

Confident Coding

i

THIS PAGE IS INTENTIONALLY LEFT BLANK

ii

Confident Coding
Learn how to code

and master the essentials

THIRD EDITION

Rob Percival and Darren Woods

iii

THIS PAGE IS INTENTIONALLY LEFT BLANK

First published in Great Britain and the United States in 2017 by Kogan Page Limited
Second edition 2020
Third edition 2023

Apart from any fair dealing for the purposes of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act 1988, this publication
may only be reproduced, stored or transmitted, in any form or by any means, with the
prior permission in writing of the publishers, or in the case of reprographic reproduction
in accordance with the terms and licences issued by the CLA. Enquiries concerning
reproduction outside these terms should be sent to the publishers at the undermentioned
addresses:

Publisher’s note
Every possible effort has been made to ensure that the information contained in
this book is accurate at the time of going to press, and the publishers and author
cannot accept responsibility for any errors or omissions, however caused. No
responsibility for loss or damage occasioned to any person acting, or refraining
from action, as a result of the material in this publication can be accepted by the
publisher or the authors.

2nd Floor, 45 Gee Street
London
EC1V 3RS
United Kingdom

122 W 27th Street
New York, NY 10001
USA

4737/23 Ansari Road
Daryaganj
New Delhi 110002
India

© Rob Percival and Darren Woods 2020, 2023

The right of Rob Percival and Darren Woods to be identified as the authors of this work
has been asserted by him in accordance with the Copyright, Designs and Patents Act
1988.

ISBNs

Hardback 978 1 3986 1189 4
Paperback 978 1 3986 1188 7
Ebook 978 1 3986 1190 0

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library.

Library of Congress Control Number

2020941863

Typeset by Integra Software Services, Pondicherry
Print production managed by Jellyfish
Printed and bound in Great Britain by CPI Group (UK) Ltd, Croydon CR0 4YY

iv

Contents

Introduction 1

Learning in-demand skills 3

Who are we? 5

How to use this book 8

Supporting material online 8

PART ONE

Why coding? 11

01 Why coding is important and what
it can do for you 13

Becoming more efficient 13

Communicating with technical people 14

Understanding how software works 15

Knowing what it takes 15

Building your own website or app 16

Building a web presence 16

Starting your own business 17

Taking on extra responsibilities within your
 current role 17

Aim to stop ‘selling your time’ 18

Combine coding with your professional expertise 18

Coding is fun 19

Coding and specific industries 19

Summary 22

02 What coding is 24

What is coding? 24

Let’s write some code 26

Why are there so many programming languages? 29

Summary 32

v

CONTENTS

vi

PART TWO

Languages 33

03 HTML 35

What is HTML? 36

Why learn HTML? 36

Formatting text 43

HTML lists 45

Images 48

Forms 50

Tables 57

Links 62

HTML entities 65

iFrames 67

Summary 71

Further learning 71

04 CSS 72

What is CSS? 73

Why learn CSS? 73

What does CSS look like? 74

What is internal CSS? 75

Classes and IDs 77

Divs 79

Fonts 99

Styling text 102

Aligning text 107

CSS project: clone a website 110

Summary 110

Further learning 111

05 JavaScript 112

What is JavaScript? 113

Why learn JavaScript? 114

What does JavaScript look like? 114

CONTENTS

vii

Internal JavaScript 117

Changing styles with JavaScript 122

If statements 127

Updating website content 133

Loops 137

Generating random numbers 142

JavaScript project: guessing game 144

Summary 149

Further learning 150

06 Python 151

What is Python? 152

Why learn Python? 153

What will this chapter cover? 153

How do we get started with Python? 154

‘Visitor Registration’ with Python 155

Variables in Python 157

Lists 159

For loops 163

While loops 170

If statements 173

Regular expressions 182

Splitting strings into lists 184

Getting the contents of a webpage 187

Python project: extracting visitor contact data from
 a webpage 189

Summary 194

Further learning 195

PART THREE

In practice 197

07 Website development 199

Why build a website? 200

How do websites work? 201

CONTENTS

viii

What is a domain name, and how do I get one? 202

What is web hosting, and how do I get it? 203

Content management systems 207

Self-coding your site 209

Website development project: build a website 214

Summary 214

Further learning 215

08 Building an app for iPhone or iPad 216

What is an app? 217

Getting started: downloading Xcode 217

Adding labels to our app 220

Adding a text field 222

Adding buttons 224

Running some code 224

Interacting with the user interface 225

Making buttons interactive 228

Variable types in Swift 232

Building an app for iPhone or iPad project: Visitor
 Registration app 234

Summary 240

Further learning 241

09 Windows desktop application programming 242

Desktop applications evolution 242

Microsoft Visual Studio Community Edition 243

C# programming language 244

Installation of Visual Studio 245

The Solution Explorer 249

Adding functionality to our application 254

Coding our button click 257

Running our application 261

If else conditional statements 262

CONTENTS

ix

Building your application 264

Optimizing for release 265

10 Building an app for Android 267

Downloading and setting up Android studio 268

Running your first Android app 270

Adding text and buttons 271

Making the app interactive 274

Making a toast 278

Building an app for Android project: performance
 review reminder app 286

Summary 290

Further learning 291

11 Debugging 292

Why learn debugging? 293

How to write code that requires minimal debugging 294

Debugging HTML and CSS 302

Debugging JavaScript 304

Debugging Swift in Xcode 305

Debugging Java in Android studio 306

Summary 307

PART FOUR

Future-proofing your career with coding 309

12 Using coding to enhance your career 311

Creating an app for your business 312

Starting a blog 314

Finding tasks that can be automated 319

Using Python to extract email addresses from
 a website 321

Automation on MacOS 324

Automation on Windows 327

Summary 328

CONTENTS

x

13 Coding and entrepreneurship 329

What’s coding got to do with entrepreneurship? 330

Getting ideas 330

Products vs services 333

Your unique selling point 335

Validating your idea 336

Creating a minimum viable product 338

How much to charge? 339

Do things that don’t scale 340

Summary 341

14 Pursuing coding further to become a developer 343

Should you become a full-time coder? 344

What languages should you learn? 345

Web development 345

App development 346

Getting freelance jobs 347

Expanding your online presence 353

Writing a software developer CV 354

The interview 355

Summary 356

Conclusion 357

Index 363

Introduction

The train drew into the platform on that cold, wet and dreary
morning. The greyness of the day sat well with the monotony

of my regular commute, a one-hour train journey from
Cambridge to London. I had a functional job – it paid the bills
without being particularly challenging and my colleagues were
friendly enough – but it just lacked inspiration for me. A humble
enough man, I was contemplative yet grateful. This position had
been my gateway into employment after a less than stellar higher
education showing. It was a job of processes, of administrative
tasks, which once mastered simply occupied my time rather than
challenged any mental agility or incited engagement.

As the rain lashed down and the raindrops careered down the
glass pane I glanced out of the window and made out the pillar
across the tracks. I’d observed it a thousand times, Victorian
brick, well-weathered but with an impermeable scrawl of graffiti
emblazoned across the breastwork. I’d often read the messaging

1

INTRODUCTION

2

aloud in my head, perhaps arrogantly dismissive of the seem-
ingly clumsy language used. But this morning would be different.
Those words were to be prophetic. I can’t explain why, but for
the first time I stopped to contemplate their meaning.

“If not now, when?”

It was an epiphany to say the least. Until that moment, I’d had
no clear plan, structure or even drive, just a haphazard collec-
tion of vague thoughts and an attitude of one day, one day my
time will come... I’ll do it then.

Suddenly I knew what I wanted to do, what I needed to do.
The clarity of thought was liberating, the rush of enthusiasm
that I felt surge through me invigorating. That very morning, I
picked up a coding book from the bookshop on the walk to the
office and I was coding up my first website into the evening.

The next day in work I was actively seeking out those labo-
rious tasks and thinking of ways in which I could automate
them. By midday I was creating a macro in Excel and then
tweaking its code in Visual Basic for Applications (VBA). Then
I discovered Microsoft Office Access and its very accessible
database and form features. Before I knew it I was automating
processes and handling the data for my team, saving me and
my colleagues time with robust and efficient use of software
tools. My efforts and new-found skillset didn’t go unnoticed
for long. Perhaps appreciative of the series of dynamic reports
which were now being generated in real time, my manager
granted me a promotion to a more specialized, IT-focused role
and so the ball began to roll.

Fast forward some 20 years and I love working for myself as a
self-employed programmer; I contribute on a multitude of projects
across many different sectors and engage with a wide community
of professionals. I enjoy the flexibility and freedom to determine
my own work commitments and I manage a great work–life
balance. But perhaps most importantly of all, I continue to be
motivated and engaged by the empowerment that coding affords.

INTRODUCTION

3

I don’t think you ever lose that spark, which is the thrill of prob-
lem solving and learning, evolving and adapting new skills.

The most important thing for you to realize right now is that
this is all achievable for you as well. Picking up and reading
these first pages is hopefully a good beginning, but please indulge
us and read on. It’s up to you how far you wish to take coding
and your career. Whether you are just enhancing your current
skillset and job role or planning the next entrepreneurial soft-
ware platform, all it takes is a bit of a down payment in terms of
time and commitment and the horizon is yours.

Learning in-demand skills

In October 2019, BBC News published an article entitled
‘Vatican launches new eRosary bracelet’. The article went on to
discuss the new bracelet, which enabled users to connect to the
‘Click to Pray eRosary’ app. The app, it reported, provided a
track of progress and aimed to fulfil the purpose of the tradi-
tional rosary in aiding prayer and meditation. The technical
achievements of the bracelet aside, it’s amazing to observe how
far technology has permeated into and become prevalent in
everyday society. Here we have one of the oldest and most
famous institutions of the world, steeped in tradition and history,
venturing forth with exciting and innovative gadgetry. The
eRosary bracelet is a sophisticated, stylish and contemporary
piece of technology, replete with online connectivity and services,
aiming to complement the user’s lifestyle and faith needs.

This illustrates what we already know: the world is ever
changing; the thirst for technological advancement and its appli-
cation strive forward at great pace. Beneath the shiny exterior of
our modern lifestyles and connected services is the hard work
and programming skills of many dedicated professionals, at all
levels. There is ever increasing demand for skilled coders – but
this demand is not limited to pure programming roles. Dentists,

INTRODUCTION

4

lawyers, police officers, etc, with complimentary coding knowl-
edge are sought after for workplaces across the globe. Like a
foreign language, and even more universal, coding skills have
become a huge asset to possesses on any résumé.

Then there’s the money side of things: the research firm
Burning Glass found that jobs requiring coding skills pay, on
average, $22,000 more, and that half of all jobs with salaries
over $58,000 require some coding skills. Moreover, half of all
programming opportunities were in industries outside of tech-
nology, including finance, manufacturing and healthcare.
Learning to code not only makes a candidate more employable,
but also gives them the freedom of starting their own business,
or creating a side income from making websites and apps.

In this book we will look in detail at both the ‘why’ and the
‘how’ of learning to code: after looking at the benefits that
programming knowledge brings, we will dive right in to learning
HTML, the language of all websites. We will then look at a range
of other programming languages, and even see how to build
native apps for iPhones and Android devices.

Finally, we will apply the skills in step-by-step guides to entre-
preneurship, building your own websites and apps, increasing
your everyday efficiency and even seeing how you might become
a full-time software developer. Even if you have no plans to
change careers, we will see how you can use coding skills to
make yourself and your colleagues more efficient, creating short-
cuts to complete tasks faster, provide quicker feedback and serve
your customers and clients better. Our hope for you in reading
this book is that you will become fully digitally literate. Some of
you may go on to create businesses; you may build an app to
help you in your current job; and you might communicate more
effectively with the IT team at the office. But most importantly,
you will have a greater understanding of how coding underpins
every interaction we have with our computers, our phones and

INTRODUCTION

5

our smart devices. The lines of code that you write will enable
you to better harness the technology that you use every day.

Who are we?

Rob Percival

I would like to take a moment to tell you how learning to code
has changed my life. I studied Mathematics at university, and
went on to become a teacher in a secondary school in London. I
very much enjoyed the teaching, but I suspected it might not be
what I wanted to do for my whole life, so in the evenings and
weekends I started to build websites.

I had done a little coding as a kid, trying to replicate my
favourite computer games on a BBC Micro, but I was certainly
no Mark Zuckerberg or Bill Gates. I would simply have an idea
for a website, and using Google figure out how to put it together.
This method of learning was free and fairly effective, but it did
mean that I often went down long, unnecessary detours until I
discovered that there was a much better way of doing things.

My first website was HomesExchange.org, a site that allowed
people to swap homes for a couple of weeks to save accommo-
dation costs. Unfortunately, I hadn’t realized that the domain
name HomesExchange.org could also be interpreted as
HomeSexChange.org. After a few unsavoury support requests, I
decided the business was unlikely to go very far!

I built several more sites, most of which came to nothing,
until one day I came up with the idea of an eco-friendly web
hosting service, to allow people to host their websites and emails
in an environmentally friendly way. This was an example of
scratching my own itch, as I had looked for such a service myself
for my own sites, and the existing options were generally very

http://HomesExchange.org
http://HomesExchange.org
http://HomeSexChange.org

INTRODUCTION

6

expensive and didn’t have as many features as the big web hosts
like GoDaddy and 123-reg.

The service, ecowebhosting.co.uk, turned out to be something
that a lot of people wanted, and it started to grow quite natu-
rally, as people discovered the website through Google and
word-of-mouth. As the site grew in popularity, I added features
and automated processes that I had to do several times a day,
learning the coding required as I went.

In 2012 I quit my teaching job in order to focus on Eco Web
Hosting and some other projects full time. I quickly discovered that
working freelance is not quite as ‘freeing’ as I thought, as I always
had several activities going on at once. I liked having a range of reli-
able income (through the web hosting), new projects (mostly
freelance websites and apps through local contacts) and starting
new businesses when I had the latest ‘great’ idea. But I was also
struggling to cope with so many competing calls for my attention.

In January 2014 I started to build an online course to teach
people how to build websites. I had noticed that online video
courses were becoming popular, and thought that with a combi-
nation of my coding knowledge, teaching skills and
entrepreneurial experience I might be able to offer a fun, practi-
cal and project-based approach to learning to code. That course,
The Complete Web Developer Course, went on to be one of the
best-selling courses of all time, and I followed it up with The
Complete iOS Developer Course, for iPhone apps, and The
Complete Android Developer Course, for Android apps.

Through my courses, I have now taught over half a million
people how to code, and I daily appreciate the scale that the inter-
net can provide, with one person being able to help so many others.
The courses have also brought me financial freedom, and a strong
desire to continue helping others find the joy that coding brings
me, as well as the many opportunities that learning to code brings.

http://ecowebhosting.co.uk

INTRODUCTION

7

Steve Jobs famously said, ‘I think everybody in this country
should learn how to program a computer because it teaches you
how to think.’ That is a final, and essential, benefit – learning
code forces you to approach problems logically and analytically,
asking the right questions and testing your solutions to see if
they work. And that is a skill that will benefit you in all aspects
of your life.

Darren Woods

Much like Rob, coding has had a profound impact on my career
and life. Starting out working in a school in the administration
office, I quickly started to realize how inefficient certain tasks
and procedures were. This wasn’t a reflection of the hard work
of the team, it was just the inherent nature of some of the
processes required. So, I set out on a mission (admittedly, in the
first instance, to make my life easier) to improve the efficiency of
the administration of the school. It was in this moment that I
realized the potential of IT to deliver the desired benefits.

 At first improvements amounted to applying obvious off-the-
shelf software solutions. But I soon began to realize the big gains
were achieved when I started to become interested in coding and
customizing software for specific needs. Starting off by coding
Excel macros and Access on the school Microsoft Office soft-
ware, I caught the bug. Before long, I was borrowing books from
the library and studying online tutorials and steadily increasing
my skill set.

Coding was a great enabler for me. With my newfound confi-
dence and skills, I started to think how I could apply these in
various other environments. It was obvious being able to code
opened a huge range of opportunities across almost every indus-
try and field of work.

Before long, I’d gathered my portfolio together, bought a new
suit, hired some office space and suddenly, I was running my

INTRODUCTION

8

very own software development company. I’ve never looked
back; coding has been a revelation and a seismic change in my
career and the opportunities it has afforded me. I would encour-
age you to simply explore the opportunities open to you through
learning to code... where it takes you from there is up to you.

How to use this book

This book is designed to be as practical and hands-on as possi-
ble. You’ll get the most out of it by actively taking part and
following every instruction and activity online as we go.

There are three different kinds of features in this book to help
you learn coding: questions, practice exercises and challenges.
The quick questions are designed to help you memorize key
pieces of information, the practice exercises make sure that your
new skills are honed and developed, and the challenges stretch
you to deeper learning. As the book progresses, you’ll find that
there are fewer quick questions but more and more challenges.

We will be using the context of a Visitor Registration applica-
tion – something that may well be useful in a huge range of
different businesses. Of course, it will be baby steps at first; but
at each stage, we want you to free your thinking. For each exer-
cise and technique you meet, we encourage you to experiment
and extend to improve your results, perhaps tailoring it to your
specific professional environment or incubated prototype idea.
When we introduce our real-life requirements as a context to
our learning, we acquire knowledge and skills very effectively.

I hope you enjoy the journey!

Supporting material online

From time to time in the book we’ll be pointing you to support-
ing material online. Here’s how to get it.

INTRODUCTION

9

1 In the book each online resource is keyed with the letters CC
and a number – like this: CC21

2 Go to koganpage.com/cc
3 There you’ll see a ‘View resources’ button.
4 The button takes you to a PDF, ‘Online material’.
5 The PDF gives you the corresponding URL for each CC

number.

There is another PDF you can download from the same location,
koganpage.com/cc. ‘Confident Coding images’ contains all the
images in the book so you can enlarge them on screen.

http://koganpage.com/cc
http://koganpage.com/cc

THIS PAGE IS INTENTIONALLY LEFT BLANK

10

PART ONE

Why coding?

11

12

THIS PAGE IS INTENTIONALLY LEFT BLANK

CHAPTER ONE

Why coding is important
and what it can do for you

We’ve already seen several reasons why learning to code is
important: it can increase your salary, widen your future

career choices and be a springboard into self-employment and
entrepreneurship. It will also help you navigate the increasingly
automated future of smart assistants, self-driving cars and
virtual reality.

In this chapter we will look at some more specific things you
can do with coding right now, many of which we will expand on
through the course of this book.

Becoming more efficient

Almost all jobs today require a fair bit of time working with a
computer. You likely have to do a range of similar tasks each day,
including working with email, creating and managing documents,

13

THIS PAGE IS INTENTIONALLY LEFT BLANK

WHY CODING?

14

and searching the web. Almost all of these tasks can be made
more efficient with a strong knowledge of how the software and
operating system you are using work.

Initially, simply using keyboard shortcuts will likely save you
several minutes each day, and more importantly will start you
thinking about how the software you are using works, and how
your workflow could be improved. Services such as text expan-
sion and If This Then That, which we will be covering in detail
later on, can save you a huge amount of time, as well as helping
you do a better job. Imagine being able to automatically email
your colleagues with a summary of the effectiveness of your
weekly newsletter. Or completely automating the process of turn-
ing your weekly sales report into a live webpage that your
colleagues can view any time.

Learning to code will allow you to do all this and much more,
doing a better job in less time.

Communicating with technical people

Regardless of your current fluency with technology, it is likely
that you need to communicate with technical people fairly regu-
larly about things that you don’t entirely understand. Whether it
is trying to get some content added to the company website,
getting some software installed on your computer or removing
the tweet you accidentally posted on the company account,
greater technical knowledge can make every aspect of those
conversations much more straightforward.

As well as becoming more familiar with the terminology that
technical people use (which really isn’t as complicated or myste-
rious as it seems), you will know the fundamental nature of how
computer systems work and fit together. This means that every
time you come across a new system, or piece of software, you
will be able to zero in on the key functions and properties,

WHY CODING IS IMPORTANT

15

enabling you to get to grips with how it works, and discuss it
confidently.

Being secure in your ability to deal with computers and soft-
ware will dramatically improve both your productivity and your
speed with which you can get things done when working with
technical staff in your company.

Understanding how software works

One of the primary reasons programming is being taught to
young children is because of the speed with which the world of
software develops. Our current primary computing device, the
smartphone, has only been around in its current form for 10
years. Who knows what devices we will be using 5, 10 or 20
years from now? Teaching children to code teaches them the
fundamentals of how software works, which are not likely to
change any time soon. This will enable them to quickly adapt to
new operating systems, different programs or apps, and new
devices.

The same is true for adults – learning how computers work
gives you the power to absorb new software and hardware into
your workflow, making you more adaptable and essentially
future-proofing your career.

Knowing what it takes

Further to understanding how software works, learning to code
gives you an awareness of what is involved in building a
webform, or adding a feature to an app. It is likely at some point
in your career that you will need to work directly with coders to
add features to the company website, customize the software
you use every day, or even to create a new app from scratch.

WHY CODING?

16

If you aren’t aware of what is necessary to build a website,
app or individual feature, you are open to either overpaying for
what you are getting, or not getting exactly what you wanted.
Knowing what it takes to write some code gives you power in
negotiations and while managing a project, as well as the ability
to get the job done quickly and to budget.

Building your own website or app

Before the internet, if you wanted to share an idea, product or
service with the world, there were significant obstacles to over-
come. You would have had to publish information in a newspaper
or book, or sell directly through shops. The web changed all
that, and now you can build a website in a matter of hours which
is immediately accessible to the 3 billion people currently online.
The only obstacle is learning to code.

To me that is a hugely exciting concept – coding enables you
to build the equivalent of a worldwide shopfront with nothing
but a laptop and a (free) text editor. No more bricks and mortar
required.

We’ll look at several different ways to build your own website
and app (and why you might want to) throughout this book.

Building a web presence

Eighty per cent of employers Google job applicants before invit-
ing them for interview. Take a moment to search your own name
and see what comes up. Is it what you would want a potential
employer to see? Creating a blog, portfolio site, or a simple site
for a project you’ve undertaken or ebook you have written
enables you to control what your future boss sees, and helps you
stand out as an applicant.

WHY CODING IS IMPORTANT

17

A web presence matters and learning to control yours will put
you ahead of 95 per cent of the population. We will cover the
whys and hows of the creation of blogs and portfolio sites later
on in this book.

Starting your own business

‘Technical cofounders’, ie people who want to start a business,
and have coding skills, are so highly in demand that whole
websites have been dedicated to the task, and the search phrase
‘find a technical cofounder’ has 3.2 million results on Google.

Coding skills enable you to start any business you like, but
they also enable you to partner with people and provide the
technical expertise that all new companies need. Whether or not
you want to start a company today, knowing that the opportu-
nity is always there is incredibly exciting, and we will look at the
process in some detail later in this book. What entrepreneurial
opportunities could learning to code bring you?

Taking on extra responsibilities within your current role

In many jobs there is not an obvious process for advancement.
Or perhaps there is a process but it is a slow one, and you are
looking for opportunities to speed up your next promotion. It
can be difficult to simply ‘do your job better’, or find other ways
to stand out from the crowd.

Learning to code gives you the ability to, for example, build
an app that makes something that you and your colleagues do
regularly easier or more effective. You could create a webpage
that helps people to arrange car sharing, or if you are a lawyer
you could build an app to allow clients to instantly view the
status of their case, and be automatically alerted to any updates.
Or you could simply take responsibility for your area of the

WHY CODING?

18

company website, making sure it is up to date and perhaps intro-
ducing tools and features that become popular with your
customers or clients.

Doing things like this might sound extraneous or unnecessary,
but they will get you noticed, and can be the beginning of some-
thing big. Even if they are not, you will learn a huge amount
building your idea, and make lots of mistakes, which, with any
luck, you won’t make next time round.

Aim to stop ‘selling your time’

Through employment, most of us earn our income by selling our
time. If you love your job, that’s a perfectly reasonable arrange-
ment, but for many of us the opportunity to ‘scale up’ what we
do would be welcome. Learning to code can provide that
opportunity.

If you are a teacher, create a website teaching people your
subject, and sell advertising space. If you are an artist, create an
app showcasing your work and selling prints. If you are an
accountant, create a tool that simplifies your workflow and offer
it to others for a small fee. We will take you step by step through
the process of creating something that people want later in the
book, but start thinking about it now and jotting down ideas
whenever you can.

Combine coding with your professional expertise

Most full-time coders have only ever worked as developers. If
you have a different professional background, combining that
with coding can create something close to magic.

For me, it was the combination of coding and teaching that
worked so well, but for you it might be coding and law, coding
and accountancy, or coding and yoga (we’ll see an example for

WHY CODING IS IMPORTANT

19

that later on). Being an expert in a separate field lets you know
what people like you want, what problems they have, and gives
you insight into how those problems might be solved. Learning
to code gives you the tools to actually solve them.

Coding is fun

Coding can be a huge amount of fun, and very satisfying as
you overcome problems and complete challenges. You may feel
that you are not learning anything new in your day-to-day
role, and learning to code gives you that buzz of acquiring new
skills and understanding that you may not have felt since
school or university.

If you enjoy problem solving and creating things, you will
likely find great enjoyment in completing a project, fixing bugs
and creating websites and apps. Crafting lines of code to get a
computer to do your bidding is addictive in itself, and a wonder-
ful break from the stress of everyday life.

Coding and specific industries

Hopefully the above has given you ideas of how you could use
coding skills in your current role, but if not here are a few
concrete examples of how programming could improve your
prospects in specific industries.

Law

Technology is becoming increasingly central in every industry.
Knowing how to code as a lawyer or accountant gives you an
edge with technical clients, enabling you to speak their language
and see more clearly where they are coming from. Not only that,
but technology often pushes the law forward, forcing it to adapt

WHY CODING?

20

to new possibilities and unforeseen situations. A sound grasp of
the technologies themselves is a huge advantage in a fast-chang-
ing legal landscape.

Legal practices also increasingly rely on technologies such as
apps and websites for everyday office tasks, and the ability to
streamline these processes can make you far more effective and
efficient. You may also be able to please your clients better: the
legal process can often seem slow and frustrating to both indi-
viduals and companies. Creating tools for them to see both what
is happening and what they need to do in real time could set
your practice apart.

Sales and marketing

Sales and marketing have been absolutely transformed by tech-
nology. The ability of marketers to measure the effect of their
campaigns has changed the landscape entirely, and being
comfortable with the latest technologies can set individual
marketers and salespeople apart. Whether that’s through being
able to write, edit and debug the HTML for your email market-
ing campaigns or automating repetitive tasks to free up your and
your teammates’ time to develop innovative new ideas.

Even working with ‘old media’ can be made vastly more effi-
cient and effective when combined with technology, and if the
tool doesn’t exist for you to properly manage your latest
campaign, coding skills give you the power to create it.

Banking

It goes without saying that technology is at the centre of banking
today. Machines can make trades far quicker than humans can,
and consumers are increasingly interacting with their banks
online and through apps. Whatever your position in the banking
sector, understanding the tools that you and your colleagues use
every day enables you to use them more effectively.

WHY CODING IS IMPORTANT

21

If you spend all day in Excel creating financial models, learn-
ing to code can not only help with the process of finding bugs in
your formulas and check your results, but can also give you
more powerful techniques to automate processes you are
currently doing by hand.

Trade industries

While the actual processes of building houses and fixing boilers
are still the role of humans, a strong grasp of technology can still
give people working in trade industries an edge. Customer
service is an important aspect of any tradesperson’s role, and
being able to swiftly reply to queries, arrange appointments
automatically, and manage invoicing and payments efficiently
will not only save time but result in a much happier customer
base, and more repeat business.

As with other sectors, if you create a tool that solves a prob-
lem for you, it is very likely others will be interested in using it
too, and you will be perfectly placed to market your product or
service to people in your industry.

Creative industries

As a photographer, graphic artist or other creative professional,
it is likely that you are already focused on technology, and are an
advanced user of a range of complex software. But it is also
likely that you find yourself doing the same processes repeat-
edly: exporting to various file types and sizes, applying filters,
tweaking colour values and much more. Being able to automate
some of these processes can both make you more efficient and
give your output a more consistent style.

It is also inevitable that you will work with developers,
perhaps to create your own portfolio site, or working together
on a particular project. Being able to communicate effectively
with them is crucial for a job to go well, and once you get to the

WHY CODING?

22

level that you can build your own websites or apps, you can
offer a more complete service to your clients.

Retail and service

The retail and service industries are all about providing a great
experience for your customers. That often means providing a
great digital experience that is more efficient for both the organi-
zation and the end-user. Having command of that technology
and being able to create and customize features for your users is
highly attractive to employers, and enables you to do a better
job day-to-day.

Summary

These are just some of the very practical ways that learning to
code can improve your prospects, make you more valuable as an
employee and give your opportunities for greater freedom and
career advancement. As Jason Calacanis, CEO of Mahalo and
founder of the start-up showcase LAUNCH conference says, ‘An
employee who understands how to code is valued at about
$500,000 to $1 million toward the total acquisition price.’
That’s a lot of value to create by learning a new skill.

We will look in more detail at all of these opportunities later
in this book, once we have learned the coding languages that
they require. Before that, however, we will spend a little time
demystifying coding. We will learn what exactly coding is, why
there are so many coding languages and which ones you should
learn. We’ll also see how both the internet and offline apps func-
tion, and familiarize you with the basic terminology that you
will come across in this book (and in all those conversations
with technical people that you are about to have).

On a final, more general note, we have found that learning to
code gives people a great feeling of empowerment. Having the

WHY CODING IS IMPORTANT

23

ability to create digital products such as apps and websites is
something very few people can do, and brings so much potential
into your life. It has completely changed our lives, and it can do
the same for you.

CHAPTER TWO

What coding is

For people who haven’t programmed before, coding can feel
like a mysterious art. The mythical ‘coder’ is someone who

(usually while wearing headphones, hoodie and supping carbon-
ated beverages) can coax a computer into doing their bidding by
typing frantically on a keyboard or two. In reality, the whole
process is much more straightforward than that.

In this chapter, we will explore what programming is and
write the first few simple lines of code for our Visitor Registration
application. We’ll also look at the different types of software we
can produce with code, including websites, mobile apps and
programs for desktop computers. Finally, we will learn some
general coding processes that will stand you in good stead before
we tackle our first coding language, HTML, in the next section.

What is coding?

Put simply, coding is the process of writing lines of instructions
that make a computer (or tablet, or phone, or watch) do

24

WHAT CODING IS

25

something. But it’s a little more complicated than that, so let’s
cover a little bit of background.

The fundamental electrical component that allows a computer
to do what it does is the transistor – a tiny piece of electronics
that can either be on (ie allow electricity to pass through) or off
(electricity cannot pass through). Current computer processors
have around 2 billion transistors, which can turn on and off
around 3 billion times every second. (Incidentally, Homo sapiens
has 100 billion neurons which can turn on and off about 1,000
times a second, so we’re getting quite close to being able to simu-
late the power of a human brain.)

What this means is that computers ‘think’ in a series of 1s and
0s, with 1 meaning ‘on’, or true, and 0 meaning ‘off’, or false. In
the very early days of computing, the only way to communicate
with a computer was to enter streams of 1s and 0s, but this of
course wasn’t very practical. So gradually computer ‘languages’
were developed, which allowed people to give the computer
instructions in a more convenient way.

A computer language is much like a human language such as
English or Spanish, in the sense that each language has specific
commands (words) and syntax (punctuation), so both the human
and the computer can understand it. However, a key difference
between computer languages and human languages is that computer
languages are absolutely precise and unambiguous. If you spell a
command incorrectly, or forget a semicolon, it is likely that your
whole code will fail. Unlike a human conversation, computers are
extremely fussy about both spelling and punctuation.

The big advantage of this unambiguity is that you can be
certain that if you get your code right the computer will do
exactly what you want. Unlike human conversation, which can
often result in unexpected outcomes, computers will always do
exactly what is commanded of them.

WHY CODING?

26

But I can control a computer without coding

You might be thinking, ‘but I can do everything I need to with
my computer and phone without needing to code.’ In the last 30
years or so highly user-friendly operating systems such as
Windows and MacOS (and Android and iOS on mobile devices)
have meant that we no longer have to write code to control a
computer. Advanced Graphical User Interfaces (GUIs) have been
developed so that anyone could approach a computer or phone
and start using it straight away. This has been a great leap
forward in usability, but it also means that many people aren’t
aware of the power that they have at their fingertips if they go
beyond the everyday software like Word and Chrome.

Every piece of software you use has been written, in code, by
someone or, more likely, a group of people. Every time you issue
an instruction to Siri, or enter a web address in a browser, a few
(or a few thousand) lines of code are executed to answer your
question or load a website. There is no magic behind this, it is
simply the hard graft of thousands of developers and billions of
transistors doing what they are told.

Learning to code gives you complete power over these
transistors – you can bend them to your will by creating your
own software, or automating processes to save you hours every
day. Coding is very much like a super-power, in that it enables
you to use equipment you already have in a whole new way.

Let’s write some code

Let’s get started with our Visitor Registration app. In your
browser, go to the web address https://repl.it/languages/python3.

This website allows us to write code in a computer language
called Python (we’ll see more about individual coding languages
later in this chapter). It will then compile the code for us

https://repl.it/languages/python3

WHAT CODING IS

27

(essentially, turn it into 0s and 1s so that the compute can under-
stand it), run it, and then display the output for us to see.

For our application, the first thing we want our visitor to see
is a friendly welcome message, instructing our guest what to do.

In the main window, type the following code:

print("Welcome, please register your visit here.")

NameError: name ‘prin’ is not defined

Now press the ‘run’ button to compile and run your code.
You should see the phrase ‘Welcome, please register your visit

here.’ appear in the black box at the right of the screen. Success!
Now try misspelling ‘print’ or removing one of the brackets. If
you run the code now, you will get an error, something like:

This should give you an idea of how precise you need to be – the
computer won’t make a ‘best guess’ about what you meant. Let
that be your first lesson! The output in the black box on the
right of the screen will provide detail about the error and point
you in the right direction to fix your code.

Do bear in mind, coding is a creative process as much as a
scientific one, so don’t be discouraged by mistakes you make as
you go along. Rather, be encouraged that fixing the errors that
occur is all part of a strong learning process. Think of coding
just like learning a foreign language or any other new skill; it’s
only once we start to put techniques into practice and see how
things work that we embed and cement that knowledge.

Time to try something a little more complicated. Let us suppose
that, upon greeting our guest, we want our Visitor Registration

WHY CODING?

28

application to display the car parking bay numbers that are avail-
able. Have a look at the following code, and try to predict what it
will do:

for x in range(1, 11):

 print(x)

Now delete your print statement and replace it with the above
code. If you get an error, check the code you have entered very
carefully – you need to copy the code exactly.

Note: the print command is indented using the tab key. If you
type the first line correctly and then press enter, the website
should know that you want to indent the second line, so will do
it for you automatically. If it doesn’t, press the tab key on your
computer to indent it.

Did it do what you expected? The ‘for’ command begins
something called a ‘loop’, which executes a chunk of code several
times. The x is a variable, which represents a value, in this case a
number. The ‘range(1, 11)’ part runs the loop with x being 1, 2,
3, … up to 10 (perhaps surprisingly, the 11 is not included in this
command). Finally, the ‘print(x)’ part prints the value of the
variable x. So, the output is simply the numbers 1 to 10.

Challenge 1

For the purposes of our application, let’s assume that parking
bays 1–9 in the office car park are reserved for employees. This
leaves bays 10–20 to display to our visitor. Can you change the
above code, so it prints the correct parking bay numbers?

Solution: You should have changed the code to this:

for x in range(10, 21):

 print(x)

WHAT CODING IS

29

If you did that, congratulations!
Printing the numbers like this might seem a long way off from

building the next Uber or WhatsApp, but it’s where all coders
begin, and the same principles and techniques apply even when
building complex software.

Why are there so many programming languages?

A common question for new coders is what programming language
to learn, which leads to the question of why there are so many.
With human languages, the many languages we speak have devel-
oped over many thousands of years within different geographical
communities. With computer languages, their development was
more deliberate, which means that the different languages are
designed for different purposes. You don’t need to become an
expert in every language, and some great coders really only know
one language well, but you should be aware of the different
contexts that languages operate.

We will cover this in more detail later on, but for now there
are broadly three types of software that you will create with
code. The first we will call apps. Apps have their code stored on
a device (usually a computer, phone or tablet), and primarily run
on that device. An app might be Excel, or a mail client, or a
browser like Firefox. It could be a game like Angry Birds, or util-
ity such as the Notes app on your phone. Apps are what most
people mean when they talk about software, and they are the
simplest to understand.

Next we have the code that displays a website. This is gener-
ally not stored on your machine, and is downloaded afresh every
time you load the website. The browser (itself an app, such as
Chrome, Safari or Firefox) downloads and processes the code to
show you the website. This is known as client-side code because
it is processed on the client computer or phone, ie your device.

WHY CODING?

30

Finally, we have code that runs on a server, or server-side code.
A server is like a very powerful computer that is always connected
to the internet. Your email is stored on a server, as is your Twitter
feed and the current state of your Words With Friends games.
When you log into a website, you send the username and pass-
word to the server, which then runs some server-side code to
check if the login details are right, and if so returns the appropri-
ate page. If not, it will give you an error message.

For each of these three types of software there are a range of
languages we can use. Please don’t feel you have to know the
names of all of these languages; you will become more familiar
with most of them as you go through this book, but it is useful
to be aware of the most popular languages in each category.

Languages for building apps

Apps are generally designed for one particular platform. That
platform might be Windows, or MacOS, or Linux for desktops
and laptops, or iOS (for iPhones and iPads) and Android (for
Android phones and tablets). There are other platforms but these
are by far the most popular.

The mobile platforms each have languages that they are
designed for. iOS development was traditionally done in a language
called Objective-C, but in 2014 Apple introduced a new language
called Swift, which is becoming more popular, and is what we use
in this book. For Android, a language called Java (note Java is not
related to JavaScript) is used by default. It is possible to use other
languages, but not recommended for beginners.

On Windows, most programs are written in C++, which is
related to Objective-C (both are derived from an early program-
ming language simply known as C). Some apps are written using
a platform called .NET, which mostly uses a language called C#,
another variant of C. There are a greater range of other develop-
ment tools and languages for Windows than there are for the

WHAT CODING IS

31

mobile platforms. You can use Java and Python, among other
languages, to build Windows programs.

On MacOS, as with iOS, the default languages are Objective-C
and Swift. Because of its open nature, you can use almost any
language, including Java, Python, and two other popular languages,
Perl and Ruby, to build Linux applications.

Because most new developers are keen to make mobile apps,
we will be focusing on Android and iOS development (so Java
and Swift) in this book, but it is relatively easy to move from
those to other languages if you wish.

Client-side languages

If you are building websites, there are three core languages that
you will need to control how the site looks and behaves. The
first is HTML, or Hypertext Markup Language, which is what
controls the content of a site. The second is CSS, or Cascading
Style Sheets, which determines the styles, such as fonts, colours
and layouts. The third is JavaScript, which allows your website
to be dynamic, and change the content and styles based on user
interaction. These three languages are inescapable in client-side,
or ‘front-end’, development, and they are the three languages
that we will start with in this book.

Server-side languages

By far the most popular language for website server-side (also
known as ‘backend’) code is PHP, short for Hypertext Pre-
processor. This currently powers around 80 per cent of websites,
but there are other options. Python is also used, as is a language
called Ruby. You can also use Perl, Java and even Swift to write
server software.

Phew! That’s a lot of languages, and you don’t need to
remember all these names. If you are still wondering which
language to learn, it depends on what you want to do. If you
want to build websites, HTML, CSS and JavaScript are crucial.

WHY CODING?

32

For the backend, we would recommend Python first (as it is a
very easy language to learn), and PHP if you find it necessary. If
you want to learn mobile development, Swift for iOS and Java
for Android are your best bets.

If you have no idea what you want to do with coding at this
point, simply follow along with the book and we will teach you
a range of languages so you can choose where you want to focus
your attention when you have finished.

Summary

You now have a good overview of what coding is for and the
range of different languages and platforms available. It’s time we
delved in a bit deeper with our Visitor Registration application
and made use of some of these technologies to bring it to life.

In the next section we will be looking at the three main
languages for front-end web development, HTML, CSS and
JavaScript, and one for the backend, Python. This will give you
a great grounding in a range of different programming styles
and techniques, and give you the power to create and manage
your own websites.

PART TWO

Languages

33

THIS PAGE IS INTENTIONALLY LEFT BLANK

34

CHAPTER THREE

HTML

In this chapter, we’ll start our coding journey by looking at
HTML, the language of the web. By the end of the chapter,

you will know:

●● what HTML is and where it is used;
●● how to update and maintain simple websites;
●● how to edit HTML in a text editor, and see the results

immediately in a browser; and
●● how to use basic HTML elements, including:

 – paragraphs and headers;

 – lists and images;

 – forms and tables.

Along the way we will be using our new-found HTML skills to
build a frontend webpage for our Visitor Registration applica-
tion. This will be the welcome page when the visitor first enters
our company’s premises, perhaps presented on a touch screen
display or tablet at reception.

35

THIS PAGE IS INTENTIONALLY LEFT BLANK

LANGUAGES

36

What is HTML?

HTML stands for Hypertext Markup Language, and it is the
language that all websites are written in. Hypertext describes the
fact that an HTML page can contain links to other HTML
pages, which was one of the founding principles behind the web.

HTML was created by Sir Tim Berners-Lee in the late 1980s
as he was developing what is now known as the internet. He
created it as a way of organizing his own notes, but soon wanted
to share his documents with others. As the web grew, Berners-
Lee’s language worked so well that others adopted it for adding
formatting to text, forms, images, and of course links.

One aspect behind the success of HTML (as with all the
languages in this book) is that Berners-Lee made it freely avail-
able for anyone to use. It is this freedom that allowed the web to
grow so fast, and allows anyone today to use the same tools as
professionals at no cost whatsoever. Thank you Tim!

Why learn HTML?

Strictly speaking, HTML is not a coding language, but a markup
language. This means that with HTML you can change the
content and layout of a website, but you are limited in terms of
interactivity with users (so you couldn’t build Twitter with just
HTML).

This makes HTML a great place to start your coding journey
because it is fairly easy to understand, and you can apply the
skills you learn straight away by building simple websites, or
making changes to websites you own or manage. If you find an
error on the company website, you can just fix it yourself, with-
out having to bother the IT department.

Later on in this book we will see how to combine HTML with
JavaScript to start building interactivity into your pages.

HTML

37

What software do I need?

For this whole book, you only need to download one piece of
software, and that is a text editor. This allows you to create and
edit code in any programming language.

You can use any text editor you like, but we would recom-
mend downloading Brackets from www.brackets.io. It is free
and open-source, and can be downloaded on Windows, Mac
and Linux. It will automatically highlight and indent your code,
making writing HTML a much more pleasant experience.

