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Preface

BACKGROUND. In 1980 we published A Compendium of Continuous Lattices.
A continuous lattice is a partially ordered set characterized by two conditions:
firstly, completeness, which says that every subset has a least upper bound;
secondly, continuity, which says that every element can be approximated from
below by other elements which in a suitable sense are much smaller, as for
example finite subsets are small in a set theoretical universe. A certain degree
of technicality cannot be avoided if one wants to make more precise what this
“suitable sense” is: we shall do this soon enough. When that book appeared,
research on continuous lattices had reached a plateau.

The set of axioms proved itself to be very reasonable from many viewpoints;
at all of these aspects we looked carefully. The theory of continuous lattices
and its consequences were extremely satisfying for order theory, algebra, topol-
ogy, topological algebra, and analysis. In all of these fields, applications of
continuous lattices were highly successful. Continuous lattices provided truly
interdisciplinary tools.

Major areas of application were the theory of computing and computability, as
well as the semantics of programming languages. Indeed, the order theoretical
foundations of computer science had been, some ten years earlier, the main
motivation for the creation of the unifying theory of continuous lattices. Already
the Compendium of Continuous Lattices itself contained signals pointing future
research toward more general structures than continuous lattices. While the
condition of continuity was a robust basis on which to build, the condition
of completeness was soon seen to be too stringent for many applications in
computer science – and indeed also in pure mathematics; an example is the
study of the set of nonempty compact subsets of a topological space partially
ordered by ⊇: this set is a very natural object in general topology but fails to
be a complete lattice in a noncompact Hausdorff space, while a filter basis of
compact sets does have a nonempty intersection. Some form of completeness

xi



xii Preface

therefore should be retained; the form that is satisfied in most applications is
that of “directed completeness”, saying that every subset in which any two
element set has an upper bound has a least upper bound; the existence of either
a minimal or a maximal element is not implied.

In computer science it has become customary to speak of a poset with this
weak completeness property as a deeceepea-oh, written dcpo (for directed
complete partially ordered set). A continuous dcpo is what we call a domain.
Since this word appears in the title of this book, our terminology must be
stated clearly at the beginning. In that branch of order theory with which this
book deals there is no terminology clouded in more disagreement and lack of
precision than that of a “domain”, because it has become accepted as a sort of
nontechnical terminology.

Domains in our sense had moved into the focus of researchers’ attention
at the time when the Compendium of Continuous Lattices was written, al-
though then they were consistently called continuous posets, notably in the
Compendium itself where they appear in many exercises. When their signifi-
cance was discovered, it was too late to incorporate an emerging theory in the
main architecture of the book, and it was too early for presenting a theory in
statu nascendi. So we opted at that time for giving the reader an impression of
things to come by indicating most of what we knew at the time in the form of
exercises. The rising trend and our perception of it were confirmed in mono-
graphs, proceedings, and texts which appeared in a steady stream trailing the
Compendium:

1981 Bernhard Banaschewski and Rudolf-Eberhard Hoffmann, editors,
Continuous Lattices, Springer Lecture Notes in Mathematics 871,
x+413pp.,

1982 Rudolf-Eberhard Hoffmann, editor, Continuous Lattices and Related
Topics, Mathematik Arbeitspapiere der Universität Bremen 27,
vii+314pp.,

1982 Peter Johnstone, Stone Spaces, Cambridge Studies in Advanced
Mathematics 3, xxi+370pp.,

1984 H. Lamarr Bentley, Horst Herrlich, M. Rajagopalan and H. Wolff,
editors, Categorical Topology, Heldermann Sigma Series in Pure
Mathematics 5, xv+635pp.,

1985 Rudolf-Eberhard Hoffmann and Karl Heinrich Hofmann, editors,
Continuous Lattices and Their Applications, Marcel Dekker Lecture
Notes in Pure and Applied Mathematics 101, x+369 pp.,

1989 Steven Vickers, Topology via Logic, Cambridge Tracts in Theoretical
Computer Science 5 (2nd edition 1990), xii+200pp.,
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1990 B. A. Davey and H. A. Priestley, Introduction to Lattices and Order,
Cambridge University Press, 1990, vii+248pp.,

1994 S. Abramsky and A. Jung, Domain theory, in S. Abramsky,
D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in
Computer Science, Vol. III: Semantic Structures, Oxford University
Press,

1994 V. Stoltenberg-Hansen, I. Lindström, and E. R. Griffor, Mathematical
Theory of Domains, Cambridge Tracts in Theoretical Computer
Science 22, xii+349pp.,

1998 R. M. Amadio and P.-L. Curien, Domains and Lambda-Calculi,
Cambridge Tracts in Theoretical Computer Science 46, xvi+484pp.

While some of these sources are devoted to supplementing the lattice theoret-
ical and topological aspects of continuous lattices, the development of a more
general domain theory and its computer theoretical applications predominate
in this literature. From the viewpoint of pure mathematics, arguably the most
prominent developments after the appearance of the Compendium of Continu-
ous Lattices were

� the Lawson duality of domains (much in the spirit of Pontryagin duality of
locally compact abelian groups),

� the first creation of a really satisfactory general theory of locally compact
spaces in general topology via domain theory,

� other expanded connections with topology such as the the theory of sober
spaces, principally the machinery surrounding the Hofmann–Mislove
Theorem,

� the cross connections of domain theory and the theory of cartesian closed
categories,

� the representation of topological spaces as the “ideal” or maximal points of
a domain,

� and entirely new outlooks on classical analysis through domain theory.

AIMS. The Compendium by Gierz et al., as it became known after a while,
was out of print in a few years. It continued to be cited as a comprehensive
reference on continuous lattices and their generalizations in spite of the cum-
bersome reference to a line of no less than six authors whose collaboration –
notwithstanding their motley mathematical origin – was amply explained in the
foreword of the Compendium; the five authors who had to take cover behind
the hedge of “et al.” learned to live in hiding. The list of books which followed
the Compendium is impressive. But somehow it seemed that the Compendium
was not replaced or superseded, certainly not by one single book which could
substitute for its expository and pedagogical drift. People felt that an attempt to
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overhaul the Compendium and to present a new edition containing the original
information as well as reflecting developments of two decades of research in
the larger scope of domain theory might be welcomed by readers in the area,
old and young. In the fenced-in area of continuous lattices, the Compendium
still had encyclopedic aspirations. As the vast literature of the last twenty years
beyond the already respectable list of references in the Compendium indicates,
this ambition is now beyond our grasp. It is therefore with a touch of modesty
that, in the title of our book, we now drop the word Compendium and simply
present a treatise on “Continuous Lattices and Domains”.

As was its predecessor, this book is intended to present the mathematical
foundations of the theory of continuous lattices and domains from the ingredi-
ents of order theory, topology and algebra and blends of all of these. Our use of
category theory remains close to the concrete categories arising in our investi-
gations, and thus we avoid the high degree of abstraction that category theory
allows. It has been our deliberate choice only to lay the groundwork for the nu-
merous applications that the theory of domains has found in the area of abstract
theories of computation, the semantics of programming languages, logic and
lambda calculus, and in other branches of mathematics. In the following selec-
tive list of subject matter not treated in this book, the reader may find guidance
to further sources which are concerned with these and other applications; this
list is far from being comprehensive.

� Domains for semantics of lambda calculi and of programming languages
(see e.g. [Scott, 1993], [Scott, 1972a], [Scott, 1976], [Plotkin, B1981],
[Gunter, B1992], [Winskel, B1993], [Amadio and Curien, B1998],
[Reynolds, B1998]),

� stable domain theory, Girard’s coherent spaces, hypercoherences (see e.g.
[Amadio and Curien, B1998], [Girard, B1989], [Ehrhard, 1993]),

� Scott’s information systems and more generally domain theory in logical
form (see e.g. [Scott, 1982c], [Abramsky, 1991b], [Jung et al., 1997]),

� domains and computability, computable analysis (see e.g. [Eršov, 1972a],
[Stoltenberg-Hansen et al., B1994], [Escardó, 1996a], [Edalat and
Sünderhauf, 1999]),

� quantitative domain theory with its many different approaches,
� categorical generalizations (see e.g. [Adámek, 1997]),
� axiomatic and synthetic domain theory (see e.g. [Hyland, 1991], [Fiore,

1997], [Fiore and Rosolini, 1997a], [Fiore and Plotkin, 1997], [Taylor,
B1998]),

� applications of domain theory in classical mathematics (see [Edalat,
1997a]).
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GENESIS. In the foreword to the Compendium we familiarized the reader with
some of the background and how it was written in a time that pre-dated the
actual advent of TEX as the standard for mathematical typesetting. The writing
of the new book proceeded under different auspices.

As a first step, even prior to our decision to go ahead with a new printing
of the compendium, Dana S. Scott secured a complete LATEX source file of
the Compendium in its entirety at Carnegie Mellon University; this source
file was kept and elaborated typographically at the Technical University of
Darmstadt in the custody of Klaus Keimel. We kept a pretty good record of
all typographical and mathematical errors that we and our readers found in
the Compendium, and all of these were corrected in our master file. A first
updating of the bibliography of the Compendium was compiled by Rudolf-
Eberhard Hoffmann, Karl Heinrich Hofmann, and Dana S. Scott in 1985 and
was published in the Marcel Dekker volume edited by Hoffmann and Hofmann
in 1985, pp. 303–360. At a time when we seriously thought about updating
our data base on the literature for this book, an electronic file of the Marcel
Dekker bibliography could no longer be located. Therefore this data base had
to be reconstructed, and that was done under the supervision of Klaus Keimel
at Darmstadt. In 2000 he also initiated a compilation of more current literature;
many people contributed to that collection; we express our gratitude to all of
them. Much of this material, although not all of it, entered the bibliography
of this book. An Appendix to the Compendium (pp. 347–349) contained a
listing on 52 Memos written and circulated in the Seminar on Continuity in
Semilattices (SCS) from January 1976 through June 1979, because this body of
material constituted much of the history of the content of the Compendium. The
seminar continued for a number of years through June 1986, and we include in
the present book a complete list of 98 SCS Memos (see pp. 564–567).

Several visits of Dana S. Scott’s to Darmstadt consolidated the plan to en-
visage a new edition of the Compendium. Yet it became obvious soon that a
considerable workload of rewriting would have to be done on the existing mas-
ter file in order to accommodate domain theory. For any number of reasons it
was not easy to get the project on its way; one of the simplest explanations is
that the mathematical biographies of all of us had diverged sufficiently that the
intensive spirit of collaboration of the 1970s was almost impossible to rekindle.
Yet serious planning was undertaken by Hofmann and Lawson at a meeting
at Louisiana State University at Baton Rouge on March 10, 2000, by Gierz,
Hofmann, Keimel, and Lawson on March 16, 2000, at a workshop organized by
the University of Riverside in honor of Albert Stralka on the occasion of his six-
tieth birthday, and at a meeting of Klaus Keimel and Dana S. Scott on March 22,
2000, in Pittsburgh at Carnegie Mellon University. After these initiatives the
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actual rewriting began in earnest at Tulane University in New Orleans, at the
Technical University of Darmstadt, and at Louisiana State University. It was
helpful that a conference in Cork (Ireland) in July 2000 united Keimel, Lawson,
Mislove, and Scott for discussions.

With respect to the writing itself, Chapters O, I, and II were revised jointly
by Hofmann, Lawson, and Keimel, Chapters III, VI, and VII by Lawson, and
Chapters IV and V by Keimel. The revisions consisted primarily of reformu-
lating and supplementing from the lattice context to the dcpo context, a task
that frequently proved nontrivial. In addition several new sections were writ-
ten to reflect some of the developmental highlights since the Compendium
appeared: Section O-5 on T0 spaces (Lawson and Keimel), Sections III-3 and
III-5 on quasicontinuous and compact domains (Lawson), Section IV-2 on du-
ality (Hofmann), Sections IV-5 and IV-7 on pro-continuous functors and do-
main equations (Keimel), Sections IV-8 and IV-9 on powerdomains (Lawson),
Section V-6 on domain environments (Lawson), Section VI-6 on stably compact
spaces (Lawson), and Section VII-3 on hypercontinuity (Lawson). In addition
Keimel prepared the comprehensive index and other end material.

HIGHLIGHTS. It is an indication of the robust architecture of the old
Compendium that the actual rewriting could proceed largely by retaining the
chapter subdivision and revising and amplifying the old content. However,
dcpos replaced complete lattices wherever possible from Chapter O on and
domains replaced continuous lattices where possible. This was not always pos-
sible; a good example is what we used to call “the algebraic characterization
of continuous lattices” in the Compendium. This is attached to the monadic
character of continuous lattices and simply fails for domains. Occasionally
a good deal of work had to be invested to accommodate the more general
viewpoint.

Chapter II on the Scott topology of domains is a case in point. We have
amplified the function space aspect, described the Isbell topology on func-
tion spaces, and exposed it as a true generalization of the classical compact
open topology. Furthermore we discuss the poset Q(X ) of compact saturated
sets on a T0 space with respect to the partial order ⊇, allowing a full treat-
ment of the Hofmann–Mislove Theorem and its various aspects and exposing
some new aspects. We also elaborate on certain cartesian closed categories of
domains.

Chapter III elaborates on what is known on the Lawson topology on do-
mains and their compactness properties for this topology and thus contains
much information that was not present in the Compendium. In the section
on “Quasicontinuity and Liminf Convergence” we introduce a class of posets
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containing that of domains properly and call its members quasicontinuous do-
mains. On a quasicontinuous domain, the Scott topology discussed in Chapter II
is locally compact and sober, and the Lawson topology (the main topic of
Chapter III) is regular and Hausdorff, and indeed much of the theory of domains
can be recovered in this more general setting. A notion of liminf convergence is
introduced, which is shown to be equivalent to topological convergence in the
Lawson topology for (quasicontinuous) domains. In the old Compendium the
concept of “quasicontinuity” was called the “GCL-property”, as in “generalized
continuous lattice”. The section entitled “Compact Domains” is largely devoted
to the question of when the Lawson topology on a domain is compact and
wraps up with the theory of the Isbell topology in the context of function space
topologies.

Beyond that which Chapter IV contained in the Compendium, it now presents
a full treatment of the attractive Lawson duality of domains, which parallels
Pontryagin duality – notably when it is restricted to the category of continuous
semilattices (that is, domains which in addition are inf semilattices) and Scott-
continuous semilattice morphisms; in that form it is a veritable character theory
for domains. The Lawson duality of continuous semilattices allows us to round
off the complex of the Hofmann–Mislove Theorem which was presented in
Chapter II. A sort of geometric aspect of the duality between two domains is
exposed in Chapter V, because it realizes a pair of dual domains as the spectrum
and the cospectrum of a completely distributive complete lattice.

The section on projective limits in Chapter IV is now formulated for the
category of domains (or even dcpos) and morphisms appearing as pairs of a
Galois adjunction; in the case of maps between complete lattices preserving
arbitrary infs or sups this is automatic; in the more general setup of domains the
presence of Galois adjunctions must be postulated. Wherever we had operated
in the Compendium on a largely category theoretical level, we do not have
to adjust our approach fundamentally to make it work in the more general
dcpo framework that interests us in this book. However, the more general and
updated treatment of these matters has resulted in a considerable expansion of
these sections. The chapter closes with an introduction to the important topic
of powerdomains, including the extended probabilistic powerdomain.

Chapter V in the Compendium dealt with the spectral theory of continuous
lattices. Since spectral theory is largely a formalism applying to lattices, this
chapter has remained largely stable, but it was augmented by a section on
domain environments which illustrates a novel application of domain theory to
that branch of analysis dealing largely with Polish spaces. It is in the nature
of some of the material in the Compendium that it is not or only marginally
affected by the general upgrading from continuous lattices to domains; sections
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dealing with such material remain preserved in the way they were in the old
Compendium.

In Chapter VI the reader will find a new section, in which under the heading
“Stably Compact Spaces” we discuss a concept of compact spaces which em-
ulate in the wide class of T0 spaces as many properties as seem reasonable of
classical compact T2 spaces. These spaces have a partner topology, called the
co-compact topology, and the common refinement, called the patch topology, is
a compact Hausdorff topology. The most prominent example of a stably com-
pact space is a domain with the Scott topology such that the Lawson topology is
compact; in this example the patch topology is the Lawson topology. We close
Chapter VI with the spectral theory of these spaces.

Chapter VII includes a new section on “Hypercontinuity and Quasicon-
tinuity”. Hypercontinuous lattices are a special class of continuous lattices
for which, among several diverse characterizations, the interval topology is
Hausdorff. They stand in spectral duality to the quasicontinuous domains
equipped with the Scott topology.

NOTES. The notes at the end of each section make some attempt to relate the
material to the published literature, but these references are only representa-
tive, not comprehensive. Subsections entitled “Old Notes” are largely duplicated
from A Compendium of Continuous Lattices, except for an effort to accommo-
date any renumbering that has taken place. Since individual contributions could
at that time be identified via SCS Memos, which are listed in the bibliography,
and since such a multiplicity of authors was involved, it seemed reasonable to
depart from traditional practice and more or less identify some of the major
contributions of various authors in the notes. Subsections entitled “New Notes”
have been added to those sections that are new or significantly different from
those appearing in the Compendium. Thus sections with little or no revision
may have only “Old Notes”, new sections will have only “New Notes”, and old
sections with significant revisions will have both.

BIBLIOGRAPHY. The literature about domain theory and continuous lattices
has grown to such proportions that a comprehensive bibliography is not fea-
sible. We have tried, however, to compile an extensive bibliography relevant
to the topics treated in this book. The bibliography is subdivided into several
sections:

� books, monographs, and collections, cited in the form [Gierz et al., B1980],
where the B refers to a book,

� conference proceedings, cited in the form [1982, Bremen] giving the year
and the place of the conference,
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� articles, cited simply in the form [Abramsky and Jung, 1994],
� dissertations and master’s theses, cited in the form [Lawson, D1967],

where the D refers to a dissertation,
� SCS Memos, cited in the form [SCS 15].

MIZAR. This is also the place to report on an activity of the MIZAR project
group located primarily at the University of Bial�ystok, Poland, the University
of Alberta, Edmonton, Canada, and the Shinshu University, Nagano, Japan. It is
the aim of the MIZAR project to codify mathematical knowledge in a data base.
The codification means the formalization of concepts and proofs mechanically
checked for logical correctness. The MIZAR language is a formal language
derived from the mathematical vernacular. The principal idea was to design a
language that is readable by mathematicians, and simultaneously, is sufficiently
rigorous to enable processing and verifying by computer software.

Our monograph A Compendium of Continuous Lattices was chosen by the
MIZAR group for testing their system. Since 1995, the Compendium has been
translated piece by piece into the language MIZAR. As of August 2002, sixteen
authors have worked on this specific project; they have produced fifty-seven
MIZAR articles. The work is still in progress. For details one may consult the
MIZAR homepage 〈http://www.mizar.org/〉 and the report on the work concern-
ing the Compendium 〈http://megrez.mizar.org/ccl/〉.

The Authors
January, 2002
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Foreword to A Compendium of Continuous
Lattices

A mathematics book with six authors is perhaps a rare enough occurrence to
make a reader ask how such a collaboration came about. We begin, therefore,
with a few words on how we were brought to the subject over a ten-year period,
during part of which time we did not all know each other. We do not intend
to write here the history of continuous lattices but rather to explain our own
personal involvement. History in a more proper sense is provided by the biblio-
graphy and the notes following the sections of the book, as well as by many
remarks in the text. A coherent discussion of the content and motivation of the
whole study is reserved for the introduction.

In October of 1969 Dana Scott was led by problems of semantics for computer
languages to consider more closely partially ordered structures of function
spaces. The idea of using partial orderings to correspond to spaces of partially
defined functions and functionals had appeared several times earlier in recursive
function theory; however, there had not been very sustained interest in structures
of continuous functionals. These were the ones Scott saw that he needed. His
first insight was to see that – in more modern terminology – the category of
algebraic lattices and the (so-called) Scott-continuous functions is cartesian
closed. Later during 1969 he incorporated lattices like the reals into the theory
and made the first steps toward defining continuous lattices as “quotients” of
algebraic lattices. It took about a year for the topological ideas to mature in
his mind culminating in the paper published as [Scott, 1972a]. (For historical
points we cannot touch on in this book the reader is referred to Scott’s papers.)
Of course, a large part of Scott’s work was devoted to a presentation of models
for the type-free lambda-calculus, but the search for such models was not the
initial aim of the investigation of partially ordered structures; on the contrary,
it was the avoiding of the formal and unmotivated use of lambda-calculus
that prompted Scott to look more closely at the structures of the functions
themselves, and it was only well after he began to see their possibilities that

xxiii
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he realized there had to exist nontrivial T0 spaces homeomorphic to their own
function spaces.

Quite separately from this development, Karl Hofmann, Jimmie Lawson,
Mike Mislove, and Al Stralka (among others) recognized the importance of
compact semilattices as a central ingredient in the structure theory of compact
semigroups. In his dissertation [D1967], Lawson initiated the study of a class
of compact semilattices distinguished by the property that each had enough
continuous semilattice morphisms into the unit interval semilattice (in its natural
order) to separate points. (Such a program had already been started by Nachbin
for partially ordered spaces in [Nachbin, B1965].) Lawson characterized this
class of compact semilattices as those which admitted a basis of subsemilattice
neighborhoods at each point (small subsemilattices): the class proved to be of
considerable theoretical interest and attracted the attention of other workers in
the field. In fact, it was believed for some time that all compact semilattices
were members of the class, partly because the theory was so satisfactory (for
example, purely “order theoretic” characterizations were discovered for the
class by [Lawson, 1973]), and because no natural counterexamples seemed to
exist. However, Lawson found the first example of a compact semilattice which
was not in the class, one in fact which admitted only constant morphisms into
the unit interval [Lawson, 1970] (see Chapter VI, Section 4).

At about the same time, Klaus Keimel had been working on lattices and lattice
ordered algebras in pursuit of their spectral theory and their representation in
sheaves. In his intensive collaboration with Gerhard Gierz on topological repre-
sentations of nondistributive lattices, a spectral property emerged which turned
out to be quite significant for compact semilattices with small subsemilattices.

The explanation for the fact that the topological algebra of Lawson’s semilat-
tices had been so satisfactory emerged clearly when Hofmann and Stralka gave
a completely lattice theoretical description of the class [Hofmann and Stralka,
1976]. lt was Stralka who first recognized the relation of this class to Scott’s con-
tinuous lattices, and this observation came about as follows. Two monographs
on duality theories for lattices and topological structures emerged in the early
seventies: One for topology and lattices by Hofmann and Keimel [B1972], and
the other for compact zero dimensional semilattices and lattices by Hofmann,
Mislove, and Stralka [B1974]. At the lattice theory conference in Houston in
1973, where such dualities were discussed, B. Banaschewski spoke on filters
and mentioned Scott’s work which was just about to appear in the Proceedings
of the Dalhousie Category Theory Conference. Stralka checked out this hint,
and while he and Hofmann were working on the algebraic theory of Lawson
semilattices [Hofmann and Stralka, 1976], he realized the significance of this
work as a link between the topological algebra of compact semilattices and the



Foreword xxv

lattice theory of Scott’s continuous lattices. This led to correspondence with
Scott and much subsequent activity.

In the summer of 1976, Hofmann and Mislove spent some time collaborat-
ing with Keimel and Gierz at the Technische Hochschule in Darmstadt, and
together they began a “write-in” seminar called the Seminar on Continuity in
Semilattices, or SCS for short. The authors formed the core membership of the
seminar, but their colleagues and students contributed greatly to the seminar
by communicating their results, ideas, and problems. (A list of these seminar
reports (SCS Memos) which resulted is provided at the end of this monograph.)
The seminar then convened in person for several lively and well-attended work-
shops. The first was hosted by Tulane University in the spring of 1977, the sec-
ond by the Technische Hochschule Darmstadt in the summer of 1978, and the
third by the University of California at Riverside in the spring of 1979. A fourth
workshop was held at the University of Bremen in the fall of 1979. We are
very much indebted to all who participated in these seminars and others whose
in fluence on this book is very considerable. In particular we thank H. Bauer,
J. H. Carruth, Alan Day (who discovered an independent access to continuous
lattices through the filter monad), Marcel Erné, R.-E. Hoffmann, John Isbell
(who also gave very detailed remarks on the present manuscript), Jaime Ninio,
A. R. Stralka, and O. Wyler.

lt was at the Tulane Workshop that the idea of collecting together the results of
research – common and individual – was first discussed. A preliminary version
of the Compendium worked out primarily by Hofmann, Lawson, and Gierz
was circulated among the participants of the Darmstadt Workshop, and many
people gave us their useful reactions. For help in typing the earlier versions of
this book we would like to thank Frau Salder in Darmstadt and Mrs. Meredith
Mickel at Tulane University.

The preparation of the final version of the text, which is reproduced from
camera-ready copy, was carried out by and under the direction of Scott at the
Xerox Palo Alto Research Center (PARC) in its Computer Science Labora-
tory (CSL). Scott spent the academic year 1978/79 on sabbatical as a Visiting
Scientist at Xerox PARC, and the facilities of CSL, including extra secretar-
ial aid, were very generously put at his disposal. The text was prepared on an
Alto computer using the very flexible BRAVO text-editing system and a special
computer-controlled printer. The typist, who in the course of the project also
became a skilled computer-aided book illustrator and copy editor, was Melinda
Maggiani. Without her loyal efforts and concentrated labor the book would
never have been put into anywhere near the form seen here; the authors are
extremely grateful to her. Special thanks are also due to many members of CSL
for their interest and patience in helping Scott learn to use BRAVO, with which
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he spent long, long hours; he wishes to mention with great warmth in par-
ticular Sara Dake, Leo Guibas, Jim Horning, Jeannette Jenkins, Joe Maleson,
Jim Morris, HayChan Sargent, and Dan Swinehart. In the very last stages of the
book make-up it was necessary to reprogram some printing routines to over-
come several most irritating difficulties, and Lyle Ramshaw then stepped in and
solved all the programming problems in record time. We take our hats off to
him. (See especially in this regard Chapter IV, Section 3.)

The computerized editing system made it possible to produce in a very few
months what were in effect two complete sets of galley proofs and two complete
sets of page proofs; this is something that would never have been possible in
our wildest dreams with the conventional manuscript–typescript–type style of
book production. Computer-controlled editing allowed the authors to make,
through the fingers of Maggiani and Scott, innumerable substantive corrections
and to do extensive rewriting at every stage of the proofreading up to the last
day before printing the camera-ready copy. Authors and publishers alike can
only hope that such systems will soon become widely available. It was a real
privilege to prepare this book at Xerox PARC, and the authors record here
their heart-felt thanks to Dr. Robert J. Spinrad, Vice President and Manager of
Xerox PARC, and especially to Robert Taylor, Manager of CSL. Aside from
the support and cooperation, the remarkably friendly and informal atmosphere
of PARC contributed much to the project.

For the support and sponsorship over the years of their research and their
workshops, the authors are also happy to express their gratitude to the Alexander
von Humboldt–Stiftung, the Deutsche Forschungsgemeinschaft, the National
Science Foundation, the Simon Guggenheim Foundation, and the Universität
Bremen, and to their own institutions, Louisiana State University, Oxford Uni-
versity and Merton College, Technische Hochschule Darmstadt, and Tulane
University.

The Authors
January, 1980



Introduction to A Compendium of Continuous
Lattices

Background and Plan of the Work

The purpose of this monograph is to present a fairly complete account of the
development of the theory of continuous lattices as it currently exists. An attempt
has been made to keep the body of the text expository and reasonably self-
contained; somewhat more leeway has been allowed in the exercises. Much of
what appears here constitutes basic, foundational or elementary material needed
for the theory, but a considerable amount of more advanced exposition is also
included.

Background and Motivation

The theory of continuous lattices is of relatively recent origin and has arisen
more or less independently in a variety of mathematical contexts. We attempt
a brief survey in the following paragraphs in the hope of pointing out some of
the motivation behind the current interest in the study of these structures. We
first indicate a definition for these lattices and then sketch some ways in which
they arise.

A DEfiNITION. In the body of the Compendium the reader will find many
equivalent characterizations of continuous lattices, but it would perhaps be
best to begin with one rather straightforward definition – though it is not the
primary one employed in the main text. Familiarity with algebraic lattices will
be assumed for the moment, but even if the exact details are vague, the reader
is surely familiar with many examples: the lattice of ideals of a ring, the lattice
of subgroups of a group.

Abstractly (and up to isomorphism) we can say that an algebraic lattice is
a lattice of sets – contained, say, in the lattice of all subsets of a given set
A – closed under arbitrary intersection of families of sets and under unions
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of directed families of sets (e.g. chains of sets). These are important closure
properties of the lattice of ideals, for example. If we think of the powerset
lattice as a product 2A of A copies of the two-element lattice 2 = {0, 1}, then an
algebraic lattice is just a sublattice of 2A with respect to the infinite operations of
arbitrary pointwise inf and pointwise sup of directed families of lattice elements.
(Note, however, that finite sups are different in general; so the meaning of the
word “sublattice” has to be understood in a suitable sense.)

Let us now replace the discrete lattice 2 with the “continuous” lattice [0, 1],
the unit interval of real numbers with its natural order and familiar lattice
structure. In a power [0, 1]A we can speak of sublattices with respect to arbitrary
pointwise inf and pointwise sup of directed families of elements, just as before.
Up to isomorphism, these are exactly the continuous lattices. Of course this
definition gives no hint as to the internal structure of these lattices and is only a
dim indicator as to their naturalness and usefulness. But it does show that they
are direct generalizations of well-known kinds of lattices and that they have an
important element of “continuity”.

THEORY OF COMPUTATION. Often in computational schemes one employs
some algorithm successively to gain increasingly refined approximations to
the desired result. It is convenient to use, formally or informally, topological
language – one talks about “how far” the approximation is from the desired
result or how good a “fit” has been obtained. An alternate procedure is to
specify at each stage a subset in which the desired result lies. The smaller
the set, the better the approximation; we could say that the smaller set gives
“more information”. This approach leads naturally to the use of order theoretic
language in discussing the partial results, and the data generated, in a way
related to the containments among the sets.

Let us now abstract this approach somewhat. Let P be a partially ordered
set. We think of a “computation” of an element x in P as being a sequence
of increasingly larger elements – “larger” meaning “more” in the sense of
information – whose supremum is x . (More generally, we could imagine a
directed set whose supremum is x .) We wish to regard x as the “limit” of the
sequence (or set) of approximations.

What is needed is a precise definition of how well some “stage” of the
“computation” approximates the “limit” x . We take an indirect approach to this
question, because there is no metric available to tell us immediately how close
an approximation is to the desired limit. We define in place of a metric a notion
meaning roughly: an element y is a “finite approximation” to the element x .
Then, to have a well-behaved system of limits, we assume that every element
is the sup in the partial ordering of its finite approximations. A given sequence
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of approximations to x is then “successful” if it eventually encompasses all the
finite approximations.

Specifically, we say that an element y, which is less than or equal to x , is a
finite approximation to x if for any directed set D with supremum x (D repre-
sents the stages of a “computation” of x) we have some member of D which
is greater than or equal to y. (Hence, all the members from that stage on are
greater than or equal to y.) The idea is that if we use y to measure the accuracy
of computations of x , then every computation that achieves x must eventually
be at least as accurate as y.

Strictly speaking the outline just given is actually not quite right. We should
say that if a directed set D has supremum greater than or equal to x , then
some member of D is greater than or equal to y. This ensures that if y is a
“finite approximation” for x , then it is also one for every element larger than
x – a property we would certainly want to require. In the text we use differ-
ent terminology. The notion of “finite” in “finite approximation” is somewhat
vague, because again there is no measure to distinguish finite elements from
infinite ones in general; indeed there are lattices where all elements except 0
are normally thought of as infinite (as in the lattice [0, 1] for instance). This
explains our feeling that another terminology was required. We have used the
phrase “y is way below x” for topological and order theoretic reasons cited in
the appropriate section of the book.

To recapitulate: we assume that the “finite approximations” for each ele-
ment are directed and have that element for their supremum. The complete
lattices with this property are the continuous lattices. It is the theory of these
abstracted, order theoretic structures that we develop in this monograph. It
should be pointed out that only the lattice case is treated in the main text;
generalizations appear in the exercises.

Owing to limitations of length and time, the theory of computation based
on this approach is not developed extensively here. Certain related examples
are, however, mentioned in the present text or in the exercises. For instance,
consider the set of all partial functions from the natural numbers into itself (or
some distinguished subset such as the recursive partial functions). These can
be ordered by inclusion (that is, extension). Here again the larger elements give
more information. In this example f is a “finite approximation” for g if and only
if g is an extension of f and the domain of f is finite. In many examples such
as this the “approximating” property can be interpreted directly as a finiteness
condition, since there are finite functions in the set (functions with a finite
domain). This circumstance relates directly to the theory of algebraic lattices,
a theme which we do cover here in great detail.
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GENERAL TOPOLOGY. Continuous lattices have also appeared (frequently in
cleverly disguised forms) in general topology. Often the context is that of the
category of all topological spaces or of topological spaces where one assumes
only a T0 separation axiom. Such spaces have been the objects of renewed
interest with the emergence of spectral theory.

In fact, a continuous lattice can be endowed in a natural way with a T0

topology which is defined from the lattice structure; in this book we call this
T0 topology the Scott topology. It is shown in Section 3 of Chapter II that these
spaces are exactly the “injectives” (relative injectives in the categorical sense)
or “absolute retracts” in the category of all T0 spaces and continuous functions;
that is if f is a continuous function from a subspace X of a topological space
Y into a continuous lattice L (equipped with the Scott topology), then there
always exists a continuous extension of f from X to Y with values still in L .
This property in fact gives a topological characterization of continuous lattices,
since any T0 topology of such a space is just the Scott topology of a continuous
lattice naturally determined from it.

In another direction let us say that an open set U is relatively compact in an
open set V if every open cover of V has finitely many members which cover U .
If X is a topological space, then the lattice of open sets is a continuous lattice
iff each open set is the union of the open sets which are relatively compact in it.
In this case the “way-below” relation is viewed as just the relation of one open
set being relatively compact in another. This illustrates some of the versatility
of the concept of a continuous lattice.

Spaces for which the lattice of open sets is a continuous lattice prove to
be quite interesting. For Hausdorff spaces it is precisely the locally compact
spaces which have this property, and in more general spaces analogs of this
result remain true. We investigate this situation in some detail in the context of
the spectral theory of distributive continuous lattices in Section 5 of Chapter V.
It is often the case that theorems concerning locally compact Hausdorff spaces
extend to spaces with a continuous lattice of open sets in the category of all topo-
logical spaces (see, e.g., [Day and Kelly, 1970]). Such considerations provide
another link between continuous lattices and general topology.

The dual of the lattice of open sets – the lattice of closed sets – has long been
an object of interest to topologists. If X is a compact Hausdorff space, then the
lattice of closed subsets under the Vietoris topology is also a compact Hausdorff
space. In Chapter III we introduce a direct generalization of this topology, called
here the Lawson topology, which proves to be compact for all complete lattices
and Hausdorff for continuous lattices. This connection allows applications of
continuous lattice theory to the topological theory of hyperspaces (cf. Example
VI-3.8).
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ANALYSIS AND ALGEBRA. Several applications of continuous lattices arise
in analysis and functional analysis. For example, consider the family C(X,R)
of continuous real-valued functions on the locally compact space X. Using the
pointwise operations and the natural order from R, the space C(X,R) is a lattice,
but its lattice theory is rather unsatisfactory. For example, it is not even complete;
however, if we consider this lattice as a sublattice of LSC(X,R∗), the lattice of
all lower semicontinuous extended real-valued functions on X , then we do have
a complete lattice with which to work. In fact, although this is not at all apparent
from the functional analysis viewpoint, the lattice LSC(X,R∗) is a continuous
lattice. This entails several results, not the least of which is the following:
The lattice LSC(X,R∗) admits a unique compact Hausdorff function-space
topology such that ( f, g) �→ f ∧ g is a continuous operation. (See I-1.22,
II-4.7, and II-4.20.) In light of the fact that C(X,R) is never compact and that
C(X,R∗) is compact only if X is finite, this result is somewhat suprising; we
do not know of a “classical” proof. Indeed, lower semicontinuity motivates
one of the canonical topologies on any continuous lattice, and, if we equip R

∗

with this canonical topology, then the continuous functions from X into R
∗ so

topologized are exactly those extended real-valued functions on X which are
lower semicontinuous relative to the usual topology on R

∗. In the same vein
it emerges that the probability distribution functions of random variables with
values in the unit interval form a continuous lattice; compact topologies for this
example are, however, familiar from classical analysis (cf. I-2.22).

A second example is quite different and demonstrates an overlap between
analysis and algebra. With a ring R one associates a topological space, called its
spectrum, and while there are many ways of doing this, probably the most wide
spread and best known is the space of prime ideals of a commutative ring en-
dowed with the hull–kernel topology. This plays a central role in algebraic
geometry (where the relevant theory deals with noetherian rings and their
spectra), and this construction can also be carried out for Banach algebras,
in which case the preferred spectrum is the space of closed primitive ideals
(which reduces to the more familiar theory of maximal ideals if the algebra is
commutative). These particular ideals are relevant since they are precisely the
kernels of irreducible representations of the algebra as an algebra of operators
on a Banach space or Hilbert space.

Now, the connection of these spectral theories with the theory of continuous
lattices emerges more clearly if we first return to the case of a commutative
ring R. In this case, the spectrum is the set of prime ideals viewed as a subset
of the algebraic lattice of all ideals of the ring; in fact, the spectrum is exactly
the family of prime elements of the distributive algebraic lattice of all radical
ideals of R. (Recall that a radical ideal is one which is the intersection of prime
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ideals.) If we define the spectrum of a distributive lattice as being its family of
prime elements, then we have just reduced the spectral theory of commutative
rings to the spectral theory of distributive algebraic lattices.

It may not be obvious, but the situation in functional analysis is analogous.
Here we consider the lattice of closed two-sided ideals of a Banach algebra;
while this lattice is not algebraic in general, it is a continuous lattice (at least in
the case of a C∗-algebra). Moreover, in the case where the algebra is separable,
its spectrum is just the traditional primitive ideal spectrum. Again, we have
reduced the spectral theory of separable C∗-algebras to the spectral theory of
distributive continuous lattices. This approach to the spectral theory of C∗-
algebras affords an affirmative (and perhaps more systematic) proof of the fact
that the primitive spectrum of a separable C∗-algebra is a locally compact T0

space (cf. I-1.21 and V-5.5). Indeed, the central result in the spectral theory of
a continuous lattice is that its spectrum is just such a space (cf. V-5.5).

Lastly, we mention another area of functional analysis which relates to our
theory. If C is a compact convex set in a locally convex topological space, it is
useful to know as much as possible about the space of closed convex subsets
of C . This space is a lattice, and its opposite lattice is in fact a continuous
lattice whose prime elements are exactly the singleton sets containing extreme
points of C . Moreover, if the upper semicontinuous affine functions on C are
considered, then once again a continuous lattice is found in much the way
we encountered one in the example LSC(X,R∗) above. We have yet another
instance where a function space naturally arises whose lattice and topological
properties are essentially those of a continuous lattice.

CATEGORY THEORY AND LOGIC. Another area in which continuous lattices
have occurred somewhat unexpectedly is the area of category theory. Construc-
tions of free objects play an important role in mathematics, e.g., free groups,
free semigroups, free modules. A somewhat more sophisticated construction is
the construction of the free compact Hausdorff space over a set X . This turns
out to be the Stone–Čech compactification of the discrete space X , which can
be identified as all ultrafilters on X equipped with a suitable topology.

These constructions can all be set in a suitable categorical context: the theory
of monads or triples. Here one has adjoint functors (which can be thought
of as a “free” functor and a “forgetful” functor). It is then possible to define
categorically the “quotients” of the free objects, which become the “algebras” of
the system. lt has been found that in this abstract setting it is sometimes possible
to identify free objects before knowing what the algebras are. A simple example
is the powerset monad – but it is very easy to prove that the algebras are just
the complete sup semilattices.
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The question arose of identifying the monad for which the free functor is
that which assigns to a set the set of all filters on that set. It is the discovery of
Alan Day that the algebras for this monad are precisely the continuous lattices.
(See [Day, 1975].)

In our treatment of continuous lattices we do not completely follow the
categorical approach, but this is no reflection on its mathematical merit. But we
do prove Day’s theorem, however, and we have much to say about categorical
properties of many classes of structures related to continuous lattices.

One particulary interesting categorical aspect of our work – at least in the
authors’ eyes – is the ease with which examples of cartesian closed categories
can be found. (Natural examples are not so very common in mathematics or
even in category theory until one comes to the theory of topoi.) The reason for
the occurrence of these cartesian closed categories, as we explain in the text,
has to do with the function-space construction.

Specifically, in the context of our considerations, we have available a rather
natural notion of morphism, namely that morphisms should preserve limits of
what we have called “computations”. More precisely a morphism is a function
between partially ordered sets with the property that the image of the supremum
of a directed set is the supremum of the image of the directed set. (Such functions
are treated in some detail in Chapter II, Section 2.) There are also several other
interesting classes of morphisms with various properties, but this notion (called
Scott continuity) works especially well in forming function spaces.

If L and M are continuous lattices, let [L → M] be the set of all morphisms
from L to M . It is shown in Chapter II that, if these functions are given the
pointwise ordering, then [L → M] is also a continuous lattice. Moreover, this
construction is a functor adjoint to the formation of cartesian products.

By using this construction and an inverse limit procedure, examples of non-
trivial continuous lattices L can be found which are actually isomorphic with
their own self-function space [L → L]. (This does not seem possible with any
stronger separation property beyond the T0 axiom.) Constructions of this type
are treated in great generality in Sections 6 and 7 of Chapter IV.

The examples just mentioned have the striking property that their members
can be interpreted either as elements or as functions, and that every self-function
corresponds to some element. This is precisely the setup that one hypothesizes
in the lambda-calculus approach to logic. Thus, continuous lattices provided
the background for the construction of concrete models for an axiomatic logical
system that had long existed without them (see [Scott, 1973]).

TOPOLOGICAL ALGEBRA. The final area that we wish to mention is that of
topological algebra. Among the objects investigated in this field were compact
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topological semilattices and lattices (that is, semilattices or lattices equipped
with a compact topology for which the meet or meet and join operations were
continuous). In the course of study of compact semilattices it emerged that those
which had a neighborhood basis of subsemilattices lent themselves more easily
to mathematical investigation; in addition known examples had this property.
Hence, attention was particularly focused on this class.

The amazing result of these investigations was the discovery that such semi-
lattices were (modulo an identity or top element) continuous lattices with re-
spect to their lattice structure. (We derive this result in Section VI-3 after first
developing some of the most basic theory of topological semilattices in VI-1.)
Conversely, if L is a continuous lattice, then a topology can be defined from the
order which makes L into a compact topological semilattice with small semi-
lattices. The topology in question is the Lawson topology already mentioned;
it is defined and investigated in Chapter III.

This identification between compact semilattices with small subsemilattices
and continuous lattices has greatly affected the development of the theory of
continuous lattices. Not only do many of the results of topological semilat-
tices transfer wholesale to continuous lattices, but also topological techniques
and methods play a prominent role in their study (as opposed to most tradi-
tional lattice theory). Conversely, lattice theoretic methods frequently aid in-
vestigations of a topological nature. This interplay is illustrated in Chapters VI
and VII.

Before we entirely leave our discussion of the roots of continuous lattices, a
postscript concerning algebraic lattices is probably in order. Algebraic lattices
provide an important link between the theory of continuous lattices and tradi-
tional lattice theory and universal algebra. Indeed they are a special class of
continuous lattices; their theory has frequently suggested generalizations and
directions of research for continuous lattices. They are introduced in Section I-4,
but resurface on several occasions. With respect to the Lawson topology, they
are precisely those continuous lattices which are totally disconnected (equiva-
lently: zero dimensional), and so they also occupy a natural place in topological
algebra.

Plan of the Work

Chapter O consists essentially of background material of an order theoretical
nature. The reader may review it to the extent he feels necessary. Some familiar-
ity with the language and notation introduced there will probably be necessary.
The formalism of Galois connections explained in O-3 is vital for many things
which will follow in the main body of the book.
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Chapter I introduces continuous lattices from an order theoretic point of
view. In Section 1 continuous lattices are defined and examples are given. The
“way-below” relation is introduced, and is characterized among the auxiliary
relations. Section 2 gives an equational characterization of continuous lattices
and discusses their variety-like properties. Section 3 introduces prime and irre-
ducible elements and generalizations thereof and shows the plentiful supply of
such in continuous lattices. The basic properties of algebraic lattices and some
of their relationships with continuous lattices appear in Section 4. Most of the
material in this chapter is quite basic (except perhaps the material on auxiliary
relations in Section 1).

Chapter II defines the Scott topology and develops its applications to con-
tinuous lattices. In Section 1 the Scott topology is defined and convergence
in the Scott topology is characterized for continuous lattices. Section 2 gives
the definition and characterizations of Scott-continuous functions. In Section 3
it is shown that continuous lattices endowed with their Scott topologies form
the “injectives” in the category of T0 topological spaces. Section 4 is concerned
with function spaces (particularly the set of Scott-continuous functions between
spaces and/or lattices) and questions of the categorical notion of “cartesian
closedness”. Of fundamental importance in this chapter are the basic properties
of the Scott topology and Scott-continuous functions appearing in Sections 1
and 2 (although they are treated in greater detail than may be of interest to the
general reader).

Chapter III introduces the second important topology for continuous lattices,
the Lawson topology. Like the Scott topology, it is defined in an order theoretic
fashion. In Section 1 it is shown that the Lawson topology is compact and
T1 for every complete lattice and compact Hausdorff for continuous lattices.
Indeed in Section 2 it is shown that for meet continuous complete lattices the
Lawson topology is Hausdorff if and only if the lattice is continuous. Section 3
characterizes convergence of nets in the Lawson topology. Section 4 generalizes
the notion of a basis for a topology to continuous lattices and derives properties
thereof. Section 1 and 2 are the basic sections of this chapter.

Chapter IV considers various important categories of continuous lattices
together with certain categorical constructions. Section 1 is the important one
here; it presents important duality theorems for the study of continuous lattices.
Section 3 contains the important result that a continuous lattice has sufficiently
many semilattice homomorphisms of the right kind into the unit interval to
separate points. Since we aspired to great generality in the proof, its details
may appear dry. Some of the exercises exemplify applications which were made
possible on this level of generality. The next sections give general categorical
constructions for obtaining continuous lattices which are “fixed-points” with
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respect to some self-functor of the category. This process is needed for the
construction of set-theoretical models of the lambda-calculus.

In Chapter V spectral theory is taken up. An important lemma on the behav-
ior of primes appears in Section 1. In Section 2 it is shown one always has a
smallest closed generating (or order generating) set, namely the closure of the
irreducible elements. Considering elements in this closure leads to generaliza-
tions of the notion of prime and irreducible in Section 3. Section 4 introduces
the subject of the spectral theory of lattices in general, and Section 5 considers
that of continuous lattices. There a duality is set up between the category of
all distributive continuous lattices and all locally compact sober spaces (with
appropriate morphisms for each category). Here probably Sections 1, 4 and 5
would be of greatest interest to the general reader.

Chapter VI begins the study of topological algebra per se. The sections of
primary interest are 1 and 3. In Section 1 the most basic and useful properties of
pospaces and topological semilattices are given. In Section 3 the Fundamental
Theorem of Compact Semilattices is stated and proved, establishing the equiv-
alence between the category of compact semilattices with small semilattices
and the category of continuous lattices.

The rest of Chapter VI and Chapter VII center on more specialized topics in
topological algebra. Section VI-2 gives an order theoretic description of conver-
gence in an arbitrary compact semilattice. Section VI-4 presents examples of
compact semilattices which are not continuous lattices (unfortunately, the con-
struction is quite intricate). Section VI-5 covers the topic of the existence of arc
chains in topological semilattices, a topic of considerable historical interest in
the theory of topological semilattices and lattices. In Section VI-7 we return to
spectral theory. A topology finer than the spectral topology is introduced, called
the “patch topology”, and the conditions under which it is compact Hausdorff
are investigated.

In Section 1 of Chapter VII topological semilattices in which every open set
is an upper set are considered. It is shown that under rather mild restrictions this
topology must be the Scott topology. Section 2 takes up the topic of topological
lattices, lattices in which both operations are continuous. In Section 4 a lattice
theoretic characterization of compact topological semilattices is given, and it is
shown that in such a setting separate continuity of the meet operation implies
joint continuity.
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A Primer on Ordered Sets and Lattices

This introductory chapter serves as a convenient source of reference for certain
basic aspects of complete lattices needed in what follows. The experienced
reader may wish to skip directly to Chapter I and the beginning of the discussion
of the main topic of this book: continuous lattices and domains.

Section O-1 fixes notation, while Section O-2 defines complete lattices, com-
plete semilattices and directed complete partially ordered sets (dcpos), and
lists a number of examples which we shall often encounter. The formalism of
Galois connections is presented in Section 3. This not only is a very useful
general tool, but also allows convenient access to the concept of a Heyting
algebra. In Section O-4 we briefly discuss meet continuous lattices, of which
both continuous lattices and complete Heyting algebras (frames) are (overlap-
ping) subclasses. Of course, the more interesting topological aspects of these
notions are postponed to later chapters. In Section O-5 we bring together for
ease of reference many of the basic topological ideas that are scattered through-
out the text and indicate how ordered structures arise out of topological ones.
To aid the student, a few exercises have been included. Brief historical notes
and references have been appended, but we have not tried to be exhaustive.

O-1 Generalities and Notation

Partially ordered sets occur everywhere in mathematics, but it is usually assumed
that the partial order is antisymmetric. In the discussion of nets and directed
limits, however, it is not always so convenient to assume this property. We
begin, therefore, with somewhat more general definitions.

Definition O-1.1. Consider a set L equipped with a reflexive and transitive re-
lation≤. Such a relation will be called a preorder and L a preordered set. We say

1
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that a is a lower bound of a set X ⊆ L , and b is an upper bound, provided that

a ≤ x for all x ∈ X, and
x ≤ b for all x ∈ X, respectively.

A subset D of L is directed provided it is nonempty and every finite subset
of D has an upper bound in D. (Aside from nonemptiness, it is sufficient to
assume that every pair of elements in L has an upper bound in L .) Dually, we
call a nonempty subset F of L filtered if every finite subset of F has a lower
bound in F .

If the set of upper bounds of X has a unique smallest element (that is, the set
of upper bounds contains exactly one of its lower bounds), we call this element
the least upper bound and write it as

∨
X or sup X (for supremum). Similarly

the greatest lower bound is written as
∧

X or inf X (for infimum); we will not
be dogmatic in our choice of notation. The notation x =∨↑ X is a convenient
device to express that, firstly, the set X is directed and, secondly, x is its least
upper bound. In the case of pairs of elements it is customary to write

x ∧ y = inf {x, y},
x ∨ y = sup {x, y}.

These operations are also often called meet and join, and in the case of meet
the multiplicative notation xy is common and often used in this book. �

Definition O-1.2. A net in a set L is a function j �→ x j : J → L whose
domain J is a directed set. (Nets will also be denoted by (x j ) j∈J , by (x j ), or
even by x j , if the context is clear.)

If the set L also carries a preorder, then the net x j is called monotone (resp.,
antitone), if i ≤ j always implies xi ≤ x j (resp., x j ≤ xi ).

If P(x) is a property of the elements x ∈ L , we say that P(x j ) holds eventually
in the net if there is a j0 ∈ J such that P(xk) is true whenever j0 ≤ k.

The next concept is slightly delicate: if L carries a preorder, then the net x j

is a directed net provided that for each fixed i ∈ J one eventually has xi ≤ x j .
A filtered net is defined dually. �

Every monotone net is directed, but the converse may fail. Exercise O-1.12
illustrates pitfalls to avoid in defining directed nets. The next definition gives
us some convenient notation connected with upper and lower bounds. Some
important special classes of sets are also singled out.

Definition O-1.3. Let L be a set with a preorder ≤. For X ⊆ L and x ∈ L we
write:

(i) ↓X = {y ∈ L : y ≤ x for some x ∈ X};
(ii) ↑X = {y ∈ L : x ≤ y for some x ∈ X};
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(iii) ↓x = ↓{x};
(iv) ↑x = ↑{x}.

We also say:

(v) X is a lower set iff X = ↓X ;
(vi) X is an upper set iff X = ↑X ;

(vii) X is an ideal iff it is a directed lower set;
(viii) X is a filter iff it is a filtered upper set;

(ix) an ideal is principal iff it has a maximum element;
(x) a filter is principal iff it has a minimum element;

(xi) Id L (resp., Filt L) is the set of all ideals (resp. filters) of L;
(xii) Id0 L = Id L ∪ {Ø};

(xiii) Filt0 L = Filt L ∪ {Ø}. �

Note that the principal ideals are just the sets ↓x for x ∈ L . The set of lower
bounds of a subset X ⊆ L is equal to the set

⋂{↓x : x ∈ X}, and this is the
same as the set ↓inf X in case inf X exists. Note, too, that

X ⊆ ↓X = ↓(↓X ),

and similarly for ↑X .

Remark O-1.4. For a subset X of a preordered set L the following are
equivalent:

(1) X is directed;
(2) ↓X is directed;
(3) ↓X is an ideal.

Proof: (2) iff (3): By Definition O-1.3.
(1) implies (2): If A is a finite subset of ↓X , then there is a finite subset B

of X such that for each a ∈ A there is a b ∈ B with a ≤ b by O-1.3(i). By (1)
there is in X an upper bound of B, and this same element must also be an upper
bound of A.

(2) implies (1): If A is a finite subset of X , it is also contained in↓X ; therefore,
by (2), there is an upper bound y ∈ ↓X of A. By definition y ≤ x ∈ X for
some x , and this x is an upper bound of A. �

Remark O-1.5. The following conditions are equivalent for L and X as in
O-1.4:

(1) sup X exists;
(2) sup↓X exists.
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And if these conditions are satisfied, then sup X = sup↓X. Moreover, if every
finite subset of X has a sup and if F denotes the set of all those finite sups, then
F is directed, and (1) and (2) are equivalent to

(3) sup F exists.

Under these circumstances, sup X = sup F. If X is nonempty, we need not
assume the empty sup belongs to F.

Proof: Since, by transitivity and reflexivity, the sets X and ↓X have the same
set of upper bounds, the equivalence of (1) and (2) and the equality of the sups
are clear. Now suppose that sup A exists for every finite A ⊆ X and that F is
the set of all these sups. Since A ⊆ B implies sup A ≤ sup B, we know that F
is directed. But X ⊆ F , and any upper bound of X is an upper bound of A ⊆ X ;
thus, the sets X and F have the same set of upper bounds. The equivalence of
(1) and (3) and the equality of the sups is again clear, also in the nonempty case.

�

The – rather obvious – theme behind the above remark is that statements about
arbitrary sups can often be reduced to statements about finite sups and sups of
directed sets. Of course, both O-1.4 and O-1.5 have straightforward duals.

Definition O-1.6. A partial order is a transitive, reflexive, and antisymmetric
relation≤. (This last means x ≤ y and y ≤ x always imply x = y.) A partially
ordered set, or poset for short, is a nonempty set L equipped with a partial
order ≤. We say that L is totally ordered, or a chain, if all elements of L are
comparable under ≤ (that is, x ≤ y or y ≤ x for all elements x, y ∈ L).
An antichain is a partially ordered set in which any two different elements are
incomparable, that is, in which x ≤ y iff x = y. �

We have remarked informally on duality several times already, and the next
definition makes duality more precise.

Definition O-1.7. For R ⊆ L × L any binary relation on a set L , we define
the opposite relation Rop (sometimes: the converse relation) by the condition
that, for all x, y ∈ L , we have x Rop y iff y Rx .

If in (L ,≤), a set equipped with a transitive, reflexive relation, the relation
is understood, then we write Lop as short for (L ,≤op). �

The reader should note that if L is a poset or a chain, then so is Lop. One should
also be aware how the passage from L to Lop affects upper and lower bounds.
Similar questions of duality are also relevant to the next (standard) definition.
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Definition O-1.8. An inf semilattice is a poset S in which any two elements
a, b have an inf, denoted by a ∧ b or simply by ab. Equivalently, a semilattice
is a poset in which every nonempty finite subset has an inf. A sup semilattice is
a poset S in which any two elements a, b have a sup a ∨ b or, equivalently, in
which every nonempty finite subset has a sup. A poset which is both an inf
semilattice and a sup semilattice is called a lattice.

As we will deal with inf semilattices very frequently, we adopt the shorter
expression “semilattice” instead of “inf semilattice”.

If a poset L has a greatest element, it is called the unit or top element of L
and is written as 1 (or, rarely, as �). The top element is the inf of the empty
set (which, if it exists, is the same as sup L). A semilattice with a unit is called
unital. If L has a smallest element, it is called the zero or bottom element of L
and is written 0 (or ⊥). The bottom element is the sup of the empty set (which,
if it exists, is the same as inf L). �

Note that in a semilattice an upper set is a filter iff it is a subsemilattice. A dual
remark holds for lower sets and ideals in sup semilattices. We turn now to the
discussion of maps between posets.

Definition O-1.9. A function f : L → M between two posets is called order
preserving or monotone iff x ≤ y always implies f (x) ≤ f (y). A one-to-one
function f : L → M where both f and f −1 are monotone is called an isomor-
phism. We denote by POSET the category of all posets with order preserving
maps as morphisms.

We say that f preserves

(i) finite sups, or (ii) (arbitrary) sups, or (iii) nonempty sups, or (iv) directed
sups

if, whenever X ⊆ L is

(i) finite, or (ii) arbitrary, or (iii) nonempty, or (iv) directed,

and sup X exists in L , then sup f (X ) exists in M and equals f (sup X ). A parallel
terminology is applied to the preservation of infs. �

In the case of (iv) above, the choice of expression may not be quite satisfactory
linguistically, but the correct phrase “preserves least upper bounds of directed
sets” is too long. The preservation of directed sups can be expressed in the form

f
(∨↑

X
)
=
∨↑

f (X ).

For semilattices a map preserving nonempty finite infs might be called a homo-
morphism of semilattices. The reader should notice that a function preserving
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all finite infs preserves the inf of the empty set; that is, it maps the unit to the
unit – provided that unit exists. In order to characterize maps f preserving only
the nonempty finite infs (if this is the condition desired), we can employ the
usual equation:

f (x ∧ y) = f (x) ∧ f (y),

for x, y ∈ L . Note that such functions are monotone, and the dual remark also
holds for homomorphisms of sup semilattices.

Remark. It should be stressed that our definition of “preservation of sups” is
quite strong, as we require that, whenever a set X in the domain has a sup, then
its image has a sup in the range. As a consequence, if a function f : L → M
preserves (directed) sups, it also preserves the order. Indeed, if a ≤ b in L ,
then {a, b} is a (directed) set that has a sup; as f preserves (directed) sups, then
f (a)∨ f (b) exists and f (b) = f (a ∨ b) = f (a)∨ f (b), whence f (a) ≤ f (b).

Often in the literature a weaker definition is adopted: f “preserves sups” if
whenever sup X and sup f (X ) both exist, then f (sup X ) = sup f (X ). In this
weak sense, a one-to-one map from the two element chain to two incomparable
elements preserves sups. Thus a function that preserves (directed) sups in this
weak sense need not be order preserving. In order to avoid ambiguities one
should keep in mind that if a map preserves (directed) sups in our sense, then
it is automatically order preserving. This implies in particular that the image of
a directed set is also directed.

Remark O-1.10. Let f : L → M be a function between posets. The following
are equivalent:

(1) f preserves directed sups;
(2) f preserves sups of ideals.

Moreover, if L is a sup semilattice and f preserves finite sups, then (1) and (2)
are also equivalent to

(3) f preserves arbitrary sups.

A dual statement also holds for filtered infs, infs of filters, semilattices and
arbitrary infs.

Proof: Both conditions (1) and (2) imply the monotonicity of f . Then the
equivalence of (1) and (2) is clear from O-1.4 and O-1.5. Now suppose L is a
sup semilattice and f preserves finite sups. Let X ⊆ L have a sup in L . By the
method of O-1.5(3), we can replace X by a directed set F having the same sup.
Hence, if (1) holds, then f (sup X ) = sup f (F). But since f preserves finite
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sups, it is clear that f (F) is constructed from f (X ) in the same way as F was
obtained from X . Thus, by another application of O-1.5(3), we conclude that
f (sup X ) = sup f (X ). That (3) implies (1) is obvious. �

Exercises

Exercise O-1.11. Let f : L → M be monotone on posets L and M , and let
X ⊆ L . Show that ↓ f (X ) = ↓ f (↓X ). �

Exercise O-1.12. Construct a net (x j ) j∈J with values in a poset such that for
all pairs i, j ∈ J there is a k ∈ J with xi ≤ xk and x j ≤ xk but such that (x j ) j∈J

is not directed.

Hint. Consider the lattice 2 = {0, 1}, let J = {0, 1, 2, . . .}, and let the net be
defined so that xi = 0 iff i is even. �

Exercise O-1.13. Modify O-1.10 so that for (3) we have only to assume that
f preserves nonempty finite sups. �

Exercise O-1.14. Is the category of preordered sets and monotone maps equiv-
alent to the category of posets and monotone maps? In these categories what
sort of functor is op? �

Exercise O-1.15. Let L be a poset, and let the I j for j ∈ J be ideals of L .
Prove the following.

(i)
⋂

j I j is an ideal of L iff
⋂

j I j �= Ø, for L a sup semilattice.
(ii) In general,

⋂
j I j is not necessarily an ideal of L , even if

⋂
j I j �= Ø.

Hint. Consider the semilattice and ideals in the following figure.
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(iii) The intersection I1 ∩ I2 of two ideals I1, I2 is an ideal, for L a semilattice.
(iv) If L is directed,

⋃
j I j is contained in some ideal of L (however, even if

this is the case, there need not be a smallest ideal containing I1 ∪ I2) and
the converse holds if this is true for any two ideals I1, I2.

(v) Id L is a sup semilattice iff L is a sup semilattice.

Hint. If L is a sup semilattice, then I = ↓{a ∨ b: a ∈ I1, b ∈ I2} is the
sup of the ideals I1 and I2 of L . Conversely, if Id L is a sup semilattice,
then we claim there is a unique element c ∈ ↓a ∨ ↓b with a, b ≤ c. In-
deed, there is at least one since ↓a ∨ ↓b is directed; moreover, if c and
c1 were two such elements, then ↓c and ↓c1 would be two ideals of L
both containing a and b and both contained in ↓a ∨ ↓b. Hence ↓c =
↓c1 = ↓a ∨ ↓b.

(vi) Dual statements hold for Filt L , where one assumes L is a semilattice in
part (v). �

Exercise O-1.16. Let L be a preordered set, and let L denote the family of all
nonempty lower sets of L . Prove the following.

(i) Id L ⊆ L and L is a sup semilattice.
(ii) If L is a poset, then the map x �→ ↓x : L → L is an isomorphism of L

onto the family of principal lower sets of L .
(iii) If L is a filtered poset, then L is a lattice with respect to intersection and

union.
(iv) Let L and M be semilattices, f : L → M be a function, and L and M be

the lattices of nonempty lower sets. Let f∗ = (A �→ ↓ f (A)):L→M.
Then f is a semilattice morphism iff f∗ is a lattice morphism. �

Old notes

The notion of a directed set goes back to the work of [Moore and Smith, 1922],
where they use directed sets and nets to determine topologies. A convenient
survey of this theory is provided in Chapter 2 of [Kelley, b1955]; we shall utilize
this approach in our treatment of topologies on lattices, especially in Chapters II
and III of this work. The material in this section is basic and elementary; a guide
to additional reading – if more background is needed – is provided in the notes
for Section O-2.

O-2 Completeness Conditions for Lattices and Posets

No excuse need be given for studying complete lattices, because they arise so
frequently in practice. Perhaps the best infinite example (aside from the lattice
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of all subsets of a set) is the unit interval I = [0, 1]. Many more examples will
be found in this text – especially involving nontotally ordered lattices.

Definition O-2.1. (i) A poset is said to be complete with respect to directed
sets (shorter: directed complete or also up-complete) if every directed subset
has a sup. A directed complete poset is called a dcpo for short. A dcpo

with a least element is called a pointed dcpo, or a dcpo with zero 0 or with
bottom ⊥.

(ii) A poset which is a semilattice and directed complete will be called a
directed complete semilattice.

(iii) A complete lattice is a poset in which every subset has a sup and an inf.
A totally ordered complete lattice is called a complete chain.

(iv) A poset is called a complete semilattice iff every nonempty (!) subset
has an inf and every directed subset has a sup.

(v) A poset is called bounded complete, if every subset that is bounded above
has a least upper bound. In particular, a bounded complete poset has a smallest
element, the least upper bound of the empty set. �

We advise the reader to keep in mind that “up-complete poset” and “dcpo”
are completely synonymous expressions; this advice is appropriate since the
second terminology has become prevalent in the theoretical computer science
community and since we use it in this book. We observe in the following that
a poset is a complete lattice iff it is both a dcpo and a sup semilattice with a
smallest element. In the exercises for this section we comment further on the
relation of the concepts we have just introduced.

Proposition O-2.2. Let L be a poset.

(i) For L to be a complete lattice it is sufficient to assume the existence of
arbitrary sups (or the existence of arbitrary infs).

(ii) For L to be a complete lattice it is sufficient to assume the existence of
sups of finite sets and of directed sets (or the existence of finite infs and
filtered infs).

(iii) If L is a unital semilattice, then for completeness it is sufficient to assume
the existence of filtered infs.

(iv) L is a complete semilattice iff L is a bounded complete dcpo.

Proof: For (i) we observe that the existence of arbitrary sups implies the exis-
tence of arbitrary infs. Let X ⊆ L and let

B =
⋂
{↓x : x ∈ X}
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be the set of lower bounds of X . (If X is empty, we take B = L .) We wish to
show that

sup B = inf X.

If x ∈ X , then x is an upper bound of B; whence, sup B ≤ x . This proves that
sup B ∈ B; as it clearly is the maximal element of B, this also proves that X
has a greatest lower bound. (There is obviously a dual argument assuming infs
exist.)

For (ii) we first observe by Remark O-1.5 that the existence of finite sups and
of directed sups implies the existence of arbitrary sups and then apply part (i).

For (iii), since the existence of finite infs is being assumed, the existence of
all infs follows from (the dual of) (ii).

For a proof of (iv) if L is a complete semilattice and A ⊆ L is bounded
above, then the set of upper bounds has a greatest lower bound which will be
the least upper bound of A. Conversely, for a bounded complete dcpo L and
Ø �= A ⊆ L the 0 is contained in the set B of lower bounds of A. Any member
of A is an upper bound of B and hence B has a least upper bound which is the
greatest lower bound of A. �

Many subsets of complete lattices are again complete lattices (with respect to the
restricted partial ordering). Obviously, if we assume that M ⊆ L is closed under
arbitrary sups and infs of the complete lattice L , then M is itself a complete
lattice. But this is a very strong assumption on M . In view of O-2.2, if we
assume only that M is closed under the sups of L , then M is a complete lattice
(in itself as a poset). The well-worn example is with L equal to all subsets of a
topological space X and with M the lattice of open subsets of X . This example
is instructive because in general M is not closed under the infs of L (open sets
are not closed under the formation of infinite intersections). Thus the infs of
M (as a complete lattice) are not the infs of L . (Exercise: What is the simple
topological definition of the infs of M?)

An even more general construction of subsets which form complete lattices
is provided by the next theorem from [Tarski, 1955]. This theorem is of great
interest in itself, as it implies that every monotone self-map on a complete lattice
has a greatest fixed-point and a least fixed-point.

Theorem O-2.3. (The Tarski Fixed-Point Theorem) Let f : L → L be a
monotone self-map on a complete lattice L. Then the set fix( f ) = {x ∈ L :
x = f (x)} of fixed-points of f forms a complete lattice in itself. In particular,
f has a least and a greatest fixed-point. �
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Proof: Let us consider first the set M = {x ∈ L : x ≤ f (x)} of pre-fixed-
points of f . We first show that the sup (formed in L) of every subset X ⊆ M
belongs to M again. Indeed, x ≤ sup X implies x ≤ f (x) ≤ f (sup X ) by
the monotonicity of f for all x ∈ X ; hence sup X ≤ f (sup X ) which shows
that sup X ∈ M . By O-2.2(i) we conclude that M is a complete lattice in itself.
Furthermore, f maps M into itself, as x ≤ f (x) implies f (x) ≤ f ( f (x)) by
the monotonicity of f and M �= Ø since 0 ∈ M . Thus, restricting f yields a
monotone self-map on the complete lattice M . A dual argument to the above
shows that the set F = {x ∈ M : f (x) ≤ x} also is a complete lattice. But F
is exactly the set of all fixed-points of f as the elements of F are exactly those
elements of L that satisfy both inequalities x ≤ f (x) and f (x) ≤ x . �

If we consider again the topological example with L the powerset lattice of
the space X , the mapping assigning to a subset its interior is monotone; so the
completeness of the lattice of open sets also follows from O-2.3. We shall see
many other examples of monotone maps. In particular, a function preserving
directed sups is monotone (see Remark preceding O-1.10).

Remark O-2.4. Let f : L → M be a map between complete lattices preserv-
ing sups. Then f (L) is closed under sups in M and is a complete lattice in
itself.

Proof: Let Y ⊆ f (L) and let X = f −1(Y ). Then f (X ) = Y . Also

sup Y = sup f (X ) = f (sup X ),

because f preserves sups. Hence, sup Y ∈ f (L). �

The above argument is not sufficient to show that if f preserves directed sups,
then its image is closed under directed sups. We have to be satisfied with a
special case: a self-map p: L → L on a poset L will be called a projection
operator or a projection, for short, if it is monotone and idempotent, i.e., if
p = p ◦ p. Note that a self-map is idempotent if p(x) = x for all x in the
image. Projections will play a prominent role in the theory of domains.

Remark O-2.5. For a projection p on a poset L, consider its image p(L) in
L with the induced ordering. Then the following properties hold.

(i) If X is a subset of p(L) which has a sup in L, then X has a sup in p(L)
and

supp(L) X = p(supL X ).

The same holds for meets.
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(ii) If L is a semilattice, a lattice, a dcpo, a bounded complete dcpo, a
complete lattice, respectively, the same holds for p(L).

(iii) If, in addition, p preserves directed sups, then p(L) is closed in L for
directed sups, i.e., every directed subset D ⊆ p(L) that has a sup in L also has
a sup in p(L) and

supp(L) D = supL D.

Proof: (i) Let X ⊆ p(L) have a sup in L . From x ≤ supL X we deduce
that p(x) ≤ p(supL X ) for every x ∈ X by the monotonicity of p. By the
idempotence of p, we obtain x = p(x) ≤ p(supL X ) and we we conclude that
p(supL X ) is an upper bound of X in p(L). Let a ∈ p(L) be another upper
bound of X . Then a ≥ supL X , whence a = p(a) ≥ p(supL X ) again by
monotonicity and idempotence of p. Thus p(supL X ) is the least upper bound
of X in p(L).

Part (ii) is an immediate consequence of (i).
(iii) If D ⊆ p(L) is directed and has a sup in L , then by (i), supp(L) D =

p(supL D). If p: L → L preserves directed sups, then p(supL D) =
supL p(D) = supL D, which finishes the proof. �

As a very simple example of the application of O-2.5, let V be a vector space
(say, over the reals R) and let L be the lattice of all subsets of V . For x ∈ L ,
define f (x) to be the convex closure of the set x (no topology here, only convex
linear combinations). The fact that an element of f (x) depends on only finitely
many elements of x is responsible for f preserving directed unions (sups)
of subsets of V . Obviously we have f ( f (x)) = f (x). By O-2.5, the convex
subsets of V form a complete lattice. Note, however, that x ≤ f (x) for all
x ∈ L . This special property of the function f gives a special property to
f (L), as we shall see in Chapter I. In particular, with this property, the set of
fixed-points of f is closed under infs – which is a simpler reason why f (L) is
a complete lattice. And, of course, this can all be verified directly for convex
sets.

The next definition introduces some classical kinds of complete lattices that
we shall often refer to in what follows; however, it should be noted that they
only partly overlap with the class of continuous lattices.

Definition O-2.6. A Boolean algebra (sometimes also called Boolean lattice)
is a lattice with 0 and 1 which is distributive in the sense that, for all elements
x , y, z,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), (D)
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and where every element x has a complement x ′ in the sense that

x ∧ x ′ = 0 and x ∨ x ′ = 1. (C)

It is well known that (D) implies its dual, and that indeed every Boolean algebra
is isomorphic to its opposite. Also well known is the fact that complements are
unique.

A complete Boolean algebra (cBa for short) is a Boolean algebra that is
complete as a lattice.

A frame (we also use the term complete Heyting algebra (cHa) as a synonym)
is a complete lattice which satisfies the following infinite distributive law:

x ∧
∨

Y =
∨
{x ∧ y: y ∈ Y }, (ID)

for all elements x and all subsets Y . �

The proper definition of a Heyting algebra without completeness will emerge
in the next section. From the above definition it is not immediately obvi-
ous that every cBa is a cHa, but this is the case. We return to these ideas in
Exercise O-3.20.

We turn now to a list of complete lattices that, so to speak, “occur in nature”.
This list is far from exhaustive, and many more examples are contained in the
remainder of this work. The reader may take these assertions as exercises.

Examples O-2.7. (1) We have already often referred to the set of all subsets,
or powerset, of a set X . We employ the notation 2X and of course regard this
as a lattice under inclusion with union and intersection as sup and inf. It is a
cBa but a rather special one. (It is atomic, for instance; and all atomic cBa’s
are of this form. Here, atomic means that every nonzero element contains a
minimal nonzero element – an atom; for cBa’s this is the same as saying that
every element is the sup of atoms.)

(2) Generalizing (1), we can form the direct power L X of any poset L;
this is just the poset of all functions f : X → L under the pointwise ordering.
Similarly, we can form direct products

∏
j∈J L j of any family of posets in the

well-known way. If all the factors L j are dcpos, semilattices, lattices, complete
lattices, etc., respectively, then the same holds for the direct product

∏
j∈J L j .

(3) If X is a topological space, our notation for the topology, or set of open
subsets, of X is O(X ). It is a sublattice of 2X closed under finite intersections
and under arbitrary unions. It is clear then that O(X ) is a frame since we know
the truth of O-2.6 (ID) for the set theoretical operations. In general O(X ) is not
closed under arbitrary intersections, and its opposite is not a frame. (Consider
the case of X = R, the real line.)
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The opposite of O(X ) is a complete lattice and is obviously isomorphic
to the lattice �(X ) of closed subsets of X . The isomorphism between O(X )op

and �(X ) is by complements: U �→ X\U .
Contained inO(X ) is a very interesting complete latticeOreg(X ) of regular

open sets, that is, those sets equal to the interiors of their closures. The sup is
not the union of the regular open sets but the interior of the closure of the
union. The inf is the interior of the intersection (which is the same as the inf
in O(X )). Remarkably, Oreg(X ) is a cBa where the lattice complement of a
U ∈ Oreg(X ) is the interior of (X\U ). Actually this construction of a cBa can
be done abstractly in any frame (cHa), and we return to it in the next section
(see Exercise O-3.21).

For much more on Boolean algebras and the proof that every cBa is isomor-
phic to Oreg(X ) for some space X , the reader is referred to Halmos, b1963. (It
is interesting to note that Oreg(R) is an atomless cBa. That is to say, there are
no minimal nonzero elements.)

(4) Let A be an abstract algebra with any number of operations. The poset
(Cong A,⊆) of all congruence relations under inclusion (of the graphs
of the relations) forms a complete lattice, because congruence relations are
closed under arbitrary intersections. This example includes numerous special
cases:

(i) If A is a group, then Cong A can be identified with the lattice of all
normal subgroups in the usual way, and if A is an abelian group (or a
module or a vector space), with the lattice of all subgroups (submodules,
vector subspaces). In general this lattice is not distributive.

(ii) If A is a ring, then Cong A is canonically isomorphic to the lattice of all
two-sided ideals. If A is a lattice ordered group (lattice ordered ring),
then Cong A can be identified with the lattice of all order convex normal
subgroups (ideals) which are also sublattices. In general the ideals of a
ring do not form a distributive lattice.

(iii) If A is a lattice, then Cong A cannot generally be identified with either
the ideals or the filters of A, but it does form a frame. (Exercise: Prove
the distributivity.) If A is a Boolean algebra, then identification with the
lattice of ideals is possible.

Note that in the case of algebras with finitary operations, Cong A is closed
under directed unions. The significance of this remark will become clear in
Section I-4.

(5) If A is an abstract algebra, then (Sub A,⊆), the structure of all sub-
algebras of A under inclusion, also becomes a complete lattice. The reader
can supply special cases easily. In the case of vector spaces, the lattice of
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subspaces has complements but not unique ones owing to the failure of the
distributive law.

(6) Let A be a compact Hausdorff topological algebra. Then the set Cong− A
of closed congruences (congruences R ⊆ A×A closed in the product space)
also forms a complete lattice. The relevance of this example is that these con-
gruences correspond precisely to compact Hausdorff quotient algebras.

(7) Let A be a Hausdorff topological ring, then the set Id− A of closed two-
sided ideals forms a complete lattice. Again the interest lies in the fact that the
quotient rings are Hausdorff.

(8) Let H be a Hilbert space. Then Sub− H, the closed subspaces of H,
forms a complete lattice. This generalizes to the lattice of projections in any
von Neumann algebra.

(9) Every nonempty compact interval of real numbers in its natural order is
a complete lattice, and all nonsingleton intervals are isomorphic to I = [0, 1]
and to the infinite interval

R
∗ = R ∪ {−∞,+∞} = [−∞,+∞].

As complete lattices are closed under direct products (see (2) above), we
can form I

X , where X is an arbitrary set. Such lattices are called cubes. In
Exercise O-2.10, we note what can be said if X is a topological space and only
certain functions are admitted; this connects with the ideas of semicontinuous
functions and real-valued random variables, to which we return in I-1.22. An
easy example of a restricted function space which is a complete lattice would
be the subspace M ⊆ I

I of all monotone functions from I into itself.
(10) LetF be the set of all partial functions from the set N of natural numbers

into itself (this could be generalized to any other set besides the set N). Thus, if
the function f ∈ F , then its domain, dom f , is a subset of N and f : dom f → N.
The empty function Ø: Ø → N is allowed. We define f ≤ g to mean that

dom f ⊆ dom g and f = g|dom f ,

that is, whenever f is defined, then g is defined and they have the same value.
This definition makes F into a poset with directed sups and arbitrary nonempty
infs: F is a complete semilattice, it fails to be a lattice only in lacking a top.

In Exercise O-2.12 we show how to adjoin a top to such structures. Another
repair would be to expand N to N

∗ = N ∪ {⊥,�}, which is a poset under the
ordering where for x, y ∈ N

∗ we have

x ≤ y iff x = ⊥ or x = y or y = �.
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Then F can be regarded as a subset of (N∗)N under the pointwise ordering (we
define f (x) = ⊥ if x �∈ dom f ). (Note that this ordering has nothing to do with
natural ordering of N.) Now (N∗)N is a complete lattice, but it is much larger
than F ∪ {�}, because for f ∈ (N∗)N the values taken in {⊥,�} and in N can
be very mixed.

For applications to the theory of computation this proliferation of top ele-
ments is most inconvenient. If we read f ≤ g as an “information ordering”
(roughly, f and g are consistent but g has possibly more information than
f ), then the only interpretation of � is to consider it as the inconsistent ele-
ment. (The words “overdefined” for� and “underdefined” for⊥ have also been
used.) As we generally try to keep our values “consistent” as much as possible,
it seems natural to avoid �. Because of the importance of the applications to
computability, we should keep in mind the need to cover examples like this in
our general theory. �

The following also deals with examples, but they play such a very prominent
role in what follows that we separate them out.

Examples O-2.8. Let L be a poset.
(1) The family of all lower sets of L and the family of all upper sets are

both complete lattices under ⊆; indeed, both of these families are closed under
arbitrary intersections and unions in 2L .

(2) In any poset L , Filt0 L and Filt L are closed under directed unions and
hence dcpos. If L is a semilattice, then Filt0 L is a complete lattice; if L
is also unital, then Filt L is complete. In the latter case both lattices of sets
are closed under arbitrary intersections in 2L . In a semilattice the ideals only
form a semilattice, since in 2L both Id0 L and Id L are only closed under finite
intersections. We note that the infinite intersection of ideals in a semilattice
need not be an ideal (cf. O-1.15 and its figure).

(3) In a lattice, both Filt0 L and Id0 L are complete lattices; and if L has a
top and bottom, then Filt L and Id L are complete lattices.

(4) The function x �→ ↓x : L → Id L is an embedding preserving arbitrary
infs and finite sups; it is called the principal ideal embedding. (There is a
dual principal filter embedding.) The example L = N ∪ {∞} (with its natural
ordering) shows that the principal ideal embedding need not preserve arbitrary
(or even directed) sups.

(5) If L is a Boolean algebra, we can construe it as an algebra of “propositions”
(0 is false and 1 is true, ∧ and ∨ are conjunction and disjunction, complemen-
tation is negation). Filt L can be thought of as the lattice of theories. Any subset
A ⊆ L can be taken as a set of “axioms” generating the following “theory”,
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which is just a filter and corresponds to the propositions “implied” by the
axioms:

{x ∈ L : (∃a0, . . . , an−1 ∈ A) a0 ∧ · · · ∧ an−1 ≤ x}.

The “inconsistent” theory is L , that is, the top filter generated by {0}. If we
eliminate L , then Filt L\{L} is closed under arbitrary nonempty intersections
and directed unions. This is similar to the poset of O-2.7(10). As is well known,
the lattice FiltL is lattice isomorphic to the lattice of open subsets of the Stone
space of the Boolean algebra L . �

Exercises

Exercise O-2.9. (Clopen sets) Let X be a topological space and let �O(X ) =
O(X ) ∩ �(X ) be the sublattice of 2X of all closed-and-open sets (sometimes:
clopen sets). Show that �O(X ) is not complete in general, but it is always a
Boolean algebra. For a compact totally disconnected space, show that �O(X )
is complete iff the closure of every open set is open (such spaces are called
extremally disconnected). (This complements Example O-2.7(3).) �

Exercise O-2.10. (Semicontinuous functions) Let X be a topological space,
and let C(X,R∗) be the set of continuous extended real-valued functions. Verify
the following assertions: under the pointwise ordering, C(X,R∗) is not com-
plete, but it is a lattice with a top and bottom. For compact X , it is complete
iff X is extremely disconnected.

Over an arbitrary space to have a complete lattice we must pass to a larger
lattice. The lower semicontinuous functions f ∈ LSC(X,R∗) are characterized
by the condition that the set {x ∈ X : r < f (x)} is open in X for every r ∈ R

∗.
(For upper semicontinuous functions we reverse the inequality.) The lattice
LSC(X,R∗) is complete because it is closed under arbitrary pointwise sups.
Notice that LSC(X,R∗) is also closed under finite pointwise infs but not under
arbitrary pointwise infs. The lattices LSC(X,R∗) and USC(X,R∗) are anti-
isomorphic and

C(X,R∗) = LSC(X,R∗) ∩ USC(X,R∗). �

In the next exercises, and many times elsewhere in this text, we shall have
occasion to discuss weaker forms of completeness as was already indicated in
Definition O-2.1. In order to compare the definitions of a complete lattice and a
complete semilattice we suggest that the reader recall that a complete lattice is
a poset with all conceivable completeness properties which a lattice may have
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and which are symmetric (i.e., remain invariant under passage to the opposite
poset); whereas a complete semilattice has, coarsely speaking, the maximal
completeness properties which a semilattice may have, short of becoming a lat-
tice. Every finite semilattice of course is a complete semilattice. Every complete
semilattice which is, in addition, unital is clearly a complete lattice (O-2.2).

Exercise O-2.11. Let S be a poset in which every nonempty subset has an inf.
Show that every X ⊆ S with an upper bound has a sup. �

Exercise O-2.12. Let again S be a poset in which every nonempty subset has
an inf. Adjoin an identity by forming S1 = S ∪ {1} with an element 1 �∈ S and
x ≤ 1 for all x ∈ S. Show that S1 is a complete lattice. �

As a consequence, the adjunction of an identity to a complete semilattice will
produce a complete lattice.

Exercise O-2.13. Let S be the closed lower left triangle {(x, y): x + y ≤ 1} in
the square [0, 1]2.

Verify the following assertions: S is a complete semilattice but not a complete
lattice. (Actually, the subsemilattice T of S consisting of the three corner points
serves to illustrate this.) The interior of the triangle, {(x, y): x + y < 1}, is a
semilattice in which every nonempty subset has an inf, but it is not a complete
semilattice.
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The half open interval ]0, 1] is a directed complete lattice, but it is not a complete
semilattice. �

Exercise O-2.14. Prove the following.

(i) A poset is directed complete iff all ideals have sups.
(ii) A semilattice is a complete semilattice iff all filters have infs and all ideals

have sups. �

Exercise O-2.15. Prove the following.

(i) Every poset may be embedded into a complete lattice with the
preservation of all existing infs.

(ii) Every lattice may be embedded into a complete lattice with the
preservation of all finite lattice operations and all existing infs.

(iii) Every lattice may be embedded into a complete lattice with the
preservation of all existing sups and infs.

Hint. Parts (i) and (ii) are easily accomplished with the means available in
Section 2. For (i) use the complete lattice of all lower sets and the embed-
ding x �→ ↓x . For (ii) use the complete lattice Id L and the principal ideal
embedding. Finally, (iii) is the so-called MacNeille completion, which
is likewise constructed by using suitable ideals; we refer to the existing
literature for details, e.g., [Balbes and Dwinger, b1974], p. 235. �

Exercise O-2.16. Prove the following.

(i) For every semilattice S, the poset Id S is a directed complete semilattice.
(ii) If S is a semilattice in which every nonempty subset has an inf, then Id S

is a complete semilattice. �

Exercise O-2.17. In a Boolean algebra, is the lattice of finitely axiomatizable
“theories” complete? directed complete? �

Exercise O-2.18. Let G be a group and let H be any subgroup. Let L be the
lattice of all subsets of G, that is, L = 2G . Let M be the collection of double
cosets of H ; that is, let

M = {X ⊆ G : X = X H = H X}.
Prove that M is a cBa, and discuss the closure properties of M within L with
respect to sups and infs.

Hint. Consider the map X �→ H X H . �
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Exercise O-2.19. Let F be as in O-2.7(10). Define G ⊆ F to be the collection
of all one-to-one partial functions. Is G a complete semilattice? �

Exercise O-2.20. (Least Fixed-Point Theorem for dcpos) Let L be a dcpo

with a bottom element ⊥. Show that every monotone self-map f : L → L has
a least fixed-point.

The preceding result generalizes the fixed-point theorem O-2.3 for complete
lattices. We will indicate two proofs for this fact. The first proof uses transfinite
induction:

Hint. We define a0 = ⊥ and, by transfinite induction, aα+1 = f (aα) for every
ordinal α and aα = supβ<α aβ for limit ordinals. As the cardinality of L is
bounded, there is an ordinal γ such that aγ+1 = aγ . This aγ is a fixed-point
of f , and it is the least one, as one can verify readily. �

A second proof avoiding transfinite or equivalent reasonings due to D. Pataraia
(unpublished) is included in the following exercise.

Exercise O-2.21. Let L be a dcpo with a bottom element ⊥. We denote by L
the set of all monotone self-maps g: L → L that are inflationary, i.e., x ≤ g(x)
for all x ∈ L . We equip L with the pointwise ordering of functions. Let f be
an arbitrary monotone self-map of L . Prove the following.

(i) L is a dcpo with a greatest element T .

Hint. First, let us remark thatL is nonempty, as it contains the identity map
as least element. As g ≤ g ◦h and h ≤ g ◦h for inflationary maps g and h,
we conclude that L is directed. It is readily verified that L is complete with
respect to directed pointwise suprema. Hence, L has a greatest element
that we denote by T .

(ii) For every x ∈ L , T (x) is a common fixed-point of all g ∈ L.

Hint. Clearly, g ◦ T ∈ L for every g ∈ L. Hence, g ◦ T ≤ T as T is
the top element of L. On the other hand, g ◦ T ≥ T for inflationary g.
Consequently, g ◦ T = T which implies the claim.

(iii) Let M = {x ∈ L : x ≤ f (x)} be the set of pre-fixed-points of f . Show
that (a) ⊥ ∈ M , (b) M is closed for directed sups, and (c) M is mapped
into itself by f .

Hint. Compare the proof of O-2.3.

(iv) Every monotone self-map f : L → L has a least fixed-point.
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Hint. Let S be the smallest subset of L having the following three proper-
ties: (a) ⊥ ∈ S, (b) S is closed in L for directed suprema, (c) S is mapped
into itself by f . (For the existence of such an S, just consider the intersec-
tion of all subsets with these three properties.) As, by (iii), the set M of
pre-fixed-points of f has the properties (a), (b), (c), we have S ⊆ M . Thus,
the restriction of f is a monotone self-map of S which is inflationary. As
in (i), denote by T the greatest monotone inflationary self-map of S. Then
a = T (⊥) is a fixed-point of f by (ii). We have to show that a is the least
fixed-point f . For this, let b ∈ L be any fixed-point of f . Then the set
↓b satisfies the properties (a), (b), (c), whence S ⊆ ↓b. As a ∈ S, we
conclude a ≤ b. �

Exercise O-2.22. Show that every family (gi )i∈I of monotone inflationary self-
maps on a dcpo with ⊥ has a least common fixed-point.

Hint. As in the hint for O-2.21(iv), let S be the smallest subset of L with the
properties (a) ⊥ ∈ S, (b) S is closed in L for directed suprema, (c) S is mapped
into itself by fi for all i ∈ I . By O-2.21(ii), there exists a common fixed-point
a ∈ S for all fi , i ∈ I . Let us show that a is the least common fixed-point of
the fi , i ∈ I . Indeed, if b is any common fixed-point of the fi , i ∈ I , the set
↓b satisfies the properties (a), (b), (c), whence S ⊆ ↓b. As a ∈ S, we conclude
a ≤ b. �

Old notes

It would be inappropriate to attempt a history of the material contained in this
introductory chapter; it belongs to the fundamentals of almost any kind of lattice
theory and is therefore presented in most sources.

However, it may serve a useful purpose to give a guide to the existing textbook
and monograph literature. We disclaim any ambition to be complete in this
regard.

The classic sourcebook on lattice theory is, of course, the book by Garrett
Birkhoff [Birkhoff, b1967] which has inspired many generations of lattice the-
oreticians. The latest edition is representative of the status of the theory in 1967.
The date of the first edition in 1940 points up the truly classic character of this
work.

Other standard source books on lattice theory are [Grätzer, b1978], [Balbes
and Dwinger, b1974] and [Crawley and Dilworth, b1973]. As far as the topic of
Boolean algebras is concerned, the book by Sikorski [Sikorski, b1964] remains
an effective source. The first edition dates back to 1957. The date, 1995, of
appearance of the first edition of [Hermes, b1967], which experienced a second
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and revised edition in 1967. An introductory text to lattice theory was presented
in 1953, [Dubreil-Jacotin et al., b1953].

For a comprehensive treatment of general lattice theory we recommend the
book [Grätzer, b1978].

New notes

Definition O-2.1 marks our first departure from A Compendium of Continuous
Lattices with the introduction of the notion of a dcpo. A variety of other com-
pleteness notions arises as one introduces additional order structure, such as
that of a semilattice or lattice. In particular one has the important notion of a
bounded complete dcpo.

The elegant intuitionistic proofs of the fixed-point theorems in the exercises
O-2.21 and O-2.22 are due to D. Pataraia. We have learned about these proofs
through M. Escardó.

Numerous easygoing textbooks for the student are available, too. Halmos’
[Halmos, b1963] has become rather well known; other textbooks from the 1960s
are [Gericke, b1963], translated into English in 1966, and [Abbott, b1969].
A more recent one is that by B. A. Davey and H. A. Priestley [Davey and
Priestley, b1990]. The book by Grätzer has seen an extended secoond edition
in 1998.

O-3 Galois Connections

We now introduce one of the most efficient tools in dealing with complete
lattices; in this sense we continue the discussion of the previous section on
complete lattices. One reason for this great efficiency is that the pairs of maps
of the kind we are about to single out exist in great profusion. It is therefore
very helpful to know in general what properties such maps have.

Definition O-3.1. Let S and T be two posets. We shall say that a pair (g, d)
of functions g: S → T and d: T → S is a Galois connection or an adjunction
between S and T provided that

(i) both g and d are monotone, and
(ii) the relations g(s) ≥ t and s ≥ d(t) are equivalent for all pairs of elements

(s, t) ∈ S × T .

In an adjunction (g, d), the function g is called the upper adjoint and d the
lower adjoint. �
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Notice that we have to keep the order straight. Then the upper adjoint is un-
ambiguously determined by the “greater” side in the relation g(s) ≥ t of (ii)
above (whence the letter g), whereas the lower adjoint is given by the lower or
“downward” side in the relation s ≥ d(t) (whence the letter d).

Terminological difficulties may arise when we recognize that Galois connec-
tions are nothing but very special cases of pairs of adjoint functors. For this
interpretation we need to construe S and T as categories with their respective
elements as objects. The question is how to link the partial orders with mor-
phisms. One is tempted to read an arrow x → y for x, y ∈ S precisely when
x ≥ y, so that the arrow and the ≥-sign point in the same direction. This was
done in [Hofmann and Lawson, 1976], and as a consequence upper adjoints
were called left adjoints and lower adjoints right adjoints.

However, existing practice among category theory oriented writers bears
heavily upon us to choose the dual interpretation:

card(Hom(x, y)) =
{

1 if x ≤ y,
0 otherwise.

Thus x → y and y ≥ x are now equivalent statements. The “product” in a
semilattice (that is, the inf) is then a product in the categorical sense. More
generally, infs are limits, sups colimits. Order preserving maps are functors,
and an adjunction (g, d) is a pair of adjoint functors with g being right adjoint
and d left adjoint. The entire machinery of adjoint functors is now immedi-
ately available for Galois connections. (See, for example, [Mac Lane, b1971],
Chapter IV.) But for the purposes of this work we wish to give a self-contained
presentation and, therefore, we offer direct, elementary arguments for the es-
sential facts. Moreover, we try to avoid the ambiguities involved in the use of
“left” and “right” by using the to-be-hoped unambiguous words “upper” and
“lower” instead.

Theorem O-3.2. Let g: S → T and d: T → S be functions between posets.
Then the following conditions are equivalent:

(1) (g, d) is a Galois connection;
(2) g is monotone and d(t) = min g−1(↑t) for all t ∈ T ;
(3) d is monotone and g(s) = max d−1(↓s) for all s ∈ S.

Consequently, in an adjunction one map uniquely determines the other.

Proof: (1) implies (2): Since t ≤ g(s) iff d(t) ≤ s by (1), we know that d(t) is
a lower bound of g−1(↑t). But O-3.1(ii) applied to d(t) ≤ d(t) gives us at once
t ≤ g(d(t)), that is, d(t) ∈ g−1(↑t), whence (2).



24 O A Primer on Ordered Sets and Lattices

(2) implies (1): Firstly, let t ≤ g(s). Then s ∈ g−1(↑ t), whence

s ≥ min g−1(↑t) = d(t).

Secondly, let m = min g−1(↑t), whence m ∈ g−1(↑t), and thus g(m) ≥ t . If
now it holds that s ≥ d(t) = m, then g(s) ≥ g(m) ≥ t , since g is monotone.
The relation for d in (2) clearly makes d monotone, and thus the conditions of
O-3.1 are satisfied.

The proof of (1) iff (3) is analogous. (Or alternatively, we may observe that
(g, d) is an adjunction between S and T iff (d, g) is an adjunction between T op

and Sop; thus, by duality, we can use what has already been proved.) �

Theorem O-3.3. Any upper adjoint preserves infs, any lower adjoint, sups.

Proof: Consider an adjunction (g, d) between S and T . Let {s j : j ∈ J } be a
family in S and let s = inf{s j : j ∈ J }.

Since g is order preserving, we have g(s) ≤ g(s j ) for all j ∈ J . Now suppose
that t is an arbitrary lower bound of {g(s j ): j ∈ J }. Then for all j ∈ J we have
g(s j ) ≥ t , which means s j ≥ d(t) by O-3.1(ii). Thus,

s = inf{s j : j ∈ J } ≥ d(t),

whence g(s) ≥ t . This shows that indeed g(s) = inf{g(s j ): j ∈ J }.
The proof that d preserves sups is dual. �

This result is very handy in establishing that certain functions preserve arbitrary
infs or sups. In fact, in the presence of completeness, as we shall now see, the
existence of a lower adjoint is necessary for the preservation of arbitrary infs.

We say that a function g: S → T into a poset is cofinal if for all t ∈ T there
is an s ∈ S such that t ≤ g(s), i.e. if g−1(↑t) �= Ø for all t ∈ T . If g has a lower
adjoint, it is immediate that g is cofinal, as t ≤ g(d(t) for every t .

Theorem O-3.4. Let g: S → T be a function between posets. Assume that the
following hypotheses are satisfied:

(i) S is a complete lattice, or S is a complete semilattice and g is cofinal, and
(ii) g preserves all existing infs.

Then g has a lower adjoint d: T → S given by either of the two formulae

(1) d(t) = inf g−1(↑t),
(2) d(t) = min g−1(↑t). �
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Proof: We define d: T → S by formula (1): this is possible since S is complete.
Clearly, d is monotone. If t ≤ g(s), then s ∈ g−1(↑t), and thus

d(t) = inf g−1(↑t) ≤ s.

Conversely, if d(t) ≤ s, then g(d(t)) = g(inf g−1(↑t)) ≤ g(s), since g is
monotone (preserving infs); but, since g preserves infs, we also have

t ≤ inf g(g−1(↑t)) = g(inf g−1(↑t)) ≤ g(s).

This shows that (g, d) is an adjunction. We have also shown that g(d(t)) ≥ t ;
that is, d(t) ∈ g−1(↑t), which implies formula (2) in view of (1). �

Corollary O-3.5.

(i) Let g: S → T be a function between posets of which S is a complete
lattice. Then g preserves infs iff g is monotone and has a lower adjoint.

(ii) Let d: T → S be a function between posets of which T is a complete
lattice. Then d preserves sups iff d is monotone and has an upper adjoint.

Proof: This is clear from O-3.3 and O-3.4 and its dual. �

One can describe adjunctions in still other ways. We recall that a function
p: L → L is idempotent iff pp = p.

Theorem O-3.6. For every pair of order preserving functions between posets,
g: S → T and d: T → S, the following conditions are equivalent:

(1) (g, d) is an adjunction;
(2) dg ≤ 1S and 1T ≤ gd.

Moreover, these conditions imply

(3) d = dgd and g = gdg,
(4) gd and dg are idempotent.

Proof: (1) implies (2): For all s ∈ S one has g(s) ≤ g(s), hence d(g(s)) ≤ s
by (1); and for all t ∈ T one has d(t) ≥ d(t), hence g(d(t)) ≥ t by (1).

(2) implies (1): Let t ≤ g(s); then d(t) ≤ d(g(s)), because d is monotone.
By (2), d(g(s)) ≤ s; whence, d(t) ≤ s. Similarly s ≥ d(t) implies g(s) ≥
g(d(t)) ≥ t .

(2) implies (3): dg ≤ 1S implies dgd ≤ d, since d is monotone; and 1T ≤ gd
implies d ≤ dgd . Thus, d = dgd. The rest is similar.

(3) implies (4): Trivial. �

In adjunctions, injective and surjective maps are paired off as follows.
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Proposition O-3.7. For an adjunction (g, d) between posets S and T , the
following conditions are equivalent:

(1) g is surjective;
(2) d(t) = min g−1(t) for all t ∈ T ;
(3) gd = 1T ;
(4) d is injective.

Likewise, the following statements are equivalent:

(1∗) g is injective;
(2∗) g(s) = max d−1(s) for all s ∈ S;
(3∗) dg = 1S;
(4∗) d is surjective.

Proof: (1) implies (2): Now d(t) = min g−1(↑t) by O-3.2. If g is surjective,
then g(g−1(↑t)) = ↑t ; and, since g is monotone,

g(d(t)) = min g(g−1(↑t)) = min↑t = t.

Thus, d(t) ∈ g−1(t); whence min g−1(t) = d(t).
(2) implies (3): From (2), we have d(t) ∈ g−1(t), i.e., g(d(t)) = t for all

t ∈ T .
(3) implies (4): By (3), d is a co-retraction, hence, it is injective.
(4) implies (1): By O-3.6 we have d = dgd , and if d is injective, we have

1T = gd. Thus, g is a retraction and hence surjective.
The equivalence of (1∗)–(4∗) is proved dually. �

We indicated in earlier examples how closure and kernel operators function in
applications. Now we have a systematic framework for such maps. We begin
by recalling the definition of a projection (see O-2.5):

Definition O-3.8. Let L be a poset.

(i) A projection operator (shortly projection) is an idempotent, monotone
self-map p: L → L .

(ii) A closure operator is a projection c on L with 1L ≤ c.
(iii) A kernel operator is a projection k on L with k ≤ 1L . �

Warning: This terminology deviates from that used in [Scott, 1976], who uses
‘retraction’ for projection operators and ‘projection’ for kernel operators.
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As to the nomenclature of (ii) and (iii), we remind the reader of
Example O-2.7(3): If X is a topological space, then A �→ cl A : 2X → 2X is a
closure operator and the map A �→ int A : 2X → 2X is a kernel operator of 2X .
The image of the former is �(X ) and that of the latter O(X ). We note that the
map U �→ int cl U : O(X ) → O(X ) is a closure operator with image Oreg(X ),
the regular open sets.

