparse



2.3 Fusion in Dynamic Object Detection 23

but of higher accuracy. These complementary characteristics enable stereo-LiDAR 
fusion-based depth completion models to produce a more accurate dense depth. 
However, it is worth noting that stereo cameras have limited range and struggles in 
high-occlusion, texture-less environments, making them less ideal for autonomous 
driving. 

Feature-level fusion: One of the pioneering works is from Park et al. [18], in 
which high-precision dense disparity map is computed from dense stereo disparity 
and point cloud using a two-stage CNN. The first stage of the CNN takes LiDAR 
and stereo disparity to produce a fused disparity. In the second stage, this fused 
disparity and left RGB image are fused in the feature space to predict the final high-
precision disparity. Finally, the 3D scene is reconstructed from this high- precision 
disparity. The bottleneck of this approach is the lack of large-scale annotated stereo-
LiDAR datasets. The LidarStereoNet [4] averted this difficulty with an unsupervised 
learning scheme, which employs image warping/photometric loss, sparse depth loss, 
smoothness loss, and plane fitting loss for end-to-end training. Furthermore, the 
introduction of “feedback loop” makes the LidarStereoNet robust against noisy 
point cloud and sensor misalignment. Similarly, Zhang et al. presented a self-
supervised scheme for depth completion. The loss function consists of sparse depth, 
photometric, and smoothness loss. 

2.3 Fusion in Dynamic Object Detection 

Object detection (3D) aims to locate, classify, and estimate oriented bounding 
boxes in the 3D space. This section is devoted to dynamic object detection, which 
includes common dynamic road objects (car, pedestrian, cyclist, etc.). There are 
two main approaches for object detection: sequential and one-step. Sequential-
based models consist of a proposal stage and a 3D bounding box (bbox) regression 
stage in the chronological order. In the proposal stage, regions that may contain 
objects of interest are proposed. In the bbox regression stage, these proposals are 
classified based on the region-wise features extracted from 3D geometry. However, 
the performance of sequential fusion is limited by each stage. On the other hand, 
one-step models consist of one stage, where 2D and 3D data are processed in a 
parallel manner. 

A 2D proposal-based sequential model attempts to utilize 2D image semantics in 
the proposal stage, which takes advantage of off-the-shelf image processing models. 
Specifically, these methods leverage the image object detector to generate 2D region 
proposals, which are projected to the 3D space as detection seeds. There are two 
projection approaches to translate 2D proposals to 3D. The first one is projecting 
bounding boxes in the image plane to the point cloud, which results in a frustum-
shaped 3D search space. The second method projects the point cloud to the image 
plane, which results in the point cloud with point-wise 2D semantics. 

Result-level fusion: The intuition behind result-level fusion is to use off-the-
shelf 2D object detectors to limit the 3D search space for 3D object detection,



24 2 Overview of Data Fusion in Autonomous Driving Perception

which significantly reduces computation and improves runtime. However, since the 
whole pipeline depends on the results of the 2D object detector, it suffers from the 
limitations of the image-based detector. 

One of the early works of result-level fusion is the F-PointNets [19], where 2D 
bounding boxes are first generated from images and projected to the 3D space. 
The resulting projected frustum proposals are fed into a PointNet-based detector 
for 3D object detection. Du et al. extended the 2D to 3D proposal generation stage 
with an additional proposal refinement stage, which further reduces unnecessary 
computation on the background point. During this refinement stage, a model fitting-
based method is used to filter out background points inside the seed region. Finally, 
the filtered points are fed into the bbox regression network. The RoarNet followed a 
similar idea, but instead employs a neural network for the proposal refinement stage. 
Multiple 3D cylinder proposals are first generated based on each 2D bbox using 
the geometric agreement search, which results in smaller but more precise frustum 
proposals then the F-PointNet. These initial cylinder proposals are then processed 
by a PointNet-based header network for the final refinement. To summarize, these 
approaches assume each seed region only contains one object of interest, which is 
however not true for crowded scenes and small objects like pedestrians. 

One possible solution toward the aforementioned issues is to replace the 2D 
object detector with 2D semantic segmentation and region-wise seed proposal with 
point-wise seed proposals. Intensive point-based object detector (IPOD) by Yang et 
al. is a work in this direction. In the first step, 2D semantic segmentation is used to 
filter out background points. This is achieved by projecting points to the image plane 
and associated point with 2D semantic labels. The resulting foreground point cloud 
retains the context information and fine-grained location, which is essential for the 
region-wise proposal and bbox regression. In the following point-wise proposal 
generation and bbox regression stage, two PointNet++-based networks are used for 
proposal feature extraction and bbox prediction. In addition, a novel criterion called 
PointsIoU is proposed to speed up training and inference. This approach has yielded 
significant performance advantages over other state-of-the-art approaches in scenes 
with high occlusion or many objects. 

Multi-level fusion: Another possible direction of improvement is to combine 
result-level fusion with feature-level fusion, where one such work is PointFusion 
[29]. The PointFusion first utilizes an existing 2D object detector to generate 2D 
bboxes. These bboxes is used to select corresponding points, via projecting points 
to the image plane, and locate points that pass through the bboxes. Finally, a 
ResNet- and a PointNet-based network combine image and point cloud features 
to estimate 3D objects. In this approach, image features and point cloud features 
are fused per proposal for final object detection in 3D, which facilitates 3D 
bbox regression. However, its proposal stage is still amodal. In SIFRNet, frustum 
proposals are first generated from an image. Point cloud features in these frustum 
proposals are then combined with their corresponding image features for final 3D 
bbox regression. To achieve scale invariance, the PointSIFT is incorporated into 
the network. Additionally, the SENet module is used to suppress less informative 
features.



2.3 Fusion in Dynamic Object Detection 25

Feature-level fusion: Early attempts of multimodal fusion are done in pixel-
wise, where 3D geometry is converted to image format or appended as additional 
channels of an image. The intuition is to project 3D geometry onto the image plane 
and leverage mature image processing methods for feature extraction. The resulting 
output is also on the image plane, which is not ideal to locate objects in the 3D space. 
In 2014, Gupta et al. proposed Deep R-CNN, an R-CNN-based architecture for 
2D object detection, instance segmentation, and semantic segmentation. It encodes 
3D geometry from Microsoft Kinect camera in image’s RGB channels, which are 
horizontal disparity, height above ground, and angle with gravity (HHA). Gupta 
et al. extended Depth-RCNN in 2015 for 3D object detection by aligning 3D 
CAD models, yielding significant performance improvement. In 2016, Gupta et al. 
developed a novel technique for supervised knowledge transfer between networks 
trained on image data and unseen paired image modality (depth image). In 2016, 
Schlosser et al. further exploited learning RGB-HHA representations on 2D CNNs 
for pedestrian detection. However, the HHA data are generated from the LiDAR’s 
depth instead of a depth camera. The authors also noticed that better results can be 
achieved if the fusion of RGB and HHA happens at deeper layers of the network. 

The resolution mismatch between dense RGB and sparse depth means only a 
small portion of pixels have corresponding points. Therefore, to directly append 
RGB information to points leads to the loss of most texture information, rendering 
the fusion pointless. To mitigate this challenge, PointPainting [25] extract high-
level image semantic before the per-point fusion. To be more specific, PointPainting 
follows the idea of projecting points to 2D semantic maps in [30]. But instead of 
using 2D semantics to filter non-object points, 2D semantics is simply appended to 
point clouds as additional channels. The authors argued that this technique made 
PointPainting flexible as it enables any point cloud networks to be applied on this 
fused data. To demonstrate this flexibility, the fused point cloud is fed into multiple 
existing point cloud detectors, which are based on the PointRCNN, the VoxelNet, 
and the PointPillars. However, this would lead to the coupling between image and 
LiDAR models. This requires the LiDAR model to be re-trained when the image 
model changes, which reduces the overall reliability and increases the development 
cost. 

In a 3D proposal-based sequential model, 3D proposals are directly generated 
from 2D or 3D data. The elimination of 2D to 3D proposal transformation 
greatly limits the 3D search space for 3D object detection. Common methods 
for 3D proposal generation include the multi-view approach and the point cloud 
voxelization approach. 

Multi-view-based approach exploits the point cloud’s bird’s-eye view (BEV) 
representation for 3D proposal generation. The BEV is the preferred viewpoint 
because it avoids occlusions and retains the raw information of objects’ orientation 
and x, y coordinates. These orientation and x, y coordinates’ information are critical 
for 3D object detection while making coordinate transformation between BEV and 
other views straightforward.



26 2 Overview of Data Fusion in Autonomous Driving Perception

This makes it possible to apply standard 3D discrete convolution and leverage 
existing network structures to process point cloud. The drawback is the loss of some 
spatial resolution, which might contain fine-grained 3D structure information. 

Feature-level fusion: One of the pioneering and most important works in 
generating 3D proposals from BEV representations is MV3D [3]. MV3D generate 
3D proposals on pixelized top-down LiDAR feature map (height, density, and 
intensity). These 3D candidates are then projected to the LiDAR front view and 
image plane to extract and fuse region-wise features for bbox regression. The fusion 
happens at the region of interest (ROI) level via ROI pooling. The ROIviews of 
views is defined as: 

.ROIviews = T3D→views(p3D), views ∈ {BV,FV,RGB} (2.4) 

where .T3D→views represents the transformation function that project point cloud 
pan from 3D space to bird’s-eye view (BEV), front view (FV), and the image plane 
(RGB). The ROI pooling R to obtain feature vector fviews is defined as: 

.fviews = R(x,ROIviews), views ∈ {BV,FV,RGB} (2.5) 

There are a few drawbacks of the MV3D. Firstly, generating 3D proposals on 
BEV assumes that all objects of interest are captured without occlusions from 
this viewpoint. This assumption does not hold well for small object instances, 
such as pedestrians and bicyclists, which can be fully occluded by other large 
objects in the point cloud. Secondly, spatial information of small object instances 
is lost during the down-sample of feature maps caused by consecutive convolution 
operations. Thirdly, object-centric fusion combines feature maps of image and point 
clouds through ROI pooling, which spoils fine-grained geometric information in 
the process. It is also worth noting that redundant proposals lead to repetitive 
computation in the bbox regression stage. To mitigate these challenges, multiple 
methods have been put forward to improve MV3D. 

To improve the detection of small objects, the Aggregate View Object Detection 
(AVOD) network [10] first improved the proposal stage in MV3D with feature maps 
from both BEV point cloud and image. Furthermore, an autoencoder architecture is 
employed to up-sample the final feature maps to its original size. This alleviates 
the problem that small objects might get down-sampled to one “pixel” with 
consecutive convolution operations. The proposed feature fusion Region Proposal 
Network (RPN) first extracts equal-length feature vectors from multiple modalities 
(BEV point cloud and image) with crop and resize operations, followed by a 
.1 × 1 convolution operation for feature space dimensionality reduction, which 
can reduce computational cost and boost up speed. Lu et al. also utilized an 
encoder-decoder-based proposal network with Spatial-Channel Attention (SCA) 
module and Extension Spatial Upsample (ESU) module. The SCA can capture 
multi-scale contextual information, whereas ESU recovers the spatial information. 
One of the problems in object-centric fusion methods is the loss of fine-grained 
geometric information during ROI pooling. The ContFuse by Liang et al. tackles



2.3 Fusion in Dynamic Object Detection 27

this information loss with point-wise fusion. This point-wise fusion is achieved with 
continuous convolutions fusion layers that bridge image and point cloud features of 
different scales at multiple stages in the network. This is achieved by first extracting 
k-nearest neighbor points for each pixel in the BEV representation of point cloud. 
These points are then projected to the image plane to retrieve related image features. 
Finally, the fused feature vector is weighted according to their geometry offset to the 
target “pixel” before feeding into MLPs. However, point-wise fusion might fail to 
take full advantage of high-resolution images when the LiDAR points are sparse. In 
[12], Liang et al. further extended point-wise fusion by combining multiple fusion 
methodologies, such as signal-level fusion (RGB-D), feature-level fusion, multi-
view, and depth completion. In particular, depth completion up-samples sparse 
depth map using image information to generate a dense pseudo-point cloud. This up-
sampling process alleviates the sparse point-wise fusion problem, which facilitates 
the learning of cross-modality representations. Furthermore, the authors argued that 
multiple complementary tasks (ground estimation, depth completion, and 2D/3D 
object detection) could assist the network achieve better overall performance. 
However, point-wise/pixel-wise fusion leads to the “feature blurring” problem. This 
“feature blurring” happens when one point in the point cloud is associated with 
multiple pixels in the image or the other way around, which confound the data 
fusion. Similarly, Wang et al. replace the ROI pooling in MV3D with sparse non-
homogeneous pooling, which enables effective fusion between feature maps from 
multiple modalities. 

MVX-Net presented by Sindagi et al. introduced two methods that fuse image 
and point cloud data point-wise or voxel-wise. Both methods employ a pre-trained 
2D CNN for image feature extraction and a VoxelNet-based network to estimate 
objects from the fused point cloud. In the point-wise fusion method, the point cloud 
is first projected to image feature space to extract image features before voxelization 
and processed by VoxelNet. The voxel-wise fusion method first voxelized the point 
cloud before projecting non-empty voxels to the image feature space for voxel-
/region-wise feature extraction. These voxel-wise features are only appended to 
their corresponding voxels at a later stage of the VoxelNet. MVX-Net achieved 
state-of-the-art results and outperformed other LiDAR-based methods on the KITTI 
benchmark while lowering false-positive and false-negative rate compared to [31]. 

The simplest means to combine the voxelized point cloud and image is to append 
RGB information as additional channels of a voxel. In a 2014 paper by Song et al., 
3D object detection is achieved by sliding a 3D detection window on the voxelized 
point cloud. The classification is performed by an ensemble of Exemplar-SVMs. In 
this work, color information is appended to voxels by projection. Song et al. further 
extended this idea with 3D discrete convolutional neural networks. In the first stage, 
the voxelized point cloud (generated from RGB-D data) is first processed by multi-
scale 3D RPN for 3D proposal generation. These candidates are then classified by 
joint Object Recognition Network (ORN), which takes both image and voxelized 
point cloud as inputs. However, the volumetric representation introduces boundary 
artifacts and spoils fine-grained local geometry. Secondly, the resolution mismatch 
between image and voxelized point cloud makes fusion inefficient.



28 2 Overview of Data Fusion in Autonomous Driving Perception

One-step models perform proposal generation and bbox regression in a single 
stage. By fusing the proposal and bbox regression stage into one step, these models 
are often more computationally efficient. This makes them more well suited for 
real-time applications on mobile computational platforms. Meyer et al. extended 
the LaserNet to multi-task and multimodal network, performing 3D object detection 
and 3D semantic segmentation on fused image and LiDAR data. Two CNN process 
depth image (generated from point cloud) and front-view image in a parallel manner 
and fuse them via projecting points to the image plane to associate corresponding 
image features. This feature map is fed into the LaserNet to predict per-point 
distributions of the bounding box and combine them for final 3D proposals. This 
method is highly efficient while achieving state-of-the-art performance. 

2.4 Fusion in Stationary Road Object Detection 

This section focuses on reviewing recent advances in camera-LiDAR fusion-based 
stationary road object detection methods. Stationary road objects can be categorized 
into on-road objects (e.g., road surfaces and road markings) and off-road objects 
(e.g., traffic signs). On-road and off-road objects provide regulations, warning bans, 
and guidance for autonomous vehicles. 

Existing surveys [15, 17] have presented detailed reviews on traditional multi-
modal road detection methods. These methods [27, 28] mainly rely on vision for  
road/lane detection while utilizing LiDAR for the curb fitting and obstacle masking. 
Therefore, this section focuses on recent advances in deep learning-based fusion 
strategies for road extraction. 

Deep leaning-based road detection methods can be grouped into BEV-based or 
front camera view-based. BEV-based methods project LiDAR depth and images to 
BEV for road detection, which retains original x, y coordinates and orientation of 
each object. In [2, 13], the dense BEV height estimation is predicted from the point 
cloud using a CNN, which is then fused with the BEV image for accurate lane 
detection. However, this method cannot distinguish different lane types. Similarly, 
Lv et al. also utilized the BEV LiDAR grid map and the BEV image but instead 
processed them in a parallel manner. Yu et al. proposed a multi-stage fusion 
strategy (MSRF) that combines image depth features at different network levels, 
which significantly improves its performance. However, this strategy also relatively 
increases its computational cost. Wulff et al. used signal-level fusion to generate a 
fused BEV occupation grid, which is processed by a U-Net-based road segmentation 
network. However, the signal-level fusion between dense RGB and sparse depth 
leads to the loss of dense texture information due to the low grid resolution. 

Front camera view-based methods project LiDAR depth to the image plane to 
extract road surface, which suffers from accuracy loss in the translation of 2D 
to 3D boundaries. The LCNet compared signal-level fusion (early fusion) and 
feature-level fusion (late fusion and cross-fusion) for road detection, which finds 
the cross-fusion is the best performing fusion strategy. Similar to [13], PLARD fuses



2.5 Fusion in Semantic Segmentation 29

image and point cloud features progressively in multiple stages. Lee et al. focused 
on improving speed via a spherical coordinate transformation scheme that reduces 
the input size. These transformed camera and LiDAR data are further processed by 
a SegNet-based semantic segmentation network. 

In LiDAR scans, traffic signs are highly distinguishable due to its retro-reflective 
property, but the lack of dense texture makes it difficult to classify. On the contrary, 
traffic sign image patches can be easily classified. However, it is difficult for 
vision-based TSR system to locate these traffic signs in the 3D space. Therefore, 
various studies have proposed to utilize both camera and LiDAR for TSR. Existing 
reviews [15, 16] have comprehensively covered traditional traffic sign recognition 
methods and part of the deep learning methods. Hence, this section presents a brief 
overview of traditional traffic sign recognition methods and mostly focuses on recent 
advances. In a typical TSR fusion pipeline, traffic signs are first located in the 
LiDAR scan based on its retro-reflective property. These 3D positions of detected 
traffic signs are then projected to the image plane to generate traffic sign patches, 
which are fed into an image classifier for classification. 

For methods that employ the typical TSR fusion pipeline, the main difference is 
on the classifier. These classifiers include deep Boltzmann machine (DBM)-based 
hierarchical classifier, SVMs, and DNN. To summarize, these methods all employ 
result-level fusion and a hierarchical object detection model. They assume traffic 
signs are visible in the LiDAR scan, which sometimes is not the case due to the 
occlusion. Furthermore, this pipeline is limited by the detection range of mobile 
LiDARs. 

To mitigate these challenges, Deng et al. combined image and point cloud to 
generate a colorized point cloud for both traffic sign detection and classification. 
In addition, the 3D geometrical properties of detected traffic signs are utilized to 
reduce false positives. In [6], traffic signs are detected based on prior knowledge, 
which includes road geometry information and traffic sign geometry information. 
The detected traffic sign patches are classified by a Gaussian-Bernoulli DBM model. 
Following this ideal, Guan et al. further improved the traffic sign recognition part 
using a convolutional capsule network. To summarize, these methods improve the 
traffic sign detection stage with multimodal data and prior knowledge. However, 
prior knowledge is often region-specific, which makes it difficult to generalize to 
other parts of the world. 

2.5 Fusion in Semantic Segmentation 

This section reviews existing camera-LiDAR fusion methods for 2D semantic seg-
mentation, 3D semantic segmentation, and instance segmentation. 2D/3D semantic 
segmentation aims to predict per-pixel and per-point class labels, while instance 
segmentation also cares about individual instances.



30 2 Overview of Data Fusion in Autonomous Driving Perception

There are several 2D semantic segmentation methods, such as feature-level 
fusion. Valada et al. employed a multi-stage feature-level fusion of varying depths to 
facilitate semantic segmentation. Caltagirone et al. utilized up-sampled depth image 
and image for 2D semantic segmentation. This dense depth image is up-sampled 
using sparse depth images (from point cloud) and images. The best performing 
cross-fusion model processes dense depth image and image data in two parallel 
CNN branches with skip connections in between and fuses the two feature maps in 
the final convolution layer. 

There are also several 3D semantic segmentation methods. Feature-level fusion: 
Dai et al. presented 3DMV, a multi-view network for 3D semantic segmentation 
which fuses image semantic and point features in voxelized point cloud. Image 
features are extracted by 2D CNNs from multiple aligned images and projected back 
to the 3D space. These multi-view image features are max-pooled voxel-wise and 
fused with 3D geometry before feeding into the 3D CNNs for per-voxel semantic 
prediction. 3DMV outperformed other voxel-based approaches on ScanNet bench-
mark. However, the performance of voxel-based approaches is determined by the 
voxel resolution and hindered by voxel boundary artifacts. 

To alleviate problems caused by point cloud voxelization, Chiang et al. proposed 
a point-based semantic segmentation framework (UPF) that also enables efficient 
representation learning of image features, geometrical structures, and global context 
priors. Features of rendered multi-view images are extracted using a semantic 
segmentation network and projected to 3D space for point-wise feature fusion. 
This fused point cloud is processed by two PointNet++-based encoders to extract 
local and global features before feeding into a decoder for per-point semantic label 
prediction. Similarly, Multi-View PointNet (MVPNet) fused multi-view images 
semantics and 3D geometry to predict per-point semantic labels. 

Permutohedral lattice representation is an alternative approach for multimodal 
data fusion and processing. Sparse Lattice Networks (SPLATNet) by Su et al. 
employed sparse bilateral convolution to achieve spatial-aware representation learn-
ing and multimodal (image and point cloud) reasoning. In this approach, point 
cloud features are interpolated onto a bi-dimensional permutohedral lattice, where 
bilateral convolution is applied. The results are interpolated back onto the point 
cloud. Image features are extracted from multi-view images using a CNN and 
projected to the 3D lattice space to be combined with 3D features. This fused feature 
map is further processed by CNN to predict the per-point label. 

In essence, instance segmentation aims to perform semantic segmentation and 
object detection jointly. It extends the semantic segmentation task by discriminating 
against individual instances within a class, which makes it more challenging. 

Proposal based: Hou et al. presented 3D-SIS, a two-stage 3D CNN that per-
forms voxel-wise 3D instance segmentation on multi-view images and RGB-D 
scan data. In the 3D detection stage, multi-view image features are extracted 
and down-sampled using ENet-based network. This down-sample process tackles 
the mismatch problem between a high-resolution image feature map and a low-
resolution voxelized point cloud feature map. These down-sampled image feature 
maps are projected back to 3D voxel space and append to the corresponding 3D



2.6 Fusion in Object Tracking 31

geometry features, which are then fed into a 3D CNN to predict object classes and 
3D bbox poses. In the 3D mask stage, a 3D CNN takes images, point cloud features, 
and 3D object detection results to predict per-voxel instance labels. Narita et al. 
extended 2D panoptic segmentation to perform scene reconstruction, 3D semantic 
segmentation, and 3D instance segmentation jointly on RGB images and depth 
images. This approach takes RGB and depth frames as inputs for instance and 
2D semantic segmentation networks. To track labels between frames, these frame-
wise predicted panoptic annotations and corresponding depth are referenced by 
associating and integrating to the volumetric map. In the final step, a fully connected 
conditional random field (CRF) is employed to fine-tune the outputs. However, this 
approach does not support dynamic scenes and are vulnerable to long-term post-
drift. 

Proposal-free based: Elich et al. presented 3D-BEVIS, a framework that performs 
3D semantic and instance segmentation tasks jointly using the clustering method 
on points aggregated with 2D semantics. 3D-BEVIS first extracts global semantic 
score map and instance feature map from 2D BEV representation (RGB and height 
above ground). These two semantic maps are propagated to points using a graph 
neural network. Finally, the mean shift algorithm uses these semantic features to 
cluster points into instances. This approach is mainly constraint by its dependence 
on semantic features from BEV, which could introduce occlusions from sensor 
displacements. 

2.6 Fusion in Object Tracking 

Multiple object tracking (MOT) aims to maintain objects’ identities and track their 
location across data frames (over time), which is indispensable for the decision-
making of autonomous vehicles. To this end, this section reviews camera-LiDAR 
fusion-based object tracking methods. Based on object initialization methods, MOT 
algorithms can be catalogued into detection-based tracking (DBT) and detection-
free tracking (DFT) frameworks. DBT or tracking-by-detection framework lever-
ages a sequence of object hypotheses and higher-level cues produced by an object 
detector to track objects. In DBT, objects are tracked via data (detection sequence) 
association or multiple hypothesis tracking. On the contrary, the DFT framework is 
based on finite set statistics (FISST) for state estimation. Common methods include 
multi-target multi-Bernoulli (MeMBer) filter and probability hypothesis density 
(PHD) filter. 

Detection-based tracking (DBT): The tracking-by-detection framework consists 
of two stages. In the first stage, objects of interest are detected. The second stage 
associates these objects over time and formulates them into trajectories, which are 
formulated as linear programs. Frossard et al. presented an end-to-end trainable 
tracking-by-detection framework comprised of multiple independent networks that 
leverage both image and point cloud. This framework performs object detection, 
proposal matching and scoring, and linear optimization consecutively. To achieve



32 2 Overview of Data Fusion in Autonomous Driving Perception

end-to-end learning, detection and matching are formulated via a deep structured 
model (DSM). Zhang et al. presented a sensor-agnostic framework, which employs 
a loss-coupling scheme for image and point cloud fusion. Similar to [5], the 
framework consists of three stages, object detection, adjacency estimation, and 
linear optimization. In the object detection stage, image and point cloud features 
are extracted via a VGG-16 and a PointNet in parallel and fused via a robust 
fusion module. The robust fusion module is designed to work with both amodal 
and multimodal inputs. The adjacency estimation stage extends min-cost flow to 
multimodality via adjacent matrix learning. Finally, an optimal path is computed 
from the min-cost flow graph. Tracking and 3D reconstruct tasks can be performed 
jointly. Extending this idea, Luiten et al. leveraged 3D reconstruction to improve 
tracking, making tracking robust against complete occlusion. The proposed MOTS-
Fusion consists of two stages. In the first stage, detected objects are associated with 
spatiotemporal tracklets. These tracklets are matched and merged into trajectories 
using the Hungarian algorithm. Furthermore, MOTSFusion can work with LiDAR 
mono and stereo depth. 

Detection-free tracking (DFT): In DFT, objects are manually initialized and 
tracked via filtering-based methods. The Complexer-YOLO is a real-time frame-
work for decoupled 3D object detection and tracking on image and point cloud data. 
In the 3D object detection phase, 2D semantics are extracted and fused point-wise to 
the point cloud. This semantic point cloud is voxelized and fed into a 3D Complex-
YOLO for 3D object detection. To speed up the training process, IoU is replaced 
by a novel metric called Scale-Rotation-Translation (SRT) score, which evaluates 
3 DoFs of the bounding box position. Multi-object tracking is decoupled from the 
detection, and the inference is achieved via labeled multi-Bernoulli random finite 
set (LMB RFS) filter. 

2.7 Summary 

Data fusion is an important trend in the perception task of autopilot. Therefore, this 
chapter provides an overview of multimodal data fusion methods in target detection 
in autopilot scene. This chapter introduces the background of target detection and 
data fusion and summarizes the current research from two aspects: fusion level 
and fusion calculation method. We believe that the traditional “front, middle, and 
back” division method does not distinguish the fusion methods in the integration 
model. Therefore, this chapter adopts a new hierarchical definition method and 
gives a clear definition, which can help researchers better understand the motivation 
and function of fusion method design. In addition, this chapter puts forward the 
rationality analysis of data fusion, summarizes the existing research, discusses the 
challenges and strategies of current fusion methods, and puts forward some open 
problems. 

Although new fusion methods have been proposed, there is still a lack of theoret-
ical analysis and in-depth comparative experiments. The development of automatic



References 33

driving technology depends on efficient and robust environment perception. The 
corresponding data fusion methods should be developed as soon as possible to 
ensure the performance of vehicle perception technology. Our follow-up work 
includes the research on data representation and the information gain measurement 
of cross-modal data fusion. At the same time, we expect that the new research work 
can solve the challenges in the fusion methods discussed in this chapter. 

References 

1. Atzmon, M., Maron, H., Lipman, Y.: Point convolutional neural networks by extension 
operators. Preprint (2018). arXiv:1803.10091 

2. Bai, M., Mattyus, G., Homayounfar, N., Wang, S., Lakshmikanth, S.K., Urtasun, R.: Deep 
multi-sensor lane detection. In: 2018 IEEE/RSJ International Conference on Intelligent Robots 
and Systems (IROS), pp. 3102–3109. IEEE (2018) 

3. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network for 
autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 1907–1915 (2017) 

4. Cheng, X., Zhong, Y., Dai, Y., Ji, P., Li, H.: Noise-aware unsupervised deep lidar-stereo fusion. 
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 
pp. 6339–6348 (2019) 

5. Frossard, D., Urtasun, R.: End-to-end learning of multi-sensor 3d tracking by detection. In: 
2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 635–642. IEEE 
(2018) 

6. Guan, H., Yan, W., Yu, Y., Zhong, L., Li, D.: Robust traffic-sign detection and classification 
using mobile lidar data with digital images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 
11(5), 1715–1724 (2018) 

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770– 
778 (2016) 

8. Hua, B.S., Tran, M.K., Yeung, S.K.: Pointwise convolutional neural networks. In: Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 984–993 (2018) 

9. Klokov, R., Lempitsky, V.: Escape from cells: deep kd-networks for the recognition of 3d point 
cloud models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 
863–872 (2017) 

10. Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.L.: Joint 3d proposal generation 
and object detection from view aggregation. In: 2018 IEEE/RSJ International Conference 
on Intelligent Robots and Systems (IROS), pp. 1–8. IEEE (2018) 

11. Lei, H., Akhtar, N., Mian, A.: Octree guided cnn with spherical kernels for 3d point clouds. In: 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 
9631–9640 (2019) 

12. Liang, M., Yang, B., Chen, Y., Hu, R., Urtasun, R.: Multi-task multi-sensor fusion for 3d object 
detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, pp. 7345–7353 (2019) 

13. Lv, X., Liu, Z., Xin, J., Zheng, N.: A novel approach for detecting road based on two-stream 
fusion fully convolutional network. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 
1464–1469. IEEE (2018) 

14. Ma, F., Karaman, S.: Sparse-to-dense: depth prediction from sparse depth samples and a single 
image. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 
4796–4803. IEEE (2018)



34 2 Overview of Data Fusion in Autonomous Driving Perception

15. Ma, L., Li, Y., Li, J., Wang, C., Wang, R., Chapman, M.A.: Mobile laser scanned point-clouds 
for road object detection and extraction: a review. Remote Sens. 10(10), 1531 (2018) 

16. Mogelmose, A., Trivedi, M.M., Moeslund, T.B.: Vision-based traffic sign detection and 
analysis for intelligent driver assistance systems: perspectives and survey. IEEE Trans. Intell. 
Transp. Syst. 13(4), 1484–1497 (2012) 

17. Narote, S.P., Bhujbal, P.N., Narote, A.S., Dhane, D.M.: A review of recent advances in lane 
detection and departure warning system. Pattern Recogn. 73, 216–234 (2018) 

18. Park, K., Kim, S., Sohn, K.: High-precision depth estimation using uncalibrated lidar and stereo 
fusion. IEEE Trans. Intell. Transp. Syst. 21(1), 321–335 (2019) 

19. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object detection 
from RGB-D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 918–927 (2018) 

20. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification 
and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 652–660 (2017) 

21. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs 
for object classification on 3d data. In: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 5648–5656 (2016) 

22. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point 
sets in a metric space. Preprint (2017). arXiv:1706.02413 

23. Tang, J., Tian, F.P., Feng, W., Li, J., Tan, P.: Learning guided convolutional network for depth 
completion. IEEE Trans. Image Process. 30, 1116–1129 (2020) 

24. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: Kpconv: 
flexible and deformable convolution for point clouds. In: Proceedings of the IEEE/CVF 
International Conference on Computer Vision, pp. 6411–6420 (2019) 

25. Vora, S., Lang, A.H., Helou, B., Beijbom, O.: Pointpainting: sequential fusion for 3d object 
detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, pp. 4604–4612 (2020) 

26. Wu, W., Qi, Z., Fuxin, L.: Pointconv: deep convolutional networks on 3d point clouds. In: 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 
9621–9630 (2019) 

27. Xiao, L., Dai, B., Liu, D., Hu, T., Wu, T.: Crf based road detection with multi-sensor fusion. 
In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 192–198. IEEE (2015) 

28. Xiao, L., Wang, R., Dai, B., Fang, Y., Liu, D., Wu, T.: Hybrid conditional random field based 
camera-lidar fusion for road detection. Inf. Sci. 432, 543–558 (2018) 

29. Xu, D., Anguelov, D., Jain, A.: Pointfusion: deep sensor fusion for 3d bounding box estimation. 
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 244– 
253 (2018) 

30. Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J.: Ipod: intensive point-based object detector for point 
cloud. Preprint (2018). arXiv:1812.05276 

31. Zhou, Y., Tuzel, O.: Voxelnet: end-to-end learning for point cloud based 3d object detection. 
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 
4490–4499 (2018) 

32. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable 
image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 8697–8710 (2018)



Part II 
Method 

This section focuses on different tasks of autonomous driving perception based on 
multimodal fusion. It consists of four chapters corresponding to sensor calibration, 
object detection, semantic segmentation, and localization tasks. Each chapter 
introduces novel technical approaches. In Chap. 3, joint calibration is introduced as 
a basic technique for multimodal fusion. Taking 3D object detection and semantic 
segmentation as specific tasks, respectively, Chaps. 4 and 5 propose various 
fusion methods. Chapter 6, as an extension of perception technology, introduces 
the localization method based on multi-sensor fusion. These methods improve 
perception accuracy by fusing information from different modalities, providing a 
foundation for autonomous vehicle applications.



Chapter 3 
Multi-Sensor Calibration 

Abstract Reliable real-time extrinsic parameters of 3D Light Detection and Rang-
ing (LiDAR) and cameras are vital components of multimodal perception systems. 
However, extrinsic transformation may drift gradually during operation, resulting 
in decreased accuracy of the perception system. To solve this problem, this chapter 
proposes a line-based method that enables automatic online extrinsic calibration 
of LiDAR and cameras in real-world scenes. Moreover, adaptive optimization 
is utilized to provide accurate extrinsic parameters. Experiments verify that the 
proposed approach automatically corrects miscalibration errors and achieves an 
accuracy of 0.2. ◦ . This work can provide a basis for perception systems and further 
improve the performance of other algorithms that utilize these sensors. 

3.1 Introduction 

Multiple LiDARs and cameras are widely applied on autonomous vehicles and 
robots in many scenarios, such as autonomous driving [9, 13], object classification 
[7, 11], segmentation [12], and SLAM [5, 15]. LiDARs can provide accurate 
three-dimensional geometric information but with sparse points. On the contrary, 
cameras are capable of offering a rich representation of the environment but 
with less accurate distance information. The extrinsic transformation matrix of 
these sensors can combine these two complementary sensors and maximize the 
effects. Therefore, accurate extrinsic parameters between them are crucial to provide 
accurate information for perception systems. 

Traditional manual calibration methods require specially designed objects, such 
as checkboards [2] or manually selected points [6], which lead to a cumbersome 
calibration procedure. Furthermore, long-time operation and different loads can 
result in slight drifting and deviations to extrinsic parameters. Therefore, an 
automatic online correction is needed to adjust to this unforeseen sensor movement. 

Current automatic calibration works utilize mutual information [10] or artificially 
designed targets [3] to calibrate the extrinsic parameters. The use of specific targets 
and intensity information limits the calibration process to laboratory settings and 
specific sensors. Some other feature-based calibration method [1] utilizes edge 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
X. Zhang et al., Multi-sensor Fusion for Autonomous Driving, 
https://doi.org/10.1007/978-981-99-3280-1_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3280-1protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-981-99-3280-1_3
https://doi.org/10.1007/978-981-99-3280-1_3
https://doi.org/10.1007/978-981-99-3280-1_3
https://doi.org/10.1007/978-981-99-3280-1_3
https://doi.org/10.1007/978-981-99-3280-1_3
https://doi.org/10.1007/978-981-99-3280-1_3
https://doi.org/10.1007/978-981-99-3280-1_3
https://doi.org/10.1007/978-981-99-3280-1_3
https://doi.org/10.1007/978-981-99-3280-1_3
https://doi.org/10.1007/978-981-99-3280-1_3
https://doi.org/10.1007/978-981-99-3280-1_3


38 3 Multi-Sensor Calibration

features to compute the extrinsic parameters. However, these features are not well 
corresponded to each other in some scenarios. 

3.2 Line-Based Multi-Sensor Calibration 

In this section, the line feature is selected to constrain the extrinsic parameters for its 
ubiquity. Initially, the line features are extracted and filtered from point clouds and 
images. Afterward, an adaptive optimization is utilized to provide accurate extrinsic 
parameters. The proposed methods prove that line features are robust geometric 
features that can be extracted from point clouds and images, thus contributing 
to extrinsic calibration. To demonstrate the benefits of this method, we evaluated 
it on the KITTI benchmark with ground truth value. The experiments verify the 
accuracy of the calibration approach. In online experiments on hundreds of frames, 
the proposed approach automatically corrects miscalibration errors and achieves an 
accuracy of 0.2. ◦, which verifies its applicability in various scenarios. This work can 
provide a basis for perception systems and further improve the performance of other 
algorithms that utilize these sensors. 

This work aims to release this limitation and simplify the process required to 
calibrate the extrinsic parameters of LiDAR and cameras. For this purpose, we 
utilize the robust and widespread line features to compute the transformation matrix 
between these sensors automatically with no hand-labeling. As input, the proposed 
method requires a single image and previous several point clouds as well as the 
initial extrinsic parameters. The line features used in this work are generally spread 
in outdoor settings, such as trees, street lamps, cars, etc. By applying these line 
features, the proposed method can automatically adjust according to drifting and 
changes of the extrinsic transformation matrix, as shown in Fig. 3.1. The  main  
contributions of this section are as follows: 

Firstly, we introduce a novel extrinsic calibration method that can automatically 
estimate the six degrees of freedom (6-DoF) parameters online. The proposed 
method utilizes generic line features to reduce the drift errors between sensors 
without requiring manually selected points and special targets; therefore, it is able 
to be applied to any given scenario. 

Secondly, we present a point cloud line extraction approach that can obtain line 
features from point clouds, where a point cloud processing approach is utilized to 
filter out noise data and extract line features accurately. 

Thirdly, we introduce an adaptive optimization method and a result confidence 
estimation method to enable optimization toward the correct direction and comput-
ing the calibration results efficiently. 

The rest of this chapter is organized as follows: Sect. 3.2 introduces the methods 
proposed in this chapter and evaluates the accuracy of the proposed methods based 
on the KITTI dataset. Section 3.3 summarizes our research and prospects for future 
work.



3.2 Line-Based Multi-Sensor Calibration 39

Fig. 3.1 Line features are extracted from a point cloud (a) and an image (b) of the same scene. By 
computing the correspondence between these 2D and 3D line features, the projected point cloud 
line features (c) are well aligned with the image line features 

3.2.1 Methodology 

In this section, line features are selected to accurately calibrate the extrinsic 
parameters of a LiDAR-camera system. The main benefit of these features is that 
they are ubiquitous in both outdoor and indoor scenarios. Besides that, they have 
good correspondence in point clouds and images. Figure 3.2 offers an overview of 
the proposed approach. The proposed method utilizes three steps. First, a series 
of preprocessing methods are employed to images and point clouds for further 
feature extraction. Then, the line features are extracted from images and point clouds 
and refined by applying feature filtration. Finally, the point cloud line features 
are projected onto pixel frames by adding small perturbation to initial extrinsic



40 3 Multi-Sensor Calibration

Calibrated Extrinsic Parameters 

Image 

Point Clouds Feature 

Extraction 

Feature 

Filtration 

Feature 

Extraction 

Feature 

Filtration 

Adaptive Optimization 

Local 

Mapping 

Scores 

Preprocessing 

Fig. 3.2 The architecture of the proposed calibration system 

parameters, during which the score of each perturbation will be computed and 
optimized. Details are presented in the following sections. 

The extrinsic calibration problem of the LiDAR and camera lies in determining 
the correct transform matrix between them. In this section, we define the problem 
as finding the rotation angle vector .θ = (θx, θy, θz) and translation vector . t =
(tx, ty, tz). For the point clouds and images, we notate the point cloud as . Pt and 
image as . I t

ij , representing point i and pixel ij value at frame t . We optimize the 
6-DoF parameters by projecting each point onto the pixel frame and computing the 
score of current parameters by adding the grayscale value of each pixel. The cost 
score can be computed by projecting LiDAR points onto images, and the objective 
function can be defined as: 

.St =
n∑

t=n−w

I t
ij

⎡

⎣α

pt∈F t
h∑

pt

Ttpt + (1 − α)

pt∈F t
v∑

pt

Ttpt

⎤

⎦ /w (3.1) 

where each LiDAR point . pt iterates over horizontal features . Fh and vertical features 
. Fv , respectively. The coefficient . α assigns different weights to horizontal and 
vertical line features. In this section, . α is assigned as 0.65 to enhance the constraint 
of horizontal errors. In addition, w is the size of the sliding window. The score of 
frame t is computed by considering the previous w frames. 

The basic assumption of this work is that the line features from point clouds are 
highly responsive to line features from images when the calibration parameters are 
correct. Besides that, it is also assumed that the intrinsic parameters of the camera 
and LiDAR are already calibrated and the LiDAR data and camera images are 
captured simultaneously. 

In image processing, the RGB images are initially converted into grayscale 
images, after which the line features are extracted by a line detection algorithm 
[14]. Afterward, a distance transform model is applied to these gray images. An 
example of an original image, line features, and edge features is shown in Fig. 3.3. 
The white edges in Fig. 3.3b and the white lines in Fig. 3.3c represent clustered 
edge features and line features, respectively. As is shown in Fig. 3.3b, the clustered 
edge features are more disordered after applying the distance transform model. On 
the contrary, line features in Fig. 3.3c are more well organized, generating smaller



3.2 Line-Based Multi-Sensor Calibration 41

Fig. 3.3 A comparison of edge features and line features. (a) shows the original scenario. (b) 
shows the edge features, and (c) shows the line features. The white pixels represent the extracted 
features, and the grayscale changes represent the distance to edge or line features. The whiter the 
pixels are, the closer they are to the center of these line features 

grayscale changes. It can allow for a larger searching step size, thus preventing the 
optimization process from getting into a local solution. 

In LiDAR processing, the principle is to utilize distance discontinuity to get more 
boundary line features. To achieve this goal, a local mapping method is applied to 
combine three frames of point cloud into one, which can present more points in one 
frame. Specifically, a Normal Distribution Transform (NDT) method is utilized to 
compute the transformation matrix between the current and previous two frames. A 
comparison between boundary line points extracted in a single frame and a three-in-
one frame is shown in Fig. 3.4. Figure 3.4a shows a more intensive point cloud by 
transforming three frames point cloud .Pt−2:t to one frame . Pt , which can reveal more



42 3 Multi-Sensor Calibration

Fig. 3.4 A comparison of line features from a three-in-one point cloud (a) and a single point cloud 
(b) 

points compared with the other one in Fig. 3.4b. This can improve the extraction 
performance, especially when a low-beam LiDAR is applied. 

Afterward, the denser point cloud is transformed into image form, with each 
pixel storing the distance information of the corresponding LiDAR point. By 
comparing the distance between current point and adjacent points, more accurate 
line features can be extracted by eliminating outliers that are too far away from 
neighbors. It should be noticed that different from [8] which considered each 
beam independently, we take the distance information between multiple beams into 
consideration. It allows the proposed method to extract horizontal features, thus 
minimizing both horizontal and vertical errors using the line features. The horizontal 
line features . Fh and vertical line . Fv features are stored in two different point clouds, 
respectively. In this setting, the plane intersection lines, a rarely appeared feature, 
are neglected, which is beneficial to enhance the computation efficiency. 

The extracted line features from point clouds can be disordered after the previous 
section. Therefore, two filtration methods are employed to eliminate outliers. Since 
the point clouds are already transformed into image form, a convolution kernel is 
designed to filter out points that are far away from all eight adjacent points beyond 
a certain threshold. The line features before and after filtration can be seen in 
Fig. 3.5. This filtration method can remove all the outliers as well as the points that 
correspond to the ground. As a result, the remaining features can be identified as 
line features. 

After the first filtration, a point cloud cluster algorithm is applied to remove line 
features that have few adjacent points. The above two filtration steps can provide 
more well-organized point cloud line features, which guarantee a better optimization 
result in the subsequent steps. 

A more organized line feature from images can be obtained after filtering outline 
features that are shorter than eight pixels.



3.2 Line-Based Multi-Sensor Calibration 43

Fig. 3.5 A comparison of line features after (a) and before (b) feature filtration 

In the optimization process, the proposed approach takes both computation 
accuracy and efficiency into consideration. Before optimization, the proposed 
approach project extracted LiDAR line features onto the image, and the proportion 
of the LiDAR points projected onto the gray area will be computed. 

For computation accuracy, as is shown in Fig. 3.6, two searching steps are 
adopted to find the solution accurately. First of all, to prevent searching from 
trapping in a local solution, a rough searching with wider image lines, smaller 
grayscale changes, and relatively larger step size is employed, enabling to discover 
the areas that may contain the best solution quickly. Afterward, thinner image line 
features with larger grayscale changes, along with a smaller step size, are applied 
for a more precise calibration result. The switch between these two-step sizes and 
grayscale changes will happen when the proportion of the LiDAR points projected 
to the gray area exceeds a certain threshold. 

For computation efficiency, an adaptive optimization method is proposed to 
enable the optimization toward the correct direction. In [8], they did calculations for 
729 different values to compute the function score, which is an inefficient way as



44 3 Multi-Sensor Calibration

Fig. 3.6 Two different grayscale changes. (a) shows a larger grayscale change utilized in precise 
searching. (b) Shows a smaller grayscale change utilized in rough searching. Zoomed-in view (c) 
and (d) demonstrate the comparison of different grayscale changes more clearly 

some steps are redundant. In this section, a searching method is applied to optimize 
the cost function. It will compare the current score with adjacent 728 scores. In 
this process, if the searching program finds parameters that have a higher score, it 
will stop the current searching process and begin a new searching process at the 
position providing a higher score. Besides that, this searching process will stop 
when reaching the set iteration count or finding the best score, thus being able to 
increase the computation efficiency. In addition, a sliding window is used to set the 
frames that the optimization progress should consider. In this section, three frames 
are utilized to prevent the optimization searching from a wrong direction or falling 
into a locally optimal solution. Therefore, the final optimized extrinsic parameters 
should exceed other parameters in all frames in the sliding window. 

In conclusion, the two settings work together to get a robust and precise 
calibration result. The termination strategy enables a faster calibration. This process 
can be seen at Algorithm 1. 

3.2.2 Experiment 

In order to validate the proposed approach, experimental tests were conducted 
on KITTI dataset [4]. The KITTI dataset adopts different evaluation criteria for 
different tasks. For calibration tasks, our evaluation indicators are confidence and 
error (from displacement, pitch, yaw). During the experiment, we used Velodyne



3.2 Line-Based Multi-Sensor Calibration 45

Algorithm 1 Optimization process 
Input: Image line features It , Horizontal F t 

h and vertical F
t 
v line features at frame t , Initial 

extrainsic matrix Tt , last frame gray rate gray_rate 
Output: Calibrated extrainsic matrix; 
1: Initialization: score, maxscore ← 0. 
2: if gray_rate > γ then 
3: step_size = α1 
4: else 
5: step_size = α2 
6: end if 
7: Add disturbance based on step_size 
8: for each LiDAR point in F t 

h do 
9: gray_value = weight ∗ Tt ∗ pt 
10: score+ =  gray_value 
11: end for 
12: for each LiDAR point in F t 

v do 
13: gray_value = (1 − weight) ∗ Tt ∗ pt 
14: score+ =  gray_value 
15: end for 
16: if score > max_score then 
17: max_score = score 
18: Update current_parameters 
19: end if 
20: gray_rate = score/255/points_num 
21: return current_parameters 

HDL-64E LiDAR and a high-resolution color camera, and the scanning frequency 
of LiDAR was 10Hz. In the experiment, we simultaneously detect and correct the 
roll, pitch, and yaw deviations in real time and reflect the calibration standards by 
setting the confidence level. If the confidence in the three directions is greater than 
the given value, the calibration is considered accurate; if not, the confidence is low, 
that is, the calibration is considered inaccurate. We compared the calibration error 
with the ground truth and also tested the detection capability of error correction and 
the speed of deviation correction. The external parameters of the ground truth can be 
obtained from the calibration file, and the experimental data had been synchronized 
and corrected. 

We carried out two experiments on different scenarios in the KITTI dataset. 
Scenario I gave the result in Fig. 3.7a and b, and Scenario II gave the result in 
Fig. 3.7c and d. In these two scenarios, we initially added a one-degree rotation 
bias on X-, Y-, and Z-axes and a 0.05-m transformation bias to the ground truth 
parameters. Then, a 0.5-degree rotation bias was added every ten frames. It should 
be pointed out that whether the one-degree rotation bias is positive or negative is 
randomized. During the experiment, we compared the calibration error with the 
ground truth. In addition, we tested the ability to detect miscalibration and the speed 
of correcting bias. 

To evaluate the accuracy of the proposed approach, we computed the absolute 
value of the deviation of calibrated results from ground truth in two scenarios. The



46 3 Multi-Sensor Calibration

(a) 

(b) 

1 2 

4 

3 

(c) 

(d) 

1 

0 

0 

1

-1 

1 

0 

0 

1

-1 

800 20  6040 100 140120 
Counts 

2000 50 150100 250 
Counts 

300 

D
eg

re
es

C
on

fid
en

ce
 

Correct Calibration 
Wrong Calibration 

Pitch 
Roll 

Yaw 

Fig. 3.7 Simultaneously detecting and correcting roll, pitch, and yaw deviations in real time. (a) 
shows the confidence of calibration results in Scenario I; (b) shows the calibration results of our 
method in Scenario I; (c) shows the confidence of calibration results in Scenario II; (d) shows  the  
calibration results of our method in Scenario II. The green, red, and blue lines in (b) and  (d) show  
the biases of roll, pitch, and yaw compared to ground truth. The red sections in (a) and  (c) represent  
a low confidence of current parameters. On the contrary, the green sections in (a) and  (c) show a  
high confidence of current calibration result 

quantitative analysis of calibration deviation can be seen in Fig. 3.7. In Fig. 3.7b, 
the proposed method was able to simultaneously correct roll with a mean average 
error of 0.288. ◦ , pitch with a mean average error of 0.268. ◦, and yaw with a mean 
average of 0.108. ◦ each. If the confidence below 0.7 was ignored, the error of roll, 
pitch, and yaw will decrease to 0.217, 0.209, and 0.082. ◦ . In Fig. 3.7d, the mean 
error of roll, pitch, and yaw are 0.217, 0.228, and 0.079. ◦. If the confidence below 
0.7 was ignored, the error of roll, pitch, and yaw will decrease to 0.159, 0.164, 
and 0.070. ◦. Without counting the frames with manual error, the maximum error of 
roll, pitch, and yaw is always within 0.5. ◦ . The calibration results of yaw are the 
most precise since the LiDAR has a high horizontal resolution. Even though the 
LiDAR’s resolution in the vertical direction is much lower and the 3D features in 
that direction are less frequently presented, the proposed approach can still achieve 
high accuracy due to the adaptive optimization algorithm and higher weight in 
this direction. Overall, an average rotational error of 0.12. ◦ across all dimensions 
is achieved, which is lower than most offline calibration techniques. 

Additionally, we also tested the speed of correcting bias. Figure 3.7a and c 
represents the confidence of current calibration result. The extrinsic parameters were 
worse after artificially applying a bias, showing a larger angle deviation. In Fig. 3.7a 
and b, the black arrows 1, 2, 3, and 4 pointed at the frames of adding biases. For 
arrows 1 and 3 (30th frame), the proposed method corrected the bias immediately 
without showing the decline of confidence, while for the black arrows 2 and 4 (40th 
frame), the red section turned green within two frames (Fig. 3.7a) which means the 
bias was corrected within two frames. The same situation appeared in Scenario II 
(Fig. 3.7c and d). The overall calibration results in more scenarios on the KITTI 
dataset can be seen in Fig. 3.8, which demonstrates that the proposed method is 
applicable to different scenarios.



3.4 Summary 47

Fig. 3.8 The calibration results on several scenarios. Green points represent the projected LiDAR 
line points 

3.3 Challenges and Prospect 

Automatic extrinsic calibration of LiDAR and camera has very broad prospects, 
because accurate external parameters are essential for providing accurate informa-
tion for the sensing system. This section proposes a point cloud line extraction 
method for extracting straight line features from the point cloud and introduces an 
adaptive optimization method and a result confidence estimation method to make 
the optimization procedure in the right direction. Of course, in the future, we also 
hope that the extracted line features can be more accurate and can have smaller 
deviations in scenes with complex or fewer features. 

Currently, camera and LiDAR self-calibration algorithms for autonomous driving 
are facing some challenges. Our automatic calibration algorithm uses the original 
camera image and LiDAR point cloud for calibration, which has a high tolerance 
for data quality. We propose a method for automatic external calibration of LiDAR 
and camera based on line features and prove that line features can be extracted 
from point clouds and images with robust geometric features, which help to obtain 
accurate external parameters. Most of our experimental datasets contain simple and 
obvious line features, so they are easier to extract and identify. However, if there 
are a lot of pedestrians, vehicles, trees, and other debris on a very busy city street, 
the line features may not be easily extracted, resulting in an inaccurate calibration 
in this case. On the other hand, when it is dark or on a road in the field, the line 
features of the collected data are not very obvious. In this case, how to obtain the 
line features is also a challenge for us in the future. 

3.4 Summary 

With the growing importance of sensors used in the multimodal perception system 
in autonomous vehicles, the precise extrinsic parameters between these sensors 
are essential to provide a high-precision perception system. However, long-term



48 3 Multi-Sensor Calibration

operation under different loads can cause a slight change and drift from the extrinsic 
transformation matrix, which compromises perception accuracy. Therefore, it is 
crucial to automatically correct the miscalibration during operation. 

In this chapter, we have proposed an online approach that can automatically 
calibrate the extrinsic parameters of LiDAR and camera. Different from previous 
automated methods, this new calibration approach requires no markers to be placed 
in the scene. And the proposed approach demonstrates that the line features from 
point clouds and images are robust features to correct calibration biases. The 
artificially added bias can be corrected within one or two frames, which is faster than 
other methods. In addition, we illustrate that the degree of confidence for the current 
calibration result can be computed and further utilized to improve the computation 
efficiency and accuracy. 

For future work, we would like to evaluate the accuracy of extracted line features 
to reduce the calibration bias in scenes with few features. And the Monte Carlo 
method can be utilized to provide the initial parameters. 