3.1

I’ve downloaded Brackets – what now?

Once you have installed Brackets, you will be presented with
this screen (3.2):

http://www.brackets.io

LANGUAGES

38

Brackets creates an HTML file called index.html, which we will
use to become familiar with the basics of HTML before we start
writing our own code.

You can see what this HTML file looks like in your browser
by clicking File → Live Preview. This will open up the HTML file
in your default browser, which will look something like this (3.3):

3.2

3.3

HTML

39

While coding, we always recommend having the text editor
(Brackets) and your browser open at the same time, so that you
can view changes as you make them.

This will be most effective if you position the live preview and
the brackets code windows adjacent to each other; one above
the other, or side by side.

Now for the fun part – try removing the ‘!’ at the end of ‘This
is your guide!’ in the Brackets window. You should see the live
preview page update immediately, like this (3.4):

3.4

Well done, that was your first HTML edit. Feel free to spend a
couple of minutes experimenting with changing the code, to see
what effect that has on the webpage itself (don’t worry if you
mess anything up – you can always use ctrl-z (or cmd-z on a
Mac) to undo your changes).

Now it’s time to look in more detail at the HTML code and
what it is doing. All the HTML commands come inside angled
brackets (< and >), and they tell the browser how to format and
display the HTML document. Everything inside the angled
brackets is known as a tag. Let’s look in more detail at the
default HTML document created for us by Brackets (3.5):

LANGUAGES

40

The code starts with the line:

3.5

<!DOCTYPE html>

This is a standard command that tells the browser that this is
an HTML document, and to process it accordingly. We put that
at the beginning of every HTML document we create.

Then we have the <html> tag. This indicates the start of our
html code. If you scroll down to the very bottom of the docu-
ment you will see a matching </html> tag. The / here means ‘end
of’, so </html> means that the html section of our code has
ended.

Next comes <head>. This is the ‘header’ of our HTML docu-
ment, and contains information about the document such as its
title, a description and the character set (a name for the collec-
tion of letters, numbers and symbols that we are using, in this
case UTF-8). It also contains a link to a style sheet, which we’ll
be looking at in the next chapter.

HTML

41

Quick question: Where does the <head> section end?

Answer: Where it says </head>

After the header section, we have the <body> tag, which indi-
cates the beginning of the main section of our HTML. This is
where we will put all the content for our webpage. Inside this
section are a number of different tags, which we will be looking
at in more detail shortly. Two key tags are:

●● <h1> – this is a major heading. You can see in the browser
window that this text is big and bold. There are a number of
different heading sizes, which you can use by changing h1 to
h2, h3 etc.

Quick question: Experiment with changing the <h1> tag to other

heading sizes. How many different heading sizes are there?

Answer: 6 (h7, h8 etc just display as normal text)

●● <p> – this is a paragraph tag, and is used to contain normal
text. Successive paragraphs are separated by a small gap on
the webpage.

And that’s it. Other than learning new tags, that is everything
you need to know about how an HTML page works. We start by
defining the document as an HTML file with <!DOCTYPE
html> then we enclose our HTML in <html> and </html> tags.
Within those tags we have two sections: <head>, which contains
information about the webpage such as its title and description,
and <body>, which contains the content of the page.

Now that we know how an HTML page works, we’re going
to build our own from scratch.

Challenge 1: Our Visitor Application webpage

The best way to learn to code is by doing, so you are now going
to create our application’s webpage from scratch. Have a final
glance over the code in Brackets to remember the key details and
then press ctrl-A (cmd-A on a Mac) to select it all, and then press
delete to clear the file.

LANGUAGES

42

Now for the challenge. From memory, if possible, create an
HTML document with a title of ‘Coding Solution Enterprises’
(you don’t need to give it a description, or define the character set),
and content of ‘Welcome to Coding Solutions Enterprises’ inside
paragraph tags. How about a second paragraph? Something like
‘Please register your visit using this application.’ Good luck!

Your final webpage should look something like this (3.6):

3.6

<!DOCTYPE html>

<html>

<head>

<title>CODING SOLUTIONS ENTERPRISES</title>

</head>

<body>

<p>Welcome to Coding Solutions Enterprises</p>

HTML

43

Formatting text

Now that you know how a basic HTML page works, we’re
going to look at some specific tags that we can use to customize
the way our page appears. Let’s start with text formatting.

Try typing the following code under the ‘Please register your
visit using this application’. paragraph in Brackets:

GENERAL PRACTICE EXERCISES

1 Add the missing opening and closing tags to correct the HTML
here:

2 Create a header and paragraph tags here:

3 Create three different types of header tag here:

<p>Important: Please have your license plate and

parking bay number ready.</p>

<p>Please register your visit using this

application.</p>

</body>

</html>

The strong tag makes the text appear bold.

Question: Move the strong tags around so that only the word

‘Important’ is in bold.

Answer: <p>Important: Please have your license

plate and parking bay number ready.</p>

LANGUAGES

44

Now add a new paragraph using this code:

<p>(Parking bay numbers are displayed on signs next

to each bay.)</p>

The ‘em’ tag is short for emphasis, and makes text appear italic.
This can act as a handy reference for basic formatting HTML

tags.
Note – you might want to save that code as a separate file on

your computer called formatting.html so you can refer back to it
later.

Question: Experiment by adding paragraphs which contain <sup>,

<sub> and tags. What effect do these have on your text?

Answer: <sup> makes text superscript (ie appearing above the normal

text), <sub> is subscript (ie appearing below the normal text) and

 has a strikethrough effect.

You should end up with a webpage that looks something like
this (3.7):

 3.7

HTML

45

HTML lists

We are now going to look at a number of more advanced HTML
tags, starting with lists. Firstly, let’s remove those strikethrough,
subscript and superscript experimental lines we put in above.
We’ll also remove the paragraph in italics ‘(Parking bay numbers
are displayed on signs next to each bay)’. Now that’s done, we
want to make the information required for visitor registration a
bit clearer. So, change the wording of this line: ‘Please have your
license plate and parking bay number ready.’ to ‘Please have the
following information ready:’. Once done we are ready for our
list of items, type in the following code:

GENERAL PRACTICE EXERCISE

Add formatting to the text here:

License Plate

Parking Bay Number

Name of Person You Are Visiting

The tag is short for ‘unordered list’, and the tags are
‘list items’. This creates a bullet point list that looks like this:

●● License Plate
●● Parking Bay Number
●● Name of Person You Are Visiting

LANGUAGES

46

Question: Try changing ‘ul’ to ‘ol’ in the above code. What effect does

this have? What do you think ‘ol’ stands for?

Answer: ol stands for ‘ordered list’ and makes the list appear

numbered, like this:

1 License Plate
2 Parking Bay Number
3 Name of Person You Are Visiting

 and tags are useful ways of displaying lists of informa-
tion. See them in action in the great ‘List of lists of lists’ Wikipedia
page at https://en.wikipedia.org/wiki/List_of_lists_of_lists.

Side note – viewing the HTML of any website

In your browser, try loading https://en.wikipedia.org/wiki/List_
of_lists_of_lists. Then right click on the website and select
‘View Page Source’ or similar. You’ll likely see something like
this (3.8):

 3.8

https://en.wikipedia.org/wiki/List_of_lists_of_lists
https://en.wikipedia.org/wiki/List_of_lists_of_lists
https://en.wikipedia.org/wiki/List_of_lists_of_lists

HTML

47

This might look like mostly gobbledygook but if you look closely
you’ll see some of the HTML elements we have talked about:
<html>, <head>, <title> etc. If you scroll down (about line 61 at
the time of writing), you’ll see a collection of elements with
. Try to match these up with the content of the page itself.
Viewing them side by side gives us this (3.9):

3.9

You should be able to see how the and elements in the
code on the right match up with the various lists in the page
itself on the left.

Try doing this with a few other websites to get an idea of how
HTML code relates to a website itself. www.example.com is a
nice simple one to start with, but you can try any website you
like. (Warning: the code for www.google.com is not recom-
mended at this point – check it out and you’ll see why!)

http://www.example.com
http://www.google.com

LANGUAGES

48

Images

Adding images to webpages is very simple, and it introduces us
to a new HTML concept – attributes. These are bits of informa-
tion added to a tag that give the browser more information on
how to display it. For example, to display an image, we would
use something like this:

The tag is short for image, and the ‘src’ part inside is short
for source. Essentially we are telling the browser where to get
the image file from to display it. Notice also that is a self-
closing tag – we don’t need a tag to end it – it ends itself.

Question: Try putting the code into our

HTML file. What happens, and why?

Answer: You’ll likely get a broken image symbol. This is because the

‘image.jpg’ file doesn’t exist, so the browser can’t display it.

Try replacing the above code with this. Don’t worry if it looks a
little large at this stage:

<img src="http://completewebdevelopercourse.com/

star.png">

As long as you have internet access and there aren’t any typos in
your code, you should now see this (3.10):

http://completewebdevelopercourse.com/star.png
http://completewebdevelopercourse.com/star.png

HTML

49

Congratulations, you’ve just added an image to your webpage.
The http:// at the beginning of the link means we are getting the
image from the internet, so we don’t even need to save it to our
computer.

You’ve probably noticed that the image is a little large in size,
but not to worry: we can customize the image further by adding
height and width attributes. Try putting this code into brackets:

3.10

<img src="http://completewebdevelopercourse.com/star.

png" height=100 width=100>

This will give you something like this (3.11):

http://completewebdevelopercourse.com/star.png
http://completewebdevelopercourse.com/star.png

LANGUAGES

50

The star image is now 100 pixels wide and 100 pixels high.

Question: What code would display the image ‘sun.png’ with a height

of 250 pixels and width of 200 pixels?

Answer:

3.11

PRACTICE EXERCISE

Add and resize an image here:

Now that you are familiar with attributes and self-closing tags,
we’ll move on to a more complicated and powerful aspect of
HTML – forms.

Forms

Forms are all over the web, and they are a simple but effective
way to make your website interactive and allow your users to
enter information. We are going to make use of a form on our

HTML

51

application’s webpage to allow our visitor to enter the informa-
tion we require.

Text boxes

Text boxes allow the user to enter some text, such as a username
or a password.

Start by entering the code below our list of required items and
seeing what you get:

<input type="text">

3.12

Question: What is the name and value of the attribute in this input tag?

Answer: The name of the attribute is ‘type’ and its value is ‘text’.

This gives you a simple text input that the user can click on and
type some text into. We are going to use text inputs to capture
the information we require from the visitor.

Try typing some text into the box. It should look like this (3.12):

LANGUAGES

52

Question: What happens when you change the input type to

‘password’?

Answer: Try the code <input type=“password”>. It looks the same,

but when the user types in the box, their input is hidden. Perfect for

passwords!

Checkboxes

We can add several other form element types using the input tag.
Try adding this code just above the text input we placed in the
code above:

<input type=“checkbox”>Do you have a vehicle?

3.13

This gives the visitor an option to indicate that they have a
 vehicle with them.

HTML

53

Radio buttons

If we were to add additional check boxes, each would be inde-
pendent; that is, you could check as many as you wished. If,
instead, you only want your users to select one option from a
group you can use the radio input type:

<p>What type of vehicle is it?</p>

<input type=“radio” name=“size”>Saloon

<input type=“radio” name=“size”>SUV

<input type=“radio” name=“size”>Hatchback

PRACTICE EXERCISE

For each of the following, state whether you would use a checkbox
or a radio button:

1 Asking a user whether they want to subscribe to a newsletter.

2 Asking a user whether they prefer tea or coffee.

3 Asking a user what countries they have travelled to from a list.

Answers

1 Checkbox – they can select or deselect the box as they wish.

2 Radio – they should only be able to select one option.

3 Checkbox – they can then select as many as they want to (or
none).

If you try out that code, you’ll see that you can only select one
of the options. Also, once you have selected an option, you
cannot deselect it – so you have to choose one and only one of
the options.

LANGUAGES

54

Drop-down menus

If you want to create a drop-down list where the user can select
from a range of options, you can use the select element. It looks
like this:

<select>

<option>1</option>

<option>2</option>

<option>3</option>

</select>

3.14

Try this out in our webpage – let’s ask the user to select a park-
ing bay number – you should see something like this (3.14):

HTML

55

This code is a little more complicated than the input elements,
but still fairly straightforward. The <select> tag introduces the
drop-down menu, and then we add an <option> tag for each of
the options within the drop-down.

Question: What does the </option> tag do?

Answer: It signals the end of that option, ready for us to add another

one, or use </select> to end the drop-down menu.

Text areas

What about the person our visitor is coming to see? We’ll need to
capture as much information as possible so that we can identify
the person. Therefore, we are going to need more than a little box.
That’s where text areas come in. You add them like this:

<p>Who are you visiting?</p>

<textarea></textarea>

Try it out, and you’ll see a larger box where you can add multi-
line text. Unlike inputs, text area tags are not self-closing, so you
need to add a </textarea> afterwards to end the element.

PRACTICE EXERCISE

Change the width and height of a text area using the cols and
rows attributes. Create a text area that is about half the height and
width of your browser window.

After a bit of experimentation, your code should look something
like:

<textarea cols=“50” rows=“8”></textarea>

LANGUAGES

56

Buttons

Every form needs a submit button. You can add one by using the
input type ‘submit’, like this:

This will give you a text area that looks like this (3.15):

3.15

<input type="submit">

That gives you a simple submit button with the word ‘Submit’.
If you want to change the text on the button, you can add a
value attribute, like this:

<input type="submit" value="Confirm">

HTML

57

This is as far as we are going to go with forms at this point (but
we will see them again in Chapter 6). They are a very simple way
to allow interaction with your users, and if you are creating or
editing websites, you will likely come across them before long.

Challenge 2

You know now all the basic form elements, so in a new file try
creating a simple sign-up form that allows the user to enter an
email address, password, and perhaps their gender. Don’t forget
the submit button.

PRACTICE EXERCISE

The HTML for this form is broken – can you fix it?

Tables

You’ve probably already spotted the flaw in our genius plan. We’re
relying too much on the user to input accurate information in that
textarea. Likely, we will receive all sorts, eg Bazza, Big Dave, ‘that
girl with brown hair’. It would be useful if we could display people
to the visitor for them to choose from. Tables are a great way of
displaying information to the user – essentially they look like
spreadsheets, with different content in each cell. Let’s remove our
textarea element and create a table. Use the following code:

<table>

<tr>

<th>Name</th>

<th>Role</th>

</tr>

<tr>

LANGUAGES

58

The <table> tag is pretty self-explanatory – it indicates that we
want to display a table. <tr> is short for ‘table row’, and defines
the beginning of a new row in our table. <th> is short for ‘table
header’, so each of these is a one-column header for our table.

After the table headers, we use </tr> to signify the end of the first
row, and another <tr> to start a new row. <td> is short for ‘table
data’ and is how we refer to the content of a cell in our table. Each
row should have the same number of columns (in this case 2).

Try typing that into your text editor and seeing how it looks.
You should see something like this (3.16):

<td>Rob</td>

<td>Director</td>

</tr>

</table>

3.16

HTML

59

You can see that the table cells are nicely lined up with each
other, and that the table headers are in bold. Voila – our first
table!

Question: Add one more row to your table representing another

member of staff.

Answer: Your HTML should look something like this:

<table>

<tr>

<th width="200">Name</th>

<th width="300">Role</th>

<table>

<tr>

<th>Name</th>

<th>Role</th>

</tr>

<tr>

<td>Rob</td>

<td>Director</td>

</tr>

<tr>

<td>Darren</td>

<td>Underling</td>

</tr>

</table>

We can customize our tables in a number of ways. Firstly, we can
change the width of the columns just like we did with images
earlier:

LANGUAGES

60

</tr>

<tr>

<td>Rob</td>

<td>Director</td>

</tr>

<tr>

<td>Darren</td>

<td>Underling</td>

</tr>

</table>

3.17

HTML

61

Notice that when we do this the table headers are centred, but
the table data is left-aligned.

We can also add a border around the table cells by adding the
attribute border=1 to the table element (3.18):

3.18

Challenge 3

Create a table with ‘First Name’ and ‘Surname’ as two separate
table head labels and your actual first name and surname in
separate table data cells in the table body:

LANGUAGES

62

Links

As we mentioned at the beginning of this chapter, the ‘HT’ in
HTML stands for Hypertext, which refers to HTML’s ability to
link to other webpages. Insert the following paragraph and link
into our webpage. Let’s put it just under the text ‘Please register
your visit using this application.’ so that it is one of the first
things our visitor is prompted to do.

<p>Please read the following information:</p>

<a href="http://www.hse.gov.uk/workers/index.

htm">Health and Safety in the Workplace

The ‘a’ element is actually short for ‘anchor’, because links were
originally used to link from one part of the page to another part,
the location of which was defined by an ‘anchor’ (we’ll see how
to do that shortly). ‘href’ is short for hypertext reference, and is
essentially the page that we want to link to. The Health and
Safety in the Workplace text that appears inside the ‘a’ element
is the text that the user will click on to go to the new page.

Try this out, and you’ll see your text is underlined and blue,
and when you click on it you are taken to http://www.hse.gov.
uk/workers/index.htm (3.19):

http://www.hse.gov.uk/workers/index.htm
http://www.hse.gov.uk/workers/index.htm
http://www.hse.gov.uk/workers/index.htm
http://www.hse.gov.uk/workers/index.htm

HTML

63

When you click on the link you should find that it opens the
link in a new tab or browser window.

3.19

<a href="http://www.hse.gov.uk/workers/index.htm"

target="_blank">Health and Safety in the Workplace

(You can click the back button in your browser to go back to
your webpage.)

Question: What happens when you add target=_blank as an attribute

to the <a> element?

Answer: Your code should look like this:

http://www.hse.gov.uk/workers/index.htm

LANGUAGES

64

We’ve used placeholder text for the second paragraph here, but
you can find something a bit more in context for your own
company (3.20):

<p>Lorem ipsum dolor sit amet, consectetur adipiscing

elit. Sed cursus dictum sem. Praesent volutpat accumsan

felis vitae gravida. Aliquam ex elit, mattis vel ipsum

sit amet, auctor varius dolor. Mauris sed eros

consectetur, fringilla nisl quis, bibendum ex. Proin

sit amet rhoncus metus. Duis convallis pulvinar orci ac

ultricies. Vestibulum bibendum velit a dui laoreet

efficitur. Sed lobortis suscipit sapien eget pharetra.

In feugiat iaculis turpis id ornare. Proin volutpat

eleifend est, eu cursus massa faucibus ut. In in neque

lacus. Aenean nec ante ex. Maecenas fermentum posuere

arcu, nec venenatis est euismod semper. Ut congue et

sem et tincidunt.</p>

3.20

Anchor links (ie links within a webpage) work slightly differ-
ently. Firstly, go to the bottom of our page and add the
following:

<p>Code of Conduct</p>

HTML

65

(We’ll be seeing a lot more of the id attribute in the CSS
chapter.)

Finally, change the code for the link at the top to look like
this:

Now, give the Code of Conduct paragraph on the page an id at-
tribute, like this:

<p id="conduct">Code of Conduct</p>

Code of Conduct

The # (hash) symbol tells the browser that instead of jumping to
another page, it should look for an id tag of ‘conduct’ in the
current page and jump there.

Try it out. This type of link will only jump to the content if is
currently off-screen. If you have a large screen and you can
already see the full page, you might need to make your browser
window smaller so that you need to scroll to see the code of
conduct then click on the link. You should find when you click
on the link it jumps to the bottom of the page.

PRACTICE EXERCISE

Practise creating links in the exercise at

HTML entities

Sometimes you might want to use symbols in your webpages,
such as the copyright symbol ©, the euro symbol € or even a
smiley face . This can be done by using HTML entities, or

LANGUAGES

66

special codes that browsers display as the required symbols. So
to display a trade mark we use:

3.21

The & tells the browser that we are about to enter an HTML
entity, and the # indicates we are going to describe the entity by
its code number. The code number for the trade mark sign is
8482, and then we use a semicolon to complete the HTML
entity.

™

Let’s place a trademark immediately after the text of our compa-
ny’s name in our welcome message (3.21):

HTML

67

Some symbols can be displayed using a code number and also
a code name, so:

© and ©

<iframe src="http://www.hse.gov.uk/workers/index.htm">

</iframe>

will both display the copyright symbol ©.
You can see a list of some of the most common HTML enti-

ties at www.w3schools.com/html/html_entities.asp

Challenge 4

Try using HTML entities to add currency symbols here:

iFrames

This is the final bit of HTML we will be learning in this chapter,
so congratulations for making it this far. Soon we’ll be seeing
how to add some style to our application’s webpage using CSS.

iFrames allow us to include the content of another webpage
in our own. So, for example, we could include the health and
safety page we saw earlier at the bottom of our webpage using
this code:

http://www.hse.gov.uk/workers/index.htm
http://www.w3schools.com/html/html_entities.asp

LANGUAGES

68

Try changing www.example.com to other websites that you
visit, such as bbc.co.uk. Note that some popular websites, such
as google.com and facebook.com, don’t allow their websites to
be displayed in iFrames.

Question: Can you add some attributes to the <iframe> element to

make the iFrame box as wide and tall as your browser window?

Answer: Just add width and height attributes as we did with images:

3.22

<iframe width="600" height="500" src="http://www.hse.

gov.uk/workers/index.htm"></iframe>

This will give you something like this (3.23):

http://www.example.com
http://bbc.co.uk
http://google.com
http://facebook.com
http://www.hse.gov.uk/workers/index.htm
http://www.hse.gov.uk/workers/index.htm

HTML

69

One particularly handy use of iFrames is to include media such
as YouTube videos in your webpages. For our application you
could imagine embedding a company help video posted to
YouTube or perhaps a promotional piece about the company’s
achievements as part of the overall welcome message. To do this:

●● Go to youtube.com and click on any video you like.
●● Scroll down and click on the Share button (underneath the

red Subscribe button).
●● Click on Embed.
●● Copy the code to your clipboard (ctrl-c or cmd-c on a Mac)

and then paste it into your webpage. You should end up with
something like this (3.24):

3.23

http://youtube.com

LANGUAGES

70

3.24

The code is a simple iFrame with a width and a height, but also
has the attributes frameborder=“0”, which turns off the iFrame
border, and allowfullscreen, which is a YouTube-specific attrib-
ute that, as you might have guessed, allows the user to make the
video full screen.

PRACTICE EXERCISE

Try adding an iFrame to include any website you like here:

HTML

71

Summary

As we have learned, HTML forms the basis of every webpage.
You have now learned how to create and edit all the foundational
HTML elements. You should feel confident with the progress we
have made on our application’s webpage and be able to apply that
learning to creating your own webpage or editing an existing one.

The next step on our coding journey is to learn how to style
our HTML pages – we will look to improve our Visitor Registration
webpage by adding colour, changing sizes, adjusting text format-
ting and a lot more. We do that using CSS, or Cascading Style
Sheets, and that’s what we’ll be looking at in the next chapter.

Further learning

At this point of the book, we would recommend going on to
learn CSS and JavaScript before investigating HTML further.
However, if you have got the HTML bug, feel free to check out
these resources to dive deeper into how the language works and
what you can do with it:

●● www.codecademy.com/courses/web-beginner-en-HZA3b/0/1
(archived at https://perma.cc/CSF2-D2UH) – interactive coding
exercises for HTML.

●● www.w3schools.com/html/ (archived at https://perma.cc/J6YW-
Q2RR) – free HTML tutorials.

●● http://learn.shayhowe.com/html-css/ (archived at https://perma.
cc/NV65-FCUG) – great site for learning HTML and CSS.

●● https://play.google.com/store/apps/details?id=com.sololearn.
htmltrial&hl=en (archived at https://perma.cc/H4LH-FWQJ)
– free Android app for learning HTML.

●● https://itunes.apple.com/gb/app/learn-html-fundamentals/
id933957050?mt=8 (archived at https://perma.cc/GEV4-
QZJ3) – free iPhone and iPad app for learning HTML.

http://www.codecademy.com/courses/web-beginner-en-HZA3b/0/1
https://perma.cc/CSF2-D2UH
http://www.w3schools.com/html/
https://perma.cc/J6YW-Q2RR
https://perma.cc/J6YW-Q2RR
http://learn.shayhowe.com/html-css/
https://perma.cc/NV65-FCUG
https://perma.cc/NV65-FCUG
https://play.google.com/store/apps/details?id=com.sololearn.htmltrial&hl=en
https://play.google.com/store/apps/details?id=com.sololearn.htmltrial&hl=en
https://perma.cc/H4LH-FWQJ
https://itunes.apple.com/gb/app/learn-html-fundamentals/id933957050?mt=8
https://itunes.apple.com/gb/app/learn-html-fundamentals/id933957050?mt=8
https://perma.cc/GEV4-QZJ3
https://perma.cc/GEV4-QZJ3

CHAPTER FOUR

CSS

Now that you have covered HTML, which allows you to
create different types of elements on a webpage, in this

chapter you’ll learn how to style those elements using CSS. Then,
in the next chapter, we’ll be making the elements interactive
using JavaScript.

In this chapter we’ll cover:

●● what CSS is and how it is used;
●● how to refer to elements using classes and IDs;
●● using DIVs to break up our webpage; and
●● how to use CSS to adjust the following:

 – borders and positioning;
 – colours and fonts;
 – text and link formatting.

72

CSS

73

What is CSS?

HTML allows us to add elements to our webpages, but it does
not easily allow us to adjust their position, colour, font or style
in general.

CSS was introduced by Håkon Wium Lie, a colleague of
Berners-Lee, in 1994. The main idea is to keep the styling infor-
mation separate from the content of the page, so it’s easy to
adjust the style without affecting the content. In fact, you can
completely change the look and layout of a webpage by just
changing the CSS, without editing the HTML at all.

CSS stands for Cascading Style Sheets – the ‘cascading’ part
refers to the way the browser decides which style ‘rule’ should
apply to an element when there are multiple, conflicting rules.
For example, if one style sheet says a <p> element should be
blue, and another says it should be red, we need to have a
consistent way to know what colour the <p> element should
actually be. We’ll see several examples of this later on.

Why learn CSS?

Learning HTML without CSS is a bit like learning to paint in
black and white: you can draw anything you like, but you are
missing out on a world of colour. CSS allows us to design our
websites to look unique, friendly and pretty. It will allow you to
customize the look of any website you want to build or
maintain.

From a coding point of view, CSS’s use of classes and IDs
(we’ll see what they are very soon) is fundamental to JavaScript,
and will teach you how we can use a single line of code to affect
the look of a number of different elements. CSS is still pretty
simple, but is slightly more complex than HTML to get your
head around, so it’s the perfect second language to learn as you
develop your coding skills.

LANGUAGES

74

What does CSS look like?

Enough introduction! Let’s see some CSS in action and apply it
to our Visitor Registration application. We’re sure you’ll agree
our current opening webpage is presently looking a little clut-
tered and disjointed.

First off let’s add the corporate colour to that welcome
message to make it stand out a bit more. To begin with, let’s
change that welcome text to Heading 2 (<h2> tag). Next add a
‘style’ attribute, with a value of ‘color:red’ to the welcome para-
graph so that it looks like this:

<h2 style="color:red">Welcome to Coding Solutions

Enterprises™</h2>

Through the wonder of CSS, you’ll see that the text turns red.
Try experimenting with other colours.

Note to our British readers: you will have to use the American
spelling of the word ‘color’, as the British spelling colour:blue
will not work.

The ‘color:red’ part is the CSS, and is a single CSS rule which
applies to that particular <p> element.

Adding CSS using a ‘style’ attribute is known as inline CSS, as
it is in line with the HTML.

There is a problem with inline CSS though – if we want to
make the text of every paragraph red, we have to add a style
attribute to each paragraph. This is messy, and if we suddenly
want to change the colour of all our paragraphs to green, we will
have to update each one individually.

Fortunately, there is a solution to this problem, and it is called
internal CSS.

CSS

75

What is internal CSS?

Internal CSS is when we include all the CSS together at the
beginning of our HTML document (we will meet the third and
final type of CSS, external CSS, at the end of the chapter).
Remove the inline style that you just made in the previous task.
Next add the following code into our <head> section:

<style>

h2{

color: red;

}

</style>

4.1

Your view should now look like the below (4.1). Notice that
although we have removed the inline style the <h1> text is still

LANGUAGES

76

red because of the inline CSS we’ve just put in. Essentially this
inline CSS says ‘find all the <h2> elements and change the text
colour to red’. The curly brackets { and } contain all the rules
that we want to apply to our h2 elements (the semicolon signals
the end of a rule). Now if we want to change all our Heading 2
(h2) elements from red to green we can do so just by changing
the CSS – we don’t have to go anywhere near the HTML.

PRACTICE EXERCISES

1 Black text can be a little stark. Try changing the paragraph colour
to a softer grey. You should see that all paragraphs are change
to grey when you introduce the rule into the CSS.
Your code should be something like this (4.2):

4.2

CSS

77

Classes and IDs

What if we wanted some paragraph tags to be blue and others
red? We need a way to select elements more precisely than just
by their type. We do this using classes and IDs.

Classes

Adding a class attribute to an element is simple – change the
code for the first paragraph to make it stand out a bit more:

2 Change the styling in the webpage on this exercise link from
inline to internal CSS:

3 Experiment with applying CSS rules to other elements within
our webpage. Try to choose styles that complement each other
and contribute to making the page readable.

Your code should look something like this (4.3):

4.3

<p class="black">Please register your visit using this

application.</p>

LANGUAGES

78

We have now applied the class ‘black’ to that paragraph. Now
add the following code to the style section of your webpage:

.black{

color:black;

}

Note: the . before ‘black’ tells the browser that we are looking
for a class. A period, or full stop, is shorthand for class in CSS.

You should now find that the first paragraph is black, whilst
the remaining paragraphs remain grey.

Classes allow us to provide specific CSS rules to as many
elements as we like, and to elements of any type.

Note that the paragraph with class ‘black’ actually has two
style rules applied to it. The p rule tells it to be grey, and the
black rule tells it to be black. As CSS states that the most ‘specific’
rule should win out, rules defined by classes or IDs will always
trump those applied to element types. So the paragraph ends up
black, not grey. This is the ‘cascading’ part of Cascading Style
Sheets in action.

IDs

IDs are very similar to classes, but they should only be applied
to one element on a webpage. They are designed for elements
that will only appear once, such as a header, footer or title.

We add them in exactly the same way as with classes, so try
changing the opening h2 text to have an id of ‘red’:

<h2 id=”red”>Welcome to Coding Solutions

Enterprises™</h2>

CSS

79

Remove the h2 {color: red} rule from our CSS – after all, we may
wish to use h2 tags elsewhere on our page and we don’t want
them all in our brand red. Now add the following CSS to the
style section:

#red {
color:red;

}

Note: here we use a hash symbol, #, to represent an ID. So in
CSS, . is short for class and # is short for ID.

Remember rules relating to IDs and classes will always trump
those related to element types.

PRACTICE EXERCISE

Add internal CSS to the webpage, available on exercise link CC10,
to make the first paragraph red and the second paragraph blue
using classes and IDs:

We can now select elements by either their type, or their class or
ID. We have only learned one CSS rule though, which is how to
change the colour of text. Before we look at other rules, we’ll
quickly see how we can use the <div>element to break up our
code into different sections.

Divs

Div is short for ‘division’ and allows us to divide our code into
different sections. This means we can style each section

LANGUAGES

80

differently if we want to. Divs provide a useful container with
which to contain and group together elements of a particular
section of our page. They also provide and allow us to better
structure our websites as we shall see. Add the following code to
our webpage:

<div>

<img src=”http://completewebdevelopercourse.

com/star.png” width=”100” height=”100”>

<h2 id=”red”>Welcome to Coding Solutions

Enterprises™</h2>

<p class=”black”>Please register your visit

using this application.</p>

</div>

<div>

<p>Please read the following information:</p>

Code of Conduct

</div>

<div>

<p>Important: Please have

the following information ready:</p>

License Plate

Parking Bay Number

Name Of Person You Are Visiting

</div>

The result should look like this (4.4):

http://completewebdevelopercourse.com/star.png
http://completewebdevelopercourse.com/star.png

CSS

81

The presentation hasn’t changed! It might not look like the divs
are doing very much, but they actually give us a lot of control
over our design when we start applying styles to them. Let’s start
by giving them a background colour.

Background colours

We’ll now look at a range of different CSS styles that we can use.
We want to mark out the Information Requirements section.
Add the following inline style to that div element like so:

4.4

<div style=”background-color:aliceblue”>

<p>Important: Please have

the following information ready:</p>

LANGUAGES

82

This differentiates our requirements section a bit better (4.5):

License Plate

Parking Bay Number

Name Of Person You Are Visiting

</div>

4.5

CSS

83

Note: The div stretches all the way across the browser window
by default.

PRACTICE EXERCISE

Rather than using an inline style attribute, it would be better to
define this background colour as a class. See if you can change the
code to accomplish this.
Don’t forget the . before the class name!

background-color: #765481;

background-color: #F7E1A2;

Colour codes

So far we’ve only used names to describe colours. As you can
imagine, we usually want to be more precise than that, and we
do that using colour codes, which are like HTML entities for
colours, with each code representing a particular colour. Try
these rules:

The hash symbol # tells the browser that we are going to use a
number to represent the colour, and then we use a six-digit
alphanumeric code (a code containing letters and numbers) for
the colours that we want, in this case purple and orange.

You don’t have to memorize all the codes – you can use a
website like http://html-color-codes.info/ to work out the colour
code for the colour that you want to use.

http://html-color-codes.info/

LANGUAGES

84

Changing sizes

We can use the width and height rules to change the width and
height of our div. But first a little consolidation and restructur-
ing. Add an id of ‘intro’ to our first div – this contains our
branding and opening message. To make things simpler, let’s
remove our code of conduct link div and the elements within
and also the code of conduct Latin text at the end of our page.
Next add a class of ‘infoBox’ to the other div, ie the one with our
information requirements. Place all our remaining elements
below into another div with an id of ‘questions’. Finally, add the
following CSS styles:

PRACTICE EXERCISE

Update the styling for the paragraphs to the appropriate colour,
using HTML colour codes:

#intro{

width:50%;

}

.infoBox{

background-color:aliceblue;

width:50%;

}

Your page and code should look like this (4.6):

CSS

85

4.6

Note that we can apply as many CSS rules to each element as we
want. With CSS, we have to add units to our widths and heights,
so 200px means ‘200 pixels’ and ‘50%’ means ‘50% of the
containing element’, in this case the <body> element.

Positioning with floats

So far we’ve seen how to use CSS to adjust colours and sizes, but
we can also use CSS to affect layout. Up until now, all our
elements have appeared below each other, but we can change
that using floats. Try adding the following to the CSS rules:

LANGUAGES

86

4.7

#intro{

width:50%;

float:left;

}

 .infoBox{

background-color:aliceblue;

width:50%;

float:right;

}

#questions{

clear:both;

}

Your page should now look like this (4.7):

CSS

87

Notice what has happened: .infoBox is now ‘floated’ on the right
of the page, and #intro is in line with it on the left. Try removing
the CSS rule clear:both; from div #questions. You should see the
questions start to display awkwardly, wrapping in the space
around the other two divs as per the image below (4.8):

4.8

#questions{

clear:both;

}

This is because the top two ‘floated’ divs cause the content of div
#questions to ‘flow’ up into the space underneath the shorter.
infoBox div on the right. This is an important gotcha when
designing column layouts. The clear:both; rule that we previ-
ously had on div #questions ensured that the content of that div
‘cleared’ the other two floated divs above.

Make sure you put this CSS rule back in to make the presen-
tation look right again:

PRACTICE EXERCISE

Update the internal CSS on the webpage in exercise CC12 to make
#left float left and #right float right:

Floats are an extremely useful way to arrange divs or other
elements to the left or right of each other.

LANGUAGES

88

Layout with positions

Sometimes we want to be even more precise with our layouts
than floats can allow, and we do that with positioning. If we
want to move the position of, say, div .infoBox, relative to where
it would otherwise be, we can add the following CSS rules:

position: relative;

top: 50px;

This will move it 50 pixels down (4.9):

4.9

CSS

89

Try experimenting with different values of ‘top’ and ‘left’.

Question: How do negative values (eg -50px) of ‘top’ and ‘left’ affect

the position of the div?

Answer: They move it upwards and to the left.

So using position: relative will move the element relative to
where it would otherwise be. Try adding:

position: absolute;

to the div .infoBox rules. What effect does that have? It actually
removes the div from the flow of the page, so the other elements
ignore its existence. This can be useful if you want to position an
element relative to the page, rather than relative to other
elements. You can still use ‘top’, ‘left’ and also ‘bottom’ and
‘right’ to move absolutely positioned objects around. Obviously,
the overlap position currently is pretty useless (unless of course
we wanted it to be a pop-up) – try positioning the .infoBox div
over to the right of the page (4.10):

LANGUAGES

90

4.10

PRACTICE EXERCISE

Update the internal CSS to give the #home div an absolute
position of 10 pixels right and 10 pixels down and the #next div a
relative position of 50 pixels right and 10 pixels up:

margin: 20px;

Margins

Margins give an alternative, and in some ways simpler, way to
position elements. To see it in action, remove all the positioning
rules from div .infoBox and add the rule below to it instead:

CSS

91

But wait, what just happened to our layout? Well, if you think about
it .infoBox is 50% of the page width and #intro, to its left, takes up
the other 50%. We’ve then just added a margin of 20px all around
.infoBox. This means all the space required by .infoBox is greater
than what is available and so it is forced down below #intro in the
flow of the page. We could just adjust the width of .infoBox so it
takes up less space, but for now let’s look at setting specific margins.
We can set the top, bottom, left and right margins individually –
delete the general margin rule, and let’s add the following to .infoBox:

4.11

margin-top: 50px;

This gives a 20-pixel margin around the .infoBox div, which
looks like this (4.11):

LANGUAGES

92

PRACTICE EXERCISE

Give the div with the ID box a margin of 10 pixels at the top, 15
pixels on either side and 20 pixels on the bottom setting each
margin individually (eg margin-top)

Margins are a great way to move objects around and leave a gap
where the object would have been. In a similar way, we can use
padding to add a margin inside the element.

4.12

This effectively moves the blue div 50px down (4.12).

CSS

93

Padding

In all our divs, there is no padding around the text inside the div.
Usually it’s prettier to leave a gap between the text and the edge
of the div, and we do that using padding. Try adding this rule to
our divs using a CSS rule on the div element.

div

{

padding:15px;

box-sizing:border-box;

}

4.13

This adds 15 pixels of padding all around the inside of our divs
(4.13):

LANGUAGES

94

You probably noticed that we snuck another CSS rule in
there – box-sizing:border-box.

This style and value of ‘border-box’ ensures that any padding
(and border for that matter) is included in the overall width and
height of the element. In our case that’s important because of
our adjacent 50% width elements which would otherwise exceed
the available space. Experiment by removing this rule – just
remember to put it back in (4.14)!

4.14

Try experimenting with padding-top, padding-bottom to see
what effect they have.

Padding is a great way to add a little space within your
elements, to give your content room to breathe.

CSS

95

Borders

Adding borders to your elements is a simple way to separate
different parts of your webpage. Borders can make a complex
page much more readable, and are a good way to bring in a little
graphical flair without using images.

Let’s add a border around our div .infoBox to demarcate it a
bit more.

Add the following CSS:

PRACTICE EXERCISE

Style the #box div to have padding of 15px on the top, right,
bottom and left sides with as few commands as you can:

border: solid 1px grey;

This will display as such (4.15):

4.15

LANGUAGES

96

border: dotted 0.5px grey;

4.16

Let’s tone it down slightly (after all, we don’t want it detracting
from our logo and main instruction on the left):

This has the following effect (4.16):

Note that this style is a little different to the others we have seen
so far, in that it includes three values:

●● 1px: this is the width of the border.
●● Solid: this is the border type. You can experiment with

different border types, such as dotted, dashed, groove and
ridge. You’ll likely use solid most of the time though.

CSS

97

●● Grey: this is the border colour. You can use any colour you
like, or HTML colour codes such as #47D812.

Challenge 1

Create a top border on div #questions in order to show where
our questions begin. Your code should look like this:

border-top: solid 1px #cccccc

And in action (4.17):

4.17

Borders can get pretty garish, so keep them simple.

LANGUAGES

98

Rounded corners

Related to borders are rounded corners. These were added in
CSS 3, the latest version of the CSS language. To add them, we
use the border-radius property. Try replacing the border style for
div.info Box to:

border-radius: 5px;

4.18

Now we have an attractive rounded rectangle (4.18). You can
adjust the border-radius value to anything you like to increase
the roundedness, but 5–10 pixels is usually about right for most
situations.

http://div.info

CSS

99

Question: What happens when you set the border-radius to
50%? Why?
Answer: We get a circle.

We get a circle because the radius of the curved edge is equal to
half the width of the div (ie 100 pixels in this case). That means
there is no room left for any straight edges – the whole of the
border is rounded, and thus we are left with a circle.

Note that the rounded corner is only applied to the back-
ground and not the content – you would have to add some
padding to the div to position the text completely inside the
circle.

PRACTICE EXERCISE

Practise adding a simple border and rounded corners to two divs
here:

Fonts

Just like with a standard Word document, we can change the
fonts used on our Visitor Registration webpage. So far, we have
displayed all text in the browser’s default font (in Chrome’s case
this is a version of Times New Roman).

Add the following CSS style to the body element:

body{

font-family: sans-serif;

}

Your page should now look like this (4.19):

LANGUAGES

100

This changes the text to the browser’s default sans serif font.
Sans serif means without serifs, ie without decorative lines or

‘ticks’ at the end of each letter. Sans serif fonts are usually seen
as more modern and cleaner than serif fonts.

Note: we have applied the font-family property to the body,
not the paragraph element. This means that all text on the page
will be affected, which is usually what we want, as most webpages
use just one font.

Fancier fonts

We don’t have to limit our application to the default serif and
sans serif fonts, we can use any font we like. However, if our
website is popular, it will be accessed from a range of different
devices, which may not have the font that we want to use
installed. In this case, we can set up a list of fonts, and the
webpage will use the first one that is available.

4.19

CSS

101

A nice example of this is the ‘Better Helvetica’ CSS trick at
https://css-tricks.com/snippets/css/better-helvetica/

body {

font-family: "HelveticaNeue-Light", "Helvetica

Neue Light", "Helvetica Neue", Helvetica, Arial, "Lucida

Grande", sans-serif;

}

4.20

Helvetica Neue is a font known for being modern, simple and styl-
ish, but only Apple devices make it available as a default. Change
our body CSS to the above. This CSS style will select that font if it
is available, but offers a range of fallbacks to pick the ‘prettiest’
version of the font available as you can see on the right (4.20):

https://css-tricks.com/snippets/css/better-helvetica/

LANGUAGES

102

It is generally recommended to stick to ‘web safe fonts’ if you
want to be confident that all your users will see the font that you
intend. To get a list of these fonts, just type ‘web safe fonts’ into
your favourite search engine.