Notation O-3.9. For any function f : A → B, we denote the co-restriction
to the image by f ◦: A → f (A) and then the inclusion of the image into B
accordingly by f◦: f (A) → B. Thus, each f has the decomposition f = f◦ f ◦.
If B = A, then f ◦ f◦ is the restriction and co-restriction f | f (A): f (A) →
f (A). �

Proposition O-3.10. Let L be a poset and f : L → L an order preserving self-
map of L. Then we have the following three groups of equivalent statements:

(1) f is a projection operator,
(2) f ◦ is a retraction of L onto f (L) with f◦: f (L) → L as co-retraction

(that is, f ◦ f◦ = 1 f (L)),
(3) there are a poset T and a monotone surjection q: L → T and a

monotone injection i : T → L such that f = iq and 1T = qi;
(11) f is a closure operator,
(21) ( f◦, f ◦) is an adjunction between f (L) and L,
(31) there is an adjunction (g, d) between some S and L where f = gd;
(12) f is a kernel operator,
(22) ( f ◦, f◦) is an adjunction between L and f (L),
(32) there is an adjunction (g, d) between L and some T where f = dg.

Proof: We prove the equivalence of (12), (22), (32) only.
(12) implies (22): If f is a projection, then we have f ◦ f◦ = 1 f (L) and

f◦ f ◦ = f ; if in addition, f is a kernel operator, then f ≤ 1L and (22) follows
by O-3.6.

(22) implies (32): Trivial.
(32) implies (12): By O-3.6(4), the map f = dg is a projection. By O-3.6(2)

we have that f = dg ≤ 1L , whence (12). �

We have in fact said that adjunctions on one hand and kernel and closure
operators on the other are tightly linked: indeed, the co-restriction to the image
of every closure (resp., kernel) operator is the lower (resp., upper) adjoint of an
adjunction. Conversely, whenever (g, d) is an adjunction, then gd is a closure
operator and dg is a kernel operator.
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Let us now note, however, that a mere projection is the “union” of a closure
and a kernel operator:

Lemma O-3.11. Let p be a projection on a poset L. We set

Lc = {x ∈ L: x ≤ p(x)} and Lk = {x ∈ L: p(x) ≤ x}.
Then we have the following conclusions:

(i) p maps Lc and Lk into themselves and if pc: Lc → Lc and pk : Lk → Lk

are the two restrictions of p, then pc is a closure operator and pk is a
kernel operator with

im pc = im pk = im p = Lc ∩ Lk;

(ii) Lc is closed under all existing sups and Lk under all existing infs;
(iii) if p preserves (filtered) infs, then Lc and imp are closed under existing

(filtered) infs; analogously, if p preserves (directed) sups, then Lk and
im p are closed under existing (directed) sups.

Proof: (i) Straightforward.
(ii) Let X ⊆ Lc be such that sup X exists in L . Since X ⊆ Lc and since p

is monotone, x ≤ p(x) ≤ p(sup X ) for all elements x ∈ X ; therefore, we find
that sup X ≤ p(sup X ) and, consequently, sup X ∈ Lc.

(iii) Now let X be a (filtered) subset of Lc for which inf X exists in L . If p
preserves (filtered) infs, then inf p(X ) exists in L and

p(inf X ) = inf p(X ) ≥ inf X ;

whence, inf X ∈ Lc. Since im p = Lc ∩ Lk and since Lk is closed under
arbitrary infs by (ii), then imp is also closed under (filtered) infs. �

The closure properties of imp may also be derived from O-2.4 and O-2.5. Notice
that Lc and Lk are complete lattices as long as L is a complete lattice by (ii) and
O-2.4. The second portion of (iii) will play a role when we discuss continuous
lattices.

We remark next that the presence of projections makes certain preservation
properties automatic, as we have seen in O-2.5: the image of a semilattice, a
dcpo, a bounded complete dcpo, a complete lattice, respectively, is again of
this type. For closure and kernel operators we can say more:

Proposition O-3.12.

(i) The image of a closure operator is closed under the formation of infs,
and that of a kernel operator is closed under the formation of sups (to the
extent they exist).
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(ii) The co-restriction c◦: L → c(L) of a closure operator preserves
arbitrary sups; hence, supc(L) X = c(supL X ) for X ⊆ c(L).

(iii) The co-restriction k◦: L → k(L) of a kernel operator preserves arbitrary
infs; hence, infk(L) X = k(infL X ) for X ⊆ k(X ).

Proof: Part (i) follows from O-3.3, O-3.10(21) and O-3.10(22).
Parts (ii) and (iii) are consequences of O-3.3 and O-3.10. �

It will be useful to think about closure operators in alternative ways. One well-
known way is to associate with a closure operator a “closure system”. The
specifics are as follows. Let L be a poset. A subset S of L will be called a
closure system if, for every x ∈ L , among the upper bounds of x in S there is
a smallest one, i.e., ↑x ∩ S has a smallest element, which we denote by cS(x).
Let C(L) be the set of all closure systems in L . We consider C(L) as a poset
with respect to ⊆.

Proposition O-3.13. The function which assigns to a closure operator c on
a poset L its image c(L) is an order isomorphism from the set of closure
operators (under the pointwise order) onto C(L)op. Its inverse function S �→ cS

associates with a closure system S ∈ C(L) the upper adjoint of the inclusion
S → L followed by the inclusion S → L itself.

Proof: We recall that the upper adjoint of the inclusion S → L is given by the
formula c◦S(x) = min(↑x ∩ S) = inf(↑x ∩ S), and that c◦S(x) = cS(x) for all
elements x ∈ L .

The function c �→ c(L) from the set of closure operators on L into C(L) is
well defined. It is readily verified that cS(L) = S; conversely, given a closure
operator c, then by O-3.10(21) we know c◦ is the lower adjoint of the inclusion
c(L) → L , as is indeed the co-restriction of cc(L); by the uniqueness of adjoints
we have c = cc(L). Thus, the maps c �→ c(L) and S �→ cS are inverses of each
other. From the formula cS(x) = inf(↑x∩ S) it is clear that the function S �→ cS

reverses order. �

Remark. In a complete lattice L , closure systems S can be characterized
very simply by the property that they are subsets closed for arbitrary infs by
O-3.12(i). In a complete semilattice, closure systems S are characterized by the
properties that, firstly, they are closed for nonempty infs and, secondly, every
x ∈ L has an upper bound in S.

Corollary O-3.14. The correspondence c �→ c(L) between closure operators
and closure systems on L maps the set of closure operators preserving directed
sups bijectively onto the set of those closure systems which are closed under
directed sups.
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Proof: If c preserves directed sups, then c(L) is closed under directed sups by
O-2.5(iii). Conversely, suppose that c(L) is closed under directed sups in L , and
let D be a directed set in L . Then sup c(D) ≤ c(sup D) because c is monotone.
As c is a closure operator, sup D ≤ sup c(D), whence c(sup D) ≤ c(sup c(D)).
Finally c(sup c(D)) = sup c(D), as c is a closure operator and as c(D) is a
directed set in c(L) whose sup, by hypothesis, is in c(L). �

We conclude this section with some examples which will be of considerable
importance in later chapters. In the first place, we return to Example O-2.8.

Proposition O-3.15. Let L be a dcpo. Then

(i) the map I �→ sup I : Id L → L is lower adjoint of the principal ideal map
x �→ ↓x : L → Id L; in particular, it preserves sups;

(ii) the map I �→ ↓ sup I : Id L → Id L is a closure operator whose image is
isomorphic to L.

Proof: If x ∈ L and I ∈ Id L , then I ⊆ ↓x iff x is an upper bound of I iff
sup I ≤ x . This proves the adjointness; the rest follows from O-3.3 and O-3.10.

�

Secondly, Galois connections also provide an access to a class of lattices which
plays an important role in logic and also in the later developments of our theory.

Lemma O-3.16. In a semilattice S the following two conditions are
equivalent:

(1) for all x ∈ S, the function s �→ x ∧ s : S → S has an upper adjoint;
(2) max{s ∈ S : x ∧ s ≤ t} exists for all x, t ∈ S.

These conditions imply

(3) for any family {x j : j ∈ J } with a sup and any x ∈ S we have

x ∧
∨
{x j : j ∈ J } =

∨
{x ∧ x j : j ∈ J }.

If S is a lattice, then (3) implies the distributive law (D) of O-2.6. If S is a
complete lattice, then (1)–(3) are equivalent and equivalent to S being a frame.

Proof: The equivalence of (1) and (2) follows from O-3.2. Condition (3) follows
by O-3.3, and, trivially, (3) implies (D). If S is a complete lattice, then (3) implies
(1) by O-3.5(ii) and of course is just (ID) of O-2.6. �

The point of the next definition is that completeness is not required.

Definition O-3.17. A Heyting algebra is a lattice H satisfying the equivalent
conditions (1), (2) of O-3.16.
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The upper adjoint of the function x �→ a ∧ x : H → H is written

y �→ (a ⇒ y) : H → H.

Thus, the conditions x ≥ a ∧ y and (a ⇒ x) ≥ y are equivalent in H . The
binary operation (a, b) �→ (a ⇒ b) : H → H is called implication. Note that
a Heyting algebra always has a unit, because 1 = a ⇒ a.

If H has a zero, define¬a by a ⇒ 0 (that is,¬a = max{x ∈ H : a∧x = 0}).
This unary operation is called negation. Notice that a Heyting algebra with zero
satisfies 1 = ¬0 and 0 = ¬1. �

An example of a Heyting algebra without a zero is the half open interval ]0, 1],
where a ⇒ b = 1 when a ≤ b but = b otherwise.

We conclude this section by extending slightly the notion of lower adjoint to
a kind of partial adjoint, a notion that can be useful when dealing with posets
without a top element:

Remark O-3.18. Let L1 denote the poset obtained from an arbitrary poset
L by adjoining a new “virtual” top element 1 and, for an order preserving
map g: L → M, let g1: L1 → M1 denote the “virtual” extension of g with
g(1) = 1. We claim the following.

For an order preserving map g: L → M, the following conditions are equi-
valent:

(1) the co-restriction g◦: L → ↓g(L) has a lower adjoint;
(2) the “virtual” extension g1: L1 → M1 has a lower adjoint.

For complete semilattices L and M, these conditions are equivalent to the
following one:

(3) the map g: L → M preserves infs of nonempty sets. �

The proof for these assertions follows from O-3.2 and O-3.5(i). An order pre-
serving function will sometimes be called an upper map if it satisfies the equiv-
alent conditions (1) and (2) above.

Exercises

We continue in the next few exercises with the discussion of Heyting algebras
(see O-3.17) and their relationship to Boolean algebras.

Exercise O-3.19. Let H be a Heyting algebra with 0. Prove the following:

(i) (¬,¬) is an adjunction between H op and H ; in other words, ¬a ≥ b iff
¬b ≥ a for all a, b ∈ H ;
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(ii) ¬a ≥ b iff a ∧ b = 0 for all a, b ∈ H ;
(iii) ¬¬: H → H is a closure operator, and ¬¬¬ = ¬;
(iv) ¬¬ preserves finite infs. �

For the following we recall from O-2.6 that a Boolean algebra is a distributive
lattice with 0 and 1 in which every element has a complement.

Exercise O-3.20. Let L be a lattice with 0 and 1. Show that the following
conditions are equivalent:

(1) L is a Boolean algebra;
(2) L is a Heyting algebra in which negation is an involution (i.e., L satisfies

¬¬x = x for all x).

Moreover, if these conditions are satisfied, show that¬x is the complement of x .

Hint. The implication (2) implies (1) follows from the distributivity of a
Heyting algebra and the fact that x∧¬x = 0 implies x∨¬x = 1 whenever
¬ is an order reversing involution: hence, ¬x is a complement. For the remain-
ing implication we first observe that (1) trivially implies

(3) for every element x there is an x∗ such that for all y

(y ∨ x∗) ∧ x ≤ y and y ≤ (y ∧ x) ∨ x∗.

Next we observe that (3) implies (2). For, given x , y, z, if x ≤ y∗ ∨ z, then
x∧ y ≤ (z∨ y∗)∧ y ≤ z by (3); conversely, if x∧ y ≤ z, then x ≤ (x∧ y)∨ y∗ ≤
z ∨ y∗, again by (3). Thus, L is a Heyting algebra with (y ⇒ z) = y∗ ∨ z.
Moreover, we find ¬x = (x ⇒ 0) = x∗ ∨ 0 = x∗.

Note that the proof in fact shows the equivalence of (1), (2) and (3). �

The reader should verify at this point that, in view of Lemma O-3.16, a Heyting
algebra that is complete as a lattice is a cHa; also, by a related argument,
that a cBa is a cHa. Besides these obvious connections, it is useful to note
that with every cHa there is canonically attached a cBa; the formalism of clo-
sure operators which we discussed in this section comes in handily for this
purpose.

Exercise O-3.21. Let H be a cHa (a frame) and c: H → H a closure operator
which preserves finite infs. Prove the following: c(H ) is also a cHa (a frame);
if c(H ) ⊆ ¬H and c(0) = 0, then c(H ) is a cBa; in particular, ¬H is a cBa.

Hint. By O-3.12(ii), c(H ) is a complete lattice; and, since c◦ preserves finite
infs by hypothesis and O-3.12(i), and arbitrary sups by O-3.12(iii), then the
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equation in O-3.16(3) holds in c(H ). Whence, c(H ) is a frame. Now suppose
that c(0) = 0. If a ∈ c(H ) and x ∈ H , then a ∧ x ≤ 0 implies

a ∧ c(x) = c(a) ∧ c(x) = c(a ∧ x) ≤ c(0) = 0.

Thus, max{x ∈ H : a ∧ x ≤ 0} ∈ c(H ), and so ¬c(H )a = ¬a. Hence, if we
have a = ¬b for some b, then

¬c(H )¬c(H )a = ¬¬a = ¬¬¬b = ¬b = a,

by O-3.19(iii). Thus, if c(0) = 0 and c(H ) ⊆ ¬H , then c(H ) is a Boolean
algebra by O-3.20(2). By O-3.19(iii), we know that c = ¬¬ is a closure operator
with image ¬H , and ¬¬0 = ¬1 = 0. Hence, the preceding applies to show
that ¬H is a cBa. �

This allows us to produce some interesting complete Boolean algebras (as we
have already remarked):

Exercise O-3.22. Prove the following.

(i) If H is a frame and if L is a sublattice which is in fact closed under
arbitrary sups, then L is itself a frame.

Hint. If H satisfies O-3.16(3), then so does L under the given hypotheses.

(ii) For any set X the lattice 2X is a cBa; hence, any sublattice L of 2X which
is closed under arbitrary unions is a frame.

(iii) Let X be any topological space. Then O(X ) is a frame (cf. O-2.7(3)).
Moreover, ¬O(X ) = Oreg(X ) is a cBa. �

The following examples of frames will be of interest in our later discussions.

Exercise O-3.23. Let S be a semilattice equipped with a topology such that all
translations x �→ a ∧ x : S → S are continuous (in this case we say that S is a
semitopological semilattice (see also VI-1.11)). Let L ⊆ �(S) be the lattice of
all closed lower sets. Then Lop and L are frames. Dually, if M ⊆ O(S) is the
lattice of all open upper sets, then both M and Mop are frames.

Hint. Since M is closed under arbitrary unions and finite intersections in 2S ,
equation O-3.16(3) holds in M . The lattice M is complete, thus M and therefore
Lop ∼= M are frames. In order to show that L is a frame, let {A j : j ∈ J } be a
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family of closed lower sets; we have to show only that

A ∩
(⋃

{A j : j ∈ J }
)−

⊆
(⋃

{(A ∩ A j ): j ∈ J }
)−

,

since the other containment is clear. Let s ∈ A ∩ (
⋃{A j : j ∈ J })−. Then

s ∈ s ∧ (⋃{A j : j ∈ J })− ⊆ (s ∧⋃{A j : j ∈ J })−
= (⋃{s ∧ A j : j ∈ J })− ⊆ (⋃{(A ∩ A j ): j ∈ J })−

by the continuity of the translation by s and since the A j are lower sets. �

Definition O-3.24. A map f : L → M between frames is called a homomor-
phism of frames iff it preserves arbitrary sups and finite infs. A subset L of a
frame M is a subalgebra iff the inclusion L → M is a homomorphism (i.e., iff
L is closed under arbitrary sups and finite infs). �

Exercise O-3.25. Show that the class of frames is closed under the formation
of arbitrary direct products, subalgebras, and homomorphic images. �

We continue with some general Exercises on adjunctions.

Exercise O-3.26. Let S be a poset in which every nonempty subset has an inf
and let T be a poset. Suppose further that g: S → T preserves all existing infs
and also satisfies T = ↓g(S). Show that g has a lower adjoint given by the
formula d(t) = inf g−1(↑t).

Hint. Check the proof of O-3.4 in the present situation. �

Exercise O-3.27. Let L be a lattice and diag: L → L × L the diagonal map.
Show that diag is upper adjoint to the map ∨: L × L → L and lower adjoint to
the map ∧: L × L → L . �

Exercise O-3.28. Let {Li }i∈I be a family of complete lattices, and let L =
∏

i∈I Li . Let πi : L → Li be the projection on the i th factor of L . Further define
εi : Li → L by

π jεi (x) =
{x if i = j,

1 j if i �= j,

and define δi : Li → L by

π jδi (x) =
{x if i = j,

0 j if i �= j.

Show that (πi , δi ) is a Galois adjunction between L and Li , while (εi , πi ) is a
Galois adjunction between Li and L . �
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Exercise O-3.29. In the circumstances of O-3.2, show that conditions (1), (2),
and (3) are also equivalent to each of the following:

(2′) g is monotone and g−1(↑t) = ↑d(t) for all t ∈ T ;
(3′) d is monotone and d−1(↓s) = ↓g(s) for all s ∈ S.

Old notes

A part of the literature on Galois connections deals with pairs (g, d) of (antitone)
maps g: S → T op and d: T op → S such that the relations g(s) ≤ t and d(t) ≤ s
are equivalent. (This is the same as saying that s ≤ dg(s) and t ≤ gd(t) hold for
all s ∈ S and all t ∈ T ). It is this setup which generalizes the formalism of clas-
sical Galois theory in which the order reversing correspondence is established
between the lattice of fields F between two fields K and E , K ⊆ F ⊆ E ,
and the lattice of subgroups of the Galois group of (E : K ). In the antitone
form, Galois connections were studied in [Ore, 1944]. Since that time, the gen-
eral idea of Galois connections has become a pervasive theme in lattice theory
literature, and it cannot be our objective to trace its precise history. One refer-
ence on such matters is the book of T.S. Blyth and M.F. Janowitz [Blyth and
Janowitz, b1972]. Frequently cited contributions are by C.J. Everett [Everett,
1944], G. Pickert [Pickert, 1952], G. Aumann [Aumann, 1955], G.N. Raney
[Raney, 1960], J.C. Derderian [Derderian, 1967], Shmuely [Shmuely, 1974]
and H.-J. Bandelt [Bandelt, 1981].

F.W. Lawvere noticed early on that Galois connections are quite special cases
of the omnipresent situation of a pair of adjoint functors. This is pointed out
in [Mac Lane, b1971], pp. 93 ff. The consideration of Heyting algebras in this
context is outlined by S. Eilenberg and G.M. Kelly [Eilenberg and Kelly, 1966];
see in particular pp. 555 ff. The authors credit F.W. Lawvere with this approach.
There is a great variety of names under which Heyting algebras appear in the
literature: Brouwerian logic, Brouwerian lattice, pseudo-Boolean lattice and
relatively pseudocomplemented distributive lattice. For a complete Heyting
algebra (cHa) the following names are also used: frame, local lattice, locale.
We will have quite a bit to say on certain classes of frames in Chapter V; in
fact, our discussion will be illustrative of the connections between frames and
topological spaces.

The topic of closure and kernel operators is a lattice theoretical classic. The
systematic consideration of projections as the common generalization of both of
these in O-3.8 through O-3.14 is due to Scott, and we will pursue this discussion
for continuous lattices in Chapter I (see I-2.2 through I-2.5, I-4.16 through
I-4.18). The systematic use of Galois connections in the study of continuous
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lattices advocated in [Hofmann and Stralka, 1976] particularly emphasized the
importance of the sup map on the ideal lattice (O-3.15), which will bear fruit
in Section I-2.

O-4 Meet Continuous Lattices and Semilattices

The inf operation (x, y) �→ x∧ y : L× L → L in a lattice preserves infs (to the
extent they exist); in particular, all translations s �→ x∧s : L× L preserve infs.
Here (and often in what follows) we write xy in place of x ∧ y. Both notations
abound in the literature since semilattices have been studied both as ordered sets
(in which every pair of elements has an inf) and as semigroups (which are both
commutative and idempotent). If L is complete, we have seen that it is precisely
the frames in which this translation preserves all sups. Frequently this is too
much to ask, since many of the examples we have listed are not even distributive.
However, it occurs rather often that s �→ xs preserves directed sups. The class
of posets and lattices in which this is the case deserves a special designation:

Definition O-4.1. A semilattice L is called meet continuous if it is directed
complete, i.e., a dcpo, and satisfies

x sup D = sup x D, (MC)

for all x ∈ L and all directed sets D ⊆ L . We will say that a sup semilattice L
is join continuous iff Lop is meet continuous. A lattice L is meet continuous if
it is a complete lattice satisfying (MC). �

Note that in (MC) the relation≤ could replace=. (The same will be the case in
O-4.2(7) and (8) below.) In the literature, meet continuous lattices are occasion-
ally called “continuous lattices”; but we reserve this designation for those more
special lattices which will be our principal topic. There are various equivalent
ways of looking at meet continuous semilattices:

Theorem O-4.2. In a directed complete semilattice L the following conditions
are equivalent:

(1) the sup map for ideals I �→ sup I : Id L → L is a homomorphism of meet
semilattices (preserving all sups: cf. O-3.15(i));

(2) for two ideals I1, I2 we have (sup I1) (sup I2) = sup I1 I2;
(3) for two directed sets D1, D2 we have (sup D1) (sup D2) = sup D1 D2;
(4) L is meet continuous;
(5) for each directed set D and each x ≤ sup D we have x ≤ sup x D (hence,

x = sup x D);
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(6) the inf operation (x, y) �→ xy : L × L → L preserves directed sups;
(7) for each x ∈ L and each directed net (x j ) j∈J we have

x ∧
∨

j∈J

x j =
∨

j∈J

(x ∧ x j ).

If L is in fact a lattice, then these conditions are also equivalent to the following:

(8) for each x ∈ L and any family (x j ) j∈J we have

x ∧
∨

j∈J

x j =
∨

A∈finJ

(
x ∧
∨

j∈A

x j

)
,

where fin J is the set of all finite subsets of J .

Proof: (1) iff (2): Use the definition of the sup map for ideals and the fact that
I1 I2 = I1 ∩ I2 for two lower sets in a semilattice.

(2) iff (3): Notice ↓(↓D1)(↓D2) = ↓(D1 D2) and use O-1.5 to calculate

sup D1 D2 = sup↓(D1 D2) = sup(↓D1)(↓D2) = sup(↓D1)(↓D2).

Remark O-1.4 then establishes the desired equivalence.
Thus (1), (2), (3) are equivalent. Clearly (4) and (7) are equivalent and, for

lattices, the equivalence of (7) and (8) is easy by Remark O-1.5.
The implications (6) implies (3) implies (4) implies (MC) implies (5) are

trivial. The whole proof will be complete if we show the following.
(5) implies (6): Let D ⊆ L × L be directed and set Dn = πn D, for n = 1, 2.

Then D ⊆ D1 × D2. If, on the other hand, (d, e) ∈ D1 × D2, then there
are elements x, y ∈ L with (d, y), (x, e) ∈ D. Since D is directed, we find
some (d∗, e∗) majorizing (d, y) and (x, e); thus, (d, e) ≤ (d∗, e∗). We have thus
proved that D1 × D2 ⊆ ↓D.

If m: L × L → L is the inf map m(x, y) = xy, then

m(D) ⊆ m(D1 × D2) = D1 D2 ⊆ m(↓D) ⊆ ↓m(D).

Thus sup m(D) ≤ sup D1 D2 ≤ sup↓m(D) = sup m(D), by O-1.5. If dn =
sup Dn , r = 1, 2, then (d1, d2) = sup D. It suffices therefore to prove d1d2 =
sup D1 D2.

For every x ∈ D1 we have xd2 ≤ sup D2, hence from (5) we know

xd2 = sup xd2 D2 = sup x D2.

Since d1d2 ≤ sup D1, once more by (5) we obtain

d1d2 = sup d1d2 D1 = sup D1d2.
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But then

sup D1d2 = sup{xd2: x ∈ D1} = supx∈D1
sup x D2

= sup
(⋃

x∈D1
x D2
) = sup D1 D2.

This proves the claim. �

Theorem O-4.2 applies, in particular, to complete lattices. We point out that
condition (8) looks equational. If one imagines that directed sups are “limits”
of sorts (a contention we will amply justify in Chapter II), then condition (6)
is indeed a continuity assumption. This justifies the name “meet continuity”.
Condition (7), however, is a distributivity relation which readily compares with
the distributivity relation O-3.16(3) in Heyting algebras. In fact we have

Remark O-4.3. Let L be a lattice; then the following conditions are
equivalent:

(1) L is a frame;
(2) L is meet continuous and distributive.

Proof: That (1) implies (2) is clear from O-3.16.
(2) implies (1): By (MC), the function s �→ xs : L → L preserves directed

sups; by O-2.6(D) it preserves finite sups. Hence, it preserves arbitrary sups
(see O-1.10). Thus, O-3.16(3) holds and (1) follows. �

While frames are one source of meet continuous lattices, compact topological
semilattices are another. We will develop this subject at considerably greater
length in Chapter VI. But it helps now to take note at least of the examples
implied by the following.

Proposition O-4.4. Let S be a semilattice with a Hausdorff topology such that

(i) every directed net has a sup to which it converges,
(ii) the translations s �→ xs : S → S are continuous for all x ∈ S.

Then S is meet continuous. If, moreover, S is compact, then condition (ii)
implies (i).

Proof: Let x ∈ S and suppose that (x j ) j∈J is directed. Then (xx j ) j∈J is di-
rected, and so supJ x j = limJ x j and supJ xx j = limJ xx j . From (ii) we know
that lim xx j = x lim x j , and, since limits are unique for a Hausdorff topology,
we deduce supJ xx j = x supJ x j . Every directed subset has a sup by (i); hence,
S is a complete lattice by the dual of O-2.2(ii). Thus S is a meet continuous
lattice.

Assume now that S is compact Hausdorff and satisfies (ii); we have to
verify (i). Let (x j ) j∈J be a directed net. Since the topology is compact, this
net has at least one cluster point c. Let i ∈ J . Then eventually xi ≤ x j , that
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is, xi = xi x j . But, ↑xi = {x ∈ S: xi x = xi } is closed as translation by xi

is continuous, and since the net is eventually in ↑ xi , it follows that c is also.
Hence xi c = xi for each i , so c is an upper bound for the net. Moreover, if
b ∈ S is any upper bound of the net, then bxi = xi for each i , so that xi ∈ Sb
for each i . Again, since translation by b is continuous, Sb is closed in S, and
so c ∈ Sb also holds. Thus c ≤ b for each upper bound b of the net, whence
c = sup xi . This also shows that c is the unique cluster point of the net (x j ) j∈J

which implies that the net converges to c. Dually, each filtered net converges to
its inf. In particular, 0 = inf S exists. �

Let us now, by contrast, look at a few simple complete lattices which fail to be
meet continuous.

Counterexamples O-4.5. (1) Let L be the subset of the square [0, 1]2 con-
sisting of its interior ]0, 1[2 and the points (0, 0) = ⊥ and (1, 1) = �. Then L
is a complete, distributive lattice which is isomorphic to its opposite. But L is
not meet continuous.

Hint. Consider D = {1/3} × ]0, 1[ with sup D = �; if x = (2/3, 1/2), then
we have x sup D = x , but sup x D = (1/3, 1/2) �= x .

(2) Let L be the following subset of the square [0, 1]2:

L =
({

1 − 1

n
: n = 1, 2, 3, . . .

}

× {0}
)

∪ {(0, 1), (1, 1)}.

This lattice is complete but not meet continuous. Because of its obvious
compact topology, this lattice is a very useful counterexample.

Hint. Consider D = {1 − 1
n : n = 1, 2, . . .} × {0} and x = (0, 1).

0

1

�

Exercises

Exercise O-4.6. Prove the following.

(i) If S is any semilattice, then Id S is a meet continuous semilattice.
(Hint: Utilize Exercise O-2.16.)

(ii) If L is any lattice, then Id L is a meet continuous lattice. �
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Exercise O-4.7. Let S be a directed complete semilattice. Show that the fol-
lowing statements are equivalent (cf. G. Bruns [Bruns, 1967]).

(1) S is meet continuous;
(2) x ≤ sup C always implies x ≤ sup xC for every chain C ⊆ S. �

Exercise O-4.8. Show that the class of all meet continuous lattices is closed
under the formation of the following operations:

(a) arbitrary products,
(b) subsets closed under arbitrary infs and directed sups,
(c) sublattices which are complete with respect to the induced order and

which are closed under directed sups,
(d) surjective images by functions preserving arbitrary infs and directed sups,
(e) images of projections (O-3.8(i)) preserving directed sups.

Hint. Use O-4.2(7) and model the proof after the one that is given for I-2.5
below and in the case of O-3.11(iii). �

Exercise O-4.9. Prove the following.

(i) Let L be a lattice. Then Id0 L is a meet continuous lattice. If f : L → S is
a function into a meet continuous lattice preserving finite infs, then the
function F : Id L → S given by F(I ) = sup f (I ) preserves finite infs and
directed sups. If f is a lattice morphism, then F preserves arbitrary sups.

(ii) Let L be the opposite of the lattice of finite subsets of a set X . (This is the
free semilattice generated by X ). Then Id0 L contains a copy of X and is
in fact the free meet continuous lattice over X in the category of meet
continuous lattices and maps preserving finite infs and directed sups.

(iii) Let L be the free lattice generated by a set X . Then Id0 L contains a copy
of X and is the free meet continuous lattice over X in the category of
meet continuous lattices and maps preserving finite infs and arbitrary
sups. (See [Isbell, 1975b].) �

Exercise O-4.10. Let L be a meet continuous lattice and H the lattice of all
equivalence relations on L such that the graph R ⊆ L× L is closed under finite
infs and arbitrary (!) sups. Then H is a frame. (See Isbell, op. cit., p. 44.) �

Exercise O-4.11. Let L be an directed complete semilattice, and let

L ′ = {I ⊆ L : Ø �= I = I+ = ↓I },
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where I+ = {sup D: D ⊆ I is directed}. Show that we have the following:

(i) L ′ is a lattice;
(ii) the following conditions are equivalent:

(1) L is meet continuous;
(2) L ′ is meet continuous.

Hint. (i) Straightforward. (ii) For (2) implies (1) see O-4.8(b). (1) implies (2):
See O-3.22. (Cf. also II-2.1 and II-4.24 below.)

Old notes

In the literature meet continuous lattices (see [Birkhoff, b1967]) are some-
times called upper continuous lattices [Grätzer, b1978] or “nach oben stetige
Verbände” ([Hermes, b1967]); lattices which are meet- and join continuous
have been called continuous (see, e.g., Hermes, op. cit.); this notation is in con-
flict with what we will call continuous lattices in this book; our nomenclature
seems now widely accepted.

The role played by meet continuous lattices in the literature seems to be
somewhat implicit: they are rarely considered as a class by themselves. Usually
it is observed that trivially all frames are meet continuous and that all algebraic
lattices (which we will consider in I-4 at some length) are meet continuous. A
coherent body of deep information does not appear to exist on the class of meet
continuous lattices per se. Some information is provided by [Isbell, 1975b]
(see Exercises O-4.9 and O-4.10), but much of Isbell’s paper is concerned with
continuous lattices in our sense. The choice of morphisms for a category of
meet continuous lattices is not entirely clear. The definition would suggest that
morphisms preserve finite infs and directed sups. In the case of the category
of frames one chooses morphisms the way we did in O-3.24; Isbell considers
this type of map for meet continuous lattices, and this makes his category of
meet continuous lattices contain the category of frames as the full subcategory
determined by the distributive objects (see O-4.3). The characterization of meet
continuous lattices through the fact that the sup map Id L → L is a lattice
morphism is from [Hofmannand Stralka, 1976]. That meet continuity emerges
in the context of compact topological semilattices (O-4.4) is well known in
topological algebra.

O-5 T0 Spaces and Order

For convenient reference we gather in one place the principal topological
definitions and notions that arise in our considerations, particularly as they
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pertain to T0 spaces. Indeed, in connection with order, non-Hausdorff spaces
play a more significant role than Hausdorff spaces, while in classical mathe-
matics one mainly meets Hausdorff spaces. For this reason we collect some
information pertaining to non-Hausdorff spaces in this preliminary section
for easy reference. In a topological space X we use the following notation:
O(X ) for the collection of all open sets in X ,
�(X ) for the collection of all closed subsets of X ,
A− for the closure of a subset A,
int A for the interior of a subset A.

Definition O-5.1. A topological space is T0 if given x �= y, there exists an
open set that contains exactly one of them. Thus a space is T0 if no two distinct
points have exactly the same family of open neighborhoods. We denote by TOP
the category whose objects are the T0 spaces and whose morphisms are the
continuous maps between them. �

If X is a topological space, then for two elements x and y in X the following
relations are easily seen to be equivalent:

(1) {x}− ⊆ {y}−;
(2) x ∈ {y}−;
(3) x ∈ U implies y ∈ U , for all open sets U .

This relation is clearly reflexive and transitive, and, if X is a T0 space, it is
antisymmetric. Hence, we have a partial order.

Definition O-5.2. The partial order ≤ defined on a T0 space X by

x ≤ y iff x ∈ {y}−

is called the specialization order. We denote by�X = (X,≤) the poset obtained
from a T0 space X and its specialization order. �

Alternatively x ≤ y iff every open set that contains x must also contain y. Thus
open sets are always upper sets and closed sets are always lower sets. If a space
has separation properties of T1 or higher, then the order of specialization reduces
to the trivial partial order; thus it is for T0 spaces that this order is of special
interest. Several useful properties of T0 spaces have both topological and order
theoretic formulations. For example, one sees immediately that ↓x = {x}−.

If f : X → Y is continuous, then the property f (A−) ⊆ f (A)− when applied
to singleton sets yields f ({a}−) ⊆ { f (a)}−. Hence b ≤ a implies f (b) ≤
f (a), that is, the function f is order preserving (with respect to the orders
of specialization on X and Y ). For the special case that f is the inclusion of



O-5 T0 Spaces and Order 43

a subspace X into Y , one sees that the order of specialization on X is the
restriction of the specialization order of Y to X .

Definition O-5.3. A set is saturated if it is an intersection of open sets, or
equivalently if it is an upper set in the order of specialization. (Upper sets are
always intersections of open sets since their complements are unions of the
closed sets {x}− = ↓x , for all x in the complement.) The saturation sat A of a
set A is the smallest saturated set containing A and consists of the intersection
smallest upper set containing A. �

Definition O-5.4. Sometimes given a poset L one wishes to consider a topol-
ogy (or topologies) for which the order of specialization agrees with the given
order. The weakest one for which this is true arises by taking all principal ideals
↓x as a subbasis for the closed sets (thus all closed sets arise by first taking
all finite unions and then all arbitrary intersections, and adding the empty set if
necessary). We call this topology the upper topology and we denote it by ν(L).
Dually, the lower topology is the one that one obtains by choosing all principal
filters ↑x as a subbasis for the closed sets. We denote the lower topology by
ω(L). The interval topology is the coarsest common refinement of the upper
and the lower topology. The principal filters and principal ideals form a basis
for its closed sets. �

Definition O-5.5. An arbitrary nonempty subset A of a topological space X is
irreducible if A ⊆ B∪C for closed subsets B and C implies A ⊆ B or A ⊆ C .

�

A point closure {p}− is always an irreducible closed set. If an infinite set X is
endowed with the cofinite topology in which a nonempty set is open iff it is the
complement of finite set, then X itself is irreducible.

Definition O-5.6. A topological space X is sober if for every irreducible
closed set C , there exists a unique x ∈ X such that {x}− = C . We denote
by SOB the category of sober spaces with all continuous maps as morphisms.

�

Notice that a sober space is automatically T0 since {x}− = {y}− always implies
x = y. Hausdorff spaces are always sober, and sober spaces are always T0. An
infinite set with the cofinite topology is T1 but not sober.

Definition O-5.7. A subspace K of a topological space X is compact if every
open cover of K admits a finite subcover. �

A set K is compact if and only if its saturation sat K is compact, since a family
of open sets covers K if and only if it covers its saturation. In fact, we will see
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that in T0 spaces compact saturated sets play a more important role than compact
sets in general. Compactness can be a rather weak property in T0 spaces. For
example a smallest element in the order of specialization is enough to ensure
that a space is compact.

Definition O-5.8. A set N is a neighborhood of a point x in a space X if
there exists an open set U such that x ∈ U ⊆ N . A collection B of subsets
of a topological space X is a basis for the topology if for every x ∈ U open,
there exists a neighborhood B ∈ B of x such that B ⊆ U . A space is second
countable if there is a countable basis B for the topology and separable if there
exists a countable dense subset. �

Second countable spaces are always separable, and the two notions are equi-
valent for metric spaces.

Definition O-5.9. A space is locally compact if there exists a basis of compact
sets. Alternatively a space is locally compact if for every x in the space and
every open U containing x , there exist an open set V and a compact set K such
that x ∈ V ⊆ K ⊆ U . �

In contrast to Hausdorff spaces, for local compactness in our sense of a T0

space it is not sufficient to require that every point has at least one compact
neighborhood. Indeed there are compact spaces that are not locally compact.

It should be stressed that the concept of compactness does not include the
Hausdorff separation axiom as in [Bourbaki, b1966]. In this respect we also
differ from the terminology adopted in A Compendium of Continuous Lattices,
the predecessor of this work, where the term quasicompact was used where we
now simply say compact. Whenever we mean compact and Hausdorff, this is
stated explicitly.

Definition O-5.10. For a T0 space X , the co-compact topology has as a basis
for the closed sets all compact saturated sets. The patch topology is the join
of the original topology and the co-compact topology, the smallest topology
containing both the original topology and the co-compact topology. �

Definition O-5.11. As in O-1.2, a net {xα: α ∈ D} in a space X is a function
α �→ xα from a directed set D into X . (We assume that the order on D is
reflexive, transitive, directed, and typically, but not necessarily, antisymmetric.)
A subset E of D is residual if it contains some ↑α, α ∈ D, and cofinal if for any
α ∈ D, there exists β ∈ E such that α ≤ β. A net {xα} converges, resp. clusters,
to x ∈ X if for any open set U containing x , the set {α: xα ∈ U } is residual,
resp. cofinal, in D. Convergence points are also called limit points. �



Exercises 45

A set A is closed iff it contains all convergence (or cluster) points of nets
contained in the set. The set A is compact iff every net in A has a cluster point.
A function between spaces is continuous at x iff it carries nets converging to x
to nets converging to f (x). A space is Hausdorff iff every net has a most one
convergence point.

Filters are also useful generalizations of sequences for considering questions
of convergence in general topological spaces.

Definition O-5.12. A filter F of subsets on a set X is a nonempty collection
of nonempty subsets that is closed under finite intersections and the taking of
supersets. A filter of open sets means a nonempty collection of nonempty open
sets closed under finite intersections and supersets. A filter base is a collection
F of nonempty sets satisfying that F1, F2 ∈ F implies that there exists F ∈ F
such that F ⊆ F1 ∩ F2. The set of supersets of a filter base is a filter, called
the filter generated by the filter base. A filter F converges to x ∈ X if every
neighborhood of x belongs to F and clusters to x if every neighborhood of x
meets every member of the filter. An ultrafilter is a maximal filter. �

By the Hausdorff Maximality Principle every filter is contained in an ultrafilter.
A filter is an ultrafilter if and only if given any subset, either the subset or its
complement belongs to the filter. An ultrafilter clusters to a point iff it converges
to the point.

Definition O-5.13. A metric space is complete if every Cauchy sequence con-
verges. A Polish space is a separable topological space which is metrizable by a
complete metric. A Baire space is a space for which any countable intersection
of dense open subsets is again dense. �

Polish spaces are Baire spaces (see [Bourbaki, b1966], Chapter IX, §5.3, The-
orem 1). Every open subset of a Polish space is Polish, and a subset Y of a
Polish space X is Polish iff Y is a Gδ-set in X , that is, iff Y is the intersection
of a countable family of open subsets in X (see [Bourbaki, b1966], Chapter IX,
§6.1, Theorem 1).

Exercises

Exercise O-5.14. Let X be a topological space. For any subset Y ⊆ X let sat
Y be its saturation, that is, the intersection of all open sets containing Y as in
O-5.3. Show that

(i) every open set is saturated,
(ii) sat Y = {x ∈ X : {x}− ∩ Y �= Ø},
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(iii) sat Y = ↑Y , where the latter is taken in the order of specialization,
(iv) Y is saturated iff Y = ↑Y , that is, iff Y is an upper set in the

specialization order,
(v) a subset Q ⊆ X is compact iff its saturation sat Q is compact. �

In the next exercises we collect some useful information about irreducible sets
and sober spaces (see O-5.5 and O-5.6).

Exercise O-5.15. Let A be a subset of a T0 space X . Show the following
properties.

(i) A is irreducible in X iff it is irreducible in itself in the relative topology.
(ii) Continuous images of irreducible sets are irreducible.

(iii) A is irreducible iff its closure A− is irreducible.
(iv) For x ∈ X , {x}− = ↓x is irreducible.
(v) X is sober iff for every irreducible set A, there exists exactly one point x

such that A− = {x}−.
(vi) A subset directed with respect to the specialization order of X is

irreducible.
(vii) If X is sober, then every subset D which is directed in the specialization

order has a supremum x = sup D, and D considered as a monotone net
converges to x . In particular, every sober space is a dcpo when
endowed with its specialization order.

(viii) A continuous function between sober spaces preserves the orders of
specialization and directed suprema. �

Exercise O-5.16. Some topological constructions preserve sobriety: prove the
following

(i) A closed subspace of a sober space is sober.
(ii) A saturated subspace of a sober space is sober.

(iii) Products of sober spaces are sober.
(iv) If Y is sober, then the set TOP(X, Y ) of all continuous functions

f : X → Y equipped with the topology of pointwise convergence (i.e.,
the relative product topology) is sober.

(v) If f, g: X → Y are continuous, X is sober, and Y is T0, then the equalizer
{x ∈ X : f (x) = g(x)} is sober.

(vi) A retract of a sober space is sober.

Hint. For (ii), let A be an irreducible closed subset of a saturated subspace Z of
a sober space X . The closure A− of A in X is an irreducible closed subset of X .
Hence A− is the closure in X of a point x . As Z is saturated and as a ≤ x for
every a ∈ A with respect to the specialization order, we conclude that x ∈ Z
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and A is the relative closure of {x} in Z . For (iii), let A be an irreducible subset
of
∏

i Xi , where each Xi is sober. Then Ai := πi (A) is irreducible and hence
Ai

− = {xi }− = ↓xi for some unique xi ∈ Xi . If follows that A ⊆∏i Ai ⊆ ↓x ,
where x is defined by πi (x) = xi . Now any subbasic open set Ui ×

∏
j �=i X j

around x must meet A (since xi ∈ Ai
−), and thus all basic open sets around x

must meet A since A is irreducible. It follows that A− = {x}−. The proof of
(iv) is similar: Let A be an irreducible subset of TOP(X, Y ) with the topology
induced by the product topology on Y X . Then Ax := πx (A) = {a(x): a ∈ A}
is irreducible in Y for every x ∈ X . As Y is supposed to be sober, there is a
unique element ax ∈ Y such that Ax

− = {ax }−. We now show that the function
f : X → Y defined by f (x) = ax is continuous. Indeed let x ∈ X and let V
be an open neighborhood of f (x) = ax in Y . Then V intersects Ax , that is,
there is an element a ∈ A such that a(x) ∈ V . As a is continuous, there is a
neighborhood U of x such that a(z) ∈ V for every z ∈ U . As a(z) ≤ az = f (z)
for the specialization order, we conclude that f (z) ∈ V for all z ∈ U . Thus f
is continuous. As in (iii) one now shows that { f }− = A−. �

New notes

Most of the topological concepts that we use are quite standard and may be
found in textbooks like [Kelley, b1955], [Bourbaki, b1966]. The more specific
features connecting order and topology related to the topics treated in this
volume are treated in the texts [Johnstone, b1982], [Vickers, b1989], [Smyth,
1992c]. In the literature, no systematic account on sober spaces seems to be
available. The properties collected in Exercise O-5.16 have been communicated
to us by R. Heckmann (see [Heckmann, 1996]).
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Order Theory of Domains

Here we enter into the discussion of our principal topics. Continuous lattices
and domains exhibit a variety of different aspects, some are order theoretical,
some are topological, some belong to topological algebra and some to category
theory – and indeed there are others. We shall contemplate these aspects one at
a time, and this chapter is devoted entirely to the order theory surrounding our
topic.

Evidently we have first to define continuous lattices and domains. As we shall
see from hindsight, there are numerous equivalent conditions characterizing
them. We choose the one which is probably the simplest, but it does involve
the consideration of an auxiliary transitive relation, definable in every poset,
by which one can say that an element x is “way below” an element y. We will
write this as x � y. We devote Section I-1 to the introduction of the way-
below relation and of continuous lattices and domains. We demonstrate that the
occurrence of this particular additional ordering is not accidental and explain
its predominant role in the theory. We exhibit the paradigmatic examples of
continuous lattices and domains; in due course we shall see many more.

In Section I-2 we show that continuous lattices have a characterization in
terms of (infinitary) equations. This gives us the important information that the
class of continuous lattices, as an equational class, is closed under the formation
of products, subalgebras, and homomorphic images – provided we recognize
from the equations which maps ought to be considered as homomorphisms.
The essential results remain intact for bounded complete domains in place of
continuous lattices. It is in the very nature of the theme of this section that very
few references are made to any domains which are more general than bounded
complete domains or continuous lattices.

In Section I-3 we explain why in a continuous semilattice there are always
sufficiently many meet irreducible elements in the sense that every element is

48
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the infimum of the irreducibles dominating it. In Chapter V we will bring this
result to fruition when we discuss the spectral theory of distributive continuous
lattices.

In Section I-4 we show that the familiar concept of an algebraic lattice is
subsumed under the more general one of a continuous lattice, and we review
some of the known aspects of algebraic lattices in this light. We also develop the
parallel theory on the level of algebraic domains and their relation to continuous
ones.

I-1 The “Way-below” Relation

It often happens that we encounter relations between elements of a given poset
which are stronger than the simple less-than-or-equal-to relation of the partial
ordering. In a linearly ordered chain, for example, we usually have need to single
out the strict less-than relation. In the nonlinear case, however, this seldom
proves to be a very interesting relation. Consider in this regard the lattice O(X )
of open sets of a topological space X . To say U ⊆ V but U �= V does not say
very much, since the sets could differ at only one point. To say that U really
is inside V we could say that the closure U− ⊆ V . This means that U avoids
the boundary of V even by limits, and in the case of compact Hausdorff spaces
this is a well-known and useful relation. If, on the other hand, the space is
only locally compact, the relation is not as strong as it looks. In order to say
that U is way inside V we could require that U− ⊆ V and U− is compact.
This means that U avoids the boundary of V even in a compactification of the
space. This relation, moreover, has a purely lattice theoretical definition, since
we can define it in O(X ) as meaning that every open covering of V has a finite
subcollection that is a covering of U . (At least this works in the locally compact
Hausdorff case.) What we are now going to study is the abstract generalization
of this relation on dcpos and on complete lattices, where the notion is nontrivial
in an interesting way.

The way-below relation and continuous posets

Definition I-1.1. Let L be a poset. We say that x is way below y, in symbols
x � y, iff for all directed subsets D ⊆ L for which sup D exists, the relation
y ≤ sup D always implies the existence of a d ∈ D with x ≤ d. An element
satisfying x � x is said to be compact or isolated from below.
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�

Remark. In a complete semilattice L , in particular in a complete lattice,
the way-below relation can be defined equivalently by the following property
which is modeled directly on the finite open covering property mentioned above:
x � y iff for every subset X ⊆ L the relation y ≤ sup X always implies the
existence of a finite subset A ⊆ X such that x ≤ sup A.

Indeed, if y ≤ sup X , consider the directed set X+ = {sup A: A is a finite
subset X} for which sup X+ = sup X . Thus, if x � y in the sense of Definition
I-1.1, then there is a finite subset A ⊆ X such that x ≤ sup A. The converse is
immediate.

Some authors prefer the term “relatively compact” to “way below”, since in
O(X ) it is natural to read U � V as “U is relatively compact in V ”. Indeed,
one of the definitions of relative compactness that one finds in the literature is:
U is relatively compact in V iff every open cover of V contains a finite cover of
U . And this coincides exactly with U � V according to the above alternative
definition. However, important as the topological example is, it is only one out
of many examples of interesting lattices; we therefore choose to emphasize the
order theoretical view. The way-below relation is meaningful primarily when
all directed set have sups, that is in dcpos. However, its definition does not
depend on that assumption.

The following properties of the relation � follow quickly.

Proposition I-1.2. In a poset L the following statements hold for all u, x,
y, z ∈ L:

(i) x � y implies x ≤ y;
(ii) u ≤ x � y ≤ z implies u � z;

(iii) x � z and y � z imply x ∨ y � z whenever the least upper bound x ∨ y
exists in L;

(iv) 0 � x whenever L has a smallest element 0.

Proof: Assertions (i), (ii), and (iv) are immediate. For (iii), let z ≤ sup D for
a directed set D. Then x ≤ dx and y ≤ dy for some dx , dy ∈ D, and then
x ∨ y ≤ d for some d ∈ D larger than dx and dy . �
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Clearly, � is transitive and antisymmetric from (i) and (ii). In analogy with
O-1.3 we write

�x = {u ∈ L : u � x}, �

x = {v ∈ L : x � v},

and so on. We can then conclude from the four statements of I-1.2 and the
definition of an ideal (O-1.3) that the following one holds.

For all x in a complete semilattice, the set �x is an ideal contained in ↓x .
If x ≤ y then �x ⊆ �y.

Examples I-1.3.
(1) As a first example let L be a complete chain. Then x < y obviously

implies x � y. Conversely, if x � y, then either x < y or x = 0 or else
x = y is isolated from below – which in this case means simply that we have
sup(↓x\{x}) < x , so that x is the upper endpoint of a jump in the ordering.
Thus, if L is the ordinary unit interval I = [0,1], we have x � y iff either
x < y or x = y = 0.

(2) The way-below relation generally behaves as a type of strict less-then
relation, but, as we have just seen in the case of chains, the behavior is a little
more subtle than that. If L is a complete chain, and we consider the partially
ordered direct power L I of L in the pointwise ordering, then in the complete
lattice L I we find x � y iff xi � yi for all i ∈ I and xi = 0 for all but
a finite number of indices i . When I is infinite, this circumstance obviously
justifies the “way” in “way below”. (Perhaps “well below” would have been
less colloquial, but we wanted to make the notion more memorable.) The reader
can easily explain to himself the significance of the special case when L is
just the two element lattice and we can regard L I as the powerset lattice: in
the powerset of I , the relation A � B just means that A is a finite subset
of B.

(3) As a first bad example, consider the case of a complete and atomless
Boolean algebra. Recall that “atomless” means that there are no minimal
nonzero elements; thus, by the laws of Boolean complements, every nonzero
element can be split as the join of two disjoint, nonzero parts. By employing
completeness this splitting can be continued indefinitely to show that, in fact,
every nonzero element is the sup of a denumerable family of pairwise disjoint,
nonzero elements, each of which must necessarily be strictly smaller than the
originally given element. By arranging these elements in a sequence and taking
the joins of the initial segments, we find that the original element is the sup of
a directed family of strictly smaller elements.
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Now suppose x � y. If x �= 0, then the preceding construction can be
carried out in the interval [w, y] where w is the relative complement of x in
y (one verifies directly that all nontrivial intervals are again atomless Boolean
algebras). But no element of [w, y] is above x except y. Thus, the way-below
relation trivializes to: x � y iff x = 0.

(4) For somewhat pathological examples, think what it means for x � x
to hold for all x ∈ L . Clearly, every finite poset has this property. More
generally it is necessary and suffcient that there be no strictly increasing in-
finite chains in the partial ordering, because the sup of such a chain cannot
be isolated from below. This is just the ascending chain condition for L , and
it is equivalent to saying that every nonempty subset contains a maximal ele-
ment (and hence every directed set has a maximum). Note that if L satisfies
this condition, there is no reason for Lop to do so: the definition of the way-
below relation is, therefore, not at all symmetric with respect to the partial
ordering.

(5) We should also recall at this point the examples of lattices from universal
algebra, for instance those of O-2.7(4). The ring case will be suffcient for
illustration: the lattice Id A of two-sided ideals of the ring A is complete.
If I, J ∈ IdA, then, because each ideal is the directed union of the finitely
generated ideals it contains, I � J holds iff I ⊆ F ⊆ J for some finitely
generated F ∈ IdA. We note, too, that F � F holds iff F is finitely generated.
This and related examples will be studied in full detail in Section 4 on algebraic
lattices. �

Topological spaces provide other good examples – in certain cases. That is to
say, in certain cases it is easy to identify the way-below relation in topological
terms. In our formulations we adopt the convention of calling a space (or subset)
with the Heine–Borel property compact (every open covering has a finite sub-
covering) and of saying specifically when the Hausdorff separation property is
assumed in addition (see O-5.5). Accordingly, we call a space locally compact
if for every point x and every open set U containing x there are an open set
V and a compact set Q such that x ∈ V ⊆ Q ⊆ U , i.e., if every point has a
neighborhood basis of compact neigborhoods (see O-5.7). Notice that a subset
K of a topological space is compact if and only if for each directed set D of
open sets whose union contains K there is a member U ∈ D containing K ; the
necessity is an immediate consequence of the Heine–Borel property; in order
to see sufficiency for a given open cover {U j : j ∈ J } of K let D be the set of
finite unions of the U j ; then K is contained in the union of D and if K satisfies
our property then there is a member ofD covering K : the Heine–Borel property
holds.
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Proposition I-1.4. Let X be a topological space and let L = O(X ).

(i) If U, V ∈ O(X ) and if there is a compact subset Q ⊆ X with U ⊆ Q ⊆
V , then U � V .

(ii) Suppose now that X is locally compact. Then U � V in L iff there exists
a compact set Q with U ⊆ Q ⊆ V .

Proof: As the open subsets form a complete lattice, we may use the alternative
description of the way-below relation in Definition I-1.1.

(i) Indeed, any open cover of V is an open cover of Q, and, since Q is
compact, finitely many of the covering sets already cover Q, hence U . Thus,
U � V .

(ii) For the converse in the case of a locally compact X , observe that each
point v ∈ V has a compact neighborhood Qv ⊆ V with interior Wv containing
v. Then

V =
⋃
{Wv: v ∈ V },

and from U � V we may conclude that there are finitely many elements
v1, . . . , vn such that

U ⊆ Wv1 ∪ · · · ∪ Wvn ⊆ Qv1 ∪ · · · ∪ Qvn ⊆ V .

The set Q = Qv1 ∪ · · · ∪ Qvn is the required compact set. �

One notes immediately that in Hausdorff spaces the relation U ⊆ Q ⊆ V for
some compact set is equivalent to saying that U− ⊆ V and U− is compact.

The above examples and arguments suggest some alternatives to the definition
of the way-below relation, notably when we are in a complete lattice. For a poset
L and x ∈ L let J (x) = {I ∈ Id(L): x ≤ sup I }.
Proposition I-1.5. (i) In a poset L, the following conditions are equivalent:

(1) x � y;
(2) x ∈ I for every ideal I of L such that y ≤ sup I ;
(2′) x ∈⋂ J (y).

If L is a meet continuous semilattice, then conditions (1) and (2) are equiv-
alent to

(3) x ∈ I for every ideal I of L such that y = sup I .

(ii) Suppose that there exists a directed set D ⊆ �x with sup D = x. Then

�x is directed and x = sup �x. Furthermore, y � x if y � x in the poset ↓x
with the induced order.
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Proof: (i) That (1) ⇒(2) is immediate from the definitions (see I-1.1 and O-
1.3(vii)). (2)⇒ (1): Assume (2) and let D be a directed subset with y ≤ sup D.
Then I = ↓D is an ideal, and y ≤ sup D = sup I . Then x ∈ I by (2), i.e.,
there is a d ∈ D such that x ≤ d . Hence x � y.

Condition (2′) is just a reformulation of (2).
For (3) we have only to remark that y ≤ sup I is equivalent to y = sup y I in

a meet continuous lattice.
(ii) Let y � x, z � x . Then y ≤ dy and z ≤ dz for some dy, dz ∈ D.

Pick d ∈ D such that dy ≤ d and dz ≤ d. Then y ≤ d, z ≤ d, and d � x .
Thus �x is directed. If y � x in↓x , then y ≤ d � x for some d ∈ D, so y � x
in L . �

We note that the equivalence of (1) and (2′) in I-1.5 can be expressed as follows.
For all x in a dcpo L we have �x =

⋂
J (x).

In an arbitrary poset or even complete lattice, as we have seen, we have no
guarantee that the relation x � y is satisfied for any pairs (x, y) other than
those with x = 0. Very roughly speaking, continuous posets are those posets
for which the relation x � y is “frequent”. More precisely:

Definition I-1.6.

(i) A poset L is called continuous if it satisfies the axiom of approximation:

(∀x ∈ L) x =
∨↑

�x, (A)

i.e., for all x ∈ L , the set �x = {u ∈ L: u � x} is directed and x =
sup{u ∈ L: u � x}.

(ii) A dcpo which is continuous as a poset will be called a domain.
(iii) A domain which is a complete lattice is called a continuous lattice. We

recall from O-2.2 that a dcpo which is a lattice with a smallest element is
a complete lattice.

(iv) A domain which is also a semilattice is called a continuous semilattice.
(v) A complete semilattice (cf. O-2.1) which is a domain as a poset is called

a complete continuous semilattice or alternatively a bounded complete
domain. In light of O-2.2(iv) this is equivalent to saying that a bounded
complete domain is a domain which is bounded complete.

(vi) A domain in which every principal ideal ↓x is a complete lattice (in its
induced order) is called an L-domain. �
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We thus have the following chain of implications:

continuous lattice ⇒ bounded complete domain

⇒
{

continuous semilattice
L-domain

}

⇒ domain ⇒ dcpo

The entire area of investigation of the theory and of the applications of
continuous lattices and their generalizations, which we discuss here, has become
rather unequivocally known as domain theory. However, inquiring what is really
meant by a domain remains a highly sensitive question. We have now fixed our
terminology by the previous definition.

Remark. Note that in a complete semilattice and in a sup semilattice, �x is
automatically directed by I-1.2(iii), and thus in Definition I-1.6, we may write
condition (A) simply as x = sup �x or as

whenever x �≤ y, then there is a u � x with u �≤ y. (A1)

In other words, the axiom of approximation means that every element can be
suffciently well approximated by elements way below it. Indeed, the way-below
relation completely determines the partial ordering, because in a continuous
poset it is the case that

x ≤ y ⇔ �x ⊆ �y.

Remark. Often it is difficult to characterize the way-below relation on a
poset completely. For proving the continuity of a poset it is sufficient to know
“enough” elements that are way below. Indeed, by I-1.5(ii), a poset is continuous
provided that, for every x , one can find a directed set D of elements d � x
such that x = sup D.

Examples I-1.7. It is clear that all finite posets and all finite lattices are con-
tinuous. In view of the foregoing discussion in I-1.3 and I-1.4, we may assert
that the following are continuous:

(1) complete chains are continuous lattices;
(2) direct powers (products) of complete chains are continuous lattices;
(3) posets satisfying the ascending chain condition are domains;
(4) the ideal lattice of a ring is a continuous lattice;
(5) the open sets of a locally compact space form a continuous lattice. �
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Notice that for locally compact X the lattice O(X ) is in fact a distributive
continuous lattice by O-3.22. In the fourth section of this chapter we will see
that Oreg(X ) is almost never a continuous lattice, since Boolean algebras rarely
are (cf. the atomless example of I-1.3(3)). This shows that frames (complete
Heyting algebras) need not be continuous lattices. In Chapter V we shall prove
that every continuous frame (= distributive continuous lattice) is of the form
O(X ) for some locally compact space X , even though not every frame is a
topology. We will also exhibit there some very bad spaces X for which O(X )
is a continuous lattice, while every compact subset of X has empty interior.

These examples cover the most immediate and obvious classes of continuous
lattices. At the end of this present section we present some further types of
domains occurring “in nature”, where the proof of continuity is not so quick.
In the next section we will find construction methods allowing us to obtain a
multitude of domains by using given ones as building blocks. Before turning
to these matters, let us show that that the continuity concept for posets as
introduced in I-1.6 implies meet continuity as defined in O-4.1:

Proposition I-1.8. Every continuous semilattice, hence every continuous
lattice, is meet continuous.

Proof: Let L be a continuous semilattice. We use O-4.2(5). Assume that x ≤
sup D, where D is directed. To show x ≤ sup x D, it suffices to show �x ⊆
↓sup x D. But if y � x , then not only is y ≤ x but y ≤ z for some z ∈ D. As
y ≤ xz ∈ x D, it follows that y ≤ sup x D. �

The following theorem exhibits an important property of the way-below relation
on continuous domains, the interpolation property.

Theorem I-1.9. (i) If x � z and if z ≤ sup D for a directed set D in a
continuous poset L, then x � d for some element d ∈ D.

(ii) In a continuous poset L, the way-below relation satisfies the interpolation
property

x � z implies (∃y) x � y � z. (INT)

Proof: (i) Let D be a directed set with z ≤ sup D, and let I =⋃{ �d: d ∈ D}.
By continuity, sup I = sup D and, being a union of a directed family of ideals,
I is an ideal. Hence, if x � z then x ∈ I by I-1.5(2), which means that x � d
for some d ∈ D.

(ii) follows from (i) by choosing D = �z and recalling that z = sup �z by
the continuity of L . �
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We continue the discussion by considering the way-below relation from a new
perspective. From the context of I-1.5 we recall that for x in a poset L the set
J (x) is defined to be {I ∈ Id L : x ≤ sup I }. Recall that by I-1.5(i), in a poset
L we have �x =

⋂
J (x).

Theorem I-1.10. For a dcpo L, the following conditions are equivalent:

(1) L is continuous;
(2) for each x ∈ L, the set �x is the smallest ideal I with x ≤ sup I ;
(3) for each x ∈ L there is a smallest ideal I with x ≤ sup I ;
(4) the sup map r = (I �→ sup I ): Id L → L has a lower adjoint.

These conditions imply

(5) the sup map r : Id L → L preserves all existing infs;

and if L is a complete semilattice or a complete lattice, then all five conditions
are equivalent.

Proof: (1) ⇒ (2): Condition (1) holds iff for each x ∈ L , �x ∈ Id L and

�x ∈ J (x) by Definition I-1.6. Thus (2) follows.
Condition (2) trivially implies (3).
(3) ⇒(1): If J (x) has a smallest element M , then M ⊆ I for all I ∈ J (x)

and thus M ⊆⋂ J (x) ⊆ M . Hence M =⋂ J (x) = �x .
Thus (1), (2) and (3) are equivalent.
(3) iff (4): By O-3.2, the map r has a lower adjoint iff min r−1(↑x) exists for

all x . But min r−1(↑x) is precisely the smallest element of J (x).
(4) implies (5): The sup map preserves infs by O-3.3.
(5) implies (4): This follows from O-3.4, as the sup map r : Id L → L clearly

is cofinal. �

Auxiliary relations

To finish up our discussion of definitional matters, we take a closer look at
the way-below relation and detect how it fits into a more general framework.
We begin by reformulating as a definition something we already know for the
way-below relation (cf. I-1.2).

Definition I-1.11. We say that a binary relation≺ on a poset L is an auxiliary
relation, or an auxiliary order, if it satisfies the following conditions for all
u, x, y, z:

(i) x ≺ y implies x ≤ y;
(ii) u ≤ x ≺ y ≤ z implies u ≺ z;
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(iii) if a smallest element 0 exists, then 0 ≺ x .

The set of all auxiliary relations on L will be denoted by Aux(L). �

Clearly, every auxiliary relation is transitive by (i) and (ii), and the way-below
relation is an auxiliary relation by Proposition I-1.2. The set Aux(L) is a poset
relative to the containment of graphs as subsets of L× L . The largest element is
the relation ≤ itself. If L has a smallest element 0, then Aux(L) has a smallest
element © given by x © y iff x = 0. As Aux(L) is closed under arbitrary
intersections in 2L×L , it is therefore a complete lattice.

In order to gain better insight into the lattice Aux(L) we try to find an iso-
morphic copy.

For a poset L let Low L denote the set of all lower sets in L which are
supposed to contain 0, if L has a smallest element 0.

Proposition I-1.12. Let L be a poset and let M be the set of all monotone
functions s: L → Low L satisfying s(x) ⊆ ↓x for all x ∈ L − considered as
a poset relative to the ordering s ≤ t iff s(x) ⊆ t(x) for all x ∈ L. Then the
assignment

≺ �→ s≺ = (x �→ {y: y ≺ x})

is a well-defined isomorphism from Aux(L) onto M, whose inverse associates
to each function s ∈ M the relation ≺s given by

x ≺s y iff x ∈ s(y).

Proof: Let ≺ be an auxiliary relation. Then s≺(x) is a lower set by I-1.11(ii)
contained in ↓x by I-1.11(i) and which contains 0 whenever L has a smallest
element 0 by I-1.11(iii). If x ≤ y, then s≺(x) ⊆ s≺(y) by I-1.11(ii). Thus s≺ is
in M , and the assignment ≺ �→ s≺ is clearly order preserving.

Conversely, if s ∈ M , then s(x) ⊆ ↓x implies that ≺s satisfies I-1.11(i).
The relation u ≤ x ≺s y ≤ z implies u ≤ x and x ∈ s(y) ⊆ s(z), since
s is monotone. Because s(z) is a lower set, u ∈ s(z); whence, u ≺s z. Thus
I-1.11(ii) is satisfied. Condition I-1.11(iii) is immediate. Thus, the assignment
s �→≺s : M → Aux(L) is a well-defined function, and it is obviously order
preserving also.

It remains to confirm that the two assignments are inverses of each other, but
this is easy. �

After this proposition we know that an auxiliary relation is essentially the same
thing as assigning in a monotone fashion a lower set bounded by x to each
element x of L . The largest element in M is the function x �→ ↓x . If L has
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a smallest element 0, then M has a smallest element, namely, the constant
function x �→ {0}. It is easy to see directly that M is a complete lattice.

Now we can raise the question how we might locate the auxiliary relation �
within Aux(L). From Proposition I-1.5(i) we know that

�x =
⋂
{I ∈ Id L: x ≤ sup I }.

This does not yet express the function x �→ �x as an inf (in M) of a recognizable
collection of other functions in M . In order to approach this goal, let us assume
that L is a dcpo and consider for an arbitrary ideal I ∈ Id L the function
m I : L → Low L given by

m I (x) =
{↓x ∩ I = x I, if x ≤ sup I,
↓x, otherwise.

Then m I (x) is a lower set which is contained in↓x , and x �→ m I (x) is monotone;
in other words, m I ∈ M . Now we calculate inf{m I : I ∈ Id L} in M :

(infI∈Id L m I )(x) =
⋂

I∈Id L
m I (x)

=
⋂

x≤sup I
m I (x) ∩

⋂

x �≤sup I
m I (x)

=
⋂

x≤sup I
(↓x ∩ I ) ∩ ↓x

=
⋂
{I ∈ Id L: x ≤ sup I }

= ↓x .

Definition I-1.6 of a continuous poset motivates us next to formulate the
following definition.

Definition I-1.13. An auxiliary relation ≺ on a dcpo L (and the function
s≺: L → Low L associated with it) is called approximating iff the set {u ∈ L :
u ≺ x} = s≺(x) is directed (hence an ideal) and

x = sup{u ∈ L: u ≺ x} = sup s≺(x)

for all x ∈ L . The set of all approximating auxiliary relations is denoted by
App(L). �

The relation ≤ is trivially approximating, and, in a continuous poset L , the
relation � is approximating by I-1.6. Loosely speaking, the approximating
auxiliary relations are those auxiliary relations which are “close” to ≤. One
does not expect a rich supply of information for auxiliary relations which are
not approximating, but they do occur.

Lemma I-1.14. In a meet continuous semilattice L, all relations belonging to
the functions m I for I ∈ Id L are approximating. This holds, in particular, for
continuous semilattices, as these are meet continuous (I-1.8).
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Proof: Let x ∈ L . If x ≤ sup I , then sup m I (x) = sup x I = x sup I = x by
O-4.2. If x �≤ sup I , then sup m I (x) = sup↓x = x . �

Now we can have a lattice theoretical description of�within Aux(L) – at least
for meet continuous semilattices:

Proposition I-1.15. In a dcpo L, the way-below relation � is contained in
all approximating auxiliary relations, and is equal to their intersection, if L is
a meet continuous semilattice.

Proof: Suppose that y � x and≺ is an approximating auxiliary relation. Then
{u ∈ L : u ≺ x} is a directed set and its sup is x . This implies y ≤ u ≺ x for
some u, and hence y ≺ x . Thus � is contained in ≺.

On the other hand, for L meet continuous, we have

�x =
⋂
{m I (x): I ∈ Id L} ⊇

⋂
{s≺(x): ≺ is in App(L)}

by Lemma I-1.14. �

Notice that this does not say that� is itself an approximating relation, because
meet continuous semilattices need not be continuous. More precisely, we have

Proposition I-1.16. Let L be a dcpo and consider the following conditions:

(1) L is continuous, i.e., a domain;
(2) the relation � is the smallest approximating auxiliary relation on L;
(3) there is a smallest approximating auxiliary relation on L.

Then (1) ⇔ (2) ⇒ (3). Moreover, if L is a meet continuous semilattice, then
all three conditions are equivalent.

Proof: (1) ⇔ (2): By definition, L is a domain iff � is an approximating
auxiliary relation. Thus the equivalence of (1) and (2) follows from the first part
in proposition I-1.15.

That (2) ⇒ (3) is trivial.
Let L be a meet continuous semilattice. Then � is the intersection of

all approximating auxiliary relations by I-1.15. Thus, if there is a smallest
approximating auxiliary relation, this has to be �, and we see that (3)
implies (1). �

We return to the discussion of the interpolation property, the single most im-
portant property of the relation � in continuous posets from I-1.9.

Definition I-1.17. We say that an auxiliary relation≺ on a poset L satisfies the
strong interpolation property, provided that the following condition is satisfied
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for all x, z ∈ L:

(SI) x ≺ z and x �= z together imply (∃y) (x ≺ y ≺ z and x �= y).

We say that≺ satisfies simply the interpolation property iff the following weaker
condition holds for all x, z ∈ L:

(INT) x ≺ z implies (∃y) x ≺ y ≺ z. �

One may look at the interpolation property as a sort of order density property.
Notice that x ≺ z and x = z (i.e., x ≺ x) will trivially imply the existence of a y
with x ≺ y ≺ z; namely, y = x . So clearly (SI) implies (INT); if ≺ is approx-
imating, then the two conditions are equivalent. Thus, the way-below relation
� on a continuous poset also satisfies the strong interpolation property. In the
theory of domains and continuous lattices much depends on the fact that� sat-
isfies the interpolation property. The reason for making a distinction between
the two interpolation properties is that� is generally a very irreflexive relation
and that the stronger one will be needed in Chapter IV.

Lemma I-1.18. Any approximating auxiliary relation≺ in a dcpo L satisfies
the following condition for all x, z ∈ L:

x ≺ z and x �= z together imply (∃y) (x ≤ y ≺ z and x �= y).

Proof: Since z = sup{u: u ≺ z}, there is a u ≺ z with u �≤ x . As s≺(z) =
{u: u ≺ z} is directed, there is an upper bound y of {x, u} such that y ≺ z;
since u �≤ x we have x �= y. �

The following proposition generalizes Theorem I-1.9.

Proposition I-1.19. For any approximating auxiliary relation ≺ in a dcpo L
the following conditions hold for all x, z ∈ L.

(i) If x � z, x �= z and z ≤ sup D for a directed subset D of L, then x ≺ d,
x �= d for some element d ∈ D.

(ii) If x � z and x �= z, then there exists a y such that x ≺ y ≺ z and x �= y.

Proof: (i) Let D be a directed set such that z ≤ sup D, and let I =⋃{s≺(d): d ∈
D}. The relation≺ being approximating, I is an ideal as a directed union of the
ideals s≺(d) and sup I = sup{sup s≺(d): d ∈ D} = sup D ≥ z. From x � z
we now conclude that x ∈ I , that is, there is an element d ∈ D such that x ≺ d .
As x �≥ z and z ≤ sup D, there is an element c ∈ D with c �≤ x . Replacing d
by a common upper bound of c and d in D, we have found the desired element.
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(ii) Choose D = s≺(z) = {y ∈ L : y ≺ z}. As ≺ is approximating, D is
directed z = sup D. If x � z and x �= z, by (i) we may find an element y ∈ D,
that is, y ≺ z, such that x ≺ y and y �= x . �

In view of these lemmas, the following strengthening of the interpolation prop-
erty in Theorem I-1.9(ii) is immediate.

Corollary I-1.20. In a domain the way-below relation satisfies the strong
interpolation property (SI). �

We remark that for many purposes (INT) suffices. We also note that in the
formulation of the property we could not strengthen (SI) to include y �= z,
because the two element chain offers a trivial counterexample.

Important examples

Let us now consider three examples of types of continuous lattices which can be
fairly said “to occur in (mathematical) nature”. In connection with Section 4 of
this chapter, where we introduce algebraic lattices, the wide classes of lattices
described here will in particular furnish examples of continuous lattices which
are not generally algebraic. We then proceed to some wide classes of domains
which are not lattices.

Example I-1.21. (Closed ideals of C∗-algebras). Recall the concept of a
C∗-algebra, which is of central importance in functional analysis in the context
of operators on Hilbert space and of operator norm closed involutive algebras
of operators. Abstractly a C∗-algebra is a complex Banach algebra A with an
involution a �→ a∗ satisfying ‖a∗a‖ = ‖a‖2. We record the following fact
(cf. [Laursen and Sinclair, 1975], esp. p. 168).

Fact. Each C∗-algebra B contains a unique smallest dense two-sided ideal B0,
called the Pedersen ideal of B.

If B has an identity, then B0 = B; if B is the algebra C0(X ) of all continuous
complex-valued functions on a locally compact and noncompact Hausdorff
space vanishing at infinity, then B0 is the ideal K(X ) of all continuous functions
of compact support; it was for the purposes of generalizing integration theory
to the noncommutative situation that Pedersen found and investigated the ideal
B0. If B is the algebra LC(H) of compact operators on the Hilbert space H,
then B0 is the ideal of all finite-rank operators.
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For any subset X in the C∗-algebra A we let 〈X〉 denote the closed (!) two-
sided ideal generated by X in A. Recall that Id−A denotes the lattice of closed
two-sided ideals (O-2.7(7)). Each I ∈ I d−A is in itself a C∗-algebra. We now
have the following proposition on the complete lattice L = Id−A.

Proposition I-1.21.1. For I, J ∈ Id−A the following statements are
equivalent.

(1) I � J (in L).
(2) There is an element a ∈ J0 with 0 ≤ a such that I ⊆ 〈a〉.
(3) There is a finite subset F ⊆ J0 with I ⊆ 〈F〉.
Proof: That (2) implies (3) is trivial. For the proof (3) implies (1) we formulate
a lemma:

Lemma. Let P ∈ Id−A and Q ∈ IdA with P ⊆ Q−. Then (P ∩ Q)− = P .

Proof: Let 0 ≤ x ∈ P; then x = lim xn with xn ∈ Q; thus xxn ∈ P∩Q; hence
x2 = lim xxn ∈ (P ∩ Q)2 and thus x ∈ (P ∩ Q)− by the functional calculus
for C∗-algebras. �

Now we prove (3) implies (1): Let D be any directed subset of L with J ⊆
sup D = (

⋃
D)−. By the lemma, J ∩⋃ D is a dense two-sided ideal of J ;

hence, it contains J0 by the Fact quoted above. If F ⊆ J0 is as in (3), we may
therefore conclude that there is some member K ∈ D with F ⊆ K , and thus
I ⊆ 〈F〉 ⊆ K . This proves (1).

For a proof (1) implies (2), we take 0 ≤ x, y ∈ J0, and so 0 ≤ x + y ∈ J0;
the observation 0 ≤ x ≤ x + y allows us to conclude x ∈ 〈x + y〉, since closed
two-sided ideals are “hereditary”. Thus the collection {〈x〉: 0 ≤ x ∈ J0} is
directed in L , and its union contains J0; whence, its sup dominates J by the
Fact quoted above. Condition (1) now implies that we find some a ∈ J0 with
0 ≤ a and I ⊆ 〈a〉. �

We notice that the crux in defining the way-below relation in a lattice of closed
ideals (or congruences, subgroups, etc.) in topological rings (algebras, groups,
etc.) is the fact that the formation of the sup of a directed collection involves
an eventual closure of the union, and this creates all the complication. Once
again one notices that C∗-algebras constitute a class of topological algebras
with particularly desirable properties. We now arrive at the main conclusion
that is the point of this discussion.

Proposition I-1.21.2. The lattice L = Id−A of closed two-sided ideals in the
C∗-algebra A is a continuous lattice.
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Proof: For I ∈ L we have I = (
⋃{〈F〉: F finite in I0})− by the Fact quoted

above. Then apply Proposition I-1.21.1 above. �

Other proofs of this result exist, but this one relates most directly to the def-
initions. We remark that in fact Id−A is a distributive lattice, hence indeed a
continuous distributive lattice by the preceding proposition. �

Example I-1.22. (Lower semicontinuous functions). Let LSC(X ) =
LSC(X,R∗) denote the complete lattice of all lower semicontinuous functions
on a topological space X with values in the extended real line R

∗ (see O-2.10).
For any function f : X → R

∗ we consider its upper graph G f = {(x, r ): r <

f (x)}. Then f is lower semicontinuous iff G f is open in X × R
∗. We use the

notation x � y in R
∗, a continuous lattice itself, which of course means that

x < y or x = −∞. �

Proposition I-1.22.1. Suppose that X is a compact Hausdorff space. Consider
the following statements for f, g ∈ LSC(X ):

(1) f � g in LSC(X );
(2) there are an open cover {U j : j ∈ J } of X and a family {y j : j ∈ J } of

elements in R
∗ where f (x) ≤ y j � g(x) for all j ∈ J and x ∈ U j ;

(3) for each element x ∈ X there are an open neighborhood U in X and an
element y ∈ R

∗ where f (x1) ≤ y � g(x1) for all x1 ∈ U;
(4) G−

f ⊆ Gg in X × R
∗;

(5) there is a continuous function h ∈ C(X,R∗) where for all x ∈ X we have
f (x) ≤ h(x) � g(x).

Then (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇒ (5).

Remark. The implications (1) implies (2) and (2) iff (3) maintain their validity
for regular X .

Proof of proposition: (2) iff (3): Clear.
(1) implies (3): Let F(g) be the set of all functions sχU such that

(i) χU is the characteristic function of an open set U , and
(ii) s � g(x) for all x ∈ U−.

Then F(g) is a subset of LSC(X ) with g = supF(g), since X is regular and g
is lower semicontinuous. Because f � g we find functions

s1χU1 , . . . , snχUn ∈ F(g) with f ≤ sup s jχU j .
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Let x ∈ X be arbitrary, and set I (x) = { j : x �∈ U−
j }. Then i ∈ I (x) implies

si � g(x). Set s(x) = max{s j : j ∈ I (x)}, then s(x) � g(x). The set

V (x) = X
∖⋃

{U−
j : j �∈ I (x) }

is an open neighborhood of x . Since g is lower semicontinuous, there is an open
neighborhood U (x) of x in V (x) such that u ∈ U (x) implies s(x) � g(u). But
u ∈ U (x) entails that u �∈ U j for j �∈ I (x); whence,

f (u) ≤ sup
{
s jχU j (u): j = 1, . . . , n

} = sup
{
s jχU j : j ∈ I (x)

} ≤ s(x).

(3) implies (1): Let h j be a directed net in LSC(X ) with g ≤ sup h j . For
each x ∈ X we find an index j = j(x) and an element s(x) ∈ R where s(x) �
h j (x), and f (y) ≤ s(x) for all y in an open neighborhood U (x) of x . Since
h j is lower semicontinuous, there is an open neighborhood V (x) ⊆ U (x)
with s(x) � h j (v) for all v ∈ V (x). By the compactness of X , we find
finitely many x1, . . . , xn with X = V (x1) ∪ · · · ∪ V (xn). Let k be an index
with j(x1), . . . , j(xn) ≤ k. Then for each x ∈ X there is an i with f (x) ≤
s(xi ) ≤ hk(x); whence, f ≤ hk .

(4) iff (3): Direct verification.
(2) implies (5): Let {Vi : i ∈ I } be a finite cover such that for each i ∈ I we

have a j(i) ∈ J with V−
i ≤ U j(i). We write zi = y j(i). Let {pi : i ∈ I } be a

partition of unity subordinate to {Vi : i ∈ I }. Define h = ∑ zi pi . For x ∈ X
note

h(x) =
∑

{zi pi (x): x ∈ Vi } �
∑

{g(x)pi (x): x ∈ Vi } = g(x).

Similarly f (x) ≤ h(x). �

If X is N with the discrete topology and f is the constant function with value 1/2
and g that with the value 1, then (3) is evidently satisfied. But (1) fails: Consider
the directed family of characteristic functions of finite subsets of N; its sup is
g, but no member dominates f . Thus the compactness of X is indispensable to
conclude (3) implies (1).

Proposition I-1.22.2. If X is a compact space, then LSC(X ) is a continuous
lattice.

Proof: Consider that f = sup{rχU : r < f (u) for all u ∈ U.}. �

The description we have given for f � g in LSC(X ) and the proofs we used
were those of an analyst. Proposition I-1.22.2 will be vastly generalized in
Chapter II (see II-4.6); the methods will be more lattice theoretical and topo-
logical and will not be based on a frontal attack via the way-below relation.
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(See also Exercises I-2.21 and I-2.22 below.) Indeed, the examples of I-1.21 and
I-1.22 illustrate that in many circumstances the way-below relation is difficult
to describe explicitly, and this points to the need of these other tools in order to
deal effectively with continuous lattices. �

Example I-1.23. (Convex compact subsets of a compact convex set). Let
K be a compact convex subset of a locally convex topological vector space.
Denote by Con(K ) the lattice of all closed convex subsets of K (including the
empty set). Recall that Con(K )op is the lattice with the reverse inclusion.

Proposition I-1.23.1. The lattice Con(K )op is a continuous lattice, in which
we have A � B iff B ⊆ int(A) with the interior being taken in the relative
topology of K .

Proof: Since Con(K ) is closed under arbitrary intersections, it – and hence
Con(K )op – is a complete lattice. If B ⊆ int (A), then if the intersection of
a descending family of closed convex sets is contained in B, it follows by
compactness that one of them is a subset of A. Thus A � B in Con(K )op.
The local convexity of the vector space implies that B is the intersection of its
compact convex neighborhoods in K . Hence Con(K )op is continuous.

Finally assume that A � B in Con(K )op. Since we have just seen that B
is the intersection of its compact convex neighborhoods in K , and since this
family of neighborhoods is descending, we conclude from the definition of �
that one of them must be a subset of A. Therefore, A is a compact convex
neighborhood of B, and this completes the proof. �

We remark that this example illustrates how we sometimes encounter lattices L
where Lop instead of L is the continuous lattice even though L is more naturally
given. However, there is no point in taking the dual definition, since there are
just as natural examples that conform to the convention we have adopted. �

We have seen several natural examples of continuous lattices, notably in the
field of topology. We now proceed to exhibit a couple of natural examples of
domains which are not lattices in general. First, let us note that the nonempty
closed convex subsets of a compact convex in a locally convex vector space
K form a bounded complete domain under reverse inclusion. This follows
immediately from the above. The following example will be of crucial interest
to the theory.

Example I-1.24. (Compact saturated sets) As in O-5.3, a subset K of a
topological space is called saturated if it is the intersection of its open neigh-
borhoods. If A is any subset of X , the intersection sat A of all of its open neigh-
borhoods is a saturated set called its saturation. If A is compact, its saturation
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sat A is compact, too (see after O-5.7). In so far as the order theoretical properties
of the set of compact sets and their relationships with open sets are concerned,
we may just as well restrict our attention to the saturated compact sets. We shall
denote by Q(X ) the poset of compact saturated subsets of X with the order
reverse to containment, i.e., K1 ≤ K2 iff K2 ⊆ K1. The empty set is included
in Q(X ), it is the top element of Q(X ). The sub-poset of nonempty compact
saturated subsets of X is denoted by Q∗(X ).

We notice that Q∗(X ) is a dcpo if and only if in the topological space X the
intersection of any filter basis of nonempty compact saturated sets is nonempty
and compact. In this case, Q(X ) will be a dcpo in which the top element (the
empty set) is isolated.

There are lots of spaces for which Q(X ) is not a dcpo. For example the set
E = {± 1

n : n = 1, 2, . . .} with the collection of all upper sets as a topology is
a T0 space in which the filter basis {↑−1

n : n = 1, 2, . . .} of saturated compact
sets has the noncompact intersection { 1

n : n = 1, 2, . . .}.
For every Hausdorff space X the poset Q∗(X ) is a dcpo. We shall encounter

in I-1.24.2 below a much wider class of spaces X for which Q(X ) is a dcpo.
In the following proposition we use the following.

Definition I-1.24.1. We shall say that a space X is well-filtered if for each
filter basis C of compact saturated sets and each open set U with

⋂ C ⊆ U
there is a K ∈ C with K ⊆ U . �

The example E above is not well-filtered. However, standard topological argu-
ments yield that a Hausdorff space is well-filtered, and we will see in Theorem
II-1.21 of Chapter II that all sober spaces (see O-5.6) are well-filtered and
among locally compact spaces these are the only well-filtered spaces.

Proposition I-1.24.2. Let X be a topological space.
(i) Q(X ) and Q∗(X ) are semilattices (the semilattice operation being ∪).
(ii) Let K1, K2 ∈ Q(X ) and consider the following assertions:

(a) there is an open set U such that K1 ⊇ U ⊇ K2, i.e., int(K1) ⊇ K2;
(b) K1 � K2 in Q(X ).

If X is well-filtered, then (a) ⇒ (b), and if X is locally compact, then (b) ⇒ (a).
(iii) If X is well-filtered, then K =⋂ C is a nonempty compact saturated set

for each filter base C of nonempty compact saturated sets C. Hence, Q∗(X ) is
a dcpo and the top element in Q(X ) is isolated.

(iv) If X is locally compact and well-filtered, then Q(X ) and Q∗(X ) are
continuous semilattices, in particular, domains.
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Proof: (i) The union of two compact sets is compact. Now let K1 and K2 be
two saturated compact sets, and let x �∈ K1 ∪ K2. Since the Kn are saturated,
there are open neighborhoods Un of Kn , respectively, such that x �∈ Un . Hence
x �∈ U1 ∪U2, and this is an open neighborhood of K1 ∪ K2. Thus this compact
set is saturated.

(ii) We assume that X is well filtered and prove that (a) ⇒ (b): Let C be a
filter basis of compact saturated sets with

⋂ C ⊆ K2, i.e., K2 ≤ sup C. Then,
as X is well-filtered, there is a C ∈ C such that C ⊆ U which implies K1 ≤ C .
This proves K1 � K2. Next we assume that X is locally compact and prove
(b) ⇒ (a): Let U be an open set containing K2. Every point of x ∈ K2 has a
compact saturated neighborhood Cx ⊆ U . As K2 is compact, there is a finite
sequence of points x1, . . . , xn ∈ K2 such that K2 is contained in the interior
of Cx1 ∪ · · · ∪ Cxn ⊆ U . Hence K2 is the intersection of the filter basis C of
its compact saturated neighborhoods. Thus K2 = sup C. From K1 � K2 we
conclude the existence of a C ∈ C such that K1 ≤ C . If U denotes the interior
of C we have K1 ⊇ U ⊇ K2.

(iii) Let C be a filter basis of nonempty compact saturated sets and let K =
⋂ C. If K = Ø, then by the property of being well-filtered, C ⊆ Ø for come
some C ∈ C, a contradiction. Thus K �= Ø. That K is an intersection of open
sets, hence is saturated, is immediate. LetU be a collection of open sets covering
K . Again by the property of being well-filtered, C ⊆ ⋃U for some C ∈ C.
Thus finitely many members of U cover C and hence K . Thus K is compact,
and hence Q∗(X ) is a dcpo and the empty set, the top element of Q(X ), is
isolated.

(iv) We have seen in (ii) that in a locally compact space, every saturated
compact set K is the intersection of the filter basis of its compact neighbor-
hoods C , which we may assume to be saturated; by (ii) we have C � K . This
shows that K = sup �K . Since by (i) Q(X ) and Q∗(X ) are semilattices and
by (iii) dcpos, we conclude that Q(X ) and Q∗(X ) are continuous semilattices.

�

Proposition I-1.24.2 is the second example, after Proposition I-1.4, that il-
lustrates the connections existing between the concepts of continuous lattices
and domains on the one hand, and of general topology, in particular the the-
ory of locally compact spaces, on the other. In this particular example for X
locally compact and well-filtered, domains (in the form of continuous semi-
lattices) have a particular place that cannot be taken by continuous lattices,
since Q(X ) in general is not even a bounded complete domain. The subject of
continuous semilattices will be pursued further in Chapter IV in the context of
duality. �
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We shall see another class of domains and continuous semilattices related to
topology at the end of the first section of Chapter II.

An example of a domain dating back to the origins of domain theory is the
union N⊥ = N∪ {⊥} where the natural numbers form an antichain and ⊥ is an
extra element below each n ∈ N. In this example, the set of natural numbers
can be replaced by any set M . The resulting domains M⊥ are called the flat
domains. These flat domains are of a particular kind: they are bounded complete
domains. To be continuous lattices they just need a top element.

Proposition I-1.25. Let D be a semilattice and let D1 = D ∪ {1} denote the
semilattice obtained from D by adjoining an identity 1 (whether D has one or
not). (Cf. O-2.12.) We have the following conclusions.

(i) The following statements are equivalent.

(1) D is a bounded complete domain, i.e., complete continuous semilattice
(O-2.2(iv)).

(2) D1 is a continuous lattice satisfying 1 � 1.
(3) D is a domain and every finite set with an upper bound has a least upper

bound.
(4) D is a domain and every subset with an upper bound has a least upper

bound.

(ii) If L is a continuous lattice with 1 � 1, that is, 1 is isolated from below,
then D = L\{1} is a bounded complete domain.

(iii) If L is a continuous lattice and X = ↑X is an upper set such that L\X
is closed under directed sups, then L\X is a bounded complete domain.

Proof: (1) ⇒ (2): Assume (1). By O-2.12, D1 is a complete lattice. Since D
is closed under directed sups by (1) we have 1 � 1. In particular, this shows

�1 = ↓1 = D1. Hence for all x ∈ D1 the set �x is directed and sup �x = x .
(2) ⇒ (3): This immediate.
(3) ⇒ (4): Bottom is the least upper bound of the empty set, which is a finite

set for which any element of D is an upper bound. Now let B be a nonempty
set with an upper bound. For each finite subset F ⊆ B, by (3), xF = sup F
exists. Then D = {xF : F ⊆ B finite} is a directed set which has a sup since D
is a domain, hence a dcpo. Since sup D = sup B, (4) follows.

(4) ⇒ (1): Assume (4). We conclude that D has a bottom 0 = sup Ø. Let
Ø �= X ⊆ D. Let B be the set of all lower bounds of X . This set is not empty as
it contains 0 = ⊥. Since X �= Ø there is an x ∈ X . For b ∈ B we have b ≤ x .
Thus B has an upper bound. Then sup B exists by (4). Since sup B ≤ x for all
x ∈ X we have sup B ∈ B and thus sup B = max B = inf X .
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(ii) If L is a continuous lattice with 1 � 1, set D = L\{1}. Then L = D1

and the assertion follows from (i).
(iii) Under the circumstances of (iii) set D = L\X . Since the subset D is

a lower set and is closed under directed sups, it is a complete semilatte. It is
a continuous semilattice since the way-below relation of D is the way-below
relation of L induced on D. �

Proposition I-1.25 shows that bounded complete domains are very close to
continuous lattices. Indeed, if a bounded complete domain fails to be a contin-
uous lattice, then it only fails by lacking an isolated top. Therefore, bounded
complete domains, as a rule, can be fitted into the theory of continuous lattices
by adjoining an identity. Or at least this is true when only one semilattice is
being considered at a time, and then it does not matter whether the “ideal”
elements like 1 are “really there” or considered fictions (as with ±∞ in the re-
als). When several semilattices are being combined (in, say, a direct product),
then the inclusion of ideal elements makes a big difference to the outcome
by their entering into combination with other elements (recall, for example,
LSC(X ), where the values ±∞ can be utilized in a function quite often). The
exact way extra elements can occur sometimes subtly affects the properties of
a construction; one example is contained in Exercise I-1.31 below. There are in
addition important applications in which the adjunction of an identity is simply
unnatural, such as Example O-2.7(10). We review this matter in the light of
the definitions of this section by discussing a more general situation in I-1.32
below.

In the past, in some circles, bounded complete domains used to be called
“domains”. According to our terminology introduced in Definition I-1.6, a
domain is a continuous dcpo; our class of domains therefore is much larger.

Example I-1.26. (Subcontinua of a continuum) A space X is called locally
connected if each point has a basis of open connected neighborhoods. A
continuum is a compact connected Hausdorff space. For a space X denote
by Cont(X ) the set of nonempty subcontinua of X ordered by reverse inclusion.

Example I-1.26.1. (The interval domain) Consider the set of subintervals
of the unit interval [0, 1] ordered by reverse inclusion. This is a bounded com-
plete domain with bottom element [0, 1] and the singleton intervals the max-
imal points. The relation � is characterized by [a, b] � [c, d] if and only
if [c, d] is contained in the open interval ]a, b[. If we consider computational
algorithms for computing some real number in the interval, then we may envi-
sion the intervals [a, b], a < b, as states of partial knowledge of the numbers
that arise along the way, with smaller intervals representing higher stages of
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knowledge. Thus the ordering of reverse inclusion can be viewed as an infor-
mation ordering.

Example I-1.26.2. (Subarcs of the unit circle) Consider all subcontinua of
the unit circle S

1 consisting of all complex numbers of modulus 1. These consist
of singleton sets, subarcs, and S1 itself, which we order by reverse inclusion.
If one picks two disjoint subarcs, then there exist two minimal subcontinua
containing both of them, not one. Thus this example is not a semilattice, hence
not a bounded complete domain. It is readily verified to be an L-domain. We
establish this in much greater generality in the next proposition.

Proposition I-1.26.3. For a locally connected continuum X, the poset Cont(X )
of subcontinua is an L-domain. We have A � B in Cont(X ) iff B ⊆ int(A).

Proof: Given any nonempty collection C of subcontinua containing a contin-
uum A, the infimum of C is (

⋃ C)− and the supremum of C is the component
of
⋂ C containing A. Thus each principal ideal is a complete lattice. Given

any open set U containing A ∈ Cont(X ), for each x ∈ A pick Vx open and
connected such that (Vx )− is compact and contained in U . Finitely many of the
Vx cover A, and the union of their closures is a subcontinuum contained in U
and containing A in its interior. From this point the argument that Cont(X ) is a
domain parallels other arguments involving compact subsets of locally compact
spaces (cf. e.g. I-1.23). �

Exercises

We begin by mentioning a few general results on the interpolation property.

Exercise I-1.27. Let L be a poset and ≺ an auxiliary relation. Let s≺: L →
Low L be the function in M corresponding to ≺ according to I-1.12. Prove the
following.

(i) The following statements are equivalent:

(1) ≺ satisfies the strong interpolation property (SI);
(2) no lower set of the form s≺(x) has a maximal element with respect to ≺

unless x ≺ x .

(ii) Also the following statements are equivalent:

(3) ≺ satisfies the interpolation property (INT);
(4) each lower set of the form I = s≺(x) has the property that for every x ∈ I

there is a y ∈ I with x ≺ y. �
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(iii) If ≺ is approximating, then (INT) implies (SI). �

Exercise I-1.28. Let L be a poset and ≺ an auxiliary relation on L . Define a
binary relation ≺• as follows:

x ≺•y iff there is a ≺-chain C such that x, y ∈ C, x ≺ y, and ≺ restricted
to C satisfies (SI).

Show that we have:

(i) ≺• is an auxiliary relation which satisfies (SI);
(ii) the given relation ≺ satisfies (SI) iff ≺ = ≺•;

(iii) moreover, ≺• is the largest auxiliary relation contained in ≺ satisfying
(SI).

(iv) Show that analogs of the preceding results hold if L is only a set and the
words “auxiliary relation” are replaced by “transitive relation”
throughout. �

Exercise I-1.29. Let L be a poset and ≺ an auxiliary relation on L . Define a
binary relation ≺sup as follows:

x ≺sup y iff there exist systems of elements {xi : i ∈ I } and {yi : i ∈ I } such
that xi ≺ yi for all i ∈ I and x = sup xi and y = sup yi .

We can call ≺sup the sup closure of ≺. Show that we have:

(i) if L is meet continuous, then ≺sup is an auxiliary relation;
(ii) ≺ is approximating iff ≺sup = ≤ . �

Exercise I-1.30. Prove the following.

(i) Every closed interval of a bounded complete domain is a continuous
lattice.

(ii) The following example is a domain with a closed interval which is not
continuous. Take monotone increasing sequences {xn}, {yn}, {zn}
converging to their sups x, y, z, respectively. The poset P has the
additional order defining relations that zn < yn < xn for each n, z < y <

x, and z < x1. Then P is a domain, but [z, x] is not because y is not a
supremum of elements way below it in [z, x].

(iii) If L is a domain and M ⊆ L satisfies

M = ↑M = �

M =
⋃
{ � u: u ∈ M}

then M is also a domain. �
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Exercise I-1.31. Let L and M be two posets. Define the following five kinds
of “disjoint” sums:

(1) (Disjoint sum) L  M , the disjoint union of L and M (with the obvious
partial ordering: elements x ∈ L and y ∈ M are incomparable);

(2) (Coalesced sum) L ⊕ M , the disjoint sum L  M with the bottom
elements identified, if they have them;

(3) (Separated sum) L + M = (L  M)⊥, that is, the disjoint sum with a new
bottom element adjoined;

(4) L +1 M = (L ⊕ M)1;
(5) L +2 M = L ⊕ M with the 1 elements identified.

If L and M are dcpos, show that all of these “sums” are dcpos, too. If L
and M are domains, show that L  M, L ⊕ M, L + M and L +1 M are also
domains, but L +2 M need not be continuous. (The case L = M = [0, 1] gives
a counterexample. Some pictures will help!) Which of the properties of being
a continuous lattice, a bounded complete domain, an L-domain are preserved
by these constructions? �

Exercise I-1.32. Let X be a topological space and Y a set. Let L be the set
of partial functions with values in Y defined on an open subset dom f ⊆ X .
Consider on L the partial order given by

f ≤ g ⇔ dom f ⊆ dom g and f = g | dom f.

Prove the following.

(i) The nowhere-defined function Ø: Ø → Y is the bottom of L; every
nonempty subset has an inf and every directed subset has a sup.

(ii) If O(X ) is a continuous lattice, then L is a bounded complete domain.
(Recall that O(X ) is a continuous lattice if X is locally compact by
I-1.7(5).)

(iii) The semilattice L has no top if Y has more than one element. �

Exercise I-1.33. Let X = [0, 1] with the usual Hausdorff topology and define
f, g ∈ LSC(X, X ) by f (x) = x/2, g(x) = x . Show that f (x) � g(x) for all
x , but f � g fails. So in I-1.22.1, condition (5) does not imply (1)–(4). �

Exercise I-1.34. If the space X is regular and O(X ) is a continuous lattice,
show that X is locally compact and, hence, locally compact Hausdorff if T0.

Hint. Consider x ∈ X and any open neighborhood V of x . Since O(X ) is a
continuous lattice, there is a U ∈ O(X ) such that x ∈ U � V by definition.
Since X is regular, there is an open neighborhood W of x with W− ⊆ U . Now
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let W = {W j : j ∈ J } be an open cover of W−. Then W ∪ {X\W−} is an open
cover of V . Since U � V , a finite subcover thereof covers U . But then a finite
subcover of W covers W−. Hence, W− is compact. �

We have seen in Proposition I-1.8 that every continuous lattice is meet
continuous; the converse is incorrect. Indeed not even a complete Boolean
algebra need be a continuous lattice. It is therefore useful to have suffcient
conditions which will ensure that meet continuity implies continuity.

Exercise I-1.35. Show that a meet continuous lattice L is continuous if it
satisfies at least one of the following two conditions.

(a) L does not contain a free semilattice with infinitely many generators.
(b) L does not contain an infinite antichain.

Hint. (a) This is established by proving the following theorem.

Theorem. Let L be a meet continuous lattice and let x and y be elements
such that �x ⊆ ↓y but x �∈ ↓y. Then (↓x\↓y)∪{1} contains a free semilattice
with infinitely many generators.