References 

1. Castorena, J., Kamilov, U.S., Boufounos, P.T.: Autocalibration of lidar and optical cameras 
via edge alignment. In: 2016 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), pp. 2862–2866. IEEE, Piscataway (2016) 

2. Fremont, V., Bonnifait, P., et al.: Extrinsic calibration between a multi-layer lidar and a camera. 
In: 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent 
Systems, pp. 214–219. IEEE, Piscataway (2008) 

3. Geiger, A., Moosmann, F., Car, Ö., Schuster, B.: Automatic camera and range sensor 
calibration using a single shot. In: 2012 IEEE International Conference on Robotics and 
Automation, pp. 3936–3943. IEEE, Piscataway (2012) 

4. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. 
Robot. Res. 32(11), 1231–1237 (2013) 

5. Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2d lidar slam. In: 2016 
IEEE International Conference on Robotics and Automation (ICRA), pp. 1271–1278. IEEE, 
Piscataway (2016) 

6. Kato, S., Takeuchi, E., Ishiguro, Y., Ninomiya, Y., Takeda, K., Hamada, T.: An open approach 
to autonomous vehicles. IEEE Micro 35(6), 60–68 (2015) 

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional 
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 
(2012) 

8. Levinson, J., Thrun, S.: Automatic online calibration of cameras and lasers. In: Robotics: 
Science and Systems, vol. 2, p. 7 (2013) 

9. Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S., Haehnel, D., 
Hilden, T., Hoffmann, G., Huhnke, B., et al.: Junior: the stanford entry in the urban challenge. 
J. Field Robot. 25(9), 569–597 (2008) 

10. Pandey, G., McBride, J.R., Savarese, S., Eustice, R.M.: Automatic targetless extrinsic calibra-
tion of a 3d lidar and camera by maximizing mutual information. In: AAAI. Citeseer (2012) 

11. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification 
and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 652–660 (2017)



References 49

12. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image 
segmentation. In: International Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 234–241. Springer, Berlin (2015) 

13. Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M., Dolan, J., Duggins, D., 
Galatali, T., Geyer, C., et al.: Autonomous driving in urban environments: Boss and the urban 
challenge. J. Field Robot. 25(8), 425–466 (2008) 

14. Von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a line segment detector. Image 
Process. Line 2, 35–55 (2012) 

15. Zhang, J., Singh, S.: Visual-lidar odometry and mapping: Low-drift, robust, and fast. In: 2015 
IEEE International Conference on Robotics and Automation (ICRA), pp. 2174–2181. IEEE, 
Piscataway (2015)



Chapter 4 
Multi-Sensor Object Detection 

Abstract 3D object detection is becoming an indispensable functional module 
for environmental perception in autonomous driving, and LiDAR-based detection 
methods have made remarkable progress in terms of accuracy. However, point 
clouds often fail to distinguish objects with similar structures, leading to false 
detection. Therefore, other sensors and LiDAR fusion are naturally considered a 
solution. Nevertheless, current fusion methods are either limited to poor precision 
or efficiency. To this end, this chapter proposes a plug-and-play module named RI-
Fusion to achieve the effective fusion of LiDAR and camera, and the module can 
be easily accessed by existing LiDAR-based algorithms. Furthermore, a particular 
fusion method of RaDAR and 16-line LiDAR based on multimodal and multi-scale 
fusion is proposed, called .M2-Fusion. The interaction is achieved by learning the 
features of each modality by exchanging the information of the intermediate feature 
layers with a self-attention mechanism. Experiments show that the method has better 
environmental adaptability and low cost. 

4.1 Introduction 

Recently, there are many studies using single-mode sensors such as cameras, 
LiDAR, and RaDAR for target detection in the past decades. However, each sensor 
has different flaws and drawbacks. The camera fails to obtain the actual distance 
of objects and is sensitive to illumination variation. These uncertain factors in 
autonomous driving, which is safety-critical, are unacceptable. The LiDAR can 
well compensate for these defects of cameras, and the LiDAR point cloud can 
adequately reflect real coordinates’ information of the surrounding environment 
which is not subject to the change of illumination. Nevertheless, there are also 
numerous drawbacks of LiDAR. For instance, it is severely affected in rain and 
snow scenarios, and the point cloud lacks rich texture and color information as 
it exists in RGB images, which leads to the fact that different objects appear to 
have very similar structures in point cloud representation. RaDAR can detect longer 
distances without being affected by bad weather. However, 3D RaDAR sensor only 
has the horizontal position and velocity information. It lacks height information, 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
X. Zhang et al., Multi-sensor Fusion for Autonomous Driving, 
https://doi.org/10.1007/978-981-99-3280-1_4

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3280-1protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-981-99-3280-1_4
https://doi.org/10.1007/978-981-99-3280-1_4
https://doi.org/10.1007/978-981-99-3280-1_4
https://doi.org/10.1007/978-981-99-3280-1_4
https://doi.org/10.1007/978-981-99-3280-1_4
https://doi.org/10.1007/978-981-99-3280-1_4
https://doi.org/10.1007/978-981-99-3280-1_4
https://doi.org/10.1007/978-981-99-3280-1_4
https://doi.org/10.1007/978-981-99-3280-1_4
https://doi.org/10.1007/978-981-99-3280-1_4
https://doi.org/10.1007/978-981-99-3280-1_4


52 4 Multi-Sensor Object Detection

and its point cloud is such sparse that could not take over the detection task 
independently. 4D RaDAR captures three-dimensional position information and 
velocity information. Meanwhile, 4D RaDAR is insensitive to nonmetallic objects, 
and the data is also very sparse, which affects the recall rate of object detection. 

To fully exploit the advantages among different sensors and fill gaps, we 
determine the detection method by fusing different data generated by multiple 
sensors. Compared with a single modality, multi-sensor fusion perception captures 
surrounding information through multiple sensors and receives more informative 
features. With a particular detection network, rich features with strong semantics 
and detail expression capability would lead to better detection performance. In 
this chapter, we elaborate on two multi-sensor fusion perceptions as LiDAR-image 
fusion and RaDAR-LiDAR fusion. 

4.2 LiDAR-Image Fusion Object Detection 

Cameras and LiDAR sensors are widely used in autonomous driving vehicles, but 
their limitations are apparent. The camera cannot obtain the distance information 
of the object and is very sensitive to the change of illumination. LiDAR can make 
up for these defects of the camera. The LiDAR point cloud can fully reflect the 
factual coordinate information of the surrounding environment and is not affected by 
the change of illumination. Therefore, the multimodal fusion of image and LiDAR 
features to complement their defects is a promising method. 

There are still many datasets for 3D object detection. Due to space limitations, 
the author will not introduce them one by one. Instead, readers can choose a dataset 
suitable for their subject according to their research needs. 

Therefore, the multimodal fusion of image and LiDAR features to complement 
their defects is a promising method; converting heterogeneous modalities into 
suitable representations is rewarding for fusion. As LiDAR point cloud can be 
converted to a compact 2D range image which makes it efficient to process, we 
propose a novel range-image fusion network to fuse point cloud and RGB image. 
The range image is the native representation and retains all the original information 
of the point cloud. This method decreases the difference in data representation 
between the point cloud and the RGB image. The position relationship between 
points in the point cloud is shown by the relative position between pixels in 
the range image. And the range image can be directly encoded using a CNN 
(convolutional neural network), which is effective for integrating RGB features. The 
main contributions of our work are as follows: 

• We propose a plug-and-play module named RI-Fusion for the effective fusion of 
LiDAR and camera, and the module can be easily accessed to existing LiDAR-
based methods. 

• We propose a novel data fusion scheme for LiDAR point clouds and RGB 
images. By converting a point cloud to a range view, the semantic gap between



4.2 LiDAR-Image Fusion Object Detection 53

the point cloud and image is crossed, and feature fusion with RGB images is 
performed to enhance the accuracy of 3D object detection. 

• Based on the self-attention mechanism, we propose a RI-Attention network to 
effectively combine the range image and RGB image and achieve remarkable 
improvements, especially on small objects such as pedestrians and cyclists. 

4.2.1 RI-Fusion Framework 

To effectively fuse the LiDAR point cloud and camera image, we propose a 
novel RI-Fusion framework to effectively fuse LiDAR point clouds and camera 
images, which can achieve remarkable improvements in accuracy. The overall 
framework adopts point clouds and RGB images as inputs and produces point 
clouds with fusion features that can be fed to common LiDAR-based methods to 
output predictions using 3D bounding boxes, as illustrated in Fig. 4.1. The core RI-
Fusion module in this framework can be divided into three components. (1) Data 
preprocessing converts point cloud and RGB image inputs to the appropriate format 
for the fusion network. (2) An RI-Attention network is proposed to fuse range and 
RGB image features. (3) Point cloud recovery converts fusion features into point 
clouds. 

Fig. 4.1 Illustration of the RI-Fusion framework. In general, the RI-Fusion module can be plugged 
in front of the LiDAR-based 3D object detection framework. The fusion process of RI-Fusion can 
be divided into three parts: (a) Data preprocessing. The input point cloud is converted to a range 
image and the RGB image is cropped to obtain a suitable size. (b) RI-Attention network. The range 
image and cropped RGB image are performed by encoders, RI-Attention modules, and decoders 
in turn to achieve feature fusion. More details are given in Sect. 3.2. (c) Point cloud recovery. 
The fusion feature is concatenated with the range image to retain the spatial information which is 
utilized to recover the point cloud again. Finally, the point cloud with RGB features is fed into a 
3D object detector for detection



54 4 Multi-Sensor Object Detection

4.2.1.1 Data Preprocessing 

Point clouds were converted into range view representations to denote information 
more effectively and regularly. Unlike other projection methods, range views 
retain all original information and produce less loss in actual autonomous driving 
scenarios. In addition, range views converted using this approach are a dense 
representation of LiDAR, with features similar to RGB images. As a result, depth 
features can be quickly learned using a two-dimensional convolution layer. Thus, 
the converted distance image is more conducive to feature fusion with RGB images. 
The original LiDAR point cloud is assumed to be a matrix of size .(n,m), where n 
represents the number of points in the scene and m indicates the features composed 
by each point. The KITTI dataset served as an example (.m = 4), including the 
spatial coordinates X, Y , and Z and the LiDAR reflection intensity. Since point 
clouds are typically sparse and unstructured in space, conventional CNNs cannot 
be directly utilized for feature extraction, and range views are more conducive to 
extracting features from point clouds. The conversion of a LiDAR point cloud to a 
range view can be represented as: 

.

[
u

v

]
=

[ 1
2

[
1 − arctan (y, x) π−1

] × w[
1 − (arcsin (z, r) + fdown) × f −1

] × h

]
, (4.1) 

where x, y, and z are the spatial coordinates of each point, .(u, v) is a pixel coordinate 
corresponding to the point in the range image, w and h are the width and height of 
the range image, r is the distance from each point to the origin, and . f = fup+fdown

is the horizontal pitch angle for the LiDAR. The above equation suggests that each 
point in the point cloud can be encoded with five-dimensional features, including 
distance, spatial coordinates, and reflection intensity. As a result, the original point 
cloud is converted into a range image of size .(5, w, h). A Velodyne 64E LiDAR 
was employed for the KITTI dataset used in the experiment, which involved 64 
scan lines and a horizontal scan resolution of 0.2◦. This approach produced 1800 
points when scanning a circle, yielding a range image size of (5, 64, 1800). 

Only a forward view of 90◦ is labeled in the KITTI 3D object detection 
benchmark, and the width of the range image should therefore be reduced as a result. 
Widths of 512, 768, and 1024 were adopted in these experiments, and a 2D CNN 
was efficiently utilized for feature extraction after the point cloud was converted 
into a 2D range view. Furthermore, because the resolution of laser RaDAR and 
RGB sensors is not consistent, the size of RGB images is larger than that of range 
images. As a result, there is no point cloud information corresponding to a wide area 
in the RGB image. However, it is necessary for these sizes to agree in the process of 
LiDAR and RGB information fusion, which inevitably leads to redundant extraction 
of RGB features. The removal of these redundant features can lead to significant 
information loss, especially in autonomous driving applications, which can degrade 
the high recall achieved using LiDAR and camera images. As such, we propose a 
new fusion scheme based on adaptive pooling to significantly boost the algorithm 
without losing essential information, which proved to be both effective and practical



4.2 LiDAR-Image Fusion Object Detection 55

in the validation experiments. In addition, we utilized adaptive pooling instead 
of direct cropping to reduce information loss when adjusting the sizes of RGB 
images and range images. A series of comparative experiments were conducted 
using different sizes in the latter stages, to illustrate the influence of clipping size on 
RGB images. 

4.2.1.2 RI-Attention Network 

In the previous section, corresponding range view representations were acquired 
from point clouds, and the input range view was denoted as R. The KITTI dataset 
also provides RGB images for each point cloud, represented by I . In this study, R 
and I were input to two similar 2D convolution networks used to extract point clouds 
and RGB image features. It is worth noting that some pixels will inevitably overlap 
or exhibit holes during the conversion of the point cloud into R, due to quantization 
errors. For this reason, a dilated convolution was adopted in the encoder to produce 
a larger receptive field that differed from the common 2D convolution used for I . 
Each layer of the encoder module utilized a pooling layer to perform down-sampling 
and extract features from different receptive fields. RGB image features were then 
converted to the size of range features using adaptive pooling. Finally, range features 
(. Rf ) and image features (. If ) of the same size were produced and input to the 
range-image attention (RI-Attention) module for feature fusion. The resulting fused 
output for .Rf and . If is referred to as the RI feature (.RIf ). This same process 
can be repeated using an RI-Attention module to extract multi-scale features. . Rf

perpetually extracted high-semantic features through dilated convolutions and a 
pooling layer, used to down-sample the results. .RIf also involved down-sampling 
after feature extraction, and the two features were then fed into another RI-Attention 
module. Since the output size was the same as that of the input after implementing 
RI-Attention, a fusion module could be added to each position in the network to 
achieve fusion of range and RGB features at different scales. 

The proposed RI-Attention, a core self-attention module used to effectively fuse 
. Rf and . If , was repeated several times in the network. It is worth noting that the 
feature map was reshaped from .H × W × C to .(HW) × C during self-attention, 
where (.(HW)) is the characteristic graph and C is the number of channels. Here, 
we compare the spatial features of RGB images with the feature maps of distance 
images, consider the similarity between the two modes, and then fuse RGB features 
conducive to object detection with distance features. This process is illustrated in 
Fig. 4.2, where the Q, K , and V matrices included in the attention mechanism 
denote query, key, and value, respectively. These features were obtained from the 
original input using a Conv1D layer represented as follows: 

.

⎧⎪⎪⎨
⎪⎪⎩

Q = Rf × Wq

K = If × Wk

V = If × Wv,

(4.2)



56 4 Multi-Sensor Object Detection

Fig. 4.2 Illustration of the RI-Attention module. The input range and RGB image feature 
are transformed and reshaped to . Q

′
, . K

′
, and  . V

′
, which are all one-dimensional tensors. A 

multiplication is employed to establish a connection between range and RGB features. The relevant 
information is recorded in the attention map. Next, the tensor . V

′
containing the RGB feature fuses 

the range information by multiplying it with the attention map. Finally, the original RGB feature 
is appended with the fusion feature to retain more RGB information 

where .Wq,Wk,Wv are weight matrices for linear layers that do not change the 
dimensions of tensors. The matrix product of Q and K produces an attention map 
used to establish the correlation of each element on a global scale. The matrices 
Q, K , and V are then transferred to three one-dimensional tensors: . Q

′
, . K

′
, and 

. V
′
. The product of . Q

′
and . K

′
yields the attention map M in a process that can be 

summarized as: 

.

⎧⎪⎪⎨
⎪⎪⎩

Q
′ = reshape(Q)

K
′ = reshape(K)

M = Q
′ · K ′T

(4.3) 

The next step requires normalizing the attention map and activating salient features 
in a nonlinear layer. A softmax function was then adopted as the activation to 
produce a normalized attention map . M

′
: 

.M
′ = sof tmax(M) (4.4) 

Finally, the dot product of . V
′
and . M

′
provides selective fusion of RGB features 

through the guidance of a point cloud. Similarly, RGB image features are retained 
by concatenating . If with fusion features. The resulting attention feature . Af can be 
expressed as: 

.Af = M
′ · V

′ + If (4.5) 

Since both RGB and range images comprise a frontal view, objects in individual 
scenes often appear small in the distance and large in the foreground. Feature



4.2 LiDAR-Image Fusion Object Detection 57

pyramid networks (FPNs) are typically adopted in 2D object detection tasks and 
are often used to extract features at different scales. A similar approach was used 
for feature fusion in this study, which was conducive to the fusion of . If at different 
feature levels. After two-layer feature fusion, the size of .RIf was equivalent to 
down-sampling the original input by a factor of 4. Fusion features were then input 
to the decoder network, and the up-sampling structure formed by the deconvolution 
network was used to restore feature maps to their original input size, allowing point 
cloud and RGB fusion features to be extracted from each point. 

4.2.1.3 Point Cloud Recovery 

The original range image was concatenated with fusion features to retain initial 
point cloud information. Features were then restored to a spatial point cloud 
representation based on depth and angle data from each pixel. This step can be 
expressed as: 

.p =
⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣rcosφcosθ

rcosφsinθ

rsinφ

⎤
⎦ , (4.6) 

where p(x, y, z) is a coordinate in the point cloud, r is the depth value, and . θ and 
. φ are horizontal and vertical angles, respectively. The recovered point cloud with 
RGB features can then be fed to the downstream 3D object detection task. 

4.2.2 Experiment 

A set of experiments were conducted to demonstrate the remarkable improvements 
in 3D object detection achieved by the proposed RI-Fusion technique. In this 
section, we introduce the dataset used in the experiments and describe experimental 
details. 

4.2.2.1 Dataset and Evaluation Metrics 

The proposed method was evaluated using the KITTI 3D object detection dataset, a 
common benchmark used for autonomous driving studies that includes spatiotem-
poral registration data from cameras and LiDAR. The set includes 7481 training 
samples and 7518 test samples. Primary detection categories include car, pedestrian, 
and cyclist. These are divided into three difficulty levels (i.e., easy, moderate, 
and hard) depending on the object size, visibility, and truncation. A standard split 
methodwas used to divide the data into 3712 samples for training and 3769 samples



58 4 Multi-Sensor Object Detection

for validation. Average precision, the official evaluation criterion for the KITTI 3D 
object detection benchmark, was also used as an evaluation metric in this study. 
In addition, a new technique was applied to calculate AP using 40 selected recall 
points, rather than the conventional value of 11. In this way, more accurate AP 
indexes were obtained, which provided a new standard for comparing our method 
with mainstream methods. 

4.2.2.2 Implementation Details 

The proposed network is a universal framework for the fusion of images and point 
clouds. The core RI-Fusion module in the network consists of three parts: data 
preprocessing, an RI-Attention network, and point cloud recovery. In the first step, 
2/3 of the lower RGB image pixels are cropped and provided as input. The input 
point cloud is then converted to a range view representation of size (5, 64, 768), 
Eq. (4.1). 

In the second step, RGB semantic features are acquired using a convolutional 
layer. The RGB feature map channel is then adjusted from 3 to 16 during the 
encoding process. In addition, adaptive pooling was utilized to modify the sizes of 
feature maps. Range images were also encoded using a convolution, and the feature 
map channel was adjusted from 5 to 16. The two resulting features each exhibited 
a size of (16, 32, 384). Subsequently, RGB and range image features were both 
input to the RI-Attention module, and features were then transformed to query, key, 
and value tensors using the method described in Section 3.2. The sizes of these 
tensors in the range and image feature maps were each (32, 32, 384) after three 
.1 × 1 convolution layers. The query and key tensors were reshaped into two one-
dimensional tensors of size (32, 12, 288), and the attention map of size (12,288, 
12,288) was calculated using matrix multiplication. The value tensor for the RGB 
image features was then multiplied by the attention map to perform attention-based 
fusion. Finally, the output was reshaped to a size of (32, 32, 384) and concatenated 
with RGB image features to produce attention features. In these experiments, two 
RI-Attention modules were added in the receptive field with scales of (32, 384) 
and (16, 192), yielding an output size of (32, 16, 192). A two-layer deconvolution 
sampling module was then adopted to recover the input size and produce a final 
output size of (8, 64, 768). 

In the last step, fusion features are recovered from the point cloud. In addition, 
the original range image with an intensity value and spatial coordinates of x, y, and 
z was concatenated with fusion features to produce an output size of (12, 64, 768). 
Features were also recovered to point clouds using Eq. (4.6). Each point consisted 
of 12-dimensional features including an 8-dimensional RGB value acquired using 
the fusion process discussed above. This fusion point cloud can then be provided to 
other mainstream LiDAR-based detectors. 

The RI-Fusion module was implemented with PyTorch 1.6. The effectiveness 
of the proposed fusion scheme was evaluated by selecting promising 3D objects 
detected in the MMDetection3D codebase. The AdamOptimizer and cosine anneal-



4.2 LiDAR-Image Fusion Object Detection 59

ing were included as optimization strategies. All experiments were trained on eight 
NVIDIA RTX 2080Ti GPUs using an initial learning rate of 0.001 for each detector. 
Data augmentation strategies were widely adopted in the training process, including 
image mirroring around the X-axis and Y -axis, random rotation around the Z-axis 
through a range of [0, . π /4], and scaling of [0.95, 1.05]. The “copy paste” methodwas 
also included, since a wide range of backgrounds were present in the training set. 
This added ground truth objects to empty background scenes and increased the 
proportion of positive samples in the training set. 

4.2.2.3 Results 

The performance of the proposed RI-Fusion module was assessed using several 
comparative experiments involving state-of-the-art fusion methods applied to the 
KITTI benchmark. The results indicated that RI-Fusion achieved better accuracy for 
Part . A2, as shown in Table 4.1. Furthermore, several experiments were conducted to 
verify the effects of inserting RI-Fusion into existing detectors, including PointPil-
lars, SECOND,and Part . A2. These experiments were based on the MMDetection3D 
framework, an open-source object detection toolbox developed with PyTorch. 
Comparative 3D object detection results are shown in Table 4.2, with a baseline 
established using model zoo in the MMDetection3D codebase. As shown in the 
tables, each of the results produced by PointPillars and SECOND improved with 
the addition of RI-Fusion, while most of the Part . A2 results improved despite 
a slight reduction in some cases. Remarkable improvements were also observed 
in mAP, especially for the pedestrian and cyclist classes. PointPillars with RI-
Fusion achieved an overall mAP increase of 3.61 for moderate levels. Similarly, 
the yield was +7.59% for moderate levels and +8.17% for hard levels in the 
pedestrian class. The cyclist category showed similar improvements. Comparative 
results for BEV object detection are provided in Table 4.3 and are consistent with 
3D object detection. These results demonstrate that the proposed plug-and-play RI-
Fusion module is conducive to enhancing the overall performance of LiDAR-based 
detectors. 

Table 4.1 Performance 
comparison of our method 
with previous fusion methods 
on the KITTI validation 3D 
detection benchmark 

3D mAP(Car) 

Methods Easy Mod. Hard 

MV3D 71.29 62.68 56.56 

ContFuse 82.54 66.22 64.04 

F-PointNet 83.76 70.92 63.65 

AVOD-FPN 86.42 77.10 76.11 

PI-RCNN 88.27 78.53 77.75 

Part A2 + RI-Fusion (ours) 89.42 79.07 78.41

Bold values highlight the significant improvement in
performance



60 4 Multi-Sensor Object Detection

Table 4.2 Comparative results on the KITTI validation 3D detection benchmark. All methods 
with RI-Fusion module show the improvements in 3D overall mAP on the moderate split. 
Although there is a slight decline in some categories, most of the performance has been improved, 
especially for pedestrian and cyclist. The modalities are LiDAR(L) and images(I) 

mAP Car Pedestrian Cyclist 

Method Modality Mod. Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard 

PointPillars L 59.53 82.76 74.92 67.86 49.96 44.50 39.32 77.89 59.19 56.63 

+RI-Fusion L and I  63.14 85.62 75.35 68.31 57.44 52.09 47.49 81.44 61.97 59.56 

Delta Δ I +3.61 +2.86 +0.43 +0.45 +7.48 +7.59 +8.17 +3.55 +2.78 +2.93 

SECOND L 64.41 87.50 76.91 73.88 58.56 51.46 47.06 79.56 64.85 61.23 

+RI-Fusion L and I  67.39 87.59 77.00 74.61 63.06 57.15 52.16 81.01 68.01 64.68 

Delta Δ I +2.98 +0.09 +0.08 +0.72 +4.50 +5.69 +5.10 +1.45 +3.15 +3.45 

Part A2 L 67.86 89.40 79.01 78.46 62.24 55.84 49.94 89.67 68.73 65.63 

+RI-Fusion L and I  69.13 89.42 79.07 78.41 62.00 55.93 50.37 88.83 72.39 67.92 

Delta Δ I +1.27 +0.02 +0.06 −0.05 −0.24 +0.09 +0.43 −0.84 +3.66 +2.29 

Bold values highlight the significant improvement in performance

Table 4.3 Comparative results on the KITTI validation BEV detection benchmark. All methods 
with RI-Fusion module show an improvement in BEV overall mAP on the moderate split. 
The performance of pedestrian and cyclist categories has been improved significantly on easy, 
moderate, and hard split, and there is a slight decrease in the car category. The modalities are 
LiDAR(L) and images(I) 

mAP Car Pedestrian Cyclist 

Method Modality Mod. Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard 

PointPillars L 66.97 90.14 85.26 79.81 57.80 52.53 47.50 79.96 63.10 59.34 

+RI-Fusion L and I  69.27 89.62 86.30 79.60 63.15 57.26 52.61 82.53 64.25 61.68 

Delta Δ I +2.30 -0.52 +1.04 −0.21 +5.35 +4.73 +5.11 +2.57 +1.15 +2.34 

SECOND L 72.08 89.29 87.12 84.92 65.59 60.20 53.37 82.55 68.93 64.82 

+RI-Fusion L and I  73.48 89.68 86.38 85.36 68.37 61.91 55.18 85.66 72.16 68.70 

Delta Δ I +1.40 +0.40 −0.74 +0.44 +2.78 +1.71 +1.81 +3.12 +3.23 +3.88 
Part A2 L 72.44 90.24 88.02 87.25 63.99 57.77 54.48 90.07 71.55 68.21 

+RI-Fusion L and I  73.43 90.28 87.92 86.12 65.30 58.69 55.21 89.54 79.06 76.21 

Delta Δ I +0.99 +0.05 −0.10 −1.13 +1.31 +0.93 +0.74 −0.53 +7.52 +8.00 

Bold values highlight the significant improvement in performance

Runtime is another essential indicator used for evaluating 3D object detection 
results, especially for autonomous vehicles. As such, the inference time was 
evaluated for our proposed technique running on a single NVIDIA RTX 2080 Ti 
GPU, as shown in Fig. 4.3. The reasoning time was relatively short (0.00898 s) 
since most network operations involved matrix multiplications that are accelerated 
in CUDA. In addition, results showed that the addition of RI-Fusion to the three 
baseline methods significantly improved overall mAP values at moderate levels, 
despite slight increases in inference times. In addition, the running frame rate for 
PointPillars with RI-Fusion remained above 26.1Hz. Some qualitative results are



4.2 LiDAR-Image Fusion Object Detection 61

Fig. 4.3 Comparative results on the accuracy and inference time between the baseline models and 
our proposed method 

Fig. 4.4 Qualitative results of our RI-Fusion method (down) on the KITTI dataset compared with 
Part . A2 (top). The yellow circles represent incorrect results in Part . A2, which are corrected by our 
RI-Fusion method. Most of these false detections are caused by similar-shaped structures 

also provided in Fig. 4.4, to demonstrate the advantages of our proposed technique. 
Specifically, detection results with Part . A2 serving as the baseline are shown in the 
first row of the figure. Results produced using our method are shown in the second 
row. It is evident from the figure that multiple incorrect detections occurred in Part 
. A2, primarily due to weak detection in point clouds with similar spatial structures. 
However, this effect was reduced significantly using our method. In addition, the 
introduction of RGB images effectively enhanced the differentiation of objects with 
similar point clouds and increased detection accuracy for small objects such as 
pedestrians and cyclists.



62 4 Multi-Sensor Object Detection

4.2.2.4 Ablation Studies 

A series of ablation experiments, based on the PointPillarsframework, were con-
ducted to evaluate the influence of various parameters on algorithm performance. 
Multiple sizes in the range images caused some quantitative loss when converting 
between point clouds and range views. As such, range images of sizes (48, 512), 
(64, 768), and (64, 1024) were used in the ablation experiment to study the effects 
of differing scales. The results shown in Table 4.4 indicate that overall mAP 
increased with range scale. The RI-Fusion module utilized RGB images to extract 
features from attention maps acquired by the fusion of range images and RGB 
image features. Range images were also adopted for use in the same process. As 
such, comparative experiments were conducted to demonstrate the effects of each 
technique. The results are shown in Table 4.5 and indicate that both fusion methods 
improved 3D object detection, while the accuracy achieved with our preferred 
technique (using RGB images) was slightly higher. 

Additional comparative experiments were conducted to determine the impact of 
different RGB image sizes on the accuracy of the fusion model, as discussed in 
Sect . 4.3. RGB images input to PointPillars (with the RI-Fusion module included) 
were cropped by 3/4, 2/3, 1/2, and 1/3 of the lower image portion. As shown in 
Tables 4.6 and 4.7, the accuracy of the cropped images was not reduced and even 
improved in some cases, indicating the upper region of the original image included 
noisy data. After consideration, 2/3 of the lower image region was input to our 
proposed algorithm. The corresponding results demonstrate the effectiveness of our 
proposed fusion technique. 

Table 4.4 The effects of 
different range image scales 
on mAP 

Size of range view Epoch mAP 

PointPillars 80 59.53 

+RI-Fusion (48, 512) 80 61.66 

+RI-Fusion (64, 768) 80 62.73 

+RI-Fusion (64, 1024) 80 63.28 

Bold values highlight the significant
improvement in performance

Table 4.5 Comparative experiments of the different fusion methods on the KITTI validation 3D 
detection benchmark 

mAP 3D mAP (Car) 

Methods Mod. Easy Mod. Hard 

PointPillars 59.53 82.76 74.92 67.86 

PointPillars (V from range image) 62.34 83.61 74.25 67.73 

PointPillars (V from RGB, ours) 63.14 85.62 75.35 68.31

Bold values highlight the significant improvement in performance



4.3 RaDAR-LiDAR Fusion Object Detection 63

Table 4.6 Comparative experiments of different crop sizes of RGB image on the KITTI 
validation 3D detection benchmark using on PointPillars with our RI-Fusion module 

Car Pedestrian Cyclist 

RGB image Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard 

All 73.86 64.84 61.41 47.96 43.97 39.91 73.27 55.95 53.61 

3/4 84.07 72.66 67.30 55.48 50.10 45.74 79.08 59.85 57.95 

2/3 85.62 75.35 68.31 57.44 52.09 47.49 81.44 61.97 59.56 

1/2 83.80 73.69 67.49 56.05 50.87 45.59 82.23 64.40 60.70 

1/3 85.45 75.21 68.14 54.99 50.10 45.20 79.27 59.41 56.50 

Table 4.7 Comparative experiments of different crop sizes of RGB image on the KITTI 
validation BEV detection benchmark using on PointPillars with our RI-Fusion module 

Car Pedestrian Cyclist 

RGB image Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard 

All 88.27 83.52 78.70 55.35 51.37 46.40 74.87 58.27 55.63 

3/4 89.59 86.20 79.39 61.90 55.76 51.08 85.02 65.56 62.46 

2/3 89.62 86.30 79.60 63.15 57.26 52.61 82.53 64.25 61.68 

1/2 89.76 85.58 79.38 62.36 56.10 51.49 84.01 68.06 64.90 

1/3 90.09 86.37 79.68 60.41 54.98 48.95 81.19 63.80 60.82 

4.3 RaDAR-LiDAR Fusion Object Detection 

Multimodal fusion is a crucial method in 3D object detection for autonomous driv-
ing to overcome single sensor perception’s inherent shortcomings. Unfortunately, 
most fusion methods focus on camera and high-line LiDAR sensors, but RaDAR and 
low-line LiDAR fusion are rarely considered, especially for 4D RaDAR, a solution 
with commercial prospects. Therefore, this chapter proposes a novel 4D RaDAR and 
16-line LiDAR fusion method to fill this gap. One primary challenge is that the point 
cloud from these two sensors contains different features and distributions. Another 
challenge is that both point clouds appear low density. Therefore, it performs 
poorly when integrating two-point clouds directly. To solve these problems, we 
propose a particular fusion method of 4D RaDAR and 16-line LiDAR based on 
multimodal and multi-scale fusion, called .M2-Fusion. We utilize the self-attention 
mechanism to learn each modality’s features and then exchange intermediate feature 
layer information to realize the interaction. Specific to the current fixed resolution 
problem of voxel division, we propose a novel center-based multi-scale fusion 
method to extract features in the original point cloud. Then, these features are 
connected with the RPN head to realize 3D object detection. 

Furthermore, we present a data preprocessing method based on Gaussian dis-
tribution that effectively decreases data noise to reduce errors caused by point 
cloud divergence of 4D RaDAR data in the x-z plane. A series of experiments 
were conducted using the Astyx HiRes 2019 dataset, including the calibrated 4D 
RaDAR and 16-line LiDAR data, to evaluate the proposed fusion method. The



64 4 Multi-Sensor Object Detection

results demonstrated that our fusion method compared favorably with state-of-the-
art algorithms, producing mAP (mean average precision) increases of 5.64. % and 
13.57. % for 3D and BEV (bird’s-eye view) detection of the car class at a moderate 
level, respectively. The code and pre-trained models are available at https://github. 
com/adept-thu/M2-Fusion-new-.git. 

RaDAR has been receiving increased attention from industrial and academic 
communities as a potential alternative. These systems transmit millimeter waves 
and record the returned beams. The object distance can also be determined by 
measuring the round-trip time and velocity using the Doppler effect. In addition, the 
strong penetrability of millimeter-wave signals allows for long-range observations 
(usually over 200m) in inclement weather, such as heavy rain and fog. 3D RaDAR 
systems, typically employed as an auxiliary measurement for other sensors, collect 
the horizontal position and velocity information .(x, y, v) using antennas positioned 
only in the x and y directions. Usually, the azimuth angle resolution is over 10. ◦, and 
it has no vertical angle resolution. In contrast, 4D RaDAR sensors use antennas 
positioned in three directions to obtain 3D position and velocity information 
.(x, y, z, v), thus providing denser point clouds. The azimuth angle resolution is 
about 1. ◦, and the vertical angle resolution is about 2. ◦. For instance, the Astyx HiRes 
2019 [5] dataset used in this work includes more than 1000 4D RaDAR points per 
frame. Compared to 3D RaDAR, 4D RaDAR significantly improves angle resolution 
and vertical ranging capability, enabling denser point cloud acquisition. 

High-level autonomous driving requires multimodal fusion [1, 2, 8, 9], to achieve 
sufficient and robust detection performance. Fused data are often collected from 
a variety of sensors including 3D RaDAR, cameras, LiDAR, and 4D RaDAR. 
Specifically, 4D RaDAR offers substantial long-range (detection range over 200 m) 
and robustness advantages, while LiDAR offers higher accuracy. A more practical 
and cost-effective 3D object detection method could thus be developed by fusing 
these modalities effectively. Moreover, there are few research works on the fusion of 
4D RaDAR and LiDAR. However, 4D RaDAR data is sparser than LiDAR, making 
it difficult to estimate objects’ shapes and sizes. Furthermore, the range and height 
of 4D RaDAR point clouds are fuzzy due to aliasing and false detection caused 
by clusters and multi-path echoes. Accordingly, some objects are highly visible in 
LiDAR (e.g., cars and pedestrians), but appear blurry in RaDAR. Thus, effectively 
combining these two types of point cloud features is a critical problem. One intuitive 
solution would be to directly splice the features extracted from the two modalities 
to achieve fusion. Nevertheless, this strategy suffers from a low correlation between 
LiDAR and RaDAR data since the spatial distributions vary significantly across 
point clouds for the two modalities. To date, inter-modality relationships between 
4D RaDAR and LiDAR have rarely been investigated in a framework used for object 
detection. 

Motivated by the above discussion, as far as the authors know, we are the 
first to propose a 3D object detection fusion method for 4D RaDAR and LiDAR, 
termed multimodal and multi-scale fusion (.M2-Fusion). This process consists of 
two core modules: interaction-based multimodal fusion (IMMF) and center-based 
multi-scale fusion (CMSF). Through a large number of comparative experiments

https://github.com/adept-thu/M2-Fusion-new-.git
https://github.com/adept-thu/M2-Fusion-new-.git
https://github.com/adept-thu/M2-Fusion-new-.git
https://github.com/adept-thu/M2-Fusion-new-.git
https://github.com/adept-thu/M2-Fusion-new-.git
https://github.com/adept-thu/M2-Fusion-new-.git
https://github.com/adept-thu/M2-Fusion-new-.git
https://github.com/adept-thu/M2-Fusion-new-.git
https://github.com/adept-thu/M2-Fusion-new-.git


4.3 RaDAR-LiDAR Fusion Object Detection 65

4D Radar Point Cloud LiDAR Point Cloud 

3D Object Detection 

PointPillars 

Backbone 

PillarVFE 

IMMF 

CMSF 

Fig. 4.5 The overall concept of .M2-Fusion processing both sparse 4D RaDAR and LiDAR point 
clouds simultaneously. We propose two novel modules termed IMMF and CMSF, which remark-
ably improve detection accuracy. The average precision bar charts above compare .M2-Fusion and 
seven mainstream object detection networks (PointRCNN [7], SECOND [10], PV-RCNN [6], 
PointPillars [4], and MVX-Net [8]). As shown, our method outperforms the others by a large 
margin in both 3D and BEV object detection. “C+R” and “C+L” mean “Camera + RaDAR” and 
“Camera + LiDAR,” respectively 

with existing mainstream methods, state-of-the-art 3D detection performance is 
achieved by significantly improving feature expression capabilities using a self-
attention mechanism and multi-scale fusion (see Fig. 4.5). 

One of the primary challenges in multimodal fusion is to maintain a strong 
relationship between different features of the same object from each modality.



66 4 Multi-Sensor Object Detection

The self-attention mechanism is a viable approach for accomplishing feature 
interaction, allowing the parameters from different modalities to learn from each 
other. Therefore, we propose an interaction-based multimodal fusion method termed 
IMMF. The module fuses and updates each 4D RaDAR and LiDAR feature using the 
attention-weighted information from the other modality. Then, the information flow 
is then transmitted to each modality to capture complex intra-modal relationships. 
As a result, the attention weights within each modality condition in the 4D RaDAR 
and LiDAR features are mutually reinforcing. 

Secondly, high sparsity of 4D RaDAR and LiDAR data often necessitates 
the enhancement of feature expressions in each modality. For instance, voxel-
based frameworks offer excellent performance and are considered the mainstream 
technology for 3D object detection [10]. In this process, a 3D space is divided 
into regular 3D voxels, and a convolutional neural network is utilized to extract 
features for compression into a bird’s-eye view feature map for 3D object detection. 
However, due to the uneven density of point clouds in 3D spaces, setting a single 
scale for default voxel grids is insufficient to represent all information in a given 
scenario. Smaller grids produce more refined localization and features, while larger 
grids are faster as a result of fewer non-empty grids and smaller feature tensors. 
Multi-scale methods, which employ the benefits of both small and large grids, have 
shown great potential in various 3D object detection tasks [3]. One intuitive solution 
would be to directly merge voxel features from both high-resolution and low-
resolution data as input to the next backbone, thus forming an aggregated feature 
across various voxel scales. However, this method inevitably causes tremendous 
memory and computational pressure on the limited onboard computing resources. 
Moreover, the superposition of feature maps at different scales does not highlight 
object characteristics and the fuzziness of 4D RaDAR may produce additional noise. 

Thus, to better integrate multi-scale point cloud features, we propose a center-
based multi-scale fusion method termed CMSF, which includes a two-step strategy. 
In the first step, key points are extracted from objects with higher scores. In the 
second step, voxels are selected around key points in a low-resolution grid and 
then converted to a high-resolution grid. Pseudo-images of all scales are then 
standardized using an adaptive max pooling operation. 

In addition, we propose a data preprocessing method based on Gaussian normal 
distribution to reduce data noise of 4D RaDAR. Generally, 4D RaDAR sensors have 
good ranging accuracy, but insufficient resolution in the vertical direction leads to 
poor accuracy in the z-axis direction and introduces considerable data noise. We 
utilize the Gaussian normal distribution to obtain the statistic rule of 4D RaDAR 
point cloud distribution in the recent Astyx HiRes 2019 [5] dataset, a 3D object 
detection dataset that includes 4D RaDAR data. Then, noise in the 4D RaDAR point 
cloud is corrected to improve data quality. 

The primary contributions of our work are as follows: 

• We are the first to propose a novel fusion method termed .M2-Fusion that utilizes 
4D RaDAR and LiDAR data for 3D object detection in autonomous driving, 
offering higher precision and especially remote detection accuracy.



4.3 RaDAR-LiDAR Fusion Object Detection 67

• We introduce an interaction-based multimodal fusion method termed IMMF. 
This module can learn correlations between two modalities by utilizing attention 
mechanisms, emphasizing critical features, and reducing noise to improve 
accuracy and robustness for 3D object detection. 

• We develop a center-based multi-scale fusion method termed CMSF, which 
combines the advantages of small-scale and large-scale features. We demonstrate 
that selecting voxels in a particular range around key points results in better 
efficiency and accuracy than other methods using only one quantization scale. 

• We conduct extensive experiments using the Astyx HiRes 2019 dataset to 
evaluate .M2-Fusion. Experimental results showed that our method achieves 
state-of-the-art performance. 

4.3.1 Preprocessing of 4D RaDAR Point Clouds 

4D RaDAR is equipped with azimuthal and vertical angle antennas to measure 
horizontal and vertical positions. However, the number of vertical angle antennas 
of 4D RaDAR is often small, which will cause resolution issues. For example, due 
to aperture limitations, various objects with differing angles for the same speed and 
distance conditions may be challenging to distinguish in the azimuthal direction. 
Specifically, the theoretical vertical angle of the RaDAR in Astyx HiRes 2019 is 
. θi degrees, but the actual one is higher than .9 × θi degrees, as shown in Fig. 4.6a. 
We observe that considerable 4D RaDAR points are below ground which affects the 
detection accuracy. Therefore, we propose a novel method for addressing noise in 
the data. 

We use Gaussian normal distribution to determine if the vertical angle . θt is in the 
normal range based on Shapiro-Wilk (S-W) test. Here, we focus on two descriptive 
statistics, i.e., skewness and kurtosis, which can help determine if the point cloud 

Fig. 4.6 Y -axis views of 4D RaDAR (blue) and LiDAR (red) point clouds, including (a) the  
original data and (b) the processed data



68 4 Multi-Sensor Object Detection

conforms to the Gaussian normal distribution. Specifically, the symmetry of the 
distribution measure, i.e., the inequality between the left and right distribution 
tails, can be verified using skewness value. The peakedness and heaviness of the 
distribution tails can be confirmed using kurtosis value. The skewness (. g1) and 
kurtosis (. g2) are shape parameters of the point cloud, which are calculated frame 
by frame as follows: 

.

⎧⎪⎪⎨
⎪⎪⎩

g1(t) = E[(θt − μ

σ
)3]

g2(t) = E[(θt − μ

σ
)4],

(4.7) 

where . θt denotes the divergence angle of the point cloud in 4D RaDAR, . μ is the 
mean value, . σ is the standard deviation of divergence angle, and E refers to the 
mean operation. 

As the maximum divergence angle for the 4D RaDAR is far beyond the sensor 
setting range, we reduce the point cloud elevation in the x-z plane so that all vertical 
slopes are limited to within . θm. When the absolute value of kurtosis and skewness 
are both less than 1, we assume the data frame conforms to the Gaussian normal 
distribution, and then . θm is set as the mean value of the vertical angle. Otherwise, if 
this frame does not conform to the Gaussian normal distribution, then we set . θm as 
the median value. Finally, we update the coordinates by the following equation: 

.

⎧⎪⎨
⎪⎩

x′
t = cos(

2θt

θm

arctan
zt

xt

)

√
x2
t + z2t

z′
t = sin(

2θt

θm

arctan
zt

xt

)

√
x2
t + z2t ,

(4.8) 

where . xt and . zt are original coordinates of the point cloud, . x′
t and . z′

t are the 
coordinates after preprocess, and . θm is the angle at which preprocessed data are 
compressed. 

After the above data preprocessing of 4D RaDAR point cloud, the noise data 
can be improved to conduct the following detection task. The intuitive effect is 
shown in Fig. 4.6b, which illustrates that the point cloud data is transformed within 
a reasonable range. 

4.3.2 Interaction-Based Multimodal Fusion (IMMF) 

A comparison of 4D RaDAR and LiDAR data suggests their forms are similar, 
though RaDAR exhibits weak reflection echoes from vehicles, pedestrians, and 
cyclists. However, the RaDAR point cloud for the background environment is also 
much more extensive than that of the recognition objects. Existing network struc-
tures are better at identifying particular objects in uniform backgrounds. Therefore,



4.3 RaDAR-LiDAR Fusion Object Detection 69

Fig. 4.7 The overall framework of our proposed .M2-Fusion method consisting of four sub-
networks. (1) IMMF: the module in the green box demonstrates multimodal fusion, which learns 
correlations between two modalities by utilizing an attention mechanism. (2) CMSF: the module 
in the blue box performs multi-scale feature extraction by dividing selected pixels for key points 
into small-scale pixels. (3) 2D CNN backbone. (4) RPN (Region Proposal Network) head 

it is essential to focus our limited resources on the core portion when integrating 
the two modalities, for which we propose an interaction-based multimodal fusion 
approach (IMMF). Precisely, the tensor decomposed from a feature in the attention 
mechanism (between modalities) constitutes a weight matrix that exerts network 
learning attention and exchanges inter-modality tensors. In other words, LiDAR 
representations guide the attention of 4D RaDAR, and 4D RaDAR representations 
direct the attention of LiDAR. 

The network structure in the green dotted box in Fig. 4.7 shows the detailed 
IMMF module, a symmetrical structure that consists of two self-attention models. 
IMMF facilitates interaction between modalities by exchanging tensors in symmet-
ric structures and guiding the network to learn more valuable features. Following 
PointPillars, we divide the input point cloud into M. ×N pillars, where points 
in each pillar are expanded from four dimensions .(x, y, z, r) to ten dimensions 
.(x, y, z, r, xc, yc, zc, xp, yp, zp). The calculations are as follows: 

.

{
(xc, yc, zc) = (x, y, z) − (xm, ym, zm)

(xp, yp, zp) = (x, y, z) − (xg, yg.zg),
(4.9) 

where r represents the reflectivity, .(xc, yc, zc) is the deviation of each point 
cloud relative to the pillar center, .(xm, ym, zm) is the center coordinate of each 
pillar, .(xp, yp, zp) is the deviation of each point cloud from the grid center, and 
.(xg, yg, zg) is the center coordinate of each grid. 

We extract features of each pillar from LiDAR and 4D RaDAR point clouds 
and set .FL and . FR , the initial features for LiDAR and 4D RaDAR, as the 
input to the IMMF module. We then adopt convolutional networks to improve



70 4 Multi-Sensor Object Detection

computational efficiency with the strategy that reduces the dimension of .FL64 and 
.FR64 . The reduced feature dimensions are both 16, denoted by .FL16 and .FR16 . The  
corresponding weight matrices .FLw and .FRw can then be calculated as follows: 

.

{
FL64 = Maxpool(Linear(FL))

FR64 = Maxpool(Linear(FR)),
(4.10) 

.

{
FL16 = Conv(Maxpool(Linear(FL)))

FR16 = Conv(Maxpool(Linear(FR))),
(4.11) 

.

{
FLw = Sof tmax((FL16)

T FR16)

FRw = Sof tmax((FR16)
T FL16),

(4.12) 

where .Conv(·) denotes a convolutional layer, .Maxpool(·) represents a maximum 
pooling layer, .Linear(·) indicates a fully connected layer, and .Sof tmax(·) is a 
softmax function. 

The sizes of .FLw and .FRw are M . × N and N . × M , respectively, where M is 
the number of LiDAR features and N is the number of RaDAR features. These two 
weight matrices contain modal information for each other. We then multiply the . FLw

term on the right by .FR64 . The resulting feature size is M . × d, since .FLw has a size 
of M . × N and .FL64 has a size of N . × d (d is the characteristic dimension). This 
feature is consistent with the size of .FL64 and is subtracted from and then added to 
.FL64 after the linear layer, normalization layer, and activation function, to acquire 
interactive LiDAR features . FLt . Similarly, the same operation is conducted to obtain 
interactive RaDAR features . FRt . This process can be represented as: 

.

{
FLm = ReLU(BN(LN(FLwFR64 − FL64)))

FRm = ReLU(BN(LN(FRwFL64 − FR64))),
(4.13) 

.

{
FLt = FLm + FL64

FRt = FRm + FR64,
(4.14) 

where .ReLU(·) is a rectified linear unit activation function, .BN(·) denotes a 
batch normalization function, .FLm and .FRm are intermediate variables, and . LN(·)
represents a linear layer. 

4.3.3 Center-Based Multi-Scale Fusion (CMSF) 

The division method used in PointPillarscan divide point clouds into high-resolution 
or low-resolution pillars, depending on the voxel size. High-resolution voxel 
divisions can learn more features and improve the resulting detection accuracy



4.3 RaDAR-LiDAR Fusion Object Detection 71

Fig. 4.8 The network framework for the CMSF module. The backbone network uses large-scale 
pseudo-images to regress and select key points with high scores. Pixels around these key points are 
then divided into small scales, and the pseudo-images are regenerated. Finally, all pseudo-images 
are superimposed to generate features with excellent representation capabilities. Specifically, S in 
the figure represents the scale of pillars. The red square represents key points, and its surrounding 
orange squares represent the chosen pillars 

at the cost of increased training difficulty and inference time. In contrast, low-
resolution voxel divisions exhibit shorter training time and higher efficiency but 
lack local details, which leads to lower detection accuracy. Density distinctions in 
specific areas may be noticeable in the 3D space of one point cloud frame, since 
most point cloud voxels exist at a fixed scale. Moreover, it is common to use 
farthest point sampling in voxel-based networks. This approach unifies the number 
of points in various pillars to one value, while pillars with fewer points are filled with 
zeros. However, this sampling method causes an excessive deficiency of abundant 
information. Thus, a single fixed scale is insufficient to express features with all 
required information, especially for distant objects with sparse point clouds or small 
objects such as pedestrians. To resolve this issue, we propose a two-stage method to 
fuse multi-scale information around key points for objects that are regressed in the 
first stage and used to select point clouds for multi-scale fusion in the second stage. 
The framework is shown in Fig. 4.8. 

A center-based method is then employed to produce center points in the 
pseudo-images, with chosen pillars corresponding to these center points. Pillars are 
processed by the IMMF module, allowing information from the same scales and 
different modalities to interact. Afterward, pseudo-images are generated from these 
concatenated features and stacked to enhance feature expression. 

Specifically, the original cloud is divided into two scales (. S and . S/2). Initially, 
we encode pillars using the proportion of S and generate a pseudo-image . I ∈
RH×W×64 with a size of .H × W . The coordinates (x, y) are then transferred to the



72 4 Multi-Sensor Object Detection

corresponding ground truth heat map. Key points in the ground truth are calculated 
by: 

.

⎧⎪⎪⎨
⎪⎪⎩

Cx = x − xmin

(xmax − xmin) × hw

Cy = y − ymin

(ymax − ymin) × hl

,

(4.15) 

where . Cx and . Cy are coordinates of a key point in the ground truth; x and y are 
center coordinates of a 3D bounding box; .xmin, xmax, ymin, and .ymax are individual 
minimum and maximum values; and . hw and . hl are the length and width of the heat 
map. All ground truth key points in the heat map are then split using a Gaussian 
kernel function. 

Key point coordinates are applied over a large-scale space, as shown in Fig. 4.8. 
The expression of these key points can be represented by a heat map, with a ratio 
four times smaller than the input pseudo-image. In addition, the width and height 
of pillars with scales of .S/2 are decreased by a factor of 2 compared with pillars 
of scale S, scaling all corresponding coordinates by a factor of 8. Pillars are then 
selected near adjacent key points, and a fixed area of square sides (exhibiting the 
most vehicles) is identified for use in generating pseudo-images. Images on a larger 
scale are then transformed to the proper dimensions by adaptive pooling. This 
allows pseudo-images on both large and small scales to be concatenated to generate 
high-dimensional features. Finally, the backbone network is applied to the high-
dimensional features to regress detected objects. 

4.3.4 Experiments 

This section presents the results of several experiments applying the proposed .M2-
Fusion framework to the Astyx HiRes 2019 dataset, verifying its advantages for 
3D object detection. The proposed method is evaluated using comparisons with 
seven mainstream detection methods, including PointRCNN, SECOND, PV-RCNN, 
PointPillars, Part-A. 2, Voxel R-CNN,and multimodal fusion method MVX-Net [8]. 
Adequate ablation studies are also conducted to verify the effectiveness of our 
each proposed module, including data preprocessing (DP), IMMF, and CMSF. In 
addition, hyperparameter tuning is used to assess performance trends. 

4.3.4.1 Dataset 

Astyx HiRes 2019 [5] is an open-access database that includes 4D RaDAR data for 
use in 3D object detection. Its purpose is to provide high-resolution 4D RaDAR data 
to the research community. The set consists of 4D RaDAR frames, 16-line LiDAR 
data, and camera images with temporal and spatial calibration. The data were split



4.3 RaDAR-LiDAR Fusion Object Detection 73

using a ratio of 3:1 to ensure the training and test distributions were consistent. 
The 4D RaDAR and LiDAR point clouds typically included 1000 to 10,000 points 
and 10,000 to 25,000 points, respectively, with images exhibiting a resolution of 
.2048× 618 pixels. The maximum range of point cloud data reached 200 meters for 
4D RaDAR and 100 meters for 16-line LiDAR. The LiDAR point clouds were then 
transferred to the RaDAR coordinate system, since the 3D bounding boxes were 
labeled in the RaDAR point cloud. The training set mainly included cars and very 
few pedestrians and cyclists. Therefore, experimental evaluation was conducted 
only for the car category, as the number of objects outside this was too small. Official 
KITTI evaluation protocols were followed, in which an IoU threshold of 0.5 was 
used for cars. IoU threshold was the same for the bird’s-eye view (BEV) data and 
the entire 3D evaluation set. These methods were compared using the mean average 
precision (mAP) as an evaluation metric. 

4.3.4.2 Implementation Details 

The range of x, y, and z was set to (0, 69.12m), (.−39.68m, 39.68m), and (. −3m, 
1m) following the point cloud configuration in the KITTI dataset, respectively. The 
fusion network consisted of a pillar extraction module (used to extract pillars from 
4D RaDAR and LiDAR point clouds), a feature fusion module, and a backbone 
network. Two different scales were utilized in the CMSF module, with pillar 
volumes of [0.16, 0.16, 4] (m) and [0.08, 0.08, 4] (m) for S and . S/2, respectively. 
The input channel size for the IMMF module was 10, and the output channel size 
was 64, while the backbone network consisted of three convolutional blocks and 
three deconvolutional blocks. The number of convolution layers, the step size, and 
the number of output channels were [3, 5, 5], [2, 2, 2], and [128, 256, 512] in the 
three convolutional blocks, respectively, and [3, 5, 5], [1, 2, 4], and [128, 128, 128] 
in the three deconvolutional blocks, respectively. 

4.3.4.3 Training 

The open-source OpenPCDetcode framework was utilized to construct the training 
set, and a single NVIDIA RTX 3090 was employed to train the model, using 160 
epochs. Other training parameters were consistent with PointPillars. 

4.3.4.4 3D Object Detection on Astyx HiRes 2019 Dataset 

Existing fusion networks mainly focus on modalities with different data formats. 
However, 4D RaDAR and LiDAR have similar formats, so features from the 
two sensors can complement each other. This is the underlying principle for our 
proposed multimodal fusion network.