PRACTICE EXERCISE

Create some text using the Georgia web safe font with a fallback
of serif:

Styling text

We can do a lot more with text than just set the font – we can
make text bold, italic, underlined, and a lot more. Currently our
webpage company name looks a little dated – perhaps trying too
hard to be noticed – let’s give it a more contemporary feel by
adding the following to the #red CSS rule:

#red{

color:red;

font-weight:lighter;

}

See this in action (4.21):

CSS

103

But we should differentiate the text ‘Welcome to’ from our
company name. To do that, we’ll need to introduce a new
element called span. In itself, this element does nothing, but it
allows us to style individual parts of an element. Try replacing
the paragraph HTML with:

4.21

<h2 id=”red”>Welcome to

Coding Solutions Enterprises™</h2>

The span element in itself doesn’t affect the style of the text at all
(4.22):

LANGUAGES

104

However, it does allow us to apply a style only to the contents of
the span:

#standout{

font-weight:bold;

}

4.22

Remember #standout is just a CSS id and simply means ‘apply
these CSS rules to the element with an ID of standout’.

CSS

105

Your code output should look like this (4.24):

Similarly, we can use a second style on this span to add some
italicized text.

Change the CSS rule to read:

4.23

#standout{font-weight:bold; font-style:italic}

Now only the words ‘Welcome to’ are in bold (4.23):

LANGUAGES

106

<p><strong class=”underlined”>Important:

Please have the following information ready:</p>

.underlined{

text-decoration: underline;

}

4.24

Challenge 2

The CSS rule to underline text is text-decoration: underline.
Have a go at underlining the word ‘Important’ in the div
.infoBox.

Your HTML should look like this:

And your CSS should have this rule:

CSS

107

The final outcome should look like this (4.25):

4.25

PRACTICE EXERCISE

Use CSS to make some text bold and italic:

You can of course combine these styles to have bold and under-
lined text, and there are other text styling options – you can see
more of them at www.w3schools.com/css/css_text.asp

Aligning text

Just like in a word processor, you can use CSS to align text left, right
or justified (so that the words spread out to fill the space available).
To align the text to the right, just add the following style:

http://www.w3schools.com/css/css_text.asp

LANGUAGES

108

To set the text to be aligned to the left, use:

text-align: right;

text-align: left;

text-align: justify;

This is the default, so you don’t usually need to use it. For justi-
fied, just use:

Note that you’ll need to have enough text to go over the end of
the line to see this in action.

This works well with long pieces of text such as blog articles,
but not so well with general website content, so use sparingly.

PRACTICE EXERCISE

Practise setting text to be justified here:

Styling links

Links can be styled like any other HTML element, but there are
a couple of settings that you’ll likely want to use specifically
with links.

The first is to remove the underlining of links – this has
become unfashionable in recent years, with links usually being
identified using colour. To remove the underline from a link, just
use the style:

CSS

109

More interestingly, we can also use what are known as pseudo
classes to style what a link looks like when it is hovered over by
the user. To do this, use:

text-decoration: none;

a:hover {

color: green;

}

Click me

to open Google.com in a new tab.

Combining these two commands gives us a link that is not
underlined, and turns green when you hover over it.

A pseudo class is so named because is not a ‘real’ class in that
it doesn’t refer directly to an element, but to a particular state of
that element, in this case the hover state. So it’s not a normal
class that we define, but a particular ‘state’, such as when a link
is hovered over, or if the element is the first one in a list. If you
want to learn more about pseudo classes you can do so at www.
w3schools.com/css/css_pseudo_classes.asp.

Open in a new tab

This is not strictly a CSS command, but while we are styling
links, having the option to open a link in a new tab or browser
window can be very handy. We can do this by adding
target= _“blank” to the link, like this:

http://www.google.com
http://Google.com
http://www.w3schools.com/css/css_pseudo_classes.asp
http://www.w3schools.com/css/css_pseudo_classes.asp

LANGUAGES

110

CSS project: clone a website

A great way to practise CSS is to clone a website that you like
the look of. You could start with something fairly simple, like
www.google.com, and move on to something a little more
complicated, such as www.bbc.co.uk/news. Pick any site you
like, and try to create an accurate copy of it. It’s not an easy task
(and it will probably involve plenty of googling), but you’ll learn
a huge amount in the process.

When you’re done, paste your code into a site like codepen.
com, and share the link with Rob on Twitter (@techedrob). We
look forward to seeing what you can create.

Summary

Congratulations, you now know the basics of CSS. You know
how to add a range of styles, layouts and formatting to a website,
and combined with the HTML skills you learned in the previous
chapter, you should be able to design pretty much any website
you like.

Having covered HTML (for content) and CSS (for style and
layout), we will now be moving on to learning JavaScript, for
interactivity. JavaScript will allow you to add a huge amount of
power to your webpages, allowing the user to interact with them
just like they would an app or piece of software.

JavaScript is a whole new world of coding, so let’s get started.

PRACTICE EXERCISE

Practise styling links and opening them in new tabs:

http://www.google.com
http://www.bbc.co.uk/news
http://codepen.com
http://codepen.com

CSS

111

Further learning

As before, we would advise moving on to JavaScript for now,
but if you’ve got the CSS bug, these further learning links will
help you learn more about cascading style sheets.

●● www.codecademy.com/courses/css-coding-with-style/0/1
(archived at https://perma.cc/UU6Z-Q7XR) – interactive CSS
coding lessons.

●● www.w3schools.com/css/ (archived at https://perma.cc/3Q28-
YJZL) – CSS tutorials from W3Schools.

●● http://learnlayout.com (archived at https://perma.cc/FEC5-
V3PR) – create great flexible layouts with CSS.

●● https://play.google.com/store/apps/details?id=com.sololearn.
csstrial&hl=en (archived at https://perma.cc/S4JK-S7EK)–
Android app to teach you CSS.

●● https://itunes.apple.com/gb/app/learn-css/id953955717?
mt=8 (archived at https://perma.cc/47V3-999Q) – iPhone and
iPad app to teach you CSS.

http://www.codecademy.com/courses/css-coding-with-style/0/1
https://perma.cc/UU6Z-Q7XR
http://www.w3schools.com/css/
https://perma.cc/3Q28-YJZL
https://perma.cc/3Q28-YJZL
http://learnlayout.com
https://perma.cc/FEC5-V3PR
https://perma.cc/FEC5-V3PR
https://play.google.com/store/apps/details?id=com.sololearn.csstrial&hl=en
https://play.google.com/store/apps/details?id=com.sololearn.csstrial&hl=en
https://perma.cc/S4JK-S7EK
https://itunes.apple.com/gb/app/learn-css/id953955717?mt=8
https://itunes.apple.com/gb/app/learn-css/id953955717?mt=8
https://perma.cc/47V3-999Q

CHAPTER FIVE

JavaScript

We’ve now made use of HTML for content, and CSS for
style and layout for our Visitor Registration page. It’s time

to bring in the third piece of the puzzle, JavaScript, which allows
for interaction with the user. Unlike HTML and CSS, JavaScript
is a ‘full’ programming language in the sense that we can use it
to run computer programs: pieces of software that can do pretty
much anything the coder wants.

In this chapter, we’ll cover:

●● what JavaScript is and how it is used;
●● how we can make use of JavaScript on our page to add

interactivity;
●● running JavaScript in response to a user action such as a click;

and
●● how to use JavaScript to:

 – change the content and style of webpages;
 – use programming fundamentals such as loops and if

statements;
 – generate random numbers.

112

JAVASCRIPT

113

 What is JavaScript?

JavaScript is our first ‘proper’ coding language. It allows us to
use programming tools such as loops, variables and if statements
(we’ll find out what these are shortly). It can be used for a whole
range of tasks, from making a piece of text disappear when we
click on it to creating full apps, such as the Google Docs suite of
office applications.

Any website that provides interactivity without reloading the
page uses JavaScript.

JavaScript was created in 10 days in May 1995 by Brendan
Eich, working at Netscape, one of the first browsers. It was orig-
inally called Mocha, and then Livescript. Interestingly, it has
nothing to do with the Java programming language beyond the
name. Netscape was given permission from Sun (who owned the
Java language) to use the name JavaScript, primarily as a market-
ing technique, as Java was a very popular language at the time.

JavaScript has gone through many iterations and develop-
ments, but the latest standard version (which we will learn here)
is supported in all browsers, on both desktop and mobile
platforms.

One important aspect of JavaScript is that it runs on the user’s
computer, rather than a server. This makes it what is known as a
client-side language. Therefore to do anything requiring a server,

WebGL

PHP

MySQL

Apache

Server
Modules

Web
Browser

Web ServerHTML
(5)

CSS

JavaScript /
jQuery

Internet

 5.1

LANGUAGES

114

such as send an email, or signing up a user to your new social
network, you’ll need to use a server-side language such as
Python, which we will learn in the next chapter.

Why learn JavaScript?

If you’re not convinced already, the benefits of learning JavaScript
are many. Primarily, it is our first ‘proper’ programming language,
allowing us to develop full, interactive apps and websites, rather
than just create layouts and static webpages.

It’s also very similar to a number of other languages, so once
you learn JavaScript, you’ll be able to get started with any other
language much more quickly.

As JavaScript works in all browsers, you don’t need to down-
load any extra software to get started with it. And it uses classes
and IDs, just like CSS, so it’s strongly linked to what you have
already learned.

It’s a simple language to get started with, but as with CSS is
hugely powerful, and so is a great first coding language to learn.

What does JavaScript look like?

JavaScript is very simple to get started with. To begin, let’s return
to our Visitor Registration application, specifically the last line
in our code:

<input type="submit" value="Confirm">

JAVASCRIPT

115

Ideally, when we click on this button we would like the page to
acknowledge submission of our visit details. Of course, when
you click the button at the moment, nothing happens. Let’s
change that with some JavaScript magic. Change the button
code to the following:

5.2

<input onclick='alert("Guest Registered")' type=

"submit" value="Confirm">

(Make sure you get the right type of quotation marks – we
need ‘ on the outside and “ on the inside.)

It should look like this (5.2):

LANGUAGES

116

Hurrah, you’ve run your first piece of JavaScript! The onclick
attribute allows us to write some JavaScript which will be run
when the button is clicked. The actual JavaScript we are
running is:

5.3

When you click the button, you should now see this (5.3):

alert("Guest Registered")

The alert command means ‘create a popup window with a
message for the user’, and that message is contained within the
single quote marks, ie Guest Registered. In JavaScript a command
is usually followed by parentheses, or brackets, containing

JAVASCRIPT

117

information for the command. In this case, the information is
the text to be displayed in the popup.

PRACTICE EXERCISE

Change the code so that instead of alerting Guest Registered it
alerts a friendlier confirmation message.

Your code should look something like this:

<input onclick='alert("Welcome, your visit has been

registered.")' type="submit" value="Confirm">

Running JavaScript like this is known as inline JavaScript, just
like inline CSS as we saw at the beginning of the previous
chapter.

Internal JavaScript

Running JavaScript like this is much like running CSS using the
style attribute – it works, but it’s messy, and is a frustrating expe-
rience if you are trying to write more than a simple alert
command.

Just like CSS, we can separate out our JavaScript from our
HTML using internal JavaScript. With CSS we used <style>tags,
and with JavaScript we use <script>tags. Those tags can go in
the header of our HTML page, but we’ll be putting them at the
end of the page. This is generally good practice, as it makes sure
all the elements of the page have been created by the browser
before we try and run JavaScript on them.

LANGUAGES

118

 To create some JavaScript which alerts Welcome, please regis-
ter your visit. when the page is loaded, add this code to your
HTML page, just before the </body> tag:

5.4

<script>

alert("Welcome, please register your visit.")

</script>

You’ll now see the alert popup when the page is loaded (you
might need to refresh the page to see this effect), like this (5.4):

JAVASCRIPT

119

Internal JavaScript – responding to a click

When we used inline JavaScript, it was obvious which element
was going to trigger the JavaScript, because the onclick attribute
was within that element. So how do we associate our internal
JavaScript with the button? The answer is the same as with
CSS – we use IDs.

Challenge 1

Remove the onclick attribute from the button, and give it an ID
of ‘confirmation-button’.

Your button code should now look like this:

<input id="confirmation-button" type="submit"

value="Confirm">

document.getElementById("confirmation-button").

onclick = function() {

alert("Welcome, your visit has been registered.")

}

Now, to make something happen when that button is clicked.
First remove the alert code between the script tags that we used
to display a message when the page loads. Then put the follow-
ing code between the <script>tags in its place:

This is perhaps the most complex code we have seen so far, but
it’s fairly straightforward when you break it down.

First, ‘document’ refers to the HTML page itself, telling the
browser that we will be looking for something within the page.

LANGUAGES

120

Next getElementById(“confirmation-button”) does exactly
what it says – it gets an element by its ID, in this case the ID is
‘confirmation-button’.

The ‘onclick = function()’ part means we are setting the
onclick attribute of our element equal to a function (a function
is just a chunk of code that does something). The empty paren-
theses just mean that we are not passing any values to that
function.

The { and }, known as curly brackets, contain the code for the
function. Curly brackets are the standard way in JavaScript and
many other languages to contain code for functions.

Finally, within the curly brackets we have our familiar alert
(‘Welcome, your visit has been registered.’) which displays the
alert.

All together in plain English, the code means:

Take the HTML page and find within it an element with an ID of

‘confirmation-button’.

Then alter that element so that when the user clicks on it, it will

display an alert with a text of ‘Welcome, your visit has been

registered.’ Simple!

You may want to re-read the above paragraphs a couple of times
to get everything clear, and then try this challenge.

Challenge 2

Display a further information pop-up if the user clicks on our
star logo. Locate the image tag at the top of the page which
displays our star logo. Now give it a ID of ‘logo’. Now see if you
can put in some code like we did with the button to respond to
a click event.

Your code should look like this:

JAVASCRIPT

121

And in action (5.5):

document.getElementById("logo").onclick = function() {

alert("Coding Solutions Enterprises is an

organisation psuhing the boundaries of technological

innovation. We drive change through technical

enhancement in the workplace.")

}

5.5

PRACTICE EXERCISE

Add JavaScript to popup Button Clicked! when the button is clicked
on the page:

LANGUAGES

122

Changing styles with JavaScript

As well as displaying alerts, we can change styles with JavaScript
as well.

Challenge 3

Up until now, we have just assumed that the user has entered all
the required information before clicking on submit. We’ll come
onto validation of the user entries in the following section, but
for now let’s display a simple validation message to the user
immediately below the submit button.

Add a div with a paragraph of text immediately below the
button. Give these elements IDs of validation-box and valida-
tion-message respectively:

<div id=’validation-box’>

<p id=’validation-message’>Please ensure all information

is entered correctly.</p>

</div>

#confirmation-button{margin-top:25px; margin-

bottom:15px;}

#validation-box{border:solid 1px gray; display:none}

#validation-message{font-style:italic; margin:0;}

 Let’s add some styles in the CSS (while we’re at it, let’s create
some space around our submit button, too):

Important – did you notice that we set the display property of
the validation box to ‘none’? This is because we want it to be
hidden until the user clicks on submit.

JAVASCRIPT

123

The result should be that when the user clicks on the submit
button, our validation message displays below, and the message
text is red.

5.6

document.getElementById("confirmation-button").onclick =

function() {

 document.getElementById("validation-message").

style.color = "red";

 document.getElementById("validation-box").style.

display = "block";

}

Now, change the code for the confirmation button to:

LANGUAGES

124

Tip: Whenever you are writing some new JavaScript, it can be a
good idea to set up a separate simple page to make sure every-
thing is ‘wired up’ and working correctly. Otherwise you can
spend a lot of time debugging your code before realizing you
forgot to capitalize the ‘I’ in getElementById!

Now let’s add some detail to the validation message. Firstly,
add in an input for the user’s name and put it as the first item
above vehicle registration. Give this an ID of input-name. Let’s
also take the opportunity to put div tags around each of our
questions. This will make sure that they display on separate lines
and keep things tidy:

<div id="questions">

<div>

<p>Please enter your name</p>

<input id="input-name" type="text">

</div>

<div>

<input type="checkbox">Do you have a vehicle?

<input type="text">

</div>

<div>

<p>What type of vehicle is it?</p>

<input type="radio" name="size">Saloon

<input type="radio" name="size">SUV

<input type="radio" name="size">Hatchback

</div>

<div>

<p>What parking bay are you in?</p>

<select>

<option>1</option>

<option>2</option>

<option>3</option>

JAVASCRIPT

125

Next add another line of code for the submit (confirmation-
button):

</select>

</div>

<div>

<p>Who are you visiting?</p>

<table border="1">

<tr>

<th width="200">Name</th>

<th width="300">Role</th>

</tr>

<tr>

<td>Rob</td>

<td>Director</td>

</tr>

<tr>

<td>Darren</td>

<td>Underling</td>

</tr>

</table>

</div>

<input id="confirmation-button" type="submit"

value="Confirm">

<div id="validation-box">

<p id="validation-message">Please ensure all

information is entered correctly.</p>

</div>

</div>

LANGUAGES

126

Give it a go! You should see when you click submit that your
JavaScript code sets the paragraph text. We make use of the
innerHTML property here to set the HTML contained within
the paragraph tag – in this case, just simple text.

Now let’s personalize the message a bit more. Change that
line of code to the following:

5.7

do cument.getElementById("validation-message").innerHTML =

"Please ensure all fields are completed.";

document.getElementById("validation-message").innerHTML

= document.getElementById("input-name").value + ",

please ensure all fields are completed.";

JAVASCRIPT

127

Now we are getting some real interaction, so it’s time to learn a
couple of fundamental programming concepts. The first is an ‘if
statement’.

If statements

If statements are absolutely fundamental to programming. They
instruct the program to do something only if a condition is met.
This might be logging into your favourite website – ‘if the user-
name and password match an entry in the database, log the user
in’. Or it might be one of the rules in a game – ‘if Mario touches
the bomb, kill Mario’.

5.8

LANGUAGES

128

In our application, we have pulled the user’s name into the vali-
dation message to give some personalization. But what if the
user name is not set? And what about the other fields that might
be required – such as the vehicle registration number?

Let’s change our code to make the validation in our applica-
tion a bit more meaningful and useful. Replace the code for the
confirmation-button click with the following:

if(document.getElementById("input-name").value == ""){

document.getElementById("validation-message").style.

color = "red";

document.getElementById("validation-message").

innerHTML = "Please enter your name.";

document.getElementById("validation-box").style.

display = "block";

}

If you look carefully at the code, you should be able to see what
is going on. We start with the ‘if’ keyword, and then we have our
condition in parentheses. The condition here is that the value in
the text box must be equal to blank text, ie nothing has been
entered. If that is the case the system will display our validation
message and prompt the user to enter their name. If not, it will
do nothing (note, you will need to refresh the page to reset the
input box and hide the validation message between attempts).

Notice the double equals == here. In JavaScript (and almost
all programming languages), we use a single equals to set some-
thing equal to something else, like when we set the onclick
attribute equal to the function in the screenshot above. We use a
double equals to test if something is equal to something else. It’s
a distinction you’ll need to get used to, and your code will behave
very strangely if (when!) you get it the wrong way round.

JAVASCRIPT

129

You can also use != instead of ==. This, as you have probably
guessed, checks to see if something is /not/ equal. Try it out! If
you change our code from == to !=, you should see the behav-
iours reversed: when something is entered, our message is
displayed, and when it is blank, nothing happens. This is obvi-
ously incorrect – so make sure to change it back when you’re
done testing (5.9)!

After you have set the if condition back to ==, consider that the
user has entered a name. We now have the information required;
the if == “” is false ,and so we don’t need to execute the code
that displays the validation message. But it would be useful to
execute some other code at this point, and we can do that using
the else keyword. Add the following just after the final } in the if
statement:

5.9

LANGUAGES

130

Now if we have entered a name we will receive the familiar
confirmation message (5.10):

if(document.getElementById("input-name").value != ""){

document.getElementById("validation-

message").style.color = "red";

document.getElementById("validation-

message").innerHTML = "Please enter your name.";

document.getElementById("validation-box").

style.display = "block";

}else{

alert(document.getElementById

("input-name").value + ", your registration has been

submitted.");

}

5.10

JAVASCRIPT

131

Challenge 4

So far, we have accounted for just the one validation on the
user’s name. Moving our attention to the other input elements,
let’s see how we can validate them too. Let’s assume for now that
the user has driven to our premises. Provided the user has entered
a name, can you change the code to also check to see that a
license plate has been provided? Remember to add the ID to the
license plate input. Your code should look something like this:

document.getElementById("confirmation-button").onclick =

function() {

 if(document.getElementById("input-name").value == ""){

 document.getElementById("validation-message").

style.color = "red";

 document.getElementById("validation-message").

 innerHTML = "Please enter your name.";

 document.getElementById("validation-box").style.

 display = "block";

}else{

if(document.getElementById("input-license").value ==

""){ document.getElementById("validation-message").

style.color = "red";

document.getElementById("validation-message").

innerHTML = "Please enter a vehicle license.";

document.getElementById("validation-box").style.

display = "block";

}else{

LANGUAGES

132

This is an example of nesting if else statements. Take a moment
to follow through the code and the different conditions and
results. Using nesting in this way, we can add in additional
control to the logic and flow of our code.

And in action (5.11):

alert (document.getElementById("input-name").

value + ", your registration has been submitted.");

 }

}

}

5.11

JAVASCRIPT

133

Updating website content

Before we learn the second fundamental programming concept
(loops), let’s return to updating our website content with
JavaScript. We’ve used an alert to display the success message to
the user. Whilst alerts are useful, they can be rather distracting,
and we also have limited control over their behaviours and
appearance.

Challenge 5

Remove the alert code that displays our success message and, in
its place, let’s insert the following code:

PRACTICE EXERCISE

Update the value of x so the if statement gives the output x is less
than five:

}else{;

document.getElementById("validation-message").

innerHTML = "Your registration has been submitted.";

document.getElementById("validation-box").style.

display = "block";

}

And in action (5.12):

LANGUAGES

134

We have now removed the alert and instead we make use of the
validation box to display our success message, just like we did
for our validation errors. One thing you may have noticed is that
we now have some unnecessary duplication of code in our
submit click event. Because we are now displaying the validation
box for both validation errors and success messages, we are
always going to set the display style to block. We can therefore
place a single statement of:

5.12

document.getElementById("validation-box").style.display

= "block";

JAVASCRIPT

135

before the If statement and remove the other duplicate instances.
Regularly inspecting your code and making it more efficient is a
necessary step as your applications grow in scope and capabili-
ties. Your code should now look like 5.13 below, and the output
should be the same as before.

5.13

 Challenge 6

So, we have a success message displayed, but really it could do
with a bit more prominence.

Let’s add some dynamic styling in the event of a successful
submission. Add the following CSS class to the style rules:

LANGUAGES

136

The position property causes the be displayed in a fixed spot on
the page and by setting top and left to 50% we place the box
directly in the centre. However, the element is positioned based
on the top left corner. Now obviously because the element has a
width set above to 300px and an inherent height our box would
be slightly off-centre. To remedy this, we introduce the
translate:transform(-50%,-50%); rule – this essentially says
shift our box to the left and up by 50% of its width and height,
therefore ensuring a perfect centre placement on our screen.

We won’t see our styles just yet because we haven’t assigned
our class to the validation box element yet. Now normally we
would simply add class=“success-box” to our element. However,
in this instance we need the class to be applied dynamically, that
is only when we are showing the success message and the valida-
tion is satisfied. We can do this with the following code:

.success-box{

background-color:#addcb6;

position:fixed;

width:300px;

top:50%; left:50%;

translate:transform(-50%,-50%);

}

document.getElementById("validation-box").classList.

add("success-box");

This line of code dynamically adds the class ‘success-box’ to our
validation-box element. The style rules of the class ‘success-box’
are then applied. You should see the following results (5.14):

JAVASCRIPT

137

 Loops

Loops are a way of repeating the same action again and again.
Twitter uses loops to display a timeline of tweets, and Google
uses them to display your search results. It’s fair to say software
as we know it wouldn’t exist without loops.

We are going to leave our Visitor Registration webpage at this
stage to focus more on coding and functionality concepts in the
coming section and chapters. But don’t worry, we’ll continue to
explore programming within the context of our Visitor
Registration project so that we have a natural point of reference.

Make sure you save your work using the File > Save As menu
command. Then select Close All from the File menu. You should
now be left with the Getting Started template files. Select File >
Live Preview and this will automatically create a new instance for

5.14

LANGUAGES

138

us – you should see the Getting Started page and code again. Clear
out all of the Getting Started content and put in some script
tags and a div with an ID = “numbers” leaving the following
structure:

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<meta http-equiv="X-UA-Compatible"

content="IE=edge">

<title>Programming Loops</title>

</head>

<body>

<div id=”numbers”></div>

<script>

</script>

</body>

</html>

var number = 1

 A nice feature of our application might be the ability to print out
all the available car parking bays. To get started we’re going to
create a simple loop to display the numbers 1 to 50 on our page.
To do this we will need a variable to keep track of the number
that we are on as we go through the loop. A variable is just a
container for a number or some text, and we create one with the
keyword var.

JAVASCRIPT

139

This creates a variable called ‘number’ and sets its value to 1.
The loop then works like this:

while (number <= 50) {

document.getElementById("numbers").innerHTML +=

 "<p>" + number + "</p>"

number = number + 1

}

The ‘while’ keyword here means ‘keep doing this code as long as
this condition is true’. The condition is that the variable number
has to be less than or equal to 50. Then, within the curly brack-
ets (‘the loop’), we add the current number, wrapped in <p>tags,
to the content of the numbers div (that’s what the += does).
Finally, we add 1 to number, and repeat the loop until number is
bigger than 50.

You might want to read that through a couple of times, and
of course try it out for yourself. When you do you should see this
(5.15):

LANGUAGES

140

5.15

PRACTICE EXERCISES

Now suppose our car parking roster is slightly more complicated.
Change the above code so that it displays:

1 Only even numbered bays are available for visitors. Display all
the even numbers up to 100.

2 Changing the parking allocation again: only spaces 0 through 10
are now available to visitors. Due to the parking lot layout the
higher bay numbers are closer to the entrance, therefore
display these new visitor bay numbers in descending order.

The list on the left goes all the way down to 50.

JAVASCRIPT

141

for (var i = 1; i <= 50; i=i+1) {

document.getElementById("numbers").innerHTML +=

"<p>" + i + "</p>"

}

For loops

There is a second type of loop that you should be aware of. So
far we have focused on while loops, but there are also for loops,
which do the same thing but are structured slightly differently. A
for loop looks like this:

Answers:

1 Just change the first line in the loop to:
var number = 2

and the while statement to:
while (number <= 100)

and the last line to:
number = number + 2

That will generate all the even numbers from 2 to 100.

2 For this challenge, change the first line to:
var number = 10

and the while statement to:
while (number >= 0)

and the last line to:
number = number – 1

You then have a countdown from 10 to 0.

LANGUAGES

142

Unlike a while loop, in a for loop all the information about the
for loop is contained in a single line. In this case the counter vari-
able is called i (a commonly used letter in for loops), and it starts
at 1, increases by 1 each time and continues until i is no longer
equal to or less than 50. The effect is exactly the same as with
while loops – which you use depends on context and personal
preference. For what it’s worth, we generally prefer while loops
as we find they are more flexible.

Generating random numbers

It would be useful to have a feature that allowed us to allocate a
random parking bay number to the visitor (for the purposes of
our current example we will assume the bays are all available).
We can achieve this using an inbuilt JavaScript function:

Math.random()

document.getElementById("numbers").innerHTML = Math.

random()

You’ll see it generates a random decimal number between 0
and 1 (5.16):

Remove the current code. Try adding this code:

.

JAVASCRIPT

143

For the purposes of our parking bays example we need a random
whole number between 1 and 10. To do that we use this
function:

Math.floor((Math.random() * 10)) + 1

5.16

This isn’t as impenetrable as it looks! The ‘* 10’ means ‘multiply
by 10’ so we now have a random number between 0 and 10. The
Math.floor part ‘floors’ the number by removing everything
after the decimal point (so 6.74628748 would become 6). This
gives us a random number between 0 and 9, so we add 1 to it to
get a number between 1 and 10.

Try it out by changing your code in the above page to:

LANGUAGES

144

document.getElementById("numbers").innerHTML = Math.

floor((Math.random() * 10)) + 1

PRACTICE EXERCISE

Generate a random whole number between:

1 1 and 5

2 11 and 20

3 0 and 100

Answers:

1 Math.floor((Math.random() * 5)) + 1

2 Math.floor((Math.random() * 10)) + 10

3 Math.floor((Math.random() * 100))

JavaScript project: guessing game

Using variable, loops and if statements, you have the power to
make a whole range of apps, websites and games. Let’s have a
little break from all this serious line-of-business application
coding and have a look at something a bit more light-hearted.
We’re going to be working on a simple guessing game, where
you have to guess the number that the computer has chosen.

The concept is pretty simple – when we load the page, the
user will be asked to guess a random number between 1 and 10.
If they get it wrong, they will be told whether they were too high
or too low. If they get it right, they will be told so and given the
chance to play again.

This challenge will involve putting together almost everything
we’ve learned so far – interacting with elements, changing styles,
variables and if statements. You are welcome to stop reading

JAVASCRIPT

145

5.17

now and attempt the challenge, but we would advise working it
through in stages, which we will do using mini-challenges.

The process would be similar to designing any website or
app – start with the user interface, and then add the interactions
gradually, checking that everything is working as you go.

 Part 1: Create the user interface (a title (use an h1 element),
instructions, a text input and a submit button)

There are many possible layouts, but mine is fairly simple (5.17):

<h1>What's My Number?</h1>

<p>I'm thinking of a number between 1 and 10 - what do

 you think it is?</p>

<input type="text">

<button>Guess</button>

LANGUAGES

146

Part 2: Basic interactivity (display the number that the user
has entered)

Add in IDs for the elements and an empty paragraph, and fill it
with the user’s guess when they press the button (5.18):

<h1>What's My Number?</h1>

<p>I'm thinking of a number between 1 and 10 - what do

 you think it is?</p>

<input type="text" id="number">

<button id="guess">Guess</button>

5.18

JAVASCRIPT

147

 Part 3: Add in the random number generator and check the
user’s guess against that number, displaying an appropriate
message

We don’t need to change the HTML at all now – it’s all in the
JavaScript:

if (doc u ment.getElementById("number").value >

randomNumber) {

do cument.getElementById("message").innerHTML =

"Too High!"

} else if (document.getElementById("number").

value < randomNumber) {

do cument.getElementById("message").innerHTML =

"Too Low!"

} else {

do cument.getElementById("message").innerHTML =

"That's it!"

}

<p id="message"></p>

<script>

 document.getElementById("guess").onclick =

function() {

 document.getElementById("message").

innerHTML =

document.getElementById("number").value

 }

 </script>

LANGUAGES

148

We have one slightly new construction here: else if. This allows
you to test another if statement if the first one turns out to be
false. Then we have a final else at the end, which will be processed
if the first two statements are false. If the guess is not higher or
lower than the number, it must be the right answer!

Try it out (5.19):

5.19

Part 4: Change the colour of the text depending on whether
the answer is correct (green for yes, red for no) and give the
option to play again

We use the following to change the text colour:

document.getElementById("text").style.color = "red"

JAVASCRIPT

149

To ‘play again’ we can just reload the page. We can do that with
an empty link () so let’s add that to the success
message.

Here we go (5.20):

5.20

 That’s it. You’ve made a fully functional, interactive game using
HTML, CSS and JavaScript – congratulations!

Summary

This is of course just the beginning of what JavaScript is capable
of, and if you want to experiment further there are a lot of
options. Try thinking of simple games that you could recreate in

LANGUAGES

150

JavaScript, such as simulating a coin toss, hangman, or even
something like Snake from the old Nokia phones. There are
numerous tutorials and guides online – just Google what you
want to do followed by the words ‘JavaScript tutorial’ and you’ll
probably find something relevant!

Now that we’ve covered HTML for website content, CSS for
style and layout, and JavaScript for interaction, we’ll be looking
at our first server-side language, Python.

Python is a simple and clean language, and similar to
JavaScript in many ways. We’ll see how we can build more
complex structures with it, and make more sophisticated
programs.

There’s a lot to learn, and a lot of fun to be had too. Without
further ado, let’s jump in and see what we can achieve with
Python.

Further learning

If you want to dip your toe a little deeper into the world of
JavaScript, you can use these links to experiment further and
learn more:

●● www.codecademy.com/learn/javascript (archived at https://
perma.cc/59R4-N9CN) – interactive Java Script lessons.

●● www.w3schools.com/JS/ (archived at https://perma.cc/T6KA-
WUL2) – free JavaScript tutorials.

●● www.learn-js.org (archived at https://perma.cc/ML5X-Y4UN) –
free interactive JavaScript tutorials.

●● https://play.google.com/store/apps/details?id=com.sololearn.
javascript&hl=en_GB (archived at https://perma.cc/8SDX-3426) –
learn JavaScript on Android.

●● https://itunes.apple.com/gb/app/learn-javascript/id952738
987?mt=8 (archived at https://perma.cc/8CEG-4XT3) – learn
JavaScript on iPhone or iPad.

http://www.codecademy.com/learn/javascript
https://perma.cc/59R4-N9CN
https://perma.cc/59R4-N9CN
http://www.w3schools.com/JS/
https://perma.cc/T6KA-WUL2
https://perma.cc/T6KA-WUL2
http://www.learn-js.org
https://perma.cc/ML5X-Y4UN
https://play.google.com/store/apps/details?id=com.sololearn.javascript&hl=en_GB
https://play.google.com/store/apps/details?id=com.sololearn.javascript&hl=en_GB
https://perma.cc/8SDX-3426
https://itunes.apple.com/gb/app/learn-javascript/id952738987?mt=8
https://itunes.apple.com/gb/app/learn-javascript/id952738987?mt=8
https://perma.cc/8CEG-4XT3

CHAPTER SIX

Python

At the risk of boring you silly, let’s quickly recap what we’ve
learned so far. We started off looking at HTML, which

allowed us to add content to webpages. Then we learned CSS,
which we could use alongside the HTML to add styles and
customize the layout of our webpage. Next, we saw how we
could use JavaScript, our first ‘proper’ programming language,
to make our pages interactive and allow the user to do some-
thing on our page and get a response.

So what’s missing in our coding armoury? Well, so far every-
thing we are doing happens completely in the user’s browser. To
be able to build software that allows users to communicate with
each other, we need something called a server. A server is essen-
tially a computer that is always on and always connected to the
internet. Our computer can then contact that server to down-
load information, save some content on the server (such as our
latest tweet) or send data (such as an email) to another computer.

151

LANGUAGES

152

Therefore to be able to build truly powerful websites and apps,
we need to write code that can run on a server. Although it is
possible to use JavaScript on a server, it is more common to use
other languages such as PHP or Python.

Here we are going to use Python, for several reasons:

●● Python is a simple and straightforward language, even more
so than JavaScript;

●● Python can be used to build software on almost any platform,
from servers to a Raspberry Pi, enabling you to build anything
from websites to robots; and

●● Python can be used to automate daily tasks, such as getting
information from websites or automatically renaming your
files (we’ll see how to do that later in this chapter).

What is Python?

Python was developed in the late 1980s by Guido Van Rossum
in the Netherlands. Van Rossum named the language after
Monty Python, being a big fan of their Flying Circus.

Van Rossum is still actively involved in the development of
the language, and as such has been given the title Benevolent
Dictator For Life (BDFL) by the Python community.

Since its birth it has gone through a number of versions, and is
currently at version 3. It is used widely to build both web-based

 6.1
PHP

Python

Web
Browser

Web ServerHTML
(5)

CSS

JavaScript

Internet

PYTHON

153

and desktop applications, as well as on Internet Of Things devices
such as the Arduino. This makes it an extremely powerful and
flexible language to learn.

Why learn Python?

I don’t want to build robots, do I really need to learn another
language?

If you are not looking for a career in coding, you might be
wondering if it’s worth learning a second language after
JavaScript. The answer is, of course, yes, but why?

Learning two languages allows you to see what languages
have in common (and what they don’t). Once you know how to
create a loop in two languages, you’ll be much clearer on what
the critical parts of a loop are. The same is true with if state-
ments and variables. Every language has its own idiosyncrasies,
and if you only learn one language you won’t have much insight
into what they are.

So stick with me – even if you’re not convinced that learning
two languages is useful, if you ever have to extract, for example,
all the email addresses from a webpage, Python can do that for
you (and we’ll see how at the end of the chapter).

What will this chapter cover?

As usual, we’ll go through the whole process of running some
Python, building up our skills and then practising with a few
projects and exercises.

We’ll also be working towards a larger side project to our
Visitor Registration, where we’ll attempt some ‘website scrap-
ing’ – collecting data such as names and email address that are
displayed on a webpage. This will be your toughest challenge yet.

LANGUAGES

154

Specifically, we’ll cover:

●● what Python is and how to use it;
●● using variables, loops and if statements in Python;
●● more advanced features such as lists and Regular Expressions;

and
●● extracting data from webpages.

How do we get started with Python?

Unfortunately, Python is not quite as easy to get started with as
HTML, CSS or JavaScript, as it does not run on a browser. To
try it out, you have two choices – the easy way or the hard way.

The easy way

There are a number of Python interpreters that will process
Python code for you on the web. In this chapter we will be using
https://repl.it/languages/python3, and our advice to you would
be to do the same. It requires no installation or setup, and you
can get started right away. There are a number of other websites
you can try which do the same thing, such as www.tutorialspoint.
com/execute_python_online.php and skulpt.org.

The hard way

Another option is to install Python on your computer and run it
directly from there. This has the advantage of not requiring an
internet connection, and allows you to try out a full installation
of Python, but it does require some trickier setup. We would
recommend against this method unless you are a fairly advanced
computer user.

If you’d like to try this way, you can download Python at www.
python.org/downloads/ (choose the latest version 3 available).
You only need to do this on Windows – most OSX and Linux
machines come with Python built in.

https://repl.it/languages/python3
http://www.tutorialspoint.com/execute_python_online.php
http://www.tutorialspoint.com/execute_python_online.php
http://skulpt.org
http://www.python.org/downloads/
http://www.python.org/downloads/

PYTHON

155

Once Python is installed, you will need to create a text file
called, for example, mypython.py. You can do that in your text
editor using File → Save As.

You will then need to open up a command line window, which
you can do by typing cmd in the search box on Windows, or
opening the Terminal app in OSX.

You can then run the Python script using the command:

python mypython.py

python

This will then display the output of your script. You can also just
type:

to be able to run individual Python commands.
If you have problems with this method, there are a number of

online guides to help you getting started with Python, or you can
just use the easy way recommended above.

‘Visitor Registration’ with Python

Now that we are up and running with Python, let’s run a basic
script. If you are using the easy method, when you go to https://
repl.it/languages/python3 you should see this screen (6.2):

https://repl.it/languages/python3
https://repl.it/languages/python3

LANGUAGES

156

Here, you can enter your Python code on the left and click the
‘run’ button to see the output in the box on the right. If you
make something you are particularly proud of, you can share or
save your work too.

Our first Python script will simply output the words ‘Welcome
to Coding Solutions Enterprises’. To do that, enter this code on
the left and click the ‘run’ button.

 6.2

print("Welcome to Coding Solutions Enterprises")

This will give you this output (6.3):

PYTHON

157

So what does ‘print’ do? Unlike JavaScript, with Python we don’t
have a webpage to interact with, or to ‘alert’ our information to
the user. Instead, we have something called the console. This is
used in most programming languages (there is actually one in
JavaScript as well) and it’s a space for developers to view the
output of their code.

The console is often used when debugging, to allow us to
check the values of variables for example, and we’ll be using it
here to see what our program is doing.

So print(“Welcome to Coding Solutions Enterprises”) prints
those welcome words to the console, ie the black box on the
right. Simple as that!

Variables in Python

In JavaScript we used ‘var’ to create a variable. In Python we just
define the variable like this:

 6.3

name = "Rob"

LANGUAGES

158

This will create a variable called ‘name’ with a value of ‘Rob’.

Challenge 1

Create a variable with a value of your name and then print it to
the console.

Solution: Your code should look like this:

 6.4

Notice that we use print(name), not print(“name”), because
‘name’ is a variable name, not a value.

name = "Rob"

print(name)

We can combine strings with a +, just like in JavaScript. Try
changing your code to output our welcome message followed by
your name (6.5):

PYTHON

159

isRegistered = True

Boolean variables

Like many other languages, JavaScript includes Boolean varia-
bles. Named after George Boole, an English mathematician who
specialized in logic, they can only take the values true or false.

You might want to use them to check if a user is already regis-
tered as a guest, for example. You would create the variable in
the normal way:

 6.5

You could then use if statements, covered later on in the chapter,
to test whether or not the user is already registered.

Lists

Lists are similar to variables but they allow us to store many
values in one object. When you are viewing your inbox, for

LANGUAGES

160

The square brackets ([and]) define a list, and then we separate
the different members, or elements, of the list with commas.

We can then print the whole list using:

example, your email app can’t create a differently named varia-
ble to contain the content for each email. Instead, programmers
use lists. Lists are also known as arrays in other languages.

To create a list containing the names of visitors to our
company, we would use code like this:

print(names[0])

print(names)

names = ["Rob", "Kirsten", "Tommy", "Ralphie"]

and if we want to access a particular element within the list we
use the square brackets again:

– this would print ‘Rob’. Note that the numbering for the list
elements starts at 0, so names[2] would return ‘Tommy’. This is
easy for new programmers to forget, and a common mistake is
to think that names[3] returns the third element in the list, when
it is in fact the fourth.

The number of an element is known as its index.
To see all this in action (6.6):

PYTHON

161

 6.6

PRACTICE EXERCISES

We might also store the types of vehicles that we saw earlier in
our web application in a list.

If we create a list using the following code:

what would be returned by:
vehicles[3]
vehicles[4]
vehicles[0]
vehicles[1] + “and” + vehicles[2]

Answers:
Truck
Nothing (this would give an error in your code)
SUV
Saloon and Estate

vehicles = ["SUV", "Saloon", "Estate", "Truck"]

LANGUAGES

162

vehicles.insert(1, "Motorcycle")

vehicles.remove("SUV")

vehicles.pop(0)

Manipulating lists

When working with lists, we often need to change values for
elements, add elements on to the end, or remove elements. We
can do all of these easily in Python.

To change an element’s value, just adjust it in the usual way,
for example:

vehicles [2] = "Station Wagon"

To remove an element from a list by its value, use .remove:

Or to remove an element by its index, use .pop:

To insert a value at a particular point in the list, we can use
.insert, like this:

– this would add ‘Motorcycle’ in position 1.