Proof: Suppose that F is a free semilattice such that F\{1} is contained in
↓x\↓y and that X is the generating set in F\{1}. Suppose that X is finite.
Then z = inf F is not in �x . Hence, since L is meet continuous, there is a
directed set D with sup D = x but D ∩↑z = Ø. For each f ∈ F we know that
sup f D = f . Since F is finite, we find an element b ∈ D such that b ≤ d ∈ D
implies f d �= gd for all f �= g in F . Since sup zD = z and z �≤ y, there is
some p ∈ D with b ≤ p such that pz �≤ y. Then F ∪ {p} is a free set, and the
semilattice F ′ generated by this set is contained in ↓x\↓y. By induction we
obtain a countably generated infinite free semilattice contained in ↓x\↓y. �

(b) The generating set of a free semilattice is an antichain. �

The notion of an L-domain is a bit tricky in a way not completely obvious from
the definition. We are going to illustrate this in the following exercises.

Exercise I-1.36. Let L = {⊥, a1, a2, b1, b2} be the five element poset with a
least element ⊥ and the order relations ai < b j for all i, j = 1, 2. But a1 and
a2 are incomparable and likewise b1, b2. Show that both of the principal ideals
↓b1 and ↓b2 are four element lattices: b1 is the sup of a1 and a2 in ↓b1 and b2

is the sup of a1 and a2 in ↓b2, although a1 and a2 do not have a sup in L , and
thus L is an L-domain but not a lattice. �

Let us introduce the following notation. Let a1, a2 be elements of a poset L with
an upper bound b. We denote by a1 ∨b a2 the least upper bound of a1 and a2
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in the poset ↓b, whenever it exists. The preceding example shows that a1 ∨b a2

may depend on the specific upper bound b.

Exercise I-1.37. Let L be a dcpo with the property that a1 ∨b a2 exists, when-
ever a1 and a2 are bounded above by b. (This applies to every L-domain.) Prove
the following.

(i) If b1, b2 have an upper bound c in L , then a1 ∨b1 a2 = a1 ∨b2 a2.
(ii) If a1 � b and a2 � b, then a1 ∨b a2 � b. (Compare I-1.2(iii).)

Hint. (i) As b1 ≤ c, one sees that a1 ∨b1 a2 = a1 ∨c a2 and similarly for b2.
(ii) Let D be a directed set with b ≤ sup D. From the hypotheses one finds

an element d ∈ D such that a1 ≤ d and a2 ≤ d. As sup D is an upper bound of
b and d , using (i) one obtains a1 ∨b a2 = a1 ∨d a2 ≤ d . �

Exercise I-1.38. Show that the following conditions are equivalent in a
dcpo M:

(i) ↓x is a continuous lattice for each x ∈ M ;
(ii) M is a domain in which every nonempty set that is bounded above has a

greatest lower bound;
(iii) M is an L-domain. �

Hint. Proposition I-1.5(ii) is useful in proving that M is a domain in the im-
plication (i) ⇒ (ii). �

Old notes

Continuous lattices were introduced by Dana Scott, who discovered the idea
as a generalization of algebraic lattices in the fall of 1969. He presented the
first coherent picture at the Dalhousie Category Theory Conference in 1971;
this presentation appears in [Scott, 1972a] and is the first source on continuous
lattices in the accessible literature. In an expository paper Scott [Scott, 1973]
details his motivation for the invention of continuous lattices; there he repeats
his original definition and says: “Such lattices I call continuous lattices, and their
mathematical theory is highly satisfactory.” What he meant was that everything
seemed to fall neatly in place, and considering the extensive mathematical
development of the theory of continuous lattices since 1974, this claim is a
modest understatement.

Whether the choice of nomenclature was an entirely wise one will remain
contested in some quarters. The name is reminiscent of that of von Neumann’s
continuous geometries (a certain type of lattice), which – strictly speaking –
have nothing to do with continuous lattices in our sense. Nevertheless, the
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passage from the more discrete (more precisely: zero dimensional) algebraic
lattices to the continuous lattices has a certain analogy to the passage from a
discrete range of dimensions to a continuous dimension function. Furthermore,
Scott had in mind the circumstance that continuous functions (in what we call
in Chapter II the Scott topology) on a continuous lattice are well behaved and
exist in profusion; in particular, the lattice operations are continuous. There is
considerable sense to calling a lattice “continuous” just when its lattice oper-
ations are continuous, but actually the known classes of such lattices are very
wide (e.g. meet continuous lattices). Continuous lattices in the sense of this
monograph have the advantages of being restricted enough to have a good the-
ory, general enough to capture important examples, and natural enough that we
can argue that the class ought to be singled out for many different reasons.

It is noteworthy that the concept of a continuous lattice (and that of a semilat-
tice) was rediscovered independently by other authors working in other areas.
Rather extensive work was carried out by Yu. L. Ershov (see the bibliography),
part of which was independent of and essentially contemporary with Scott’s
work and part of which answered many questions Scott left open. The notion
of what he called f -spaces arose as a useful tool in his study in the early 1970s
of computable functionals of finite type. Their completions, which turn out to
be bounded complete algebraic domains equipped with the Scott topology in
the case that the f -space has a least element, were important for extending in
a natural fashion the domain of definition of these computable functionals to
noncomputable arguments. The notion of an A-space appeared as his attempt to
find a general context for both f -spaces and the continuous lattices introduced
by Scott. See the “New Notes” at the end of Section III-4 for further comments,
particularly concerning A-spaces.

In 1973–74, Karl H. Hofmann and Albert Stralka studied the algebraic (i.e.,
lattice theoretical) foundations of a class of compact topological semilattices
known to workers in the field of compact semigroups as Lawson semilattices;
they found that continuous lattices and compact Lawson semilattices were one
and the same thing, although at the time they were not aware of Scott’s article
and, thus, did not phrase their results in this language. Their paper appeared as
[Hofmann and Stralka, 1976], and the not too succinct title was soon contracted
for everyday use to ATLAS (using the initial letters of “Algebraic Theory of
Lawson Semilattices”).

In 1975 Alan Day identified the monadic algebras associated with the so-
called filter monad (in the same sense as compact spaces emerge as monadic
algebras of the ultrafilter monad) and found them to be continuous lattices
(cf. [Day, 1975]). Independently, Oswald Wyler also studied these algebras in
1975 and described and discussed them thoroughly: only towards the end of
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1976, due to a hint by John Isbell, was it discovered that indeed Wyler’s algebras
were precisely the continuous lattices (see [Wyler, 1981b]).

The definition given here, strictly speaking, is not the principal one given
by Scott, nor does it correspond explicitly to either the characterization given
in ATLAS or that given by Day and Wyler. The first published version of this
definition is to be found in the note [Lea, 1976a] (though see the remark in
the next paragraph). The point is that the way-below relation of I-1.1 is not
Scott’s auxiliary relation ≺ derived from a topology (which we will consider
extensively in Chapter II). It is immediately seen from Scott’s definition that
x ≺ y implies x � y in any complete lattice. Scott defines a continuous lattice
to be a complete lattice in which his relation≺ is approximating. By I-1.16 this
means that on continuous lattices, Scott’s relation and the way-below relation
agree. On complete lattices they are different in general (see II-1.33).

The way-below relation had been implicitly introduced by Hofmann and
Stralka by saying that “x is relatively compact under y” iff x � y (op. cit.,
p. 27) and they also introduced the notation � (op. cit., p. 42). Isbell used
the terminology “x is compact in y” in his paper on meet continuous lattices,
[Isbell, 1975b]; his identification of Scott’s relation with the way-below relation
on meet continuous lattices is not convincing, and in fact to our knowledge it
is not known in general on what class of complete lattices the two agree. That
is one good reason for our employing the more understandable relation here
in the definition. Scott, however, had originally defined continuous lattices in
this more lattice theoretic way and refers to the characterization in his paper
(op. cit., p. 110). In writing up his paper he chose the other definition in order
to emphasize the topological simplicity of the notion, and he did not feel the
need to consider whether the two definitions of the way-below relation agreed
in a wider context.

Propositions I-1.15 and I-1.16 first appeared in the Compendium. The strong
interpolation property has been recognized as useful for some time, although
I-1.20 and a complete proof had not been published before the Compendium.
But J. Isbell had recognized the interpolation property in his paper (op. cit.).

The axioms of auxiliary orders with the interpolation property were formu-
lated by M. B. Smyth (cf. Scott [scs 4] and [Smyth, 1978]) for sup semilattices;
later (see Definition III-4.16 and subsequent exercises) we will describe his
motivation. The equivalence between auxiliary relations and functions L →
Id L discussed in I-1.12 ff. was anticipated by Smyth (op. cit.) and by Gierz,
Hofmann, Keimel and Mislove [scs 12]; in this report the details of Exercise
I-1.27 are introduced and elaborated.

The literature contains several forerunners of the way-below relation in the
context of the representation theory of lattices; see in particular [Raney, 1953],
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notably p. 520; [Papert, 1959], notably pp. 174 ff.; also [Bruns, 1962a], [Bruns,
1962b], notably Part II, pp. 4 ff.

The fact that locally compact spaces X give rise to a continuous lattice O(X )
was known to [Day and Kelly, 1970], Proposition 5.

The observation that the lattice L of closed two-sided ideals in a C∗-algebra
is a continuous lattice and its proof via Pedersen’s ideals are from Hofmann
[scs 31]. There are at least two alternative proofs, one requiring the entire
spectral theory of C∗-algebras and the results of Chapter V, another requir-
ing an observation due to J. M. G. Fell [Fell, 1962] to the effect that L is
a compact subsemilattice of a product of unit-interval semilattices together
with the equivalence of continuous lattices with compact Lawson semilattices
(see Chapter VI).

Example I-1.22 of classical lower semicontinuous functions and its discus-
sion are from Hofmann [scs 17].

The concept of a continuous semilattice (I-1.6) is from Lawson [scs 30],
which theory of duality we will explore in Chapter IV. Continuous posets are
also discussed in [Markowsky, 1976], R.-E. Hoffmann [Hoffmann, 1979b], and
[Wilson, d1978].

The example in I-1.30(ii) is due to Marcel Erné.
The results in Exercise I-1.35 are due to Lawson [scs 30]; however, the

suffcient condition (b) was independently rediscovered by Heiko Bauer with
an independent (and more complicated) proof in [scs 45].

The fact that all continuous lattices are meet continuous (I-1.8) was in prin-
ciple known in Scott [1972a, p. 106, Prop. 2.7], as Isbell points out [Isbell,
1975b], p. 46.

New notes

Continuous lattices were the first class of domains introduced by Dana Scott
with a view toward applications in theoretical computer science. However, it
soon became apparent to researchers in that area that more general classes of
domains were needed. Both to broaden the class of domains and to make the
theory more accessible, Scott [Scott, 1982a] introduced “information systems”,
structures for which the ideal completions gave the class of bounded complete
algebraic domains (= complete algebraic semilattices). The bounded complete
algebraic domains have often been called “Scott domains” in the literature. In
some sense bounded complete domains constitute a minimal generalization,
since they all arise from continuous lattices with the element 1 compact by
removing the 1, i.e., they are continuous lattices without a top (see I-1.25).
Other investigations led to other important classes of domains. For example the
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category of L-domains turned out to be a cartesian closed category of domains,
and was shown by Jung [Jung, b1989] to be one of two maximal cartesian closed
categories of pointed domains (domains with a 0). A prominent topological
example of a continuous semilattice which is not in general a continuous lattice
is the sup semilattice Q(X ) of compact saturated subsets of a locally compact
sober space; this topic emerges in this section for the first time in I-1.24 but will
be a recurrent theme later.

I-2 Products, Substructures and Quotients

In this section we investigate the construction of new domains, new continuous
semilattices, new continuous lattices etc. from known ones by means of

forming direct products with the product (= pointwise) order,
taking subsets closed under appropriate operations,
taking images under maps preserving appropriate operations.

The reader should be warned that some obvious conjectures turn out to be
wrong:

an infinite product of domains need not be a domain;
a subset of a domain closed under directed sups need not be a domain;
the image of a domain under a map preserving directed sups need not be a

domain.

Counterexamples will be given in the exercises. Thus, we have to restrict our
attention to more special situations.

Products, projection, kernel and closure operators on domains

For products, the situation is quite simple:

Proposition I-2.1. (i) The direct product L1 × · · · × Ln of finitely many
domains L1, . . . , Ln is a domain. For elements x = (x1, . . . , xn) and y =
(y1, . . . , yn) in L1 × · · · × Ln the way-below relation is given by

x � y iff xi � yi for all i = 1, . . . , n.

(ii) If Li , i ∈ I , is a family of domains with least element 0, then the direct
product

∏
i∈I Li is also a domain. For elements x = (xi )i∈I and y = (yi )i∈I in

∏
i∈I Li the way-below relation is given by

x � y iff xi � yi for all i ∈ I and xi = 0 for all but finitely many i ∈ I.
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For continuous semilattices, continuous lattices, bounded complete domains
and L-domains, the same statements hold. (Note that continuous lattices and
bounded complete domains always have a least element.)

Proof: Note that the properties of being a dcpo, a semilattice, a complete
semilattice, a complete lattice, etc., are preserved under direct products, as sups
and infs are formed pointwise. As (i) is a special case, we only have to prove
(ii). Let us first show that the characterization of the way-below relation holds
in any product of dcpos Li with 0.

Suppose first that x � y. For every finite set F ⊆ I define yF to be the
element of

∏
i∈I Li with yF

i = yi for i ∈ F and yF
i = 0 for i �∈ F . The family

of the yF is directed and its supremum is y. As x � y, there is some finite
subset F ⊆ I such that x ≤ yF , whence xi = 0 for all i �∈ F . In order to
show that xi � yi for all i ∈ I , fix i and consider any directed set D in Li

such that yi ≤ sup D. To every d ∈ D we associate the element d̄ ∈ ∏i∈I Li

defined by d̄ i = d and d̄ j = y j for all j �= i . The family (d̄)d∈D is directed and
y ≤ supd∈D d̄. As x � y, there is some d ∈ D such that x ≤ d̄ , whence xi ≤ d .

For the converse, suppose that xi � yi for all i ∈ I and that there is a finite
set F ⊆ I such that xi = 0 for all i �∈ F . Let D be any directed set in

∏
i∈I Li

such that y ≤ sup D. Then yi ≤ supd∈D di for every i ∈ I . As xi � yi , for
every i ∈ I , there is a di ∈ D such that xi ≤ di

i (= i th component of di ). As
D is directed, there is a d ∈ D such that di ≤ d for all i ∈ F . Thus xi ≤ di for
all i ∈ F . As xi = 0 for all i �∈ F , we conclude that x ≤ d . This proves that
x � y.

If all the Li are continuous, the set of all x � y is easily seen to be directed
and to have y as its supremum by the above characterization of the way-below
relation. Hence,

∏
i∈I Li is continuous, too. �

If L is a domain, neither subsets closed under sups of directed sets nor images
of L under a map preserving sups of directed sets have to be domains. It is
remarkable that the image of a continuous poset under a projection operator
(O-2.5, O-3.8) preserving directed sups is again continuous:

Theorem I-2.2. Let L be a continuous poset and p: L → L a projection
preserving sups of directed sets. Then the image p(L) with the order induced
from L is a continuous poset, too. For x, y ∈ p(L), we have

x �p(L) y iff there is an element u ∈ L such that x ≤ p(u) and u �L y.

Proof: From O-2.5 we know that p(L) is closed in L under passing to directed
sups. Let y ∈ p(L) be given. As L is continuous, the set � L y = {u ∈ L :
u �L y} is directed and sup � L y = y. As p preserves directed sups, the set
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p( � L y) is directed and sup p( � L y) = p(y). As y ∈ p(L), we have p(y) = y.
Thus, for the continuity of p(L), it suffices to prove that p(u) �p(L) y whenever
u �L y. For this, let u be an element of L such that u �L y. Consider any
directed subset D ⊆ p(L) such that y ≤ sup D. As u �L y, we find a d ∈ D
such that u ≤ d . Then p(u) ≤ p(d) = d by the monotonicity and idempotency
of p. This shows that p(u) �p(L) y. For the second part of the claim, let
x, y ∈ p(L) be such that x �p(L) y. As y = sup p( �L y) by the above, there
is a u ∈ L with u �L y such that x ≤ p(u). The converse has already been
shown in the first part of the proof. �

As the various completeness properties are preserved under projections (O-2.5),
we immediately have

Corollary I-2.3. Let M be the image of a projection p: L → L preserving
sups of directed sets. If L is a domain, an L-domain, a bounded complete
domain, a continuous semilattice, a continuous lattice, respectively, the same
is true for the image M.

As kernel and closure operators are particular kinds of projections (see O-
3.8), the previous preservation results hold for images under kernel and closure
operators provided that they preserve sups of directed sets. The characterization
of the way-below relation on the image can be simplified:

Remark. For a kernel operator k and a closure operator c on a continuous
poset L both preserving sups of directed sets the following hold.

(i) For all x, y ∈ k(L), one has x �k(L) y iff x �L y.
(ii) For all x, y ∈ L, one has x �L y ⇒ c(x) �c(L) c(y). �

For a closure operator c: L → L , the image c(L) is closed in L for infs and
the co-restriction c◦: L → c(L) preserves arbitrary sups (to the extent that
they exist) by O-3.12. This does not imply that c as a function from L into L
preserves arbitrary sups or sups of directed sets. But we can say the following.

Lemma I-2.4. A closure operator c: L → L on a dcpo L preserves sups of
directed sets if and only if its image c(L) is closed in L with respect to sups of
directed sets.

Proof: Assume first that c(L) is closed in L for sups of directed sets. Let D
be a directed subset of L . As c is order preserving, supL c(D) ≤ c(supL D).
As the co-restriction c◦: L → c(L) preserves sups, c(supL D) = supc(L) c(D).
If we assume that c(L) is closed in L for sups of directed sets, supc(L) c(D) =
supL c(D) and we conclude that supL c(D) = c(supL D), that is, c preserves
sups of directed sets. The converse follows from O-2.5. �
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We have seen that images of closure operators are characterized by the prop-
erty of being closure systems (O-3.13), that is, subsets M of L such that, for
every element x ∈ L , the set of upper bounds of x in M has a least element.
By the lemma above, the bijective correspondance betweeen closure operators
and closure systems induces a bijection between closure operators preserving
directed sups and closure systems closed for directed sups. From I-2.3 and I-2.4
we may conclude that the following holds.

Corollary I-2.5. If M is a closure system closed under sups of directed sets
in a domain L, then M is a domain for the induced order. �

Let us summarize the consequences of the previous results for continuous lat-
tices and bounded complete domains: subalgebras and homomorphic images
of bounded complete domains and of continuous lattices are bounded com-
plete domains and continuous lattices, respectively. Here subalgebras should
be understood as images under closure operators and homomorphic images as
images under kernel operators, both preserving directed sups.

Theorem I-2.6. (i) A subset M of a bounded complete domain that is closed
under infs of nonempty subsets and under directed sups is a bounded complete
domain. If M has a top element, it is a continuous lattice.

(ii) If M is the image of a bounded complete domain, respectively a contin-
uous lattice L under a map preserving infs of nonempty subsets and sups of
directed sets, then M is a bounded complete domain, respectively a continuous
lattice.

Proof: For (i) we take a bounded complete domain L and a subset M closed
under infs of nonempty sets and directed sups. Adjoining a new top element
yields a continuous lattice L1 (see I-1.25), and M ∪ {1} is closed in L1 for
arbitrary infs and directed sups, i.e., M ∪ {1} is a closure system on L1 closed
under directed sups. Hence, M ∪ {1} is a continuous lattice by I-2.5. As the top
element 1 is isolated, M is a bounded complete domain (see I-1.25).

For (ii), let L be a bounded complete domain and g: L → M a surjection
preserving infs of nonempty subsets and sups of directed sets. Then g has a lower
adoint d: M → L (O-3.4) which is injective (O-3.7) and preserves sups (to the
extent that they exist, O-3.5). Thus, k = dg is a kernel operator preserving sups
of directed sets. Hence M , which is order isomorphic to the image of k, is a
bounded complete domain by I-2.3. If L is a continuous lattice, then it has a
top element, hence M has a top element, too, and consequently is a continuous
lattice. �
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Equational theory of continuous lattices

The property (MC) defining meet continuity in semilattices and also the char-
acterizations of meet continuity in O-4.2, in particular properties (7) and (8),
are of an equational character. We have seen that continuous lattices are
meet continuous (I-1.8). Now we are going to characterize continuous lattices
in a similar, although more technical, vein. The equational description of contin-
uous lattices enables us to discern clearly what kind of homomorphisms should
be considered between continuous lattices, namely those functions preserving
arbitrary infs and directed sups. As in universal algebra, one may deduce directly
from the equational description that products, subalgebras and homomorphic
images of continuous lattices are again continuous lattices, results that we have
already obtained above in greater generality.

The type of equation we will use is a form of the infinite distributive law
which we shall call the directed distributive law. This law is stronger than meet
continuity but weaker than the law of complete distributivity that we will discuss
in detail later (see I-2.8). It is well known that the lattice of all subsets of a set
is completely distributive (with respect to arbitrary unions and intersections).
Note that in I-1.10 above we have shown that every continuous lattice L is the
image of a lattice of sets – namely, Id L – by a map preserving infs and sups.
But Id L is closed under set theoretical intersection and directed union; hence,
any equations these operations satisfy on set theoretical grounds will transfer
to L . What we now exhibit is a basis for these equations.

Theorem I-2.7. For a complete semilattice L, the following conditions are
equivalent.

(1) L is a bounded complete domain.
(2) Let {x j,k : j ∈ J, k ∈ K ( j)} be a nonempty family of elements in L such

that {x j,k : k ∈ K ( j)} is directed for all j ∈ J . Then the following identity
holds:

(DD)
∧

j∈J

∨

k∈K ( j)

↑
x j,k =

∨

f ∈M

↑∧

j∈J

x j, f ( j),

where M is the set of all choice functions f : J →⋃i∈J K ( j) with f ( j) ∈
K ( j) for all j ∈ J .

If L is a complete lattice, then these conditions are also equivalent to

(3) Let {x j,k : ( j, k) ∈ J × K } be any family in L. Then the following identity
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holds:

(DD∗)
∧

j∈J

∨

k∈K

x j,k =
∨

f ∈N

↑∧

j∈J

∨

k∈ f ( j)

x j,k,

where N is the set of all functions f : J → fin K into the finite subsets
of K .

Remark. Note that all the sups in (DD) are directed sups. Strictly speaking,
(DD) is not an equation because its validity requires the hypothesis that certain
sets are directed. The point of formulating (DD∗) is that it, on the other hand, is
a pure lattice equation in (infinite) infs and sups. Note, too, that we could write
≤ in place of = in (DD) and (DD∗) since the reverse inequality holds in any
complete lattice.

Proof of theorem: (1) implies (2): For convenience let lhs denote the left hand
side of (DD) and rhs the right hand side. It is obvious that in any complete
semilattice lhs≥ rhs. Assuming that L is continuous, all we have to do to prove
the reverse inequality is to show that whenever t � lhs, then t ≤ rhs.

Suppose then that t � lhs; we conclude that t �∨↑
k∈K ( j) x j,k for all j ∈ J .

By the definition of �, we can therefore choose a g( j) ∈ K ( j) with t ≤ x j,g( j)

for all j ∈ J . But then we see that t ≤∧ j∈J x j,g( j), and so t≤ rhs must follow.
(2) implies (1): We are going to establish the approximation axiom (A) of the

original Definition I-1.6: namely, x = sup{u ∈ L : u � x}. Indeed let x ∈ L
be a given element, and let J be the set of all directed subsets j of L with
sup j ≥ x . For each j ∈ J let K ( j) = j , in other words j is indexing itself.
Further, consider the family of elements x j,k = k for j ∈ J and k ∈ K ( j). The
hypothesis of (2) is thus satisfied.

Suppose f ∈ M and let t =∧ j∈J x j, f ( j) =
∧

j∈J f ( j). Then we claim that
t � x . Indeed if D is a directed set with x ≤ sup D, then t ≤ f (D) ∈ D –
because D ∈ J and t is defined to make this so.

Looking now at (DD), we see that x = lhs, because {x} ∈ J . But the equation
x = rhs implies (A1) in view of what we checked in the last paragraph. Hence,
L is continuous.

We have (2) iff (3) provided that L is a complete lattice: We note first that
condition (2) is equivalent to the following variant:

(2′) for any family {x j,k : ( j, k) ∈ J × K } in L such that {x j,k : k ∈ K } is
directed for all j ∈ J , the following identity holds:

(DD0)
∧

j∈J

∨

k∈K

↑
x j,k =

∨

f ∈K J

↑∧

j∈J

x j, f ( j).
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Indeed (DD) obviously implies (DD0); conversely suppose that (DD0) is sat-
isfied and that {x j,k : j ∈ J, k ∈ K ( j)} is given as in (2). Then define the set
K =⋃ j∈J K ( j) and for ( j, k) ∈ J × K define

y j,k =
{

x j,k, if k ∈ K ( j),
0, otherwise.

Then
∨↑

k∈K ( j)x j,k
∨↑

k∈K y j,k for all j ∈ J , and

∨↑
f ∈M

∧

j∈J
x j, f ( j) =

∨↑
g∈K J

∧

j∈J
y j,g( j),

and thus the desired equation (DD) for the x j,k follows from (DD0) for the y j,k .
The equivalence of (DD0) and (DD∗) is easily seen via O-1.5, and we leave

the details to the reader. �

We remark that an alternative proof that (2) implies (1) in I-2.7 can be given
utilizing the characterization of continuity of I-1.10(3). For this purpose let J
be the set of all ideals j of L with x ≤ sup j . Then (DD) shows that the ideal
I that is the intersection of all the ideals in J also satisfies x ≤ sup I . This is
just what we need to apply I-1.10(3).

Before we move on to applications, we observe how the equations in Theorem
I-2.7 relate to traditional lattice theoretical concepts. In O-4.3 we noted that
meet continuity generalized the property of being a frame (that is, of satisfying
a general distributive law O-3.16(3)). In a similar vein we observe that I-2.7(2)
generalizes the most restrictive type of general distributivity, which we put on
record here:

Definition I-2.8. A lattice is called completely distributive iff it is complete
and for any family {x j,k : j ∈ J, k ∈ K ( j)} in L the identity

∧

j∈J

∨

k∈K ( j)

x j,k =
∨

f ∈M

∧

j∈J

x j, f ( j) (CD)

holds, where M is the set of choice functions defined on J with values f ( j) ∈
K ( j). As usual, we could write ≤ in place of =. �

As the complete distributivity law (CD) immediately implies the directed dis-
tributivity law (DD) in I-2.7, we conclude that the following holds.

Corollary I-2.9. Every completely distributive lattice is continuous. �

Completely distributive lattices are fairly special; various characterizations are
known which do not properly belong to our topic. However, later we will give a
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characterization theorem for complete distributivity in continuous lattices (see
Section VII-2).

Now we exploit Theorem I-2.7. Our first observation is that the algebraic
operations occurring in the equational characterization of bounded complete
domains and of continuous lattices through equation (DD) are arbitrary infs and
directed sups. If we want to define homomorphisms between continuous lattices
at this point, it is then clear that these are the algebraic infinitary operations
which should be preserved by such homomorphisms. Therefore we make the
following definition.

Definition I-2.10. If S and T are continuous lattices, then a function g: S → T
is called a morphism of continuous lattices, or, briefly, a homomorphism, if it
preserves arbitrary infs and directed sups.

A continuous lattice T is called a homomorphic image of a continuous lattice
S iff there is a surjective homomorphism g: S → T .

A subset S of a continuous lattice T is called a subalgebra iff the inclusion
map S → T is a homomorphism (that is, iff S is closed in T under the formation
of arbitrary infs and directed sups.)

For bounded complete domains, a homomorphism is only required to pre-
serve infs of nonempty subsets (and directed sups), and a subalgebra is only
required to be closed for nonempty infs (and directed sups). �

In due time, notably in Chapter IV, we will use more systematically the lan-
guage of category theory; the present terminology suffices for the purposes at
hand, and we are able to formulate some direct consequences of I-2.7. (We
have obtained these results in a more general context already in I-2.1 and
I-2.6):

Theorem I-2.11. The class of continuous lattices is closed under the formation
of arbitrary products, subalgebras and homomorphic images. Specifically we
have the following conclusions:

(i) if {L j : j ∈ J } is a family of continuous lattices, then the cartesian
product

∏
j∈J L j is a continuous lattice (relative to the componentwise

partial order);
(ii) if L is a continuous lattice and S a subalgebra of L, then S is a

continuous lattice in the induced order;
(iii) if L is a continuous lattice and S a poset and if g: L → S is a surjective

homomorphism, then S is a continuous lattice.

These statements remain intact if we replace continuous lattices by bounded
complete domains.
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Proof: (i) The product of complete lattices is a complete lattice. Since all op-
erations in the cartesian product are componentwise, then any equation which
holds in each factor holds in the product. Thus, I-2.7 proves the claim.

(ii) Firstly, S is a complete lattice, since it is closed in L under infs (O-2.4).
If x j,k ∈ S is a family satisfying the conditions of I-2.7(2), then both sides of
the equation (DD) are contained in S (since S is closed under infs and directed
sups). Since the equation holds in L , it then holds in S, and thus S is a continuous
lattice by I-2.7.

(iii) Let X ⊆ S and set Y = g−1(X ). Since g is surjective, X = g(Y ). As L
is a complete lattice, y = inf Y exists in L . Since g preserves infs, then inf g(Y )
exists in S and

g(y) = g(inf Y ) = inf g(Y ) = inf X.

Hence, S is a complete lattice by O-2.2. Now let x j,k be a family in S satis-
fying the conditions of I-2.7(2). Let d be the lower adjoint of g, which exists
by O-3.5. If we set y j,k = d(x j,k), then the family y j,k satisfies the hypothe-
ses of I-2.7(2) in L , since d is order preserving. Thus the y j,k satisfy equa-
tion (DD) of I-2.7. Now we apply g to both sides of this equation and obtain
equation (DD) for the family x j,k (since g commutes with all

∧
and all

∨↑

and satisfies gd = 1 by O-3.7). It follows that S is a continuous lattice by
O-2.3.

To bounded complete domains one adds an isolated top element and one uses
the above results. �

We are now going to make the correspondence between closure and kernel
operators on the one side and subalgebras and quotients on the other side more
explicit.

We turn to closure operators first. We recall from O-3.13 and the definition
preceding it that a closure system in a complete lattice L is a subset which is
closed under arbitrary infs. In O-3.14 together with I-2.4 it is established that
there is a bijective correspondence between the closure operators of L which
preserve directed sups and the closure systems which are closed under directed
sups. If L is a continuous lattice, then these closure systems are precisely the
subalgebras by I-2.10. This gives immediately the following classification of
closure operators preserving directed sups by subalgebras.

Proposition I-2.12. Let L be a continuous lattice. Then the assignment c �→
c(L), which associates with a closure operator c: L → L of L its image, induces
a bijection from the set of all closure operators of L which preserve directed
sups onto the set of all subalgebras of L. �
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The next step is to consider kernel operators. They are related to kernels of
homomorphisms.

Proposition I-2.13. Let g: L → T be a homomorphism between bounded
complete domains, or between continuous lattices. Then the kernel R =
{(x, y) ∈ L × L : g(x) = g(y)} = (g × g)−1(�), where � is the diagonal in
T × T , is a subalgebra of L × L.

Proof: As g: L → T is a homomorphism, also g × g: L × L → T × T is a
homomorphism. As the diagonal � is a subalgebra in T × T , its inverse image
under g × g is a subalgebra, too. �

The kernel of a homomorphism should be called a congruence. We will see
below that every congruence also gives rise to a quotient structure.

Definition I-2.14. If L is a bounded complete domain, or a continuous lattice,
then a subset R of L × L is called a congruence relation on L , if it is an
equivalence relation on L and a subalgebra of L × L . �

We now can give a more complete picture of congruences on bounded complete
domains and continuous lattices and how they relate to kernel operators (while,
as we recall from I-2.12, closure operators relate to subalgebras).

Theorem I-2.15. Let L be a bounded complete domain, respectively a contin-
uous lattice, and R ⊆ L × L an equivalence relation. Let L/R be the quotient
set. Then the following conditions are equivalent.

(1) R is a congruence relation on L.
(2) There is a kernel operator k on L preserving sups of directed sets such

that R = (k × k)−1(�) where � is the diagonal of L × L.
(3) L/R is a bounded complete domain respectively a continuous lattice, in

such a way that the quotient map g: L → L/R is a homomorphism.
Moreover, L/R is isomorphic to k(L).

Proof: (1) implies (2): Let R(x) = {y ∈ L: x Ry}, the equivalence class of
x . Define the map k: L → L by k(x) = inf R(x). As R is closed for infs
of nonempty sets, k(x) ∈ R(x) and k(x) ≤ x . In fact, k(x) is the smallest
element of the congruence class R(x). But this implies that k(k(x)) = k(x) for
all x ∈ L , i.e., k is idempotent. Suppose next that x ≤ y, then xy = x . Since R
is a semilattice congruence, R(x)R(y) ⊆ R(xy); whence

k(x) = k(xy) ≤ k(x)k(y) ≤ k(y).

This shows that k is monotone. Thus k is a kernel operator.
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Let D be directed in L and set d = sup D. Let d∗ = sup k(D) ≤ k(d). We
claim that k(d) ≤ d∗. Indeed for all x ∈ D we have (x, k(x)) ∈ R and the set
{(x, k(x)): x ∈ D} is directed. Since R is closed with respect to sups of directed
sets we conclude (d, d∗) = supx∈D(x, k(x)) ∈ R. Thus d∗ ∈ R(d), whence
k(d) = min R(d) ≤ d∗ as was claimed. Thus k preserves sups of directed sets.

Finally, if (x, y) ∈ R, then k(x) = k(y), and vice versa, whence we see that
(k × k)−1(�) = R.

(2) implies (3): The co-restriction k◦: L → k(L) factors canonically through
the quotient map g: L → L/R with a bijection f : L/R → k(L). This means that
k◦ = f g with f (R(x)) = k(x). By I-2.3, k(L) is a bounded complete domain,
and by O-3.12(iii), k◦ preserves existing infs. Since k preserves directed sups
and k(L) is sup closed in L by O-3.12(i), then k◦ preserves sups of directed
sets. If we transport the order structure of k(L) to L/R via f −1, then L/R is a
bounded complete domain such that g preserves all nonempty infs and sups of
directed sets.

(3) implies (1): Immediate from I-2.13. �

Evidently, the homomorphic images of a bounded complete domain and its
quotients are practically the same thing on account of the canonical factorization
theorem for homomorphisms.

The following is now a parallel to I-2.12.

Corollary I-2.16. Let L be a bounded complete domain. Then the rule k �→
(k×k)−1(�), where� is the diagonal of L×L, associates with a kernel operator
its kernel congruence and induces a bijection from the set of all kernel operators
of L which preserve directed sups onto the set of all congruences of L. �

The last result of this section is a surprising one: we obtain the continuity of
the image of a continuous lattice under a projection without supposing that the
projection preserves sups of directed sets. This result is a counterpart to I-2.2.

Proposition I-2.17. If L is a bounded complete domain and p: L → L is a
projection operator preserving nonempty infs, then p(L) is a bounded complete
domain. Moreover p(L) is closed in L under nonempty infs.

Proof: By O-3.11(ii) and (iii), the set Lc = {x ∈ L: x ≤ p(x)} is closed under
existing sups and infs. Thus Lc is a bounded complete domain by I-2.6(i). The
map pc: Lc → Lc induced by p is a closure operator which preserves existing
infs, since p preserves infs and Lc is inf closed.

The co-restriction p◦c : Lc → im pc then preserves nonempty infs since
im pc is inf closed in Lc by O-3.12(i), and it preserves sups by O-3.12(iii).
Thus I-2.6(ii) applies to show that im pc is a bounded complete domain. But
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im pc = p(L) by O-3.11(i). By O-3.12(i), p(L) = im pc is closed in Lc under
infs, and Lc is closed in L under infs, thus p(L) is closed in L under infs. �

Exercises

In the first exercises we present a necessary and suffcient condition for a product
of domains to be a domain and we propose counterexamples to preservation
properties of domains that one might conjecture.

Exercise I-2.18. Prove the following.

(i) If Li , i ∈ I , is a family of domains, where all but finitely many of the Li

have a least element, then
∏

i∈I Li is a domain.
(ii) The half open unit interval ]0, 1] is a domain, but a direct product of

infinitely many copies of ]0, 1] is not continuous.
(iii) Let A be the three element poset obtained from a two element antichain

by adjoining a top element. The direct product of infinitely many copies
of A is not a domain.

(iv) The converse of (i) does not hold: every antichain is a domain without
least element, and an infinite product of antichains is an antichain, hence
a domain.

(v) The direct product
∏

i∈I Li of a family of domains is again a domain if
and only if all but a finite number of the domains Li are discrete unions
of domains with least elements. (By a discrete union of posets
M j , j ∈ J , we mean a disjoint union of the M j such that no elements in
different components M j are comparable.) �

Exercise I-2.19. Find an example of a subset M of a domain L which is closed
for sups of directed sets and finite infs but not a domain.

Hint. Consider the rationals Q with the usual topology induced from R. Let
L = 2Q be the set of all subsets and M the set of all open subsets of Q. �

Exercise I-2.20. Find examples of a domain L and of a dcpo M which is not
a domain but where there exists a surjective map c: L → M preserving sups of
directed sets.

Hint. Let L = 2Q, let M be the set of all closed subsets of Q and c(A) the
closure of an arbitrary subset of Q. �

In the following exercises we construct some further examples of continuous
lattices by utilizing kernel operators. We will, however, re-prove these results
in Chapter II with different methods.
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Exercise I-2.21. Prove the following.

(i) Let S be any poset and T a continuous lattice. Let (S → T ) denote the
poset of all order preserving maps f : S → T with the pointwise order.
Then (S → T ) is a continuous lattice.

(ii) Let S be a continuous poset. For f ∈ (S → T ) define k( f ): S → T by

k( f )(s) = sup f ( �s).

Then k( f ) ∈ (S → T ) and k: (S → T ) → (S → T ) is a kernel operator.
Further, k preserves directed sups. In particular, im k is a continuous
lattice (I-2.3).

(iii) Let S be a continuous poset. [S → T ] denotes the poset of all those maps
f ∈ (S → T ) with f = k( f ). Each such f preserves directed sups. In
fact, for g ∈ (S → T ), the function k(g) is the greatest function below g
which preserves directed sups.

Hint. (i) Note that (S → T ) is a subalgebra of T S , which is a continuous lattice
by I-2.11(ii).

(ii) Use the interpolation property of � for the proof of k2 = k.
(iii) Let D be a directed set with sup D = s in S. Clearly we have then

sup f (D) ≤ f (s). The converse requires a frequently used trick: Take an arbi-
trary element

x � f (s) = k( f )(s) = sup f ( �s)

and show x ≤ sup f (D); since x is arbitrary, f (s) ≤ sup f (D) will follow.
To accomplish the claim, use I-1.1 to find s∗ � s with x ≤ f (s∗). Since
s∗ � sup D, there is a d ∈ D with s∗ � d (I-1.9). Thus

x ≤ f (s∗) ≤ f (d) = k( f )(d) ≤ sup f (D). �

We summarize the main outcome of this discussion in the following exercise
and indicate some applications.

Exercise I-2.22. Prove the following.

(i) If S is a continuous poset and T a continuous lattice, then the poset
[S → T ] of all functions S → T preserving directed sups is a continuous
lattice. (Note that it is closed in T S under arbitrary sups but not under infs
in general!)

(ii) Since R is a continuous poset and I = [0, 1] a continuous lattice, as are
their opposites, then [Rop → I

op] is a continuous lattice. This is the space
of all nondecreasing, upper semicontinuous functions F : R → I. Those
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functions F ∈ [R → I] which are such that F(x) → 0 as x →−∞ and
F(x) → 1 as x →+∞ are precisely the distribution functions of real
random variables. They form a sublattice P(R) which is closed under
pointwise infs (which are the sups in the function space) of sets with
lower bounds (upper bounds in the function space). But there are no
elements F,G ∈ P(R) with F � G. Thus P(R) fails totally be a
continuous poset.

(iii) By contrast, however, the set P(I) ⊆ [Iop → I
op] consisting of all

F : I → I with F(1) = 1 is the set of distribution functions of probability
measures on the unit interval, and it is closed under arbitrary pointwise
infs (sups in the function space); the inf in the function space of a family
is the upper semicontinuous envelope of the pointwise sup, which is also
the inf in the continuous lattice [Iop → I

op]. Hence, P(I) is a continuous
lattice. �

One could call P(I) the random unit interval. Notice, however, that the partial
order on the corresponding probability measures is the order induced from
[Iop → I

op]; indeed if X and Y are random variables on I with distribution
functions FX and FY , then FX ≤ FY means that X is likely to take larger
values than Y : we should write Y ≤ X .

Definition I-2.23. If S and T are L-domains, then a function g: S → T
is called a homomorphism of L-domains if it preserves infs of nonempty sets
bounded above and directed sups. The stipulations of Definition I-2.10 are
extended accordingly from bounded complete domains to L-domains. �

Exercise I-2.24. Prove that Theorems I-2.11, I-2.15 and Corollary I-2.16 per-
sist for L-domains. �

Despite these successes, there remain some questions:

Problem. Is there an equational characterization of continuous semilattices?
�

Problem. Do any of the conclusions of Theorems I-2.11 and I-2.15 and of
Proposition I-2.13 and Corollary I-2.16 persist for continuous semilattices?

�

The following exercise discusses some material which is related to the context
of large distributive laws and auxiliary relations.

Exercise I-2.25. Let L be a complete lattice. Let M be a set of subsets of L
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satisfying the following conditions:

(a1) if A ⊆M and {sup X : X ∈ A} ∈M, then
⋃A ∈M;

(a2) if A ⊆M, then {inf f (A): f ∈ Sel(A)} ∈M,

where Sel(A) = { f : f is a selection function A→⋃A}.
G. Bruns [Bruns, 1962a] calls such a set distributively closed. One calls a

lattice M-distributive if for any set A ⊆M

inf{sup X : X ∈ A} = sup{inf f (A): f ∈ Sel(A)}.

If M = 2L , then we retrieve complete distributivity. If M is the smallest
distributively closed subset containing all finite sets, then one obtains the (F)-
distributivity of S. Papert [Papert, 1959]. The set D of all directed subsets of L
is not distributively closed; however, the distributive law (DD) in I-2.7 would
be called D-distributivity in our present context.

Define two relations on L as follows (the first follows S. Papert, op. cit.,
p. 174, the second G. Bruns, op. cit., p. 4):

x ↙ y iff for all X ∈M with y = sup X one has x ≤ a for some a ∈ X ;
x # y iff for all X ∈M with y ≤ sup X one has x ≤ a for some a ∈ X.

(i) Then ↙ and # are auxiliary relations satisfying the interpolation property
(INT).

(ii) Both relations are approximating in any M-distributive lattice.
(iii) For x ∈ L there is a set X (x) ∈M such that ↓X (x) = {y: y ≺ x} with ≺

equal to ↙ or #, respectively. �

Old notes

The characterization of continuous lattices through equations as expressed in
Theorem I-2.7 is due to Alan Day [Day, 1975]. His proof is different from
ours. He obtained the equational characterization in the course of identify-
ing the class of continuous lattices and the class of homomorphisms of con-
tinuous lattices (I-2.10) as a category which is equivalent to the category of
algebras of the filter monad over sets (and the open filter monad over T0

spaces). Of course one may interpret this setup as identifying free continu-
ous lattices over a set, as was pointed out by D. Scott [scs 15]. A. Day explored
the issue further in [scs 18]. Independently of these developments, O. Wyler
also identified continuous lattices as algebras of filter monads some time in
1975–76.
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The distributive law (DD) of I-2.7 is of a type considered in a systematic
fashion by G. Bruns [Bruns, 1961] and [Bruns, 1962a]. However, the case of
continuous lattices is not subsumed in Bruns’ work, and before him S. Papert
used certain (almost) auxiliary relations which are approximating and satisfy
the interpolation property (see I-2.25). In the case of completely distributive
lattices, the relation # of I-2.25 was introduced by G. N. Raney [Raney, 1953].
He showed that it was approximating iff the lattice was completely distributive,
and he observed that it satisfied the interpolation property in this case. With
these tools he showed that a complete lattice is completely distributive iff it can
be embedded into a product of complete chains under preservation of arbitrary
sups and infs. (See IV-3.31 and IV-3.32, and for more on complete distributivity
see I-3.16 ff.)

That the closure properties of the class of continuous lattices which are
expressed in Theorem I-2.11 would be important from the viewpoint of universal
algebra was remarked by Scott [scs 15]. The fact that quotients of continuous
lattices are continuous is probably the hardest of the closure properties; the
stability under formation of products and subalgebras could be derived relatively
easily directly from our Definition I-1.6; this is not the case with the quotients.
This had also been the harder part of the theory of compact semilattices with
small subsemilattices [Lawson, 1969], which we know today is equivalent to
the theory of continuous lattices.

Scott had emphasized all along the significance of projections (retracts) on
continuous lattices, notably those which preserve directed sups. Theorem I-2.2
is from [scs 15]. The useful statements I-2.12 and I-2.16 concerning closure
and kernel operators were published in the Compendium for the first time.

The result in Exercise I-2.21 is a mild generalization of a principal result
of [Scott, 1972a], p. 112, Theorem 3.3. A systematic treatment will follow in
Chapter II. The random unit interval was discussed by Hofmann and Liukkonen
in [scs 16].

New notes

In the Compendium this section was entirely devoted to continuous lattices
and their equational characterization and the associated universal algebra. By
utilizing the machinery of retractions an analogous theory can be developed for
the wider class of domains, and this has been the program of the earlier part of
the section. The latter part resumes the old theme.

There are several variations of the notion of “continuity” of a poset obtained
by replacing directed sets by other types of subsets. Taking arbitrary subsets
instead of directed ones leads to the way-way-below relation and to completely
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distributive lattices (see I-2.25). Both of these cases are covered by the notion
of Z continuous posets, where Z is some class of subsets of posets. This gener-
alization has been studied by several authors and its theory surveyed in [Erné,
1999].

I-3 Irreducible Elements

In a semilattice an element is irreducible if it is not the meet of two larger
elements. These elements play an important role in lattice theory, notably for
distributive lattices, where they are exactly the prime elements; they are at the
basis of all of the spectral theory and of the representation theorems of distribu-
tive lattices. Irreducible elements exist abundantly in all finite lattices, and it is
one of the important features of continuous lattices that this property persists.

Open filters and irreducible elements

We first introduce some necessary machinery to prepare the way for the devel-
opment of the theory of irreducible elements. This early material will be better
motivated in Chapter II when topologies are introduced.

Definition I-3.1. Let L be a dcpo. An upper set U = ↑U ⊆ L will be called
open iff for each directed set D in L the relation sup D ∈ U implies D ∩U �=
Ø. Filters are particular upper sets (O-1.3), and we will make use of open filters,
that is, filters that are open in the sense just defined. The set of all open filters
of L is denoted by

OFilt(L) = {F : F is an open filter of L}. �

Example I-3.2. Assume that we have a descending sequence

· · · � yn � · · · � y2 � y1

in a dcpo L. Then U =⋃∞
n=1 ↑yn is an open filter.

Proof: Since the subset U is an ascending union of principal filters it is a filter.
Now let D be a directed subset of L such that sup D ∈ U . Then there is a
natural number n such that yn ≤ sup D. Since yn+1 � yn , we find a d ∈ D
with yn+1 ≤ d, and thus d ∈ ↑yn+1 ⊆ U . Hence U is open. �

Using the interpolation property (I-1.9) we see immediately that in a domain,
all sets

�

x are open. One must be careful to note that even in a continuous lattice
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the sets

�

x are not generally filters: the picture shows a continuous lattice in
which

�

x is not a filter. Nevertheless, there are still enough open filters:

Proposition I-3.3. In a domain the following hold.

(i) If x � y, then there is an open filter U with y ∈ U ⊆ �

x.
(ii) If y �≤ z, then there is an open filter U containing y but not z. �

Proof: (i) By the interpolation property (I-1.9) we construct inductively a de-
creasing sequence of elements yn with

x � · · · � yn � yn−1 � · · · � y1 = y.

Set U = ⋃{↑yn: n = 1, 2, . . .}. Clearly, y ∈ U and U ⊆ �

x . By Example
I-3.2, U is an open filter.

(ii) If y �≤ z, then there is an x such that x � y, but x �≤ z. If we choose an
open filter as in (i), it will have the desired property. �

The significance of the openness of an upper set U is that its complement must
have maximal elements:

Lemma I-3.4. Let U be an open upper set in a dcpo. Then for any x ∈ L\U
there is an m ∈ L\U with x ≤ m and m maximal in L\U.



I-3 Irreducible Elements 97

Proof: By the Hausdorff Maximality Principle, there exists a maximal chain
C ⊆ L\U containing x . Let m = sup C . If m ∈ U , then U ∩ C �= Ø by I-3.1
which contradicts the hypothesis on C . Thus m ∈ L\U . Since C is a maximal
chain, not only is m ∈ C but m is maximal in L\U . �

Definition I-3.5. An element p in a poset is called irreducible iff p is maximal
or ↑p\{p} is a filter. The set of all irreducible elements is written IRR L . �

We note at once that in a semilattice, an element p is irreducible iff the relation
p = xy always implies x = p or y = p. Here they are also rightfully called
meet irreducible. In a sup semilattice join irreducible elements are defined
dually.

Proposition I-3.6. Let L be a poset and p ∈ L. Assume that F is a filter in
L such that ↑p ∩ F is also a filter. (In a semilattice, this is automatic.) If p is
maximal in L\F, then p is irreducible.

Proof: Since p is maximal in L\F , we see that ↑p\{p} = ↑p ∩ F . Since this
is a filter, we conclude that p is irreducible. �

The next theorem is important because it guarantees an abundance of irre-
ducibles in any continuous lattice or semilattice.

Theorem I-3.7. Suppose that x and y are elements of a continuous semilattice
with y �≤ x. Then there is an irreducible element p with x ≤ p and y �≤ p.

Proof: By Proposition I-3.3(ii), there is an open filter U with y ∈ U and x �∈ U .
By I-3.4 and I-3.6, there is an irreducible element p with x ≤ p �∈ U . Since
y ∈ U , we then have y �≤ p. �

This result may be rephrased in another convenient fashion (see I-3.10).

Definition I-3.8. A subset X of a poset L is said to be order generating iff
x = inf(↑x ∩ X ) for all x ∈ L . �

Note that it is also true that inf(↑x ∩ X ) = inf(↑x ∩ (X\{1})).
Proposition I-3.9. For a subset X of any poset L, the following statements are
equivalent:

(1) X is order generating;
(2) every element of L can be written as an inf of a subset of X;
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(3) L is the smallest subset containing X closed under arbitrary infs;
(4) whenever y �≤ x, then there is a p ∈ X with x ≤ p but y �≤ p.

Proof: (1) implies (2): Immediate from the definition.
(2) iff (3): A standard lattice theoretical argument.
(2) implies (4): Let y �≤ x . By assumption x = inf P for some P ⊆ X . But

then y �≤ p for some p ∈ P , and the conclusion follows.
(4) implies (1): Clearly, x is a lower bound of the set ↑x ∩ X . Let y be any

lower bound of ↑x ∩ X . We claim that y ≤ x . Suppose not, that is, y �≤ x . Then
by (4) there is a p ∈ ↑x ∩ X with y �≤ p which contradicts the assumption that
y is a lower bound of ↑x ∩ X . This proves that x = inf(↑x ∩ X ). �

Corollary I-3.10. In a continuous semilattice L, the set IRR L\{1} of non-
identity irreducibles is order generating. �

It is noteworthy that Corollary I-3.10 holds in the environment of a contin-
uous semilattice, where the existence of arbitrary infs is not guaranteed in
general.

Distributivity and prime elements

At this point we specialize our discussion to distributive semilattices. This
requires, firstly, that we recall the appropriate definition of distributivity for
semilattices which agrees with the concept of distributivity (see O-2.6) for
lattices, and, secondly, that we introduce a new type of element, called prime;
every prime element is irreducible, but the converse fails without distributivity.

Definition I-3.11. (i) A semilattice S is said to be distributive if ab ≤ x
implies the existence of elements c, d with a ≤ c, b ≤ d and x = cd .

(ii) An element p in a poset L is called prime iff p = 1 or L\↓p is a filter.
An element is co-prime iff it is a prime of Lop. The sets of prime and co-prime
elements are denoted by PRIME L and COPRIME L , respectively. �

Note that a lattice is distributive as a semilattice in the sense of the above
definition iff it satisfies the usual distributivity law (see Exercise I-3.30):

(∀x, y, z) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). (D)

Notice that we allow 1 to be prime – not all authors agree. For the record we
note some general facts about primality. We shall write 2

def= {0, 1} for the two
element lattice.
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Proposition I-3.12. Let p �= 1 in a semilattice L. Then the following state-
ments are equivalent:

(1) p is prime;
(2) (∀x, y ∈ L) xy ≤ p ⇒ (x ≤ p or y ≤ p);
(3) the function f: L → 2 defined by

f (x) =
{

0 if x ≤ p,
1 otherwise

is a semilattice homomorphism.

If L is a distributive semilattice, then the above are equivalent to

(4) p is maximal in the complement of an open filter,
(5) p is irreducible.

If L is a Boolean lattice, then these conditions are equivalent to

(6) p is a co-atom, that is, a maximal nonunit element.

Proof: The equivalence of (1), (2) and (3) is straightforward. If p is prime,
then L\↓p is a filter. It is clearly open according to definition I-3.1. Thus (1)
implies (4). If p is maximal in the complement of an open filter U , then p is
irreducible by I-3.6 and we see that (4) implies (5).

Now assume that L is a distributive semilattice and let p be irreducible.
Assume xy ≤ p. By I-3.11(ii) there are elements x ′ ≥ x and y′ ≥ y such that
p = x ′y′. Since p is irreducible, x ′ = p or y′ = p. In the first case x ≤ p, in
the second, y ≤ p. Thus, (5) implies (2).

We leave the equivalence of (1) and (6) in a Boolean lattice as an exercise.
�

From I-3.10 and the above we deduce

Corollary I-3.13. In a distributive continuous semilattice L, the set
PRIME L\{1} of nonidentity primes is order generating. �

A well-studied class of complete lattices is that of topologies O(X ) of topolog-
ical spaces X . We discussed the semilattice Q(X ) of compact saturated subsets
of a topological space ordered by reverse inclusion⊇ (see I-1.24). What are the
prime elements in these cases? For a subset A of a topological space we called
its saturation

sat A
def=
⋂
{U ∈ O(X ): A ⊆ U }

and we said that A is saturated iff sat A = A (see O-5.3).
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Example I-3.14. Let X be a topological T0 space.

(i) Consider the following statements for a proper open subset U of X and
A = X\U .

(0) (∃a ∈ A) A = {a}−.
(1) U ∈ PRIME(O(X )).
(2) U ∈ IRR(O(X )).
(3) The set {V ∈ O(X ): U ⊂ V,U �= V } is a filter in L .
(4) A is not the union of any two of its proper closed subsets.

Then (0) ⇒ (1) and conditions (1) through (4) are equivalent.
(ii) Consider the following statements for a nonempty compact saturated

subset C of X .

(0) (∃c ∈ C) C = sat{c}.
(1) C ∈ PRIME(Q(X )).
(2) C ∈ IRR(Q(X )).
(3) The set {K ∈ S: K ⊂ C, K �= C} is a filter in Q(X ), i.e., is a

∪-semilattice.

Then (0)⇒(1)⇒(2)⇔(3), and if X is locally compact, then (0)⇔(1). If, in
addition, the intersection of two compact saturated sets is compact in X , then
all four conditions are equivalent.

Proof: (i) An open set U is irreducible in O(X ) iff it is not the intersection of
two properly larger open sets. By de Morgan’s Rules, this is equivalent to (4).
Since O(X ) is distributive, an element U is prime iff it is irreducible by I-3.12
((1)⇔(5)); by Definition I-3.5, U is irreducible in O(X ) iff (3) holds. Hence
(1) through (4) are equivalent. The implication (0)⇒(4) is straightforward: If
A1 ∪ A2 = A = {a}−, then a ∈ A1 or a ∈ A2. Then A = {a}− ⊆ A1 ⊆ A, i.e.,
A = A1 or, similarly, A = A2.

(ii) By Definition I-3.5, (2) and (3) are equivalent, and (1)⇒(2) is clear.
(0)⇒(1): If sat{c} = C ⊆ C1 ∪ C2 with C1,C2 ∈ S, then c ∈ C1 or c ∈ C2,
whence C = sat{c} ⊆ sat C1 = C1, or, similarly, C ⊆ C2. By I-3.12 (1) iff (3);
this establishes (1).

Now assume that X is locally compact. We will show (1)⇒(0). So let C ∈
PRIME Q(X ). Then the set F = {K ∈ Q(X ): C �⊆ K } is a ∪-semilattice. Con-
sequently, the sets of the form C\K with C �⊆ K form a filter F of subsets
on C . As C is compact, this filter has a cluster point c ∈ C . Now, let U
be any open set containing c. By the local compactness, there is a compact
saturated neighborhood Q of c contained in U . We have C ⊆ Q, whence
C ⊆ U ; suppose indeed, C �⊆ Q; this implies that C\Q belongs to the filter F ,
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whence Q ∩ (C\Q) �= Ø, as Q is a neighborhood of the cluster point c of F , a
contradiction. Thus C is contained in every open neighborhood of c, hence C
is contained in the saturation sat{c}. But as c ∈ C and as C is supposed to be
saturated, we conclude that C = sat{c}.

Finally, assume that finite intersections of compact sets are compact. Then
Q(X ) is a distributive lattice. Hence (1) and (2) are equivalent by I-3.12. �

According to O-5.5 a nonempty closed subset A ⊆ X of a topological space is
called irreducible iff it satisfies the condition in I-3.14(i)(4). Any set of the form
{a}− is irreducible. A space is called sober (see O-5.6) iff every irreducible
closed set has a unique dense point. (We will return to these concepts in a more
systematic way in Chapter II and in Chapter V.) From what has been said it is
clear that a space X is sober iff the function

x �→ X\{x}− : X → (PRIMEO(X ))\{X}
is bijective. By I-3.14(ii), for a locally compact space X , we have a bijection

x �→ sat{x} : X → IRR Q(X )\{Ø}.
Theorem I-3.15. Let L be a complete lattice. Consider the following condi-
tions:

(0) L is a frame;
(1) L is a Heyting algebra;
(2) L is distributive;
(3) PRIME L is order generating.

Then (0)⇒(1)⇒(2) and (3)⇒(0). If L is a continuous lattice, all four conditions
are equivalent.

Proof: That (0)⇒(1)⇒(2) is trivial from the definitions. That (2)⇒(3) follows
from I-3.13. (3)⇒(0): By I-3.12(3) and I-3.9 the maps f : L → 2 determined
by primes separate the points of L . If H is the set of all of these maps, then
the function x �→ ( f (x)) f ∈H : L → 2H is injective. As the maps f ∈ H
preserve finite meets and arbitrary joins, the same holds for the function x �→
( f (x)) f ∈H : L → 2H . But 2H is a frame, hence so is L . �

The sublattice [0, 1[2 ∪ {(1, 1)} of the square [0, 1]2 in the product order is a
complete distributive lattice in which (1, 1) is the only prime (cf. O-4.5(1));
thus, I-3.15 may very well fail for a complete distributive lattice. In fact, it may
fail for a frame and even for a complete Boolean algebra. Because Lop ∼= L
for any Boolean algebra, we find nontrivial primes in a Boolean algebra iff
we find atoms. The Boolean algebra Oreg([0, 1]) of regular open subsets of the
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unit interval is an atomless complete Boolean algebra, hence without primes.
Hence, I-3.15(3) fails even in very special complete distributive lattices. It is
fundamental for the theory of distributive continuous lattices that this converse
holds. (Boolean algebras which are continuous lattices are characterized in the
next section.) All of this shows that continuity is quite essential in I-3.15.

If L is a chain, then L = IRR L , and this property is evidently charac-
teristic for chains. If L = [0, 1], let X be the set of rationals, Y the set of
irrationals. Then each of the disjoint sets X and Y is order generating and nei-
ther is minimal relative to this property. In general, there is no minimal set
which order generates L . We will see later that algebraic lattices have a mini-
mal order generating set (I-4.26). We will also show that the closure of IRR L
relative to a suitable topology is the smallest closed order generating set for this
topology.

We saw in I-2.9 that every completely distributive lattice is continuous. Now
we can give a sharper description of completely distributive lattices in terms of
continuous lattices and primes and co-primes (primes of the dual).

Theorem I-3.16. Let L be a complete lattice. Then the following statements
are equivalent:

(1) L is completely distributive;
(2) L is distributive and both L and Lop are continuous lattices;
(3) L is continuous and every element is the sup of co-primes.

Proof: (1) implies (2): One knows that L is completely distributive iff Lop is
completely distributive. Then I-2.9 yields the desired implication.

(2) implies (3): By I-3.15 applied to Lop.
(3) implies (1): We remark first that, in a lattice satisfying (3), every element

is the sup of co-primes way below it; because all the elements way below it
are sups of co-primes. Thus, to verify the equation (CD) of I-2.8, it is suficient
to show that every co-prime way below the left hand side (lhs) is less than or
equal to the right side (rhs).

Let x j,k be given as in I-2.8 and suppose that p is a co-prime element with
p � lhs. Then p � ∨k∈K ( j) x j,k for all j ∈ J . By I-1.1 we find, for each
j ∈ J , a finite set F ⊆ K ( j) with p ≤ ∨k∈F x j,k . But, since p is co-prime,
there is in fact some element k ∈ F with p ≤ x j,k ; we denote this k by f ( j).
By these choices we have found a function f ∈ M such that p ≤∧ j∈J x j, f ( j).
This proves that p ≤ rhs, and the proof is complete. �

It is interesting to remark that from G. N. Raney’s classical theory of com-
pletely distributive lattices one knows that the equivalent conditions of I-3.16
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are also equivalent to embedding L into a direct product of complete chains
under preservation of arbitrary sups and infs. (See e.g. [Balbes and Dwinger,
b1974], p. 248. We will present this result as Exercises IV-3.31 and
IV-3.32.)

We also know that for any lattice L the complete lattice Id L of ideals is
distributive iff L is distributive. In view of the importance for continuous
lattices of the sup map on ideals, I �→ sup I : Id L → L (see I-1.10 and
compare I-4.17), we need to view Id L in our present context. First a simple
remark:

Remark I-3.17. For an ideal I of a poset L the following statements are
equivalent:

(1) I ∈ PRIME(Id L);
(2) L\I is a filter or is empty.

If L is a semilattice, then these conditions are equivalent to the following one:

(3) If xy ∈ I , then x ∈ Ior y ∈ I for all x, y ∈ L.

Proof: (2) iff (3): Is obvious for semilattices.
(1) implies (2): Suppose that s, s∗ ∈ L\I . Then the principal ideals↓s and↓s∗

are not contained in I . By (1), there is an ideal J ⊆ ↓s ∩ ↓s∗ such that J �⊆ I .
Hence there is an element s∗∗ ∈ J\I and for this element we have s∗∗ ≤ s, s∗.

(2) implies (1): Let I1, I2 ∈ Id L . If neither I1 nor I2 is contained in I , then
we find elements xn ∈ In\I, n = 1, 2, and by (2) we find a y ≤ xn, n = 1, 2,
with y ∈ L\I . But then also y ∈ In, n = 1, 2, since In is an ideal, and so
↓y ∈ (I1 ∩ I2)\I . �

Definition I-3.18. A prime ideal in a poset is an ideal satisfying the equivalent
conditions (1) and (2) of I-3.17. For a semilattice, a prime ideal is characterized
by property (3) in I-3.17 which is more familiar than the previous characteri-
zations. Prime filters in posets and sup semilattices are defined dually. �

It will be useful at this point to recall a basic mathematical concept, the well-
known notion of a filter of sets. We recall from Definition O-1.1 that a filter
of a poset is not empty. But we do not require that a filter on a poset L must
necessarily be a proper subset. Sometimes the entire poset L itself is a filter,
sometimes it is not: If L = {(0, 1), (1, 1), (1, 0)}with the componentwise order,
then L itself is not a filter. If L is singleton, it is itself a filter. All of this applies
to OFilt(L) for a dcpo L . It is important to keep these things in mind because
our terminology collides with the traditional usage of the concept of a filter of
sets. Specifically, if L = 2X is the lattice of all subsets of a nonempty set X ,
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common terminology usually rules out that a filter can contain the empty set.
This eliminates L itself from being a filter in that terminology; however, the
powerset L = 2X itself is a filter in the terminology of this book.

Remark I-3.19. Let F be a filter on a set X. The following statements are
equivalent:

(1) F is a proper prime filter in 2X ;
(2) for any subset of X, either it or its complement belongs to F;
(3) F is a maximal proper filter in 2X . �

Recall, too, that filters satisfying the equivalent conditions of I-3.19 are usually
called ultrafilters. We record a standard lemma:

Lemma I-3.20. Let L be a distributive lattice, I an ideal and F a filter in L
with I ∩F = Ø. Then there is a prime ideal P in L with I ⊆ P and P∩F = Ø.

Proof: By Zorn’s Lemma we find a maximal ideal P containing I and missing
F . We claim that P is a prime ideal. To prove this we let x, y /∈ P . The
ideal generated by P and x as well as the ideal generated by P and y both
meet F by the maximality of P . Thus there are some elements u, v ∈ P with
u ∨ x, v ∨ y ∈ F . Let w = u ∨ v. Then w ∈ P , since P is an ideal; and we
also have w ∨ x, w ∨ y ∈ F , since F is an upper set. From the fact that L is
distributive and F is a filter we conclude that w∨ (x ∧ y) = (w∨ x)∧ (w∨ y)
∈ F . Since w ∈ P , we cannot have x ∧ y ∈ P , because otherwise we would
have w ∨ (x ∧ y) ∈ P ∩ F = Ø; but x ∧ y /∈ P is what we had to show. �

Note that if F is a filter on X and I is an ideal of 2X disjoint from F , then
by applying I-3.20 to (2X )op, we conclude that there is an ultrafilter containing
the given filter F but missing the ideal I. In the special case where I = {Ø},
we obtain the well-known fact that every proper filter may be extended to an
ultrafilter.

Ultrafilters are frequently useful tools in the theory of domains. We illustrate
this with the following two propositions, which also show how compactness
theorems in topology often have more general formulations in terms of the
way-below relation.

Proposition I-3.21. Let U and V be open subsets in a topological space X,
with U ⊆ V . The following statements are equivalent:

(1) U � V in the lattice O(X );
(2) every proper filter containing U has a cluster point in V ;
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(3) every ultrafilter containing U has a convergence point in V .

Proof: (1) implies (2): Let F be a proper filter with U ∈ F . If no member of
V is a cluster point, then for every element x ∈ V , we can find an open set
Wx containing x and a set Fx ∈ F such that Wx ∩ Fx = Ø. By hypothesis,
because the Wx cover V , there are finitely many of them covering U . The finite
intersection of the corresponding Fx has an empty intersection with U , which
is a contradiction since this finite intersection is in F .

(2) implies (3): Immediate – since by I-3.19(2) cluster points are points of
convergence.

(3) implies (1): Let U be an open cover of V , and assume that U has no finite
subcover. Then the family of sets U\W with W ∈ U generates a proper filter.
Extend this to an ultrafilter F ; it is the case that U ∈ F . By assumption, let
p ∈ V be a point of convergence. Now for some W ∈ U we have p ∈ W ; but
F converges to p, so W ∈ F . It then follows that both U ∩W and U\W belong
to F , a contradiction. �

The following result is a mild generalization of the classical result known as
Alexander’s Lemma. The reader should recall the difference between a base
and a subbase for a topology.

Proposition I-3.22. (Alexander’s Lemma) Let B be a collection of open
subsets forming a subbase for the topology of a space X, and let U and V be
open sets with U ⊆ V . Then a necessary and sufficient condition for U � V
is that every cover of V by members of B has a finite subcover of U.

Proof: The necessity is clear. For the sufficiency we use I-3.21(3). Let F be
an ultrafilter with U ∈ F . Suppose no element of V is a convergence point
of F . Then, if x ∈ V , there is a basic open set Wx containing x but not in F .
Since Wx is a finite intersection of elements of B, and since F is a filter, we
can assume Wx to be subbasic; that is, Wx ∈ B. Because F is an ultrafilter, it
follows that U\Wx ∈ F . Because the Wx cover V , it follows by assumption
that finitely many cover U . This means that a finite intersection of the U\Wx

is empty, which is impossible because F is a proper filter. �

The next proposition is essentially an abstract version of I-3.22.

Proposition I-3.23. Let x and y be elements in a complete distributive lattice.
Then x � y if and only if for every prime ideal P with y � sup P we have
x ∈ P.
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Remark. Compare this statement with I-1.5(i) in order to note that prime
ideals suffice here to test the relation x � y.

Proof of proposition: “Only if” is clear from I-1.5(i). In order to see that the
new condition is sufficient, let I be an arbitrary ideal with y ≤ sup I ; we must
show that x ∈ I . Suppose not. Then we set F = ↑x and apply I-3.20 to find a
prime ideal P with I ⊆ P and x /∈ P . But I ⊆ P impliees y ≤ sup I ≤ sup P.
Hence, by our hypothesis, x ∈ P , and this is a contradiction, which proves the
claim. �

Pseudoprime elements

Each prime element p of L gives rise to a prime ideal ↓p (as is immediate
from I-3.17(3)); but, conversely, if P is a prime ideal, then sup P need not be
a prime element. If we look at the example following I-3.2, then x = sup �x
is not prime, but �x is a prime ideal. This motivates the formulation of the
following definition.

Definition I-3.24. An element p of a semilattice is called pseudoprime if p =
sup P for some prime ideal P . The set of pseudoprimes is called PRIME L .

�

By the preceding remarks PRIME L ⊆ PRIME L , and the containment is
proper in general. In view of I-1.10(2) an element p in a continuous semi-
lattice is pseudoprime iff there is a prime ideal P with �p ⊆ P ⊆ ↓p. It is
clear that for any directed complete semilattice L the sup map on ideals maps
PRIME(Id L) onto PRIME L . In continuous semilattices we have the follow-
ing characterization of pseudoprimes.

Proposition I-3.25. Let L be a semilattice and 1 �= p ∈ L. Consider the
following conditions:

(1) p is pseudoprime;
(2) in any finite collection x1, . . . , xn ∈ L with x1 · · · xn � p there is one of

the elements with x j ≤ p;
(3) the filter generated by L\↓p does not meet �p.

Then (2)⇔(3); if L is continuous, then (1)⇒(2), and if L is in addition a
distributive lattice, all three conditions are equivalent.

Proof: Condition (2) says that no finite meet of elements from L\↓p is ever
way below p. Therefore (2) and (3) are always equivalent.
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(1) implies (2): Let p be pseudoprime and suppose that x1 · · · xn � p. Let
P be a prime ideal with sup P = p. By I-1.10(2) we have �p ⊆ P , hence
x1 · · · xn ∈ I . Since P is prime, there is one x j with x j ∈ P ⊆ ↓p.

(3) implies (1): Suppose now that L is a distributive lattice. Let F be the
filter generated by L\↓p; by (3) we have �p ∩ F = Ø. By Lemma I-3.20,
there is a prime ideal P with �p ⊆ P and P ∩ F = Ø. Since L\↓p ⊆ F ,
we have P ⊆ L\F ⊆ ↓p, whence p = sup �p ≤ sup P ≤ sup↓p = p. Thus
p = sup P (where we used continuity of L via I-1.6), and so p is pseudoprime.

�

We draw the reader’s attention to the fact that condition (2) is a “weak” analog
of the definition of a prime, which may be formulated by saying that p is prime
if in any collection x1, . . . , xn ∈ L with x1 · · · xn ≤ p there is one of these
elements with x j ≤ p. The hard implication, involving the Axiom of Choice,
is (3) implies (1).

At a later point we will give yet another characterization of pseudoprimes in
a continuous lattice, but topology will be needed for that result; it will in effect
say that pseudoprimes are exactly those elements which can be approximated
by primes in a suitable sense. (See V-2.)

It is a natural question to ask for circumstances under which every pseudo-
prime is in fact prime. In order to establish a sufficient condition we record the
following lemma.

Lemma I-3.26. In a semilattice L the following conditions are all equivalent
for any auxiliary relation ≺ (see I-1.11):

(1) for all a, x, y ∈ L, the relations a ≺ x and a ≺ y imply a ≺ xy;
(2) for all x ∈ L, the set {y ∈ L : x ≺ y} is a filter;
(3) for all a, b, x, y ∈ L the relations a ≺ x and b ≺ y imply ab ≺ xy;
(4) the graph of ≺ is a subsemilattice of L × L;
(5) the function x �→ s≺(x) : L → Low L is a semilattice morphism, where

s≺(x) = {y ∈ L : y �→ x}.
Proof: The connections (1) iff (2), (3) implies (1), and (3) iff (4) are trivial.
If a ≺ x and b ≺ y, then ab ≺ x and ab ≺ y. If (1) holds then this implies
ab ≺ xy. Thus (1) implies (3). For x, y ∈ L one has s≺(xy) ⊆ s≺(x) ∩ s≺(y).
Thus (5) means that for all a, x, y ∈ L with a ∈ s≺(x) ∩ s≺(y) one has
a ∈ s≺(xy); but this is the same as (1). �

Definition I-3.27. We will say that an auxiliary relation≺ on L is multiplica-
tive iff it satisfies the equivalent conditions of I-3.26 This terminology applies
in particular to the way-below relation. �
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Proposition I-3.28. Let L be a continuous semilattice. If � is multiplicative,
then the following conditions are equivalent for an element p ∈ L:

(1) p is pseudoprime;
(2) if ab � p, then a ≤ p or b ≤ p for all a, b ∈ L;
(3) p is prime.

Conversely, if L is, in addition, a distributive lattice, then PRIME L =
PRIME L implies that � is multiplicative.

Proof: Clearly (3) implies (1). By I-3.25 we have (1) implies (2).
(2) implies (3): By way of contradiction suppose that p is not prime. Then

there are elements x, y �≤ p with xy ≤ p. By 1.6 we find elements a, b �≤ p
with a � x and b � y. Since� is multiplicative, we conclude ab � xy ≤ p;
that is, ab � p by I-1.2(ii). But this contradicts (2).

Now assume that L is a distributive lattice and � is not multiplicative. We
wish to show PRIME L �= PRIME L . There are elements a, x, y with a � x
and a � y but not a � xy. The ideal �xy and the filter ↑a are disjoint; hence,
by I-3.20, there is a prime ideal P containing �xy missing a. Then it follows
that p = sup P ∈ PRIME L . But xy = sup �xy ≤ sup P = p. Consider
the representative case x ≤ p = sup P . Then a � x implies a ∈ P by I-1.5,
which is impossible. Thus, x �≤ p and y �≤ p; whence, p �∈ PRIME L . �

Exercises

The first exercise is a variant of Proposition I-3.6.

Exercise I-3.29. Let L be a modular lattice and p ∈ L . (A lattice L is called
modular if for all x, y, z ∈ L the relation x ≥ z implies x ∧ (y∨ z) = (x ∧ y)∨
(x ∧ z).) Show that the following conditions are equivalent:

(1) p is irreducible;
(2) p is maximal in the complement of every filter maximal with respect to

missing p;
(3) p is maximal in the complement of some filter maximal with respect to

missing p. �

Problem. Is every irreducible element in a continuous lattice maximal in the
complement of some open filter? �

The following exercises deal with distributivity in semilattices. For easy refer-
ence, we repeat Definition I-3.11(i): a semilattice S is distributive if ab ≤ x
always implies the existence of c, d with a ≤ c, b ≤ d, and x = cd .
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Exercise I-3.30. Show that if a semilattice S is actually a lattice, then S is
distributive as a semilattice iff it is distributive as a lattice. �

Exercise I-3.31. Show that if S is a sup semilattice, then S is distributive iff
Id S, the lattice of ideals, is distributive. �

Exercise I-3.32. Show that the condition of distributivity is equivalent to
↑(uv) = (↑u)(↑v) for all u, v ∈ S. �

We have seen in Corollary I-3.13, that in a distributive continuous semilattice,
any element is the inf of primes. The following example shows that the converse,
which is valid if L is a lattice by I-3.15, fails for semilattices.

Exercise I-3.33. Consider the following subsets of N: all singleton sets {n}, n ∈
N, the set a of all even, the set b of all odd, numbers, and the set x of all natural
numbers n ≥ 100. Let L be the collection of all finite unions of these sets ordered
by reverse inclusion u ≤ v iff v ⊆ u. Show that L is a continuous semilattice
in which every element is an inf of primes, but which is not distributive. �

Hint. It is clear that L is a ∪-semilattice and a domain, as there are no infinite
ascending chains. The singletons {n} are prime in L and every element in L is
a union of singletons, hence an inf of primes. But x ⊆ a ∪ b and there are no
a′ ⊆ a, b′ ⊆ b in L such that x = a′ ∪ b′. Hence, L is not distributive. �

Problem. Is OFilt(S) distributive for a distributive continuous semilattice? �

In I-3.14 we have identified the prime elements in topologies. Let us identify
the primes in a few specific examples.

Exercise I-3.34. Let L = Id−A be the lattice of closed two-sided ideals of a
C∗-algebra. Show that I ∈ PRIME L iff I is a closed prime ideal in the ring
theoretical sense. �

Note that in a C∗-algebra, for two closed two-sided ideals one has I J = I ∩ J .
Every primitive ideal (i.e., the kernel of an irreducible representation) is prime
and thus is an element of PRIME L . If PrimA denotes the set of all primitive
ideals ofA, we have PrimA ⊆ PRIME L . For separable C∗-algebras equality is
known to hold (and we will suggest an independent proof: see Exercise V-5.30).
This is false for nonseparable algebras (see [Weaver, 2001]). One knows from
the theory of C∗-algebras that PrimA is an order generating set for L (in the
sense of I-3.8).

Exercise I-3.35. Let {L j : j ∈ J } be a family of lattices. Show that an element
(x j ) j∈J �= 1 is irreducible (resp., prime) in the product

∏
j∈J L j iff there is an
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index k ∈ J such that x j = 1 for j �= k and xk is irreducible (resp., prime) in
the lattice Lk . �

Exercise I-3.36. Let K be a compact convex subset of a locally convex topo-
logical vector space over the reals. Let Con(K ) be the lattice of all compact
convex subsets of K ordered by inclusion; by I-1.23 we know that Con(K )op is
a continuous lattice. Prove the following.

(i) A ∈ Con(K ) is co-irreducible (A ∈ IRR Con(K )op) iff A has at most one
point;

(ii) A is co-prime iff A either is empty or consists of a single element which is
an extreme point of K .

Hint. (i) Obviously a singleton is co-irreducible. Conversely, suppose A ∈
Con(K ) has more than one point. Let f be a continuous linear functional into
the reals which is nonconstant on A. Find a real number r such that the inverse
images under f of the intervals ]−∞, r ] and [r,+∞[ have nonempty inter-
sections with A. This will give a decomposition of A that will show it is not
co-irreducible in Con(K ).

(ii) If A is the singleton of an extreme point, then it is easy to check that, when
it is contained in the convex hull of the union of two sets in Con(K ), it must
be contained in one of them. Conversely, if A is co-prime, it is co-irreducible
and so must consist of at most one point. If it does have a point and is not
extreme, then it lies between two other points. This will show that A is not
co-prime. �

Exercise I-3.37. Let L be a semilattice and m: L×L → L be the meet function
given by m(x, y) = xy. Let G = {(x, y) ∈ L × L : x ≤ y}, the graph of the
relation ≤, and let G−1 be the graph of ≥. Prove the following:

(i) m((L × L)\(G ∪ G−1)) = L\IRR L;
(ii) m−1(IRR L) ⊆ G ∪ G−1.

Hint. Clearly (ii) follows from (i). If (x, y) �∈ G ∪ G−1, then xy is different
from x and from y, and thus xy �∈ IRR L . If z �∈ IRR L , then there are elements
z < x and z < y with z = xy. Then (x, y) �∈ G and (x, y) �∈ G−1. �

The following exercise concerns pseudoprimes in a continuous lattice. We know
that a lattice must be distributive if it is order generated by primes. How nearly
is a continuous lattice distributive if it is order generated by pseudoprimes?
I-3.38 gives some sort of answer.

We say that p ∈ L is a weak prime iff condition I-3.25(2) is satisfied.
(Thus if L is distributive, then p is a weak prime iff it is a pseudoprime by
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I-3.25.) The set of weak primes is denoted by WPRIME L (cf. V-3.1 and
V-3.4).

Exercise I-3.38. Let L be a continuous lattice. Show that the following state-
ments are equivalent:

(1) IRR L ⊆ WPRIME L;
(2) WPRIME L is order generating;
(3) for all finite sequences of elements a1, . . . , an, x ∈ L the relation

a1 . . . an � x implies (a1 ∨ x) . . . (an ∨ x) = x ;
(4) for all finite sequences of elements a1, . . . , an, x ∈ L the relation

a1 . . . an � x implies the existence of elements bk ≥ ak, k = 1, . . . , n,
such that b1 . . . bn = x ;

Show that moreover these conditions imply

for all X ⊆ L and x ∈ L we have

�

(x sup X ) = �

(sup x X ). (WH)

Hint. See [Hofmann and Lawson, 1976], p. 337. �

Notice that, according to our definitions,

PRIME L ⊆ PRIME L ⊆ WPRIME L .

In Chapter V we will return to these concepts.
In the following exercise we begin to discuss the connection between com-

pletely distributive lattices (see I-2.8, I-2.9, I-3.16) and continuous posets; only
in Chapter V will we be able to complete this discussion (V-1.10 ff.).

Exercise I-3.39. Let L be a complete lattice. Let P = COPRIME L\{0} be the
set of nonzero co-primes with the induced partial order. Prove the following.

(i) P is a dcpo.
(ii) If L is a completely distributive lattice, then for each x ∈ P

x = supL ( �L x ∩ P) = supP �P x .

Hint. (i) An element p ∈ L is co-prime iff L\↑p is an ideal. If (p j ) j∈J is a
monotone net of co-primes (see O-1.2), then for p = sup p j the set

L\↑p =
⋃

j∈J

(L\↑p j )

is an ideal since the union is ascending.
(ii) Since �L x ∩ P ⊆ �P x , we need only show the first equality. Let x �≤ y.

Then there is a u � x with u �≤ y. Now u = sup(↓u ∩ P) by I-3.16; but
↓u ∪ P ⊆ �L x ∩ P , and so sup( �L x ∩ P) �≤ y. �
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If we compare this with Definition I-1.6, then we see that only the directedness
of �P x is lacking for P to be recognized as a continuous poset. We will show
this condition in Section 1 of Chapter V (V-1.6).

Exercise I-3.40. (Generalized Baire Category Theorem) This exercise
presents in a sequence of results an application of the theory of irreducible
elements to derive a very general Baire Category Theorem. However, we need
some of the early results of this section in a sharpened form, and we state them
in the first four propositions.

Proposition I-3.3 was one of the keys to the principal results. It says in effect
that, in a domain, for any open upper set V of the form

�

x and for any element
v ∈ V , there is an open filter U ⊆ V with v ∈ U . A considerably stronger
result is true – but it is noteworthy that countability enters here.

Proposition I-3.40.1. Let L be a continuous semilattice and V an open upper
set. If F is a countably generated filter in L with V F ⊆ V , then for each v ∈ V
there is an open filter U ⊆ V containing both v and F.

Remark. With F = {1} we obtain a version of I-3.3.

Hint. Suppose a1, a2, . . . is a sequence of generators of F , which we may
suppose decreasing without loss of generality. Let v ∈ V be given – we must
find an open filter U so that van ∈ U for all n. Inductively select a sequence
bn ∈ V as follows. Let b0 = v. Since a1 ∈ F , we have va1 ∈ V ; and since
V is open, we find a b1 � va1. Suppose that b0, . . . , bn have been selected.
Since an+1 ∈ F we have bnan+1 ∈ V ; and thus, since V is open, we find a
bn+1 � bnan+1. Since

· · · � bn � bn−1 � · · · � b1 � v,

then U , the filter generated by the bn , is an open filter containing v (I-3.2).
Because of bn ≤ an all an are contained in U . �

Corollary I-3.40.2. Let L be a continuous semilattice and V an open upper
set. If N is any countable subset of L with V N ⊆ V , then for each v ∈ V there
is an open filter U with vN ⊆ U.

Hint. Let F be the filter generated by N . Then I-3.40.1 applies to F and yields
the assertion. �

The basic result I-3.10 may be formulated as follows: if V is the open upper set
L\↓s, then for every y ∈ V and every x �∈ V there is a p ∈ IRR L such that
x ≤ p and y �≤ p. This we now sharpen:

Proposition I-3.40.3. Let L be a continuous semilattice and V an open upper
set. If N is a countable set with V N ⊆ V , then for every y ∈ V and every
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x �∈ V there is an irreducible element p such that x ≤ p and yn �≤ p for
all n ∈ N.

Hint. Let U be the open filter constructed in I-3.40.2. Then by I-3.4 there is a
maximal element p in ↑x\U , and by I-3.6 p is irreducible. �

Corollary I-3.40.4. Let L be a continuous semilattice, x ∈ L, and N ⊆ L a
countable set such that y �≤ x and n ∈ N always imply yn �≤ x. Then for any
y with y �≤ x there is an irreducible p with x ≤ p and yn �≤ p for all n ∈ N.

Hint. Apply I-3.40.3 with V = L\↓x . �

Now consider the lattice of open subsets O(X ) of a topological space X .
An open set U ∈ O(X ) is dense in X iff for all V ∈ O(X ) with V �= Ø
we have U ∩ V �= Ø. Accordingly we are motivated to make the following
definition.

Definition I-3.40.5. An element u in a semilattice L with a smallest element
0 is called dense if v �= 0 implies uv �= 0 for all v ∈ L . �

Let us momentarily assume that X is a Hausdorff space. Then by I-3.14 there is
a bijection between the points x ∈ X and the nontrivial primes of O(X ) given
by x �→ X\{x}. For an element U ∈ O(X ) we have x ∈ U iff U �⊆ X\{x}.
This motivates the following definition.

Definition I-3.40.6. In a complete lattice L we define a binary relation ε

between IRR L\{1} and L by setting p ε u iff u �≤ p. �

At this point we return to Corollary I-3.40.4 which we specialize to the case
x = 0. The hypothesis on N then says that all members of N are dense. This
leads to

Theorem I-3.40.7. (Baire Category Theorem for Continuous Lattices) Let
L be any continuous semilattice with a smallest element 0 and D a countable
collection of dense elements. Then for any nonzero element u there is a point
p ∈ IRR L\{1} such that p ε (u ∧ v) for all v ∈ D.

As a consequence we have the following result.

Theorem I-3.40.8. (Baire Category Theorem for Locally Compact Spaces)
Let X be any locally compact space and D a countable collection of dense open
sets. Then for any nonempty open set U there is an irreducible closed set A such
that A ∩U ∩ V �= Ø for all V ∈ D.

Hint. Recall that O(X ) is a continuous lattice by I-1.7(5). �
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Notice that if A = {x}−, then the conclusion of I-3.40.8 implies that x ∈
A ∩U ∩ W and that U ∩ W �= Ø, where W is the intersection of the sets in D.
We recall next a definition from general topology (see O-5.13):

A topological space X is called a Baire space iff the intersection of any
countable collection of dense open subsets is dense (or, equivalently, iff the
union of a countable collection of nowhere dense closed sets is nowhere dense).

As an immediate consequence of the above we have a generalization of
Baire’s well-known classical theorem on locally compact Hausdorff spaces:

Corollary I-3.40.9. Every locally compact sober space is a Baire space.

The following counterexamples are instructive; both are first countable.
Let X = N with upper sets in the usual ordering open. Then X is locally

compact T0, but it is not a Baire space.
Let X be the set of all ordinals less than the first uncountable ordinal with

upper sets open. Then X is a locally compact T0 Baire space which is not sober.

Old notes

The study of irreducibles and primes in continuous lattices was begun in
[Hofmann and Lawson, 1976] and [Hofmann and Lawson, 1978]. Substantial
contributions were made by [Gierz and Keimel, 1977]; this paper as well as the
second one mentioned above will contribute to Chapter V.

The proof of Proposition I-3.3 is due to Lawson (folklore tradition in SCS).
The results in Exercise I-3.40 are due to [Hofmann, 1980] (see also [scs 43]).
The result that a locally compact space is a Baire space can also be excavated
from [Isbell, 1975a], p. 334, Section 4.2. Isbell asks for a “pointless” general-
ization of Baire category; our Baire category theorem for continuous lattices
and for locally compact spaces may be considered such a “pointless” theory.
The characterization of completely distributive lattices in terms of continuous
lattices in Theorem I-3.16 is a result of [Kamara, 1978]. The theory of pseu-
doprimes was first developed in the second of the two papers by Hofmann and
Lawson cited above. Proposition I-3.28, however, in slightly different language
is due to Keimel and Mislove [scs 19].

The current chapter deals exclusively with the purely lattice theoretical as-
pects of the theory of continuous lattices. Many of the finer results on the spectra
of continuous lattices require a better understanding of various topologies on a
continuous lattice and will be treated in Chapter V.
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I-4 Algebraic Domains and Lattices

In universal algebra, algebraic lattices have become familiar objects as lattices
of congruences and lattices of subalgebras of an algebra. As a consequence, they
have been extensively studied and it cannot be our purpose here to survey this
classical field. However, algebraic lattices are continuous, and they fit perfectly
into the general theory. It is this fit which is the object of our present discussion.

Compact elements, algebraic and arithmetic domains

We have noticed that the auxiliary relations need not be reflexive, and that in
fact the way-below relation rarely is. Nevertheless there are elements x such as
x = 0 which satisfy x � x . It is those elements which now come into focus.
In Definition I-1.1 they were called isolated (from below) or compact. Let us
recall the definition:

Definition I-4.1. In any poset L , an element k is called compact (or isolated)
iff k � k, i.e., whenever D is a directed subset of L such that sup D exists and
k ≤ sup D, then k ≤ d for some d ∈ D. The subset of all compact elements is
denoted by K (L). �

In a complete semilattice and in particular in a complete lattice an element k
is compact iff whenever C is a (bounded) subset such that k ≤ sup C , then there
is a finite subset F ⊆ D such that k ≤ sup F . Thus, this notion of compactness is
an order theoretical version of the Heine–Borel covering property characterizing
compactness in topological spaces: every open covering contains a finite open
covering. In particular, an open set U is compact in the lattice O(X ) of open
subsets of a topological space in the sense of Definition I-4.1 iff U is compact
as a subset of the topological space X .

If L is the unit interval, then K (L) = {0}. If L is the standard Cantor chain
in the unit interval, then K (L) consists exactly of those elements which are
isolated from below in the topological sense. In this example compact elements
are so abundant that every element is approximated from below by them. The
general idea of this kind of abundance is formalized in the following definition.

Definition I-4.2.

(i) A poset L is called algebraic iff it satisfies the Axiom of Compact
Approximation

(∀x ∈ L) x =
∨↑

(↓x ∩ K (L)), (K)

i.e., for all x ∈ L the set ↓x ∩ K (L) is directed and x = sup(↓x ∩ K (L)).



116 I Order Theory of Domains

(ii) A directed complete algebraic poset L is called an algebraic domain.
(iii) An algebraic domain which is a lattice is called an algebraic lattice.
(iv) An algebraic domain which is a semilattice is called an algebraic

semilattice.
(v) A complete semilattice (cf. 0-2.1(iv)) which is an algebraic domain as a

poset is called a bounded complete algebraic domain.
(vi) An algebraic domain in which every principal ideal ↓x is a complete

lattice (in its induced order) is called an algebraic L-domain. �

For a poset we thus have the following chain of implications:

algebraic lattice ⇒ bounded complete algebraic domain

⇒
{

algebraic semilattice
algebraic L-domain

}

⇒ algebraic domain.

Proposition I-4.3. In a poset L, the following statements are equivalent:

(1) L is algebraic;
(2) L is continuous, and x � y iff there is a k ∈ K (L) with x ≤ k ≤ y.

In particular every algebraic poset is a continuous poset and every algebraic
(semi)lattice is a continuous (semi)lattice.

Proof: (1)⇒(2): Assume (1) and x, y ∈ L . If x � y, then, since y = sup D
with the directed set D = ↓y ∩ K (L) by (1), there is a k ∈ D with x ≤ k.
Hence x ≤ k ≤ y with k ∈ K (L). Conversely, if there is a compact element k
with x ≤ k ≤ y, then x ≤ k � k ≤ y, whence x � y by I-1.2(ii).

The continuity of L now follows directly from the second Remark after
Definition I-1.6 and from the compact approximation property (K).

(2)⇒(1): Assume (2) and let y ∈ L . Then y = sup �y and �y is directed. As,
also by (2), for every x � y, there is a compact element k such that x ≤ k ≤ y,
we conclude that y = sup(↓y ∩ K (L)). Further, (↓y ∩ K (L)) is directed. For if
k1, k2 are two compact elements below y, then there is an x ∈ �y dominating
both of these elements as y = sup �y. �

We now turn to the properties of the set of compact elements with the induced
ordering.

Remark I-4.4. Let L be a dcpo. If L has a least element 0, then 0 ∈ K (L). If
two elements x, y ∈ K (L) have a sup in L, then x ∨ y ∈ K (L).
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Proof: If x � x and y � y, then x ∨ y � x ∨ y by I-1.2(iii), and 0 ∈ K (L)
by I-1.2(iv). �

The preceding remark gives rise to the following definition.

Definition I-4.5. A poset L will be called a conditional sup semilattice, if any
two elements x, y with a common upper bound have a least upper bound x ∨ y
in L . �

From I-4.4 we conclude that the following holds.

Remark I-4.6.

(i) In every complete semilattice, in particular in any bounded complete
algebraic domain, the set K (L) of compact elements is a conditional sup
semilattice with a smallest element.

(ii) In every complete lattice, in particular in every algebraic lattice, the set
K (L) of compact elements is a sup semilattice with a smallest element.

�

A frequently encountered subclass of algebraic semilattices is introduced in the
next definition.

Definition I-4.7. A semilattice L is called an arithmetic semilattice iff it is
algebraic and if K (L) is a subsemilattice of L , i.e., if x ∧ y ∈ K (L) for all
x, y ∈ K (L). An arithmetic lattice is an algebraic lattice in which the set of
compact element is a subsemilattice. �

Proposition I-4.8. Let L be an algebraic semilattice. Then the following state-
ments are equivalent:

(1) L is arithmetic;
(2) K (L) is a semilattice;
(3) the way-below relation � is multiplicative (I-3.27).

Proof: That (1) implies (2) is trivial.
(2) implies (1): Let a, b ∈ K (L), c = a ∧K (L) b. Then c ≤ ab (= a ∧L b).

But if X = ↓(ab) ∩ K (L), then c = supK (L) X , and ab = supL X , since L is
algebraic. Thus ab ≤ c, whence a ∧K (L) b = ab.

(1) implies (3): Let a � x and a � y. Then there are c, k ∈ K (L) with
a ≤ c ≤ x and a ≤ k ≤ y by I-4.3. Thus a ≤ ck ≤ xy, and since ck ∈ K (L)
by (1), we have a � xy by I-4.3.

(3) implies (1): If a, b ∈ K (L), then a � a, b � b, hence ab � ab by (3).
Thus ab ∈ K (L). �
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Corollary I-4.9. Every pseudoprime in an arithmetic semilattice is prime.
Conversely, if in a distributive algebraic semilattice L we have PRIME L =
PRIME L, then L is arithmetic.

Proof: I-4.8 and I-3.28. �

Proposition I-4.10. Let S be a poset and L = Id S the set of all ideals of S
ordered by inclusion.

(i) L is an algebraic domain whose compact elements are the principal ideals.
(ii) The principal ideal map is an isomorphism x �→ ↓x : S → K (L);
(iii) If S is a conditional sup semilattice, a sup semilattice, a semilattice,

a lattice, respectively, with a least element 0, then L is a bounded complete
algebraic domain, an algebraic lattice, an arithmetic semilattice, an arithmetic
lattice, respectively.

Conversely, let L be an algebraic domain and S = K (L) the poset of compact
elements.

(iv) The map x �→ ↓x ∩ S : L → Id S is an isomorphism.
(v) The ideal ↓x ∩ S is principal iff x ∈ S.
(vi) If L is a bounded complete algebraic domain, an algebraic lattice, an

arithmetic semilattice, an arithmetic lattice, respectively, then S is a conditional
sup semilattice, a sup semilattices, a semilatice, a lattice, respectively, with a
least element 0.

Proof: Most of the facts recorded here have already been established. We add a
few hints. (i) By invoking O-2.8(2) we note that L is closed in 2S under directed
unions and hence a dcpo. Clearly, principal ideals are compact. Conversely, let
I be compact in Id S; then, as I is the union of the directed set of principal ideals
↓x, x ∈ S, it follows that I = ↓x for some x . The proof of (ii) is clear. For (iii)
we notice that, in a conditional sup semilattice S with 0, the intersection of any
nonempty family of ideals is an ideal, whence L is a complete semilattice. If
S is a lattice, then the intersection of two principal ideals is a principal ideal;
hence, L is an arithmetic lattice.

(iv) To prove that x �→ ↓x ∩ S : L → Id S is bijective, we claim that sup:
Id S → L is the inverse of this map. Since the latter is clearly surjective, it
suffices to show that ↓(sup I ) ∩ S = I for each I ∈ Id S, and since ⊇ is clear,
we must show⊆. Let k ∈ ↓(sup I )∩ S; that is, k � k ≤ sup I . Thus k � sup I
by I-1.2(ii). Hence we have an x ∈ I with k ≤ x . But since I is an ideal in S,
we have k ∈ I . Part (v) is clear from the fact that sup(↓x ∩ S) = x . Part (vi)
follows from I-4.6 and I-4.7. �

In particular, we have the following corollary.
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Corollary I-4.11. Every algebraic domain L admits an injection g: L →
2K (L) preserving directed sups such that (prk g)−1(1) = ↑k for k ∈ K (L). For
an algebraic lattice, respectively a bounded complete algebraic domain, the
injection also preserves arbitrary, respectively nonempty, infs.

Proof: By I-4.10, L ∼= Id (K (L)), and Id (K (L)) ⊆ 2K (L) is closed under
unions of directed sets. If L is an algebraic lattice, respectively bounded com-
plete, then K (L) is a sup semilattice, respectively conditional sup semilattice,
and Id (K (L)) ⊆ 2K (L) is also closed under arbitrary, respectively nonempty,
intersections. If the injection g is interpreted in terms of characteristic functions,
then g(x)(k) = 1 iff k ∈ ↓x ∩ K (L) iff k ≤ x , and this is the assertion. �

Products, kernel and closure operators

It is now natural to investigate the closure properties of the class of algebraic
lattices within the class of continuous ones, following the lines of Section 2.
This will allow us to exhibit some characteristic examples of algebraic domains.
As finite posets are algebraic domains and as finite lattices are algebraic, even
arithmetic, lattices, products will allow us to construct algebraic domains and
arithmetic lattices. As flat domains, i.e., antichains M with a bottom element
adjoined, are algebraic and bounded complete, products allow us to construct
bounded complete algebraic domains:

Proposition I-4.12. If {L j : j ∈ J } is a family of algebraic domains which have
a least element 0 (except, perhaps, for finitely many j ∈ J ), then the cartesian
product

∏
j∈J L j is an algebraic domain; the same holds for cartesian prod-

ucts of algebraic semilattices, bounded complete algebraic domains, algebraic
lattices, arithmetic lattices, and for algebraic L-domains.

Proof: An element (xi )i∈I of the product is compact iff xi ∈ K (Li ) for all i ∈ I
and xi = 0 for all but a finite number of indices. Since every factor is algebraic,
every element of L is the sup of such elements. �

Now recall that if a closure operator (O-3.8) c on a domain L preserves directed
sups, then c(L) is a domain (see I-2.2). We have a parallel for the algebraic
case:

Proposition I-4.13. Let L be an algebraic domain.
(i) If c: L → L is a closure operator preserving sups of directed sets, then

(1) the image c(L) is an algebraic domain (relative to the induced order)
closed for sups of directed sets in L,

(2) c(K (L)) = K (c(L)).



120 I Order Theory of Domains

(ii) If M is a closure system which is closed in L with respect to directed
sups, then M is an algebraic domain.

The statements remain true if we replace algebraic domain by any of the
concepts algebraic semilattice, algebraic lattice, algebraic bounded complete
domain, algebraic L-domain.

Proof: (i) By I-2.2, c(L) is continuous. We also note that, for every directed
subset D ⊆ c(L), one has supL D = supc(L) D so that we can omit the subscripts
when we take sups of directed sets. The Remark following I-2.3 allows us to
say that k �L k implies c(k) �c(L) c(k), whence c(K (L)) ⊆ K (c(L)). Then
since c preserves directed sups, we have

c(x) = c(sup(↓x ∩ K (L))) = sup c(↓x ∩ K (L)),

and, as c(↓x ∩ K (L)) is a directed set in K (c(L), this shows that c(L) is alge-
braic. Thus we have shown (1).

As we have seen that c(K (L)) ⊆ K (c(L)), for (2), it remains to show that the
converse containment holds. For this purpose let a ∈ K (c(L)), that is, a �c(L)

a and c(a) = a. By the characterization of the way-below relation in c(L)
contained in I-2.2, there is a u ∈ K (L) with u ≤ a such that a ≤ c(u) �c(L) a,
and this implies c(u) = a.