74 4 Multi-Sensor Object Detection

Table 4.8 Comparative results for mainstream algorithms applied to the Astyx HiRes 2019 
dataset 

3D mAP(. %) BEV mAP(. %) 

Modality Methods Reference Easy Moderate Hard Easy Moderate Hard 

4D RaDAR PointRCNN CVPR 
2019 

14.79 11.40 11.32 26.71 18.74 18.60 

SECOND SENSORS 
2018 

23.26 18.02 17.06 37.92 31.01 28.83 

PV-RCNN CVPR 
2020 

27.61 22.08 20.51 49.17 39.88 36.50 

PointPillars CVPR 
2019 

26.03 20.49 20.40 47.38 38.21 36.74 

Part-A.2 TPAMI 
2021 

14.96 13.76 13.17 26.46 21.47 20.98 

Voxel R-CNN AAAI 
2021 

23.65 18.71 18.47 37.77 31.26 27.83 

16-line LiDAR PointRCNN CVPR 
2019 

39.03 29.97 29.66 41.34 34.22 32.95 

SECOND SENSORS 
2018 

51.75 43.54 40.72 55.16 45.63 43.57 

PV-RCNN CVPR 
2020 

54.63 44.71 41.26 56.08 46.68 44.86 

PointPillars CVPR 
2019 

54.37 44.21 41.81 58.64 47.67 45.26 

Part-A.2 TPAMI 
2021 

45.41 38.45 36.74 49.85 41.85 38.93 

Voxel R-CNN AAAI 
2021 

52.26 44.08 40.06 53.94 44.54 40.43 

Camera + 4D 
RaDAR 

MVX-Net ICRA 
2019 

13.20 11.69 11.43 23.57 20.36 19.04 

Camera + 
16-line LiDAR 

MVX-Net ICRA 
2019 

39.16 31.43 30.40 47.04 38.15 35.60 

4D RaDAR + 
16-line LiDAR 

.M2-Fusion(ours) 61.33 49.85 49.12 71.27 61.24 57.03 

Bold values highlight the significant improvement in performance

To establish baselines, seven mainstream algorithms were applied to the KITTI 
3D object detection benchmark. We first compared the performance of PointRCNN, 
SECOND, PV-RCNN, PointPillars, Part-A. 2, Voxel R-CNN,and multimodal fusion 
method MVX-Netfor 4D RaDAR, 16-line LiDAR, and camera data from Astyx. 
The results were shown in Table 4.8. The point-based methods including PointR-
CNN and Part-A. 2 exhibited lower performance than other voxel-based methods 
significantly. The main reason was that the point clouds of both 4D RaDAR and 
16-line LiDAR were very sparse, which was not conducive to the extraction of 
point features. PointPillars achieved the best accuracy in both 4D RaDAR and 16-
line LiDAR point cloud except PV-RCNN. However, PointPillars had significant



4.3 RaDAR-LiDAR Fusion Object Detection 75

advantages in network structure complexity and inference time than PV-RCNN. 
Thus, we chose the easily expanded PointPillars network as our baseline to verify 
the proposed method. These algorithms were trained and compared with our 
model to evaluate the effectiveness of the proposed method for 4D RaDAR and 
LiDAR fusion. These results demonstrated that our proposed .M2-Fusion method 
achieved the best results, with significant improvements over other methods. This 
included increases of 5.64. % (3D mAP) and 13.57. % (BEV mAP) over the baseline 
PointPillars model trained with 16-line LiDAR. Moreover, the inference time for 
.M2-Fusion is about 10 fps on a single RTX 3090 GPU. 

4.3.4.5 Ablation Studies with M2-Fusion 

Ablation studies were also used to verify the effectiveness of each proposed 
model compared to the baseline (PointPillars), the results of which were shown 
in Table 4.9. The first column showed the experimental configuration, including the 
sensor modality, data preprocessing (DP), and two proposed modules IMMF and 
CMSF. Assessment difficulty in the second and third columns included three levels: 
easy, moderate, and hard. The following data comparisons were all evaluated in the 
moderate level. It was evident that the results for the baseline (PointPillars) using 
4D RaDAR alone produced the lowest accuracy. After data preprocessing, the 3D 
mAP for RaDAR increased by 1.50. %, and the BEV mAP increased by 3.62. %. These 
results suggested that data preprocessing offered certain improvements in RaDAR 
detection accuracy, which demonstrated its effectiveness. The third line showed the 
results for 16-line LiDAR, and the fourth line showed the results for 4D RaDAR 
fused with LiDAR using the direct feature concatenation. The fusion method got 
the improvement of 0.12. % in 3D mAP, while achieved the improvement of 8.08. %
in BEV mAP. This illustrated that 4D RaDAR could improve the BEV accuracy 
remarkably. The next line provided the fusion results adding the data preprocessing, 

Table 4.9 The results of ablation applying .M2-Fusion to the Astyx HiRes 2019 dataset (the 
baseline is PointPillars) 

Methods 3D mAP(. %) BEV mAP(. %) 

4D RaDAR 16-line LiDAR DP IMMF CMSF Easy Moderate Hard Easy Moderate Hard

� 26.03 20.49 20.40 47.38 38.21 36.74

� � 28.61 21.99 21.35 50.66 41.83 38.70

� 54.37 44.21 41.81 58.64 47.67 45.26

� � 54.25 44.33 43.24 66.05 55.75 54.67

� � � 54.55 45.16 44.40 66.05 57.18 55.59

� � � � 57.15 48.24 47.01 69.64 58.12 56.43

� � � � 56.61 47.67 46.57 67.01 57.35 56.24

� � � � � 61.33 49.85 49.12 71.27 61.24 57.03

Bold values highlight the significant improvement in performance



76 4 Multi-Sensor Object Detection

Fig. 4.9 Ablation results for .M2-Fusion applied to the Astyx HiRes 2019 dataset, with Point-
Pillars serving as the baseline. The combination of CMSF and IMMF outperformed comparable 
models 

illustrating the beneficial effectiveness. The sixth line showed the results for an 
added IMMF module, which produced increases of 3.08. % (3D mAP) and 0.94. %
(BEV mAP) above the baseline (the fifth line, 4D RaDAR+16-line LiDAR+DP). 
The seventh line showed experimental results for an added CMSF module. The 
corresponding 3D and BEV mAP values increased by 2.51. % and 0.17. % above 
the baseline (the fifth line, 4D RaDAR+16-line LiDAR+DP), respectively. These 
above comparisons proved the remarkable effects of each proposed DP, IMMF, 
and CMSF module. Finally, we combined these three modules to produce .M2-
Fusion, which achieved the best results with improvements of 5.64. % in 3D mAP 
and 13.57. % in BEV mAP compared to the traditional single LiDAR-based method 
(the third line, 16-line LiDAR). And the fusion of multiple modules acquired a more 
obvious improvement than a single module. These results were evident in Fig. 4.9 
and confirmed the overall effectiveness of our proposed .M2-Fusion algorithm for 
3D object detection. 

We have the following observations through the above ablation studies: (1) The 
fusion of 4D RaDAR and 16-line LiDAR can achieve better results than the single-
mode method. (2) The data processing of 4D RaDAR can correct data and suppress 
the influence of noise. (3) The attention-based interaction between 4D RaDAR and 
16-line LiDAR can take advantage of each modality and enhance the perception 
ability. (4) Multi-scale feature extraction can obtain richer feature information and



4.3 RaDAR-LiDAR Fusion Object Detection 77

improve detection accuracy. Finally, our proposed .M2-Fusion method aggregates 
the above advantages to improve the detection accuracy significantly. 

4.3.4.6 Accuracy Comparison Experiments at Different Ranges 

4D RaDAR usually has a more extended range capability than LiDAR. To verify the 
object detection performance, we conducted the accuracy comparison experiments 
at different ranges for 4D RaDAR, 16-line LiDAR, direct fusion, and our proposed 
.M2-Fusion, respectively. The results were shown in Table 4.10 and the intuitive 
line chart in Fig. 4.10. The same method PointPillars was used following the above 
experiments in Table 4.9. 

In terms of overall accuracy, the detection accuracy of 4D RaDAR was lower 
than that of LiDAR, but as the range increased, the detection accuracy gap between 
the two became smaller and smaller. In addition, after the detection range exceeded 
30m, the BEV detection accuracy of 4D RaDAR surpassed that of LiDAR, and the 
accuracy after 50m increased by 10.45. %, showing a significant effect. It showed 
that LiDAR had high accuracy in short-range detection, while 4D RaDAR had 
advantages in long-distance detection. After the direct fusion of the two sensors 
according to the feature concatenation method in Table 4.9 (line 4), the overall 
and most ranges’ accuracy was increased, but the accuracy of the close range 
within 50m was not significantly improved than that of LiDAR. In contrast, the 
detection accuracy above 50m was improved by 3.41. % and 15.13. % on 3D and 
BEV mAP, respectively. It illustrated that fusion could improve the accuracy of 
remote detection. Our proposed .M2-Fusion method could significantly improve the 
detection accuracy within each range, and the overall accuracy of 3D and BEV was 
improved by 5.52. % and 5.49. %, respectively, which proved the effectiveness of the 
proposed method. 

4.3.4.7 Parameter Comparison Experiment 

High-resolution pseudo-images were reshaped using a unified scale to fuse point 
clouds of different resolutions. A variety of methods were available for recon-
structing pseudo-images that could maintain the integrity of information to the 
extent possible prior to reconstruction. Various methods utilizing a standard size 
(when transforming pseudo-images from different scales to the same scale) were 
compared in Table 4.11. These results demonstrated the effectiveness of adaptive 
pooling, which outperformed CNN and max pooling methods and proved to be 
highly compatible with our network by outputting features of multiple dimensions. 

Since the network in the CMSF module predicts key points with probabilistic 
scores, key points with low scores could lead to false detection. As such, we set a 
score threshold to remove these points. The influence of this threshold was tested 
using different values, the results of which were shown in Table 4.12. As shown, the



78 4 Multi-Sensor Object Detection

Ta
bl
e 
4.
10
 
C
om

pa
ra
tiv

e 
re
su
lts
 o
f 
3D

 o
bj
ec
t d

et
ec
tio

n 
us
in
g 
si
ng

le
 m

od
al
ity

 a
nd

 m
ul
ti-
fu
si
on

 m
et
ho

ds
 a
pp

lie
d 
to
 d
if
fe
re
nt
 r
an
ge
s.
 “
In
f”
 m

ea
ns
 in

fin
ity

 

3D
 m

A
P(

. %
)

B
E
V
 m

A
P(

. %
) 

M
od

al
ity

M
et
ho
ds

O
ve
ra
ll

0–
30

m
30
–5
0
m

50
m
–I
nf

O
ve
ra
ll

0–
30

m
30
–5
0
m

50
m
–I
nf
 

4D
 R
aD

A
R

Po
in
tP
ill
ar
s

20
.4
9

34
.0
6

14
.7
6

6.
98

38
.2
1

52
.0
8

28
.8
1

19
.5
4 

16
-l
in
e 
L
iD
A
R

Po
in
tP
ill
ar
s

44
.2
1

71
.9
0

21
.2
5

9.
09

47
.6
7

76
.0
7

24
.8
6

9.
09
 

4D
 R
aD

A
R
 +
 1
6-
lin

e 
L
iD
A
R

D
ir
ec
t f
us
io
n

44
.3
3

67
.6
7

21
.5
0

12
.5
0

55
.7
5

77
.9
2

35
.6
4

24
.2
2 

4D
 R
aD

A
R
 +
 1
6-
lin

e 
L
iD
A
R

.M
2
-F
us
io
n(
ou
rs
)

49
.8
5

77
.2
6

27
.3
6

15
.5
6

61
.2
4

83
.7
3

42
.0
8

27
.6
8 

4D
 R
aD

A
R
 +
 1
6-
lin

e 
L
iD
A
R

Im
pr
ov
em

en
t

+
5.
52

+
9.
59

+
5.
86
 

+3
.0
6

+
5.
49

+
5.
81

+
6.
44
 

+3
.4
6

B
ol
d
va
lu
es

hi
gh
lig

ht
th
e
si
gn
ifi
ca
nt

im
pr
ov
em

en
ti
n
pe
rf
or
m
an
ce



4.3 RaDAR-LiDAR Fusion Object Detection 79

Fig. 4.10 Comparative results of 3D object detection in different ranges. Our proposed .M2-Fusion 
achieves the best accuracy in all ranges, especially remote detection 

Table 4.11 A Comparison of different methods used to transform pseudo-images from different 
scales. MP and AMP mean the max pooling and adaptive max pooling, respectively 

3D mAP(. %) BEV mAP(. %) 

Methods Easy Moderate Hard Easy Moderate Hard 

CNN 58.01 47.93 46.57 69.19 57.10 55.58 

MP 59.67 48.74 46.89 70.34 58.02 56.60 

AMP 61.33 49.85 49.12 71.27 61.24 57.03 

Bold values highlight the significant improvement in performance

Table 4.12 A Comparison of different scores for key point selection methods 

3D mAP(. %) BEV mAP(. %) 

Score Easy Moderate Hard Easy Moderate Hard 

0.2 57.65 47.71 45.10 70.05 56.80 55.61 

0.4 56.72 46.90 45.65 70.56 57.68 57.02 

0.6 61.33 49.85 49.12 71.27 61.24 57.03 
0.8 57.07 48.20 46.75 67.59 57.79 56.39 

Bold values highlight the significant improvement in performance

model achieved the best results for a score threshold of 0.6, suggesting that smaller 
thresholds introduced errors, while larger thresholds filtered out too much data. 

Table 4.13 provided the results of comparison experiments involving concate-
nation at different scales in the CMSF module. Relying on prior experience, we 
selected two pillar scales, [0.16, 0.16, 4], and [0.08, 0.08, 4], with a baseline pillar 
scale of [0.16, 0.16, 4]. The use of different pillar scales had a direct impact on the 
experimental results, as the accuracy was higher for smaller scales within a specific 
range. As seen in Table 4.13, multi-scale fusion of [0.16, 0.16, 4] and [0.08, 0.08, 
4] achieved the better results, producing a 1.61. % increase in 3D mAP and a 3.12. %
increase in BEV mAP over the baseline in the moderate level. This experiment



80 4 Multi-Sensor Object Detection

Table 4.13 The results of 
scale parameter verification 
experiments using the CMSF 
module in our proposed 
.M2-Fusion method 

3D mAP(. %) BEV mAP(. %) 

Scale(m) Easy Mod. Hard Easy Mod. Hard 

0.16 57.15 48.24 47.00 69.64 58.12 56.43 

0.16+0.08 61.33 49.85 49.12 71.27 61.24 57.03 

Bold values highlight the significant improvement in perfor-
mance

demonstrated that feature representations could be enhanced by fusing multiple 
scales. 

4.3.4.8 Visualization Experiments 

To observe the effects of modal fusion more intuitively, we provided tree visual-
ization experiments including precision-recall (PR) curve comparison, feature map 
visualization, and qualitative detection results. Figure 4.11 showed the precision-
recall (PR) curves of our proposed .M2-Fusion and the direct fusion of 4D RaDAR 
and LiDAR based on PointPillars. It revealed that our method significantly improved 
accuracy in easy, moderate, and hard levels. The visualization of feature maps for 
4D RaDAR and LiDAR data using the baseline (PointPillars) and our proposed .M2-
Fusion was shown in Fig. 4.12. It was evident that feature maps using our method 
contained more information. These results illustrated that multimodal interactive 
fusion enhanced network feature extraction capabilities and made extracting long-

Fig. 4.11 PR curve comparison of our proposed .M2-Fusion and the direct fusion method based 
on PointPillars. “R+L” means RaDAR and LiDAR fusion. Our method surpasses the direct fusion 
method in easy, moderate, and hard levels observably



4.3 RaDAR-LiDAR Fusion Object Detection 81

Fig. 4.12 Feature maps for (a) 4D RaDAR data processed using PointPillars, (b) 4D RaDAR  
processed by .M2-Fusion, (c) 16-line LiDAR processed by PointPillars, and (d) 16-line LiDAR 
processed by .M2-Fusion 

Fig. 4.13 Qualitative results from the Astyx HiRes 2019 dataset. The LiDAR point cloud is gray, 
and the 4D RaDAR point cloud is pink. The first row shows RGB images; the second row provides 
the ground truth; and the green bounding boxes surrounded by dotted orange circles indicate missed 
detections. The third row shows detection results for 4D RaDAR; the fourth row shows results 
for 16-line LiDAR; and the blue bounding box surrounded by dotted brown circles denotes false 
detections. The last row shows results produced by the proposed .M2-Fusion method 

range features more accessible. We also provided a qualitative visualization of the 
final detection results for single RaDAR, LiDAR, and .M2-Fusion in Fig. 4.13, where 
green boxes denoted the ground truth. We observed that the baseline (PointPillars) 
method using only 4D RaDAR produced many false detections, as several trees and 
signal lights were considered cars. The baseline results using only LiDAR were 
somewhat better. However, objects located at large distances have not been detected



82 4 Multi-Sensor Object Detection

effectively due to the low density of LiDAR points in these regions. In contrast, our 
proposed .M2-Fusion method achieved the best results and reduced false detections 
significantly. 

4.4 Challenges and Prospect 

The advantage of multimodal fusion is that data naturally exists in multiple modes. 
Therefore, if we can carry out multimodal fusion, we can obtain more comprehen-
sive information. In the past time, 3D object detection based on multimodal fusion 
has achieved great success. There are many excellent improvement algorithms based 
on LiDAR and image fusion, LiDAR and RaDAR fusion, LiDAR and image fusion, 
and so on. Although 3D object detection based on multimodal fusion has developed 
rapidly and achieved remarkable detection results, many unsolved problems still 
exist. 

• Difficulty of data fusion: 

Different from single-mode data, multi-mode data is more comprehensive data, 
such as image data and RaDAR point cloud data in target detection, image and 
voice in the video, etc. The image data contains rich color information and texture 
information, but the deficiency is the lack of depth information. That is, the image 
information can only represent two-dimensional information. The representation of 
point cloud data is disordered and sparse, so the two-dimensional CNN perceptron 
cannot directly process point cloud data. However, point cloud data contains 
rich geometric structure and depth information in three-dimensional space, so the 
information of image and point cloud data is complementary in theory. 

At present, in two-dimensional image target detection, the deep learning network 
detection model is designed based on CNN. In contrast, there are networks designed 
by MLP, CNN, GCN, and other infrastructure in point cloud target detection. 
Therefore, which network to choose in the fusion process needs further research. 

• Difficulty of feature extraction: 

Multimodal feature extraction proposes the redundancy between modes by using 
the complementary information of multimodal to learn better feature representation. 
Since multimodal feature fusion is done, the corresponding fusion can only be 
carried out by the connection between image information and point cloud infor-
mation. In the feature layer or input layer, the relationship between the image and 
the point cloud comes from cognition, that is, no matter what kind of single-mode 
sensor, scanning the same object at the same time is instantaneous representation 
information of the object, in which the representation forms of different sensors are 
different. Still, the commonness of multi-mode data information is the instantaneous 
absolute coordinates of the object. Therefore, the connection and link between the 
image and the point cloud are the instantaneous absolute coordinates of the object.



4.4 Challenges and Prospect 83

The different world coordinate systems of the camera and the RaDAR result 
in different instantaneous relative coordinates of the data information. However, 
due to the commonness of the instantaneous absolute coordinates of the object, the 
coordinate transformation between the two sensor coordinate systems can be easily 
obtained only through the position transformation matrix of the RaDAR and the 
camera. In this way, the scanned object can be used as a link by extracting the 
coordinate features under the two sensors. 

However, in the process of feature extraction, the size of the feature map or 
domain may change so that the most original coordinates will change to some 
extent, resulting in partial information loss or redundancy, which is also an urgent 
problem to be studied. Similarly, in the process of information complementarity, 
how to eliminate redundant information also needs further research. 

• Difficulty of data registration: 

From the perspective of coupled structure, multimodal fusion means that the two 
modes are related at some levels. The fusion behavior requires the comprehensive 
utilization of redundant and complementary features. Therefore, in the process of 
real data processing, there will be a problem with data registration. For example, 
for the problem of sensor angle of view, the information obtained by the camera is 
the information obtained from a cone of view of small hole imaging. At the same 
time, the LiDAR is the information obtained in the real 3D world, which makes 
the information data representation of the same target object very different, so it is 
necessary to consider the problem of data registration and alignment under different 
modal resolutions. This difficulty is the problem that multimodal fusion will 
encounter. The image information is dense and regular, but the information of the 
point cloud is sparse and disordered. Therefore, using one rich modal information to 
assist another relatively poor modal for data registration and collaborative learning 
needs further research. 

In recent years, with the rapid development of artificial intelligence, multimodal 
fusion has gradually become a research hotspot in 3D target detection. The current 
research on modal fusion technology has promoted the emergence of many new 
multimodal algorithms and expanded the application scope of multimodal fusion 
learning. These models and algorithms have advantages and disadvantages and can 
play their advantages and roles in different fields. At present, the most widely used 
field of three-dimensional target detection based on multimodal fusion is automatic 
driving. In the process of automated driving, many sensors are needed for collab-
orative optimization. It is difficult for a single mode to carry out reasonable visual 
perception. It can be introduced into infrared, visible RaDAR, and LiDAR for joint 
optimization. As an automatic intelligent driving vehicle technology integrating the 
national industrial manufacturing field and new technologies, multimodal fusion 
deep learning is expected to make great progress in the future. In the next step, we 
can further study the difficulties of data fusion, the selection of feature extraction, 
data registration, multimodal combination evaluation criteria, modal generaliza-
tion ability, and other insufficient research problems, deeply explore the difficult



84 4 Multi-Sensor Object Detection

problems such as cross-modal transfer learning and nonconvex optimization, and 
promote the application of this technology in some new fields of 3D target detection. 

Finally, the author believes that although multimodal fusion 3D target detec-
tion has made significant progress and has become an essential branch of the 
development of target detection, the ultimate goal is to build an agent that can 
perceive multimodal information and use the relationship between different modes 
to improve its cognitive detection ability. At present, the research on multimodal 
fusion 3D target detection is still in its infancy, which faces both significant 
challenges and great opportunities. 

4.5 Summary 

Self-driving cars are becoming more popular nowadays, which transport with 
their intelligence and take appropriate actions at the adequate time. Safety is a 
critical factor in the driving environment. A simple failure of action can cause 
many fatalities. Computer vision plays a significant part in achieving this. It helps 
the autonomous vehicle to perceive the surroundings. Detection is a prevalent 
technique in helping to capture the surrounding of an autonomous car. At the same 
time, tracking also has an essential role in this by providing dynamic of detected 
objects. Autonomous cars combine various sensors such as RaDAR, LiDAR, sonar, 
GPS, odometry, and inertial measurement units to perceive their surroundings. 
Driver-assistive technologies like adaptive cruise control, forward collision warning 
system, and collision mitigation by breaking ensure safety while driving. Perceiving 
the information from the environment include setting up sensors on the car. These 
sensors will collect the data it sees, and this will be further processed for taking 
action. The sensor system can be a single sensor or multiple sensors. Different 
sensors have different strengths and weaknesses, which makes the combination of 
them important for technologies like autonomous driving. Each sensor will have a 
limit of accuracy on its readings, so a multi-sensor system can help to overcome 
these defects. This thesis is an attempt to develop a multi-sensor multi-object 
tracking method to perceive the surrounding of the ego vehicle. We present several 
fusion methods to fuse data from multiple sensors, promoting detection accuracy 
in a particular range. In future work, multi-sensor fusion will be the mainstream in 
object detection. 

References 

1. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for 
autonomous driving. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), pp. 6526–6534 (2017). https://doi.org/10.1109/CVPR.2017.691 

2. Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.L.: Joint 3D proposal generation 
and object detection from view aggregation. In: 2018 IEEE/RSJ International Conference on

https://doi.org/10.1109/CVPR.2017.691
https://doi.org/10.1109/CVPR.2017.691
https://doi.org/10.1109/CVPR.2017.691
https://doi.org/10.1109/CVPR.2017.691
https://doi.org/10.1109/CVPR.2017.691
https://doi.org/10.1109/CVPR.2017.691
https://doi.org/10.1109/CVPR.2017.691
https://doi.org/10.1109/CVPR.2017.691


References 85

Intelligent Robots and Systems (IROS), pp. 1–8 (2018). https://doi.org/10.1109/IROS.2018. 
8594049 

3. Kuang, H., Wang, B., An, J., Zhang, M., Zhang, Z.: Voxel-FPN: Multi-scale voxel feature 
aggregation for 3D object detection from LiDAR point clouds. Sensors 20(3), 704 (2020) 

4. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders 
for object detection from point clouds. In: 2019 IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (CVPR), pp. 12,689–12,697 (2019). https://doi.org/10.1109/CVPR. 
2019.01298 

5. Meyer, M., Kuschk, G.: Automotive Radar Dataset for Deep Learning Based 3D Object 
Detection. In: 2019 16th European RaDAR Conference (EuRAD), pp. 129–132 (2019) 

6. Shi, S., Guo, C., Jiang, L., Wang, Z., Shi, J., Wang, X., Li, H.: PV-RCNN: Point-voxel 
feature set abstraction for 3D object detection. In: 2020 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR), pp. 10,526–10,535 (2020). https://doi.org/10.1109/ 
CVPR42600.2020.01054 

7. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point 
cloud. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 
pp. 770–779 (2019). https://doi.org/10.1109/CVPR.2019.00086 

8. Sindagi, V.A., Zhou, Y., Tuzel, O.: MVX-Net: Multimodal VoxelNet for 3D object detection. 
In: 2019 International Conference on Robotics and Automation (ICRA), pp. 7276–7282 
(2019). https://doi.org/10.1109/ICRA.2019.8794195 

9. Vora, S., Lang, A.H., Helou, B., Beijbom, O.: PointPainting: sequential fusion for 3D object 
detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition 
(CVPR), pp. 4603–4611 (2020). https://doi.org/10.1109/CVPR42600.2020.00466 

10. Yan, Y., Mao, Y., Li, B.: SECOND: sparsely embedded convolutional detection. Sensors 18, 
3337 (2018). https://doi.org/10.3390/s18103337

https://doi.org/10.1109/IROS.2018.8594049
https://doi.org/10.1109/IROS.2018.8594049
https://doi.org/10.1109/IROS.2018.8594049
https://doi.org/10.1109/IROS.2018.8594049
https://doi.org/10.1109/IROS.2018.8594049
https://doi.org/10.1109/IROS.2018.8594049
https://doi.org/10.1109/IROS.2018.8594049
https://doi.org/10.1109/IROS.2018.8594049
https://doi.org/10.1109/CVPR.2019.01298
https://doi.org/10.1109/CVPR.2019.01298
https://doi.org/10.1109/CVPR.2019.01298
https://doi.org/10.1109/CVPR.2019.01298
https://doi.org/10.1109/CVPR.2019.01298
https://doi.org/10.1109/CVPR.2019.01298
https://doi.org/10.1109/CVPR.2019.01298
https://doi.org/10.1109/CVPR.2019.01298
https://doi.org/10.1109/CVPR42600.2020.01054
https://doi.org/10.1109/CVPR42600.2020.01054
https://doi.org/10.1109/CVPR42600.2020.01054
https://doi.org/10.1109/CVPR42600.2020.01054
https://doi.org/10.1109/CVPR42600.2020.01054
https://doi.org/10.1109/CVPR42600.2020.01054
https://doi.org/10.1109/CVPR42600.2020.01054
https://doi.org/10.1109/CVPR42600.2020.01054
https://doi.org/10.1109/CVPR.2019.00086
https://doi.org/10.1109/CVPR.2019.00086
https://doi.org/10.1109/CVPR.2019.00086
https://doi.org/10.1109/CVPR.2019.00086
https://doi.org/10.1109/CVPR.2019.00086
https://doi.org/10.1109/CVPR.2019.00086
https://doi.org/10.1109/CVPR.2019.00086
https://doi.org/10.1109/CVPR.2019.00086
https://doi.org/10.1109/ICRA.2019.8794195
https://doi.org/10.1109/ICRA.2019.8794195
https://doi.org/10.1109/ICRA.2019.8794195
https://doi.org/10.1109/ICRA.2019.8794195
https://doi.org/10.1109/ICRA.2019.8794195
https://doi.org/10.1109/ICRA.2019.8794195
https://doi.org/10.1109/ICRA.2019.8794195
https://doi.org/10.1109/ICRA.2019.8794195
https://doi.org/10.1109/CVPR42600.2020.00466
https://doi.org/10.1109/CVPR42600.2020.00466
https://doi.org/10.1109/CVPR42600.2020.00466
https://doi.org/10.1109/CVPR42600.2020.00466
https://doi.org/10.1109/CVPR42600.2020.00466
https://doi.org/10.1109/CVPR42600.2020.00466
https://doi.org/10.1109/CVPR42600.2020.00466
https://doi.org/10.1109/CVPR42600.2020.00466
https://doi.org/10.3390/s18103337
https://doi.org/10.3390/s18103337
https://doi.org/10.3390/s18103337
https://doi.org/10.3390/s18103337
https://doi.org/10.3390/s18103337
https://doi.org/10.3390/s18103337


Chapter 5 
Multi-Sensor Scene Segmentation 

Abstract Semantic scene understanding is crucial for autonomous driving, robot 
navigation, and intelligent scene perception tasks. Semantic segmentation can 
identify and locate targets at the pixel level, providing essential situation awareness 
for navigation tasks. This chapter focuses on the most commonly used semantic 
segmentation task in autonomous driving, namely, lane line detection. From the 
perspective of multimodal fusion, the task of semantic segmentation is revisited. 
Due to the gap in different modalities, the alignment among of multi-sensor data 
is challenging for fusion, especially for scene segmentation. Several novel lane 
line detection algorithms are designed based on attention mechanisms, mutual 
information, and an end-to-end approach to solve this problem. This chapter first 
discusses the different fusion architectures and then utilizes the attention mechanism 
to achieve better results. Further, an adaptive fusion strategy is proposed to address 
robustness and bias in fusion. After experimental verification, the proposed methods 
have achieved good performance in segmentation tasks. 

5.1 Background 

Object segmentation basically separates the objects of interest from the back-
ground, and structure labeling assigns a unique object class label to each pixel of 
the image. Therefore, the object segmentation and structure marking labeling have 
the same target, and while the focus of object segmentation is to detect the boundary 
of the object, the focus of structure marking is to detect the region of the object. 

Some early semantic segmentation methods use small flat classifiers to classify 
the central pixels and then use conditional random fields (CRFs) for smooth 
prediction. In the random decision forest, they use structure from motion features 
as well as appearance-based features. In the past few years, with the success of 
deep learning in image classification, deep neural networks (DNN) for semantic 
segmentation have developed rapidly. 

The rapid development of neural networks improves the performance of AI-
driven image segmentation models, but the ability to accurately and steadily deal 
with challenging outdoor environments and conditions is still not enough and needs 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
X. Zhang et al., Multi-sensor Fusion for Autonomous Driving, 
https://doi.org/10.1007/978-981-99-3280-1_5

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3280-1protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-981-99-3280-1_5
https://doi.org/10.1007/978-981-99-3280-1_5
https://doi.org/10.1007/978-981-99-3280-1_5
https://doi.org/10.1007/978-981-99-3280-1_5
https://doi.org/10.1007/978-981-99-3280-1_5
https://doi.org/10.1007/978-981-99-3280-1_5
https://doi.org/10.1007/978-981-99-3280-1_5
https://doi.org/10.1007/978-981-99-3280-1_5
https://doi.org/10.1007/978-981-99-3280-1_5
https://doi.org/10.1007/978-981-99-3280-1_5
https://doi.org/10.1007/978-981-99-3280-1_5


88 5 Multi-Sensor Scene Segmentation

to be further improved. Moreover, if only a separate sensor is used for scene 
understanding, it is easy to be limited by the sensor, so using a multi-sensor such 
as an RGB camera, depth camera, and LiDAR sensor can make the sensing model 
more robust under various conditions. 

Generally speaking, to establish an accurate and reliable multi-sensor segmenta-
tion framework, we need to pay attention to the following two factors: The first is 
to explore different imaging methods. The second is to study the fusion method of 
complementary information in different modal images. There are several types of 
fusion strategies for learning multimodal imaging. The first is early fusion, which 
fuses data into the input of a machine learning algorithm; the second fusion type is 
late fusion, in which the features of each mode are learned separately and fused at 
a deeper level of neural network or other classifiers. Different imaging methods and 
fusion methods play a decisive role in the segmentation effect. 

5.2 Introduction 

Nowadays, the large majority of state-of-the-art algorithms for lane line segmenta-
tion use machine learning technology to some extent. However, Tang et al. [19] 
pointed out it is still a challenge to develop a robust detector under unlimited 
conditions. Visual lane line detection is easily affected by weather and light 
intensity, and excessive post-processing also limits the detection efficiency of the 
model. 

The current approaches for lane line segmentation can be divided into three types: 
camera-based models, LiDAR-based models, and fusion models. Both camera-
based and LiDAR-based methods have distinct advantages and disadvantages. To 
optimally consider the advantages of different sensors in accurately describing the 
external environment, it is necessary to fuse the data from different sensors [22]. 
Multimodal fusion involves combining data from different sensors to perform multi-
stage feature fusion at different levels [13]; through multimodal fusion, this method 
can improve the accuracy of lane line segmentation. Notably, the redundancy and 
fault tolerance of the system and the speed and accuracy of decision-making can be 
improved [2]. 

Though existing multimodal methods can perform well in most scenes, their 
fusion strategies may fail severely in some abnormal scenarios [9]. For instance, 
bad weather like rainy and foggy days can put obstacles in the way of the camera’s 
work. However, in multimodal perception fusion, the questions of “when to fuse” 
and “how to fuse” remain unanswered [7]. The current fusion strategies only add 
feature maps for two sets of sensor data at a fixed ratio and then input the overall 
result into the network. However, using a fixed ratio is inflexible and unreasonable. 

The use of multimodal sensors has become increasingly common to achieve 
robust lane line segmentation [17]. We have found empirically that the contributions 
of different extracted feature channels are different and the direct fusion method 
does not use the contribution of feature channels as a way to assign weights.



5.3 Attention in Multimodal Fusion Segmentation 89

Therefore, we use the channel attention mechanism to obtain the cross-channel 
local interaction information, and the weights of feature channels are assigned to 
represent the contributions of different feature channels, as described in Sect. 5.3. 

Due to the varied weather and road conditions, the real scenes can be far more 
complicated than those in the training dataset. That constructs a non-ignorable 
challenge for multimodal fusion models that obey fixed fusion modes, especially 
for autonomous driving. To address the problem, we leverage mutual information 
for adaptive modal selection in fusion, which measures the relationship between the 
input and target output, as described in Sect. 5.4. 

A fast and robust lane detection algorithm is required for autonomous vehicles, 
as it can help the car’s safety while driving. The fusion methods utilize the 
complementation of camera images and 3D point clouds to improve the perception 
of autonomous driving by the deep network. 

Some research ignores the importance of modal balance. Dislocation integration 
and inadequate integration of different modalities will lead to uneven feature 
contribution and representation. Based on this, we proposed a real-time multimodal-
ity fusion model with an attention mechanism to fully exploit the deep feature 
complementary between different modalities and achieve better lane detection 
performance, as described in Sect. 5.5. 

The relevant methods and experiments we proposed are introduced in the 
following sections. Section 5.3 introduces the channel attention module and related 
experiments that can be easily added to the fusion segmentation network. In 
Sect. 5.4, the adaptive multimodal fusion network MIMF and related experiments 
are introduced. In Sect. 5.5, the multimodal fusion method and related experiments 
in lane detection are introduced. 

5.3 Attention in Multimodal Fusion Segmentation 

To assess the contributions of the different feature channels of sensors, we 
introduce a novel multimodal fusion method and demonstrate its practical utility 
using LiDAR-camera fusion networks. Specifically, a channel attention module 
that can be easily added to a fusion segmentation network is proposed. In this 
module, we use the channel attention mechanism to obtain the cross-channel 
local interaction information, and the weights of feature channels are assigned to 
represent the contributions of different feature channels. To verify the effectiveness 
of the proposed method, we conducted experiments on two types of feature fusion 
with the KITTI benchmark and the A2D2 dataset. As shown in Fig. 5.1, the results 
verify the benefits of the proposed fusion method. Our model achieves precise edge 
segmentation with a 5.59% gain in precision and a 2.12% gain in F2 score compared 
to the values of the original fusion method. We believe that we have introduced a 
new optimization idea for multimodal fusion.



90 5 Multi-Sensor Scene Segmentation

Fig. 5.1 Results on three state-of-the-art algorithms (LaneNet, SCNN, ENet-SAD) and our 
method 

5.3.1 Network Architectures 

In this part, we introduce the structure of multimodal fusion at different stages 
and combine the CFECA module with the baseline to complete the lane line 
segmentation. 

In the task of lane segmentation, the number of positive samples is much less 
than the number of negative samples. This can be considered unbalanced data. We 
establish a baseline model based on U-Net. It is composed of four blocks in the 
encoder and five blocks in the decoder, two of which are ResNet-34 blocks. The 
last four layers use transposition convolution, and the rest are convolution blocks. 
Note that the ResNet-34 used here is the whole ResNet module, and the strategy of 
importing pre-training parameters is not adopted, but it is initialized. All convolution 
blocks have a batch normalization layer and a RELU layer behind the convolution 
layer, and all kernel sizes are 3. ×3. Each block in the encoder is linked to the same 
block in the decoder so that less spatial information is lost during the down-sampling 
process. 

Point cloud data is different from image data. Whether it is a two-dimensional 
image or a three-dimensional image, the image data fills the entire area, and each 
pixel in the two-dimensional image has a corresponding value, such as gray value, 
RGB value, etc. A three-dimensional image discretizes three-dimensional space into 
voxels [9] and assigns points to voxels. The point cloud data is different from the 
image data due to the characteristics of the data generation process of scanning, and 
the sparse and irregular characteristics of the LiDAR point cloud will lead to empty 
voxels. Research have shown that [3] first complete the sparse point cloud and then 
use the height information as an additional filtering condition to superimpose the 
height and distance values on the reflectance to form a pseudo-three-channel image, 
which can effectively reduce the interference of noise [1]. To reduce the impact 
of non-uniformity and data loss caused by empty voxels, we apply k-NN . (k = 2)
search point cloud interpolation to search three closest points for each blank pixel



5.3 Attention in Multimodal Fusion Segmentation 91

[14] and calculate the weighted average value according to the normalized pixel 
distance. At the same time, to reduce the impact of point cloud noise and use 
the height information, the height and distance values are superimposed on the 
reflection coefficient to form a pseudo-three-channel image. All the information 
in the pseudo-three-channel image comes from the point cloud. In the following 
sections, we will call such pseudo-three-channel images a “point cloud.” 

Deep neural networks represent features hierarchically. In the process of data 
processing, “when to fuse” is a question worthy of exploring. To this end, the 
character and function of early fusion, middle fusion, and late fusion need to be 
discussed. 

(1) Early fusion: Early fusion can be called “pixel-level fusion,” which combines 
raw or preprocessed sensor data and has low calculation requirements and low 
storage budget, but it is sensitive to spatiotemporal data, which is caused by 
imbalance between sensors. (2) Middle fusion: Middle fusion is a “feature-level 
fusion.” One of the advantages of the middle fusion method is that it can flexibly 
choose the location of the fusion, but it is not easy to find the best method for the 
fusion of the middle layer under a specific network architecture. We explored the 
middle fusion of the camera image branch and the point cloud branch behind the 
second ResNet-34 block named Mid-1 and the block behind Mid-1 named Mid-2. 
(3) Late fusion: Late fusion is application-oriented fusion, which can be regarded 
as “decision-level fusion.” The late fusion has high flexibility and modularity, but 
it has disadvantage on high computing cost and storage requirements. The errors 
generated by the two classifiers will affect the segmentation results. 

The KITTI Road dataset is an unbalanced dataset. The accumulation of clas-
sification errors will cause some classification errors to be magnified after using 
the attention module, which will have a great impact on the segmentation results. 
Therefore, we do not use the fusion method of the attention mechanism for late 
fusion. 

The previous fusion network structure achieves the basic LiDAR-camera fusion. 
However, in the lane line segmentation task, the proportion of lane lines is far less 
than that of background. In our network, a small number of lane line labels are 
positive samples, and a large number of background samples are negative samples. 
In contrast, it is more important to efficiently extract the features of the lane line. 

The channel attention mechanism argues that the importance of different feature 
channels in the network is different. It gives each channel in the network a weight 
which represents the importance of this channel. However, the original fusion 
network did not consider that the importance of feature channels was different. 
In this work, we use the channel attention mechanism to assign weights to the 
feature channels of point clouds and camera images. Since each feature channel 
has different weights, it will have varying degrees of influence on the feature map 
output by the fusion layer. In general, the relatively important feature channels and 
their related channels will get a larger weight in the process of adaptive weighting, 
while the channels that make a negative contribution to the segmentation will be 
suppressed. After the weighting of the channel attention mechanism, the network



92 5 Multi-Sensor Scene Segmentation

layer behind the fusion layer will get a new feature map, which will be more 
effective for extracting the lane line features. 

However, most existing methods are devoted to the development of more 
complex attention modules to obtain better performance, which inevitably increases 
the computational burden. Channel attention has great potential for improving the 
performance of deep convolutional neural networks. As mentioned in related work, 
ECA-Net [20] is not only excellent in performance but also more suitable for 
multimodal fusion architectures. Considering the high real-time requirements of 
lane line segmentation tasks, here we discuss the role of the ECA module in LiDAR-
camera fusion and design the CFECA module to improve the fusion method; by 
modeling the importance of each feature channel, the feature channel with a large 
contribution to the lane line segmentation task is enhanced while suppressing the 
feature channel with a negative contribution. 

To avoid loss of dimensionality while capturing local cross-channel interactive 
information, we chose to integrate the ECA module into the task of lane line 
segmentation and obtain a model with lower model complexity and smaller network 
parameters. 

In the fusion network, let the output of a convolution block be .X ∈ R
W×H×C , 

where W, H, and C are the width, height, and channel dimension. We performed a 
global average pooling on this feature map, i.e., 

.g(X ) = 1

WH

W,H∑

i=1,j=1

Xij (5.1) 

To find an effective method for cross-channel interaction utilization, only the 
interaction between each channel and its k-nearest neighbors is considered. Besides, 
all channels share the same learning parameters to further reduce model complexity 
and improve efficiency. Then the weight of . yi can be calculated as: 

.ωi = σ

⎛

⎝
k∑

j=1

wjy
j
i

⎞

⎠ , y
j
i ∈ Ωk

i (5.2) 

where . Ωk
i represents the set of k adjacent channels of . yi . 

The ECA module can be easily implemented by fast 1D convolution with the 
kernel size of k, i.e., 

.ω = σ (C1Dk(y)) (5.3) 

where C1D represents one-dimensional fast convolution. 
For different stages of LiDAR-camera fusion, we add a channel attention module 

to the previous stitching operation, and the image branch and point cloud branch are 
weighted to output the fused feature map as the input of the next layer in the original



5.3 Attention in Multimodal Fusion Segmentation 93

Fig. 5.2 Early fusion and middle fusion using ECA module. Mid-1 fusion and Mid-2 fusion are 
two stages of middle fusion, (b) shows the Mid-1 fusion, the Mid-2 fusion is the same as the fusion 
of Mid-1, and the position of Mid-2 is a convolution block behind Mid-1 fusion 

network structure. The network structure after adding the ECA module is shown in 
Fig. 5.2. 

Using the ECA module to process the result of the direct stitching of the camera 
image and the point cloud, to a certain extent, the local information of cross-channel 
is captured. However, this method can only merge the camera image branch and the 
LiDAR point cloud branch at the junction of the stitched channel. For other channels 
of the splicing result, the interaction between the guiding channel and the guided 
channel only comes from a single original branch. The key to multimodal fusion lies 
in whether the complementarity of multimodal information can be fully utilized. In 
the channel domain, cross-channel interaction is a fusion of information, and it also 
takes advantage of the complementarity of multimodal information. To make better 
use of the complementarity between the camera image and the point cloud data, 
and to use more fusion information to guide channel attention prediction, we have 
improved the previous attention module, as shown in Fig. 5.3. 

We cross-splice the feature map of the camera image and the feature map 
of the point cloud and then perform the attention prediction of the channel. For 
the channel vector obtained by the global average pooling of cross-stitching, the 
attention prediction output of the . ith channel is from the .i −(k−1)/2 channel to the 
.i + (k − 1)/2 channel as guidance channels. The result is guided by the information 
interaction of the k channels. Without dimensionality reduction, by considering each



94 5 Multi-Sensor Scene Segmentation

Fig. 5.3 CFECA module and the fusion strategy; in (b), ① shows the cross-stitching of feature 
channels, and ② represents the weight calculation of feature channels after fusion 

channel and its k neighbor channels, local cross-channel interaction information 
is captured. The k-value reflects how many neighbor channels participate in the 
prediction of a channel’s attention. The interaction coverage between channels is 
related to the channel dimension. The k-value can be adaptively determined by the 
function related to the channel dimension. 

.C = φ(k) = 2(γ ∗k−b) (5.4) 

.k = ψ(C) =
∣∣∣∣
log2(C)

γ
+ b

γ

∣∣∣∣
odd

(5.5) 

where .|t |odd indicates the nearest odd number of t . In this chapter, we set . γ and b 
to 2 and 1 throughout all the experiments. At the same time, k must be less than or 
equal to 9. The original k is an adaptive odd number. 

The above method will reduce the information from the original modality by 
half. We empirically found that when we restore the number of guidance channels 
to .2k − 1, which means the channel information from the original modal remains 
unchanged, only adding another channel information of another modal and cross-



5.3 Attention in Multimodal Fusion Segmentation 95

Fig. 5.4 Some examples of KITTI (top row) and A2D2 (bottom row). The original point cloud is 
completed by k-NN (.k = 2), which is a pseudo-three-channel image containing reflection intensity, 
depth, and height. We use the pseudo-three-channel image in the following experiments, and we 
still call such a pseudo-three-channel image a “point cloud” as shown in (c). The upper part of 
A2D2’s point cloud is cut in half to reduce the interference of irrelevant factors 

Table 5.1 Basic information of three lane line segmentation datasets 

Name Frame Train Validation Test Resolution Road type 

KITTI 383 228 40 115 1242. ×375 Urban, rural, and highway 

KITTI-aug 3331 2736 480 115 1242. ×375 Urban, rural, and highway 

A2D2 470 282 47 141 1920. ×1208 urban 

splicing them in the original order will maximize the use of the correlation between 
adjacent channels and the information complementarity of different modals. 

5.3.2 Experiments and Discussion 

Figure 5.4 shows several frames of three datasets that we use in our experiments. 
They are KITTI, KITTI-aug, and A2D2. KITTI is currently one of the most 
important test sets in the field of autonomous driving. It includes synchronized 
camera images and LiDAR point clouds with calibration parameters and ground 
truth. To verify our proposed method and models, we selected 383 sets of data 
without intersections or forward lines in the KITTI road detection track. We use 
strategies such as cropping, brightness transformation, and noise increase on the 
KITTI dataset to obtain a dataset with 12 times the number of KITTI, called KITTI-
aug, to verify the robustness of the proposed method. As to A2D2, it combines 
only one 8-line and two 16-line LiDARs, while KITTI uses a 64-line Velodyne to 
generate point clouds. We selected 470 pairs of them for testing. The details of the 
datasets are shown in Table 5.1. For all datasets, we use 60% of the data as the 
training set, 10% for verification and the rest for testing. The difference in LiDARs 
causes the gap in performance, and the amount of data is also an important factor



96 5 Multi-Sensor Scene Segmentation

limiting model performance. Therefore, the main comparison experiment will be 
carried out on KITTI-aug instead of KITTI or A2D2. 

In our work with KITTI-aug, we first added pixel-level lane line annotations to 
the KITTI dataset to better solve the semantic segmentation problem. Compared 
with the ApolloScape dataset and the TuSimple dataset, we filter out confusing 
lanes, such as the markings on the sidewalk. To extract the lane line features 
more accurately, we carefully mark the lane lines and ignore any marks behind 
obstacles such as vehicles and poles to reduce noise interference and then perform 
data enhancement to get the KITTI-aug dataset. We use a two-branch structure to 
separately extract the features of the camera image and the LiDAR point cloud. After 
the multimodal data fusion process must meet the feature alignment requirements, 
the initial size of the camera images and the corresponding point cloud images are 
1242. ×375. After cropping, reshape them to the size of (256, 512) in the same way, 
and input them into the network. 

All networks are implemented on a standard PC with 10GB of RAM, a three-
core E5-2678v3 CPU, and a NVIDIA GTX 1080 Ti GPU with 11GB of memory 
under Ubuntu 16.04 using PyTorch. We use Adam optimization algorithm to 
train the network in an end-to-end manner and use the .torch.nn.NLLLoss2d in 
PyTorch; the cyclical decayed learning rate lr is shown below: 

.lr = 2�epoch/50� × 0.8�epoch/10� × lr0, lr0 = 0.0001 (5.6) 

where .lr0 = 0.0001 is the initial learning rate, the training epoch and batch size are 
set to 200 and 4, and every 5 epochs will be evaluated on the validation set. If there 
is any improvement, the network weights will be saved. 

Recall and precision are both important indicators for measuring the performance 
of the model. Recall reflects how many lane line pixels we have correctly predicted, 
and precision represents how many real positive samples are in our prediction 
results. An excellent lane line segmentation model must not only find the lane 
line but also reduce the possibility of misjudgment as much as possible to ensure 
the safety of the vehicle. Besides, there are evaluation measures used in the 
following comparisons. They are F1-measure, F2-measure, the accuracy of the 
overall prediction named Acc, and the processing speed index FPS for lane line 
detection. 

We also report the FP and FN of the different algorithms in Table 5.4 so that we 
can evaluate the performance of the model from more aspects. It can be seen from 
Table 5.2 that using the dataset after data enhancement of KITTI, the fusion model 
at different stages has achieved a certain degree of performance improvement. It is 
observed that early fusion’s precision and Mid-1 fusion and Mid-2 fusion’s recall 
have obtained a stable improvement. However, A2D2 combines only one 8-line and 
two 16-line LiDARs, while KITTI uses a 64-line Velodyne to generate point clouds. 
The experimental results show that compared with the LiDAR point cloud that is 
sparse, the dense and rich LiDAR point cloud contains more depth information, 
which has obvious advantages when testing the multimodal fusion model. It is 
observed that the overall performance of early fusion is relatively stable. Affected



5.3 Attention in Multimodal Fusion Segmentation 97

Table 5.2 Comparison of different fusion stages on three datasets. “REC” denotes “Recall” and 
“PRE” denotes “Precision,” and we use the same abbreviation in the following sections 

Dataset Fusion stage REC PRE F1 F2 Acc FPS 

Early 93.34 42.89 57.89 74.22 98.16 83.1 

KITTI Mid-1 86.97 51.94 61.72 73.44 98.56 61.9 

Mid-2 86.06 51.73 61.07 72.74 98.42 54.3 

Early 92.78 50.28 64.46 78.30 98.59 80.4 

KITTI-aug Mid-1 92.19 51.56 65.27 78.49 98.65 61.5 

Mid-2 91.82 50.20 63.88 77.72 98.34 54.9 

Early 87.06 32.09 45.06 61.57 98.87 72.3 

A2D2 Mid-1 89.51 24.06 36.20 53.91 98.22 58.3 

Mid-2 89.47 24.02 36.19 53.66 98.18 57.6 

Table 5.3 Comparison of three stages of fusion with and without ECA/CFECA 

Fusion stage Category REC PRE F1 F2 Acc FPS 

– 92.78 50.28 64.46 78.30 98.59 80.4 

Early ECA 93.42 48.45 63.00 77.63 98.49 78.3 

CFECA 92.40 54.37 67.70 80.05 98.80 61.1 

– 92.19 51.56 65.27 78.49 98.65 61.5 

Mid-1 ECA 91.08 50.80 64.28 78.09 98.47 64.0 

CFECA 92.41 53.11 66.71 79.59 98.73 59.7 

– 91.82 50.20 63.88 77.72 98.34 54.9 

Mid-2 ECA 91.68 49.92 63.75 77.34 98.28 54.6 

CFECA 92.16 52.21 66.08 79.35 98.71 53.7 

by the quality of the LiDAR point cloud, the accuracy of Mid-1 fusion and Mid-
2 fusion on A2D2 drops sharply, and the performance of Mid-1 fusion is slightly 
higher than that of Mid-2 fusion. In terms of the inference time required by the 
algorithm, it can be clearly seen that the inference time of early fusion is the smallest 
and the inference time required by Mid-1 fusion is slightly smaller than that of Mid-
2 fusion. This suggests that as the fusion stage moves later, the camera image branch 
and the LiDAR point cloud branch each extract deeper features and then merge them 
in middle fusion that takes more time than those operations in the early fusion. 

The results of our method at different fusion stages are shown in Table 5.3. 
Among them, the accuracy of CFECA in early fusion reaches 54.37%, which is 
much higher than other models. The F2 score reaches 80.05%, which is the only 
model with an F2 score over 80%. It can be seen that the overall performance is 
also the best in it. We used the ECA module directly and the improved CFECA 
module for the three fusion stages. The feature channel changes after using CFECA 
are shown in Fig. 5.5. 

It is observed that after the ECA module is used directly, the model performance 
in all fusion stages has slightly decreased. This is because in the fusion process, the 
original fusion method simply concatenates the data of the two modalities together.



98 5 Multi-Sensor Scene Segmentation

Fig. 5.5 Visualization results of the fusion with and without CFECA in the feature channels of 
three different convolutional blocks in early fusion 

Using the ECA module after that, all the feature channels of the two modalities are 
compressed to a 1*1*C vector, and then the information of the adjacent k channels 
is used to calculate the weight of the channel. In this process, only the .k/2 channels 
of the splicing position can use the data information of another modal, and the 
weight calculation of most feature channels only comes from the information of 
the adjacent feature channels of the original modal. In contrast, the CFECA module 
first cross-splices the data of the two modalities. When calculating the weight of the 
feature channel, it is not only guided by the nearby feature channels of the original 
modal, but it is also led by the feature channels of the same position of another modal 
data. In addition, we have empirically found that the k value represents the number 
of guidance channels used. After cross-splicing, the number of guidance channels 
from the original modal is reduced by half. It is worth noting that the number of 
guidance channels used by our method is .2k − 1, thus ensuring that the information 
needed to calculate the weights of the feature channels from the original modal is 
not lost, and the complementarity of the multimodal data is also fully utilized. 

It can be observed from Table 5.3 that after using CFECA, the precision 
of models in all fusion stages has been significantly improved, among which 
the precision of early fusion increased by 4.09%, which shows that our method 
has a significant improvement effect on multimodal fusion. The calculation of 
additional feature channel weights will ultimately and inevitably lead to an increase 
in inference time. However, the FPS of all fusion stages only slightly decreases 
after using CFECA, which shows that our method does not increase too much 
computational overhead. 