PYTHON

163

PRACTICE EXERCISE

Let’s take an example list which contains a range of numbers.
What command (or commands) would be required to turn the list:

into:

Answers:

– note there are other ways to solve this one.

myList.remove(4) or myList.pop(3)

myList.remove(1) or myList.pop(0)

myList.insert(4, 5)

myList[0] = 2 and myList.insert(2, 3)

[1, 2, 3]

[2, 3, 4]

[1, 2, 3, 4, 5]

[2, 2, 3, 3, 4]

For loops

In the JavaScript chapter we used loops to repeat a chunk of
code several times; if you recall, we used a loop to print out the
parking bay numbers to the user. We can do the same thing in
Python, but it looks a little different:

myList = [1, 2, 3, 4]

LANGUAGES

164

Let’s see this in action (6.7):

 6.7

for x in range(0, 10):

print x

Hopefully this makes sense – range(0, 10) means loop through
the whole numbers from 0 up to (but not including) 10. The :
defines the beginning of the content of the loop and then x is
printed each time the loop runs.

In JavaScript we used { and } to define our loop content. Here
there is only a : – it is the indentation that sets the limits for the
loop content.

Try some loops out for yourself:

PYTHON

165

PRACTICE EXERCISE

Use loops to display:

1 The actual parking bay numbers, ie not zero.

2 The sequence reversed, ie 10,9,8,7, etc.

Answers:

1

2

for x in range(0, 10):

print(x+1)

for x in range(0, 10):

print(10 - x)

For loops and lists

For loops in Python were really designed for looping through
lists. Say, for example, we had a list defined which recorded the
number of visitors in each of the last five days:

visitors = [36, 35, 25, 21, 15]

for total in visitors:

print(total)

We could display all the elements in the list like this:

LANGUAGES

166

Later on we might have a requirement to add in an additional
five occasional workers who, although strictly not visitors, may
need to be added to the daily totals for reporting purposes. We
could do it manually, but it would be much neater to do it with
a loop. To do this we need to know the index of each item in the
array (remember the index of the first item in the array is 0, the
second is 1, etc).

We can’t get that with our current for loop, so we need a
different approach. Instead of looping through the array, we
loop through the indexes, starting at 0, and going up to one less
than the number of items in the list. We can get the number of
items in the list, or the length of the list, using the len command:

print(len(visitors))

In our case, this returns 5 (6.9):

 6.8

PYTHON

167

This code loops through the numbers 0, 1, 2, 3 and 4, and then
adds 5 to the list values in each case. You can see the result on
the right below, as each of the values is increased by 5 (6.10):

 6.9

So we can use a range to loop through the list indexes. Remember
that range(0, 10) loops through the numbers 0 to 9, so range(0,
len(visitors)) will loop through each of the list indexes.

Finally then we can solve the problem of adding five occa-
sional workers to each value in the list:

visitors = [36, 35, 25, 21, 15]

for i in range(0, len(visitors)):

visitors[i] = visitors[i] + 5

print(visitors)

LANGUAGES

168

PRACTICE EXERCISES

Create a list containing any five numbers, and then loop through
the array, doubling each number. Finally print the output to the
console.

Answer:

numbers = [10, 20, 30, 40, 50]

for i in range(0, len(numbers)):

numbers[i] = numbers[i] * 2

print(numbers)

6.10

PYTHON

169

names = ["John", "Paul", "Ringo", "George"]

for name in names:

print("Hello " + name)

6.11

Create a list containing four visitor names. Loop through the list,
printing ‘Hello [name]’ to the console each time.

LANGUAGES

170

Answer:

6.12

i = 0

while (i < 10):

print(i)

i = i + 1

While loops

Just like in JavaScript, in Python we can use while loops as well
as for loops. They work like this:

We start off by setting the variable ‘i’ to 0, and then as with
JavaScript we keep going as long as i is less than 10, adding one
to i each time the loop is processed. The output is the numbers 0
to 9, as you can see below (6.13):

PYTHON

171

Challenge 2

Use a while loop to display the visitor parking bays from 10 to
1 in descending order as before.

This one just requires a bit of tweaking to the above exam-
ple – start off by setting i to 10, and then change the while
condition and the final instruction so that i decreases by one
each time, until i is 1.

6.13

i = 10

while (i >= 1):

print(i)

i = i – 1

And here it is in action (6.14):

LANGUAGES

172

As in the practice exercise, create a list containing four visitor
names. We’re now going to use a while loop to complete the
challenge. Loop through the list, printing ‘Hello [name]’ to the
console each time.

This time we are using a while loop to cycle through the
contents of a list. The process is fairly straightforward, setting i
to 0 initially and then keeping going as long as i is less than the
length of the array. Here is the code:

6.14

names = ["John", "Paul", "Ringo", "George"]

i = 0

while (i < len(names)):

print("Hello " + names[i])

i = i + 1

PYTHON

173

6.15

visits = 120

if visits > 100:

print("Welcome, you have visited over 100

times! - You are entitled to a 10% discount on our

services.")

If statements

If statements work in much the same way as with JavaScript. Say
a visitor regularly visits the company and you want to test
whether the number of visits is greater than 100. We might wish
to reward a loyal visitor/customer with a complimentary coffee
or perhaps a discount. To do this you would use this code:

LANGUAGES

174

Try changing the value of ‘visits’ to see how this affects the
output.

We can add an ‘else’ option as well, to run some code if the
statement is not true – in this case a standard welcome message:

6.16

visits = 80

if visits > 100:

print('Welcome, you have visited over 100 times! –

You are entitled to a 10% discount on our services.')

else:

print("Welcome to Coding Solutions Enterprises")

PYTHON

175

visits = 110

period = 180

if visits > 100 and period < 365:

print('Welcome, you have visited over 100 times! -

You are entitled to a 10% discount on our services.')

else:

print("Welcome to Coding Solutions Enterprises")

6.17

In some cases, we might want to check for two conditions to be
true at once, such as the number of visits being over 100 and
the time period being under, say, 365 days. We can do that using
the and operator, which allows us to check for both conditions
being true:

LANGUAGES

176

6.18

Note: you can use the or operator in the same way, to check for
one of two (or more) conditions being true.

We can also test for a variable being equal to another using ==
(as with JavaScript). We might wish to evaluate a user log on the
back-end administration system for our Visitor Registration
application:

username = "rob"

if username == "rob":

print("Hi Rob!")

else:

print("I don’t know you")

PYTHON

177

We can also use != (an exclamation mark followed by an equals
sign) to test whether two variables are different.

Finally, we can use the ‘elif’ command to look for other condi-
tions. Elif is short for ‘else if’ and allows us to combine a number
of if statements. This code looks for ‘rob’ and then ‘darren’ as
usernames:

username = "dave"

if username == "rob":

print("Hi Rob!")

elif username == "darren":

print("Hi Darren!")

else:

print("I don’t know you")

6.19

LANGUAGES

178

6.20

PRACTICE EXERCISES

1 Create variables called ‘username’ and ‘password’, and check
for four different options:

●● Username and password correct.
●● Username correct and password wrong.
●● Username wrong and password correct.
●● Both username and password wrong.

Give the user an appropriate error message in each case.
We complete this challenge with a set of nested if statements:

username = "rob"

password = "myPassword"

if username == "rob" and password == "myPassword":

print("Correct, you are logged in!")

elif username == "rob" and password != "myPassword":

print("Your password is wrong")

PYTHON

179

2 Recall our list of visitor numbers for the last 5 days. Use a
combination of a for loop and an if statement to loop through
the array [36,31,25,21,15] and print all the values greater than
30 visitors.

This time we have an if statement inside a for loop – it’s a fairly
simple setup:

elif username != "rob" and password == "myPassword":

print("Your username is wrong")

else:

print("Both your username and password are

wrong")

6.21

visits = [36, 31, 25, 21, 15]

for total in visits:

if total > 30:

print(total)

LANGUAGES

180

Challenge 3

Let’s say we have an array of all the visitors over the last two
days. We would perhaps expect there to be instances where the
same individual has visited on more than one occasion. It would
be useful to pull out only the unique visits to the organization.

This is a hard one. Loop through the array [“Rob”,“Kirsten”,
“Darren”,“Rafferty”,“Rob”,“Darren”,“Barnaby”,“Rob”]
printing each unique visitor only once. This is harder than it
seems, and will require you to create an array of the visitor names
you have already printed. Feel free to glance at the solution below
if you need some inspiration. Good luck!

Solution:
This is definitely the most complex code we’re written so far.

For each of the numbers in the List, the code loops through an
‘alreadyPrintedNames’ List to see if that name has already been
printed. If it hasn’t, the code prints the name and adds it to the
‘alreadyPrintedNames’ List.

6.22

PYTHON

181

Well done if you solved this one. It wasn’t easy.

names = ["Rob","Kirsten","Darren","Rafferty","Rob",

"Darren","Barnaby","Rob"]

alreadyPrintedNames = []

for name in names:

alreadyPrinted = False

for alreadyPrintedName in alreadyPrintedNames:

if name == alreadyPrintedName:

alreadyPrinted = True

if alreadyPrinted == False:

print(name)

alreadyPrintedNames.append(name)

6.23

LANGUAGES

182

Regular expressions

Regular expressions are a little tricky to get to grips with, but
they are an extremely powerful way of processing text. At the
end of this chapter we will be using them to get some summa-
rized visitor data from a webpage and then process it to collect
all the email addresses.

Regular expressions allow you to search through a string and
extract a particular piece of information, or substring.

Regular expressions are our first example of code that requires
a Python module – that is, an extra set of functions that extend
Python’s standard functionality.

To import the regular expressions Python module you use the
code:

import re

Simple!
Now let’s see it in action. Suppose you wanted to extract the

name Rob from the string ‘My Name is Rob.’. With regular
expressions, you could do it like this:

import re

string = 'My Name is Rob.'

result = re.search('is (.*).', string)

print(result.group(1))

We start by importing the re module, and then creating our
string. The next line is where the magic happens – we use the
re.search function to search the string, and then we use the

PYTHON

183

regular expression ‘is (.*).’ to find what we need. This expression
essentially means ‘return the text after “is” and before “.”’.

Finally, result.group(1) gives us the text that we need. Let’s see
it in action (6.24):

6.24

Challenge 4

Use regular expressions to extract the word ‘quick’ from the
string ‘The quick brown fox’.

Solution:
The following code will do the trick:

import re

string = 'The quick brown fox'

result = re.search('The (.*) brown', string)

print(result.group(1))

LANGUAGES

184

Note that you could use several different strings in the regular
expression. For example, ‘b’ and ‘ brown fox’ would both work
after the (.*). Try them out (6.25)!

6.25

Splitting strings into lists

We’re getting close to being able to complete the web scraping
challenge for this section. What if we had multiple bits of text
that we wanted to extract from a string? For example, say we
had the string ‘Rob,Kirsten,Tommy,Ralphie’ and wanted to
extract each of the names.

It is possible to do this with regular expressions, but we’ll use
a different method – splitting the string into a list.

We do this with the command string.split(“,”), with the “,”
being the character we want to split the string up with.

So to split our string we would do this:

string = "Rob,Kirsten,Tommy,Ralphie"

print(string.split(","))

PYTHON

185

Note: we don’t need ‘import re’ for this as we are not using regu-
lar expressions.

The result is a list containing the four names (6.26):

6.26

Challenge 5

Take the HTML ‘John Paul George
Ringo’, and split it up into the individual list items.

Solution:
Here we can use the space between each list item to split the

string, so this code will do the trick:

string = "John Paul George

Ringo"

print(string.split(" "))

LANGUAGES

186

6.27

Note: we can also use just string.split() to split a string by the
space character.

Challenge 6

Use regular expressions to extract and print the names from the
HTML code in Chapter 1.

Once we have obtained our list, we can loop through the
items, and use re.search to extract just the names:

See it in action (6.27):

import re

string = "John Paul George

Ringo"

namesList = string.split(" ")

for name in namesList:

result = re.search('(.*)', name)

print(result.group(1))

PYTHON

187

This gives us the four names (6.28):

6.28

Getting the contents of a webpage

We’re very close now to being able to complete our web scrap-
ing project. The one other skill we need is to be able to get the
content of a webpage. This will allow us to get some data to
work with to extract the information we need, such as a collec-
tion of email addresses.

To do this, we’ll need to use a new Python processor, as repl.it
doesn’t support getting the contents of a webpage. We’ll be using
trinket.io, as it supports all the features we need.

Go to https://trinket.io, and sign up for a free account. Once
registered we now want to start a new trinket. In the version at
the time of writing, there is a Home icon in the top grey menu:
click this. This will bring up your account with recent trinkets.
In the top right is a blue button [New Trinket]; click this and
select Python from the drop down menu. You should see some-
thing like this (6.29):

http://repl.it
https://trinket.io

LANGUAGES

188

This is our, hopefully quite familiar, Python editor.
the code below:

6.29

import urllib.request

page = urllib.request.urlopen('http://www.example.com')

print(page.read())

This code imports the urllib.request module, which allows us to
get the contents of a URL (web address). Then we ‘request’ the
contents of www.example.com, and finally we print the output
to the console.

If all goes well you should see the HTML of www.example.
com in the trinket.io window (6.30):

http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com
http://trinket.io

PYTHON

189

That’s it. You can now get the contents of any web address just
by changing the URL in the code above. Try any web address
you like (the source code for www.google.com will likely make
your head spin).

Python project: extracting visitor contact data from
a webpage

Hurrah! We’re ready to complete the final project, which is to
take the contents of a webpage and extract the contact data we
need. We might envisage using this information to send impor-
tant notifications to potential visitors, such as warning of
inclement weather.

To keep things simple, we’re going to use the data at robpercival.
co.uk/sampledata.html. This is a simple table containing some
names, addresses, email addresses and phone numbers. This tabled
data represents information that might have been captured and
stored when our visitors registered. This webpage might also be the
frontend to a customer relationship management (CRM) system, or
other business data source.

6.30

http://www.google.com
http://robpercival.co.uk/sampledata.html
http://robpercival.co.uk/sampledata.html

LANGUAGES

190

The challenge, and this is a big one, is to use the skills you
learned in this chapter to extract the data from the table. You
should create four lists, one for each of the data columns (name,
address, email and phone number).

You’ll need to look at the code of the website (you can do that
by right-clicking on the page and selecting ‘View page source’ or
similar). We won’t give you any more hints, but if you get stuck
just glance at the solution below.

Good luck!

Solution

Did you manage it? We hope so. Here we’re going to work
through the solution to show you how we would have solved it.

First, we need to get the contents of the URL. We can do that
using code similar to the URL-reading process that we just
learned:

import urllib.request

page = urllib.request.urlopen('http://www.robpercival.

co.uk/sampledata.html')

print(page.read())

This gives us the HTML of the webpage (6.31):

http://www.robpercival.co.uk/sampledata.html
http://www.robpercival.co.uk/sampledata.html

PYTHON

191

<tr>

<td>Moses York</td>

<td>P.O. Box 998, 3708 Est Rd.</td>

<td>et.magnis.dis@quamPellentesquehabitant.ca</td>

<td>(728) 694-5147</td>

</tr>

You can see that the data is contained in HTML (you may want
to brush up on the tables section from the HTML chapter if it’s
unfamiliar). The HTML chunk for each row looks like this:

6.31

import urllib.request

page = urllib.request.urlopen('http://www.robpercival.

co.uk/sampledata.html')

string = page.read()

rowList = string.split("<tr>")

print(rowList)

To get the data we need, we are going to need to split up each of
the rows. We can do that using string.split, like this:

http://www.robpercival.co.uk/sampledata.html
http://www.robpercival.co.uk/sampledata.html

LANGUAGES

192

We now have a list containing the HTML for each row. If you
look carefully at the HTML code, you’ll see that the line breaks
have been replaced with \n – this is a standard way of represent-
ing a line break in a string, both in Python and other programming
languages.

Next, we need to split up each row. To do that, we’ll loop
through rowList, and split it using the ‘\n’ symbol:

6.32

import urllib.request

page = urllib.request.urlopen('http://www.robpercival.

co.uk/sampledata.html')

string = page.read()

rowList = string.split("<tr>")

for row in rowList:

rowContentList = row.split("\n")

print(rowContentList)

We now have each row as its own list (6.33):

http://www.robpercival.co.uk/sampledata.html
http://www.robpercival.co.uk/sampledata.html

PYTHON

193

6.33

Our final step is to extract the data that we need. We’ll do this
using re.search:

import urllib.request

import re

page = urllib.request.urlopen('http://www.robpercival.

co.uk/sampledata.html')

string = page.read()

rowList = string.split("<tr>")

for row in rowList:

rowContentList = row.split("\n")

for lineOfHTML in rowContentList:

if "<td>" in lineOfHTML:

s = re.search("<td>(.*)</td>",

lineOfHTML)

print(s.group(1))

http://www.robpercival.co.uk/sampledata.html
http://www.robpercival.co.uk/sampledata.html

LANGUAGES

194

(Don’t forget the import re!)
In the last three lines, we test to see if there is a <td>in the line

of HTML (because we are only interested in the data items,
which are the lines with a <td>in them), and if there is we extract
the data using re.search.

This gives the following output (6.34):

6.34

We’ve done it. Congratulations if you managed to do all of that
yourself – it was not a simple problem. For this challenge we had
to use a range of programming techniques such as loops and if
statements, as well as lists and variables. We also imported two
Python modules and used regular expressions to extract data
from a website. Not bad!

Summary

We are now going to apply the skills we have learned in the
world of Web and app development. However, if you want to

PYTHON

195

spend more time with Python, there are plenty of free resources
available, some of which are listed below.

Further learning

●● www.codecademy.com/courses/introduction-to-python-
6WeG3/ (archived at https://perma.cc/RSJ6-TE6U) – interactive
Python lessons.

●● www.tutorialspoint.com/python/ (archived at https://perma.
cc/JBK8-36LJ) – free Python tutorials.

●● https://play.google.com/store/apps/details?id=com.sololearn.
python&hl=en_GB (archived at https://perma.cc/FM9J-WQX6) –
Android app for learning Python.

●● https://itunes.apple.com/gb/app/learn-python-pro/id
953972812?mt=8 (archived at https://perma.cc/PZ3V-AF8D) –
iPhone and iPad app for learning Python.

http://www.codecademy.com/courses/introduction-to-python-6WeG3/
http://www.codecademy.com/courses/introduction-to-python-6WeG3/
https://perma.cc/RSJ6-TE6U
http://www.tutorialspoint.com/python/
https://perma.cc/JBK8-36LJ
https://perma.cc/JBK8-36LJ
https://play.google.com/store/apps/details?id=com.sololearn.python&hl=en_GB
https://play.google.com/store/apps/details?id=com.sololearn.python&hl=en_GB
https://perma.cc/FM9J-WQX6
https://itunes.apple.com/gb/app/learn-python-pro/id953972812?mt=8
https://itunes.apple.com/gb/app/learn-python-pro/id953972812?mt=8
https://perma.cc/PZ3V-AF8D

196

THIS PAGE IS INTENTIONALLY LEFT BLANK

PART THREE

In practice

197

THIS PAGE IS INTENTIONALLY LEFT BLANK

198

CHAPTER SEVEN

Website development

Our first look at coding in practice will be to learn how we
can build and share a website with the world. A website is

probably the simplest thing you can build with code, and yet it
can be hugely powerful. The potential to create something in a
few minutes that anyone in the world can access is quite intoxi-
cating – yet if you’ve worked through the previous chapters in
this book you already know how to do just that.

We’ll start by seeing how the coding world has transitioned
from software that runs on a ‘local’ computer (ie the machine
sitting on your desk or lap) to websites, which primarily run on
a ‘remote’ computer, connected to your PC or phone via the
internet.

Next, we’ll consider the reasons why a non-web developer
might want to build a website, whether it’s for career advance-
ment, pleasure or creating an online presence.

We’ll then look at three options for creating a website: using
a service such as Weebly or Squarespace, hosting your own using
a content management system such as Wordpress, and finally

199

THIS PAGE IS INTENTIONALLY LEFT BLANK

IN PRACTICE

200

coding the site yourself from scratch. You’ll learn the advantages
and disadvantages of all three, and find out which option to use
depending on the nature of the site you want to build.

Finally, we’ll look at one of the most popular frameworks for
building great looking sites, Bootstrap, and in the closing project
for this section we’ll make a simple website.

By the end of this section, you will be familiar with the differ-
ent ways that you can create and host websites, and be ready to
build one for any project or business that you want to start.

Why build a website?

A hundred years ago, if you wanted to start a business, you
would likely have needed a great deal of capital. At the least you
would have needed premises to sell your goods, staff to make
your product or financing for raw materials.

All that has changed in the last 20 years, where some of the
most valuable businesses in the world exist purely online, and
were created by individuals with almost zero initial costs.
Learning to code gives you the power to put any idea you have
into action while investing no more than your time and the price
of a few cups of coffee. You don’t even need to ask anyone for
permission!

But even if you don’t want to start a business, there are many
other reasons you might want to build your own website.

A blog is a great way to build a name for yourself online. You
can share your love of dogs, your horticultural knowledge, or
even document the process of learning to code. Write well and
you can create a community of like-minded individuals, and you
never know what opportunities might come out of that.

If there is an online task that you do regularly, you might well
be able to automate it with a website, and if other people do
similar tasks, you can share your tools with them. The web scrap-
ing code we learned in the Python chapter, for example, could be

WEBSITE DEVELOPMENT

201

used to check when prices on Amazon are updated. You could
then allow your users to check the prices of particular products,
and email them when they go below a particular threshold.

We will look at ways to build specific types of sites later on in
the book, but for now it would be worth having a particular
website in mind that you would like to build. It doesn’t have to
be a world-changing idea, just a particular idea that will help
you apply what you learn in this chapter.

Take a few moments now and jot down this idea. Then, as
you are reading through this chapter, think about how the differ-
ent approaches could work with that idea, and which you would
choose. If you really want to solidify your learning, create that
website when you’ve got to the end of the chapter.

How do websites work?

The BBC Microcomputer Rob grew up with in the early 1990s
was a stand-alone machine. You could add programs (software)
to it via tapes and discs, but all the code was run completely on
the device itself.

As the internet grew and became faster, it began to be feasible
for the code for programs (now called websites) to be stored on
powerful computers called servers which would then be trans-
ferred to the user’s computer and displayed in a special piece of
software called a browser. Initially most of these websites were
static, displaying information coded using HTML and CSS.

Gradually websites became more interactive, and rather than
displaying static content they allowed users to post updates,
send email or even watch video. These type of sites were initially
known as ‘webapps’, although the word has mostly gone out of
usage nowadays, becoming synonymous with websites them-
selves. Most of the actual running of the webapp is done on the
server, and the browser just displays the output (a list of the
user’s emails, or pictures of the user’s cat for example).

IN PRACTICE

202

The great advantage of working in this way is speed of devel-
opment. On Rob’s BBC Microcomputer, if he wanted an updated
piece of software he had to go and get the disc for it, and put it
in his machine. Now, conversely, if Google want to update the
Gmail interface, or if you want to edit your blog, a quick change
on the server and the website is updated immediately for all its
users around the world.

Even traditional desktop software such as word processors
and image editors are starting to find homes on the web and
some computers, such as Chromebooks, are little more than
browsers and an internet connection.

So how do we take advantage of this phenomenon? We know
how to write HTML code, now we need to know how to share
our code with the world. It’s actually pretty simple, and requires
two things: a domain name, and some web hosting.

What is a domain name, and how do I get one?

A domain name is simply a web address, like facebook.com or
bbc.co.uk. Each country’s domain names are managed by a
central ‘registrar’, and domain names can be bought from a
number of different providers.

When you buy a domain name, you’re actually just renting it,
with the average cost being around £10 per year. Once you have
bought it, you have the right to renew it each year, but if you
leave it unrenewed, it will eventually return to the public ‘pot’
and someone else can buy it.

A quick web search for ‘buy domain name’ will turn up
several results, so do a bit of research and choose a provider that
suits you. Ideally check reviews and don’t decide completely on
price – a cheap domain name might come with nasty fees, for
example to transfer it elsewhere.

http://facebook.com
http://bbc.co.uk

WEBSITE DEVELOPMENT

203

Choosing a domain name can be difficult, as most of the good
ones are already gone. Domain names are very much a matter of
personal preference, but we would recommend the following:

●● Get a .com or a country-specific domain (like .co.uk) if at all
possible. Even if it is not an ideal domain name, it will likely
be more memorable and trustworthy than a more obscure
extension such as .boats or .black.

●● Make it easy to type. Avoid mis-spellings like Xpress (unless
they are part of your brand of course!).

●● Use keywords. If you want to rank highly in search engines,
putting your search terms in your domain name is a great
start. If you are starting a blog about cocker spaniels for
example, cockerspanielsblog.com wouldn’t be a bad choice
(and at the time of writing this book, is available!).

If you’re struggling to find ideas, these sites might help:

●● www.domainsbot.com/ – will search a range domain domains
and tell you which are available.

●● www.namemesh.com/ – will combine two or three words and
show you a range of available domain names.

●● www.panabee.com/ – will suggest company names and
domain names based on your keywords.

Once you have decided on a domain name, you can purchase it
(perhaps start with just one year, unless you’re feeling confi-
dent!) with your chosen provider, and move on to the second
requirement: web hosting.

What is web hosting, and how do I get it?

When a user visits your website, the files are downloaded from a
server and displayed in the user’s browser. If you have a more

http://www.domainsbot.com/
http://www.namemesh.com/
http://www.panabee.com/

IN PRACTICE

204

advanced site that allows interaction with the user (such as a
login or search box), the server will also run the code to provide
the user with the data they need. You may also use other features
associated with a domain name, such as personalized email
addresses. Web hosting is the server space and computational
power that manages all of this for you.

There are several different options of web hosting, depending
on how much you want to pay, ease of use, and how much
control you want over the content and layout of your site. We
will look at the two main options for those starting out: website
builders and shared hosting.

Website builders

Website builders are the simplest and quickest way to get a
website up and running. Once you sign up with a company, you
can choose from a range of templates and styles, and edit your
site in a drag-and-drop interface.

Website builders range from $7 to $20 per month, depending
on features, and some even give you the ability to create an
online store, blog or portfolio site in just a few clicks.

However, there are a few major drawbacks to using these
sites. First, you don’t own your content. If you decide you want
to move to another provider (perhaps because you need a feature
that your chosen website builder doesn’t support), you will have
to recreate your website from scratch. Also, your ability to
customize your website is often limited to what the website
builder provides – you don’t have the freedom to write your own
code to make your site do exactly what you want. And as a
coder, you’ll definitely want that freedom.

For those reasons, website builders are great for getting a site
up and running very quickly, but we wouldn’t recommend them
for a serious site that you want to own and customize to your
heart’s content. That method is what we will be focusing on for
the rest of this section.

WEBSITE DEVELOPMENT

205

Nonetheless, if you’d like to try a website builder, some of the
most popular providers are:

●● www.weebly.com/
●● www.wix.com/
●● www.squarespace.com/
●● www.shopify.com/

Shared hosting

If you’re just starting out with a small site, and want more free-
dom and ownership than website builders provide, shared
hosting is probably the best solution for you. To have a website,
you need a hosting account with a provider to contain your
website files, emails and databases. Shared hosting is when
several different hosting accounts are stored on a single server.
This is a very efficient way of hosting websites, and as a result it
is extremely cheap. Expect to pay around $4–10 per month for
a hosting package.

The big advantage of shared hosting over website builders is
that you completely own your content – you can download your
site from the server and switch to another provider if you wish.
You also have complete control of the code for your site, so
what your site can do is limited only by your imagination.

As with domain names, a quick web search for ‘web hosting’
will turn up a huge range of websites, and the choice can be
confusing. Here are a few tips to help you choose the right
provider:

●● Test out their support. Send them a couple of quick questions
before you sign up, such as ‘How many email addresses do I
get with the Starter package’, and see how quickly they come
back to you.

●● Check reviews on sites like trustpilot.com.

http://www.weebly.com/
http://www.wix.com/
http://www.squarespace.com/
http://www.shopify.com/
http://trustpilot.com

IN PRACTICE

206

●● Know your needs – if you’re planning on building a small site,
you likely will need something like this:

 – 500MB webspace (this is hard drive space to store your
website files);

 – 1GB bandwidth (this is the amount of content that is
transferred from the server to your users’ computers);

 – 1–5 email addresses;
 – a database;
 – one-click-installs for commonly used software such as

Wordpress (we’ll learn about Wordpress in a moment).
●● Avoid going on price alone – you will almost certainly need

some support, and you’ll want fast, reliable hardware. You’re
unlikely to get those with the cheapest providers.

A final thought – you will likely be able to buy a domain name
and web hosting from the same provider. This can be very conven-
ient as you will have everything in one place. However, some
people like to use different providers so that if they have problems
with the web host, for example, that does not affect their domain
names. It’s a personal decision, but we would recommend using
different providers to avoid having all your eggs in one basket.

I’ve got my web hosting, now what?

Hopefully by now you’re clear on what you need, and perhaps
have even purchased a domain name and set up your web host-
ing. What now?

First, it’s worth checking if your web hosting provider has any
getting started guides. These will introduce you to their control
panel, and show you how to do basic things such as setting up
email addresses and uploading files. The instructions for this will
vary between providers, so we won’t go through those here.

Once you have your web hosting, however, you have two
main options for getting your site up and running: hand-coding
or using a content management system.

WEBSITE DEVELOPMENT

207

Content management systems

A content management system (CMS) is a piece of software that
you install on your web hosting to allow you to customize and
manage your website. It’s a bit like having a website builder, but
you still own all of the content.

By far the most popular content management system is
Wordpress. It was developed as a blogging platform in 2003, but
now forms the CMS for over 25 per cent of all websites – that’s
a lot of websites.

Because it is so widely used, Wordpress has a huge range of
themes and plugins available for it, many of them free. It’s also
completely free and open source, and you can edit the code of your
site as much as you need to. We have built many Wordpress sites,
and would thoroughly recommend it to build almost any site.

Getting started with Wordpress

There is not room in this book for a full Wordpress tutorial, but
the following steps should be enough to get you started.

1. ONE CLICK INSTALL

Your web hosting provider should have an icon in your control
panel which will allow you to install Wordpress very easily. If
you can’t find it, contact them and ask for instructions.

Once Wordpress is installed, you’ll be taken to the Wordpress
dashboard. This is where you can create and edit pages for your
site, as well as write blog posts, if you are using your site as a
blog. You can also manage every other aspect of your site from
here. Try clicking around the left-hand menu, and you’ll quickly
see how to make changes and add and manage website content.

If you hover over the ‘home’ icon in the top left of the screen
and click ‘Visit Site’ you’ll see the default website that you have
created. It will look something like this (7.1):

IN PRACTICE

208

Nothing much to look at right now. So probably the first change
you will want to make is to install a theme to improve the look
of your site.

2. CHOOSING A THEME

Wordpress has a huge range of free themes available. You can
view and search them within your dashboard by clicking
Appearance → Themes →Add New. When you find one you like,
just click Install and then Activate, and then reload your site to
see the theme in action. Note that your site probably won’t look
exactly like the theme image – you’ll have to add the content,
and perhaps change some settings in the Customiser menu
(Appearance → Customise).

Sometimes, however, a free theme won’t provide the quality
look you are going for. In that case, it’s well worth considering
purchasing a premium theme. Generally, premium themes offer
a better, more flexible design, as well as direct support if you
have any problems with the theme. For $30–60, it can be a very
sensible investment. Some of the most popular sites for finding
premium themes are:

●● https://themeforest.net/category/wordpress
●● www.themecircle.net/

 7.1

https://themeforest.net/category/wordpress
http://www.themecircle.net/

WEBSITE DEVELOPMENT

209

●● www.templatemonster.com/wordpress-themes.php
●● www.elegantthemes.com/

Once you have installed your theme and are happy with it, check
out the Customiser to make it look perfect for your site, and
then start adding content.

3. USING PLUGINS

Another great advantage of using Wordpress is that if there is
any extra functionality you want for your site, there is almost
certainly a plugin available to do it, and most of them are
completely free.

You can add a new plugin by clicking Plugins → Add New
and search for a plugin that does what you want. The plugin
search doesn’t always return the best results, so we normally do
a Google search for ‘Wordpress plugin [what we want the plugin
to do]’, and once chosen, search for it by name in the
dashboard.

Plugins allow you to add simple things such as contact forms
and Google maps to your sites, as well as transforming your site
into a social network, or an ecommerce platform, so they are
well worth investigating.

Self-coding your site

You might be wondering why we’ve left the option of building a
website from scratch until last, especially in a book such as this.
It’s simply because if you want to get a website up and running
quickly, usually the best way to do that is to use some kind of
CMS, such as Wordpress.

Having said that, if you want to avoid the setup and compli-
cations that come with a CMS you might well want to build
your site from scratch. This will give you complete control over
the site content, as well as teaching you how websites function
from the ground up.

http://www.templatemonster.com/wordpress-themes.php
http://www.elegantthemes.com/

IN PRACTICE

210

So here we’ll start by uploading a very simple site, adding
some HTML to it, and finally we’ll see how to use a framework
such as Bootstrap to make our website look great on a range of
screen sizes (this is known as building a responsive website).

Editing the index.html file for your site

Your web hosting control panel should include a file manager,
allowing you to access and edit your files. Access the file manager,
and find a folder with a name like ‘public_html’. This is where
your website files should be stored (if you have problems finding
the folder, contact your web hosting provider).

Once you have found the public website folder, look for a file
called index.html. If it’s not there, create it in the file manager.
Then edit it (again, you should be able to do this in the file
manager).

Add the following code:

<h1> Hello World </h1>

Then save the file and open up your domain name in a browser.
You should see something like this (7.2):

 7.2

Hurrah! Your HTML page is now available for all the world to
see. Of course, you can now use any of the HTML, CSS and
JavaScript that you have learned and put it in that file to custom-
ize your webpage.

WEBSITE DEVELOPMENT

211

Using FTP to manage your website files

You might be thinking that building a complex site by typing
code into a file manager would be a bit of a hassle, and you’d be
quite right. Every time you want to edit your site, you’d have to
log in to your control panel, open the file manager, find the file,
open the edit window and get to work.

A better way to interact with your files is via FTP, or File
Transfer Protocol. FTP allows you to connect to your website
files and upload, download and edit files directly. It’s much more
convenient than using a file manager.

You should be able to get your FTP settings from your web
hosting provider, and once you have them, all you need is an
FTP program. There are several free options, including:

●● https://filezilla-project.org/ – Windows, Mac and Linux.
●● www.smartftp.com/ – Windows only.
●● www.coreftp.com/ – Windows only.
●● https://cyberduck.io/ – Mac only.

However, our FTP program of choice is FireFTP, which is an
add-on for the Mozilla Firefox browser. It works on any plat-
form, and is very easy to use. To get it, you’ll need to first
download Firefox at www.firefox.com and then download
FireFTP from http://fireftp.net/

Once those are installed, you’ll need to enter your FTP login
details, click OK and then click Connect. If all goes well (and
you can contact your web hosting provider if it doesn’t) you’ll
see a list of the files on your server, and you can navigate to the
public_html folder to see your website files.

Once you see the index.html file, you can right-click on it and
select ‘Open’ to edit it directly in your text editor.

Alternatively, you can download it to your computer, edit it
there, and then upload it again when you are finished.

https://filezilla-project.org/
http://www.smartftp.com/
http://www.coreftp.com/
https://cyberduck.io/
http://www.firefox.com
http://fireftp.net/

IN PRACTICE

212

Using a web framework

You have probably noticed that the websites we’ve built so far
have not been beautiful. We focused primarily on the content,
and let the browser choose how to display it. This leaves us with
webpages that are functional, but look like they were built in the
1990s.

If you are a great designer, you can customize the look of your
site to your heart’s content. However, for most of us, a quick
solution to this is to use a web framework, which is essentially a
collection of CSS and JavaScript which make our websites look
better.

Frameworks also allow our website to be responsive, that is
to adjust itself to display differently on different screen sizes and
devices. This is very important as over half of all web browsing
is now done from mobile devices. We’ll see how that works in a
moment.

There are a number of frameworks available, including:

●● http://foundation.zurb.com/
●● http://firezenk.github.io/zimit/
●● http://ink.sapo.pt/
●● www.99lime.com/elements/

Feel free to check out the sites to see what they offer, but we’ll be
focusing on the most popular web framework, Bootstrap.

Bootstrap was built by two Twitter employees, but has since
taken on a life of its own, with over 15 per cent of the top million
websites currently using it. You can see it in action at http://
getbootstrap.com.

Setup instructions for bootstrap are at https://getbootstrap.
com/docs/5.3/getting-started/introduction/, but the quickest way
to get started is to copy the code at http://robpercival.co.uk/
bootstrap.html into your index.html file and see it in action.

http://foundation.zurb.com/
http://firezenk.github.io/zimit/
http://ink.sapo.pt/
http://www.99lime.com/elements/
http://getbootstrap.com
http://getbootstrap.com
https://getbootstrap.com/docs/5.3/getting-started/introduction/
https://getbootstrap.com/docs/5.3/getting-started/introduction/
http://robpercival.co.uk/bootstrap.html
http://robpercival.co.uk/bootstrap.html

WEBSITE DEVELOPMENT

213

Rather nicer than our plain HTML pages. All of the standard
HTML features such as forms, buttons and even plain text look
more attractive and are easier to work with than before.

If you look through the HTML of the page, you’ll see that
there are links to the Bootstrap CSS in the header, and then some
JavaScript at the bottom of the code, which is what creates the
look and layout of the page.

How about the responsiveness? Try changing the width of
your browser window, and you’ll see that the content automati-
cally adjusts (7.4):

This works using breakpoints: the site detects the width of the
user’s screen and displays the content appropriately.

There is a huge amount you can do with Bootstrap, and there
is not the space to cover it here, but the main website http://
getbootstrap.com has a huge range of examples and guides to
get you started.

If you want to learn bootstrap, our advice is simply to start
building a site with it and use the docs to figure it out as you go
along.

 7.3

The demo page looks like this (7.3):

http://getbootstrap.com
http://getbootstrap.com

IN PRACTICE

214

Website development project: build a website

That brings us to the end of this section, and there’s a pretty
obvious challenge for you – build a website. Whether it be a
Wordpress blog documenting your love for My Little Ponies, a
Weebly shop selling your homemade trinkets or a self-coded
Facebook killer, build something and share it with the world.

Whether or not your site is successful is not the point here –
the purpose of the challenge is to turn a goal into a reality, and
learn about how websites work while you’re doing it.

Good luck, and send Rob the results of your hard work on
Twitter at @techedrob. We look forward to seeing what you create!

Summary

In this chapter our aim was to go from some knowledge of
HTML, CSS and JavaScript, to creating and sharing a real

 7.4

WEBSITE DEVELOPMENT

215

website with the world. We considered several reasons you might
want to build a site, and how websites are different to software.
Then we learned about domain names and web hosting, and the
different ways you can get your website live. Finally, we saw
how we can use CMSs such as Wordpress and frameworks like
Bootstrap to get great looking, responsive websites up and
running fast.

We’re now going to move away from websites and see how
we can use our coding skills to build apps for mobile devices,
starting with iPhones and iPads. It’s a very different process to
working with websites, but many of the principles are the same.
Apps represent a whole new way to get our content in the hands
of users, and it’s pretty simple to get started, so let’s go!

Further learning

As well as the recommendations from the previous chapters to
learn HTML, CSS, JavaScript and Python, there are holistic
courses available to teach you every aspect of web development.

●● www.udemy.com/the-complete-web-developer-course-2/
 (archived at https://perma.cc/7EB2-ABGA) – The Complete
Web Developer Course (by Rob) uses projects and real-life ex-
ercises to teach every aspect of web development.

●● www.open.ac.uk/courses/modules/tt284 (archived at https://
perma.cc/EP6B-S2ME) – Open University course covering the
foundations of web technologies and developing applications.

●● www.theodinproject.com/courses/web-development-101
(archived at https://perma.cc/5ECT-SN9X) – A free and open-
source online course in web development.

http://www.udemy.com/the-complete-web-developer-course-2/
https://perma.cc/7EB2-ABGA
http://www.open.ac.uk/courses/modules/tt284
https://perma.cc/EP6B-S2ME
https://perma.cc/EP6B-S2ME
http://www.theodinproject.com/courses/web-development-101
https://perma.cc/5ECT-SN9X

CHAPTER EIGHT

Building an app for iPhone or iPad

Now that you have seen how to build and host complete
websites, we are going to learn how to build apps that can

run natively on the iPhone and iPad. Barely a week goes by with-
out a news story of the latest app craze that is sweeping the
nation (at the time of writing it’s Mario Kart Tour), and the excit-
ing thing for coders is that quite often successful apps are built by
individuals or small groups rather than big companies.

Moreover, the best apps often do one thing very well – they
don’t need to be hugely complex. For example, Pocket, devel-
oped by Nate Weiner in 2007 after teaching himself to code, lets
people save articles on the web to read later. It now has over
22 million users and has raised over $7.5million in investment.

In this section, we’ll see how to make a basic Visitor
Registration iPhone app to complement the webpage we’ve been
working on. We will run it on a simulator within your computer.
We’ll add user interface elements like labels and buttons, and
write some code in Swift, the Apple-designed language used for
iPhone app development.

216

BUILDING AN APP FOR IPHONE OR IPAD

217

A word of warning – the software required to create iPhone
apps can only be run on a Mac, so if you don’t have one you’ll
need to get hold of one to start building iPhone apps. We would
recommend borrowing a MacBook from a friend for a week or
so, and if you enjoy the app-making process consider investing
in an Apple laptop yourself. Alternatively, you can jump to the
next section, Android app development, which can be done on
any platform – Windows, Mac or Linux.

What is an app?

This may seem like a rather stupid question, but it’s worth being
clear how an app is different to a website. As we’ve seen, a
website is stored on a server, and is then downloaded by your
computer or phone and displayed in a browser. An app is differ-
ent, in that the code for the app is stored on your device, meaning
that it can run completely offline.

Having said that, apps often have an online component,
enabling them to provide services such as messaging or getting
information like weather updates.

So while websites are stored on servers and are downloaded
to the users’ device, apps are stored on the device themselves.
This is close to the original software model where all our soft-
ware was stored locally on our computer.

In this section we’ll be making apps for iOS, which is the
operating system that runs on iPhones and iPads.

Getting started: downloading Xcode

Making an app is often seen as a mysterious process that only
expert coders can do, but it’s actually very simple. All you need

IN PRACTICE

218

to build an iPhone (or iPad) app is a Mac, and a copy of Xcode,
a free piece of software made by Apple.

To download Xcode, go to the App Store or to https://developer.
apple.com/download/. You’ll need to create an Apple developer
account if you don’t already have one, but this is completely free
and only requires you to enter your email address and a few other
details.