(ii) Recall that a closure system is the image of a closure operator. By Lemma
I-2.4, a closure operator preserves directed sups iff its image is closed under
directed sups. Thus, (ii) is a consequence of (i). �

Corollary I-4.14. Let L be an algebraic lattice. Then the assignment c �→
c(L), which associates with a closure operator c: L → L its image, induces
a bijection from the set of all closure operators of L preserving directed sups
onto the set of subalgebras of L.

Moreover, all of the subalgebras, i.e., subsets M closed under (nonempty)
infs and directed sups, of an algebraic lattice or an algebraic bounded complete
domain L are algebraic. �

Proof: This is immediate from I-4.13 and I-2.12 and from the fact that, in
algebraic lattices, closure systems are precisely subalgebras. �

Examples I-4.15.

(1) For any set X the lattice 2X of all subsets of X is algebraic; the compact
elements of 2X are the finite subsets F ⊆ X .

(2) If L is a subalgebra of 2X , that is, L is a subset which is closed under
arbitrary (or nonempty) intersections and directed unions, then L is an
algebraic lattice (respectively an algebraic bounded complete
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domain) and

E ∈ K (L) iff E =
⋂
{Y ∈ L : F ⊆ Y } for some finite F ∈ 2X .

The compact elements just described are also called the finitely generated
elements of L.

(3) As a special case of this last example, consider 22 X
. There are many

well-known subalgebras: Filt 2X and Id 2X , to name two. In the case of
filters,

P ∈ K (Filt (2X )) iff P is a principal filter.

Likewise, the compact elements in Id 2X are the principal ideals. This
example generalizes considerably, as we have already seen in I-4.10. The
importance of the filter lattice Filt 2X for the class of continuous lattices
will appear later in this section. �

The algebraic lattices occurring as subalgebras of powerset lattices are
archetypical:

Theorem I-4.16. Let L be a poset. Then the following statements are equi-
valent:

(1) L is an algebraic lattice;
(2) for some set X, the lattice L is isomorphic to a subset of 2X which is closed

under arbitrary intersections and directed unions;
(3) L is isomorphic to the image of some closure operator c: 2X → 2X which

preserves directed unions.

Conditions (1) and (2) remain equivalent if one replaces algebraic lattice by
bounded complete algebraic domain and if one restricts to intersections of
nonempty instead of arbitrary families of sets.

Proof: (1) implies (2): I-4.11.
(2) implies (3): I-4.14.
(3) implies (1): I-4.13. �

In I-2.2 we have seen that the continuity of a poset or a lattice is preserved if we
pass to images under projections which preserve directed sups. In particular,
images of algebraic posets or lattices under projections preserving directed sups
will be continuous. It is noteworthy that algebraicity is not inherited by images
under projections preserving directed sups, in general, except if we restrict our
attention to closure operators (see I-4.13).
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It belongs to the same circle of ideas that the class of algebraic lattices
is not closed under the formation of homomorphic images (see I-2.10). The
ordinary Cantor set C in the unit interval I = [0, 1] is an algebraic lattice. The
Cantor function g: C → I which maps C continuously, surjectively and in a
monotone fashion onto the unit interval illustrates this phenomenon. Of course,
all homomorphic images of an algebraic lattice are continuous by I-2.11(iii),
and in I-4.17 below we will see that all continuous lattices are so obtained.
From this viewpoint it is correct to say that the class of continuous lattices
is the smallest class closed under the formation of products, subalgebras, and
homomorphic images and which contains all algebraic lattices (or even just the
two element lattice as a generator).

If d: I → C is the lower adjoint of the Cantor function g just mentioned,
then k = dg: C → C is a kernel operator preserving sups whose image is
not algebraic. Thus, a sharp analog of Corollary I-2.3 for algebraic lattices is
not available. Corollary I-4.14 provides a substitute. We utilize this observation
further in showing how continuous domains can be derived from algebraic ones
via kernel operators.

Theorem I-4.17. Let L be a dcpo. Then the following statements are
equivalent.

(1) L is continuous, i.e., a domain.
(2) There are an algebraic domain A and a map r : A → L which is

surjective, preserves directed sups, and has a lower adjoint.
(3) There are an algebraic domain A and a kernel operator k: A → A

preserving directed sups such that L ∼= im p. �

Remark. We could rephrase (3) in words as: L is (isomorphic to) a retract of
some algebraic domain A under some kernel operator preserving directed sups.

Proof of theorem: (1) implies (2): Take A = Id L and let r (I ) = sup I . Then
A is an algebraic domain by I-4.10, r is surjective and has a lower adjoint by
I-1.10, (1) implies (4).

(2) implies (3): Let d: L → A be the lower adjoint of r , then k = dr is a
kernel operator preserving directed sups. As r is surjective, the lower adjoint d
is injective and in fact an isomorphism from L onto im k.

(3) implies (1): I-2.2. �

Analogous statements as in the theorem above hold for L-domains, bounded
complete domains, continuous semilattices and continuous lattices. In the case
of continuous semilattices L , one should notice that A can be chosen to be
arithmetic, as the intersection of two principal ideals of L is a principal ideal.
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For bounded complete domains and for continuous lattices, finally, the fact that
r has a lower adjoint can be expressed by saying that it preserves (nonempty)
infs. We finally arrive at the following.

Corollary I-4.18. Let L be a lattice. Then the following statements are
equivalent.

(1) L is continuous.
(2) There are an arithmetic lattice A and a surjective map r : A → L

preserving arbitrary infs and directed sups.
(3) There are an algebraic lattice A and a surjective map r : A → L

preserving infs and directed sups.
(4) There are a set X and a projection operator p: 2X → 2X preserving

directed sups such that L ∼= im p.

Proof of: In view of the theorem above and the subsequent remarks, we just
have to show that (3) implies (4): By I-4.13, there is a closure operator c
preserving directed sups on some powerset 2X such that the algebraic lattice A
is isomorphic to the image of c. As above, let d: L → A be the lower adjoint
of r and k = dr the kernel operator on A preserving directed sups. Define
p: 2X → 2X by p = c◦kc◦ (see O-3.9). By O-3.12(iii), c◦ preserves arbitrary
sups, and c◦ preserves directed sups, as im c is closed for directed sups. Hence
p preserves directed sups, and im p ∼= rc◦(A) = r (A) = L . �

In proving I-4.18 we obtained a given continuous lattice L as a quotient of
its ideal lattice A = Id L which is arithmetic. In this construction A depends
rather heavily on L , but there is in fact a choice of an arithmetic lattice that
depends only on the cardinality of L . As we have already proved that the class
of continuous lattices is equationally characterizable in Section 2, we could
guess at which lattice this is: the free continuous lattice of card(L) generators.
Indeed, it follows from quite general theorems that such a lattice exists. Instead
of invoking the general theory, however, we can construct free lattices for this
class directly and see at once why they are arithmetic.

Theorem I-4.19. For any set X, the lattice Filt 2X of all filters is the free contin-
uous lattice generated by X. More precisely: For every x ∈ X, let F(x) = {Y ⊆
X : x ∈ Y } be the fixed ultrafilter generated by x. Then, for every continuous
lattice L and every map f : X → L, there is one and only one homomorphism of
continuous lattices f ∗: Filt 2X → L such that f ∗(F(x)) = f (x) for all x ∈ X.

Proof of: Let f be any map from X into an arbitrary continuous lattice L . We
have to show that there is one and only one map f ∗: Filt 2X → L preserving
arbitrary infs and directed sups such that f ∗(F(x)) = f (x) for all x ∈ X .
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If F is any filter, then

F = sup{inf{F(x): x ∈ Y }: Y ∈ F},

because the set in the inside is just ↑Y in 2X . As the sup (which in 2X is just a
union) is directed, this shows that F belongs to the subalgebra generated by the
F(x). Therefore, any map on Filt 2X which preserves infs and directed sups is
uniquely determined by its action on the F(x).

The definition of f ∗ can be given on a filter F as follows:

f ∗(F) = sup{inf{ f (x): x ∈ Y }: Y ∈ F} = sup{inf f (Y ): Y ∈ F}.

On the right hand side the sups (directed!) and infs are to be calculated in L .
The map f ∗ is well defined and it satisfies f ∗(F(x)) = sup{inf f (Y ): x ∈
Y } = f (x). Obviously f ∗ preserves directed sups, because in the filter lattice
directed sups are unions. We must prove that f ∗ preserves infs; it will be better
to calculate backwards.

inf{ f ∗(Fi ): i ∈ I } =
∧

i∈I

∨

Y∈Fi

∧

x∈Y
f (x)

=
∨

Z∈P

∧

i∈I

∧

x∈Zi
f (x)

=
∨

Z∈P

∧{
f (x): x ∈

⋃

i∈I
Zi

}
.

Here P is the cartesian product of the Fi for i ∈ I , and we have applied the
distributive law (DD) from I-2.7 to the lattice L. Now note that for Z ∈ P we
have

(⋃

i∈I

Zi

)
∈
(⋂

i∈I

Fi

)
,

and thus every element of the intersection of the filters comes up in this way.
Thus, the right hand side of the above equation reduces to f ∗(

⋂
i∈I Fi ) as

desired. �

It follows at once from what we have done that if A = Filt 2L , then L is the
quotient of the arithmetic lattice A by the map which sendsF(x) to x for x ∈ L .

This is a good time to characterize continuous Boolean algebras:

Theorem I-4.20. Let L be a Boolean algebra. Then the following statements
are equivalent:

(1) L ∼= 2X for some set X;
(2) L is arithmetic;
(3) L is algebraic;
(4) L is continuous;
(5) L and Lop are continuous;
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(6) L is completely distributive;
(7) every element in L is the sup of atoms and L is complete. �

Proof of: That (1) implies (2) implies (3) implies (4) is trivial, and since in a
Boolean algebra x �→ ¬x : L → Lop is an isomorphism, (4) implies (5) is
clear. Since a Boolean algebra is distributive, and since co-primes are precisely
atoms, the equivalences of (5), (6), and (7) follow from I-3.16.

(7) implies (1): Let X be the set of atoms. Define two functions:

f = (A �→ sup A): 2X → L;
g = (x �→ ↓x ∩ X ): L → 2X .

Then f g = 1L by (7). In order to show that f is an isomorphism it is sufficient
to understand that f is injective. For this it suffices to observe that for A ⊆ X,
a ∈ X\A, one has sup({a} ∪ A) = a ∨ sup A > sup A; and this may be deduced
from the fact that in a Boolean algebra the function

x �→ (x ∧ a, x ∧ (¬a)) : L → [0, a] × [0,¬a]

is an isomorphism. �

This shows that continuous Boolean algebras are quite simple. Continuous
Heyting algebras are much less trivial; they can nevertheless be completely
characterized, as is shown in Chapter V.

Completely irreducible elements

The issue of irreducibility and order generation which we discussed in Section 3
for domains and continuous lattices can be rendered even more precise for
algebraic lattices and bounded complete algebraic domains. The key is the fact
that bounded complete algebraic domains contain an ample supply of special
irreducibles which we introduce in the next definition.

Definition I-4.21. Let L be a poset. An element p ∈ L is called completely
irreducible iff either p is maximal in L but different from the top element or
the set ↑p\{p} has a least element which we shall denote by p+. The set of all
completely irreducible elements of L will be written Irr L . �

Clearly by definition 1 /∈ Irr L ⊆ IRR L .

Remark I-4.22. If X is an order generating subset of a poset L, then Irr L ⊆ X.

Proof of: Since X is order generating, for every p ∈ L we have p = inf(↑p∩ X ).
Now assume that p ∈ Irr L . If p is maximal in L , then clearly p ∈ X . If p is
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not maximal, then p /∈ X would imply inf(↑p∩ X ) ≥ p+ which contradicts
our hypothesis that X is order generating. �

We now establish a sufficient condition for complete irreducibility under suit-
able conditions:

Remark I-4.23. Let L be a complete semilattice and p ∈ L. If there is a k ∈ L
such that p is maximal in L\↑k, then p is completely irreducible. �

Proof of: If p is already maximal in L , then it is completely irreducible, as it
cannot be the top element in L because k �≤ p. If p is not maximal in L , then
Ø �= ↑p\{p} ⊆ ↑k. Hence p+ = inf(↑p\{p}) exists, and p+ > p, as p+ ≥ k.

�

If L is a complete chain, then Irr L = K (Lop)\{1}. Thus, for the unit interval,
Irr L is empty. The important fact for bounded complete algebraic domains
is that there are enough complete irreducibles. In the proof we shall use the
following characterization of compact elements.

Remark I-4.24. For an element k in a dcpo L the following statements are
equivalent:

(1) ↑k is an open filter (in the sense of I-3.1);
(2) k is compact.

Proof of: (2) implies (1): If u ∈ ↑k and k � k, then k � u by I-1.2(ii).
(1) implies (2): If D is a directed set such that k ≤ sup D, then sup D ∈ ↑k.

By (1), there is a d ∈ D such that d ∈ ↑k, i.e., k ≤ d. Hence, k is compact. �

Theorem I-4.25. Suppose that x and y are elements of a bounded complete
algebraic domain with y �≤ x. Then there is a completely irreducible element p
with x ≤ p and y �≤ p.

Proof of: The proof is analogous to that of I-3.9. By I-4.2, there is an element
k ∈ K (L) with k ≤ y and with k �≤ x . By I-4.24 and I-3.4 there is a maximal
element p in ↑x\↑k. By I-4.23, p is completely irreducible. �

Theorem I-4.26. In any bounded complete algebraic domain, Irr L is the
unique smallest order generating set. In particular, s = inf(↑s ∩ Irr L) for all
s ∈ L.

Proof of: By I-4.25 and I-3.9, Irr L is order generating. By I-4.22, Irr L is the
unique smallest order generating set. �

Recall that in a continuous lattice in general there is no smallest order gen-
erating set, as the example of the unit interval demonstrates. As the exam-
ple of the Cantor lattice C shows, we have in general Irr L �= IRR L (since
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Irr C = K (Cop) �= C = IRR L). In Section V-2 we will learn more about
generating sets in continuous lattices.

We finish this section by proving the converse of I-4.23 under two different
hypotheses:

Proposition I-4.27. (i) In a bounded complete algebraic domain, an element p
is completely irreducible iff p is maximal in L\↑k for some compact element k.

(ii) In a join continuous distributive complete lattice, an element p is com-
pletely irreducible iff p is maximal in L\↑k for some compact element k.

Proof of: (i) Let p ∈ Irr L . By the proof of I-4.24,

p = inf{x ∈ ↑p: there is a k ∈ K (L) with x maximal in L\↑k}.
Since p is completely irreducible, p is maximal in L\↑k for some k ∈ K (L).

(ii) A completely irreducible element p is irreducible and hence prime in
a distributive lattice by I-3.12. Therefore U = L\↓p is an open filter. Set
k = inf U . Since L is join continuous (O-4.1), then

p ∨ k = p ∨ inf U = inf(p ∨U ) ≥ min(↑p\{p}),

since p ∨ U ⊆ ↑p\{p}. Thus k ∈ U , and so ↑k = U . This shows k ∈ K (L)
by I-4.24. �

Exercises

We know from I-1.7(5) that for a locally compact topological space X the lattice
O(X ) is continuous, and that in the case of Hausdorff spaces by I-1.9 that X is
locally compact iff O(X ) is a continuous lattice. Let us look at these facts in
the light of the algebraic lattices considered in the present section.

Exercise I-4.28. Let X be a topological space. Prove the following.

(i) An open set is a compact element of the lattice O(X ) iff it is compact.
(ii) The lattice O(X ) is algebraic iff the space X has a basis of compact open

sets.
(iii) The lattice O(X ) is arithmetic iff the space X has a basis of compact

open sets which is closed under finite intersections.
(iv) If X is Hausdorff, then O(X ) is algebraic iff O(X ) is arithmetic iff X is

totally disconnected and locally compact. Moreover, K (O(X )) is a
complete lattice iff X is compact extremally disconnected.

Hint. We note that there is a small point in the proof of the characterization of
arithmetic topologies which needs to be observed. One may wish first to note
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the following lemma. Let L be a distributive algebraic lattice (i.e., an algebraic
frame). If B ⊆ K (L) is such that B B ⊆ B and x = sup(↓x ∩ B) for all x ∈ L ,
then L is arithmetic. �

We remark that the terminology of calling the elements x in a lattice with
x � x compact is motivated by the example of O(X ). Example I-4.15 would
suggest we call these elements finite, and indeed this terminology has also been
utilized.

Exercise I-4.29. Let G be a locally compact group with identity component
G0 and suppose that G/G0 is compact. Let L be the lattice of compact normal
subgroups. Show that (L ∪ {G}) is algebraic.

Hint. This requires considerable insight into the structure of locally compact
groups. First, L is a complete lattice; in particular, it has a maximal element.
Second, one shows that N is compact in Lop iff G/N is a Lie group. Third, one
applies the fact that every locally compact group H with H/H0 compact (e.g.,
H = G/N ) is a projective limit of Lie groups. This is tantamount to saying
that every compact normal subgroup N is the intersection of compact normal
subgroups M for which G/M is a Lie group. �

Exercise I-4.30. A gap in a totally ordered set is a pair of elements u < v

with nothing strictly in between. Show that a totally ordered and complete set
L is an algebraic lattice iff whenever x < y there is a gap where x ≤ u <

v ≤ y. (In this case there is no distinction between algebraic and arithmetic.)
�

Exercise I-4.31. Let L be an algebraic domain, respectively an algebraic semi-
lattice. Show that the poset of open filters OFilt(L) is an algebraic domain,
respectively an algebraic semilattice. �

Notice that even if we start with an algebraic lattice L , then OFilt(L) in general
is just an algebraic semilattice. We will see later that every algebraic lattice can
be represented as OFilt(S) for some algebraic semilattice S.

Exercise I-4.32. From I-1.10(5) we know that the sup map r : Id L → L
preserves all existing sups and infs, if L is a domain. In this sense, show that
each continuous semilattice is a quotient of an arithmetic domain.

Exercise I-4.33. Let L be a poset. If P is a dcpo and f : L → P is an order
preserving function, show that there exists a unique F : Id L → P such that F
preserves directed sups and F(↓x) = f (x) for each x ∈ L . (See [Markowsky
and Rosen, 1976].) �
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Exercise I-4.34. Let L be a dcpo and S = k(L) the image of a kernel operator
k: L → L preserving directed sups. Show that an element x ∈ S is compact in
S iff x is compact in L , that is K (S) = S ∩ K (L).

Hint. Use the Remark after I-2.3. �

Old notes

This section links the framework of continuous lattices which we discussed in
Sections I-1, I-2 and I-3 with the classical theory of algebraic lattices. These
appear now as a special case of continuous lattices. Algebraic lattices were
invented in the 1940s by G. Birkhoff and O. Frink [Birkhoff and Frink, 1948]
and L. Nachbin [Nachbin, 1949], who independently and in their own ways
conceived of the idea of compact elements in a lattice. In the thirty years of
their history, algebraic lattices have become a part of the textbook literature of
lattice theory and universal algebra, notably because of their applications to the
theory of congruence lattices and lattices of subalgebras in universal algebras.
The close relationship between algebraic lattices and the topological algebra of
compact semilattices and their character theory was emphasized in [Hofmann
et al., b1974]. These matters will be touched upon in Chapters III and IV; in
the meantime, I-4.17 gives a flavor of this theory.

The examples of algebraic lattices given in I-4.10 and I-4.15 are more or
less standard. The fact that the class of algebraic lattices is not closed under
the formation of quotients (I-4.17 ff.) is the source of complications which
were recognized in topological algebra by A. D. Wallace and R. J. Koch. The
classification of those algebraic lattices all of whose quotients are likewise
algebraic was accomplished by [Hofmann et al., b1974] and by [Hofmann and
Mislove, 1977]. The facts about closure operators on algebraic lattices (I-4.13,
I-4.14, I-4.16) are classical. Closure operators preserving directed sups have
been called inductive or algebraic in the literature (see also [Scott, 1976],
notably pp. 549–553). The representation theorem I-4.18 of continuous lattices
is a combination of results of [Scott, 1972a] and [Hofmann and Stralka, 1976].
The results in I-4.25 and I-4.27 are classics due to R. P. Dilworth and P. Crawley
[Dilworth and Crawley, 1960].

The concept of an algebraic poset was formulated by R.-E. Hoffmann
[Hoffmann, 1979a].

New notes

In a recent paper K. V. Adaricheva, V. A. Gorbunov and M. V. Semonova
[Adaricheva et al., 2001] consider noncomplete algebraic lattices and exhibit
interesting connections to the algebraic theory of lattices: Finitely presented
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lattices, finitely generated free lattices and lattices freely generated by a finite
partially ordered set are algebraic, dually algebraic and linked bicontinuous
(see VII-2.5).

We conclude the chapter by depicting the hierarchy of some of the classes of
complete lattices which we discussed.



II

The Scott Topology

In Chapter I we encountered the rich order theoretic structure of complete lat-
tices and of continuous lattices. Wherever it was feasible to express statements
on the level of generality of dcpos and domains we did so. Perhaps even more
typical for these partially ordered sets is their wealth of topological structure.
The aim of the present chapter is to introduce topology into the study – a
program to be continued in Chapter III.

Section II-1 begins with a discussion of the Scott topology and its connection
with the convergence given in order theoretic terms by lower limits, or liminfs.
This leads to a characterization theorem for domains in terms of properties of
their lattices of Scott open sets (II-1.14) – a type of theorem that will become
a recurrent theme (see Chapter VII). One motivation for such considerations
arises from the appearances of domain theory in theoretical computer science:
one typically needs the generality of domains to model the structures and con-
structions under consideration, while continuous lattices enter the scene as their
lattices of open sets.

In Section II-2 we determine that the functions continuous for the Scott
topology are those preserving directed sups. We can thus express one and the
same property of a function between dcpos either in topological or in order
theoretical terms. The space [S → T ] of all Scott-continuous functions between
continuous lattices is itself a continuous lattice, and the category of continuous
lattices proves to be cartesian closed. We also identify other more general
cartesian closed categories of domains.

At this point we know that every continuous lattice is a topological space in
the Scott topology; it is T0, compact, locally compact, and sober. But exactly
which T0 spaces arise in this fashion? Section II-3 presents the answer: they are
precisely the injective ones.

In Section II-4 we consider spaces of continuous functions [X, �L] from a
space X into a nonsingleton complete lattice L equipped with the Scott topology.

131
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The function space [X, �L] carries a generalization of the compact–open
topology, the Isbell topology, and an associated order, the order of special-
ization. Relative to this partial order [X, �L] is a continuous lattice if and only
if both O(X ), the lattice of open sets of X , and L are continuous lattices. Spaces
X for which O(X ) is a continuous lattice have been given various names in the
literature: quasilocally compact (as opposed to “locally compact”), semilocally
bounded, core compact, C L-spaces. In this section we take another tack: we
refuse to name them at all – even though they appear in several significant places
(II-4.2, II-4.5, II-4.7, II-4.10, II-4.13).

II-1 The Scott Topology

The definition of the Scott topology on a dcpo will characterize rather than
exhibit open sets; in general topology this type of definition is common in
associating open sets with a class of nets given as convergent. Since we wish to
make a strong case for this parallel and illustrate at the same time the relation
of the Scott topology with the classical idea of semicontinuity, we take some
time at first to dwell on the concept of lower semicontinuous functions.

Scott convergence

Consider an extended real-valued function f : X → R
∗ on, say, a metric space

X . It is lower semicontinuous (cf. also O-2.10 and I-1.22) if and only if it
satisfies any of the following equivalent conditions:

(1) for each real number t , the set f −1(]t,∞]) is open in X ;
(2) for any sequence xn converging to x in X , the cluster points c of the

sequence f (xn) satisfy f (x) ≤ c;
(3) for any sequence xn converging to x in X , f (x) ≤ limn f (xn), where

limn f (xn) = supninfm≥n f (xm).

In the above, sequences are adequate because X is metric; in more abstract
settings nets would be required. Note that the range R

∗ is a complete (and,
of course, continuous) lattice. In order to treat the concepts emerging in the
conditions (1), (2) and (3) in a systematic fashion, we describe on an arbitrary
dcpo that structure of convergence (with its associated topology) which pertains
precisely to the idea of lower semicontinuity. Evidently, the lower limit (often
referred to as liminf or lim) is a vital ingredient. We make it the subject of our
first definition.
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Definition II-1.1. Let L be a complete semilattice. For any net (x j ) j∈J we
write

lim j x j = sup j infi≥ j xi ,

and call lim j x j the lower limit or the liminf of the net. Let S denote the class
of those pairs ((x j ) j∈J , x) such that x ≤ lim j x j . For each such pair we say that
that x is an S-limit of (x j ) j∈J and write briefly x ≡S lim x j .

More generally, let L be a dcpo. A point y ∈ L is an eventual lower bound
of a net (x j ) j∈J in L if there exists k ∈ J such that y ≤ x j for all j ≥ k. Let
S denote the class of those pairs ((x j ) j∈J , x) such that x ≤ sup D for some
directed set D of eventual lower bounds of the net (x j ) j∈J . For each such pair
we again say that that x is an S-limit of (x j ) j∈J and write x ≡S lim x j .

If the set of all eventual lower bounds of (x j ) j∈J has a supremum which is
also a directed supremum of some subset of the set of eventual lower bounds
(i.e., is an S-limit of (x j ) j∈J ), then this supremum is called the lower limit or
the liminf of the net, written lim j x j . �

The second definition ofS and of the liminf fordcpos, when applied to complete
semilattices, agrees with the first definition of S and of the liminf for complete
semilattices. Indeed if infi≥ j xi exists for all j ∈ J , write y j = infi≥ j xi . Then
the collection Y of all such y j is directed and the set of all eventual lower
bounds is equal to ↓Y . Thus sup Y = lim j x j . Furthermore, ((x j ) j∈J , x) ∈ S iff
x ≤ lim j x j . See Exercise II-1.27 for more details.

We remark that for any (eventually) constant net x j with value x we have
x = lim x j , and that more generally for any net with x = lim x j , if eventually
x j ≤ y, then x ≤ y (the same holds with ≤ replaced by ≥). In the case of
monotone nets (cf. O-1.2), the liminf is just the supremum. Keep in mind that
S-limits, by this definition, are far from being unique; the liminf, if it exists, is
the largest and the set of S-limits in this case is the lower set of the liminf.

We recall next the general relation between convergence and topology. If on
any set L one is given an arbitrary class L of pairs ((x j ) j∈J , x) consisting of a
net and an element of L , then associated with L is a family of sets

O(L) = {U ⊆ L : whenever ((x j ) j∈J , x) ∈ L and x ∈ U,

then eventually x j ∈ U }.
Clearly both Ø and L belong to O(L), which is closed under the formation of
arbitrary unions and finite intersections; that is to say, O(L) is a topology.

By the very definition we know that, for any ((x j ) j∈J , x) ∈ L, the element x
is a limit of the net x j relative to the topology O(L). Since, however, Ø and L
may very well be the only elements of O(L), we are obviously not saying very
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much; specific information on L must become available before one can hope
to get a close link between L and O(L). (A canonical reference for the rela-
tion between convergence and topology in this framework is [Kelley, b1955],
Chapter II.) Fortunately, in our present situation, we do have specific infor-
mation about our class S. We begin exploiting it by characterizing the sets
U ∈ O(S).

Lemma II-1.2. Let L be a dcpo and U ⊆ L. Then U ∈ O(S) iff the following
two conditions are satisfied:

(i) U = ↑U;
(ii) sup D ∈ U implies D ∩U �= Ø for all directed sets D ⊆ L.

In (ii) directed sets may be replaced by ideals.

Proof: First, suppose U ∈ O(S). To prove (i), assume u ∈ U and u ≤ x . Then
u ≤ x = lim x with the constant net (x) with value x , so by definition ((x), u) ∈
S. Since we have that u ∈ U ∈ O(S),we conclude from the definition of O(S)
that the net (x) must be eventually in U . This means x ∈ U .

In order to prove (ii), let D be a directed set in L with sup D ∈ U . Consider
the net (xd )d∈D with xd = d . Now infc≥d xc = d , and thus lim xd = sup D ∈
U ∈ O(S). Since ((xd )d∈D, sup D) ∈ S, we conclude that d = xd is eventually
in U ; whence D ∩U �= Ø.

Second, suppose that U satisfies (i) and (ii). We take ((x j ) j∈J , x) ∈ S with
x ∈ U , and we must show that x j is eventually in U . By the definition of S, we
have x ≤ sup D for some directed set D of eventual lower bounds of (x j ) j∈J .
Then x ∈ U implies sup D ∈ U by (i), and then d ∈ U for some d ∈ D by (ii).
By definition d ≤ xi for all i ≥ j for some j ∈ J . Again by (i), xi ∈ U for all
i ≥ j . Thus U ∈ O(S).

The equivalence of (ii) with ideals in place of directed sets is immediate in
the presence of condition (i). �

From our previous remarks we know that the sets U satisfying the conditions in
II-1.2 form a topology, and it is simple enough to verify this directly. The point
of our discussion was to show that this is a naturally arising topology, because
liminf convergence is natural in any complete lattice. This topology will thus
be officially named.

Definition II-1.3. A subset U of a dcpo L is called Scott open iff it satisfies
the conditions of II-1.2. The complement of a Scott open set is called Scott
closed. The collection of all Scott open subsets of L will be called the Scott
topology of L and will be denoted by σ (L).
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We say that a subset X of a dcpo L has the property (S) provided that the
following condition is satisfied:

(S) If sup D ∈ X for any directed set D, then there is a y ∈ D such that x ∈ X
for all x ∈ D with x ≥ y. �

Remark. Back in I-3.1 we had introduced a notion of openness for upper sets
in order to be able to talk about open filters. This now becomes fully justified,
as the open upper sets introduced there are precisely the Scott open sets. In the
following, when we talk about an open filter, we shall mean a Scott open filter
which is the same as an open filter in the sense of I-3.1.

We have thus far motivated the Scott topology from the classical notion of
semicontinuity, but there are also strong motivations coming from theoretical
computer science. Suppose that members of a dcpo stand for states of infor-
mation or knowledge and the partial order is the information order: x ≤ y if
and only if y represents at least as high a state of knowledge as x . One may
view a directed set as stages of a computation and its supremum as the total in-
formation uncovered by all stages of the computation. It is then natural to view
the states of the directed set as converging toward the supremum. But not only
that, the directed set converges also to all lesser states, since they also uncover
(in the limit) all information in those lower states also. By these considerations
one is again led to a family of convergent nets (much sparser than our earlier
collectionS), but one that again yields the Scott topology (see Exercise II-1.28).

Remark II-1.4. In any dcpo L we have the following conclusions:

(i) a set is Scott closed iff it is a lower set closed under directed sups;
(ii) ↓x = {x}− (closure with respect to σ (L)) for all x ∈ L;

(iii) σ (L) is a T0-topology;
(iv) every upper set is the intersection of its Scott open neighborhoods;
(v) a set is Scott open iff it is an upper set satisfying (S);

(vi) every lower set has property (S);
(vii) the collection of all subsets having property (S) is a topology.

Proof: (i) A ⊆ L is a lower set iff L\A is an upper set, and L\A satisfies
II-1.2(ii) iff A is closed under directed sups.

(ii) We have that ↓x is the smallest lower set containing x , and it happens to
be closed under directed sups.

(iii) If {x}− = {y}−, then ↓x = ↓y by (ii); thus x = y.
(iv) Every upper set B is the intersection of the sets L\↓x where x ∈ L\B.

These sets are open in view of (ii).
(v) and (vi): Immediate.
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(vii) The intersection of two sets satisfying (S) will again satisfy (S), and any
union of sets satisfying (S) will satisfy (S). Since Ø and L clearly satisfy (S),
the assertion follows. �

The definition of Scott open sets provides a characterization but not a procedure
for building Scott open sets in general – except for the rather meager information
of II-1.4(ii) above. It is therefore important that we familiarize ourselves with
some examples.

Examples II-1.5. Let L be a dcpo.
(1) If L is finite, then the Scott open sets are just the upper sets.
(2) If L is a chain, then the sets ]x, 1] = ↑x\{x} = L\↓x are Scott open for

any x ∈ L; and together with L these are all the Scott open sets.
(3) For the chain 2 = {0, 1}, we have σ (2) = {Ø, {1}, {0, 1}}. The space 2

with this topology is well known under the name of Sierpiński space.
(4) If L = 2X , the powerset space, we have σ (L) equal to the well-known col-

lection of families of sets called families of finite character. These are families
F such that S ∈ F iff F ∈ F for some finite subset F of S.

(5) If L = [0, 1]2, the square with the componentwise order, a subset U is
Scott open iff it is an upper set and is open in the ordinary topology induced by
the plane. Here is a typical picture:

We leave this characterization as an exercise, since later on we will have
enough theory to make this an easy consequence. We can see at this point,
however, that every Scott open set of [0, 1]2 is the union of open upper rect-
angles. Note that these rectangles are the intersection of two sets of the form
L\↓x . �

Proposition II-1.6. If L is a domain, then all sets

�

x for x ∈ L are Scott
open. Conversely, if L is a dcpo and y ∈ int(↑x), then x � y.

Proof: Let D be a directed set with sup D ∈ �

x . Then Theorem I-1.9(i) implies
the existence of a d ∈ D such that x � d . Hence

�

x is open by Definition II-1.3.
Suppose L is a dcpo and y ∈ int(↑x). If D is a directed set with y ≤ sup D,

then sup D ∈ int(↑x) by Lemma II-1.2(i), and hence d ∈ int(↑x) for some
d ∈ D by II-1.2(ii). Thus x ≤ d , and it follows that x � y. �
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We will show below in II-1.10 that, in a domain, the sets

�

x, x ∈ L , form a basis
for σ (L), and that

�

x is in fact the interior of ↑x with respect to this topology.
Thus, in a domain, the way-above sets of single points provide a good supply
of relatively small Scott open sets (small, given the restriction that they all have
to be upper sets). Note that it suffices for the openness of all

�
x that � satisfy

the interpolation property (INT) from I-1.9(ii). Observe also, that, in general,
the Scott topology on a dcpo is neither the coarsest nor the finest of all of the
T0-topologies for which ↓x = {x}−.

In order to complete the story we must return to the discussion of the concept
of convergence and investigate whether the Scott topology (which we derived
from a convergence concept) is in fact adequate to describe in topological terms
the S (or liminf) convergence. If S is precisely the class of convergent nets for
the Scott topology, then we say that S is topological.

Proposition II-1.7. Let L be a domain. Then

x ≡S lim x j iff the net (x j ) j∈J → x with respect to the Scott topology σ (L).

In particular, S-convergence is topological.

Proof: By definition of the Scott topology, if x ≡S lim x j , then (x j ) j∈J →
x with respect to σ (X ). Conversely, suppose that we have a convergent net
(x j ) j∈J → x in the Scott topology. For each y ∈ �x , we have that

�

y is a Scott
open set containing x by Proposition II-1.6. Thus the net (x j ) j∈J is eventually
in

�
y, and hence y is an eventual lower bound for the net. Since �x is directed

and has supremum x , we have ((x j ) j∈J , x) ∈ S. �

The converse is also true.

Lemma II-1.8. Let L be a dcpo. If the S-convergence is topological, then L
is a domain.

Proof: By Lemma II-1.2 the topology arising from S-convergence is the Scott
topology. Thus if S-convergence is topological, we must have

x ≡S lim x j iff the net (x j ) j∈J → x with respect to σ (L).

Let x ∈ L . Define

I = {(U, n, a) ∈ N (x) × N× L : a ∈ U },
where N (x) consists of all Scott open sets containing x , and define an order on
I to be the lexicographic order on the first two coordinates, that is, (U,m, a) <
(V, n, b) iff V is a proper subset of U or U = V and m < n. Let xi = a for
i = (U, n, a) ∈ I define the net. Then it is easy to see that (xi )i∈I converges
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to x in the Scott topology. Thus x ≡S lim xi , and we conclude that there exists
a directed set D of eventual lower bounds of (xi )i∈I such that x ≤ sup D. Let
d ∈ D. Then there exists i = (U,m, a) ∈ I such that (V, n, b) = j ≥ i implies
d ≤ b. In particular, we have (U,m + 1, b) > (U,m, a) for all b ∈ U , and
thus d is a lower bound for U , i.e., x ∈ int↑d . By Proposition II-1.6, d � x .
Since D is directed with supremum greater than or equal to x , we conclude that
x is the directed supremum of D ⊆ �x . Since x was arbitrary, we conclude that
L is a domain. �

What we now have proved is the following characterization of domains.

Theorem II-1.9. For a dcpo L the following statements are equivalent:

(1) S-convergence is topological convergence for the Scott topology; that is,
for all x ∈ L and all nets (x j ) on L

x ≡S lim x j iff (x j ) j∈J converges to x with respect to σ (L);

(2) L is a domain. �

The Scott topology of domains

Having recognized convergence as the essential ingredient in the study of lower
semicontinuity, we can say after Theorem II-1.9 that among dcpos it is pre-
cisely the domains that allow the study of lower semicontinuity completely in
topological terms. Nevertheless, the Scott topology in itself remains a highly
useful tool in treating arbitrary dcpos.

Proposition II-1.10. Let L be a domain.

(i) An upper set U is Scott open iff for every x ∈ U there is a u ∈ U such
that u � x.

(ii) The sets of the form

�

u, u ∈ L, form a basis for the Scott topology. In
particular, each point x ∈ L has a σ (L) neighborhood basis consisting of
the sets

�

u with u � x.
(iii) With respect to σ (L), we have int ↑x = �

x.
(iv) With respect to σ (L), we have for any subset X ⊆ L

int X =
⋃
{ � u:

�

u ⊆ X}.
Proof: (i) Let U be Scott open and x ∈ U . As in a domain the set �x is directed
and has x as its sup, we conclude that there is a u � x with u ∈ U by II-1.2(ii).
If conversely for every x ∈ U there is a u ∈ U such that u � x then U is the



II-1 The Scott Topology 139

union of the sets

�

u, u ∈ U , which are Scott open by II-1.6; hence, U is Scott
open.

Part (ii) is an immediate consequence of (i).
(iii) If y ∈ int ↑x, then by (i) there is a u ∈ ↑x with u � y. But then y ∈ �

x .
Obviously

�

x ⊆ int↑x .
(iv) This follows directly from (ii). �

We recall at this point that every topology is a lattice, and indeed a frame
(remember O-2.7(3)!). It is therefore meaningful to search for prime and co-
prime elements in σ (L) (see I-3.11–I-3.16).

To formulate one of our conditions it is useful to speak of the continuity of an
operation (the main topic of the next section). We say that the sup operation is
jointly continuous with respect to the Scott topology provided that the mapping

(x, y) �→ x ∨ y : (L , σ (L)) × (L , σ (L)) → (L , σ (L))

is continuous in the product topology.
We wish to warn the reader about a subtlety concerning the joint continu-

ity of the sup operation above. We cannot be satisfied by saying that the sup
operation is a continuous function (L × L , σ (L × L)) → (L , σ (L)); this con-
tinuity is weaker, since in general we have a proper containment of topologies:
σ (L × L) ⊃ σ (L) × σ (L). We will return to this question at greater length in
Section II-4 below (see II-4.13 ff.).

Remark. In the process of classifying co-primes we shall need the concept of
open filters which we encountered for the first time in I-3.1 through I-3.3. We
have already remarked before that open as defined there is the same as Scott
open. In the following, an open filter is always understood to be Scott open. We
remind the reader that we always assume that filters are nonempty. Recall that,
for a dcpo L ,

OFilt(L) = {F ⊆ L : F is an open filter}

denotes the set of open filters of L . We will always consider OFilt(L) to be
ordered by inclusion. Since the union of a directed family of open filters is
again an open filter, OFilt(L) is a dcpo. We note that the intersection of two
(open) filters is not in general a filter even if nonempty. However, on a semilattice
the intersection of two filters is a filter, if nonempty. Thus if L is a semilattice
with a top element, then the poset OFilt(L) is a semilattice, too. Similarly, if L is
a sup semilattice, then the intersection of two filters is a filter and, consequently,
the poset OFilt(L) is also a semilattice.



140 II The Scott Topology

Now we are ready for the characterization of the primes and the co-primes
of σ (L):

Proposition II-1.11. Let L be a dcpo and U a Scott open subset of L.

(i) U is a co-prime in σ (L) iff U ∈ OFilt(L).
(ii) If U = L\↓a for some a ∈ L, then U is a prime in σ (L), and all primes

U �= L in σ (L) are of this form provided that L is (1) a domain, or (2) a
sup semilattice with a jointly Scott-continuous sup operation. Hence, for a
domain,

CO-PRIME(σ (L)) = OFilt(L), and PRIME(σ (L)) = {L\↓u: u ∈ L}.

Proof: (i) Firstly suppose that U ∈ σ (L) is a filter and that U is not a co-prime
in σ (L). Then there are V,W ∈ σ (L) such that U ⊆ V ∪ W and elements
v ∈ U\V and w ∈ U\W . Let z ∈ U satisfy z ≤ v and z ≤ w. Since V and W
are upper sets we have z �∈ V ∪ W , a contradiction to z ∈ U .

Secondly, suppose that U is a co-prime in σ (L). To show that U is a filter,
note first that it is an upper set. Suppose v,w ∈ U . Then U �⊆ L\↓v and
U �⊆ L\↓w. By II-1.4(ii), the sets L\↓v and L\↓w are Scott open. Thus, since
U is co-prime,

U �⊆ ((L\↓v) ∪ (L\↓w)) = L\(↓v ∩ ↓w).

Thus there is a u ∈ U such that u ≤ v and u ≤ w.
(ii) Now let U ∈ σ (L),U �= L . Assume first that U = L\↓a for some

a ∈ L . Recall that ↓a = {a}− by II-1.4(ii) and that complements of singleton
closures are prime in any topology (see I-3.14).

For the converse, assume that U is prime in σ (L), and let A = L\U be its
complement which is Scott closed. We have to show that A has a largest element
a; since A is a lower set, this will show A = ↓a as desired.

Let us begin with case (1), where L is a domain. Let

A∗ = {b ∈ A : there is an a ∈ A with b � a} =
⋃
{ �a: a ∈ A} = � A.

We claim that A∗ is directed: Let b, c ∈ A∗; we first show

�

b ∩ �

c ∩ A �= Ø.
If not, then

�

b ∩ �

c ⊆ U ; but

�

b,

�

c ∈ σ (L) by II-1.6. Since U is prime, we
conclude

�

b ⊆ U or

�

c ⊆ U ; but

�

b contains an a ∈ A = L\U which is
impossible; similarly

�

c ⊆ U is impossible.
Pick a ∈ �

b∩ �

c∩ A. Since

�

b∩ �

c is Scott open, there exists d � a such
that d ∈ �b ∩ �c by II-1.10(i). Thus d ∈ A∗ and d is a common upper bound
for b and d. Thus A∗ is directed and a = sup A∗ exists. Since A is Scott closed,
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a ∈ A. Now let x ∈ A. Then x = sup �a since L is a continuous poset; but
�a ⊆ A∗ implies x = sup �x ≤ sup A∗ = a. Thus a = max A as was desired.

Now let us turn to case (2), where L is a sup semilattice and the sup operation
is jointly continuous relative to the Scott topology. We will verify that A is
directed. Then a = sup A exists, and it belongs to A, as A is Scott closed.

By way of contradiction assume that A is not directed. Then there are elements
b, c ∈ A with b ∨ c ∈ U . By the continuity of the sup operation we would
find Scott open neighborhoods V and W of b and c, respectively, such that
V ∨ W ⊆ U . But since V and W are upper sets, we have V ∨ W = V ∩ W .
Since U is prime, the relation V ∩ W ⊆ U implies V ⊆ U or W ⊆ U . This
would entail b ∈ U or c ∈ U , which would contradict b, c ∈ A = L\U . �

Remark. In a continuous lattice L, the sup operation is jointly continuous
with respect to the Scott topology. (Thus the preceding proposition contains
two alternative proofs for the characterization of primes in σ (L) for continuous
lattices.)

Proof: In order to show the continuity of the sup operation at (a, b) we pick
some u � a ∨ b. By I-1.6 we have

a ∨ b = (sup �a) ∨ (sup �b) = sup( �a ∨ �b).

Since �a ∨ �b is directed with supremum a ∨ b, we find some x � a and
y � b with u � x ∨ y. But then

�

x and

�

y are Scott open neighborhoods of
a and b, respectively, such that

�

x ∨ �

y ⊆ ↑(x ∨ y) ⊆ �

u.

Since the

�

u with u � a ∨ b form a basis of σ (L) neighborhoods of a ∨ b by
Proposition II-1.10(ii), the desired continuity is established. �

We can immediately rephrase II-1.11 in topological terminology, if we recall the
concept of a sober space (see O-5.6). Remember from O-5.5 that a nonempty
closed subset A of a topological space X is called irreducible iff it is not the
union of two proper nonempty closed subsets (that is, the complementary set
X\A ∈ PRIME O(X )). A space X is called sober iff every irreducible closed
set A has a unique dense point (that is, A = {a}− for a unique a ∈ A). We now
have the following corollaries of II-1.11 with a slight sharpening.

Corollary II-1.12. If L is (1) a domain, or (2) a dcpo and a sup semilattice
such that the sup operation is jointly Scott-continuous, then (L , σ (L)) is a sober
space.

Proof: Immediate from II-1.11 and the definitions. �



142 II The Scott Topology

Corollary II-1.13. If L is a domain, then (L , σ (L)) is a locally compact sober
space. In particular, (L , σ (L)) is a Baire space. If L has a smallest element,
then (L , σ (L)) is compact.

Proof: If x ∈ U ∈ σ (U ), then by II-1.10(ii) there exists y ∈ U such that
x ∈ �

y ⊆ ↑y ⊆ U . Since ↑y (and hence, in particular L = ↑0) is trivially
compact with respect to any topology whose open sets are upper sets, the
assertion is proved. That (L , σ (L)) is a Baire space follows from I-3.40.9. �

We know enough about the Scott topology now to use it for yet another char-
acterization theorem for domains.

Theorem II-1.14. For any dcpo L, the following conditions are equivalent:

(1) L is a domain;
(2) each

�

x is open, and if U ∈ σ (L), then U =⋃{ � x : x ∈ U };
(3) OFilt(L) is a basis of σ (L) and σ (L) is a continuous lattice;
(4) σ (L) has enough co-primes and is a continuous lattice;
(5) σ (L) is completely distributive;
(6) both σ (L) and σ (L)op are continuous.

If L is a complete semilattice then these conditions are equivalent to

(7) for each point x ∈ L we have x = sup{inf U : x ∈ U ∈ σ (L)}.
Proof: (1) implies (2): Use II-1.6 and II-1.10.

(2) implies (1): Let x ∈ L . If u � x, v � x , then there exists w ∈ �

u ∩ �

v

with x ∈ �

w by hypothesis. Thus �x is directed. Set y = sup �x ≤ x . If
y < x , then L\↓y is a Scott open neighborhood of x ; hence by (2) it contains
an open neighborhood

�

z of x with z ∈ L\↓y. But then z � x , and thus
z ≤ sup �x = y, a contradiction.

(2) implies (3): By (2), x has arbitrarily small neighborhoods of the form

�

y
with y � x . By II-1.10 and I-3.3, we know then that x has arbitrarily small
Scott open neighborhoods which are filters. In order to prove the continuity of
σ (L), we let U be Scott open. For any x ∈ U we find a y ∈ U with y � x by (2).
Then x ∈ �

y ∈ σ (L), and we claim that

�

y � U : Indeed, if D is a directed
family of Scott open sets covering U , then one of its members must contain
y, hence ↑y, since Scott open sets are upper sets, and thus it contains

�

y. We
have shown U =⋃{V : V � U }.

(3) implies (1): Let x ∈ U ∈ σ (U ). There exists V ∈ σ (L) such that x ∈
V � U , since σ (L) is continuous. Pick an open filter F such that x ∈ F ⊆ V .
Suppose that for each y ∈ U , it is not the case that F ⊆ ↑y. Then y ∈ L\↓z for
some z ∈ F , and hence there exists an open filter Fy such that y ∈ Fy ⊆ L\↓z,
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since the open filters form a basis. Finitely many of the Fy , say Fy1 , . . . , Fyn ,
must cover V . Pick zi ∈ F\Fyi for each i and pick z ∈ F such that z ≤ zi for
all i (remember F is a filter). Then z ∈ Fyi would imply zi ∈ Fyi , so none of the
Fyi contain z, a contradiction. Thus there exists y ∈ U such that x ∈ F ⊆ ↑y.

For x ∈ L , consider D = {y ∈ L : x ∈ int(↑y)}. Then y � x for each
y ∈ D by Proposition II-1.6. Furthermore since by the previous paragraph
every Scott open set containing x contains a member of D, it follows easily
that D is directed. Finally sup D = x by an argument similar to that given in
(2) implies (1). Thus L is a domain.

(3) iff (4): Clear from II-1.11.
(4) iff (5) iff (6): Consequence of I-3.16.
(3) implies (7): Now assume that L is a complete semilattice. Then for each

x ∈ L and each σ (L) neighborhood U of x the element inf U exists. For x ∈ L
set

y = sup{inf U : x ∈ U ∈ σ (L)} ≤ x .

If y < x , then L\↓y is a Scott open neighborhood of x . Let V be a Scott open
neighborhood of x with V � L\↓y, which exists since σ (L) is continuous
by (3). Now use (3) to find a Scott open filter neighborhood U of x within V .
By the definition of y we have inf U ≤ y. Then

L\↓y ⊆ L\↓ inf U = L\
⋂
{↓u: u ∈ U } =

⋃
{L\↓u: u ∈ U }.

Since U is a filter, the L\↓u for u ∈ U form a directed family of Scott open
sets. Since V � L\↓y, there must be a u ∈ U such that V ⊆ L\↓u and so
u �∈ V . This is a contradiction to U ⊆ V . Thus x = y.

(7) implies (1): Clear since for every Scott open neighborhood U of x one
has inf U � x . �

A parallel result to II-1.14 for algebraic lattices reads as follows.

Corollary II-1.15. For any dcpo L, the following conditions are equivalent.

(1) L is an algebraic domain.
(2) The Scott topology has a basis of sets ↑k where k ∈ K (L).
(3) σ (L) is algebraic and has enough co-primes.
(4) σ (L) is algebraic and completely distributive.

Proof: (1) implies (2): Let U be a Scott open neighborhood of x . We recall
that x = sup(↓x ∩ K (L)) and ↓x ∩ K (L) is directed. Hence by II-1.2(ii), we
find a k ∈ ↓x ∩ K (L) ∩U . Then ↑k = �

k is a Scott open neighborhood of k,
hence of x , with ↑k ⊆ U .



144 II The Scott Topology

(2) implies (3): If k ∈ K (L), then ↑k ∈ σ (L) since

�

k = ↑k. Now ↑k
is a compact set (if ↑k is covered by Scott open sets, then one of them must
contain k, hence ↑k by II-1.2(i)). Thus σ (L) is algebraic by I-4.28. Since all ↑k
are filters, hence co-primes by II-1.11, we are done.

As (3) and (4) are equivalent by I-3.16, it remains to show that (3) implies (1):
Since σ (L) is algebraic, the Scott topology has a basis of compact sets U . Since
there are enough co-primes, U is a union of open filters by II-1.11, and thus, by
compactness, U = U1∪ · · ·∪Un with open filters Uk . It is no loss of generality
to assume that none of the Uk is contained in the union of the others. Then
V = U1\(U2∪· · ·∪Un) is compact and filtered. We claim that V has a smallest
element u1.

For if not, then V ⊆ ⋃{L\↓v: v ∈ V }; and by compactness and the fact
that the L\↓v form a directed family, there would be a v ∈ V with V ⊆ L\↓v,
notably v �∈ V , which is impossible. Since U2 ∪ · · · ∪ Un is an upper set, it
cannot contain inf U1. Hence u1 = min U1. Since U1 is an upper set, U1 = ↑u1.
Since U1 is Scott open, u1 ∈ K (L). Similarly Ui = ↑ui for each i .

We have shown that σ (L) has a basis of sets ↑k where k ∈ K (L). It follows
that the compact elements below any fixed element form a directed set. Now let
x ∈ L , set y = sup(↓x ∩ K (L)) ≤ x . If y < x , then the Scott open neighbor-
hood L\↓y of x would contain a basic neighborhood ↑k of x . Then there would
be a k ∈ K (L) with k ≤ x and k �≤ y which contradicts the definition of y. �

The Hofmann–Mislove Theorem

We close this section by showing that for a domain L the open filter dcpo

OFilt(L) is again a domain and by pointing out that open filter dcpos yield
an important alternative approach to the study of the poset Q(X ) of compact
saturated subsets (including the empty set) of a topological space ordered by
reverse inclusion. This approach leads to basic topological theorems concerning
sober spaces and demonstrates again close connections between domain theory
and topology.

Lemma II-1.16. Assume that L is a dcpo such that the following condition
is satisfied:

(F) if u ∈ U ∈ OFilt(L) then there are an u∗ ∈ U and a V ∈ OFilt(L) such
that

u ∈ V ⊂ ↑u∗.

Then the poset OFilt(L) is a domain, and

V � U iff (∃x ∈ U )V ⊆ ↑x . (∗)
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Proof: We begin by proving (∗). Firstly, if U, V ∈ OFilt(L) are such that there
is an x ∈ U with V ⊆ ↑x then V � U ; indeed if {U j : j ∈ J } is a family with
U ⊆ ⋃ j∈J U j , then there is j ∈ J such that x ∈ U j and then V ⊆ ↑x ⊆ U .
This proves the claim. Conversely, assume that V � U . Then by (F) for each
u ∈ U there are a u∗ ∈ U and a Vu ∈ OFilt(L) such that u ∈ Vu ⊆ ↑u∗. If
u1, u2 ∈ U , then since U is a filter, there is a u ∈ U such that u ≤ (u1)∗, (u2)∗.
Then (un)∗ ∈ Vu and thus Vun ⊆ ↑(un)∗ ⊆ Vu for n = 1, 2. Hence {Vu : u ∈ U }
is directed and U ⊆ ⋃u∈U Vu . Thus V � U implies the existence of a u ∈ U
with V ⊆ Vu . Thus V ⊆ Vu ⊆ ↑u∗ ⊆ U . Therefore (*) is proved.

Now let U ∈ OFilt(L). From (∗) and (F) it follows at once that U = sup �U .
We must still show that �U is directed. If V1, V2 � U , then since V1, V2 � U ,
there are elements u1, u2 ∈ U such that Vn ⊆ ↑un . Since U is a filter we have
a u ∈ U with u ≤ u1, u2. Then by (F) there are a u∗ ∈ U and a V ∈ OFilt(L)
such that u ∈ V ⊆ ↑u∗. Since Vn ⊆ ↑un ⊆ ↑u ⊆ V we see that �U is indeed
directed. This completes the proof. �

The set of open filters on a poset is a very natural object to study. Some caution
is in order, however: the interior of a filter may not have a unique maximal open
subfilter, as we have seen in the example following I-3.2.

Theorem II-1.17. For a domain L, the poset OFilt(L) is a domain and the
following statements hold.

(i) For x � y in L there is a U ∈ OFilt(L) such that y ∈ U ⊆ �

x.
(ii) For U, V ∈ OFilt(L), V � U iff (∃u ∈ U )V ⊆ ↑u.

If L is a continuous semilattice, then OFilt(L) is a continuous semilattice.

Proof: Statement (i) is Proposition I-3.3(i).
Given u ∈ U ∈ OFilt(L), by Proposition II-1.10(i), there is a v ∈ U such

that v � u; then by (i) we find an open filter V of L such that u ∈ V ⊆ �

v.
Hence condition (F) of the preceding lemma is satisfied. Thus by that lemma,
OFilt(L) is a domain and (ii) is satisfied. �

We saw in Example I-1.7(5) that O(X ) is a continuous lattice if X is a locally
compact space. Hence OFilt(O(X )) is a continuous semilattice (ordered by
inclusion) by the preceding theorem. There is a noteworthy connection between
this continuous semilattice and the continuous semilattice Q(X ) of compact
saturated subsets of X (ordered by reverse inclusion) according to I-1.24.2(iv)
which we shall exhibit in the following.
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Lemma II-1.18. Let X be a T0-space. If K ⊆ X is compact, then

�(K ) = {U ∈ O(X ): K ⊆ U }
is an open filter in O(X ).

Proof: Clearly, �(K ) is a filter. If a directed union of open sets contains a
compact set, then one of the open sets must contain the compact set. Hence,
this filter is open. �

This motivates the question whether all open filters ofO(X ) arise in this fashion.
In the following we prove the Hofmann–Mislove Theorem which, among other
things, asserts that this is true for sober spaces. The following lemma contains
an essential ingredient. Recall that in our unconventional sense a filter of sets
may contain the empty set.

Lemma II-1.19. Let X be a sober topological space and F an open filter in
the lattice O(X ) of open subsets of X. Then

(i) every open set U containing (F) =⋂F already belongs to F ,
(ii) the intersection K =⋂F is compact, saturated, and nonempty, if all

U ∈ F are nonempty.

Proof: (i) Let F be an open filter of nonempty open subsets of X and let K be
its intersection. Let U be an open set containing K . Suppose that U is not in
F . Then there exists an open set V containing U maximal with respect to not
being in F (by openness of F , cf. I-3.12). One verifies from maximality that V
is prime, and hence that the complement of V is an irreducible closed set, thus
the closure of some point p, as X is supposed to be sober (see O-5.6). Then
every F ∈ F must contain p, for otherwise F misses the closure of {p}, and
hence F ⊆ V , which would imply V ∈ F , a contradiction. Thus F consists of
all open sets containing K .

(ii) As an intersection of open sets, K is saturated. To see that K is compact,
let U be an open cover of K . Then U := ⋃U is an open set containing K ,
hence U ∈ F by (i). The finite unions of members of U form a directed family
with union U . Since F is Scott open, some finite union belongs to F , and hence
covers K . If K =⋂F = Ø, then Ø ∈ F by (i). �

We summarize the preceding lemmas.

Theorem II-1.20. (The Hofmann–Mislove Theorem I) Let X be a sober
space. Then the mapping

�: Q(X ) → OFilt(O(X )), �(K ) = {U ∈ O(X ) : K ⊆ U }
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which assigns to a compact saturated subset K of X the open filter of all open
sets containing K is an order isomorphism between Q(X ) (ordered by reverse
inclusion) and OFilt(O(X )). The inverse sends an open filter of open sets to its
intersection:

: OFilt(O(X )) → Q(X ), (F) =
⋂

F .

Proof: The filter of open sets containing a given compact saturated set K is
open by Lemma II-1.18 and has intersection K (from saturation). Conversely
suppose that F is a Scott open filter of open sets with intersection K . Then K is
compact and saturated andF consists precisely of those open sets containing K
by Lemma II-1.19. Thus the two mappings of the theorem are inverses of each
other and hence bijections. One verifies readily that they are order preserving.

�

The following theorem shows that the Hofmann–Mislove Theorem holds for
sober spaces only, and it relates sober spaces to well-filtered ones (see Definition
I-1.24.1).

Theorem II-1.21. Let X be a T0 space. Consider the following statements.

(1) X is sober.
(2) Any open filter F of open sets consists of all open sets U containing the

intersection of the filter (which is a compact saturated set).
(3) X is well-filtered, that is, for each filter basis C of compact saturated sets

and each open set U with
⋂ C ⊆ U, there is a K ∈ C with K ⊆ U.

Then (1) ⇔ (2) ⇒ (3), and all three are equivalent if X is locally compact.

Proof: That (1) implies (2) follows directly from the Hofmann–Mislove
Theorem.

Conversely assume (2), and suppose that A is an irreducible closed set. Then
F = {U ∈ O(X ) : U ∩ A �= Ø} is a filter (by irreducibility) and is open (since
a directed union meets A if and only if some member of the union does). If A
is not the closure of a singleton, then for every x ∈ A, X\↓x = X\{x}− is an
open set meeting A and is hence in F . Thus we have

K :=
⋂

F ⊆
⋂

x∈A

(X\↓x) ⊆ V := X\A.

By hypothesis V is in F and thus meets A, which contradicts V = X\A. We
have shown (2) ⇒ (1).

Assume (2) and let C be a filter basis of compact saturated sets and let U be an
open set with

⋂ C ⊆ U . LetF be the collection of all open sets containing some
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C ∈ C. AsF is the directed union of the open filters�(C) = {U ∈ O(X ) : C ⊆
U },C ∈ C (see Lemma II-1.18), it is an open filter, too. Note that since each
C ∈ C is saturated, it must be the case that

⋂F =⋂ C. By (2) we have U ∈ F ,
and thus K ⊆ U for some K ∈ C. We have proved that X is well-filtered.

Finally assume that X is locally compact and well-filtered. Let F be an open
filter of open sets with intersection K . Let C be the collection of all compact
saturated sets C such that U ⊆ C for some U ∈ F . We show that C is a filter
basis and that each U ∈ F contains some member of C. Let C1,C2 ∈ C and let
U1,U2 ∈ F be such that Ui ⊆ Ci for i = 1, 2. Then U1 ∩ U2 ∈ F . For each
x ∈ U1 ∩U2, pick (by local compactness) a compact neighborhood Kx of x such
that Kx ⊆ U1 ∩ U2. The family of all finite unions of int(Kx ), x ∈ U1 ∩ U2,
is a directed family of open sets whose union is U1 ∩ U2. Hence there exist
x1, . . . , xm ∈ U1 ∩ U2 such that int(Kx1 ) ∪ · · · ∪ int(Kxm ) is in F (since F is
open). Then Kx1 ∪ · · · ∪ Kxn is a compact set in C that is contained in U1 ∩U2,
which in turn is contained in C1 ∩ C2. Hence C is a filter basis of compact
saturated sets. It follows from the preceding argument that

⋂ C = ⋂F , since
a member of the collection on either side contains a member of the other side.

Let W be an open set containing
⋂F = ⋂ C. By hypothesis, there exists

K ∈ C such that K ⊆ W . Since K ∈ C, there exists some U ∈ F such that
U ⊆ K . Thus U ⊆ W and hence W ∈ F , since the latter is a filter. Thus (2) is
satisfied. �

The Hofmann–Mislove Theorem II-1.20 concerns sober spaces and does not
require local compactness. Theorem II-1.21 shows that for sober and locally
compact sober spaces all of Proposition I-1.24.2 applies and thus proves the
following for the collections Q∗(X ) and Q(X ) of all nonempty, respectively
all, compact saturated subsets ordered by ⊇.

Corollary II-1.22. Let X be a sober space. Then the intersection K =⋂ C is
nonempty, compact and saturated for every filter base C of nonempty compact
saturated sets C ⊆ X. The posets Q∗(X ) of nonempty compact saturated
subsets and Q(X ) = Q∗(X ) ∪ {Ø} are directed complete semilattices. Both
Q∗(X ) and Q(X ) are continuous semilattices for each locally compact sober
space. �

Theorem II-1.20 deals satisfactorily with the function

K �→ {U ∈ O(X ) : K ⊆ U } : Q(X ) → OFilt(O(X )) (†)

and shows that it is bijective. However, there is a function

U �→ {K ∈ Q(X ) : K ⊆ U } : O(X ) → OFilt(Q(X )) (‡)

which we should consider as well.
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Lemma II-1.23. For a sober topological space X and an open subset U the set

�′(U ) = {K ∈ Q(X ) : K ⊆ U }
is an open filter in the directed complete semilattice (Q(X ),⊇)

Proof: Firstly, the set�′(U ) is closed under finite unions, and if C ⊆ K in Q(X )
and K ⊆ U then C ⊆ U . As Ø ∈ �′(U ), the set �′(U ) is nonempty. Hence
�(U ) is a filter in (Q(X ),⊇). Secondly, let C be a directed set in (Q(X ),⊇)
whose sup is a member of �′(U ). This means that C is a filter basis of compact
saturated sets whose intersection is contained in U . Then by Theorem II-1.21(3)
above there is a K ∈ C such that K ⊆ U , i.e., K ∈ �′(U ). Hence �′(U ) is an
open filter. �

By this lemma the function

�′ : O(X ) → OFilt((Q(X ),⊇)), �′(U ) = {K ∈ Q(X ) : K ⊆ U }

is well-defined, it is clearly monotone and indeed preserves directed unions and
finite intersections.

Theorem II-1.24. (The Hofmann–Mislove Theorem II) Let X be a sober
space. Then

�′ : O(X ) → OFilt((Q(X ),⊇)), �′(U ) = {K ∈ Q(X ) : K ⊆ U }

is an injective semilattice homomorphism preserving directed unions between
directed complete semilattices. If X is locally compact, then it is an isomorphism
of continuous semilattices whose inverse associates with an ideal of saturated
compact sets with respect to ⊆ its union.

Proof: Assume that U1 �= U2, say there is a u ∈ U2\U1. Let K = sat(u) =
⋂{V ∈ O(X ) : u ∈ V } be the saturation of {u}. Then K ∈ Q(X ) and K ⊆ U2

but K �⊆ U1. Hence �′(U2) �⊆ �′(U2). Hence �′ is injective.
Next we assume that X is locally compact and prove the surjectivity of�′. For

this purpose we let U be an open filter of (Q(X ),⊇). Then U is a directed lower
set of compact saturated subsets of X and we set U = ⋃U . Now let u ∈ U .
Then there is a K ∈ U such that u ∈ K . Since U is a lower set, sat(u) ⊆ K is a
member of U . Let D be the set of all compact neighborhoods of u; since X is
locally compact, D is a nonempty directed subset of (Q(X ),⊇) with supremum
supD = ⋂D = sat(u) ∈ U . As U is Scott open, there is a member V of D
such that V ∈ U . Thus V ⊆ ⋃U = U . Hence u is an interior point of U and
therefore U is open. Then U ⊆ �′(U ). But now let K ∈ �′(U ), i.e. K ⊆ U .
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We have just seen that every x ∈ K has a neighborhood Vx ∈ U . Since K is
compact we have elements x1, . . . , xn such that K ⊆ Vx1 ∪ · · · ∪ Vxn ∈ U since
U is a directed lower set. Thus �′(U ) ⊆ U and we conclude U = �′(U ).
Hence �′ is surjective and thus bijective. �

Let us observe that for any set X the set Fin(X ) of all finite subsets is an alge-
braic domain with respect to⊇. Indeed, every directed set has a largest element.
Thus every element is compact, and every filter is open, and there is a bijection
between the set of all subsets U of X and the set OFilt(Fin(X )) of filters of
Fin(X ) which associates with U the set of finite subsets of U .

Example II-1.25. (a) Let X be a nondiscrete Hausdorff space in which Q(X )
is the set of finite subsets. Then

(i) Q(X ) is an algebraic domain,
(ii) the function �′: O(X ) → OFilt(Q(X )) is not surjective,

(iii) X is sober (since Hausdorff) but not locally compact.

(b) Let p be a point inβ(N)\N whereβ(N) is the Stone–Čech compactification
of the discrete space of natural numbers, and consider on X = N ∪ {p} the
induced topology. Then the space X is completely regular Hausdorff, and every
compact subset is finite.

Proof: (a) We have just observed (i) and (ii) in view of the fact that X has
subsets which are not open. Part (iii) follows from Theorem II-1.24 and (ii).

(b) Let K be a compact subset of X = N∪ {p}. If K ⊆ N then K is finite as
a discrete and compact space. Assume p ∈ K and let U be the neighborhood
filter of p. If K were infinite then we would have infinitely many nonfixed
ultrafilters on K , each of these is contained in an ultrafilter on N but only one
at most could converge in K , namely {U ∩ K : U ∈ U} if all of the U ∩ K are
infinite. This is a contradiction to the fact that on a compact Hausdorff space
every ultrafilter converges. �

The combination of Theorem II-1.17, II-1.20 through II-1.24 and Example II-
1.25 sheds additional light on our first discussion of the poset (Q(X ),⊇) of
compact saturated subsets of a space which we started in Proposition I-1.24.2.
In Section 2 of Chapter IV, when we have a good duality theorem for domains,
we shall resume and conclude the discussion of Q(X ) by showing that for a
sober space X the dcpo Q(X ) is a domain only if X is locally compact. This
will be the completion of the Hofmann–Mislove Theorem IV-2.18.
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Exercises

Exercise II-1.26. Let L be a dcpo. Prove the following.

(i) If U �= Ø is a Scott open subset of L , then U is a subdcpo, and a subset
of U is Scott open in U iff it is Scott open in L . In particular, the Scott
topology on U agrees with the relative Scott topology from L .

(ii) If A �= Ø is a Scott closed subset of L , then A is a subdcpo, and a subset
of A is Scott closed in A iff it is Scott closed in L . In particular, the Scott
topology on A agrees with the relative Scott topology from L .

(iii) If X �= Ø is the intersection of a Scott open subset U and a Scott closed
subset A of L , then X is a subdcpo, and the Scott topology on X agrees
with the relative Scott topology from L . �

Exercise II-1.27. Let L be a dcpo. Let (x j ) j∈J be a net in L for which y j :=
infi≥ j xi exists for j ∈ J ′, a cofinal subset of J . Prove the following.

(i) The set Y := {y j : j ∈ J ′} is directed.
(ii) A point z ∈ L is an eventual lower bound of (x j ) j∈J iff z ≤ y j for some

j ∈ J ′.
(iii) The set of eventual lower bounds is equal to ↓Y , and hence is directed.

Thus the directed supremum sup Y is also the directed supremum lim j x j

of the set of eventual lower bounds.
(iv) For x ∈ L , x ≤ sup D for some directed set D of eventual lower bounds

for (x j ) j∈J iff x ≤ sup Y = lim j x j . Thus the set of S-limits of (x j ) in
Definition II-1.1 are the same for both parts of the definition.

(v) The above considerations apply in an arbitrary dcpo to any constant net
or to any monotone net, and in a complete semilattice to any net. Thus in
a complete semilattice the alternative definitions for S and for the liminf
in the cases of a complete semilattice and a dcpo agree. �

Exercise II-1.28. Let L be a dcpo. For each directed subset D of L consider
the net (xd )d∈D defined by xd = d . Let D denote the class of all pairs
((xd )d∈D, x), where D ranges over all directed subsets and x ≤ sup D.
Define

O(D) = {U ⊆ L : ((xd )d∈D, x) ∈ D, x ∈ U ⇒ xd ∈ U eventually}.
Show that O(D) is the Scott topology. �

Exercise II-1.29. The following is a standard characterization for a class L of
convergent nets to be topological, i.e., to be precisely the class of all convergent
nets in the resulting topology O(L) (see, for example, [Kelley, b1955]).



152 II The Scott Topology

Fact. Given a class L of convergent nets on a set X, we have
((x j ) j∈J , x) ∈ L iff the net (x j ) j∈J converges to x with respect to O(L)

precisely when the following axioms are satisfied.

(constants) For every constant net one has ((x) j∈J , x) ∈ L.
(subnets) If (yi )i∈I is a subnet of (x j ) j∈J and ((x j ) j∈J , x) ∈ L, then

((yi )i∈I , x) ∈ L.
(divergence) If ((x j ) j∈J , x) is not in L, then (x j ) j∈J has a subnet (yi )i∈I no

subnet (zk)k∈K of which ever has ((zk)k∈K , x) ∈ L.
(iterated limits) If ((xi )i∈I , x) ∈ L, and if ((xi, j ) j∈J (i), xi ) ∈ L for all i ∈ I ,

then ((xi, f (i))(i, f )∈I×M , x) ∈ L, where M =∏i∈I J (i) is a product of
directed sets. �

Now prove the following.

(i) The class S of Definition II-1.1 satisfies the axioms (constants) and
(subnets) for any dcpo.

(ii) If a complete semilattice S satisfies the axiom (iterated limits), then S is
a bounded complete domain.

Hint. For (ii), use the axiom (iterated limits) to show the validity of equation
(DD) of I-2.7. �

Part (ii) gives an alternative proof that if the convergence given by S is topo-
logical on a complete semilattice L , then L is a bounded complete domain, a
special case of Lemma II-1.8.

For the following exercise we need a definition:

Definition II-1.30. A topology on a dcpo L is said to be order consistent if

(i) {x}− = ↓x for all x ∈ L ,
(ii) every monotone net (x j ) j∈J converges to x = sup j x j .

In (ii) we could say equivalently: if x = sup I for an ideal I , then x = lim I .
�

Recall that the upper topology ν(L) is the topology generated by the collection
of sets L\↓x (see O-5.4).

Exercise II-1.31. Prove the following.

(i) Both the Scott and upper topologies are order consistent on any dcpo L ,
and for any order consistent topology τ on L , we have

ν(L) ⊆ τ ⊆ σ (L).
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In other words, the upper topology is the coarsest and the Scott topology
is the finest of all order consistent topologies.

(ii) If (x j ) j∈J is a monotone net and τ is order consistent, then the set of all
limit points of this net is precisely ↓sup x j .

(iii) If τ is order consistent and if (x j ) j∈J is a net and (z j ) j∈J is a directed net
such that z j ≤ x j for all j , then ↓sup z j is contained in the set of τ -limit
points of the net (x j ) j∈J .

(iv) If L is a complete semilattice and τ an order consistent topology on L ,
then ↓(lim j x j ) is contained in the set of all τ -limit points of the net
(x j ) j∈J .

(v) If, in addition, the translations x �→ a ∧ x : L → L are τ continuous for
all a ∈ L (in this case we say that L is a semitopological semilattice (see
also VI-1.11)), then L is meet continuous. �

In Sections 2 and 4 of Chapter VII we will describe those complete lattices for
which ν(L) = σ (L).

Problem. Can one characterize those complete lattices on which the Scott
topology has the property that each point has a neighborhood basis of open
filters, or, alternatively, those complete lattices L for which { � x : x ∈ L} is a
basis of σ (L)? �

Exercise II-1.32. In a dcpo L , let intσ X denote the σ (L)-interior of a set.
Define x ≺ y iff y ∈ intσ↑x . Prove the following:

(i) ≺ is an auxiliary relation;
(ii) x ≺ y implies x � y;

(iii) we have the equivalence of x ≺ y and x � y for all x, y ∈ L iff

�

x is
Scott open for all x ∈ L (This is the case if � satisfies the interpolation
property (cf. I-1.17).);

(iv) the relation ≺ is approximating (see I-1.13) iff � is approximating, that
is, iff L is a domain.

Hint. Use II-1.6 for the proof of (ii). For the proof of (iv), use (ii) for one
implication and (iii) for the converse. �

Problem. For which complete lattices do we have x ≺ y iff x � y? �

Exercise II-1.33. The following example shows that x � y need not imply
x ≺ y in a complete lattice: Let L = {⊥}∪(N×[0, 1])∪{�}with⊥ as smallest
and � as greatest element and ↑(n, r ) = ({n}× [r, 1])∪ {(p, 1): p ≥ n} ∪ {�}.
Show that (1, 0) � � but not (1, 0) ≺ �, in fact intσ↑(1, 0) = Ø. �
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In Exercise II-1.32 we have associated an auxiliary relation with the Scott
topology on any dcpo. We are generalizing this to more general topologies on
dcpos. We obtain characterizations of the Scott topology on meet continuous
semilattices and their continuity that are in perfect analogy to the character-
izations of the way-below relation on meet continuous semilattices and their
continuity in Propositions I-1.15 and I-1.16.

Exercise II-1.34. Let τ be a topology on a dcpo L such that the specialization
order (see O-5.2) agrees with the original order on L . Such a topology may be
called order compatible. Define

x ≺τ y iff ↑x is a τ neighborhood of y.

(i) Show that ≺τ is an auxiliary relation on L .
(ii) If the auxiliary relation ≺τ is approximating, show that τ is finer than the

Scott topology on L .
(iii) Show that for a meet continuous semilattice L , the Scott topology is the

intersection of the order compatible topologies τ with ≺τ approximating.
(iv) Show that a meet continuous semilattice is continuous iff it admits a

coarsest order compatible topology τ with ≺τ approximating.

Hint. Part (i) is straightforward. (ii) Let U be Scott open and y ∈ U . As
≺τ is approximating, there is a directed set D of elements x ≺τ y such that
y = sup D. As U is Scott open, there is some x ∈ D such that x ∈ U . As
x ≺τ y, we have that ↑x is a τ neighborhood of y which is contained in U .
Thus the topology τ is finer than the Scott topology.

(iii) For a fixed ideal I of L , we define a subset U of L to be τI open, if
U is an upper set and if sup I ∈ U implies x ∈ U for some x ∈ I . It is
easily seen that the τI open sets form a topology which is order compatible.
The Scott topology clearly is the intersection of the topologies τI , when I
ranges over all ideals of L . It remains to show that the associated auxiliary
relations ≺τI are approximating. But this follows from Lemma I-1.14 and the
fact that≺τI is the auxiliary relation corresponding to the function m I considered
there.

(iv) By (iii), there is a coarsest order compatible topology τ with ≺τ ap-
proximating iff the auxiliary relation ≺ associated with the Scott topology is
approximating, and this is the case iff L is continuous by Exercise II-1.32(iv).

�

Exercise II-1.35. Let L be a dcpo. Show that L is a domain iff for for every
Scott open set U and x ∈ U , there exist y ∈ U and a Scott open set V such that
x ∈ V ⊆ ↑y.
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Hint. If L is a domain, use II-1.14(2). Conversely, define x ≺ y iff y ∈ intσ↑x
as in Exercise II-1.32. We saw in that exercise that x ≺ y implies x � y. That
the set {y: y ≺ x} is directed follows immediately from our hypothesis. Given
x �≤ w, then L\↓w is a Scott open set containing x , so again by hypothesis
there exists y ≺ x such that y �≤ w. Hence ≺ is approximating, and thus L is a
domain. �

Remark. The preceding exercise provides a sometimes useful approach for
showing that a dcpo is a domain, becauses it finesses the need to show the
directedness of the way-below set.

In II-1.12 we have seen that every domain is a sober space with respect to
its Scott topology. In the following exercise we present an example of a dcpo

which is not sober for its Scott topology.

Exercise II-1.36. Let L = N× (N ∪ {∞}) with the partial order defined by

(m, n) ≤ (m ′, n′) iff either m = m ′ and n ≤ n′ ≤ ∞ or n′ = ∞ and n ≤ m ′.

(i) Show that the relation ≤ defined above is indeed a partial order and that
the elements of the form (m,∞) are the maximal elements of L .

(ii) Show that a directed subset of L either has a greatest element or is
contained in {m} × (N ∪ {∞}) for some m. Conclude that (L ,≤) is a dcpo.

(iii) Show that any two nonempty Scott open subsets of L have a nonempty
intersection.

(iv) Conclude that L itself is an irreducible Scott closed set which is not the
closure of any point, whence (L , σ (L)) is not sober.

(v) Show that there is no sober topology on L which has the given order as
its specialization order.

Problem. Find an order theoretical characterization for those dcpos which are
sober with respect to their Scott topology.

Old notes

The topology introduced on a dcpo L (in particular, on any complete lattice
L) in this section was first concisely formulated for the lattice L = O(X )
of open sets of a topological space by B. J. Day and G. M. Kelly (see [Day
and Kelly, 1970], p. 51). But it is clearly the merit of D. Scott [Scott, 1972a]
to have defined this topology in all generality and to have demonstrated its
usefulness in his article on “Continuous lattices”. The name Scott topology was
first used by Isbell [Isbell, 1975b], p. 41, and [Isbell, 1975a], p. 317, and the
name was used in the Seminar on Continuity in Semilattices (SCS) for several
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years. Our detailed discussion of the relation between the Scott topology, liminf
convergence and lower semicontinuity is an elaboration of a motive proffered
by Scott in his 1972 article (see p. 104), by J. D. Lawson [Lawson, 1973] and
by K. H. Hofmann and A. Stralka (see [Hofmann and Stralka, 1976], p. 16).

The results on the sobriety of the Scott topology discussed in II-1.12 ff.
were published in the Compendium as was most of the Characterization
Theorem II-1.14, but only for the case of complete semilattices. For further re-
sults on sobriety and order, see [Isbell, 1975a] and [Hoffmann, 1979a],
[Hoffmann, 1981b]. For complete lattices, the equivalence of (1) and (7) in
II-1.14, however, was (practically) used by Scott to define a continuous lat-
tice in [Scott, 1972a]. Thus it is really Theorem II-1.14 which establishes the
equivalence of our definition of continuous lattices in I-1.6 with Scott’s origi-
nal definition. Scott used the auxiliary relation ≺ of II-1.32 for his definition,
and the precise statement of the equivalence of Scott’s definition of a contin-
uous lattice with Definition I-1.6 is given in II-1.32. The characterization in
Exercise II-1.35 of domains is also much in the spirit of Scott’s earliest work
and Eršov’s topological approach [Eršov, 1973]. The example in II-1.33 is due
to C. E. Clark [scs 21].

New notes

In the first subsection, the analysis of the Scott topology in terms of liminf
convergence has been extended from complete lattices to dcpos. The second
subsection leads up to the Characterization Theorem II-1.14, no longer restricted
to continuous lattices, but proved for domains in general. The third subsection
presents the complete machinery of the Hofmann–Mislove Theorem, which
orginated from [Hofmann and Mislove, 1981] and which constitutes a signifi-
cant contribution of domain theory to the theory of sober spaces. The original
proof rested strongly on spectral theory; the proof given here is more topolog-
ical in nature along the lines given by Keimel and Paseka [Keimel and Paseka,
1994]. Our treatment of well-filtered spaces, notably in Theorem II-1.21, is orig-
inal. The equivalence of condition (3) with sobriety for locally compact spaces
was noted by [Kou, 1999], who also gave a counterexample in the absence of
local compactness. We complete the subject matter of the Hofmann–Mislove
Theorem in Section IV-2 when the full apparatus of Lawson duality is available.

The results collected in Exercise II-1.34 have been communicated to us by
M. Escardó and R. Heckmann.

The example of a dcpo which is not sober in its Scott topology II-1.36 is
due to Johnstone [Johnstone, 1981]. Isbell [Isbell, 1982a] has used Johnstone’s
example to construct a complete lattice which is not sober for its Scott topology.
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II-2 Scott-Continuous Functions

The next task is to characterize those functions between dcpos and between
complete lattices which are continuous with respect to the Scott topology. Our
original motivations must now bear fruit: after all the Scott topology was intro-
duced to describe the classical concept of lower semicontinuous functions.

Scott-continuous functions

Proposition II-2.1. For a function f from a dcpo S into a dcpo T , the
following conditions are equivalent:

(1) f is continuous with respect to the Scott topologies, that is,
f −1(U ) ∈ σ (S) for all U ∈ σ (T );

(2) f preserves suprema of directed sets, that is, f is order preserving and
f (sup D) = sup f (D), for all directed subsets D of S;

(3) f is order preserving and f (lim j∈J x j ) ≤ lim j∈J f (x j ), for any net (x j ) j∈J

on S such that lim j∈J x j and lim j∈J f (x j ) both exist (which is always the
case if S and T are complete semilattices).

If S and T are domains, then (1), (2), and (3) are equivalent to each of the
following two conditions:

(4) y � f (x) iff for some w � x one has y � f (w), for all x ∈ S and
y ∈ T ;

(5) f (x) = sup{ f (w): w � x}, for all x ∈ S.

If S and T are algebraic domains, then the following conditions are also equiv-
alent to the preceding ones:

(6) k ≤ f (x) iff for some j ≤ x with j ∈ K (S) one has k ≤ f ( j), for all
x ∈ S and k ∈ K (T );

(7) f (x) = sup{ f ( j): j ≤ x and j ∈ K (S)}, for all x ∈ S.

Proof: (1) implies (2): First we show that (1) implies that f is order preserving:
Suppose that f (x) �≤ f (y); then the Scott open set V = T \↓ f (y) contains f (x).
Thus U = f −1(V ) is a Scott open neighborhood of x by (1) not containing y.
But then x �≤ y as U is an upper set. Thus x ≤ y implies f (x) ≤ f (y).

Now let D be a directed subset of S. Then f (D) is directed and sup f (D) ≤
f (sup D), since f is order preserving. Set x = sup D and t = sup f (D). We
claim f (x) ≤ t . Suppose f (x) �≤ t . The Scott open set T \↓t contains f (x);
thus, the inverse image U = f −1(T \↓t) is a Scott open neighborhood of x in
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S by (1). It follows that there is a d ∈ D such that d ∈ U . Then f (d) ∈ T \↓t ,
that is, f (d) �≤ t = sup f (D). This contradiction proves our claim.

(2) implies (1): Let A be a Scott closed subset of T . In order to show that
f −1(A) is Scott closed in S we take a directed subset D of f −1(A). Then by (2)
f (sup D) = sup f (D). But sup f (D) ∈ A by II-1.4(i), since A is Scott closed
and f (D) is directed owing to the monotonicity of f . Then f (sup D) ∈ A, and
hence sup D ∈ f −1(A). Thus f −1(A) is Scott closed by II-1.4(i).

(3) implies (2): Let D be a directed set in S. If we set xd = d, d ∈ D, then,
by II-1.27, limxd = sup D and, as f (D) is directed by the monotonicity of f ,
similarly lim f (xd ) = sup f (D). Thus (3) implies f (sup D) ≤ sup f (D). As
the converse inequality is true by the monotonicity of f , we deduce f (sup D) =
sup f (D).

(2) implies (3): Suppose that x = lim j x j for a net (x j ) j∈J in S and y =
lim j f (x j ). Then by II-1.1 there is a directed set D of eventual lower bounds
of the net (x j ) j∈J such that x = lim j x j = sup D. By the monotonicity of f ,
every f (d), d ∈ D, is an eventual lower bound of the net ( f (x j )) j∈J and the set
f (D) is directed, whence sup f (D) ≤ lim j f (x j ) = y. From (2) we conclude
(lim j x j ) = f (sup D) = sup f (D) ≤ lim j f (x j ).

From now on we assume that S and T are domains.
(2) implies (5): Clear, since �x is directed and x = sup �x by I-1.6.
(5) implies (4): From (5) we can conclude that f is monotone. Indeed, if x ≤

y, then �x ⊆ �y and consequently f (x) = sup f ( �x) ≤ sup f ( �y) = f (y).
Now let y � f (x) = sup f ( �x); since f is monotone, f ( �x) is directed.

Thus, by I-1.9, there is a w � x with y � f (w). Conversely, if y � f (w) for
some w � x , then y � f (x) by monotonicity of f and I-1.2(ii) for �.

(4) implies (1): Let U ∈ σ (T ) and x ∈ f −1(U ). By II-1.10 there is a y ∈ U
with y � f (x). By (4) we find a w � x such that y � f (w); we will have
finished the proof if we show that f (

�

w) ⊆ U .
Now, take a z with w � z. For every y′ � f (w) we have y′ � f (z) by (4);

and consequently f (w) = sup � f (w) ≤ f (z). But y ≤ f (w) by I-1.2(i) and
y ∈ U ; hence, f (z) ∈ U by II-1.2(i).

Now let S and T be algebraic domains. Note that in an algebraic domain we
have x � y iff there is a compact element k with x ≤ k ≤ y (cf. I-4.3). Thus
the equivalences (4) iff (6) and (5) iff (7) follow easily. �

Definition II-2.2. A function f : S → T between dcpos is Scott-continuous
iff it satisfies the equivalent conditions II-2.1(1),(2),(3). The category whose
objects are dcpos and whose morphisms are Scott-continuous maps will be
denoted by DCPO, and the full subcategory of complete lattices by UPS (preser-
vation of UP-directed Sups).
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The full subcategories of domains and continuous lattices are called DOM and
CONT respectively. The full subcategories of algebraic domains and algebraic
lattices are called ALGDOM and ALG respectively. �

In Chapter IV we will talk about the category SUP of all complete lattices and
maps preserving all sups. This will be a proper subcategory of UPS. There
the reader will also find other useful categories of continuous and algebraic
domains and lattices that are not full subcategories of DCPO.

Let us pause to record next those examples of continuous functions which,
implicitly, we have encountered before.

Examples II-2.3. (1) Every map preserving arbitrary sups is Scott-continuous.
In particular, lower adjoints are Scott-continuous, as they preserve sups by
O-3.3. Notably, the co-restriction of any closure operator to its image is Scott-
continuous (O-3.12(ii)).

(2) We had specific occurrences of maps preserving directed sups in O-3.11,
O-3.14, O-4.2(6), I-2.2 through I-2.6, I-2.12, I-2.15, I-2.17, I-4.11, I-4.13,
I-4.14, I-4.16 through I-4.18. (It might be a useful exercise for the reader to
rephrase these propositions and theorems in terms of Scott continuity.)

(3) A function f : X → R
∗ from a topological space into the extended set

of reals is lower semicontinuous iff it is continuous with respect to the Scott
topology on R

∗. With this remark we have closed the circle which we began
with the motivating observations preceding II-1.1. It is in this light that we
prefer to view examples like I-1.22.

(4) As we remarked in II-2.1, every Scott-continuous function is monotone.
The converse is obviously false; counterexamples f : R

∗ → R
∗ are trivial to

construct. (This is so whenever the domain of the function contains proper
limits: on a finite poset monotonicity and continuity come to the same thing.)
However, there is an interesting circumstance where “in effect” monotonic-
ity implies continuity. Consider the question of defining continuous functions
f : S → T , where S is algebraic (and T is just assumed to be complete). In
view of II-2.1(7), the function f is completely determined by its restriction to
the poset K (S); on K (S), moreover, all we can say about f is that it is mono-
tone. To see this suppose we are given any monotone f0: K (S) → T . We then
employ the formula of II-2.1(7) as a definition of an extension to all of S:

f (x) = sup{ f0( j): j ≤ x and j ∈ K (S)}, for all x ∈ S.

The reader can easily prove that the f so defined is continuous and agrees
exactly with f0 on K (S). �
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The following fixed-point theorem for Scott-continuous self-maps on dcpos
is extremely useful although it is more elementary and less general than the
Tarski Fixed-Point Theorem O-2.3 for monotone self-maps on complete lattices
and the Least Fixed-Point Theorem O-2.20 for monotone self-maps on dcpos.
The proof is simple and constructive. One may notice that we do not need
the full strength of directed completeness and Scott continuity here, but only
ω-completeness and ω continuity by which we mean that sup xn exists and
f (supn xn) = supn f (xn) for all inceasing sequences x0 ≤ x1 ≤ x2 ≤ · · ·.

Proposition II-2.4. (Least Fixed-Point Theorem for Scott-Continuous
Functions) Let L be a dcpo with a least element ⊥.

(i) Existence: Every Scott-continuous self-map f : L → L has a least
fixed-point LFP( f ).

(ii) Construction: The least fixed-point can be approximated by the
recursively defined Kleene chain

x0 = ⊥, xn+1 = f (xn) = f n+1(⊥)

in the sense that

LFP( f ) = supn xn = supn f n(⊥).

(iii) Preservation: Let M be a second dcpo with bottom and let

be a commuting diagram of Scott-continuous maps. Then

h(LFP( f )) = LFP(g | ↑h(⊥)).

If h is strict, i.e., if h(⊥) = ⊥, then

h(LFP( f )) = LFP(g).

Proof: As x0 =⊥≤ f (⊥) = x1 and as f is order preserving, we conclude that
x1 = f (x0) ≤ f (x1) = x2, and by induction that f (xn) ≤ f (xn+1) for all n. As
the sequence (xn) is increasing, it has a least upper bound x = supn xn in L . By
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the continuity of f , we have f (x) = f (supn xn) = supn f (xn) = supn xn+1 =
x . Thus x is a fixed-point of f . It is the smallest fixed-point of f . Indeed, let
y = f (y) be another fixed-point. As x0 =⊥≤ y, we get x1 = f (⊥) ≤ f (y) =
y and, by induction, xn ≤ y for all n, whence x = supn xn ≤ y. This proves (i)
and (ii). For (iii) we first remark that ↑h(⊥) is a dcpo with a smallest element
h(⊥) and that g maps ↑h(⊥) into itself, as x ≥ h(⊥) implies g(x) = gh(⊥) =
h f (⊥) ≥ h(⊥). Hence the restriction of g to ↑h(⊥) has a least fixed-point
and

h(LFP( f )) = h(supn f n(⊥)) by (ii)
= supn h f n(⊥) as h is Scott-continuous
= supn gnh(⊥) as the above diagram commutes
= LFP(g | ↑h(⊥)) by (ii). �

Function spaces and cartesian closed categories of dcpos

Now we are in a position to build a general theory which subsumes the investi-
gation of objects like LSC(X,R∗). This will be accomplished in the remainder
of this chapter.

One of the most noteworthy features of the category DCPO is that it is
cartesian closed (we will say presently what this means explicitly). Not only is
this fundamental for the applications of continuous lattices and domains to logic
and computing, but it also provides evidence of the mathematical naturalness
of the notion.

As a first step toward showing why the category is cartesian closed, we discuss
hom-sets. Let S and T be dcpos. As is common, we denote by DCPO(S, T )
the set of Scott-continuous functions from S into T , that is, the set of maps in
the category DCPO with the indicated domain and codomain. This set is also a
poset under the pointwise partial ordering

f ≤ g iff f (x) ≤ g(x) for all x ∈ S.

For the moment we will not distinguish notationally between DCPO(S, T ) as
an object in SET, the category of sets, and as an object in some other (concrete)
category.

Lemma II-2.5. Let S and T be dcpos. Let L be the poset DCPO(S, T )
of Scott-continuous functions from S into T . Then L is closed in T S under
the formation of all existing sups, in particular, of all directed sups; conse-
quently L is always a dcpo, and indeed a complete lattice if T is a complete
lattice.
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Proof: Let F ⊆ L and assume that f (s) = supg∈F g(s) exists for all s ∈ S.
Now take an arbitrary directed set D in S. Then

sup f (D) = supd∈D supg∈F g(d) = supg∈F sup g(D)
= supg∈F g(sup D) = f (sup D). �

The following will fix our notation for the function space we have just con-
structed by putting it in the proper category.

Definition II-2.6. We denote by [S → T ] the set DCPO(S, T ) of all Scott-
continuous functions f : S → T considered as a dcpo. Furthermore if f :
S1 → S2 and g: T1 → T2 are DCPO-maps, then we denote by [ f → g]:
[S2 → T1] → [S1 → T2] the map h �→ gh f . �

Proposition II-2.7. The construction of II-2.6 defines a functor

[· → ·]: DCPOop × DCPO → DCPO

restricting to a functor

UPSop × UPS → UPS.

Proof: The map [ f → g] is certainly well defined in II-2.6 and carries func-
tions in the first set to functions in the second set. It also obviously behaves
properly under composition. We need only observe that [ f → g] preserves di-
rected sups to make sure the map resides in the right category. But if h = sup H ,
a directed sup, then

[ f → g](h)(s) = g(h( f (s))) = g(supk∈H k( f (s)))
= supk∈H g(k( f (s))) (since g preserves directed sups)
= supk∈H [ f → g](k)(s)

and since sups are calculated pointwise, the assertion follows. �

Having provided a function space construction for DCPO and UPS, we now
turn to a discussion of some properties of products appropriate to the proof that
all these categories are cartesian closed.

Lemma II-2.8. Let R, S, T be dcpos. A function f : R × S → T is Scott-
continuous on the product R × S iff f is Scott-continuous in each variable
separately; that is,

(a) for all s ∈ S, the function r �→ f (r, s) : R → T is Scott-continuous,
(b) for all r ∈ R, the function s �→ f (r, s) : S → T is Scott-continuous.
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Proof: If f is Scott-continuous on the product R × S, it clearly is separately
continuous. Now assume f to be separately continuous, and let D be a directed
subset of R × S. For d ∈ D we write d = (d1, d2). It is easy to check that
sup D = (a1, a2) with ak = supd∈D dk, k = 1, 2. Then

f (sup D) = f (a1, a2) = f (supd∈D(d1, a2))
= supd∈D f (d1, a2) (by (a))
= supd∈D f (d1, supc∈D c2)
= supd∈D supc∈D f (d1, c2) (by (b)).

Since D is directed, we find for d, c ∈ D an e ∈ D with d, c ≤ e. Since f is
monotone by the separate continuity, we conclude

f (sup D) ≤ supe∈D f (e1, e2) = sup f (D).

The inequality sup f (D) ≤ f (sup D) holds for any monotone map f . �

Lemma II-2.9. For arbitrary dcpos we have:

(i) The evaluation map ( f, x) �→ f (x), which we can call eval: [R → S] ×
R → S, is Scott-continuous.

(ii) The composition map ( f, g) �→ f ◦ g : [S → T ] × [R → S] →
[R → T ] is Scott-continuous.

(iii) There is a natural isomorphism [R → (S × T )] ∼= [R → S]× [R → T ].

Proof: (i) By the preceding lemma, for the continuity of the evaluation map it
suffices to show that f (sup D) = sup f (D) for every directed subset D ⊆ R
and (sup F)(x) = sup f ∈F f (x) for every directed set F ⊆ [R → S]. The first
statement is true as f is Scott-continuous, and the second is true as sups are
calculated pointwise in [R → S].

(ii) Again by the preceding lemma it suffices to show that (sup F) ◦ g =
sup f ∈F ( f ◦ g) and f ◦ (sup G) = supg∈G( f ◦ g) for directed subsets F ⊆
[R → S] and G ⊆ [S → T ]: For every x ∈ R one has ((sup F) ◦ g)(x) =
(sup F) (g(x)) = sup f ∈F f (g(x)) = sup f ∈F ( f ◦ g)(x) and ( f ◦ (sup G))(x) =
f ((sup G)(x)) = f (supg∈G g(x)) = supg∈G f (g(x)) = supg∈G( f ◦g)(x) firstly,
because sups of functions are defined pointwise, and secondly, because f pre-
serves directed suprema.

Part (iii) holds for Scott-continuous functions into arbitrary products of
dcpos, not only into finite products. The proof is simple, as projections are
Scott-continuous, and is left to the reader. �

A category A with a terminal object and finite products is called cartesian
closed iff there are an internal hom-functor (Y, Z ) �→ ZY : Aop × A → A
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and a natural isomorphism A(X × Y, Z ) ' A(X, ZY ). (More information on
cartesian closed categories may be found in [Mac Lane, b1971], pp. 95 ff.)

We shall first see that the categories DCPO and UPS are cartesian closed, and
we remark that R × S provides the cartesian product functor and [R → S] the
internal hom-functor. We shall then see that certain full subcategories such as
CONT and ALG and others are cartesian closed, too. The crucial point to check
will be whether these categories are stable for the function space construction
[R → S].

Theorem II-2.10. Let R, S, T be dcpos, and let

T (R×S)
E
�
F

(T S)R

be the canonical pair of mutually inverse bijections given by

E( f )(r )(s) = f (r, s) and F(g)(r, s) = g(r )(s).

Then E and F induce mutually inverse bijections that are in fact isomorphisms
of dcpos:

[(R × S) → T ] � [R → [S → T ]].

In particular, DCPO and UPS are cartesian closed categories.

Proof: Let f ∈ [(R × S) → T ]; then f preserves directed sups in each
argument separately, whence E( f )(r ) ∈ [S → T ] for each r ∈ R. Since sups
of functions are calculated pointwise, and r �→ E( f )(r )(s) = f (r, s) preserves
directed sups for each s ∈ S, then E( f ) ∈ [R → [S → T ]].

On the other hand, let g ∈ [R → [S → T ]]. Then F(g) is equal to the
composition of maps (r, s) �→ (g(r ), s) �→ g(r )(s) : R × S → [S → T ] ×
S → T . The first map is Scott-continuous as g is. The second map is evaluation
which is Scott-continuous by II-2.9(i). Hence F(g) ∈ [(R × S) → T ].

This proves that the restrictions of E and F relate the desired dcpos. But
E and F are clearly monotone, and so they are isomorphisms, since they are
inverse to one another. The reader may check that the isomorphism of functors
obtained in this way is natural. �

We wish to show now the important result that the categories CONT and ALG
are cartesian closed, too. Before we give the argument, however, it is useful
to identify the lattice [S → 2], where of course 2 is the two element chain.
The easy proof is left to the reader. (Recall that in the Scott topology of 2 the
singleton set {1} is open.)
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Lemma II-2.11. For a dcpo S the function f �→ f −1(1) : [S → 2] → σ (S)
is an isomorphism of lattices. �

Theorem II-2.12. If S is a domain and T a continuous lattice, respectively
if S is an algebraic domain and T an algebraic lattice, then [S → T ] is a
continuous lattice, respectively an algebraic lattice. In particular, the functor
[· → ·] maps CONTop × CONT into CONT, and ALGop × ALG into ALG, and
CONT and ALG are cartesian closed categories.

Proof: Suppose that T is a continuous lattice, respectively algebraic lattice.
Then T is the image of some 2X under a Scott-continuous projection (resp.,
closure) operator by I-4.18 (resp., I-4.16). Every functor preserves idempo-
tent morphisms; hence so does [S → ·]. By II-2.7 [S → ·] therefore pre-
serves Scott-continuous projection operators. If c∗ ≤ c in [T ∗ → T ], then
[1S → c∗] ≤ [1S → c] in [[S → T ∗] → [S → T ]] by II-2.7; hence,
[S → ·] also preserves Scott-continuous closure operators (recall O-3.8(ii)).
Hence [S → T ] is the image of [S → 2X ] under a Scott-continuous pro-
jection (resp., closure) operator. But [S → ·] preserves products, and so
[S → 2X ] ' [S → 2]X ' σ (S)X by Lemma II-2.11. Since σ (S) is continuous
if S is continuous by II-1.14 (resp., algebraic if S is algebraic by II-1.15), and
since products of continuous (resp., algebraic) lattices are continuous (resp., al-
gebraic) by I-2.1 (resp., I-4.12), then [S → 2X ] is continuous (resp., algebraic).
Thus [S → T ] is continuous by I-2.3 (resp., algebraic by I-4.13). �

The argument for II-2.12 is typical of proofs that give the answer without
directly giving the reason. Another proof of the last statement of II-2.12 was
indicated in I-2.21. We return to the question again in the exercises below; see
II-2.31. The attentive reader will have noticed that the only property of S that
we have used is that its lattice of Scott open sets is continuous. The same proof
then shows that for a topological space X the set [X → T ] of all continuous
functions f : X → (T, σ (T )) with its pointwise order is a continuous lattice iff
the topology O(X ) and T both are continuous lattices.