As shown in Table 5.4, we show some qualitative results of our algorithm in 
early fusion, and the corresponding results of Mid-1 fusion and Mid-2 fusion are 
shown in Table 5.5 and 5.6. We compared early fusion with our method using 
ResNet-18 and ResNet-34 pre-training, respectively. When using ResNet-34 for pre-
training, our model performed the best, with the highest precision of 56.03% and the 
best F2 score of 80.75%. It is observed that after pre-training with ResNet-18, the



5.3 Attention in Multimodal Fusion Segmentation 99

Table 5.4 The performance of using different pre-trained parameters in early fusion. Here, we 
use “CFECA” presents ResNet-34 without pretrained parameters, and “CFECA-R-34” presents 
ResNet-34 with pretrained parameters, and the same abbreviation is used in the following sections. 
The top row in the table denotes early fusion without any strategy 

Algorithm REC PRE F1 F2 Acc FP FN 

– 92.78 50.28 64.46 78.30 98.59 1.31 0.10 

R-18 92.23 51.38 65.25 78.57 98.65 1.24 0.11 

R-34 93.16 50.44 64.65 78.63 98.58 1.33 0.09 

ECA 93.42 48.45 63.00 77.63 98.49 1.42 0.09 

ECA-R-18 93.29 49.60 63.79 77.9 98.53 1.38 0.10 

ECA-R-34 92.35 50.17 64.11 77.79 98.56 1.33 0.11 

CFECA 92.40 54.37 67.70 80.05 98.80 1.10 0.10 

CFECA-R-18 92.16 54.66 67.91 80.12 98.82 1.08 0.11 

CFECA-R-34 92.82 56.03 68.97 80.75 98.93 0.99 0.09 

Table 5.5 Performance of different pre-trained strategies in Mid-1 fusion 

Algorithm REC PRE F1 F2 Acc FP FN 

– 92.19 50.56 65.27 78.49 98.65 1.25 0.11 

R-18 92.19 51.97 65.74 78.83 98.69 1.20 0.11 

R-34 92.24 51.85 65.73 78.97 98.71 1.21 0.11 

ECA 91.08 50.80 64.28 78.09 98.47 1.27 0.12 

ECA-R-18 91.91 52.04 65.61 78.57 98.67 1.22 0.11 

ECA-R-34 92.28 50.85 65.66 78.83 98.69 1.20 0.11 

CFECA 92.16 52.21 66.08 79.35 98.71 1.19 0.10 

CFECA-R-18 91.80 53.76 66.86 79.53 98.78 1.09 0.11 

CFECA-R-34 92.86 54.77 67.93 80.43 98.89 1.03 0.09 

Table 5.6 Performance of different pre-trained strategies in Mid-2 fusion 

Algorithm REC PRE F1 F2 Acc FP FN 

– 91.82 50.20 63.88 77.72 98.34 1.33 0.12 

R-18 91.64 50.75 64.19 78.01 98.42 1.28 0.12 

R-34 91.66 50.68 64.17 77.97 98.40 1.29 0.12 

ECA 91.68 49.92 63.75 77.34 98.28 1.25 0.11 

ECA-R-18 91.86 50.66 64.53 77.94 98.63 1.26 0.11 

ECA-R-34 92.02 50.05 64.40 77.92 98.39 1.27 0.12 

CFECA 90.62 52.19 65.70 78.06 98.72 1.15 0.13 

CFECA-R-18 91.82 50.66 64.53 77.94 98.60 1.26 0.11 

CFECA-R-34 92.41 53.11 66.71 79.59 98.73 1.17 0.11 

performance of the model hardly changes, but the performance of the model has 
improved to a certain extent after pre-training with ResNet-34. Our method also got 
the lowest FP, which shows that our model works better for tasks like separating 
lane lines.



100 5 Multi-Sensor Scene Segmentation

Table 5.7 Performance of different algorithms on KITTI-aug testing set. Here, our models using 
CFECA are all carried out in the early fusion stage 

Algorithm Size(M) REC PRE F2 Acc FPS 

LaneNet 285.7 80.97 32.81 60.97 96.87 69.1 

SCNN 270.3 88.61 30.37 63.06 97.07 14.4 

ENet-SAD 11.0 91.21 33.96 66.90 97.44 22.5 

CFECA 17.0 92.40 54.37 80.05 98.80 61.1 

CFECA-R-18 17.0 92.16 54.66 80.12 98.82 56.2 

CFECA-R-34 25.0 92.82 56.03 80.75 98.93 58.7 

We also compared our models (early fusion with different pre-trained ResNet 
models) with advanced models SCNN, LaneNet, and ENet-SAD on the KITTI-aug 
dataset. SCNN and LaneNet load pre-trained VGG-16 weights to speed up learning. 
To be fair, we trained SCNN and LaneNet for 10,000 iterations (equivalent to 175 
epochs); they stopped optimization after 5000 iterations. ENet-SAD is trained from 
scratch, and we trained it for 30,000 iterations (add SAD from 20,000 iterations). 
Our models trained 200 epochs, and they almost converged after about 150 epochs. 
The results are shown in Table 5.7 and Fig. 5.6. Our model performs better in the 
test set. 

Moreover, to better illustrate the effectiveness of the proposed method, we embed 
a variety of attention modules into the fusion for comparison. Table 5.8 shows the 
comparison of the experimental results. Our model has the highest precision and 
F2-measure in the test, and the FPS is also at an average level. It is worth noting that 
although A2Net achieved a high FPS in the test, 36G of GPU memory is required to 
train the model, and 15G of GPU memory is required to train CCNet. We performed 
multi-GPU training for these two models separately (our model requires no more 
than 8GGPUmemory; others need about 6GGPUmemory). In addition to requiring 
real-time and high-precision capabilities, self-driving vehicle models must also aim 
for lightweight design. In the test, all models except A2Net and CCNet require less 
than 2G memory on GPU. A2Net and CCNet require 4G and 3.3G of memory on the 
GPU, respectively, and our model achieves the highest accuracy while maintaining 
the lightest weight. 

It can be seen that when the attention mechanism module is directly embedded, 
only the F2-measure of CCNet has a weak advantage over the baseline. The A2Net 
model in the spatial attention mechanism has the largest size, but the F2-measure is 
also the lowest. This may be due to the spatial attention mechanism often calculating 
the weight of each position based on the global description, but the curved lane line 
itself has the characteristics of being long and narrow, and excessive spatial attention 
to the global features may cause interference. It can be seen that our model can reach 
at least 58.7 FPS with the best performance.



5.3 Attention in Multimodal Fusion Segmentation 101

Fig. 5.6 Examples of the test results on KITTI-aug dataset: the rows from top to bottom are input 
images, ground truth, and output from LaneNet, SCANN, ENet-SAD, CFECA, CFECA-R-18, and 
CFECA-R-34. All models using CFECA are carried out in the early fusion stage 

Table 5.8 Performance of different attention modules in early fusion. Among them, SENet and 
SKNet are channel attention mechanisms, A2Net is a spatial attention mechanism, CCNet is a 
self-attention mechanisms, and BAM and CBAM are hybrid domain attention mechanisms 

Module Size(M) REC PRE F2 FP FN FPS 

Baseline 25.0 93.16 50.44 78.63 1.33 0.09 80.4 

SENet 25.0 92.12 51.99 78.45 1.24 0.11 61.8 

SKNet 25.1 90.93 51.50 77.49 1.25 0.13 58.1 

A2Net [6] 25.3 92.36 45.01 75.17 1.56 0.11 69.6 

CCNet [12] 25.1 92.12 52.68 78.87 1.20 0.11 47.5 

BAM [15] 25.1 92.50 51.12 78.23 1.30 0.11 58.4 

CBAM [21] 25.0 90.98 51.69 77.57 1.24 0.13 64.6 

ECA 25.1 92.35 50.17 77.79 1.33 0.11 78.3 

CFECA (ours) 25.0 92.82 56.03 80.75 0.99 0.09 58.7



102 5 Multi-Sensor Scene Segmentation

5.4 Adaptive Strategies in Multimodal Fusion Segmentation 

In this part, we propose a novel adaptive multimodal fusion network, MIMF, that 
is driven by the mutual information between the input data and the target recognition 
pattern. Due to the varied weather and road conditions, the real scenes can be far 
more complicated than those in the training dataset. That constructs a non-ignorable 
challenge for multimodal fusion models that obey fixed fusion modes, especially 
for autonomous driving. To address the problem, we leverage mutual information 
for adaptive modal selection in fusion, which measures the relationship between the 
input and target output. We therefore designed a weight-fusion module based on MI 
and integrated it into our feature fusion lane line segmentation network. We evaluate 
it with the KITTI and A2D2 datasets, in which we simulate the extreme malfunction 
of sensors like the modality loss problem. The result demonstrates the benefit of our 
method in practical application and informs future research into the development of 
multimodal fusion as well. 

5.4.1 MIMF Network 

In this part, we select the common middle feature fusion (MF) as the backbone 
network, which presents robustness in general tests and is regarded as the balance 
among early fusion, middle fusion, and late fusion [16]. We use an encoder-decoder 
architecture. In this way, the network can be easily modified and compared to the 
performance change. The network comprises two pipelines in the encoder for point 
clouds and images, with three convolutional blocks in both branches. Except for 
the first, we replace the convolutional blocks with ResNet-34 blocks to process 
more complex features in the images. We fuse the features of two modalities by 
concatenation when two pipelines merge, as shown in Eq. (5.7). The information 
will be mixed up in the following convolutional layers. Each convolutional block 
includes a convolution layer, a batch normalization layer, and a ReLU activation 
layer. The blocks in the decoder distinguish the ones in the encoder because they 
use transposed convolution to recover the feature maps. To make better use of the 
raw data, we add skip connection between the encoder and decoder layers. In MF, 
we do not assign a fusion weight; instead, the network learns the adaptive weight. 
But in MIMF, we embed the DIM module to provide a prior weight that can not 
only work as regularization but also avoid the influence of bad observations. 

.Z(X) = AW 0 [X1,X2]
T = W 0 [α1X1, α2X2]

T (5.7) 

DIM was proposed by Hjelm et al. [19] based on MINE [4], which is regarded as 
an efficient estimator for mutual information between two feature maps in neural



5.4 Adaptive Strategies in Multimodal Fusion Segmentation 103

networks. In this chapter, we modify the DIM to fit our fusion network. For two 
variables X and Y , their mutual information .I (X;Y ) is: 

.I (X;Y ) = Σx∈XΣy∈Y p(x, y) log
p(x, y)

p(x)p(y)
(5.8) 

.I (X;Y ) = DKL (PXY ‖PX ⊗ PY ) (5.9) 

where .DKL is the KL divergence. It is defined as: 

.DKL(P ‖Q) := EP

[
log

dP

dQ

]
(5.10) 

We mark .PXY as J and .PX ⊗ PY as M . By using the DV distribution form and the 
nature of KL divergence, we obtain the lower bound . Î of .I (X;Y ) as below: 

.I (X;Y ) ≥ Î (X;Y ) = EJ [Tω(x, y)] − logEM

[
eTω(x,y)

]
(5.11) 

where .Tω : x×y → R is a function parameterized by that can be used in Eq. (5.11) to 
approximate .I (X;Y ). We simply present a sample of . Tω and consider it enough to 
the expected function [20]. The multimodal features . .X1, ..X2 are assumed to have  
the same dimension, which can be achieved by feature alignment, and the size is 
(C, H, M, N).  C is the number of channels in convolutional layers, and .(H,M,N) is 
the size of a channel. We note the map in each channel as . Xin , .n ∈ [1,C]. Therefore, 
we rewrite Eq. (5.11) as: 

. I
(
Xin;Y

) .= Î
(
Xin;Y

) = log
(
ΣSeu−umax

) + umax − log(ΣS) − Σ
(
uavg · S

)

ΣS
(5.12) 

where .S = 1 − S̄ and .S̄ = H × H is a diagonal matrix. Besides, .U = Xn × Y , and 
.umax is the maximum value in matrix, while .uavg is the average value. Therefore, 
the mutual information is represented as below .C ∈ {1, 2} in our model: 

.I (Xi;Y ) = 1

C

C∑

n=1

I
(
Xin;Y

)
(5.13) 

(A) Recurrent Training Process 
We present how to compute the MI. To apply it in the weighted fusion model, we 
integrate it into the network and training-testing procedure as well. As illustrated 
in Fig.5.7, we take two branches from the DIM block, which are for two data. The 
DIM block computes the mutual information between them and the expected feature 
Y , respectively. However, we cannot obtain Y ahead of the network computation.



104 5 Multi-Sensor Scene Segmentation

Fig. 5.7 The structure of the DIM block in our fusion network. It adopts features from two 
modalities, images and point clouds, respectively, as . X1 and . X2, while taking the features from 
the last convolution layer as . ̂Y . Then, DIM block figures out the mutual information . I

(
Xi , Ŷ

)

Instead, we make the time-continuity assumption: for each i, . Xi is a given stable 
time sequence, which means .Xt

i ≈ Xt−1
i and .Y t ≈ Y t−1. In autonomous driving, 

that indicates two frames of a sensor’s observations are similar because of the 
continuity of scenarios and events. With this assumption, when we acquire a well-
trained model in a test, we can treat the recognition of the last frame as an 
approximation of the target at the current time, especially in a sequence model. 
Obviously, the fault rate of the last recognition will be increased. But when DIM 
is integrated into a robust backbone, we can ignore it most of the time and use a 
reset strategy to reduce the cumulative error. However, we have only implemented 
a single-frame recognition model and lack enough time series data, so we simply 
compute the current data cyclically. Specifically, we compute on it for the first time 
to simulate the “last frame result” and use it in the second computation. Therefore, 
we finish the DIM process approximately in testing. Figure 5.8 presents the overall 
structure of MIMF. The yellow block is the DIM module, and the rest is the MF 
baseline. The RGB images and point clouds are processed in two separate pipelines 
in the encoder and get fused in the DIM module. The sizes of feature maps are not 
changed in DIM. That means DIM is flexible for most models. When DIM outputs 
.I

(
Xi , Ŷ

)
as above, we normalize them by: 

.αi = I
(
Xi , Ŷ

)
∑

I
(
Xi , Ŷ

) (5.14) 

(B) MI as Fusion and Regularization 
With Eq. (5.14), we obtain the fusion weight A in Eq. (5.7). As a prior knowledge 
of the target of the tasks, MIMF pre-fetches data with a bias. It further forces the 
fusion models to focus on more relevant information in testing. In practice, the bias 
causes it to be unaffected by fault measurements or information loss data in complex



5.4 Adaptive Strategies in Multimodal Fusion Segmentation 105

Fig. 5.8 The overview of the architecture of MIMF. It consists of a standard feature fusion in the 
middle of an encoder-decoder network and a DIM block during fusion. Before fusion, MIMF had 
two individual pipelines to process different modalities of data 

scenes. In addition, we observe that MIMF performs better on the normal data. The 
random regularization effect, which is similar to the dropout, is used to explain the 
result. MI will be treated as a random process with a distribution different from that 
of the noised data because it is independent of the network or data and is determined 
by both the data and the target at the same time. Therefore, by learning the data-
independent input, the network avoids overfitting the data. Notice that our method 
can only operate in the case when at least one modality has good observation. 
Otherwise, the dominated data will lead to serious problems. 

5.4.2 Experiment 
(A) Dataset and Metrics 
To evaluate our models, we select pictures by ignoring the roads with intersections 
or without forward lines. Finally, we pick up around 400 data pairs from the KITTI 
road detection track [10] and around 1000 pairs from the A2D2 dataset [11]. We 
use 60% of the data as the training set, 10% for validation and the rest for testing. 
The image resolution is in KITTI and in A2D2. KITTI uses a 64-line Velodyne to 
generate point clouds, but A2D2 combines one 8-line and two 16-line LiDARs. The 
difference in LiDARs causes the gap in performance, but it would not matter in 
the evaluation of the adaptive fusion. Because the KITTI dataset has no lane line 
labels, we add pixel-level annotation to it by hand. Labeled lines are supposed to be 
parallel not only to the driving direction but also on the driving area. To reduce noise 
in the annotation, we do not estimate any markings behind obstacles like vehicles 
and poles on the roadside. Different from KITTI, A2D2 provides similar lane line 
labels, but they ignore the intervals in the dash lines. 

We focus more on the recall of lane lines and compute it as the lane accuracy. We 
also consider the F2 score to be balanced in case the network overfits any class, and 
we count the mean recall in both classes as the mAcc.



106 5 Multi-Sensor Scene Segmentation

(B) Implementation and Training 
To integrate LiDAR point clouds and RGB images into the same network, projection 
and value normalization are essential in preprocessing. To project the point clouds 
onto the image plane, given a point Pv = (xv; yv; zv)

T, we calculate: 

.Pv = Kv [Rv; Tv]Pv (5.15) 

where Kv, Rv, and Tv refer to the camera calibration matrix, rotation matrix, 
and translation matrix, respectively. Then the projected front-view point cloud 
reflectance map will be cropped to the same size as the RGB images. After that, 
the value of both the reflectance map and the RGB images will be normalized to the 
[0,1] interval. Following data preprocessing, we train our model on 2 datasets for 
250 epochs each. As shown in Sect. 5.4.1, we generate the simulated ground truth 
of target features in the first round of training, in which we also get the result of the 
original MF model. Then, in the second round, we train the MIMF with the features. 
In testing, we use the pre-trained MF, just as in training, to get target features and 
test MF and MIMF. 

(C) Result and Analysis 
We present the training record in Fig. 5.9 and the result of testing in Fig. 5.10. Note  
that we only put the training record of the last 50 epochs in the figures, in which we 
can see theMIMF performs worse thanMF at first, but they converge together at last. 
That indicates the random disturbance from the independent mutual information. 
However, in testing, we observe that MIMF performs better than MF by 1 2%, which 
indicates the potential regularization function of MI-driven models on the small 
training data. Note that due to the unstable calculation in MIMF, we have different 
outputs in testing, for which we process it tenth and count the average value. Though 

Fig. 5.9 The comparison of the training process between the baseline and MIMF on the KITTI 
and A2D2 datasets. The blue lines are the MF baseline, and the red ones are the MIMF. The lines 
represent the accuracy during training, which finally converge together. The X-axis indicates the 
epochs



5.5 Video Multimodal Fusion Segmentation 107

Fig. 5.10 The comparison of the testing process between the baseline and MIMF on the testing 
datasets. The blue lines are the MF baseline, and the red ones are the MIMF. The X-axis indicates 
the epochs 

the result is not deterministic, the DIM in MIMF outputs the stable fusion weight, 
which is 1.25:0.75 for image and point cloud fusion in normal data in KITTI. For 
A2D2, the ratio is 1.35:0.65, and that matches the prior in the dataset when we 
declare that the LiDARs in A2D2 are not suitable for segmentation tasks. We further 
complete the modality loss on the KITTI dataset. MIMF can keep the performance 
elimination in an acceptable range with prior knowledge of the MI of each sensor, 
whereas MF only recalls 50.29% of the lane pixels, which is far less than the result 
on normal data. 

5.5 Video Multimodal Fusion Segmentation 

Multimodal data fusion is becoming a trend in the field of autonomous driving, 
especially for lane detection. In the process of driving, sensors often encounter 
problems such as modality imbalance, changing illumination, and so on. Therefore, 
it is worthwhile to study the problems of applying multimodal fusion for lane 
detection and modality imbalance in the fusion process. In this chapter, we propose 
a novel multimodal model for lane detection in which an attention mechanism 
is embedded into the network to balance multimodal feature fusion and improve 
detection capability. In addition, we use multi-frame input and long short-term 
memory (LSTM) networks to solve the shadow interference, vehicle occlusion, 
and mark degradation problems. At the same time, the network can be applied to 
the task of lane detection. In order to verify the effect of multimodal application 
and attention mechanism on fusion, we have designed adequate experiments on the 
processed continuous scene KITTI dataset. The results show that precision increases 
by about 15. % when LiDAR is added compared with RGB only. Besides, the 
attention mechanism obviously improves the performance of multimodal detection 
by balancing multimodal features (Fig. 5.11).



108 5 Multi-Sensor Scene Segmentation

Fig. 5.11 Lane detection in continuous scenes. Corresponding ground truth annotations in the 
top row. Second row: lane detection achieved with a RGB-only network. The RGB+ LiDAR 
network detected a lane in the third row. Fourth row: lane detection obtained by a multimodality 
network with SKNet attention. Bottom row: lane detection obtained by a multimodality network 
with TripletNet attention 

5.5.1 Method 

In this section, we first explain the significance of real-time multimodal fusion 
in realistic autonomous driving and introduce the attention mechanism to balance 
fusion features. Following that, we will present the architecture and theory explana-
tion of our method in detail. 

(A) Overview 
Multimodal fusion can obtain more information, but we consider the modality 

imbalance between different modes will affect the fusion results. In view of this, we 
try to add an attention mechanism after the fusion process to balance multimodal 
features. At the same time, attention mechanisms play a significant role in the use 
of global information. It can select the region of interest in the feature map, optimize 
the feature map globally, highlight the key regions in the image, and suppress the 
interference of non-important regions (background) on the detection effect. In order 
to verify our idea, we chose SKNet and TripletNet as attention modules to join the



5.5 Video Multimodal Fusion Segmentation 109

Fig. 5.12 The architecture of the proposed network 

network. Among them, the SKNet attention module is inserted after fusion, while 
the TripletNet attention module is added to each decoder and encoder block. In the 
following sections, we build our network and describe each step of the network in 
detail. Figure 5.12 shows the network architecture we proposed. 

(B) Network Architecture 
1) Encoder-decoder network. One of the most remarkable features of the encoder-

decoder network is that it is an end-to-end structure. We regard the lane detection 
task as semantic segmentation using an encoder-decoder network. The encoder uses 
convolution and pooling operations to abstract images and extract features, while 
the decoder recalls and applies the information of targets using deconvolution and 
up-sampling. Referring to the work of [24], we chose U-Net as the encoder-decoder 
architecture of the model. 

In the U-Net, the blocks are classical full convolution networks. We input 
LiDARs and RGB images into U-Net at the same time, and then they pass through 
five consecutive convolution blocks. Each block contains two convolution layers 
of the same size. A pooling operation is added between each convolution block to 
down-sample the feature map. The number of channels is doubled each time, and 
the size of the feature map is reduced by two times. It is worth mentioning that for 
subsequent inputs to the LSTM network, the number of convolution kernels in the 
last convolution block has not changed relative to the previous one. In the decoder 
blocks, deconvolution and up-sampling correspond to operations in the encoder. 
Skip connection is applied to the encoder and decoder by concatenating, which 
doubles the size of the feature map. 

Figure 5.12 shows the detailed network architecture of encoder-decoder blocks. 
The encoder contains two branches, each with the same operation. After input, it 
first goes through the maxpool layer and then through the double 3 . × 3 convolution 
operation. Finally, the fusion is performed, and the specific operations of the fusion 
are shown in the next section. It is worth noting that only the RGB branches remain 
after the fusion and the LiDAR branches are input directly into the next block. In the 
decoder block, the blue dashed line indicates a skip connection from the encoder. 
The decoder consists of a single branch, and the basic structure of a block is similar



110 5 Multi-Sensor Scene Segmentation

to those in the encoder. However, in the decoder, the first operation of the block 
is up-sampling instead of max-pooling. The output from the block with the same 
number of layers is then added to the output from the encoder until the last layer. 

2) Fusion network. Previously, we introduced four fusion methods. The fusion 
method we chose is a variant of cross-fusion, which fuses the features of each layer 
in the encoder. This strategy allows multimodal features to be fused at any network 
depth, rather than limiting them to a single level as previously mentioned. In the 
fusion method, we do not choose a two-way cross but focus on a one-way cross 
on the image branch. Because it is multiple frame input, it can not only make the 
network lighter but also prepare for our subsequent attention mechanism. In addition 
to that, we employ the concatenate operation instead of the add operation. In the 
fusion stage, the input tensors at depth j are denoted as . I r

j and . I d
j . We feed them to 

layers . Lr
j and . Ld

j , respectively. The detailed expression is as follows: 

.I r
j = Cat

((
Lr

j−1

) (
pj−1L

d
j−1

))
(5.16) 

or 

.I r
j = Lr

j−1 + pj−1L
d
j−1 (5.17) 

where .pj ∈ R and .j ∈ {1, 2, 3, 4} are trainable cross-fusion parameters and 
Cat indicates the concatenation operation. During training, these fusion parameters 
are automatically modified to integrate the two information modes. In SKNet, we 
choose 5.16 in order to adapt to the input of attention mechanism network, and in 
TripletNet attention, we choose the common fusion method 5.17. 

(C) Attention Mechanism Network 
For end-to-end network, channel attention mechanism has the characteristics of a 
small amount of calculation and light weight. The SKNet attention and TripletNet 
attention are lightweight and modular, which can be embedded into a network. 
They are also efficient and widely used. In SKNet, selective kernels are added 
to select different spatial scales of information through an inter-channel soft 
attention mechanism. The architecture of the selective kernel (SK) unit is shown 
in Fig. 5.13. SK convolution consists of three operations: Split, Fuse, and Select. 
The Split operation produces multiple paths with various convolution nucleus sizes, 
corresponding to different receptor field sizes of neurons. As shown in Fig. 5.13, the  
output is obtained by convoluting X with Kernel 3*3 and Kernel 5*5 separately. 
Fuse combines and aggregates information from two branches to obtain global 
representations of selective weights. Then the results from the two branches are 
fused through element-wise summation. 

.U = Û + Ũ (5.18)



5.5 Video Multimodal Fusion Segmentation 111

UX Split 

U 
~ 

ÛKernel 5*5 

Kernel 3*3 

Fgp 

S 

Ffc 

Z 
softmax 

Fuse 

Select V 

Fig. 5.13 The architecture of the selective kernel (SK) unit 

.Fgp represents the global average pooling (GAP) operation, and .Ff c is a two-
level full connection layer that reduces and then increases dimensions. 

The Select operation aggregates feature mappings of convolution cores of 
different sizes based on the selection weight. Select operation weights . ̂U and . ̃U
using two weight matrices, a and b, and then sum them to get the final output vector 
V : 

.Vc = acÛc + bcŨc, ac + bc = 1 (5.19) 

where .V = [V1, V2, . . . , Vc], .Vc ∈ RH×W. .ac + bc = 1 in case of two branches. 
In the TripletNet module, for the input tensor, the TripletNet attention establishes 

the dependency relationship between dimensions through rotation operation and 
residual transformation and encodes the inter-channel and spatial feature informa-
tion with low computational overhead. The TripletNet attention network structure 
has three branches. Given an input tensor .χ ∈ RC×H×W, the first branch is the 
channel attention calculation branch, where interactions are established between the 
H dimension and the C dimension. In the second branch, interactions are established 
between the C dimension and the W dimension, and in the third branch, interactions 
are established between the H dimension and the W dimension to construct spatial 
attention. Finally, Avg is calculated by adding the output features of the three 
branches. Detailed algorithm procedures can be found in [23]. 

4) LSTM network. LSTM models multiple consecutive frames of a driving 
scene as a time series and accepts as input the feature map extracted by the 
encoder CNN on each frame. The convolutional LSTM (ConvLSTM), which not 
only has the time series modeling ability of LSTM but can also depict local 
characteristics like CNN, was proposed by X. Shi et al. In addition, the authors 
have experimentally demonstrated that ConvLSTM is more effective than LSTM 
in acquiring spatiotemporal relationships. ConvLSTM is essentially the same as 
LSTM, where the output of the previous layers is fed as the input of the subsequent 
layer. However, ConvLSTM replaces feedforward calculation of LSTM gates with a 
convolution operation, which saves much time and computational cost. The working 
principle of ConvLSTM can be expressed by the following formula: 

.it = σ
(
Wxi ∗ Xt + Whi ∗ Ht−1 + W ◦

ciCt−1 + bi

)
(5.20)



112 5 Multi-Sensor Scene Segmentation

.ft = σ
(
Wxf ∗ Xt + Whf ∗ Ht−1 + W ◦

cf Ct−1 + bf

)
(5.21) 

.Ct = ft ◦ Ct−1 + it ◦ tanh (Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (5.22) 

.ot = σ
(
Wxo ∗ Xt + Who ∗ Ht−1 + W ◦

coCt + bo

)
(5.23) 

.ot = σ
(
Wxo ∗ Xt + Who ∗ Ht−1 + W ◦

coCt + bo

)
(5.24) 

where “*” denotes the convolution operator and “. ◦,” as before, denotes the 
Hadamard product. The design is that all the inputs .X1, . . . , Xt ; cell outputs 
.C1, . . . , Ct ; hidden states .H1, . . . , Ht ; and gates . it , . ft , and . ot of the ConvLSTM 
are 3D tensors whose last two dimensions are spatial dimensions. 

5.5.2 Experiments 

For experiments designed to verify the effectiveness and importance of attention 
mechanisms in multimodality fusion, we chose two popular attention mechanisms: 
SKNet attention and TripletNet attention. The visual comparison results are illus-
trated in Fig. 5.11. We also do ablation experiments to show why multimodal feature 
fusion is better than single mode. 

(A) Training Procedure 
During the training, the sizes of images are sampled to 512. ×256, and the batch size 
is 2. We use the SGD optimization algorithm in the network and set the learning rate 
as 0.01. The number of epochs is 60, and the network is trained in an end-to-end way. 
The fusion networks were run by an NVIDIA GTX 1080 GPU and implemented in 
PyTorch. The weights of the network are saved and evaluated at each epoch. The 
optimal evaluation weight will be saved and tested in the last test. 

(B) Metrics 
The evaluation metrics usually include precision (PRE) and recall (REC). In 
addition, we also add F-measure as an important evaluation index so as to 
comprehensively reflect the performance of lane detection. F-measure is obtained 
from the precision rate and recall rate of pixel-level evaluation, and we usually use 
F1-measure ( = 1). The formulas are shown as follows: 

.PRE = T P

T P + FP
(5.25) 

.REC = T P

T P + FN
(5.26) 

.F1 = 2
PRE × REC

PRE + REC
(5.27)



5.5 Video Multimodal Fusion Segmentation 113

We set the lanes in the image as a positive class and the others as negative classes 
in the task of lane detection, which can be regarded as a binary classification way 
in essence. In Formulas (5.26) and (5.27), TP indicates the number of lane pixels 
truly predicted as lane, FP indicates the number of background pixels incorrectly 
predicted as lane, and FN indicates the number of lane pixels incorrectly predicted 
as background. 

(C) Performance Analysis 
The test results, which are on the KITTI dataset, are displayed in Fig. 5.11. There 
are a total of six lines of results, which are introduced in the figure. It can be known 
that single mode (RGB) has the poorest detection performance. In this mode, the 
detection effect is often inaccurate due to the lack of some necessary information, 
such as depth information. Some areas similar to the lanes are often detected, 
resulting in large background interference. At the same time, the influence of some 
light conditions will also affect the detection effect. Some shadows are likely to 
be ignored as non-lane areas. Therefore, it is not enough to use a single mode. 
Our model uses a multimodal fusion strategy, as shown in the fourth line of the 
figure; the detection effect is greatly improved compared with the single mode. The 
redundancy has been greatly reduced. This improvement mainly comes from the 
addition of LiDAR information. The network can compensate for the limitation of 
using a single mode by using multimodal fusion to improve detection performance. 

However, this effect is not what we expected. Although there is a greater 
improvement when compared to single mode, the detection effect still has many 
flaws. As shown in the figure, there are some missing holes in some detection areas, 
while there is still a small amount of background interference. We consider that 
this is an imbalance between multimodal features. Because the same scene is often 
distinct in different modes, the information mismatch may result in some empty 
areas in the effect map. Therefore, we introduce an attention mechanism to promote 
the fusion of multimodal features, as shown in the last two lines of the figure. It can 
be seen that background interference has barely occurred and that the lane area can 
be completely detected. The SKNet attention has better resilience to scale changes 
and is able to take advantage of global information to detect areas that are not easily 
detectable, such as opposite lanes. After a deeper analysis, SKNet activates cortical 
neurons to dynamically change their own receptive fields on the basis of different 
stimuli and carries out selective kernel transformation on all convolution kernels >1, 
fully benefiting from the smaller theoretical parameters and flop dividends resulting 
from group or depth-wise convolution, thereby increasing the design of multiple and 
dynamic selection. After the introduction of the attention mechanism, the features of 
different channels and modes communicate and recombine with each other, so that 
more significant areas can be detected, so that the network not only has better multi-
scale detection ability but also makes full use of multimodal features. The TripletNet 
attention is excellent for locally detected areas with little background interference 
or void areas. Because the TripletNet attention has a negligible computational 
overhead, we incorporate it into each block. It interacts with dimensions through 
three paralleled branches, of which two branches are used for capturing the cross-



114 5 Multi-Sensor Scene Segmentation

Table 5.9 Performance on 
different strategies 

Network PRE/% REC/% F1/% 

RGB only 74.53 97.11 84.34 

RGB+ LiDAR 88.97 89.38 89.17 

Q. Zou et al. [16] 76.76 95.30 85.03 

PLARD 92.38 90.64 91.50 

Multimodality with SKNet 91.25 80.73 85.67 

Multimodality with TripletNet 93.08 92.35 92.71 

Bold values highlight the significant improvement in perfor-
mance

latitude interaction between space and channel C, while the last one is responsible 
for constructing spatial attention. The output from these branches is aggregated 
evenly at the end. In this way, the information between different dimensions can 
be fully exchanged. In the former encoder, the two mode branches themselves are 
optimized, which is conducive to the next fusion. After the fusion, the multimodal 
features can be effectively balanced in the decoder so that the multimodal features 
can be fully utilized. In addition, it can also optimize the features after skipping 
connections. In this way, the detection ability of the whole network has been greatly 
improved. 

The specific evaluation indicators are shown in Table 5.9. The first row represents 
single mode, the second is multi-mode, and the last is multi-mode with attention 
mechanism. For PRE, using multimodal is about 15. % higher than single modal, 
which shows the importance and superiority of using multimodal fusion effect. 
Multimodality with attention has a high detection ability with increasing precision. 
Recall is also an important indicator for evaluating the proposed method. We can 
see that the recall rate of single mode is the highest. The recall rate is down a 
lot after fusion. Therefore, in order to solve the imbalance problem of multimodal 
feature fusion, we introduced an attention mechanism. It can be seen that after the 
attention network is inserted, the recall rate has greatly improved. For the goal of 
comprehensive evaluation and considering precision and recall, the F1-measure can 
be regarded as the correct index to evaluate the experimental method. Multimodal 
fusion improves F1-measure by nearly 5. % compared to single mode. Besides, 
we can know that the TripletNet attention has achieved the highest F1-measure. 
The experimental results verify the effectiveness of the attention mechanism for 
multimodality fusion. Finally, we compare with other lane detection methods, 
including the most competitive algorithm PLARD using multimodal fusion and 
the algorithm [24] using multi-frame input. We trained them on the continuous 
scene dataset we built. The test results show that our algorithm performs better 
on the dataset, proving that the multimodal attention-guided real-time network is 
very effective. In addition, we also test the running time of the network processing 
a single frame. Our proposed network reaches a speed of 0.15 s, while PLARD 
reaches a speed of 1.36 s.



5.6 Summary 115

Table 5.10 Ablation study for model on KITTI dataset 

Method Results on KITTI 

Camera LiDAR LSTM TripletNet PRE/% REC/% F1/%

� 74.53 97.11 84.34

� � +4.36 −2.80 +1.57

� � � +14.44 −7.73 +4.83

� � �� +18.55 −4.76 +8.37 

(D) Ablation Study 
We explore the performance differences of various strategies to demonstrate the 
significant effect of multimodal fusion and the enhancement of attention mecha-
nisms on fusion. First, we compare the different modes. In Table 5.10, we use the  
camera only as a benchmark and add LiDAR in order to verify the effectiveness of 
multimodality. As shown in the table, both the prediction rate and the F1-measure 
rate have been improved. When LSTM is added, all performances improve greatly. 
Although the detection speed of the whole network is reduced due to the large 
amount of LSTM computation, it is worthwhile to achieve a high performance 
improvement by using time series signals. In addition, we add the TripletNet 
attention in the third column in order to further highlight the role of attention 
mechanisms in balancing multimodal fusion. The experimental results show that 
compared with using a camera only, the prediction rate and F1-measure rate have a 
greater improvement (PRE + 18.55. %, F1 + 8.37. %). At the same time, the recall rate 
also shows a certain improvement compared with multimodal fusion. 

5.6 Summary 

In this chapter, inspired by the channel attention mechanism, we have proposed 
an optimized LiDAR-camera fusion network using the CFECA module for the 
task of lane line segmentation. In summary, this work makes the following major 
contributions to the general knowledgebase: 

• Efficient channel attention is proposed to improve LiDAR-camera fusion in lane 
line segmentation. 

• The CFECA (cross-fusion efficient channel attention) module is designed and 
applied to improve the fusion method and allow abundant LiDAR-camera fusion 
information to be used simultaneously across channels. 

• A method for determining fusion weights, which are transferable in multimodal 
fusion, is proposed. 

But after the network pulls out the features, the features at the same level might 
not be the best ones for fusion. Therefore, we have studied adaptive fusion in the 
fusion network.



116 5 Multi-Sensor Scene Segmentation

Inspired by the mutual information (MI) [6], which measures the relation 
between two variables, people refer to the amount of information in models [18]. A 
network is supposed to perform at its best during information acquisition. Therefore, 
information maximization equals fusion efficiency maximization to some extent. To 
address efficient usage of MI, some research contributes to the MI estimation in 
neural network [18]. Based on the previous work Deep InfoMax (DIM) [2], we 
proposed a novel MI-based data fusion that figures the weight for feature fusion 
dynamically. The central concept of our work is the real-time calculation of the 
MI value of multimodal features and recognition targets, which broadens the fusion 
tendency on them. We build an end-to-end model and examine it on LiDAR-camera 
fusion lane line segmentation task on the KITTI and A2D2 datasets [12]. 

Then we propose a novel efficient model for lane detection in which the 
multimodal feature fusion and LSTM network are used to solve some problems such 
as vehicle obstruction and mark degradation. We introduce an attention mechanism 
for multimodal fusion, which can balance multimodal feature fusion and capture 
salient areas around the vehicle. Through attention guidance, the network can be 
more focused and prominent. In summary, this work makes the following major 
contributions to the general knowledgebase: 

1) We propose an effective real-time model for lane detection, using a fusion 
strategy to compensate for the limitations of single-mode detection and applying 
multi-frame input to solve practical problems such as vehicle obstruction and 
mark degradation. 

2) We introduce an attention mechanism for multimodal fusion, which can balance 
multimodal feature fusion and capture salient areas around the vehicle. Through 
attention guidance, the network can be more focused and prominent. 

3) Our framework can be trained in an end-to-end manner and has more practicality 
and advantages in engineering. For example, the proposed network can also 
be used for lane detection. The experimental results show that our network 
achieves a better comprehensive effect and verify the importance of the attention 
mechanism in multimodality fusion. 

5.7 Challenges and Prospect 

The current approaches to lane line segmentation can be divided into three types: 
camera-based models, LiDAR-based models, and fusion models. The camera-based 
methods can meet the high frame rate requirements of driving scenes. Additionally, 
camera images have a high resolution and efficient array storage structure [5], 
thus providing abundant information under good illumination and fair weather 
conditions. However, dramatic changes in light have a considerable impact on the 
performance of the camera. In contrast to a camera, LiDAR retains abundant 3D 
information in the driving environment, provides accurate distance measurements 
[8], and is minimally affected by ambient light conditions. However, LiDAR only



References 117

provides sparse and irregular point cloud data, which can lead to the existence of 
many empty voxels [9]. Both camera-based and LiDAR-based methods have distinct 
advantages and disadvantages. To optimally consider the advantages of different 
sensors in accurately describing the external environment, it is necessary to fuse 
the data from different sensors [22]. Multimodal fusion involves combining data 
from different sensors to perform multi-stage feature fusion at different levels [13]. 
The fusion model mainly fuses the data of multiple modes and complements the 
information. Through multimodal fusion, this method can improve the accuracy of 
lane line segmentation. Notably, the redundancy and fault tolerance of the system 
and the speed and accuracy of decision-making can be improved [2]. 

However, although the existing multimodal methods can perform well in most 
scenes, the fusion strategy may fail seriously in some abnormal scenes [6]. For 
example, bad weather such as rain and fog will cause obstacles to the camera’s work. 
The sensor itself also contains potential perceptual bias, such as noise point cloud 
intensity in LiDAR. Besides simultaneous interpreting of these external and internal 
problems, there is another common but disturbing problem in practice. Data flows 
from different sensors are not always matched in time due to hardware restrictions. 
These problems lead to data uncertainty, which expands the model performance 
gap between the dataset and the actual situation and hinders the application of 
multimodal fusion methods. 

Although, in most tasks, the fusion model using multiple sensors is better than 
using a single sensor, there are also a series of problems to solve, such as what data 
to fuse, when to fuse, how to fuse, and so on. The three fusion strategies proposed 
in this chapter had good results in the experiment, but there are still places to be 
improved. Further research on fusion will be carried out in the future. 

References 

1. Ashraf, I., Hur, S., Park, Y.: An investigation of interpolation techniques to generate 2D 
intensity image from LiDAR data. IEEE Access 5, 8250–8260 (2017) 

2. Asvadi, A., Garrote, L., Premebida, C., Peixoto, P., Nunes, U.: Multimodal vehicle detection: 
fusing 3D-LiDAR and color camera data. Pattern Recognit. Lett. 115, 20–29 (2017) 

3. Bai, M., Mattyus, G., Homayounfar, N., Wang, S., Lakshmikanth, S.K., Urtasun, R.: Deep 
multi-sensor lane detection. In: 2018 IEEE/RSJ International Conference on Intelligent Robots 
and Systems (IROS), pp. 3102–3109. IEEE (2018) 

4. Belghazi, M.I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio, Y., Courville, A., Hjelm, D.: 
Mutual information neural estimation. In: International Conference on Machine Learning, pp. 
531–540. PMLR (2018) 

5. Caltagirone, L., Bellone, M., Svensson, L., Wahde, M.: LiDAR-camera fusion for road 
detection using fully convolutional neural networks. Robot. Auton. Syst. 111, 125–131 (2019) 

6. Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: A2-nets: double attention networks. arXiv 
preprint arXiv:1810.11579 (2018) 

7. Feng, D., Haaseschuetz, C., Rosenbaum, L., Hertlein, H., Glaeser, C., Timm, F., Wiesbeck, W., 
Dietmayer, K.: Deep multi-modal object detection and semantic segmentation for autonomous 
driving: datasets, methods, and challenges. arXiv: Robotics (2019)



118 5 Multi-Sensor Scene Segmentation

8. Feng, M., Zhang, L., Lin, X., Gilani, S.Z., Mian, A.: Point attention network for semantic 
segmentation of 3D point clouds. arXiv: Computer Vision and Pattern Recognition (2019) 

9. Garnett, N., Cohen, R., Peer, T., Lahav, R., Levi, D.: 3D-lanenet: end-to-end 3D multiple lane 
detection. arXiv: Computer Vision and Pattern Recognition (2018) 

10. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision 
benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 3354–3361. IEEE (2012) 

11. Geyer, J., Kassahun, Y., Mahmudi, M., Ricou, X., Durgesh, R., Chung, A.S., Hauswald, L., 
Pham, V.H., Mühlegg, M., Dorn, S., et al.: A2D2: audi autonomous driving dataset. arXiv 
preprint arXiv:2004.06320 (2020) 

12. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: Ccnet: criss-cross attention 
for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on 
Computer Vision, pp. 603–612 (2019) 

13. Li, Y., Zhang, Z., Cheng, Y., Wang, L., Tan, T.: MAPNet: multi-modal attentive pooling 
network for RGB-D indoor scene classification. Pattern Recogn. 90, 436–449 (2019) 

14. Nikoohemat, S., Diakite, A.A., Zlatanova, S., Vosselman, G.: Indoor 3D modeling and flexible 
space subdivision from point clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 
4, 285–292 (2019) 

15. Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: Bam: Bottleneck attention module. arXiv preprint 
arXiv:1807.06514 (2018) 

16. Peng, C., Ma, J.: Semantic segmentation using stride spatial pyramid pooling and dual attention 
decoder. Pattern Recogn. 107, 107,498 (2020). URL http://www.sciencedirect.com/science/ 
article/pii/S0031320320303010 

17. Peng, X., Murphey, Y.L., Liu, R., Li, Y.: Driving maneuver early detection via sequence 
learning from vehicle signals and video images. Pattern Recogn. 103, 107,276 (2020) 

18. Qian, Y., Dolan, J.M., Yang, M.: DLT-Net: joint detection of drivable areas, lane lines, and 
traffic objects. IEEE Trans. Intell. Transp. Syst. 21, 1–10 (2019) 

19. Tang, J., Li, S., Liu, P.: A review of lane detection methods based on deep learning. 
Pattern Recogn. 111, 107,623 (2021). URL http://www.sciencedirect.com/science/article/pii/ 
S003132032030426X 

20. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: efficient channel attention for 
deep convolutional neural networks. arXiv: Computer Vision and Pattern Recognition (2019) 

21. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: convolutional block attention module. In: 
Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018) 

22. Xu, X., Li, Y., Wu, G., Luo, J.: Multi-modal deep feature learning for RGB-D object detection. 
Pattern Recogn. 72, 300–313 (2017) 

23. Zhou, K., Chen, L., Cao, X.: Improving multispectral pedestrian detection by addressing 
modality imbalance problems. In: European Conference on Computer Vision, pp. 787–803. 
Springer (2020) 

24. Zou, Q., Jiang, H., Dai, Q., Yue, Y., Chen, L., Wang, Q.: Robust lane detection from continuous 
driving scenes using deep neural networks. IEEE Trans. Veh. Technol. 69(1), 41–54 (2019)

http://www.sciencedirect.com/science/article/pii/S0031320320303010
http://www.sciencedirect.com/science/article/pii/S0031320320303010
http://www.sciencedirect.com/science/article/pii/S0031320320303010
http://www.sciencedirect.com/science/article/pii/S0031320320303010
http://www.sciencedirect.com/science/article/pii/S0031320320303010
http://www.sciencedirect.com/science/article/pii/S0031320320303010
http://www.sciencedirect.com/science/article/pii/S0031320320303010
http://www.sciencedirect.com/science/article/pii/S0031320320303010
http://www.sciencedirect.com/science/article/pii/S003132032030426X
http://www.sciencedirect.com/science/article/pii/S003132032030426X
http://www.sciencedirect.com/science/article/pii/S003132032030426X
http://www.sciencedirect.com/science/article/pii/S003132032030426X
http://www.sciencedirect.com/science/article/pii/S003132032030426X
http://www.sciencedirect.com/science/article/pii/S003132032030426X
http://www.sciencedirect.com/science/article/pii/S003132032030426X
http://www.sciencedirect.com/science/article/pii/S003132032030426X


Chapter 6 
Multi-Sensor Fusion Localization 

Abstract In real-time positioning problems, some unstable situations often occur, 
such as GPS signal loss and map drifting. In order to have better localization and 
map buildings, this chapter proposes a coarse-and-fine hybrid positioning system, 
which integrates the global information and feature-based simultaneous localization 
and mapping (GF-SLAM). The system can operate adaptively when external signals 
are unstable and avoid the cumulative error from local methods. Generally, it applies 
the feature-based SLAM (F-SLAM) for coarse positioning with particle filter. If 
available, it fuses the accurate global information by extended Kalman filter (EKF) 
for precise positioning and revises the deviation in mapping, thereby achieving 
an effective combination of two positioning modes. In addition, we introduce 
semantic mapping and lifelong localization approaches to recognize semi-dynamic 
objects in non-static environments. We also propose a generic framework that can 
integrate mainstream object detection algorithms with mapping and localization 
algorithms. The mapping method combines an object detection algorithm and a 
SLAM algorithm to detect semi-dynamic objects and constructs a semantic map that 
only contains semi-dynamic objects in the environment. In summary, this chapter 
proposes methods to resolve self-positioning and map drift when positioning fails. 

6.1 Introduction 

Simultaneous localization and mapping (SLAM) is a fundamental problem in 
mobile robotics [29, 30]. Over the past several decades, efforts have been made 
to extend its application from laboratory scenes to outdoor scenes, where the major 
difference is the dynamic degree [2, 3, 32]. 

Self-positioning has been considered the hot spot in the research field of 
autonomous driving [4, 22], where existing methods can be divided into two groups 
according to the dependent information. The first type is to integrate the global 
information with internal sensors (e.g., odometer, IMU (inertial measurement unit), 
etc.) to dynamically adjust the self-pose estimation. However, the global information 
may become unstable and even lost due to the non-line of sight factor and the multi-
path effect [9, 35], resulting in the cumulative deviation in dead reckoning (DR). 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
X. Zhang et al., Multi-sensor Fusion for Autonomous Driving, 
https://doi.org/10.1007/978-981-99-3280-1_6

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3280-1protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-981-99-3280-1_6
https://doi.org/10.1007/978-981-99-3280-1_6
https://doi.org/10.1007/978-981-99-3280-1_6
https://doi.org/10.1007/978-981-99-3280-1_6
https://doi.org/10.1007/978-981-99-3280-1_6
https://doi.org/10.1007/978-981-99-3280-1_6
https://doi.org/10.1007/978-981-99-3280-1_6
https://doi.org/10.1007/978-981-99-3280-1_6
https://doi.org/10.1007/978-981-99-3280-1_6
https://doi.org/10.1007/978-981-99-3280-1_6
https://doi.org/10.1007/978-981-99-3280-1_6


120 6 Multi-Sensor Fusion Localization

The second type of methods, simultaneous localization and mapping (SLAM), 
only requires local features (e.g., high-precision LiDAR in the Hector SLAM 
[20], odometry data in the Gmapping [12]) which provide higher accuracy and 
robustness. To overcome the cumulative deviation, several algorithms including the 
graph optimization strategy used in the Karto SLAM [21] and the optimal frame 
loop closure detection method in the Cartographer [18, 26] have been proposed. 
However, as SLAM-based methods depend on dense features in the surrounding 
environment, they fail to operate well in environments with sparse features, such as 
open areas or corridors. 

In order to evaluate the performance of the proposed method, we constructed 
two simulation datasets with mobile robots in Sect. 6.2. At the same time, we 
also constructed two environments. The main feature in the first environment is 
the arc-shaped feature, and in the second environment, there are two corridors to 
compensate for each other’s shortcomings with a hybrid positioning method. The 
robot used in our experiment has an encoder installed on each front wheel to provide 
displacement and angle increments. The IMU is located in the center of the robot 
to provide angular velocity; the single-line LiDAR is installed horizontally directly 
above the robot, with a horizontal scanning range of 360° and an angular resolution 
of 0.5°. In Sect. 6.3, we used a robot equipped with a 16-line Velodyne LiDAR, 
a camera, and an inertial measurement unit as a data collector to conduct data 
collection and verification in a parking lot. We guide the robot to run in the parking 
lot and collect data every few days to build a semi-dynamic map. To quantitatively 
compare the performance of this algorithm, the data evaluation criteria include 
average position error, maximum position error, position root mean square error, 
average angle error, and maximum angle error. 

6.2 GF-SLAM 

To leverage their advantage by integrating two types of methods, a straightforward 
strategy is to build up a high-definition map with SLAM, and the pose of the ego 
vehicle is then able to be updated according to the map when the global information 
is unstable or lost. For example, Choi et al. [8] detect lane lines, endpoints, and 
road signs to compare the high-precision map to correct the horizontal and vertical 
position, as well as the heading angle of the car. It can maintain high positioning 
accuracy even in the tunnel. Though the algorithm is reliable, it essentially requires 
collecting data and establishing a map in advance. Moreover, the maps limit the 
scope of action. 

To avoid the limitations mentioned above, combining the global information 
with SLAM methods in real time is also considered [5, 7]. For example, Guivant 
[14, 15] applies GPS and LiDAR and updates the state vectors together with the 
feature points extracted from the environment. But the precision of the update 
process heavily depends on the stability of the overall system. Therefore, the lack 
of evaluation and screening of feature points may lead to unpredictable errors in



6.2 GF-SLAM 121

the positioning. On the other hand, Song et al. [27] put multiple beacons into 
an extended Kalman filter (EKF) to update the coarse map and then build a fine 
local map by frame matching. In conclusion, these methods are based on global 
information and treat LiDAR as a local odometer to further correct the positioning 
pose. However, their implementation is complicated and requires high computing 
power, which constitutes the obstacle in the application. 

In contrast to the existing methods mentioned above, we adopt the idea of 
coarse-and-fine hybrid information fusion for self-positioning and propose a system 
that integrates global information and feature-based SLAM (GF-SLAM). Neither 
stable global signals nor a pre-established map as the base of mapping [17] is  
required in the proposed method. When the system operates, the feature-based 
SLAM (F-SLAM) measures the features in the environment, including corner 
points, arcs, and line segments, to continuously construct the feature map for coarse 
positioning with a particle filter. During the process, each feature is filtered and 
updated independently to reduce the computation complexity. Moreover, if the 
global information is accessible, the system is converted to the precise positioning 
of EKF fusion DR. Simultaneously, the feature map is continuously updated on 
the results of EKF, which can gradually refine the coarse map of F-SLAM, thus 
eliminating the cumulative error in positioning. It should be noted that the global 
positioning would not affect the local F-SLAM directly, which ensures the stability 
of the system in a changeable environment. 

To evaluate the performance of the proposed hybrid method [11], two virtual 
environmental scenarios are built, as well as the mobile robot used in Fig. 6.1. 
In the first environment, we aim to compare our F-SLAM with some state-of-
the-art SLAM methods. Considering that the arc feature has better recognition 
and robustness, we set it as the main feature in this scene as shown in Fig. 6.2a. 
Meanwhile, we also build the second scene with two corridors to observe whether 
the hybrid positioning methods can compensate for each other’s defects and switch 
stably under status with different global information. The results present that our F-
SLAM can achieve a comparable performance of the mainstream SLAM algorithms 
and the integration of global information can further improve the mapping and 
positioning. The contributions of this chapter are listed as follows: 

• The presented coarse-and-fine hybrid information fusion method is applied to 
the positioning systems and achieves robust performance under unreliable global 
signals. 

• An improved feature-based SLAM is proposed, which approaches general 
performance with less computation than other SLAM systems. 

• The positioning system is implemented to be real time and operates responsively 
to changes in the global signals, which can switch the algorithms accordingly.



122 6 Multi-Sensor Fusion Localization

Fig. 6.1 The virtual model of the mobile robot, with two front-wheel drive and a single-rear-wheel 
steering structure, equipped with sensors such as single-line LiDAR, encoders, and IMU 

6.2.1 Methodology 

First, we present the process of fusing global information and motion models for 
fine positioning. It is converted to F-SLAM when the global information is lost. 
On the other hand, we introduce the establishment of the feature map and particle 
filter positioning (coarse positioning) in F-SLAM. The overview of our method is 
presented in Fig. 6.3. 

The automated vehicle, which is represented by a mobile wheeled robot in 
our experiments, can build the corresponding motion models. In our setting, the 
robot runs at a low speed to simulate a two-wheel differential model. The global 
information and IMU data are the observations for EKF, constantly updating its 
pose for fine positioning. 

We use the state vector .Xk = [xk, yk, θk]T to denote the robot’s pose in the global 
coordinates at time k. The odometry motion model is: 

.Xk = f (Xk−1, w),w ∼ N(0,Q), (6.1)



6.2 GF-SLAM 123

Fig. 6.2 The schematic sketch of two virtual environments. (a) Scenario I is dense with obstacles. 
(b) Scenario II with two corridors



124 6 Multi-Sensor Fusion Localization

Fig. 6.3 Flowchart of the proposed method. The dark blue wireframe shows the EKF positioning 
using global information (fine positioning). The dark red wireframe and the dark green wireframe 
show the particle filter positioning (coarse positioning) and the flow of building the feature map, 
respectively, which together form F-SLAM. Fine positioning improves the accuracy of coarse 
positioning through the feature map, and the two are switched according to the global information 
state 

Fig. 6.4 The odometry motion model. . θk is the positive angle with the X-axis at time k, 
representing the heading angle of the mobile robot 

where w denotes the process noise with covariance .Q,Δdk , .ΔdR
k and .Δθ

w0
k , as  

shown in Fig. 6.4 are defined as the displacement increment and the heading angle 
increment of the wheel odometer, respectively. They are defined as: 

.Δdk = δdR
k + ΔdL

k

2
,Δθ

w0
k = δdR

k − ΔdL
k

L
, (6.2)



6.2 GF-SLAM 125

where .δdR
k and .ΔdL

k denote the displacement increments of the left and right wheels 
within the sampling time, respectively. L denotes the distance between the wheels. 
Let .X̂k = [xk, yk, θk]T be the predicted state vector; then the transfer function can 
be defined as: 

.