Once you’ve logged on, make sure that the Release tab is
selected and download the latest version of Xcode. You will be
redirected to the App Store to launch the download. It’s a big file
(around 7.5 GB), so depending on your internet connection you
might want to go and have a cup of tea while you wait.

When it’s downloaded, simply click on the downloaded file to
start the installation process. This normally takes several
minutes, and when it’s done you should be presented with a
start-up screen (if you don’t see a screen that asks you choose a
template for your app, open up the Xcode application and click
File → New → Project in the menu at the top left of the screen).

The app setup process

We will now be presented with two screens, which allow us to
choose various options for our app. In the first screen, we get to
pick from several templates for our app. Make sure iOS is selected
underneath ‘Choose a template for your new project’ and then
select ‘Single View App’. This will create an app with a single
blank page (known in app development as a ‘view’) for us to edit.

You can see several other app templates, such as Game and
Master-Detail App. Feel free to try them out and run them to see
what they do, but we’ll be sticking with the Single View App here.

Click Next, and you’ll see the options screen:

●● First, fill in the Product Name – you can put anything you like
here, but we recommend something like ‘Registration App’.

https://developer.apple.com/download/
https://developer.apple.com/download/

BUILDING AN APP FOR IPHONE OR IPAD

219

●● Under Organization Name, you can put either your company
or your own name.

●● The Organization Identifier is like a domain name in reverse –
choose something like com.yourname.

●● The name and identifier are only used if you submit your app
to the app store, so you can really choose anything you want
at this point.

●● For the user interface, make sure to select Storyboard.

The language setting can be left at the default value. We will be
making use of Swift as the development language.

Click Next and you’ll be asked where to save your project, so
choose a suitable location, such as your Documents folder, and
click Create.

After a few moments, you’ll see the Xcode interface, and your
app will have been created – congratulations!

The Xcode interface

This is our basic Xcode screen, and it’s worth taking a few
moments to familiarize yourself with it.

Underneath the usual File, Edit… menu we have the top bar,
with a ‘Play’ button at the top left, which will allow us to run
our app. Give it a try. After 30 seconds or so, you should see a
small blank screen pop up. Not the most exciting app in the
world – it’s just a blank screen – but it’s a start. This is the simu-
lator, which enables us to try out our app without a real iPhone.

You can actually use it just like an iPhone – try clicking
Hardware →Home, and you’ll see the familiar iPhone home screen
and you can interact with it just as you would a normal phone.
Have a play around with it, and then come back to the tour.

At the right of the top bar there are several buttons which we
can use to customize the interface:

●● The plus button displays the Library, which presents a list of
objects depending on the file we are working on. This list is
empty at the moment.

IN PRACTICE

220

●● The three rectangles on the right allow us to toggle the left,
bottom and right panes. Try them out!

●● The double arrow displays the Code Review editor, which we
won’t be using here.

On to the main part of the screen:

●● The left pane shows a list of the files that make up our app.
We’ll be looking at those in more detail shortly.

●● The central window is where we’ll be doing most of our work.
At the moment it is displaying some settings for our app, but
we’ll also use it to edit files and drag and drop buttons and
labels on to our app.

●● The right pane is context-sensitive: it displays different
information depending on what we have selected. At the
moment we don’t have anything selected, so it doesn’t display
anything, but we will be using it a lot as we create our user
interface.

Finally, if you ran the app in the simulator, you’ll see the console
at the bottom of the screen, and it may have some information
about your app in it.

This is where we will see error messages and debugging infor-
mation – it can be very useful.

That’s it. You’re now familiar with the Xcode interface, and
we can start building our app.

Adding labels to our app

Xcode has a wonderfully simple drag and drop system to add
user-interface elements to our apps. We’ll start by adding some
text, in the form of labels.

In the left pane, select the Main.storyboard file. You may need
to use pinch-to-zoom or click the -/+ buttons to be able to see the
whole rectangle on the right.

BUILDING AN APP FOR IPHONE OR IPAD

221

The View Controller rectangle represents our iPhone app
screen, and is currently blank. Click on it, and you’ll see the
screen change to include more settings and control options.

If you click on the plus icon in the top right, you’ll now see a
list of objects that you can drag into your app. In the ‘Filter’ box,
type ‘label’, and then drag the label into the iPhone screen in the
central pane.

As you drag it around, you’ll see dotted-blue guidelines
appear, which help you position your label. Try to position it in
the centre of the screen, as in the screenshot.

Now you’ve done that, let’s run the app (the Play button in
the top left, or cmd-R) and see how it looks. You should see
something like this (8.1):

 8.1

IN PRACTICE

222

Your first non-blank iPhone app, congratulations!
(Notice that the label is not centred despite using the blue

dotted lines. This is because the iPhone running in the simulator
is different to the iPhone in the central pane. In our case the
simulator is running an iPhone 8, and the central pane shows an
iPhone 11, which is bigger. Feel free to click on the ‘iPhone 8’
button to change the simulator device, or the ‘View as: iPhone
11’ button to change the device shown in the central pane. We
will use iPhone 11 for both of these from now on to keep things
simple.)

Customizing the label

Now that you have added your label, make sure it is selected and
then take a look at the context-sensitive right pane. It gives a list
of drop-downs including text, colour and font. Most of the
options are fairly self-explanatory, so try clicking on them and
have a play around to see what they do.

PRACTICE EXERCISE

See if you can make your label say ‘Welcome to Coding Solutions
Enterprises’ in pink with a green shadow.

Adding a text field

Labels are great for displaying text for the user, but they are not
very interactive. To get some information from our users, we
need something like a text field. Add one in the same way you
added the label.

This creates a grey text field with the default iOS styling. Run
the app and click in the text box, and you should be able to enter
some text (8.2):

BUILDING AN APP FOR IPHONE OR IPAD

223

As with labels, you can customize your text field by resizing it
and using the context pane on the right.

Challenge 1

Try creating this app layout (8.3):

 8.2

 8.3

IN PRACTICE

224

Solution: The label is just the default size and font, and the two
text boxes are aligned underneath it. You can use the ‘Placeholder’
setting to enter the First name and Last name text within the text
fields.

Adding buttons

The final user-interface element that we will add is a button. You
should be able to guess how to do this by now!

Challenge 2

Add a button, change the text to ‘Register’ and position it
beneath the Password text field.

Running some code

That’s as far as we’re going to go with user interface elements.
Now we’re going to write some Swift code that will be processed
when the app is run.

To do this, click on the ViewController.swift file in the left
pane. You’ll now see a page that contains some standard code
for the ViewController.swift file.

The lines you’ll see with // at the beginning are comments –
these are notes for coders to read that are not part of the app
code. They are very useful for keeping track of what certain
parts of your code do (and for leaving yourself messages and
reminders as you build the app).

The ‘import UIKit’ command imports the UIKit module,
which allows us to interact with the user interface (UI).

The following line defines the ViewController class, which is
essentially a chunk of code that we can use to control the view,
or in other words to customize our app screen.

BUILDING AN APP FOR IPHONE OR IPAD

225

The ‘override fun viewDidLoad()’ line defines a function (also
known as a method) which will be called when the app loads.
This is where we will put any code that we want to run when the
app is loaded.

‘super.viewDidLoad()’ runs some default commands to set up
the view.

To write your first piece of Swift code, move the cursor under-
neath the ‘super.viewDidLoad()’ code and write the following:

print("This is my first piece of Swift code")

Run the app and see if you can spot what happened. You may
have spotted that nothing happened on the app itself, but in the
bottom pane in Xcode the sentence ‘This is my first piece of
Swift code’ appeared (8.4):

 8.4

That is what the print command does – it displays output in the
console so we can see what our program is doing.

This is fairly useful, but really we want to use our app to
display something to the user, so to do that we’ll need to interact
with the user interface.

Interacting with the user interface

Now we are going to use code to edit the user interface (UI).
Specifically, we are going to update the main label to read ‘Please

IN PRACTICE

226

register your visit using this wonderful app’ instead of ‘Please
register your visit using this app’.

To change the UI using code, we need to create what is known
as an Outlet. This is essentially a variable that we can use to
refer to, for example, a label or a button. To do that, first make
sure that the Main.storyboard file is selected. Then, in the top
right of the central window, click the icon ‘left align’ and select
Assistant to bring up the Assistant editor. The editor will be
added to the right of the Storyboard and will display the
ViewController.swift file.

Your Xcode screen should now look like this (8.5):

 8.5

Now comes the tricky bit. Move the mouse to the ‘Please register
your visit using this app’ label, press ctrl and hold on your
keyboard, and then drag the mouse over to the ViewController.
swift file, just underneath where it says ‘class ViewController’. If
all goes well you should see a window with ‘connection’, ‘object’,
‘name’, ‘type’ and ‘storage’ options pop up.

BUILDING AN APP FOR IPHONE OR IPAD

227

This allows you to create an outlet for the label. Type ‘label’
into the Name field (you can use a different name if you like)
and click Connect. This will add the line:

label.text = "Please register your visit using this

wonderful app"

to your ViewController.swift file, which will allow you to use
the ‘label’ variable to refer to the label.

Now we just need to add our code to update the label text.
Underneath your ‘print’ statement, add this Swift code:

 8.6

As you might guess, this updates the label text to the string
‘Please register your visit using this wonderful app’. Run the app
and check it out. You should see this (8.6):

@IBOutlet var label: UILabel!

IN PRACTICE

228

Hurrah! We have interaction between our code and our UI. Our
next challenge is to make the button do something, so that the
user can instruct the app to take some action.

Making buttons interactive

Now we will change our app so that when the user taps the
‘Register’ button, the words ‘register’ are printed to the console.

This process is similar to updating the label, but this time we
will create an Action rather than an Outlet. In Xcode, ctrl-drag
the button to just underneath the ‘class ViewController’ code,
just as before. You should see the ‘connection’, ‘object’, ‘name’,
‘type’ and ‘storage’ popup again.

This time, click on ‘Outlet’ and change the option to ‘Action’.
Then in the Name box type buttonClicked. Click Connect and
the following code will be created:

@IBAction func buttonClicked(_ sender: Any) {

}

This is a function or method that will be called when the button
is clicked.

Challenge 3

Add some code to your app so that the word ‘register’ is printed
to the console when the button is tapped.

BUILDING AN APP FOR IPHONE OR IPAD

229

Solution: Inside the buttonClicked method, just add the code:

label.text = "Thank you for your registration!"

So the whole function looks like this:

Now run the app and tap the button, and you should find that
it works as expected.

Challenge 4

Create a new app with a label that is initially empty and a single
button that says ‘Register’. Then, when the button is clicked
change the label text to ‘Thank you for your registration!’

Solution: First click File →New→Project to create a new
project and use the same settings as before. Then add a label,
double click on it and press backspace to delete the text. Then
add the button. Create an Outlet for the label and an Action for
the button by ctrl-dragging in the same way we did previously.
Finally, add the code:

@IBAction func buttonClicked(_ sender: Any) {

 print("register")

 }

print("register")

IN PRACTICE

230

 8.7

Run it on the simulator and the app should say ‘Thank you for
your registration!’ when the button is tapped.

Challenge 5

Add a text field to your app with placeholder text ‘Please enter
your name’. Then change the code so that when the user taps the
button the label text becomes ‘Thank you for your registration,
[user’s name]!’.

Hint: You’ll need to create an Outlet for the text field, and get
the text field’s value. You’ll also need to append that to ‘Thank
you for your registration’ to create the required string. The
process for getting the text field’s value is the same as for labels,
and appending works the same way as in JavaScript. Xcode will
give you an error message at some point – use the automatic ‘fix
it’ command to fix the error.

to the buttonClicked() method. This should give you the follow-
ing (8.7):

BUILDING AN APP FOR IPHONE OR IPAD

231

Solution: Add the text field and create an Outlet for it by ctrl-
dragging. We’ll call it textField but you can use any variable
name. Then just change the line:

to:

label.text = "Thank you for your registration" +

textField.text! + "!"

This sets the label text to a new string, equal to ‘Thank you for
your registration [user’s name]!’. The whole app should look
like this (8.8):

 8.8

label.text = "Thank you for your registration!"

IN PRACTICE

232

You are probably wondering why we need an ! after textField.
text. Swift has a variable type known as an ‘optional’, which is a
variable which could contain a null value. For example, if we
created a variable like this:

var number:Int

This would create a variable called ‘number’ which would be
an integer, but because we haven’t set a value for it yet it has a
‘null value’ and is an optional. If we try to use it while it has a
null this will cause the app to crash.

If you want to use an optional in your code you have to put
an exclamation mark after it, which essentially tells the device
that you are sure that it does have a value, and it is OK to use it.
This is what we are doing here – putting the ! after textField.text
states that we know it has a value (even if that value is an empty
string) and then the app won’t crash.

Optionals are quite fiddly and don’t worry too much about
fully understanding them at this point, but if you want to read
more about them are a variety of blogs and other resources
online.

Variable types in Swift

We are almost ready to build our Visitor Registration app, but
we need to learn a little about variable types in Swift. In the
JavaScript and Python sections we learned about several varia-
ble types, including strings, numbers and Boolean (true or false)
variables. Swift is what is known as a ‘strongly typed’ language,
meaning that when a variable is used in a function, that variable
has to be of the correct type or the app will crash.

For example, in this code:

BUILDING AN APP FOR IPHONE OR IPAD

233

we get an error, because number is defined to be a string, and we
cannot multiply strings by integers (whole numbers). To fix that,
we can use the Int command to convert number to an integer:

var number = "2"

var newNumber = Int(number)! * 5

var number = "test"

var newNumber = Int(number)! * 5

we would get a crash, because Swift would not be able to convert
the string ‘test’ to a number.

Finally, if we wanted to multiply a number by a decimal we
would need to convert it into a ‘float’ (ie a ‘floating point’
number, or a decimal). We would do that using this code:

var number = "8.4"

var newNumber = Float(number)! * 5.3

var number = "2"

var newNumber = number * 5

This code now works. Note that we need to put an ! after
Int(number) because there is a chance that the conversion will
not work. For example, in this code:

Feel free to play with these commands to get to grips with them.
In fact, Xcode has a great mode called ‘Playgrounds’ where you

IN PRACTICE

234

can type in code and see the output straight away, which is
perfect for experimentation like this. To create a new play-
ground, click File → New → Playground in Xcode and start
typing some code.

Note: If you test out these lines of code in an Xcode play-
ground, you will likely get a warning that ‘The variable was
never mutated: consider changing var to let’. This is because as
well as using var to create a variable in Swift, we can use let to
create a constant (ie a variable that doesn’t change). This is
preferred by Xcode, so if you have a variable that doesn’t change
value, like number in the above examples, you should define it
using let rather than var.

Building an app for iPhone or iPad project: Visitor
Registration app

We’ve now gone on a tour of Xcode and seen how to add labels,
buttons and text fields to our app. We’ve also written some Swift
code and created Outlets and Actions to make our app interac-
tive. Finally, we saw some of the intricacies of the Swift language,
including optionals and its strongly typed nature.

We’re now going to put all this together by building a Visitor
Registration app, and of course we’re going to set this to you as a
challenge. Essentially the app should ask the user for a name and a
visit duration in minutes and then convert this duration into an
hours and minutes representation. We will then display the result
on the screen with a mention of the name entered. Simple. For
example, if you enter ‘Delphine’ and 135 minutes, the app will
display a message saying something like ‘Thank you for your regis-
tration Delphine. See you in 2h 15min (2.25h) for your logout’.

You can notice that the hours and minutes values are integers
whereas the duration in hours is a decimal number. Good luck!

BUILDING AN APP FOR IPHONE OR IPAD

235

Visitor Registration app: solution

Start by creating a new project in Xcode (File→ New → Project)
and entering the default settings.

Then create the user interface: drag in a label for the instruc-
tions, two text fields, a button, and then a second label for the
result. The result should look something like this (8.9):

 8.9

Note the result label is currently blank – we’ll add the value with
code when the user taps the button.

IN PRACTICE

236

@IBAction func register(_ sender: Any) {

}

@IBOutlet weak var nameTextField: UITextField!

@IBOutlet weak var durationTextField: UITextField!

@IBOutlet weak var result: UILabel!

let nameEntered = nameTextField.text!;

let visitDurationEntered = durationTextField.text!

The next step is to create Outlets for the label and the text
fields, and an Action for the button. Do this in the usual way, but
ctrl-dragging, until your code looks like this:

Finally, we will add the code to the register() method to do the
calculation and display the result to the user. First, we get the
contents of the text fields (notice that we’re using let rather than
var as these values will not change):

Then we convert the visit duration value to an integer – we’ll see
why just below (don’t forget the ! as the result will be an optional):

let visitDurationInMinutes = Int(visitDurationEntered)!

The duration of the visit in hours, which is a decimal number, is
the duration of the visit in minutes divided by 60. To do that, we
need to convert the visit duration in minutes to a Float and then
do the division:

BUILDING AN APP FOR IPHONE OR IPAD

237

let visitDurationHour = Int(visitDurationInHours)

let visitDurationMinutes = visitDurationInMinutes -

visitDurationHour * 60

We can add a line to round this value, using the round function:

We have the visit duration in hours; the first conversion is done.
Now, let’s do the conversion to hours and minutes. The hour value
is the integer part of the value we get for the duration in hours:

Then we can calculate the minutes value, which is an integer, as
shown below:

That’s why visitDurationInMinutes needed to be an integer and
not a floating number.

Finally, we update the result label to give the message we need
(note we need to convert visitDurationInHoursRound, visitDu-
rationHour and visitDurationMinutes to string here):

let visitDurationInHours = Float(visitDurationInMinutes)

/ 60

let visitDurationInHoursRound = round(100 *

visitDurationInHours) / 100

IN PRACTICE

238

result.text = "Thank you for your registration " +

nameEntered + ". See you in " + String(visitDurationHour)

+ "h " + String(visitDurationMinutes) + "min (" + String

(visitDurationInHoursRound) + "h) for your logout."

8.10

Putting it all together, your app should look like this (8.10):

Now run the app, and check that it works. If you’ve set up every-
thing correctly, you should be able to enter a name and a duration
and the app will display a message with the right information
(8.11):

BUILDING AN APP FOR IPHONE OR IPAD

239

if let visitDurationInMinutes = Int(visitDuration

Entered) {

let visitDurationInHours = Float(visitDurationIn

Minutes) / 60

Hurrah! All seems to be well, but there is one small problem – if
the user doesn’t enter a correct duration (a number) into the
app, it will crash. Try entering ‘two’ or any string and you’ll see
the error. This is because the Int command fails as Swift cannot
convert ‘two’ into a number. To get around this we can use an if
statement:

8.11

IN PRACTICE

240

let visitDurationInHoursRound = round(100 *

visitDurationInHours) / 100

let visitDurationHour = Int(visitDurationInHours)

let visitDurationMinutes = visitDurationInMinutes -

visitDurationHour * 60

}

result.text = "Thank you for your

registration " + nameEntered + ". See you

in " + String(visitDurationHour) + "h " +

String(visitDurationMinutes) + "min (" + String(visit

DurationInHoursRound) + "h) for your logout."

} else {

result.text = "Please enter a correct duration."

}

This is quite a neat solution – the first line now tests to see if the
conversion is possible, and if it is, proceeds to show the result. If
it isn’t, it displays a friendly error message.

Summary

We’ve covered a lot of ground in this section. Hopefully you
now feel reasonably familiar with Xcode, and you understand
the basics of how apps are made. You have seen how the user
interface interacts with the code of the app to create a working
app which gives the user some information.

BUILDING AN APP FOR IPHONE OR IPAD

241

Further learning

If you want to double down on learning iOS app development,
you can try some of these links:

●● www.udemy.com/complete-ios-10-developer-course/ (archived
at https://perma.cc/X7GE-E3V6) – Rob’s online course in iOS
app development.

●● www.appcoda.com/ios-programming-course/ (archived at
https://perma.cc/E9MQ-SS7E) – free iOS development tutorials.

●● https://itunes.apple.com/us/course/developing-ios-8-apps-swift/
id961180099 (archived at https://perma.cc/6B9R-LGG9) –
popular Stanford iOS coding course – a little outdated, but
good quality and free.

●● www.coursera.org/specializations/app-development (archived
at https://perma.cc/3FCP-9A7J) – Swift-based iOS develop-
ment courses.

●● www.udacity.com/course/ios-developer-nanodegree--nd003?
v=ios1 (archived at https://perma.cc/4MCQ-VPQK) – iOS
developer course created by AT&T, Lyft and Google.

http://www.udemy.com/complete-ios-10-developer-course/
https://perma.cc/X7GE-E3V6
http://www.appcoda.com/ios-programming-course/
https://perma.cc/E9MQ-SS7E
https://itunes.apple.com/us/course/developing-ios-8-apps-swift/id961180099
https://itunes.apple.com/us/course/developing-ios-8-apps-swift/id961180099
https://perma.cc/6B9R-LGG9
http://www.coursera.org/specializations/app-development
https://perma.cc/3FCP-9A7J
http://www.udacity.com/course/ios-developer-nanodegree--nd003?v=ios1
http://www.udacity.com/course/ios-developer-nanodegree--nd003?v=ios1
https://perma.cc/4MCQ-VPQK

CHAPTER NINE

Windows desktop application
programming

We’ve looked at programming languages in the previous
sections that have enabled us to produce some pretty good

results. We’ve constructed a webpage with HTML, JavaScript and
CSS and delivered a basic Python app. But now we’re going to
delve into something a bit more familiar to a typical workplace, a
desktop application. For the purposes of this book, we will build
a simple salary enhancement application. This will take a numeri-
cal input from the user and apply a percentage increase and
display the resultant augmented salary back to the user.

Desktop applications evolution

Desktop applications are extremely useful and powerful tools.
Locally deployed, they can harness system resources to run light-
ning analysis and produce reports, handle real time inputs/
outputs from peripheral devices like barcode scanners and RFID

242

WINDOWS DESKTOP APPLICATION PROGRAMMING

243

tags and connect across company networks to retrieve, query
and process large amounts of data. Most likely you already use
bespoke software that is particular to your company’s line of
business. In addition, less pronounced but equally powerful and
useful, you use other desktop applications every day – Chrome,
Firefox, Edge, WORD, Outlook, Mac Mail. The list is long and
familiar.

Over the years there has been a gradual and pronounced shift
in the workplace towards more cloud-based solutions – that is,
software that runs over the internet and that you typically access
via a web browser. However, desktop applications are still very
much a primary software solution. They can leverage significant
advantages over their cloud-based cousins in terms of perfor-
mance, security and connectivity (internal business networks
tend to be faster and inherently more secure than any access
over the internet). Indeed, in most successful companies there is
a healthy hybrid of multi-layered solutions involving both cloud-
based and desktop lines of business applications.

Microsoft Visual Studio Community Edition

We are going to utilize Microsoft Visual Studio and its inbuilt
suite of graphical user interface (GUI) components to produce a
first sample application. The beauty of these applications is that
they can be easily built and packaged ready for distribution and
installation on other devices.

The presentation libraries that we will use for the GUI are
Windows-specific and so, if you wish to follow this chapter, then
you will need to be running Windows on your PC or Mac.

Specifically, we are going to make use of the Community
Edition of Visual Studio. This edition is free to use and all you
need is a Microsoft account (Hotmail address, Xbox account or

IN PRACTICE

244

Office 365 licence for instance). This is an awesome piece of
software for a developer and is pretty much a full-feature edition.
Perhaps the only thing I’ve really missed between this and the
Enterprise level editions is some of the powerful collaborative
features when working in teams of developers.

C# programming language

Within Visual Studio, we are going to make use of the C#
programming language. ‘Why another language?’, I hear you
ask. Well, put simply, you can never get enough exposure to
different techniques and development tools and what better way
to test the water than to dip your toes in as many pools as you
can. You are also gaining experience across languages, and one
thing you will start to notice is the striking similarity of core
concepts between languages. It’s not by accident that there is the
common convention of conditional if else statements, variables
and for loops to name but a few. All of these share a familiar
format across the languages we have seen so far – JavaScript,
Python and now soon to be C#.

Alongside PHP, C# is a very popular language for developers
and is especially prevalent in line of business applications and
high-performance scenarios such as gaming (alongside its even
more powerful relation C++). Developed and supported by
Microsoft, it is a mature and fully featured language choice for
a programmer. One aspect I particularly like is the well-struc-
tured and consistent nature of the language with fantastic
resources online and a very large and active community across
the globe. To use an analogy, I might liken PHP and Python to
your artisan spoken languages, perhaps Spanish with linguistic
variations in Latin and Central American regions, whereas C# is
the language of business – universal and functional.

WINDOWS DESKTOP APPLICATION PROGRAMMING

245

Installation of Visual Studio

Let’s get started then, open a browser and using your preferred
search engine enter the terms ‘Microsoft Visual Studio
Community Edition’. Click on the most prominent Microsoft
link and you won’t go far wrong.

The page should like the below image (9.1). If you review the
information and features, one of the most striking things, you
will learn is that Visual Studio is a very powerful IDE (Integrated
Development Environment). It is similar to Brackets which we
used in the HTML coding section; however, Visual Studio offers
the further ability to code and develop in a multitude of
languages, frameworks and platforms including desktop, gaming
and mobile app development.

 9.1

IN PRACTICE

246

Go ahead and click the Download Community Edition button
which is displayed prominently on the page there. This will down-
load an installer .exe file which you can now click to run the Visual
Studio Installer. After the obligatory terms and conditions checks
and a brief download of components you will be presented with a
veritable smorgasbord of development options (9.2).

9.2

You can choose as many as you wish but bear in mind you can
always rerun the installer, via this .exe or from within Visual
Studio at any point afterwards to add features and environments
to your development setup. For now, let’s select .NET Desktop
Development as per the screenshot image above. You can see that
the installer automatically prechecks detailed components on the
right-hand side there in conjunction with our selection. We’ll
leave these as they are currently.

Click Install and then fetch yourself a refreshment as this
takes a short while – my installation package was 7.5GB to
download and install. The handy installation update screen will
keep you informed of the progress (9.3).

WINDOWS DESKTOP APPLICATION PROGRAMMING

247

9.3

9.4

Account sign in

Once you have finished installation, you will need to sign in with
a valid Microsoft account (if you haven’t got one don’t worry–
it’s quick and simple if you follow the button Create an account
and, better still, it doesn’t cost anything) (9.4).

IN PRACTICE

248

Development settings

When asked, select your desired theme. I am quite partial to light
themes but some people much prefer the high contrast of dark
backgrounds. It is entirely a personal preference and can be
easily switched later from the menu options if you wish to
experiment.

You will also be prompted to select desired development
settings to tailor the environment. Again, this may be easily
changed afterwards, but for now let’s go ahead and select
Visual C#.

Setting up a new project

From the start page (9.5), select Create a new project.

9.5

You’ll then be presented with a long list of premade templates to
choose from (9.6). For the purposes of this run through we will
choose Windows Forms App (.NET Framework). You may have
to scroll down the list to see this. Be sure to select the C# language

WINDOWS DESKTOP APPLICATION PROGRAMMING

249

version and not the VB language one – this is denoted by the C#
tag and the green C# symbol on the icon. Also, be especially
careful not to select the similarly named Windows Forms App
template. What’s the difference and why so similar? Well, basi-
cally our selection comes pre-packaged with the .NET
framework, which is universally available on any machine
running Windows, whereas the other template may require
further components to be packaged and installed alongside our
application if we were to distribute it.

9.6

On the following screen (9.7), give your project a meaningful
name. You can leave the other options with their respective
preselected values.

The Solution Explorer

We are ready to go! You should now see a development environ-
ment with a familiar Windows style form which is in effect our

IN PRACTICE

250

design canvas. Over to the right should be a list of files in the
Solution Explorer pane. If you can’t see this go to View in the
top menu and then, from the dropdown, select Solution Explorer.
Your view should look like the image below (9.8):

9.7

9.8

WINDOWS DESKTOP APPLICATION PROGRAMMING

251

The list of the files on the right-hand side are the files which
Visual Studio automatically created for us. We won’t worry too
much about all the files in this introductory exercise, but the
ones we will concentrate on are:

●● Form1.cs – this is the code file which contains the information
important for displaying our current form and managing its
interactivity.

●● Program.cs – this is the code file which holds our initial
program code and is the entry point for our application. In
this example we don’t need to worry about this as the template
has taken care of it.

NB. We could easily rename these files, particularly important
when you start building larger applications with multiple forms
and code files, but for now let’s leave things simply as they are.

GUI Toolbox magic

To get stuck in, click on [View] from the top menu and then
[Toolbox] from the drop-down menu (9.9). You may already
have a quick launch tab down the left-hand side of the editor
window. This presents a pane which includes a veritable candy
store of common user interface components, all neatly catego-
rized for our perusal. Feel free to explore, but then let’s settle for
the Common Controls category in which you will find familiar
controls, e.g. button, text box, etc.

For our application we will need the following components:

●● Textbox – for the user to input the salary.
●● NumericUpDown – for the user to specify the percentage

enhancement to be applied.
●● Button – to trigger the calculation when the user is ready.
●● Label – to display the result back to the user.

IN PRACTICE

252

Go ahead and drag these components from the Toolbox on to
our Form in the main window. You may easily adjust their posi-
tioning and resize them to achieve a neat and attractive layout.
You should now have something which looks similar to the
image below (9.10).

9.9

9.10

WINDOWS DESKTOP APPLICATION PROGRAMMING

253

Setting properties for our controls

We may change the display and manage the behaviour of each
control on our form, and indeed the form itself, through the
properties window. From the top menu, select View and then
towards the bottom Properties Window. This will display a
pane with a range of settings and corresponding values. The
settings are linked to the context of the item currently selected
on the form. The context may also be the form itself if this is
selected. Most likely the form will be the initial context, but
now select the various controls to see how the properties
window adapts accordingly to display the relevant settings for
the selected component. Review the properties and settings for
each component; you may need to scroll up and down to see all
of them. In fact, there are plenty of expandable sections within
the list itself which you may view by clicking the + symbols.
When you are ready select the form by clicking anywhere on its
frame or blank area.

With the form in selection, scroll to the property [Text] and
change its value to ‘Salary Enhancer’. Notice how the text at the top
of the form, the title of the window, changes to this edited value.

Select the other components in turn, locate the properties and
change the values as per the following list:

TEXTBOX

[Name] = txtSalary
[TextAlign] = Right

NUMERIC STEPPER

[Name] = numPercentage
[DecimalPlaces] = 2

BUTTON

 [Name] = btnCalculate
[Text] = Calculate

IN PRACTICE

254

LABEL

[Name] = lblResult
[Text] = Pending Calculation

When you’ve finished applying changes your form should now
look akin to the following screenshot (9.11):

9.11

Adding functionality to our application

Each component on our form and the form itself have a variety
of events which we can harness and then act on in code. The list
of events available is simply huge. Click on the form to place it
in selection and then over in the Properties window you’ll notice
a lightning icon (Events). Click on this and the properties list is
replaced with a long list of different events available. As you
click on different events Visual Studio gives you a handy explan-
atory note at the bottom of the Properties window regarding the
selected event (9.12).

WINDOWS DESKTOP APPLICATION PROGRAMMING

255

Of particular note is the [Load] event which has a prefilled value
of Form_Load. What this means is that, when the form loads, an
event is triggered which runs some code in a function called
Form_Load. This code function, which we will see shortly, is
currently blank and doesn’t do anything. It was created auto-
matically for us as a placeholder when we set up the project. For
now, select the button component and review its events.

With the button in selection and viewing its events list, scroll
down to the event [Click]. It is currently blank meaning that
there is no event attached to it (9.13). A button which doesn’t do
anything is pretty useless, so let’s create and bind our own func-
tion to this buttons click event. Double-click the blank value
box. This will automatically create an event in code ready for us
to add our instructions and logic.

The code behind will appear as the tab Form1.cs in the main
editor window (don’t worry – you can easily flick back to the
design editor for your form using the tabs at the top of the window).
This view contains the code attached to the form whereas the other
tab Form1.cs[Design] is the visual representation or design of the
form we have been looking at up until now (9.13).

9.12

IN PRACTICE

256

What Visual Studio does rather neatly is abstract the code and
logic of the form into a different view. This allows you to design
and interact with form elements via the graphical editor in a
much more user-friendly manner, whilst coding interactivity and
business logic in the code view.

Take a closer look at the code. You will see two separate
blocks of code called Form_Load and btnCalulate_Click. The
start and end of these bocks are denoted by the open and closing
curly braces { and }. These blocks of code are called functions
and, in this instance, are executed when our events fire. Recall
that Form_Load was the entry in the Forms Load event setting
that was automatically created for us. btnCalulate_Click was
created for us when we double clicked the Click event entry for
our button component. Notice how Visual Studio took the name
of our component and appended _Click to it. It was important
for us to rename all our components at the start, because once
we start developing complex forms with lots of elements and
events it is important to be able to identify each easily.

Don’t worry too much about the rest of the syntax and
other elements in this code file. It is beyond the scope of this

9.13

WINDOWS DESKTOP APPLICATION PROGRAMMING

257

introduction to go into detail, but feel free to read up.
However, a very quick indication is as follows.

The using statements at the top basically import a bunch of
libraries which instantiate and enable our form and components.
They also open up a massive amount of pre-built functionality
to us for use in our own code.

Private and public are scope access modifiers and govern
where the relevant functions may be called from. In large appli-
cations with multiple forms, you don’t inadvertently want some
code on one form calling the code from another which just so
happens to have an identically named function.

The special function public Form is called a constructor and runs
when our form is first created. You can see it calls another function
called InitializeComponent() which is a system function responsible
for creating our form and hooking up all the code at runtime.

The items next to the function names in brackets are called
parameters. They are essentially bits of information which are
passed into the function when it is called. This will include a
reference to the component which was clicked (our button) and
other information which may be relevant to the context.

Coding our button click

Phew! Well, we’ve covered a lot rather quickly, let’s write some
code.

C# is a little different from Python programming which we
looked at in Chapter 6. Whilst it also uses variables, C# is a
strongly typed language. This means that you must denote the
type of data that your variable will contain ahead of assigning it.
The advantage of this rigidity is improved performance and
robustness.

Principal data types in C# are:

char – individual characters
string – for text

IN PRACTICE

258

int – for whole numbers
double, float, decimal– for real numbers with decimal places (the

types have different levels of precision / numbers after the
decimal point).

boolean – true or false
datetime – dates and time

The syntax for declaring a variable is much the same as Python.
However, you must remember to specify the data type first e.g.

[data type] [variable name] = [value];

e.g.

string myName = “Darren”;
int myAge = 45;

Important – note the semi-colon ; at the end of the statement.
Each declarative statement in C# must end with a ; . Additionally,
whereas Python uses indentation to separate parts of code, C#
uses open and closing curly braces to denote blocks of code and
functionality (we have already seen this when we look at the
functions of our button and form in the code file).

In addition to variables that we might create, we can also
access the form elements and their properties directly, which is
essential when coding interactivity into our application and
working with our form. Let’s do this now.

In the Form1.cs code view, locate the function btnCalculate_
Click and write some new code in between the curly braces:

private void btnCalculate_Click(object sender,

EventArgs e)

{

decimal salary = txtSalary.Text;

}

WINDOWS DESKTOP APPLICATION PROGRAMMING

259

This code declares a variable called salary, data types it as a deci-
mal and then assigns the value entered into our text box on our
form to it. We access the value of the text box from its [Text]
property.

Did you notice that as you typed Visual Studio’s IntelliSense
was popping up smart suggestions? Once you’d typed txtSalary
to reference the text box on our form, the dot suddenly made all
the properties and events available in the IntelliSense list. This is
Visual Studio actively helping and predicting the information
and code we might be writing. It is an incredibly powerful and
smart feature and will invariably ensure your efficiency as a
programmer.

But something is wrong: txtSalary.Text is highlighted with a
squiggly underscore. If you hover over the text IntelliSense
appears with an explanation of the error and suggestions for
fixing it:

Cannot implicitly convert string to decimal

What Visual Studio is highlighting to us here is that we have declared
our variable salary as a data type decimal, and we are trying to
assign the value from the text box which will be of a type string by
default. The solution is simply to use C#’s inbuilt functionality to
convert the text into a number before assigning it.

private void btnCalculate_Click(object sender,

EventArgs e)

{

decimal salary = Convert.ToDecimal(txtSalary.

Text);

}

Now that we have the value entered into the text box stored in
our variable it is time to capture the salary percentage increase
from the numeric stepper control and apply the enhancement.

IN PRACTICE

260

Examining the new line of code, we are declaring a new variable
to store our augmented salary. We are then assigning this the
value of our variable salary multiplied by the Value property of
our numeric stepper component which we called numPercent-
age. Note that, in this case we don’t need to convert the value of
the numeric stepper as it is already held as a decimal data type.

Lastly, to finish off our form we need to output the result of our
calculation to the label on our form.

private void btnCalculate_Click(object sender,

EventArgs e)

{

decimal salary = Convert.ToDecimal(txtSalary.

Text);

decimal enhanced_salary = salary * (1 + numPercentage.

Value/100);

}

private void btnCalculate_Click(object sender,

EventArgs e)

{

 decimal salary = Convert.ToDecimal(txtSalary.

Text);

decimal enhanced_salary = salary * (1 +

numPercentage.Value/100);

lblResult.Text = enhanced_salary.ToString();

}

 We set the Text property of our label component (which we
named lblResult) to the value of our variable enhanced_salary.
We need to convert it to a string as the label component expects

WINDOWS DESKTOP APPLICATION PROGRAMMING

261

a string for its Text property. Note that we could have written
Convert.ToString(enhanced_salary); however the Tostring() is a
shortened alternative and clearer to read.

Running our application

We’ve coded our application; our button click is in place and
our user interaction is ready to be tested, so it is time to run it.

In the top menu bar, you will see a prominent green arrow
and the label [Start]. Click on this and Visual Studio will fire up
our application (9.14).

9.14

Visual Studio is running our application and allowing us to
interact with it exactly as if it were a deployed application.
Visual Studio is operating it in a debug mode; you can observe
the diagnostic and metrics panes which have appeared in the
IDE window. Additionally, any code errors which occur will
jump back to the editor and highlight the precise line and nature

IN PRACTICE

262

of the error. It is important to test software prior to release and
the debug features and tools available to you as a developer
using Visual Studio are extensive and top class.

With our application running perform the following actions:

Enter the value 25000 in the text box.
Select 15 from on the numeric stepper.
Click the Calculate button.

The output 28750.00 should be displayed (9.15).

9.15

 If else conditional statements

Recall that we studied if else statements in the earlier Python
chapter. C# uses if else statements in the same way, just with
slightly different syntax. Let’s use if else to adjust our code to
validate the user has selected a percentage increment.

WINDOWS DESKTOP APPLICATION PROGRAMMING

263

We have introduced an if condition which checks to see whether
or not the user has inputted a value into the numeric stepper
i.e. > 0. Notice that we now declare the variable enhanced_salary
but we don’t assign any value to it until later in the code within
the if statement.

Just like in the Python examples we have previously studied,
we control the flow of the program based on a conditional check.
The only difference here is that instead of indentation for the
different code paths, here we use open and close curly braces for
the relevant block of code.

If the entered value is greater than 0, we execute our salary
enhancement code in the first code block demarked by the first
open and close curly braces:

private void btnCalculate_Click(object sender,

EventArgs e)

{

 decimal salary = Convert.ToDecimal(txtSalary.

Text);

decimal enhanced_salary;

if(numPercentage.Value > 0)

{

enhanced_salary = salary * (1 + numPercentage.

Value/100);

lblResult.Text = enhanced_salary.ToString();

}else{

lblResult.Text = “Please enter a value for the

increase”;

}

}

IN PRACTICE

264

Building your application

We are now ready to build our application. From the top menu,
select [Build] and then from the drop down click [Build Solution].
You should now see a progress indicator followed shortly by a
Build succeeded message on the left of the bottom blue ribbon at
the base of the Visual Studio window. Conversely if there are
errors, Visual Studio will not allow the build to succeed and will
be quite verbose in highlighting these to you with explanations
in the output window.

Navigate to your project’s build location – by default on
Windows this is:

C:\Users\[user]\source\repos\MyFirstApplication

You may have named your project differently of course so switch
out MyFirstApplication accordingly and also your Windows
username for [User].

If you are still unsure of an application’s location, you can
always go to the [Solution Explorer] pane and right click on the

enhanced_salary = salary * (1 + numPercentage.

Value/100);

lblResult.Text = enhanced_salary.ToString();

 lblResult.Text = “Please enter a value for the

increase”;

If not, we drop down to the else code block and execute the line
of code between its open and closing curly braces:

WINDOWS DESKTOP APPLICATION PROGRAMMING

265

solution (the top item in the list). Then in the [Properties]
window you will see the entry [Path] and the value which will be
the directory location of your project.

Click down into the sub directory MyFirstApplication and
locate the bin folder. Within there you will find Debug and
Release folders. Look in the Debug folder and therein will be an
.exe (executable) file. You can launch this .exe directly by double
clicking on it and your fabulous Windows application will run
as an independent program.

You can share this .exe file on any modern Windows machine
and it will run your application as you see it now (subject to
permissions). The image below shows my application .exe
running on a separate machine in my office launched on a
double click (9.16).

 9.16

Optimizing for release

A last step before deploying your application would be to config-
ure and optimize for release. To do so, go back to Visual Studio
and from the same top menu item [Build] this time chose the

IN PRACTICE

266

very last item on the drop down [Configuration Manager]. From
the window that pops ups, change the top selection in the drop
down from Debug to Release. Now build the solution as before.
This time the .exe will be deposited in the Release sub directory
instead of the Debug one. In the background Visual Studio has
optimized the application and removed all the debugging
features and associated overhead from the outputted .exe file.

Congratulations on successfully writing your first software
application! We have obviously barely scratched the surface, but
hopefully this introduction has given you the confidence for
further exploration and research. Furthermore, we hope it
inspires you to build more sophisticated and fully featured
applications.

CHAPTER TEN

Building an app for Android

With over 85 per cent of the smartphone market (as of 2016),
Android is by far the biggest mobile platform. It is also the

one that requires the least investment, as apps can be built using
Windows, Mac or Linux. In this chapter we’ll go through the
process of creating a simple Android app, much in the same way
we did with the iPhone app in the previous chapter.

While iOS development uses Apple’s own language, Swift,
Android development uses Java (a very different language to
JavaScript, used primarily in web development). Java is a great
language to learn as it is used in a huge range of platforms,
including web apps, Windows and Mac programs, scientific
applications and Internet Of Things devices.

We will start by downloading Android Studio, which is the
equivalent of Xcode for Android development. It is built by
Google, is completely free, and is the only software you need to
make Android apps. It’s not quite as user-friendly as Xcode, and
can be quite slow, but it is also more flexible, and has features

267

IN PRACTICE

268

such as Instant Run, which allow you to test run your apps on
the simulator without recompiling them.