FS-domains and bifinite domains

We next consider a rather large cartesian closed category of domains. For their
study we introduce a useful concept.

Definition II-2.13. An approximate identity for a dcpo S is a directed set
D ⊆ [S → S] satifying sup D = 1S , the identity on S. �
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Lemma II-2.14. Approximate identities are preserved under the following
constructions.

(i) If D ⊆ [S → S] is an approximate identity for S, then D′ = {δ2 = δ ◦ δ:
δ ∈ D} is also an approximate identity.

(ii) If for all i ∈ I,Di is an approximate identity for Si , then
∏

i∈I Di :=
{∏i∈I δi : δi ∈ Di } is an approximate identity for

∏
i∈I Si . If all but

finitely many of the Si have a least element 0, then the family consisting
of products of members of the Di in finitely many coordinates and the
constant 0 mapping in the remaining coordinates is also an approximate
identity on

∏
i∈I Si .

(iii) If D ⊆ [S → S] is an approximate identity for S and E ⊆ [T → T ] is an
approximate identity for T , then [D → E] is an approximate identity for
[S → T ], where members of [D → E] are denoted by [δ → ε] for δ ∈ D
and ε ∈ E and defined by [δ → ε](g) = εgδ for g ∈ [S → T ].

(iv) The restriction of an approximate identity on S to a nonempty Scott
closed subset A of S is an approximate identity for A.

(v) If a dcpo S has an approximate identity D such that δ(x) � x for all
δ ∈ D and for all x ∈ S, then S is a domain.

Proof: (i) The map δ �→ (δ, δ) �→ δ ◦ δ : [S → S] → ([S → S] × [S →
S]) → [S → S] is Scott-continuous, as the first map is trivially Scott-
continuous and the second map is composition, which is Scott-continuous by
II-2.9(ii). Thus supδ∈D δ = 1S implies supδ∈D δ ◦ δ = 1S , too.

(ii) Straightforward.
(iii) Using the continuity of composition, one may deduce this item along

the lines of part (i).
(iv) Immediate.
(v) By hypothesis for each x ∈ S, x is the directed supremum of the set

{δ(x): δ ∈ D}. By hypothesis δ(x) � x for each δ ∈ D. Thus by I-1.5(ii) S is
a domain. �

Definition II-2.15. A Scott-continuous function δ: S → S on a dcpo S is
finitely separating if there exists a finite set Fδ such that for each x ∈ S, there
exists y ∈ Fδ such that δ(x) ≤ y ≤ x . A dcpo S is finitely separated if
there is an approximate identity for S consisting of finitely separating func-
tions. A finitely separated dcpo that is also a domain will be called an FS-
domain. �

Note that all finite posets are F S-domains, since the identity mapping is an
approximate identity of finitely separating maps. We shall see in Section 4 that
all bounded complete domains and hence all continuous lattices are FS-domains.
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Lemma II-2.16. Let S be a dcpo. If δ ∈ [S → S] is finitely separating, then
δ(x) � x for all x ∈ S. Thus a finitely separated dcpo is a domain, hence an
FS-domain.

Proof: Let D be a directed set such that w = sup D ≥ x . There exists a finite
set F such that for each x ∈ S, there exists y ∈ F such that δ(x) ≤ y ≤ x .
Since F is finite, there exist a cofinal subset D0 ⊆ D and a y ∈ F such that
δ(d) ≤ y ≤ d for all d ∈ D0. By continuity of δ we have δ(w) ≤ y ≤ w.
Since δ is monotone, δ(x) ≤ δ(w) ≤ y. For d0 ∈ D0 and d ≥ d0, we have
δ(x) ≤ y ≤ d0 ≤ d . Thus δ(x) � x .

It now follows from Lemma II-2.14(v) that a finitely separated dcpo is a
domain, and hence an FS-domain. �

The property of being an FS-domain is stable under a variety of constructs.

Proposition II-2.17.

(i) A finite product of FS-domains is again an FS-domain.
(ii) If S is an FS-domain and p: S → S is a Scott-continuous projection, then

p(S) is an FS-domain.
(iii) If A is a nonempty Scott closed subset of an FS-domain S, then A is an

FS-domain.

Proof: (i) The general finite case follows from the case for two by induction.
Let S and T be FS-domains, and let D and E be directed families of Scott-
continuous mappings giving the FS-structure. Then one checks directly that the
family D×E shows that S×T satisfies the conditions to be an FS-domain (the
finite sets in S × T that separate are the products of the corresponding ones in
S and T respectively).

(ii) Let D be the family in [S → S] arising in the definition of an FS-domain.
Then it is straighforward to verify that the family {pδ|p(S): δ ∈ D} is a family
on p(S) that shows that it is finitely separated.

(iii) Take for the family D on A the restriction to A of the corresponding
family on S. �

Proposition II-2.18. Let S and T be FS-domains. Then [S → T ] is an FS-
domain.

Proof: Let D and E be the directed family of mappings giving the FS-structure
to S and T respectively. We define a family D⊗ E on [S → T ] by g �→ ε2gδ2

for δ ∈ D and ε ∈ E . From parts (i) and (iii) of Lemma II-2.14 it follows that
the collection of all such maps on [S → T ] is an approximate identity. We
show that each such function is finitely separating.
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Let Fδ and Fε be the finite sets guaranteed for δ and ε respectively. Define a
relation ∼ on [S → T ] by f ∼ g if ε f (x) ≤ y ≤ f (x) ⇔ εg(x) ≤ y ≤ g(x)
for all x ∈ Fδ and y ∈ Fε. Since Fδ and Fε are finite, we conclude that there
are only finitely many equivalence classes for ∼. Pick one representative from
each class, say { f1, . . . , fn}. We claim that the finite family {ε f1δ, . . . , ε fnδ} is
the one needed to establish finite separation.

Let g ∈ [S → T ]. Pick fi ∼ g. Given s ∈ S, there exists x ∈ Fδ such that
δ(s) ≤ x ≤ s. Then gδ(s) ≤ g(x). There exists y ∈ Fε such that εg(x) ≤ y ≤
g(x). Then ε fi (x) ≤ y ≤ fi (x). Thus

ε fiδ(s) ≤ ε fi (x) ≤ y ≤ g(x) ≤ g(s),

i.e., ε fiδ ≤ g. A symmetric argument yields that εgδ ≤ fi , and hence ε2gδ2 ≤
ε fiδ. This establishes the claim.

Since [S → T ] is a dcpo, it follows from Lemma II-2.16 that [S → T ] is
an FS-domain. �

Corollary II-2.19. The category FS of FS-domains is a full cartesian closed
subcategory of DCPO.

Proof: This follows immediately from the preceding results on FS-domains
and Theorem II-2.10. �

An interesting class of dcpos emerges when we consider the algebraic FS-
domains.

Proposition II-2.20. For a dcpo L, the following properties are equivalent:

(1) L is an algebraic FS-domain;
(2) L is an algebraic domain and has an approximate identity consisting of

maps with finite range;
(3) L has an approximate identity consisting of kernel operators with finite

range.

Proof: The implication (2) implies (1) is immediate. For the implication (3)
implies (2) it suffices to show that (3) implies that L is algebraic. For this, let
D be a directed set of Scott-continuous kernel operators with finite range such
that supD = 1L . Then {δ(x): δ ∈ D} is directed and x = sup{δ(x): δ ∈ D} for
every x ∈ L . As the range of δ ∈ D is finite, all of its elements are compact in
the finite dcpo im δ. From Exercise I-4.35, it follows that all the elements of
im δ are compact in L . Thus, every x ∈ L is the sup of a directed set of compact
elements, and we have shown that L is algebraic.
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Now we establish that (1) implies (3). Let D be an approximate identity on
L such that each δ ∈ D is finitely separating. For each δ ∈ D, set Gδ = {k ∈
L : δ(k) = k}. Note that it must be the case that Gδ ⊆ Fδ , the finite separating
set, and hence Gδ is finite. Also, all elements of Gδ are compact by II-2.16.

We claim that for each x ∈ L , there exists a largest member of Gδ in ↓x .
Indeed pick a minimal member z of Fδ in ↓x (since there is a member of
Fδ between x and δ(x), the finite set Fδ meets ↓x , and hence has a minimal
element in the intersection). Then there exists a member of Fδ between δ(z) and
δ(δ(z)), and this must be z by minimality of z. It follows that z = δ(z). Thus
↓x ∩ Gδ �= Ø.

Pick k1, k2 ∈ Gδ ∩ ↓x . Then ki = δ(ki ) ≤ δ(x) for i = 1, 2. There exists
y ∈ Fδ such that δ(x) ≤ y ≤ x , and thus ki ≤ y ≤ x for i = 1, 2. Pick
a minimal element k ∈ Fδ ∩ ↓x such that ki ≤ k for i = 1, 2. Then ki =
δ(δ(ki )) ≤ δ(δ(k)) ≤ δ(k) for i = 1, 2. We argue again that there must be an
element of Fδ between δ(δ(k)) and δ(k), and this element must be equal to k
by minimality of k. We conclude that δ(k) = k. Thus the finite set Gδ ∩ ↓x is
directed, and hence must have a largest element.

For δ ∈ D, define a function κ = κδ by κ(x) is the largest compact element
k ≤ x such that δ(k) = k. The preceding paragraphs guarantee the existence of
such a function. One verifies easily that κ is a Scott-continuous kernel operator.
Also the family {κδ: δ ∈ D} is directed, since as δ becomes larger, the set of
fixed-points grows. Since D is an approximate identity, for each k ∈ K (L),
there exists η ∈ D such that δ(k) = k for δ ≥ η. Thus the supremum of the
κδ restricted to the compact elements is the identity. By Scott continuity the
supremum is the identity on all of L . It follows that the family {κδ: δ ∈ D} is
an approximate identity. �

Definition II-2.21. A domain satisfying any of the equivalent conditions of
Proposition II-2.20 is called a bifinite domain. We denote by BF the category
of all bifinite domains and Scott-continuous maps between them. �

Theorem II-2.22. If L and M are bifinite domains, then L×M and [L → M]
are also bifinite domains.

Proof: Let D and E be approximate identities for L and M , respectively, con-
sisting of kernel operators with finite range (see II-2.20(3)). Then D × E =
{δ× ε: δ ∈ D and ε ∈ E} clearly is an approximate identity for L × M consist-
ing of projections with finite range (whence L×M is bifinite). Let us show that
on [L → M] the same holds for the collection [D → E] of self-maps [δ → ε]
defined by f �→ ε f δ for δ ∈ D, ε ∈ E .
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As composition of maps is Scott-continuous, [δ → ε] is Scott-continuous.
Again by the Scott continuity of composition, supδ∈D supε∈E ε f δ = (supε∈E ε)
f (supδ∈D δ) = 1M f 1L = f for all f ∈ [L → M]. Thus, [D → E] is an
approximate identity on [L → M]. As δ and ε are idempotent, the same fol-
lows for [δ → ε] and consequently this is a kernel operator. Its range is finite,
as it can be viewed to be the set of all monotone functions from the finite poset
im δ into the finite poset im ε. Thus, [D → E] is an approximate identity on
[L → M] consisting of kernel operators, which implies that [L → M] is a
bifinite domain. �

Corollary II-2.23. The category BF of bifinite domains is a full cartesian
closed subcategory of DCPO.

Proof: This follows immediately from the preceding theorem and
Theorem II-2.10. �

It is convenient to record in conclusion a few obvious functors between the
various categories which we have already encountered implicitly or explicitly
and which we will often use in the following developments.

We know that a function f : S → T between dcpos belongs to [S → T ]
iff it is Scott-continuous (see II-2.1). The assignment, which associates with a
dcpo L the topological space (L , σ (L)) defines in an obvious way the functor�
from DCPO into the category TOP of T0 topological spaces. The restrictions
of this functor to CONT and ALG are very interesting, and in the next section
we shall describe the subcategories of TOP thereby obtained.

If X is a T0 space, then its topology O(X ) is a frame (O-3.22). In view of the
infinite distributivity law in O-2.6, which singles out frames, it is reasonable to
consider the category FRM of frames and functions preserving arbitrary sups
and finite infs (cf. O-3.24). If we are given a continuous map f : X → Y , then
the map U �→ f −1(U ), which we shall call O( f ): O(Y ) → O(X ), preserves
arbitrary unions and finite intersections. ThusO: TOP → FRM is a well-defined
contravariant functor.

If L is a dcpo, then we have

O(�L) = O(L , σ (L)) = σ (L).

Thus we also have a contravariant functor σ : DCPO → FRM (which on func-
tions operates just like O). By Theorem II-1.14 the functor σ maps CONT
contravariantly into the category CONT ∩ FRM of continuous frames (distri-
butive continuous lattices), and by II-1.15, it maps ALG contravariantly into the
category ALG ∩ FRM of algebraic frames (distributive algebraic lattices).
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Notation II-2.24. We record the following functors:

σ : DCPOop → FRM, σ (L) = Scott topology, σ ( f )(U ) = f −1(U );
�: DCPO → TOP, �L = (L , σ (L)), �( f ) = f ;
O: TOPop → FRM, O(X ) = topology of X, O( f )(U ) = f −1(U ).

We note σ = O�. �

Exercises

Exercise II-2.25. Let L be a complete lattice and let I be a given directed
set. Then each of the following three infinitary operations can be viewed as a
mapping defined on the direct power:

lim, sup, inf : L I → L .

All these functions are monotone, but which are Scott-continuous? �

Exercise II-2.26. Carry out the suggestion mentioned in II-2.3(2). �

Exercise II-2.27. Consider functions of several variables which for simplicity
are defined on and take values in a fixed dcpo S. Let f be an n-place function,
and let g1, . . . , gn all be m-place functions. Define the m-place function h by
composition:

h(x1, . . . , xm) = f (g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)).

(i) Use a generalization of II-2.8 to prove that h is Scott-continuous if f and
the gi are Scott-continuous in each variable separately.

(ii) Give a direct proof of the same result.

Hint. For (ii) it is sucient to consider the two special cases f (x, x) and ( f (g(x))
by first making all variables distinct and then identifying them one occurrence
at a time. �

A function is continuous if the preimage of every open set is open. It is clear that
it is sufficient for continuity that the preimage of every open set belonging to a
subbasis for the topology is open. In the case of Scott continuity this condition
can be weakend considerably:

Exercise II-2.28. For a map f : L → M of dcpos to be Scott-continuous show
that the following is sufficient: f −1(U ) is Scott open for every U belonging to
a collection U of Scott open sets in M that separates the points of M , that is,
whenever x �≤ y in M , there is a U ∈ U such that x ∈ U but y �∈ U .
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Hint. f is order preserving: Indeed, let u, v ∈ L . If f (u) �≤ f (v), by hypothesis
there is a U ∈ U containing f (u) but not f (v). Then u belongs to f −1(U ) but
not v. As f −1(U ) is Scott open and hence an upper set, we conclude that u �≤ v.

f preserves directed sups: Let D be directed in L . Then sup f (D) ≤ f (sup D)
by the monotonicity of f . Assume that sup f (D) < f (sup D); by hypothesis
there is a U ∈ U containing f (sup D) but not sup f (D). As U is an upper set,
the latter implies that f (D) ∩U = Ø. Then sup D is contained in f −1(U ) but
f −1(U ) ∩ D = Ø. As f −1(U ) is Scott open, the latter implies sup D �∈ f −1(U ),
a contradiction. �

For a dcpo with a least element we have seen in II-2.4 that every Scott-
continuous self-map f has a least fixed-point LFP( f ). The next exercise shows
that this least fixed-point depends continuously on f and that least fixed-points
are preserved under appropriate hypotheses.

Exercise II-2.29. Let L be dcpo with a least element ⊥. Show that the least
fixed-point operator

LFP = ( f �→ LFP( f )) : [L → L] → L

is Scott-continuous.

Hint. The least fixed-point operator is monotone, for if f ≤ g are self-maps of
L , then f (⊥) ≤ g(⊥) and, by induction, f n(⊥) ≤ gn(⊥), whence LFP( f ) =
supn f n(⊥) ≤ supn gn(⊥) = LFP(g). Now let ( fi ) be a directed family of
Scott-continuous self-maps of L . Then LFP(supi fi ) = supn(supi fi )n(⊥) =
supi supn f n

i (⊥) = supi LFP( fi ). Thus, the least fixed-point operator is Scott-
continuous. Note that we have used that composition of maps is Scott-continuous
(see II-2.9) for the third equality. �

The next exercise contains some further information on fixed-points of Scott-
continuous self-maps (compare II-2.4).

Exercise II-2.30. Let L be an arbitrary dcpo and f : L → L a Scott-continuous
self-map. Denote by L f the set of all pre-fixed-points x ∈ L with x ≤ f (x)
and by L◦

f the subset of all fixed-points of f .

(i) Show that for every pre-fixed-point x the element g̃(x) = supn gn(x) is the
smallest fixed-point of g above x .

(ii) Show that L f is closed in L with respect to directed sups, hence a dcpo,
and that g̃: L f → L f is a Scott-continuous closure operator whose image
is the set of fixed-points. �

The following exercise provides an alternative proof for Theorem II-2.12.
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Exercise II-2.31. Let L and M be domains and suppose that M has a least
element. For x ∈ L and y ∈ M define a function (|x ⇒ y|) on L by the formula

(|x ⇒ y|)(z) = y, if x � z, and = 0M otherwise.

Prove the following:

(i) this function is always Scott-continuous;
(ii) if f ∈ [L → M] and y � f (x), then (|x ⇒ y|) � f in [L → M];

(iii) if M is a bounded complete domain, respectively a continuous lattice,
then f = sup{(|x ⇒ y|): y � f (x)} for all f ∈ [L → M]; hence,
[L → M] is a bounded complete domain, respectively a continuous
lattice. �

Now, let L and M be algebraic domains and suppose that M has a least element.
For compact elements k in L and j in M define a function (|k ⇒ j |) on L by
the formula

(|k ⇒ j |)(z) = j, if k ≤ z, and = 0M otherwise.

Prove the following:

(iv) this function is always Scott-continuous;
(v) the function (|k ⇒ j |) is compact in the dcpo [L → M];

(vi) if M is an algebraic bounded complete domain, respectively an algebraic
lattice, then f = sup{(|k ⇒ j |): j ≤ f (k)} for all f ∈ [L → M]; hence,
[L → M] is an algebraic bounded complete domain, respectively an
algebraic lattice. �

Conclude that the categories of bounded complete domains and algebraic
bounded complete domains with Scott-continuous maps are cartesian closed.

Exercise II-2.32. If L and M are (algebraic) L-domains, show that L × M
and [L → M] are (algebraic) L-domains, too, and conclude that the cat-
egories LDOM of L-domains and ALGLDOM of algebraic L-domains and
Scott-continuous maps are cartesian closed.

Hint. For the function space proceed as in the previous exercise. Two changes
are necessary. Firstly, one has to be careful when taking sups which are not
directed sups: one shows that f (x) = sup{(|x ⇒ y|): y � f (x)} where for
all x ∈ L the sup has to be taken in the complete lattice ↓ f (x). Secondly, an
L-domain does not necessarily have a least element. Thus, we have to modify
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the definition of the “step functions”:

(|x ⇒ y|)(z) =
{

y if x � z,
0z otherwise,

where 0z is the least element of the complete lattice ↓z. �

Exercise II-2.33. Let A be a full cartesian closed subcategory of DCPO, in the
sense that A contains the terminal object (the one element dcpo) and, whenever
L , M are objects in A, then L × M and [L → M] also belong to A.

Now let RA be the full subcategory of DCPO whose objects are the retracts of
objects in A, that is, the images of objects in A under Scott-continuous projec-
tions (up to isomorphism). Show that RA also is a cartesian closed subcategory
of DCPO. �

An example for the situation indicated in the preceding exercise is the follow-
ing. In II-2.10 we have shown that the full subcategories CONT and ALG of
continuous and algebraic lattices, respectively, are cartesian closed. As a lattice
is continuous iff it is isomorphic to the image of an algebraic lattice under a
Scott-continuous projection (see I-4.18), the preceding exercise shows that the
cartesian closedness of CONT can be derived from the cartesian closedness
of ALG.

In II-2.24 we have seen that the full subcategory of bifinite domains is carte-
sian closed. By the preceding exercise it follows that the full subcategory of
DCPO whose objects are the images of bifinite domains under Scott-continuous
projections is also cartesian closed. As the bifinite domains are precisely the
algebraic FS-domains by II-2.20 one might conjecture that every FS-domain
can be obtained from a bifinite domain as the image under a Scott-continuous
projection. This conjecture is neither proved nor disproved to date:

Problem. Is there an FS-domain that is not isomorphic to the image of any
bifinite domain under a Scott-continuous projection? �

The following example due to Lawson may serve for a test.

Exercise II-2.34. Let L be the collection of all closed discs in the Euclidean
R

2 including the singleton sets. Show that L ordered by reverse inclusion ⊇ is
a domain, even an FS-domain, in which C � D iff int C ⊇ D. �

Problem. Is the FS-domain L of closed discs in the plane in the example above
isomorphic to the image of some bifinite domain under a Scott-continuous
projection? �
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Exercise II-2.35. Let L and M be algebraic lattices. Define maps

fun: 2K (L)×K (M) → [L → M] and graph: [L → M] → 2K (L)×K (M)

by the formulae

fun(F)(x) = sup{ j : (k, j) ∈ F and k ≤ x},
graph( f ) = f (k, j): j ≤ f (k)}.

Prove the following:

(i) these maps are Scott-continuous (assuming only that we know that
[L → M] is a complete lattice);

(ii) (fun, graph) is an adjunction with the first map surjective and the second
injective (cf. O-3.7);

(iii) [L → M] is isomorphic to the range of a Scott-continuous closure
operator on 2K (L)×K (M); hence, it is algebraic;

(iv) part (iii) can be used to describe K ([L → M]) explicitly. �

Exercise II-2.36. Prove the following.

(i) Let SEMI be the category of sup semilattices with 0 and monotone maps.
Then we can construe the construction of I-4.10 as a functor

Id: SEMI → ALG

provided we define Id f to be the map I �→ ↓ f (I ).
(ii) This construction is not an equivalence of categories, because not every

continuous map is obtained.
(iii) Expand SEMI to the category GRAPH using the idea of II-2.35 by adding

more maps. Specifically, for R, S ∈ SEMI define F : R → S to mean that
F is a sup subsemilattice of S × R which is monotone in the sense that
yFx and y1 ≤ y always imply y1 Fx . (Every f : R → S in SEMI is
represented in GRAPH by the relation {(y, x): y ≤ f (x)}.) Composition
GF for G: S → T is just the ordinary composition of relations. In this
way GRAPH is a category and SEMI is a subcategory with the same
collection of objects. Now define Id: GRAPH → ALG where Id F is the
map

I �→ {y: yFx for some x ∈ I }.

This construction provides an equivalence of categories. �
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Old notes

The results in this section are largely based on Scott’s ideas. (See [Scott, 1972a]
and also [Scott, 1976] and the bibliography contained therein.)

New notes

Cartesian closed categories of domains have attracted considerable attention as
they are appropriate for models of various typed and untyped lambda-calculi
and functional programming languages. The subsection on FS-domains and
bifinite domains provides us with maximal classes of cartesian closed cate-
gories of domains, and of algebraic domains. The bifinite domains were in-
troduced and studied by G. Plotkin [Plotkin, 1976] in the context of power-
domains (see also Section IV-8). FS-domains were introduced by A. Jung [Jung,
1990b].

As the category DOM of all domains is not cartesian closed, there has been
interest in classifying cartesian closed categories of domains. M. B. Smyth has
shown that among the full subcategories of pointed countably based algebraic
domains there is a unique largest one: the category of pointed countably based
bifinite domains [Smyth, 1983b]. (An algebraic domain is countably based iff
it has countably many compact elements only; see also Section III-4.) For the
general case the problem has been solved by A. Jung [Jung, b1989; Jung, 1990a;
Jung, 1990b]: there are exactly two maximal full subcategories of pointed do-
mains: the category of all pointed FS-domains and the category of all pointed
L-domains. In the algebraic case, FS-domains have to be replaced by bifinite do-
mains and L-domains by algebraic ones. In the general case (of domains without
a least element), there are exactly four maximal full cartesian closed subcat-
egories of (algebraic) domains: one considers either disjoint sums of pointed
FS-domains or L-domains, or else certain finite amalgams of FS-domains or
L-domains.

II-3 Injective Spaces

In the previous sections we associated with a complete lattice a canonical topol-
ogy, and we further pursue the relation between topological spaces and lattices
in this section. Our goal here is to characterize continuous lattices via the Scott
topology in purely topological terms. The question is: which topological spaces
are of the form �L for L a continuous lattice? We find a complete (and brief!)
answer. Furthermore we show that �L as a space completely determines L as
a lattice.
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We work entirely in the category TOP of T0-spaces and continuous maps
and will never consider topological spaces which do not at least satisfy the
T0-separation axiom.

Injective and densely injective spaces

We begin by recalling the idea of relative injectives in a category A. One is
given a class J of monomorphisms which is closed under the pre- and post-
multiplication with isomorphisms. Then an object Z is called a J-injective iff
for any map j : X → Y in J and every morphism f : X → Z in A there is
a morphism f ∗: Y → Z with f = f ∗ ◦ j , that is, the following diagram
commutes.

In the category TOP we wish to consider J -injectives for the class J of all
subspace embeddings (that is, continuous maps whose co-restriction to their
image is a homeomorphism). For future reference we restate the definition in
this special case.

Definition II-3.1. A T0-space Z is called injective iff every continuous map
f : X → Z extends continuously to any space Y containing X as a subspace.

�

It is useful to record that there are some purely arrow-theoretical facts about
relative injectives (whose proof we leave as an exercise on the manipulation of
injectives in any category).

Lemma II-3.2.

(i) Products of J -injectives are J -injectives.
(ii) Retracts of J -injectives are J -injectives.

(iii) If Z is a J -injective and j : Z → Y is a J -monomorphism, then Z is a
retract of Y . �

The immediate question is now whether in TOP we have any injectives. We
give at first a rather modest answer, but it will be the key for all that follows.
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Lemma II-3.3. The Sierpinski space �2 is injective.

Proof: Suppose that X is a subspace of Y and that f : X → �2 is a continuous
map. Then U = f −1(1) is open in X since {1} ∈ σ2. By the definition of the
induced topology on X , there is an open set V on Y with U = V ∩ X . Define g:
Y → �2 to be the characteristic function of V (that is, g−1(1) = V ); it is
continuous, and clearly g | X = f . �

In order to see how far this will lead us we make the following remarks.

Lemma II-3.4.

(i) For every set M we have �(2M ) = (�2)M ; that is, the Scott topology on
2M and the product topology agree. Moreover, �(2M ) is injective.

(ii) Every T0-space X is embedded in some (�2)M .
(iii) Every injective T0-space X is a retract of some (�2)M ; that is, there is a

continuous f : (�2)M → (�2)M with f 2 = f and im f homeomorphic
to X.

Proof: (i) As 2M is an algebraic lattice, we recall by II-1.15 that �(2M ) has as
a basis for its topology the sets of the form ↑k where k is compact in 2M . But
by I-4.15(1) – expressed in terms of characteristic functions rather than sets –
k is just a function that takes on the value 1 only finitely often. The set ↑k, then,
is exactly the class of functions that take the value 1 at least at the places that
k does.

Turning now to the product space (�2)M , we remark that, because {1} is the
only nontrivial open set of �2, a basis for the open sets is given by putting {1}
on finitely many coordinates and {0, 1} on the remainder. But as we just noted
the sets formed this way are the sets of the form ↑k. Thus, the two topologies
have the same basis and must be the same.

The last assertion of (i) then follows from II-3.3 and II-3.2(i).
(ii) For a given space X we take M = O(X ) and define j : X → 2M by

having j(x)(U ) = 1 iff x ∈ U . Since X is T0, it follows that j is injective.
Let W be a basic open set of 2M . By our description in the proof of (i), W is

determined by a finite number of coordinates U1, . . . ,Un ∈ M . We have

j(x) ∈ W iff x ∈ U1 ∩ · · · ∩Un;

whence, j is continuous.
Let V be any open subset of X . Then it is easy to see that

j(V ) = { f ∈ im j : f (V ) = 1}.
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As this is the intersection of a basic open subset of 2M with im j , this shows
that j is an embedding.

(iii) This is now a consequence of (ii), (i) and II-3.2(iii). �

It is useful at this point to recall the various formal aspects of the concept of
a retract. If j : X → Y and e: Y → X are morphisms in a category with
ej = 1X , then X is called a retract of Y . The map e is a retraction, the map j a
co-retraction.

If, in a given category, every morphism f : A → B may be decomposed into
a composition f = f◦ f ◦ with an epimorphism f ◦ and a monomorphism f◦,
then any projection f = f 2 on an object Y gives rise to a retract where X =
domain f◦ = codomain f ◦. Indeed f◦ f ◦ = f = f 2 = f◦ f ◦ f◦ f ◦ implies that
f ◦ f◦ = 1X , since f◦ is monic and f ◦ is epic. In such categories the retracts X
of an object Y are, up to canonical isomorphism, in bijective correspondence
with the projections on Y . We have made use of this situation in Section I-2
(in I-2.4, I-2.17) and in II-3.2(iii) and II-3.4(iii) above. We will use it further
now. All the categories we consider have the required epic–monic factorization
property. A direct proof of the next proposition is given in Proposition II-3.9.

Proposition II-3.5. If L is a continuous lattice, then�L is an injective space.

Proof: By I-4.18(4), L is a retract in UPS of some 2M . Since functors preserve
retracts, �L is a retract of �(2M ). By II-3.4(i), �(2M ) is injective. Hence, by
II-3.2(ii), �L is injective. �

So far we operated exclusively in terms of topology, using, where lattices arose,
the canonical Scott topology. We now associate with each T0-space a canonical
(and well-known) poset structure.

Recall that in a T0-space X , for two elements x and y in X the following
relations are equivalent (see before O-5.2):

(1) {x}− ⊆ {y}−;
(2) x ∈ {y}−;
(3) x ∈ U implies y ∈ U , for all open sets U .

The relation

x ≤ y iff x ∈ {y}−

is a partial order that we have called the specialization order in O-5.2. Further-
more if f : X → Y is a continuous map in TOP, then it is obvious from (3) that
the relation is preserved; that is, f is a monotone map. We thus have a functor
from TOP into the category POSET of posets and monotone maps.



180 II The Scott Topology

Definition II-3.6. We denote by �: TOP → POSET the functor which asso-
ciates with a space X the poset �X = (X,≤), where ≤ is the specialization
order, and with � f = f . �

Note that, with respect to the specialization order, {x}− = ↓x , closed sets are
lower sets and open sets are upper sets. If L is a dcpo, then ��L = L by
I-1.4(ii); that is to say, the Scott topology determines the partial ordering by
means of a purely topological definition. We are now ready for a counterpart
of II-3.5.

Proposition II-3.7. If X is an injective T0-space, then �X is a continuous
lattice.

Proof: By II-3.4(iii), there is a continuous function f = f 2: (�2)M → (�2)M

such that we may identify the space X with im f . We apply the functor � and
note�(�2)M = ��(2M ) = 2M by II-3.4(i). We thus obtain a projection opera-
tor f : 2M → 2M which preserves directed sups by I-2.1. But then im f is a con-
tinuous lattice in the induced partial order by I-4.18. However, the specialization
order of a space induces on a subspace the specialization order of this subspace
(indeed if A is a subspace of B and P ⊆ A, then the closure of P in A is P−∩A,
where P− is the closure of P in B). Thus, �X is a continuous lattice. �

If we apply to the diagram

of UPS-maps the functor �, we obtain, in view of II-3.4(i), the commutative
diagram

of continuous maps. Since f◦: X → (�2)M is an embedding, then the identity
map 1X : ��X → X is continuous; since the retraction f ◦: (�2)M → X is a
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quotient map (as all retractions are), the identity map in the other direction
1X : X → ��X is continuous. Hence ��X = X .

Taking this remark into account, we may summarize the principal results of
this subsection in the following theorem.

Theorem II-3.8.

(i) If L is a continuous lattice, then �L = (L , σ (L)) is an injective space
and ��L = L.

(ii) If X is an injective T0-space, then �X = (X,≤) is a continuous lattice
(with respect to the specialization order) and ��X = X. �

There is, therefore, a canonical bijection between continuous lattices and injec-
tive topological T0-spaces. In fact we have shown that INJ, the full subcategory
of TOP consisting of injective spaces and all continuous maps, is essentially
the same category as CONT. This allows not only a purely topological descrip-
tion of continuous lattices (injective spaces under the specialization order),
but also a complete answer to the question which spaces are of the form �L
with L continuous. The results of Section 4 will serve as a first illustration of
how useful this knowledge can be. (Note that by II-3.8 and II-1.13 all injective
T0-spaces are locally compact and sober. The converse is clearly incorrect as
the two point discrete space shows.)

We turn now to a topological characterization of bounded complete domains.
First we give an explicit construction of continuous extensions.

Proposition II-3.9. Let L be a continuous lattice, resp. a bounded complete
domain, equipped with the Scott topology, let X be a subspace, resp. a dense
subspace, of a topological space Y , and let f : X → L be continuous. Then

f ∗(y) := sup{inf f (U ∩ X ): U is open, y ∈ U }

is a continuous extension of f to Y , and is the supremum of all such extensions.

Proof: The infimum inf f (U ∩ X ) exists for L a continuous, hence complete,
lattice. If X is dense, then U ∩ X is nonempty, so the infimum inf f (U ∩ X )
exists for L a bounded complete domain. For y ∈ U ⊆ V, inf f (V ∩ X ) ≤
inf f (U ∩ X ), and hence the supremum is a directed supremum and thus exists
since L is a dcpo.

Suppose that q � f ∗(y). Pick p such that q � p � f ∗(y), a directed
supremum; then p ≤ inf f (U ∩ X ) for some open set U containing y. It
follows that f ∗(U ) ⊆ ↑p ⊆ �

q. Since sets of the form

�

q form a basis for the
Scott topology, we conclude that f ∗ is continuous.
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Let x ∈ X . Clearly f ∗(x) ≤ f (x). If q � f (x), then by continuity there
exists U open containing x such that f (U ∩ X ) ⊆ �

q . Then q ≤ f ∗(x). Since
f (x) = sup � f (x), we conclude f (x) ≤ f ∗(x).

Finally suppose that g: Y → L is continuous and extends f . Let y ∈ Y , and
let q � g(y). Then there exists U open containing y such that g(U ) ⊆ �

q . It
follows that

q ≤ inf g(U ) ≤ inf g(U ∩ X ) = inf f (U ∩ X ) ≤ f ∗(y).

Thus g(y) = sup �g(y) ≤ f ∗(y). �

Definition II-3.10. A T0 space Z is called densely injective if every continuous
map f : X → Z extends continuously to any space Y containing X as a dense
subspace. �

Note that the densely injective T0-spaces are precisely the J -injectives for the
class J of all dense subspace embeddings. Thus the general remarks we made on
J -embeddings at the beginning of the section apply to densely injective spaces.

Proposition II-3.11. A space is a densely injective T0-space iff it is a bounded
complete domain equipped with the Scott topology.

Proof: It follows from Proposition II-3.9 that a bounded complete domain
equipped with its Scott topology is densely injective. Conversely let Z be a
densely injective T0 space. Then Z can be topologically embedded in some
(�2)M , the continuous lattice 2M equipped with the Scott topology by
Lemma II-3.4(i),(ii); let j : Z → X = j(Z ) be the embedding. The closure
Y of the embedded image X is a Scott closed subset of 2M , hence closed under
arbitrary nonempty infs and directed sups, and thus a bounded complete domain
(see Theorem I-2.11). By the dense embedding property there exists a contin-
uous mapping f : Y → Z extending j−1: X → Z . Then j f is a continuous
projection operator from Y onto X , and thus X is a bounded complete domain
by Corollary I-2.3. Since j is an order isomorphism with respect to the order
topologies on Z and X , Z is also a bounded complete domain. Since Z is a
retract of Y , it follows from Proposition II-3.15(iii) below that the topology of
Z is the Scott topology. �

Monotone convergence spaces

For an arbitrary space X , very little can be said in general of the poset structure
of �X . Directed nets need not have sups. Even if directed nets always have
sups, they need not converge to their sups (as the unit interval in which all
upper sets are open shows). The following definition is therefore natural.
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Definition II-3.12. A T0 space X is called a monotone convergence space iff
every subset D directed relative to the specialization order (II-3.6) has a sup,
and the relation sup D ∈ U for any open set U of X implies D ∩U �= Ø. �

Clearly, a space is a monotone convergence space iff every directed net in �X
has a sup and converges to this sup; whence the name. In particular, every
monotone convergence space is a dcpo with repect to its specialization order
and every open subset of X is Scott open in�X . By II-1.2(ii), every space�L for
a dcpo L is a monotone convergence space. All injective spaces are monotone
convergence spaces. By O-5.15, every sober space is a monotone convergence
space.

Lemma II-3.13. A continuous function f : X → Y from a monotone con-
vergence space X to any space Y preserves directed sups in the specialization
orders (that is, � f preserves directed sups).

Proof: Let D be a directed subset of �X . Since f is monotone, it follows that
f (sup D) is an upper bound of f (D). Let a be also an upper bound of f (D)
and a �≥ f (sup D). Then U = Y\↓a is an open neighborhood of f (sup D); that
is, f −1(U ) is an open neighborhood of sup D, by the continuity of f . Since X
is a monotone convergence space, there is a d ∈ D with d ∈ f −1(U ); that is,
f (d) ∈ U and f (d) �≤ a, a contradiction to f (D) ≤ a. �

Lemma II-3.14. Let X be a space and Y a monotone convergence space. Let
( f j ) j∈J be a net of continuous functions f j : X → Y such that ( f j (x)) j∈J is a
directed net of �Y for each x. Let f : X → Y be the pointwise sup of the net
f j . Then f is continuous.

Proof: Let x ∈ X and let U be an open set in Y containing f (x). Since
f (x) = sup j f j (x) and Y is a monotone convergence space, there is a j ∈ J
with f j (x) ∈ U ; that is, x ∈ V = f −1

j (U ). As f j is continuous, V = f −1
j (U )

is open. For all z ∈ V we have f j (z) ≤ f (z). As f j (z) ∈ U and as open sets
are upper sets with respect to the specialization order, we conclude f (z) ∈ U
and hence f (V ) ⊆ U . �

The set TOP(X, Y ) of all continuous functions f : X → Y may be considered
as a subset of (�Y )X with the induced ordering, that is, f ≤ g iff f (x) ≤ g(x)
for all x ∈ X with respect to the specialization order on Y . With this convention
we have

Proposition II-3.15. Let X, Y, Z be T0 spaces.

(i) If Y is a monotone convergence space, then the subset TOP(X, Y ) of
(�Y )X is closed under directed sups, this is, TOP(X, Y ) is a dcpo.
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(ii) If Y is a monotone convergence space and f : Y → Z a continuous map,
then the function TOP(X, f ) = (g �→ f g): TOP(X, Y ) → TOP(X, Z )
preserves directed sups.

(iii) If X is a continuous retract of a monotone convergence space Y , then X
must be T0 and is a monotone convergence space. In the special case that
Y is a dcpo equipped with the Scott topology, then X must also have the
Scott topology.

Proof: Part (i) follows immediately from II-3.14. In order to prove part (ii) it
suffices to point out that f preserves directed sups by Lemma II-3.13 and that
sups of functions are calculated pointwise.

(iii) Let f : Y → X and j : X → Y be continuous functions such that f j is
the identity on X . For y = j(x) ∈ j(X ), j( f (y)) = j( f j(x)) = j(x) = y, and
thus j is a homeomorphic embedding of X into Y (with inverse f restricted to
j(X )). Since Y is T0, it follows that X is T0.

Now f and j are order preserving with respect to the orders of specialization,
and f preserves directed sups by Lemma II-3.13. Let D be a directed set in
X . Then j(D) is a directed set in Y and hence has a supremum d . Then f (d)
is the supremum for ( f j)(D) = D, and thus X is a dcpo with respect to
the order of specialization (Lemma II-3.13). Furthermore by continuity of f ,
the directed set D converges to its supremum f (d), and thus X is a monotone
convergence space.

Now let X be a dcpo and U a Scott open set in X . Then f −1(U ) is Scott
open in Y , since f preserves directed sups and hence is Scott-continuous. Thus
j−1( f −1(U )) = (1X )−1(U ) = U is open in X if Y has the Scott topology.
Conversely every open set in X is Scott open, as X has been proved to be a
monotone convergence space. �

We come now to a topological analog of Theorem II-1.14.

Theorem II-3.16. For a monotone convergence space X and its order of
specialization, the following conditions are equivalent.

(1) �X is a domain and the topology of X is the Scott topology.
(2) For each U ∈ O(X ), U =⋃{int(↑x): x ∈ U }.
(3) Each point has a neighborhood basis of open filters, and O(X ) is a

continuous lattice.
(4) O(X ) has enough co-primes and is a continuous lattice.
(5) O(X ) is completely distributive.
(6) Both O(X ) and O(X )op are continuous.
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If X is a complete semilattice then these conditions are equivalent to

(7) for each point x ∈ X we have x = sup{inf U : x ∈ U ∈ O(X )}.
Proof: That (1) implies (2)–(7) follows from Theorem II-1.14.

(2) implies (1): Let x ∈ X and consider D = {d ∈ X : x ∈ int(↑d)}. It
follows directly from the assumption (2) that D is directed. Suppose that its
supremum t satisfies t < x . Then X\↓t = X\{t}− is an open set containing
x and missing t . By assumption there exists d ∈ D such that d ∈ X\↓t ,
contradicting the fact that t is their supremum. The argument of Proposition
II-1.6 yields that d � x for each d ∈ D. Thus �X is a domain. Furthermore,
for any Scott open set V containing x , it must be the case that d ∈ V for
some d ∈ D. Hence x ∈ int(↑d) ⊆ ↑d ⊆ V . We conclude that the identity is
continuous from X to �X endowed with the Scott topology. But since X is a
monotone convergence space, its topology is contained in the Scott topology,
and so the two are equal.

(3) implies (2): Let x ∈ U ∈ O(X ). There exists V ∈ O(X ) such that x ∈
V � U , since O(X ) is continuous. Pick an open filter F such that x ∈ F ⊆ V .
Suppose that for each y ∈ U , it is not the case that F ⊆ ↑y. Then y ∈ X\↓z for
some z ∈ F , and hence there exists an open filter Fy such that y ∈ Fy ⊆ X\↓z,
since the open filters form a basis. Finitely many of the Fy , say Fy1, . . . , Fyn ,
must cover V . Pick zi ∈ F\Fyi for each i and pick z ∈ F such that z ≤ zi for all
i (remember F is a filter). Then z ∈ Fyi would imply zi ∈ Fyi , so none of the Fyi

contain z, a contradiction. Thus there exists y ∈ U such that x ∈ F ⊆ int(↑y).
(3) iff (4): The argument in the proof of Proposition II-1.11(i) applies equally

to O(X ) as to σ L to show that an open set is a filter iff it is a co-prime in O(X ).
The equivalence of (3) and (4) is then immediate.

(4) iff (5) iff (6): A consequence of I-3.16.
(7) implies (2): The proof follows directly from the fact that X is a monotone

convergence space. �

Exercises

Exercise II-3.17. For a T0 space X , show that the following conditions are
equivalent:

(1) X is injective;
(2) X is a retract of every space of which it is a subspace;
(3) X = ��X, �X is a complete lattice, and O(X ) is completely

distributive.

Hint. Use II-3.4(ii) and II-3.2(i) for (1) iff (2). For (1) iff (3) recall II-1.14. �
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We remark that II-3.17(3) gives a characterization of injective spaces that is
completely intrinsic, in the sense that relationships to other spaces are not
involved in the statement of the property.

Exercise II-3.18. Which spaces are of the form �L for some algebraic
lattice L?

Answer: They are the injective spaces for which the monogeneric open sets
form a basis for the topology. (A subset is called monogeneric if it has a smallest
element in the order of specialization, so that any neighborhood of it covers the
whole subset. For an open set, this is the same as being compact and a co-prime
in the lattice of open sets.)

Hint. Recall II-1.15. �

Exercise II-3.19. Let X be a subspace of Y , L a continuous lattice, and f : X →
�L an arbitrary function. Define f ∗: X → Y by

f ∗(y) := sup{inf f (U ∩ X ): U is open; y ∈ U }.
Show that f ∗ is continuous, that it is the largest continuous function such
that f ∗(x) ≤ f (x) for all x ∈ X , and that f (x) = f ∗(x) at every point
of continuity of f . State and derive an analogs result for bounded complete
domains.

Hint. Adapt the proof of II-3.9. �

Exercise II-3.20. Let X be a compact space and L a dcpo. If V �= Ø is a Scott
open subset of L , show that { f ∈ TOP(X, �L): f (X ) ⊆ V } is a Scott open
subset of TOP(X, �L), and its Scott topology agrees with the relative Scott
topology from TOP(X, �L).

Hint. Suppose that f (X ) ⊆ V , and let f be the directed supremum of a family
D in TOP(X, �L). For each x ∈ X , pick gx ∈ D such that gx (x) ∈ V , and then
pick Ux , a Scott open set containing x , such that gx (Ux ) ⊆ V . Finitely many
of the Ux cover X , and if g is chosen in D larger than the corresponding gx ,
then h(X ) ⊆ V for h ∈ D, g ≤ h. Since { f ∈ TOP(X, �L): f (X ) ⊆ V } is
also an upper set in the pointwise order, it follows that it is Scott open. Hence
by Exercise II-1.26(i) its Scott topology agrees with the relative Scott topology.

�

Exercise II-3.21. Show that a topological space X is a monotone convergence
space iff it is a dcpo with respect to the order of specialization and its topology
is order consistent with respect to that order (see Exercise II-1.31).
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Old notes

The idea of characterizing continuous lattices exclusively in terms of T0 spaces
as injectives in the category of T0 spaces and continuous functions was one of
the basic results in [Scott, 1972a]; thus, Theorem II-3.8 was a core result of that
treatise.

The specialization order of II-3.6 has been traditionally used in the spectral
theory of rings. The idea of monotone convergence spaces (II-3.12) was used
by O. Wyler in a seminar report [scs 35]; he called them d-spaces.

New notes

Proposition II-3.11 was proved in [Eršov, 1973]. Densely injective spaces have
been studied in more detail in [Escardó, 1998b]. The investigation of monotone
convergence spaces has been taken up in [Eršov, 1999c] recently.

II-4 Function Spaces

Throughout this section we assume that all topological spaces under consider-
ation are T0 spaces. Recall that TOP denotes the category of all T0 spaces and
all continuous functions.

In Section 2 we introduced the poset [S → T ] for two dcpos as the set
of Scott-continuous functions from S to T equipped with the pointwise order
induced from T . By II-2.1 we have [S → T ] = TOP(�S, �T ), so this suggests
that there is a topological description of the poset.

The Isbell topology

A common function space topology is the compact–open topology. We need
a modification of this topology for treating general spaces X and Y . We nor-
mally define subbasic open subsets for the compact–open topology on the set
TOP(X, Y ) of all continuous functions from X into Y to be sets of the form

N (K → V ) := { f ∈ TOP(X, Y ) : f (K ) ⊆ V },
where K is compact in X and V is open in Y . Note that f (K ) ⊆ V iff K ⊆
f −1(V ), and the latter is true iff the saturation of K , the intersection of all open
sets containing K , is contained in f −1(V ). Hence one obtains exactly the same
collection if one restricts to compact saturated sets. For any compact saturated
set K , the collection of open sets containing K is a Scott open filter FK by
Lemma II-1.18, and we observe that f ∈ N (K → V ) iff f −1(V ) ∈ FK . Thus
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if we define

N (FK ← V ) := { f ∈ TOP(X, Y ) : f −1(V ) ∈ FK },
then N (FK ← V ) = N (K → V ). If we assume additionally that X is
sober, then by the Hofmann–Mislove Theorem (II-1.20), for each open sub-
set V of Y , the assignments N (K → V ) �→ N (FK ← V ) and N (F ←
V ) → N (

⋂
F → V ) implement mutually inverse bijections between the sets

{N (K → V ): K a compact saturated subset of X} and {N (F ← V ): F a Scott
open filter in O(X )}. This provides motivation for the following definition.

Definition II-4.1. For two spaces X and Y , let H be a Scott open subset of
the complete lattice O(X ), let V be an open subset of Y , and set

N (H ← V ) = { f ∈ TOP(X, Y ) : f −1(V ) ∈ H}.
As H ranges over σ (O(X )) and V ranges over O(Y ), the sets N (H ← V ) form
a subbasis for a topology on TOP(X, Y ), called the Isbell topology. Let [X, Y ]
denote the set TOP(X, Y ) endowed with the Isbell topology. Let, in addition,
[ f, h](g) = hg f , thus defining a functor:

[·, ·]: TOPop × TOP → TOP. �

We verify in Lemma II-4.2 that [ f, h] is indeed a continuous function.
We recall that the order of specialization on any space can be characterized

by x ≤ y iff for all open sets U , x ∈ U implies y ∈ U (see remarks preceding
O-5.3). It is straightforward that it is sufficient to check this property for all
open sets U belonging to a subbasis for the topology.

Lemma II-4.2. Let X and Y be spaces.

(i) The Isbell topology on [X, Y ] is finer than the compact–open topology
which in turn is finer than the topology of pointwise convergence (which
is the point open topology, or equivalently the relative product topology
from Y X restricted to TOP(X, Y )). If X is sober and O(X ) is a continuous
lattice, then the Isbell topology and the compact–open topology agree.

(ii) Let �[X, Y ] denote [X, Y ] with its order of specialization. Then f ≤ g in
�[X, Y ] iff f (x) ≤ g(x) in �Y for all x ∈ X iff f −1(V ) ⊆ g−1(V ) for all
V ∈ O(Y ). Thus [S → T ] = �[�S, �T ] for dcpos.

(iii) If f : X1 → X and h: Y → Y1 are continuous, then [ f, h]: [X, Y ] →
[X1, Y1] is continuous.

Proof: (i) The comments preceding Definition II-4.1 imply that every subbasic
open set in the compact–open topology is a subbasic open set in the Isbell
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topology. Since points are compact, the topology of pointwise convergence with
subbasic open sets N ({p} → V ) is contained in the compact–open topology.
Suppose that X is sober and O(X ) is a continuous lattice. If f ∈ N (H ← V ),
then f −1(V ) ∈ H , and since O(X ) is continuous, by Theorem II-1.14(3) there
exists an open filter F such that f −1(V ) ∈ F ⊆ H . Again by the remarks
preceding Definition II-4.1 there exists a compact saturated set K such that
N (K → V ) = N (F ← V ) and thus V ∈ N (K → V ) = N (F ← V ) ⊆
N (H ← V ). Thus the Isbell topology is also contained in the compact–open
topology in this case, and hence the two are equal.

(ii) Let f ≤ g in �[X, Y ]. Then for x ∈ X and V open in Y , f (x) ∈ V iff
f ∈ N (N (x) ← V ) implies g ∈ N (N (x) ← V ) iff g(x) ∈ V , where N (x) is
the Scott open filter of open neighborhoods of x . Hence f (x) ≤ g(x).

If f (x) ≤ g(x) in �Y for all x , then for V open in Y , x ∈ f −1(V ) iff
f (x) ∈ V implies g(x) ∈ V iff x ∈ g−1(V ). Thus f −1(V ) ≤ g−1(V ).

Suppose that f −1(V ) ⊆ g−1(V ) for all V ∈ O(Y ). If f ∈ N (H ← V ), an
Isbell open set, then f −1(V ) ∈ H , and thus g−1(V ) ∈ H , since H is closed
under supersets. Thus g ∈ N (H ← V ). Since the N (H ← V ) form a subbasis,
f ≤ g.

(iii) For the continuity of [ f, h] it is sufficient to take any Scott open subset
H1 of O(X1) and any open subset V1 of Y1 and to show that [ f, h]−1(N (H1 ←
V1)) = N (H ← V ) for some Scott open subset H of O(X ) and some open
subset V of Y : We take V = h−1(V1) which is open as g is continuous, and
H = (O f )−1(H1) = {U ∈ O(X ) : f −1(U ) ∈ H1}. As O f preserves arbitrary
unions, it is Scott-continuous. Thus the preimage H of the Scott open set H1

is Scott open too. Finally g ∈ [ f, h]−1(N (H1 ← V1)) iff (hg f )−1(V1) ∈ H1 iff
f −1(g−1(h−1(V1))) = f −1(g−1(V )) ∈ H1 iff g−1(V ) ∈ H iff g ∈ N (H ← V ).

�

Remark. In later parts of this section (see II-4.10) and notably in Chapter V
we undertake a detailed study of spaces X for which O(X ) is continuous. By
I-1.7(5) we know that this class contains all locally compact spaces, and, among
regular T0 spaces, by I-1.34 only the locally compact Hausdorff spaces are in
this class. If L is a domain, then �L is in this class because O(�L) = σ (L) is
continuous by II-1.13. We shall see in Chapter V that a sober space is locally
compact iff O(X ) is a continuous lattice.

Note that the topological space [X, Y ] and the poset �[X, Y ] have the same
underlying set TOP(X, Y ).

We frequently regard [X, ·] as a functor, on TOP and thus given h: Y → Y1,
write [X, h] for [1X , h]: [X, Y ] → [X, Y1]. In a similar fashion we have a
functor [·, Y ] on TOPop.
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Lemma II-4.3. (i) If Y is a monotone convergence space, then [X, Y ] is closed
in (�Y )X under the formation of directed sups and is a monotone
convergence space.

(ii) If f : Y → Z is a continuous function, resp. an embedding, then [X, f ]:
[X, Y ] → [X, Z ] is continuous, resp. an embedding. If Y is a monotone
convergence space, then [X, f ] is also Scott-continuous.

(iii) The mapping f �→ f −1(1) : [X, �2] → �O(X ), where the �2 is
Sierpinski space, is a homeomorphism. In particular, the Isbell topology
on [X, �2] agrees with the Scott topology.

(iv) If X is a space and Y is a retract of a monotone convergence space Z,
then [X, Y ] is a Scott-continuous retract of [X, Z ]. In particular, if
�[X, Z ] is a domain, or a continuous lattice, then so is �[X, Y ].

Proof: The first assertion of (i) is a reiteration of II-3.15(i). Suppose that f is
the pointwise supremum of a directed set D ⊆ [X, Y ], and that f ∈ N (H ←
V ), a subbasic open set in the Isbell topology. Then from the fact that Y is a
monotone convergence space and II-4.2(ii), one deduces readily that f −1(V ) =
⋃

g∈D g−1(V ). Since this union is directed and f −1(V ) ∈ H , a Scott open set,
it follows that g−1(V ) ∈ H for some g ∈ D, i.e., g ∈ N (H ← V ). It follows
that D converges to f in [X, Y ].

As to (ii), the continuity of [X, f ] is a special case of Lemma II-4.2(iii). The
embedding assertion follows from the observation that for any U open in Z ,
N (H ← f −1(U )) in TOP(X, Y ) is equal to the inverse image under [X, f ]
of N (H ← U ) in TOP(X, Z ). The final assertion follows from part (i) and
Lemma II-3.13.

For (iii), f �→ f −1(1) is a bijection as in Lemma II-2.11, and then one
verifies directly that N (H ← {1}) in [X, �2] corresponds to the Scott open
set H in O(X ). Thus the correspondence is continuous both ways, hence a
homeomorphism, and thus an order isomorphism, since the orders are the orders
of specialization. Since O(X ) has the Scott topology, so does [X, �2].

For (iv), note that [X, Z ] is a continuous retract of the monotone convergence
space [X, Y ] (since functors preserve retracts), and hence a Scott-continuous
retract by Lemma II-3.13. The last assertion follows from I-2.3. �

Spaces with a continuous topology

We now investigate the situation that �[X, Y ] is a domain.

Proposition II-4.4. Let X be a space and Y a monotone convergence space,
and suppose that �[X, Y ] is a domain. Then

(i) �Y is a domain,
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(ii) if the order of specialization on Y is nontrivial, that is, if there are
elements y < y∗, then O(X ) is a continuous lattice.

Proof: (i) We fix a point b ∈ X and consider the retraction f : X → X given
by f (x) = b for all x . Then [ f, Y ]: [X, Y ] → [X, Y ] is a continuous retraction
onto the set of constant maps, and hence Scott-continuous by Lemma II-4.3(ii).
Thus the image of [ f, Y ] is a domain by I-2.3, which is order isomorphic to�Y .

(ii) Let U be any open neighborhood of y∗ which does not contain y. Its
characteristic function is a retraction Y → �2 with right inverse i : �2 → Y ,
where i(1) = y∗ and i(0) = y. (Note for continuity of i that for any open
set V ⊆ Y with 0 ∈ i−1(V ) we have y ∈ V ; hence y∗ ∈ V , and thus 1 ∈
i−1(V ).) Thus [X, �2] is a Scott-continuous retract of [X, Y ], hence a domain
by Lemma II-4.3(iv), and thus a continuous lattice since it is a complete lattice.
But O(X ) is isomorphic to [X, �2]. �

Let us observe that the continuity of �Y does not allow us to conclude that Y
has the Scott topology; the given topology of Y may be coarser than the Scott
topology of �Y . Since Y is a monotone convergence space, then its topology
is coarser than or equal to the Scott topology.

Given sets X, Y, Z , we consider the exponential or currying function E :
Z X×Y → (ZY )X by E f (x)(y) = f (x, y) for f : X ×Y → Z as in II-2.10. Then
E is a bijection with inverse (E−1g)(x, y) = g(x)(y). For topological spaces
X, Y, Z , we consider the restriction of E to TOP(X × Y, Z ).

Proposition II-4.5. Let X, Y, Z be spaces.

(i) If f : X × Y → Z is continuous, then E f : X → [Y, Z ] is continuous.
(ii) If the evaluation map eval: [Y, Z ] × Y → Z given by eval( f, y) = f (y)

is continuous, then E−1g: X × Y → Z is continuous for every
continuous function g: X → [Y, Z ] and E : TOP(X × Y, Z ) →
TOP(X, [Y, Z ]) is a bijection.

(iii) If O(Y ) is a continuous lattice, then the evaluation map eval: [Y, Z ] ×
Y → Z is continuous.

(iv) If O(Y ) is a continuous lattice, then E−1g: X × Y → Z is continuous for
every continuous function g: X → [Y, Z ] and E : TOP(X × Y, Z ) →
TOP(X, [Y, Z ]) is a bijection.

Proof: (i) Let f : X × Y → Z be continuous. For x ∈ X, the mapping E f (x):
Y → Z is continuous since E f (x) is the composition y �→ (x, y) �→ f (x, y).
Let N (H ← V ) be a subbasic open set in [Y, Z ] containing g := E f (x). Then
g−1(V ) ∈ H . For each y ∈ g−1(V ), we have f (x, y) = E f (x)(y) = g(y) ∈ V .
Hence there exist open sets Uy containing x and Wy containing y such that
f (Uy × Wy) ⊆ V . Since H is Scott open and

⋃
y Wy ⊇ g−1(V ) ∈ H , there
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exist finitely many of the Wy whose union W is a member of H . Let U be
the intersection of the corresponding Uy . Then f (U × W ) ⊆ V . Thus for
each u ∈ U,W ⊆ (E f (u))−1(V ), and hence (E f (u))−1(V ) ∈ H . Therefore
E f (U ) ⊆ N (H ← V ) and thus E f is continuous at x . Since x was arbitrary,
E f is continuous.

(ii) Let f̂ : X → [Y, Z ] be continuous. Set f := E−1 f̂ : X × Y → Z . Then
f can be written as the composition

(x, y) �→ ( f̂ (x), y) �→ f (x, y) = eval( f̂ (x), y): X × Y → [Y, Z ] × Y → Z ,

where both maps are continuous by hypothesis. Hence f is continuous.
We know that at the set level E and E−1 are inverse functions. It then follows

from (i) and the previous paragraph that when restricted to TOP(X ×Y, Z ) and
TOP(X, [Y, Z ]), respectively, they are mutually inverse functions.

(iii) Let O(Y ) be a continuous lattice, let f ∈ [Y, Z ], y ∈ Y , and let V be an
open set in Z containing f (y). Then there exists an open set U in Y such that
y ∈ U � f −1(V ). Set H := �

U = {B ∈ O(Y ) : U � B}. By Proposition
II-1.6, H is Scott open, and hence N (H ← V ) is an open neighborhood of f .
If g ∈ N (H ← V ), then U � g−1(V ); thus for u ∈ U, eval(g, u) = g(u) ∈ V .
We conclude that the evaluation mapping is continuous.

Part (iv) follows from (ii) and (iii). �

In topological parlance part (i) of Proposition II-4.5 establishes that the Isbell
function space topology is always splitting, while parts (ii) and (iii) estab-
lish that it is admissible (or conjoining) in the case that O(Y ) is a continuous
lattice.

Proposition II-4.6. If Y is a space such that O(Y ) is a continuous lattice and
Z is an injective space, resp. a densely injective space, then [Y, Z ] is injective,
resp. densely injective. In particular, �[Y, Z ] is a continuous lattice, resp. a
bounded complete domain, and [Y, Z ] = ��[Y, Z ], i.e., the Isbell topology is
the Scott topology.

Proof: Suppose that Z is a densely injective space. Let X be a dense subset of
X1 and suppose that ĥ: X → [Y, Z ] is continuous. By Proposition II-4.5(iv),
h = E−1ĥ: X × Y → Z is continuous. Since X × Y is dense in X1 × Y ,
there exists a continuous extension H of h, H : X1 × Y → Z . Then E H = Ĥ :
X1 → [Y, Z ] is continuous by II-4.5(i) and is easily verified to be an extension
of ĥ. Thus we have established that [Y, Z ] is also a densely injective space. By
Proposition II-3.11 it must be a bounded complete domain equipped with the
Scott topology.
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A similar argument establishes the case that Z is an injective space, or one
can use the previous paragraph and the fact that a bounded complete domain
that is a complete lattice is a continuous lattice. �

If S is a dcpo such that σ (S) is a continuous lattice (e.g., if S is a domain as in II-
1.14), and if T is a continuous lattice, we deduce that [S → T ] = �[�S, �T ]
is a continuous lattice. This re-proves II-2.12.

Remark. In light of Theorems II-1.14(3), II-2.10, and II-3.8 and Propositions
II-3.11 and II-4.6, we have that the topological category of injective spaces, or
that of densely injective spaces, and continuous maps is cartesian closed, where
the function space object is [X, Y ] = �[�X → �Y ]. Indeed this assertion
is a topological reformulation of Theorem II-2.10, as it pertains to bounded
complete domains and continuous lattices.

From our main propositions we can now extract the following theorem.

Theorem II-4.7. Let X be a space and L a complete nonsingleton lattice.
Then the following statements are equivalent:

(1) �[X, �L] is a continuous lattice;
(2) both O(X ) and L are continuous lattices.

Proof: We set Y = �L; then Y is a monotone convergence space. If condition
(1) holds, then the hypotheses of II-4.4 are satisfied. Hence, O(X ) and �Y =
��L = L are continuous lattices; thus (2) follows. If (2) holds, then, by II-3.8
and II-4.6, condition (1) follows. �

The function spaces of the form [X, �L] deserve more attention.

Lemma II-4.8. Let X and Y be topological spaces and f : X → �O(Y ) be
a function. If the set G f = {(x, y) ∈ X × Y : y ∈ f (x)} is open in X × Y , then
f is continuous.

Proof: Let U ∈ σ (O(Y )) and suppose that f (x) ∈ U . Since G f is open, for
each y ∈ f (x) there are an open neighborhood A(y) of x in X and an open
neighborhood B(y) of y in Y such that A(y)× B(y) ⊆ G f . If J is the directed
set of finite subsets of f (x) and F ∈ J , we set B(F) = ⋃y∈F B(y). Then
(B(F))F∈J is a directed net in O(Y ) with supF B(F) = f (x) ∈ U . By II-1.2(ii)
we then find a finite set F ⊆ f (x) such that B(F) ∈ U . Set A(F) =⋂y∈F A(y).
Then A(F) is an open neighborhood of x in X , and for each a ∈ A(F) we have

{a} × B(F) ⊆ A(F) × B(F) ⊆ G f ;

hence, B(F) ⊆ f (a). But also B(F) ∈ U , hence f (a) ∈ U . �
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Proposition II-4.9. For topological spaces X and Y , there is a natural mono-
tone function θ : O(X × Y ) → �[X, �O(Y )] given by

θ (W )(x) = {y ∈ Y : (x, y) ∈ W }.

Proof: We have to show that θ(W ): X → �O(Y ) is continuous. But

Gθ (W ) = {(x, y) ∈ X × Y : y ∈ θ(W )(x)} = W ∈ O(X × Y ).

Hence, Gθ (W ) is open, and Lemma II-4.8 shows that θ(W ) is continuous. It is
evident that θ is monotone. �

In general, there is no reason to believe that the map θ is an isomorphism. We
will now give necessary and sucient conditions for this to be the case.

Theorem II-4.10. Let Y be a T0 space. Then the following statements are
equivalent:

(1) for all spaces X and all continuous lattices L, the pair E and E−1 of
mutually inverse bijections induce by restriction bijections

TOP(X, ��[Y, �L]) � TOP(X × Y, �L);

(1′) for all spaces X and all continuous lattices L, the pair E, E−1 of
mutually inverse bijections Z X×Y � (ZY )X induce by restriction order
isomorphisms

�[X, ��[Y, �L]] � [X × Y, �L];

(2) for all spaces X, the function θ : O(X × Y ) → �[X, �O(Y )] of II-4.9 is
an isomorphism;

(3) for all continuous f : X → �O(Y ) the set G f of II-4.8 is open in X × Y ;
(4) the set {(U, y) ∈ O(Y ) × Y : y ∈ U } is open in �O(Y ) × Y ;
(5) for each y ∈ U ∈ O(Y ) there is a Scott open neighborhood

H ∈ σ (O(Y )) containing U such that
⋂

H is a neighborhood of y in Y ;
(6) O(Y ) is a continuous lattice;
(7) for all spaces Z the evaluation mapping ( f, y) �→ f (y) : [Y, Z ] × Y →

Z is continuous;
(8) for all spaces X, Z the mapping E : TOP(X × Y, Z ) → TOP(X, [Y, Z ]) is

a bijection.

Proof: (1) iff (1′): Clearly (1′) implies (1). Conversely if (1) holds, then one can
use the fact that the order on the function spaces arises from the pointwise order
relative to �Z (Lemma II-4.2(ii)) to check that E is an order isomorphism.
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(1) implies (2): For a space Z we denote by αZ : [Z , �2] → O(Z ) the
isomorphism given by αZ ( f ) = f −1(1). A straightforward calculation shows
the following diagram to be commutative:

Condition (2) is therefore equivalent to the following:
(2′) for all spaces X

TOP(X × Y, �2)
E−→TOP(X, �[Y, �2])

is a bijection with inverse E−1.
Thus (1) clearly implies (2′).

(2) implies (3): Condition (2) says that all continuous f : X → �O(Y ) are
of the form θ (W ) for some open set W ⊆ X × Y ; that is, they are given by the
equation f (x) = {y ∈ Y : (x, y) ∈ W } for some open set W of X × Y . This
says precisely that G f = W for some open set W of X × Y .

(3) implies (4): Take X = �O(Y ) and f = 1σO(Y ), then we find that G f =
{(U, y): y ∈ U }.

(4) implies (5): Let y ∈ U ∈ O(Y ); then by (4) there are an open neigh-
borhood H of U in �O(Y ) and an open neighborhood V of y in Y such that
(W, v) ∈ H × V implies v ∈ W . Thus V ⊆⋂ H .

(5) implies (6): We have to show that for each U ∈ O(Y ) and each y ∈ Y there
is a V ∈ O(Y ) with y ∈ V � U in order to satisfy I-1.6 for L = O(Y ). By (5)
there are an open neighborhood H of U in �O(Y ) and an open neighborhood
V of y such that V ⊆⋂ H . Then V � U by Proposition II-1.6.

(6) implies (7): This is Proposition II-4.5(iii).
(7) implies (8): This is Proposition II-4.5(ii).
(6) implies (1): We have already that (6) implies (8), and it follows from

Proposition II-4.6 (giving equality of the Scott and Isbell topologies) and con-
dition (8) that (1) is satisfied.

(8) implies (2): In light of Lemma II-4.3(iii) and Proposition II-4.6,
condition (2′) (given in the proof of (1) implies (2)) is a special case of condition
(8). But it was already shown that (2′) is equivalent to (2).
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The next to last implication establishes the equivalence of (1)–(6), so (6) ⇒
(7) ⇒ (8) ⇒ (2) completes the proof. �

Definition II-4.11. An object Y in a category A with finite products is called
exponentiable, if the functor−×Y : A → A has a right adjoint−Y , that is, if for
all objects X and Z there is a natural bijection E : A(X × Y, Z ) → A(X, ZY ).

�

The equivalence of (6) and (8) in the preceding theorem shows that in the
category TOP of T0-spaces all spaces Y are exponentiable for which the lattice
O(Y ) of open subsets is continuous; for an arbitrary space Z , the exponential
ZY is the space [Y, Z ] of all continuous functions from Y to Z with the Isbell
topology. We shall show that these are all exponentiable objects:

Theorem II-4.12. For a space Y the following properties are equivalent.

(1) The lattice O(Y ) of open subsets of Y is continuous.
(2) The space Y is exponentiable in the category TOP of T0-spaces.
(3) The functor −× Y preserves quotient maps.

Proof: We have seen from II-4.10 that (1) implies (2). In the category TOP
quotient maps are precisely coequalizers (see [Herrlich and Strecker, b1973],
16.3). As coequalizers are particular colimits (op. cit., 20.3) and as left adjoints
preserve colimits, (2) implies (3).

(3) implies (1): We show that (3) implies that the set G = {(U, y) ∈ O(Y )×
Y : y ∈ U } is open in �O(Y ) × Y , which is condition (4) in II-4.10.

For this we choose an arbitrary ideal I of the lattice O(Y ) and define a
topology τI on O(Y ) as in the proof of II-1.34 by defining H ⊆ O(Y ) to be
τI open, if H is an upper set (that is, U ∈ H,U ⊆ V together imply V ∈ H )
and if
⋃{W : W ∈ I } ∈ H implies that V ∈ H for some V ∈ I . We denote

by O(Y )I the set O(Y ) endowed with the topology τI . For these topologies we
have the following properties.

(a) The Scott topology on the lattice O(Y ) clearly is the intersection of the
topologies τI , where I ranges over all ideals of O(Y ).

(b) G is open in O(Y )I × Y . Indeed, let (U, y) ∈ G, that is y ∈ U ∈ O(Y ).
First case: U �⊆ ⋃{W : W ∈ I }. Then the set H of all V ∈ O(Y ) with U ⊆ V
is τI open and z ∈ V for all (V, z) ∈ H × U , that is, H × U is an open
neighborhood of (U, y) in O(Y )I × Y which is contained in G. Second case:
U ⊆ ⋃{W : W ∈ I }. Then there is W ∈ I with y ∈ W . After replacing W by
U ∩ W we may suppose that W ⊆ U . Then the set H of all V ∈ O(Y ) with
W ⊆ V is τI open and z ∈ V for all (V, z) ∈ H × W , that is, H × W is an
open neighborhood of (U, y) in O(Y )I × Y which is contained in G.
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In order to prove our claim, we consider the disjoint union
∑

I O(Y )I of
the spaces O(Y )I with the obvious topology, where I ranges over all ideals
of the lattice O(Y ). The identity maps O(Y )I → �O(Y ) yield a function q:
∑

I O(Y )I → �O(Y ) which is a quotient map by property (a) above. By our
hypothesis (3), then

q × 1:
∑

I

O(Y )I × Y → �O(Y ) × Y

is a quotient map, too. Note that
∑

I O(Y )I×Y '∑I (O(Y )I×Y ). As G is open
in each O(Y )I ×Y by property (b) above, we conclude that (q×1)(

∑
I G) = G

is open in �O(Y ) × Y . �

On dcpos with a continuous Scott topology

We apply this information in the proof of the following result which touches a
subtle point: If S and T are dcpos, the Scott topology on S × T need not be
the product of the Scott topologies σ (S) and σ (T ), in general. One always has
σ (S)× σ (T ) ⊆ σ (S × T ), but the containment may be proper. For an example
see Exercise II-4.26. As a consequence, a Scott-continuous function defined on
S × T need not be continuous for the product topology σ (S)× σ (T ). This fact
is easily overlooked and has been a source of confusion in the past.

Theorem II-4.13. Let L be a dcpo. Then the following statements are
equivalent.

(1) σ (L) is a continuous lattice.
(2) For every dcpo or complete lattice S one has σ (S × L) = O(�S ×�L).
(3) For every dcpo or complete lattice S one has �(S × L) = �S ×�L.

Proof: It is obvious that (2) and (3) are equivalent.
(1) implies (2): We have σ (S × L) ∼= [S × L → 2] (sending a Scott open

set of S × L to its characteristic function) ∼= [S → [L → 2]] (by II-2.10) ∼=
[S → σ (L)] = �[�S, �O(�L)] (since σ (L) = O(�L), and in view of II-2.1
and II-4.2(ii)); and the order isomorphism θ : σ (S × L) → �[�S, �O(�L)]
is given by θ (W )(s) = {y ∈ L : (s, y) ∈ W }. But under the hypothesis (1), by
Theorem II-4.10 we have O(�S × �L) ∼= �[�S, �O(�L)] under the same
map. Hence O(�S ×�L) = σ (S × L).

(2) implies (1): We apply condition (2) with S = σ (L). Then the topology
of �σ (L) × �L is the Scott topology of σ (L) × L . Now we verify condition
II-4.10(4) with Y = �L which will prove the continuity of O(Y ) = σ (L). We
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must show that the set W of all (U, y) ∈ σ (L) × L with y ∈ U is open in
�σ (L) ×�L; but by the preceding this is tantamount to showing that this set
is Scott open in σ (L)× L . This is not hard to see: If the net (U j , y j ) is directed
with U = ⋃ j U j and y = sup y j , and if (U, y) ∈ W , that is, y ∈ U , then
y j ∈ U for some j , since U is Scott open, and thus y j ∈ Uk , for some k. But
then, if m > j, k we obtain ym ∈ Um , and thus (Um, ym) ∈ W . �

We reformulate this in a slightly weaker fashion:

Corollary II-4.14. The functor �: DOM → TOP preserves finite products.

Proof: This follows from II-4.13, since σ (L) is continuous whenever L is a
domain by II-1.14. �

There are other useful corollaries:

Corollary II-4.15. If L is a complete lattice such that σ (L) is continuous,
then the sup operation ∨: �L ×�L → �L is continuous.

Proof: By II-4.13, �L×�L = �(L× L). But we know∨: �(L× L) → �L
is continuous, since ∨: L × L → L preserves arbitrary sups. �

Corollary II-4.16. If L is a complete lattice such that σ (L) is continuous,
then �L is a sober space.

Proof: II-1.12 and II-4.15. �

In II-4.15 we found a sufficient condition for a complete lattice to be a topo-
logical sup semilattice with respect to the Scott topology. What do we know
about the inf operation? By O-4.2(6) and II-2.1 we know that a complete lattice
L is meet continuous (O-4.1) iff ∧: L × L → L is Scott-continuous; that is,
∧: �(L× L) → �L is continuous. Thus, if σ (L) is a continuous lattice, then L
is meet continuous iff �L is a topological inf semilattice iff (in view of II-4.15)
�L is a topological lattice. The question remains whether the meet continuity
of L can be recognized from properties of σ (L). The answer is yes:

Proposition II-4.17. Let L be a complete lattice. Then the following condi-
tions are equivalent:

(1) L is meet continuous (O-4.1);
(2) σ (L) is join continuous (O-4.1);
(3) σ (L)op is a frame.

Remark. σ (L) is always a frame by O-3.22.
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Proof of proposition: (1) implies (3): By O-4.1 and II-2.1, all translations
x → a ∧ x : �L → �L are continuous. We apply O-3.23 with S = �L and
M = σ (L) = O(�L) and conclude that (3) holds.

(2) iff (3): By O-4.3.
(2) implies (1): By II-1.4(i), σ (L)op is isomorphic to the lattice T of all

lower sets which are closed under directed sups. Let S ⊆ T be the subset of
all principal ideals ↓x for x ∈ L . Then S is closed in T under directed sups;
indeed, if t j is a directed net in L with sup t j = t , then ↓t is an upper bound in
T of the net ↓t j . And if A ∈ T is an upper bound on all ↓t j , then t j ∈ A and
thus t ∈ A, since A is closed under directed sups; hence, ↓t ⊆ A.

Since
⋂

x∈X ↓x = ↓ inf X , then S is closed in T under arbitrary infs. Thus,
if T satisfies the relation (MC) of O-4.1, then so does S. But L is isomorphic
to S under the map x �→ ↓x . �

Corollary II-4.18. Let L be a complete lattice such that σ (L) is a continuous
lattice. Then the following statements are equivalent:

(1) L is meet continuous;
(2) �L is a topological lattice;
(3) σ (L) is join continuous;
(4) σ (L) is a continuous frame (= continuous distributive lattice) and σ (L)op

is a frame. �

In Chapter VII we will identify those L satisfying the conditions of II-4.18 as
precisely the underlying lattices of Haudorff compact topological semilattices
with identity. In Section VI-4 we will give examples to show that these need
not be continuous lattices.

Let us note in passing that II-4.17 allows us to express the following fact: if
τ (L) denotes the lattice of all lower sets which are closed under directed sups,
then for a complete lattice L , the following statements are equivalent.

(1) L is meet continuous.
(2) For some n = 1, 2, 3, . . . , the lattice τ n(L) is meet continuous.
(3) For all n = 1, 2, 3, . . . , the lattice τ n(L) is meet continuous.

Here, of course, we set τ n+1(L) = τ (τ n(L)), inductively.
The results in II-4.17 and II-4.18 should be compared with II-1.14 above.

These theorems express properties, such as the continuity, or meet continuity, of
L , exclusively in terms of properties of the Scott topology σ (L). We will pursue
this further in Chapter VII. But dwelling just a bit longer on complete lattices
L with continuous Scott topology σ (L) and on function spaces [X, �L], we
note a companion to II-4.7.
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Proposition II-4.19. Let X be a topological space and L a complete lattice
such that σ (L) is a continuous lattice. Then

(i) �[X, �L] is a meet continuous lattice iff L is meet continuous,
(ii) �[X, �L] is a frame if and only if L is a frame.

Proof: If L is meet continuous, then �L is a topological lattice by II-4.18
and thus [X, �L] is closed in L X under finite infs and sups. Since �L is a
monotone convergence space, [X, �L] is closed under directed sups in L X

by II-3.15. Hence [X, �L] is closed in L X under arbitrary sups (O-1.5), and
thus it is a complete lattice. Since L X as a product of meet continuous lattices
is meet continuous and since �[X, �L] is closed in L X under finite infs and
arbitrary (hence, in particular, directed) sups, then [X, �L] is meet continuous.
If, in addition, L is distributive (see O-4.3), then so are L X and the sublattice
[X, �L]. Conversely, if [X, �L] is meet continuous (and distributive), then so
is the sublattice of all constant functions. This last is isomorphic to L . Since
the order in �[X, �L] agrees with the pointwise order (Lemma II-4.2), the
proposition follows. �

The entire function-space theory of this section has been developed without
recourse to the relation � and thus without referring directly to the original
definition of a continuous lattice. In the following we elucidate the way-below
relation on function spaces. In a special case we undertook an investigation of
this kind in Example I-1.22.

Let X be a space such that O(X ) is a continuous lattice and let L be a domain
with smallest element 0. For g ∈ [X, �L] and U ⊆ X , we define gχU by
gχU (x) = g(x) if x ∈ U and 0 otherwise. Note that gχU is again continuous.
If s ∈ L , then we identify s with the constant function with value s in order
to define sχU to be the characteristic function with value s on U and value
0 else. For f ∈ [X, �L], we define a function sχU to be an approximating
characteristic function if U is open and there exist V open and t ∈ L with
U � V and s � t ≤ f (v) for all v ∈ V .

Proposition II-4.20. Let X be a space such that O(X ) is a continuous lattice,
and let L be a domain with smallest element 0.

(i) If f � g in �[X, �L], then f vanishes outside a set U ∈ O(X ) with
U � X.

(ii) If s � t in L and U � V in O(X ), then sχU � tχV in �[X, �L].
(iii) We have sχU � f for each approximating characteristic function of

f ∈ �[X, �L] and f is the sup of the set of its approximating
characteristic functions sχU .
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(iv) Let L be an L-domain, resp. bounded complete domain, resp. continuous
lattice. Then, �[X, �L] is an L-domain, resp. bounded complete
domain, resp. continuous lattice, where for f, g ≤ h, the supremum
f ∨ g(x) = f (x) ∨ g(x) is calculated in ↓h(x) for each x. Furthermore,
f � g in �[X, �L] if and only if there exist finitely many approximating
characteristic functions {ciχUi : 1 ≤ i ≤ n} for g with f ≤ sup{ciχUi :
1 ≤ i ≤ n}, where the finite suprema are calculated in ↓g.

Proof: (i) Consider the directed family of functions (gχU )U�X ,U open, where
gχU (x) = g(x) if x ∈ U and 0 otherwise, and note g = supU�X gχU . Thus
f ≤ gχU for some U , and hence vanishes outside U .

(ii) If ( f j ) j∈J is a directed family with tχV ≤ sup f j in �[X, �L], then
U j = f −1

j (

�

s) is a directed family with V ⊆ ⋃U j in O(X ). Hence there
exists j ∈ J with U ⊆ U j , and then sχU ≤ f j .

(iii) Given any approximating characteristic function sχU for f ∈ [X, �L],
pick t and V such that U � V and s � t ≤ f (v) for all v ∈ V . From (ii) we
have sχU � tχV ≤ f .

If f ∈ [X, �L] and y ∈ X , let s � f (y) be arbitrary. By the interpolation
property I-1.9, find t with s � t � f (y). The set V = f −1(

�

t) is open, hence
we find U ∈ O(X ) with y ∈ U � V , using the continuity of O(X ). Then sχU

is an approximating characteristic function for f such that s = sχU (y). From
the continuity of L we conclude that f is the supremum of its approximating
characteristic functions.

(iv) Let L be an L-domain. For f, g, h ∈ [X, �L] with f, g ∈ ↓h, define
f ∨h g by ( f ∨h g)(x) = f (x) ∨h(x) g(x), where the second supremum is
calculated in ↓h(x). That these pairwise suprema are continuous follows from
Corollary II-4.15 for the case that L is a continuous lattice, and from Exercise
II-4.25 for the general case. The verification that f ∨h g is the supremum in ↓h
is straightforward; hence L is an L-domain if it is a domain. It follows from
Exercise I-1.37(ii) that f ∨h g � h whenever f, g � h. In particular, finite
suprema of approximating characteristic functions of h are in �h and form a
directed family. It follows from part (iii) that L is a domain. The last assertion
now follows easily, since h is a directed supremum of the finite suprema of
approximating characteristic functions.

If L is a bounded complete domain or continuous lattice, then it is an
L-domain, so the preceding derivations apply. In these cases [X, �L] is also a
complete semilattice, resp. a complete lattice that is also a domain, and hence
a bounded complete domain, resp. a continuous lattice. �

Remark. Roughly speaking, (i) means that f has compact support; in view of
I-1.4(ii) this is indeed the case if X is locally compact. Later we see that under
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our present conditions X has to be locally compact as long as it is a sober space
(Chapter V). Notice that in part (iv) above we have a characterization of the
way-below relation in �[X, �L] entirely in terms of the way-below relation in
O(X ) and L . We refine this in the exercises. The preceding yields another proof
of the continuity of �[X, �L] (see II-4.7) which uses directly the definition of
the continuity of a lattice. See also II-2.12, II-2.31, II-2.32.

For a bounded complete domain L , consider the function space [L → L].
Each sχU that is an approximating characteristic function for 1L has a two el-
ement range, and hence a finite supremum of approximate characteristic func-
tions (which exists since they are all bounded by 1L ) has finite range. It follows
that there is an approximate identity for L consisting of functions with finite
range, a strengthened version of an FS-domain.

Corollary II-4.21. A bounded complete domain, in particular a continuous
lattice, has an approximate identity consisting of continuous functions with
finite range, and hence is an FS-domain. �

We remark that the proof of Proposition II-4.20 readily generalizes to arbitrary
L-domains, not just those with 0. For every element x ∈ L , there exists a least
element 0x in ↓x . Then for U ⊆ X, g ∈ [X, �L], we define gχU by gχU (x) =
g(x) if x ∈ U and 0x otherwise. Since gχU is constant on directed sets outside of
U , one verifies directly that gχ (U ) is Scott-continuous if g is. One can the pro-
ceed as in the preceding proposition, replacing the approximating characteristic
functions by the newly defined sχU . One then directly obtains the following
generalization, which provides another large class of domains that is cartesian
closed in addition to the category of FS-domains (see also Exercise II-2.32).

Corollary II-4.22. Let X be a space such thatO(X ) is a continuous lattice and
let L be an L-domain. Then �[X, �L] is an L-domain. Hence the category
LDOM of all L-domains and Scott-continuous functions is cartesian closed,
with function spaces �[�L , �M] = [L → M]. �

We conclude the section by identifying the irreducible elements IRR[X, �L]
of �[X, �L]. The reader should recall Definition I-3.5.

Lemma II-4.23. Let L be a continuous lattice and X a space. For a function
f ∈ [X, �L] the following assertions are equivalent:

(1) f ∈ IRR[X, �L];
(2) there are a prime element U of O(X ) and an irreducible element p of L

such that f = χU ∨ constp, where χU is the characteristic function of the
set U and constp is the constant function on X with value p in L.
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Proof: (2) implies (1): Suppose f = a ∧ b. Let A = a−1(↓p) and B =
b−1(↓p). Then A and B are closed, and if p < 1 is irreducible, A∪ B = X\U .
But as U is prime, that is, X\U is an irreducible closed set, A = A\U or
B = X\U follows, and so f = a or f = b. The case p = 1 yields f = const1.

(1) implies (2): We may assume that f �= const1. Hence we find a t < 1 in
f (X ). We take an arbitrary s � t in L and set U = f −1(

�
s). Since

�

s is open
in L by II-1.6 and f is continuous, U is open and the two functions a = f ∨χU

and b = f ∨ consts are in [X, �L].
If x ∈ U then a(x) = f (x) ∨ 1 = 1 and b(x) = f (x) ∨ s = f (x), since

s � f (x); hence (a ∧ b)(x) = f (x). If, however, x �∈ U , then a(x) = f (x) ∨
0 = f (x), and b(x) = f (x) ∨ s; that is,

(a ∧ b)(x) = f (x) ∧ ( f (x) ∨ s) = f (x).

Hence a ∧ b = f , and since f is irreducible by (1), we have a = f or b = f .
In the first case, f = a = f ∨ χU , that is, χU ≤ f . Let x be such that we

have t = f (x). Then s � f (x), that is, x ∈ U , and thus 1 ≤ f (x) = t < 1,
a contradiction. Hence we must have f = b = f ∨ consts . Thus s ≤ f (x)
for all x ∈ X . Since we chose s � t arbitrarily, and since L is continuous, we
conclude t ≤ f (x) for all x ∈ X (see I-1.6). This means that f takes at most
one value t < 1. Thus we have shown that f �= 1 implies f = χU ∨ constp for
a p < 1 and for the open set U = f −1(1).

We claim that p < 1 is irreducible: If p = v∧w, set a = χU ∨constv and set
b = χU ∨constw, and observe a∧b = f . By (1) we have f = a or f = b; that
is, p = v or p = w. Now we claim that U is prime: Indeed if U = V ∩W , then
set a = χV ∨ constp and b = χW ∨ constp. If x ∈ U , then (a ∧ b)(x) = 1∧
1 = 1; if x �∈ U , then x �∈ V , say, and then (a ∧ b)(x) = p ∧ 1 = p. Hence,
we have shown that a ∧ b = f . The irreducibility of f implies either f = a
(that is, U = V ) or f = b (that is, U = W ). The proof is complete. �

We recall that in a sober space (see remarks preceding II-1.12) the prime ele-
ments of O(X ) are precisely the sets X and X\{x}− where x ∈ X . We will note
that each T0-space X can be naturally embedded into a sober space Y such that
every continuous function f : X → S into a sober space extends uniquely to Y
(see Chapter V). For a continuous lattice L , the space �L is sober by II-1.12.
Hence [X, �L] = [Y, �L], and it is therefore no loss of generality if we now
talk about sober spaces only in our present context.

Proposition II-4.24. Let X be a sober space and L a continuous lattice. Then
there is a bijection

(x, p) �→ χX\{x}− ∨ constp : X × ((IRR L)\{1}) → IRR[X, �L]\{1}. �
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This allows us to identify the irreducible elements< 1 in�[X, �L] in a canon-
ical way with the product X × (IRR L\{1}). From Theorem II-4.7 we know
that �[X, �L] is a continuous lattice iff O(X ) is continuous. (If X is arbitrary,
we can still assert meet continuity by I-1.8 and II-4.19.) Thus Corollary I-3.10
applies to �[X, �L] under these circumstances. However, the explicit char-
acterization of IRR[X, �L] in II-4.24 allows us to draw the conclusion of
Corollary I-3.10 – the irreducibles are order generating in �[X, �L] – even
without hypothesis on X , other than its sobriety. In fact, if for each x ∈ X we
have a set P(x) ⊆ IRRL\{1}with s = inf(↑s∩ P(x)) for all s ∈ L , then the im-
age P under the canonical function in II-4.24 of the set

⋃{{x} × P(x): x ∈ X}
satisfies f = inf(↑ f ∩ P) for all f ∈ [X, �L]. This allows the construction
of rather bizarre order generating sets, which we will use in Chapter V for the
construction of pathological spaces X with O(X ) continuous.

Exercises

Exercise II-4.25. Let L be a domain for which ↓x is a sup semilattice in the
relative order for every x ∈ L . Given y, z ∈ ↓x , we denote their supremum in
↓x by y ∨x z, and call it the relative sup operation with respect to x . Prove the
following.

(i) Set G := {(x, y, z) ∈ L3 : x, y ∈ ↓z}, and endow G with the subspace
topology from (L , σ (L))3. Then the relative sup operation (x, y, z) �→
x ∨z y : G → L is Scott-continuous.

(ii) If f, g, h ∈ TOP(X, �L) satisfy f (x), g(x) ∈ ↓h(x) for all x ∈ X . Then
f ∨h g defined by ( f ∨h g)(x) = f (x) ∨h(x) g(x) is continuous.

Hint. (i) Let x ∨z y ∈ V be open. Since x ∨z y is the directed supremum of
{a∨z b: a � x, b � y}, there exist a � x and b � y such that a∨z b ∈ V . By
I-1.37(ii), c := a ∨z b � x ∨z y ≤ z. Pick (u, v, w) ∈ (

�

a × �

b× �

c)∩G, a
neighborhood of (x, y, z) in G. Then

u ∨w v ≥ a ∨w b = a ∨c b = a ∨z b = c ∈ V

(using twice the observation that for p, q ∈ ↓r ⊆ ↓s, p ∨r q = p ∨s q). Thus
u ∨w v ∈ ↑V = V .

(ii) Compose f × g × h with the relative sup operation. �

Note that this exercise gives an alternative proof of the continuity of the
sup operation in a continuous lattice (see the remark before II-1.12 and
Corollary II-4.15), since in that case the mapping (x, y) �→ (x, y, 1) followed
by the relative sup operation will be continuous.
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Exercise II-4.26. Let L be the dcpo defined in Exercise II-1.36 and M = σ (L)
the lattice of Scott open subsets of L . Show that the Scott topology on M × L
is properly finer than the product topology �M ×�L .

Hint. One first verifies that σ (L) is not a continuous lattice. Indeed, the empty
set is the only Scott open set U with U � L . From Theorem II-4.10(4) it
follows that G = {((U, x) ∈ σ (L) × L : x ∈ U } is not open in the product
topology of �(σ (L)) × �L , but one sees directly that it is open in the Scott
topology of the product. �

This preceding exercise illustrates in a nice way the claims on the relation
between the Scott topology on a product and the product of Scott topologies in
Theorem II-4.13.

Notice that in this present section we have presented a general theory of
function spaces of lower semicontinuous functions. If X is a (locally) compact
Hausdorff space, then by II-2.3(3) we have LSC(X,R∗) ' [X, �I], where
I = [0, 1], the unit interval with its natural order. In this sense, the present
theory supersedes earlier discussions such as Examples I-1.22, I-2.21, I-2.22.

We now want to complement the information about the way-below relation in
function spaces given in Proposition II-4.20. Surprisingly enough, no satisfac-
tory characterization of the way-below relation in the function space [X, �L]
is known except for special cases as in [X, �I] for compact spaces in I-1.22.
In the next exercise we present the best result we know. For proofs one may
consult [Erker et al., 1998], where one finds more information on this topic.
The notations are those from II-4.20.

Exercise II-4.27. Let X be a locally compact space in which the intersec-
tion of any two compact saturated subsets is compact. (Such spaces will be
called stably locally compact in Section III-5.) Let L be a bounded complete
domain. For f : X → L , we denote by supp f the set of all x ∈ X such
that f (x) �= 0, and Q(X ) will denote the set of all compact saturated subsets
of X . Then the following statements for two functions f, g ∈ [X, �L] are
equivalent:

(1) f � g;
(2) supp f � X and there are finitely many Vi ∈ O(X ), Qi ∈ Q(X ), ti ∈ L

such that (a) ti � g(v) for all v ∈ Vi , (b) f (w) ≤ ti for all w �∈ Qi and
(c) X =⋃i (Vi\Qi );

(3) there are finitely many Vi ∈ O(X ), Qi ∈ Q(X ), ti ∈ L such that (a) Vi �
g−1(

�

ti ), (b) f (x) ≤ ti for all x �∈ Qi and (c) supp f ⊆⋃i (Vi\Qi ). �
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Problem. Investigate systematically under what circumstances [X, �L] is a
domain. �

Exercise II-4.28. Show that Proposition II-4.17 holds for dcpos that are
semilattices. �

Exercise II-4.29. Prove the following.

(i) If O(Y ) is a continuous lattice, then for all spaces X and Z , composition
( f, g) �→ g ◦ f : [X, Y ] × [Y, Z ] → [X, Z ] is continuous.

(ii) If L is a continuous lattice, then �[L → L] is a topological monoid
relative to composition ( f, g) �→ f ◦ g.

Hint. For (i), let g ◦ f ∈ N (H ← V ). Use the continuity of O(Y ) to pick
U � g−1(V ) such that f −1(U ) ∈ H . Then N (

�

U ← V ) ◦ N (H ← U ) ⊆
N (H ← V ).

For part (ii), use II-4.13 and II-2.9(ii). �

Exercise II-4.30. Let X, Y be T0 spaces such that O(X ) is a continuous lattice.
Show that the Isbell topology on [X, Y ] has a basis of open sets of the form
N (U, V ) := { f ∈ [X, Y ] : U � f −1(V )}.
Hint. See the proof of Proposition II-4.5(iii). �

Old notes

The train of thought leading to the main result II-4.7 and this result itself are
due to John Isbell [Isbell, 1975a; Isbell, 1975b], as is the formulation of what
is commonly called the Isbell topology. (The former of the two sources is the
one to consult according to Isbell’s own recommendation.)

In II-4.10 we have a first characterization theorem for spaces Y to have a
continuous lattice as topology O(Y ); later we will see others. This result ap-
peared for the first time in the Compendium, although certain equivalences had
been known previously: (4) iff (5) was in the paper of B. J. Day and G. M.
Kelly [Day and Kelly, 1970]; in fact this paper as well as Isbell’s second pa-
per above contains additional information concerning the context of II-4.10. In
particular, the equivalence of (1) and (3) in II-4.12 is due to [Day and Kelly,
1970]. An elementary proof has been given by [Richter, 1997]. Various names
were used in the literature for spaces Y for which O(Y ) is a continuous lattice:
“semilocally bounded” in [Isbell, 1975b], “quasilocally compact” in [Ward,
1969], “CL-spaces” in [Hofmann, 1978] and “core compact” in [Hofmann and
Lawson, 1978].
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For complete lattices, the results in II-4.13 through II-4.16 were new in the
Compendium. For continuous lattices one finds essential portions of them in
[Scott, 1972a], see p. 107, 2.9. Results such as II-4.13 are vital if one wishes
to determine the ( joint) continuity of finitary operations (as in the example
of II-4.15). Also II-4.17 and II-4.18 were new in [Gierz et al., b1980]; these
results will be applied in Chapter VII. They belong to the type of statement
in which lattice theoretical properties of a complete lattice L are characterized
in terms of lattice theoretical properties of the Scott topology σ (L). An earlier
example of this is II-1.14. The identification of irreducible (or prime) elements
of a function space in II-4.23 and II-4.24 was new in the Compendium after it
had appeared in the SCS Memo 41 of 1977 by Hofmann and Scott [scs 41]. We
will refer back to this result in Chapter V.

New notes

In contrast with the Compendium, from the beginning of this section through
II-4.6 we discuss the Isbell topology on the space TOP(X, Y ) of all continuous
functions from a T0 space X to a T0 space Y ; it is a recurring theme in this
section. We also include a discussion of exponentiable objects in the category
of T0 spaces in II-4.12 following the work of Day and Kelly [Day and Kelly,
1970].

The way-below relation on function spaces cannot be characterized easily
(see II-4.20, II-4.27). A careful analysis of the way-below relation on function
spaces can be found in [Erker et al., 1998].



III

The Lawson Topology

The first topologies defined on a lattice directly from the lattice ordering
(that is, Birkhoff’s order topology and Frink’s interval topology) involved
“symmetrical” definitions – the topologies assigned to L and to Lop were iden-
tical. A guiding example was always the unit interval of real numbers in its
natural order, which is of course a highly symmetrical lattice. The initial inter-
est was in such questions as which lattices became compact and/or Hausdorff
in these topologies. The Scott topology stands in strong contrast to such an
approach. Indeed it is a “unidirectional” topology, since, for example, all the
open sets are always upper sets; thus, for nontrivial lattices, the T0 separation
axiom is the strongest it satisfies. Nevertheless, we saw in Chapter II that the
Scott topology provides many links between domains and general topology
in such classical areas as the theory of semicontinuous functions and in the
study of lattices of closed (compact, convex) sets (ideals) in many familiar
structures.

In this chapter we introduce a new topology, called the Lawson topology,
which is crucial in linking continuous lattices and domains to topological al-
gebra. Its definition is more in the spirit of the interval and order topologies,
and indeed it may be viewed as a mixture of the two. However, it remains
asymmetrical – the Lawson topologies on L and Lop need not agree. But, even
if one is seeking an appropriate Hausdorff topology for continuous lattices,
this asymmetry is not at all surprising in view of the examples we have de-
veloped. We also show that the new topology is closely related to the earlier
topology, because in any dcpo a set is Scott open iff it is a Lawson open upper
set (Proposition III-1.6). Though the Scott topology determines the underlying
partial order, the Lawson topology does not do so, however.

In Section III-1 it is shown that the Lawson topology on complete lattices is
always compact and T1, and that it is Hausdorff for domains. In Section III-2 we
see that for meet continuous complete lattices the Lawson topology is Hausdorff

208
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if and only if the lattice is continuous. (Hence the asymmetry, because L may
be continuous when Lop is not.) In fact continuous lattices equipped with the
Lawson topology give compact Hausdorff topological semilattices which have
a basis of subsemilattices – a most important class of semilattices in topological
algebra. This interplay culminates in the Fundamental Theorem VI-3.4, which
equates the two classes.

In Section III-3 we introduce a class of dcpos called quasicontinuous do-
mains. Though not actually domains, their theory nonetheless exhibits many
parallels to the theory of domains including the Hausdorffness of the Lawson
topology. Indeed it is shown that the quasicontinuous complete lattices are pre-
cisely the complete lattices for which the Lawson topology is Hausdorff. We
also show that the Lawson topology can be defined in terms of convergence,
where the notion of convergence is, once again, given in order theoretical terms
that involve the liminf. This resumes and concludes a theme that we began to
investigate in Section II-1.

An important objective of Section III-4 is to clarify when the Scott and
Lawson topologies have countable bases. We first introduce the important
notion of a basis for a domain and prove that the existences of a countable
domain basis, a countable basis for the Scott topology, and a countable basis
for the Lawson topology are all equivalent; in fact, we treat arbitrary infinite
cardinalities.

Although the Lawson topology is always compact for complete, in particular
for continuous, lattices, it is typically not compact for general domains. In
Section 5 we consider the class of domains that are compact in the Lawson
topology and develop criteria for determining whether a domain is compact.

III-1 The Lawson Topology

As we have seen in the previous chapter, the Scott topology is well suited for
many aspects of domain theory, including the encoding of the partial order as
the order of specialization. However, its coarseness limits the usefulness of
many of the classical notions from topology: for example, compactness in the
Scott topology of a complete lattice is trivial, since any open cover must cover
the bottom element 0, and the open set containing 0 must be the whole space. To
utilize the tools such as closures and compactness more efficiently, a refinement
of the Scott topology must be found.

One effective way to refine the Scott topology is via the consideration of dual
topologies, topologies for which the order of specialization is ≥, the opposite
of the given order. The coarsest of these is the one that takes as a subbasis
for the closed sets all principal filters ↑x . We begin by recalling the definition
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of this auxiliary topology (cf. O-5.4), which we will use more extensively in
Chapter V. At the moment it serves to refine the Scott topology by taking the
join or patch of the two topologies.