⎡
⎣

xk

yk

θk

⎤
⎦ =

⎡
⎣

xk−1

yk−1

θk−1

⎤
⎦ +

⎡
⎢⎢⎣

Δdk

Δθ
w0
k

(sin(θk−1 + Δθ
w0
k ) − sin(θk−1))

Δdk

Δθ
w0
k

(cos(θk−1 − cos(θk−1 + Δθ
w0
k )))

Δθ
w0
k

⎤
⎥⎥⎦ , (6.3) 

The observation model is: 

.Zk = h(Xk, v), v ∼ N(0, R), (6.4) 

where .Zk = [d1,k, d2,k, d3,k, θk]T denotes the measurement vector and v denotes 
the measurement noise with covariance R. In our experiments, the positioning 
system is composed of three fixed ultrasonic transmitters with known positions 
.Ui = [xi, yi, zi]T , i = 1, 2, 3. Let  .d1∼3,k be the distance between the robot and 
transmitters at time k, and the robot’s global coordinates can be obtained. . θk in . Zk

is defined as follows: 

.θk = θk−1 + ΔθIMU
k , (6.5) 

where the heading angle increment .ΔθIMU
k can be integrated within the IMU 

sampling time. The predicted measurement vector .Ẑk = [d1,k, d2,k, d3,k, θk]T can 
be described as follows: 

.Ẑk =

⎡
⎢⎢⎣

d1,k

d2,k

d3,k

θk

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

√
(xk − x1)2 + (yk − y1)2 + (zk − z1)2√
(xk − x2)2 + (yk − y2)2 + (zk − z2)2√
(xk − x3)2 + (yk − y3)2 + (zk − z3)2

θk

⎤
⎥⎥⎥⎦ , (6.6) 

We assume that the moving surface is flat such that the height of the robot . zk is 
regarded as a constant. EKF time update equations: 

.

X̂k = f (Xk−1),

P̂k = FkPk−1F
T
k + Q,

Kk = P̂kH
T
k

HkP̂kH
T
k + R

,

Xk = X̂k + Kk(Zk − h(X̂k)),

Pk = (I − KkHk)P̂k,

(6.7)



126 6 Multi-Sensor Fusion Localization

where . P̂k denotes the prior state covariance matrix and . Pk is a posteriori state 
covariance matrix. . Kk and I are the Kalman gain and identity matrix, respectively. 
. Fk and . Hk are the Jacobian matrix of partial derivatives of the function f and H to 
x, respectively, and can be expressed as: 

.Fk = ∂f

∂Xk−1
+

⎡
⎢⎢⎣
1 0 Δdk

Δθ
w0
k

(cos(θk−1 + θ
w0
k ) − cos(θk−1))

0 1 Δdk

Δθ
w0
k

(sin(θk−1 + θ
w0
k ) − sin(θk−1))

0 0 1

⎤
⎥⎥⎦ , (6.8) 

.Hk = ∂h

∂Xk

+

⎡
⎢⎢⎢⎣

xk−x1
Dk,1

yk−y1
Dk,1

0
xk−x2
Dk,1

yk−y2
Dk,1

0
xk−x3
Dk,1

yk−y3
Dk,1

0

0 0 1

⎤
⎥⎥⎥⎦ , (6.9) 

where .Dk,i is defined as: 

.Dk,i =
√

(xk − xi)2 + (yk − yi)2 + (zk − zi)2, i = 1, 2, 3 (6.10) 

During the move, the mobile robot performs preprocessing and feature extraction 
for each laser scan, as well as updating each feature point in the global coordinates. 
To preserve good historical observations, our algorithm filters and updates each 
feature individually while eliminating those with poor historical observation quality. 
In this way, the generated feature map only occupies little memory. When global 
information deteriorates, the system is then converted to particle filter positioning 
under the feature map to update the pose. It initialized the particle swarm with the 
EKF estimation at the previous moment and combined it with the F-SLAM, which 
does not require global information but is simple and efficient. 

The proposed method can adaptively switch between two positioning modes 
according to the global information state, maintaining the coherence and stability 
of the overall positioning path. The two positioning methods interact through 
the feature map. Though F-SLAM maintains accurately in a short time, as a 
coarse positioning method, its minor deviation accumulates and gradually becomes 
unignorable. Once global information is available and converted to fine positioning, 
both map and position errors will be corrected. We will detail the process in the 
following. 

Extraction and transformation of feature points. After preprocessing the single 
frame scan, which may contain features such as arcs and corner points, we obtain 
local coordinates of the feature points .[xi

L,k, y
i
L,k]T , i = 1, . . . , NF (where . NF

represents the number of feature points) using circle fitting, segmented line fitting, 
etc. Based on the current state of the global information state, the pose of our robot



6.2 GF-SLAM 127

can be obtained by EKF or particle filter, as well as the pose of the LiDAR which 
can be obtained from the installation position relationship. Local coordinates of 
feature points are then converted to the global coordinate system .[xi

G,k, y
i
G,k] by 

using the LiDAR position as a base point. When LiDAR is installed in the horizontal 
center position, and the initial scanning beam is directly in front of the LiDAR, the 
coordinate transformation of feature points can be defined as: 

.

[
xi
G,k yi

G,k

]
= [xk yk] +

[
cosθk

− sinθk

sinθk
cosθk

] [
xi
L,k

yi
L,k

]
(6.11) 

When all the feature points are converted, they are collected in the current feature 
point set . Ck . 

Registration and updating of features. EKF-SLAM adds all the extracted features 
to the state vector and updates it with the vehicle state. The design and the error 
estimation matrix are complicated [8, 28]. Therefore, we build an individual Kalman 
filter for each feature. We define the recorded feature point set . Sk , which contains 
multiple features . Si . The global coordinate of . Si is its state vector . Bi

k = [xi
k, y

i
k]T

(where the subscript k represents time slot and i denotes the feature number). 
Initialize . Sk with the . Ck obtained from the scan of the first frame, i.e., add all the 
feature point state vectors to . Sk . When the new . Ck arrives, traverse . Sk for nearest-
neighbor matching. Only those points with a smaller distance than the matching 
threshold .dmatch will be considered as successful matchings. Failed feature points 
will become new features, while successfully matched feature points are used as 
the observation to update the corresponding feature state vectors. The motion and 
observation models are set individually as below: 

.

Bi
k = FBBi

k−1 + wB,wB ∼ N(0,QB),

Ei
k = HBBi

k + vB, vB ∼ N(0, RB),
(6.12) 

where .Ei
k denotes new observations for a feature. Since features are static, 

the expressions for the observations and state vectors are equal, and the state-
transferring matrix and observation matrix .HB are both unit matrices. The 
observations of features are influenced by both LiDAR and positioning errors, 
and the process noise matrix .QB and the measurement noise matrix .RB can be 
adjusted by the results of multiple experiments. As a result, whenever a feature state 
vector receives a new matching feature point, the Kalman filter can be updated. The 
modification simplifies the complex error estimation matrix in filtering and avoids 
poor observation of features, which further contributes to the positioning. 

Evaluation and screening of features. In the EKF-SLAM, a single poorly 
observed feature can affect the overall state matrix, and the lack of feature 
discrimination will cause unnecessary computational burden and errors. To evaluate 
the reliability of feature vectors, we apply . Ni

A to denote the total number of times 
within the detection range of LiDAR and . Ni

v to denote the number of times .Si



128 6 Multi-Sensor Fusion Localization

Algorithm 1 Update the feature map 
1: if Sk does not exist, initialize Sk with Ck obtained from the scan of the first frame. then 
2: while Ck �= � do 
3: Pop c from Ck . 
4: for si in Sk do 
5: Nearest-neighbor matching. 
6: end for 
7: if minimum distance between si and c <  dmatch then 
8: Update si with c by individual Kalman filter. 
9: if Ni 

v > Nmin then 
10: Add c to Sk 
11: end if 
12: else 
13: Add c to Tk . 
14: end if 
15: end while 
16: for si in Sk do 
17: if Ni 

V < 20 and ri 
V < 0.5 then 

18: Delete si 
19: end if 
20: end for 
21: end if 
22: return Sk, Tk 

successfully matches a feature point. A high observation quality can be guaranteed 
only after accumulating several effective observations of a feature point, and we set 
.ri
V = Ni

V /Ni
A ∗ ˙100% to avoid collecting dynamic obstacles in the environment as 

features. Removing a feature when its . Ni
V and . ri

V are less than the preset threshold 
can avoid infinite expansion of . Sk . When . Ni

V >.Nmin (.Nmin is the minimum number 
of valid observations), the feature is considered to be stable and reliable and can be 
used for matching in the subsequent particle filter. All eligible features constitute 
the feature map. The establishment and updating of the feature map . Tk are shown in 
Algorithm 1. 

However, positioning and mapping in F-SLAM influence each other. The lack of 
loop detection may produce cumulative errors after long-term operation. Therefore, 
mapping is carried out during the fine positioning as well, and the high-precision 
base point can greatly improve the map quality, thereby eliminating the mapping 
error during the coarse positioning. Figure 6.5 visualizes the feature map in the 
experimental Scenario I and displays it together with maps created by other 
methods. 

Judging global information outages. In the ultrasonic positioning systems, when 
the signal is unstable or obscured, the distance measurement will jump, causing 
a large error in the EKF optimization pose, while the position derived from the 
odometry model is continuous during the travel of the mobile robot. We define . ΔDk

to denote the Euclidean distance between these two positions at time k and .Δαk to 
denote the angle between the connection of the two positions and the attitude of 
the odometry model. When .ΔDk >0.05m or .Δαk >10°, it indicates that the global



6.2 GF-SLAM 129

Fig. 6.5 Mapping display of different methods in Scenario I. (a) Hector SLAM. (b) Gmapping. 
(c) Karto  SLAM. (d) Cartographer. (e) F-SLAM.  (f) GF-SLAM. Yellow sections indicate global 
information outages, and blue circles indicate fitted arc features, and same meaning in Figs. 6.7, 
6.8, and  6.9 

information is unattainable, and the system switches to particle filter for positioning, 
provided it is available. Otherwise, if particle filter is unavailable, the system outputs 
the pose directly based on the odometry model. 

Initialization of the particle swarm. The particle swarm is initialized with .Xk−1 as 
the center and .Pk−1 as the proposal distribution for sampling. By randomly picking 
M initial particles, .Xi

k = [xi
k, y

i
k, θ

i
k] denotes the state of the ith particle with the 

weight .wi
k = 1/M . 

Particle prediction and weight updating. We apply the same motion model as 
EKF positioning for the prediction of each particle. Compared with the encoder, 
IMU calculates the angle increment more accurately, so .Δθ

w0
k is replaced by 

.ΔθIMU
k directly. Feature matching of particle swarms takes up significant runtime 

for weight update. As an improvement, we first use the weighted average of the 
particle swarm after motion prediction to obtain a matching particle .Xm

k and then 
compare .Xm

k with the feature map to get matchable features; if the number of 
matchable features is less than 3, the position may have a large error or even jump. 
In this case, .Xm

k is directly outputted as the position. If the number of matching 
features is sufficient, the observation error of each particle is calculated to update its 
weight. The weight update is calculated according to the following definition: 

.wi
k = wi

k−1

N∏
n=1

1

2πσxσy

exp
− 1

2 (( Δx
σx

)2+(
Δy
σy

)2)
(6.13)



130 6 Multi-Sensor Fusion Localization

Algorithm 2 Particle filter positioning under feature map 
1: while Sk does not exist, initialize Sk with Ck obtained from the scan of the first frame. do 
2: Initialize the particle swarm with Xk−1 and Pk−1 
3: for i=1 to M do 
4: Compute the motion model for particle Xi 

k . 
5: end for 
6: Calculate Xm 

k 
7: Get the current matchable features. 
8: if the number of matching features <3 then 
9: Output Xm 

k . 
10: else 
11: for i = 1 to  M do 
12: Compute the observation error of particle i. 
13: Update the weight. 
14: end for 
15: Weight normalization. 
16: if Neff <2M/3 then 
17: Low-variance resampling. 
18: end if 
19: Calculate Xk ,ΔDk and Δαk between Xk and Xm 

k . 
20: if ΔDk >0.05m or Δαk >10◦ then 
21: Output Xm 

k . 
22: else 
23: Output Xk and calculate Pk . 
24: end if 
25: end if 
26: end while 

where . wi
k denotes the weight of the th particle, N is the number of current matchable 

features, and . Δx and . Δy are the observation error of the ith particle to the feature. 
After the weights are updated, they are normalized to sum up to one. 

Resampling and output. Whether to resample is based on the number of valid 
particles .Neff , which can be given by: 

.Neff = 1
∑M

i=1

(
w̃i

k

)2 (6.14) 

where . ̃wi
k represents the normalized weight. If .Neff < 2

3M , we perform low-
variance resampling and then output the pose as: 

.Xk = ΣM
i=1w̃

i
kX

i
k (6.15) 

Because particle filter is frequently used in situations where discontinuous 
positioning occurs, the method for assessing global information outages is applied 
to calculate .ΔDk and .Δαk between the latest position estimate . Xk and the previous 
position estimate . Xm

k . If the difference is deemed significant, this indicates a “jump” 
has occurred, which prompts the output of . Xm

k ; otherwise, . Xk is output. Calculate



6.2 GF-SLAM 131

. Pk with . Xk as the center and particle swarm as the distribution, to be ready to switch 
to EKF positioning. Algorithm 1 gives the pseudo-code of particle filter positioning. 

6.2.2 Experiment 

The mobile robot used in our experiment is shown in Fig. 6.1. Encoders are installed 
on each of the front wheels to provide displacement and angular increments, and an 
IMU is located in the center of the robot to provide angular velocity, both of which 
have an error of 1% per frequency. A single-line LiDAR is horizontally installed 
directly above the robot, the horizontal scanning range is 360°, and the angular 
resolution is 0.5°. To improve the efficiency and quality of feature extraction, only 
the points within 5m from the scanning center are retained, with a distance error 
of 0.5%. In the environment, three ultrasonic transmitters are installed to provide 
global information. Since we only focus on the two-dimensional pose, the ultrasonic 
transmitters are set to the same height. They all have a distance Gaussian noise error 
of 2 cm, and the average position error of the solution is about 3 cm. To facilitate 
the research, the signal frequencies of all the above sensors are set to 10 Hz. 

As the arc features are easy to identify and fit, also with good robustness, we only 
set the arc features in the experimental scenarios. We use flowerpots as obstacles. 
When the obstacles are densely distributed, the ultrasonic signal will be lost due 
to the occlusion of branches and leaves, thereby simulating global information 
interruption. Other methods are also run in this scenario to verify the effectiveness 
of the proposed method. 

We implemented the experiment with the ROS of version Melodic. The mobile 
robot goes in the planned route and records raw data from each sensor into 
the rosbag. In the experiment, the mapping and positioning were compared with 
several typical SLAM methods, Hector SLAM, Gmapping, Karto SLAM, and 
Cartographer, all of which can be directly configured in ROS. We read the rosbag 
in MATLAB 2019b and compiled the entire algorithm program. The positioning 
results of other theories are also quantified, compared, and visualized in MATLAB. 

To quantitatively compare various algorithms, we use the mean position error 
. ed , maximum position error .edmax , root mean squared error of position RMSE, 
mean angular error . ea , and maximum angular error .eamax as evaluation metrics 
for positioning, taking the average results of various methods performed 20 times. 
The algorithm parameters in the experiment are as follows: .L = 0.46m, . dmatch

can’t be greater than the minimum spacing of adjacent features in the environment, 
and the minimum distance between obstacles in the scenario is 0.2m; thus, we set 
.dmatch = 0.1m and .Nmin = 20. The number of particles M is set to 250. The process



132 6 Multi-Sensor Fusion Localization

noise and measurement noise used in EKF positioning and feature filtering have 
been experimentally adjusted to the following values: 

.

Q =
⎡
⎣

(0.001)2 0 0
0 (0.001)2 0
0 0 0.1

⎤
⎦ ,

R =

⎡
⎢⎢⎣

(0.02)2 0 0 0
0 (0.02)2 0 0
0 0 (0.02)2 0
0 0 0 (0.02)2

⎤
⎥⎥⎦ ,

QB =
[

(0.0001)2 0
0 (0.0001)2

]
,

RB =
[

(0.02)2 0
0 (0.02)2

]
,

(6.16) 

Scenario I has a regular distribution of obstacles and rich features, which is very 
suitable for the operation of various SLAM methods and testing the effectiveness 
of F-SLAM. The robot moves along the trajectory indicated by the blue arrow in 
Fig. 6.2, with the maximum linear velocity under 1m/s, and the overall process is 
about 110 s. Though the F-SLAM is simple to implement, the positioning effect 
can be easily affected by the initial position. Because the subsequent feature map 
updating and positioning are obtained based on the initial observation, the initial 
observation quality must be guaranteed. After the simulation starts, the robot is 
stationary at the start point for 2–3 s to ensure that the initial feature position can be 
recorded stably. Then, the robot starts to move along the planned route. 

GF-SLAM is also tested in this scenario by randomly setting a few sections of 
global information outages, which accounts for about 48% of the total path. Using 
the same rosbag, each algorithm runs independently 20 times; the parameters of 
several algorithms are well adjusted to ensure the stability of the results. We also 
include the EKF+DR method in the comparison, that is, the EKF positioning is 
performed only with stable global information, and the positioning can be supple-
mented by DR during global information outages. We select the positioning results 
with the moderate performance of each algorithm. The comparison of positioning 
paths and cumulative error is performed in Figs. 6.6 and 6.7, respectively, and the 
results of evaluation metrics for each SLAM method are recorded in Table 6.1. 

From mapping and path comparison, various SLAM methods can build complete 
maps in feature-rich scenes, and the offset between the positioning path and ground 
truth is kept within 2cm. The position and heading angle accuracy of Gmapping are 
the highest among several methods, and Hector SLAM can achieve sub-optimal 
positioning results without odometry, which indicates that the SLAM methods 
perform well under rich environmental features. The values of . ̄ed , RMSE, and . ̄ea

of F-SLAM are closed to Hector SLAM, but are smaller than Karto SLAM with a



6.2 GF-SLAM 133

Fig. 6.6 Cumulative error comparison in Scenario I. The yellow sections indicate global informa-
tion outages, and same meaning in Figs. 6.10 and 6.11 

Fig. 6.7 Path comparison in Scenario I. According to the lines, the proposed F-SLAM can achieve 
similar precision as other SLAM methods. Besides, GF-SLAM performs better with the correction 
through global information when it is available 

flatter growth of the whole process cumulative error. The results show that F-SLAM 
can successfully be mapping and achieving similar positioning accuracy to other 
SLAM methods under rich features. In addition, GF-SLAM has performed a total 
of nine positioning switches, whose . ̄ed and RMSE are further reduced, indicating 
that global information can improve position accuracy, but its . ed and .eamax are larger 
than other methods, because other SLAM methods are more sensitive to changes in 
angle due to frame matching and feature registration.



134 6 Multi-Sensor Fusion Localization

Table 6.1 Quantitative comparison of methods 

Methods . ed (cm) .edmax (cm) RMSE(cm) .ea(
◦) . eamax(◦)

Hector SLAM 0.59 1.24 0.63 0.14 0.69 

Gmapping 0.49 2.14 0.6 0.2 0.58 

Karto SLAM 0.94 2.3 1.06 0.4 1.2 

Cartographer 1.52 3.71 1.76 0.24 1.22 

F-SLAM 0.69 1.75 0.81 0.17 0.79 

GF-SLAM 0.43 1.4 0.54 0.49 3.11 

Fig. 6.8 Mapping display of different methods in Scenario II. (a) Hector SLAM mapping drift 
and overlap. (b) Gmapping mapping overlap. (c) Cartographer mapping overlap. (d) Gmapping. 
(e) Karto SLAM. (f) Cartographer. (g) GF-SLAM 

In Scenario II, we added two 7-m-long corridors in which the lack of distinct 
features may lead to poor performance of conventional SLAM. However, the 
corridors are in open areas with stable ultrasonic signals. Therefore, our mobile 
robot executes F-SLAM for coarse positioning when it is located in a dense obstacle 
area and then switches to fine positioning when traveling to a corridor. The objective 
is to check the stability of the two positioning methods when switching and the 
effect on F-SLAM after introducing global information. The robot moves along the 
indicated trajectory for about 270 s. The trajectories in the two long corridors are 
straight or curve like an “S.” We only provide ultrasonic signals in corridors and 
areas with sparse obstacle distribution, and the rest of the scenario is set to global 
information outages, which accounts for about 54.7% of the total path. To verify 
whether the lack of features affects other SLAM algorithms, we attempt to reduce 
the detection range of LiDAR to 3m. Thus, while moving through the corridor, 
the system can only scan two parallel lines within a certain period. Figure 6.8a– 
c shows several cases of mapping or positioning failure. After adjusting the LiDAR 
detection range to 5m, when the robot turns sharply or stays in the corridor, Hector 
SLAM will still produce the map to drift or stop positioning, while other methods 
can successfully perform mapping and positioning. Their maps are presented in



6.2 GF-SLAM 135

Fig. 6.9 Path comparison in Scenario II. The path is enlarged and compared in several coarse-
and-fine positioning switching areas, and it can be seen that the path of GF-SLAM is smooth and 
stable 

Fig. 6.10 Cumulative error comparison in Scenario II. The cumulative error of EKF+DR increases 
rapidly after the interruption of global information, and the change of GF-SLAM is slow, with the 
smallest cumulative error 

Fig. 6.8d–g, where the path and cumulative error comparisons are performed in 
Figs. 6.9 and 6.10, respectively. The evaluation metrics of methods that can be 
completely mapped are recorded in Table 6.2. Figure 6.11 plots the variation in 
position error for GF-SLAM.



136 6 Multi-Sensor Fusion Localization

Table 6.2 Quantitative comparison of methods 

Methods . ed (cm) .edmax (cm) RMSE(cm) .ea(
◦) . eamax(◦)

Gmapping 1.7 4.1 1.92 0.17 3.16 

Karto SLAM 1.57 14.8 2.64 0.13 4.04 

Cartographer 2.7 6.75 3.17 0.3 1.5 

GF-SLAM 0.79 3.31 1.19 0.51 3.73 

Fig. 6.11 GF-SLAM position error in Scenario II. No jump occurs at the positioning switch, and 
the position error of coarse positioning decreases rapidly after the global information regression 

Among several methods, the mapping of Gmapping is stable and clear, and the 
posture accuracy is high, while the pose of Karto SLAM jumped during the final 
loop detection, resulting in a maximum position error of 14.8cm. Cartographer 
can build the map successfully, but the positional accuracy is poor according to 
Table 6.2. GF-SLAM switches to F-SLAM for coarse positioning and mapping 
in areas with dense obstacles and switches back to EKF for fine positioning 
in corridors and areas with sparse obstacles while maintaining mapping. The 
enlarged image in Fig. 6.9 shows that except for EKF+DR, the trajectories of 
other methods are kept near the ground truth most of the time. From Fig. 6.10, 
the cumulative error of EKF+DR increases rapidly after global information is 
interrupted, and the growth curve of GF-SLAM is smoother than other methods. 
. ̄ed , .edmax , and RMSE of GF-SLAM are smaller according to Table 6.2, which 
indicates that our method can effectively utilize the global information to improve 
the positioning accuracy. Figure 6.11 indicates that the whole process occurred 
12 times of positioning switching and no jumps occurred before and after the 
switchover, achieving seamless switching of coarse and fine positioning. Due to 
lack of correction, there are cumulative errors after F-SLAM runs for a long time. 
When the global information returns, the position error is rapidly reduced, and the



6.3 Lifelong Localization in Semi-Dynamic Environment 137

cumulative error is eliminated. Both . ̄ea and .edmax of GF-SLAM are higher than 
other SLAM methods. The reason is that the accuracy of using EKF to estimate the 
heading angle is not too high. But the overall heading angle error is still within an 
acceptable range. 

6.3 Lifelong Localization in Semi-Dynamic Environment 

Mapping and localization in non-static environments are fundamental problems in 
robotics. Most previous methods mainly focus on static and highly dynamic objects 
in the environment, which may suffer from localization failure in semi-dynamic 
scenarios without considering objects with lower dynamics, such as parked cars 
and stopped pedestrians. In this section, semantic mapping and lifelong localization 
approaches have been proposed to recognize semi-dynamic objects in non-static 
environments. We also propose a generic framework that can integrate mainstream 
object detection algorithms with mapping and localization algorithms. The mapping 
method combines an object detection algorithm and a SLAM algorithm to detect 
semi-dynamic objects and constructs a semantic map that only contains semi-
dynamic objects in the environment. During navigation, the localization method 
can classify observation corresponding to static and non-static objects, respectively. 
Then our method evaluates whether those semi-dynamic objects have moved, to 
reduce the weight of invalid observation and localization fluctuation. Real-world 
experiments show that the proposed method can improve the localization accuracy 
of mobile robots in non-static scenarios. 

Besides static objects, more frequently seen dynamic and semi-dynamic objects 
in outdoor environments may cause fluctuations in the localization system, which 
pose crucial challenges to mapping and localization system [1, 10, 16, 23]. However, 
in environments containing many semi-dynamic objects, mapping and localization 
are still open problems and remain unsolved due to the similarity of dynamic 
characteristics of static and semi-dynamic objects. Therefore, in this section, we 
propose a related method to recognize and record the static and semi-dynamic 
objects in the environment, which can be divided into two parts: mapping static 
objects and semi-dynamic objects, respectively, and robot localization using both 
static maps and semi-dynamic maps (Fig. 6.12). 

The mapping algorithm in this work extends the occupancy grid technique 
introduced by Hess et al. [19] to record semi-dynamic parts of the environment. 
It is capable of detecting both static and semi-dynamic objects in the environment 
and generating two maps: the static map and the semi-dynamic map. After filtering 
out the dynamic objects during the mapping process, the static map contains both 
static and semi-dynamic objects in the environment, while the semi-dynamic map 
only contains semi-dynamic objects. 

The localization algorithm in this work optimizes the particle filter algorithm by 
using two maps simultaneously. It allows for the observation classification (static or 
semi-dynamic objects), as well as a determination of the distance the semi-dynamic



138 6 Multi-Sensor Fusion Localization

Fig. 6.12 Robot operates in the environment with both static objects (walls and pillars) and 
semi-dynamic objects (cars). The environments during mapping (a) and localization (b) are quite 
different due to the moving of cars. The figures (c, d, e) represent the observation during the 
localization process; the red LiDAR points correspond to semi-dynamic objects, which may or 
may not have been moved. The yellow LiDAR points correspond to static objects. The weight of 
the current pose can be recalculated by the classification of observation 

objects have moved. Followed by adjustment of the weights of different objects, a 
more precise localization result can be achieved in semi-dynamic environments. 

Compared with traditional features, semantic features are invariant against envi-
ronmental changes. Vineet et al. [31] introduced scene understanding to large-scale 
semantic scene reconstruction. They also presented a semantic fusion approach that 
can handle dynamic objects more effectively. Yu et al. [36] combined semantic seg-
mentation network with moving consistency to improve the localization accuracy. 
Wang et al. [33] projected LiDAR data into images and applied 2D segmentation 
information of RGB images to 3D LiDAR points. Chen et al. [6] proposed a pose 
optimization method based on semantic features that simultaneously adjusted the 
tree position while estimating the robot pose. Previous semantic information-based 
methods have been successfully applied in dynamic scenes, but neglecting the semi-
dynamic characteristics represents the major limitation. In this chapter, we propose a 
system that contains a mapping approach that utilizes an object detection algorithm 
to generate a semantic map. The following localization algorithm can be applied in 
semi-dynamic environments. 

In summary, our main contributions are: 

• A semantic mapping method was proposed that can identify and record the 
environment’s semi-dynamic features. 

• We construct a robust localization system that can determine object categories 
according to the observation.



6.3 Lifelong Localization in Semi-Dynamic Environment 139

• We also introduce a generic framework that can combine mainstream object 
detection and SLAM algorithms to achieve high localization accuracy regardless 
of position changes of semi-dynamic objects. 

6.3.1 Methodology 

This section describes the architecture of the proposed method. According to the 
classification from Meyer-Delius et al. [24], in this section, the classifications are 
slightly revised as follows: 

• Static objects: objects that never change their position, like walls and shelves 
• Semi-dynamic objects: objects that are static during the mapping process but may 

be moved during the localization process, like chairs and parked cars 
• Dynamic objects: objects that change their position frequently, like moving 

people and moving cars 

Figure 6.13 gives an overview of the mapping and localization framework. 
During the mapping process (red dashed line), an object detection algorithm (Yolov3 
[25]) is selected to recognize the semi-dynamic objects. In the SLAM thread, we 
exploit a SLAM algorithm (Cartographer [19]) to generate a static map, followed 
by projecting LiDAR points into the image. The given semi-dynamic position 

Fig. 6.13 The architecture of the proposed mapping and localization system. The static map 
contains two cars and four pillars, and the semi-dynamic map contains two cars. The blue dots 
in maps represent the semi-dynamic positions. The red LiDAR points and yellow LiDAR points 
correspond to semi-dynamic objects and static objects, respectively



140 6 Multi-Sensor Fusion Localization

in global coordinate can later facilitate creating a semi-dynamic map .md from 
the static map . ms . The static map . ms contains information of both static and 
semi-dynamic objects, while the semi-dynamic map . md only contains information 
of semi-dynamic objects. Moreover, the semi-dynamic map is generated offline 
without increasing the complexity of the mapping process. During the localization 
process (blue dashed line), . ms and . md are simultaneously loaded to the localization 
system. By comparing the distance of observation, we can obtain observations 
corresponding to static objects (yellow points) and semi-dynamic objects (red 
points). Information from both . ms and . md is incorporated to localize the robot’s 
pose, depending on whether and how far the object is moved. Precise localization 
can be achieved by reducing the weight of observation corresponding to semi-
dynamic objects. 

The recognition of dynamic objects is achieved based on the probability that 
objects appear at the same location. Specifically, a certain area is dynamic if its 
status changes between occupied and free. In this chapter, a probabilistic method 
was utilized to define the problem as: 

. P(st |z1:t , st−1) (6.17) 

where . z1:t is the sensor data from time 1 to time t , .st−1 is the previous static map, 
and . st is the current static map. By applying Bayes rule to Eq. (6.17) and eliminating 
some unnecessary terms, we can get an inverse observation model that can only 
record the static parts of environments. Specifically, the grid will be recorded if the 
status of a grid is changing from unknown to occupied or is staying occupied. Please 
refer to [19, 34] for more detailed information about inverse observation model. 

Observation . zt is classified into observation of static objects . zs
t or observation of 

semi-dynamic objects . zd
t . For this step, Yolov3 was applied to get the classification 

information. By calibrating the extrinsic parameters between LiDAR and camera, 
LiDAR points can be projected into these bounding boxes. However, it cannot 
provide accurate dimensional information because the LiDAR points at the edge 
of the bounding box may correspond to other objects. To solve this problem, only 
the points in the center of the bounding box are adopted to represent the position 
information of semi-dynamic objects, which excludes dimension information. With 
the position information, the following calculation of connected areas on the static 
map gives a more accurate semi-dynamic map. 

The blue dots in Fig. 6.14 indicate the semi-dynamic positions. One or several 
connected areas indicate a single object. To supplement the dimension of semi-
dynamic objects, we use a relatively low threshold to obtain the binary static 
map, followed by calculation of connected area. The integration of semi-dynamic 
positions and connected areas produces the semi-dynamic map. Only the semi-
dynamic positions are obtained when constructing the static map; other processes 
in Fig. 6.14 are offline which will not increase the computation complexity in the 
mapping process. 

For the localization process, the Monte Carlo method is used to validate the 
proposed idea by using odometry . ut and observation . zt recursively. We improve the



6.3 Lifelong Localization in Semi-Dynamic Environment 141

Fig. 6.14 A schematic diagram of the proposed mapping system. Semi-dynamic position (blue 
dots) and connected area (colored static map) produce the semi-dynamic map 

Fig. 6.15 Graphical model of the localization process 

localization accuracy by simultaneously loading . ms and . md , which can identify and 
reduce the weight of observation corresponding to moved semi-dynamic objects. 
Figure 6.15 illustrates the graphical model of proposed localization approach, which 
has sensor observations . zt , static map . ms , semi-dynamic map . md , odometry . ut , and 
pose at time .t − 1 as input. The localization problem can be denoted as: 

.P(xt |zt , ut , xt−1,ms,md) (6.18) 

By applying Bayes rule to Eq. (6.18), it can be expressed as: 

.

P(xt |zt , ut , xt−1,ms,md)

= ηP (zt |xt ,ms,md)P (xt |ut , xt−1)
(6.19)



142 6 Multi-Sensor Fusion Localization

where . η is a normalization constant. To further reduce the weight of moved 
objects, the classification of observation should be calculated based on . ms and . md . 
Equation (6.19) can further be defined as: 

.

P(xt |zt , ut , xt−1,ms,md)

= ηP (zs
t , z

d
t |xt ,ms,md)P (xt |ut , xt−1)

(6.20) 

The major improvement of the proposed method is that two maps are used 
simultaneously to classify the observation corresponding to semi-dynamic objects 
and static objects. The classification can be calculated by comparing the nearest 
distance between each LiDAR point and two maps. Let . ds

i represent the distance 
from point i to the nearest grid in the static map, and let . dd

i represent the distance 
from point i to the nearest grid in the semi-dynamic map. If the difference 
between . dd

i and . ds
i is smaller than a threshold, current LiDAR points correspond 

to a semi-dynamic object; otherwise, the LiDAR point corresponds to a static 
object. The given result during the localization process (Fig. 6.13) reflects semi-
dynamic objects (red LiDAR points) and static objects (yellow LiDAR points). After 
classification, the weight of observation corresponding to semi-dynamic objects is 
reduced according to the distance they have moved. The decreasing ratio can be 
defined as .f (zt ,ms,md, ds

i , d
d
i ). The result of the function is between zero and 

one, indicating how much the weight of current observation should be reduced. In 
this work, the positions of these semi-dynamic objects are supposed to follow a 
Gaussian distribution. Let F represent the decreasing ratio .f (zt ,ms,md, ds

i , d
d
i ), 

which can be defined as: 

.F =
⎧⎨
⎩
exp

(
− (dd

i )
2

2σ 2

)
if

∣∣dd
i − ds

i

∣∣ < ε1 and dd
i > ε2

1 otherwise
(6.21) 

where . ε1 is a relatively small distance, taking 0.1 in this section. . ε2 is the threshold 
at which an object is considered to be semi-dynamic, taking 0.3 in this section. 
Therefore, the final weight of current position can be computed as: 

.ω = f
(
zt ,ms,md, ds

i , d
d
i

)
∗ p (zt | xt ,ms,md) (6.22) 

where .p(zt |xt ,ms,md) is the observation model. In this section, the likelihood 
observation model is chosen to calculate the weight of the current position. The pose 
estimation can be more accurate by using both the static map and semi-dynamic 
map. The algorithm of calculating the weight of the current pose is summarized in 
Algorithm 3. 

One of the major advantages is that the three components in this framework, 
object detection, mapping, and localization algorithm, can be replaced by other 
corresponding mainstream algorithms.



6.3 Lifelong Localization in Semi-Dynamic Environment 143

Algorithm 3 Weight of pose 
Input: Observation zt , Static map  ms , Semi-dynamic map md ; 
Output: Weight of current pose; 
1: sig = 2 ∗ sigma ∗ sigma 
2: weight = 0 
3: for each lidarpoint do 
4: if (zi �= zmax) then 
5: x = pose_x + range ∗ cosθ 
6: y = pose_y + range ∗ sinθ 
7: dists = distance to nearest obstacles in ms. 
8: distd = distance to nearest obstacles in md. 
9: if abs(dists i − distd 

i ) < ε1 and distd 
i > ε2 then 

10: coef = exp(−(distd 
i )

2/sig) 
11: else 
12: coef = 1 
13: end if 
14: end if 
15: weight += coef ∗ p (zt | xt ,ms,md) 
16: end for 
17: return weight 

6.3.2 Experiment 

In order to validate the approach proposed in this section, experimental tests have 
been done using a real robot. The robot (Fig. 6.16) utilized in this work is equipped 
with a 16-line Velodyne LiDAR (only one beam is used during mapping and 
localization), a camera, an inertial measurement unit, and encoders. 

The parking lot was selected as the experimental scenario because the parking 
lot changed significantly every individual run. It consists of four rooms, and the left 

Fig. 6.16 The experimental platform



144 6 Multi-Sensor Fusion Localization

room in the map frame usually shows more cars compared with others. The robot 
started in the left room and went around the parking lot and back to its original 
place. Due to the particularity of the experimental scenarios, it is hard to directly get 
ground truth poses. We recorded the robot’s poses during the mapping process as 
ground truth, and these poses during the localization process are also recorded using 
the map built on other days. The validation of proposed approach has been proved by 
comparing the localization accuracy without and with the proposed approach. The 
localization accuracy of using the proposed method in an altered environment was 
also compared to that of not using the proposed method in an unaltered environment. 

For the mapping process, we steered the robot to collect data every few days. The 
data collected during the individual run were used to build . ms . . md is constructed 
offline by using . ms and positions of semi-dynamic objects. 

The final constructed . ms and . md are shown in Fig. 6.17. In these static maps, 
some areas are distinct owing to the moving of cars, while the other parts are static 
all the time. . md contains most of the semi-dynamic objects in the environment, 
and the missing semi-dynamic objects correspond to areas that are rarely observed, 
which have less impact on the localization accuracy. By applying the inverse 
observation model, the highly dynamic objects such as moving pedestrians and cars 
are automatically removed during the mapping process. 

The localization accuracy with and without our algorithm in both altered and 
unaltered semi-dynamic environments is compared (Fig. 6.18a,b,c,d). In addition, 
we also present the localization accuracy of original Monte Carlo localization 
without our method utilizing a pure static map (Fig. 6.18e). All semi-dynamic 
objects, such as parked cars, were artificially removed. The poses during the 
mapping process were selected as ground truth, and the poses during the localization 
process were also recorded using maps built on other days. The algorithm Evo 
[13] was used to evaluate the accuracy of our approach offline. Figure 6.18 shows 
the qualitative result of localization accuracy, and Table 6.3 lists the quantitative 
comparison of the pose error. The MCL.+− and MCL.++ mean in an altered envi-
ronment using Monte Carlo algorithm without and with our method (the first plus 

Fig. 6.17 The top panel (A, B, C) shows the static maps constructed using data collected in every 
individual run. (a’, b’, c’) are the zoomed-in views of the area (a, b, c) where semi-dynamic objects 
(cars) change frequently. The bottom panel (D, E, F) shows the semi-dynamic maps constructed 
using information from static maps and semi-dynamic positions



6.3 Lifelong Localization in Semi-Dynamic Environment 145

Fig. 6.18 Qualitative analysis of pose error. (a) and (b) show the localization accuracy without and 
with proposed method in an altered semi-dynamic environment. (c) and (d) show the localization 
accuracy without and with proposed method in an unaltered environment. (e) shows the localization 
accuracy of original Monte Carlo without proposed method using a pure static map 

Table 6.3 Quantitative analysis of pose error 

MCL.+− MCL.++ MCL.−− MCL.−+ MCL* 

Max [m] 0.516 0.336 0.336 0.327 0.423 

Mean [m] 0.129 0.083 0.064 0.065 0.087 

Min [m] 0.007 0.001 0.002 0.001 0.002 

RMSE [m] 0.154 0.100 0.080 0.081 0.104 

Std [m] 0.084 0.056 0.047 0.049 0.056 

or minus subscript indicates whether the environment of the localization process 
has changed or not, and the second plus or minus subscript indicates whether the 
localization process uses our method or not). Therefore, the MCL.−− and MCL. −+
mean in an unaltered environment using Monte Carlo algorithm without and with 
our method. MCL* means using Monte Carlo algorithm without our method, using 
a pure static map. The pure static map is shown in Fig. 6.19 where the semi-dynamic 
objects are artificially removed from the map. Further, Fig. 6.18a,b,c,d,e correspond 
to MCL. +−, MCL. ++, MCL. −−, MCL. −+, and MCL* in Table 6.3, respectively. 

In Fig. 6.18a and b, our algorithm significantly decreases the deviation in altered 
environments, giving a lower mean error (0.083m versus 0.129m) and max error 
(0.336m versus 0.516m). According to the maps shown in Fig. 6.17 and the route 
of the robot, it encounters more semi-dynamic objects during the first 300 s 
and the last 200 s, and the localization accuracy fluctuates significantly in these 
places (Fig. 6.18a), which proves that the original Monte Carlo algorithm has low 
performance in altered environments. On the contrary, the results are more accurate 
after applying our algorithm (Fig. 6.18b).



146 6 Multi-Sensor Fusion Localization

Fig. 6.19 The pure static map. Semi-dynamic objects are artificially removed 

We also developed experiments to evaluate the algorithm performance in static 
environments. In Fig. 6.18c and d, our algorithm can also be applied in unaltered 
environments, giving relatively the same accuracy (0.327m versus 0.336, 0.065m 
versus 0.064) compared with traditional Monte Carlo localization method. That 
proves the versatility of the proposed methods in the environment with both static 
and semi-dynamic objects. 

Besides, we also carried out experiments to test the localization performance 
of the original Monte Carlo localization algorithm in an altered environment, but 
the semi-dynamic objects are artificially removed from the map. Thus, the map 
only contains static objects of the environment (Fig. 6.19). The robot utilizes the 
static objects in the environment to localize the pose. The localization accuracy can 
be seen in Fig. 6.18e. It is reasonable that it has a lower accuracy as all the semi-
dynamic information is discarded. 

In addition, . md is obtained offline. Therefore, during the localization process, the 
robot only needs to compare the distance between two maps, so the computational 
complexity is negligible. It should be noted that the absolute accuracy of the Monte 
Carlo algorithm is not the focus of this section. We aim to introduce our method into 
mainstream mapping and localization algorithms to obtain a more accurate result 
without sacrificing efficiency. And the experiment results have proven the better 
robustness, higher accuracy, and versatility of the proposed approach in both static 
and semi-dynamic environments. 

During the process of getting semi-dynamic positions, there may be some semi-
dynamic positions that hit the wrong place (Fig. 6.20a and b). However, the incorrect 
position does not have an influence on . md generation as it has no corresponding 
connected area. 

During the process of calculating the connected area, some static areas will be 
mistakenly regarded as semi-dynamic areas. In Fig. 6.20c, the pillar is mistaken for 
a semi-dynamic object; nevertheless, the static characteristic of these objects (pillar 
and wall) makes the weight of this area a constant. Therefore, the wrong connected 
area does not jeopardize the localization accuracy.



6.5 Summary 147

Fig. 6.20 Incorrect semi-dynamic position detection (a and b). (b) is the zoomed-in view of the 
red box area in (a). The blue dot pointed by the red arrow in (b) is incorrectly regarded as a semi-
dynamic position. Incorrect connected areas (c). The place pointed by the red arrow in (c) is a  
pillar, which should be considered as a static object 

6.4 Challenges and Prospect 

Multi-sensor fusion technology has become the mainstream positioning solution 
for autonomous driving and robots. It has very broad prospects and also has a 
lot of space for development. The distribution of environmental features in the 
experimental scene we designed is relatively regular. If the attributes of obstacles 
in the scene are more complex, such as multiple obstacles stacking, occlusion, and 
irregular surfaces, these conditions may cause large errors in feature extraction, 
resulting in inaccurate map positioning. In addition, the pitch and vibration of 
the robot itself will bring the noise to the collected data, resulting in a decrease 
in accuracy. In future work, we will explore the integration of more complex 
environmental features, conduct experiments on more realistic roads, and try to add 
a variety of sensors, combined with deep learning to further improve the efficiency 
and quality of feature extraction, so that our model has generalization. 

6.5 Summary 

The environment feature distribution in the experimental scene we designed is 
relatively regular. If the obstacle attributes in the scene are more complex, such 
as multiple obstacles stacked, occluded, and irregular surfaces, these situations may 
cause large errors or even failures in feature extraction, resulting in map drift. Hence, 
we will explore integrating more complex environmental features in subsequent 
studies and also try to combine other sensors such as cameras to extract features 
to make our model universal. 

In Sect. 6.2, a novel coarse-and-fine hybrid information fusion method was 
presented, GF-SLAM, for positioning under unstable external situations. Our sys-
tem can real-time leverage the global information and feature-based SLAM while 
avoiding high computation costs and the influence of global information loss. By 
performing EKF positioning and building a feature map simultaneously when global



148 6 Multi-Sensor Fusion Localization

information is accessible, we can achieve accurate positioning. However, when the 
global signal is lost, our system can smoothly switch to F-SLAM, which holds a 
basic localization precision. We believe our idea of hybrid-precision information 
fusion will inform continuing future research into the development of positioning 
and autonomous driving techniques. 

In Sect. 6.3, we introduced a novel semantic map generation method and a 
localization method that can deal with the semi-dynamic environment. By fusing 
the camera and LiDAR, the presented method can autocratically detect and mark 
semi-dynamic objects during mapping. With this critical information, the 2D semi-
dynamic map is constructed for later navigation, and a posterior distribution-based 
pose estimation is designed. We also apply several evaluations in an underground 
parking garage with a mobile platform equipped with a camera, LiDAR, and IMU. 
Results show that our method is able to work in most cases. Based on this work, our 
framework can be easily extended into 3D modes. 

In a further extension, we will investigate the use of other types of maps and 
different localization algorithms, such as point cloud maps and NDT localization 
algorithms. 

References 

1. Aldibaja, M., Suganuma, N., Yoneda, K.: Robust intensity-based localization method for 
autonomous driving on snow–wet road surface. IEEE Trans. Ind. Inf. 13(5), 2369–2378 (2017) 

2. Andrade-Cetto, J., Sanfeliu, A.: Concurrent map building and localization on indoor dynamic 
environments. Int. J. Pattern Recognit. Artif. Intell. 16(03), 361–374 (2002) 

3. Aycard, O., Laroche, P., Charpillet, F.: Mobile robot localization in dynamic environments 
using places recognition. In: Proceedings. 1998 IEEE International Conference on Robotics 
and Automation (Cat. No. 98CH36146), vol. 4, pp. 3135–3140. IEEE (1998) 

4. Cai, H., Hu, Z., Huang, G., Zhu, D., Su, X.: Integration of gps, monocular vision, and high 
definition (hd) map for accurate vehicle localization. Sensors 18(10), 3270 (2018) 

5. Chang, L., Niu, X., Liu, T., Tang, J., Qian, C.: Gnss/ins/lidar-slam integrated navigation system 
based on graph optimization. Remote Sens. 11(9), 1009 (2019) 

6. Chen, S.W., Nardari, G.V., Lee, E.S., Qu, C., Liu, X., Romero, R.A.F., Kumar, V.: Sloam: 
Semantic lidar odometry and mapping for forest inventory. IEEE Robot. Autom. Lett. 5(2), 
612–619 (2020) 

7. Chiang, K.W., Tsai, G.J., Chang, H., Joly, C., Ei-Sheimy, N.: Seamless navigation and mapping 
using an ins/gnss/grid-based slam semi-tightly coupled integration scheme. Inf. Fusion 50, 
181–196 (2019) 

8. Choi, M.J., Suhr, J.K., Choi, K., Jung, H.G.: Low-cost precise vehicle localization using lane 
endpoints and road signs for highway situations. IEEE Access 7, 149,846–149,856 (2019) 

9. Fan, Q., Sun, B., Sun, Y., Wu, Y., Zhuang, X.: Data fusion for indoor mobile robot positioning 
based on tightly coupled ins/uwb. J. Navig. 70(5), 1079–1097 (2017) 

10. Fox, D., Burgard, W., Thrun, S.: Markov localization for mobile robots in dynamic environ-
ments. J. Artif. Intell. Res. 11, 391–427 (1999) 

11. Gao, H., Zhu, J., Zhang, T., Xie, G., Kan, Z., Hao, Z., Liu, K.: Situational assessment for 
intelligent vehicles based on stochastic model and gaussian distributions in typical traffic 
scenarios. IEEE Trans. Syst. Man Cybern. Syst. 52(3), 1426–1436 (2020)



References 149

12. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-
blackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007) 

13. Grupp, M.: evo: Python package for the evaluation of odometry and slam (2017). https://github. 
com/MichaelGrupp/evo 

14. Guivant, J.E., Masson, F.R., Nebot, E.M.: Simultaneous localization and map building using 
natural features and absolute information. Robot. Auton. Syst. 40(2-3), 79–90 (2002) 

15. Guivant, J.E., Nebot, E.M.: Optimization of the simultaneous localization and map-building 
algorithm for real-time implementation. IEEE Trans. Robot. Autom. 17(3), 242–257 (2001) 

16. Hahnel, D., Triebel, R., Burgard, W., Thrun, S.: Map building with mobile robots in dynamic 
environments. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No. 
03CH37422), vol. 2, pp. 1557–1563. IEEE (2003) 

17. He, G., Yuan, X., Zhuang, Y., Hu, H.: An integrated gnss/lidar-slam pose estimation framework 
for large-scale map building in partially gnss-denied environments. IEEE Trans. Instrum. 
Meas. 70, 1–9 (2020) 

18. Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2d lidar slam. In: 2016 
IEEE International Conference on Robotics and Automation (ICRA), pp. 1271–1278. IEEE 
(2016) 

19. Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2d lidar slam. In: 2016 
IEEE International Conference on Robotics and Automation (ICRA), pp. 1271–1278. IEEE 
(2016) 

20. Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable slam system 
with full 3d motion estimation. In: 2011 IEEE International Symposium on Safety, Security, 
and Rescue Robotics, pp. 155–160. IEEE (2011) 

21. Konolige, K., Grisetti, G., Kümmerle, R., Burgard, W., Limketkai, B., Vincent, R.: Efficient 
sparse pose adjustment for 2d mapping. In: 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems, pp. 22–29. IEEE (2010) 

22. Li, D., Gao, H.: A hardware platform framework for an intelligent vehicle based on a driving 
brain. Engineering 4(4), 464–470 (2018) 

23. Linegar, C., Churchill, W., Newman, P.: Work smart, not hard: Recalling relevant experiences 
for vast-scale but time-constrained localisation. In: 2015 IEEE International Conference on 
Robotics and Automation (ICRA), pp. 90–97. IEEE (2015) 

24. Meyer-Delius, D., Hess, J., Grisetti, G., Burgard, W.: Temporary maps for robust localization in 
semi-static environments. In: 2010 IEEE/RSJ International Conference on Intelligent Robots 
and Systems, pp. 5750–5755. IEEE (2010) 

25. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. Preprint (2018). 
arXiv:1804.02767 

26. Ren, R., Fu, H., Wu, M.: Large-scale outdoor slam based on 2d lidar. Electronics 8(6), 613 
(2019) 

27. Song, Y., Guan, M., Tay, W.P., Law, C.L., Wen, C.: Uwb/lidar fusion for cooperative range-only 
slam. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 6568–6574. 
IEEE (2019) 

28. Spangenberg, R., Goehring, D., Rojas, R.: Pole-based localization for autonomous vehicles 
in urban scenarios. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS), pp. 2161–2166. IEEE (2016) 

29. Tardós, J.D., Neira, J., Newman, P.M., Leonard, J.J.: Robust mapping and localization in indoor 
environments using sonar data. Int. J. Robot. Res. 21(4), 311–330 (2002) 

30. Thrun, S., Burgard, W., Fox, D.: A probabilistic approach to concurrent mapping and 
localization for mobile robots. Auton. Robots 5(3-4), 253–271 (1998) 

31. Vineet, V., Miksik, O., Lidegaard, M., Nießner, M., Golodetz, S., Prisacariu, V.A., Kähler, O., 
Murray, D.W., Izadi, S., Pérez, P., et al.: Incremental dense semantic stereo fusion for large-
scale semantic scene reconstruction. In: 2015 IEEE International Conference on Robotics and 
Automation (ICRA), pp. 75–82. IEEE (2015) 

32. Wan, G., Yang, X., Cai, R., Li, H., Zhou, Y., Wang, H., Song, S.: Robust and precise vehicle 
localization based on multi-sensor fusion in diverse city scenes. In: 2018 IEEE International 
Conference on Robotics and Automation (ICRA), pp. 4670–4677. IEEE (2018)

https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo


150 6 Multi-Sensor Fusion Localization

33. Wang, B.H., Chao, W.L., Wang, Y., Hariharan, B., Weinberger, K.Q., Campbell, M.: Ldls: 3-d 
object segmentation through label diffusion from 2-d images. IEEE Robot. Autom. Lett. 4(3), 
2902–2909 (2019) 

34. Wolf, D.F., Sukhatme, G.S.: Mobile robot simultaneous localization and mapping in dynamic 
environments. Auton. Robots 19(1), 53–65 (2005) 

35. Xu, L., Feng, C., Kamat, V.R., Menassa, C.C.: An occupancy grid mapping enhanced visual 
slam for real-time locating applications in indoor gps-denied environments. Autom. Constr. 
104, 230–245 (2019) 

36. Yu, C., Liu, Z., Liu, X.J., Xie, F., Yang, Y., Wei, Q., Fei, Q.: Ds-slam: a semantic visual slam 
towards dynamic environments. In: 2018 IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS), pp. 1168–1174. IEEE (2018)



Part III 
Advance 

This part of the book is the frontier exploration and extension of multimodal fusion 
perception technology. It consists of three parts. Chapter 7 presents a dataset for 
autonomous driving perception dedicated to the development of multimodal fusion 
algorithms. This dataset is a Chinese city dataset established to fill the research 
and development gap. In Chap. 8, the fusion technology is no longer limited to 
the vehicle itself, but extends to the collaboration between the vehicle and the 
road. Finally, the research on the underlying mechanism of multimodal fusion is 
in Chap. 9, providing a solution to enhance the fusion effect.



Chapter 7 
OpenMPD: An Open Multimodal 
Perception Dataset 

Abstract Multimodal sensor fusion techniques have promoted the development of 
autonomous driving, while perception in a complex environment remains a chal-
lenging problem. This chapter proposes the Open Multimodal Perception Dataset 
(OpenMPD), a multimodal perception benchmark aimed at difficult examples. 
Compared with existing datasets, OpenMPD focuses more on those complex traffic 
scenes in urban areas with overexposure or darkness, crowded environments, 
unstructured roads, and intersections. It acquires the multimodal data through a 
vehicle with 6 cameras and 4 LiDAR for a 360-degree field of view and collects 180 
clips of 20-s synchronized images at 20Hz and point clouds at 10Hz. In particular, 
we applied a 128-beam LiDAR to provide Hi-Res point clouds to understand the 3D 
environment and sensor fusion better. We sampled 15K keyframes at equal intervals 
from clips for annotations, including 2D/3D object detections, 3D object tracking, 
and 2D semantic segmentation. Moreover, we provide four benchmarks for all tasks 
to evaluate algorithms and conduct extensive 2D/3D detection and segmentation 
experiments on OpenMPD. Data and further information are available at http:// 
www.openmpd.com/. 