Once we’ve downloaded Android Studio, we’ll take a tour of
the interface and run a Hello World app. Then we’ll add labels
and buttons, build in some interactivity and finally make a
simple app that prompts us with a reminder for a performance
review.

Without further ado then, let’s get started.

Downloading and setting up Android studio

The main Android developer site is at developer.android.com –
it is well worth clicking through and reading some of the
introductory guides to learn about Android features and style
guides for developers. Once you’ve done that, you can down-
load Android Studio at developer.android.com/studio.

On that page click the big green download button, agree to
the terms and conditions and you’re good to go. It installs like
any other piece of software, and since Android Studio 2.2 you
no longer need to download Java separately (which makes life
much easier!).

Once you have installed Android Studio, run it and you’ll
likely be prompted to install various updates. Our advice would
be to choose all the default options, keep pressing Next and let
the software do its thing. After a few minutes you should see the
Welcome to Android Studio screen.

Click ‘Start a new Android Studio project’ and you’ll see the
Choose Your Project screen.

You’ll see the different Form Factors displayed as tabs
across the top showing the different devices your app will
support. The default is phone and tablet. We are only covering
phone and tablet in this introduction, so we’ll stick with the
default for now.

http://developer.android.com
http://developer.android.com/studio

BUILDING AN APP FOR ANDROID

269

In the section immediately below, you’ll see a range of activity
icons, which allows you to choose a default activity. An activity
in Android development is a single screen within our app. It is
like a page on a website, so within a single app we might have a
login activity, an activity which shows a list of users and perhaps
a settings activity.

Here we have several activity templates that we can choose
from, which are useful in a number of cases, but we’ll start with
the simplest (and default) – the Empty Activity.

The next screen allows us to configure our project.

●● The application name can be anything you like – try something
like My First App.

●● The package name is similar to a normal domain name, such
as google.com, but you don’t have to actually own the domain
name. So, you could use rob.percival.com, or yourcompany-
name.com. It doesn’t matter what you use now, but if you
submit your app to Google Play, the package name will
become part of the unique package ID for your app, so you
might want to use something that represents your name or
your company name.

●● You can change the project location if you wish or leave it as
the default – this is where the project files will be stored.

●● For the code language we are going to choose Java from the
dropdown.

You’ll notice that you can choose the oldest version of Android
you would like to support. The older the version you choose, the
more devices you will be able to support; but you will lose access
to some of the latest features.

Our advice would be to choose the default version (in our
case Ice Cream Sandwich) – this usually provides a good balance
of modern features and large device support.

http://google.com
http://rob.percival.com
http://yourcompanyname.com
http://yourcompanyname.com

IN PRACTICE

270

When you are ready, click Finish and our app development
environment will be set up.

And you’re done. After a few seconds to create your app, you
should see the main Android Studio interface.

It doesn’t look particularly friendly, but we can break it down
into three main parts:

●● The top bar has the usual save, open, copy, paste menu
options, as well as the green ‘play’ triangle which you will use
to run your app.

●● The left pane shows the file structure within your app.
●● The main window shows the contents of the file we are

currently editing, in this case the MainActivity Java file.

The other buttons and menus we can ignore for now – we’ll use
some of them later but most you will only need if you’re doing
some advanced Android app development.

That’s the setup complete. Before we start customizing our
app we’ll quickly run through the process of running an app on
an Android Virtual Device (AVD).

Running your first Android app

Running your app is simple – in a moment you will just press the
green ‘play’ button in the top menu bar.

But first we need to create a Virtual Device. Adjacent to the
green arrow there is a drop down, initially with the text No
Devices because we haven’t set up any Virtual Devices yet. Drop
this down and click on Open AVD Manager. This is where all
your Virtual Devices are managed. Click on + Create Virtual
Device. You can now choose from a selection of different phones
and tablets. You can choose whichever one you like – we will
stick with the default, the Pixel 2.

BUILDING AN APP FOR ANDROID

271

Next, you can choose to install any version of Android on
your Virtual Device.

Unless you particularly want a specific version, we would
recommend using the default, in our case Q. Selecting this will
download and install the relevant development and framework
files.

Finally, you can give your device a name, and choose some
advanced options, such as whether the device starts in portrait
or landscape orientation. We would recommend keeping to the
default options for now.

Congratulations, you’re done! Select that device, click Run
and the device will start up and eventually (after around 2–5
minutes depending on your machine) display your app in the
Android Emulator.

You’ve run your first Android app but, of course, it doesn’t do
much yet, so let’s see how to customize the UI (user interface) of
our app.

Adding text and buttons

We’ll be writing some Java shortly, but first let’s see how to add
text and buttons to our apps. Just above the main editing window,
you should see two tabs: activity_main.xml and MainActivity.
java.

Click the activity_main.xml tab and you should see a screen
showing the layout of the app. Click on the Hello World text
and you see something like this (10.1):

IN PRACTICE

272

This window is divided into four main areas:

●● The Palette in the top left has a long list of elements that you
can add to your app, such as Buttons, CheckBoxes and
Switches.

●● The Component Tree in the bottom left shows all the elements
that have already been added to your app, and how they are
related to each other (in our case, we have a single TextView,
which is inside the activity_main layout).

●● The main editing window shows a preview of your app, and
allows you to drag elements around the screen.

●● The Properties window shows the properties of the currently
selected element (in this case the Hello World text).

Spend a few minutes experimenting with adding different widgets
to the screen, changing their properties and moving them around.

 10.1

BUILDING AN APP FOR ANDROID

273

Challenge 1

Try to recreate this layout (10.2):

 10.2

Solution:

Firstly, take the ‘Hello World’ textView and drag it into the
centre of the screen – you should see a blue layout guide appear
to show you that it is correctly centred. Over in the right-hand
panes, you can also view the constraint widget under the layout
section, to assist you in centring the element. In the Properties
window change the ‘text’ field from ‘Hello World’ to ‘My Great
App’. Then, in the textAppearance drop-down menu, select
Large. Your text label should now display as in the picture
above. You may be viewing both the Design and Blueprint views
at the same time. You can select just the Design view from the
drop down, which can be found in the top left corner of the
design pane (layered square panes icon).

To add the button, find Button in the Palette and drag it on to
the screen, centred and slightly underneath the textView. Change
the text to ‘Click Me!’ in the ‘text’ field of the button Properties.
To correctly position elements, you may need to play around

IN PRACTICE

274

with the horizontal and vertical bias sliders in the Constraint
Widget under Layout in the right-hand pane.

That’s it. Feel free to experiment further with changing colours,
trying different layouts etc. If an option isn’t visible in the Properties
window, click the View All Properties link to view all the available
options. You can customize pretty much anything there.

Making the app interactive

If you run the app again (it should be much quicker this time!)
you’ll see the layout appear on the Virtual Device screen, but if
you click the button, you’ll notice that nothing happens. Just
like with iOS development, we need to write some code to make
the button do something, but the process is a little different.

Before we write any code, with Android development we need
to set the ‘onClick’ property for the button to tell the app the
name of the ‘method’ that we want to run when the button is
clicked. A method is essentially the same as a function – a chunk
of code that we can run by referring to its name.

To set this up, click on the button and type ‘buttonClicked’ in
the onClick field. Now we need to write the buttonClicked
method.

We do this in the MainActivity.java file, so click on the
MainActivity.java tab above the editing window. In that file
you’ll see the following code:

package com.example.robpercival.myfirstapp;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

BUILDING AN APP FOR ANDROID

275

com.example.robpercival.myfirstapp.

This is Java, and we’ll run through it line by line. Don’t aim for
a complete understanding of every aspect of the code at this
point – that will come later. For now, just make sure you have a
fair overview of what each part of the code is doing. You can
always Google particular keywords if you would like more
information.

The first line defines the name of the package, or app – in our
case:

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

}

}

The ‘import’ lines bring in various ‘libraries’, which allow you to
work with specific features, such as textViews, buttons, log files
or even GPS. These two default lines give us the default code
required to run our activity and use the Android OS (operating
system).

Next, we’re creating a ‘class’ called MainActivity. A class is a
collection of methods (chunks of code that serve a particular
function) and variables. This particular class will control the
Main Activity. As we only have one activity in our app, this class
essentially controls our whole app.

The class is ‘public’, which means it can be accessed from
anywhere in the app (and, potentially, by other apps as well). It
‘extends’ the AppCompatActivity class, which is a default class

IN PRACTICE

276

that contains a collection of methods that we can use with our
activity.

Next, we build a method called onCreate. This method is a
default one, which is run when the activity is ‘created’, ie when
the app is run. This is a ‘protected’ method, meaning that it can
be accessed from anywhere in the app, but not by other apps.

The ‘void’ in this line means that the method doesn’t return
anything. To understand what this means, imagine a method
called ‘plus’ which adds two numbers together. For that method
to work, you would need to pass two numbers to the method,
and then it would return the total of those two numbers. The
onCreate method runs some code, but doesn’t return anything,
which is confirmed by the ‘void’ in the method definition.

The super.onCreate(savedInstanceState); line runs all the
default code needed when the app is run. The savedInstanceState
contains the previous state of the app, and in some circumstances
can be used to return the app to that state (for example, returning
the user to an email that they were previously writing in the app).

Finally, setContentView(R.layout.activity_main); establishes that
we want to use activity_main to define our layout, or ContentView.
This will display the user interface layout that we have created.

Phew! There is a lot of theory there, and don’t worry at this
point if not everything is completely clear – it will make much
more sense as you start to build more apps. For now a broad
understanding is all that is needed.

Writing the code for the button

Just underneath the ‘public class MainActivity…’ line, write the
following code:

public void buttonClicked(View view) {

}

BUILDING AN APP FOR ANDROID

277

String name;

int number;

 10.3

This creates a public method (‘public’) which doesn’t return
anything (‘void’) called buttonClicked. This method will be run
when our button is clicked. The curly braces ({ and }) contain the
code for our method.

The ‘View view’ part is a little more complicated, so read
carefully. Firstly, a ‘view’ is anything that appears on the screen
(so buttons, textViews etc are all ‘views’).

Secondly, to create a variable in Java, we start with the variable
type, and then use the name that we want the variable to be called.
So if we want to create a string called ‘name’ we would type:

Here we are creating a variable called ‘view’ which is of a type
View. We need this because when the button is clicked, it runs
the buttonClicked method, and it sends some information about
itself to that method. That information is stored in this variable
‘view’, which is of a type of View.

You might want to read that last paragraph a couple of times.
Hopefully that makes sense, but if not don’t worry, it will become
clearer as we carry on.

When you have finished writing the code, you will see a blue
callout pointing to the word View (10.3):

If we wanted to create an integer called ‘number’ we would type

IN PRACTICE

278

Toast.makeText(this, "Hi there!”, Toast.LENGTH_SHORT).

show();

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

This is because to use the variable type View we need to add the
View class to our app. To do that, press alt-enter when the blue
callout is shown. The callout will then disappear and View will
turn black (10.4):

 10.4

If you click the small ‘+’ next to ‘import …’ near the top of the
code window, you will see that we now have the View class
added to our project:

If you are having difficulty with the alt+enter shortcut you can
just type the import statement in directly.

Making a toast

OK. We have now created the method that will run when the
button is clicked. Don’t worry – we’re nearly done. We now just
need to write some code inside that method. We’re going to create
what is known as a ‘toast’ – a small piece of text that will display
at the bottom of the phone screen for a small period of time. (It
is called a ‘toast’ because it pops up like toast from a toaster.)

To do that, add the following code to the buttonClicked method:

BUILDING AN APP FOR ANDROID

279

Hint: when you start typing ‘Toast’, you will see a drop-down
like this (10.5):

Press Enter when Create a new Toast is selected, and it will auto-
fill most of the code for you. Nice!

This code creates a new toast with the text ‘Hi there!’
LENGTH_SHORT refers to the amount of time the toast stays
on the screen (you can change it to LENGTH_LONG if you
want the toast to stay there longer).

Note: What is ‘this’? The ‘this’ in the toast command refers to
the activity that we are currently in, ie MainActivity. This is the
context that the toast will appear in.

We’re finally done. Your finished code should look like this:

 10.5

package com.example.robpercival.myfirstapp;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class MainActivity extends AppCompatActivity {

public void buttonClicked(View view) {

Toast.makeText(this, "Hi there!”, Toast.LENGTH_SHORT).

 show();

}

@Override

 protected void onCreate(Bundle savedInstanceState)

{

IN PRACTICE

280

Now run the app, and click the button. If you’ve done everything
correctly, you will see the ‘Hi there!’ message appear at the bottom
of the screen like this (10.6):

 10.6

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

}

Congratulations! That wasn’t easy but what we have done is
quite advanced – we have created a method called ‘button-
Clicked’ and linked that method to the button that we added to
the user interface. Then we added code to that method to display
the ‘Hi there’ text as a toast on the user’s screen. Not bad!

BUILDING AN APP FOR ANDROID

281

Allowing the user to enter some text

So far, all our interactivity goes one way. We don’t have any way
to get any information from the user, so let’s add that functional-
ity to our app.

In Android Studio, go back to the activity_main.xml tab, and in
the Palette scroll down until you see Text Fields. There are a number
of different types of text field that we can add, which are used for
specific data-types. So if you use the ‘Phone’ type, for example, a
specific keyboard will appear to make it easier for the user to enter
a phone number. For now, we will just use the Plain Text text field.

Note: a text field in Android development is called an
EditText. We will use that in our Java code later on.

Drag the button downwards on the phone screen layout to
make space for the text field, and then drag in a Plain Text text
field, so your layout looks like this (10.7):

 10.7

IN PRACTICE

282

Click on the text field and you’ll see a set of properties and drop-
downs. Note that there are two sections: Common Attributes
which, as the name suggests, contains commonly used attributes;
and the All Attributes section containing everything:

●● ID
●● Layout_width
●● Layout_height
●● inputType
●● hint
●● style
●● singleline
●● selectAllOnFocus
●● text
●● contentDescription
●● textAppearance

The two particularly useful fields here are ‘hint’ and ‘text’.
‘text’ gives a default value to display in the text field, and ‘hint’
gives an instruction to the user, such as ‘Enter your email
address’.

We are going to use this text field to get the user’s name, so
remove Name from the text field and enter ‘What is your name?’
into the hint field.

When you run the app, you’ll see this layout (10.8):

BUILDING AN APP FOR ANDROID

283

If you tap on the ‘What is your name?’ text view, you will be able
to enter your name (the hint disappears when you start typing).

We’re nearly ready to write some code. We will need to be
able to refer to this text view in our code, so we need to know its
ID. In the properties, you’ll see it has the default ID of editText.
You can change this to anything you like – in this case you could
use something like nameEditText.

Accessing the entered text

Now all that remains is to get the value of the text that the user
has entered in our code. Our aim here is to change the content
of the toast so that instead of saying ‘Hi there!’ it says ‘Hi Rob’
(if the user has entered Rob as their name, of course).

So, click on the MainActivity.java tab, and enter the following
code just above the toast command:

 10.8

IN PRACTICE

284

You will again receive the blue prompt, this time regarding the
EditText widget. Simply press alt+enter when the blue prompt is
showing. This will automatically add the relevant import android.
widget.EditText; statement at the top of the code. There’s quite a
lot going on here. First, we’re creating a variable of a type EditText
called nameEditText. We will use this to refer to our text view.

Ignoring the (EditText) for a moment, the findViewById
method finds a view by its ID, and we give it the ID of our text
view, which is stored in Resources (‘R’).

What about that strange (EditText)? Remember that everything
that appears on the screen is a ‘view’. This applies to text views
(EditTexts) as well. The findViewById method returns a generic
view, but we know that it is really an EditText, so we use (EditText)
to ‘cast’, or convert, the view into an EditText. Makes sense? You
might want to read that paragraph again just to be sure.

Now we have a variable we can use to refer to our text view.
The next step is to get the value of the text view, which we’ll
store in a string called ‘name’:

EditText nameEditText = (EditText) findViewById(R.

id.nameEditText);

String name = nameEditText.getText().toString();

The String name part creates a string variable called ‘name’, and
then we use getText() to get the text the user entered into the
text field, and finally we use toString() to convert it to a string.
So far so good!

Finally, we need to change the code for the toast to say hi to
our user:

BUILDING AN APP FOR ANDROID

285

Here we have changed ‘Hi there’ to ‘Hi’ + name. The ‘+’ combines
the two strings, so if the user enters ‘Helen’ as their name, ‘Hi’ +
name. will be equal to ‘Hi Helen’.

That’s it. Your code should now look like this:

Toast.makeText(this, "Hi " + name, Toast.LENGTH_SHORT).

show();

package com.example.robpercival.myfirstapp;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.EditText;

import android.widget.Toast;

public class MainActivity extends AppCompatActivity {

public void buttonClicked(View view) {

 EditText nameEditText = (EditText) findViewById

(R.id.nameEditText);

 String name = nameEditText.getText().toString();

Toast.makeText(this, "Hi " + name, Toast.LENGTH_SHORT).

show();

}

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

}

IN PRACTICE

286

Well done! You now have an app which can collect some data
from the user, process it and display it back to the user as a toast.
This is the fundamental basis for all user interaction within apps.
Give yourself a pat on the back!

Building an app for Android project: performance review
reminder app

Now it’s time for you to put everything you have learnt into
action. As a rough school of thought, successful entrepreneurs
have about three great business ideas a year. Why not aim for the
top level?! We are going to use this ratio to allow the user to
enter their age, and then display back to them the number of

 10.9

Run the app, enter your name and click the button. If everything
has gone well you should see something like this (10.9):

BUILDING AN APP FOR ANDROID

287

good ideas they should have clocked up in toast. Hopefully this
will provide some inspiration to get entrepreneuring!

As with the app in the iOS chapter, you will need to convert
the user’s entered data from a string into an integer, and then
multiply it by three, and then convert it back to a string to
display the new value to the user. We’re going to leave that to
you to figure out (using Google is very much allowed, and posi-
tively encouraged).

That’s it – start from scratch and create a new project. Good
luck!

Solution

The setup process for the app is very similar to the previous
app – choose all the same options except the app title, which can
be anything you like. We called ours Great Ideas.

Once the app is ready, start by creating the user interface. We
have used a very similar layout to our previous app.

We have changed the text of the TextView to ‘Your Age’, and
changed the ‘hint’ of the EditText to ‘How old are you?’ We’ve
also changed the type of the EditText to ‘number’ – bonus points
if you did that. We changed the EditText’s ID to ageEditText.

Next, we changed the button text to ‘Show Number of Ideas’
and used an onClick method name of showNumberIdeas, which
is a little more descriptive than ‘buttonClicked’ as we used before.

Now over to the code itself. In MainActivity.java, we started
by creating the method showNumberIdeas which will be run
when the button is clicked:

public void showNumberIdeas(View view) {

}

Next, we added a line to create a variable called ageEditText to
refer to our text field:

IN PRACTICE

288

Next we needed to get the value of the field, convert it to an
integer, multiply it by 7 and then convert it back to a string. You
likely needed to do some googling to figure out how to do this
part – if you managed it, congratulations!

 String age = ageEditText.getText().toString();

 int ageInt = Integer.parseInt(age);

 int ideasInt = ageInt * 3;

 String numberIdeasString = Integer.toString (ideasInt);

Toast.makeText(this, "You should have come up with"

+ numberIdeasString + "ideas by now", Toast.LENGTH_

SHORT).show();

Hopefully it’s fairly clear what is going on. The first line gets the
value entered into ageEditText, the next line converts it to an
integer using the method Integer.parseInt. The next line creates a
new integer, ideasInt, which is equal to the previous value multi-
plied by 3. The final line converts this back to a string using the
method Integer.toString.

Finally, we used a toast command to display the number of
ideas to the user:

This time we use two ‘+’s, as we have some text both before and
after the catAgeString.

That’s it. Your final complete code should look like this:

EditText ageEditText = (EditText) findViewById(R.

id.ageEditText);

BUILDING AN APP FOR ANDROID

289

package com.example.myapplication;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.EditText;

import android.widget.Toast;

public class MainActivity extends AppCompatActivity {

 public void showNumberIdeas(View view) {

 EditText ageEditText = (EditText) findViewById(R.

id.ageEditText);

 String age = ageEditText.getText().toString();

 int ageInt = Integer.parseInt(age);

 int numberIdeasInt = ageInt * 3;

 String numberIdeasString = Integer.toString(number

IdeasInt);

 Toast.makeText(this, "You should have come up with"

+ numberIdeasString + "ideas by now!",

Toast.LENGTH_SHORT).show();

 }

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

}

IN PRACTICE

290

When you run the app and enter an age you should see the result
pop up!

Summary

Congratulations! You’ve built your first complete Android app,
and are well on the way to building any app you want. As with
most app development, the most difficult hurdle is getting
started, which you have already overcome. Well done!

If you want to get further into app development, the single
best thing you can do is to pick an app idea and make it. It
doesn’t have to be a world-beating idea, a simple app like a to-do
list app or an egg timer would be fine for your first app. Every
time you need to do something you haven’t done before, just
search the web for what it is you’re trying to do and you’ll likely
find someone who has struggled before you, and someone else
who has given them the answer (usually on stackoverflow.com).

If you would like a more structured course to follow to master
Android development, go to www.udemy.com/complete-android-
n-developer-course/ to check out Rob’s Android Developer Course.

Now that you have learned the basics of web, iOS and
Android development, we are going to dive into an all-impor-
tant topic: debugging. Bugs are something that you’ll come up
against constantly when you’re building a website or app (and
usually after you’ve ‘finished’ it as well). We’ll look at some
methods of squashing bugs, working out what is causing the
problem, searching the web for answers and posting questions
online if you can’t find a solution.

For now though, give yourself a pat on the back, have a cup
of tea and a break, and take a moment to dream of all those
great Android apps you could build.

http://stackoverflow.com
http://www.udemy.com/complete-android-n-developer-course/
http://www.udemy.com/complete-android-n-developer-course/

BUILDING AN APP FOR ANDROID

291

Further learning

Here are a few larger courses if you want to learn Android app
development in more detail:

●● www.udemy.com/complete-android-n-developer-course/
(archived at https://perma.cc/3GGJ-TKZH) – Rob’s online
Android course, covering all aspects of Android development.

●● https://developer.android.com/training/basics/firstapp/index.
html (archived at https://perma.cc/S86H-UV9Q) – official
Google training materials in Android development.

●● www.coursera.org/specializations/android-app-develop ment
(archived at https://perma.cc/52G9-LHTG) – range of
beginner and advanced Android courses.

●● www.udacity.com/course/developing-android-apps--ud853
(archived at https://perma.cc/3GGJ-TKZH) – free Android
course, created by Google.

http://www.udemy.com/complete-android-n-developer-course/
https://perma.cc/3GGJ-TKZH
https://developer.android.com/training/basics/firstapp/index.html
https://developer.android.com/training/basics/firstapp/index.html
https://perma.cc/S86H-UV9Q
http://www.coursera.org/specializations/android-app-development
https://perma.cc/52G9-LHTG
http://www.udacity.com/course/developing-android-apps--ud853
https://perma.cc/3GGJ-TKZH

CHAPTER ELEVEN

Debugging

If you’re reading this far in, you should now have some experi-
ence in coding in a range of different platforms and languages.

Within web development, you’ve coded in HTML, CSS and
JavaScript, using a text editor and a browser to run your code.
You’ve coded in Python using the online compiler at https://repl.
it/languages/python. You’ve also built an iPhone app using Swift
and Xcode (if you have access to a Mac) and an Android app
using Java and Android Studio.

One thing you’ll likely have come across on all of these plat-
forms, and in all of these languages, is bugs. A bug occurs when
any piece of code doesn’t run as intended. They vary considera-
bly in severity, from a bug which stops your code running at all
(such as forgetting the semicolon at the end of a line in Java), to
a CSS issue which causes your website logo to display a little
lower down than you’d like it.

In this section we’ll start by considering why you might want
to learn debugging even if you are not planning to take your
coding career any further. Next we’ll look at some standard

292

https://repl.it/languages/python
https://repl.it/languages/python

DEBUGGING

293

debugging processes (and how you can apply some of them to
non-coding related problems in your work or life in general).
Finally, we’ll look at some specific debugging tools and tech-
niques for the platforms that we’ve covered so far: web (HTML,
CSS and JavaScript), iOS (Swift and Xcode) and Android (Java
and Android Studio).

Why learn debugging?

Debugging is not just about fixing errors, it’s about making your
code better. And this has applications in all aspects of life. If your
job involves teaching, learning how the recipients of your knowl-
edge find your style is crucial to improving. If you do a lot of
number crunching, a small tweak in your Excel formulas could
speed up the whole process dramatically (or make you less likely
to make a mistake).

What is particularly useful about debugging is that the exact
same techniques can be applied to almost anything you do in
life, to make you more effective and efficient. Once you start
looking at your code, working out where it is going wrong and
fixing it, you won’t be able to help applying similar techniques
to your life as a whole. It’s like a coding-based self-improvement
program!

Why do I spend so much time debugging?

One question that plagues new coders is why they spend so
much time fixing problems in their code. Most people hope that
because they have a clear idea in their head about how their
code should work, that will automatically transfer itself to your
computer screen and everything will run as intended.

The reality is rather different. As you write more and more
code, you’ll realize that debugging is actually a major part of
the app- or website-building process, and this is fine. Computers

IN PRACTICE

294

are fickle beasts, and us mere mortals are not used to interacting
with machines that require absolute precision, and will punish
you relentlessly by running your code exactly as you wrote it.

So debugging is a (big) part of the process. But that doesn’t
mean that isn’t frustrating and we shouldn’t try to avoid it as
much as possible. So let’s start by seeing how we can write code
that requires minimal debugging.

How to write code that requires minimal debugging

Step 0: Write good code

Good, clean code can save a huge amount of time in the long
run. When you want to build an app or add a new feature to
your website, the temptation is often to write your code as
quickly as possible and to have the attitude that, as long as it
works, it is good enough. This approach is perfectly reasona-
ble when you’re learning or for small personal projects, but in
our experience it almost always costs you more time than it
saves you. Taking an extra five minutes properly writing your
code in the first place can save you hours of debugging further
down the line.

Compare these two JavaScript functions, which determine
whether a number is prime or not. (A prime number has precisely
two factors, 1 and itself. For example, 2, 3, 5, 7, 11 etc.)

function isPrime(x) {

for (var i = 2; i < num; i++)

{ if (x % i == 0)

{ return false; } } return true;

}

function isPrime(numberToCheck) {

DEBUGGING

295

Both functions work perfectly well (the logic is identical for
both), but the second function has numerous advantages over
the first:

●● It is well spaced out. Most programming languages don’t
require line breaks, but including them makes the code much
easier to read.

●● It has meaningful variable names. Try to avoid using variable
names such as ‘x’ or ‘number’, and instead give your variables
easy to recognize names.

●● It has comments. All programming languages have a way to
add human-readable comments, and you should use them
whenever possible to explain what your code is doing.

You might feel that in an example like this it doesn’t make too
much difference whether you use comments, spacing and mean-
ingful variable names, but when your code starts to expand to
hundreds of lines (which it will if you are building cool things!),
you’ll appreciate getting into this habit with all code you write.

// Loop through all numbers less than numberToCheck

for (var divisor = 2; divisor < numberToCheck;

divisor++) {

if (numberToCheck % divisor == 0) {

// If divisor divides numberToCheck exactly,

numberToCheck is not prime, so return false

return false;

}

}

// If we get here, we have checked all numbers from 2

up to numberToCheck, and none of them divide into it,

so numberToCheck must be prime

return true;

}

IN PRACTICE

296

Another advantage of coding this way is that it forces you to
slow down, making it much less likely that you will miss a crucial
semicolon, or miss-spell a function name.

One other trick as you are writing your code is to check it as
regularly as possible. This means running your app, or loading
your website, and making sure it is behaving as expected so far.
As a general guide, if you haven’t checked code that you have
been writing for over 10 minutes, it might be time to start to get
a little nervous and look for a good place to stop and check that
everything is OK.

The precise timings will depend on the project and your
personality, but our advice, particularly in the early stages, is to
run your code as often as you can. If you do get an error when
you run it, you will have a smaller number of changes since you
did the last check, so the debugging process will be much simpler.
If you don’t, you’ll feel encouraged and confident that every-
thing is going well.

Great! Now that we are writing good code, let’s consider
some of the standard questions we have to ask ourselves when
we are debugging. These are the most important questions in
this whole chapter, and perhaps in the whole of coding itself – if
you can answer them, you can fix any problem.

Step 1: The three questions

When a new coder finds that some code they have written doesn’t
work, they often feel frustrated, not sure where to look to fix the
problem, and as a result they often blame themselves (‘I’ll never
be able to do this’) or the machine itself (‘stupid computer’).
This is perfectly natural, and all coders have experienced this
emotion many times.

The difference between experienced and novice coders,
however, is that the experienced coder knows that this has
happened many times before, that it doesn’t mean he or she is an
idiot, and that it can likely be fixed using the same process they
use every time.

DEBUGGING

297

So what is this process? The first question to ask is a painfully
obvious one: What makes you say your code isn’t working?

The answer to this question might be frustratingly self-
evident: ‘My code won’t compile!’; ‘My website won’t display
properly’; ‘The button doesn’t do anything when I press it!’

But forcing yourself to answer this question is harder than
you think. If you have an error message, pay careful attention to
it – what is it saying? Error messages can often be obscure, but
you should be able to extract some meaning from it. It will also
often tell you the exact line that the error occurred, which is a
great starting point. And ‘googling the error message’ is a
perfectly reasonable (and common) thing to do as a coder!

If you don’t have an error message, this can be trickier, but
you should at the least clarify exactly what the problem is.
Evolving your thinking from ‘My website won’t display prop-
erly’ to ‘My logo is appearing at the bottom of the screen, but I
want it at the top’ is a big step forward. With layout issues in
particular, dealing with problems one at a time is crucial – it’s
easy to get overwhelmed, but breaking the issues down into indi-
vidual errors and getting them clear in your head will make
fixing them much easier.

Now that you (hopefully) have a clear understanding of what
exactly is not behaving as expected, it’s time to move on to ques-
tion 2: How is your code supposed to work?

Again, answering this question might be frustrating – you
only wrote the code five minutes ago, you know how it’s
supposed to work – but all too often running through the part of
the code that seems to be causing the problem is all that is needed
to fix the issue.

With the logo issue, for example, you would likely go to the
CSS that controls the position of the logo. Thinking through the
CSS commands you have written, how should the logo display?
Are there any conflicting lines of CSS that could be changing its
position unexpectedly?

IN PRACTICE

298

If a button is not responding, mentally work through the
process that is supposed to happen when the button is clicked. Is
the button correctly connected to the function you have written
for it? Could there be an error in that function? Does the func-
tion actually display a result, or does it just do some calculations
without changing the UI at all?

Ninety per cent of code errors should be fixed by now, if you
have carefully asked yourself those two questions. If you’re not
done yet, though, it’s time for question 3: What tweaks can you
make to clarify what your code is doing?

If you have well-written, clearly commented code, it should
be fairly obvious what your code is up to at any point. However,
even good code can contain mistakes, and our final trick is to
play with some variables, or add small lines of code, to see what
effect that has on how the app runs or the website displays.

Going back to the logo example, you could try experimenting
with some values – does changing the margin-top value move
the logo down as you might expect? If not, why not? If you
really can’t find the error you can always remove all the CSS
code except the lines that should be controlling the logo’s loca-
tion. If it then displays correctly, add them back in gradually
until the problem recurs. Bingo – you have found the problem.

With our problematic button, try using a ‘print’ command
(more on those shortly) to display the value of a variable to
make sure it is what you think it is. You could even just use
something like:

print("hello");

to make sure a certain chunk of code is being executed at all.
The code removal process can be useful here as well – try remov-
ing all the button execution code apart from a print statement.
If the print doesn’t happen, then there is a problem in the

DEBUGGING

299

connection between the button and the code. If it does, add the
code in gradually until it stops behaving as you would expect.
Then you know where the error is.

Ninety-five per cent of the time your error should now be
fixed – the process of defining the problem, explaining to your-
self how your code works, and tweaking values/using print
statements is the standard process that you should go through
each time.

Incidentally, this is exactly the procedure you can often apply
to real-life difficulties. Defining the problem is often the hardest
part of making a certain process more efficient, or even figuring
out why you are unlucky in love. Then, explaining to yourself
what you are currently doing and why is probably enough for
you to see where you are going wrong. If not, experiment with
changing small things and see if that improves the situation.

What if you still have a bug though? Sometimes we simply
can’t fix a problem ourselves, and need to resort to outside help.
Fortunately, because we have clearly defined the problem, and
have a strong understanding of what our code is supposed to do,
we should be able to search for, and ask for, help effectively.

Step 2: Searching for help

If you’ve got this far in this book, you’ve almost certainly done
some debugging yourself and, in the process of googling for an
answer, you’ve likely come across stackoverflow.com. Stack
Overflow is a simple idea – people post questions and other
people answer them – but it has proved extremely popular, and
combined with a strong search engine, the answer to a huge
range of common programming questions is at your fingertips.

But what to search for? As we have mentioned, if you have a
particular error message, simply googling that is a good first step.
If not, you’ll need to think more carefully about what to search for.

As a starting point, always include the name of the program-
ming language and/or platform in your search. A search for ‘how

http://stackoverflow.com

IN PRACTICE

300

do I change the colour of text’ could apply to a huge range of
different pieces of software, so add ‘HTML’, ‘CSS’, ‘JavaScript’
or ‘Swift’ at the end to get to your answer much more quickly.

With Android development, it is often worth adding both
‘Java’ and ‘Android’ to the search term, as Java is used in a range
of different devices, and is not just for Android apps.

If you are using a specific development environment, such as
Xcode or Android Studio, it can be useful to add this to your
search as well. If nothing else, including ‘Xcode’ in a ‘Swift’
search makes it less likely that your results will include articles
about Taylor Swift!

Beyond that, as with any web search, try to be concise and
unambiguous (this should come naturally after asking the three
questions).

Here are some bad search queries. Try to think of better
alternatives:

●● ‘How do I make text bigger?’
●● ‘Swift blank screen on app launch’
●● ‘No sound in android app’
●● ‘Image won’t display in website’

Some better alternatives might be:

●● ‘CSS how to change text size’
●● ‘Xcode Swift [give error message here]’
●● ‘Java Android how to play sound’
●● ‘HTML how to display image’

Note that with the last two, instead of searching for the error, we
are looking for instructions or code for how to do what we are
trying to do. We might then copy and paste the code we find into
our app or website to see if that works. If it does, we can compare
it to our code to see what is wrong. If it doesn’t, we can be fairly
sure that the code itself is not the problem, and that the issue lies
elsewhere.

DEBUGGING

301

A quick caveat on copying and pasting code that you’ve found
on the internet – this is a risky thing to do. At the very least you
should make sure that you understand how the code works, but
also bear in mind that it could have been written for an older
version of your programming environment (Swift in particular is
updated regularly), or possibly even for a different setup than
the one you are using. In short, only copy and paste short chunks
of code that you understand and could debug yourself if
necessary.

OK, so we’ve asked ourselves the questions, we’ve searched
online, and we’ve come up with nothing. It’s time for the
programmer’s last resort: to ask for help.

Step 3: Asking for help

Programmers are a pretty helpful bunch, and are more willing
than most to help out in exchange for some internet points, or
just a public thank you. However, they don’t like being asked
vague questions or questions that have already been answered
elsewhere.

If you are on some kind of programming course where you
can ask questions, that is obviously a good place to start. When
you ask your questions there, make sure you give all the infor-
mation that someone could need to solve your problem.
However, avoid pasting all your code, giving the error message
and asking what is wrong. This is very time consuming to debug!

Instead, answer the three questions above, telling your poten-
tial helpers what you are trying to do, what result you are getting,
what debugging you have done, and the few lines of code that
you have isolated that are causing the problem.

If you don’t have access to that sort of forum, stackoverflow.
com is probably the best place to ask questions. There is a very
helpful guide to asking good questions at http://stackoverflow.
com/help/how-to-ask. If you ask your question well, you’ll
normally have some useful responses within an hour. Not bad!

http://stackoverflow.com
http://stackoverflow.com
http://stackoverflow.com/help/how-to-ask
http://stackoverflow.com/help/how-to-ask

IN PRACTICE

302

It goes without saying that when you have an answer to your
question, you should always offer a quick ‘thank you’ (or, on
Stack Overflow, ‘accept’ the correct answer). And when you’re
further down the line, consider answering some questions your-
self to help others get started.

We have now gone through the whole debugging process (the
latter stages of which, incidentally, are pretty much identical to
the ‘How do I . . .’ process, if you’re trying to learn how to do
something you haven’t done before). We’ll now look at specific
debugging tools for the different languages we have covered.
These can save you a lot of time, and make the whole process
much smoother.

Debugging HTML and CSS

The most useful tools to most web developers are the Developer
Tools, which are included with most browsers. Here we’ll look
at the Chrome Developer Tools, which we think are the most
comprehensive. To access them in Chrome, click View →
Developer → Developer Tools.

11.1

DEBUGGING

303

A window will appear at the bottom of the screen – click on the
Elements tab and you’ll see the HTML of the page you’re on and
a summary of the CSS styles on the right.

Different sections of the HTML are usually hidden behind
‘. . .’s – just click on the . . . to view them. You can also click the
button in the top left of the window to select any element on the
page and view the HTML and CSS related to it. Try it out – it’s
pretty cool.

You can even edit the HTML of the page by double-clicking
on it, which can be very useful for debugging individual elements
(or changing the headline on cnn.com and impressing your
colleagues – of course, this only edits the version stored on your
computer, not the live version on CNN’s servers!).

A particularly useful CSS trick is to enable and disable indi-
vidual styles (11.2):

11.2

Just hover over the style and click the blue tick to disable it. You
can also change the values of styles, just as you can with the
HTML.

Once you’ve finished playing with the Elements tab, click on
Console. We will be using this more in the JavaScript debugging
section, but here it is useful for seeing any errors in the page.

You will also see other major HTML errors here, but if you
want to check your HTML in more detail, you can use an HTML
Validator, such as https://validator.w3.org/. This will tell you if
your page has, for example, unclosed HTML tags, or options for
elements that are no longer supported.

This can be very useful, but don’t necessarily expect your
code to have no errors whatsoever. At the time of writing, www.
bbc.co.uk/ had over 100 errors!

http://cnn.com
https://validator.w3.org/.
http://www.bbc.co.uk/
http://www.bbc.co.uk/

IN PRACTICE

304

When it comes to CSS, http://csslint.net/ is an extremely
powerful tool. It will not only show you CSS errors, but also
conflicts, where two different styles are conflicting with each
other, and also advise you on how your CSS could be better.

Debugging JavaScript

As with HTML and CSS, your main tools for debugging
JavaScript are the browser Developer Tools, specifically the
Console. Not only will that show you any JavaScript errors, but
you can also use it to find out values of variables, or whether
certain chunks of code are being run.

Try running this JavaScript on a webpage and looking at the
results in the console:

11.3

for (i = 0; i < 10; i++) {

console.log(i)

}

You should see something like this (11.3):

The console.log command allows us to print something in the
console, which is an extremely powerful debugging tool.

Beyond the console, www.jslint.com/ is similar to CSS Lint,
and will show you a range of errors and warning messages.

http://csslint.net/
http://www.jslint.com/

DEBUGGING

305

Debugging Swift in Xcode

Xcode, like most integrated development environments (IDEs),
has a range of debugging features. The first is inline error
messages. It is pretty clear when there is a syntax error, although
the error messages themselves can be a challenge to decipher.

If you run some code that causes your app to crash, you’ll
often see a very unfriendly (and not particularly helpful) ‘termi-
nating with uncaught exception of type NSException’ message
(11.4):

11.4

11.5

However, scroll up in the console and you’ll usually find some-
thing useful; in this case we are attempting to print an array
value that doesn’t exist (11.5):

IN PRACTICE

306

As with console.log, it allows you to display variable values, or
verify that a specific chunk of code is being run. If the console
is not visible, you can make it appear by clicking at the top
right of the Xcode window.

Debugging Java in Android studio

Android Studio’s debugging tools are similar to Xcode’s. There
is automated error checking, to show you syntax errors and
warnings (11.6):

11.6

Xcode’s equivalent of console.log in JavaScript is the ‘print’
function, which works like this:

print("Hello World")

 You do need to look quite carefully as the red wiggly under-
score is often not immediately obvious. There is also a red line
on the right-hand side of the editing window, and if you hover
over either the underscore or the line, you’ll be given the error
message (11.7):

11.7

If you run some code which has errors in it, you’ll see errors
appear in the logs as with Xcode. There is also the facility to

DEBUGGING

307

Each log command has a title (in this case ‘Message’) and content
(‘The log command was run’). The ‘i’ in Log.i is short for infor-
mation, and the command allows you to use different letters for
different log types, the most common of which are:

●● D – Debug.
●● I – Info.
●● W – Warning.
●● E – Error.

Summary

We have now gone through all the major debugging techniques,
and seen a range of tools to debug code on a variety of plat-
forms. We’ve also seen how to write good code, to minimize the
amount of time we spend debugging.

Debugging is a necessary process for any programmer, but
done right it can be a learning experience in itself. The most
important thing is to approach debugging calmly and methodi-
cally, and try to avoid letting the bugs stress you out!

We’ve also glimpsed how we might apply the debugging
methods to life in general, and work tasks in particular. Take a
few moments now to approach some of the aspects of your job
or life that are currently problematic or inefficient. Ask yourself
the three questions and see what difference it makes. You should
be pleasantly surprised!

Log.i("Message", "The log command was run");

write messages in the logs, similar to console.log and print. To
do that, use the Log command, like this:

IN PRACTICE

308

This concludes the ‘In Practice’ section, in which we have seen
how you can apply the coding skills you learned in the previous
section to build real websites and apps. We are now going to see
how you can further use your coding skills to future-proof your
career, starting with using coding to enhance your career
prospects.

PART FOUR

Future-proofing your
career with coding

309

THIS PAGE IS INTENTIONALLY LEFT BLANK

310

CHAPTER TWELVE

Using coding to enhance your career

So far, we have spent most of this book learning to build
websites and apps. We hope you have enjoyed learning these

skills, but it is likely that you still have your day job, and might
be wondering how knowing how to code might benefit you
within your current role. This is what we will be considering in
this chapter, and by the end of it you should have at least one
way in which you can future-proof your career using your
newfound talents.

Many employers are desperate for increased digital literacy
among their staff. We live in a world dominated by software, but
only a minority understand how it works. This has created a
skills gap in which companies in all sectors are increasingly
desperate to employ highly technical candidates. This means
that even if you don’t intend to change careers, completing
coding-related projects and activities is a great boost for your
employability and gives potential employers reasons to hire you.
You should always put your coding skills on your CV, stating
what languages you have knowledge of, how you are able to put

311

THIS PAGE IS INTENTIONALLY LEFT BLANK

FUTURE-PROOFING YOUR CAREER WITH CODING

312

them into practice, what level you are at, and listing any websites,
apps or projects you have worked on. Discussing your coding
achievements can also be an excellent way to impress at an inter-
view if you’re looking for a brand new job. If you want to stand
out in your current role, mentioning your abilities to your
manager during a catch-up or offering your coding skills to a
project will help you succeed at making an impression.