Definition III-1.1. Let L be a poset. We call the topology generated by the
complements L\↑x of principal filters (as subbasic open sets) the lower topol-
ogy and denote it by ω(L). �

Let us note that the lower topology ω(L) on a dcpo L is generally coarser
than σ (Lop), since the principal filters ↑x are always closed for the dual Scott
topology. The sets of the form ↑F are ω(L) closed for finite F , but one should
note that not every ω(L) closed set is necessarily of this form – even in a
complete lattice where the collection of all principal filters ↑x is closed under
arbitrary intersections. The closure of a singleton {x} is ↑x , and in particular
the lower topology is T0.

Lemma III-1.2. Let S and T be posets and f : S → T any function.

(i) If f is an upper map, i.e., if the co-restriction f : S → ↓ f (S) has a lower
adjoint (see O-3.18), then f is continuous relative to the lower topologies.
In particular, if S and T are complete semilattices and f preserves
arbitrary nonempty infs, then f is continuous relative to the lower
topologies.

(ii) If f is continuous with respect to the lower topologies, then f preserves
filtered infs, that is, f is monotone and whenever F is a filtered set such
that inf F exists, then inf f (F) exists and inf f (F) = f (inf F).

(iii) If S and T are complete semilattices and if f is a semilattice
homomorphism which is continuous with respect to the lower topologies,
then f preserves arbitrary nonempty infs.

Proof: (i) Suppose that g: ↓ f (S) → S is a lower adjoint for the co-restriction
of f from S to↓ f (S). We must show that the inverse image of a subbasic closed
set of the form ↑t in T is closed in S. If t /∈ ↓ f (S), then f −1(↑t) = Ø, which
is closed. Otherwise let s = g(t). Then

g(t) = s ≤ x ⇔ t ≤ f (x) ⇔ x ∈ f −1(↑t),

and thus x ∈ ↑g(t) iff x ∈ f −1(↑t), i.e., ↑g(t) = f −1(↑t).
In the case that S and T are complete semilattices and f preserves arbitrary

nonempty infs, then f is an upper map by O-3.18.
(ii) If f is continuous relative to the lower topologies, then it is order preserv-

ing for their orders of specialization, which are the dual orders ≥, and hence is
monotone.
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Now, let F be filtered in S and suppose that s = inf F exists. As f is
monotone, f (s) ≤ f (u) for all u ∈ F . We claim that f (s) = inf f (F). For this
let v be a lower bound of f (F). Whenever x /∈ ↓s, then F cannot be contained
in ↑x ; hence, it is eventually in L\↑x . Thus, F converges to s relative to the
lower topology. Then f (F) converges to f (s) by the continuity of f . Hence,
f (s) belongs to the closed set ↑v which contains f (F). Hence, v ≤ f (s), that
is, f (s) is the greatest lower bound of f (F).

(iii) If, in addition, f preserves finite nonempty infs, then f preserves arbi-
trary nonempty infs (by (ii) and O-1.10). �

In words we can say that a semilattice homomorphism between two complete
semilattices is continuous relative to the lower topologies iff it preserves infs of
filtered sets. This is the same as saying that it preserves arbitrary nonempty infs,
so that the extra assumption of continuity allows the passage from the finite infs
to the infinite ones.

Lemma III-1.3. If S and T are posets, then ω(S× T ) is the product topology
of the topologies ω(S) and ω(T ).

Proof: This is immediate from the following two relations:

(S\↑s) × (T \↑t) = (S × T )\((S × ↑t) ∪ (↑s × T )), and
↑(s, t) = (S × ↑t) ∩ (↑s × T ). �

Note that the situation here is considerably simpler than the corresponding one
for the Scott topologies (see II-4.13).

Lemma III-1.4. If L is a semilattice, then (L , ω(L)) is a topological semilat-
tice, that is, the inf operation

(x, y) �→ x ∧ y : (L , ω(L)) × (L , ω(L)) → (L , ω(L))

is continuous.

Proof: The inf operation has lower adjoint the diagonal map z �→ (z, z). The
assertion follows from III-1.2(i) and III-1.3. �

We now proceed to the essential definition:

Definition III-1.5. Let L be a dcpo. Then the common refinement σ (L) ∨
ω(L) of the Scott topology and the lower topology is called the Lawson topology
and is denoted by λ(L). The space (L , λ(L)) is written �L . �

In other words, the Lawson topology has as a subbasis the sets U , with U ∈
σ (L), together with the sets L\↑x , for x ∈ L . The sets U\↑F , where U ∈ σ (L)
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and F is finite in L , form a basis for λ(L). Note that both U and L\↑F
satisfy property (S) (see II-1.3 and II-1.4(v), (vi)); hence, all U\↑F and all
Lawson open sets satisfy property (S) by II-1.4(vii). All one appears to be able
to say beyond this about the structure of Lawson open sets in general is the
following.

Proposition III-1.6. Let L be a dcpo.

(i) An upper set U is Lawson open iff it is Scott open.
(ii) A lower set is Lawson closed iff it is closed under sups of directed sets.

(iii) If A is Scott closed in L, then the relative lower topology, resp. relative
Lawson topology, on A is just the lower, resp. Lawson, topology of A.

Proof: (i) Since σ (L) ⊆ λ(L) we have to show that every Lawson open upper
set is Scott open. But by the preceding remarks such a set satisfies property (S),
and then as an upper set it is Scott open by II-1.4(v).

(ii) The second assertion follows from the first in view of II-1.4(i).
(iii) One sees easily that A has the same subbasic closed sets in its lower

topology as in the relative lower topology from L . A subset of A that is Scott
closed in A is easily seen to be Scott closed in L and hence the relative Scott
topology on L agrees with the Scott topology of L . The assertion for the Lawson
topology follows from these two. �

A picture may help in the visualization of the open sets in the Lawson topology:

It will be seen that the Lawson topology on the unit square [0, 1]2 is just the
ordinary Euclidean topology.

The examples in O-4.5 show that for a Lawson open set U the upper set ↑U
need not be open and that the Lawson interior of an upper set need not be an
upper set. When we talk about meet continuous lattices, then things improve as
we will see in III-2.5.

Lemma III-1.7. Let L be a dcpo and F a filtered subset. Then lim F exists
with respect to λ(L) iff inf F exists, and in this case inf F = lim F and is the
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unique cluster point. Similarly if D is a directed subset, then lim D exists and
lim D = sup D, and is the unique cluster point.

Proof: Suppose that inf F exists. The sets L\↑x with x �≤ inf F are subbasic
ω(L) neighborhoods of inf F , and F is eventually contained in any of them.
Hence F converges to inf F with respect toω(L). It also converges to inf F with
respect to σ (L) trivially, since every Scott neighborhood of inf F is an upper
set and hence contains F . As a consequence, F converges to inf F with respect
to λ(L).

Now let y be any cluster point of F with respect to λ(L). If u ∈ F , then ↓u
is λ(L) closed and F is eventually in ↓u. Hence y ≤ u for all u ∈ F . If z is a
lower bound for F , then ↑z is λ(L) closed and contains F . Thus y ∈ ↑z, and
this proves y = inf F .

Let D be a directed set. Then x = sup D exists since L is a dcpo. The directed
set converges to x in the Scott topology, trivally so in the lower topology, hence
in the Lawson topology. Let y be any cluster point. Since the Lawson closed
set ↑d eventually contains D, it must contain y. Hence y is an upper bound for
D, i.e., x ≤ y. Since the Lawson closed set ↓x contains D, it must also contain
y and hence y = x . �

Theorem III-1.8. Let S and T be complete semilattices and f : S → T a
semilattice homomorphism. Then the following statements are equivalent:

(1) f is Lawson continuous (that is, λ(S)-λ(T ) continuous);
(2) f preserves arbitrary nonempty infs and directed sups;
(3) f preserves liminfs;
(4) f is Scott-continuous and an upper map. �

Remark. Condition (3) means of course that f (lim x j ) = lim f (x j ) for all
nets (x j ) j∈J on S; compare this with II-2.1(3).

Proof of theorem: (2) implies (1): Assume that f preserves arbitrary nonempty
infs and directed sups. Then f is ω(S)-ω(T ) continuous by III-1.2 and σ (S)-
σ (T ) continuous by II-2.1. Hence f is Lawson continuous.

(1) implies (2): We suppose that f is λ(S)-λ(T ) continuous. Let F be a fil-
tered set in S. Then inf F = lim F (with respect to λ(S)) by III-1.7. Since f is
λ continuous we have f (inf F) = f (lim F) = lim f (F). The latter is inf f (F),
since f (F) is filtered because f is a semilattice morphism and III-1.7 applies
once more. Thus, f preserves infs of filtered sets and, hence, infs of arbitrary
nonempty sets (compare O-1.10). If U ∈ σ (T ) ⊆ λ(T ), then f −1(U ) ∈ λ(S).
Because f −1(U ) is an upper set owing to the monotonicity of f , we have there-
fore the conclusion f −1(U ) ∈ σ (L) by III-1.6. Hence f is Scott-continuous,
and so it preserves directed sups by II-2.1.
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(2) implies (3): Immediate from the definition of lim in II-1.1.
(3) implies (2): If D is directed, then f (sup D) = f (lim D) = lim f (D) =

sup f (D), since f is order preserving as a semilattice morphism. If F is filtered,
then inf(↓x ∩ F) = inf F for all x ∈ F ; hence,

lim F =
∨

x∈F

inf(↓x ∩ F) = inf F.

Thus f (inf F) = f (lim F) = lim f (F) = inf f (F). This shows that f pre-
serves filtered infs. Since f is a semilattice morphism, f also preserves arbitrary
nonempty infs (see O-1.10).

We have (2) ⇔ (4) by O-3.18 and II-2.1. �

Remark. The morphisms in Theorem III-1.8 are very natural ones to con-
sider for complete semilattices. Condition (4) suggests a generalization to gen-
eral dcpos, namely those functions that are Scott-continuous upper maps. By
Lemma III-1.2(i) such maps are continuous for the lower topology, and hence
are also Lawson continuous.

Theorem III-1.9. For a complete (semi)lattice L, the Lawson topology λ(L)
is a compact T1 topology. �

Proof: Firstly, for x ∈ L we have {x} = ↓x ∩ ↑x . Now, ↓x is Scott closed,
while ↑x is closed in the lower topology. Hence, {x} is Lawson closed; that is,
λ(L) is a T1 topology.

To prove that λ(L) is compact, we firstly suppose that L is a complete lattice
and we use the Alexander Subbasis Lemma: a space is compact if every open
cover consisting of subbasic open sets contains a finite subcover.

Thus assume {U j ∈ σ (L) : j ∈ J } and {L\↑xk : k ∈ K } together form a
cover of L . Let x = sup{xk : k ∈ K }. Then

⋃
{L\↑xk : k ∈ K } = L

∖⋂
{↑xk : k ∈ K } = L\↑x .

But x /∈ L\↑x ; therefore, there is a j such that x ∈ U j . Since U j is Scott open,
there are indices k1, . . . , kn such that xk1 ∨ · · · ∨ xkn ∈ U j . Then

U j ∪
(
L\↑xk1

) ∪ · · · ∪ (L\↑xkn

) = L ,

and we are finished.
If L is a complete semilattice, then L1 is a complete lattice, hence compact

in the Lawson topology. Since {1} is Scott, hence Lawson, open, L is compact
in the relative topology. But the relative Lawson topology of the Scott closed
lower set L is the Lawson topology of L by III-1.6(iii). �
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This compactness theorem shows in a certain sense that we have not refined
the Scott topology too much, even though we have improved the T0 separation
property of the Scott topology to the T1 separation of the Lawson topology.
It will be of paramount importance to understand when in fact the Lawson
topology is Hausdorff; most of the following observations serve to study this
question. In particular the next theorem shows the suitability of the Lawson
topology for domains and continuous lattices.

Theorem III-1.10. For a domain L, the Lawson topology λ(L) is a Hausdorff
topology.

Proof: Suppose that x �= y in L , and assume that x �≤ y. Then by I-1.6 there is
a u � x with u �≤ y. Then

�

u is a Scott (hence, Lawson) open neighborhood
of x (see II-1.6), and L\↑u is an ω(L) (hence, Lawson) open neighborhood of
y. Clearly these two neighborhoods are disjoint. �

The two previous theorems imply immediately the following.

Corollary III-1.11. For any complete continuous semilattice, in particular for
any continuous lattice, the Lawson topology is compact and Hausdorff. �

A finer analysis of the Lawson topology is possible for meet continuous lattices.
We make it the subject of the next section. We close this section with a discussion
of the relationship between subalgebras and the Lawson topology (in the same
spirit as Theorem III-1.8 for morphisms).

Theorem III-1.12. Let L be a complete continuous semilattice, and let S be
a subsemilattice. The following conditions are equivalent:

(1) S is closed in the Lawson topology;
(2) S is closed with respect to the formation of arbitrary nonempty infs and

directed sups in L;
(3) for all nets (x j ) j∈J in S, we have lim x j ∈ S, where lim x j is taken with

respect to L.

Proof: (1) implies (2): By Lemma III-1.7 filtered infs and directed sups are
λ(L)-limits. Hence S is closed under filtered infs, and thus arbitrary infs (see
O-1.5), and directed sups.

(2) implies (3): Immediate.
(3) implies (2): Since filtered infs and directed sups are special cases of taking

lim of a net, we conclude S is closed with respect to taking directed sups and
filtered infs (and hence arbitrary nonempty infs).

(2) implies (1): By Theorem III-1.8 the inclusion mapping from S to L is
continuous. Since S is compact by Theorem III-1.9, its image under inclusion
is compact and hence closed since L is Hausdorff (Theorem III-1.10). �
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Exercises

Exercise III-1.13. Let P be a poset equipped with the lower topology. Show
that the order of specialization on P is ≥, and that the lower topology is the
coarsest topology for which this is true.

Exercise III-1.14. Let L be an algebraic domain. Prove the following.

(i) �L has a basis of open–closed sets and hence is a zero dimensional
Hausdorff space.

(ii) If L is a semilattice, the Lawson topology has a basis of open–closed
subsemilattices.

(iii) If L is an algebraic lattice or a bounded complete algebraic domain, then
L is also compact.

Hint. By II-1.15 σ (L) has a basis of sets of the form ↑k with k ∈ K (L).
But ↑k is ω(L) closed, thus, λ(L) closed; whence ↑k is λ(L) open–closed for
any compact k. If L is algebraic, then the sets ↑k\(↑k1 ∪ · · · ∪ ↑kn), where
k, k1, . . . , kn ∈ K (L), constitute a basis for λ(L). All of these sets are open–
closed, and are subsemilattices if L is a semilattice. Compactness follows from
III-1.9. �

Counterexample O-4.5(2) shows that there are complete lattices L such that�L
is compact zero dimensional while L is not algebraic. In the next section we
note that in the class of meet continuous lattices this aberration cannot occur.

Exercise III-1.15. Let X be a locally compact topological space. Let �(X )
denote the lattice of closed sets (O-2.7(3)). (Recall �(X )op ∼= O(X ) is a con-
tinuous lattice by I-1.7(5).) Prove the following.

(i) F � G in �(X )op iff there is a compact set Q such that F ∪ Q = X and
G ∩ Q = Ø.

(ii) The Scott topology on �(X )op has as a basis the sets of the form
{G ∈ �(X ) : G ∩ Q = Ø}, where Q is a compact subset of X .

(iii) The lower topology ω(�(X )op) has as a subbasis the sets of the form
{G ∈ �(X ) : G ∩U �= Ø}, where U is an open subset of X .

(iv) The Lawson topology has as a basis the sets of the form

{G ∈ �(X ) : G ∩ Q = Ø and G ∩Uk �= Ø, k = 1, . . . , n},
where Q is compact and U1, . . . ,Un is a finite collection of open sets.

Hint. Part (i) follows from I-1.4(ii). For (ii) use II-1.14(2) and (i) above. Then
(iii) and (iv) are straightforward. �
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In the preceding exercise one may restrict oneself to compact saturated sets
instead of arbitrary compact sets.

Exercise III-1.16. Show that an order preserving Lawson continuous map f :
L → M between dcpos is Scott-continuous.

Hint. Use Lemma III-1.7 and the fact that Scott continuity is characterized by
the preservation of directed sups. �

The next exercises relate two traditional lattice topologies, the interval topology
and the order topology, to the Lawson topology. The interval topology has for a
subbase of closed sets all principal ideals and all principal filters (see O-5.4). In
order to define the order topology on L , we say a net (x j ) j∈J order converges to x
iff x = liminf x j = limsup x j . This notion of convergence defines a topology
on L , the order topology. (See Section II-1; see also [Birkhoff, b1967] for
further details concerning these topologies.)

Exercise III-1.17. Let L be a dcpo. Prove the following.

(i) The interval topology is the join (as topologies) of the upper and lower
topologies.

(ii) The interval topology is contained in the Lawson topology on L and that
on Lop.

(iii) If every Scott closed set is closed in the interval topology, then the
Lawson topology and the interval topology agree.

(iv) If L is a complete semilattice (lattice) and if the interval topology is
Hausdorff, then the interval topology and the Lawson topology on L (and
the Lawson topology on Lop) agree.

Hint. For (iv), use III-1.9. �

Exercise III-1.18. Let L be a complete lattice. Prove the following.

(i) The open upper sets in the order topology are the Scott open sets (and
dually).

(ii) The Lawson topology on L and that on Lop are contained in the order
topology. �

Exercise III-1.19. Consider a complete lattice L consisting of a countable
antichain (all elements incomparable) with a 0 and 1 adjoined. Show that the
interval topology is not Hausdorff, that the antichain converges to 0 in the
Lawson topology, to 1 in the Lawson topology on Lop, and that the order
topology is discrete. �
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Exercise III-1.20. Show that Lemma III-1.7 remains valid if the Lawson topol-
ogy is replaced by the interval topology. �

Exercise III-1.21. A bitopological space is a set X equipped with two topolo-
gies, written (X, τ, ν). A function f : (X, τ1, ν1) → (Y, τ2, ν2) is a bicontinuous
function if it is continuous for both the τ -topologies and the ν-topologies. Show
that a semilattice homomorphism f : S → T between complete semilattices is
bicontinuous as a function from (S, σ (S), ω(S)) to (T, σ (T ), ω(T )) if and only
if it is Lawson continuous.

Hint. Use Lemma III-1.2(i) and Theorem III-1.8. �

Old notes

In describing the history of the Lawson topology, it is best to distinguish two
viewpoints: that of topological algebra and that of lattice theory. In topological
algebra one studies the structure of algebraic structures such as groups, rings,
and semigroups which are already equipped with the topology such that the
operations are continuous. In this vein compact topological semilattices and
lattices have been studied since the 1950s by A. D. Wallace and the numerous
mathematicians following in his footsteps; we will comment on this piece of
history in Chapter VI where we concentrate on compact semilattices. However,
we will see in the next section of the present chapter how compact semilattice
theory and continuous lattice theory relate (III-2.15). In lattice theory, on the
other hand, one considers lattices and looks for topologies which are naturally
defined in terms of the given order structure. Typical examples are the topologies
σ (L) (Section II-1), ω(L), and λ(L); there are, of course, others, but these do
not interest us here.

The blending of the topological algebra viewpoint and the lattice theoretical
viewpoint, as far as continuous lattices were concerned, was accomplished
by K. H. Hofmann and A. Stralka in ATLAS [Hofmann and Stralka, 1976].
What was discovered there was that what had been studied by the topological
algebraists under the name of compact unital Lawson semilattices was in fact
the very same thing as continuous lattices (although in ATLAS this discovery
is not phrased quite so explicitly; the first paper in print being explicit about
this is Lea’s note [Lea, 1976b]).

The explicit definition of the topology λ(L) given here has evolved in the
SCS Seminar since 1976. The name Lawson topology was chosen at the First
Workshop on Continuous Lattices in April 1977 at Tulane. However, just as one
finds the Scott topology defined for special complete lattices such as those of
the form O(X ) before Scott’s paper in the work of Day and Kelly, the Lawson
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topology has its precursors on O(X ). Indeed the Lawson topology was consid-
ered as early as 1961 by J. M. G. Fell [Fell, 1962] when X is a locally compact
space, although the definition was given in terms of the description of basic open
sets which are not on the surface recognizable as yielding the same topology as
we see in Exercise III-1.15. In fact the topology was introduced on �(X )op and
it was shown by Fell that it was compact Hausdorff and that (A, B) �→ A ∪ B
was continuous. These studies were continued later by J. Dixmier [Dixmier,
1968] who provided more information on this topology.

Theorem III-1.8 originated in the Compendium. Theorem III-1.9 was first
published by Hofmann [Hofmann and Mislove, 1977], with a proof due to
D. Scott [scs 4]. In this line, III-1.10 had been known to the SCS Seminar since
1976.

Because of the properties (iii) and (ii) in Exercise III-1.15 the Lawson topol-
ogy on the set �(X ) of closed subsets of a locally compact space has also been
known under the name hit-and-miss topology (see e.g. [Matheron, b1975]).

III-2 Meet Continuity Revisited

For more detailed information on the developments of the previous section we
turn to meet continuous semilattices. Here there is rather more to say on the
nature of Lawson open sets. In discussing various topologies we will use sub-
scripts to distinguish relative to which the closure, the interior, etc. is to be taken.
Recall that, by Definition O-4.1 a meet continuous semilattice always is a dcpo.

Perhaps, somewhat surprisingly, we now have at hand tools to develop a
meaningful theory of meet continuity for arbitrary dcpos, and we begin our
considerations in this general framework.

Definition III-2.1. A dcpo L is meet continuous if for any x ∈ L and any
directed set D with x ≤ sup D, then x is in the Scott closure of ↓D ∩ ↓x . �

Remark III-2.2. For directed complete semilattices the preceding definition
of meet continuity is equivalent to the standard one (O-4.1).

Proof: That the standard definition implies the preceding one in the context
of semilattices is immediate. Conversely assume the preceding definition, let
d = sup D for a directed set D, and let x ∈ L . If

y = sup x D = sup(↓x ∩ ↓D) = sup(↓xd ∩ ↓D)

is strictly less than xd, then ↓y is a Scott closed set containing ↓D ∩ ↓xd, but
missing xd , a contradiction. �
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Proposition III-2.3. A dcpo L is meet continuous if and only if for any Scott
open set U and any x ∈ L ,↑(U ∩ ↓x) is Scott open.

Proof: Suppose that x ∈ L , a meet continuous dcpo, that U is Scott open, and
that sup D ∈ ↑(U ∩↓x) for some directed set D. Then there exists z ∈ U ∩↓x
such that z ≤ sup D. It follows from the hypothesis that ↓D ∩↓z ∩U �= Ø, so
D ∩ ↑(U ∩ ↓x) ⊇ D ∩ ↑(U ∩ ↓z) �= Ø, which establishes that ↑(U ∩ ↓x) is
Scott open.

Conversely assume the second condition and let D be a directed set with
x ≤ sup D. If x is not in the Scott closure of ↓D ∩↓x , then there exists a Scott
open set U containing x but missing ↓D ∩ ↓x . By hypothesis ↑(U ∩ ↓x) is
Scott open and misses D by construction. But sup D is in the Scott open set
↑(U ∩ ↓x), and hence some member of D must be, a contradiction. Thus L is
meet continuous. �

Meet continuity can simplify checking that a dcpo is a domain.

Proposition III-2.4. Let L be a meet continuous dcpo. Suppose that for any
x ∈ X and any Scott open set U containing x, there exists y ∈ U ∩ ↓x such
that ↑y ∩ ↓x is a relative Scott neighborhood of x in ↓x (in particular, this
holds if each ↓x is a domain). Then L is a domain.

Proof: Let x ∈ L . We consider the family D of all y ∈ ↓x such that ↑y ∩ ↓x
is a relative Scott neighborhood of x in ↓x .

Let y ∈ D. Then there exists a Scott open U such that ↓x ∩U ⊆ ↑y. By the
previous proposition we have that ↑(U ∩ ↓x) is Scott open; note that it is also
a subset of ↑y. Thus ↑y is a Scott neighborhood of x in L , and hence y � x .
Thus D ⊆ �x .

Now suppose that ↑yi ∩ ↓x is a relative Scott neighborhood of x in ↓x for
i = 1, 2. Then their intersection is also, so there exists V Scott open such that
x ∈ V ∩ ↓x ⊆ ↑y1 ∩ ↑y2. By hypothesis there exists y ∈ V ∩ ↓x such that
↑y ∩ ↓x is a relative Scott neighborhood of x in ↓x . Hence D is directed.

Finally let z < x . Then L\↓z is a Scott open set containing x , and again
by hypothesis we can pick y ∈ (L\↓z) ∩ ↓x such that y ∈ D. It follows that
x = sup D. Since x was arbitrary, L is continuous.

That the hypotheses are satisfied if each ↓x is a domain follows from
Proposition I-1.8. �

Meet continuity forces closer relationships between the Scott and Lawson
topologies.
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Proposition III-2.5. For a meet continuous dcpo L we have:

(i) if U ∈ λ(L), then ↑U ∈ σ (L);
(ii) if X is an upper set, then intσ X = intλX;

(iii) if X is a lower set, clσ X = clλX.

Proof: (i) Let y ∈ ↑U , U a Lawson open set. Let x ∈ U such that x ≤ y.
Then there exists a basic Lawson open set V \↑F , where V is Scott open and
F is finite, such that x ∈ V \↑F ⊆ U . Then ↑(V ∩ ↓x) ⊆ ↑(V \↑F) ⊆ ↑U .
Since the first set is Scott open by the previous proposition, it follows that y
is in the Scott-interior of ↑U . Since y was arbitary in ↑U , the latter is Scott
open.

(ii) Trivially intσ X ⊆ intλX . By (i), intλX ⊆ ↑intλX ⊆ intσ X .
The equivalence of (ii) and (iii) is straightforward. �

Proposition III-2.6. Let S and T be dcpos such that σ (T ) is a continuous
lattice. Then �(S × T ) = �S ×�T .

Proof: By II-4.13 we have �(S × T ) = �S × �T . From III-1.3 we recall
that ω(S × T ) is the product topology of ω(S) and ω(T ). Suppose that ξ1, ξ2

are topologies on X and η1, η2 topologies on Y . Assume Uk ∈ ξk and Vk ∈ ηk ,
k = 1, 2. Then the relation (U1∩U2)×(V1∩V2) = (U1×V1)∩(U2×V2) shows
that basic open sets of (ξ1∨ξ2)× (η1∨η2) are basic open in (ξ1×η1)∨ (ξ2×η2)
and vice versa. We apply this observation with X = S, ξ1 = σ (S), ξ2 = ω(S)
and Y = T , η1 = σ (T ), η2 = ω(T ) and obtain the assertion. �

Definition III-2.7. A semilattice L endowed with a T0 topology τ is a topo-
logical semilattice if (x, y) �→ xy : (L , τ ) × (L , τ ) → (L , τ ) is continuous.

�

Theorem III-2.8. Let L be a meet continuous semilattice. Then all the trans-
lations x �→ ax : �L → �L for a ∈ L are continuous. If also σ (L) is a
continuous lattice, then (L , λ(L)) is a topological semilattice. �

Proof: The translation function λx (y) = xy has (λx )−1(↑z) = ↑z if z ≤ x
and the empty set otherwise; thus λx is continuous in the lower topology. By
hypothesis it is Scott-continuous, and thus is Lawson continuous.

The function m: L × L → L defined by m(x, y) = xy has lower adjoint
�(x) = (x, x) and hence is continuous with respect to the lower topologies
(Lemma III-1.2(i)); it is Scott-continuous from (L×L , σ (L×L)) → (L , σ (L))
by Theorem O-4.2(6). Hence m: �(L × L) → �L is continuous. If σ (L) is
continuous, then III-2.6 applies and gives �(L× L) = �L×�L , which yields
the desired conclusion. �
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Corollary III-2.9. In a meet continuous semilattice L with continuous Scott
topology σ (L) the Lawson topology is Hausdorff iff the graph of ≤ is closed in
�L ×�L.

Proof: Since �L is a topological semilattice by III-2.8, then the function
m: �L × �L → �L × �L defined by m(x, y) = (x, xy) is continuous,
and the graph of≤ is m−1 of the diagonal in L × L . Thus, if the latter is closed,
then so is the graph of ≤. Since the diagonal is the intersection of the graphs of
≤ and of ≤op, the converse is clear. �

Lemma III-2.10. If F is a finite set in a meet continuous dcpo, then we have

intσ↑F ⊆
⋃
{ � x : x ∈ F}.

Proof: Suppose y ∈ U := intσ↑F , but y is not in the right side. If F =
{x1, . . . , xn}, there exists for each i a directed set Di such that y ≤ sup Di , but
xi /∈ ↓Di . By finite induction, using meet continuity, we choose zi ≤ y such
that z1 ∈ (↓D1 ∩ ↓y ∩ U ) and zi+1 ∈ (↓Di ∩ ↓zi ∩ U ). Then zn ∈

⋂n
i=1 Di ,

and also zn ∈ ↑x j for some j , which contradicts x j /∈ ↓D j . �

We now arrive at an important characterization theorem for continuous lattices
in the class of meet continuous lattices and generalizations thereof in terms of
the Hausdorff separation of the Lawson topology.

Theorem III-2.11. If L is a domain, then L is meet continuous and the Lawson
topology is Hausdorff. Conversely if L is a meet continuous dcpo, if the Lawson
topology is Hausdorff, and if each principal ideal ↓x is a sup semilattice (in
the relative order), then L is a domain.

Proof: Suppose that L is a domain. By III-1.10 the Lawson topology is
Hausdorff. Since for x ∈ L and any directed set D such that x ≤ sup D,
we have �x ⊆ ↓D, the meet continuity condition follows.

Conversely, suppose that L is a meet continuous dcpo with Hausdorff
Lawson topology such that each principal ideal is a sup semilattice. By Propo-
sition III-2.4 it suffices to show that each principal ideal is a domain. Thus
we consider some principal domain ↓w. Consider two points x, y ∈ ↓w with
y < x . We hope to find a u � x such that u �≤ y.

Since L is Hausdorff, there are disjoint open λ(L) neighborhoods V and W
of y and x , respectively, and we may assume that V is of the form U\↑F with a
Scott open neighborhood U of y and a finite set F . But since y < x , we may also
assume that W ⊆ U (for otherwise we replace W by U ∩ W ). Now we claim
that W ⊆ ↑F . For if not, then there would be a w ∈ W\↑F ⊆ U\↑F = V ,
which is impossible since V and W are disjoint. But then also ↑W ⊆ ↑F . Since
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↑W is Scott open by III-2.5(i), we know that intσ↑F contains x . By Lemma
III-2.10 this implies that there is a u ∈ F such that x ∈ �

u; that is, u � x . Since
y ∈ U\↑F ⊆ L\↑u we have u �≤ y as was desired.

Now let x ∈ ↓w. If x is a minimal element, then by Proposition III-2.3 ↑x
is Scott open, and hence x is a compact element. Otherwise by the previous
paragraph for each y < x , we find u � x such that u �≤ y. If follows that
x = sup{u: u � x}. Now since ↓w is a sup semilattice, restricting to ↓w, we
have that x is the directed sup of elements way below it by I-1.2(iii). Thus ↓w
is a domain. �

Remark. Note that the preceding theorem applies in particular to complete
lattices, complete semilattices, and dcpos in which each principal ideal is a
complete lattice (which in the presence of continuity means L-domain).

This theorem reveals that in the presence of meet continuity the assump-
tion of continuity is closely related to a separation property (the Hausdorffness
of the Lawson topology). Furthermore, III-2.11 together with III-2.9 and
II-1.14 shows that the graph of ≤ is closed in �L × �L for a continuous
lattice L .

Definition III-2.12. We say that a semilattice with a topology has small (open,
resp. compact) semilattices iff each point has a neighborhood basis of (open,
resp. compact) subsemilattices (cf. also VI-3.1 ff.). �

Proposition III-2.13. Let L be a directed complete semilattice. Then the fol-
lowing are equivalent:

(1) each point of L has a Scott neighborhood basis of open filters;
(2) L is meet continuous and �L has small open semilattices.

Proof: (1) implies (2): Let D be a directed set with supremum d ≥ x and U
be a Scott open set containing x . Then there exists a Scott open filter F such
that x ∈ F ⊆ U . Eventually the directed set D is in F , so x D ∈ F eventually,
since F is a filter. By Definition III-2.1, L is meet continuous.

Let x ∈ W ∈ λ(L). Then there are a V ∈ σ (L) and a finite set F ⊆ L
with x ∈ V \↑F ⊆ W . By (1) there is a filter U ∈ σ (L) with x ∈ U ⊆ V .
Then x ∈ U\↑F ∈ λ(L), with U\↑F ⊆ W . One obtains easily that U\↑F is
semilattice.

(2) implies (1): Let x ∈ W ∈ σ (L). Then there is a subsemilattice V ∈ λ(L)
with x ∈ V ⊆ W . Then x ∈ ↑V ⊆ W,↑V is a filter, and ↑V ∈ σ (L) by
III-2.5. �



224 III The Lawson Topology

Lemma III-2.14. Let L be a complete meet continuous semilattice. Then for
each x ∈ L we have

sup{inf U : x ∈ U ∈ λ(L)} = sup{inf U : x ∈ U ∈ σ (L)}.

Proof: Since σ (L) ⊆ λ(L), clearly the left hand side is ≥ the right hand side.
But if U ∈ λ(L), then inf U = inf↑U and ↑U ∈ σ (L) by III-2.5, hence the
reverse inequality holds. �

We are ready for a crucial theorem:

Theorem III-2.15. Let L be a complete meet continuous semilattice. The
following are equivalent.

(1) L is a complete continuous semilattice.
(2) �L has small open semilattices and σ (L) is a continuous lattice.
(3) �L is a compact Hausdorff topological semilattice with small open

semilattices.
(31) �L is a compact Hausdorff topological semilattice with small compact

semilattices.
(4) x = sup{inf U : x ∈ U ∈ λ(L)}, for all x ∈ L.

Proof: By III-2.13, condition (2) is equivalent to II-1.14(3), and by III-2.14,
condition (4) is equivalent to II-1.14(7). Hence (1) iff (2) iff (4).

(1) implies (3): If L is continuous, then�L is compact Hausdorff by III-1.11.
By III-2.8 and II-1.14, we know that �L is a topological semilattice, and from
(2) we know that �L has small open semilattices.

That (3) implies (31) implies (4) is straightforward. �

In Section VI-3 we will see that any compact Hausdorff topological semilattice
with small open semilattices has a complete continuous semilattice as underly-
ing poset, and that its given topology is the Lawson topology. Thus Theorem
III-2.15 constitutes an essential portion of a fundamental link between contin-
uous semilattices and compact semilattices.

Exercises

Exercise III-2.16. Let L be a complete meet continuous semilattice. Show that
the following statements are equivalent:

(1) L is algebraic;
(2) �L has small open semilattices and σ (L) is algebraic;
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(3) �L is a compact zero dimensional Hausdorff topological semilattice with
small open–closed semilattices;

(4) �L is a zero dimensional Hausdorff topological semilattice.

Hint. For (1) iff (2) refer to III-2.15 and II-1.15, considering II-1.11 and III-
2.13. In III-1.14 we showed (1) implies (3), and (3) implies (4) is trivial. Suppose
(4) and take x ∈ L and let U be a neighborhood of x . By (4) find an open
compact neighborhood V ⊆ U ; by continuity of multiplication and the fact
that V and its complement are closed find a neighborhood W of x in V such
that W V ⊆ V . Let W ∗ = ⋃{W n: n = 1, 2, . . .} and note that W ∗ ⊆ V . Now
inf W ∗ = lim W ∗ ∈ V− = V , whence III-2.15(4) is satisfied. Thus �L has
small semilattices by III-2.15(2). If W is open–closed in�L , then ↑W is open–
closed, hence is a compact element in σ (L); this shows that σ (L) is algebraic.
Thus we have shown (2). �

Exercise III-2.17. Let L be a continuous semilattice. Show that L equipped
with the Lawson topology is a Hausdorff topological semilattice with small
open semilattices.

Hint. Adapt the methods of the proof of Theorem III-2.15. �

Exercise III-2.18. Show that a dcpo for which the Scott topology has a basis
of open filters is meet continuous. �

Exercise III-2.19. Let L be adcpo that is a semilattice. Show that the following
are equivalent:

(1) each point of L has a Scott neighborhood basis of open filters and σ (L) is
a continuous lattice;

(2) �L has small open semilattices, L is meet continuous, and σ (L) is a
continuous lattice;

(3) L is a domain, or equivalently, a continuous semilattice.

Hint. Modify the proof of III-2.13 and use III-2.17 and II-1.14(3). �

Old notes

As the diagram of “hierarchies” at the end of Chapter I indicates (see end of
Section I-4), all of the theory directly relevant for continuous lattices takes
place within the class of meet continuous lattices. To the discussions on the
Lawson topology we have added the hypothesis of meet continuity in the
present section and thereby obtained results such as III-2.11 and III-2.15.
Theorem III-2.11 is due to Gierz and Lawson [scs 42], but the proof here
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is more direct. The equivalence (1) iff (3) in III-2.15 is implicit in [Hofmann
and Stralka, 1976] although without identification of the Lawson topology in
explicit terms. Theorem III-2.8 originated in the Compendium (as did Proposi-
tion III-2.6); these results use once again the hypothesis that the Scott topology
σ (L) is a continuous lattice; the reason for this goes back to II-4.13.

New notes

H. Kou, Y.-M. Liu, and M.-K. Luo have recently extended the theory of meet
continuity to general dcpos, and we have modified the earlier treatment of this
topic in the Compendium to reflect their work. Definition III-2.1 and Proposition
III-2.3 are drawn from [Kou et al., 2001].

III-3 Quasicontinuity and Liminf Convergence

In this section we consider those dcpos, and in particular those complete lat-
tices, for which the Lawson topology is Hausdorff. We have seen in the pre-
vious section that for meet continuous complete lattices these are precisely
the continuous lattices. In this investigation we obtain a class of dcpos called
quasicontinuous domains, a generalization of domains, for which substantial
portions of domain theory remain valid.

We also resume the theme of Section II-1 where we derived the Scott topology
from liminf convergence and then discussed the relations between these notions.
Here we refine the concept of liminf convergence and investigate its relationship
to the Lawson topology. Since σ (L) ⊆ λ(L), we expect fewer convergent nets
to belong to the finer topology λ(L).

Quasicontinuous domains

Definition III-3.1. We order the collection of nonempty subsets of a dcpo

L by G ≤ H if ↑H ⊆ ↑G (this is only a preorder, not an order, since it is
typically not antisymmetric). We say that a family of sets is directed if given
F1, F2 in the family, there exists F in the family such that F1, F2 ≤ F , i.e.,
F ⊆ ↑F1 ∩ ↑F2.

We say that G is way below H or G approximates H and write G � H if
for every directed set D ⊆ L , sup D ∈ ↑H implies d ∈ ↑G for some d ∈ D.
We write G � x for G � {x} and y � H for {y} � H . Note that y � x is
unambiguously defined. Note also that G � H iff G � x for all x ∈ H . �

Definition III-3.2. A dcpo L is called a quasicontinuous domain if for each
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x ∈ L the family

fin(x) = {F : F is finite, F � x}

is a directed family and whenever x �≤ y, then there exists F ∈ fin(x) with
y /∈ ↑F . �

Remark. Observe that a quasicontinuous domain is generally not actually a
domain (domains are a special kind of quasicontinuous domain in which the
collection of finite sets F � x is replaced by a collection of singleton subsets).
Example O-4.5(2) is a typical quasicontinuous domain which is not continuous.
However, quasicontinuous domains have so many domain-like features that this
terminology seems appropriate. If there is any danger of confusion, we can refer
to domains as continuous domains.

The following lemma is crucial in the study of quasicontinuous domains.

Lemma III-3.3. (Rudin’s Lemma) Let F be a directed family of nonempty
finite subsets of a partially ordered set P (see III-3.1). Then there exists a
directed set D ⊆⋃F∈F F such that D ∩ F �= Ø for all F ∈ F .

Proof: Consider the collection of all E ⊆ ⋃F∈F F such that (i) E ∩ F �= Ø
for all F ∈ F , and (ii) F, G ∈ F and G ⊆ ↑F imply E ∩G ⊆ ↑(E ∩ F). Such
sets exist, specifically the union of all the F . Order all such sets by inclusion.
By the Hausdorff Maximality Principle there exists a maximal chain of such
subsets. Let D be the intersection. That D meets each F follows from the
finiteness of F . The finiteness of members of F also readily yields that D
satisfies (ii). Suppose that some x ∈ D has the property that (F ∩ D)\↑x �= Ø
for all F ∈ F . Then one verifies directly that D\↑x again satisfies (i) and (ii),
contradicting the minimality of D. Thus for all x ∈ D, there exists Fx ∈ F
such that (Fx ∩ D) ⊆ ↑x . Given any x, y ∈ D, then there exists F ∈ F beyond
Fx and Fy , and thus F ∩ D ⊆ ↑(Fx ∩ D) ∩ ↑(Fy ∩ D) ⊆ ↑x ∩ ↑y; hence D
is directed. �

Corollary III-3.4. Let F be a directed family of nonempty finite sets in a
dcpo. If G � H and

⋂
F∈F ↑F ⊆ ↑H, then F ⊆ ↑F for some F ∈ F .

Proof: Suppose not. Then the collection {F\↑G: F ∈ F} is a directed family
of nonempty finite sets. By Rudin’s Lemma there exists a directed set D ⊆
⋃{F\↑G: F ∈ F} such that D ∩ (F\↑G) �= Ø for all F ∈ F . Then

sup D ∈
⋂

d∈D

↑d ⊆
⋂

F∈F
↑(F\↑G) ⊆

⋂

F∈F
↑F ⊆ ↑H.
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Since G � H , there exists d ∈ D such that d ∈ ↑G. But this contradicts
d ∈ F\↑G for some F . �

We now derive the interpolation property for quasicontinuous domains.

Proposition III-3.5. Let S be a quasicontinuous domain. If H � x, then there
exists a finite set F such that H � F � x.

Proof: Consider the collection G = {G: G is finite, there exists F finite such
that G � F � x}. If x �≤ z, then there exists F � x , F finite, such that
z /∈ ↑F . For each y ∈ F , we can pick Fy � y, Fy finite, such that z /∈ ↑Fy .
Set G = ⋃y∈F Fy . It is straightforward to verify that the finite set G satisfies
G � F and z ∈ ↑G. Thus G ∈ G and

⋂
G∈G ↑G ⊆ ↑x .

Now suppose that Gi ∈ G, Gi � Fi � x , for i = 1, 2. Since S is qua-
sicontinuous, there exists F � x , F finite, such that F ⊆ ↑F1 ∩ ↑F2. Then
Gi � Fi ≤ F implies Gi � F for i = 1, 2. Thus Gi � y for all y ∈ F and
i = 1, 2. Again since S is quasicontinuous, by Corollary III-3.4 there exists
Fy � y, Fy finite, such that Fy ⊆ ↑Gi for i = 1, 2. Set E = ⋃y∈F Fy . Then
E � F � x and E ⊆ ↑Gi for i = 1, 2. Thus the family G is directed. It then
follows from Corollary III-3.4 that there exists some G ∈ G such that G ⊆ ↑H .
Since G � F � x for some finite F , we conclude that H � F � x . �

Proposition III-3.6. Let S be a quasicontinuous domain.

(i) A subset U of S is Scott open iff for each x ∈ U there exists a finite
F � x such that

�

F ⊆ U. The sets

�

F = {x : F is finite, F � x} are
Scott open and they form a basis for the Scott topology.

(ii) For any nonempty set H in S, the set

�

H is equal to the interior of ↑H
with respect to the Scott topology.

Proof: Let U be Scott open, x ∈ U . From the definition of the Scott topology
we have U � x , so by Proposition III-3.5 there exists a finite F such that
U � F � x . In particular F ⊆ ↑U = U and thus ↑F ⊆ U . Conversely
suppose that for each x ∈ U , there exists a finite F � x such that ↑F ⊆ U .
Then in particular, ↑x ⊆ U , so U is an upper set. Let D be a directed set
such that x = sup D ∈ U . Then d ∈ ↑F ⊆ U for some d ∈ D, and hence
U is Scott open. The last assertion of part (i) follows from the first, once we
know that the sets

�

F are Scott open, and this we now establish as we prove
part (ii).

Let H be a nonempty set in S. That

�

H contains the Scott interior of ↑H is
clear from the definition of a Scott open set. Conversely suppose that x ∈ �

H ,
i.e., H � x . By Proposition III-3.5 there exists a finite set F � x such that
H � F . Let y ∈ ↑F and let D be a directed set such that y ≤ sup D. Then
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H � F implies that d ∈ ↑H for some d ∈ D. Thus ↑F ⊆ �

H . By the first
part of (i),

�

H is Scott open, and hence

�

H is contained in the Scott interior
of ↑H . Thus the two are equal. �

Proposition III-3.7. Let S be a quasicontinuous domain.

(i) Endowed with the Scott topology, S is locally compact and sober.
(ii) Endowed with the Lawson topology, S is regular and Hausdorff.

Proof: (i) Let x ∈ U , where U is Scott open in S. By Proposition III-3.6 there
exists a finite set F ⊆ U such that

�

F is a Scott open neighborhood of x . Then
x ∈ �

F ⊆ ↑F ⊆ U , and ↑F is compact in the Scott topology (since any open
cover of F also covers ↑F). Thus S is locally compact.

Let A be a nonempty closed irreducible set. Consider the collection

F = {F : F is finite,

�

F ∩ A �= Ø}.

Let F,G ∈ F . Then the Scott open sets

�

F and

�

G both meet A, and since A
is irreducible

�

F ∩ �
G ∩ A �= Ø. Let x be in the intersection; by Proposition

III-3.6 there exists a finite set E ⊆ �

F∩ �

G such that E � x . Then E ∈ F and
↑E ⊆ ↑F ∩ ↑G. Thus the collection F is directed, and hence the collection
{F ∩ A: F ∈ F} is a directed collection of finite nonempty sets. We apply
Rudin’s Lemma (III-3.3) to this directed family and let s be the supremum of
the resulting directed set D guaranteed by Rudin’s Lemma. Since A is Scott
closed, s ∈ A. Suppose that y ∈ A, but y �≤ s. Then there exists a finite set
H � y such that s /∈ ↑H . It follows that H ∈ F since y ∈ �

H . But this is
impossible since s ∈ ↑F for all F ∈ F . Hence A = ↓s.

(ii) Since a regular T0 space is Hausdorff, we need only show that a quasi-
continuous domain is regular for its Lawson topology. For regularity it suffices
to check for subbasic closed sets missing a point x . Let ↑y be a subbasic closed
set missing x . There exists a finite set F such that F � y, but x /∈ ↑F . By
Proposition III-3.6,

�

F is a Scott open set containing y, hence ↑y, and S\↑F
is a lower open set containing x which is disjoint from

�

F .
Now let A be a Scott closed set missing x . By Proposition III-3.6 there exists

a finite set F � x such that F ⊆ S\A. Then

�

F is a Scott open set containing
x which is disjoint from the lower open set S\↑F , which contains A. Thus S
with the Lawson topology is regular. �

Note that Proposition III-3.7(ii) generalizes Theorem III-1.10 to the more gen-
eral setting of quasicontinuous domains. Note also that III-3.7(i) together with
I-1.7(5) implies that the lattice σ (L) of Scott open sets in a quasicontinuous
domain is continuous.
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Definition III-3.8. A lattice L is called a quasicontinuous lattice if it is com-
plete and satisfies whenever x �≤ y, then there is a finite F ⊆ L with y /∈ ↑F
and F � x . �

Counterexample O-4.5(2) provides a simple example of a complete lattice that
is a quasicontinuous, but not a continuous, lattice.

Proposition III-3.9. Let L be a complete lattice. If X � Z and Y � Z, then
X ∨ Y � Z, where for short we write X ∨ Y = {x ∨ y: x ∈ X and y ∈ Y }.
Thus a quasicontinuous lattice is a quasicontinuous domain.

Proof: The first assertion is straightforward and establishes that for a fixed
x the set of all finite F such that F � x is directed. Since the other condi-
tion for a dcpo to be a quasicontinuous domain is part of the definition of a
quasicontinuous lattice, we are done. �

Proposition III-3.10. A (continuous) domain is a quasicontinuous domain,
and a meet continuous quasicontinuous domain is a domain.

Proof: The first assertion is immediate from the Definition of a (continuous)
domain. Suppose that L is a quasicontinuous domain, x ∈ L . By Proposition
III-3.6(i) for each F � x, x is in the Scott interior of ↑F . By Lemma III-2.10
there exists at least one y ∈ F such that y � x . Let G F = {y ∈ F : y � x}.
Then it is easy to verify that {G F : F � x} satisfies the hypotheses of Rudin’s
Lemma III-3.3, and it follows from the conclusion thereof that x is the directed
supremum of elements way below it (that x is the supremum follows from
⋂{↑F : F � x} = ↑x). Hence L is a (continuous) domain. �

Theorem III-3.11. For a complete lattice L, the following are equivalent:

(1) L is a quasicontinuous domain;
(2) L is a quasicontinuous lattice;
(3) the Lawson topology is Hausdorff.

Proof: By Proposition III-3.7 (1) implies (3) and by Proposition III-3.9 (2)
implies (1). Thus we show that (3) implies (2).

Let x ∈ L and suppose that x �≤ y. Let w ∈ ↑x . Then wy < w, so there exist
disjoint basic Lawson open sets Ui\↑Fi for i = 1, 2, such that wy ∈ U1\↑F1

and w ∈ U2\↑F2, where Ui is Scott open and Fi is finite for i = 1, 2. We may
assume that U2 ⊆ U1 (otherwise replace U2 with U2 ∩ U1). Then by elementary
set theory U2\↑F2 ⊆ ↑F1. Let Fw consist of all members z of F1 such that
z ≤ w. Then U2\(↑F2 ∪ ↑(F1\Fw)) is a Lawson open set contained in ↑Fw

and containingw. Note that y /∈ ↑Fw, for otherwisewy ∈ ↑Fw, a contradiction
to wy ∈ U1\↑F1. Thus ↑Fw contains a Lawson neighborhood of w, but misses
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y. Since L is compact and ↑x is Lawson closed, there exist finitely many of the
↑Fw, x ≤ w, such that the union of their Lawson interiors contains ↑x . Then
the union F of the finite collection of these finite Fw is a finite set, the Lawson
interior of ↑F contains ↑x , and y /∈ ↑F . The fact that the Lawson interior of
↑F contains ↑x and the Lawson open sets have property (S) leads readily to
the deduction that F � x . Thus L is a quasicontinuous lattice. �

Note that Proposition III-3.10 and Theorem III-3.11 provide an alternative
proof to the assertion of Theorem III-2.11 that a complete lattice that is meet
continuous and Hausdorff in the Lawson topology is a continuous lattice.

The Lawson topology and liminf convergence

In Section II-1 we described the Scott topology in terms of liminfs. We turn
now to a similar undertaking for the Lawson topology. Recall that for L a dcpo,
we say that x ∈ L is the liminf of a net (x j ) j∈J , written x = lim x j , if (i) x is
the supremum of all eventual lower bounds of the net and (ii) x = sup D for
some directed set of eventual lower bounds (see Definition II-1.1).

Our first observation is purely order theoretical in view of the fact that the
liminf is a purely order theoretical idea.

Proposition III-3.12. Let L be a dcpo, x ∈ L and (x j ) j∈J a net on L. Then
the following statements are equivalent:

(1) x = lim yk for all subnets yk = x f (k) of (x j ) j∈J ;
(2) x = lim x j and x ≥ z if z is a cofinal lower bound, i.e., if given j ∈ J ,

there exists i ≥ j such that z ≤ xi .

Proof: (1) implies (2): The first assertion follows by considering the subnet
consisting of the original net. For the second, let z be a cofinal lower bound.
Consider the subnet of (x j ) j∈J consisting of those indices and elements such
that xi ≥ z. Then x is the liminf and z is an eventual lower bound of this subnet,
so z ≤ x .

(2) implies (1): Let (yk)k∈K be a subnet of (x j ) j∈J with yk = x f (k). Let z be
an eventual lower bound for (yk). Then there exists k ′ ∈ K such that z ≤ yk for
all k ≥ k ′. The set { f (k): k ≥ k ′} is cofinal in J by the definition of a subnet
and z ≤ x f (k) = yk for each k ≥ k ′. Thus by hypothesis z ≤ x . Therefore ↓x
contains all eventual lower bounds of (yk)k∈K .

Consider any eventual lower bound w of (x j ) j∈J . Then there exists j ′ ∈ J
such that w ≤ x j for j ≥ j ′. There exists k∗ ∈ K such that f (k) ≥ j ′ for
k ≥ k∗. Then w is a lower bound for {yk = x f (k): k ≥ k∗}. Thus the eventual
lower bounds of (x j ) j∈J are also eventual lower bounds for (yk)k∈K . Hence any
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directed set D in the set of eventual lower bounds of (x j ) j∈J with supremum
x is also a directed set of eventual lower bounds of (yk)k∈K with supremum x .
Thus x = lim yk . �

Definition III-3.13. We consider the class LI of all pairs ((x j ) j∈J , x) of nets
on L and elements in L which satisfy the equivalent conditions of III-3.12.
According to the discussion in Section II-1 this convergence notion determines
a topology O(LI). The topology O(LI) is called the liminf topology and is
written ξ (L). We abbreviate (L , ξ (L)) as �L . �

We note immediately that, for any directed set D in a dcpo L , the element
x = sup D and the net (d)d∈D satisfy III-3.12(2); whence ((d)d∈D, sup D) ∈
LI. Thus, if U ∈ ξ (L) and sup D ∈ U , then D is eventually in U ; that is,
U satisfies condition (S) of II-1.3. From II-1.4(v) we then derive immediately
that a ξ (L) open upper set is Scott open. Conversely if ((x j ) j∈J , x) ∈ LI and
x ∈ U , a Scott open set, then some eventual lower bound z of (x j ) j∈J is in U ,
since x = lim x j is the supremum of some directed subset of eventual lower
bounds. But then x j ∈ U for x j ≥ z. Thus U is ξ (L) open, and we have the
following parallel to III-1.6.

Proposition III-3.14. Let L be a dcpo.

(i) An upper set is ξ (L) open if and only if it is Scott open.
(ii) A lower set is ξ (L) closed iff it is closed under sups of directed sets. �

It is standard that convergence structures given by nets have alternative de-
scriptions as convergence structures given by filters (collections of nonempty
subsets closed under taking supersets and finite intersections). In the case of
liminf convergence we can say that a filter of sets F has an eventual lower
bound z if ↑z ∈ F and declare x to be the liminf of the filter if ↓x contains
all eventual lower bounds and x is the supremum of a directed set of eventual
lower bounds. Recall that an ultrafilter (of subsets) is a maximal filter and is
characterized by the property that for any subset either it or its complement be-
longs to the ultrafilter. For the case of a complete semilattice the liminf always
exists and is given by

limF = supF∈F inf F.

Lemma III-3.15. Let L be a dcpo equipped with the ξ (L)-topology. Then
every ultrafilter converges to its liminf (provided that it exists). A set A ⊆ L
is ξ (L) closed iff for every ultrafilter F on L with A ∈ F , one has limF ∈ A
whenever limF exists.
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Proof: LetF be an ultrafilter with z = limF . We define a net on the set J of all
pairs (x, F) with x ∈ F ∈ F ordered by (x, F) ≤ (y,G) if G ⊆ F by x j = x
for j = (x, F). Then one sees easily that the net (x j ) j∈J has exactly the same
set of eventual lower bounds as the ultrafilter F , and hence that z = lim x j .
Suppose that w is a cofinal lower bound. Then the set {x j : w ≤ x j } is cofinal
in the net; it follows that ↑w meets every member of F , and hence must be in
F since F is an ultrafilter. Thus w is an eventual lower bound of the ultrafilter,
and so w ≤ z. It follows from Proposition III-3.12(2) that the pair ((x j ) j∈J , z)
is in LI. Let U be any ξ (L) open set containing z. Then there exists i ∈ J
such that x j ∈ U for j ≥ i = (y, F). If follows that each x j ∈ U for all
x j = x, x ∈ F, j = (x, F), and hence that F ⊆ U . Thus the ultrafilter F
converges to z.

Suppose that A is ξ (L) closed and F is an ultrafilter on L having A as
a member for which limF exists. By the preceding paragraph the ultrafil-
ter converges to its liminf, and hence the liminf must be in A, since A is
closed.

Conversely, suppose that A contains the liminf of every ultrafilter F with
A ∈ F , provided limF exists. Consider ((x j ) j∈J , x) ∈ LI, and assume that all
x j are in A. The family {G j : j ∈ J }, where we set G j = {x j∗ : j ≤ j∗}, is a
filter basis on A. Let F be any ultrafilter containing all the G j (every filter is
contained in an ultrafilter). ClearlyF contains A. If z is an eventual lower bound
for F , then ↑z ∈ F . It follows that { j ∈ J : z ≤ x j } is cofinal, and hence z is a
cofinal lower bound for (x j ) j∈J . By Proposition III-3.12(2), z ≤ x . Conversely
if z is an eventual lower bound for (x j ) j∈J , then clearly it is an eventual lower
bound for F (since tails of the net are members of F). Thus any directed set
of eventual lower bounds of the net (x j ) j∈J with supremum x is also a directed
set of eventual lower bounds of F with supremum x , and therefore x = limF .
By hypothesis x ∈ A, so A is ξ (L) closed. �

Remark. Note that the preceding lemma gives an alternative characterization
of the liminf topology on a dcpo. One starts with the convergence notion of
ultrafilters converging to their liminfs (when these exist), defines the topology
from this notion of convergence, and obtains the liminf topology.

Corollary III-3.16. In a complete lattice or complete semilattice L, the liminf
of any filter F exists and is given by the directed supremum

limF = supF∈F inf F.

Hence in the case of a complete lattice or semilattice the ξ (L)-topology is
compact.
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Proof: Clearly for any F ∈ F, F ⊆ ↑inf F . Thus the latter set is in F , and
hence inf F is an eventual lower bound. Conversely if ↑y ∈ F , then y = inf F
for F = ↑y ∈ F . If ↑x,↑y ∈ F , then their intersection is in F , and hence
nonempty. Thus the supremum z of x and y exists and is an eventual lower
bound for the filter, since ↑z = ↑x ∩ ↑y must also be in F . Thus the set of
eventual lower bounds is directed, and its supremum is then the liminf and
equals supF∈F inf F . It now follows from Lemma III-3.15 that every ultrafilter
converges in the liminf topology, and hence that L is compact. �

We are now prepared to consider the question of the relationship between the
Lawson topology and liminf convergence.

Theorem III-3.17. Let L be a dcpo.

(i) The Lawson topology is contained in the liminf topology.
(ii) The Lawson topology and the liminf topology agree if L is a quasicon-

tinuous domain. In this case an ultrafilter F converges to x iff x = limF .
(iii) In a continuous domain the liminf convergence is topological and agrees

with convergence in the Lawson topology.

Proof: (i) Let ↑x be a principal filter. If (x j ) j∈J is a net in ↑x , then x is an
eventual lower bound for the net, and hence the liminf of the net, if it exists,
must be in ↑x . Hence ↑x is closed in the liminf topology. From this fact and
Proposition III-3.14 it follows that the Scott and lower topologies, and hence
the Lawson topology, are contained in the liminf topology.

(ii) Let F be an ultrafilter converging to x in the Lawson topology. Set
A = {z ∈ L : ↑z ∈ F}. Note that each z ∈ A satisfies z ≤ x for otherwise
L\↑z would be a Lawson open set containing x, but not in the ultrafilter. Let
G be a finite set such that G � x . Then

�

G is a Scott open set containing
x by Proposition III-3.6, thus ↑G ∈ F , and hence ↑y ∈ F for some y ∈ G
(since if a finite union belongs to an ultrafilter, at least one member of the union
must belong to it). It follows that G ∩ A �= Ø for all finite G � x . Applying
Rudin’s Lemma to the collection {G ∩ A: G � x,G is finite}, we obtain a
directed set D of eventual lower bounds whose supremum must be contained in
⋂{↑G: G � x,G is finite}, which is contained in ↑x (by Definition III-3.2).
But since z ≤ x for all z ∈ A, we conclude that x = sup D and therefore
x = limF .

Conversely if x = limF , then F converges to x in the Lawson topology by
Lemma III-3.15 and part (i). Thus the second assertion of (ii) is established, from
which the first follows readily (since continuity is equivalent to preservation of
limits of ultrafilters).
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(iii) Suppose that L is a continuous domain and that (x j ) j∈J is a net converging
to x in the Lawson topology. If y �≤ x , then L\↑y is a Lawson open set
containing x , and hence there exists j ∈ J such that xi �≥ y for i ≥ j . Thus y
is not a cofinal lower bound for (x j ) j∈J . Hence y ≤ x for every cofinal lower
bound. If z � x , then

�

z is a Scott and hence Lawson open set containing
x , and thus z is an eventual lower bound for (x j ) j∈J . Since x is the directed
supremum of

�

x, x = lim x j . Thus x satisfies the two conditions of Proposition
III-3.12(2) and hence ((x j ) j∈J , x) ∈ LI. That ((x j ) j∈J , x) ∈ LI implies the
net converges in the Lawson topology follows from part (i). �

We note that Corollary III-3.16 and Theorem III-3.17(i) give an alternative proof
of the compactness of the Lawson topology for complete lattices or semilattices
(compare III-1.9).

We close this section with another application of liminf convergence.
The Scott topology is robust in the sense that if one takes its join with the

lower topology (or any topology of lower sets for that matter), then one recovers
the Scott topology as the open upper sets (see III-1.6(i) and its proof). The lower
topology is not so robust; see Exercise III-3.32. However if liminfs of ultrafilters
exist, then one does have analogous results.

Proposition III-3.18. Let L be a dcpo.

(i) The set of ω(L)-cluster (equal convergence) points of an ultrafilter F is
↑(limF), provided limF exists.

(ii) Suppose that every ultrafilter in L has a liminf (for example, L is a
complete (semi)lattice). Then an upper set A in L is ω(L) closed iff it is
Lawson closed iff it is ξ (L) closed iff limF ∈ A for all ultrafilters F with
A ∈ F .

Proof: (i) The ultrafilter F converges to y = limF in the ξ (L)-topology
(Lemma III-3.15), hence in the Lawson topology, and thus in the lower topology.
Therefore it converges to every member of ↑y, the closure of {y} in the lower
topology. Suppose that y �≤ x , then L\↓x is a Scott open set containing y and
hence it must contain an eventual lower bound z. Then ↑z ∈ F . Since ↑z is
closed for the topology ω(L), it contains all cluster points of the filter. Thus x
is not a cluster point.

(ii) Let A be an upper set. Then A is ω(L) closed implies A is λ(L) closed
implies A is ξ (L) closed (from III-3.17(i)). The last condition implies that for
every ultrafilter F with A ∈ F we have limF ∈ A by Lemma III-3.15. That
the last condition implies that A is ω(L) closed follows from part (i). �
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Exercises

Analogous to the case of domains, quasicontinuous domains have an alternative
definition that only involves a family of finite sets way below each element, not
all such sets.

Exercise III-3.19. Let L be a dcpo.

(i) Show that L is a quasicontinuous domain if for each x ∈ L there exists a
directed family Fx of finite sets such that F � x for each F ∈ Fx and
whenever x �≤ y, then there exists F ∈ Fx with y /∈ ↑F .

(ii) Show that L is a quasicontinuous domain if for each x ∈ L and each Scott
open set U containing x , there exists a finite set F ⊆ U such that x ∈
intσ↑F , the Scott interior of ↑F .

Hint. (i) First use Corollary III-3.4 to show that for each finite set G � x ,
there exists F ∈ Fx such that F ⊆ ↑G. Then use the directedness of Fx to
show that the collection {G: G is finite, G � x} is directed.

(ii) For x ∈ L , apply part (i) to the collection of all finite F such that x ∈
intσ↑F . Note that for x �≤ y, L\↓y is a Scott open set containing x . �

The next exercise may be viewed as a converse of the interpolation property
given in Proposition III-3.5.

Exercise III-3.20. Let L be a dcpo. Suppose that for any nonempty H ⊆ L
and any x ∈ L , H � x implies there exists a finite F ⊆ ↑H such that F � x .
Show that L is a quasicontinuous domain.

Hint. For y �≤ x , note that L\↓y � x . Thus there exists F ⊆ L\↓y such
that F � x . If F1, F2 � x , then ↑F1 ∩ ↑F2 � x , so there exists a finite
F ⊆ ↑F1 ∩ ↑F2 such that F � x . �

The next exercise is useful for verifying that examples such as O-4.5(2) are
quasicontinuous lattices.

Exercise III-3.21. Show that any dcpo that has no infinite antichain is
quasicontinuous.

Hint. Let H � x and pick a maximal antichain A in ↑H\↑x . Then F =
A ∪ {x} is finite, contained in ↑H , and satisfies F � x . Apply the previous
exercise. To justify F � x , let D be a directed set with x ≤ sup D. Eventually
D is in ↑H , since H � x . If d ≥ x for some d , we are done. Otherwise
D ∩ ↑H ⊆ (↑A ∪ ↓A) by maximality of A. It can’t be the case that D ⊆ ↓A,
since sup D ≥ x , and thus d ∈ ↑A ⊆ ↑F for some d ∈ D. �
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Exercise III-3.22. Let L be the poset obtained by taking infinitely many disjoint
copies of the unit interval (with the usual order) and gluing them together in 0
and 1. Show that L is a complete lattice, it has infinite antichains and is not a
quasicontinuous lattice. �

Definition III-3.23. A dcpo L is a quasialgebraic domain if

compfin(x) := {F : F is finite, F � F}
is a directed family and whenever x �≤ y, there exists F ∈ compfin(x) such that
y /∈ ↑F . �

Exercise III-3.24. Let L be a quasicontinuous domain. Prove the following.

(i) ↑F is open–closed in the Lawson topology whenever F is finite and
F � F .

(ii) A quasialgebraic domain is totally disconnected in the Lawson topology.
(iii) An upper set A is both open and compact in the Scott topology iff

A = ↑F for some finite F � F .
(iv) L is quasialgebraic iff the Scott topology has a basis of open sets that are

also compact in the Scott topology. �

Exercise III-3.25. Let L be a complete semilattice. Show that the following
statements are equivalent:

(1) L is a quasicontinuous domain;
(2) L1, L with a largest element 1 adjoined, is a quasicontinuous lattice;
(3) the Lawson topology on L is Hausdorff.

Hint. For (3) implies (2), first note that L is Hausdorff implies that L1 is
Hausdorff (since 1 is isolated in the Scott, hence Lawson, topology), and then
apply Theorem III-3.11. The other two needed implications follow directly from
the text. �

Exercise III-3.26. If L is a complete lattice, or semilattice, with Hausdorff
Lawson topology and if S is a subsemilattice of L , show that the following
statements are equivalent.

(1) S is closed under directed sups and nonempty infs.
(2) S is Lawson closed.

Hint. First note that L is a quasicontinuous domain by Theorem III-3.11 or the
previous exercise with Hausdorff Lawson topology. That (1) implies (2) follows
by showing (1) implies S is closed in �L and then using III-3.17(ii). That (2)
implies (1) follows as in III-1.12. �
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Exercise III-3.27. For a complete lattice L show that the following is an equiv-
alent condition to be a quasicontinuous lattice, where fin(x) := {F : F finite and
F � x}:

for each x ∈ L and each choice function f ∈∏F∈fin(x) F we have
x ≤ sup{ f (F): F ∈ fin(x)}. �

In the following exercise we develop for the lower topology ω(L) analogs of
earlier derived results for σ (L). A subset X of a dcpo L is said to have a
property (�) if the following condition is satisfied:

(�) if limF ∈ X for an ultrafilter F, then X ∈ F .

Compare this with II-1.3(S).

Exercise III-3.28. Let L be a dcpo in which every ultrafilter has a liminf, for
example, a complete semilattice or complete lattice. Prove the following:

(i) a subset of L is ω open iff it is a lower set satisfying property (�)
(compare II-1.4(v));

(ii) every Scott open set satisfies property (�) (compare II-1.4(vi));
(iii) if B is a collection of subsets satisfying property (�), then every subset in

the topology generated by B also satisfies (�) (compare II-1.4(vii));
(iv) in the Lawson topology, the lower open sets are precisely the ω open sets

(compare III-1.6).

Hint. Use III-3.18(ii) for part (i). For part (ii), let x = limF ∈ U , a Scott open
set. Then x is the directed supremum of residual lower bounds of F , and thus
there exists z ∈ U such that ↑x ∈ F . Hence U ∈ F . The remaining assertions
are routine. �

The characterization theorems for the Hausdorff separation of the Lawson topol-
ogy may be amplified as follows.

Exercise III-3.29. Show that a complete lattice L is quasicontinuous iff the
following condition is satisfied:

(UF) for all ultrafilters F on L the set of σ (L)-cluster points of F is ↓(limF).

Remark. Note that ↓(limF) is always contained in the set of σ (L)-cluster
points of F (see II-1.1,2,3).

Hint. (UF) implies III-3.11(3): By (UF) and III-3.18(i), the only λ(L)-cluster
point of an ultrafilter F is limF .
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III-3.6(i) implies (UF): If x �≤ limF , then x has a σ (L) open neighborhood U
whose ω(L) closure C does not contain limF . By III-3.18(ii) we know C �∈ F ,
whence U �∈ F . SinceF is an ultrafilter, L\U ∈ F . Thus x is not a σ (L)-cluster
point of F . �

The next exercise exhibits anew that much of domain theory generalizes to
quasicontinuous domains.

Exercise III-3.30. Let L be a quasicontinuous domain. Prove the following.

(i) If A is a Scott closed subset of L , then A is a quasicontinuous domain.
(ii) If M is a dcpo and r : L → M and j : M → L are Scott-continuous maps

satisfying r j = 1M , then M is a quasicontinuous domain.
(iii) If f : L → M is a Scott-continuous upper adjoint onto a dcpo M , then M

is a quasicontinuous domain.
(iv) If L is additionally a complete lattice and M ⊆ L is closed under

nonempty infs and directed sups, then M is a quasicontinuous domain.
(v) The product

∏
J L j of quasicontinuous domains is a quasicontinuous

domain, provided that at most finitely many fail to have a 0.
(vi) The class of quasicontinuous lattices is closed under the formation of

subalgebras, products, and homomorphic images (see I-2.10).

Hint. For (ii), one sees directly that F � j(y) in L implies r (F) � y and
that the family of such r (F) for F finite is directed. Suppose that y �≤ w. Then
r−1(↓w) is a Scott closed set missing j(y), and thus there exists a finite F
such that F � j(y) and F ∩ r−1(↓w) = Ø (see III-3.6). Then r (F) � y and
r (F) misses ↓w. Thus the intersection of all ↑r (F) for F finite, F � j(y) is
contained in ↑y. Thus M is quasicontinuous.

For the other parts, adapt the techniques of Section I-2 from domains to
quasicontinuous domains. �

Exercise III-3.31. Let L be a complete lattice. Prove the following.

(i) The ultrafilter F converges to x in the interval topology iff liminf F ≤
x ≤ limsupF .

(ii) The interval topology is Hausdorff iff for every ultrafilter F , liminf F =
limsupF . �

Hint. Apply Proposition III-3.18(i) and its order dual to obtain (i); (ii) then
follows from (i) and the fact that a space is Hausdorff iff ultrafilters have unique
limits. �
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Exercise III-3.32. Let L be an infinite dcpo with trivial order, i.e., an infinite
antichain. Show that the lower topology is the cofinite topology, but that the
Lawson open lower sets are all subsets. Conclude that the Lawson topology
may, in general, have more open lower sets than those of the lower topology.

Old notes

Theorem III-3.11 appears in [Gierz and Lawson, 1981], where quasicontinuous
lattices were called generalized continuous lattices. The basic theory of liminf
convergence for the special case of complete lattices is also due to [Gierz and
Lawson, 1981]. Exercise III-3.30 is parallel to I-2.11, to O-3.15, O-4.2(1) and
I-2.1 ff.

New notes

The preordering on subsets of an ordered sets as defined in III-3.1 is sometimes
called the Smyth order [Smyth, 1978]. Quasicontinuous domains were intro-
duced and their basic theory developed by Gierz, Lawson and Stralka [Gierz
et al., 1983b]. A crucial building block for extending the theory of generalized
continuous lattices in the Compendium to the theory of quasicontinuous do-
mains given in this section was the lemma of Rudin [Rudin, 1981]. Proposition
III-3.10 was proved in the Compendium for complete lattices; the extension to
domains was first proved in [Kou et al., 2001]. Liminf convergence has been
generalized from the case of complete lattices considered in the Compendium
to the case of general dcpos.

III-4 Bases and Weights

When domains appear in theoretical computer science, one typically wants
them to be objects suitable for computation. In particular one is motivated to
find a suitable notion of a recursive or recursively enumerable domain. This
leads to the notion of a basis.

Definition III-4.1. Let L be a domain. A subset B ⊆ L is called a basis of
L iff

(i) �x ∩ B is directed for all x ∈ L , and
(ii) x = sup( �x ∩ B) for all x ∈ L .

Likewise a subset B of a dcpo L is said to be a basis if these two properties are
satisfied. �
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A dcpo has a basis iff it is continuous, that is, iff it is a domain. This follows
from the second Remark after Definition I-1.6.

From I-4.2 we recognize immediately that for an algebraic domain L the set
K (L) of compact elements is a basis; conversely, if the compact elements form
a basis of a dcpo L , then L is algebraic.

On the other hand taking B = L always yields a basis if L is a domain. A
basis is of course not uniquely determined in general. It is therefore useful to
have several ways of recognizing a basis.

Proposition III-4.2. Let B be a subset of a domain L. Then the following
conditions are equivalent:

(1) B is a basis of L;
(2) for each x ∈ L, there exists a directed set D ⊆ B ∩ �x such that

x = sup D;
(3) whenever x � y, there exists b ∈ B with x ≤ b � y;
(4) whenever x � y, there exists b ∈ B with x � b � y;
(5) every element of L is the supremum of some directed subset of B.

Proof: It is evident from Definition III-4.1 that (1) implies (2) and clearly
(2) implies (5). Assume (5) and suppose x � y. By the interpolation property
(Theorem I-1.9), there exists w such that x � w � y. Since w is the directed
supremum of a subset of B, by Theorem I-1.9 again there exists b ∈ B such
that x � b ≤ w � y. This establishes (4).

Clearly (4) implies (3). Assume (3) and let x ∈ L . Let b1, b2 ∈ �x ∩ B. Then
there exists y � x such that b1, b2 ≤ y, since �x is directed. By (3) there exists
b ∈ B such that y ≤ b � x . Thus �x ∩ B is directed. It follows easily from
the definition of a domain and property (3) that x is the supremum of �x ∩ B.
Thus (1) is satisfied. �

It follows from III-4.2(3) that a basis contains all the compact elements of the
domain L . As corollary we obtain for algebraic domains L that K (L) is the
unique smallest basis.

The first part of the following proposition generalizes part of I-1.10.

Proposition III-4.3. Let L be a domain with a basis B.

(i) The function rB = (J �→ sup J ): Id B → L is a surjective map preserving
directed sups whose domain Id B is an algebraic domain with

K (Id B) = {↓b: b ∈ B} ∼= B.
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The lower adjoint of rB is x �→ �x ∩ B. In the case that L is a continuous
lattice and B is a sup subsemilattice, the map rB preserves arbitrary infs
and sups.

(ii) Let RId B denote the set of all rounded ideals I of B, that is, those ideals
with the property that for any y ∈ I , there exists x ∈ I such that y � x.
Then RId B is the image of the lower adjoint of rB and the mapping
I �→ sup I : RId B → L is an order isomorphism.

Proof: (i) The map rB is surjective by Definition III-4.1. Since the supremum
of a directed family of ideals is its union, it is easy to see that rB preserves
directed sups.

Next we show that the function x �→ �x ∩ B : L → Id B is a lower adjoint
of rB . Indeed if x ∈ L and J ∈ Id B, then �x ∩ B ⊆ J iff �x ⊆ ↓J iff
x ≤ sup↓J = sup J by I-1.10, III-4.2 and O-1.5. Thus rB is an upper adjoint
and hence preserves arbitrary existing infs by O-3.3.

In the case that L is a continuous lattice and B is a sup subsemilattice, rB

preserves finite sups, hence arbitrary sups.
(ii) We consider the subposet RId B of Id B consisting of all rounded ideals.

By III-4.2(4) I := �x ∩ B is such a rounded ideal with sup I = x for every
x ∈ L . Thus the lower adjoint of rB maps L into RId B. Suppose that sup I =
sup J for two rounded ideals I and J . If b ∈ I , then b � x for some x ∈ I ,
and hence b � x ≤ sup I = sup J . Since J is directed b ≤ y for some y ∈ J ,
and hence b ∈ J since J is an ideal. Thus I ⊆ J . Similarly J ⊆ I , and hence
J = I . In particular for x = sup J = sup I , we must have J = I = �x ∩ B.
Thus the image of the lower adjoint is precisely the set of rounded ideals. It now
follows readily that I �→ sup I and x �→ �x ∩ B are inverse order preserving
isomorphisms between RId B and L . �

Remark. Part (ii) of Proposition III-4.3 is quite important. It tells us that we
can recover a domain from any basis and the restriction of � to that basis by
taking the rounded ideal completion of the basis B, that is, the domain RId B
of all rounded ideals of B.

For domains which are not algebraic, there are no minimal bases comparable
to K (L) in the algebraic case. So there seems little hope of having a “canonical”
basis in this case. While there is no minimal basis in general, at least the set of
cardinals of bases of a domain has a minimum.

Definition III-4.4. Let L be a domain. The cardinal

w(L) = min{card B: B is a basis of L}
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is called the weight of the domain L . If w(L) is countable, that is, if L has a
countable basis, then the domain L is said to be countably based. �

Remark. As we remarked after III-4.2 an algebraic domain has a smallest
basis, the set of all compact elements, and hence w(L) = card K (L). Thus, an
algebraic domain is countably based iff it has only countably many compact
elements.

The countably based domains are important for applications in theoretical
computer science and in computational models. In particular, a countably based
domain L is said to be effectively given if a basis B = {xn: n ∈ N} is specified
such that {(m, n) ∈ N × N : xm � xn} is a recursively enumerable subset
of N × N. Since by Proposition III-4.3(ii) the basis B and the restriction of
� to B completely determine the domain (indeed the domain arises as the
rounded ideal completion), restricting to such countable bases makes possible
the development of a recursive theory for effectively given domains.

Recall that if X is a topological space, then the weight w(X ) is a cardinal,
the smallest cardinality of a basis for the topology:

w(X ) = min{ card B: B is a basis of the topology O(X )}.
In particular, X satisfies the second axiom of countability iff w(X ) ≤ ℵ0. (We
recall (O-5.8) that a basisB of the topology is defined in the classical topological
sense: given x ∈ U open, there exists B ∈ B such that x ∈ B ⊆ U.)

In the following theorem the weights of �L and �L are weights in the
traditional topological sense, while the other two weights are the weights of
domains in the sense of Definition III-4.4.

Theorem III-4.5. For any domain L one has

w(L) = w(�L) = w(�L) = w(Id B)

for any basis B of L with card B = w(L). In particular, L is countably based
iff (L , σ (L)) is second countable iff (L , λ(L)) is second countable.

Proof: In the finite case we must have B = L and L and Id B are identified via
x �→ ↓x . All four of the weights reduce to the cardinality of L , since a smallest
basis for �L consists of all singletons and a smallest basis for �L consists of
all ↑x , x ∈ L . Thus we restrict our attention to the case that L is infinite in the
remainder of the proof.
w(�L) ≤ w(�L): Let B be a basis of �L of cardinality w(�L). We claim

{intσ (↑U ): U ∈ B} is a basis of �L . Indeed let x ∈ V , where V is Scott open.
Since V is also Lawson open, there exists U ∈ B such that x ∈ U ⊆ V . Since U
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has property (S), there exists z � x such that z ∈ U . Then x ∈ �

z ⊆ ↑U ⊆ V .
Thus the Scott interior of ↑U contains x and is contained in V . Hence,

w(�L) ≤ card{intσ (↑U ): U ∈ B} ≤ w(�L).

w(�L) ≤ w(L): Let B be a basis of L with card B = w(L). For b0, b1, . . . ,

bn ∈ B set

W (b0, b1, . . . , bn) = �

b0\(↑b1 ∪ · · · ∪ ↑bn).

Then

card {W (b0, . . . , bn): b0, . . . , bn ∈ B, n = 0, 1, 2, . . .} = card B = w(L).

We claim that the W (b0, . . . , bn) form a basis of �L .
Indeed let U ∈ λ(L), and take x ∈ U . Then there is a λ(L) neighborhood�

x0\(↑x1 ∪ · · · ∪ ↑xn) ⊆ U of x (see II-1.10(i) and the remarks following
III-1.5). Thus x0 � x , and hence by III-4.2(3) we find a b0 ∈ B with x0 ≤
b0 � x ; that is, x ∈ �

b0 ⊆

�

x0. For each k = 1, . . . , n we have xk �≤ x ;
hence, by III-4.1 there are bk � xk with bk �≤ x . Therefore

x ∈ W (b0, b1, . . . , bn) = �

b0\(↑b1 ∪ · · · ∪ ↑bn)
⊆ �

x0\(↑x1 ∪ · · · ∪ ↑xn) ⊆ U.

It follows that w(�L) ≤ w(L).
w(L) ≤ w(�L): Let B be a basis of �L of cardinality w(�L). Let

A := {(U, V ) ∈ B × B : U ⊆ ↑x ⊆ V for some x ∈ L}.
Then card A ≤ card B. For each α = (U, V ) ∈ A, pick some xα such that
U ⊆ ↑xα ⊆ V . We claim that B := {xα:α ∈ A} is a basis for L . Indeed let
z � x . By the interpolation property I-1.9 there exists y such that z � y � x .
Pick U, V ∈ B such that y ∈ V ⊆ �

z and x ∈ U ⊆ �

y. Then (U, V ) ∈ A,
and hence there exists xα for α = (U, V ) such that U ⊆ ↑xα ⊆ V . It follows
that z � xα � x and thus B is a basis by III-4.2(4). Hence w(L) ≤ w(�L).
w(L) = w(Id B) for any basis B of L with card B = w(L): We have

w(Id B) = CardK (Id B) (since Id B is algebraic) = card B = w(L) (by
III-4.3). �

After Theorem III-4.5 we may say “the weight of a domain” or alternatively
“the weight of the Scott topology” or “the weight of the Lawson topology”.

Corollary III-4.6. A domain L is countably based iff �L is a separable
metrizable space.
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Proof: If L has a countable base, then �L has a countable base by the preced-
ing theorem and is regular and Hausdorff by Proposition III-3.7. Then by the
Urysohn Metrization Theorem (see e.g. [Kelley, b1955], p. 125) �L is sepa-
rable metrizable. The converse also follows from the preceding theorem since
a separable metric space has a countable base of open sets (see e.g. [Kelley,
b1955], p. 120). �

Corollary III-4.7. Every domain is (isomorphic to) the image of an alge-
braic domain with the same weight under a kernel operator preserving directed
suprema. Every continuous lattice is the quotient of an algebraic (and even an
arithmetic) lattice of equal weight by a quotient map preserving all sups and
infs. �

Proof: If L is finite, everything is trivial. If L is infinite, let B be a basis of
cardinality w(L). In the case that L is a continuous lattice, we may assume
that B is a sublattice, since adding all finite meets and joins does not raise
the cardinality. Then Id B is an algebraic domain (and an arithmetic lattice)
by I-4.10. By Theorem III-4.5 we have w(Id B) = w(L); and using III-4.3
completes the proof. �

Lemma III-4.8. Let X be a topological T0 space whose topology O(X ) is a
continuous lattice. Then w(X ) = w(O(X )).

Remark. See in this connection I-1.7(5), II-4.10 and Section V-5 below.

Proof of lemma: As finite T0 spaces are nothing but finite posets with the
Scott topology, there is nothing to prove in the finite case. Any basis of the
continuous lattice O(X ) is clearly a basis of the topological space X ; hence
w(X ) ≤ w(O(X )). Now let B be a basis of the topological space X with card
B = w(X ). If X is infinite and T0, thenw(X ) is infinite since points have distinct
closures. We may assume (without changing cardinality) that B is closed under
finite unions and contains Ø. It is then immediate that B satisfies III-4.2(5).
Hence w(O(X )) ≤ w(X ). �

We now calculate the weights of function spaces (see II-4.1).

Theorem III-4.9. Let X and Y be T0 spaces such that O(X ) is a continuous
lattice. If the weight of at least one of X and Y is infinite, then w([X, Y ]) ≤
max{w(X ), w(Y )}, where [X, Y ] is the space of continuous functions equipped
with the Isbell topology. �
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Proof: By the preceding lemma the continuous latticeO(X ) has weight equal to
w(X ), and then by Theorem III-4.5 the Scott topology on O(X ) has a basis B of
cardinality equal to w(X ). Let w = max{w(X ), w(Y )}. Let g ∈ N (H ← V ),
where H ⊆ O(X ) is a Scott open set, V is open in Y, and the continuous
function g: X → Y satisfies g−1(V ) ∈ H . There exists B ∈ B such that
g−1(V ) ∈ B ⊆ H . Let C be a basis for Y ; we may assume that C is closed
under finite unions and has cardinality less than or equal to w. Then V is a
directed union of a collection D of members of C, and therefore g−1(V ) is
the directed union of all g−1(D), D ∈ D. Since B is Scott open and contains
g−1(V ) ∈ B, there exists D ∈ D such that g−1(D) ∈ B, i.e., g ∈ N (B ←
D) ⊆ N (H ← V ). Thus the sets of the form N (B ← D), B ∈ B, D ∈ C,
form a basis for the Isbell topology on [X, Y ]. Since the cardinality of B × C
is equal to max{w(X ), w(Y )}, the proof is complete. �

Corollary III-4.10. Let X be a T0 space with O(X ) continuous and let L
be a continuous lattice, resp. a complete continuous semilattice, such that
w = max{w(X ), w(L)} is infinite. Then the continuous lattice, resp. complete
continuous semilattice, �[X, �L] has Isbell topology equal to the Scott topol-
ogy and the weight of this topology is equal to the weight of the continuous
lattice, resp. complete continuous semilattice, �[X, �L], which in turn is less
than or equal to w. In particular this holds for the case X = �S, where S is a
domain. �

Proof: That �[X, �L] is in fact a complete continuous semilattice, resp. con-
tinuous lattice, and that the Isbell topology on [X, �L] agrees with the Scott
topology on �[X, �L], was proved in II-4.6. That the weight of the space
[X, �L] is equal to that of the continuous lattice, resp. complete continuous
semilattice, �[X, �L] then follows from Theorem III-4.5, and that this is less
than or equal to w follows from the preceding theorem. �

For the case X = �S, where S is a domain, we have the following corollary
that follows directly from the preceding one.

Corollary III-4.11. Let S be an countably based domain and let L be a
countably based continuous lattice, resp. complete continuous semilattice. Then
�[�S, �L] = [S → L] is a countably based continuous lattice, resp. complete
continuous semilattice. �

From the preceding we see that forming the space of self-maps does not
raise weights for infinite continuous lattices. This will become relevant in
Sections IV-3 and IV-4. We will now discuss how other basic constructions
fare with respect to weights.
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Proposition III-4.12.

(i) Let {L j : j ∈ J } be a family of nonsingleton domains with 0. Then

w

(
∏

J

L j

)

=
∑

J

w(L j ) = max{card J, sup{w(L j ): j ∈ J }},

if at least one of J and L j is infinite, and

w

(
∏

J

L j

)

=
∏

J

w(L j )

if everything in sight is finite.
(ii) If S, L are domains, if i: S ⊆ L is Lawson continuous and injective, and if

�S is compact, then

w(S) ≤ w(L).

In particular this is the case if L is a continuous lattice or complete
continuous semilattice and S a subalgebra of L.

(iii) If the domain S is the Scott-continuous image of a domain L, then

w(S) ≤ w(L).

Remark. For the notion of subalgebra see I-2.10.

Proof of proposition: (i) We may assume that one of J and L j , for j ∈ J , is
infinite. Let B j be a basis of L j of cardinality w(L j ). Then the set of all (b j ) j∈J

with b j ∈ B j and all but a finite number of the b j equal to 0 is a basis of
∏

J L j

of cardinality
∑

J w(L j ). Hence w(
∏

J L j ) ≤
∑

J w(L j ). Since each factor is
a retract with respect to the Scott topologies, say, the reverse inequality is clear
from III-4.5.

(ii) We consider the Lawson topologies on S and L . Since the first topology is
compact and the second Hausdorff (see III-1.10), the injection i is an embedding.
Hence w(�S) ≤ w(�L). Then w(S) ≤ w(L) by III-4.5. For the case that S is
a subalgebra, the inclusion map �S → �L is continuous by III-1.8 and �S is
compact by I-1.11.

(iii) Let g: L → S be a surjective Scott-continuous map and take a basis B
of L of cardinality w(L). Then g(B) satisfies Proposition III-4.2(5) and hence
is a basis of S. Thus w(S) ≤ card B = w(L). �

Parts (i) and (ii) of III-4.12 together will enable us to calculate the weights of
projective limits in the category of continuous lattices and maps preserving infs
and directed sups (see IV-5.14).
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It is another consequence of the preceding that for countably based continu-
ous (algebraic) lattices L and M , the cartesian product L × M and the function
space [L → M] are again countably based. Thus, in DCPO the full sub-
categories ω-CONT and ω-ALG of countably based continuous and algebraic
lattices, respectively, are cartesian closed. The same holds for countably based
bounded complete (algebraic) domains.

We introduce another standard cardinal invariant for topological spaces and
apply it to domains. The density of a topological space X is the minimum of
all cardinals card D, where D is a dense subset.

Definition III-4.13. Let L be a domain. Then the density of L is the cardinal
d(L) = min{card D: D is a dense subset of �L}. �

Proposition III-4.14. Let L be a domain. Then w(L) ≤ 2d(L), and equality
can, but need not, occur, even for continuous lattices.

Proof: In a regular topological space X with dense subset D, the mapping A �→
int Ā : 2D → O(X ) always maps onto a basis of X , and thus w(�L) ≤ 2d(L)

by Proposition III-3.7. The asserted inequality follows from Theorem III-4.5.
We remark next that equality may be attained: let X be an arbitrary infinite

set, and let βX be the Stone–Čech compactification of the discrete space X .
We let L = O(βX ) and we know that L is a continuous lattice (see I-1.7(5)); in
fact, it is arithmetic with K (L) = lattice of compact open subsets of βX ∼= 2X .
Thus,

w(L) = card K (L) (by III-4.4) = card 2X = 2card X .

If we let F denote the set of all finite subsets of X ⊆ βX , then it is a straight-
forward exercise to show that F is dense in L with respect to λ(L). Thus
d(L) ≤ card X ; whence,

w(L) ≤ 2d(L) (by what was shown above) ≤ 2card X = w(L).

Hence w(L) = 2d(L) in this example, and d(L) can be any infinite cardinal.
In order to show that the inequality w(L) < 2d(L) can occur, we have many
possibilities to choose from. If � is the first uncountable ordinal and L =
[1, �]op, then L is algebraic and K (L) = L . Whence,

w(L) = card K (L) = card L = ℵ1;

but since no countable subset of [1, �] can be dense in the interval topology
(which agrees with the Lawson topology), we knowℵ1 ≤ d(L) ≤ card L = ℵ1.
Thus w(L) = ℵ1 < 2ℵ1 = 2d(L).
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One can also show easily that the standard Cantor set C provides an example
L = C with

w(L) = card K (L) = ℵ0 < 2ℵ0 = 2d(L). �

Exercises

Domains can be described completely in terms of their bases. In a set B with
a binary relation ≺ we will use the following notation: for every subset F and
every element z of B we write

F ≺ z iff x ≺ z for all x ∈ F.

Definition III-4.15. We define an abstract basis to be a nonempty set B
together with a binary relation ≺ which is transitive and satisfies the following
finite interpolation property:

(FIP) for every finite subset F and every element z ∈ B one has

F ≺ z ⇒ (∃y ∈ B) F ≺ y ≺ z.

The relation ≺ is said to satisfy the separation property if

(SEP) x �= y implies there is a z such that z ≺ x but z �≺ y or vice versa.

A subset I of an abstract basis B is called a rounded ideal if

(i) I is directed, that is, for every finite subset F ⊆ I there is a z ∈ I such
that F ≺ z,

(ii) I is a ≺-lower set, that is x ≺ y and y ∈ I together imply x ∈ I .

By RId B we denote the set of all rounded ideals of B ordered by inclusion.
�

Let us show now, firstly, that every basis of a domain L can viewed as an
abstract basis and that the domain L can be recaptured from its basis through
the rounded ideals and, secondly, that every abstract basis can be viewed as the
basis of a domain, its rounded ideal completion. The proofs generalize that of
III-4.3(ii).

Exercise III-4.16. Let B be a basis of a domain L .

(i) If we restrict the way-below relation � on L to the basis B, show that it
satisfies the axioms of an abstract basis.

(ii) For every x ∈ L , show that Ix = �x ∩ B is a rounded ideal of B.
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(iii) Show that x �→ Ix : L → RId B is an order isomorphism, the inverse
map being I �→ sup I : RId B → L . �

Exercise III-4.17. Now let B be any abstract basis.

(i) Show that the set RId B of rounded ideals ordered by inclusion is a dcpo

(with directed suprema given by union), called the rounded ideal
completion of B.

(ii) For b ∈ B, show that Ib = {a ∈ B : a ≺ b} is a rounded ideal of B, and
that b �→ Ib : B → RId B is injective if ≺ satisfies the separation
property.

(iii) Show that I � J holds in RId B iff there are elements a ≺ b in B such
that I ⊆ Ia ⊆ Ib ⊆ J . In particular, Ia � Ib iff a ≺ b.

(iv) Conclude that the rounded ideals form a domain with the ideals
Ib, b ∈ B, as a basis. �

Refining the properties of the abstract bases leads to special classes of domains.
Every poset B, for example, is an abstract basis; the rounded ideals then coincide
with the ideals of the poset and the two preceding exercises reduce to the
description of algebraic domains as ideal completions of their posets of compact
elements (see I-4.10). The following exercise shows that the rounded ideal
completion can be viewed as a possible generalization of the completion of the
rationals by Dedekind cuts.

Exercise III-4.18. Consider the set Q of rationals with the usual strict order
<. Show that this is an abstract basis and that the rounded ideals correspond
bijectively to Dedekind cuts (including the improper Dedekind cut (Q,Ø)).
Thus the rounded ideal completion of (Q,<) is R ∪ {+∞}. �

Exercise III-4.19. For a compact Hausdorff space X consider the set C(X,R+)
of all nonnegative continuous real-valued functions with the relation f ≺ g iff
f (x) ≺ g(x) for all x ∈ X . Show that the properties of an abstract basis are
satisfied and that the rounded ideal completion of C(X,R+) is isomorphic to
the continuous lattice LSC(X,R∗

+) of all nonnegative lower semicontinuous
extended real valued functions. �

Exercise III-4.20. A function f : L → M of dcpos is called countably con-
tinuous or ω-continuous for short, if it is monotone and preserves suprema of
ω-chains, that is, if for every monotone increasing sequence x0 ≤ x1 ≤ x2 ≤ · · ·
in L one has f (supn xn) = supn f (xn).

For countably based domains L and M show the following.

(i) Every element x ∈ L is the sup of a monotone sequence b0 � b1 �
b2 � · · ·.
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(ii) A function f : L → M is Scott-continuous iff it is countably continuous.
�

Exercise III-4.21. Using II-2.15 through II-2.19 on FS-domains, show the
following.

(i) A dcpo L is a countably based FS-domain iff there is an ascending
sequence δ0 ≤ δ1 ≤ · · · of finitely separating Scott-continuous self-maps
of L with supn δn = 1L .

(ii) L × M and [L → M] are countably based, if L and M are countably
based FS-domains.

(iii) Thus the category of countably based FS-domains and Scott-continuous
maps is cartesian closed. �

Exercise III-4.22. Using II-2.20 through II-2.24 on bifinite domains, show the
following.

(i) A dcpo L is a countably based bifinite domain iff there is an ascending
sequence δ0 ≤ δ1 ≤ · · · of Scott-continuous kernel operators with finite
range on L with supn δn = 1L .

(ii) Thus the category of countably based bifinite domains and
Scott-continuous maps is cartesian closed. �

Exercise III-4.23. Let L , resp. M , be L-domains consisting of a countable,
resp. two element, antichain together with two incomparable lower bounds and
a bottom element (thus M is a five element L-domain). Show that the order
preserving functions carrying the bottom three elements of L onto the bottom
three elements of M and the infinite antichain onto the two element antichain
form an uncountable collection of compact elements of [L → M], and hence
the weight of the L-domain [L → M] is uncountable. Thus the category of
countably based L-domains with smallest elements and Scott-continuous maps
is not cartesian closed. Note, however, by Theorem III-4.9 that [L , M] with the
Isbell topology has countable weight. �

Yu. Eršov gave an early variant of domain theory in a topological, rather than
an order theoretic, framework [Eršov, 1973]. The following exercise gives the
axioms for the topological spaces he studied.

Exercise III-4.24. Let X be a T0 space with order of specialization≤. We write
x ≺ y if y ∈ int↑x and set ↑x := {y: x ≺ y}. We say that X is an A-space if
there exists X0 ⊆ X satisfying the following conditions:

(1) if x, y ∈ X0 have an upper bound z in X , then the supremum x ∨ y exists
in X and is again in X0;
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(2) if x ∈ X0, z ∈ X and x ≺ z, then there exist y ∈ X0 such that x ≺ y and
y ≺ z;

(3) the collection { � x : x ∈ X0} is a basis for the topology of X .

If additionally X has a bottom element 0, then X is called an A0-space.

(i) Show that ≺ satisfies the properties (FIP) and (SEP) of Definition
III-4.15.

(ii) Show that the rounded ideal completion of an A0-space (X,≺) is a
bounded complete domain.

(iii) Show that the map b �→ Ib : X → RId(X ) of Exercise III-4.17 is a
homeomorphic embedding of X into the rounded ideal completion.

Hint. See [Eršov, 1973]. �

Problem. Develop a theory of weights for arbitrary dcpos and arbitrary com-
plete lattices (cf. III-4.2). �

Old notes

The cardinality results on bases and weights in this section were largely due to
Hofmann. Bases for continuous lattices were considered by Scott and by Eršov
[Scott, 1972a; Eršov, 1972a,b]. A forerunner of III-4.14 for algebraic lattices
was given by [Hofmann et al., b1974].

New notes

Exercises III-4.16 and III-4.17 contain material which – with variations – is due
to M. Smyth [Smyth, 1978] (see also [scs 4], [scs 12], [scs 13], [Vickers, b1989],
[Abramsky, 1991b], [Abramsky and Jung, 1994]); obviously we have here a
variation of the theme of auxiliary relations in I-1.10 ff. These results provide
an axiomatic characterization of bases of continuous domains, the objects of
study in recursive domain theory.

Substantial portions of domain theory, particularly bounded complete domain
theory, were developed at an early stage in [Eršov, 1973] in the context of what
were called A-spaces (see Exercise III-4.24); these spaces may be viewed as
topological variants of Scott’s “information systems”. In particular one finds in
[Eršov, 1973] cartesian closed categories, rounded ideal completions, existence
and continuity of the fixed-point mapping, the fact that a directed complete
A0-space is a bounded complete domain with the Scott topology, and theorems
about injectivity and dense injectivity.
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III-5 Compact Domains

In the theory of domains, those that are compact in the Lawson topology are of
particular interest. We have already seen in III-1.11 that continuous lattices and
complete continuous semilattices are included in this class of domains. In this
section we derive some of the basic properties satisfied by compact domains
and then consider various characterizations of such domains.

We begin with a more general setting that is useful primarily because the
symmetry of the situation allows one to derive results about L and Lop

simultaneously.

Definition III-5.1. Let L be a poset equipped with a topology. The partial
order is semiclosed if ↓x and ↑x are both closed for all x ∈ L . �

Remark. A partial order is semiclosed iff the topology refines the lower and
the upper topology, hence also the interval topology. A dcpo with its Lawson
topology has a semiclosed partial order. Note for a fixed topology on a poset L
that the partial order is semiclosed if and only if its opposite ≥ is semiclosed.

Lemma III-5.2. Let L be a poset equipped with a compact topology for which
the partial order is semiclosed.

(i) A directed set (resp. filtered set) converges to its supremum (resp.
infimum), and this convergence point is the unique cluster point of the set.

(ii) L and Lop are dcpos.
(iii) For any x ∈ L, there exist a maximal element of L above x and a minimal

element of L below x.

Proof: (i) Let D be a directed set. By compactness D (viewed as a net indexed
by itself) must have a cluster point y. Any cluster point of D must belong to
the closed set ↑d for any d ∈ D (since the net is eventually in ↑d), and hence
y is an upper bound for D. Let z be any other upper bound. Then the closed set
↓z contains D and thus all its cluster points. Hence y is the least upper bound.
Since any cluster point must be sup D, D has a unique cluster point, and hence
by compactness D converges to sup D. The assertions for filtered sets are dual.

(ii) This is immediate from part (i).
(iii) This is a direct application of Zorn’s Lemma, since every chain must

have a supremum and infimum by part (ii). �

Definition III-5.3. An element m ∈ L , a poset, is a minimal upper bound (or
“mub” for short) for a subset A if m is an upper bound for A that is minimal
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in the set of all upper bounds of A. The poset L is mub-complete if given any
finite subset F of L and any upper bound u of F , there exists a minimal upper
bound y of F such that y ≤ u. �

Proposition III-5.4. Let L be a poset equipped with a compact topology for
which the order is semiclosed. Then L and Lop are mub-complete.