7.1 Introduction 

During the past decades, autonomous driving technology has made great progress 
in localization, perception, planning, control, etc. Most of the problems in typical 
situations can be solved with existing algorithms, while those complex corner cases 
are still unsolved. Therefore, we propose a new dataset, OpenMPD, to promote the 
development of research [7, 28]. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
X. Zhang et al., Multi-sensor Fusion for Autonomous Driving, 
https://doi.org/10.1007/978-981-99-3280-1_7

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3280-1protect T1	extunderscore 7&domain=pdf
http://www.openmpd.com/
http://www.openmpd.com/
http://www.openmpd.com/
http://www.openmpd.com/
https://doi.org/10.1007/978-981-99-3280-1_7
https://doi.org/10.1007/978-981-99-3280-1_7
https://doi.org/10.1007/978-981-99-3280-1_7
https://doi.org/10.1007/978-981-99-3280-1_7
https://doi.org/10.1007/978-981-99-3280-1_7
https://doi.org/10.1007/978-981-99-3280-1_7
https://doi.org/10.1007/978-981-99-3280-1_7
https://doi.org/10.1007/978-981-99-3280-1_7
https://doi.org/10.1007/978-981-99-3280-1_7
https://doi.org/10.1007/978-981-99-3280-1_7
https://doi.org/10.1007/978-981-99-3280-1_7


154 7 OpenMPD: An Open Multimodal Perception Dataset

Before that, different groups have put out different sets of data to speed up the 
development of the field of self-driving cars [3, 14, 27, 37, 45]. Since the Karlsruhe 
Institute of Technology (KIT) and Toyota Technological Institute at Chicago (TTIC) 
provided KITTI [12] as datasets in 2012, more complementary datasets have been 
produced along with the upgrading of autonomous vehicle techniques. Autonomous 
driving perception can be divided into single-modal and multimodal algorithms. 
Single-mode methods generally only use 3D point clouds or visual images. They 
suffer from the limitations of complex scenes like night and fog (e.g., [33, 34, 38]). 
Therefore, multimodal algorithms are getting more and more attention, but there 
are some challenges in multimodal data fusion, which lie in the imbalance of data 
space and feature space between different modalities. At the same time, multimodal 
algorithms often require mass computation. Different tasks may need different 
annotations, so the combination of multi-task (simultaneously using object detection 
and semantic segmentation fusion) and multimodal (simultaneously using multi-
sensor fusion) has become a trend [15]. 

Common autonomous driving datasets already contain visual and LiDAR infor-
mation, but few of them provide all the annotation for different tasks. Under these 
circumstances, we provide an OpenMPD as shown in Fig. 7.1, which has 2D 
bounding box annotation, 3D bounding box annotation, 2D semantic segmentation, 
and 3D semantic segmentation in each keyframe. We divide the driving environment 
into seven categories, mainly for complex road conditions. They are main roads, 
two-way single lanes, irregular roads, intersections, tunnels/culverts, internal roads 
(e.g., university campuses and communities), and different heights (e.g., viaduct). 
Some typical examples are shown in Fig. 7.2. At the same time, we divide driving 
scenes for the poor performance of sensors into six categories: light and shadow 
change, road construction/traffic accident, U-turn, night, dense objects, and object 
occlusion. In addition, we have more crowded and occluded scenes, and the average 
number of pedestrians and vehicles per frame is higher than in other datasets, as 
shown in Fig. 7.3. 

We point out that advanced sensors can benefit research, especially for LiDAR. 
Existing datasets use sparse point clouds. The density of point clouds can be 
improved by point cloud completion methods, but it may introduce deviation. In 
order to obtain dense point clouds, we used 128-beam LiDAR in the OpenMPD 
for the first time, supplemented by a 40-beam and two 16-beam LiDARs. Dense 
point cloud is very important for depth map and high-precision mapping [1, 16, 20]. 
Furthermore, we use six cameras to achieve 360-degree shooting, which is very 
important for multi-view and other tasks.



7.1 Introduction 155

Fig. 7.1 Examples of three types of annotation. (a) represents the original image captured by 
the camera; (b) represents the image displayed by LiDAR; (c) represents the 2D bounding box 
annotation on the RGB image; (d) represents the 2D semantic segmentation annotation on the 
RGB image; (e) represents the 3D bounding box annotation in the point cloud; and (f) represents 
the 3D semantic segmentation annotation in the point cloud



156 7 OpenMPD: An Open Multimodal Perception Dataset

Fig. 7.2 Some typical examples in OpenMPD 

Fig. 7.3 Comparison of the complexity of different datasets. The number of each 2D column 
represents the average number of vehicles and pedestrians in the dataset keyframes 

7.2 Automated Driving-Related Datasets 

Datasets are the basis for developing perceptions for autonomous driving. This sub-
section focuses on existing datasets as well as our proposed dataset. 

7.2.1 Comprehensive Datasets 

As one of the earliest multimodal datasets, KITTI [12] contains point clouds from 
LiDAR, front-facing images from two kinds of cameras, and GPS/IMU data. This 
dataset also contains complex scenes since it is collected from city, urban, and 
highway scenes. It provides both 2D and 3D annotation data, and the number of 
both 2D bounding boxes and 3D bounding boxes is about 80k. However, this dataset 
is limited by its 2D part size, equipment, and weather. It contains only about 15k 
RGB images and point clouds. However, all of its data is collected on sunny days. 
Environments like snowy days and rainy days are not considered.



7.2 Automated Driving-Related Datasets 157

As one of the largest multimodal datasets, nuScenes [4] contains 1.4 million 
images and 400K point clouds. It has a real 360-degree collecting sensor built by 
six cameras, one LiDAR, and five RaDARs. Compared with LiDAR, the accuracy 
and density of RaDAR are poor. In this situation, it selected a 32-beam LiDAR, 
which has a short range but provides dense point clouds compared with RaDAR. 
However, it only provides 3D bounding box annotation, which is very unfriendly 
for multi-task learning. 

As one of the largest and most diverse multimodal autonomous driving datasets, 
Waymo [32] has five high-resolution cameras and five high-quality LiDARs, and 
the data that they collect are dense and clear. They provide 12 million 3D bounding 
boxes and 9.9 million 2D bounding boxes from its 1150 scenes. In addition, its 
detection and tracking mainly rely on LiDAR rather than cameras. However, the 
angle of view of the camera is less than 270 degrees. 

ApolloScape [17], released in 2017, contains 143,906 image frames. It not only 
provides three-level difficulty settings for users to test and train algorithms but also 
designs an efficient 2D/3D joint marking pipeline to save about 70% of the marking 
time. However, the laser scanner has lower precision in collecting data compared to 
LiDAR. 

A2D2 [13] is built on a 360-degree full-coverage sensor platform, which contains 
six cameras and five LiDAR units. With this sensor platform, they provide 3D 
bonding box annotation, point cloud segmentation, and semantic segmentation. 

They mainly focus on semantic segmentation, but the number of their annotations 
is limited in size compared with other newly proposed datasets. The perception 
system of 16-beam sparse LiDAR and the lack of 2D bounding box annotation limit 
the performance and adaptability of the dataset. 

7.2.2 Characteristic Datasets 

TuSimple provided a set of more than 1000 2-s-long video clips. The speed and 
position are generated by the vehicle’s distance sensor in the last frame. It also 
provided human-annotated bounding boxes as supplementary training data for 
vehicles on more than 5000 images. In addition to training and supplementary data, 
it also provided external data sources to help the algorithm learn. 

CULane [30] was a challenging large traffic lane detection dataset, which used 
cameras to collect data on six different cars in Beijing. The dataset collected more 
than 55 h of video and extracted 133,235 frames from the video. For each frame, 
the lane is manually marked with a cubic spline curve. 

Different annotations may have different effects on different scenes, and none 
of them can be completely ignored. As a result, every dataset creator selects the 
annotation that they think is the best [6, 26, 35, 42, 43]. For example, nuScenes [4] 
annotates RGB images by using 3D bounding boxes, while it annotates point clouds 
by using 2D bounding boxes. Waymo [32] annotates RGB images by using 2D



158 7 OpenMPD: An Open Multimodal Perception Dataset

bounding box. However, multimodal and multi-task algorithms require synchronous 
annotation on RGB images and point cloud. 

7.2.3 Our Dataset 

Due to the sparse point cloud, some 3D datasets contain few or small objects, which 
makes it difficult to carry out a large number of experiments [22, 24, 25, 29, 36, 39]. 
Aiming at the requirements of multi-view, multi-task, and multi-mode fusion, we 
propose OpenMPD Benchmark. In Table 7.1, OpenMPD not only uses six cameras 
to build a 360-degree view but also expands the sensing coverage through the 128-
beam LiDAR. Our dataset is more in line with real life, containing seven complex 
driving environments and six driving scenes as described in the introduction. Each 
selected frame contains six types of annotations, including RGB images and point 
cloud modalities. 

Table 7.1 Comparison with the state-of-the-art datasets 

RGB image Point cloud 
Degree of 
camera view 

Point cloud 
beams Year 

nuScenes [4] 3D bounding box 2D bounding box 360 32 2020 

H3D [31] 3D bounding box 180 64 2019 

ApolloScape 
[17] 

2D semantic 
segmentation 

360 2019 

A2D2 [13] 2D semantic 
segmentation 

3D semantic 
segmentation 

270 5*16 2020 

3D bounding box 

Waymo 
Open [32] 

2D bounding box 3D bounding box 270 75, 4*20 2020 

Level 5 Lyft 2D bounding box 3D bounding box 360 64, 2*40 2019 

KITTI [12] 3D bounding box 2D bird eye view 180 64 2012 

2D bounding box 

OpenMPD 2D bounding box 2D bounding box 360 128, 40, 
2*16 

2021 

2D semantic 
segmentation 

3D bounding box 

3D bounding box 3D semantic 
segmentation



7.3 OpenMPD 159

7.3 OpenMPD 

In this chapter, we mainly introduce the data acquisition equipment and the details of 
annotation. What’s more, we also introduce the sensor calibration and data detailed 
acquisition plan. 

7.3.1 Platform Setup 

The OpenMPD data acquisition platform is shown in Fig. 7.4. Six cameras and four 
LiDARs are installed on the rooftop of the car. On the front side of the rooftop of the 
car, there are three cameras and a 128-beam LiDAR. We also placed a camera and 
a LiDAR on the left, right, and rear sides of the rooftop of the car, respectively. The 
explicit configuration of the camera is shown in Fig. 7.5a. Specifically, two cameras 
on the left and right sides of the rooftop of the vehicle with a 6 mm focal length form 
a binocular vision through calibration. The two cameras are jointly responsible for 
collecting objects with a horizontal viewing angle of 110 degrees within 50 m. The 
middle camera, with a 25mm telephoto lens, is responsible for collecting objects 
with a horizontal angle of view of 23 degrees and 50–150 m. Two 5mm wide-
angle cameras are responsible for collecting the horizontal angle and placing the 
joined objects. The rear side is equipped with an 8-mm wide-angle camera, which 
is responsible for collecting objects with a horizontal viewing angle of 100 m. All 
cameras are uniformly set to a resolution of 1024. ×968, using a complementary 
metal-oxide semiconductor (CMOS) sensor at a frame rate of 20Hz. 

The LiDAR with 128 beams located at the front rooftop of the vehicle is used 
as the main scene acquisition device to provide a 360-degree coverage of the whole 
environment. The explicit configuration of LiDAR is shown in Fig. 7.5b. Compared 

Fig. 7.4 The red dot represents the camera, and the blue dot represents the LiDAR



160 7 OpenMPD: An Open Multimodal Perception Dataset

Fig. 7.5 The detailed configuration of sensors in the data acquisition platform 

to those LiDARs with fewer beams, it can collect information from a further distance 
of up to 150 m away and obtain more accurate data and a denser number of points. 
As a supplement to the LiDAR visual blind area, we use two 16-beam LiDARs on 
two sides and one 40-beam LiDAR on the back to cover the blind spot. All LiDARs 
are synchronized at a rate of 10Hz. 

The OpenMPD dataset was collected from October 2020 to November 2020. 
Our data collection system activates all the sensors and records data in ROS Kinetic 
Kame system based on Ubuntu 16.04. The ROS system can subscribe to the topics 
of different sensors separately and receive multiple topics uniformly through a 
Time Synchronizer. Only when all topics have the same time stamp will a callback 
function of the synchronization result be generated to process the data after the 
synchronization time. In this way, the timestamp can be synchronized, and the 
picture can be paired with its corresponding point clouds. 

7.3.2 Calibration 

The sensors are mounted on the vehicle, and measurements were made of their 
poses. Field calibration is still required, especially considering the error of measur-
ing sensor angle. Therefore, in order to obtain a high-quality multi-sensor dataset, 
the internal and external parameters of the sensor need to be carefully calibrated. 
Here, we use tools such as calibration object boards and calibration spheres. Firstly, 
the measured pose of the front-center LiDAR sensor with respect to the reference 
frame is assumed to be accurate. All remaining sensor poses are determined relative 
to this LiDAR, which serves as a reference. Secondly, intrinsic camera calibration is 
performed for all cameras using calibration object boards (checkerboards). Finally, 
in determining external parameters, we use the calibration sphere and mainly 
calculate the center of the calibration sphere from the LiDAR point cloud and the 
image. In the LiDAR point cloud, the center of the ellipse is steadily determined



7.3 OpenMPD 161

using random sample consensus (RANSAC). In the image, the contour of the sphere 
is detected by the edge, and then the ellipse is fitted to the edge point. Since the size 
of the ellipse is known according to the ellipse parameters, the center of the sphere 
is also determined. 

In determining the center of the sphere, we mainly take the following steps: 

1. Run the Calibration tools and play data. 
2. Image: The color can be selected through the hue, saturation, and value (HSV) 

range and adjusted according to the recognition effect. 
3. LiDAR: The range of candidate point clouds can be reduced by adjusting their x, 

y, z range and by adjusting the sphere radius R. So we can adjust to get the right 
recognition effect. 

4. We project the point cloud onto the 2D plane of the image and judge the similarity 
score between the point cloud projection and the image. When it is greater than a 
certain threshold, we consider the point cloud and the image to perform well and 
record the center point of the sphere. We record the data in different positions 
several times to calculate the external parameters. 

The result of the calibration is given in a configuration file containing: 

• The following parameters for each camera sensor: .ImageSize ∈ N2, resolution 
(columns, rows) of camera image; .RadialDistortion ∈ R2, radial distortion 
parameters in the camera; and .IntrinsicMatrix ∈ R3∗3, the intrinsic camera 
matrix of the camera image. 

• The following parameters for the external parameters of the LiDAR and camera 
pair: .R ∈ R3∗3, represent the rotation matrix, and .T ∈ R3∗1, represent the 
translation matrix. 

7.3.3 Collecting Route 

In order to create the complexity of the driving scenes, we select the specific weather 
conditions and the section of the road that can provide us with the opportunity to 
collect those extreme and diverse environments for sensors. In the summer, we use 
a sport utility vehicle (SUV) to collect data at a speed of 40km/h in urban areas 
of Beijing, China. During this period, we started from the Haidian District and 
went all the way to the suburbs and even the countryside to collect more diverse 
data. Besides, we collect complex data on university campuses, highways, suburban 
villages, parking lots, etc. Considering a variety of road conditions, we also collect 
complex scenes in viaducts, tunnels, turntable roads, and other places. The data 
collection started in the middle of October 2020 and lasted for 1 month. In the 
bounding box, there are more than 228,000 objects on OpenMPD. For semantic 
segmentation, there are more than 550,000 objects on OpenMPD. It will provide a 
complex and diverse dataset for the autonomous driving algorithm, which is of great 
significance to testing the robustness of the model and the real vehicle test.



162 7 OpenMPD: An Open Multimodal Perception Dataset

7.3.4 Combine Annotation 

We annotate our dataset with detection and segmentation labels in both images and 
point clouds. For the selected RGB images, we annotate them with 3D bounding 
boxes, 2D bounding boxes, and 2D semantic segmentation. For point clouds, we 
provide annotation in 3D bounding boxes, 2D bounding boxes, and 3D semantic 
segmentation. Six annotations of two modalities are combined to make the dataset 
available for various multimodal and multi-task algorithms. 

In order to collect the data reflecting real, complex situations in the real world, 
first, we collect raw data from those places where we believe we can cause a problem 
for the autonomous driving algorithm. Then, the annotation data will be selected 
manually from the raw data and partitioned every 20s. Those data with difficult 
environment (e.g., main road, two-way single lane, irregular road, intersection, 
tunnels/culvert, internal road, and different heights) or complex driving scenes 
(e.g., road construction, accidents) will be seen as the selected data. For both 2D 
annotation and segmentation, we followed these steps. We sample keyframes at 
1Hz for each scene, with a pair of images and point clouds that are synchronized. 
All keyframes are annotated with different kinds of bounding box and semantic 
segmentation. 

Our annotation method consists of two parts. One is annotation with bounding 
box, which includes all kinds of annotation with 2D bounding box and 3D bounding 
box, and the other is annotation with semantic segmentation, which includes 
semantic segmentation on both RGB images and point clouds. 

We selected 15,000 RGB images and point clouds. For the bounding box, there 
are more than 228,000 objects on OpenMPD. We annotated six classes of objects, 
including cars, people, mini-vehicles, trucks, buses, and engineering vehicles. For 
semantic segmentation, there are more than 550,000 objects on OpenMPD. The 
categories for semantic segmentation pay more attention to the road situation for 
autonomous driving, including fence, lane line, background, and so on, as shown in 
Table 7.4. Lane, sidewalk, crosswalk, and lane line give the information of right path 
to run on for the algorithm, and traffic light and diversion line help the algorithm to 
follow the traffic rule and do the right decision. We hope this dataset can contribute 
to the development of autonomous driving technology. 

7.4 Data Analysis 

In this chapter, we analyze the complexity, occlusion, scale, and location of the 
OpenMPD dataset.



7.4 Data Analysis 163

7.4.1 Complexity 

Autonomous driving technology has made great progress and is applied to most 
scenes, but what hinders its further development are complex scenes. The complex 
dataset required quantitative analysis, which depends on not only the number 
of objects in each keyframe but also the complex driving environment (road 
conditions) and driving scenes (traffic accidents and climate change). On the other 
hand, object occlusion is also an important factor in judging whether the dataset 
is complex. Furthermore, the type of driving position also has a strong impact on 
driving. For example, driving on a bridge with a high angle of view can easily affect 
the perception module of the vehicle. To evaluate the complexity of a dataset, we 
have set up several key factors for both scenes and environments. The complexity 
of one dataset is shown based on the average number of key factors in a frame. 

We set up seven factors to determine the complexity of the driving environ-
ment. They are main roads, two-way single lane, irregular roads, intersections, 
tunnels/culverts, internal roads, and different heights (e.g., viaduct). Based on the 
statistics in Table 7.2, we find that 57.92% of the scenes that we selected include 
intersections and two-way single lane occupied 43.16% of all of the selected 
senses. These two scenarios are intuitively more complex than straight trunk roads. 
In different situations, the autonomous driving algorithm needs to face different 
challenges. While driving on the main road, the algorithm needs to deal with 
crowded and faster traffic. On the other hand, the two-way single lane provided 
the vehicle less space to drive on. More comprehensive driving environment data 
puts forward comprehensive requirements for autonomous vehicles. 

As shown in Table 7.3, we also collected six driving scenes that can be considered 
as unexpected cases. They contain light/shadow changes, road construction/traffic 

Table 7.2 Seven driving 
environments and the 
corresponding appearance 
rate of the dataset. A frame 
image may contain multiple 
scenes at the same time 

Factors of environment Rate 

Main road 36.06% 

Two-way single lane 43.16% 

Irregular road 20.21% 

Intersection 57.92% 

Tunnels/culvert 9.29% 

Internal road 29.50% 

Different heights 8.19% 

Table 7.3 Six driving scenes 
and the corresponding 
appearance rate of the dataset. 
A frame image may contain 
multiple scenes at the same 
time 

Factors of scenes Rate 

U-turn 34.42% 

Night/dark place 10.38% 

Dense objects 56.83% 

Object occlusion 90.16% 

Light/shadow change 30.60% 

Road construction/traffic accident 21.85%



164 7 OpenMPD: An Open Multimodal Perception Dataset

accidents, U-turn, night, dense objects, and object occlusion by overtake. It is 
difficult for us to directly measure the impact of a scene, so we use the number 
of scenes as an indicator. We use the number of unexpected cases to figure out the 
complexity level of driving scenes. Therefore, we classify scenes to facilitate model 
learning and verify the model’s performance in different scenes. 

In terms of bounding box, we define six categories for vehicle and pedestrian 
as shown in Table 7.4. Each keyframe contains an average of 17 vehicles and 6 
pedestrians. For crowded scenes, the number of vehicles may reach 25, and the 
number of pedestrians can reach more than 20, which is higher than most of the 
modern datasets. On the other hand, there are dark places like streets without lamps, 
and they will have fewer objects that are necessary for our dataset. 

In terms of segmentation, we used 11 categories to annotate all driving signs, as 
shown in Table 7.5. For segmentation, each keyframe contains about 37 annotation 
objects on average. In addition, we focus on scenes on autonomous driving roads, 
such as lanes, lane lines, and lane markings. They are a challenge for existing 
semantic segmentation methods, but they are very important for autonomous 
driving. The full details of road information will help the vehicle make the right 
decision during a sudden change in information from sensors. 

After analyzing the complexity of our dataset, we believe this dataset presents a 
complex and challenging environment for the autonomous driving field. 

Table 7.4 Six classes of object detection and rate of appearance 

2D classes Rate 3D classes Rate 

Car 54.96% Car 60.55% 

Person 34.57% Person 18.55% 

Mini-car 3.10% Mini-car 12.40% 

Truck 2.56% Truck 1.56% 

Bus 3.06% Bus 2.44% 

Engineering vehicle 1.75% Engineering vehicle 4.5% 

Table 7.5 Eleven classes of object detection and rate of appearance 

2D classes Rate 3D classes Rate 

Fence 3.56% Fence 1.51% 

Road 26.36% Road 24.91% 

Background 2.40% Background 0.81% 

Traffic sign 14.88% Traffic sign 1.20% 

Lane line 14.40% Lane line 11.84 

Sidewalk 9.23% Sidewalk 2.81% 

Lane marking 5.14% Green plants 21.18% 

Crosswalk and diversion line 4.74% Building 28.93% 

Traffic light 5.99% Cyclist 0.39% 

Person 7.17% Person 0.48% 

Car 6.13% Car 5.94%



7.4 Data Analysis 165

7.4.2 Occlusion 

Occlusion brings challenges to detection and segmentation, especially for severe 
occlusion. In rush hours, there is occlusion between pedestrians and vehicles. 
Considering the depth information of the camera, objects closer to the camera may 
block farther away from the camera. Firstly, we divide the level of occlusion and 
define it by the intersection of unions (IoU) of different objects. If the IOU is 0, it 
means not occluded. If the IOU is 0 to 0.5, it indicates partial occlusion. More than 
0.5 is considered as severe occlusion. According to our statistics, more than 29.07% 
of the objects are heavily occluded, 51.48% are partially occluded, and the rest are 
not occluded. 

7.4.3 Scale 

Since the car and the person are the most common participants, we are going to 
analyze the size of their bounding boxes to evaluate the driving conditions at a safe 
distance. And safe distance is affected by driving speed. Higher driving speeds need 
longer distances to brake. The scale of an object represents the distance from us to 
this object. To determine the scale, we simply look at the height of each bounding 
box, like what KAIST [18] does, since areas can always be affected by both the 
length and the width of the object. After our calculation, we find out that the medium 
height of our person is 43 and the medium height of our car is 47. Furthermore, the 
domain for our person is 5 to 180, and that for our car is 5 to 200. With 40 pixels 
as high, a 1.75 m person shown in an image is about 30m away. We assume that 
the average speed of cars that travel in the city of Beijing is 35 km/h to 60 km/h 
and that the distance for a car to brake is about 23m to 45m. Most of the objects in 
front should be no closer than 23m to 45m. For the perception of the expressway, 
this distance can be increased to 115 m. 

After that, we found out that the height of my car and the person in it show the 
same pattern in the image. As shown in Figs. 7.6 and 7.7, most of our objects are 
small, no matter if it is an image of a car or a person. It proves the high density 
of the object distribution of our dataset. In a crowded environment, most nearby 
objects will have larger sizes, so they are easily covered by each other. 

7.4.4 Position 

Knowing the position of most objects helps the algorithm determine the area of 
focus. In order to figure out the position attribution of objects in this dataset, we 
split all the objects into two parts. One is their distance, which represents how far



166 7 OpenMPD: An Open Multimodal Perception Dataset

Fig. 7.6 The histogram of person height distribution 

Fig. 7.7 The histogram of car height distribution



7.4 Data Analysis 167

away an object is from the camera, while another is their location, which shows 
whether they are in the same lane as the vehicle or not. 

The detection method can calculate the anchor box by modeling the distance 
between the object and the camera. The height of an object’s bounding box can 
always represent the size of this object. As we mentioned in the scale part, compared 
to the area of an object’s bounding box, analyzing the height of an object’s bounding 
box can be more reliable and more reasonable since the factors that could affect the 
height of an object’s bounding box are only its original height, the angle of vision, 
and how far the vehicle is from it. There are two factors that matter to the height 
of an object’s bounding box, which are distance and the occupation of visual area. 
Therefore, as a pedestrian is walking far away, both the distance and the occupation 
of the visual area change. Considering the safe distance that we mentioned on the 
scale part, we need to find out the height of a pedestrian in pixels at a distance of 23 
to 45m. After our measurement, it will be about 54 pixels to 27 pixels. As shown in 
Fig. 7.8, most of our pedestrians are less than 30 pixels, and they will be at a safe 
distance from vehicles in the city. 

To evaluate the location of most objects, we only separate the lane by two parts. 
One is in the same lane, while the other is on the side. It is easy to use our semantic 
segmentation annotations to find the zone of our vehicle lane. We regard other 
vehicles and pedestrians moving in the same lane as we are currently driving in 
as the same lane. We need to be more cautious about those scenes that are not in the 
same lane, which causes many complex scenes. Overtaking, occupying another lane, 
doing a U-turn, and changing lanes are more challenging than following a vehicle 
on the lane. After our calculation, the number of objects that are in the same lane as 

Fig. 7.8 Relationship between pedestrian height and distance from camera on vehicle



168 7 OpenMPD: An Open Multimodal Perception Dataset

our vehicle is only 3.6305%. The rest of the objects are things that we need to put 
more focus on. 

7.5 Experiment 

In this chapter, we introduce the benchmark test results on the OpenMPD dataset, 
including 2D/3D object detection and 2D/3D semantic segmentation. 

7.5.1 Object Detection 

For 2D object detection, we evaluate it using mean average precision (mAP) 
followed by the COCO dataset [23]. We divide the dataset into a training set, a 
validation set, and a test set according to 8:1:1. The experiments aim at six classes 
of interest (shown in Table 7.4) and one background class. 

We use YOLOv5 [19], YOLOX [11], and FCOS [41] methods to perform model 
training on OpenMPD by loading pre-training weights from the COCO dataset. For 
YOLOv5 and YOLOX, we have selected two models, one with faster speed and the 
other with better accuracy. The experimental results are shown in Table 7.6, where 
speed, parameters, and flops represent the inference speed, network parameters, and 
calculation of the model, respectively. The mAP@.5 indicates the average AP of 
each class when IoU is set to 0.5, while mAP@[.5, .95] represents the mean average 
precision from IoU threshold from 0.5 to 0.95 in steps of 0.05. The mAP@.5 of 
most methods is higher on COCO, and mAP@[.5, .95] is higher on OpenMPD from 
Table 7.6. In addition, OpenMPD has only 6 classes for applications in the field of 
autonomous driving, but COCO has 80 classes, which is an important reason for the 
low mAP@[.5, .95] on COCO. Figure 7.9 shows the prediction results of different 
methods. It can be seen intuitively that there are a large number of objects and partial 
occlusion. The last two columns of Fig. 7.9 show the low-light scene of OpenMPD 
when the car passes through the tunnel. 

For 3D object detection, we evaluate it using mean average precision (mAP) 
followed by KITTI [12]. We annotate six categories as shown in Table 7.4, which is 
different from the three classes of KITTI, e.g., car, pedestrian, and cyclist. The size 
of different classes of vehicles is very vital for autonomous driving, so we classify 
vehicles in more detail. We used SECOND [44], PointPillars [21], and TANet to 
train and test on OpenMPD. The experimental results are shown in Table 7.7. 
KITTI has 3 classes, and OpenMPD has 11 classes, which is more conducive to the 
perception of autonomous driving. Compared with the mAP of the corresponding 
method, OpenMPD is lower than KITTI, which also reflects that OpenMPD is more 
oriented to complex scenes.



7.5 Experiment 169

Ta
bl
e 
7.
6 

C
om

pa
ri
so
n 
of
 2
D
 o
bj
ec
t 
de
te
ct
io
n 
m
et
ho
ds
 o
n 
O
pe
nM

PD
 a
nd
 C
O
C
O
 d
at
as
et
s.
 T
he
 s
pe
ed
, 
pa
ra
m
et
er
s,
 a
nd
 fl
op
s 
ar
e 
te
st
ed
 o
n 
a 
si
ng
le
 R
T
X
 

30
90
. “
–”
 d
en
ot
es
 th

e 
co
rr
es
po
nd
in
g 
in
fo
rm

at
io
n 
is
 n
ot
 r
ep
or
te
d 
in
 th

e 
ch
ap
te
r. 
“. ↑

” 
m
ea
ns
 h
ig
he
r 
sc
or
e 
is
 b
et
te
r 

O
pe
nM

PD
C
O
C
O
 

M
od
el

m
A
P@

.5
(%

).
↑

m
A
P@

[.
5,
 .9

5]
(%

).
↑

m
A
P@

.5
(%

).
↑

m
A
P@

[.
5,
 .9

5]
(%

).
↑

Sp
ee
d 
(m

s)
.↓

Pa
ra
m
et
er
s 
(M

).
↓

FL
O
Ps
(G

).
 ↓

Y
O
L
O
v5
-s
 [
19

] 
60
.7

37
.8

56
.0

37
.2

3.
5

7.
1

8.
2 

Y
O
L
O
v5
-x
 [
19

] 
43
.6

63
.6

68
.9

50
.7

13
.1

87
.2

21
7.
2 

Y
O
L
O
X
-s
 [
11

] 
63
.7

41
.2

–
40
.5

16
.5

8.
8

13
.3
 

Y
O
L
O
X
-x
 [
11

] 
46
.3

69
.2

69
.6

51
.1

60
.8

99
.0

14
0.
7 

FC
O
S 
[4
1]

52
.6

31
.8

57
.4

38
.6

50
.0

5.
9

86
.2

B
ol
d
va
lu
es

hi
gh
lig

ht
th
e
si
gn
ifi
ca
nt

im
pr
ov
em

en
ti
n
pe
rf
or
m
an
ce



170 7 OpenMPD: An Open Multimodal Perception Dataset

Fig. 7.9 2D object detection results of different methods



7.5 Experiment 171

Table 7.7 Comparison of 3D object detection methods on OpenMPD and KITTI datasets. The 
“MOD” represents the moderate scene on KITTI 

OpenMPD KITTI 

Model mAP (%) mAP(Mod) (%) Speed(ms) Device(GPU) 

SECOND [44] 35.8 58.3 40 2.5 GHz 

PointPillars [21] 32.5 60.8 16 GTX 1080 Ti 

TANet 40.3 62.0 35 2.5 GHz 

Bold values highlight the significant improvement in performance

Table 7.8 Comparison of 2D semantic segmentation methods on OpenMPD and COCO 
datasets. The speed, parameters, and flops are tested on a single RTX 3090 

OpenMPD VOC 

Model mIOU (%) mIOU (%) Speed (ms) Parameters (M) FLOPs(G) 

DeepLabv3 [5] 58.4 85.7 76.9 39.76 512.87 

DANet [10] 54.5 82.6 83.3 47.56 615.16 

DUNet [40] 34.26 88.1 58.8 29.38 391.79 

Bold values highlight the significant improvement in performance

7.5.2 Semantic Segmentation 

For 2D semantic segmentation, we evaluate it using mean intersection over union 
(mIOU) followed by the Pascal VOC dataset [9]. The experiments aim at nine 
classes of interest (shown in Table 7.5) and one background class. 

Similar to object detection, we use the pre-training weights of the VOC dataset 
to fine-tune DANet [10], DUNet [40], and DeepLabv3 [5]. The experimental results 
are shown in Table 7.8. From that, we found that the mIOU of the same method 
on OpenMPD is much lower than on the VOC dataset. In addition, the COCO 
segmentation has 20 classes, including indoor scenes, animals, pedestrians, vehicles, 
and so on. However, OpenMPD has only nine classes, which also reflects that 
OpenMPD has more complex scenes. Figure 7.10 shows the prediction of different 
methods and ground truth, from which we can see that the prediction results of each 
model in low light still have a certain gap compared with the ground truth, especially 
in the third column. 

For 3D semantic segmentation, we also use mean intersection over union (mIOU) 
as an evaluating indicator, followed by the semantic KITTI dataset [2]. We train 
PolarNet [2], SalsaNext [8], and Cylinder3D [46] on OpenMPD and semantic 
KITTI, respectively. As shown in Table 7.9, the test results of the same method on 
OpenMPD are lower than those of semantic KITTI. On the one hand, we use 128-
beam LiDAR, which means there are more dense point clouds, which increases the 
difficulty of fine-grained segmentation. On the other hand, the dataset we collected 
has more objects, and the scene is more complex.



172 7 OpenMPD: An Open Multimodal Perception Dataset

Fig. 7.10 2D semantic segmentation of different methods 

Table 7.9 3D semantic 
segmentation of different 
methods 

OpenMPD Semantic KITTI 

Model mIOU (%) mIOU (%) 

PolarNet [2] 57.6 71.0 

SalsaNext [8] 60.2 72.2 

Cylinder3D [46] 61.8 76.1

Bold values highlight the significant improvement in
performance



References 173

7.6 Summary 

In this chapter, we propose an autonomous driving dataset, OpenMPD. We provide 
a variety of annotations for 2D and 3D platforms, which can be used for object 
detection and semantic segmentation networks with multimodal (simultaneously 
using multiple sensors) and multi-task (simultaneously using detection and segmen-
tation) fusion. We also provide a 360-degree shooting scene through six cameras, 
which can be combined with multi-view for object detection or segmentation 
tasks. OpenMPD plays a vital role in multi-task, multi-view, and multimodal tasks. 
Due to the continuous development of sensors, we use more advanced equipment 
compared with other datasets, which has a great impact on the quality of data, 
especially the 128-beam LiDAR. Considering the current autonomous driving 
sensing algorithms get good performance for simple scenes, we focus on complex 
scenes. A large number of baseline test results show that our dataset has a complex 
climate environment and complex road conditions. In addition, we also analyze the 
characteristics of the dataset to facilitate understanding. 

In the future, we will use this dataset to test the autonomous driving system in 
our laboratory and further promote its application. 

References 

1. Alismail, H., Baker, L.D., Browning, B.: Continuous trajectory estimation for 3d slam from 
actuated lidar. In: IEEE International Conference on Robotics and Automation (2014) 

2. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall, J.: 
SemanticKITTI: a dataset for semantic scene understanding of LiDAR sequences. In: Proc. 
of the IEEE/CVF International Conf. on Computer Vision (ICCV) (2019) 

3. Behley, J., Steinhage, V., Cremers, A.B.: Performance of histogram descriptors for the clas-
sification of 3d laser range data in urban environments. In: Proceedings - IEEE International 
Conference on Robotics and Automation, pp. 4391–4398 (2012) 

4. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan, Y., Baldan, 
G., Beijbom, O.: nuscenes: a multimodal dataset for autonomous driving. In: Proceedings of 
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11,621–11,631 
(2020) 

5. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic 
image segmentation. Preprint (2017). arXiv:1706.05587 

6. Chen, X., Kundu, K., Zhang, Z., Ma, H., Urtasun, R.: Monocular 3d object detection for 
autonomous driving. In: IEEE Conference on Computer Vision and Pattern Recognition (2016) 

7. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Schiele, B.: The cityscapes dataset for semantic 
urban scene understanding. In: 2016 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR) (2016) 

8. Cortinhal, T., Tzelepis, G., Aksoy, E.E.: Salsanext: fast, uncertainty-aware semantic segmen-
tation of lidar point clouds. In: International Symposium on Visual Computing, pp. 207–222. 
Springer (2020) 

9. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual 
object classes (voc) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)



174 7 OpenMPD: An Open Multimodal Perception Dataset

10. Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H.: Dual attention network for scene 
segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, pp. 3146–3154 (2019) 

11. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: exceeding yolo series in 2021. Preprint (2021). 
arXiv:2107.08430 

12. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. 
Robot. Res. 32, 1231–1237 (2013) 

13. Geyer, J., Kassahun, Y., Mahmudi, M., Ricou, X., Durgesh, R., Chung, A.S., Hauswald, L., 
Pham, V.H., Mühlegg, M., Dorn, S., et al.: A2d2: Audi autonomous driving dataset. Preprint 
(2020). arXiv:2004.06320 

14. Hackel, T., Savinov, N., Ladicky, L., Wegner, J.D., Schindler, K., Pollefeys, M.: Seman-
tic3d.net: a new large-scale point cloud classification benchmark. In: ISPRS Annals of 
Photogrammetry, Remote Sensing and Spatial Information Sciences (2017) 

15. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: IEEE (2017) 
16. Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2d lidar slam. In: 2016 

IEEE International Conference on Robotics and Automation (ICRA) (2016) 
17. Huang, X., Cheng, X., Geng, Q., Cao, B., Zhou, D., Wang, P., Lin, Y., Yang, R.: The 

apolloscape dataset for autonomous driving. In: 2018 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition Workshops (CVPRW) pp. 1067–10,676 (2018) 

18. Hwang, S., Park, J., Kim, N., Choi, Y., So Kweon, I.: Multispectral pedestrian detection: 
benchmark dataset and baseline. In: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, pp. 1037–1045 (2015) 

19. Jocher, G.: Yolov5 (2020). https://github.com/ultralytics/yolov5 
20. Kohlbrecher, S., Stryk, O.V., Meyer, J., Klingauf, U.: A flexible and scalable slam system with 

full 3d motion estimation. In: IEEE International Symposium on Safety (2011) 
21. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: fast encoders for 

object detection from point clouds. In: Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition, pp. 12,697–12,705 (2019) 

22. Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categoriza-
tion. In: Proceedings of the Computer Vision and Pattern Recognition, 2003. IEEE Computer 
Society (2003) 

23. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Zitnick, C.L.: Microsoft coco: common objects in 
context. In: European Conference on Computer Vision (2014) 

24. López-Sastre, R.: Towards semantic and effective visual codebooks (2011). https://www.lap-
publishing.com/ 

25. Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3d objects. 
Int. J. Comput. Vis. 73(3), 263–284 (2007) 

26. Mousavian, A., Anguelov, D., Flynn, J., Kosecka, J.: 3d bounding box estimation using 
deep learning and geometry. In: 2017 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR) (2017) 

27. Munoz, D., Bagnell, J.A., Vandapel, N., Hebert, M.: Contextual classification with functional 
max-margin Markov networks. In: 2009 IEEE Conference on Computer Vision and Pattern 
Recognition (2009) 

28. Neuhold, G., Ollmann, T., Bulo, S.R., Kontschieder, P.: The mapillary vistas dataset for 
semantic understanding of street scenes. In: IEEE International Conference on Computer 
Vision (2017) 

29. Ozuysal, M., Lepetit, V., Fua, P.: Pose estimation for category specific multiview object 
localization. In: IEEE Conference on Computer Vision and Pattern Recognition (2009) 

30. Pan, X., Shi, J., Luo, P., Wang, X., Tang, X.: Spatial as deep: Spatial cnn for traffic scene 
understanding. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018) 

31. Patil, A., Malla, S., Gang, H., Chen, Y.T.: The h3d dataset for full-surround 3d multi-object 
detection and tracking in crowded urban scenes. In: 2019 International Conference on Robotics 
and Automation (ICRA), pp. 9552–9557. IEEE (2019)

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://www.lap-publishing.com/
https://www.lap-publishing.com/
https://www.lap-publishing.com/
https://www.lap-publishing.com/
https://www.lap-publishing.com/


References 175

32. Pei Sun Henrik Kretzschmar, X.D.: Scalability in perception for autonomous driving: Waymo 
open dataset. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2019) 

33. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv e-prints (2018) 
34. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with 

region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017) 
35. Roddick, T., Kendall, A., Cipolla, R.: Orthographic feature transform for monocular 3d object 

detection. Preprint (2018). arXiv:1811.08188 
36. Savarese, S., Li, F.F.: 3d generic object categorization, localization and pose estimation. In: 

IEEE 11th International Conference on Computer Vision, ICCV 2007, Rio de Janeiro, Brazil, 
October 14–20 (2007) 

37. Steder, B., Ruhnke, M., Grzonka, S., Burgard, W.: Place recognition in 3d scans using a 
combination of bag of words and point feature based relative pose estimation. In: 2011 
IEEE/RSJ International Conference on Intelligent Robots and Systems (2011) 

38. Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: 2020 
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020) 

39. Thomas, A., Ferrar, V., Leibe, B., Tuytelaars, T., Schiel, B., Van Gool, L.: Towards multi-view 
object class detection. In: 2006 IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition (CVPR’06), vol. 2, pp. 1589–1596. IEEE (2006) 

40. Tian, Z., He, T., Shen, C., Yan, Y.: Decoders matter for semantic segmentation: Data-dependent 
decoding enables flexible feature aggregation. In: Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition, pp. 3126–3135 (2019) 

41. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: fully convolutional one-stage object detection. In: 
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627–9636 
(2019) 

42. Xiaozhi, C., Kaustav, K., Yukun, Z., Huimin, M., Sanja, F.: 3d object proposals using stereo 
imagery for accurate object class detection. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 
1–1 (2017) 

43. Xu, B., Chen, Z.: Multi-level fusion based 3d object detection from monocular images. In: 
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018) 

44. Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18(10), 
3337 (2018) 

45. Zhang, R., Candra, S.A., Kai, V., Zakhor, A.: Sensor fusion for semantic segmentation of urban 
scenes. In: IEEE International Conference on Robotics and Automation (2015) 

46. Zhu, X., Zhou, H., Wang, T., Hong, F., Ma, Y., Li, W., Li, H., Lin, D.: Cylindrical and 
asymmetrical 3d convolution networks for lidar segmentation. In: Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9939–9948 (2021)



Chapter 8 
Vehicle-Road Multi-View Interactive 
Data Fusion 

Abstract Aiming at solving the problem of target occlusion in crowded scenes, 
the aggregation of multiple camera views can outperform a single view. Some 
researchers project the feature map or RGB image getting from the feature extrac-
tion network to the ground plane by perspective transformation and then use the 
spatial aggregation without anchor frame to aggregate the feature maps of multiple 
views. However, the projected feature maps are limited by a lack of semantic 
information. In order to obtain feature maps with rich semantic information, we 
will introduce a new multi-view detection method MVT, which effectively extracts 
features from multiple perspectives. To improve TP and the overall robustness of the 
model, we will also introduce a method for predicting the positioning uncertainty of 
bounding box reliability. 

This chapter begins by describing the background of detection methods from three 
perspectives—single-perspective method, multi-view method, and transformers 
method—before delving into the methodology and experimental results and finally 
providing a summary of the methods used in the experiments. 

8.1 Introduction 

MVDet [7], the best performing multi-view detection method at the moment, 
extracts features from multiple views using a common convolutional neural net-
work. The outcome of feature extraction has a significant impact on subsequent 
detection. The multi-view feature fusion will be prone to distortion if the feature 
information of each view is not sufficiently extracted. Furthermore, the pattern 
of distortion varies depending on camera positions or projection processes. The 
inadequacy of semantic features may also have a limiting effect on the detection 
system as a whole (Fig. 8.1). 

Single-Perspective Method The majority of target detection methods are based 
on a single camera and rely heavily on deep learning methods. Traditional target 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
X. Zhang et al., Multi-sensor Fusion for Autonomous Driving, 
https://doi.org/10.1007/978-981-99-3280-1_8

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3280-1protect T1	extunderscore 8&domain=pdf
https://doi.org/10.1007/978-981-99-3280-1_8
https://doi.org/10.1007/978-981-99-3280-1_8
https://doi.org/10.1007/978-981-99-3280-1_8
https://doi.org/10.1007/978-981-99-3280-1_8
https://doi.org/10.1007/978-981-99-3280-1_8
https://doi.org/10.1007/978-981-99-3280-1_8
https://doi.org/10.1007/978-981-99-3280-1_8
https://doi.org/10.1007/978-981-99-3280-1_8
https://doi.org/10.1007/978-981-99-3280-1_8
https://doi.org/10.1007/978-981-99-3280-1_8
https://doi.org/10.1007/978-981-99-3280-1_8


178 8 Vehicle-Road Multi-View Interactive Data Fusion

Fig. 8.1 The multi-view detection system observes the position of each target in the form of a 
bird’s-eye view 

detection algorithms include one-stage and two-stage algorithms. When compared 
to second-stage algorithms, most first-stage algorithms have lower accuracy but 
faster speeds. Many common algorithms are based on anchor frames, but some 
researchers employ anchorless methods CornerNet [9] and FCOS [13]. NMS is 
also studied by some researchers, such as GrooMeD-NMS [8] and MDS-NMS 
[12]. However, in intensive detection or intersections, these methods will encounter 
occlusion issues, as well as missed detection, false detection, and low detection 
accuracy. Our research aims to find effective solutions to these problems. 

Multi-View Method Occlusion can be effectively solved using multi-view appli-
cations. With a single camera, object overlap or occlusion occurs, whereas multiple 
cameras can spatially aggregate their respective images. Many researchers employ 
spatial aggregation methods when processing image data. MVDet, for example, 
performs perspective transformation on the feature map produced by CNN and 
then spatially aggregates multiple views to achieve good results. To obtain world 
features, we project feature maps and splice multi-view feature maps using the 
perspective transformation method. 

Transformers Method Transformers are currently being used by researchers to 
replace the feature extraction structure of convolutional neural networks [2, 11, 14, 
15, 17], specifically the encoder-decoder structure. The benefits of the inspection 
process are simplified because anchor frames and other artificial setting factors are 
no longer required, allowing it to shine in computer vision. Our method is based 
on the deformable transformers concept, which combines deformable convolutional 
sparse spatial sampling and transformers. The benefits of relational modeling 
capabilities improve multi-view image feature extraction and lay the groundwork 
for later detection and use. 

This chapter employs a non-anchor frame optimization feature extraction method 
to improve multi-view detection and positioning accuracy. Using the encoder-
decoder structure’s effective attention mechanism, we replace ordinary convolutions 
with deformable transformers and effectively extract features from multiple views. 
During the feature extraction process, we embed corner pooling, improve the



8.2 Methodology 179

semantic information of the target corner position, and analyze the upper left and 
lower right corner positions. We also took into account the loss of positioning 
uncertainty. By incorporating predicted positioning uncertainty into the detection 
process, the FP is effectively reduced, while the TP and positioning accuracy are 
improved. 

8.2 Methodology 

This chapter will describe the structure of our method, as illustrated in Fig. 8.2. 
To begin, we propose replacing ordinary convolutional neural networks with 
deformable transformers to extract features from multi-view images in blocks. 
When compared to CNN, it simplifies the settings of a large number of hyperpa-
rameters in the detection process. Furthermore, the incorporation of deformable 
attention makes the feature extraction part more concerned. Semantic information 
surrounding key points improves the ability of multi-view representation. Then 
we borrowed the idea of a residual network and proposed the residual corner 
pooling module, which replaced the maximum pooling layer in ResNet50 and later 
enhanced the feature map’s corner semantic information, laying the groundwork 
for subsequent multi-view detection. Taking into account the impact of loss due 
to bounding box, we add positioning uncertainty to the loss, which can reduce 
FP, increase TP, improve the accuracy of multi-view pedestrian positioning, and 
increase the model’s robustness. The multi-view feature maps are projected and 
aggregated into a new bird’s-eye view. 

Next, the method’s composition will be introduced. The perspective transfor-
mation method in multi-view detection will be introduced in Sect. 8.1. Section 8.2 
will discuss the applicability of the deformable transformers method in multi-view 
detection. In Sect. 8.3, we will go over our residual corners in detail, as well as the 
significance of the pooling module. The role of positioning uncertainty loss in the 
training model will be introduced in Sect. 8.4. 

We continue to use the perspective transformation method of MVDET [9] to  
project the feature map. First, we convert each pixel in the feature map from 
three-dimensional coordinates (x, y, z) to two-dimensional coordinates (u, v). The 
perspective transformation Eq. 8.1 briefly introduces the perspective transformation 
method. s is the scale factor, . Pθ is the perspective transformation matrix, A is the 
3. ×3 internal parameter matrix, .[R | t] is the 3. ×4 external parameter matrix, R is 
the rotation factor, and t is the translation parameter. 

.s

⎛
⎜⎜⎜⎜⎝

u

v

1

⎞
⎟⎟⎟⎟⎠
=Pθ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x

y

z

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=A[R|t]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x

y

z

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡
⎢⎢⎢⎢⎣

θ11θ12θ13θ14

θ21θ22θ23θ24

θ31θ32θ33θ34

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x

y

z

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.1)



180 8 Vehicle-Road Multi-View Interactive Data Fusion

F
ig
. 8

.2
 

T
he

 f
ra

m
e 

st
ru

ct
ur

e 
of

 o
ur

 m
et

ho
d



8.2 Methodology 181

To obtain [H,W] size, (NxC+2) channel ground plane feature maps, we project C 
channel feature maps into N cameras. Given the issue of ground plane neighbors, we 
maintain a larger ground plane receptive field by using a large convolution kernel, 
which effectively aggregates spatial information. 

Transformers are currently divided into two types: those made entirely of 
transformers and those made of convolutional neural networks and transformers. 
The proposal of DETR [17] reduces a large number of parameters, greatly sim-
plifying the detection process and the setting of the anchor frame. However, it 
suffers from slow convergence speed and poor detection performance of small 
targets. Deformable DETR [10] solves the problem of slow DETR convergence by 
combining the benefits of deformable convolution [17] with sparse spatial sampling 
and transformers’ relational modeling capabilities. We only use the previous con-
volutional neural network and encoder-decoder structure, leaving out the prediction 
module. The encoder-decoder structure is embedded with a deformable attention 
module in deformable transformers. Regardless of the spatial size of the feature 
map, the deformable attention module only focuses on a small set of key sampling 
points around the reference point. Convergence and feature spatial resolution issues 
can be alleviated by assigning only a small fixed number of key points to each query. 

We replace the multi-scale deformable attention module with the transform 
attention module that deals with feature mapping in DETR. The encoder’s input and 
output are multi-scale feature maps with the same resolution. Multi-scale feature 
maps are generated in the encoder from feature maps in the ResNet network’s C3– 
C5 stages. The feature maps of the C3–C5 stages are subjected to a 1. ×1 convolution 
operation with a step size of 1 to generate a feature map of the same size and 
256 channels, and then C5 is subjected to a 3. ×3 convolution with a step size of 
2. The sampling convolution operation, as C6, generates a half-size multi-scale 
feature map. Because the proposed multi-scale deformed attention can exchange 
information between multi-scale feature maps, these feature maps used the multi-
scale concept rather than the top-down structure of FPN [10]. As a result, FPN is 
not employed in this chapter. The encoder produces a multi-scale feature map with 
the same resolution as the input when the multi-scale deformable attention module 
is applied. All of the key and query elements are pixels from the multi-scale feature 
map. The reference point for each query pixel is itself. In order to determine the fea-
ture level of each query pixel, we add a scale-level embedding to the feature repre-
sentation in addition to the position embedding. In contrast to fixed coding position 
embedding, scale-level embedding is randomized and trained alongside the network. 

The decoder includes cross-attention and self-attention modules. Object queries 
are the query elements of these two types of attention modules. The object query 
in the cross-attention module extracts features from the feature map, where the 
key element is the encoder’s output feature map. In the self-attention module, 
object queries interact with one another, with the object query being the most 
important. Because our proposed deformable attention module is intended to 
process convolutional feature maps as a key component, we only replace each 
cross-attention module with a multi-scale deformable attention module, leaving the 
self-attention module alone.



182 8 Vehicle-Road Multi-View Interactive Data Fusion

Corner pooling can improve the semantic information of corner points, effec-
tively focusing the target’s corner points. Corner pooling is typically divided into 
two types: top-left corner pooling and bottom-right corner pooling. Formula 8.2 
demonstrates the specific principle of corner pooling. 

.

tij =
{

max
(
fti , t(i+1)j

)
if i < H

ftfj otherwise

lij =
{

max
(
flij , lj (i+1)

)
if j < H

fliv otherwise

(8.2) 

Assuming that the size of the feature map is .H × W , and each pixel in the figure 
is . tij , the pixel points are compared along the top and left directions. If it is less 
than the pixel in this direction, the pixel size is inherent; if it is greater, pixels in this 
direction cover pixels in this direction. As a result, there is an increasing sequence 
in the top and left directions, and the small pixels that existed previously will be 
covered by nearby ones, significantly improving the semantic information. 

CornerNet [13] inspired us to optimize top-left corner pooling, and the optimiza-
tion structure for top-left corner pooling is shown in Fig. 8.3. The feature maps are 
grouped into two directions: top and left. The two feature maps are combined to 
produce two feature maps with enhanced semantic information. Finally, a map of 
pooling features in the top-left corner is obtained. The characteristics of the two 
feature maps are combined in this feature map. The top corner pooling feature map 
increases the pixel value in the top direction gradually. Similarly, the left corner 
pooling feature map gradually increases the number of pixel points to the left. When 
the two feature maps are fused, the semantic information in the upper left corner is 
stronger than the semantic information in the two sub-corner pooled feature maps. 

Fig. 8.3 Top-left corner pooling structure



8.2 Methodology 183

Fig. 8.4 Residual corner point pooling module. The top-left corner point pooling is used for three 
consecutive layers, and the initial convolution feature map is jump-connected with the resulting 
feature map r3 to obtain the latest feature map output 

The distinction between the upper left corner position and the other pixels will be 
more visible. The semantic information in the upper left corner will be enhanced. 

As shown in Fig. 8.4, we propose a new three-layer jump connection corner 
pooling module. ResNet50 serves as the foundation. Because the initial feature map 
location is rich in semantic information, we perform corner pooling operations on 
it. First, we use this module to replace ResNet50’s first maximum pooling layer. 
Then, for three consecutive layers, the top-left corner point pooling is used, and the 
initial convolution feature map is jump-connected with the resulting feature map r3 
to obtain the most recent feature map output. According to studies, each additional 
layer of corner point pooling strengthens the semantic information of the upper left 
corner of the final feature map, but excessive layers can easily result in the loss 
of local location semantic information. Finally, the final feature map is sent to the 
following convolutional layer for feature extraction. 

We draw on the idea of positioning uncertainty of Gaussian YOLOv3 [16] and 
consider it along with target score and category score [4]. The traditional detection 
model is reduced to four dimensions, namely, the prediction frame’s center point and 
aspect. The detection model of the integration uncertainty has eight dimensions, 
which correspond to the predictive frame’s central coordinates and long width, 
as well as the uncertainty of the corresponding prediction box. The mean of the 
Gaussian distribution is the target box’s position, and the corresponding uncertainty 
is variance. In order to predict the uncertainty of bounding box, each bounding box 
coordinate model in the predictive feature is mean . μ and variance . Σ , as shown in  
Fig. 8.5. 