All of the suggestions in this chapter will boost your career
prospects by developing and demonstrating your technical abili-
ties. Not all of the suggestions in this chapter will necessarily
apply to your role or sector, but you’ll be surprised how far a
little creative thinking (combined with the coding skills you have
learned so far) can take you.

We will start by considering whether you could create an app
for the company you work for, and what that app might look
like. Next we’ll look at the process of starting a blog, and why it
is likely you would benefit from having one, regardless of the
industry you are working in. Then we’ll look at a number of
ways you can automate or streamline processes in your daily
workflow, using tools such as If This Then That, Text Expansion,
AppleScript and PowerShell.

Creating an app for your business

Regardless of the type of company you work for, it is likely that
there is a process that could be done better if there was an app
created specifically for it. As a teacher, Rob created a simple app
to manage house points. Staff could give students a house point
instantly, and students could see straight away which house had
the most points. What app could you build that would make you
or your colleagues’ work lives better? (Note – you could proba-
bly build a website to do the same job, but we find people get
rather more excited about apps than websites!)

USING CODING TO ENHANCE YOUR CAREER

313

Building an app for your company is a great way to learn the
complete app development cycle without having to come up
with a ground-breaking idea. You can be sure that at least some-
one will use your app, and with any luck you’ll get some kudos
for creating it. You might even find yourself becoming the digital
guru in your office!

Simple app ideas might include:

●● An ‘onboarding’ app that tells new employees basic
information about how things work at your office.

●● An ‘important information’ app containing useful phone
numbers, email addresses and other information that all
employees would find handy.

●● An app that displays information about the business, such as
sales figures, circulation or progress towards certain goals.

The most important thing about your first business-focused app
(as with any app) is to keep it simple. Make sure it does one
thing well rather than trying to solve all the problems your
company has in one go.

To give a real-life example, John Williams is a fireman based
in the United Kingdom. He realized that in the training of his
colleagues there were various tests that needed to be completed,
but no centralized system keeping track of who had successfully
completed each test. Moreover, fire stations in different districts
used different processes. He created a system for his district so
that someone could not only take the tests online, but a supervi-
sor could keep track of which tests each of the firemen had
passed, and thus knew when to put them forward for the official
exam.

Since creating the app, John has been approached by a number
of nearby districts to use the app themselves. It’s early days yet,
but it could become a very useful teaching and learning tool,
used by fire stations throughout the United Kingdom.

Creating an app for yourself or your colleagues allows you to
‘scratch your own itch’, ie solve a problem that you know exists

FUTURE-PROOFING YOUR CAREER WITH CODING

314

for at least a small number of people because you have that
problem yourself. You’ll also get quick feedback (good and bad!)
from your colleagues, and there is always the possibility your
app will grow into something bigger than you could imagine.

Starting a blog

In the world of Facebook and Twitter, writing a blog might feel
a little old fashioned. You can certainly develop a following on
social media (and we’ll look at how to do that more effectively
later in this chapter), but running your own blog has a few
unique advantages. Firstly, the sheer fact that setting up a blog is
more difficult than creating a Facebook or Twitter account
shows that you are serious. It is a way of telling the world that
you have something to say, and that you are dedicated enough to
regularly create content that people enjoy.

Secondly, as it is your blog, you have complete control over
your content. You are not limited as you are with social networks
in how content will be displayed, or who can view it.

Thirdly, and most importantly, there is the Google effect.
Increasingly, regardless of your industry, potential employers
will use search engines to find out about job applicants. If you
run and update a blog that will almost certainly become the top
search result when people search for you. That’s a pretty impres-
sive thing for a potential employer to see.

Fourth, owning your domain name is increasingly useful. As
we have seen, a domain name is a web address, like google.com.
Owning robpercival.co.uk has been very useful for Rob, and we
would thoroughly recommend that you stop reading right now
and try to purchase your name. If you have a common name,
you might need to try alternative domain extensions such as .me,
or .blog, or you can get creative like the blogger John Gruber did
when he set up his blog at daringfireball.net (which you’ll hear
more detail about later in this chapter).

http://google.com
http://robpercival.co.uk
http://daringfireball.net

USING CODING TO ENHANCE YOUR CAREER

315

Fifth, you can use your blog to build a community and posi-
tion yourself as an authority figure. If you write useful and
challenging content, you will start to build a following of like-
minded people who are interested in what you do. By encouraging
them to post comments on your articles, you can get to know
these people, and form a community with you at the centre. This
is a very powerful thing, and a whole range of opportunities
might develop from it.

Finally, once you have built up an audience, if you wish you
can monetize the blog itself, by offering subscriptions for special
content, recommending products, or just using the platform to
launch your next big business idea.

There are countless other benefits from writing a blog. You
will be forced to write clearly and coherently, expressing your
ideas eloquently and in an entertaining way. This is a rare and
valuable skill across all industries. It will clarify your thinking
and your ideas. It will build your confidence as you write more
and your audience grows. It can help bring attention to causes
that you care about, and even change public policy. It will bring
in new experiences, with new people, and develop your techni-
cal and marketing skills. And, of course, you will help people
by sharing your knowledge and experiences or simply enter-
taining them.

Choosing a topic

At this point, you’re probably thinking ‘I don’t have anything to
write about.’ That’s not true. You may not feel particularly
unique, but you are the only person in the world with your set
of experiences, skills and hobbies. We’d be very surprised if there
wasn’t something that you care about, know more about than
most people, and would like to share with the world.

If you’re not sure what you might write about, grab a pen and
a blank piece of paper. Write down 20 topics that you are inter-
ested in. These might be hobbies, styles of music or art, regions

FUTURE-PROOFING YOUR CAREER WITH CODING

316

of the world, sport, issues related to your job, charitable or polit-
ical causes, technology, or anything else. Think about which
topics you would be keen to write about, and which you might
be in a particularly good position to discuss. The best blog writ-
ing is informed and passionate, but those who set up successful
blogs are rarely great authorities on their subject. They are just
normal people who commit to creating quality content
regularly.

If you’re still not sure what you might write about, you might
just choose to be very honest about your job, sharing what it is
like day to day to be an accountant, teacher or airline pilot. Or
you could take up a completely new hobby or learn something
new and blog about the process. You could even blog about
learning to code!

Like starting a business, starting a blog is a little nerve-rack-
ing, and requires a leap of confidence to take the first step, but it
is incredibly rewarding, and you never know where it might
lead.

Blogging success stories

THE CAUSE

There are endless stories of people who have achieved great
things through writing blogs. One particularly impressive tale is
that of Martha Payne, a nine-year-old from Scotland who created
the ‘Never Seconds’ blog at http://neverseconds.blogspot.co.uk/,
writing about the poor quality of her school dinners. Within
three months the blog had come to the attention of the national
media, and the local authorities quickly started to improve the
food at their schools. Martha raised over £100,000 for school
children in Malawi, won The Observer Food Blog of the Year
award, and went on to publish a book about her experiences.
(Book publishing is a common outcome of writing a popular
blog, so if that’s something that’s on your bucket list, there’s yet
another reason to give it a go.)

http://neverseconds.blogspot.co.uk/

USING CODING TO ENHANCE YOUR CAREER

317

THE HOBBY THAT BECAME A FULL-TIME JOB

John Gruber was a software developer from Philadelphia, who
launched his Daring Fireball blog in 2002. He writes about
whatever interests him, which is primarily Apple-related topics,
software development and user interfaces. He is known for writ-
ing passionately and clearly, with strong opinions. The popularity
of the blog grew gradually until 2010, when one particular post
about third-party applications for building iPhone apps was
mentioned by Steve Jobs in an email to a user. This controversial
topic was covered by the media, and brought Daring Fireball to
a massive new level of popularity.

The blog became Gruber’s full-time job in 2006, with income
coming from sponsorship, advertisements and affiliate links.
Affiliate links are links that go to particular products, and when
the user buys those or similar products after clicking the link the
publisher (in this case Gruber) gets a fixed amount, or a percent-
age of the purchase. We will talk more about affiliate links later
in this section.

Gruber now also runs The Talk Show podcast and has speak-
ing engagements around the world. Like publishing a book, if
you have ever wanted to be a professional public speaker, start-
ing a blog is a great first step.

Gruber’s story shows that while writing a blog can be slow
progress (it took him four years for it to produce a full-time
income), you don’t need any special authority, experience or
insider knowledge to be successful. He was ‘just another’ soft-
ware developer that shared his opinions in a way that completely
changed his life.

MUDDY STILETTOS

Blogs don’t have to offer incisive opinion or shocking truth –
they can just be fun. Hero Brown launched http://muddystilettos.
co.uk/ in 2011 to help people in Buckinghamshire UK find the
best places to dine and shop. By November 2012, the blog had
become Brown’s full-time job, and has since spread to providing

http://muddystilettos.co.uk/
http://muddystilettos.co.uk/

FUTURE-PROOFING YOUR CAREER WITH CODING

318

fun first-hand information about restaurants, hotels and country
life in nine counties.

These are just three examples of successful blogs, but there
are many more. Mrs Cassidy shared what her six-year-old pupils
got up to at http://mscassidysclass.edublogs.org/. Mr J. Brown
blogs about yoga at www.jbrownyoga.com/, and is building an
online workshop on the success of his writing. Mark Lee blogs
about accounting at http://marksaccjokes.blogspot.co.uk/, his
blog forming the basis of his consultancy and public-speaking
business.

Whatever you want to achieve with your career, starting a
blog is a great way to begin.

How to start a blog

Creating a blog is much like building any other website, so for
buying domain names, getting web hosting and other general
topics, refer back to Chapter 7. The main decision you will
need to make for your blog is what platform to use. As with
web development, there are a selection of blogging platforms
that you can use, including wordpress.com, tumblr.com and
blogger.com. All of these will allow you to set your blog up
quickly, but have the major disadvantage that you do not
completely own your content. If you want to move to a differ-
ent provider, this can be very difficult. You might also be
limited to what features you can have, or what styles, layouts
and website structures you can use.

Our advice would be to use a self-hosted platform, and by far
the most common platform for bloggers is Wordpress. (Note
wordpress.com is essentially a hosted version of Wordpress –
they offer broadly the same features but with a self-hosted setup
you have much greater control over your site.) For advice on
setting up a hosting for your Wordpress website, see Chapter 7.
Once you have set up the hosting, your hosting provider can
guide you how to install Wordpress and the whole process, from

http://mscassidysclass.edublogs.org/
http://www.jbrownyoga.com/
http://marksaccjokes.blogspot.co.uk/
http://wordpress.com
http://tumblr.com
http://blogger.com
http://wordpress.com

USING CODING TO ENHANCE YOUR CAREER

319

buying a domain name to seeing your site live, shouldn’t take
more than a few hours (and most of that time will be waiting for
the website to become live).

While it is possible to create a blog without any coding skills,
you will be able to use your HTML and CSS experience to
customize the look and feel of your site, rather than relying on
the default look of available themes. You can also use JavaScript
and other languages to customize the behaviour of your site and
add specific functionality, such as a sign-up form or calendar.

We hope by now you are seriously thinking about starting a
blog, but if you are not quite ready for that yet there are a
number of other ways you can use coding to enhance your career
prospects, or just to do your current job more efficiently. We’ll
start by looking at ways that we can automate or speed up tasks
using code.

Finding tasks that can be automated

In almost every job there is a part of the workflow that can be
done more efficiently. If your job is marketing, you may well end
up posting the same thing to Twitter, Facebook, and perhaps
other social networks. If you write lots of emails, you might find
that you type the same phrases, sentences or paragraphs over
and over. In researching a book, you might want to collect email
addresses from a number of websites. You may need to rename
a large number of files. Or you may have a list of files, and need
to search through them for specific words. We’ll see how to
automate each of these tasks, and look at more general use-cases
for the tools that we create.

If This Then That

If This Then That (https://ifttt.com/) is a web service that allows
you to connect a huge range of other apps and automate various

https://ifttt.com/

FUTURE-PROOFING YOUR CAREER WITH CODING

320

processes. Each process is known as an ‘applet’, and range from
‘save all photos I am tagged in on Facebook to Dropbox’ to
‘send me an email when it’s going to rain’. But there are a range
of more useful applets, in particular ‘Post your tweets to
Facebook when you use a specific hashtag’ (https://ifttt.com/
applets/112202p-post-your-tweets-to-facebook-when-you-use-
a-specific-hashtag).This solves our first problem, and if managing
social media accounts is part of your job, this can save a huge
amount of time.

You might even find tasks that you don’t currently do, but could
be done automatically and benefit your business. If you use
Mailchimp to send newsletters for example, you can automatically
share the latest newsletters’ performance with your colleagues via
email, Slack and a Google Spreadsheet (https://ifttt.com/applets/
DHFQvPEj-share-newsletter-performance-with-the-team).

While not coding as such, using IFTTT forces you to think
through the conditions that you want to cause your applet to
run, and exactly what output you want, and so it involves many
of the same challenges. More importantly, it can make your life
a lot easier, and dramatically increase your productivity, so take
a little time to look at the applets available, and think about how
you could apply them in your current role.

Text expansion

A lot of jobs require you to write similar phrases and sentences
frequently, often many times a day. At the very least you might
need to type your email address, phone number or home address
pretty regularly. Text expansion allows you to assign shortcodes
to any text, so you might assign ‘wyt’ to ‘What do you think?’

In some text expansion apps, you can even use shortcodes to
insert images, or press buttons like Tab or Enter. You can use this
to log into a site with just a shortcode, by instructing the short-
code to insert your email address, then ‘press’ the Tab key to
move you to your password field, insert your password, and

https://ifttt.com/applets/112202p-post-your-tweets-to-facebook-when-you-use-a-specific-hashtag
https://ifttt.com/applets/112202p-post-your-tweets-to-facebook-when-you-use-a-specific-hashtag
https://ifttt.com/applets/112202p-post-your-tweets-to-facebook-when-you-use-a-specific-hashtag
https://ifttt.com/applets/DHFQvPEj-share-newsletter-performance-with-the-team
https://ifttt.com/applets/DHFQvPEj-share-newsletter-performance-with-the-team

USING CODING TO ENHANCE YOUR CAREER

321

then press Tab to move to the Login button and then press Enter
to log in.

How much time this will save depends on your role, but there
are few people that wouldn’t benefit from setting up a few basic
phrases.

TEXT EXPANSION ON MACOS

Text expansion is actually built into MacOS, so you don’t need
to download any extra software, unless you want advanced
features. To access it, click the Apple icon in the top left of the
screen and then select System Preferences and Keyboard. Select
the ‘Text’ tab and you’ll see the Keyboard Shortcuts window.

Just use the + button to add new shortcodes and you’re done!

TEXT EXPANSION ON WINDOWS

There is no built-in text expansion utility for Windows, but
Phrase Express (www.phraseexpress.com) has a free edition for
personal use and Word Expander (www.wordexpander.net/) is
completely free.

If you want to investigate more advanced features, the full
versions of Phrase Express, as well as the cross-platform Text
Expander (https://textexpander.com/) are both excellent places
to start. Like with IFTTT, while text expansion is not coding as
such it still requires you to think carefully about how you want
the app to behave, and if you use some of the advanced features
it can get pretty complex. Give it a try now, and see how much
time you can save.

Using Python to extract email addresses from a website

The process of extracting information from websites automati-
cally is known as ‘scraping’, and is widely used in Python. It can
save a lot of time when researching the web if you want to, for
example, gather a collection of email addresses or the titles of a

http://www.phraseexpress.com
http://www.wordexpander.net/
https://textexpander.com/

FUTURE-PROOFING YOUR CAREER WITH CODING

322

range of books or blog posts. Python is great for this sort of
thing, and we have included below a simple web scraper, which
‘crawls’ the web, starting from a certain page. Crawling is the
process of downloading a number of different webpages, by
looking for links on the original page. In this case, we start with
www.ecowebhosting.co.uk; look for all the links on that page,
download the content from each of those pages, and then search
for email addresses on that page. It uses Beautiful Soup (www.
crummy.com/software/BeautifulSoup/), a Python library
designed to make website scraping easier.

The code is a slightly edited version of http://scraping.pro/
simple-email-crawler-python/. It is well commented, and uses
rather more advanced Python than we have seen so far, so we
won’t go through it line by line, but if you have some ideas of
how you could use web scraping in your job, you should be able
to figure out how it works using the comments. You can then
customize it to your precise needs.

from bs4 import BeautifulSoup

import requests

import requests.exceptions

from urllib.parse import urlsplit

from collections import deque

import re

a queue of urls to be crawled

new_urls = deque(['http://www.ecowebhosting.co.uk'])

a set of urls that we have already crawled

processed_urls = set()

a set of crawled emails

emails = set()

process urls one by one until we exhaust the queue

http://www.ecowebhosting.co.uk
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://scraping.pro/simple-email-crawler-python/
http://scraping.pro/simple-email-crawler-python/
http://www.ecowebhosting.co.uk

USING CODING TO ENHANCE YOUR CAREER

323

while len(new_urls):

move next url from the queue to the set of

processed urls

url = new_urls.popleft()

processed_urls.add(url)

extract base url to resolve relative links

parts = urlsplit(url)

base_url = "{0.scheme}://{0.netloc}".

format(parts)

path = url[:url.rfind('/')+1] if '/' in parts.

 path else url

get url's content

print("Processing %s" % url)

try:

response = requests.get(url)

except (requests.exceptions.MissingSchema,

 requests.exceptions.ConnectionError):

ignore pages with errors

continue

extract all email addresses and add them into

the resulting set

new_emails = set(re.findall(r"[a-z0-9\.\-+_]+@

 [a-z0- 9\.\-+_]+\.[a-z]+", response.text, re.I))

emails.update(new_emails)

create a beautiful soup for the html document

soup = BeautifulSoup(response.text)

find and process all the anchors in the document

for anchor in soup.find_all("a"):

extract link url from the anchor

FUTURE-PROOFING YOUR CAREER WITH CODING

324

Automation on MacOS

If there is a task on your computer that you do regularly, such as
exporting video files, or saving Photoshop files in specific resolu-
tions, it’s likely that you can automate it. Here we will see how
to do that on both MacOS and Windows.

All Mac computers come with AppleScript built in. This is a
special programming language that you can use to open apps,
click menu items, type text and a lot more. To begin with
AppleScript, use cmd-space to open Spotlight and type in ‘Script
Editor’. This will open the MacOS AppleScript Editor.

This is a simple program that allows you to create and edit
AppleScripts. To give an example of how AppleScript works,
here is a script that bulk-renames a set of files.

The code comes from https://gist.github.com/oliveratgithub/
b9030365c9ae483984ea, and as before is well commented
(comments in AppleScript being with ‘--’) so just read through to
see how it works:

link = anchor.attrs["href"] if "href" in anchor.

 attrs else "

resolve relative links

if link.startswith('/'):

link = base_url + link

elif not link.startswith('http'):

link = path + link

add the new url to the queue if it was not

enqueued nor processed yet

if not link in new_urls and not link in processed_

urls:

new_urls.append(link)

https://gist.github.com/oliveratgithub/b9030365c9ae483984ea
https://gist.github.com/oliveratgithub/b9030365c9ae483984ea

USING CODING TO ENHANCE YOUR CAREER

325

set text item delimiters to "."

tell application "Finder"

set all_files to every item of (choose file with prompt

"Choose the Files you'd like to rename:" with multiple

selections allowed) as list

display dialog "New file name:" default answer ""

set new_name to text returned of result

--now we start looping through all selected files.

'index' is our counter that we initially set to 1 and

then count up with every file.

--the 'index' number is of course required for the

sequential renaming of our files!

repeat with index from 1 to the count of all_files

--using our index, we select the appropriate file from

our list

set this_file to item index of all_files

set file_name_count to text items of (get name of this_

file)

--if the index number is lower than 10, we will add a

preceding "0" for a proper filename sorting later

if index is less than 10 then

set index_prefix to "0"

else

set index_prefix to ""

FUTURE-PROOFING YOUR CAREER WITH CODING

326

end if

--

--let's check if the current file from our list (based

on index-number) has even any file-extension

if number of file_name_count is 1 then

--file_name-count = 1 means, we extracted only 1 text-

string from the full file name. So there is no file-

extension present.

set file_extension to ""

else

--yup, we are currently processing a file that has a

file-extension

--we have to re-add the original file-extension after

changing the name of the file!

set file_extension to "." & item -1 of file_name_count

end if

--let's rename our file, add the sequential number from

'index' and add the file-extension to it

set the name of this_file to new_name & index_prefix &

index & file_extension as string

end repeat

--congratulations for successfully accomplishing the

batch renaming task:)

display alert "All done! Renamed " & index & " files

with '" & new_name & "' for you. Have a great day!:)"

end tell

USING CODING TO ENHANCE YOUR CAREER

327

To try the script out, copy and paste it into the Script Editor, and
click File → Export. Change the File Format to Application and
call the app ‘Bulk Renamer’.

You can then run the app and the renaming will take place. If
there are any repetitive tasks that are part of your regular work-
flow, see if you could write an AppleScript app to automate the
process.

Automation on Windows

The equivalent to AppleScript on Windows is PowerShell.
PowerShell 5.0 is included with Windows 10, so let’s use it to see
how we could search through a collection of files looking for a
particular snippet of text.

To open PowerShell, just type ‘PowerShell’ into the search bar
at the bottom left of the screen.

The code below comes from http://www.adminarsenal.com/
admin-arsenal-blog/powershell-searching-through-files-for-
matching-strings/, and again should be fairly self-explanatory
(comments in PowerShell start with ‘#’).

##

$Path = "C:\temp"

$Text = "This is the data that I am looking for"

$PathArray = @()

$Results = "C:\temp\test txt"

This code snippet gets all the files in $Path that

end in ".txt".

Get-ChildItem $Path -Filter "*.txt" |

Where-Object { $_.Attributes -ne "Directory"} |

ForEach-Object {

http://www.adminarsenal.com/admin-arsenal-blog/powershell-searching-through-files-for-matching-strings/
http://www.adminarsenal.com/admin-arsenal-blog/powershell-searching-through-files-for-matching-strings/
http://www.adminarsenal.com/admin-arsenal-blog/powershell-searching-through-files-for-matching-strings/

FUTURE-PROOFING YOUR CAREER WITH CODING

328

As with MacOS, if you regularly complete repetitive tasks on a
Windows machine, take some time to consider if writing a
PowerShell script would make you more efficient.

Summary

In this chapter you have a seen a range of ways that you can use
coding to enhance your career prospects. You’ve considered
building an app for your company, starting a blog, and using a
variety of tools to make your workflow more automated and
efficient. We hope you’ve taken away at least one of these ideas
and used it to improve your work life.

We’re now going to take the next step – to consider how you
might use your coding skills to launch a product or a business.
This could be as simple as creating and selling a digital product
such as an ebook or video course, or building the next big social
network. We will lead you through the process from idea-
creation to marketing and growing the business.

If (Get-Content $_.FullName | Select-String -Pattern

$Text) {

$PathArray += $_.FullName

$PathArray += $_.FullName

}

}

Write-Host "Contents of ArrayPath:"

$PathArray | ForEach-Object {$_}

##

CHAPTER THIRTEEN

Coding and entrepreneurship

One of the most exciting things about learning to code is
that it enables you to create your own business, product or

service, and allows people around the world to access it imme-
diately. This is something that has only been possible in the last
20 years or so, and has brought the cost of starting a business
down to close to zero.

We’ve already seen how to create and host a website, and how
to build apps for Android and iOS. In this chapter we will walk
you through the process of starting an online business using
your newfound skills. As always, this chapter is practical, so
keep a pen and paper handy to jot down ideas and business
plans as you read through the chapter.

Aim to come up with and test at least one business idea by the
end of the chapter. You might not become the next Mark
Zuckerberg or Bill Gates, but at the least you should be able to
build a second income stream, and you’ll certainly have a lot of
fun, and learn a great deal, along the way.

329

FUTURE-PROOFING YOUR CAREER WITH CODING

330

We will begin by seeing how you can generate business ideas,
and where the best ideas come from. We’ll then go on to see how
you can validate and hone your ideas, making sure that the one
you choose is most likely to succeed. Finally we’ll look at creat-
ing your initial product, getting it to customers, and pricing.

What’s coding got to do with entrepreneurship?

Many of the examples and suggestions below have little to do
with coding, so you might be wondering why you would need to
code at all to start a business. The answer is of course that you
can start a business without learning to code, but being able to
code makes the whole process so much easier.

Not only do you have a better understanding of how the
websites and services you are using function, enabling you to use
them more effectively, but if you cannot code you will constantly
come up against frustrating challenges. If your business needs a
website, you can just create it rather than paying someone else,
or paying for a hosted service. If your business needs an app, or
a mailing list, or an automated process, you can just build it,
which is extremely liberating.

Even if you decide not to build your own website or app,
knowing the basics of coding means you’ll be able to communi-
cate effectively with whomever is doing so, resulting in a much
better, and likely cheaper, outcome.

Getting ideas

Every great business starts with an idea. Ideas can come from
anywhere, but in our experience the most reliably successful way
to choose an idea is to choose a niche that you are already famil-
iar with. Scratch your own itch is a phrase we have seen before,
and if something is a pain-point for you, it likely is for a number
of other people as well.

CODING AND ENTREPRENEURSHIP

331

For example, if you are a yoga instructor and find it difficult
to get clients because there is no central portal where people can
search for and rate different yoga instructors, perhaps creating
that portal would be a good idea.

Or perhaps you are a plumber who finds the process of invoic-
ing and arranging payments from your clients a hassle. Would
an automated service, specifically designed for plumbers, be
useful to you? If so, it would likely be useful to many others as
well.

Don’t worry about a niche appearing too small – once you
have developed ‘traction’ (ie a number of people are actively
using your service), there are almost always possibilities for
expanding into related fields. The yoga portal could grow to
support any sporting activity, and the plumbing invoicing service
could be applied to a range of domains.

Hopefully a few ideas are already popping into your head, so
let’s take a moment to choose ideas even more effectively. While
it is important (although not crucial) that you have some special
knowledge or experience in the business niche, there are two
other factors that will substantially affect your chances of success.

The first is whether you have particular skills that will help
you be able to succeed with a particular idea where others would
not. You should ask yourself what special skills do I have that
mean that I can build this business better than anyone else? By
this we don’t mean that you must have finely honed business
instincts, but that your capabilities match those required for that
particular business. If your idea is going to require a lot of public
speaking, and the thought of doing that terrifies you, you might
not be best placed to run that business. If you are particularly
creative, look for business ideas that will allow you to use your
creativity. If you enjoy working with numbers, look for ideas
where numbers are critical to its success.

The second factor is what you enjoy doing. Usually people
enjoy what they are good at, so often the two overlap, but not
always. Rob loves singing and playing the guitar, but he’s yet to

FUTURE-PROOFING YOUR CAREER WITH CODING

332

make a career out of it. But you are much more likely to succeed
if you actually enjoy the tasks that will be required of you to
create and grow that particular idea. So for each idea, imagine
yourself going ahead with it and actually doing the day-to-day
activities. Do they seem fun to you? If so, you’ll be much more
likely to make a success of the business.

You can think of these three factors as a Venn diagram, in which
the perfect business idea for you lies in the centre, at the overlap of
your skills, experiences and what you enjoy doing (13.1).

13.1
ExperienceSkills

Enjoyment

Take a few minutes now to think about business ideas based on
your own personal experience – they could relate to your job,
hobbies or any aspect of your life. Brainstorm as many ideas as
possible – aim for at least 20. Most ideas will appear crazy, ridic-
ulous or impossible at first, but get them down anyway as crazy
ideas can often be the seed of a very sensible business.

START-UP STORY

Alice Hall was 27 in 2012, and was struggling to pay her bills. On a
whim, she bought £90 of dresses and resold them online. They
sold quickly, and she used the profits to buy £180 of dresses.
Again, they sold well, and she carried on buying and selling
dresses until she was ready to create her own website,

CODING AND ENTREPRENEURSHIP

333

Products vs services

It is important to draw a distinction between product- and
service-based businesses, as both have quite specific advantages
and disadvantages.

A service-based business might be a web hosting company, or
a platform for finding good cleaners. Google, Facebook and
Vodafone are service-based businesses. Services have the huge
advantage of the potential for recurring revenue. This is when a
customer pays a regular fee for an ongoing service. Having
recurring revenue is extremely powerful because you can rely on
a certain amount coming in each month. And as your user base
grows, it naturally adds to your income for the long term. Of
course, you need to provide value for your users for as long as
they are paying you, but if you can do that a recurring revenue
stream is a boon for any business.

A product-based business might be an ebook, a video course,
or reselling dresses. Apple, John Lewis and L’Oréal are primarily
product-based businesses. They can be easier to set up, because
you don’t need to create a complex service for your users. It is
also potentially easier to differentiate yourself from competitors,
especially if you are the only business that sells your particular
product. However, recurring revenue is less likely with a prod-
uct-based business, and you will need to continually create new
products to bring in new income.

Both types of business can be successful, but it is worth being
clear what type your idea is. Take a few minutes to divide the
ideas you wrote down into product and service businesses, and

pinkboutique.co.uk. As of June 2016, the business had a turnover
of £7 million, selling 2,000 dresses a day all round the world. You
don’t need extensive business experience or a big upfront
investment to build a successful business, you just need to start.

http://pinkboutique.co.uk

FUTURE-PROOFING YOUR CAREER WITH CODING

334

think about the potential for recurring revenue, or how you will
grow the business by creating new products.

Some example ideas

If you’re still short of ideas, remember that your first business is
unlikely to be your most successful. In the early stages, the
important thing is to try something. You will make mistakes,
and there is only so much you can learn from books, so it’s best
to get out there and start making those mistakes now. Even if
your business is not successful, you will have learned a huge
amount, about coding, marketing and how to make something
people love.

So here are a few simple ideas for your very first business that
almost anyone can try. Each of them will require you to test the
market, create a product or service, and then actively promote
it – the three core skills of starting any business.

AN EBOOK

We’re not suggesting you should write a great novel, but creat-
ing an ebook is much the same process as starting a business.
Choosing a subject, you should look at something that you
could write confidently and competently about, and ideally take
a unique angle on. It doesn’t have to be a masterpiece, but should
provide useful information that people are actively looking for.
You can publish an ebook for free on Amazon.

A VIDEO COURSE

Various websites now allow you to upload and sell video courses,
including udemy.com, stackskills.com and videodirect.amazon.
com. As with ebooks, choose a topic that there is a market for,
and that you could teach well.

A WORDPRESS PLUGIN OR THEME

We have already seen that Wordpress powers 25 per cent of the
web. Therefore there is a huge potential market for add-ons and

http://udemy.com
http://stackskills.com
http://videodirect.amazon.com
http://videodirect.amazon.com

CODING AND ENTREPRENEURSHIP

335

extras. There are also well-established platforms for providing
your products directly to Wordpress users. Themes are available
at wordpress.org/themes/, and if you have a good eye you could
easily create a popular theme. While all the themes on that page
are free, you could charge for extra features, or sell your themes
directly on sites like themeforest.net.

Wordpress plugins (wordpress.org/plugins/) add extra func-
tionality to Wordpress, and you can find plugins that do almost
anything, from speeding up your website to creating a new social
network. As with themes, create a plugin that offers a new
feature, or has better integration or a smoother user interface
than the existing options.

Your unique selling point

It is important to establish your unique selling point, or USP, for
your business idea. This is the one reason that people should
choose your product or service rather than anyone else’s. It
might be because the product itself is higher quality, or faster, or
better looking. Or your service might have some unique features
that aren’t available anywhere else. Or it might be something
tangential to the main business, such as customer service.

For each of the business ideas you’ve written down so far,
write down what the USP would be. If you can’t think of one, it’s
likely that that idea will not go far.

When should you start your business?

At the beginning of Rob’s business career he used what he calls
the scatter-gun approach. He would have what he thought was
a fantastic idea (or at least better than an existing company). He
would say ‘If only my business could be 1% the size of [insert
big company here], I’d be sorted.’ He would then run off and
build the website, only to find out that getting customers was

http://wordpress.org/themes/
http://themeforest.net
http://wordpress.org/plugins/

FUTURE-PROOFING YOUR CAREER WITH CODING

336

harder than he thought, or the service wasn’t as popular as he’d
hoped. He would then get another fantastic idea and move on to
that one.

The downside of this approach is that you will inevitably
spend a lot of time on businesses that end up unsuccessful.
Having said that, Rob learned a lot (and made a lot of mistakes)
with those businesses, and when eventually he hit upon an idea
that was successful, he was able to apply the lessons he’d learned
and not make those mistakes again.

In short, there is nothing wrong with just going on there and
creating the website or product that you are thinking about, and
seeing what happens. However, there is a smarter way that will
help you establish whether your idea is a good one before going
to the trouble of actually building it.

Validating your idea

How do you know if your idea is a good one? This is often a
very difficult question to answer but there are a few general
techniques you can use.

Firstly, don’t listen to your friends and family, unless they
have particular skills or experience in your niche. Friends and
family generally want you to be happy, and will be keen to
encourage you on your new mission, and as a result are not a
reliable guide as to whether the idea is a good one or not. Discuss
it with them by all means, but ‘all my friends said it is a great
idea’ is not a good enough reason to start.

A good place to begin is to look for potential competitors. Go
to Google and enter the keywords that you would expect your
future customers to enter if they were looking for your product
or service. In our examples above, ‘find a yoga instructor’ or
‘invoicing for plumbers’ would be a good start. See what is avail-
able already, and take some time to analyse how good these
products or services are.

CODING AND ENTREPRENEURSHIP

337

Don’t be disheartened if the brilliant idea you had already
exists. That just means there is a market for it. It’s very unlikely
that you’ll come up with a completely new idea – the real chal-
lenge is to execute your idea better than anyone else. When you
analyse the existing businesses, try and get clear in your mind
what you could do better. What is the crux of your idea that
makes it better than the competition? Perhaps they have poor
websites, or bad customer service, or odd pricing.

At the same time, what can you learn from your competitors?
What are they doing well that you could incorporate into your
business? Don’t be afraid to steal great ideas!

What if you don’t find any competitors? It could of course
mean that you have come up with a genuinely new idea, but not
necessarily. It may well mean that there simply isn’t a market for
your idea, or that people have tried and failed (or that you are
searching with the wrong keywords).

Once you have done your competitor research, you should
have a fairly clear idea of what makes your business unique, and
better than the competition. So now it’s time to build it, right?
Not yet. First you need to reach some potential customers and
talk to them about whether they would want your product or
service.

At this point, you can hopefully see another benefit of having
a blog, or some sort of online following. If these people were
your target market, you could contact them individually or
collectively to get their feedback.

If you don’t have easy access to potential customers or users,
the process will be a little harder, but not impossible. If you are
targeting a specific niche, find out where these people are (both
in real life and virtually). Find a few in your local area and offer
to buy them a coffee or lunch in exchange for feedback on your
idea. If there are forums or Facebook groups dedicated to people
in your niche, post there.

Face-to-face feedback is particularly valuable, as internet
comments can tend towards the flippant and critical. When you

FUTURE-PROOFING YOUR CAREER WITH CODING

338

are speaking to clients, if at all possible try to get a firm commit-
ment. If you ask ‘Would you use this?’, they will almost certainly
say yes, for the same reason friends and family want to support
you. Asking ‘How much would you pay for this?’ is often more
revealing. You could even ask them for a payment then and there
(refundable if they are not happy with the product), to establish
just how keen they are.

What if you don’t have a specific niche, or you have no way
of getting in touch with potential customers? One great solution
is to create a simple ‘Coming Soon’ website, and ask people to
sign up to your newsletter if they are interested. Include the key
features of the product and a rough date when you plan to
launch, and perhaps some screenshots if you have any. You could
do this with a Wordpress theme, using a service such as
mailchimp.com to manage the email sign-ups.

Once you have built your site, tell your friends and family
about it and ask them to share it. You could even run a small ad
campaign to drive traffic to the site – spending £100 on Google
or Facebook ads could be money well spent if it saves you hours
building a website no-one wants.

The crucial thing at each stage is to evaluate your idea objec-
tively. Don’t be put off if one person tells you it will never work,
but at the same time it’s likely not wise to ‘keep the faith’ in the
face of overwhelming evidence that there is not a market for
your product, or that market is currently served very well by
existing businesses.

Creating a minimum viable product

All right, so you are convinced that there is a target market for
your product or service, and that you are able to create some-
thing better than anything that currently exists? Great. It’s time
to get to work!

http://mailchimp.com

CODING AND ENTREPRENEURSHIP

339

The phrase ‘minimum viable product’ (MVP) neatly expresses
the idea that you should build the smallest thing that you can
that will satisfy your customers. It is tempting for budding entre-
preneurs to feel that their website or app has to do everything – it
has to have more features, be better looking, and be easier to use
than anything else available. Sometimes this is true, but in most
cases it’s more important to do one thing extremely well, than it
is to do everything your customers need.

Google is a classic example. Their homepage had (and, largely,
still has) a simple search box and two buttons. The one thing
they did really well was help people find the information they
were looking for. Not all businesses can be quite that minimal,
but when designing your product you should try to establish
what the one thing is that your business does better than anyone
else, and focus on that.

The big advantage of the MVP approach is that you can get
something in the hands of your users as early as possible. As they
say in Silicon Valley, if you are not embarrassed about your
product at launch, you launched too late. This is not to say that
you should release a half-baked product, but you should focus
on releasing as early as possible, rather than adding extra
features. That way, you can get feedback from real users from
the beginning, meaning that you’ll be adding features that they
actually want, rather than ones you think they want.

How much to charge?

Pricing is often a very difficult subject for entrepreneurs, and of
course the best thing to do varies dramatically depending on
what you are providing, and to whom.

The best piece of advice we’ve ever heard on how much to
charge is don’t compete on price. This doesn’t mean that you
shouldn’t make your pricing competitive, but if your USP is ‘we

FUTURE-PROOFING YOUR CAREER WITH CODING

340

are cheaper’, that will likely not be enough in itself to make your
business take off.

The simplest way to choose your pricing is to charge a similar
amount to your competitors. Charging less will not necessarily
help you grow as much as you might think. Firstly, if people
think of your business as the cheaper option, it might be difficult
to convince them that you are also better. Secondly, if you charge
less you will inevitably attract the sort of customer that is rela-
tively price-sensitive. They will then be more likely to leave if a
cheaper (or even free) service becomes available. Ideally, you
want people to use your business because you offer something
better than they can get elsewhere – that way you will build a
loyal base of users who love your product.

Do things that don’t scale

In today’s relatively mature business environment, it can be diffi-
cult to see how you can compete with big businesses, who can
devote much more time and money to creating a great product.
The first answer to this is to focus on a niche that is too small for
big businesses to be interested in. The second is to ‘do things that
don’t scale’; that is, spend time making your customers happy in
a way that would be impossible in a large business.

In Rob’s company Eco Web Hosting, the apparent USP was
that the hosting was environmentally friendly. But when he
asked people what they liked most about the company, what
they usually said was the service. Because he ran the company
himself and provided all the support, they were always dealing
with the person who knew exactly how the website worked,
who was the one who would fix all the problems, and who could
make decisions about special discounts or extra services. This is

CODING AND ENTREPRENEURSHIP

341

something that big hosting companies with their first-line,
second-line and third-line support departments, couldn’t match.

START-UP STORY

In the summer of 2008, Joe Gebbia and Brian Chesky couldn’t pay
their high San Francisco rent. They decided to rent out three air
mattresses on their floor and serve breakfast. Three people
showed up, paying $80 each. They thought this might be a big
idea, so they built a website allowing people to share their spare
rooms. The company got two bookings after their initial ‘big
launch’, and made around $800 per month for several months.

The founders realized that most people judged the properties
on the photos, and most of the photos on the website were not
great. So they bought a fancy camera, and visited individual
houses that were listed on the site, offering to take photos for
them for free. This took a lot of time and effort, but slowly they
started to grow, eventually becoming the multibillion dollar
company that Airbnb is today.

Taking photos of their users’ rooms is obviously something that
they wouldn’t be able to do at scale, but in the short term it made
all the difference. Is there something you could do to make your
business or service stand out, even if it wouldn’t scale?

Summary

We hope by now that you’ve identified the best idea from the list
that you wrote at the beginning of this chapter, and that you are
looking forward to testing it out and creating your MVP. Starting
a business is one of the most exciting things you can do, and will
teach you a huge amount about the world, and yourself.

FUTURE-PROOFING YOUR CAREER WITH CODING

342

We are now going to move on to see how you might proceed
if you wanted to pursue coding further and actually become a
web or app developer. Even if you’re not planning on a career
change, we would recommend reading this final chapter, as we
will also cover how to earn a side income from coding by free-
lancing. This is something anyone can do, regardless of your
current role and, like starting a company, is a great way to
improve both your coding and business skills.

CHAPTER FOURTEEN

Pursuing coding further
to become a developer

Having considered how you can use your newfound coding
skills to advance your career, and start your own business,

we will now look at becoming a professional developer. Full-
time coders are highly sought-after, well remunerated and have
the flexibility of working in a range of industries solving a vari-
ety of problems. It is also a career that you can dip your toe into
by freelancing or completing small projects at the same time as
your main career.

We’ll start by establishing whether a career in coding is right
for you, and then go on to see how you can get into the sector.
We’ll look at what languages and platforms to learn, how to
build a portfolio and what you should have on your CV. Finally
we’ll look at applying for both freelance and full-time jobs.

A summary of this chapter would simply be to get experience
of as much as you can. Apply for some freelance jobs, learn a
range of languages, and practise by building real apps and

343

FUTURE-PROOFING YOUR CAREER WITH CODING

344

websites. Not only will you learn fastest this way, but you’ll
build a portfolio quickly, and find out which aspects of the work
you enjoy, and which you don’t.

Should you become a full-time coder?

As we’ve mentioned, becoming a developer is for many a great
career choice. Coders are well paid, often have a fair amount of
freedom within their role, and spend their days solving prob-
lems. If that sounds like something you would enjoy, read on!

Of course, as with any career, coding has its downsides. You’ll
start at the bottom, and while your income will by no means be
meagre, it will take a few years before you can command the top
salaries. The work can also be stressful, as managers might not
have a strong grasp of the difficulties of the problems they are
asking you to solve. Deadlines can be tight, and hours long,
depending on the company you work for.