Proof: Let F be a finite set contained in ↓u. Then S := ↓u ∩ ⋂x∈F ↑x is
closed, hence compact. Thus by Lemma III-5.2(iii) applied to S, there exists a
minimal element of S, which is a minimal upper bound of F below u. �

We consider now a variety of conditions that are equivalent to compactness of
the Lawson topology in a domain. The first comes directly from the results of
Section III-3.

Theorem III-5.5. In order that a dcpo L be compact in the Lawson topology,
it is sufficient that limF exist for every ultrafilter F . If L is a quasicontinuous
domain, this condition is also necessary.

Proof: By Lemma III-3.15 and Theorem III-3.17(i) if limF exists for an ul-
trafilter F , then F converges to limF . But if every ultrafilter converges, then
L is compact.

Conversely suppose that L is a quasicontinuous domain with a compact
Lawson topology. Then every ultrafilter must converge (by compactness) and
the point of convergence is limF by Theorem III-3.17(ii). �

We now derive our most extensive collection of results concerning compactness
in domains. Since the first derivations are only marginally more dificult in the
setting of quasicontinuous domains, we derive our results in that context. We
recall the notation of Section III-3, and in particular Proposition III-3.6, which
we use freely.

Lemma III-5.6. In a dcpo L, if an upper set A is a directed intersection of
finitely generated upper sets, then it is compact in the Scott topology.

Proof: Let {↑Fi : i ∈ I } be a descending family of finitely generated upper sets
with intersection A. Let {U : U ∈ U} be a cover of A with Scott open sets and let
W denote their union. Then W is a Scott open set containing A. If Fi\W �= Ø
for all i , then the family {↑(Fi\W ): i ∈ I } satisfies the hypothesis of Rudin’s
Lemma (III-3.3). Hence there exists a directed subset D of

⋃
i∈I Fi\W which

intersects each Fi\W . Let d be the supremum of D. Then d ∈ ↑Fi for each i ,
and hence d ∈ A. But D ⊂ L\W , a Scott closed set, implies d is not in W , a
contradiction. Thus ↑Fi ⊆ W for some i . Since finitely many of the U ∈ U
contain Fi , they contain ↑Fi , and hence A. �
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The next lemma provides a converse to the proceeding one.

Lemma III-5.7. Let L be a quasicontinuous domain. If A = ↑A is compact in
the Scott topology, then every Scott open neighborhood U of A contains a finite
set F such that A ⊆ �

F ⊆ ↑F ⊆ U. Furthermore, A is a directed intersection
of all finitely generated upper sets that contain A in their Scott interior.

Proof: Suppose A = ↑A is compact in the Scott topology and has U for a
Scott open neighborhood. For each x ∈ A, there exists a finite set Fx ⊆ U such
that x ∈ �

Fx . Finitely many of the

�

Fx cover A, and the union F of the finitely
many Fx satisfies ↑F ⊆ U and A ⊆ �

F .
Consider the family F of all finite sets F such that A is contained in the Scott

interior of ↑F . Given F1, F2 ∈ F , then U , the intersection of the Scott interiors
of ↑F1 and ↑F2, is a Scott open set containing A. By the preceding paragraph
there exists a finite set F ⊆ U such that A ⊆ �

F , and thus A is contained in
the Scott interior of ↑F . Hence the family F is directed.

For z /∈ A, the set U = L\↓z is a Scott open set containing A, and one
can repeat the preceding argument to find F ⊆ U such that F ∈ F . Thus the
intersection of F is A. �

We come now to our main theorem on compactness in quasicontinuous domains.

Theorem III-5.8. Let L be a quasicontinuous domain. The following state-
ments are equivalent.

(1) The Lawson topology on L is compact.
(2) The sets closed in the lower topology are compact in the Scott topology.
(3) Every set closed in the lower topology is a directed intersection of finitely

generated upper sets.
(4) The Scott compact upper sets are precisely the sets closed in the lower

topology.
(5) L is a finitely generated upper set in which the intersection of two Scott

compact upper sets is again Scott compact.
(6) L is a finitely generated upper set and ↑x ∩ ↑y is compact in the Scott

topology for all x, y ∈ L.

Proof: (1) implies (2): Sets closed in the lower topology are closed in the
Lawson topology, hence compact in the Lawson topology, and thus compact in
the Scott topology.

(2) implies (3): This follows immediately from (2) and Lemma III-5.7.
(3) implies (4): It follows from Lemma III-5.7 that every Scott compact upper

set is closed in the lower topology. Conversely Lemma III-5.6 and (3) imply
every set closed in the lower topology is Scott compact.
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(4) implies (5): Two Scott compact upper sets are also closed in the lower
topology, hence their intersection is closed in the lower topology, and thus
compact by assumption. Since L is closed in the lower topology, hence Scott
compact, it follows from Lemma III-5.7 that L is a finitely generated
upper set.

(5) implies (6): This is immediate, since↑x and↑y are clearly Scott compact.
(6) implies (1): Suppose that L satisfies (6). For any finite set F ⊆ L and

any x ∈ L , ↑F ∩↑x =⋃y∈F (↑y ∩ ↑x) is a finite union of Scott compact sets,
hence Scott compact. Since by Lemma III-5.7 any Scott compact upper set A
is a filtered intersection of finitely generated upper sets, it follows that A ∩ ↑x
is a filtered intersection of Scott compact upper sets. Since L endowed with the
Scott topology is sober (Proposition III-3.7(i)), it follows from Corollary II-1.22
that A ∩ ↑x is Scott compact. Thus by induction and (6) any finite intersection
of principal filters is Scott compact.

Consider any subbasic open cover U of L in the Lawson topology consisting
of open sets which are either Scott open sets U j or sets of the form L\↑xi , i ∈ I .
Let U denote the union of all the Scott open sets U j . Since L is of the form
↑Z for some finite Z , if U = L , then finitely many of the Scott open sets U j

contain Z and hence all of L .
If U �= L , then let A =⋂i∈I ↑xi ; note that A is the complement of the union

of all sets L\↑xi in the given cover U . Since U is a cover, A ⊆ U . Let

F := {↑xi1 ∩ · · · ∩ ↑xin : ik ∈ I for k = 1, . . . , n
}
.

Then F consists of Scott compact sets (by the first paragraph in the proof of this
implication) and is a filtered family of upper sets. Since L endowed with the
Scott topology is sober (Proposition III-3.7(i)), it follows from Proposition
II-1.21(3) that some member ↑xi1 ∩ · · · ∩↑xin of F is contained in U . Since by
hypothesis this finite intersection is Scott compact, finitely many of the Scott
open members of U cover it, and these open sets together with the L\↑xik , i =
k, . . . , n, form a finite subcover. By the Alexander Subbasis Lemma L is com-
pact in the Lawson topology. �

In Theorem II-1.14 we characterized a domain in terms of its lattice of Scott
open sets. We carry out an analogous undertaking for compact domains.

Definition III-5.9. The way-below relation � in a continuous (semi)lattice
L is said to be multiplicative if a � b, c implies a � b ∧ c. In this case we
call L a stably continuous (semi)lattice. �

Remark. Note that ai � bi for i = 1, 2 implies a1 ∧ a2 � b1 ∧ b2 if � is
multiplicative, since a1 ∧ a2 ≤ ai � bi implies a1 ∧ a2 � bi for i = 1, 2, and
hence a1 ∧ a2 � b1 ∧ b2 by the preceding definition.
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Proposition III-5.10. A quasicontinuous domain L is compact in the Lawson
topology iff L is finitely generated as an upper set and the lattice σ (L) of Scott
open sets is stably continuous.

Proof: Suppose that L is compact in the Lawson topology. Let W � U,

V in σ (L). By Proposition I-1.4(ii) and Proposition III-3.7(i) there exist
Scott compact sets K1, K2 such that W ⊆ K1 ⊆ U and W ⊆ K2 ⊆ V . By
Theorem III-5.8(5) K1 ∩ K2 is Scott compact, and W ⊆ K1 ∩ K2 ⊆ U ∩ V
implies W � U ∩ V by I-1.4(i). Thus σ (L) is a stably continuous lattice. By
Theorem III-5.8(6) L is finitely generated.

Conversely suppose that σ (L) is a stably continuous lattice and L is finitely
generated. Let K1 and K2 be two compact saturated sets in �L . Let Ui be an
open set containing Ki for i = 1, 2. Since the open sets containing Ki form
a Scott open filter (Lemma II-1.18) and since σ (L) is continuous, there exist
open sets Vi such that Ki ⊆ Vi � Ui for i = 1, 2. Then V1 ∩ V2 � U1 ∩ U2

by the hypothesis of stable continuity. It follows that the collection of all U1∩U2

such that U1 and U2 are Scott open sets containing K1 and K2 respectively form
a filter base for a Scott open filter in σ (L) (since any member of the filter has
another member of the filter way below it). By the Hofmann–Mislove Theorem
II-1.20 this filter consists of all open sets containing its intersection, which
must be K1 ∩ K2 (since K1 and K2 were saturated), and the intersection is
compact. It follows from Theorem III-5.8(5) that L is compact in the Lawson
topology. �

We introduce now a condition that often facilitates verifying that a domain is
compact.

Definition III-5.11. A (continuous) domain L is said to satisfy property M
with respect to a basis B if for any x1, y1, x2, y2 ∈ B with y1 � x1 and y2 � x2,
there exists a finite set F ⊆ B such that

↑x1 ∩ ↑x2 ⊆ ↑F ⊆ ↑y1 ∩ ↑y2. �

Proposition III-5.12. Let L be a domain. The following are equivalent.

(1) The intersection of any two Scott compact upper sets is again Scott
compact.

(2) L satisfies property M with respect to every basis (in particular, with
respect to L itself ).

(3) L satisfies property M with respect to some basis.

Proof: (1) implies (2): Let B be a basis for L . Suppose that we are given given
yi � xi for xi , yi ∈ B, i = 1, 2. By hypothesis the set A := ↑x1 ∩ ↑x2 is
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compact in the Scott topology. Since the set

�

yi is Scott open for each i , A is in
the Scott open set W := �

y1 ∩

�

y2. By Lemma III-5.7, we can obtain a finite
set G such that G � A and G ⊆ W . For each u ∈ G, yi � u for i = 1, 2. Pick
vi (u) ∈ B such that yi � vi (u) � u for i = 1, 2. The finite set F consisting of
all vi (u) for u ∈ G, i = 1, 2 is then the desired set to establish property M.

(2) implies (3): Immediate.
(3) implies (1): Let A = ↑A and B = ↑B be compact in the Scott topology.

We consider the filter F generated by the filter base of all ↑G ∩ ↑H , where
G � A and H � B. Let ↑G ∩↑H belong to the filter base. By Lemma III-5.7
and Proposition III-3.6(ii) pick finite sets E A and EB with E A � A, EB �
B, E A ⊆

�

G, and EB ⊆

�

H . By adjusting each member of E A and EB slightly
downward with large enough elements way below each of them, we may assume
additionally that E A and EB consist entirely of elements from the hypothesized
basis satisfying property M.

By continuity of L for each x ∈ E A and each y ∈ EB , there exist basis
elements zx � x and zy � y such that zx ∈ ↑G and zy ∈ ↑H . By property M
there exists a finite subset H (x, y) such that

↑x ∩ ↑y ⊆ ↑H (x, y) ⊆ ↑zx ∩ ↑zy ⊆ ↑G ∩ ↑H.

Set F := ⋃{H (x, y): x ∈ E A, y ∈ EB}. Then F is finite and ↑E A ∩ ↑EB ⊆
↑F . Thus ↑F ∈ F since ↑E A∩↑EB is in the filter base, and ↑F ⊆ ↑G ∩ ↑H .
Since we have seen that any member of the filter base for F contains a finitely
generated upper set that is again a member of F , it follows that the finitely
generated upper sets in F also form a filter base for F .

It follows easily from Lemma III-5.7 that A ∩ B is the intersection of the
filter F , and then by Lemma III-5.6 that A ∩ B is Scott compact. �

Corollary III-5.13. A domain L is compact in the Lawson topology if and
only if it is finitely generated (as an upper set) and satisfies property M with
respect to some (any) basis.

Proof: The corollary follows immediately from Proposition III-5.12 and
Theorem III-5.8(6). �

The Lawson compactness of FS-domains (see II-2.15) can be derived directly
from III-5.13:

Proposition III-5.14. Bifinite domains and FS-domains are compact in the
Lawson topology.

Proof: As bifinite domains are the algebraic FS-domains by II-2.21, we
need only consider an arbitrary FS-domain L . We show that the conditions of
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Corollary III-5.13 are satisfied for the basis B = L . Let ( fi ) be an approximate
identity for L consisting of finitely separating functions. For every i let Mi

denote the finite set separating fi from the identity. Fix fi . For every z ∈ L we
have fi (z) ≤ m ≤ z for some m ∈ Mi . Hence L = ↑Mi , that is, L is finitely
generated as an upper set.

Let yn � xn for n = 1, 2. As the fi form an approximate identity, the same
holds for ( fi )2 by II-2.14(i). Pick gi = ( fi )2 such that yn ≤ gi (xn) ≤ xn for
i = 1, 2, and let Mi be a finite separating set for fi . Pick u, v ∈ Mi such
that gi (x1) ≤ u ≤ fi (x1) and gi (x2) ≤ v ≤ fi (x2). Let F be the set of upper
bounds of {u, v} in Mi , i.e., ↑u ∩ ↑v ∩ Mi = F . Then for w ∈ ↑x1 ∩ ↑x2, we
have fi (w) ≤ m ≤ w for some m ∈ Mi . Then u ≤ fi (x1) ≤ fi (w) ≤ m and
similarly v ≤ m, so m ∈ F . Thus w ∈ ↑F . It follows that

↑x1 ∩ ↑x2 ⊆ ↑F ⊆ ↑u ∩ ↑v ⊆ ↑y1 ∩ ↑y2.

Thus L satisfies property M. �

Corollary III-5.15. The following are equivalent in an algebraic domain L:

(1) L is Lawson compact;
(2) L is finitely generated (as an upper set) and satisfies property M with

respect to the basis of compact elements;
(3) K (L) is mub-complete and every finite set of compact elements has only

finitely many minimal upper bounds.

Proof: The equivalence of (1) and (2) follows from Corollary III-5.13. Assume
(1). Then any finite intersection A = ⋂n

i=1 ↑ki , where each ki is a compact
element, is Scott compact by Theorem III-5.8 and also Scott open. For each
x ∈ A, pick a compact element k � x such that k ∈ A. Then finitely many of
the ↑k cover A. If one chooses this set to be of smallest possible cardinality, it
follows that each k such that ↑k is in the minimal cover is minimal in A, hence a
compact element (since A is Scott open). Thus A is the finite union of principal
filters of compact elements, each minimal in A, and hence each a mub of the
set {k1, . . . , kn}. Condition (3) now easily follows.

Assume (3). Note that condition (3) applied to the empty set yields that L is a
finitely generated upper set. Let k1 � x1 and k2 � x2 for k1, k2, x1, x2 ∈ K (L).
Then by (3) ↑x1 ∩ ↑x2 ⊆ ↑F , where F is the finite set of minimal upper
bounds of {k1, k2}. Thus L satisfies property M with respect to the basis of
compact elements, and hence is Lawson compact by Corollary III-5.13. �

Remark. In the theory of algebraic domains, property M has typically been
considered only in the context of the poset of compact elements. In this context
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a partially ordered set P was said to have property M if it is mub-complete and
every finite set has only finitely many minimal upper bounds. An alternative
characterization is to require that the set of upper bounds for any finite set is
a (possibly empty) finitely generated upper set (the minimal elements of the
finite generating set being the minimal upper bounds). The preceding corollary
shows that our approach to property M is a true generalization of the notion to
arbitrary bases.

Lemma III-5.16. Suppose that x ∈ L is a dcpo, U is a Scott open set con-
taining x, and

⋂
y∈A ↑y ⊆ ↑x for some nonempty A ⊆ L (equivalently x is a

lower bound for all upper bounds of A).

(i) If L is a sup semilattice, then there exists a finite F ⊆ A such that
sup F ∈ U.

(ii) If L is a quasicontinuous domain for which the Lawson topology is
compact, then there exists a finite F ⊆ A such that

⋂
y∈F ↑y ⊆ U.

Proof: (i) The set of all suprema over all nonempty finite subsets of A is a
directed set with supremum in ↑x ⊆ U . Thus there exists some finite F ⊆ A
such that sup F ∈ U .

(ii) The set of all
⋂

y∈F ↑y, where F is some nonempty finite subset of A, is a
filtered family of nonempty Lawson closed subsets with intersection contained
in U . It follows from the fact that the Lawson topology is compact and Hausdorff
that
⋂

y∈F ↑y ⊆ U for some finite F ⊆ A. �

The following theorem is a generalization of Proposition II-4.6.

Theorem III-5.17. Let X be a space such that O(X ) is a continuous lattice
and let L be a domain with least element 0. If �[X, �L] is a domain for
which the Lawson topology is compact, then the Isbell and Scott topologies
on TOP(X, �L) agree. If additionally X is compact, then the Isbell and Scott
topologies on TOP(X, �(L\{0})) agree.

Proof: By Lemma II-4.3(i) [X, L] is a monotone convergence space since �L
is; it follows that the Scott topology on�[X, L] is finer than the Isbell topology
(note, for example, that the topology of a monotone convergence space is order
consistent with respect to the order of specialization and apply Exercise II-1.31).
The same argument applies to the case of L\{0}.

Conversely let f : X → �L be continuous. Let f (a) = b and let z � b.
By joint continuity of the evaluation map (Proposition II-4.5(ii)), there exist
an Isbell open set W containing f and an open set U containing a such that
h(x) ∈ �

z for all h ∈ W and x ∈ U . Pick V open containing a such that V � U .
Define g: X → �L by g(x) = z if x ∈ V and g(x) = 0 otherwise. Then g � f
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and f is the supremum of such functions by Proposition II-4.20(iii). Note also
that W ⊆ ↑g since z ≤ h(x) for x ∈ V, h ∈ W , and 0 ≤ h(x) otherwise; hence
↑g is a neighborhood of f in the Isbell topology. By the preceding lemma for
any Scott open set Q containing f , there exist finitely many such gi such that
↑g1 ∩ · · · ∩ ↑gn ⊆ Q. Since each ↑gi is a neighborhood of f in the Isbell
topology, it follows that Q is also. Hence the Isbell topology is finer than the
Scott topology.

Suppose additionally that X is compact. Note that �(L\{0}) = �L\{0},
the latter with the relative topology. The last assertion follows easily from
the preceding paragraphs if we know that the Isbell and Scott topologies on
TOP(X, �(L\{0})) are the relative ones from TOP. That this is true for the
Isbell topology follows from II-4.3(ii) and for the Scott topology from II-3.20.

�

Corollary III-5.18. Let L, M be FS-domains. Then the Isbell topology on
TOP(�L , �M) is equal to the Scott topology on [L → M] = �[�L , �M].

�

Proof: First note that if we adjoin a smallest element 0 to M , then M0 = M ∪
{0} is again an FS-domain (extend all members of the approximate identity
by sending 0 to 0). Since for FS-domains the Lawson topology is compact by
III-5.14 and the function spaces are again FS-domains by II-2.18, we have that
[�L , �M0] is a domain with a compact Lawson topology. Also, since L is
a domain, the Scott topology σ (L) is a continuous lattice, and since L is an
FS-domain, it is compact in the Lawson and hence in the Scott topology. Thus
by the last assertion of Theorem III-5.17 we have that the Isbell and Lawson
topologies agree on TOP(�L , �M). �

Exercises

Exercise III-5.19. Let A be an upper set in a quasicontinuous domain that is
compact in the Lawson topology. Show that the following are equivalent:

(1) A is closed in the Lawson topology;
(2) A is compact in the Scott topology;
(3) A is closed in the lower topology.

Hint. Note that (1) implies (2), that (2) implies (3) by Lemma III-5.7, and that
(3) trivially implies (1). �

Exercise III-5.20. Let L be a quasicontinuous domain that is compact in the
Lawson topology, M a dcpo, and f : L → M be an order preserving map.
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Show that f preserves liminfs of ultrafilters (in the strong sense) iff f is Lawson
continuous.

Hint. Suppose that f is Lawson continuous. Let x = limF for some ul-
trafilter in L . Then F converges to x and x alone in the Lawson topology
(III-3.17(ii)). Denote the ultrafilter generated by its image by f (F); by con-
tinuity this ultrafilter converges to f (x) in the Lawson topology of M . Since
x is a directed supremum of eventual lower bounds for F it follows easily
that f (x) is a directed supremum of eventual lower bounds of f (F), recall-
ing that f is Scott-continuous from Exercise III-1.16. Let y be any eventual
lower bound of f (F). Then f (F) ⊆ ↑y for some F ∈ F . Thus f −1(↑y) is a
Lawson closed subset of L containing F , and hence the convergence point x
of the ultrafilter F . Thus f (x) ≥ y, and therefore, by definition, f (x) is the
liminf of F .

The other direction is immediate from III-3.17 and III-3.15. �

Exercise III-5.21. If L is a (Lawson) compact quasicontinuous domain and
f : L → M is surjective and Lawson continuous, show that M is a compact
quasicontinuous domain.

Hint. The compactness of M is immediate. We use the criterion of III-3.19(ii) to
establish quasicontinuity. Let x ∈ M and let U be a Scott open set containing
x . Then f −1(↑x) is a Lawson closed, hence Lawson compact, hence Scott
compact subset of L contained in the Lawson open upper set and hence Scott
open set f −1(U ). By Lemma III-5.7 there exists a finite set F such that

f −1(↑x) ⊆ �

F ⊆ ↑F ⊆ f −1(U ).

Now B := L\ � F is closed, hence Lawson compact, and thus f (B) is Lawson
compact in M and misses ↑x . Therefore ↓ f (B) will be a Scott closed set
missing ↑x (see Proposition VI-1.6(i)), and standard set chasing yields that
M\↓B ⊆ f (↑F) ⊆ ↑ f (F). Thus f (F) is a finite set in U such that x is
contained in the Scott interior of ↑ f (F). By III-3.19(ii) M is quasicontinuous.

�

Exercise III-5.22. Let L be the domain [0, 1]×|2|, where |2| is the two element
antichain. Let M be formed from L by identifying the two maximal elements
(1, 0) and (1, 1) with a single point and giving M the smallest induced order
making L → M order preserving. Show that L is a domain, M is a quasicontin-
uous domain, and the identification map that identifies the two maximal points
is Lawson continuous. This shows the result of the preceding exercise fails for
domains. �
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Exercise III-5.23. A complete lattice L is a quasicontinuous lattice iff the
following equivalent conditions are satisfied:

(SM) the sup morphism (I �→ sup I ): Id L → L is ω(L) continuous;
(SM′) the sup morphism (I �→ sup I ): Id L → L is λ(L) continuous.

Hint. (SM) implies quasicontinuity: Id L is algebraic, hence quasicontinuous;
thus use the preceding exercise and Theorem III-3.11.

quasicontinuity implies (SM): Show that for each x ∈ L the set

Ux = {I ∈ Id L : x ≤ sup I }
isω(Id L) open. Indeed if x �≤ sup I , find a finite F ⊆ L\↓ sup I with↑F � ↑x
by quasicontinuity. Set V = {J ∈ Id L : f /∈ J for all f ∈ F}. Then I ∈ V ,
and J ∈ V implies x ≤ sup J . For x ≤ sup J would imply ↑F ∩ J �= Ø; that
is, ↓ f ⊆ I for some f ∈ F . �

Exercise III-5.24. Let k: L → L be a kernel operator on a dcpo L . Show that
k is continuous for the lower topology. It follows that a Scott-continuous kernel
operator is Lawson continuous. Conclude that the image of a Lawson compact
dcpo under a Scott-continuous kernel operator is Lawson compact, too. �

New notes

The bulk of the material in this section postdates the Compendium.
Corollary III-5.15 appears as the “2/3 SFP Theorem” in Plotkin’s Pisa Lecture
Notes [Plotkin, b1981]. Property M and Lawson compactness were studied in
general domains by A. Jung ([Jung, b1989] and [Jung, 1990b]). In particular
one finds there the result that FS-domains and bifinite domains are Lawson
compact. Theorem III-5.17 generalizes results in [Gierz and Keimel, 1981] and
[Lawson, 1987]. [Lawson, 1998b] contains more on the topic of compactness.
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Morphisms and Functors

With the exception of certain developments in Chapter II, notably Sections II-2
and II-4, we largely refrained from using category-theoretic language (even
when we used its tools in the context of Galois connections). Inevitably,
we have to consider various types of functions between continuous lattices,
and this is a natural point in our study to use the framework of category theory.

In Section IV-1 we discuss a duality based on the formalism of Galois con-
nections between the categories DCPOG and DCPOD of all dcpos with upper
and lower adjoints, respectively, as morphisms. We discuss in particular the cat-
egories INF and SUP, whose objects are complete lattices (in both cases) and
whose morphisms are functions preserving arbitrary infs (respectively, sups).
These categories are dual (IV-1.3). We saw as early as I-2.10 ff. that maps
preserving arbitrary infs and directed sups play an important role in our the-
ory. This leads us to consider the subcategory INF↑ of INF. Its dual under the
INF–SUP duality is denoted by SUP0; its morphisms are precisely character-
ized in IV-1.4(1)–(2), but as a category in itself, SUP0 plays a minor role. More
important, however, are the full subcategories AL ⊆ CL ⊆ INF↑ and ALop ⊆
CLop ⊆ SUP0, which consist of algebraic and continuous lattices, respectively.
We thus have a duality between CL and CLop (IV-1.9) and one between AL and
ALop; the latter extends to the very useful duality between AL and the category
SEM of semilattices with identity and semilattice morphisms preserving the
identity (IV-1.14). Further duality theorems involving distributivity and prime
elements will be given at the end of the first section, but this context will not
be fully developed before Chapter V. In view of the fact that certain other
categories of complete, continuous or algebraic lattices have been introduced
in II-2.2, we survey the relevant categories of complete lattices in a diagram
on p. 265.

Section IV-2 will introduce a category of domains and present its elegant
and important self-duality theory. In order to find elsewhere in mathematics a

264
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similarly satisfactory self-duality theory, one would have to go as far as the
category of locally compact abelian groups where the self-duality is provided
by Pontryagin duality.

In Section IV-3 we introduce a “character theory” which is appropriate for
continuous lattices. Indeed, we show that the homomorphisms (in the sense of
I-2.10) of a continuous lattice into the unit interval separate points. While this
is (modulo results of III-2) a result on compact semilattices, we present here a
lattice theoretic approach which was new in the Compendium (1980), but which
has had related forerunners in the work of Raney on completely distributive
lattices in the 1950s. The principal results in the section are more general
in that they apply to complete lattices which are not necessarily continuous
(IV-3.15, IV-3.19, IV-3.22).

In Section IV-4 we present a general description of a limiting process in-
troduced by Scott which produces continuous lattices L which are naturally



266 IV Morphisms and Functors

isomorphic to their own function spaces [L → L]. We describe the functorial
setting to the extent that it is necessary and convenient; we analyze the concept
of projective limits in the relevant categories (such as INF↑, CL and AL).

In Section IV-5 we treat systematically the question of which functors pre-
serve projective limits and establish criteria for self-functors on DCPOG , the
category of dcpos with morphisms the upper adjoint of an adjoint pair, to pre-
serve projective limits. These criteria lead to not only the result indicated above,
but also some results which, for example, give us in a functorial fashion a con-
tinuous lattice L which is naturally isomorphic to the lattice of all its Lawson
open lower sets.

In Section IV-6 general categorical criteria for fixed-point constructions for
functors are worked out, particularly for categories of dcpos. This machinery
is applied to the specific study of minimal solutions of domain equations in
Section IV-7.

In Section IV-8 we introduce the important topic of powerdomains and
give constructions for the basic powerdomains, namely the Hoare, Smyth, and
Plotkin powerdomains. The extended probabilistic powerdomain, the domain
theoretic version of the space of Borel measures, is studied in Section IV-9.

IV-1 Duality Theory

We recall from Section O-3 the concept of adjoint functions between partially
ordered sets. For monotone maps g: S → T and d: T → S, we said that d is a
lower adjoint of g and that g is an upper adjoint of d iff g(s) ≥ t ⇔ s ≥ d(t)
for all s ∈ S, t ∈ T .

Definition IV-1.1. We will consider the following categories.

POSETG and POSETD have the same class of objects, namely, the class of all
posets. The morphisms of POSETG are the order preserving maps g that
have a lower adjoint d; the morphisms of POSETD are the order preserving
maps d having an upper adjoint g.

INF and SUP have the same class of objects, namely, the class of all complete
lattices. The morphisms of INF preserve arbitrary infs, the morphisms of
SUP preserve arbitrary sups. �

By O-3.5, a function between complete lattices has a lower adjoint iff it preserves
arbitrary infs, and it has an upper adjoint iff it preserves arbitrary sups. Thus
INF is a full subcategory of POSETG and SUP is a full subcategory of POSETD .
(Recall that, if A is a subcategory of B, one says that A is a full subcategory if
each B-morphism f : S → T between objects of A is an A-morphism.)
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Evidently, INF ∩ SUP is the category of all complete lattices and complete
lattice homomorphisms. It is perhaps noteworthy that the role of INF ∩ SUP is
relatively secondary in our framework. The supply of morphisms in this category
is too restricted. A noteworthy exception is the sup morphism r = (I �→ sup I ):
Id L → L , which is in INF∩ SUP for a continuous lattice L (see O-3.15, O-4.2,
and I-1.10).

Given a pair of posets S and T , by O-3.2, if a map g: S → T has a lower
adjoint d: T → S, then this lower adjoint d is uniquely determined by g;
we denote it by d = D(g): T → S. And if a map d: T → S has an upper
adjoint g, then this upper adjoint is uniquely determined by d. We denote it by
g = G(d): S → T . In order to define functors D: POSETG → POSETD and
G: POSETD → POSETG , we have to define D and G on objects; thus for any
poset S we write simply D(S) = S and G(S) = S.

Lemma IV-1.2. The assignments D: POSETG → POSETop
D and G:

POSETD → POSETop
G are functors (that is, D and G are contravariant func-

tors). They restrict to functors D: INF → SUPop and G: SUP → INFop.

Proof: The (lower or upper) adjoint of an identity map of a poset clearly is the
identity map. That the composition of upper (resp., lower) adjoints is again the
upper (resp., lower) adjoint of the composition is well known in category theory
and is immediate from the definition O-3.1; indeed if we have g1: S1 → S2 and
g2: S2 → S3 then g2g1(s1) ≥ s3 iff g1(s1) ≥ D(g2)s3 iff s1 ≥ D(g1)D(g2)s3

on one hand, but also g2g1(s1) ≥ s3 iff s1 ≥ D(g2g1) on the other. Thus
D(g2g1) = D(g1)D(g2). The assignment G is treated analogously. Thus D and
G are (contravariant) functors. �

Theorem IV-1.3. The following categories are dual under the functors D and
G given through the Galois connection of functions:

(i) POSETG and POSETD;
(ii) INF and SUP (INF–SUP duality).

Specifically, D and G preserve objects (that is, the “dual” of a poset is itself
under this duality). Moreover, GD(g) = g and DG(d) = d for all g in DCPOG

for all d in DCPOD.

Proof: This is trivial: by definition D and G preserve objects, and the identities
GD(g) = g and DG(d) = d are clear from the adjunction. �

This simple duality nevertheless is quite useful as a basis and a guide to
the invention of other duality theories. Examples are the self-dualities of the
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categories of domains and of continuous semilattices and the duality between
unital semilattices and algebraic lattices which we discuss later (see also I-4.10).

Then our first task is to investigate how the functors D and G translate certain
preservation properties of morphisms. Note that a lower adjoint map d: T →
S between dcpos is always Scott-continuous, as lower adjoints preserve all
existing sups, in particular directed sups (O-3.3).

Theorem IV-1.4. Let S and T be dcpos and g: S → T the upper adjoint of
d: T → S. Then the following statements are equivalent:

(1) g preserves directed sups (that is, g is Scott-continuous, see II-2.2);
(2) if U ⊆ T is any Scott open set in T, then ↑d(U ) is Scott open in S.

These conditions imply

(3) d preserves �, that is, if t � t∗ in T then d(t) � d(t∗) in S,

and if T is a domain, then all three conditions are equivalent.

Proof: (1) implies (2): Let U be Scott open in T . In order to show that ↑d(U ) is
Scott open in S, we take a directed set D ⊆ S with sup D ∈ ↑d(U ) and we show
that D ∩ ↑d(U ) �= Ø. Now, sup D ∈ ↑d(U ) implies d(u) ≤ sup D for some
u ∈ U . We conclude u ≤ g(sup D) by O-3.1(ii). But g(sup D) = sup g(D) by
hypothesis (1), and g(D) is directed since g preserves order. Since U is Scott
open there is an x ∈ D with g(x) ∈ U , and thus dg(x) ∈ d(U ). But dg(x) ≤ x
(by O-3.6(2)), so x ∈ ↑d(U ). Thus D ∩ ↑d(U ) �= Ø.

(2) implies (1): Let D be a directed set in S with s = sup D. We have
always g(s) ≥ sup g(D); hence we must show g(s) ≤ sup g(D). We proceed
by contradiction. Assume that g(s) �∈ ↓sup g(D). With U = T \ ↓sup g(D),
we have g(s) ∈ U, sup g(D) �∈ U , and U is Scott open. By hypothesis (2) we
know that ↑d(U ) is Scott open in S. We note dg(s) ∈ d(U ) and dg(s) ≤ s
(O-3.6(2)), hence s ∈ ↑d(U ). So, since ↑d(U ) is Scott open, we have an x ∈ D
with x ∈ ↑d(U ), that is, x ≥ d(u) for some u ∈ U . But then in view of O-3.1,
g(x) ≥ u ∈ U , whence g(x) �= g(sup D) and this is the desired contradiction.

(1) implies (3): Suppose t � t∗ in T and let D ⊆ S be directed with
d(t∗) ≤ sup D. By O-3.1 this means t∗ ≤ g(sup D), but g(sup D) = sup g(D)
by (1). Now there is an x ∈ D with t ≤ g(x) by I-1.1. Thus d(t) ≤ s by O-3.1,
whence t � t∗.

(3) implies (1) when T is a domain: Let U be Scott open in T . In order to
show that g−1(U ) is Scott open in S, take any s ∈ g−1(U ). Then g(s) ∈ U and,
as T is a domain, there is an element t ∈ U with t � g(s) by II-1.10(i). By (3),
d(t) � d(g(s)) ≤ s, the latter by O-3.6(2). Thus d(t) � s. But g(d(t)) ≥ t
again by O-3.6(2), whence g(d(t)) ∈ U and d(t) ∈ g−1(U ). Thus, for every
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s ∈ g−1(U ) there is s ′ = d(t) ∈ g−1(U ) with s ′ � s which shows that g−1(U )
is Scott open. �

In several of the following results we have occasion to say that a map is open,
meaning of course that it maps open sets to open sets.

Remark IV-1.5. Assume the hypotheses of Theorem IV-1.4. Then condition
(2) in IV-1.4 implies

(2′) d is relatively open onto its image with respect to the Scott topology on T
and the topology on d(T ) induced by the Scott topology of S.

Furthermore condition (2′) implies

(2′′) the co-restriction d: T → d(T ) is open with respect to the Scott
topologies.

Proof: (2) implies (2′): It suffices to observe that d(U ) = d(T ) ∩ ↑d(U ). The
left is always included in the right; so suppose that s ∈ d(T ) ∩ ↑d(U ). Then
s = d(t) ≥ d(u) for some t ∈ T and some u ∈ U . Then g(s) = g(d(t)) ≥
g(d(u)) ≥ u as g is monotone and by O-3.6(2). Hence g(s) ∈ U , as a Scott open
set is an upper set. By O-3.6(3), we obtain d(g(s)) = d(g(d(t))) = d(t) = s,
hence s ∈ d(U ).

(2′) implies (2′′): Let U ⊆ T be Scott open and let D ⊆ d(T ) be directed
with supd(T ) D ∈ d(U ). Since d is a lower adjoint, d preserves all sups, and
so supS D = supd(T ) D ∈ d(U ). Now, (2′) implies d(U ) = V ∩ d(T ) for some
V ⊆ S Scott open, so supS D ∈ V . Hence D ∩ V �= Ø, and since D ⊆ d(T ),
we conclude D ∩ d(U ) = D ∩ (V ∩ d(T )) �= Ø. �

In general, (2′) does not imply (2): If d: I → I
2 is the embedding d(0) = (0, 0)

and d(t) = (t, 1) for t > 0 which preserves arbitrary sups, then V = d(]1/2, 1])
is relatively Scott open, since it is of the form d(I)∩ (]1/2, 1]× I); but ↑V = V
is not Scott open in I

2.
On the other hand, if d is surjective (that is, g is injective by O-3.7) then

↑d(U ) = d(U ), and thus (2′′) implies (2). Hence we have

Corollary IV-1.6. Let S and T be dcpos. If g: S → T is upper adjoint to
d: T → S and if g is injective (equivalently, d is surjective (see O-3.7)), then
g is Scott-continuous iff d is Scott open. �

The following two corollaries constitute a complement to Theorem I-2.2,
Corollary I-2.3 and the subsequent Remark; see also I-2.4, I-2.5 and I-2.6.
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Corollary IV-1.7. Let L be a dcpo and k: L → L a kernel operator (O-3.8).
Then the following statements are equivalent:

(1) k preserves directed sups;
(2) for each Scott open set U of k(L) the set ↑U is Scott open in L.

These conditions imply

(3) for x, y ∈ k(L), we have x �k(L) y iff x �L y.

Moreover, if k(L) is a domain, then all three conditions are equivalent.

Proof: By O-3.10, the co-restriction k◦: L → k(L) of k is upper adjoint to the
inclusion k◦: k(L) → L . Since k◦ preserves sups, then (1) holds iff k◦ preserves
directed sups. Then Theorem IV-1.4 applies to give the equivalence of (1) and
(2). We have always that x �L y implies x �k(L) y. Hence IV-1.4 shows that
(3) follows from the other two conditions and is in fact equivalent if k(L) is a
domain. �

Corollary IV-1.8. Let L be a dcpo and c: L → L a closure operator (O-3.8).
Then the following statements are equivalent:

(1) c(L) is closed in L under directed sups;
(2) the co-restriction c◦: L → c(L) is Scott open.

These conditions imply

(3) c(x) �c(L) c(y) for all x �L y in L.

Moreover, if c(L) is a domain, then all three conditions are equivalent. �

Proof: Condition (1) is equivalent to saying that the inclusion map c◦: c(L) →
L preserves directed sups. Hence the corollary follows from IV-1.4 and IV-1.5.

�

In order to reformulate Theorem IV-1.4 in terms of duality we require suitable
categories.

Definition IV-1.9. We introduce the following subcategories of POSETG ,
INF, POSETD and SUP.

DCPOG has as objects dcpos and as morphisms Scott-continuous maps g that
have a lower adjoint.

DCPOD has as objects dcpos and as morphisms maps d that have an upper
adjoint and the property that for each Scott open U in the domain of d the
set ↑d(U ) is Scott open in the range. (Note that such maps are
Scott-continuous.)
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INF↑ has as objects all complete lattices and as morphisms maps preserving
arbitrary infs and directed sups (that is, INF-maps that are also
Scott-continuous).

SUP0 has as objects all complete lattices and as morphisms all
SUP-morphisms d where for each Scott open U in the domain of d the set
↑d(U ) is Scott open in the range.

DOMG has as objects domains and as morphisms Scott-continuous maps that
have a lower adjoint.

DOMD has as objects domains and as morphisms maps that have an upper
adjoint and preserve the way-below relation �.

CL has as objects all continuous lattices and as morphisms all maps
preserving directed sups and arbitrary infs.

CLop has as objects all continuous lattices and as morphisms all maps
preserving arbitrary sups and the way-below relation �.

We call CL the category of continuous lattices and CLop the dual category of
continuous lattices. �

Evidently INF↑ = INF∩UPS. Notice that we view CLop as a concrete category
of functions between continuous lattices, and the op-notation is justified by the
next theorem.

We have defined two sequences of full subcategories: Firstly, CL is full in
INF↑ and in DOMG , and the latter two are full in DCPOG . Secondly, CLop is
full in SUP0 and in DOMD , and the latter two are full in DCPOD , where we
make use of IV-1.4.

Theorem IV-1.10. The following pairs of categories are dual under the ad-
joint functors D and G:

(i) DCPOG and DCPOD (DCPOG–DCPOD duality),
(ii) INF↑ and SUP0 (INF↑–SUP0 duality),

(iii) DOMG and DOMD (DOMG–DOMD duality),
(iv) CL and CLop (CL–CLop duality). �

Let us now determine how the morphisms of CLop treat algebraic domains,
which, as we know from Section I-4, play an important role in our theory. Our
discussion leads us to another important duality theory.

Proposition IV-1.11. Let d: T → S be a monotone map between dcpos and
consider the following two statements:

(1) d preserves �;
(2) d(K (T )) ⊆ K (S).
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Then (1) implies (2), and if T is an algebraic domain, then the two statements
are equivalent.

Proof: (1) implies (2): If c ∈ K (T ), then c � c, and thus d(c) � d(c) by (1),
hence d(c) ∈ K (S).

Now suppose that T is an algebraic domain. (2) implies (1): Suppose that
t � t∗ in T . By I-4.3 there is a compact c with t ≤ c ≤ t∗. Then d(t) ≤ d(c) ≤
d(t∗) and d(c) ∈ K (S) by (2). Hence d(t) � d(t∗) (I-4.3). �

Corollary IV-1.12. Let g: S → T be the upper adjoint of a monotone map
d: T → S between dcpos and and suppose that T is an algebraic domain.
Then the following are equivalent:

(1) g preserves directed sups;
(2) d maps compact elements of T to compact elements of S.

If these conditions are satisfied, then K (g) = d|K (T ): K (T ) → K (S) has the
property that inverse images of ideals are ideals.

If, moreover, T is an algebraic lattice, then K (g) is a sup semilattice homo-
morphism.

Proof: The equivalence of (1) and (2) follows from IV-1.4 and IV-1.11.
Now let I be an ideal of the poset K (S), i.e. a directed lower set in K (S)

in the induced order. We claim that the set K (g)−1(I ) = d−1(I ) ∩ K (T ) is an
ideal of K (T ). For this let c = sup I ∈ S. Note that I = {x ∈ K (S): x ≤ c}.
For a compact element a ∈ T , we have a ∈ d−1(I ) iff d(a) ≤ c iff a ≤ g(c),
as g is the upper adjoint of d. Thus, d−1(I ) ∩ K (T ) = ↓g(c) ∩ K (T ), and
this set is an ideal of K (T ), as T is an algebraic domain. This proves our
claim.

Finally assume that T is an algebraic lattice. Since K (T ) is a sup semilat-
tice by I-4.6 and since d preserves sups it follows that d is a sup semilattice
homomorphism. �

In order to express this last fact in a systematic way, we introduce further
categories (compare, however, II-2.2!). Recall that DOMG denotes the category
of all domains and Scott-continuous morphisms between them having a lower
adjoint.

Definition IV-1.13. We define the following categories.

POID is the category of posets and maps under which the inverse image of an
ideal is an ideal. (Note that such maps are monotone.)
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SEM is the category of all sup semilattices with 0 with maps preserving the
semilattice operation and 0.

ALGDOMG is the full subcategory of DOMG consisting of all algebraic
domains.

ALGDOMD is the full subcategory of DOMD consisting of all algebraic
domains.

AL and ArL are the full subcategories of CL consisting of all algebraic and of
all arithmetic lattices, respectively.

ALop and ArLop are the full subcategories of CLop consisting of AL- and of
ArL-objects, respectively. (By IV-1.12 the morphisms are the maps
preserving arbitrary sups and compact elements.) �

Remark. Let S and T be semilattices with 1. Then a function f : S → T is a
semilattice homomorphism preserving the identity iff f −1(F) is a filter for all
filters F ⊆ T . Thus SEM is a full subcategory of POID.

The following is an exercise (cf. Theorem IV-2.1 below).

Corollary IV-1.14.

(i) The assignment which associates with an algebraic domain L the poset
K (L) and with a morphism g: L → M in ALGDOMG the map

K (g) = D(g) | K (M): K (M) → K (L)

is a functor ALGDOMG → POIDop, where D(g) is the lower adjoint
d: M → L of g.

(ii) The assignment which associates with an algebraic lattice L the sup
semilattice K (L) and with a morphism g: L → M in AL the function

K (g) = D(g) | K (M): K (M) → K (L)

is a functor AL → SEMop.
(iii) The assignment L �→ K (L) and d �→ d | K (M): K (M) → K (L) for

maps d: M → L in ALop is a functor ALop → SEM. �

If S is a poset, then Id S is an algebraic domain, and if S is a sup semilattice
with minimal element, then Id S is an algebraic lattice according to I-4.10, and
the principal ideal embedding x �→ ↓x : S → Id S induces an isomorphism
between S and K (Id S). Conversely, we recall from I-4.10 that, if L is an
algebraic domain, then each x ∈ L yields an ideal↓x∩K (L) of the poset K (L),
and that the function x �→ ↓x∩K (L) : L → Id K (L) is an isomorphism. Let us
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observe that for each morphism f : S → T in POID we get a Scott-continuous
map J �→ f −1(J ): Id T → Id S with lower adjoint J ′ �→ ↓ f (J ′): Id S → Id T .
Indeed J1 ⊆ f −1(J2) iff f (J1) ⊆ J2 iff ↓ f (J1) ⊆ J2. Our observations amount
to the following theorem.

Theorem IV-1.15. (ALGDOMG–POID duality) The category POID of posets
with maps under which inverse images of ideals are ideals and the category
ALGDOMG of algebraic domains with Scott-continuous maps having a lower
adjoint are dual. The duality is established through the functors Id: POID →
ALGDOMop

G with (Id g)(J ) = f −1(J ) and K: ALGDOMG →POIDop, K (g) =
d | K (T ): K (T )op → K (S)op with the lower adjoint d of the ALGDOMG-
morphism g: S → T . �

Let us further note that for each sup semilattice homomorphism f : S → T pre-
serving least elements we induce a morphism Id f = (J �→ f −1(J )): Id T →
Id S and that this morphism preserves arbitrary intersections and unions
of up-directed families and, hence, is an AL-morphism. Evidently, Id: S →
ALop is a functor, and what we have observed amounts to the following
theorem.

Theorem IV-1.16. (AL–SEM duality)

(i) The categories SEM of sup semilattices with 0 (with maps preserving
finite sups and 0) and AL of algebraic lattices (with maps preserving infs
and directed sups) are dual. The duality is established through the
functors Id: SEM → ALop and K : AL → SEMop.

(ii) Under this duality, the full subcategory Slat of lattices with least elements
and least element preserving sup semilattice maps is placed into duality
with the category ArL of arithmetic lattices.

Proof: Only the last assertion is not yet proved, but it is immediate from the
fact that an algebraic lattice L is arithmetic iff K (L) is a lattice with smallest
element (see I-4.7). �

Notice that IV-1.16 also says that the categories SEM of sup semilattices and
the dual category ALop of algebraic lattices are equivalent.

Definition IV-1.17. Let LAT denote the category of all lattices with a least
element and all lattice homomorphisms preserving the least elements. �

Theorem IV-1.18. The category ArLop
∧ of all arithmetic lattices and all maps

preserving finite infs and arbitrary sups and respecting the way-below relation
is equivalent to the category LAT.
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Proof: If S and T are algebraic lattices, then for each d: S → T in ALop we
have a commutative diagram

and by the Remark following IV-1.13, d �→ d | K (S) : ALop(S, T ) → S(K (S),
K (T )) is a bijection. If now S and T are arithmetic, then K (S) and K (T ) are
lattices. If further d preserves finite infs, then d | K (S) is in LAT. Conversely,
suppose that d | K (S) preserves finite infs. Let s, s∗ ∈ S. Then D = ↓s∩K (S)
and D∗ = ↓s∗ ∩ K (S) are directed sets in S with s = sup D and s∗ = sup D∗.
We have ss∗ = sup DD∗, since S is meet-continuous (see O-4.2, I-1.8 and
I-4.3). Then d(ss∗) = d(sup DD∗) = sup d(DD∗) (since d preserves arbitrary
sups) = sup d(D) sup d(D∗) (since d | K (S) preserves finite infs and T is
meet-continuous) = d(sup D)d(sup D∗) (since d preserves sups) = d(s)d(s∗).
Thus d preserves finite infs. We have shown that d �→ d | K (S) establishes a
bijection between ArLop

∧ (S, T ) and LAT(K (S), K (T )). �

We encountered in the proof of the preceding theorem a lower adjoint d which
in addition preserves finite infs, that is, which was a lattice homomorphism. It
is worth our while to ask systematically whether or not this additional property
of a right adjoint is recognizable by looking at its left adjoint. The following
propositions provide the tools and are also of independent interest.

Proposition IV-1.19. Let S and T be posets. Let g: S → T be upper adjoint
to d: T → S. Then the ALGDOMG-morphism Id g: Id S → Id T is given by
(Id g)(I ) = d−1(I ) = ↓g(I ), and we have a commutative diagram (with the
principal ideal embeddings as vertical arrows)
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The lower adjoint D(Id g) is given by Id d: J �→ ↓d(J ) and the following
diagram commutes:

Proof: First we have to show that d−1(I ) = ↓g(I ) for all I ∈ Id S. But t ∈
d−1(I ) means d(t) ∈ I which is equivalent to the existence of an x ∈ I with
d(t) ≤ x . By O-3.1 this means the existence of an x ∈ I with t ≤ g(x)
which says precisely that t ∈ ↓g(I ). The commutativity of the diagram is a
consequence of the relation ↓g(s) = ↓g(↓s) for each s ∈ S, which follows
from O-1.11.

Next we must identify the lower adjoint of Id g: But d−1(I ) ⊇ J means
I ⊇ d(J ) which is equivalent to I ⊇ ↓d(J ) since I is an ideal. As before, the
commutativity of the diagram follows from O-1.11. �

We complement these observations by the following.

Proposition IV-1.20. Assume that the hypotheses of IV-1.19 are satisfied,
and in addition that S and T are complete lattices. Then the following diagram
commutes:

Moreover g ∈ INF↑ iff the following diagram commutes also:
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Proof: See [Hofmann and Stralka, 1976]. �

At this point one should recall that an element p of a poset S is called prime, if
S\↓p is a filter or is empty (see I-3.11) and that an ideal I of S is called prime,
if it is a prime element of Id S or, equivalently, if S\I is a filter or empty (see
I-3.18). Note that for an element p, the principal ideal ↓p is a prime ideal iff p
is a prime element of S.

Now let S be a sup semilattice with a smallest element. By I-4.10, the lattice
Id S is algebraic. We now derive from Theorem I-3.15 and Exercises I-3.30,
I-3.31 the following proposition (see also [Hofmann et al., b1974]).

Proposition IV-1.21. Let S be a sup semilattice with a least element. Then
the following statements are equivalent:

(1) the lattice Id S of ideals of S is distributive;
(2) every ideal of S is the intersection of prime ideals;
(3) the sup semilattice S is distributive (see I-3.11), that is, whenever

x ≤ s ∨ s∗ then there exist t ≤ s and t∗ ≤ s∗ with x = t ∨ t∗.

Furthermore, if S is a lattice, these conditions are equivalent to

(4) S is distributive. �

After this preparation we have the following information on lower adjoints d
which are also lattice morphisms.

Theorem IV-1.22. Let S and T be unital lattices and suppose that g: S → T
is an upper adjoint to d: T → S. Then each of the following conditions implies
the next:

(1) d is a lattice morphism (that is, preserves finite infs);
(2) for each filter F of S, the set d−1(F) is a filter of T;
(3) Id g (that is, the function J �→ ↓g(J )) preserves prime ideals;
(4) g(PRIME S) ⊆ PRIME T , that is, g preserves primes.

If S is distributive (3) implies (1), and if each element of S is an inf of primes,
then all four conditions are equivalent.

Remark. If S is a distributive continuous lattice, then PRIME S order-
generates S by I-3.15.

Proof of theorem: Condition (2) is an immediate consequence of (1).
(2) implies (3): If we abbreviate r = Id g, then we have r (I ) = d−1(I ) by

IV-1.19. This is equivalent to d−1(S\I ) = T \r (I ). If I is a prime ideal, then
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S\I is a filter, and then T \r (I ) is a filter by (2). This means that r (I ) is a prime
ideal.

(3) implies (4): Letp ∈ PRIME S. Then ↓p is a prime ideal. Hence ↓g(↓p)
is a prime ideal by (3). But ↓g(↓p) = ↓g(p) by O-1.11, and so g(p) is prime.

Now suppose that S is distributive. Then every ideal I of S is an intersection
of prime ideals by IV-1.21. In particular every principal ideal is the intersection
of prime ideals.

(3) implies (1): Suppose t, u ∈ T ; then we always have d(tu) ≤ d(t)d(u).
To prove the converse, we note that ↓d(tu) is the intersection of prime ideals,
and so d(t)d(u) ≤ d(tu) if d(t)d(u) ∈ I for every prime ideal of S con-
taining d(tu). Let I be such a prime ideal. Then tu ∈ d−1(I ) = r (I ), and
r (I ) is a prime ideal by (3). Hence t ∈ r (I ) or u ∈ r (I ), whence d(t) ∈
d(r (I )) ⊆ I or d(u) ∈ d(r (I )) ⊆ I . In either case, d(t)d(u) ∈ I , as we had to
show.

Finally suppose that every element of S is an inf of primes. This implies
that every principal ideal of S is the intersection of principal ideals gener-
ated by primes, and these are prime ideals. Hence the proof of (3) implies (1)
applies with I = ↓p for some prime p of S, since d−1(I ) = d−1(↓p) =
↓g(↓p) (by IV-1.19) = ↓g(p) (by O-1.11) is prime by (4). �

It appears on the surface that we proved a more general statement in so far
as for (3) implies (1) we really used only that the prime ideals separate the
points from ideals. But this property in itself is sufficient to make S
distributive.

Corollary IV-1.23.

(i) Let S be a distributive continuous lattice and T a complete lattice. Then
the mapping g �→ D(g) : INF(S, T ) → SUP(T, S) induces a bijection
from the subset of all prime preserving maps onto the subset of all lattice
homomorphisms in SUP(T, S).

(ii) If T is continuous, then the same map induces a bijection from the set of
all prime preserving morphisms in CL(S, T ) onto the subset of all lattice
homomorphisms in CLop(T, S). �

Corollary IV-1.24. The category of all distributive continuous, resp. alge-
braic, lattices, with prime preserving CL-maps, resp. AL-maps, is dual to the
category of all continuous, resp. algebraic, distributive lattices with morphisms
preserving arbitrary sups, finite infs and respecting the way-below relation,
resp. compact elements. �
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Exercises

Exercise IV-1.25. If T is a dcpo and S ⊆ T such that some function d: T → S
is lower adjoint to the inclusion S → T (that is, S is the image of T of some
closure operator of T (see O-3.10)), show that S is closed in T for directed sups
iff d is Scott open.

Hint. Check the proof of IV-1.5. �

Exercise IV-1.26. Furnish the proof of IV-1.20. �

Exercise IV-1.27. Let L1 and L2 be complete lattices. The poset SUP(L1,

Lop
2 )op is called the tensor product of L1 and L2 and is written L1 ⊗ L2.

(i) Show that L1 ⊗ L2 = SUP(L1, Lop
2 )op ∼= INF(Lop

2 , L1) =
SUP(L2, Lop

1 )op = L2 ⊗ L1.

(ii) Is the tensor product associative?
(iii) Show that this tensor product classifies the bimorphisms in SUP in the

sense that

SUP(L1 ⊗ L2, L3) ∼= SUP(L1, SUP(L2, L3)) �

Exercise IV-1.28. Prove the following.

(i) L1 and L2 are complete lattices. For a subset G ⊆ L1 × L2 with (0, 1),
(1, 0) ∈ G the following statements are equivalent:
(1) G = {(x1, x2) ∈ L1 × L2 : x2 ≤ f (x1)} for some f ∈ L1 ⊗ L2.
(2) If X ≤ G then (inf pr1 X , sup pr2 X ), (sup pr1 X , inf pr2 X ) ∈ G.
(3) If X1 × X2 ⊆ G, then ↓(sup X1, sup X2) ⊆ G.
(4) G is Scott closed in L1 × L2, and if (x1, x2), (y1, y2) ∈ G, then

(x1 ∧ y1, x2 ∨ y2), (x1 ∨ y1, x2 ∧ y2) ∈ G.

(ii) In particular, the poset G(L1, L2) of all Scott closed subsets
G ⊆ L1 × L2 satisfying (1)–(4) is isomorphic to L1 ⊗ L2.

(iii) The tensor product L1 ⊗ L2 is a continuous lattice iff L1 and L2 are
continuous lattices.

Hint. For these and more details we refer to [Bandelt, 1980b]. �

Old notes

The general idea of Galois connections is a classical theme in lattice theory
almost since its inception, as is exemplified by the paper of O. Ore [Ore, 1944].
In the Notes for Section O-3 we have given some references surveying the
background of Theorem IV-1.3. The results of Theorem IV-1.4 (and of IV-1.5,
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IV-1.6) were new in the Compendium, but the equivalence of (1) and (3) was first
proved by [Hofmann and Stralka, 1976]. The duality of CL and CLop originated
from the same source; this result turned out to be rather useful in dealing with
homomorphisms between continuous lattices ([Hofmann and Mislove, 1975;
Hofmann and Mislove, 1976; Hofmann and Mislove, 1977] and [Hofmann
et al., 1973; Hofmann et al., 1975], [Hofmann and Stralka, 1976]).

The duality described in Theorem IV-1.16 was extensively discussed by
[Hofmann et al., 1973], [Hofmann et al., b1974], [Hofmann et al., 1975], al-
though in the form of a Pontryagin duality for semilattices it was introduced by
[Austin, 1963]. For further references check [Hofmann et al., b1974]. Theorem
IV-1.18 and Proposition IV-1.19 come from [Hofmann and Stralka, 1976]. Ex-
cept for some embellishments, Theorem IV-1.22 occurs in a paper of [Hofmann
and Lawson, 1978]. The material on tensor products in the exercises is due to
[Bandelt, 1980b], where one can find further references on the topic of tensor
products of continuous lattices.

IV-2 Duality of Domains

This section is devoted to an attractive self-duality theory of a category of all
domains equipped with suitable morphisms. This duality assumes a particularly
nice form in the subcategory of semilattices with top element. Hence we assume
throughout this section that semilattices all come with a largest element 1 and
all semilattice homomorphisms preserve 1.

We have encountered open filters (always assumed to be nonempty) in
Chapter I, Definition I-3.1, and in Chapter II, Proposition II-1.11 ff. The concept
of open filters on a dcpo L and that of the dcpo

OFilt(L) = {U ∈ σ (L) : U is a filter}
of all Scott open filters of L under inclusion will be crucial in the following.
If f : S → T is a Scott-continuous function between posets, then pulling back
Scott open sets, the preimage f −1(V ) of every Scott open set V ⊆ T is Scott
open in S. But the monotone map f : 22 → 2 sending (0, 0) to 0 and the
remainder to 1 is a Scott-continuous map between domains and V = {1} is a
filter in 2, but f −1(V ) �= Ø fails to be a filter. Thus we do not expect in general
that

f −1(V ) is an open filter of S for every open filter V ⊆ T . (1)

The following proposition shows that functions with the property that inverse
images of open filters are open filters arise in a natural way.
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Proposition IV-2.1. Let S and T be continuous semilattices. Then for a func-
tion f : S → T such that f (1) = 1, the following statements are equivalent:

(1) for every open filter V in T , the preimage f −1(V ) is an open filter of S;
(2) f is a Scott-continuous semilattice homomorphism.

Proof: (2) implies (1): If V is a Scott open subset of T and f is Scott-
continuous, f −1(V ) is Scott open. If x, y ∈ f −1(V ) then f (x), f (y) ∈ V .
But if V is also a filter, then f (xy) = f (x) f (y) ∈ V . Thus xy ∈ f −1(V ).
Therefore f −1(V ) is a filter as well.

(1) implies (2): We assume that f : S → T is a function satisfying (1).
In particular, V �→ f −1(V ) maps OFilt(T ) into σ (S). Since T is a domain,
OFilt(T ) is a basis of σ (T ) by Theorem II-1.14(3). We conclude that f is Scott-
continuous. Next we claim that x, y ∈ S implies f (xy) = f (x) f (y). Now
xy ≤ x, y, whence f (xy) ≤ f (x), f (y) since Scott-continuous functions are
monotone; thus f (xy) ≤ f (x) f (y) is always true. Now let v � f (x) f (y).
Then by I-3.3(i), there is an open filter V in T such that f (x) f (y) ∈ V ⊆ �

v.
Then f (x), f (y) ∈ V and thus x, y ∈ f −1(V ). By (1), f −1(V ) is a filter in
S. Therefore xy ∈ f −1(V ) and thus f (xy) ∈ V . Hence v � f (xy). Since
T is a domain we have f (x) f (y) = sup{v: v � f (x) f (y)}. It follows that
f (x) f (y) ≤ f (xy), and this proves the claim. �

It is clear that the composition of two maps between posets each having the
property that the inverse images of open filters are open filters also has this
property. We are led to the following definition.

Definition IV-2.2. We define the category of dcpos with open filter mor-
phisms DCPOFILT to be the category whose objects are dcpos and whose
morphisms are those functions f : S → T between dcpos which have the prop-
erty that for each open filter V of T the subset U = f −1(V ) of S is an open
filter, that is, which satisfy condition (1) of IV-2.1. The category of domains
with open filter morphisms DOMFILT is defined to be the full subcategory of
DCPOFILT whose objects are domains.

We let CSEM denote the category of all continuous semilattices (with 1) and
all Scott-continuous semilattice homomorphisms (preserving 1) and call it the
category of continuous semilattices. �

In view of IV-2.1(1) and the fact that for a domain T , the subset OFilt(T ) of
σ (T ) is a basis by II-1.14(3), we note that DOMFILT-morphisms are Scott-
continuous, i.e., preserve directed sups.

Proposition IV-2.1 has the following immediate consequence.
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Corollary IV-2.3. The category CSEM is a full subcategory of DOMFILT. �

There are some fairly immediate observations on DCPOFILT- and DOMFILT-
morphisms which we record first.

Proposition IV-2.4. Let S and T be two dcpos and f ∈ DCPOFILT(S, T ).

(i) For each V ∈ OFilt(T ) we have f (S) ∩ V �= Ø.
(ii) If T is a domain, then f has a Scott-dense image.

(iii) If T is a domain, for each t ∈ T we have ↓ f (S) ∩ �t �= Ø.

Proof: (i) Since f is a DCPOFILT-morphism, f −1(V ) ∈ OFilt(S) and thus
f −1(V ) �= Ø, i.e., f (S) ∩ V �= Ø.

(ii) By Theorem II-1.14(3), the Scott open filters form a basis for the Scott
topology on the domain T . Thus, (i) implies that f (S) meets every Scott open
subset of T and consequently is Scott-dense.

(iii) Assume that v � t in T . Then by Proposition I-3.3 there is a V ∈
OFilt(T ) such that t ∈ V ⊆ �

v. By (i) above, there is an s ∈ S such that
f (s) ∈ V . Then v � f (s) and thus v ∈ ↓ f (S). �

We recall from the paragraph preceding Theorem O-3.4 that a function f : S →
T between posets is called cofinal if for every t ∈ T there is an s ∈ S such that
t ≤ f (s), i.e., that T = ↓ f (S).

Corollary IV-2.5. Assume that f ∈ DCPOFILT(S, T ) and that T is a domain.
Then each of the following conditions is sufficient for f to be cofinal.

(i) ↓ f (S) is Scott closed in T .
(ii) S has a top.

(iii) Every lower set in T is Scott closed.

Proof: (i) ↓ f (S) is Scott closed, then by IV-2.4(ii) above, ↓ f (S) = T .
(ii) If S has a top element 1, then ↓ f (S) = ↓ f (1), and this is a Scott closed

set. So (i) applies.
Condition (iii) is trivially a sufficient condition. �

In case (ii) we saw that ↓ f (1) = T , and thus f (1) is the top of T . Hence we
note

Corollary IV-2.6. Let S be a dcpo with a top 1 and T a domain. If f : S → T
is a DCPOFILT-morphism, then T has a top and f (1) = 1. �

Condition (iii) is satisfied whenever T is finite. Another example is a reversely
well ordered set. In particular, all DCPOFILT-morphismsχ : S → 2 are cofinal,
i.e. satisfy 1 ∈ χ (S).
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Definition IV-2.7. For any dcpo S, a DCPOFILT-morphism χ : S → 2 will
be called a character. We set Ŝ = DCPOFILT(S, 2), the set of all characters
with the pointwise order, and call Ŝ the character poset or the dual of S. �

If it clarifies the context, we shall also call the dual of a dcpo more specifically
its Lawson dual.

We note that for the constant function χ : S → 2 with value 1 we have
χ−1(1) = S; this function is a character if and only if S is filtered. For the
constant 0 function χ : S → 2 we have χ−1(1) = Ø. Since the empty set is not
a filter under any circumstances, this function is not a character.

Proposition IV-2.8. Let S be a dcpo. Then for each character χ of S, the set
χ−1(1) is an open filter of S. The function εS: Ŝ → OFilt(S), εS(χ ) = χ−1(1)
is an isomorphism of posets. In particular, the character poset of a domain is a
domain.

Proof: Since χ is a DCPOFILT-morphism and {1} is an open filter in 2, the
set χ−1(1) is an open filter of S. Thus εS: Ŝ → OFilt(S) is a well-defined
function, and since χ1 ≤ χ2 in Ŝ iff χ−1

1 (1) ⊆ χ−1
2 (1) it is order preserving.

If U ∈ OFilt(S) we let χU : S → 2 denote the characteristic function of U ,
taking the value 1 on U and the value 0 elsewhere. Then χ is at once seen to
be a character, and the function U �→ χU : OFilt(S) → Ŝ is the inverse of εS .
Therefore, this latter function is an isomorphism of posets Ŝ → OFilt(S). Since
for a domain S the poset OFilt(S) is a domain by Theorem II-1.17, the character
poset Ŝ is a domain. �

After these remarks we have two ways of looking at the dual of a dcpo: one
is to consider the dual as the character poset, the other, more geometrical, is to
consider it as the open filter poset.

The following lemma will be crucial for the upcoming duality theorem. It is
formulated in terms of open filters. For an element s in a dcpo S let us write

U(s) = {U ∈ OFilt(S) : s ∈ U }.
Lemma IV-2.9. Let S be a dcpo.

(i) U(s) is Scott open, and if S is a semilattice, then U(s) is an open filter on
OFilt(S) for every s ∈ S.

(ii) If S is a domain, then the open filters on OFilt(S) are exactly the sets of
the form U(s), s ∈ S.

Proof: (i) U(s) is clearly an upper set in OFilt(S); if a union of any family of
sets contains s then one of the members does, too, and thus U(s) is Scott open
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in OFilt(S). If S is a semilattice, then the intersection of two filters is a filter
and thus U(s) is a filter.

(ii) By Theorem II-1.17 OFilt(S) is a domain. Let U be an open filter on
OFilt(S). For each U ∈ U there is a U ∈ U such that U � U . By II-1.17(ii)
we find an element sU ∈ U such that U ⊆ ↑sU . Thus the set

D
def= {s ∈ S : (∃U, V ∈ U)V ⊆ ↑s ⊆ U }

is not empty. We claim it is directed: Let s1, s2 ∈ D. Then there exist U j , Vj ∈ U
such that Vj ⊆ ↑s j ⊆ U j for j = 1, 2. Since U is a filter, there is a U ∈ U
such that U ⊆ V1 ∩ V2. Since U is open, there is a V ∈ U such that V � U ;
then by II-1.17(ii) on U again there is an s ∈ U such that V ⊆ ↑s. Hence
s ∈ D, and since s ∈ U ⊆ V1 ∩ V2 ⊆ ↑s1 ∩ ↑s2 we have s1, s2 ≤ s. This
shows that D is directed as asserted. Since S is a dcpo, the element s = sup D
is well defined. First we claim that s ∈ U for all U ∈ U : If U ∈ U we have
U ⊆ ↑sU ⊆ U ; then sU ∈ D ∩U and thus s = sup D ∈ U . Secondly we claim
that s ∈ W ∈ OFilt(S) implies W ∈ U . Since sup D = s ∈ W and W is Scott
open, there is a w ∈ D with w ∈ W . By definition of D, there is a V ∈ U
such that V ⊆ ↑w ⊆ W . Since every filter is an upper set, W ∈ U follows as
asserted. This completes the proof. �

Proposition IV-2.10. If f : S → T is a DCPOFILT-morphism, then f̂ : T̂ →
Ŝ defined by f̂ (χ ) = χ ◦ f is Scott-continuous. If S is a domain, then f̂
is a DCPOFILT-morphism. The assignment ˆ: DOMFILT → DOMFILT is a
contravariant functor.

Proof: Let f : S → T be a DCPOFILT-morphism. Then for every character
X : T → 2 the function f̂ (χ ) = χ ◦ f : S → 2 is a character of S. Thus f̂ :
T̂ → Ŝ is a well-defined function. If V ∈ OFilt(T ) then f −1(V ) ∈ OFilt(S).
Hence the function OFilt( f ): OFilt(T ) → OFilt(S) given by OFilt( f )(V ) =
f −1(V ) is well defined and corresponds to f̂ via the commutative diagram

Since V �→ f −1(V ) preserves unions, OFilt( f ) is Scott-continuous. Now
let V be an open filter in OFilt(S) and assume that S is a domain. By Lemma
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IV-2.9, there is a u ∈ S such that V = {U ∈ OFilt(S) : u ∈ U }. Set U def=
OFilt( f )−1(V). Now U ∈ U iff f −1(U ) = OFilt( f )(U ) ∈ V , i.e., u ∈ f −1(U ),
which is tantamount to f (u) ∈ U . By Lemma IV-2.9 again this means that
U is an open filter in OFilt(T ). This shows that OFilt( f ) and thus also f̂ are
DCPOFILT-morphisms.

The assignment which maps a domain S to its dual Ŝ and a DOMFILT-
morphism f : S → T to f̂ : T̂ → Ŝ is immediately seen to be a functor satisfy-
ing f̂ g = ĝ f̂ . �

Definition IV-2.11. We say that a dcpo is open filter determined if for each
pair of elements s, t ∈ S such that t �≤ s there is an open filter U ∈ OFilt(S)
such that t ∈ U , but s �∈ U . This is equivalent to saying that the characters
separate the points of S in the sense that, whenever s �= t ∈ S, there is a χ ∈ Ŝ
such that χ (s) �= χ (t). �

The following is straightforward.

Remark IV-2.12. (i) A dcpo S is open filter determined iff for each t ∈ S we
have
⋂U(t) = ↑t .

(ii) A domain S is open filter determined or, equivalently, the characters
separate the points of S.

(iii) Every frame with enough points, i.e., every complete lattice L in which
the set PRIME(L) of primes is order generating, is open filter determined. In
particular, for a space X, the topology O(X ) is open filter determined.

Proof: Part (i) is immediate from the definition.
(ii) If S is domain, then σ (S) is a T0 space by II-1.4(iii) and every point of S

has a basis of neighborhoods which are open filters by II-1.14(3). This proves
the claim.

(iii) Let a �≤ b in L . As the primes are supposed to be order generating, there
is a prime p with b ≤ p but a �≤ p. Then L\↓p is an open filter containing
a but not b. This establishes the claim. Finally observe that the open sets of a
space form a frame with enough points. �

The following is a general categorical setup. For a dcpo S which is a semi-

lattice or a domain we define functions ηS: S → ˆ̂S and ϕS: S → OFilt
(OFilt(S)) by ηS(s)(χ ) = χ (s), and by ϕS(s) = {U ∈ OFilt(S) : s ∈ U }.
By Lemma IV-2.9, ϕS is well defined. If U = χ−1(1) = εS(χ ) then χ (s) = 1
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iff s ∈ U . A closer look shows that this makes the following diagram
commutative:

Theorem IV-2.13. Let S be a dcpo such that U(s) is a filter for all s ∈ S –
this is the case if S is a semilattice or a domain. Then we have maps

ηS: S → ˆ̂S and ϕS: S → OFilt(OFilt(S)).

(i) If S is open filter determined, then these functions are injective.
(ii) If OFilt(S) is a domain and U � V in OFilt(S) implies the existence of a

v ∈ V with U ⊆ ↑v, then they are surjective.
(iii) If S is a domain, ϕS and ηS are isomorphisms of domains.

Proof: By Proposition IV-2.10 it suffices to consider ϕS which is well de-
fined by our first assumption. Part (i) follows directly from the assumption.
(ii) By Lemma IV-2.9(ii), ϕS is surjective under the given hypotheses. From
Theorem II-1.17(ii) and Remark IV-2.12(ii) we conclude that ϕS is an isomor-
phism if S is a domain. �

The results IV-2.10 and IV-2.13 yield the following key theorem, remini-
scent of the Pontryagin Duality Theorem of Locally Compact Abelian
Groups.

Theorem IV-2.14. (The Lawson Duality Theorem of Domains) The cate-
gory DOMFILT of domains is self-dual under the contravariant functor .̂ The
dual of a domain S may be considered as the character poset Ŝ as well as the
open filter domain OFilt(S). �

If for a domain S and elements (χ, s) ∈ Ŝ×S we write 〈χ, s〉S = χ (s), then for a
DOMFILT-morphism f : S → T we have the formula 〈χ, f (s)〉T = 〈 f̂ (χ ), s〉S .
This pairing is symmetric in the sense that S may be regarded as the character
poset of Ŝ.



IV-2 Duality of Domains 287

Proposition IV-2.15. Assume that f ∈ DOMFILT(S, T ). Then

(i) f is a monic iff f is injective,
(ii) f is an epic iff f̂ is injective.

Proof: An injective morphism is monic and a surjective morphism is epic; it
is the reverse implications that have to be proved.

(i) Assume f to be monic in DOMFILT and assume f (s1) = f (s2). Let
Max(S) denote the subset of maximal elements of the dcpo S and set E =
Max(S) ∪ {⊥} with a smallest element ⊥ adjoined to the set Max(S) on which
two different elements are incomparable. Then E is a domain, and the functions
α j : E → S, j = 1, 2, which are the identity on Max(S) and map ⊥ to s j ,
respectively, are DOMFILT-morphisms. Moreover, f ◦α1 = f ◦α2. Since f is
a monic we conclude g1 = g2. This implies s1 = g1(⊥) = g2(⊥) = s2. Hence
f is injective.

(ii) Assume that f is an epic. Then f̂ is a monic by duality, IV-1.10. By (i)
this means that f̂ is injective. �

It is not clear at this stage exactly how to characterize epimorphisms in a
more explicit way. However, by way of pragmatic experience, it is always
substantially more difficult to characterize epimorphisms than to characterize
monomorphisms.

The following duality theorem, while, in the face of Theorem IV-2.14, not
being the most general one in this area, is the most elegant one from the vantage
point of pure mathematical structure.

Theorem IV-2.16. (The Duality Theorem of Continuous Semilattices) The
category CSEM of continuous semilattices and Scott-continuous semilattice
morphisms is self-dual under the contravariant functor .̂ The dual of a contin-
uous semilattice S may be considered as the character poset Ŝ as well as the
open filter poset OFilt(S).

Proof: By Corollary IV-2.3, the category CSEM is a full subcategory of
DOMFILT. In particular, every (DOMFILT-)character χ : S → 2 of a continu-
ous semilattice is a semilattice character. The pointwise product of two of these
is again a semilattice character; equivalently, since every filter on S is a sub-
semilattice, the intersection of two filters is a semilattice. Hence Ŝ is not only a
domain but a semilattice and is therefore a continuous semilattice. If f : S → T
is a CSEM-morphism, then f̂ (χ1χ2) = (χ1χ2) ◦ f = (χ1 ◦ f )(χ2 ◦ f ) =
f̂ (χ1) f̂ (χ2). Thus f̂ : T̂ → Ŝ is a CSEM-morphism. Hence the contravariant
functor ˆ : DOMFILT → DOMFILT maps CSEM faithfully onto itself and by
Theorem IV-2.14 induces a duality. �
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One of the attractive features of this duality theorem is that it is completely
in accordance with a whole class of duality theorems based on character the-
ories, for which the Pontryagin Duality Theorem for locally compact groups
is the most representative one. Here the characters of a continuous semilattice
are Scott-continuous semilattice homomorphisms into the continuous semi-
lattice of two elements. Another point is that the category CL of continu-
ous lattices is a subcategory of CSEM, although not a full one. Moreover,
the character semilattice L̂ of a continuous lattice L in the sense of Theorem
IV-2.16 is not in general a lattice again; a prominent example is the distribu-
tive continuous lattice O(X ) of a sober locally compact space, whose dual is
Q(X ) according to Theorem IV-2.18 below, and Q(X ) may well fail to be
a lattice. Thus the Lawson duality formalism allows no restriction to contin-
uous lattices, but the category of continuous semilattices appears to be the
comfortable and economic supercategory of CL in which the duality works
perfectly.

The duality theories which we have seen in this section induce other useful
duality theorems on smaller subcategories. We record this now.

Theorem IV-2.17. The Lawson self-duality of the category DOMFILT of do-
mains induces self-dualities of each of the full subcategories ADOMFILT and
ASEM of algebraic domains and algebraic semilattices, respectively.

Proof: Exercise IV-2.25. �

In Chapters I and II we encountered numerous links between order theory and
topology. For the following application of the present duality theory to locally
compact spaces we refer back to the I-1.24 and II-1.20–II-1.24. In particular
recall that the partial order we consider on the set Q(X ) of compact saturated
subset is ⊇. The first two parts of the Hofmann–Mislove Theorem II-1.20,
II-1.24, Corollary II-1.22, and the Duality Theorem of Continuous Semilattices
IV-2.16 above yield immediately

Theorem IV-2.18. (Hofmann–Mislove Theorem III) For a locally compact
sober space X the topology O(X ) and the semilattice Q(X ) of compact satu-
rated subsets of X are Lawson dual continuous semilattices. �

In the very early Example I-1.7(5) we saw that the local compactness of a space
implies that its topology O(X ) is a continuous lattice. The spectral theory of
continuous lattices which we shall develop in the next chapter will show that
a sober space X for which O(X ) is a domain is locally compact (see V-5.6).
Theorem IV-2.18 above shows that if a sober space X is locally compact, then
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Q(X ) is a continuous semilattice, but after Example II-1.25 we know that the
converse fails in general. Thus the Lawson dual of Q(X ) may be properly
“bigger” than O(X ).

If O(X ) is a domain then by II-1.20, the dcpo OFilt(O(X )) is a domain. By
II-1.17 this implies that OFilt(L) is a domain with L = OFilt(O(X )). We recall
that O(X ) is open filter determined by Remark IV-2.12(iii) and that O(X ) is a
lattice and thus, in particular, a semilattice. Thus Theorem IV-2.13 applies with
L = O(X ) and shows that

ϕO(X ): O(X ) → OFilt(L) (†)

is an isomorphism, provided Q(X ) is a domain and for two open filters U and
V on O(X ) the relation U � V implies the existence of an open set V in V
contained in all members of U . In view of II-1.19 this means that in Q(X ) the
relation K1 � K2 holds iff K2 is contained in the interior of K1.

Proposition IV-2.19. Let X be a sober space with the property that in Q(X )
the relation K1 � K2 is equivalent to K2 ⊆ int(K2). Then Q(X ) is a continuous
semilattice if and only if X is locally compact. �

Exercises

Exercise IV-2.20. Prove the following.

(i) If S is a finite poset, then Ŝ ∼= Sop.
(ii) If S = [0, 1], then Ŝ ∼= (0, 1] ∪ {�}, where � is an adjoined largest

element.

Hint. For (ii) send t to (1 − t, 1] and � to [0, 1]. �

Exercise IV-2.21. Show that a domain S with largest element 1 has a bottom
element 0 iff 1 � 1 in Ŝ. �

Exercise IV-2.22. The way-below relation on a continuous domain is said to
be multiplicative if a � x and a � y imply that there exists z such that
a � z � x, y. Show that a continuous semilattice S with 1 is a lattice iff Ŝ has
a multiplicative way-below relation.

Hint. For open filters, F � G1,G2 iff there exists zi ∈ Gi such that F ⊆ ↑z1∩
↑z2 (by II-1.17(ii)), which implies F ⊆ ↑(z1∨z2) ⊆ G1∩G2 iff F � G1∩G2.
For the converse, it suffices by duality to assume S has a multiplicative way-
below relation and show Ŝ is a lattice. In this case F1, F2 ∈ OFilt(S) have
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least upper bound ↑{xy: x ∈ F1, y ∈ F2}, an open filter by the multiplicative
property. �

The next exercise is a corollary of the preceding two.

Exercise IV-2.23. Let S be a continuous semilattice with 1. Show that S is a
continuous lattice iff Ŝ has a multiplicative way-below relation and 1 � 1 in Ŝ.

�

Exercise IV-2.24. Let S, T be objects and f : S → T a morphism in CSEM.
Show that f has a lower adjoint iff f̂ : T̂ → Ŝ preserves the relation �. �

Exercise IV-2.25. Spell out the details of the proof of Theorem IV-2.17. �

New notes

The duality theory of this section is due to [Lawson, 1979]. The theory was
sketched in the exercises of the Compendium, but has now been upgraded to a
fuller treatment. It is one of a large class of dualities in which the dual object
arises (or can be viewed as arising) as the hom-set into the two point set equipped
with some appropriate structure. Connections of the duality with the Hofmann–
Mislove theory provide a nice link with topological ideas. The duality reappears
in another guise in Section V-1.

IV-3 Morphisms into Chains

For lattice ordered structures L the morphisms into a complete chain C play
a role which is analogous to that of characters in the theory of groups. Along
this line it is of great importance to know when the morphisms into the unit
interval I = [0, 1] separate the points. After the developments in Chapters I–III
for complete lattices we are primarily interested in INF↑-morphisms, that is,
morphisms which preserve arbitrary infs and directed sups (see I-2.10ff. and
III-1.8). For dcpos in general, we are interested in morphisms that preserve
directed sups and have a lower adjoint (IV-1.4).

The duality which we introduced in the preceding sections, notably
Theorem IV-1.10, allows us to reduce the question of surjective INF↑-
morphisms L → C with C a chain to a question on SUP0-embeddings C → L;
these latter allow by IV-1.4(3) the simpler description of being sup preserving
and respecting the relation �, since complete chains are always continuous
lattices. Therefore, we are led to consider subsets in a dcpo L which are totally
ordered with respect to the way-below relation�. We first restrict our attention
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to domains and morphisms into the unit interval I = [0, 1] with the usual order.
We then turn to more general chains. In order to maintain a framework of suit-
able generality we formulate the discussion in terms of an arbitrary auxiliary
order ≺ on L (see I-1.11). We soon will notice that the strong interpolation
property (I-1.17) plays a central role.

Proposition IV-3.1. Let L be a domain with a smallest element⊥ and let a, b
be elements of L such that a �≤ b. Then there is a function g: L → I preserving
directed sups and having a lower adjoint d: I → L such that g(a) = 1 and
g(b) = 0. In particular, g preserves also all existing infs.

Proof: We proceed along the lines of the proof of Urysohn’s Lemma in general
topology (see e.g. [Kelley, b1955], p. 115). As L is a domain and a �≤ b, there
is an element x0 � a such that x0 �≤ b. Let x1 = a. First let us define
elements x p for every p in the set of dyadic rational numbers D = {p = m/2n:
n ∈ N,m = 0, 1, . . . ,2n} in such a way that

p < q ⇒ x p � xq . (∗)

For this we represent our dyadic rationals p �= 0 in the form p = m/2n

with odd m, and we define x p recursively over n by successive interpolation.
For p = 0 and p = 1 we choose x0 and x1 as above. If the xq are already
defined for all q = m/2k with k < n and if p = m/2n is given with any odd
m < 2n , then m − 1 and m + 1 are even and xq1 and xq2 are already defined
for q1 = (m − 1)/2n and q2 = (m + 1)/2n in such a way that xq1 � xq2 .
By the interpolation property I-1.9, there is an element x p such that xq1 �
x p � xq2 .

As the elements x p form a chain in the domain L , we may define d: I → L
by d(r ) = sup{x p: p < r, p ∈ D}. Note that d(0) = ⊥. Clearly, d preserves
arbitrary sups. Hence d has an upper adjoint g: L → I defined by g(x) =
sup{r ∈ I : d(r ) ≤ x} (see Theorem O-3.4) which preserves all existing infs by
O-3.3. As d(1) ≤ x1 = a, we have g(a) = 1. For real numbers in the unit interval
with r < s one may find dyadic rationals p, q with r < p < q < s. Then
d(r ) ≤ x p ≤ xq ≤ d(s) by the definition of d and (∗), whence d(r ) � d(s).
Hence the upper adjoint g preserves directed sups by IV-1.4 and g(b) = 0, as
d(r ) �≤ b for all r > 0. �

Corollary IV-3.2. For every domain L with a least element there is an order
embedding g from L into some power I

X of the unit interval I preserving
directed sups and all infs that exist in L.
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Proof: Let X be the set of all pairs (a, b) in L×L with a �≤ b. By the preceding
proposition we can find for every (a, b) ∈ X a function ga,b: L → I preserving
directed sups and all existing infs such that ga,b(a) = 1, ga,b(b) = 0. Let
g: L → I

X be the product map x �→ (ga,b(x))(a,b)∈X . Then g preserves directed
sups and existing infs. In order to see that g is an order embedding, take a �≤ b
in L . Then (a, b) ∈ X and consequently ga,b(a) = 1 > 0 = ga,b(b), whence
g(a) �≤ g(b). �

Powers I
X of the unit interval I are also called cubes. The previous corollary

tells us that domains can be embedded into cubes order theoretically. This is
still unsatisfactory as it does not tell us which subsets of a cube are domains.
For continuous lattices and, more generally, for bounded complete domains the
situation is much better:

Theorem IV-3.3. For a poset L the following statements are equivalent:

(1) L is a continuous lattice, resp. a bounded complete domain;
(2) L is isomorphic to a subset of a cube I

X closed under directed sups and
arbitrary infs, resp. nonempty infs.

(3) L is a complete lattice and the functions g: L → I preserving directed
sups and arbitrary, resp. nonempty, infs separate the points of L.

Proof: (1) implies (2): This is a direct consequence of Corollary IV-3.2, as
in a continuous lattice, resp. bounded complete domain, all subsets, resp. all
nonempty subsets, have an inf.

(2) implies (1): As every cube I
X is a continuous lattice, a subset closed for

directed sups and arbitrary infs, resp. nonempty infs, is a continuous lattice,
resp. a bounded complete domain, by I-2.11(ii).

That (2) iff (3) is obvious. �

This theorem – which in the introduction to this book we used as a first, pre-
liminary definition of a continuous lattice – allows us to consider very concrete
representations of continuous lattices; but we should recall that the represen-
tation of a continuous lattice as a substructure of a cube in itself does not tell
us too much about its structure, although for many questions the existence of
enough CL-morphisms into I is of vital importance. The elements of CL(L , I)
play the role of characters.

We now turn to the setting of morphisms into general chains, which we
obtain through the dual embedding of the chain. We restrict our attention to
complete lattices although there is a straightforward generalization to complete
semilattices.
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Definition IV-3.4. Let L be a complete lattice. Recall from I-1.11 that a
binary relation on L which satisfies the conditions (i) a ≺ b ⇒ a ≤ b,
(ii) x ≤ a ≺ b ≤ y ⇒ x ≺ y and (iii) (∀x) 0 ≺ x has been called an auxiliary
order on L .

In analogy to I-1.13 we call an auxiliary order ≺ quasiapproximating pro-
vided that for all x ∈ L we have x = sup{y ∈ L : y ≺ x}. Note that we do not
require the set {y ∈ L : y ≺ x} to be directed as for an approximating auxiliary
relation.

A subset C ⊆ L is a strict chain (or, more accurately, a ≺-strict chain, if
specification is needed) iff x, y ∈ C implies x ≺ y or x = y or y ≺ x in L .

�

We now consider complete lattices with an auxiliary relation. All singletons
are examples of strict chains, and for each x ∈ L the set {0, x} is a strict chain
by IV-3.4(iii). The axiom of choice allows us to find a much greater variety of
strict chains, however.

Lemma IV-3.5. Let L be a complete lattice and C0 a strict chain. Then the
collection � of all strict chains C in L with C0 ⊆ C is inductive with respect
to ⊆. Consequently, every strict chain is contained in a maximal one.

Proof: It is clear that� is inductive, and so the result follows by Zorn’s Lemma.
�

We now concentrate our attention on maximal strict chains.

Lemma IV-3.6. Let C be a maximal strict chain in a complete lattice L. For
a subset X ⊆ C, set s = supL X. Then supC X exists, and

(i) supC X = min(↑s ∩ C),
(ii) if s ∈ C, then s = supC X,

(iii) if s �∈ C, then s < supC X.

Proof: We have the two cases to consider: that s ∈ C and that s �∈ C . If s ∈ C ,
then s = supC X and evidently s = min(↑s ∩ C). Now suppose that s �∈ C .
Then for any c ∈ C with c < s there is some d ∈ C with c < d < s. Since C
is strict, we have c ≺ d , whence c ≺ s by IV-3.4(ii). Since C is maximal strict,
the chain C ∪ {s} is no longer strict; after what was just said this can only be
the case if there is some c∗ ∈ C with s < c∗ but not s ≺ c∗. Suppose for a
moment that there were a d∗ ∈ C with s < d∗ < c∗. Then, since C is strict,
we could conclude that d∗ ≺ c∗ and thus s ≺ c∗ because of IV-3.4(ii), which
is not the case. But this means that c∗ = min(↑s ∩ C). �



294 IV Morphisms and Functors

Proposition IV-3.7. Every maximal strict chain in a complete lattice is a
complete chain (in its own right).

Remark. Observe that we do not and cannot claim that a maximal strict chain
is either sup closed or inf closed in L .

Proof of proposition: By IV-3.6 every subset of a maximal strict chain C has
sup in C . By O-2.2 this suffices. �

In the following study of the structure of maximal strict chains we often refer
to the strong interpolation property for ≺, which we recall for reference from
I-1.17:

x ≺ z and x �= z together imply (∃y ∈ L)(x ≺ y ≺ z and x �= y). (SI)

Proposition IV-3.8. Let C be a maximal strict chain in a complete lattice L.

(i) 0 ∈ C.
(ii) If max C ≺ 1, then 1 ≺ 1 and max C = 1.

(iii) If ≺ satisfies the strong interpolation property, then we have for x, z ∈ C

x ≺ z and x �= z together imply (∃y ∈ C)(x ≺ y ≺ z and x �= y). (SIC )

Proof: (i) For any s ∈ L one has 0 ≺ s by I-1.11(iii); thus, (i) follows from the
maximality of C . (ii) Suppose max C ≺ 1. If max C < 1, then C ∪ {1} would
be a larger strict chain, which would contradict the maximality of C . Hence,
max C = 1, and thus 1 ≺ 1.

(iii) Let x ≺ z with x �= z. If [x, z]C contains an element y �= x, z, then
x ≺ y ≺ z, since C is strict. If, however, [x, z]C = {x, z}, then we apply (SI)
to find a y ∈ L with x �= y and x ≺ y ≺ z; then C ∪ {y} is a strict chain, and
by maximality of C we conclude y ∈ C. �

We say that a strict chain C satisfies the interpolation property if it satisfies
condition (SIC ).

The trouble with maximal strict chains is that, despite their completeness
in their own right, they are not in general sup closed in L which is what we
need for a SUP0-embedding. If, for example, L is the square I

2, then the chain
([0, 1[ × {0})∪ {(1, 1)} is maximal strict but not sup closed. We therefore need
a modification procedure. The following lemmas will prove useful in showing
that the modified chains we construct have desirable properties.

Lemma IV-3.9. Let L be a complete lattice equipped with an auxiliary
order ≺. Let C be a strict chain in L which satisfies the interpolation property.
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If p, q ∈ C and p < q, then there exists a y ∈ L such that p < y ≺ q and
y = supL{x ∈ C : x ≺ y}.

Proof: Since C is strict, we have p ≺ q. By (SIC ) there exists w ∈ C such
that p ≺ w ≺ q and p �= w. Again by (SIC ) there exists x1 ∈ C such that
p ≺ x1 ≺ w and p �= x1. Inductively choose xn ∈ C such that xn−1 ≺ xn ≺ w.
Let y = supL{xn}. Then xn ≺ xn+1 ≤ y implies supL{x ∈ C : x ≺ y} ≥
supL{xn} = y. Finally p < x1 ≤ y ≤ w ≺ q, that is p < y ≺ q. �

We call a chain C ⊆ L sup closed if X ⊆ C implies supL X ∈ C .

Lemma IV-3.10. For a sup closed strict chain C in a complete lattice L with
an auxiliary order ≺ the following statements are equivalent:

(1) C satisfies the interpolation property (SIC );
(2) c = supL{x ∈ C : x ≺ c}, for all c ∈ C.

Proof: (1) implies (2): Let c ∈ C and let d = supL{x ∈ C : x ≺ c}. Then
d ∈ C since C is sup closed. If d �= c, then d < c. Since C is strict, we have
d ≺ c. By (SIC ) there exists y ∈ C such that d < y ≺ c. This contradicts the
definition of d .

(2) implies (1): If x ≺ z in C and x �= z and z �≺ z, then from z = supL{y ∈
C : y ≺ z} we can find a y ∈ C such that x < y ≺ z. Since C is strict, we
conclude x ≺ y. �

The next proposition involves an important construction which allows one to
obtain sup closed chains from given chains.

Proposition IV-3.11. (Chain Modification Lemma) Let C be a strict chain
in a complete lattice L equipped with an auxiliary order≺. Define D = D(C) by

y ∈ D iff y = supL{x ∈ C : x ≺ y}.

(i) D is a strict chain which is sup closed in L.
(ii) If C satisfies the interpolation property, then D does also (and hence the

equivalent condition (2) of IV-3.10).
(iii) If C satisfies the interpolation property, then a, b ∈ C and a < b imply

that there exists a d ∈ D such that a < d ≺ b.

Proof: (i) Let us first show that D is a strict chain. For this it suffices to show
that if a, b ∈ D and a �≤ b, then b ≺ a. Since a = supL{x ∈ C : x ≺ a},
there exists x ∈ C such that x ≺ a and x �≤ b. If y ∈ C and y ≺ b then y ≺ x
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(since C is a strict chain and x ≤ y ≺ b is impossible). As y was arbitrary, we
conclude from b ∈ D that b ≤ x ≺ a. Thus b ≺ a. The verification that D is
sup closed in L is routine (the sup of sups is a sup).

(ii) Now suppose C satisfies (SIC ). Let p = supL{b ∈ D : b ≺ d}, where
d ∈ D. We show the assumption p < d leads to a contradiction. If p < d,
then for some c ∈ C we have c ≺ d and c �≤ p. If c ≺ c, then c = supL{x ∈
C : x ≺ c}. Hence c ∈ D, and thus c ≤ p, which is impossible. If c �≺ c, then
c < d. Since d ∈ D, we have c < c∗ ≺ d for some c∗ ∈ C . By Lemma IV-3.9
there exists y ∈ L such that c < y ≺ c∗ such that y ∈ D. Then c < y ≤ p, a
contradiction. Hence p = d.

(iii) The last assertion follows from IV-3.9. �

For most purposes one can take maximal strict chains and modify them as
in IV-3.11 to obtain strict and sup closed chains. One may, however, actually
obtain maximal strict chains which are sup closed by a little additional work.
We take a brief detour to present this construction. The next example shows
that if a maximal strict chain is modified as in IV-3.11, it no longer need be
maximal strict.

Example IV-3.12. We consider the chain T = {0, 1
2 ,

2
3 , . . . ,

n−1
n , . . . ,1} and

the chain 3 = {0, 1, 2} in their natural orders. On the set S = T ×3 we consider
the binary relation ≤ given by (t, n) ≤ (t∗, n∗) iff (n, n∗) = (0, 2) or (t ≤ t∗

and n ≤ n∗).

Then it is verified straightforwardly that ≤ is the partial order of a continuous
lattice. The relations (1, 0) � (1, 1) and (1, 1) � (1, 2) fail, but (1, 0) � (1, 2)
holds. Consider the strict chain C = ((T \{1}) × {0}) ∪ {(1, 1)}; then C is
maximal strict and D(C) = T × {0}, but D(C) ∪ {(1, 2)} is a strict chain;
whence, D(C) is not maximal. �



IV-3 Morphisms into Chains 297

Lemma IV-3.13. Let L be a complete lattice and C0 a chain satisfying the
following properties

(a) C0 is strict;
(b) c = supL{x ∈ C0 : x ≺ c} for all c ∈ C0.

Then C0 is contained in a chain which is maximal with respect to (a) and (b),
and every such chain is sup closed and satisfies the interpolation property (SIC ).

Proof: We consider the collectionLof all chains C containing C0 and satisfying
(a) and (b) with C in place of C0. This collection is inductive with respect to
⊆; indeed let {C j : j ∈ J } be a tower in L and C its union. Then c ∈ C implies
c ∈ C j for some j , and thus

c = supL{x ∈ C j : x ≺ c} ≤ supL{x ∈ C : x ≺ c} ≤ c;

that C is strict was shown in the proof of IV-3.5. Hence by Zorn’s Lemma there
are maximal members in L. Let now C be one of them; we claim that C is sup
closed in L . Assume not. Then there is a subset X ⊆ C such that if t = supL X ,
then t �∈ C . Since C contains 0 (by maximality), X �= Ø.

We claim that C ∪ {t} satisfies (a) and (b). If c ∈ C and c < t , then there is
an x ∈ X with c < x . Since C is strict, c ≺ x , and thus c ≺ t . If t < c, then
since C ∪{t} is a chain and since c = supL{y ∈ C : y ≺ c}, we have t < y ≺ c
for some y ∈ C . Hence t ≺ c. Therefore C ∪ {t} is a strict chain. We note that
x ∈ X implies the existence of some x∗ ∈ X with x < x∗ since t �∈ X . As
x ≺ x∗, because of strictness of C , we observe

X ⊆ {x ∈ C : x ≺ t} ⊆ {x ∈ C : x ≺ t} ∩ (C ∪ {t}).
Hence

t = supL X ≤ supL ({x ∈ C : x ≺ t} ∩ (C ∪ {t})) ≤ t.

Hence, C ∪ {t} also satisfies (b) in place of C0. But C was maximal relative to
(a) and (b). Thus t ∈ C . This contradiction establishes the claim by IV-3.10.

�

Lemma IV-3.14. Let L be a complete lattice with an auxiliary order ≺ satis-
fying (SI) and C a chain which is maximal with respect to IV-3.13(a), (b). Then
C is maximal strict.

Proof: Suppose not. Then by IV-3.5 there is a maximal strict chain M con-
taining C with y ∈ M\C . Let t = supL (↓y ∩ C). By IV-3.10 we have t ∈ C .
Since M is a strict chain, t �= y implies t ≺ y. By IV-3.8(iii) M satisfies the
interpolation property.
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We apply the Chain Modification Lemma IV-3.11 to M to obtain D = D(M).
Since C ⊆ M and C satisfies IV-3.13(b), we conclude C ⊆ D. By IV-3.11, D
is a strict chain satisfying IV-3.13(b). The maximality of C implies C = D.
Again by IV-3.11 there exists d ∈ D such that t < d ≺ y. Thus d ∈ ↓y ∩ D =
↓y ∩ C , and so d ≤ t by definition of t , a contradiction. �

Thus we know that if there are strict chains with IV-3.13(b) at all, then there
are maximal strict chains which are sup closed. This is where the construction
D(C) for maximal strict chains C comes in. In any case, we have the following
result.

Theorem IV-3.15. Let L be a complete lattice equipped with an auxiliary
relation ≺ satisfying (SI). If x �= 0 in L, then there is a maximal ≺-strict chain
M which is sup closed in L and contains an element m �= 0 with m ≤ x.

Proof: Step 1: C1 = {0, x} is a strict chain by IV-3.4(iii).
Step 2: C1 is contained in a maximal strict chain C2 by IV-3.5.
Step 3: Apply the Chain Modification Lemma IV-3.11 to the chain C2 to

obtain C3 = D(C2). By IV-3.11, C3 is a sup closed strict chain satisfying
the interpolation property and condition IV-3.13(b) (since C2 satisfies it by
IV-3.8(iii)).

Step 4: By IV-3.13, the chain C3 is contained in a strict chain C4 which is
maximal with respect to (a) and (b) of IV-3.13, and by IV-3.13, C4 is sup closed.
By IV-3.14, the chain C4 is maximal strict.

We notice that in Step 3 we have 0 < d ≺ x for some d ∈ C3 by IV-3.11.
Thus the proof is complete if we set M = C4 and m = d . �

For some additional information we need sharper hypotheses:

Proposition IV-3.16. Assume the hypotheses of Theorem IV-3.15 and suppose
that y is an arbitrary element of L for which there is a u ≺ x with u �≤ y. Then
the chain M of IV-3.15 can be found so that, in addition, m �≤ y.

Proof: We only modify Step 1 by setting C1 = {0, u, x}, and we proceed for
the remainder as in the proof of Theorem IV-3.15. If u < x , then again by
IV-3.11 the d chosen in the proof of IV-3.15 can be picked larger than u. If
u = x , then we have x ∈ C3 and, hence, we choose m = x . �

Corollary IV-3.17. Let L be a complete lattice and ≺ an auxiliary relation
which satisfies the strong interpolation property and which is quasiapproximat-
ing (IV-3.4). Then for two elements with x �≤ y there is a sup closed (maximal)
strict chain M with an element m satisfying y �≥ m ≤ x.
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Proof: Immediate from IV-3.16. �

The principal application of these results concerns the way-below relation.