. μtx = σ
(
μ̂tx

)
, μty = σ

(
μ̂ty

)
, μtw = μ̂tw , μth = μ̂th

Σtx = σ
(
Σ̂tx

)
,Σtv = σ

(
Σ̂ty

)

Σtw = σ
(
Σ̂tw

)
,Σth = σ

(
Σ̂th

)

σ(x) = 1

(1 + exp(−x))
. (8.3)



184 8 Vehicle-Road Multi-View Interactive Data Fusion

Fig. 8.5 Components in the prediction box of positioning uncertainty method 

The bounding box’s predictive coordinates are the average values of each coordinate 
in the detection layer, with each variance representing the uncertainty of each 
coordinate. Because Eq. 8.3 represents the central coordinates of the grid’s bounding 
box, we use the sigmoid function to process values between 0 and 1. The variance of 
each coordinate is also converted into a value between 0 and 1. We can calculate the 
bounding box uncertainty of each detected object in the image using the sigmoid 
function. Because the uncertainty does not apply to the entire image, it can be 
applied to each detection result. MVDet [7] only takes into account the target score 
and class score during object detection. It can’t consider the bounding box score 
during the detection process because the score information for the bounding box 
coordinates is unknown. Positioning uncertainty is represented by the bounding box 
score. During the detection process, positioning uncertainty, as well as objective 
and category scores, can be taken into account. The positioning uncertainty is used 
in multi-view detection to filter the bounding box with high uncertainty in the 
prediction result during the detection process. In this manner, a prediction with high 
confidence in objectness, class, and bounding box is finally chosen. Uncertainty loss 
can reduce FP while increasing TP, resulting in improved detection accuracy. The 
standard formula for detecting positioning uncertainty is as follows: 

.S = σ( Object ) × σ ( Class i ) × (
1 − Uncertainy aver

)
(8.4) 

In (5), S represents the final detection standard value, .σ( Object ) represents 
the objectness score, and .σ ( Class i ) represents the iclass score. Furthermore, 
Uncertaintyaver represents the average degree of uncertainty in predicted bounding 
box coordinates. Positioning uncertainty, like objectivity and class score, has a 
value between 0 and 1. Higher positioning uncertainty decreases confidence in the 
predicted bounding box and decreases the IoU between the predicted bounding box 
and the real box. Lower positioning uncertainty results in more confidence in the 
predicted bounding box and a smaller IoU between the predicted and real boxes. 
The positioning uncertainty effectively represents the predictability of the bounding 
box.



8.3 Experiment 185

8.3 Experiment 

Datasets MVDet [7] references the Wildtrack dataset [9] and the MultiviewX 
dataset. The characteristics of the two datasets are also introduced in detail, and 
we will continue to investigate them. Table 8.1 compares data from the Wildtrack 
and MultiviewX datasets. Figure 8.6 shows an example of the Wildtrack and 
MultiviewX datasets. 

Metrics To evaluate the algorithm, we use precision, recall, MODA, and MODP. 
MODP is used to assess positioning accuracy, whereas MODA is used to explain 
false positives and false negatives. MODA is used as the primary performance 
indicator in this experiment because it explains both false positives and false 
negatives. To see if it is truly positive, we set the threshold to 0.5. 

Implementation Details For model training, we use Ubuntu 16.04 operating 
system, PyTorch 1.7, and two graphics memory 3090 with a total of 32G RTX. 
In the training phase, considering the large number of images, we resize the original 
image 1080×1920 to 675×1200 and batch size to 1, which is convenient for model 
training. We use the SGD optimizer with a momentum of 0.5 and L2 normalization 
to 5 × 10−4, and the single-view loss weight α is set to 1. We employ a single-
cycle learning rate scheduler with a maximum learning rate of 0.1 and a maximum 
number of epochs of 50; we also employ deformable transformers as the skeleton of 
our method, with the number of encoders in transformers set to six. 

Experiments are carried out on the Wildtrack dataset and the MultiviewX dataset. 
We compare RCNN and clustering [6], POM-CNN [3], DeepMCD [1], Deep-
Occlusion [5], and MVDet [7] with our method. Among them, MVDet is the 
experiment’s baseline, and we will compare them to it. MVT (deformable trans-
formers) is a method that only uses deformable transformers, whereas MVT (w/o 

Table 8.1 Comparison 
between Wildtrack dataset 
and MultiviewX dataset 

# camera Resolution Frames Area 

Wildtrack 7 1080×1920 400 12×36 m2 

MultiviewX 6 1080×1920 400 16×25 m2 

Fig. 8.6 Sample pictures in the Wildtrack dataset and MultiviewX dataset



186 8 Vehicle-Road Multi-View Interactive Data Fusion

residual corner pooling module) does not use CornerBlock but does use deformable 
transformers and positioning uncertainty. Positioning uncertainty is not included 
in MVT (w/o localization uncertainty), but it does include residual corner pooling 
module and deformable transformers. Our MVT method incorporates deformable 
transformers, a residual corner pooling module, and localization uncertainty. The 
experimental comparison results of our method and other classic methods on the 
Wildtrack and MultiviewX datasets are shown in Table 8.2. 

The Influence of Deformable Transformers Deformable transformers are used to 
implement the feature extraction function in Fig. 8.7. The embedding of deformable 
attention directs more attention to a small group of key sampling points surrounding 
the reference point, improving the ability to model relationships. According to 

Table 8.2 Some experimental comparison results on the Wildtrack and MultiviewX datasets 

Wildtrack MultiviewX 

Method MODA MODP Precision Recall MODA MODP Precision Recall 

RCNN and 
clustering 

11.3 18.4 68.0 43.0 18.7 46.4 63.5 43.9 

POM-CNN 23.2 30.5 75.0 55.0 – – – – 

DeepMCD 67.8 64.2 85.0 82.0 70.0 73 85.7 83.3 

Deep-Occlusion 74.1 53.8 95.0 80.0 75.2 54.7 97.8 80.2 

MVDet [3] 88.2 75.7 94.7 93.6 83.9 79.6 96.8 86.7 

MVT (deformable 
transformers) 

81.9 72.7 93.8 87.7 68.7 75.3 92.4 74.8 

MVT (w/o residual 
corner pooling 
module) 

88.8 74.6 95.6 93.1 87.6 80.9 97.2 90.2 

MVT (w/o 
localization 
uncertainty) 

80.7 71.7 92.6 87.7 68.1 74.3 91.7 74.9 

MVT 89.9 74.9 95.7 94.1 88.5 81.5 96.7 91.6 

Bold values highlight the significant improvement in performance

Fig. 8.7 MVT (w/o localization uncertainty) and MVT method



8.3 Experiment 187

the experimental results in Table 8.2, MVT (deformable transformers) achieved 
81.9% MODA and 87.7% recall on the Wildtrack dataset and 68.7% MODA and 
74.8% recall on the MultiviewX dataset. MVT’s performance on the two datasets 
is significantly lower than that of MVDet. Deformable transformers have a better 
effect in single-view detection, but in multi-view detection, multiple pictures may 
suffer feature loss due to the encoder-decoder, affecting subsequent multi-view 
aggregation. We add MVT (w/o residual corner pooling module) and MVT (w/o 
localization uncertainty) variant ablation experiments to the MVT (deformable 
transformers) method. Experiments show that the two variants perform differently 
in terms of accuracy than MVT (deformable transformers). Because the loss calcula-
tion was not fully considered, the accuracy of MVT (w/o localization uncertainty) in 
the two datasets was reduced when compared to MVT (deformable transformers). 
MVT (w/o localization uncertainty) accuracy has significantly improved in both 
datasets. It can be seen that ordinary convolutional neural networks can be replaced 
with deformable transformers; overall, deformable transformers, as the backbone 
network of our method, greatly improve the model’s characterization ability and 
robustness and also lay the groundwork for later feature processing. 

The Influence of the Number of Different Corner Pooling Layers in the Resid-
ual Corner Pooling Module To improve the semantic information of the upper left 
corner, we use the jumping corner pooling module to replace the maximum pooling 
layer in the basic CNN, as shown in Fig. 8.7. According to the findings, the number 
of different corner pooling layers has a significant impact on overall detection 
accuracy. Table 8.3 shows how the number of corner pooling layers in the corner 
module affects detection performance. We can see that as the number of corner 
pooling layers increases, so does the accuracy achieved by MODA. Furthermore, 
we gradually increase the number of corner pooling layers in the residual corner 
module, and the accuracy gradually improves, however, after adding three corner 
pooling layers, MODA achieved 89.9% accuracy in the Wildtrack dataset, and that 
of Recall was as high as 94.1%. In the MultiviewX dataset, MODA achieves 88.5% 
accuracy, and recall is as high as 91.6%. The effect, however, will be diminished 
if the corner pooling layer is added later. As shown in Fig. 8.4, the C1 feature map 
is merged with the feature map after three layers of corner point pooling, with the 
result being more inclined to the corner point position with each layer of corner 

Table 8.3 The influence of the number of corner pooling layers in the residual corner module on 
the detection performance 

Wildtrack MultiviewX 

#corner_layers MODA MODP Precision Recall MODA MODP Precision Recall 

1 88.4 76 96.9 91.4 87.2 81 97.6 89.4 

2 88.6 73.4 95.8 92.6 87.5 80.7 95.8 91.5 

3 89.9 74.9 95.7 94.1 88.5 81.5 96.7 91.6 

4 89.5 74.5 95.5 93.9 87.7 80.4 96.5 91.0



188 8 Vehicle-Road Multi-View Interactive Data Fusion

point pooling. The end result is the same as the weight. When you add it to the 
C1 feature map, you’ll get a new corner feature map. The new corner feature map 
is naturally used in the subsequent feature extraction, which has a better overall 
improvement in the multi-view detection effect after the experiment. Corner pooling 
is equivalent to a pixel-level semantic information weighting operation, and it is 
also a way to enhance pixel semantic information to improve the effect of feature 
extraction, but too many layers can easily result in the loss of target semantic 
information. We discovered that when deformable transformers and residual corner 
pooling modules were included in the MVT (w/o localization uncertainty) variant 
experiment, the accuracy dropped. MVT (w/o localization uncertainty) achieved 
80.7% accuracy of MODA in Wildtrack dataset and 87.7% of recall. In MultiviewX 
dataset, MODA achieved 68.1% accuracy and recall of 74.9%. The residual corner 
pooling module and localization uncertainty have different effects after analysis. 
The residual corner pooling module optimizes forward propagation, but it is not 
absolute, as demonstrated by the experimental results in Table 8.3. The accuracy 
obtained in the two datasets is close to MVT (w/o residual corner pooling module). 
It can be seen that, while the residual corner pooling module can optimize feature 
extraction across multiple views, its impact on the overall multi-view detection 
model is limited. 

The Impact of Localization Uncertainty Because MVDet [7] does not take the 
bbox score into account during the detection process, the bbox score information 
is unknown. The positioning uncertainty [16] takes the bounding box loss of each 
detection object into account. In this chapter, we introduce positioning uncertainty 
as well as bbox loss and other classification losses. It also helps to improve our 
loss function. We can improve positioning accuracy, reduce FP, and increase TP 
by introducing positioning uncertainty. Recall has improved significantly. Table 8.2 
shows that the method MVT in this chapter has positioning uncertainty. Among 
them, 89.9% of MODA and 94.1% of recall were obtained on the Wildtrack dataset; 
88.5% of MODA and 91.6% of recall were obtained on the MultiviewX dataset. 
Although the MVT (w/o localization uncertainty) variant does not have positioning 
uncertainty, the accuracy obtained is significantly lower than that of the other 
variants. The experimental results show that localization uncertainty is crucial in 
this method. By comparing the experimental results of MVT (w/o localization 
uncertainty) with other variants, we discovered that the overall model’s accuracy is 
very low. Figure 8.7 shows the MVT results map (without localization uncertainty 
and MVT). We thoroughly investigate the impact of localization uncertainty on 
detection and positioning and discover that it has a significant impact on the detec-
tion and positioning of a single-view image. Multiple perspectives superimposed 
has a superposition effect on positioning uncertainty as well. The goal of multi-
view detection experiments is to show that the location has a direct influence on the 
experiment’s results. As a result, we added positioning uncertainty to our algorithm 
model, optimized the model’s overall loss function, and improved its robustness.



References 189

8.4 Summary 

One-click annotation is a simple and effective 2D annotation method that we 
proposed. This method only requires the user to provide a click close to the center 
of the object. In the current mainstream semi-automatic annotation tools, IoU of 
annotation boxes performs best. Furthermore, our method naturally supports the 
interactive annotation of additional points for additional correction. Despite its 
simplicity, numerous experiments have demonstrated that our model generalizes 
well across datasets and fields, demonstrating its superiority as an annotation tool. 
We intend to investigate the domain of adaptive semi-automatic labeling in the 
future, and a single click can annotate all objects in the image that are in the 
same category as the clicked object. We believe that our research will stimulate 
new research ideas in the field of automatic labeling. In this chapter, we use a 
new method to improve the accuracy of multi-view detection. We replace ordinary 
convolutional networks with deformable transformers and use the spatial sparsity 
capability of deformable convolutions and the modeling relationship of transformers 
to effectively extract image features from multiple cameras. In order to make better 
use of the feature information from multiple cameras, we chose a new residual 
corner pooling module to enhance pixel-level semantic information and highlight 
the corner positions. Finally, we also used the loss of positioning uncertainty to 
supplement the loss of bounding box, which reduced FP, increased TP, improved 
positioning accuracy, and optimized model convergence. The accuracy of our 
method reached 88.5 and 89.9% in the MultiviewX dataset and Wildtrack dataset, 
respectively, and achieved good competitive results. We also hope to have further 
prospects. 

References 

1. Baqué, P., Fleuret, F., Fua, P.: Deep occlusion reasoning for multi-camera multi-target 
detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 
271–279 (2017) 

2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object 
detection with transformers. In: European Conference on Computer Vision, pp. 213–229. 
Springer, Berlin (2020) 

3. Chavdarova, T., Fleuret, F.: Deep multi-camera people detection. In: 2017 16th IEEE 
International Conference on Machine Learning and Applications (ICMLA), pp. 848–853. 
IEEE, Piscaataway (2017) 

4. Chen, W., Xu, J., Zhao, X., Liu, Y., Yang, J.: Separated sonar localization system for indoor 
robot navigation. IEEE Trans. Ind. Electron. 68(7), 6042–6052 (2020) 

5. Fang, Y., Ding, G., Wen, W., Yuan, F., Yang, Y., Fang, Z., Lin, W.: Salient object detection by 
spatiotemporal and semantic features in real-time video processing systems. IEEE Trans. Ind. 
Electron. 67(11), 9893–9903 (2019) 

6. Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multicamera people tracking with a probabilistic 
occupancy map. IEEE Trans. Pattern Analy. Mach. Intell. 30(2), 267–282 (2007)



190 8 Vehicle-Road Multi-View Interactive Data Fusion

7. Hou, Y., Zheng, L., Gould, S.: Multiview detection with feature perspective transformation. In: 
European Conference on Computer Vision, pp. 1–18. Springer, Berlin (2020) 

8. Kumar, A., Brazil, G., Liu, X.: GrooMeD-NMS: Grouped mathematically differentiable nms 
for monocular 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition, pp. 8973–8983 (2021) 

9. Law, H., Deng, J.: Cornernet: Detecting objects as paired keypoints. In: Proceedings of the 
European Conference on Computer Vision (ECCV), pp. 734–750 (2018) 

10. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid 
networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, pp. 2117–2125 (2017) 

11. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: 
Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF 
International Conference on Computer Vision, pp. 10012–10022 (2021) 

12. Rodriguez-Blazquez, C., Schrag, A., Rizos, A., Chaudhuri, K.R., Martinez-Martin, P., Wein-
traub, D.: Prevalence of non-motor symptoms and non-motor fluctuations in parkinson’s 
disease using the MDS-NMS. Movement Disorders Clini. Pract. 8(2), 231–239 (2021) 

13. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: Fully convolutional one-stage object detection. In: 
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627–9636 
(2019) 

14. Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., Zhang, L.: CvT: Introducing convo-
lutions to vision transformers. In: Proceedings of the IEEE/CVF International Conference on 
Computer Vision, pp. 22–31 (2021) 

15. Wu, S., Wu, T., Lin, F., Tian, S., Guo, G.: Fully transformer networks for semantic image 
segmentation (2021). Preprint arXiv:2106.04108 

16. Xu, Y., Liu, X., Liu, Y., Zhu, S.C.: Multi-view people tracking via hierarchical trajectory 
composition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 4256–4265 (2016) 

17. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: Deformable transformers 
for end-to-end object detection (2020). Preprint arXiv:2010.04159



Chapter 9 
Information Quality in Data Fusion 

Abstract As an essential element of multi-sensor fusion, uncertainty provides 
theoretical support for making better decisions using multi-source data. This chapter 
begins by introducing the prerequisite knowledge. Following that, two types of 
uncertainty are introduced from the perspective of models and data, known as 
epistemic uncertainty and theoretical uncertainty. It is possible to deal with the 
contingencies for a given model or set of sensors on a vehicle by delving into 
these two types of uncertainty. This chapter proposes a novel multimodal fusion 
architecture from an information-theoretic perspective. The proposed model is 
presented from four aspects: baseline, uncertainty modeling, fusion step, and imple-
mentation. Furthermore, the experimental procedure, including data preprocessing, 
noise simulation, experimental results, and analysis, is described in detail. 

9.1 Introduction 

Deep learning has greatly aided computer vision in areas such as semantic segmen-
tation, object detection, and object tracking. However, there are more requirements 
for vision models in some application areas, such as autonomous driving [7]. 
Though current models are capable of performing well on most tasks, they have 
a limitation with dirty data and fail to meet the practical standards of industrial 
application [2, 3, 13]. When a self-driving vehicle (SDV) is operating on the road, 
for instance, the complex traffic scenarios, unpredictable weather conditions, and 
potential sensor failure can cause pattern shifts and inaccurate object recognition. As 
a result, in model development, robustness and generalization are gradually brought 
into focus. 

Current methods can be divided into three types: camera-based, LiDAR-based, 
and fusion methods. Camera images contain abundant information and have been 
shown to be effective in segmentation tasks. However, due to the limited camera 
photosensitivity, they would not perform well under weak or changing illumination. 
Previous research has explored possible solutions by utilizing specific features, 
such as the slender shape of lane lines and relationships between the continuous 
images. LiDAR is a viable alternative because it provides 3D point clouds around 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
X. Zhang et al., Multi-sensor Fusion for Autonomous Driving, 
https://doi.org/10.1007/978-981-99-3280-1_9

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3280-1protect T1	extunderscore 9&domain=pdf
https://doi.org/10.1007/978-981-99-3280-1_9
https://doi.org/10.1007/978-981-99-3280-1_9
https://doi.org/10.1007/978-981-99-3280-1_9
https://doi.org/10.1007/978-981-99-3280-1_9
https://doi.org/10.1007/978-981-99-3280-1_9
https://doi.org/10.1007/978-981-99-3280-1_9
https://doi.org/10.1007/978-981-99-3280-1_9
https://doi.org/10.1007/978-981-99-3280-1_9
https://doi.org/10.1007/978-981-99-3280-1_9
https://doi.org/10.1007/978-981-99-3280-1_9
https://doi.org/10.1007/978-981-99-3280-1_9


192 9 Information Quality in Data Fusion

the vehicle with information reflecting the materials and shapes of the obstacles. 
Unlike cameras, LiDARs can avoid the influence of lights, whereas the sparsity of 
point clouds limits the perception resolution. 

As a complement, fusion methods can leverage advantages from multimodal 
data. They can fuse the source data, feature maps, or model output at different stages 
of the models to obtain comprehensive patterns of the target. Despite the fact that the 
latest research has produced ground-breaking results, few of them provide reliable 
explanation on the fusion mechanism or common rules in fusion model design. 

We proposed that multimodal fusion be reviewed with information theory in 
order to create an interpretable fusion model. As most of the deep networks can 
be regarded as cascaded feature extraction layers, we treat each single node, layer, 
and pipeline and even the whole network as a communication channel [20, 26]. 
Therefore, the channel structure and information source determine the upper and 
lower bounds (channel capacity and rate-distortion bound) of the network learning 
ability based on the inference of Shannon’s theorems. Then we suggest the balance 
about capacity and its distribution accordingly. 

9.2 Uncertainty in Data Fusion 

Dirty data has always been non-negligible trouble in perception like object detec-
tion, particularly in the field of autonomous driving and other robots. On the 
one hand, noise in data can cause inaccurate recognition due to the shifts in 
the observed pattern, necessitating a robust generalization of the models. On the 
other hand, the cutting-edge research leverages multimodal fusion to overcome 
limitations in single-sensor measurement, while few focus on the flawed data in 
practical applications. To tackle this issue, we propose a universal uncertainty-
aware multimodal fusion framework. It adopts a multi-pipeline loosely coupled 
architecture to combine the features and results from multi-source data (point 
clouds and images in this chapter). In order to quantify the correlation in multi-
modal information, we further model the uncertainty in different modalities and 
embed it in the bounding box generation. In this way, our model can reduce the 
randomness in fusion and generates reliable output. Moreover, we conducted a 
thorough investigation on the KITTI 2D object detection dataset and its derived 
dirty data. Our YOLO-based fusion model has been shown to withstand severe noise 
interference such as Gaussian, motion blur, and frost, with only minor degradation. 
The experiment results demonstrate the benefits of our adaptive fusion. Our analysis 
on the robustness of multimodal fusion will provide additional insights for future 
research. 

Many methods for solving the problem have been proposed, ranging from the 
hardware side like using more elaborate sensors to the software side such as 
adaptive algorithms. Some algorithms estimate the correct features for different 
data, including data augmentation [19], transfer learning [30], feature enhancement 
[3], noise estimation [29], and so on. They avoid the effects from noise in data by



9.2 Uncertainty in Data Fusion 193

Fig. 9.1 Illustration of the measurement noise in perception models. Tests on datasets take fixed 
data points as input and generate statistical conclusions. While, in practical application, various 
environment and hardware conditions produce the potential noise in measurement, it will cause a 
shift in multimodal features as well as errors in the final output 

grabbing the invariant features or modifying the training data distribution. However, 
most of these methods are developed on single-modal models that rely on the 
specific sensor measurement essentially. As shown in Fig. 9.1, we generally train 
and evaluate our models on the given datasets. Due to the limited amount of data, 
statistical results on the datasets cannot reflect true performance in reality, especially 
when sensors encounter error beyond the cases in datasets. Therefore, redundancy 
in the data is also a vital aspect in practical deployment. 

Multimodal fusion methods have gained attention in recent years for the reasons 
stated above [7]. SDVs are equipped with different sensors for more complete and 
precise perception. On the one hand, multimodal sets can provide complementary 
measurements, such as cameras recording the colors and textures, LiDARs provid-
ing the 3D structure of objects, and RaDARs observing the velocity of moving 
targets. On the other hand, multimodal fusion can provide redundant information



194 9 Information Quality in Data Fusion

for stable recognition. Different sensors have specific working conditions, which 
means they all will fail in some situations. Therefore, we mainly discuss the adaptive 
strategy of multimodal fusion for SDV perception in this chapter, especially on the 
object detection task. 

There has been a lot research into the multimodal object detection of autonomous 
driving since the KITTI benchmark was released in 2012 [8]. It is also recognized 
as a potential approach to realize robust detection. After that, various datasets 
and approaches were proposed to accelerate the development of this community 
and achieve higher recognition accuracy [4, 24]. In the early stage, model-based 
methods used bagging methods for result fusion [22, 28]. Individual pipelines are 
typically used to process different data and merge the bounding boxes to generate 
the final results. Latest data-driven methods mainly applied feature fusion (boosting 
or stacking) for a more profound information mixture that fuses multimodal data in 
the feature extraction or region of interest (ROI) generation stage [3, 17]. 

However, existing fusion methods focus on the quantified scores in standard 
vision tasks, with few contributing to the robustness or generalization of fusion 
[6]. Because of the high-dimension feature space of fusion multimodal data, 
fusion models are more prone to the curse of dimensionality problems. It is more 
challenging to extend the training data via multimodal data augmentation for the 
same reason. In addition, when a multimodal model has not been trained well as 
in Fig. 9.1, it generates greater variance with dirty multimodal data. As a result, 
multimodal fusion does not essentially guarantee the incrementation in performance 
and robustness. 

Different from those learning-based feature fusion models, we claim that adap-
tive fusion models should leverage related information from multi-source data while 
avoiding noise in them. Based on this idea, we propose an adaptive fusion method 
with result fusion architecture. Considering that different modal data require specific 
operators and parameter optimization in feature processing, we adopt a loosely 
coupled network architecture. Multimodal data are fed to individual pipelines that 
are connected in the boxes filtering stage. Then we apply decision-level fusion by 
fusing the box proposals in the revised non-maximum suppression (NMS). 

In order to achieve reliable fusion, we introduce uncertainty quantification into 
our model. Proper uncertainty quantification can indicate the prediction deviation 
of the model, so it has been viewed as a potential approach toward the interpretable 
neural network and an emerging method in autonomous driving [7, 14]. In our 
model, we predict the uncertainty for each data point. Through joint training on 
multimodal data, our model learns a universal uncertainty measurement that can be 
used as the boxes filter index in NMS. To demonstrate the benefits of our design and 
explore the noise effect in fusion models as well, we have evaluated the models 
on the KITTI 2D object detection dataset. Point clouds and RGB images were 
progressively perturbed to simulate multi-level dirty data. Then, we ran experiments 
with both raw data and dirty data. For clean data, our fusion model achieved sub-
optimal but competitive results, only 0.36mAP lower than depth model, while 
4.24mAP higher than RGB model. As for dirty data, we achieved 51.61mAP higher



9.2 Uncertainty in Data Fusion 195

than RGB model and 34.20mAP higher than depth model on average. Our main 
contributions can be concluded as: 

• We explored the influence of multi-level noise on LiDAR point clouds and 
camera RGB images and revealed the attenuation law for object detection task. 

• We proposed a universal fusion model based on uncertainty, which can be 
implemented with different modal data and fuse their predictions adaptively. 

• We conducted sufficient experiments on the KITTI dataset, demonstrating that 
our model has strong robustness and generalizes to noisy data beyond the train 
set. 

Noisy data can mislead detection models because their object features are out of 
the distribution of the model fitting domain. Therefore, it is feasible to extend the 
training set to provide more diverse data or create feature filters to regularize noisy 
features. Data augmentation is one of the most common approaches for the former. 
Michaelis et al. [21] provided a benchmark to simulate multiple noise in natural 
environment, which is presented in Fig. 9.2. Besides, domain adaptation is another 
practical method. Transferring learned parameters (knowledge) among datasets can 
aggregate feature distributions across different data domains [30]. Khodabandeh 
et al. proposed to using noisy label in training to enhance the generalization 
[15]. Rather, researchers are concerned about whether we can directly extract and 
improve related features. Bijelic et al. proposed a multi-sensor model and mix 
features in multiple levels for mutual activation [3]. Others try to estimate the 
noise from the opposite perspective. Yang et al. developed a model to estimate the 
accuracy of laser measurement under foggy condition [29]. But most of them are 

Fig. 9.2 Visualization of the simulated noise [21]. From top left to bottom right are eight common 
noises in nature



196 9 Information Quality in Data Fusion

developed on single-modal models, which indicates that they will fail if the sensor 
encounters severe fault. 

Most of the models discussed above avoid specific types of noisy data. However, 
most of these techniques do not take into account either multimodal situation 
or robustness of the model under various noise attacks. For example, Gaussian 
YOLOv3 is developed for single-modal data, UNO [25] is evaluated on semantic 
segmentation tasks, and Feng [6] ignores many other types of noise data from the 
environment. Hence, we intend to synthesize the advantages of those techniques 
in an uncertainty-aware multimodal object detection model and evaluate it with 
common types of dirty data. 

9.2.1 Methodology 

First, we formulate the adaptive fusion problem and describe our baseline fusion 
model. To improve the robustness and generate uncertainty-aware fusion strategy, 
we estimate aleatoric uncertainty of each bounding box of each modal via loss 
attenuation. Then it will be applied for boxes filtering in the NMS stage. To balance 
speed and accuracy, we chose one-stage object detection model YOLOv3 as our 
baseline, while our method should be easily extended to other classical object 
detection models. 

The goal of noisy data object detection is to locate and classify targets from data 
that is disturbed with natural noise. Generally, an object detection model .D(·) takes 
an image, point clouds, or a group of multimodal data .X = {X1, X2, ...} as input, 
where subscripts indicate the modality. Then it returns the expected coordinates 
.{x, y,w, h} and categories . {c} of the targets. For noisy data detection, we assume 
that clean data will be measured by noisy function .F (·). Our goal is to minimize 
the recognition deviation while maximizing the influence of noise: 

.min
D

max
F

L (D(F (X)), {x, y,w, h, c}) (9.1) 

As we approach the minimum, we can guarantee the generalization and robust-
ness of our detection models over most severe noise. Specifically, for multimodal 
fusion models, to simplify the problem, we assume that X contains at least two 
modal data, namely, two types of sensors at least. The focus of this chapter is on 
LiDAR point clouds and camera RGB images. In addition, noise will only be added 
to one modal data in a single experiment, to avoid the worst-case scenario where all 
sensors fail and nothing works. 

The YOLOv3 [23] is a modified version of the YOLO series models, achieving 
practicality in terms of accuracy and speed. The structure of YOLOv3 has been 
shown in Fig. 9.3, consisting mainly of the DarkNet-53 backbone network and the 
three-branch decoder. The backbone network is composed of residual blocks and 
convolution blocks, while each decoder branch mainly contains the convolution 
blocks. A convolution block comprises a 2D convolution layer, a batch normal-



9.2 Uncertainty in Data Fusion 197

Fig. 9.3 Architecture of the proposed 2D object detection model. The top sub-figure presents the 
overview of YOLOv3 network [23]. For details of the network layers, refer to the original paper. 
The bottom sub-figure shows our loosely coupled multimodal detection model with a joint NMS 
for universal prediction in the 2D space. Besides, our model can be easily implemented with other 
backbones like SSD [18] 

ization layer, and a leaky ReLU activation. A residual block comprises various 
residual units, and each of them has two convolution blocks and a skip-layer 
concatenation. Decoders process the feature maps transmitted by the former blocks 
and the previous branch, which will be up-sampled to realize multi-scale detection. 
These designs improve the detection robustness and speed of YOLOv3. To apply 
YOLOv3 for LiDAR point clouds, we project points onto a 2D plane as the camera 
image and process it as a 2D depth image. 

As mentioned above, in most existing multimodal fusion network, the modalities 
are heavily coupled and do not consider any safety-critical environment. To weaken 
the interfere for fear that the modality will harm each other, we leverage parallel 
pipelines and late fusion techniques to combine the final outputs. The overview 
architecture is presented in Fig. 9.3. RGB images and the projected depth images 
will be calibrated in space and size. Then they will be fed to individual pipelines. 
Though we apply YOLOv3 for both modalities, they also accepted different 
combinations of models, be it 3D or 2D, one-stage or two-stage. Besides, one 
possible scenario is to establish communication between the two models by fusing 
two modal features in the middle of the models [6, 32], which may get better 
characteristics. However, to avoid the model non-convergence issue and two modal 
data uncertainty interfere with each other, our exploration of the uncertainty-aware 
detection model has led us to avoid this approach. For the basic fusion model, 
we can simply fuse all the proposed bounding boxes and filter them in the joint



198 9 Information Quality in Data Fusion

NMS process or apply NMS for each modality and conduct second selection for 
them afterward. In the final version, this process will be revised to the uncertainty-
aware multi-source NMS. The fusion model universally outputs all boxes onto the 
image 2D plane. Because of our loosely coupled design, the proposed fusion model 
is compatible with more different modalities and tasks, even with the addition of 
uncertainty fusion factors. But we will take LiDAR point clouds and camera images 
as examples in our experiments. 

In our fusion strategy, we mainly consider aleatoric uncertainty, since the noises 
in each modality caused by sensor failure or extreme weather can be better explained 
by aleatoric uncertainty. Generally speaking, aleatoric uncertainty can be interpreted 
as noise or vague in data or label that is hard to fit. 

Though aleatoric uncertainty cannot be eliminated by adding more training data, 
it could be reduced with additional features or views. Therefore, our strategy can 
also be interpreted as a type of method for reducing aleatoric uncertainty using 
multiple modalities. To estimate the aleatoric uncertainty of each object in each 
modality, we apply the loss attenuation that integrates uncertainty estimation func-
tion in the training loss function and optimize them together with neural networks. 
For object detection, we focus on the coordinates’ regression and classification. The 
traditional loss function is: 

.LNN(θ) = 1

N

N∑

i=1

||yi − f (xi)||2 (9.2) 

where NN  represents the neural network, N represents the number of samples . {xi}, 
and .{yi} represents the target output .(x, y,w, h) in Eq. 9.1. In order to recognize the 
uncertain predictions in fusion, we expect the model can assign high uncertainty to 
inaccurate results and low for the rest. Then Eq. 9.2 should be redesigned as: 

.LNN(θ) = 1

N

N∑

i=1

1

2σ(xi)2
||yi − f (xi)||2 + 1

2
logσ(xi)

2 (9.3) 

where .σ(·) is the variance estimation function. With loss attenuation, the model is 
expected to predict proper uncertainty for boxes. 

Following the setting of Gaussian YOLOv3 and related information, we extend 
the prediction to .(μx,Σx, μy,Σy, μw,Σw,μh,Σh), where .μ,Σ indicate the mean 
and variance of the target elements. Then the mean should converge to the ground 
truth, while smaller variances are predicted for accurate boxes, and larger variances 
are predicted for inaccurate boxes. Then the uncertainty can be indicated by 
variance. Due to the penalty during training, the samples with high uncertainty tend 
to generate high variance during optimization. Additionally, to fit the prediction 
mode of YOLOv3, we need to conduct sigmoid function for each value and scale 
them to the range of (0,1). 

In our experiment, we examine the validation of uncertainty estimation for 
point cloud model and RGB model on the KITTI 2D object detection dataset. The



9.2 Uncertainty in Data Fusion 199

Fig. 9.4 The validity of uncertainty estimation. We visualize the relationship among uncertainty 
(variance . σ 2, classification confidence, and localization accuracy IoU above. All of these are 
computed for point-based and image-based models separately as shown in the six sub-figures) 

relationship among confidence (conf), uncertainty (. σ 2), and localization (IoU) is 
visualized in Fig. 9.4. In the figures, the more linearly correlated the distributions of 
two variables are, the more correlated, or interpretable, they are. Figure 9.4a and b 
presents the joint distribution of . σ 2 and conf. Their distribution is not so closer to 
linear, indicating that their uncertainty is less related to confidence. Comparing with 
this group, it is more interpretable for (IoU, . σ 2) and (IoU, conf). The data points



200 9 Information Quality in Data Fusion

in RGB sub-figures are more concentrated than point cloud sub-figures. That means 
our uncertainty estimation fits RGB models better than point cloud models. This 
situation also applies to combination (IoU, . σ 2) and (IoU, conf), indicating that the 
correlation between confidence and positioning accuracy is not significant. To sum 
up, it is reasonable to fuse and optimize the candidate boxes using uncertainty. 

In this way, we model every bounding box in each object with an uncertainty 
value indicating the quality of the object: 

.Bboxi ∼ N(μi,Σ
2
i ) (9.4) 

Equation 9.4 is applied for the four elements .{x, y,w, h}. As for our multimodal 
model, we have individual pipelines for each input data and correspondingly 
individual predicted boxes for them, which means we need to model the uncertainty 
in each pipeline. Because the uncertainty (variance) only reflects the properties of 
the boxes, we can think of these estimates as belonging to the same scale with 
similar meanings. 

For optimization, Eq. 9.3 is revised as: 

.Lx = −
W∑

i=1

H∑

j=1

K∑

k=1

λijklog(P (xGT
ijk |μx(xijk),Σx(xijk)) + ε) (9.5) 

.λijk = (2 − wGT × hGT ) × δ
obj
ijk

2
(9.6) 

where K is the number of anchors and .λijk is set as a penalty coefficient of weight. 
Equation 9.5 is also applied for the four elements .{x, y,w, h} according to the 
specific loss function. In the setting of our result-level fusion, we predict proposed 
bounding boxes from two pipelines and fuse them in single NMS module, though 
we optimize Eq. 9.5 individually for two pipelines’ output. However, uncertainty 
estimation is not sufficient for adaptive fusion; we further design an uncertainty-
aware multi-source NMS algorithm to achieve the goal. 

Non-maximum suppression (NMS) can filter bounding box according to IoU 
and classification score. But traditional NMS only consider classification score and 
ignore the accuracy of localization. Typically, when considering model uncertainty, 
the classification score generated by softmax layer is probable to overestimate the 
score. Besides, lower scored boxes may have higher localization confidence. In 
order to integrate uncertainty and combine the entire results of each modality in 
our model, softer-NMS [11] has been proposed to substitute NMS. It calculates 
the weighted average of all based on box-level aleatoric uncertainty and update the 
localization parameters for prediction. For example, . x1 is updated by: 

.x1,i =
∑

j x1,j /σ
2
x1,j∑

j 1/σ
2
x1,j

s.t.IoU(bi, b) > 0.5 (9.7)



9.2 Uncertainty in Data Fusion 201

where .σ 2
x,i is the aleatoric uncertainty of bounding box. All eight parameters from 

two pipelines will be updated with the same approach. 
In the case of multi-source fusion, we have predictions from multiple pipelines. 

If we mix the predictions of multiple modalities directly, we will ignore the pattern 
correlation across different modalities and consistency within each modality, respec-
tively. Therefore, given two thresholds . t1 and . t2, we can classify the relationship 
between the predictions of the two modalities .A,B into three cases: 

• Case 1: when .IoU(A,B) ∈ [t2, 1], the area is activated by two modal data with 
high confidence. 

• Case 2: when .IoU(A,B) ∈ [t1, t2), the area exists confusing patterns from 
different modalities. 

• Case 3: when .IoU(A,B) ∈ [0, t1), different modal data detect objects in 
different areas that are not correlated. 

According to the definition above, we propose the extended softer-NMS in the 
algorithm to replace the joint NMS, dubbed uncertainty-aware multi-source NMS. 
To adapt the confidence attenuation strategy in softer-NMS, we need to merge and 
rerank .A,B first. Confidence smoothing will be applied for all these boxes, while 
coordinate adjustment is modal specific. For boxes in each single-modal data, we 
compute the IoU with boxes from other modal detections and generate three cases. 
For Case 1, we focus on the highly similar boxes from all modal data. For Case 2, we 
apply general softer-NMS to fuse boxes adaptively. However, in the Case 3, boxes 
from another modality are severely off position, which are more likely to drop the 
localization accuracy. We ignore them to avoid potential influence from them. The 
iteration is based on the confidence scores and will not affect the boxes’ adjustment 
due to its disorderliness. 

9.2.2 Experiment 

We select the KITTI 2D object detection dataset [8] for problem investigation and 
model valuation, including 7481 pairs of camera images and LiDAR point clouds. It 
provides over 80K 2D box annotations with several different classes: car, pedestrian, 
tram, van, truck, and cyclist. To avoid the influence of imbalance data distribution 
(we focus on multimodal robustness), we combine them into three classes: car, 
pedestrian, and cyclist. In our experiment, the dataset is randomly split into train, 
validation, and test set by the ratio of 6:2:2. 

Before training, we project the 3D point clouds onto the image plane to be 2D 
depth images. Given a point .Pv = (xv, yv, zv)

T , we calculate: 

.P ′
v = Kv[Rv|Tv]Pv (9.8) 

where .Kv,Rv, Tv refer to the camera calibration matrix, rotation matrix, and 
translation matrix. The projected front-view point cloud depth map will be cropped



202 9 Information Quality in Data Fusion

to the same size as RGB images. We set the size as .128 × 512 in our experiment. 
Afterward, the value of both depth map and the RGB images are normalized to [0,1] 
interval. 

To achieve the upper bound of noise inference in Eq. 9.1, we leverage the 
noise benchmark [21] and select sufficient noise levels to modify KITTI data. The 
benchmark contains 15 corruptions on 5 severity level, including Gaussian noise, 
blur, and extreme weather. Because some types of the noise cannot be applied to 
the point clouds like weather aspects, we chose three representative interference 
methods, Gaussian noise, motion blur, and frost noise, with five-level noise intensity. 

With the proposed multi-source NMS, we replace the joint NMS in the fusion 
model Fig. 9.3 with it. Our fusion strategy can be easily changed to be based on 
other types of NMS or even adapted to NMS-free models. For fusion models, we 
first train the pipelines separately to provide stable convergence for fusion. Then 
we concatenate two pipelines with joint NMS or our proposed method for joint 
optimization. We set the IoU threshold in NMS as 0.45 for the two single-modal 
models, as well as set the two thresholds as 0.45 and 0.7 in our proposed models. 

We have also implemented our method with SSD [18] in the experiment, which 
can achieve even better performance for reference. For comparison, we use average 
boxes’ selection (AvgFusion) as the default joint NMS method. Half of the boxes 
from two pipelines will be randomly dropped and processed in one NMS step. In all 
experiments, we set the batch size as 16 and the initial learning rate as 0.0001. The 
experiment is conducted on NVIDIA GTX 1080 Ti with CUDA 8.0 and cuDNN v7. 

Preliminary experimental results on the original KITTI dataset are shown in 
Fig. 9.5. In Fig. 9.5a, we compared two implementation versions based on Gaussian 
YOLOv3 and SSD [18], which has been revised to Gaussian SSD with uncertainty 
estimation. The results showed that SSD achieved better performance in all models. 
That means our approach can generalize to other detection models and achieve better 
performance by incorporating a better baseline. 

However, in the subsequent experiments, we chose to use Gaussian YOLOv3 
model to highlight the effect of the fusion algorithm. We present the comparison 
on three main categories in Fig. 9.2b. Both AvgFusion and our model achieve the 
sub-optimal performance between RGB and depth models due to the lack of prior 
information in boxes selection/fusion. However, our model has higher accuracy 
and approaches the optimal modal performance on all objects, demonstrating the 
benefits of our method on clean data and the accuracy of our uncertainty estimation 
that reflects the quality of predicted boxes. 

We have further investigated the models’ performance with noisy KITTI data for 
the comprehensive understanding of the robustness in multimodal fusion. First, we 
evaluate the performance of single-modal models with noisy data to validate the 
simulated noise in Table 9.1. Then, we run a similar test for our proposed fusion 
model in Table 9.2. NR-D means fusion with noisy RGB data, while R-ND means 
fusion with noisy depth data. We finally provide supplement conclusions based on 
the results. In all experiments, models are trained with clean data and tested with 
noisy data.



9.2 Uncertainty in Data Fusion 203

Fig. 9.5 Performance on normal KITTI dataset. (a) presents the comparison based on Gaussian 
YOLOv3 and SSD [18]. (b) presents the details on three categories of Gaussian YOLOv3 

9.2.3 Detection Model Degradation Under Noise 

The experiments show that the single-modal model is severely affected by the noisy 
data and the effect increases with the degree of noise disturbance. The experimental 
results are shown in Table 9.1. The numbers under noise name indicate the inference 
level. We list the mAP of the proposed model under different noise settings. Among



204 9 Information Quality in Data Fusion

Ta
bl
e 
9.
1 

A
P 
fo
r 
R
G
B
/d
ep
th
 s
in
gl
e-
m
od
al
 m

od
el
s 
un
de
r 
le
ve
l 1

–5
 n
oi
sy
 d
at
a 

N
oi
se
 ty

pe
G
au
ss
ia
n 
no

is
e

M
ot
io
n 
bl
ur

Fr
os
t n

oi
se
 

M
od

al
ity

 
C
at
eg
or
y 

C
le
an
 

L
1

L
2

L
3

L
4

L
5

L
1

L
2

L
3

L
4

L
5

L
1

L
2

L
3

L
4

L
5 

R
G
B

C
ar

92
.3
9 

82
.1
3 

66
.3
1 

36
.8
1 

10
.0
4 

0.
39
 

87
.6
8 

79
.0
1 

57
.3
6 

29
.8
3 

16
.3
2 

66
.1
9 

39
.3
0 

25
.3
4 

23
.1
7 

16
.3
8 

Pe
d.

69
.7
1 

41
.8
3 

21
.7
1 

6.
68
 

0.
76
 

0.
00
 

40
.0
4 

19
.7
9 

7.
13
 

0.
97
 

0.
21
 

21
.7
5 

4.
86
 

1.
18
 

1.
55
 

0.
59
 

C
yc
lis
t

66
.9
2 

46
.7
0 

29
.8
5 

13
.4
5 

3.
49
 

0.
47
 

54
.2
4 

40
.8
4 

20
.4
3 

6.
64
 

2.
37
 

32
.8
3 

15
.8
8 

9.
80
 

8.
46
 

4.
72
 

m
A
P

76
.3
4 

56
.8
9 

39
.2
9 

18
.9
8 

4.
76
 

0.
28
 

60
.6
6 

46
.5
5 

28
.3
1 

12
.4
8 

6.
30
 

40
.2
6 

20
.0
1 

12
.1
1 

11
.0
6 

7.
23
 

D
ep
th

C
ar

91
.4
4 

83
.6
8 

70
.0
2 

43
.8
4 

18
.9
8 

2.
38
 

87
.2
3 

84
.4
0 

76
.8
0 

63
.7
4 

53
.2
5 

59
.1
1 

36
.5
1 

25
.5
4 

26
.0
9 

20
.8
4 

Pe
d.

76
.5
3 

60
.8
3 

43
.2
7 

21
.5
6 

5.
88
 

0.
66
 

68
.7
6 

61
.3
7 

41
.8
7 

24
.6
0 

13
.6
3 

42
.8
7 

28
.6
7 

21
.0
0 

23
.0
6 

19
.5
1 

C
yc
lis
t

74
.8
5 

64
.7
1 

53
.8
4 

36
.3
2 

18
.4
3 

2.
04
 

67
.0
3 

60
.8
1 

48
.6
8 

36
.7
6 

27
.9
9 

53
.2
4 

44
.5
8 

37
.5
0 

37
.9
4 

34
.2
4 

m
A
P

80
.9
4 

69
.7
4 

55
.7
1 

33
.9
0 

14
.4
3 

1.
69
 

74
.3
4 

68
.8
6 

55
.7
8 

41
.7
0 

31
.6
2 

51
.7
4 

36
.5
9 

28
.0
1 

29
.0
3 

24
.8
6



9.2 Uncertainty in Data Fusion 205

Ta
bl
e 
9.
2 

A
P 
fo
r 
ou
r 
fu
si
on
 m

od
el
 u
nd
er
 le
ve
l 1

–5
 n
oi
sy
 d
at
a.
 N
R
-D

/R
-N

D
 in

di
ca
te
s 
on
e 
m
od
al
 d
at
a 
is
 w
ith

 n
oi
se
 

N
oi
se
 ty

pe
G
au
ss
ia
n 
no

is
e

M
ot
io
n 
bl
ur

Fr
os
t n

oi
se
 

M
od

al
ity

 
C
at
eg
or
y 

C
le
an
 

L
1

L
2

L
3

L
4

L
5

L
1

L
2

L
3

L
4

L
5

L
1

L
2

L
3

L
4

L
5 

N
R
-D

C
ar

92
.1
0 

90
.3
6 

88
.9
7 

87
.7
5 

87
.7
8 

88
.1
6 

90
.9
1 

89
.1
1 

87
.1
4 

86
.5
4 

87
.3
8 

88
.6
2 

88
.0
6 

87
.8
5 

87
.7
6 

87
.7
2 

Pe
d.

75
.4
8 

70
.5
2 

65
.6
4 

69
.4
0 

72
.0
3 

72
.7
7 

69
.1
6 

69
.6
8 

72
.3
0 

72
.4
8 

72
.6
8 

67
.2
4 

68
.4
3 

71
.3
8 

71
.7
1 

72
.3
1 

C
yc
lis
t

74
.1
7 

69
.3
4 

68
.8
1 

68
.5
9 

69
.7
7 

70
.6
2 

68
.9
0 

67
.3
8 

67
.2
1 

69
.0
7 

69
.5
3 

68
.3
9 

68
.9
5 

69
.3
1 

69
.9
5 

70
.5
0 

m
A
P

80
.5
8 

76
.7
4 

74
.4
7 

75
.2
5 

76
.5
3 

77
.1
8 

76
.3
2 

75
.3
9 

75
.5
5 

76
.0
3 

76
.5
3 

74
.7
5 

75
.1
4 

76
.1
8 

76
.4
7 

76
.8
4 

R
-N

D
C
ar

92
.1
0 

91
.4
0 

90
.6
0 

90
.6
2 

90
.7
3 

90
.8
7 

91
.9
7 

91
.4
4 

89
.7
9 

88
.1
7 

87
.4
0 

90
.3
1 

90
.4
1 

90
.6
2 

90
.7
2 

90
.7
0 

Pe
d.

75
.4
8 

74
.0
3 

73
.1
1 

68
.8
0 

65
.0
7 

63
.8
1 

73
.2
5 

69
.9
1 

65
.2
9 

62
.5
9 

60
.0
7 

72
.4
2 

68
.2
3 

66
.2
6 

66
.8
5 

67
.0
4 

C
yc
lis
t

74
.1
7 

72
.7
0 

70
.9
1 

68
.4
0 

67
.1
9 

66
.9
5 

71
.7
9 

69
.7
3 

66
.8
1 

63
.1
9 

62
.3
8 

69
.1
0 

68
.1
9 

67
.7
6 

68
.1
6 

67
.0
4 

m
A
P

80
.5
8 

79
.3
8 

78
.2
1 

75
.9
4 

74
.3
3 

73
.8
8 

79
.0
0 

77
.0
3 

73
.9
6 

71
.3
2 

69
.9
5 

77
.2
8 

75
.6
1 

74
.8
8 

75
.2
4 

74
.9
2



206 9 Information Quality in Data Fusion

them, the prediction accuracy of the RGB model shows a nonlinear decrease for 
the three types of noise, with mAP decreasing from 76.34 to 0.28 (Gaussian), 6.30 
(motion), and 7.23 (Frost), respectively. Compared with the detection results of 
clean data, the accuracy of all 15 experiments decreases. Similarly, the prediction 
accuracy of the depth model also decreases nonlinearly with increasing noise 
intensity, with mAP decreasing from 76.34 to 1.69 (Gaussian), 31.62 (motion), and 
24.86 (frost), respectively. The accuracy decreases in 14/15 experiments. 

In addition, the sensitivity of both modal data to these noises is consistent. The 
severity of the noise impact, from greatest to least, is: 

.Gaussian Noise > Frost Noise > Motion Blur (9.9) 

In most cases, for the same class and interference level of noise, the depth model 
has higher detection accuracy. In all 15 sets of experiments, the depth model 
outperformed the RGB model in terms of accuracy, which is the same as the 
comparison results on clean data. The average accuracy increments are 7.74+ for 
car, 20.57+ for pedestrian, 22.26+ for cyclist, and 16.86+ for mAP. 

Figure 9.2b shows that on clean data, our model obtains sub-optimal results close 
to the highest single-modal accuracy. Further, we tested the performance of the 
fusion model in the case subjected to single-modal data noise, as shown in Table 
9.2. 

The results show that the degradation of detection accuracy is smaller when our 
proposed RGB-depth fusion model is affected by the noise of only one modality. 
When the fusion model receives noisy RGB and depth data (NR-D), only 5/15 
experiments show accuracy degradation. Its average accuracy changes for the three 
RGB noisy data are . −3.40 (Gaussian), . −4.05 (motion), and . −3.74 (frost). mAP 
decreases from 80.58 to 77.18, 76.53, and 76.84, respectively. It can be seen that 
the noise for the RGB data has very little effect on our proposed fusion model. The 
effect of noise on our proposed fusion model is very small. In addition, the detection 
error of car is positively correlated with the noise intensity, but the other categories 
are not. This leads to a slight increase of mAP from the lowest point during the 
increasing noise intensity (in 10/15 experiments). This issue needs to be further 
explored in the subsequent work. 

Such a situation also exists for the noisy depth data. When the fusion model 
receives RGB and noisy depth data (R-ND), the average accuracy decreases are 
. −6.70 (Gaussian), . −10.63 (motion), and . −5.66 (frost), respectively, although there 
is a decrease in accuracy in 14/15 experiments. mAP decreases from 80.58 to 73.88, 
69.95, and 74.92. However, there is no increase in mAP with increasing noise 
intensity. 

Overall, our proposed fusion model is robust to single-modal data noise, and 
there is no substantial change in detection accuracy. Next we will analyze the gain 
of the fusion model on the single-modal models. 

We further compare the fusion model with the unimodal model. Although the 
fusion model outperforms the unimodal model on noisy data, this is not incremental, 
as it may be degrading for the unimodal model with clean data. For example, the



9.2 Uncertainty in Data Fusion 207

fusion model that received noisy data outperformed the RGB model in all tests 
(average mAP increase of 51.61), but not as well as the depth model and the fusion 
model with clean data: NRGB. <NR-D. <Depth. <Fusion. 

.NRGB < NR − D < Depth < Fusion (9.10) 

The fusion model that received noisy data was better than the depth model in all 
tests (average mAP increase of 34.20), but not as good as the RGB model and the 
fusion model with clean data. When there is less noise, 

.NDepth < RGB < R − ND < Fusion (9.11) 

and when there is more noise, 

.NDepth < R − ND < RGB < Fusion (9.12) 

The results suggest that models with noisy data improve when they fuse clean data 
and, conversely, models with clean data may deteriorate when they fuse noisy data. 
However, there is also a smaller probability of an increase in accuracy in specific 
experiments, although that is difficult to explain now. 

In addition, the sensitivity of fusion to RGB noise is: 

.Motion Blur > Frost > Gaussian (9.13) 

and to depth noise is: 

.Motion Blur > Gaussian > Frost (9.14) 

But overall they both have a relatively small effect. The average accuracy decreases 
are . −3.73 (NR-D) and . −7.66 (R-ND). For specific detection targets, RGB noise in 
multimodal data has a greater effect on car, and NR-D has lower detection accuracy 
than R-ND in all 15 experiments, with an average of 2.11 lower. In contrast, depth 
noise has a greater effect on pedestrian and cyclist, and R-ND outperforms the NR-
D model in most experiments. RGB noise is more influential when noise level . <3, 
and depth noise has greater influence when noise intensity increases. 

These findings illustrate the complexity of the performance of the fusion model 
in the face of noisy data. For different targets, recognition tasks, data modality 
combinations, and noise types, fusion models may exhibit different performances. 
They do not show a simple linear or nonlinear change for increasing noise 
intensity and may even show an increase in accuracy, which requires to be further 
investigated. 

The ablation study has been included in the comparative analysis of the 
single-modal and multimodal models and is therefore not listed separately. In the 
following, we rethink our work in terms of data noise, uncertainty, and fusion 
models.



208 9 Information Quality in Data Fusion

Fig. 9.6 Uncertainty calibration for the proposed model 

We selected three general and suitable noises from the image noise benchmark 
to add to the RGB and depth data because it is difficult to capture or simulate 
the corresponding noise data in real scenes. However, due to the gap between data 
modalities, such an approach still has a large problem to fit the real error and will 
lead to potential bias in the experimental data. However, for the robustness of the 
fusion model discussed in this chapter, we mainly focus on adding noise interference 
of sufficient strength, so that such an error may be negligible. 

Uncertainty estimation is a prerequisite of the method proposed in this chapter, 
and thus, the accuracy of the estimation determines the interpretability of the fusion 
model. Therefore, we refer to the ECE method for uncertainty calibration [16], 
as  shown in Fig. 9.6. We model the uncertainty as a Gaussian distribution of the 
bounding box estimation parameters, so the magnitude of the variance corresponds 
to the potential range of values taken. The error between the true and estimated 
values can be portrayed by the distance between the curve and the .y = x line. The 
RGB uncertainty estimates are more accurate, while depth estimates have deviation, 
which can also lead to potential model bias. 