Broadly speaking, there are two main career paths for a coder.
You could simply get better and better at your craft, working at
a higher level solving more difficult problems. If, while reading
this book, you have found yourself researching some of the finer
points of the languages we have covered, and trying to establish
how they work, this will likely be a great route for you. The best
coders can earn great salaries, and will often be headhunted to
join new start-ups, with potentially lucrative stock options.

The other option is to take the more management-focused
route. After several years coding, you might find that your time
is better spent training or managing others, and gradually you
will do less programming and more working with people. This
path is perhaps better suited to those who enjoy coding, but also
appreciate working with people and having more control over
the direction of a project.

Of course, only you can decide if a career as a developer is for
you, but fortunately it is very easy to try out coding as a career

PURSUING CODING FURTHER TO BECOME A DEVELOPER

345

by doing small projects and freelance work. Before we see how
to get freelance gigs, let’s take a moment to think about what
languages and platforms you should focus on.

What languages should you learn?

If you have gone through all the exercises in this book, you will
already be familiar with a range of languages. For front-end web
development (that is, code to create and manipulate webpages),
we have learned HTML, CSS and JavaScript. We learned Python
for back-end, or server-side, development. For apps, we covered
Swift for iOS apps, and Java for Android. We even looked briefly
at AppleScript and PowerShell for automation. That’s not a bad
selection!

Our hope from having covered all of these is that you should
have some idea of which type of development you prefer. You
might want to be a jack-of-all-trades, and build both apps and
websites, in which case you should simply learn what you need
to build your next project.

Web development

If you want to focus on web development, which is probably the
most broad area in terms of sheer numbers of jobs and projects
available, there are a couple more languages we would recom-
mend investigating. The first is PHP, which is the most widely
used server-side language. It is what Wordpress is written in, and
is an extremely quick way to build a simple site.

The second is MySQL, which is a database language. We
haven’t discussed databases yet in this book, but they are a criti-
cal component of most websites and apps, and they are used to
store data, such as usernames, passwords and user content. The
most typical simple website would use HTML, CSS and

FUTURE-PROOFING YOUR CAREER WITH CODING

346

JavaScript on the front-end, and PHP and MySQL on the back-
end. As a result, a rudimentary knowledge of PHP and MySQL
is a necessity for any web developer.

There are of course a whole range of further languages and
frameworks you can learn for web development. jQuery is a
commonly used JavaScript library that makes working with
JavaScript a lot easier. If you enjoyed the Python section, you
should look at Django, a popular framework for building
websites with Python. Ruby is another server-side language that
is increasing in popularity. C# and MS SQL Server are also very
prevalent especially in business applications and development.

Beyond these basics, our advice would very much be to learn
languages and platforms as needed – build websites for yourself
and others, and as you develop the need for a new feature or
structure, search the web and see what you find. Let the tools fit
the project, not the other way around.

App development

If you want to build apps, your choices are a little more restricted,
and although there are other options available, unless you have
strong reason to do so we would advise sticking with the
languages and IDEs (integrated development environments)
covered in this book. That is Swift and Xcode for iOS develop-
ment, and Java and Android Studio for Android.

These are the most straightforward, and most documented,
ways to build apps for iOS and Android, so becoming an expert
in those languages and IDEs would be strongly advised if you
want to build apps.

If you’re not sure which direction you would like to go in, just
keep an open mind and keep building things. It is likely that you
will develop a preference for, or get offered a job in, one particu-
lar platform and set of languages, but if that hasn’t happened yet
don’t worry about it – just keep on learning.

PURSUING CODING FURTHER TO BECOME A DEVELOPER

347

Getting freelance jobs

One of the great advantages of coding as a career choice is that
you can start to earn money from it straight away as a freelancer.
Even if you have relatively little coding experience, you should
be able to find jobs that suit your level. Of course, never claim to
be able to complete a job that you won’t be able to, but at the
same time don’t underestimate yourself. Be confident when
looking for freelance work, and commit to doing a great job for
your client.

When you are just setting out on a freelance career, there is
one important thing to remember: in the early days, you are not
primarily there to earn money. This may sound strange, but it’s
true: your primary goals should be to learn your craft and build
a portfolio. Those two things are far more valuable than what-
ever you might earn from a freelance gig, so think of any money
you earn as a bonus.

Think of getting freelance work as a free Coding MBA.
Instead of paying tens of thousands of pounds for lectures on
business techniques and writing essays, you are learning a craft
and getting practical business experience for free. Any money
you receive in the early months is icing on the cake.

This is important to remember because without a substantial
portfolio and significant experience you will likely not be able to
charge a great deal for your work. So be prepared to put the
hours in now, knowing that the big rewards will come later.

With any work you do, make sure to get a review from the
client, ideally on a central platform such as linkedin.com, as
references are extremely useful for getting both freelance and
full-time work later on. A lesser-known but very powerful place
to put reviews is Google Maps – if you set up your business as a
local one (using your home address is fine, but you could also
use the address of a local shared working space if you ask their
permission), you can ask your clients to post reviews there.

http://linkedin.com

FUTURE-PROOFING YOUR CAREER WITH CODING

348

Not many developers do this, so when people do local searches
for web and app developers, it is likely with just a small number
of five-star reviews you could be the top result.

There are two primary ways to get freelance work – locally, or
in-person, and using freelance websites.

Getting local freelance jobs

The obvious place to begin looking for local work is with your
current social circle. Think about colleagues, friends and family –
do any of them have a website that needs updating, or an app
idea they would like to build? At this point you may offer to
work for free, or in exchange for co-ownership of the website or
app, but don’t be afraid of charging a fair price if you do a job
for a profit-making business.

Another good place to find work is in local meet-ups – go to
meetup.com and see what is available in your local area. Most
towns and cities have a number of weekly networking events – if
yours doesn’t perhaps you could set one up. When you go along,
be friendly and helpful (and don’t be afraid to introduce yourself
as a developer!). It is likely some work will come your way, for
which you should certainly charge. Do a great job for a good
price and don’t be surprised when others start seeking you out.

Getting freelance work online

Local freelance jobs are a great place to start, but the market can
be limited and highly competitive. Fortunately, there are a
number of websites such as upwork.com or freelancer.com
where you can bid for freelance jobs all round the world.

The competition is strong, and it may take a few attempts
before you get your first paid gig, but remember that you have a
few crucial advantages over the more experienced developers on
those sites:

●● You’re primarily there to learn. Your first job may take you
three hours and earn you $10, but that’s fine because you will

http://meetup.com
http://upwork.com
http://freelancer.com

PURSUING CODING FURTHER TO BECOME A DEVELOPER

349

have learned a great deal about communicating with clients,
fixing website code and bidding for a project. Not only that,
but you will have earned your first five-star review (a proud
moment)!

●● You can take your time. Most developers on those sites post
generic bids on a large number of projects. You’re still
learning, so you can take your time and post a thoughtful,
relevant bid that shows that you’ve actually read the details of
the post. Believe me, bids like that are few and far between.

●● You can use geography to your advantage. If you live in the
United States or Europe, make the most of this by offering to
speak to the client on the phone, and using polished English
when bidding and replying to messages. By doing this, you’ll
stand out from the competition.

●● You can go the extra mile. As you’re there to learn, you can
do more than what the client asked for without worrying
about the extra time spent. If you’re setting up Wordpress,
install a caching plugin for them to speed up their site. If
you’re making a webform, use some custom CSS to make it
beautiful. Reply quickly and thoroughly to all their questions,
and earn their gratitude.

We will say it again – you will earn money here, but that is your
secondary goal. Primarily, you’re here to learn how to do free-
lance web development, and build up your online portfolio and
positive reviews.

Pick a freelance site, and stick with it

The hardest part of getting your first gig will be overcoming
your lack of positive reviews. For that reason, we would advise
picking one freelance site and sticking with it, at least for now.
You can join another later, but once you’ve got three five-star
reviews on freelancer.com, you’ll find it much easier to find work
there than you will with an empty profile on elance.com.

http://freelancer.com
http://elance.com

FUTURE-PROOFING YOUR CAREER WITH CODING

350

We won’t go into the strengths and weaknesses of each free-
lance site, as these can change dramatically over time. We’d
simply advise that you check out a few of them and pick which-
ever site you like the look of. Check that you can receive funds
in your country and that you are happy with their payment
terms, and sign up – don’t waste a lot of time going through all
the sites. We’ve had the most experience with freelancer.com, so
we’re going to focus on that site, but the others all work in a
similar way.

Here’s our list of sites you should check out:

●● upwork.com
●● freelancer.com
●● peopleperhour.com
●● guru.com
●● craigslist.com

A really useful comparison of these and other sites is available
online at www.freshbooks.com/blog/2013/01/16/freelance-jobs.
It’s focused on writing rather than web development but the
same principles apply.

Creating your profile

Once you’ve picked which site you want to work with, you need
to sign up and create your profile. When you create your profile,
use the following tips:

●● Use your real identity. You’ll want all the parts of your online
presence to tie together, so use your real name, upload a photo
and talk about yourself.

●● Be honest. Don’t claim to have skills you don’t have. At this
stage ‘Proficient in HTML, CSS and JavaScript’ would suffice,
and you can then add further skills as needed.

●● Link to your Twitter feed. If the freelance site allows, put in a
link to your Twitter feed – this will add authority to your
profile and reassure prospective clients that you are a genuine

http://freelancer.com
http://upwork.com
http://freelancer.com
http://peopleperhour.com
http://guru.com
http://craigslist.com
http://www.freshbooks.com/blog/2013/01/16/freelance-jobs

PURSUING CODING FURTHER TO BECOME A DEVELOPER

351

developer. If you don’t have a Twitter account, set one up – in
the early days it will increase clients’ confidence in you, and as
your community and following grow it can be a source of
work in itself.

●● Complete the exams. Most freelance sites have ‘exams’ that
you can take both in language (English being the most useful)
and various coding languages. They usually cost around $50,
but are worth it to get you off the ground when you don’t
have any reviews.

Bidding for gigs

Initially, look for small, relatively straightforward gigs, with a
maximum of $50. Updating websites, fixing broken layouts and
adding small features are all common requests. Bid on as many
projects as you can, bearing the following in mind:

●● Keep your bid low. Remember you’re here to learn and build
your reputation. Keep your bid low, especially when you have
zero reviews. This will get you gigs more quickly and you can
increase your price as you go.

●● Explain why your bid is low. You don’t need to tell the client
that you are learning, but you might want to say that you are
bidding low in order to get your first reviews on this site. They
will see that you have no reviews, and referring to it yourself
will show that you understand their concern and have made a
low bid as a result.

●● Don’t take on big jobs. You’re still learning, so avoid big or
technically advanced jobs. Feel free to take on jobs slightly
above your current skill level, as long as you’re confident you
can learn what will be required, but the last thing you want is
a bad review and a disgruntled client.

●● Clarify the job. It’s essential that you’re clear on what is
required, and that it has been objectively stated on the
freelance site messaging system. That way, if there is any

FUTURE-PROOFING YOUR CAREER WITH CODING

352

disagreement, you can refer back to what the job was
originally set out to be. Ambiguous language or general aims
(such as ‘build me a site’) are a recipe for disaster.

●● Agree on payment structure. Even with small projects, it’s
important to make it clear when payment will be due. We
would advise not to start work until a milestone is created (ie
the buyer has made a downpayment, which is held by the
freelancer site until the job is finished). That way, if there are
any disagreements, it is up to the freelancer site to establish
whether the work has been done and release the payment.

●● Be wary of buyers with no reviews. Buyers have reviews too,
and if a buyer has no reviews, be careful. They may well be
reliable, but they may not be – in this case it is particularly
important to make sure the requirements of the job are clear,
and that a milestone is paid before you start work.

Why not get started now? Take a couple of hours and create a
profile on the freelance site of your choice. Start bidding on
simple projects, making sure to keep your price low and your
communication fast and clear. We wouldn’t be surprised if you
had your first gig by the end of the day. Good luck!

Building a portfolio

As a developer, your portfolio website will likely be more impor-
tant than your CV. Your site should make clear what your
strengths are as a developer, and showcase some of your best
work. It should make potential clients and employers excited to
work with you.

Your website should reflect your style and personality, so if
possible create it from scratch. If you prefer, however, there are a
range of Wordpress themes that you can use to create a great-look-
ing portfolio quickly. It is important that your portfolio site looks
good, so we would advise spending $50 or so on a theme from
templatemonster.com or https://themeforest.net/. They both have
Wordpress portfolio sections at https://themeforest.net/category/

http://templatemonster.com
https://themeforest.net/
https://themeforest.net/category/wordpress/creative/portfolio

PURSUING CODING FURTHER TO BECOME A DEVELOPER

353

wordpress/creative/portfolio and www.templatemonster.com/
portfolio-wordpress-themes.

Take some time to browse some of the best developers’ port-
folio sites, and include their best features. Project Stories are
particularly useful to potential clients and employers. In a Project
Story you explain the clients’ needs, how you met them, and
what technologies you used to achieve their goals. Combined
with a screenshot or a link to the project itself, and a testimonial
from the client, this can be a very powerful way to show your
level of experience and competence, as well as your ability to
explain your work clearly.

Take time over your portfolio site, and make sure there is
room to expand it as you learn new skills and complete new
projects. It will hopefully be your standard bearer for many
years to come, so it’s worth getting it right.

Expanding your online presence

It is very likely that potential employers will search your name
on Google, so it is important that your online presence is cohe-
sive and impressive. We have talked at length about having a
blog, and also tending to your Twitter feed and portfolio. But
there are other things you can do to boost your online image.

Keep your LinkedIn profile up to date

LinkedIn is by far the biggest professional social network. You
should have a LinkedIn page, and it should reflect the jobs you
are applying for. So all the above advice applies: express your
experience and roles concisely and keep everything up to date.
Include links to the projects you have worked on and
testimonials.

https://themeforest.net/category/wordpress/creative/portfolio
http://www.templatemonster.com/portfolio-wordpress-themes
http://www.templatemonster.com/portfolio-wordpress-themes

FUTURE-PROOFING YOUR CAREER WITH CODING

354

Have a GitHub page

GitHub is a very popular site for storing code, usually for open
source applications. If you build tools, such as a JavaScript
image slider, or simple apps such as an iPhone calculator, put
them on your GitHub page. Not only will it help other people
but it will give you another place to show your talents and
experience.

You might also want to consider contributing to open source
projects. Anyone can do this, and it is a great way to give back
to the community that likely produced a lot of the free tools you
have used so far to build websites and apps. However, you need
to be sure that you know what you are doing if you contribute
to projects – contributing poorly written or buggy code will not
make you any friends within the community.

Writing a software developer CV

The process of writing a CV for a software developer is much
the same as for other industries: keep it concise, honest, relevant
and don’t belittle your achievements. If you are looking at a
career change into coding, you might be wondering how much
of your previous work to include, and how to ‘talk up’ your rela-
tive lack of development experience.

Our advice would be to include each of your roles (ideally
leave no gaps in your timeline), but don’t go into detail of what
the work involved. If you want to get work as a developer, you
should focus on what you have done to develop your new skills,
and the portfolio of work you have developed. As with your
portfolio, clarify what particular languages and environments
you are familiar with, as evidenced by the projects you have
worked on.

It is likely that some people that read your CV will not be
technical, and will instead be looking for keywords such as

PURSUING CODING FURTHER TO BECOME A DEVELOPER

355

JavaScript or PHP, so make sure you include all relevant skill
areas explicitly. The word ‘relevant’ there is important – be
aware of the job you are applying for and tailor your list of skills
accordingly. A complete laundry list of every language you’ve
ever worked with is not required!

A great technique here is to state what you like and dislike
about the tools you have used – this shows that you understand
them well enough to be familiar with their foibles. You can do
this in a ‘summary’ section, which also includes a statement
about your overall level of experience, and also some of the
personal projects you have worked on. This will show that you
have a genuine interest in programming, and also give you some-
thing interesting to talk about in the interview.

As always, be honest – don’t claim to have years of coding
experience if you don’t, but do make clear that you are a fast
learner and you have achieved a lot in the short time you have
been coding. If you are applying for appropriate jobs (ie entry-
level coding positions), your employer won’t expect a huge
amount of experience or a degree in computer science, but
they will want to see that you have the basic technical skills
they are looking for, and that you are genuinely interested in
what you do.

The interview

As with CVs, all the standard interview advice applies here: be
personable and interested in your interviewers, and have a strong
knowledge of the company and the role you are applying for. As
well as this, read your CV thoroughly and write down at least 20
questions that you might be asked about what you’ve written (if
you can’t think of 20, ask a friend or family member). Write
down great answers to these questions, and read them out loud
several times. This will help you give confident, fluent answers to
questions that are bound to come your way.

FUTURE-PROOFING YOUR CAREER WITH CODING

356

Your interviewers will likely be a technical manager (your
future boss), fellow coders (your future colleagues) and possibly
a non-technical HR representative. Imagine the interview from
their perspective – they would likely rather be doing something
else, so try to be upbeat and enthusiastic, and talk confidently
about the interesting side projects you mentioned on your CV.

Keeping up to date with industry news is also a great way to
show that you are genuinely interested in programming, and
gives you something of substance to talk about instead of small
talk.

Summary

The process described in this chapter – that of building a portfo-
lio, working on freelance jobs, writing your CV and attending
interviews, to finally landing a programming job is not a quick
one. You should allow at least a year. But remember you’ll learn
a huge amount along the way, and gain technical and personal
skills that will be useful regardless of whether you become a full-
time developer or not.

Conclusion

Congratulations – you’ve made it through this book. Along
the way you’ve hopefully picked up some knowledge and

insight into the world of coding and skills which will stand you
in good stead wherever your career path may take you. Wherever
you decide to take your new-found skills we would urge you to
expand and learn more. Actively seek out and find coding oppor-
tunities. Identify those potential projects in your existing
workplace or indeed realize that entrepreneurial idea that has
been on the back burner all these years. Your objective is to
construct a reason, a requirement, perhaps even a business
mandate for you to put your learning into practice and build
experience. After all, necessity is the mother of all invention.

So what now? In the latter chapters of this book we outlined
several opportunities that learning code brings you. We hope
that you have already started taking on some of these opportu-
nities, but just in case, let us now briefly recap some of the
primary next steps. You should aim to choose between two and
five of these to ensure that your development continues, and that
you get the most out of reading this book.

357

CONCLUSION

358

Work better

Consider several ways in which you could work more efficiently
utilizing the technologies that we have covered. Think about
burdensome, typically administrative tasks in your workplace
that through application of your technical skills you could in
some way automate and thus save significant time for your
colleagues.

Using your coding skills to work more effectively is a great
way to provide additional value for your employer and your
customers, which inevitably benefits you as you gain recognition
for your endeavours delivering these improvements to the
business.

Build a website or app

With even limited initial skills you can quickly start to produce
sites and apps which are small tools to answer particular busi-
ness needs. As well as naturally advancing your skills and
experience, looking for opportunities involving small discrete
apps and services will enhance the breadth and depth of your
portfolio. You will be surprised how even limited applications,
successfully delivered and serving a client, will quickly result in
further follow-on work and expanded feature requests from
the client.

These websites and apps don’t always need to fulfil a specific
business objective or have initial remuneration. For instance,
you might identify a need for a community web space for a
local initiative or an effective solution in your own workspace
which saves you and perhaps your team significant time with
processes.

CONCLUSION

359

Become an entrepreneur

Coding skills are unrivalled in their capacity to allow you to
begin your own business venture. We have already looked at
formulating your idea and establishing whether there is a
demand for it. Remember that even the genius that is Mark
Zuckerberg began his project in a college dormitory as a basic
picture rating application. His real brilliance was in realizing the
potential for his idea and adapting his approach to meet the
demand for his application and its services. Have a bigger picture
in your mind, but start off small, manageable and achievable
and build up from there. You’d be really surprised at how effec-
tive rapid prototyping of smaller concepts is at expanding and
breeding new ideas.

Don’t be afraid to step into territory that is already served by
applications and or websites. Those incumbent services may not
be performing as well as they could or perhaps alternatively you
may have identified a niche offering within that sector.

Become a developer

If you are considering a full-time career change then you are on to
a winner. As we have already discussed, coding is one of the few
unique professions that are truly global. Provided you can demon-
strate skill and competence in your chosen technologies, then the
world is your oyster. Suddenly visa restrictions are relaxed, your
transferable and greatly in-demand skills are valuable, tradable
commodities allowing you to negotiate favourable working
conditions and remuneration at relatively high levels. Better still,
as long as you keep abreast of changing technologies, maintain
and update your portfolio and master new skills then there is very
little risk of your chosen career leading to redundancy. The

CONCLUSION

360

trajectory of demand for IT workers is continually upwards and I
predict it will increase exponentially in the not-so-distant future.

Learn more

Once you have mastered the basics, perhaps the single most
important thing to do is to start to put theory into practice.
Complement the theory component with practical applications,
much like we have done in this book. This process is a powerful
learning technique forcing the brain and memory to commit and
retrieve information. Our minds are powerful devices, but they
are organized around context. As an exercise, try to picture your
best friend from primary school or your beloved pet when you
were a child. It is difficult. If you now try with a context – think
of a special memory or occasion – suddenly they appear a lot
more clearly in your thoughts and you start to recall much more
detail.

In addition to your portfolio, try to seek out active challenges
and build specifications for a technical solution around those.
Those challenges will naturally include additional elements or
unique scenarios which will push the envelope of your learning
and enhance your skills. Much like when you learn a new spoken
language the key is to actively engage in situations which force
you to apply and adapt your learning to the situation. If I was to
ask the market trader in Barcelona for two apples in my best
Spanish, they might well respond with a clarification of whether
I would like green or red apples or one of each for example.

It would be amazing if reading this book alone would make
you the complete coder, but clearly it is just the start of your jour-
ney. You will want to further your learning by accessing books
and online courses. Years of collective teaching experience have

CONCLUSION

361

taught me and Rob that presenting material from as many view-
points as possible is a sure-fire way to cement student learning.
Read as much and from as many sources as you can to firm up
your understanding.

A few suggestions are given below. They are by no means
exhaustive and there are lots of good resources out there:

●● O’Reilly, Apress – publishers of a very large range of technical
books authored by experts in the topics covered.

●● Udemy.com – a huge range of courses across all topics.
●● Pluralsight.com – again, a huge library of courses but with a

specific focus on just IT and relevant learning pathways.
●● Codecademy.com – interactive coding courses, many free, on

web development and related courses.

To bring this book to a close let us remember that it’s about
knowledge, the ability to understand how something may be
accomplished rather than knowing the full syntax of a particular
solution or implementation. The modern-day advantage of liter-
ally millions of coding samples, implementation and support
networks online means that you are never far from a specific
answer or indeed friendly assistance from support sites and
forums.

Learn and experience as much as you can across different
technologies to equip you to surmount any challenge with confi-
dence, efficiency and flexibility. Identify and scope the specific
technical challenges within the solution. Always remember the
adage that ‘20% of the problem is 80% of the work’, and so if
you break the back of that 20% at the outset then you are flying.

Approach problems and challenges with enthusiasm and
verve and, much like we did as children, break them down into
smaller discrete problems. Suddenly the most imposing conun-
drums become logical steps along a path to success. Don’t be
afraid to go for the big technical hurdle first.

http://Udemy.com
http://Pluralsight.com
http://Codecademy.com

CONCLUSION

362

To whimsically meander back through our narrative to the
original scrawled graffiti on that windswept, dreary grey train
platform:

“If not now, when?”

And to finally ask... what exactly are you waiting for?

Access 2, 7
accounting blogs 318
actions 228, 229, 234, 236
affiliate links 317
Airbnb 341
alert (command) 115, 116–18, 119–20,

121, 133–34
allowfullscreen (attribute) 70
ampersands (&) 66, 67
anchor links (a) 62, 64
and operator (command) 175–76
Android 26, 30, 31, 32, 267–91, 300

Complete Android Developer
Course 6

Android Developers 268, 291
Android Studio 267–70, 281–83, 292,

293, 300, 306–07, 346
Android Studio 2.2 268
Android Virtual Device 270–71, 274
angled brackets 39
App Store 218
AppCoda 241
Apple 333

developer account 218
see also iTunes; iPads; iPhones;

Macbook; MacOS; Swift
AppleScript 312, 324–27
applets 320
apps 3, 29, 30, 217, 248–49, 312–14,

346, 358
desktop 242–43
performance review

reminder 286–90
setup process 218–19
see also Visitor Registration app

Apress 361
arrays see lists
AT&T 241
attributes

allowfullscreen 70
Android 282
height 49–50, 68–69, 84, 85,

94, 136
HTML 48, 49

onClick 116, 119, 120, 128,
274, 287

width 49, 50, 59, 84–85, 91,
94, 136

automation 2, 14, 20, 21, 26,
200–01, 319–28

Python 152

background colours 81–83, 248
bandwidth 206
banking sector 20–21
BBC Microcomputer 201, 202
Beautiful Soup 322–24
Berners-Lee, Sir Tim 36, 73
bidding for projects 349, 351–52
blog topics 315–16
blogging platforms 318–19

see also Wordpress
blogs 16–17, 314–19, 337
body (tag) 41, 42, 85
bold text (strong code) 43, 81,

105, 107
Boole, George 159
Boolean variables 159, 232, 258
Bootstrap 212–14
border-radius 98–99
borders 61, 70, 94, 95–99
brackets (code),

angled 39
curly 76, 120, 139, 256, 258,

263–64, 277
square 160

Brackets (software package) 37–40, 43,
49–50

brainstorming 333
breakpoints 213
Brown, Hero 317–18
Brown, J 318
browsers 29
btnCalculate (function) 258–60
business ideas 330–33
business information apps 313
buttons 53, 56–57, 156, 224, 228, 251,

298, 320–21

Index

363

INDEX

364

C 30
C# 30, 244, 248–49, 257–59, 262, 346
C++ 30
Calacanis, Jason 22
careers in coding 311–42
Cascading Style Sheets (CSS) 31,

72–111, 297–98, 319
debugging 302–04
margins 122

Cassidy, Mrs 318
char (characters) 257
checkboxes 52
checking code 296
Chesky, Brian 341
children, teaching code to 15
Chrome Developer Tools 302–04
Chromebooks 202
classes

Android 275–76
CSS 77–78, 79, 109
JavaScript 114

clean code, importance of 294–96
clear:both rule 87
client-side language (code) 29, 31, 113
cloud technology 243
Codeacademy 71, 361
coding, defined 24–26
colour (color) codes 74, 76–78, 83–84,

97, 102–03
background colour 81–83, 248

‘Coming Soon’ websites 338
comments 224, 295, 298, 322,

324–25, 327
common controls 251
communication 14–15

see also customer feedback
community building 315
competitor analysis 336–37, 340
Complete Android Developer Course 6
Complete iOS Developer Course 6
Complete Web Developer Course 6
component trees 272
computer language development 25, 29
consoles 157, 220, 225, 303, 304,

305–06
content management systems 199,

207–09
see also Wordpress

continuous learning 360–62
copying code 300–01
copyright symbol 67
Coursera 241, 291
crawling 322
creative industries 21–22
CSS (Cascading Style Sheets) 31,

72–111, 297–98, 319
debugging 302–04
margins 122

CSS Lint 304
curly brackets (braces) 76, 120, 139,

256, 258, 263–64, 277
customer feedback 337–38
CVs 311–12, 354–55

Daring Fireball blog 314, 317
data type 258, 259
datetime 258
debugging 292–308
decimal places 258, 259–60, 263
delete (command) 44
desktop applications 242–43
developer tools 302–04
differing variables 177
disabling styles 303
divs (divisions) 79–83, 124–25
Django 346
!DOCTYPE (command) 40, 41,

42, 138
domain names 202–03, 204, 206, 314,

318–19
Domainsbot 203
drop-down menus

Android 273, 279
HTML 54–55
iPhone/iPad 222
Windows 251

ebooks 334
Eco Web Hosting 6, 340–41
editing window 272
EditText 281, 283–85, 287–89
efficiency 13–14, 20, 21, 358

see also automation; shared hosting
else if (elif) code 147, 148, 177, 324
em command (italics) 44, 105–06
enjoyment 332–33

INDEX

365

enter (button) 320–21
entities 65–67
entrepreneurship 286, 330–41, 359
equal to another (variable) 176–77
eRosary app 3
error identification 296–301, 306
error messages 30, 230, 240, 297,

299, 305
exams 351
Excel 2, 7, 21
.exe(executable) files 265
experience 332, 333

Facebook 68, 333, 337, 338
feedback 337–38
file transfer protocol 211
financial value 22
Firefox 211, 243
FireFTP 211
floats 85–87, 233, 236–37
fonts 99–102

see also italics
for loops 141–42, 163–70, 179
form1.cs 251, 255, 258–59
forms 50–57, 254–55
form load function 255
freelance sites 349–50
Freelancer 348, 349, 350
freelancing 6, 343, 345, 347–52
FTP 211

Gebbia, Joe 341
Github 212, 324, 354
Google 5, 6, 16, 68, 241, 287, 291,

297, 299–300, 314, 333, 336,
338, 339

Google Docs 113
Google Maps 209, 347–48
Google Play 71, 269
Google Sheet 320
graphical user interfaces (GUIs) 26,

243–44, 251–52
Gruber, John 314, 317
guessing game project 144–49

Hall, Alice 333–34
hash symbols (#) 65, 66, 79, 83, 320
headers (head tag) 40–41, 42, 138

major headings (<h1> tag) 75–76,
145, 146, 210

table headers (th tag) 57, 58, 59, 61
height attributes 49–50, 68–69, 84, 85,

94, 136
Helvetica Neue 101
hints 282
HomeExchange 5
HTML (hypertext markup

language) 31, 40, 35–71, 319
debugging 302–04
lists 45–47

HTML (hypertext markup language)
entities 65–67

h2 code 74, 76
hypertext preprocessor (PHP) 31, 32,

113, 152, 244, 345, 346, 355
hypertext reference (href) 62, 65

ideas validation 336–38
IDs 78–79, 284
if else statements 262–64
if statements 127–33, 148, 153, 159,

173–81
If This Then That 319–20
iFrames 67–70
images (img) 48–50
import command 275
import UIKit 224
important information apps 313
indentation 28, 37, 164, 258, 263
indexes 160–61, 166–67, 325–26
index.html 38, 210, 211
InitializeComponent 257
input type= code 51, 52–53, 56,

114, 124, 145
insert code 162
integers (numbers) 232, 233, 236, 237,

258, 277
prime numbers 294–95

integrated development
environments 305, 346

IntelliSense list 259
interactivity, Android 274–78
internal CSS 74–77
internet 36, 201
Internet of Things 153
interviews 355–56

INDEX

366

iOS 6, 26, 30, 31, 32
iPads 216–41
iPhones 6, 216–41
italics (em tag) 44, 105–06
iTunes 71

Java 30, 31, 32, 267
debugging 306–07

JavaScript 31, 112–50, 319
debugging 304
nesting 132–33, 178–79

Jobs, Steve 7, 317
John Lewis 333
jQuery 113, 346
JSLint 304

keywords 203
knowledge sharing 315

labels 251
customization of 222
Xcode 220–22

law (legal) sector 19–20
layout errors 297
Learn to Code 71
Lee, Mark 318
lightning icons 254
LinkedIn 347, 353
links 36, 62–65, 108–09, 317, 322
Linux 30, 31, 154, 211
lists 159–63, 165–70, 184–87

list items (li tags) 45–46, 47, 80, 82,
185, 186

list length (len) 166–67
ordered 46
unordered 45–46, 47, 80–81

log function 307
loops 28, 138–39, 141, 153, 164

for loops 141–42, 163–70, 179
while loops 142, 170–73

L’Oréal 333
Lyft 241

Macbooks 217
MacOs 26, 30, 31, 321, 324–27
Mailchimp 320, 338
major headings (h1 tag) 41, 75–76,

145, 146, 210

management roles 344
margins 90–92, 122
marketing function 20, 319
math.random code 142–44, 147
Meetup 348
Microsoft 247
Microsoft Access 2, 7
Microsoft Excel 2, 7, 21
Microsoft Office 7
Microsoft Visual Studio Community

Edition 243–66
Microsoft Windows 26, 30–31, 154,

211, 242–66, 321, 327–28
Microsoft Windows Forms App

248–49
minimum viable product (MVP)

338–39
-50%, -50% rule 136
minutes value 237
mobile devices 26, 30

see also iPads; iPhones
modules 113, 182, 188, 194
Mozilla Firefox 211, 243
MS SQL Server 346
Muddy Stilettos 317–18
MySQL 113, 345–46

NameMesh 203
nesting, Javascript 132–33, 178–79
.NET Desktop Development 30, 246,

248–49
networking events 348
‘Never Seconds’ blog 316
new tabs, opening 109–10
numbers (integers) 232, 233, 236,

237, 258, 277
prime numbers 294–95

numericupdown control 251

Objective-C 30, 31
Odin Project 215
onboarding apps 313
onClick attribute 116, 119, 120, 128,

274, 287
onCreate 276
online freelance work 348–49
open sourcing 207, 354
Open University 215

INDEX

367

optionals 232, 234, 236
options (option tag) 54, 55, 124
ordered lists (ol tag) 46
O’Reily 361
organization identifiers 219
organization names 219
outlets 226, 227, 228, 229, 230–31,

234, 236
override control 225

padding 92–95
palette 272, 281
Panabee 203
paragraphs (p tag) 41, 43–44, 64–65,

73, 139
parameters 257
pasting code 300–01
pay (salaries) 4, 344, 352
Payne, Martha 316
performance review reminder

app 286–90
Perl 31
photos 21, 324, 341, 350
PHP (hypertext preprocessor) 31, 32,

113, 152, 244, 345, 346, 355
Phrase Express 321
Pink Boutique 333
playgrounds 233–34
plugins 207, 209, 334–35, 349
Pluralsight 361
Pocket 216
.pop code 162
portfolio building 16–17, 343–44, 347,

352–53, 354
positioning 85–92, 136, 221, 297
Powershell 327–28
pricing 339–40
prime numbers 294–95
print function 298–99, 306
private modifiers 257
product names 218
products businesses 333–34
professional expertise 18–19
profile building 350–51, 352, 353
profile creation 350–51
Program.cs 251
Project Stories 353
properties windows 253–54, 272

pseudo classes 109
public forms 257, 277
public modifiers 257
Python 31, 32, 151–95, 244,

321–24, 345

radio buttons 53
random number generation

142–44, 147
recurring revenue 333
red colour 102–03
registrars 202
regular expressions 182–84
remove code 162
retail sector 22
reviews 202, 205, 347–48, 349,

351, 352
round function 237
rounded corners 98–99
rowList function 192–93
Ruby 31, 346
run button 156

salaries (pay) 4, 344, 352
sales sector 14, 20
sans serif font 100
scaling 18, 340–41
scatter-gun

approach 335–36
scraping 153, 200–01, 321–24
Script Editor 324–27
script tag 117, 118, 119
select tag 54, 55
self-closing tag 48, 50, 55
semi-colons 258
server-side language (code) 30,

31–32, 114
see also PHP; Python; Ruby

servers 30, 151–52, 201, 217
service industry 22
services businesses 333–34
shared hosting 205–06
Single View App 218–19
skills demand 17, 311, 331
Skulpt 154
Slack 320
social media 319, 320

see also Facebook; Twitter

INDEX

368

software developers 4, 317, 343–56,
359–60

portfolio building 16–17
pricing work 339–40
support from 301–02

solid borders 96
source (src) 48
spans 103–05
splitting strings 184–87
square brackets 160
Stack Overflow 290, 299, 301, 302
#standout ID (CSS) 103, 104–05
Storyboard 219
strings 182, 184–87, 257, 284
strong code (bold text) 43, 81,

105, 107
style attribute 117
submit buttons 56–57
subscript (sub tag) 44
subscription models 315
substrings 182
summary sections, CVs 355
super.onCreate code 276
superscript (sup tag) 44
super.viewDidLoad code 225
Swift 30, 31, 32, 224–28, 239, 241,

267, 346
debugging 301, 305–06
optionals 232, 234, 236
variables 232–34

tab button 320–21
table data (td) 58, 59, 61, 194
table headers (th tag) 57, 58, 59, 61
table rows (tr tag) 57–58, 59–60
tables 57–61, 194
tags 39
technical cofounders 17
text 271–74, 282

bold 43, 105, 107
underlined 106–07

text alignment 107–08
text areas 55–56
text boxes 51–52, 128, 222–24,

251, 259
text editors 16, 37, 39, 58, 211, 292

see also Brackets
Text Expander 321

text expansion 320–21
text fields 222–24, 230–32, 236,

281–82, 284, 287–88
th tag (table headers) 57, 58, 59, 61
themes 208–09, 248, 334–35, 352–53
toasts 278–79, 280, 283–86, 287,

288–89
tr tag (table rows) 57–58, 59–60
traction 331
trade industries 21
training apps 313
transistors 25, 26
translate:transform rule 136
trinkets 187–89
Tutorialspoint 154
Twitter 30, 36, 137, 319, 350–51, 353

Udacity 241
Udemy 215, 241, 290, 291, 334, 361
underlined text 106–07
unique selling point (USP) 335, 339–41
unordered lists (ul tag) 45–46, 47,

80–81
Upwork 348
urllib.request module 188
user feedback 337–38
user interface editing 225–28
using statements 257

Van Rossum, Guido 152
variables 153, 177, 298

Android 284
Boolean 159, 232, 258
differing 177
names 284, 295
Python 153, 157–59, 177
Swift 232–34

video courses 6, 334
ViewController 221, 224, 226,

227, 228
views 218, 277–78
Virtual Device 270–71, 274
Visitor Registration app 26–29, 41–43,

155–57, 173, 176, 234–40
Visual Basic for Applications 2
Visual C# 248
Visual Studio Community

Edition 243–66

INDEX

369

Vodafone 333
voids 276, 277

web browsers 29
web crawling 322
web frameworks 212–14, 346
web hosting 5–6, 203–07, 210, 340
web hosting guides 206
web safe fonts 102
web scraping code 153, 200–01,

321–24
webapps 201
webforms 349
website builders 204–06
website development 6, 15–18, 29, 36,

199–215, 338, 345–46, 358
cloning 110

website requirements 206
webspace 206
Weiner, Nate 216
while loops 142, 170–73

width attribute 49, 50, 59, 84–85, 91,
94, 136

Wiem Lie, Håkon 73
Williams, John 313
Windows 26, 30–31, 154, 211,

242–66, 321, 327–28
Word Expander 321
Wordpress 206, 207–09, 318–19,

334–35, 338, 345,
349, 352–53

W3Schools 71

Xcode 217–22, 225, 226, 228, 230,
233–34, 235, 267

debugging 292, 300, 305–07
Xcode Library 219

yoga blogs 318
YouTube 69–70

Zuckerberg, Mark 359

THIS PAGE IS INTENTIONALLY LEFT BLANK

370

THIS PAGE IS INTENTIONALLY LEFT BLANK THIS PAGE IS INTENTIONALLY LEFT BLANK

371

THIS PAGE IS INTENTIONALLY LEFT BLANK

372

THIS PAGE IS INTENTIONALLY LEFT BLANK THIS PAGE IS INTENTIONALLY LEFT BLANK

373

THIS PAGE IS INTENTIONALLY LEFT BLANK

374

	Cover
	Contents
	Introduction
	Learning in-demand skills
	Who are we?
	How to use this book
	Supporting material online

	PART ONE Why coding?
	01 Why coding is important and what it can do for you
	Becoming more efficient
	Communicating with technical people
	Understanding how software works
	Knowing what it takes
	Building your own website or app
	Building a web presence
	Starting your own business
	Taking on extra responsibilities within your current role
	Aim to stop ‘selling your time’
	Combine coding with your professional expertise
	Coding is fun
	Coding and specific industries
	Summary

	02 What coding is
	What is coding?
	Let’s write some code
	Why are there so many programming languages?
	Summary

	PART TWO Languages
	03 HTML
	What is HTML?
	Why learn HTML?
	Formatting text
	HTML lists
	Images
	Forms
	Tables
	Links
	HTML entities
	iFrames
	Summary
	Further learning

	04 CSS
	What is CSS?
	Why learn CSS?
	What does CSS look like?
	What is internal CSS?
	Classes and IDs
	Divs
	Fonts
	Styling text
	Aligning text
	CSS project: clone a website
	Summary
	Further learning

	05 JavaScript
	What is JavaScript?
	Why learn JavaScript?
	What does JavaScript look like?
	Internal JavaScript
	Changing styles with JavaScript
	If statements
	Updating website content
	Loops
	Generating random numbers
	JavaScript project: guessing game
	Summary
	Further learning

	06 Python
	What is Python?
	Why learn Python?
	What will this chapter cover?
	How do we get started with Python?
	‘Visitor Registration’ with Python
	Variables in Python
	Lists
	For loops
	While loops
	If statements
	Regular expressions
	Splitting strings into lists
	Getting the contents of a webpage
	Python project: extracting visitor contact data from a webpage
	Summary
	Further learning

	PART THREE In practice
	07 Website development
	Why build a website?
	How do websites work?
	What is a domain name, and how do I get one?
	What is web hosting, and how do I get it?
	Content management systems
	Self-coding your site
	Website development project: build a website
	Summary
	Further learning

	08 Building an app for iPhone or iPad
	What is an app?
	Getting started: downloading Xcode
	Adding labels to our app
	Adding a text field
	Adding buttons
	Running some code
	Interacting with the user interface
	Making buttons interactive
	Variable types in Swift
	Building an app for iPhone or iPad project: Visitor Registration app
	Summary
	Further learning

	09 Windows desktop application programming
	Desktop applications evolution
	Microsoft Visual Studio Community Edition
	C# programming language
	Installation of Visual Studio
	The Solution Explorer
	Adding functionality to our application
	Coding our button click
	Running our application
	If else conditional statements
	Building your application
	Optimizing for release

	10 Building an app for Android
	Downloading and setting up Android studio
	Running your first Android app
	Adding text and buttons
	Making the app interactive
	Making a toast
	Building an app for Android project: performance review reminder app
	Summary
	Further learning

	11 Debugging
	Why learn debugging?
	How to write code that requires minimal debugging
	Debugging HTML and CSS
	Debugging JavaScript
	Debugging Swift in Xcode
	Debugging Java in Android studio
	Summary

	PART FOUR Future-proofing your career with coding
	12 Using coding to enhance your career
	Creating an app for your business
	Starting a blog
	Finding tasks that can be automated
	Using Python to extract email addresses from a website
	Automation on MacOS
	Automation on Windows
	Summary

	13 Coding and entrepreneurship
	What’s coding got to do with entrepreneurship?
	Getting ideas
	Products vs services
	Your unique selling point
	Validating your idea
	Creating a minimum viable product
	How much to charge?
	Do things that don’t scale
	Summary

	14 Pursuing coding further to become a developer
	Should you become a full-time coder?
	What languages should you learn?
	Web development
	App development
	Getting freelance jobs
	Expanding your online presence
	Writing a software developer CV
	The interview
	Summary

	Conclusion

	Index