This section have further implemented the feature fusion model with typical 
methods [31]. However, it is easy to have a dependence on a single modality, i.e., 
there is a significant primary and secondary relationship. The test results are shown 
in Table 9.3. We apply weighted feature addition at seven layers in the two-pipeline 
network. The .2 × 7 weight parameters will be optimized during training. When 
trained without any limitation, the network tends to assign more weights for the 
depth branch, which will seriously affect the robustness of the model. The fusion 
weight is then adjusted in training by using imbalance data dropout (10% for RGB



9.3 Information in Data Fusion 209

Table 9.3 Modality bias in feature fusion. L1–L7 indicate the seven fusion layers from front to 
back in the DarkNet in YOLOv3. NR and ND represent noisy RGB and noisy depth. w/ and w/o 
indicate whether we limit the fusion weights in training 

Exp. Modal L1 L2 L3 L4 L5 L6 L7 NR ND 

w/o RGB 0.3 0.6 0.7 0.7 0.5 0.5 0.1 83.2 19.8 

Depth 0.7 0.4 0.7 0.7 0.7 0.9 0.7 

w/ RGB 0.6 0.5 0.8 0.8 0.7 0.4 0.3 77.6 39.5 

Depth 0.3 0.1 0.2 0.1 0.2 0.8 0.7 

and 15% for depth) and weight limitation (upper to 0.7 in the first five stages). 
The adjustment improved the performance slightly. But it is far from enough, and 
adaptive balance fusion remains an open problem. 

9.3 Information in Data Fusion 

There has been a recent growing interest in utilizing multimodal sensors for accurate 
lane line segmentation. In this chapter, from information theory perspective, we 
put forward a novel multimodal fusion architecture and demonstrate its practical 
utility using Light Detection and Ranging (LiDAR) camera fusion networks. The 
forward propagation is thus equal to the information transmission in the channels. 
In particular, for the very first time, we get the multimodal fusion network developed 
as a joint coding model, where each single node, layer, and pipeline are represented 
as a channel. Then, we can conduct a qualitative and quantitative analysis of the 
impact of various fusion approaches. We believe the ideal fusion architecture is 
related to the essential capacity and its allocation based on the source and channel. 
To verify this multimodal fusion hypothesis, we progressively list a series of 
multimodal models based on the suggested fusion techniques and evaluate them 
on the KITTI and the A2D2 datasets. Our optimal fusion network achieves 85%+ 
lane line accuracy and 98.7%+ overall. The performance gap among the models 
will provide information to help future’s research on the creation of ideal fusion 
algorithms for the community of deep multimodal learning. 

In addition, to validate our inference, we undertake comparative tests, and based 
on which, a novel fusion network is proposed. On the one hand, we explore 
the respective effect of different factors in fusion, including the fusion stage and 
network structure. On the other hand, we test the impact of information source 
through modality loss experiments. According to the results on the KITTI and A2D2 
benchmarks, our ideal model gains 8.51% lane line accuracy or 7.6 F2 score over 
the baseline. It also performs better when a single modality is removed. As shown 
in Fig. 9.7, the result demonstrates the benefits of our fusion strategy. Additionally, 
our lightweight networks are constructed end-to-end that can achieve real-time 
segmentation at over 64.9 FPS with lane line accuracy of 85%+ and total accuracy 
of 98.7%+ on both datasets.



210 9 Information Quality in Data Fusion

Fig. 9.7 Comparative results of two state-of-the-art models (SCNN, LaneNet) and ours: the first 
two rows are tested on the KITTI dataset and the rest are tested on the A2D2 dataset 

In conclusion, our main contributions are: 

• We propose to review the multimodal network from the vantage point of channel 
model and provide reasonable illustration for fusion. 

• We provide qualitative and quantitative analysis on different factors that can 
impact the fusion networks based on information theory. 

• We present a novel multimodal fusion network for lane line segmentation tasks 
that approaches state-of-the-art performance. 

In the following sections, firstly, we will review the recent progress in lane line 
segmentation, multimodal fusion, and information theory, and secondly, we will 
illustrate how to model and analyze the network from the framework of channel 
model and discuss the fusion strategy referring to Shannon’s theory. Moreover, we 
will conduct quantitative analysis on the channel and source in the experiments and 
ablation study. 

Information theory, proposed by C. Shannon, studies the information process 
on the basis of the entropy-based quantification of information. By quantifying 
the level of signal uncertainty, the information entropy reveals the limits on 
signal processing and communication operations. Other significant measurements 
of information theory include mutual information, channel capacity, and error 
exponents. In fusion network research, however, they are uncommon. MacKay et 
al. have discussed modeling a neuron or a network as a channel. N. Tishby et 
al. proposed the information bottleneck theory (IB) with a variational principle 
to address signal processing issues [27]. In 2015, Tishby and Zaslavsky further 
revealed the mechanism deep learning model using the IB. Their experiments with a 
multi-layer perceptron showed that the network tends to capture related information 
first and combines them later. Though the result has not been generalized well to



9.3 Information in Data Fusion 211

more complex CNN models, it inspires us to review the fusion model as a channel 
and the fusion process as information gain. 

9.3.1 Multimodal Fusion Within the Context of Information 
Theory 

To reveal the relationship between the information theory and multimodal fusion, 
we first model the network as a joint coding channel, and then Shannon’s theorems 
can be used to reveal the fusion mechanism. We will then present a practical fusion 
strategy based on our analysis. 

As shown in Fig. 9.8, a fundamental communication system consists of five parts: 
information source, transmitter, channel, receiver, and destination. To represent a 
deep network as a channel, the five components are the source to measure, the 
encoder (including sensors and encoders), the hidden layers (channel), the decoder, 
and the desired output. Generally, we can also view the learning as joint source-
channel coding, in which the encoder, channel, and decoder are combined. In this 
way, we can further look into every single layer for a more precise analysis on the 

Fig. 9.8 The traditional communication system and the multimodal network: For the fusion 
model, different modal data are processed in separate channels, fused in the fusion channels, and 
decoded to be the desired output, which is the projection of the target in one modality



212 9 Information Quality in Data Fusion

fusion. Specifically, each layer or pipeline is a channel, and the entire network is a 
cascaded channel. 

To make it clear, we hereby define that the number of output channels in each 
layer equals to the code length n, the features equal to the codes, and the learning 
ability equals to the channel capacity. The code set M therefore contains all the 
possible features, and the rate of code .R = log2|M|

n
represents the efficiency of 

the code, that is, the redundancy of network. Researchers have also discussed the 
estimation of the information entropy and mutual information [1, 9, 27], but they 
have not yet devised a method that is optimal for all networks. Thus, we assume 
that the networks we mentioned have a potential entropy, which is not used directly 
in the following. Though many details on the definition might have been missed, 
we can conduct basic qualitative analysis and quantitative comparison for the fusion 
problems in multimodal lane line segmentation. 

In addition, in the case of multimodal fusion network, the fused features and 
information are generated from the joint coding in the fusion channels. As the 
multimodal data and features in the coding originate from the individual . sensor_i
and corresponding .channel_i(i ∈ {1, 2, ..., N}), multimodal learning is actually a 
form of parallel joint coding. 

As the foundations of the information theory, Shannon’s theorems reveal the 
relationship between coding and the ability to transmit information for certain 
source and channel models. They also imply that the optimal multimodal fusion 
architecture is determined by both the data quality and the network itself. Initially, 
we briefly review Shannon’s theorems as below: 

Theorem 1 Define R as the code rate and C as the channel capacity. For any 
discrete memoryless channel, if .R < C, then R is achievable. 
Conversely, if .R > C, it is not achievable. 

Theorem 2 The channel capacity C is: 

.C = B × log(1 + S/N) (9.15) 

where B is the bandwidth of channels and .S/N is the signal-noise 
ratio (SNR). 

Theorem 3 The rate-distortion function for an i.i.d. source X with distribution 
.p(x) and bounded distortion function .d(x, x̂) is equal to the associ-
ated information rate-distortion function. Thus, 

.R(D) = min
p(x̂|x):Σ(x,x̂)p(x)p(x̂|x)d(x,x̂)≤D

I (X; X̂) (9.16) 

is the minimum achievable rate at distortion D. 

In summary, these theorems focus on the source coding and the transmission 
in channels. Theorem 1 indicates that the rate of code is bounded by the channel 
capacity, which is determined by channel bandwidth and SNR. Theorem 3 provides 
a lower bound for the rate. Notice that the channel capacity only reflects the



9.3 Information in Data Fusion 213

performance of the channel, while rate-distortion targets the source. By combining 
them, we found that for the given distortion D, a code is achievable if and only if 
the code, channel, and source satisfy the inequality: 

.R(D) ≤ R ≤ C (9.17) 

Single-Modal Learning 
These theorems can be applied directly to deep learning, which presents the limits 
of learning (channel capacity) and compressing (rate-distortion). To avoid the 
complicated calculation of network capacity like MacKey et al. and simplify the 
problem, we will perform qualitative analysis on the model instead. Specifically, for 
single-modal learning, the rate-distortion function has been determined based on the 
dataset, and the channel capacity can be adjusted automatically or manually during 
training. Moreover, we can rewrite Eq. 9.17 informally as below: 

.D = D(R) ≥ D(C) (9.18) 

Equation 9.18 shows that by properly raising the capacity and rate of code, the 
network can achieve less distortion. But as the source information is limited, the 
enhancement will also be subtle. 

Multimodal Learning 
The case in multimodal learning will be slightly different from the single-modal, 
especially the channel capacity and source distortion. Assume that the object has 
a high-dimensional feature space and different sensors only observe its subspace 
in specific modalities. As shown in Fig. 9.8, a basic fusion model can be divided 
into two stages: pre-fusion and post-fusion. In pre-fusion, it holds the inference 
for single-modal learning in each pipeline. But in post-fusion, the input is the 
combination of feature subspaces, and the .channel_f used is the extension of 
sub-channels in pre-fusion. This identifies the individual rate-distortion function 
and required capacity for each modality, which will further influence the optimal 
bandwidth (weight) allocation of the sub-channels in fusion, with the balance 
between pre-fusion and post-fusion. In addition, the capacity is determined by the 
bandwidth and SNR. The bandwidth measures the size of feature subspace, whereas 
SNR reflects the proportion of effective data transmitted through the network. The 
SNR of data is the SNR of sensor measurement, which is also a channel. 

In conclusion, the channel model and Shannon’s theorems provide a novel per-
spective to review the deep multimodal learning. Furthermore, they also imply that 
the optimal fusion architecture depends on three balances: the capacity allocation for 
sub-channels, the division of pre-fusion and post-fusion, and the conflict between 
information distortion and channel redundancy. In essence, the fusion model will 
strike a balance by improving the channel capacity or using a better information 
source. Then it will be able to develop novel information-driven fusion models based 
on our deduction.



214 9 Information Quality in Data Fusion

Information-Driven Fusion Strategy 
Toward the optimal LiDAR-camera fusion in lane line segmentation, we propose a 
novel information-driven multimodal fusion strategy with a two-stage analysis on 
the information source and network. 

First, we estimate the required channel capacity based on the information 
source including the capacity in the overall model and its allocation for each 
modality. According to Theorem 1, uncertain data (with a high entropy) transmit 
more information via the channel and require higher rate of code, namely, more 
capacity. Supplementally, the divergence between the training set and test set 
contributes to the uncertainty. It’s a same case as the capacity allocation for the pre-
fusion pipelines. Those data with higher SNR, for example, a well-captured image 
compared with the sparse point clouds, are supposed to occupy larger capacity in 
fusion. 

Besides, the ideal fusion also depends on the data SNR. In reality, when the 
bandwidth falls during the fusion process, post-fusion forces the model to “forget” 
noise in joint optimization and improves its generalization to subsequent problems. 
Conversely, using more pre-fusion would help to adjust the training set as it adopts 
more information from the source. Therefore, when the uncertainty increases, like 
using small training set or hard test set, earlier fusion will perform better. 

Then, we can adjust the channel architecture based on these estimations, and all 
of them will essentially change the capacity through bandwidth or SNR. For the 
capacity allocation, it is practical to apply adaptive bandwidth/weight in fusion, 
for instance, the adaptive weight estimator, fully linear connection, depth-wise 
convolution, or other individual processes for different modal data. But for the 
overall capacity, we are contemplating the use of cascaded channel structure, 
including tandem channels (like attention model and cascaded detectors) and 
parallel channels (like the Y-shaped fusion in Fig. 9.8). Both types aim to increase 
the capacity with longer codes: the tandem focus on the depth of network and the 
parallel target the width. As the optimal model can be the combination of them, we 
integrate the road segmentation and our model into multi-task learning and combine 
the early and middle fusion to extend the capacity, which comprises both tandem 
and parallel structure. Details are referred to the model section. 

Theorem 4 A q-ray .(n, |M|, d) code C can correct t errors if and only if: 

.d(C) ≥ 2t + 1 (9.19) 

where n is the code length and .d(C) is the minimal distance among codes. 
The theorem shows that a model can achieve better performance of the source 

with longer code, but at the expense of performance robustness. It not only informs 
the conflict between essential capacity and redundancy but also indicates a possible 
approach to compare the contribution of different modalities by computing their 
error correction ability. 

Beyond these, although the qualitative analysis method has been proposed 
previously, we will still be unable to provide guidance to a precise fusion model



9.3 Information in Data Fusion 215

if there are no quantification tools supported. Instead, it provides guidance for the 
architecture. Specific fusion models will be introduced in the following sections. 

9.3.2 Multimodal Models 

To better demonstrate our research, we will conduct a series of experiments to 
uncover the impact of different fusion stages and methods. We first introduce 
baseline models and then move to multimodal fusion methods. 

Single-Modal Network Baseline 
We consider an encoder-decoder network as our baseline not only for its popular 
model architecture but also for its ease in ablation investigation, in which we can 
focus on the fusion approach rather than the network itself. Besides, the limited 
amount of multimodal lane line data requires a small model. Therefore, we select 
U-Net as our baseline as shown in Fig. 9.9. It comprises four blocks in the encoder 
and five in the decoder, in which two are ResNet-34 blocks. The last four layers 
use transposed convolutions and the rest are convolutional blocks. All convolutional 
blocks have a batch normalization layer and a ReLU layer following the convolution 
layer, and all kernel sizes are 3 . × 3. Each block in the encoder is connected to its 
corresponding blocks in the decoder through a dashed line, which concatenate their 
respective outputs in order to correct the feature maps. 

Point Cloud Completion 
The sparse reflectance is obtained by projecting the front-view point clouds from 
the front view onto the imaging plane of the camera in order to align with the 
RGB images. But the ratios between point clouds and images are around 1.5% 
in KITTI and 0.4% in A2D2. Therefore, point cloud completion can improve the 
channel capacity with higher SNR. We apply the k-NN search for interpolation: 
search three nearest points for each blank pixel, and count the weighted average 
based on the normalized pixel distance as the result. To better decrease noise caused 
by reflectance attenuation and utilize the height information as an additional filter 

Fig. 9.9 Our single-modal baseline model (V1): It accepts an RGB image as input and outputs a 
256 . × 128 binary map



216 9 Information Quality in Data Fusion

condition, we stack the height and distance value on the reflectance to compose 
pseudo-three-channel images. 

Fusion at Different Stages 
In order to find the ideal fusion architecture for multimodal lane line segmentation, 
we have progressively constructed and compared multiple fusion models, including 
the early, middle, and late fusion as shown in Fig. 9.10. In the point cloud pipeline, 

Fig. 9.10 Feature fusion at three stages: the top model (V2 and V3) fuses at the early stage; the 
middle one (V4) fuses at the middle stage; and the bottom model (V5) conducts fusion in the 
decoder. Among these models, V2 uses sparse point clouds, and V3, V4, and V5 use completed 
point clouds. All the three fusion belong to the “middle fusion”



9.3 Information in Data Fusion 217

we use convolutional layers rather than ResNet blocks to achieve the capacity 
allocation in V4 and V5. Features from two modalities will be concatenated to 
double channels. Though adaptive bandwidth fusion as mentioned previously would 
perform better, we apply convolution after concatenation for lightweight models. 
Besides, instead of paying attention to the potential complex fusion operators, 
we adopt the general approach by concatenating features from different inputs. 
Specifically, we use early, middle, and late fusion to indicate data fusion, feature 
fusion, and result fusion. Therefore, we concatenate preprocessed point clouds and 
images after the first convolution layer to build V3 (early fusion) and use skip 
connection to combine features from the point and image pipeline in V4 (middle 
fusion). As for result fusion, the communication of multimodal data in V5 is placed 
at the later stage of the model. For more details of the model parameter, refer to 
Fig. 9.10 and experiment section. 

Multi-Task Learning 
Road segmentation is considered as an efficient way to extract prior knowledge 
and gain more capacity for lane line. Typically, lane lines exist in the driving area; 
thus, filtering the background in images and point clouds can increase the SNR. 
Moreover, adding a relevant task equals to adding the code length, which means 
a larger feature subspace. Apart from the capacity, with Theorem 4, longer codes 
can also enhance its error correction capability. However, the interference among 
sub-tasks will impact the convergence rate in training. As shown in Fig. 9.11, we  
design a two-branch decoder block to conduct multi-task learning, which can be 
easily extended to other tasks. The block utilizes the last three decoder blocks in 

Fig. 9.11 The multi-task block and the adaptive fusion block (DSConv): The gray layer combines 
the results from two branches



218 9 Information Quality in Data Fusion

each branch and combines the result to revise the prediction of the main task, lane 
segmentation. The output of the lane is: 

.P(X ∈ lane|road) = P(X ∈ lane) × {k + (1 − k) × P(X ∈ road)} (9.20) 

where k is a trainable parameter and the equation helps to decide to what extent the 
lane line prediction relies on road. According to the performance in V3–V5, we add 
the multi-task block for V3 and V4 to build V3r and V4r. 

Adaptive and Multi-Stage Fusion 
We use a fusion block for adaptive fusion across multimodal feature channels. It 
contains a depth-wise convolutional layer, a 1 . × 1 convolutional layer, a batch 
normalization, and an activation layer. Therefore, important features will dominate 
training after the 1 . × 1 convolution. We embed these methods in the V3r model to 
build V3r+. Besides, the final version (V6) are implemented with fusion at multiple 
stages based on the performance of previous models. Actually, V6 fuses at the early 
and middle stages simultaneously. This common X-shaped architecture can further 
enlarge the capacity and join the features of V3 and V4. 

9.3.3 Experiment 
Data Augmentation 
To alleviate overfitting problems with small datasets like KITTI, we use a variety 
of methods to enhance the dataset. These methods primarily comprise geometric 
transformations—such as perspective transformations, random rotations, and flips— 
as well as pixel-level enhancements, such as adjustments to brightness and contrast. 
Furthermore, target interference techniques—like Gaussian noise, random clipping, 
and the random erasure of partial lane lines—are also utilized. All augmentation 
methods were executed on the images except the geometric translation (Fig. 9.12). 

Fig. 9.12 Some examples of the KITTI (top row) and the A2D2 dataset: point clouds are the 
composed output of k-NN completion



9.3 Information in Data Fusion 219

Data Preprocess 
To integrate LiDAR point clouds and RGB images into the same network, projection 
and value normalization are required in data preprocessing. To project the point 
clouds onto the image plane, given a point Pv = (xv, yv, zv)

T , we calculate: 

.P ′
v = Kv[Rv|Tv]Pv (9.21) 

where Kv,Rv, Tv refer to the camera calibration matrix, rotation matrix, and 
translation matrix. Then the projected front-view point cloud reflectance map is then 
reduced to the same dimensions as RGB pictures, which is 128*256. After that, both 
reflectance map and the RGB images will then have their values normalized to [0,1] 
interval. 

Optimization 
All models are trained with the AdamOptimizer with a cyclically decaying learning 
rate lr: 

.lr = 2�epoch/50� × 0.8�epoch/10� × lr0, lr0 = 0.0001 (9.22) 

Adaptive Weighted Loss 
It is common to use weights in classification, but most methods rely on prior 
knowledge of the dataset or adjust training parameters. during training. Inspired by 
He et al. [10], we use the torch.nn.NLLLoss2d in PyTorch and set the weight to 
be the inverse ratio of two classes in the previous prediction. However, sometimes 
a branch will dominate training and cause unexpected weights, like training with 
multi-task. For better convergence, we set the weights as (0.5,0.5) in the first 20 
epochs. 

Hardware and Software 
Our models are trained on a single GPU, GTX 1080 Ti with 11G RAM, and 
E5-2678v3 CPU. Besides, we use the following software setup: Ubuntu 16.04 64-
bit operating system, Python 3.6, GCC 5.4.0, and PyTorch 1.10 with CUDA 9.0 
hardware acceleration. 

We focus more on lane linerecallandcalculateitaslaneaccuracy (LAcc). 
We also consider the F2 score to balance in case the network overfits any class 
and count the mean recall on both class as the mAcc. In the road segmentation, we 
apply the same metrics: 

.precise = T P

T P + FP
, LAcc = recall = T P

T P + FN
(9.23) 

.F2 = (1 + 22) × precision × recall

(22) × precision + recall
(9.24)



220 9 Information Quality in Data Fusion

.Acc = T P + T N

T P + T N + FP + FN
(9.25) 

.mAcc =
(

T P

T P + FN
+ T N

T N + FP

)
/2 (9.26) 

In Eq. 9.23, T  P, T  N,FP, FN  refers to true positive, true negative, false 
positive, and false negative. 

We compare our models (V1–V6, V3r, V4r, V3+) with the selected subset of the 
KITTI and A2D2 datasets with SCNN and LaneNet, two of the most prominent 
models in the field. Except for SCNN and LaneNet, which load the pre-trained 
VGG-16 weights to expedite learning, all models initiate training from scratch. To 
be fair, we train SCNN and LaneNet for 10,000 iterations (equal to 175 epochs, since 
they have stopped optimization after 5000 iteration) and our models for 200 epochs 
due to the computing resource limitation. Consequently, fine-tuning or additional 
training can improve their performance. The training record of our models on the 
KITTI dataset is shown in Fig. 9.13. All models achieve the same performance 
after around 150 epochs without significant gap among different fusion stages, but 
adding the multi-task learning will hinder the fitting due to the message conflict in 
channels. We also notice that V3+ and V6 accelerate after 20 epochs which verifies 
the influence of adaptive fusion on capturing important features. 

According to Table 9.4, the accuracy of the majority of models on both datasets 
exceeds 98.7%. But all F2 scores are lower than 65.0, which can be attributed 
to the extreme imbalance between the lane line and the background (almost 98% 
background). Inaccurate prediction on a small number of pixels can result in a 
substantial variance in recall and precise, which can be solved by using precise post-
processing, let alone the deviation caused by annotation. As for LAcc, we found that 
the earlier it fuses, the better it performs. Besides, V3r and V4r get higher scores 
than V3 and V4, indicating the benefits of multi-task learning. By comparing the 
results of KITTI and A2D2, we found that the point cloud completion can even 
weaken the model, as it can be caused by the low quality of A2D2 LiDAR for lane 
line segmentation. The V6 model, which is built according to the results of V3V5, 
outperforms other versions in almost all tests. 

Finally, the model speed is determined by the forward segmentation network 
cost. Except for the V5 model, all our other models can achieve a minimum of 62 
FPS with less than 4G memory on GPU. As shown in the table, our lightweight 
models can approach the state-of-the-art performance on both KITTI and A2D2 
datasets and meet the requirements of autonomous driving. Notice that our models 
are based on a fundamental framework and they are supposed to bear with more 
optimal architecture like knowledge distillation [12] and multi-objective particle 
swarm optimization [5] in the future work. To further clarify what contributes to 
the performance, more experiments are conducted on the KITTI and augmented 
KITTI datasets with our models in the following ablation study. 

In this section, we further conduct quantitative analysis on the proposed strategy. 
First, we discuss the contribution of different factors in fusion from channels’



9.3 Information in Data Fusion 221

T
ra

in
in

g 
E

po
ch

s 

Lane Acc on The Trainset 

1
81

71
61

51
41

31
21

11
91

17
1

16
1

15
1

20
1

19
1

18
1

14
1

13
1

12
1

11
1

10
1 

10
0%

 

0%
 

10
%

 

20
%

 

30
%

 

50
%

 

40
%

 

60
%

 

70
%

 

80
%

 

90
%

 

v6
 

v4
r 

v3
r 

v3
r+

 

v5
 

v4
 

v3
 

v2
 

v1
 

F
ig
. 9

.1
3 

T
he
 c
on
ve
rg
en
ce
 p
ro
ce
ss
 i
n 
tr
ai
ni
ng
: 
T
he
 c
ur
ve
s 
sh
ow

 t
he
 a
cc
ur
ac
y 
fo
r 
la
ne
 o
n 
th
e 
tr
ai
ni
ng
 s
et
. 
V
1,
 t
he
 b
as
el
in
e;
 V

2–
V
5,
 f
ea
tu
re
 f
us
io
n 
at
 e
ar
ly
, 

m
id
dl
e,
 a
nd
 la
te
 s
ta
ge
s;
 V
3r
 a
nd
 V
4r
, m

ul
ti-
ta
sk
 tr
ai
ni
ng
 v
er
si
on
 f
or
 V
3 
an
d 
V
4;
 V
3r
+
, r
efi
ne
d 
ve
rs
io
n 
of
 V
3r
 b
y 
ad
di
ng
 a
da
pt
iv
e 
bl
oc
ks
; V

6,
 th

e 
fu
ll 
an
d 
fin

al
 

ve
rs
io
n



222 9 Information Quality in Data Fusion

Table 9.4 The results on the KITTI and the A2D2 datasets: E/M/L denotes the early/middle/late 
fusion 

KITTI (383) A2D2 (788) 

Model Fuse Size (M) LAcc Acc mAcc F2 LAcc Acc mAcc F2 FPS 

LaneNet / 556 70.97 95.78 83.46 33.7 78.83 97.30 88.12 41.5 69.1 

SCNN / 556 84.68 98.29 91.55 58.4 80.93 96.06 85.54 34.2 14.4 

V1 / 25 82.38 98.71 90.63 62.2 82.55 98.43 90.54 54.3 73.3 
V2 E 25 82.50 98.70 90.68 62.0 81.80 98.68 90.29 57.4 68.1 

V3 E 25 84.90 98.73 91.89 64.0 81.55 98.79 90.22 59.6 68.9 

V4 M 31 84.46 98.72 91.67 63.5 79.85 98.80 89.38 58.6 72.4 
V5 L 31 82.66 98.77 90.80 63.6 70.28 99.10 84.79 57.5 55.0 

V3r E 27 86.21 98.64 92.49 63.9 86.99 98.02 92.54 51.5 63.2 

V4r M 35 83.47 98.74 91.18 63.3 83.32 98.59 90.51 56.4 63.4 

V3r+ E 27 85.92 98.67 92.36 63.3 84.90 98.69 91.74 59.3 62.3 

V6 E+M 35 86.48 98.76 92.69 64.9 85.13 98.86 92.04 61.9 64.9 

Bold values highlight the significant improvement in performance

perspective and then compare the robustness in cases where the models lose one 
modality in practical usage, which also verifies our inference. 

Separately training and evaluating our models on the KITTI and its enriched 
dataset allows us to investigate the influence of source and channel. Their perfor-
mances in LAcc, mAcc, and F2 score are listed in Table 9.5. Based on the result, 
V3r, V3r+, and V6 are the best when training with the original KIITI data, and V3r, 
V4r, and V6 lead in the augmented training. However, the fusion models can be even 
worse in some cases: the V5 is weakened on the augmented dataset, and V2–V5 
perform poorly when using KITTI for training and the augmented data for testing. 
The instable performance reflects the potential dependence on information source. 
Apart from this, we assume every factor are linearly independent and quantify their 
effect by solving Eq. 9.27 by using least squares, obtaining the final result in Table 
9.6. Note that the value does not represent the absolute gain or loss in fusion, but 
rather the proportional contribution. 

.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0 0
1 1 1 0 0 0 0
1 1 0 1 0 0 0
1 1 0 0 1 0 0
1 1 1 0 0 1 0
1 1 0 1 0 1 0
1 1 1 1 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

LiDAR

dense

early

middle

late

road

adaptive

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Result of V 2
Result of V 3
Result of V 4
Result of V 5
Result of V 3r
Result of V 4r
Result of V 6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.27) 

According to Table 9.6, the fusion network has different performances based on 
the train/test case. The raw data is a subset of the augmented data, with the cases 
A-A and A-K bearing a smaller train/test distance, while K-K and K-A a larger gap.



9.3 Information in Data Fusion 223

Ta
bl
e 
9.
5 

A
 c
om

pa
ri
so
n 
of
 d
if
fe
re
nt
 f
us
io
n 
st
ra
te
gi
es
: “
de
ns
e”
 d
en
ot
es
 th

e 
po
in
t c
lo
ud
s 
co
m
pl
et
io
n,
 a
nd
 “
ad
ap
” 
is
 th

e 
ad
ap
tiv

e 
bl
oc
k 

Fu
si
on

K
IT
T
I

K
IT
T
I 
(A

ug
) 

D
at
a

M
od
el

D
en
se

E
ar
ly

M
id

L
at
e

R
oa
d

A
da
p

L
A
cc

m
A
cc

F2
L
A
cc

m
A
cc

F2
 

K
IT
T
I

V
1

82
.3
8

90
.6
3

62
.2

82
.5
5

90
.5
4

54
.3
 

V
2

�
+
0.
12

+
0.
05
 

−0
.2

−1
.8
6

−1
.2
1

+
3.
7 

V
3

�
�

+
2.
52

+
1.
26

+1
.9
 

−1
.0
0

−0
.3
2

+
5.
3 

V
4

�
�

+
2.
08

+
1.
04

+
1.
3 

−2
.7
0

−1
.1
6

+
4.
3 

V
5

�
�

+
0.
28

+
0.
17

+
1.
4 

−1
2.
27
 

−5
.7
5

+
3.
2 

V
3r

�
�

�
+3

.8
3

+1
.8
6

+
1.
7

+4
.4
4

+2
.0
0 

−2
.8
 

V
4r

�
�

�
+
1.
09

+
0.
55

+
1.
1

+
0.
77

−0
.0
3

+
2.
1 

v3
r+

�
�

�
�

+3
.5
4

+1
.7
3

+
1.
1

+
2.
35

+
1.
20

+
5.
0 

V
6

�
�

�
�

�
+4

.1
0

+2
.0
6

+2
.7

+
2.
58

+1
.5
0

+7
.6
 

K
IT
T
I 

(A
ug
) 

V
1

85
.2
9

92
.1
4

66
.0

79
.4
5

85
.8
4

56
.4
 

V
2

�
−2

.2
8 

−1
.0
4

+
1.
3 

−1
.1
0

−0
.2
5 

−0
.3
 

V
3

�
�

−0
.0
5 

−0
.2
5

+3
.7

+
3.
15

+
3.
09

+6
.1
 

V
4

�
�

+
0.
41

+
0.
27

+
2.
1

+
2.
04

+
0.
87

+
3.
0 

V
5

�
�

−3
.7
4 

−1
.7
5

+
1.
3 

−2
.6
0

−0
.6
3

+
2.
4 

V
3r

�
�

�
+3

.7
5

+1
.6
2 

−3
.6

+
5.
47

+
1.
64
 

−8
.7
 

V
4r

�
�

�
+3

.5
8

+1
.5
5 

−3
.1

+7
.3
0

+
0.
56
 

−0
.9
 

V
6

�
�

�
�

�
+4

.6
0

+2
.1
5 

−0
.2

+8
.5
1

+6
.2
1

+
2.
2

B
ol
d
va
lu
es

hi
gh
lig

ht
th
e
si
gn
ifi
ca
nt

im
pr
ov
em

en
ti
n
pe
rf
or
m
an
ce



224 9 Information Quality in Data Fusion

Table 9.6 A quantitative comparison of different fusion factors: the first letter in a group 
indicates the training set and the other refers to the test set. The letter K represents the KITTI 
dataset, and A denotes augmented data 

LAcc mAcc 

K-K A-K K-A A-A K-K A-K K-A A-A 

LiDAR −1.27 −2.74 −4.64 −2.20 −0.63 −1.21 −2.65 −2.40 

Dense +2.98 +2.39 +1.35 +3.52 +1.48 +0.94 +1.19 +3.06 

Early +1.39 +0.46 +2.78 +1.10 +0.68 +0.17 +1.44 +2.15 

Mid −0.20 +0.60 +0.10 +1.46 −0.08 +0.39 +0.00 +0.50 

Late −1.42 −3.39 −8.98 −3.92 −0.68 −1.48 −4.29 −1.28 

Road +0.16 +3.49 +4.46 +3.79 +0.06 +1.58 +1.73 −0.88 

adap +1.04 +0.41 −1.46 +0.85 +0.55 +0.29 −0.20 +3.78 

Actually, when we focus on the same row, we notice that early fusion outperforms 
midway the middle fusion when training on the KITTI, but the case will be inverse 
on the augmented dataset, and the late fusion performs even worse without sufficient 
capacity in fusion channel. In addition, the ratio early/middle drops when the 
training set is changed from K to A or the test set changes from A to K; however, it 
increases when the order of the sets is reversed, from A-K to K-A. The contrast is 
also obvious if we normalize the value in the table by x̂i = (xi −xmin)/Σ(xi −xmin). 
The main divergence in these train/test cases is the uncertainty, and the results verify 
our hypothesis about pre-fusion and post-fusion, as well as the impact of source. Our 
conclusion is applicable to situations in which a portion of sensors fail to record 
accurately or even break down, and we also present the result in the modality loss 
experiment. 

Apart from these, we also learn the raw point clouds can be detrimental 
to the network, because the sparse signal generates poor SNR and reduces the 
channel capacity. In contrast, point cloud completion will compensate for this 
weakness, which is in reality the most advantageous aspect of fusion. Besides, multi-
task learning (road) and adaptive fusion gain more capacity in almost all cases. 
Especially, the trend of road segmentation is close to the one of middle fusion as 
they serve similarly to increase the channel capacity. The adaptive fusion performs 
better when the training set and test set are similar, like K-K and A-A, although the 
result is more likely to be irregular. Possible reasons include the shortcomings of 
our simple design, competition with multi-task (they keep around 37% normalized 
contribution in all cases), or the overfitting on the training set, because it only 
optimizes the capacity allocation of the given channel based on the input data. It 
needs more experiments to acquire the convincing illustration. 

Some testing examples are presented in Fig. 9.14. The line predictions in the 
last four rows are much more clearer than the others, because their predicted lines 
occupy more pixels on the boundaries, which is acceptable in usage and can be 
refined with additional post-processing. 

It is unavoidable that error occurs to some of the sensors or data registration, both 
of which can result in the modality loss in the model. Consequently, we use zero



9.3 Information in Data Fusion 225

Fig. 9.14 Examples of the test result on the KITTI dataset: The three left columns are tested on 
the KITTI data and the rest are tested with the augmented data. The rows from top to bottom are 
input images, ground truth, and output from V1 to V5, V3r, V4r, V3r+, and V6 

tensors as the lost data (other data is maintained) to replicate the testing situation 
and assess the robustness of models. The weight of single modality in the fused 
codes (features) can also be deduced according to Theorem 4. Moreover, the models 
are trained with augmented data and tested with KITTI. 

As illustrated earlier, early fusion can be integrated into other tasks for an 
improved post-fusion, while middle fusion at later stage can fit the data more with 
deeper individual processes for different modalities. As shown in Table 9.7, V3/V3r  
surpass V4/V4r with only images, and a case never appears in the training set (the 
augmentation is mainly for images), while the latter models perform better with 
only point clouds. In general, in our experiment setting, middle fusion is more stable 
with modality loss. Besides, road segmentation as multi-task learning can extend the 
overall code length and capacity, thus enhancing error correction for both data.



226 9 Information Quality in Data Fusion

Table 9.7 Experiments with single-modal data loss: The values in the last group (random) are the 
average of the two modality loss cases 

Image+points Only image Only points Random 

Model LAcc mAcc LAcc mAcc LAcc mAcc LAcc mAcc 

V3 85.24 91.89 56.74 77.76 20.29 60.15 38.52 68.98 

V4 85.70 91.67 51.70 74.04 48.88 74.44 50.29 74.24 

V3r 89.04 92.49 63.09 80.17 37.36 66.72 50.23 73.44 

V4r 88.87 91.18 55.54 74.86 67.88 83.47 61.71 79.17 

V6 89.89 92.69 75.77 85.89 50.34 74.51 63.06 80.21 

Bold values highlight the significant improvement in performance

Besides, V6 performs better than V3/V3r, but utilizes fewer point clouds than 
V4r. Compared to V3/V3r, V6 not only adds the post-fusion stage by parallel coding 
after the first fusion, which helps to increase the SNR in the channel, but also extends 
the code length and capacity by adding external information of the point clouds 
in the middle stage and achieves better coding on the source. In other words, V6 
acquires better post-fusion and distortion/redundancy balance than V3/V3r. Besides, 
the two-stage fusion forces the channel to allocate larger weight for point clouds 
than V3/V3r, resulting in better balanced results for both scenarios. However, for 
the different architecture V4r, the X-shaped fusion makes the transmission in point 
cloud pipeline to be influenced by the images, finally reducing the its capacity. 
In conclusion, V6 or other multi-stage fusion architectures essentially change the 
balance in capacity allocation. The result also shows that the global optimization in 
channels is not always accompanied by the local optimization. 

Moreover, according to Theorem 4, the modality loss test also reflects the error 
correction capability of single-modal data and further implies the actual weight in 
the fusion. In particular, import modality would consume a considerable amount of 
space in the fused code and likely to necessitate a more extensive amount of code 
in the event that data is lost. Namely, the code performs worse without it. Based 
on the result in Table 9.7, V3/V4/V3r/V6 are better with only images, which means 
images contribute more in these lane line segmentation models. Then we can apply 
corresponding capacity allocation in the channel. 

9.4 Summary 

This chapter examines the robustness of single-modal and multimodal models under 
noisy data and analyzes and reveals the robustness of multimodal models on dirty 
data by comparing the accuracy decay of different models through experiments on 
the KITTI dataset. The experimental results show that the impact of noisy data on 
single-modal and multimodal models is complex and involves many factors like 
recognition target, recognition task, data modality combinations, noise type, etc. 
We also propose a novel multimodal fused 2D target detection model. It performs



References 227

selective fusion of bounding boxes generated by multiple independent sub-models 
based on uncertainty estimation and is applicable to a variety of modal data. 
Experimental results show that our fusion model presents a high detection accuracy 
when a clean data modality is present under severe noise interference. In addition, 
the robustness of the fusion model may show different results for different fusion 
structures, such as feature fusion. The robustness problem of multimodal fusion 
models requires further in-depth study, and we will also focus on other tasks such 
as semantic segmentation and 3D target detection in our subsequent research to 
further investigate the phenomena observed in this chapter, while we also hope our 
experiments can provide some inspirations to other researchers. 

We propose a novel camera-LiDAR fusion model for lane line segmentation. 
By leveraging the information from different sensors, the model can achieve the 
cutting-edge performance on the KITTI benchmark without pre-training or post-
processing. Furthermore, we construct the multimodal network in terms of channels 
and utilize Shannon’s theory to reveal the fusion mechanism. Based on the analysis, 
we consider it necessary to strike a balance among source, channel, and capacity. 
This chapter also provides practical methods to compare the contribution of different 
modalities, methods, and fusion stages, which will lead to the ideal fusion structure. 
Experiments have shown the benefits from information-driven fusion strategy 
and architecture. In the future, we will continue the work on quantification like 
uncertainty estimation and utilize more about joint coding model in the network. 
Besides, our work is supposed to be integrated well with other areas like detection 
and localization, which would be helpful for the future development of deep 
multimodal learning and autonomous driving. 

References 

1. Belghazi, M.I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio, Y., Courville, A., Hjelm, D.: 
Mutual information neural estimation. In: International Conference on Machine Learning, pp. 
531–540 (2018) 

2. Bijelic, M., Muench, C., Ritter, W., Kalnishkan, Y., Dietmayer, K.C.J.: Robustness against 
unknown noise for raw data fusing neural networks. In: 2018 21st International Conference on 
Intelligent Transportation Systems (ITSC), pp. 2177–2184 (2018) 

3. Bijelic, M., Gruber, T., Mannan, F., Kraus, F., Ritter, W., Dietmayer, K.C.J., Heide, F.: Seeing 
through fog without seeing fog: Deep multimodal sensor fusion in unseen adverse weather. 
In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 
11679–11689 (2020) 

4. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan, Y., Baldan, 
G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous driving. In: 2020 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11618–11628 (2020) 

5. Chouikhi, N., Ammar, B., Hussain, A., Alimi, A.M.: Bi-level multi-objective evolution of a 
multi-layered echo-state network autoencoder for data representations. Neurocomputing 341, 
195–211 (2019). https://doi.org/10.1016/j.neucom.2019.03.012 

6. Feng, D., Cao, Y., Rosenbaum, L., Timm, F., Dietmayer, K.: Leveraging uncertainties for 
deep multi-modal object detection in autonomous driving. In: 2020 IEEE Intelligent Vehicles 
Symposium (IV), pp. 877–884. IEEE, Piscataway (2020)

https://doi.org/10.1016/j.neucom.2019.03.012
https://doi.org/10.1016/j.neucom.2019.03.012
https://doi.org/10.1016/j.neucom.2019.03.012
https://doi.org/10.1016/j.neucom.2019.03.012
https://doi.org/10.1016/j.neucom.2019.03.012
https://doi.org/10.1016/j.neucom.2019.03.012
https://doi.org/10.1016/j.neucom.2019.03.012
https://doi.org/10.1016/j.neucom.2019.03.012
https://doi.org/10.1016/j.neucom.2019.03.012
https://doi.org/10.1016/j.neucom.2019.03.012


228 9 Information Quality in Data Fusion

7. Feng, D., Haase-Schuetz, C., Rosenbaum, L., Hertlein, H., Duffhauss, F., Gläser, C., Wiesbeck, 
W., Dietmayer, K.C.J.: Deep multi-modal object detection and semantic segmentation for 
autonomous driving: datasets, methods, and challenges. IEEE Trans. Intell. Transport. Syst. 
22, 1341–1360 (2021) 

8. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving the kitti vision 
benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 3354–3361 (2012) 

9. Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: A new estimation principle for 
unnormalized statistical models. In: Proceedings of the Thirteenth International Conference 
on Artificial Intelligence and Statistics, pp. 297–304 (2010) 

10. He, K., Wang, Z., Fu, Y., Feng, R., Jiang, Y.G., Xue, X.: Adaptively weighted multi-task deep 
network for person attribute classification. In: Proceedings of the 25th ACM International 
Conference on Multimedia, pp. 1636–1644 (2017). https://doi.org/10.1145/3123266.3123424 

11. He, Y., Zhu, C., Wang, J., Savvides, M., Zhang, X.: Bounding box regression with uncertainty 
for accurate object detection. In: Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition, pp. 2888–2897 (2019) 

12. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015). Preprint 
arXiv:1503.02531 

13. Hnewa, M., Radha, H.: Object detection under rainy conditions for autonomous vehicles: a 
review of state-of-the-art and emerging techniques. IEEE Signal Process. Mag. 38, 53–67 
(2021) 

14. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer 
vision? In: NIPS (2017) 

15. Khodabandeh, M., Vahdat, A., Ranjbar, M., Macready, W.G.: A robust learning approach to 
domain adaptive object detection. In: 2019 IEEE/CVF International Conference on Computer 
Vision (ICCV), pp. 480–490 (2019) 

16. Kuleshov, V., Fenner, N., Ermon, S.: Accurate uncertainties for deep learning using calibrated 
regression (2018). ArXiv abs/1807.00263 

17. Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor 3d object 
detection. In: ECCV (2018) 

18. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd: Single shot 
multibox detector. In: European Conference on Computer Vision, pp. 21–37. Springer, Berlin 
(2016) 

19. Ma, W., Chen, J., Du, Q., Jia, W.: Pointdrop: Improving object detection from sparse point 
clouds via adversarial data augmentation. In: 2020 25th International Conference on Pattern 
Recognition (ICPR), pp. 10004–10009. IEEE, Piscataway (2021) 

20. MacKay, D.J., Mac Kay, D.J.: Information Theory, Inference and Learning Algorithms. 
Cambridge University Press, Cambridge (2003). https://doi.org/10.1109/TIT.2004.834752 

21. Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker, A.S., Bethge, M., 
Brendel, W.: Benchmarking robustness in object detection: Autonomous driving when winter 
is coming (2019). ArXiv abs/1907.07484 

22. Oh, S.I., Kang, H.B.: Object detection and classification by decision-level fusion for intelligent 
vehicle systems. Sensors 17, 207 (2017) 

23. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement (2018). Preprint 
arXiv:1804.02767 

24. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y., 
Chai, Y., Caine, B., Vasudevan, V., Han, W., Ngiam, J., Zhao, H., Timofeev, A., Ettinger, S.M., 
Krivokon, M., Gao, A., Joshi, A., Zhang, Y., Shlens, J., Chen, Z., Anguelov, D.: Scalability in 
perception for autonomous driving: Waymo open dataset. In: 2020 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR), pp. 2443–2451 (2020) 

25. Tian, J., Cheung, W., Glaser, N., Liu, Y.C., Kira, Z.: Uno: Uncertainty-aware noisy-or 
multimodal fusion for unanticipated input degradation. In: 2020 IEEE International Conference 
on Robotics and Automation (ICRA), pp. 5716–5723. IEEE, Piscataway (2020)

https://doi.org/10.1145/3123266.3123424
https://doi.org/10.1145/3123266.3123424
https://doi.org/10.1145/3123266.3123424
https://doi.org/10.1145/3123266.3123424
https://doi.org/10.1145/3123266.3123424
https://doi.org/10.1145/3123266.3123424
https://doi.org/10.1145/3123266.3123424
https://doi.org/10.1109/TIT.2004.834752
https://doi.org/10.1109/TIT.2004.834752
https://doi.org/10.1109/TIT.2004.834752
https://doi.org/10.1109/TIT.2004.834752
https://doi.org/10.1109/TIT.2004.834752
https://doi.org/10.1109/TIT.2004.834752
https://doi.org/10.1109/TIT.2004.834752
https://doi.org/10.1109/TIT.2004.834752


References 229

26. Tishby, N., Zaslavsky, N.: Deep learning and the information bottleneck principle. In: 2015 
IEEE Information Theory Workshop (ITW), pp. 1–5 (2015). https://doi.org/10.1109/ITW. 
2015.7133169 

27. Tishby, N., Pereira, F., Bialek, W.: The information bottleneck method. In: Proceedings of the 
37th Allerton Conference on Communication, Control and Computation, vol. 49 (2001) 

28. Xu, D., Anguelov, D., Jain, A.: Pointfusion: Deep sensor fusion for 3d bounding box 
estimation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 
pp. 244–253 (2018) 

29. Yang, T., Li, Y., Ruichek, Y., Yan, Z.: Lanoising: A data-driven approach for 903nm tof lidar 
performance modeling under fog. In: 2020 IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS), pp. 10084–10091 (2020) 

30. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q.: A comprehensive 
survey on transfer learning. Proc. IEEE 109, 43–76 (2021) 

31. Zou, Z., Li, Y.: Efficient urban-scale point clouds segmentation with bev projection (2021). 
ArXiv abs/2109.09074 

32. Zou, Z., Zhang, X., Liu, H., Li, Z., Hussain, A., Li, J.: A novel multimodal fusion network 
based on a joint coding model for lane line segmentation. Informat. Fusion 80, 167–178 (2022)

https://doi.org/10.1109/ITW.2015.7133169
https://doi.org/10.1109/ITW.2015.7133169
https://doi.org/10.1109/ITW.2015.7133169
https://doi.org/10.1109/ITW.2015.7133169
https://doi.org/10.1109/ITW.2015.7133169
https://doi.org/10.1109/ITW.2015.7133169
https://doi.org/10.1109/ITW.2015.7133169
https://doi.org/10.1109/ITW.2015.7133169


Chapter 10 
Conclusions 

With the development of vehicle digitization and intelligence, the multimodal 
fusion of different types of sensor data is an inevitable trend to realize all-
weather and all-scenario autonomous driving perception. Hence, this book proposes 
innovative solutions based on multi-sensor fusion for various tasks in autonomous 
driving perception. With multimodal fusion technology as the core, the following 
autonomous driving perception problems are systematically solved. 

1. As the basis of multimodal fusion, Chap. 3 designs an automated online 
calibration technology based on a monocular camera and 3D LiDAR for the 
perception system of intelligent driving vehicles. It effectively overcomes the 
influence of the sensor space position change caused by the load change or 
vibration on the system. The proposed technology realizes accurate automatic 
calibration between sensors during vehicle driving, which provides a foundation 
for subsequent work. 

2. For object detection and scene segmentation tasks in autonomous driving, various 
fused perception algorithms are proposed in Chaps. 4, 5. A fusion mechanism 
with high fusion accuracy, low network complexity, and low inference delay 
is explored, which significantly improves the performance of existing lane/road 
segmentation models. A 3D target detection technology based on fusion point 
cloud enhancement and 4D millimeter-wave RaDAR is proposed, effectively 
improving recognition accuracy and reliability. 

3. Precise positioning technology is also an essential part of autonomous driving 
perception. To solve the problem of satellite navigation and positioning system 
failure in complex dynamic scenarios, Chap. 6 proposes an autonomous fusion 
positioning method with high precision and versatility. An autonomous localiza-
tion method combined with the semantic map generation method is designed, and 
a fusion localization technology based on global information and feature SLAM 
is proposed. The above technology can quickly eliminate the accumulated errors 
in the existing positioning methods and improve the positioning accuracy. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
X. Zhang et al., Multi-sensor Fusion for Autonomous Driving, 
https://doi.org/10.1007/978-981-99-3280-1_10

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-3280-1protect T1	extunderscore 10&domain=pdf
https://doi.org/10.1007/978-981-99-3280-1_10
https://doi.org/10.1007/978-981-99-3280-1_10
https://doi.org/10.1007/978-981-99-3280-1_10
https://doi.org/10.1007/978-981-99-3280-1_10
https://doi.org/10.1007/978-981-99-3280-1_10
https://doi.org/10.1007/978-981-99-3280-1_10
https://doi.org/10.1007/978-981-99-3280-1_10
https://doi.org/10.1007/978-981-99-3280-1_10
https://doi.org/10.1007/978-981-99-3280-1_10
https://doi.org/10.1007/978-981-99-3280-1_10
https://doi.org/10.1007/978-981-99-3280-1_10


232 10 Conclusions

4. In order to further improve the perception system of intelligent networked 
vehicles, Chaps. 7–9 purpose a series of advanced content from the perspective 
of dataset, vehicle-road collaboration, and information quality. In the subsequent 
research stage, key technical details will be optimized to improve the accuracy 
and application scope of the algorithm and better serve the development of 
autonomous vehicle technology. 

Using the developed multimodal fusion method, a series of autonomous driving 
perception problems including object detection, segmentation, and localization can 
be addressed. However, the problem of limited vehicle perception range in complex 
mixed traffic environments has gradually become prominent. Autonomous driving 
perception is evolving from “single-vehicle intelligence” to “vehicle-road coordina-
tion.” As an extension of the algorithm proposed in this book, using the redundant 
and complementary advantages of multi-source heterogeneous sensors, the vehicle-
road collaborative perception of autonomous vehicles in complex environments can 
be realized in the future.


	Foreword
	Preface
	Acknowledgments
	Contents
	Part I Basic
	1 Introduction
	1.1 Autonomous Driving
	1.2 Sensors
	1.3 Perception
	1.4 Multi-Sensor Fusion
	1.5 Public Datasets
	1.6 Challenges
	1.7 Summary
	References

	2 Overview of Data Fusion in Autonomous Driving Perception
	2.1 A Brief Review of Deep Learning
	2.2 Fusion in Depth Completion
	2.3 Fusion in Dynamic Object Detection
	2.4 Fusion in Stationary Road Object Detection
	2.5 Fusion in Semantic Segmentation 
	2.6 Fusion in Object Tracking
	2.7 Summary
	References

	Part II Method
	3 Multi-Sensor Calibration
	3.1 Introduction
	3.2 Line-Based Multi-Sensor Calibration
	3.2.1 Methodology
	3.2.2 Experiment

	3.3 Challenges and Prospect
	3.4 Summary
	References

	4 Multi-Sensor Object Detection
	4.1 Introduction
	4.2 LiDAR-Image Fusion Object Detection
	4.2.1 RI-Fusion Framework
	4.2.1.1 Data Preprocessing
	4.2.1.2 RI-Attention Network
	4.2.1.3 Point Cloud Recovery

	4.2.2 Experiment
	4.2.2.1 Dataset and Evaluation Metrics
	4.2.2.2 Implementation Details
	4.2.2.3 Results
	4.2.2.4 Ablation Studies


	4.3 RaDAR-LiDAR Fusion Object Detection
	4.3.1 Preprocessing of 4D RaDAR Point Clouds
	4.3.2 Interaction-Based Multimodal Fusion (IMMF)
	4.3.3 Center-Based Multi-Scale Fusion (CMSF)
	4.3.4 Experiments
	4.3.4.1 Dataset
	4.3.4.2 Implementation Details
	4.3.4.3 Training
	4.3.4.4 3D Object Detection on Astyx HiRes 2019 Dataset
	4.3.4.5 Ablation Studies with M2-Fusion
	4.3.4.6 Accuracy Comparison Experiments at Different Ranges
	4.3.4.7 Parameter Comparison Experiment
	4.3.4.8 Visualization Experiments


	4.4 Challenges and Prospect
	4.5 Summary
	References

	5 Multi-Sensor Scene Segmentation
	5.1 Background
	5.2 Introduction
	5.3 Attention in Multimodal Fusion Segmentation
	5.3.1 Network Architectures
	5.3.2 Experiments and Discussion

	5.4 Adaptive Strategies in Multimodal Fusion Segmentation
	5.4.1 MIMF Network
	5.4.2 Experiment

	5.5 Video Multimodal Fusion Segmentation
	5.5.1 Method
	5.5.2 Experiments

	5.6 Summary
	5.7 Challenges and Prospect
	References

	6 Multi-Sensor Fusion Localization
	6.1 Introduction
	6.2 GF-SLAM
	6.2.1 Methodology
	6.2.2 Experiment

	6.3 Lifelong Localization in Semi-Dynamic Environment
	6.3.1 Methodology
	6.3.2 Experiment

	6.4 Challenges and Prospect
	6.5 Summary
	References

	Part III Advance
	7 OpenMPD: An Open Multimodal Perception Dataset
	7.1 Introduction
	7.2 Automated Driving-Related Datasets
	7.2.1 Comprehensive Datasets
	7.2.2 Characteristic Datasets
	7.2.3 Our Dataset

	7.3 OpenMPD
	7.3.1 Platform Setup
	7.3.2 Calibration
	7.3.3 Collecting Route
	7.3.4 Combine Annotation

	7.4 Data Analysis
	7.4.1 Complexity
	7.4.2 Occlusion
	7.4.3 Scale
	7.4.4 Position

	7.5 Experiment
	7.5.1 Object Detection
	7.5.2 Semantic Segmentation

	7.6 Summary
	References

	8 Vehicle-Road Multi-View Interactive Data Fusion
	8.1 Introduction
	8.2 Methodology
	8.3 Experiment
	8.4 Summary
	References

	9 Information Quality in Data Fusion
	9.1 Introduction
	9.2 Uncertainty in Data Fusion
	9.2.1 Methodology
	9.2.2 Experiment
	9.2.3 Detection Model Degradation Under Noise

	9.3 Information in Data Fusion
	9.3.1 Multimodal Fusion Within the Context of Information Theory
	9.3.2 Multimodal Models
	9.3.3 Experiment

	9.4 Summary
	References

	10 Conclusions