Lemma IV-3.18. Let L be a complete lattice and C a sup closed, �-strict
chain satisfying (SIC ). Then g = (x �→ max(↓x ∩ C)): L → C is an INF↑-
morphism from L onto the complete chain C. If m ∈ C is such that y �≥ m ≤ x,
then g(y) < m ≤ g(x).

Proof: Since C is sup closed and �-strict, then the embedding d: C → L is
a SUP0-map (see IV-1.4 and IV-1.9 and note that �L induces �C by (SIC )).
Hence its upper adjoint g is an INF↑-map by IV-1.10. The remainder follows
from the definition of g. �

Theorem IV-3.19. Let L be a complete lattice in which the way-below
relation � has the strong interpolation property. If 0 �= x ∈ L, then there
is an INF↑-quotient-map g: L → M onto a complete chain M such that

(i) g(x) �= 0,

(ii) for every factorization L
h→ C

f→ M of g in INF↑ with C a chain and h
surjective, the map f is an isomorphism.

Remark. We could say more shortly in place of (ii) that g is a maximal chain
quotient.

Proof of theorem: By Theorem IV-3.15 we find a sup closed maximal strict
chain M and an m ∈ M with 0 �= m ≤ x . Then g = (s �→ max(↓s ∩ M)):
L → M is the desired morphism by IV-3.18. The remainder follows from the
maximality of M via the duality IV-1.10. �

Theorem IV-3.19 gives an important characterization of continuous lattices:

Theorem IV-3.20. For a complete lattice L, the following conditions are
equivalent:

(1) L is a continuous lattice;
(2) there is an INF↑-embedding of L into a product of complete chains.

Proof: (2) implies (1): I-1.7(2), I-2.11(ii).
(1) implies (2): L is continuous iff � is approximating (I-1.6). Then, by

IV-3.17 and IV-3.18, the INF↑-quotients from L onto chains separate the points.
The usual method for forming an embedding now applies. �

We round this topic off by observing that, for a complete chain, the CL-
morphisms into the unit interval I = [0, 1] separate the points.



300 IV Morphisms and Functors

Proposition IV-3.21. Every chain allows an embedding into a cube (that is,
a lattice I

X ) which preserves all existing sups and infs.

Proof: Let C be the given chain. We proceed in steps in order to show that the
maps C → I preserving arbitrary infs and sups separate the points of C .

Step 1: Every chain allows an embedding into a complete chain which pre-
serves infs and sups. (This is, of course, well known even for lattices; let us
briefly indicate a proof for the special case: We let C ⊆ Id C for a chain C be
the set of all ideals J such that J has a maximum only if c = max J has a
successor c∗ in C . Then define j : C → C by j(x) = ↓x\{x}. Show that C is
closed under arbitrary unions, hence is a complete chain. Clearly j preserves
order. Now let X ⊆ C and set c = inf X, d = supX (if they exist). If c ∈ X ,
then j(c) = min j(X ) and if d ∈ X then j(d) = max j(X ). Thus assume that
c �∈ X, d �∈ X . Show that ↓X ∈ C and ↓X = ⋃{↓x\{x}: x ∈ X} which will
show that j(d) = sup j(X ). Show that

⋂
j(X ) = ↓inf X = ↓c �∈ C (if c �∈ X ),

whence inf j(X ) = ↓c\{c} = j(c).)
Step 2: Assume from now on that C is complete and that b < a in C . By

IV-3.1 there is a map g: C → I with g(a) = 1 and g(b) = 0 and which preserves
all infs and all directed sups. As all nonempty subsets of a chain are directed,
g preserves in fact all sups. (Of course, Step 2 can be proved directly without
using IV-3.1, but by a method similar to the one used in IV-3.1.) �

Notice that IV-3.21 says that the complete lattice homomorphisms of any chain
into I separate the points. Together with IV-3.17 this gives a second proof for
Theorem IV-3.3.

Let us remark also that Theorem IV-3.3 can be sharpened in one direction.

Proposition IV-3.22. Let L be a complete lattice in which � satisfies the
strong interpolation property. Suppose that x �≤ y in L. Then the following
statements are equivalent.

(1) There is a map g ∈ INF↑(L , I) with f (y) < f (x).
(2) There is a u ∈ L with u � x and u �≤ y.

Proof: (1) implies (2): Let d: I → L be the lower adjoint of g. Then let
v = (g(x) + g(y))/2, and u = d(v). Now v < g(x) implies v � g(x) by
I-1.3(1); whence, u = d(v) � d(g(x)) (by IV-1.4(3)) ≤ x (by O-3.6). If we
had u ≤ y, then v ≤ g(d(v)) (by O-3.6) = g(u) ≤ g(y), a contradiction. Thus
u �≤ y.

(2) implies (1): By IV-3.17 and IV-3.18 we have an INF↑-morphism onto a
complete chain separating y and x , then IV-3.21 proves (1). �
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Exercises

Exercise IV-3.23. Let L be a complete lattice, ≺ an auxiliary relation. Let ≺•
be the auxiliary relation satisfying the strong interpolation property which is
derived from≺ according to I-1.28. If x �= 0 in L , show that there is a maximal
≺•-strict chain C which is sup closed in L and contains an element m �= 0
with m ≤ x . �

Problem. Discuss the properties of C with respect to the auxiliary order≺. �

Exercise IV-3.24. Let L be a complete lattice. We recall that for an auxiliary
order≺ on L (see I-1.11 ff.) we denote by≺• according to I-1.28 the associated
auxiliary relation with the strong interpolation property.

Suppose now that the auxiliary relation satisfies the additional condition

(iv) x ≺ z and y ≺ z together imply x ∨ y ≺ z.

Prove the following assertions:
The lattice L with the relation≺• is an abstract basis in the sense of III-4.16a.

By III-4.18 the set RId≺•L of rounded ideals of L is a continuous latttice.
The image L ′ of the sup map (I �→ sup I ): RId≺•L → L is the image of the

Scott-continuous kernel operator k = (x �→ sup{y ∈ L : y ≺• x}) : L → L .
In the special case ≺ = �, the sup map Id�•L → L is injective and L ′

is a continuous lattice. If f : L → M is any INF↑-morphism into a continuous
lattice, then f = ( f | L ′)k.

Hint. The first statements are clear. Consider≺=�: Show {x : x �•supI } = I
for I ∈ RId�•L , which gives injectivity of the sup map. Then L ′ is a continuous
lattice. If f is given, consider the lower adjoint d: M → L and use IV-1.4 to
show that d factors through L ′. �

Note that this exercise gives an explicit construction of a left reflection of the
category INF↑ into CL with front adjunction k: L → L ′.

In the following we discuss some results concerning the lattices of kernel
and closure operators. We recall from O-3.13 and the subsequent Remark that
the lattice of all closure operators of a complete lattice is isomorphic to the
opposite of the lattice of all inf closed subsets, and from I-2.12 that in the case
of a continuous lattice the lattice of all Scott-continuous closure operators is
isomorphic to the opposite of the lattice of all subalgebras.

Exercise IV-3.25. For any lattice L let Ker L (resp., Clos L) denote the poset
of all kernel (resp., closure) operators of L . If L is complete, we have two
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functions C, N : (L → L) → (L → L) (cf. I-2.21) given by

C( f )(x) = inf(↑x ∩ {y: f (y) ≤ y}) and
N ( f )(x) = sup(↓x ∩ {y: f (y) ≥ y}).

Prove the following:

(i) C is a closure operator and N is a kernel operator;
(ii) im C = Clos L and im N = Ker L;

(iii) C( f ) = min{c ∈ Clos L : f ≤ c} and N ( f ) = max{k ∈ Ker L : k ≤ f };
(iv) Clos L is inf closed and Ker L is sup closed (O-3.12);
(v) Clos L is closed under directed sups and Ker L under filtered infs;

(vi) if L is a continuous lattice, then Clos L is a continuous lattice. �

Exercise IV-3.26. For a complete lattice L , let ker L ⊆ Ker L be the poset
of Scott-continuous kernel operators and clos L ⊆ Clos L the poset of Scott-
continuous closure operators. Let L be a continuous lattice. Prove the following.

(i) clos L is a continuous lattice.
(ii) The following statements are equivalent:

(1) ker L is a continuous lattice;
(2) ker L is an algebraic lattice;
(3) ker L is an algebraic lattice all of whose CL-quotients are algebraic;
(4) L is an algebraic lattice all of whose CL-quotients are algebraic;
(5) L is an algebraic lattice and K (L) contains no order dense chains.

Hint. (i) We know that �L is a compact semilattice with small semilattices
(III-2.15). If X and Y are subalgebras (that is, Lawson closed subsemilattices:
see III-1.12) then so is XY , and if S is the semilattice of all subalgebras with
respect to (X, Y ) �→ XY , then the partial order of this semilattice is reverse
containment, and thus S ∼= clos L by I-2.12. It suffices therefore to show that S is
a compact topological semilattice with small semilattices, and that the topology
induced on S from the standard topology on the set of compact subsets of the
compact space �L agrees with the Lawson topology. (See VI-3.4.)

(ii) For a proof we refer to [Hofmann and Mislove, 1977]. �

Exercise IV-3.27. Let L be a complete lattice and cong−L the lattice of all
congruences on L which are subalgebras of L× L in the sense of I-2.10, I-2.14,
I-2.16. Show that (ker L)op ∼= cong−L .

Hint. See I-2.16. �

As a consequence of IV-3.27, the results of IV-3.24(ii) provide information on
the lattice of closed congruences on a continuous lattice.
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Exercise IV-3.28. Let L be a continuous lattice. Show that the poset ker L of
Scott-continuous kernel operators (see IV-3.26, IV-3.27) is a complete lattice
on which the way-below relation has the strong interpolation property.

Hint. We refer to [Hofmann and Mislove, 1977]. �

Exercise IV-3.29. Prove the following.

(i) Let L be a continuous lattice. If R is a congruence of L with more than
one class, then there is a surjective map f : cong−L → C from the lattice
of closed congruences on L onto a complete chain C such that f (R) =
min C < max C = f (L × L) and that f preserves infs of filtered sets and
arbitrary sups.

(ii) There is a morphism cong−L → I
X preserving arbitrary sups and filtered

infs into a cube such that the only element mapped to the top is the
congruence maximal L × L .

Hint. Apply IV-3.28 and Proposition IV-3.22. �

Exercise IV-3.30. Use Theorem IV-3.3 to give a new proof of the fact that
every continuous lattice carries a compact Hausdorff topology such that the
inf operation is jointly continuous and that every point has a basis of open
semilattice neighborhoods. �

Exercise IV-3.31. Let L be a complete lattice and define x≪y iff whenever
y ≤ sup X then x ≤ x∗ for some x∗ ∈ X . (Note that for M = 2X in I-2.25 we
have ≪ = #.) Prove the following:

(i) ≪ is an auxiliary order;
(ii) x ≪ y implies x � y;

(iii) the relation ≪ is quasiapproximating if L is completely distributive;
(iv) under these circumstances, ≪ satisfies the interpolation property. �

If ≪ is quasiapproximating, then the developments of this section apply and
show the existence of maximal ≪-strict chains according to Theorem IV-3.15
and Corollary IV-IV-3.18 applies with ≪ in place of � and yields a mor-
phism g: L → C in INF ∩ SUP. This allows us to deduce a parallel theorem
to IV-3.3:

Exercise IV-3.32. For a poset L show that the following statements are
equivalent:

(1) L is a completely distributive lattice;
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(2) L is isomorphic to a subset of some cube (that is, a lattice I
X ) which is

closed under arbitrary infs and arbitrary sups;
(3) L is a complete lattice and the functions f : L → I preserving arbitrary

sups and infs separate the points of L .

Hint. This theorem is due to [Raney, 1952] and was reported in Chapter I
following I-3.16. �

Old notes

This section contains two constructions of morphisms into chains, a direct
one based on techniques similar to those used to prove Urysohn’s Lemma,
and a longer one using internal strict chains. The general idea of constructing
morphisms into chains by using (maximal) complete strict chains relative to
suitable auxiliary relations dates back some forty years; forerunners are to be
found in Raney’s classical paper on completely distributive lattices [Raney,
1952], and the closest to what we do here is Bruns’ treatment of this technique
[Bruns, 1961]. However, neither of these papers exactly applies to the situation
of continuous lattices which we cover here. In this context a first indication
was given by [Hofmann and Stralka, 1976], but the argument was found to
contain a gap [scs 4] which was patched by Scott; a fairly complete elaboration
of the techniques presented here was given by Hofmann [scs 5]; supplements
were provided by Carruth [scs 6; scs 7]. Some new results appearing in the
Compendium included Example IV-3.12 and the construction of maximal strict
chains which are sup closed (Theorem IV-3.15).

Theorem IV-3.3 is a core result of the entire theory of continuous lattices.
In a certain form, this theorem is due to Lawson, who showed in [Lawson,
1969] that a compact Hausdorff topological semilattice has enough continuous
semilattice homomorphisms into the interval to separate the points if and only if
it has small semilattices. Theorem III-1.8, Theorem III-2.15, and Theorem VI-
3.4 below show that Lawson’s result is equivalent to IV-3.3. The construction
of the left reection INF↑ → CL in IV-3.24 was first noted by Gierz, Hofmann,
Keimel and Mislove [scs 12]. The results in IV-3.26 are from [Hofmann and
Mislove, 1977]; the equivalence of (4) and (5) in IV-3.26(ii) was proved in
[Hofmann et al., 1973]. The result in IV-3.29 appeared first in the Compendium.
Exercise IV-3.31 retrieves the studies of [Raney, 1952], [Bruns, 1961], [Papert,
1959].

We remark that the methods to construct maximal strict chains require the
interpolation property in its strong form (SI) (see IV-3.8), and this is the only
place where the interpolation property (INT) (see I-1.17) is not sufficient.
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IV-4 Projective Limits

One of the original motivations for considering continuous lattices has much to
do with the construction of continuous lattices L which are naturally isomorphic
to their own function spaces [L → L] (see II-2.6); indeed, such lattices provide
set-theoretical models for the lambda-calculus of Church and Curry. In the
next section we discuss the general principle underlying the construction of
these lattices; in the present section, however, we prepare for this discussion by
providing the main ingredients.

First we present a thorough investigation of projective limits in the category
of complete lattices and maps preserving arbitrary infs and directed sups; in
fact, the whole theory can be carried through in the category DCPOG of dcpos
and Scott-continuous upper adjoints. It turns out that projective limits in the
categories at hand have many features which are not at all apparent from purely
categorical considerations.

In a review of projective limits it is just as easy and efficient to recall the
concept of a limit in general; in fact, the notation is in many ways simpler
if we adopt the category-theoretical conventions from the start. In what fol-
lows a small category is one whose class of morphisms (and objects) is a
set. In general, we regard categories like CL as forming a proper class, but –
as is usually the convention – the hom-sets CL(S, T ) are sets and not proper
classes.

Definition IV-4.1. Let C be an arbitrary category. A diagram in C is simply
a functor D: I → C from a small category I .

To each object L of C we can associate a functor |L|: I → C which takes
any object i of I to the fixed object L of C and any arrow i → j to the identity
map of L . This is merely a device to introduce in simple terms the concept of
a cone over a diagram D: I → C with vertex L . Such a cone is by definition a
natural transformation g: |L| → D. Explicitly, this means that for every object
i of I we have a C-morphism gi : L → D(i) such that for any arrow a: i → j
in I the diagram

commutes.
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A cone g: |L| → D over a diagram D is called a limit cone provided it has
the following universal property: whenever a cone h: |H | → D over the same
diagram D is given, then there is a unique C-morphism h∗: H → L such that
g|h∗| = h, where |h∗|: |H | → |L| is the constant natural transformation with
|h∗|i = h∗: H → L for all objects i of I. In explicit terms, this means that for
each object i of I the diagram

commutes.
The vertex L of a limit cone of a diagram D is called the limit of D and is

denoted by lim D, and the natural transformation g: | lim D| → D is called the
limit natural transformation. In the same vein, the maps gi : lim D → D(i) are
called the limit maps. �

Limits – if they exist – are unique up to an isomorphism. Our interest here is in a
special kind of limit, called a projective limit, but before we make its definition
precise we record some special limits to exemplify the concept. Suppose that
I is an arbitrary set. Then we may consider I as a category, whose objects
are the elements of I and whose only maps are the identity maps of these
objects. (These morphisms have to be there by the definition of a category, and
we allow no others. Such categories are called discrete categories.) A diagram
D: I → C in a category C is then nothing but a family of objects {D(i): i ∈ I } –
indeed each family of objects indexed by a set can be described as a diagram
in this fashion. If this diagram has a limit, it is called the product of the family,
and is written

∏
i∈I D(i). The limit maps π j :

∏
i∈I D(i) → D( j) are called

projections.
Another simple type of limit is the equalizer of a pair of maps f, g: L → M

in C . The equalizer is an object E in C together with a unique map e: E → L
such that f e = ge and that for any morphism h: H → L with f h = gh there
is a unique map h∗: H → E with h = eh∗. It should be clear how this fits into
the general scheme of limits: let I be the category
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(plus the identity maps of 1 and 2), and let D: I → C be the diagram given by
D(1) = L , D(2) = M, D(a) = f and D(b) = g. Then lim D = E , and the
limit maps are g1 = e, g2 = f e = ge.

Not only are products and equalizers good examples of limits, they suffice for
the construction of arbitrary limits as Freyd has shown (see, e.g., [Mac Lane,
b1971], p. 109). Indeed, it follows that in a category every diagram has a limit
if every family has a product and every pair of maps with the same domain and
codomain has an equalizer. Such categories are called complete.

Many of our categories such as DCPO, INF, SUP, CL, and AL are complete,
since the cartesian products are products in the sense of limits and the equalizer
of two maps f, g: L → M is just the subalgebra E = {x ∈ L : f (x) = g(x)}
with e: E → L the inclusion morphism. (In the parlance of category theory,
the forgetful functor from these categories into the category SET of all sets and
functions preserves and creates products and equalizers (hence limits). See,
e.g., [Mac Lane, b1971], p. 108.) But some of our categories like the category
DOM of domains and Scott-continuous maps do not have equalizers.

Now we introduce the concept of a projective limit:

Definition IV-4.2. Let I be a partially ordered set. We may consider I as a
small category in the following fashion: the elements of I are the objects, and
for two objects i and j there is one and only one arrow i → j whenever i ≤ j
(see remarks following O-3.1).

A projective system in a category C is a diagram D: I op → C whose domain
is a poset I which is, in addition, directed. The limit, lim D, of a projective
system is called a projective limit, and the limit cone over a projective system
is called a projective limit cone. �

Let us take stock of what a projective system is in terms of objects and maps.
It is a family of objects D( j) indexed by the elements j of a directed set I , and
a system of maps gi j : D( j) → D(i) for every pair i, j of elements in I with
i ≤ j such that the following relations are satisfied for all i ≤ j ≤ k in I :

(i) gii = 1D(i);
(ii) gi j g jk = gik .

If the system has a limit, lim D, then there are limit maps gi : lim D → Di such
that, for all j ≤ k in I ,

(iii) g jk gk = g j .

The functorial definition of a projective system automatically takes care of all
these conditions.
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As we have remarked, the category DCPO of dcpos and Scott-continuous
functions is complete. Hence it has projective limits. Let us indicate a concrete
representation of projective limits in this category:

Proposition IV-4.3. Let D be a projective system of dcpos Li over a directed
set I with Scott-continuous functions gi j : L j → Li for i ≤ j as above. Then
the projective limit is given by

lim D = L =
{

(xi )i∈I ∈
∏

i∈I

Li : gi j (x j ) = xi whenever i ≤ j in I

}

;

and the restrictions of the canonical projections as limit maps are given by

g j : lim D → L j , (xi )i∈I �→ x j .

Proof: As the maps gi j preserve directed sups, the set L is closed in
∏

i∈I Li

for directed sups and hence is a dcpo. The maps g j are the restrictions to L of
the canonical projections from the product onto its factors and hence they are
Scott-continuous. Whenever j ≤ k, then g jk(gk((xi )i∈J )) = g jk(xk) = x j =
g j ((xi )i∈J ) by the defining condition on the elements of L , whence g jk gk = g j .
Thus, we have a cone over D.

Now let hi : S → Li , i ∈ I , be any cone of Scott-continuous functions over
our projective system D. Then g jkhk = h j , whenever j ≤ k. Hence, for every
s ∈ S, the family (hi (s))i∈I is an element of L and we may define a Scott-
continuous function h: S → L by h(s) = (hi (s))i∈I which has the property that
g j (h(s)) = h j (s), whence g j h = h j for every j ∈ I . Moreover, h is the unique
function from S to L with this latter property. This proves the universality.

�

Just as in the theory of ordered sets, most of the elementary concepts in category
theory have a dual (see O-1.7) or an opposite. The opposite category Cop is
obtained from a category by reversal of arrows; how this is done formally is
explained in any source on category theory, e.g., in [Mac Lane, b1971], p. 33.
The introduction of dual concepts is then simple: if any concept is generally
introduced, it can be considered in the opposite category and interpreted in the
original category; this will give the “co-concept”. Example: a co-cone under a
diagram D: I → C in the category C is a natural transformation g: D → |L|,
i.e., a system of maps gi : Di → L with the commuting relations dual to those
of the cone. The dual of a limit cone is the colimit cone; its covertex is called a
colimit of the system.

Sometimes, for reasons of historical priority, variations to this nomenclature
exist. Thus, a co-projective system is called a direct system, a co-projective limit
is called a direct limit. The direct limit of a direct system D will nevertheless be
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written colim D. The reader who is not already familiar with the practice of dual-
ization should give the explicit definitions of these dual concepts as an exercise.

The formal dualization by reversal of arrows is a convenient routine – but it
may not always have much concrete significance in a given category. However,
we saw in the discussions of the first section of this chapter that the category
INF of complete lattices with inf preserving maps was equivalent to the opposite
category SUPop of the category SUP of all complete lattices with sup preserving
maps; thus, SUPop in this case has a concrete meaning. More generally, the dual
of the category POSETG of all posets and monotone functions g having a lower
adjoint d = D(g) was seen to be equivalent to the category POSETD of all
posets and monotone maps d having an upper adjoint g = G(d). The functors
D and G implementing the equivalence were given by the Galois connection
(cf. IV-1.3). For the purpose of our present discussion it will be useful to have
some explicit notation.

Notation IV-4.4. If g: S → T is a map in POSETG , that is, a monotone map
having a lower adjoint D(g), we write ĝ in place of D(g) for the lower adjoint
in POSETD . �

For an inf preserving map g of complete lattices, the lower adjoint ĝ preserves
sups (see remarks following IV-1.1). Thusˆ : POSETG →POSETop

D or ˆ : INF→
SUPop is an isomorphism of categories.

It is fairly clear that for any projective system D: J op → INF↑ the limit
lim D serves at the same time as colimit of the direct system D̂: J → SUP0

given by D̂(i → j) = (gi j ) .̂ This is simply a consequence of duality. The
limit maps g j : lim D → D( j) dualize to colimit maps ĝ j : D̂( j) → colimD̂ =
limD, where we recall D̂( j) = D( j). The same applies for limits of projective
systems in DCPOG and direct systems in the dual category DCPOD . However,
a sufficiently careful analysis will reveal more than one would expect from
arrow-theoretical generalities. We now undertake such an analysis. It is worth
noting that we will not use the concrete representation of projective limits from
IV-4.3 but only their existence and uniqueness.

Theorem IV-4.5. (Limit–Colimit Coincidence) Let D: Jop → DCPO be a
projective system of dcpos and Scott-continuous bonding maps gi j : L j → Li .
Let L= lim D and let g j : L→ L j denote the limit cone in the category DCPO as
in IV-4.3. Suppose that all the maps gi j have a lower adjoint ĝi j : L j → Li , that
is, D is in fact a projective system in DCPOG. Then the following conclusions
hold:

(i) the limit maps g j : L → L j have lower adjoints ĝ j : L j → L;
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(ii) the sets {g jk ĝik : i, j ≤ k in J} for fixed i, j ∈ J and {ĝ j g j : j ∈ J} are
directed and

(A) g j ĝi = supk{g jk ĝik : i, j ≤ k in J } for all i, j ∈ J ;
(B) sup j ĝ j g j = 1L ;

(iii) given any cone {h j : H → L j : j ∈ J} over the projective system, the unique
function g: H → L in DCPO such that g j g = h j for all j is given by

(C) g = sup j ĝ j h j , a directed sup;

(iv) L = lim D is also the colimit in the category DCPO of the direct system
D̂ given by the lower adjoints ĝi j : Li → L j for i ≤ j ; the colimit cone is
given by the ĝi : Li → L; more precisely, if

is any co-cone in DCPO under the direct system D̂, then there is a unique
function d: L → S in DCPO such that di = dĝi for all i ∈ J; moreover,
the set {d j g j : j ∈ J} is directed and the function d is given by the formula

(D) d = sup j d j g j .

Proof: (i) Fix i in J and denote for any j in J the cofinal subset {k ∈ J : i, j ≤
k} by J i j . Then we have a Scott-continuous map g jk ĝik : Li → L j for k ∈ J i j .
We claim that (g jk ĝik)k∈J i j is a monotone net in [Li → L j ] (cf. O-1.2). Indeed
let k ≤ k ′ in J i j , then g jk ′ ĝik ′ = (g jkgkk ′ )(ĝkk ′ ĝik)≥ g jk ĝik , since gkk ′ ĝkk ′ ≥ 1Lk

by O-3.6. In the dcpo [Li → L j ] the directed supremum sup{g jk ĝik : k ∈ J i j}
exists, and we call it h j : Li → L j .

Suppose j ≤ j ′. We claim h j = g j j ′h j ′ . For a proof calculate as follows:

g j j ′h j ′ (x) = g j j ′ (sup{g j ′k ĝik(x): k ∈ J i j ′ })
= sup{g j j ′g j ′k ĝik(x): k ∈ J i j }
= sup{g jk ĝik(x):k ∈ J i j ′ }
= h j (x).
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(The second equation follows because g j j ′ is Scott-continuous and the net
(g j ′k ĝik(x))k∈J i j ′ is monotone.) Remark then that the infinite diagram

is a cone in DCPO over the projective system D: J op → DCPO.
Now gk : L → Lk , where k ∈ J , is a limit cone in DCPO. Then, by the

universal property of the limit in DCPO (see IV-4.1 above), there is a unique
Scott-continuous map di : Li → L with h j = g j di for all j ∈ J .

As the last step we claim di = ĝi , that is, di is the lower adjoint of gi . In
order to prove the claim we calculate

gi di = hi = sup{gik ĝik : k ∈ J ii } ≥ 1Li ,

since gik ĝik ≥ 1Li by O-3.6. On the other hand, for all j ∈ J we have

g j di gi (x) = f j gi (x)
= sup{g jk ĝik gi (x): k ∈ J i j }
= sup{g jk ĝik gik gk(x): k ∈ J i j }
≤ sup{g jk gk(x): k ∈ J i j }
= sup{g j (x): k ∈ J i j }
= g j (x),

where the inequality in the middle follows because ĝik gik ≤ 1Lk by O-3.6. Thus
g j di gi (x) ≤ g j (x) for all j ∈ J , and since the limit maps g j separate the points
of L we have di gi ≤ 1L . The two relations gi di ≥ 1Li and di gi ≤ 1L together
show that di is the lower adjoint of gi by O-3.6. Thus di = ĝi

(ii) In the proof of (i) we have seen that the set {g jk ĝik : k ∈ J i j} is directed.
Since g j ĝi = g j di = f j = sup{g jk ĝik : k ∈ J i j} by the definition of f j , we
have (A).

We fix an arbitrary j ∈ J and calculate g j (supi ĝi gi ). An argument similar
to that in the beginning of this proof shows that (ĝi gi )i∈J is directed, and so we
may assume that j ≤ i for each i we consider. Then the fact that g j preserves
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directed sups implies that

g j (supi ĝi gi ) = supi g j ĝi gi

= supi supk∈J i j g jk ĝik gi (by (A))
= sup{g jk ĝik gi : i, k ∈ J, j ≤ i ≤ k}
= sup{g ji gik ĝik gik gk : i, k ∈ J, i ≤ j ≤ k}
= sup{g ji gik gk : i, j ∈ J, i, j ≤ k}
= g j ,

where the next to last equation follows because gik ĝik gik = gik , by O-3.6.
The limit maps g j separate the points of L = limD, and so we find that
supi ĝi gi = 1L as was asserted.

(iii) Since for i ≤ j, ĝi j gi j ≥ 1Li , we have ĝi hi = ĝ j ĝi j gi j h j ≤ ĝ j h j . Thus
the family ĝi hi is directed. Furthermore,

g = sup j ĝ j g j g (by (B))
= sup j ĝ j h j .

(iv) We first note that the functions d j g j , j ∈ J , form a directed system;
indeed for i ≤ j , we have di gi = d j ĝi j gi j g j ≤ d j g j , since ĝi j gi j ≤ 1L j by
O-3.6. Define d by equation (D). We then note that d is in DCPO, because all
d j and g j are in DCPO and [L → S] is closed under directed sups.

Now let i ∈ J and x ∈ Li . Then we calculate

dĝi = sup{d j g j ĝi : j ∈ J } (by (D))
= sup j {d j sup{g jk ĝik : k ∈ J i j }} (by (A))
= sup{d j g jk ĝik : j ∈ J, k ∈ J i j } (since d j ∈ DCPO).

But j ≤ k implies d j = dk ĝ jk , and so d j g jk = dk ĝ jk g jk ≤ dk , since ĝ jk g jk ≤ 1
by O- 3.6. Therefore, d j g jk ĝik ≤ dk ĝik = di , whence dĝi ≤ di .

In order to show the other inequality, we first observe that for a fixed i and
any i ≤ k we always have di = dk ĝik ; thus we can write

di = sup{dk gkk ĝik : k ∈ J with i ≤ k}.
If we form the sup over the larger index set {( j, k) ∈ J × J : i ≤ k and j ≤ k}
we possibly enlarge the sup; whence

di (x) ≤ sup{d j g jk ĝik : j, k ∈ J with j ≤ k}
= sup j (d j sup j,i≤k g jk ĝik)
= sup j d j g j ĝi (by (A))
= dĝi (by (C)).

This shows that di = dĝi for all i ∈ J .
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In order to show the uniqueness of d, we consider a second DCPO-mapping
d∗: lim D → S with dĝi = d∗ĝi for all i . Then also dĝi gi = d∗ĝi gi for all
i ∈ J , and so d = d supi ĝi gi (by (B)) = supi d ĝi gi (since d ∈ DCPO) =
supi d∗ĝi gi = · · · = d∗ (for the same reasons). Hence, d is unique, and this
completes the proof. �

Some comments are in order. In the first place, the immediate data given in the
projective system D are the gi j and then also, by duality, the ĝi j . Hence, the
right hand side of relation (A) is expressed in terms of the given data. The limit
maps gi are available once the limit is calculated, and they separate the points of
L = lim D. Hence for any given i ∈ J , if the left hand side of (A) is known for
all j ∈ J , then ĝi is known. Therefore, (B) gives an explicit way to calculate the
maps ĝi (cf. O-3.7(3)). We know from O-3.6(2) that ĝ j g j ≤ 1L ; equation (B)
tells us that “in the limit” equality holds irrespective of the surjectivity of g j .

Secondly, the dual maps ĝi j and ĝi exist whenever a projective system in
the bigger category POSETG is given. However, in the proof we needed to
know that all gi j preserved directed sups. Moreover, in order that compositions
such as g jk ĝik or g j ĝi are meaningful at all in any of the categories which
are of interest to us, the functions g jk and g j had better be in DCPO (since
then the compositions in question are still in DCPO). It is then clear why –
in the calculations of IV-4.5 in particular – we have already left the purely
arrow-theoretical domain.

We note that the equation (B) of IV-4.5(ii) is a special case of (D), which
one obtains for d j = ĝ j and d = 1L . However, relation (B) was needed in the
proof of IV-4.5(iii) in order to show uniqueness of d. Thus it is not possible to
derive (B) as a special case from (D).

There are several consequences to Theorem IV-4.5 which elucidate the nature
of projective limits in DCPOG .

Theorem IV-4.6. Let D: J op → DCPOG be a projective system in DCPOG.
Then for a cone g j : L → L j over D in DCPO, where L j = D( j), the following
statements are equivalent:

(1) g j : L → L j is a limit cone over D in DCPO;
(2) all the g j have a lower adjoint ĝ j and ĝ j : L j → L is a colimit cone

under D̂ in DCPO;
(3) g j : L → L j is a limit cone over D in DCPOG;
(4) ĝ j : L j → L is a colimit cone under D̂ in DCPOD.

In this statement, one may replace the dual pair DCPOG–DCPOD by the dual
pair of categories INF↑–SUP0.
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Proof: (1) implies (2): This is the content of Theorem IV-4.5.
(2) implies (1): Under the hypotheses of (2), let h j : M → L j be a limit cone

over D in DCPO which exists by IV-4.0. Again by Theorem IV-4.4, the limit
maps h j have lower adjoints and M is also a colimit of the direct system D̂
with colimit maps ĥ j : L j → M . By the universal property of colimits, there is
a unique isomorphism f : M → L such that f ĥ j = ĝ j for all j . Passing to the
adjoints yields h j f −1 = g j which implies that g j : L → L j is also a limit cone
over D in DCPO.

(1) and (2) imply (3): Let h j : S → L j be any cone over D in DCPOG .
As g j : L → L j is a limit cone over D in DCPO by (1), there is a unique
Scott-continuous map h: S → L such that g j h = h j for all j . As ĝ j : L j → L
is a colimit cone under D̂ in DCPO, there is a unique Scott-continuous map
d: L → S such that dĝ j = ĥ j . We conclude that ĥ j h j = dĝ j g j h and h j ĥ j =
g j hdĝ j . As ĥ j h j ≤ 1S and h j ĥ j ≥ 1L j by O-3.6, we infer dĝ j g j h ≤ 1S and
g j hdĝ j ≥ 1L j , whence ĝ j g j hdĝ j g j ≥ ĝ j g j by multiplying the last equation
by ĝ j on the left and by g j on the right. With the help of (B) we conclude dh =
d(sup j ĝ j g j )h = sup j d ĝ j g j h ≤ 1S and hd = (sup j ĝ j g j )hd(sup j ĝ j g j ) ≥
sup j (ĝ j g j hdĝ j g j ) ≥ supĝ j g j = 1L . By O-3.6 this suffices to show that d is
the lower adjoint of h. Thus L is the limit of the projective system D in the
category DCPOG .

Conditions (3) and (4) are equivalent by the duality of the categories DCPOG

and DCPOD .
(3) implies (1): Suppose that the projective system D has a limit in the

category DC P OG . It also has a limit in the category DCPO. As (1) implies (3),
the latter is also a projective limit in DCPOG . By the uniqueness of limits, they
agree (up to isomorphism). �

Now let us suppose that we have a projective system D: J op → DCPOG , and
that we are given a morphism g: S → lim D in DCPOG . We write h j = g j g,
where g j : lim D → L j is the limit map. With the information we have, it is now
possible to characterize precisely the circumstances under which g is injective
or surjective in terms of the functions h j alone. In particular, this gives criteria
for g to be an isomorphism. This will become important when we explore when
a functor preserves projective limits.

Proposition IV-4.7. The following statements are equivalent:

(1) g is injective;
(2) ĝg = 1S;
(3) sup j ĥ j h j = 1S.



IV-4 Projective Limits 315

Proof: (1) iff (2) by O-3.7.
(2) implies (3): sup j ĥ j h j = sup j ĝĝ j h j = ĝ(sup j ĝ j h j ) (since ĝ ∈

DCPO) = ĝg (by IV-4.5(C)) = 1S by (2).
(3) implies (2): ĝg = (sup j ĥ j g j )g (by IV-4.5(D) with d j = ĥ j and d =

ĝ) = sup j ĥ j g j g = sup j ĥ j h j = 1S (by (3)). �

Proposition IV-4.8. The following statements are equivalent:

(1) g is surjective;
(2) im g j ⊆ im h j for all j ∈ J ;
(3) h j ĥ j = g j ĝ j for all j ∈ J ;
(4) h j ĥ j = sup{g jk ĝ jk : j ≤ k}.
Proof: (1) implies (2): im h j = g j g(L) = im g j if g is surjective.

(2) implies (3): Suppose that y = g j ĝ j (x) with x, y ∈ L j . Then y is in im g j ,
and thus in im h j by (2). Thus y = h j (z) for some z ∈ L , and so y = h j (z) =
h j ĥ j h j (z) (by O-3.6(3)) = h j ĥ j (y) = h j ĥ j g j ĝ j (x) = h j ĝĝ j g j ĝ j (x) (since
h j = g j g) = h j ĝĝ j (x) (by O-3.6(3) again) = h j ĥ j (x). Thus (3) is proved
since x was arbitrary.

(3) implies (1): Now, 1lim D = sup ĝ j g j (by IV-4.5(B)) = sup ĝ j g j ĝ j g j

(by O-3.6(3)) = sup ĝ j h j ĥ j g j (by (3)) = sup ĝ j g j gĝĝ j g j = gĝ, since
sup ĝ j g j = 1limD again. Thus gĝ = 1lim D which implies that g is surjective.

(3) iff (4) by IV-4.5(A). �

It is not always easy in concrete cases to decide whether the surjectivity of all
bonding maps g jk of a projective system entails the surjectivity of the limit maps
g j . The answer is affirmative if the category in question is based on compact
spaces and continuous maps. In the situation of the categories DCPOG and
INF↑, however, the situation is extremely simple.

Proposition IV-4.9. Let D be a projective system in DCPOG such that all the
bonding maps g jk of D are surjective. Then the limit maps g j : lim D → D( j)
are surjective, too. The same holds for projective systems in INF↑ and in other
full subcategories like CL, AL, etc.

Proof: If all g jk are surjective, then g jk ĝ jk = 1L j for all k ≥ j by O-3.7. But
then g j ĝ j = 1L j by IV-4.5(A). This implies that g j is surjective. �

We have discussed projective limits in a category in general and then in the
categories DCPO, DCPOG and INF↑ in particular. The category CL of con-
tinuous lattices and CL-morphisms, that is, Scott-continuous maps preserving
arbitrary infs, is a complete full subcategory of INF↑. Thus limits of projective
systems in CL are again continuous lattices and all of Theorem IV-4.6 and the
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subsequent propositions apply to the dual pair of categories CL–CLop . But the
category DOMG of domains and Scott-continuous maps having a lower adjoint
is not complete. Nevertheless it has projective limits:

Proposition IV-4.10. Let D be a projective system of domains L j , j ∈ J ,
and Scott-continuous maps gi j : L j → Li having a lower adjoint ĝi j . Form the
projective limit lim D as for dcpos with limit maps g j : lim D → L j . Then
lim D is a domain. If B j is a basis for the domain L j , then B =⋃ j ĝ j (B j ) is
a basis for lim D.

Proof: If s � x in L j , then ĝ j (s) � ĝ j (x) in lim D by IV-1.4(3). Now fix x ∈
lim D. For every index j , the set C j := �g j (x) ∩ B j = {s ∈ B j : s � g j (x)} is
directed in L j and sup C j = g j (x). By the first statement, ĝ j (s) � ĝ j g j (x) ≤ x
for all s ∈ C j . Moreover, the set G j := ĝ j (C j ) is directed in lim D. Further
G j ⊆ �x and sup G j = ĝ j g j (x).

Let j � k and s ∈ C j . As s � g j (x), we get ĝ jk(s) � ĝ jk g j (x) =
ĝ jk g jk gk(x) ≤ gk(x) again by IV-1.4(3). As gk(x) = sup Ck , there is an ele-
ment t ∈ Ck such that ĝ jk(s) ≤ t . We conclude that ĝ j (s) = ĝk ĝ jk(s) ≤ ĝk(t).
Thus for every u ∈ G j there is a v ∈ Gk with u ≤ v. This implies that
⋃

j G j is directed. By the preceding paragraph,
⋃

j G j ⊆ �x and sup
⋃

j G j =
sup j sup G j = sup j ĝ j g j (x) = x . Thus, lim D is a domain and B a basis. �

Corollary IV-4.11. Let D be a projective system of algebraic domains L j , j ∈
J , and Scott-continuous maps gi j : L j → Li having a lower adjoint ĝi j . Form
the projective limit lim D as for dcpos with limit maps g j : lim D → L j . Then
lim D is an algebraic domain. An element c ∈ lim D is compact iff c = ĝ j (k)
for some j and some compact element k ∈ L j . �

As a consequence, projective limits exist in all of the full subcategories DOMG ,
ALGDOMG , CL, AL of DCPOG . Also, a projective limit of FS-domains is an FS-
domain: Indeed let D be a projective system of FS-domains L j with bonding
maps gi j : L j → Li that have lower adjoints. For every index j , let D j denote
an approximate identity for L j consisting of finitely separating functions (see
II-2.15). On lim D we define finitely separating functions ĝ jδg j for δ ∈ D j by
means of the limit maps g j : lim D → L j and their adjoints. If we collect these
functions for all j , we obtain an approximate identity D on lim D.

Bifinite domains (see II-2.21) have a nice characterization by means of pro-
jective limits, which by the way explains the term bifinite:

Proposition IV-4.12. A dcpo is a bifinite domain iff it is the limit of a pro-
jective system D of finite posets L j with surjective upper adjoints as bonding
maps gi j : L j → Li which have a lower adjoint.
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Proof: Suppose first that L is bifinite. By II-2.20(3), L has an approximate
identity D of kernel operators k with finite range Lk = k(L). For kernel opera-
tors h ≤ k, the image Lh is a subset of Lk and the restriction and co-restriction
ghk = h | Lk : Lk → Lh is surjective and has as its lower adjoint the subset
embedding of Lh into Lk . Thus, we have a projective system indexed by D. We
show that L is the limit of this projective system, where the limit maps are the
co-restrictions gk : L → Lk of the kernel operators k. Indeed, let fk : S → Lk

be any cone over our projective system. Define g: S → L by g(s) = supk fk(s).
It is straightforward that g is well defined and Scott-continuous, that it satisfies
gk g = fk and that g is the only continuous map from S to L with this property.

Conversely, if D is a projective system of finite posets L j with surjective
bonding maps gi j : L j → Li which have a lower adjoint ĝi j , then the limit
maps g j : lim D → L j are surjective by IV-4.9, hence their lower adjoints
ĝ j : L j → lim D are injective. The compositions k j = ĝ j g j are kernel operators
on lim D, the image of which is isomorphic to the finite poset L j . Finally
sup j k j = sup j ĝ j ĝ j = 1lim D by IV-4.5(B). Thus, we have an approximate
identity of kernel operators k j with finite image, that is, lim D is bifinite. �

Exercises

Exercise IV-4.13. Show that projective limits of projective systems of bounded
complete domains and L-domains, respectively, with Scott-continuous upper
adjoints as bonding maps are again bounded complete domains and L-domains,
respectively. �

Exercise IV-4.14. Show that every algebraic lattice is the limit of a projective
system of finite lattices with inf preserving surjective bonding maps. �

Exercise IV-4.15. Show that the limit of a projective system of Lawson com-
pact domains with Scott-continuous upper adjoints as bonding maps is also
Lawson compact. �

Exercise IV-4.16. The full subcategories in INF↑ of continuous and alge-
braic lattices are complete subcategories. What is the situation with arithmetic
lattices? �

Old notes

The importance of projective limits for continuous lattices and their applications
was first pointed out by D.S. Scott in [Scott, 1972a], where limits of projective
systems whose index domain was the natural numbers and whose maps were
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all surjective were utilized. The results of IV-4.5 in this special case were
established in that paper; however, the treatment of arbitrary projective limits
given here first appeared in the Compendium.

IV-5 Pro-continuous and Locally Continuous Functors

We have discussed projective limits in a category in general and then in the
categories DCPOG and INF↑ in particular. Now we discuss the preservation of
projective limits by functors between categories in general, and then by self-
functors DCPOG → DCPOG in particular. The special characteristics of our
categories are responsible for the existence of several relevant functors which
do preserve projective limits – while they do not even preserve products in
general, let alone arbitrary limits. Our task is to describe manageable criteria
which allow us to test concrete functors for the preservation properties vis-à-vis
projective limits. We freely use the notation of the previous section.

Definition IV-5.1. Let F : A → B be a functor between complete categories
and let D: J → A be a diagram in A. Let g j : lim D → D( j) be the limit cone
over D in A. Then Fg j : F(lim D) → FD( j) is a cone over the diagram FD:
J → B in B. Now let h j : lim FD → FD( j) be the limit cone over the diagram
FD in B. By the universal property of the limit (IV-4.1) there is a unique map
g: F(lim D)→ lim FD such that h j g = Fg j for all j . We say that F preserves
the limit of D iff g is an isomorphism.

In general, F is said to preserve limits iff g is an isomorphism for all diagrams
D in A and we say that F preserves projective limits or simply that F is pro-
continuous iff g is an isomorphism for all projective systems D in A. �

There are numerous functors occurring in nature which preserve projective
limits but do not preserve limits. C̆ech cohomology on compact spaces with
values in the opposite category of graded modules is one of the better-known
examples, and we will see that most of the functors which interest us here fall
into the same category. We recall (cf. third paragraph following IV-4.1) that a
functor which preserves limits must preserve products and equalizers, and by
a theorem of Freyd any functor preserving products and equalizers preserves
arbitrary limits. But since many of the functors which we will discuss will not
preserve products, it will be important to have a criterion for functors preserving
projective limits.

Proposition IV-5.2. Let F : DCPOG → DCPOG be a self-functor and
let D: J op → DCPOG be a projective system in DCPOG. Denote by
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g j : lim D → D( j) the limit cone of D and by h j : lim FD → FD( j) the
limit cone of FD. Then the following statements are equivalent.

(1) F preserves the limit of D.
(2) (i) (Fg j )(Fg j )̂ = sup j (Fg jk)(Fg jk )̂ for all j ∈ J, and

(ii) sup j (Fg j )̂ (Fg j ) = 1F(lim D).

Proof: We consider the diagram

and we find ourselves in the situation discussed in Propositions IV-4.7 and
IV-4.8, which gave a characterization for the injectivity and surjectivity of g,
respectively. We recognize that condition (2)(ii) is that of injectivity and that of
(2)(i) is that of surjectivity of g. Consequently, the theorem follows from IV-4.7
and IV-4.8. �

The conditions of the preceding proposition look quite difficult to verify. They
become much nicer if F preserves adjoints, i.e. if F(ĝ j ) = (Fg j )̂ . Then
(Fg j )(Fg j )̂ = (Fg j )(Fĝ j ) = F(g j ĝ j ), similarly (Fg j )̂ (Fg j ) = F(ĝ j g j )
and (Fg jk)(Fg jk )̂ = (Fg jk)(F ĝ jk) = F(g jk ĝ jk). Thus, conditions (i) and (ii)
then can be rewritten in the following way:

(i′) F(g j ĝ j ) = sup j F(g jk ĝ jk) for all j ∈ J ;
(ii) sup j F(ĝ j g j ) = 1F(lim D).

Both of these conditions are automatically satisfied if, in addition, the functor
F preserves directed suprema in the sense that, for any directed family of
morphisms g j : L → M , the family of morphisms Fg j : FL → FM is also
directed and sup j Fg j = F(sup g j ). We then have indeed sup j F(g jk ĝ jk) =
F(sup j g jk ĝ jk) = F((g j ĝ j ) by IV-4.5(A) and sup j F(ĝ j g j ) = F(sup j ĝ j g j ) =
F(1lim D) = 1F(lim D) by IV-4.5(B).

We are now going to formulate natural conditions on a functor F so that
the additional properties just mentioned are satisfied. For this recall that in
the category DCPO of dcpos and Scott-continuous functions the hom-sets
DCPO(L , M) = [L → M] of all Scott-continuous functions g: L → M may
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be considered as dcpos under the pointwise ordering g ≤ h iff g(x) ≤ h(x)
for all x ∈ L .

Definition IV-5.3. A self-functor, or endofunctor, F : DCPO → DCPO is
called locally monotone or locally order preserving if it is order preserving on
hom-sets, that is, whenever g ≤ h in [L → M] then Fg ≤ Fh in [FL → FM].

An endofunctor F : DCPO→DCPO is called locally continuous if it is Scott-
continuous on hom-sets, that is, it is locally order preserving and whenever g j ,
j ∈ J , is a directed family in [L → M], then sup j Fg j = F(sup g j ) in
[FL → FM].

Of course, the same terminology can be used for endofunctors on any full
subcategory of DCPO. �

The significance of locally order preserving functors is that they preserve ad-
jointness, and surjectivity and injectivity of maps having an adjoint.

Lemma IV-5.4. Let F be a locally order preserving endofunctor on DCPO. If
a Scott-continuous map g in DCPO has a lower adjoint ĝ, then Fg has a lower
adjoint, too, namely (Fg)̂ = Fĝ. If, moreover, g is surjective, respectively
injective, then Fg is surjective, respectively injective, too. In particular, F
restricts to a functor DCPOG →DCPOG, and likewise to a functor DCPOD →
DCPOD, that preserves injectivity and surjectivity of maps.

Proof: For a pair g: L → M and ĝ: M → L of adjoints one has ĝg ≤
1L , 1M ≤ gĝ by O-3.6. As the functor F is locally order preserving, we infer
FĝFg = F(ĝg) ≤ F1L = 1F L and 1F M = F1M ≤ F(gĝ) = FgFĝ, and
this shows that Fĝ is the lower adjoint of Fg again by O-3.6. Moreover, g is
surjective, respectively injective, iff 1M = gĝ, respectively ĝg = 1L , by O-3.7;
from this we infer 1FM = F1M = F(gĝ) = (Fg)(Fĝ), respectively (FĝFg) =
F(ĝg) = F1L = 1FL, which implies that Fg is surjective, respectively injective,
again by O-3.7. �

We now can state a most useful result on preservation of projective limits. The
proof is contained in the discussion following Proposition IV-5.2, if one takes
into account Lemma IV-5.4.

Theorem IV-5.5. Let F be a locally continuous endofunctor on the category
DCPO. Then F preserves adjoints and restricts to an endofunctor on DCPOG

which preserves limits of projective systems and surjectivity and injectivity of
maps in DCPOG. In particular, F preserves limits of projective systems D
of dcpos L j with bonding maps gi j : L j → Li having a lower adjoint ĝi j :
Li → L j . �
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Similarly, a locally continuous endofunctor on DCPO restricts to an endofunctor
on DCPOD which preserves colimits of direct systems.

In the preceding theorem one may replace the category DCPO by any full
subcategory A. Thus, we may choose for A the category DOM of domains, the
category UPS of complete lattices, the category CONT of continuous lattices,
etc. with all Scott-continuous maps as morphisms.

It is useful to extend the terminology in the obvious way to contravari-
ant functors and to functors in several arguments. A contravariant functor F :
DCPOop → DCPO is said to be locally continuous if g �→ Fg : [L →
M] → [FM → FL] is Scott-continuous for all dcpos L and M . A bifunctor
B: DCPO × DCPO → DCPO is locally continuous if it is locally continuous
in each of its arguments. It is clear now what we mean by local continuity for a
bifunctor B: DCPOop×DCPO → DCPO which is contravariant in its first and
covariant in its second argument: for all Scott-continuous functions g: L ′ → L
and h: M → M ′, the map

(g, h) �→ B(g, h) : [L ′ → L] × [M → M ′] → [B(L , M) → B(L ′, M ′)]

is Scott-continuous in each of its arguments, which is equivalent to saying that
it is Scott-continuous in both arguments simultaneously by II-2.8.

Examples IV-5.6. The following functors and bifunctors are locally continu-
ous. (The verification of the local continuity is left to the reader as an exercise.
Compare also I-1.31.)

(i) Lifting. For any dcpo L let FL = L⊥ be the dcpo obtained from L by
adjoining a new bottom element. For a Scott-continuous function g:
L → M let Fg be defined by Fg(⊥) = ⊥ and Fg(x) = g(x) for
x ∈ L .

(ii) Disjoint sum. For two dcpos L and M let L  M be the disjoint union.
This extends in a standard way to a locally continuous functor

 : DCPO × DCPO → DCPO.

(iii) Separated sum. Lifting of the disjoint sum yields the separated sum
L + M = (L  M)⊥ which clearly can be extended to a locally
continuous bifunctor.

(iv) Product. The assignment (L , M) �→ L × M yields a locally continuous
functor

×: DCPO × DCPO → DCPO.
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(v) Function space. To dcpos L and M we may assign the function space
[L → M] and to continuous maps g: L ′ → L and h: M → M ′ the
function [g → h]: [L → M] → [L ′ → M ′] defined by ϕ �→ hϕg. We
have seen in II-2.7 that this yields a functor with mixed variance

[.→ .]: DCPOop × DCPO → DCPO:

(For the local continuity of this functor one uses that composition

(g, ϕ, h) �→ hϕg : [L ′ → L] × [L → M] × [M → M ′] → [L ′ → M ′]

is Scott-continuous by II-2.9(ii), whence (g, h) �→ (ϕ �→ hϕg) is a
Scott-continuous map [L ′ → L] × [M → M ′] → [[L → M] →
[L ′ → M ′]] by II-2.10.) �

From these examples one can obtain further locally continuous functors by com-
posing these functors. Let us specify three natural ways to obtain an endofunctor
on DCPO from a bifunctor B: DCPO×DCPO → DCPO by precomposing B
with any of the following three functors:

(a) the diagonal embedding � = (S �→ (S, S)): DCPO → DCPO × DCPO;
(b) the functor L A = (S �→ (S, A)): DCPO → DCPO × DCPO, for a fixed

dcpo A;
(c) the functor RA = (S �→ (A, S)): DCPO → DCPO × DCPO, for a fixed

dcpo A.

These three functors are clearly locally continuous. Thus, if B is locally con-
tinuous, then the three endofunctors B�: L �→ B(L , L), BLA: L �→ B(L , A)
and BRA: L �→ B(A, L) on DCPO are also locally continuous. The previous
results on the preservation of adjoints, their surjectivity and injectivity and on
the preservation of limits of projective systems with bonding maps having a
lower adjoint (Theorem IV-5.5) can be applied to all covariant endofunctors
arising from the above examples.

For contravariant functors and for bifunctors with mixed variance

B: DCPOop × DCPO → DCPO
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– as the function space functor, for example – this procedure cannot be applied
directly, and we have to introduce a slight modification. Let us begin with a
contravariant functor:

Lemma IV-5.7. Let F : DCPOop → DCPO be a locally order preserving
contravariant endofunctor. If a Scott-continuous function g: L → M has a
lower adjoint ĝ: M → L, then Fĝ: FL → FM also has a lower adjoint,
namely (Fĝ)̂ = Fg. If g is surjective or injective, then Fĝg is also surjective
or injective, respectively.

Proof: The proof is quite similar to that of Lemma IV-5.4. Indeed, as gĝ ≥ 1M

by O-3.6 and as F is a locally order preserving contravariant functor, we have
FĝFg = F(gĝ) ≥ F(1M ) = 1FM. Similarly, FgFĝ ≤ 1FL, whence (Fĝ)̂ =
Fg by O-3.6. The remaining properties are proved by replacing one of the
inequalities by an equality. �

Proposition IV-5.8. Let F : DCPOop → DCPO be a locally continuous con-
travariant endofunctor. Then g �→ Fĝ defines a covariant endofunctor F̂ :
DCPOG → DCPOG which preserves surjectivity, injectivity of maps and limits
of projective systems.

Proof: By Lemma IV-5.7, g �→ Fĝ defines indeed a covariant endofunctor on
DCPOG which preserves surjectivity and injectivity of maps. We cannot use
that the functor F̂ : DCPOG → DCPOG is locally continuous. In fact, g �→ ĝ
is order reversing rather than order preserving. It is the local continuity of F
that we have to use. We verify IV-5.2(2) with the notation from there:

(i) sup j (F̂g jk)(F̂g jk )̂ = sup j (Fĝ jk)(Fĝ jk )̂ by the definition of F̂
= sup j (Fĝ jk)(Fg jk) by Lemma IV-5.7
= sup j F(g jk ĝ jk) as F is a contravariant functor
= F(sup j g jk ĝ jk) by the local continuity of F
= F(g j ĝ j ) by IV-4.5(A)
= (Fĝ j )(Fg j ) as F is a contravariant functor
= (F̂g j )(F̂g j )̂ by the definition of F̂ .

(ii) sup j (F̂g j )(F̂g j ) = sup j (Fĝ j )̂ (Fĝ) by the definition of F̂
= sup j (Fg j )(Fĝ j ) by Lemma IV-5.7
= sup j F(ĝ j g j ) as F is a contravariant functor
= F(sup j ĝ j g j ) by the local continuity of F
= F(1) = 1 by IV-4.5(A). �

For a locally continuous functor B: DCPOop × DCPO → DCPO which is
contravariant in the first and covariant in the second argument we may combine
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the two methods for covariant and contravariant endofunctors. For a dcpo L
define FL = B(L , L) and for a map g: L → M having a lower adjoint define
Fg = B(ĝ, g). As above one then verifies that B(ĝ, g) has a lower adjoint,
namely B(g, ĝ). Thus we have defined an endofunctor F : DCPOG → DCPOG .
As above, one verifies that F satifies condition (2) in Proposition IV-5.2. The
reader may do this as an exercise. We conclude as follows.

Proposition IV-5.9. For a locally continuous functor B: DCPOop×DCPO →
DCPO define

FL = B(L , L) and Fg = B(ĝ, g) for all dcpos L and all g ∈ DCPOG .

Then F becomes a functor F : DCPOG → DCPOG preserving limits of projec-
tive systems as well as surjectivity and injectivity of maps. �

One can apply these results on the preservation of limits of projective systems
to the functors resulting from the Examples IV-5.6. Let us look at two of these
examples in more detail.

Example IV-5.10. (The function space functor) Consider the function space
functor B: DCPOop × DCPO → DCPO from Example IV-5.6(v), where
B(L , M) = [L → M] and B(g, h)(ϕ) = hϕg.

As in Proposition IV-5.9 we form the function space functor

Funct: DCPOG → DCPOG

which associates with a dcpo L the function space Funct(L) = [L → L] of
all Scott-continuous functions from L to itself. If g: S → T is a DCPOG-
morphism, that is a Scott-continuous function having a lower adjoint ĝ, then
Funct(g)(ϕ) = gϕĝ:

If A is any fixed dcpo, we form the contravariant functor [· → A]:
DCPOop → DCPO which assigns to every dcpo L the function space [L → A]
and to every Scott-continuous map g: M → L the function ϕ �→ ϕg: [L →
A] → [M → A].
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As in Lemma IV-5.7 we derive from this functor a covariant endofunctor

[? → A]: DCPOG → DCPOG

which assigns the function space [L → A] to every dcpo L and the function
ϕ �→ ϕĝ: [L → A] → [M → A]. Then Propositions IV-5.8 and IV-5.9 yield

The function space functor Funct: DCPOG → DCPOG preserves projec-
tive limits, injectivity and surjectivity of morphisms. The functor [? → A]:
DCPOG → DCPOG has the same property for any dcpo A.

An analogous statement is true for the functor [A →?]; in the exercises we
generalize this case (see IV-5.17).

In this statement the category DCPOG may be replaced by any of the cate-
gories DOMG , INF↑, CL, AL of domains, complete lattices, continuous lattices,
algebraic lattices, respectively, with Scott-continuous maps having a lower
adjoint, that is, maps preserving arbitrary infs and directed sups in the three
last cases. �

A special case of the preceding example is worth noting:

Example IV-5.11. (The Scott topology functor) The functor σ : DCPOG →
DCPOG which associates with a dcpo L its Scott topology σ (L) and with a
DCPOG-morphism g: L → M the function U �→ ĝ−1(U ) : σ (L) → σ (M)
preserves projective limits, injectivity and surjectivity of morphisms. The same
holds if one replaces the category DCPOG by any of its full subcategories like
DOMG , INF↑, CL, AL.

Proof: There is a natural isomorphism

f �→ f −1(1) : [L → 2] → σ (L)

and the map B(g, 12) corresponds to the map U �→ ĝ−1(U ) under this isomor-
phism. The result is now a special case of the second part of IV-5.10. �

Example IV-5.12. (The ideal functor) As a next example we consider the
ideal functor Id: DCPO → DCPO of IV-1.19 and IV-1.20. We recall that for a
dcpo L we let Id L be the set of ideals of L which is again a dcpo ordered by
inclusion (even an algebraic domain). And if g: L → M is Scott-continuous,
then Id g: Id L → Id M is defined by (Id g)(I ) = ↓g(I ).

The ideal functor Id: DCPO → DCPO is locally order preserving. Indeed
if f ≤ g for f, g ∈ [L → M], then f (x) ≤ g(x) for all x and, hence,
f (I ) ⊆ ↓g(I ) for every ideal I . Thus, by IV-5.4 it preserves adjoints and
induces an endofunctor on DCPOG that preserves surjectivity and injectivity
of morphisms in DCPOG .
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But the functor Id is not locally continuous. The example of L = N ∪ {∞}
and ϕn: L → L , ϕn(x) = min{x, n} shows that the ideal functor is not Scott-
continuous on [L → L]: indeed, supn ϕn = 1L but for I = L we have
supn (Id ϕn)(I ) = supn ↓n = N �= L = Id(1L )(L).

The same example shows that the ideal functor does not preserve projective
limits. Indeed, L is the projective limit of the projective sequence of finite
chains Ln = {0, 1, . . . ,n} with bonding maps ϕnm = ϕn|Lm : Lm → Ln for
n < m. The co-restrictions ϕn: L → Ln are the limit maps. All the maps ϕnm

and ϕn have lower adjoints, namely the canonical embeddings enm : Ln → L M

and en: Ln → L . But condition IV-5.2(2)(ii) is violated: for I = L we have
supn(Id ϕn )̂ (Id ϕn) (L) = supn(Idϕn )̂ (Ln) = supn Ln = N �= L = 1Id L (L),
whence supn(Id ϕn )̂ (Id ϕn) �= 1Id L . �

The discussion of these self-functors would remain somewhat incomplete with-
out some words of explanation of to what extent each of them “enlarges” the
size of an object. In speaking of the size here we make reference to the weight
of a complete lattice whose various aspects were analyzed in Section III-4. We
also recall that we introduced the concept of weight for domains only. For the
function spaces to be domains one needs additional hypotheses.

Proposition IV-5.13. If L is infinite, then:

(i) w(Funct L) = w(L) for every continuous lattice, every bounded
complete domain and every FS-domain L;

(ii) w([L → A]) = max{w(L), w(A)} for every domain L and every
continuous lattice or bounded complete domain A;

(iii) w(σ (L)) = w(L) for every domain L;
(iv) w(Id L) = card L for every domain L.

If L is finite, so are w(Funct L), w(σ (L)) and w(Id L).

Proof: Parts (i), (ii) and (iii) are consequences of III-4.10. By the Remark
following III-4.4 and I-4.10 we know w(Id L) = card(K (Id L)) = card L ,
since K (Id L) ∼= L . This proves (iv). The statement concerning the finite case
is clear. �

We note that the functors Funct and σ do not “enlarge” L , while Id does, in
general.

If L is a continuous lattice which is the projective limit of continuous lattices
L j , we need to know the weight of L in terms of the weights of the L j . This is
the place to record the relevant information.
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Proposition IV-5.14. Let D: J op → CL be a projective system of continuous
lattices or of bounded complete domains, and assume that J is infinite. Then

w(lim D) ≤ max{card J, sup{w(D( j)): j ∈ J }}.

Remark. The assumption that J be infinite is no loss of generality: if J is
finite, then k = max J exists and lim D = D(k).

Proof of proposition: First let g j : lim D → D( j) be the limit maps. Then
x �→ (g j (x)) j∈J : lim D → ∏ j∈J D( j) is a subalgebra embedding, whence
w(lim D) ≤ w(

∏
j∈J D( j)) by III-4.12(ii). But by III-4.12(i) we have

w
(∏

j∈J
D( j)
)
= max{card J, sup{w(D( j)): j ∈ J }}.

This proves the proposition. �

Remark IV-5.15. (dcpo-Enriched categories) All of the developments of
this section can be carried through if we replace the category DCPO of dcpos
and Scott-continuous functions by any full subcategory that has projective lim-
its. We have already seen such sub-categories. Another example of such a
category is the category

DCPO⊥

of dcpos having a smallest element and all Scott-continuous maps as mor-
phisms. But also some non-full subcategories will do. An good example is the
category

DCPO⊥!

of all dcpos having a smallest element and strict Scott-continuous functions as
morphisms, where the strictness of functions means that they preserve smallest
elements. The functors “lifting” and “separated sum” from Example IV-5.6
preserve strictness of maps and induce locally continuous self-functors on
DCPO⊥!. The functors “disjoint sum”, “product” and the functions space func-
tor from Example IV-5.6 do not preserve strictness of maps. One has to modify
them:

(i) Coalesced sum. For two dcpos L and M with least elements, let L ⊕ M
be the dcpo obtained from the disjoint union L + M by gluing together
the least elements of L and M . For maps g: L → L ′ and h: M → M ′

preserving the least elements, it is clear how to define g ⊕ h: L ⊕ M →
L ′ ⊕ M ′.
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(ii) Smash product. For two dcpos L and M with least elements 0, let
L ⊗ M = ((L\{0})× (M\{0}))⊥. Alternatively, one may obtain the smash
product from the direct product L × M by identifying all the elements of
the form (x, 0) or (0, y) with (0, 0). For maps g: L → L ′ and h: M → M ′

preserving the least elements, one defines g⊗ h by (g⊗ h)(x, y) = (g(x),
h(y)), whenever x �= 0 and y �= 0 and (g ⊗ h)(x, y) = ⊥ otherwise.

(iii) Strict function space. For two dcpos L and M with least elements 0, we

denote by [L
!→ M] the set of all strict Scott-continuous functions from

L to M ordered pointwise. The strict function space is again a dcpo with
the constant function 0 as least element. As in the case of ordinary
function spaces we obtain here a bifunctor which is contravariant in the
first and covariant in the second argument.

These functors are locally continuous and the results on projective limits in the
previous section IV-4 and on the preservation of projective limits in this section
apply accordingly.

An abstract framework for these developments is given by the notion ofdcpo-
enriched categories. These are categories A in which every hom-set A(S, T ) is
endowed with the structure of a dcpo in such a way that composition is Scott-
continuous. In such categories the notion of adjoints g and d can be defined
through the property dg ≤ 1, gd ≤ 1 (compare O-3.6). The notion of locally
continuous functors is meaningful and the results on projective limits and on
preservaton of projective limits can be proved exactly in the same way as we
have done it in this and the previous section. �

Remark IV-5.16. (ω-Complete posets) In the following section we will use
the results of this section on projective limits. But the projective systems that will
occur there are of a simple type: They are defined over the setω = {0, 1, 2, . . . }
of nonnegative integers with their natural order. A projective system D:ωop→A
is then given by a sequence D(n), n ∈ ω of objects and morphisms f n:
D(n + 1) → D(n):

D(0) ←−−
f0

D(1) ←−−
f1

D(2) ←−−
f2

D(3) ←−−
f3

· · · (1)

Such projective systems may be called projective sequences. It goes without
saying that the bonding maps gmn: D(n) → D(m) for m < n are given by
composition gmn = fn−1 . . . fm+1 fm . In order to obtain the same results as
before on limits of projective sequences a simpler setting than that of dcpos is
sufficient. Let us outline this setting.

In a poset S, an ascending sequence x0 ≤ x1 ≤ x2 ≤ · · · may be called an
ω-chain. If every ω-chain in S has a sup, then we say that S is an ω-complete
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poset or an ω-cpo for short. A function f : S → T of ω-cpos is said to be ω

continuous, if f preserves sups ofω-chains, that is, if f is order preserving and if
f (supn xn) = supn f (xn) for every ascending sequence x0 ≤ x1 ≤ x2 ≤ · · · in S.

Note that the Least Fixed-Point Theorem (II-2.4) holds for ω-continuous
self-maps of ω-cpos with a least element.

We denote by ωCPO the category of ω-cpos and ω-continuous maps. This
category has products and equalizers and hence is complete. Projective limits
are formed as usual. One also has a function space object [S

ω→ T ] consisting
of all ω-continuous functions from S to T with the pointwise order. Thus the
notions of locally order preserving and locally ω-continuous functors make
sense.

All the proofs and results on projective limits in the previous section IV-4 and
in this section remain valid, if we replace the arbitrary directed set J by the setω
of natural numbers and if we restrict our attention to projective sequences in the
category ωCPO instead of DCPO. In particular, limits of projective sequences
with ω-continuous upper adjoints as bonding maps are preserved by locally
ω-continuous functors. The various examples of locally continuous functors
can easily be adapted to this situation.

For countably based domains, ω-continuity is equivalent to Scott-continuity
(see II-2.2) and, thus, the two approaches coincide. �

Exercises

Exercise IV-5.17. Let X be a T0 space. Then [X, ?]: DCPO → DCPO is a
functor given by [X, L] = TOP(X, �L) with the pointwise order on objects,
and for maps by [X, g]: [X, S] → [X, T ], where [X, g](ϕ) = gϕ with g ∈
DCPO. Prove the following.

(i) The functor [X, ?] is locally continuous, that is, the map ϕ �→ [X, ϕ] :
[S → T ] → [[X, S] → [X, T ]] is Scott-continuous.

(ii) If g: S → T has a lower adjoint, then [X, g]: [X, S] → [X, T ] has a
lower adjoint, namely [X, g]ˆ= [X, ĝ].

(iii) The restriction and co-restriction of the functor [X, ?]: DCPOG →
DCPOG preserve projective limits and injectivity and surjectivity of
morphisms.

(iv) If O(X ) is a continuous lattice, the functor maps CL into itself, and if
O(X ) is an algebraic lattice, it maps AL into itself.

Remark. This functor generalizes the functor BRA = [A →?] considered in
IV-5.6, since [A → L] = [�A, L]. �
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Exercise IV-5.18. For each infinite cardinal m let CLm denote the full subcate-
gory of CL with objects L withw(L) ≤ m. Show that this subcategory is closed
under taking limits of diagrams of cardinality at most m and under all finite
colimits. What can be said of the formation of function spaces [L → M]?

Hint. Compare IV-5.14. �

Old notes

The question of which functors preserve projective limits was initially treated in
the Compendium, although several authors recognized earlier how it connects
with Scott’s constructions. That construction and generalizations of it are the
topic of the next section. The preservation of projective limits indexed by the
natural numbers and sufficient conditions for such preservation were considered
by [Smyth and Plotkin, 1978], [Smyth and Plotkin, 1982].

New notes

The Compendium contained an error in claiming that the ideal functor preserves
projective limits. This also led to the false statement that every continuous lattice
is a retract of a continuous lattice which is isomorphic to its lattice of ideals.
The error has been corrected in IV-5.12. The error had been discovered by M.
Erné [Erné, 1985], who showed that a poset is isomorphic to the poset of its
ideals if and only if it satisfies the ascending chain condition.

IV-6 Fixed-Point Constructions for Functors

Scott’s construction of continuous lattices L which are isomorphic to their own
function space [L → L] is a special case of the general construction to be
discussed in this section; the first part is entirely functorial, and the second part,
in which we study applications to categories of dcpos, relies on the results
prepared in the previous section.

In order to illustrate the basic idea, we return briefly to a fixed-point theorem
for posets and summarize some of the ideas going into its well-known proof
(compare II-2.4 and II-2.30). To this end suppose that A is a dcpo and F :
A → A a self-map. We require that F is Scott-continuous, that is,

(i) F is monotone,
(ii) F preserves directed sups.
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(Note that actually (ii) implies (i).) Now look at the subset AF of all x ∈ A
such that x ≤ Fx . We assume that AF is nonempty (if A has a smallest ele-
ment 0, then it is necessarily in AF ). For x ∈ AF inductively construct the
sequence

x ≤ Fx ≤ F2x ≤ F3x ≤ · · · ,

where the monotonicity of the sequence follows from property (i) of F . Since
A is directed complete, we can form supn Fn x , which we denote by F̃ x .

From property (ii) we calculate

F F̃x = F(supn Fn x) = supn Fn+1x = supn Fn x = F̃ x .

Thus, F̃ x is in fact a fixed-point of F and is of course contained in that subset
A◦

F ⊆ AF which consists of all the fixed-points. Note that the restriction and
co-restriction F̃ : AF → A◦

F is a retraction. It is straightforward that F̃ x is in
fact the least fixed-point above x . If A has a smallest element 0, then F̃0 is the
least fixed-point of F (compare II-2.4).

In order to strike the proper analogy, remember that every poset A may
be considered a category with x ≥ y being tantamount to x → y. In this
reading, a directed net (x j ) j∈J is just a projective system, and the existence
of sups of directed sets means the existence of projective limits. A func-
tion F : A → A satisfying (i) is simply a functor, and, if (ii) is satisfied,
then the functor preserves projective limits. This, then, is the way we want
to generalize the fixed-point construction to arbitrary categories and later
apply it to categories like DCPOG or CL with the kind of functors pre-
serving projective limits we saw in the previous section. It remains to be seen,
however, how we should generalize the definitions of the subsets AF and A◦

F .

Definition IV-6.1. We will say that a category A is pro-complete iff every
projective system (see IV-4.2) has a limit – in short iff projective limits exist.
A functor between pro-complete categories will be called pro-continuous iff it
preserves projective limits (see IV-5.1). �

Remark. The attentive reader may have noticed that we did not use the full
strength of Scott-continuity for F in the preliminary considerations. We only
used that F preserves sups of increasing sequences, i.e., that F isω-continuous.
Likewise, in all of the following we will not use the full strength of pro-
continuity of functors. We only use that our functors F are ω-continuous in
the sense that they preserve limits of projective sequences.
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Similarly we did not use the full strength of directed completeness in dcpos.
We only used that increasing sequences have sups, i.e., that A is ω-complete.
Analogously in the following we only need that our category A has lim-
its of projective sequences and not nessessarily limits of arbitrary projective
systems.

Construction IV-6.2. Let F : A → A be a self-functor of a pro-complete
category A. (We will eventually assume that F is pro-continuous.) We assume
that p: FL → L is an arbitrary morphism from FL to L for some object L . We
denote with F̃ L the projective limit of the following inverse system in A:

(1)

It is to be understood that the full inverse system contains all finite compositions
of the morphisms listed in diagram (1).

Let p′ : F̃ L → L be the limit map from the limit to the first term of the
sequence. We apply the functor F to diagram (1) together with its limit cone.
By IV-4.1 there is a unique natural map

p̃: F F̃ L → F̃ L (2)

such that the following diagram commutes:

(3)

We have p(Fp′) = p′ p̃, which means that the following diagram commutes:

(4)
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If F is pro-continuous (i.e., preserves projective limits), then p̃ is an isomor-
phism. We may summarize some of this information:

Theorem. Let F : A → A be a pro-continuous self-functor on a pro-complete
category A. Then the “equation”

X ∼= F X

has a solution in A whenever there is a morphism p: FL → L for some object
L; indeed the limit of the projective sequence (1) is a solution. �

We have now associated with a morphism p: FL → L a new morphism
p̃: F F̃ L → F̃ L in a natural fashion. We must discuss in what way this process
is functorial. The guiding idea is to consider p: FL → L as an “algebra” (which
could be an object of a suitable category of algebras, called comma categories
in the literature, but whose formalism we do not need to enter into here) to
which we associate a new “algebra” p̃: F F̃ L → F̃ L . This new algebra is more
special if F is pro-continuous, as then p̃ is an isomorphism. This now is the
idea that generalizes the formation of the subset AF of a poset A.

Definition IV-6.3. Let F : A → A be a self-functor of a category A. An
F-algebra is a pair (L , p) consisting of an object L of A together with an
A-morphism p: FL → L . If (S, p) and (T, q) are F-algebras, then a morphism
of F-algebras f : (S, p) → (T, q) is an A-map f : S → T such that the following
diagram commutes:

The class of all F-algebras together with the class of F-algebra morphisms
clearly forms a category which we call the category of F-algebras and denote by
AF . The full subcategory of all F-algebras (L , p) for which p is an isomorphism
will be denoted A◦

F . �

At this point A◦
F may very well be an empty category. In Construction IV-6.2

we have associated with each F-algebra (L , p) an F-algebra (F̃ L , p̃) which in
fact is in A◦

F if F is pro-continuous. We would like to know, of course, to what
extent the assignment (L , p) �→ (F̃ L , p̃) is functorial.

Lemma IV-6.4. Let A be a pro-complete category and F a self-functor on A.
Then for each F-algebra morphism f : (S, p) → (T, q), there is an F-algebra
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morphism F̃f : (F̃ S, p̃) → (F̃T, q̃). Furthermore, the map p′ of IV-6.2 is an
F-algebra morphism p′: (F̃ L , p̃) → (L , p) such that the following diagram
commutes:

(1)

Proof: The existence of F̃f follows immediately from the properties of the
limit; it is the unique map which makes the following diagram commute:

(2)

In particular, this proves f p′ = q ′(F̃ f ), which shows the commutativity of (1).
Applying F to diagram (2) gives rise to a three dimensional commutative

diagram

(3)

The commutativity of the right-most facet is the statement that F̃ f is an F-
algebra morphism. The commutativity of diagram (4) in IV-6.2 shows that p′

is an F-algebra morphism. �

Corollary IV-6.5. The assignments (L , p) �→ (F̃ L , p̃) and f �→ F̃ f deter-
mine a self-functor �: AF → AF of the category of F-algebras. �
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If F preserves projective limits, then each �(p) is contained in the subcategory
A◦

F . Let �◦: AF → A◦
F denote the co-restriction of this functor. We now settle

the question to what extent our construction is universal.

Theorem IV-6.6. Let F : A → A be a pro-continuous self-functor of a pro-
complete category. Then the functor �◦: AF → A◦

F is right adjoint to the
inclusion functor.

Remark. We reformulate in explicit terms what the assertion means: Suppose
f : (S, q) → (L , p) is a morphism in AF where q: F S → S is an isomorphism
and where p: FL → L is arbitrary. Then there is a unique f◦: (S, q) → (F̃ L , p̃)
such that f = p′ f◦; that is, there is a commutative diagram

(1)

Proof of theorem: If q: F S → S is an isomorphism, then so is Fnq: Fn+1S →
Fn S. As a consequence q ′: F̃ S → S is an isomorphism. We take f◦ = (F̃ f )q

′−1

and observe the following commutative diagram:

(2)

This proves the existence of the required morphism f◦.
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In order to establish uniqueness, we assume that f = p′g in AF with a map
g: (S, q) → (F̃ L , p). Thus we have a commutative diagram

(3)

where p(n): F̃ L → Fn L is the limit map. Then p(1)g = p(1) f◦. Since p̃ is an
isomorphism, we observe

p(2) = (F2 p)F
(

p(2)
)

p̃−1 = F
(

p(1)
)

p̃−1.

Thus

p(2) f◦ = F
(

p(1)
)

p̃−1 f◦ = F
(

p(1)
)
(F f◦)q−1

= F
(

p(1) f◦
)
q−1 = F

(
p(1)g
)
q−1

= · · · = p(2)g.

Now we attack p(3) = (F3 p)
(
Fp(3)
)

p̃−1 = F
(

p(2)
)

p−1 and calculate

p(3) f◦ = · · · = F
(

p(2) f◦
) = F
(

p(2)g
) = · · · = p(3)g.

Continuing by induction, this diagram chasing yields the information

p(n) f◦ = p(n)g for n = 1, 2, 3, . . ..

By the uniqueness in the universal property of the limit F̃ L = lim Fn L we
now conclude f◦ = g. This completes the proof of the theorem. �

Before we apply the general construction to the special categories we are work-
ing with, we observe that for some functors F : A → A there is in fact at least
one functor from A into the category AF of F-algebras. This together with the
functor of IV-6.5 and IV-6.6 gives a functorial method to associate with any
A-object L an F-algebra (F̃L , p̃) for which p is an isomorphism.

Observation IV-6.7. Let F : A → A be a self-functor of a category and
suppose that there is a natural transformation p: F → 1A. Then the assignment
L �→ (L , pL ) is a functor A → AF .
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Proof: We only need to recall that by the definition of a natural transformation,
for each A-morphism f : S → T , the diagram

commutes. The rest is clear. �

We proved that the functor �: AF → A◦
F was universal. If the functor L �→

(L , pL ) which we just noted were also universal, then in fact we could speak
of a universal construction L �→ (F̃ L , p̃L ). However, the universality of � is
that of a right adjoint; thus L �→ (L , pL ) would have to be a right adjoint in
order to compose. A quick inspection of what this means will identify this as a
rare occurrence unless F preserves arbitrary limits – which is not the case for
the functors we consider here. This observation is independent of the particular
nature of the natural transformation p. It is therefore not to be expected that
the construction L �→ (F̃ L , p̃L ) is universal in the sense of being an adjoint
functor. We simply record

Observation IV-6.8. If F is a pro-continuous self-functor of a pro-complete
category A and if there is a natural transformation p: F → 1A, then there is a
functor L �→ (F̃ L , p̃L ): A → A◦

F from A to the category of F-algebras (S, q)
with q an isomorphism. �

At this point we specialize to the categories DCPOG , DOMG , INF↑, CL and
AL which we have treated in Sections IV-4 and IV-5. We consider a pro-
complete subcategory A of DCPOG and a pro-continuous self-functor F : A →
A. Proposition IV-5.2 gives necessary and sufficient conditions for F to
be pro-continuous. A sufficient condition is the local continuity of F by
Theorem IV-5.5. For any dcpo L in A and each morphism p: FL → L –
that is, for each F-algebra (L , p) – we create an F-algebra (F̃ L , p̃) and an
F-algebra morphism p′: (F̃ L; p) → (L; p) as in IV-6.2. Recall that this is
a morphism p′: F̃ L → L compatible with p̃ and p. If p: FL → L is sur-
jective, and if F preserves surjectivity (as is guaranteed by local continuity –
IV-5.5), then all maps of the projective system (1) in IV-6.2 are surjective.
From IV-4.9 we know that the limit maps are surjective, and this says in par-
ticular that p′ is surjective. We can then say that p′: (F̃ L , p̃) → (L , p) is a
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quotient of F-algebras. It will serve a good purpose for the applications to
summarize:

Scholium IV-6.9. Let A be a pro-complete subcategory of DCPOG (such as
DOMG , INF↑, CL and AL). Let F : A → A be a pro-continuous self-functor
preserving surjectivity. (Any locally continuous functor has these properties by
IV-5.5). Then we have the following conclusions.

(i) There is a functorial retraction from the category AF of F-algebras in A
to the full subcategory A◦

F of algebras (S, q) on which q is an
isomorphism, and this retraction is a right reflection. Associated with a
given surjective F-algebra (L , p) is an F-algebra (F̃ L; p̃) with a natural
quotient map p′: (F̃ L , p̃) → (L , p).

(ii) If p: F → 1A is a surjective natural transformation, then there is a
functorial construction whereby every object L of A is a quotient of the
underlying A-object F̃ L of an F-algebra (F̃ L , p̃) with p an isomorphism.

�
Now we apply this scholium to the following functors:

(a) Funct: DCPO⊥G → DCPO⊥G , the function space functor (IV-5.10)
restricted to the category of dcpos with a smallest element 0 and
Scott-continuous upper adjoints;

(b) σ : DCPOG → DCPOG , the Scott-topology functor (IV-5.11).

In the case of (a) there are natural surjective transformations FL → L .

Lemma IV-6.10. For a dcpo L with a smallest element 0 let zL = ( f �→
f (0)): [L → L] → L. Then zL is a natural surjective Scott-continuous map
that has a lower adjoint, namely the map x �→ constx , where constx is the
constant function with value x.

Proof: For f ∈ [L → L] and x ∈ L we have constx ≤ f iff x ≤ f (0) since
f is monotone; hence x �→ constx is lower adjoint to zL = ( f �→ f (0)) by
O-3.1. Surjectivity and naturality are clear. �

For the Scott topology functor σ there is no natural transformation σ (L) → L .
We notice that the lower adjoint x �→ constx of zL likewise preserves

arbitrary sups and infs to the extent they exist. By IV-1.4 it preserves the way-
below relation provided that L is a domain. In this case it is also true (see
IV-6.13 below) that zL preserves the way-below relation.

We now summarize the scholium in the particular case of the functors Funct
and σ . The list, of course, is in no way exhaustive. It is, however, somewhat
representative of the situation. In each case we record to what extent the functor
F “increases” L in terms of weight.
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Theorem IV-6.11.

(i) If (DCPO⊥G)Funct denotes the category of all function space algebras
(L , p), p: [L → L] → L in DCPO⊥G and (DCPO⊥G)Funct◦ the full
subcategory of algebras (L , p) with p an isomorphism, then there is a
functorial retraction (indeed right reflection) (L , p) �→ (Funct∼L , p̃)
from the former to the latter category such that there is a natural quotient
of Funct-algebras (Funct∼L , p̃) → (L , p).

(ii) There is a functorial construction associating with any dcpo L with
bottom a dcpo Funct∼L such that L is a quotient of Funct∼L and such
that D = Funct∼L is naturally isomorphic to its own function space
[D → D]. If L is a continuous or algebraic lattice, so is Funct∼L.

(iii) For continuous lattices, bounded complete domains and FS-domains with
card L > 1 we have w(Funct∼L) = max {ℵ0, w(L)}.

Proof: The scholium together with IV-5.10 proves everything with the excep-
tion of the statement on the weights. By induction, from IV-5.13(i) we derive
w(Functn L) = w(L) and so w(Funct∼L) = w(L) by IV-5.14, if L is infinite.
If L is finite, then w(Functn L) < ℵ0 by induction and IV-5.13(i). The assertion
w(Funct∼L) = ℵ0 then follows from IV-5.14 and card L < card Funct L for
1 < card L < ℵ0. �

Proposition IV-6.12.

(i) There is a right reflection (L , p) �→ ( σ̃ (L), p̃) from the category INF↑ of
Scott-topology algebras (L , p) with p: σ (L) → L to the full subcategory
of all algebras (L , p) for which p is an isomorphism.

(ii) There is a natural map ( σ̃ (L), p̃) → (L , p) in INF↑σ .
(iii) For continuous L we have w( σ̃ (L)) = max{ℵ0, w(L)}.
Proof: The proof is immediate from Scholium IV-6.9, IV-5.11, IV-5.13 and
IV-5.14. �

The significance of function space algebras (L , p) with p: [L → L] → L
an isomorphism lies in the fact that every element in such an algebra may be
identified with a Scott-continuous function L → L , and every Scott-continuous
self-function of L is so obtained. Theorem IV-6.11 shows that such algebras
exist in abundance; in fact, every continuous lattice is a quotient of one of these.

Of course one may apply these constructions to the other examples of locally
continuous functors that we have seen in IV-5.6 and IV-5.10. The powerdomain
functors treated in Section 8 of this chapter are also important examples of
locally continuous functors to which these constructions apply.
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Exercises

Exercise IV-6.13. Let L be a dcpo with a least element 0 and a greatest ele-
ment 1. Show that the natural map zL : [L → L] → L given by zL ( f ) = f (0)
has a Scott-continuous upper adjoint. In particular, zL preserves �, provided
that L is a domain.

Hint. For a ∈ L define uL (a) ∈ [L → L] by

uL (a)(x) =
{

a, if x = 0,
1, if x > 0.

Then f ≤ uL (a) for f ∈ Funct L iff f (0) ≤ a. Scott continuity is straight-
forward. �

We generalize this last result in the next exercise.

Exercise IV-6.14. For x ∈ L we define the evaluation map evx : [L → A] → A
by evx ( f ) = f (x) for continuous lattices L and A. Show that the following are
equivalent:

(1) evx has a lower adjoint;
(2) inf f j (x) = (inf f j )(x) for any family f j in [L → A];
(3) x ∈ K (L).

Show moreover that, if these conditions are satisfied, the lower adjoint mx : A →
[L → A] is given by mx (a) = (|x ⇒ a|) (see II-2.31).

Hint. Conditions (1) and (2) are equivalent by O-3.5. The implication (3) ⇒
(1) is readily verified: mx (a) ≤ f iff mx (a)(y) ≤ f (y) for all y iff a ≤ f (y)
for all y with x � y, and since x � x by (3) and f is monotone, this is the
case iff a ≤ f (x), that is, a ≤ evx ( f ). There remains (1) implies (3). Because
of the presence of constant functions in [L → A], the function ev is clearly
surjective, and thus its lower adjoint mx is given by mx (a) = min ev−1

x ({a}) =
min{g ∈ [L → A] : g(x) = a} (O-3.7). If z � x , define cz = (|z ⇒ a|)
(II-2.31). Then cz ∈ [L → A] with cz(x) = a, and thus mx ≤ cz . Since L
is continuous x = sup{z: z � x} and thus, since mx (a)(x) = a and mx is
monotone, mx (a) = inf{cz : z � x}. We conclude from this relation that

mx (a)(y) =
{

a, if x ≤ y,
0, otherwise.

Since mx (a) is Scott-continuous, this implies that ↑x is open, i.e., x ∈ K (L).
�
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Exercise IV-6.15. Let L be a dcpo that is isomorphic to its own function space,
that is, there is an isomorphism p: [L → L] → L . Prove the following.

(i) There is a binary operation (x, y) �→ x(y) : L×L → L which is given by

x(y) = p−1(x)(y) = (evy ◦ p−1)(x)

which is Scott-continuous in both arguments.
(ii) If L is a continuous lattice, x �→ x(y) is Lawson continuous for a given

fixed y iff y ∈ K (L).
(iii) If L is a continuous lattice, y �→ x(y) is Lawson continuous for a given x

iff there is an element x∧ in L such that

x∧ (x(y)) ∨ y = y = x(x∧(y)) ∧ y for all y ∈ L .

Hint. Since p is an isomorphism and the function ( f, x) �→ f (x) : [L → L]×
L → L is Scott-continuous by II-2.9(i), then the binary operation is Scott-
continuous. For fixed y it is Lawson continuous in x iff evy is Lawson contin-
uous, since p is Lawson continuous as is p−1. This is the case iff y is compact
by IV-6.14 above. For fixed x it is Lawson continuous in y iff p−1(x) preserves
arbitrary infs. This is the case iff it has a lower adjoint by O-3.3 and O-3.4.
This is the case iff there is an x ∈ L such that x∧(x(y)) ≤ y and x(x∧(y)) ≥ y
for all y by O-3.6 and the definition of the binary operation. �

Exercise IV-6.16. Under the hypotheses of IV-6.15, show that the space L with
the Scott topology is a topological monoid relative to the operation (x, y) �→
x ◦ y that is given by x ◦ y = p(p−1(x) ◦ p−1(y)), and that moreover one has
the identity

(x ◦ y)(z) = x(y(z)).

Hint. The space [L → L] is a topological monoid under composition by
II-4.25(ii). Since p is an isomorphism and the operation “◦” on L is just trans-
ported composition, the first assertion follows. The second is straightforward
from the definitions. �

The two preceding exercises show that every function space algebra (L , p) in
which p is an isomorphism is a topological monoid relative to the Scott topology
in such a way that it acts on itself (although not generally by translation!)
in a Scott-continuous fashion; the action is such that every Scott-continuous
self-function is realized by the action of precisely one monoid element. Let us
express this in a definition:

Definition IV-6.17. A continuous lattice L will be called a self-acting monoid
if there are a topological monoid multiplication (x, y) �→ x ◦ y on L and a
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monoid action of L on itself (x, y) �→ x(y) which is Scott-continuous in both
arguments such that for each f ∈ [L → L] there is a unique x ∈ L such that
f (y) = x(y) for all y. �

We recall that the term monoid action means the validity of the equations
e(x) = x for the identity e of the monoid and of (x ◦ y)(z) = x(y(z)). We have
observed the following result; its converse is also true.

Exercise IV-6.18. Show that there is a bijection between the objects of CL◦Funct

(function space algebras (L , p) with p an isomorphism) and self-acting
monoids. �

Exercise IV-6.19. A morphism f : S → T of self-acting monoids is a Scott-
continuous map which satisfies f (x(y)) = f (x)( f (y)) and f (x ◦ y) = f (x) ◦
f (y). Prove that the second relation will follow from the first. �

Exercise IV-6.20. If f : (S, p) → (T, q) is a morphism in CL◦Funct and if f is
injective (that is, if (S, p) is a “subalgebra” of (T, q)), show that f : S → T is an
injective morphism of self-acting monoids (that is, S is a self-acting submonoid
of T ).

Hint. We have to verify the relation f ϕ = f ϕ f ∧ f for all ϕ ∈ [L → L]; if f
is injective, f ∧ f = 1 by O-3.7. �

In more general terms, the proof for the preceding exercise shows that we need
the relation f ϕ = f ϕ f ∧ f for all ϕ ∈ [L → L] in order to conclude that a
CL◦Funct-morphism f induces a morphism of self-acting monoids. Since every
ϕ ∈ [L → L] is the sup of functions of the form (|x ⇒ a|) (II-2.31), it suffices
that f (|x ⇒ a|) = f (|x ⇒ a|) f ∧ f holds for all a and x . If f is nonconstant,
this holds for all a and x iff x � y is equivalent to x � f ∧ f y. If we fix y
and remember that y = {sup x : x � y}, then this condition evidently implies
f ∧ f ≥ 1. The converse is always true, thus f ∧ f = 1, that is, the injectivity
of f is a necessary and sufficient condition for f to induce a morphism of
self-acting monoids.

New notes

The fundamental construction of IV-6.2 was introduced in the special case of
the function space functor F = Funct in [Scott, 1972a]. The objective was
to construct the function space algebras which we obtained in IV-6.11; they
serve as set-theoretical models for the lambda-calculus of Church and Curry.
IV-6.15 through IV-6.20 contribute in this direction. The investigation of the
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functorial framework of the fixed-point construction for functors, independently
of the development here, has also been discussed in [Smyth and Plotkin, 1978],
[Smyth and Plotkin, 1982]. They have the concept of F-algebras in their setup,
and instead of arbitrary projective limits and their preservation through functors
they concentrate on limits of systems indexed by the natural numbers. The
universality theorem IV-6.6 was new in the Compendium as was, in its particular
form, Scholium IV-6.9, which we apply to special situations. The function space
functor and the construction of continuous lattices which are isomorphic to their
self-functions are due to Scott.

The results of IV-6.12 concerning the Scott-topology functor were new in the
Compendium. There is a slight difference as far as the latter is concerned: there
is no canonical construction starting from a continuous lattice and producing
a continuous lattice which is naturally isomorphic to its own Scott topology.
If, instead of the Scott open sets, one takes the Scott closed sets, one obtains
a locally continuous functor L �→ �(L) together with a natural transformation
qL : L → �(L) defined by qL (x) = ↓x . This functor is one of the powerdomain
functors discussed in Section IV-8.

IV-7 Domain Equations and Recursive Data Types

In the previous section we saw how to solve the “equation” X ∼= F X
for any pro-continuous self-functor on any pro-complete category A and we
applied the results to self-functors on certain categories of domains. In this
section we concentrate on features of the solutions of domain equations that
not only are specific to categories of domains, but are essential for
semantics.

Throughout this section we work in the categories DCPO⊥ and DCPO⊥!.
The objects are the dcpos with a least element ⊥ in both cases; the morphisms
are all Scott-continuous functions in the first case, whilst in the second case
one only admits strict functions, that is, functions that map ⊥ to ⊥ (compare
Remark IV-5.15).

For two dcpos with bottom, the dcpo of strict Scott-continuous functions
f : L → M will be denoted by [L◦→ M] in contrast to the dcpo [L → M] of
all Scott-continuous functions. Both have a bottom element

⊥L ,M ,

the constant function with value ⊥M . One may notice that [L◦→ M] is a Scott
closed subset of [L → M], that is, a lower set closed for directed sups.
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The singleton domain 1 = {⊥} is a final object in both categories, it is also
initial in the category DCPO⊥!. For every object L , there are obvious maps

p: L → 1, p̂: 1 → L;

p̂ maps⊥ to⊥L , it is injective and is the lower adjoint of p which is surjective.
In applications it may occur that one wants to replace the categories DCPO⊥

and DCPO⊥! by appropriate subcategories. There is no obstacle to that under
quite weak hypotheses.

Domain equations for covariant functors

Let us consider in this subsection a fixed locally continuous self-functor

F : DCPO⊥ → DCPO⊥

on the category DCPO⊥. Occasionally we will have to require that F restricts
to a self-functor of the category DCPO⊥!, that is F preserves strictness of maps
in the sense that F f is strict whenever f is strict.

We are interested in “minimal” solutions of the “domain equation”

X ∼= F X,

i.e., we look for domains L with bottom such that L is isomorphic to FL and
which are minimal in a sense that will be made precise. (We use the term
“equation” although we only mean “equality up to isomorphism”.) For this, we
specialize Construction IV-6.2 to the very special case where L = 1:

Construction IV-7.1. (Minimal solutions of domain equations) We define
recursively dcpos

L0 = 1, Ln+1 = Fn+11 = FLn (1)

and maps

pn: Ln+1 → Ln, p̂n : Ln → Ln+1,

p0 = p, pn+1 = Fn+1 p = Fpn, p̂0 = p̂, p̂n+1 = Fn+1 p̂ = F p̂n, (2)

where p and p̂ are the obvious maps as above. As F is locally continuous, it
preserves adjoints and their surjectivity and injectivity, respectively, by IV-5.4;
so p̂n is the lower adjoint of pn , the former is injective, the latter surjective.
(In the semantics community, (pn, p̂n) is called a projection–embedding pair,
a terminology that we have not adopted in this work.)
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Let L∞ be the projective limit of the projective sequence

L0 = 1 ←−−
p0

L1 = F1 ←−
p1

L2 = F21 ←−
p2

L3 = F31 ←−−
p3

· · · (3)

with limit maps gn: L∞ → Ln . By IV-4.5(i), the gn have lower adjoints
ĝn: Ln → L∞. By IV-4.9, the limit maps gn are surjective; thus the lower
adjoints ĝn are injective. From IV-4.5(A) we have

supn ĝngn = 1L∞ . (4)

As in IV-6.2 we apply the functor F to the diagram (3) together with its limit
cone, and we obtain a cone again:

(5)

By the universal property of the limit cone, there is a unique morphism

p∞: FL∞ → L∞ (6)

such that

Fgn = gn+1 p∞ for all n. (7)

As F is locally continuous, it preserves projective limits; hence p∞ is an iso-
morphism, that is,

L∞ ∼= FL∞ via p∞.

Thus we have found a solution to our domain equation. As lower adjoints
and surjective upper adjoints are always strict maps, all maps occuring in this
construction are strict, so that everything is indeed happening in the category
DCPO⊥!. �
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There may be many other solutions to the domain equation X ∼= F X . From
IV-6.6 we know that the above solution is minimal in the sense that it is a
quotient of any other solution of the domain equation X ∼= F X . But L∞ has
even more spectacular properties. In order to express them, we need some
auxiliary considerations. We first claim

p∞ = supn ĝn+1 Fgn and p∞−1 = supn(Fĝn)gn+1. (8)

Proof of claim: From (7) we obtain ĝn+1gn+1 p∞ = ĝn+1 Fgn . Hence,

p∞ = 1L∞ p∞
(4)= supn ĝn+1gn+1 p∞

(7)= supn ĝn+1 Fgn.

This proves the first equation. The second follows by a dual argument passing
to the adjoints. �

In the following we shall see that L∞ is at the same time initial and final in a
precise sense. For this we recall the notions of F-algebra and F-coalgebra:

Definition IV-7.2. In IV-6.3, every pair (L , p), where L is a dcpo with bottom
and p: FL → L a Scott-continuous map, had been called an F-algebra. Dually,
an F-coalgebra is defined to be a pair (L , p), where p is a Scott-continuous
map p: L → FL. If p is, in addition, a strict map, then we say that we have a
strict F-algebra or F-coalgebra respectively.

A morphism of F-algebras, respectively F-coalgebras, h: (L , p) → (M, q)
is given by a Scott-continuous map h: L → M such that

hp = q(Fh), respectively qh = (Fh)p, (1)

which means that the following diagrams commute:

A morphism h is called strict, if it preserves the bottom element. A morphism
of an F-algebra (or F-coalgebra) into itself is called an endomorphism. �

Those F-algebras (L , p) for which p: FL → L is an isomorphism are of
particular interest. For these algebras, we can rewrite condition IV-7.2(i) for
algebra morphisms. The dual remarks apply to the F-coalgebra (L , p−1).
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Remark IV-7.3. We consider F-algebras (L , p) and (M, q), where p: FL →
L is an isomorphim and q: FM → M an arbitrary Scott-continuous map.

(i) From the definition we readily see that, for a Scott-continuous map
h: L → M , the following conditions are equivalent:
(1) h is an algebra morphism from (L , p) to (M, q);
(2) h = q(Fh)p−1;
(3) h is a fixed-point of the map

ϕ = ( f �→ q(F f )p−1): [L → M] → [L → M].

The function space [L → M] is a dcpo with bottom element⊥L ,M . The map ϕ
defined above is Scott-continuous, as F is locally continuous by hypothesis and
as composition of maps is Scott-continuous. Hence, ϕ has a least fixed-point
h (see II-2.4). As the fixed-points of ϕ are precisely the F-algebra morphisms,
we conclude:

(ii) There is a least F-algebra morphism h: (L , p) → (M, q), namely the
least fixed-point of the map ϕ defined in (i). According to II-2.4(ii), h can
be constructed as the sup

h = supnhn (1)

of the increasing sequence of maps defined recursively by

h0 = ⊥L ,M , hn+1 = ϕ(hn) = q(Fhn)p−1. (2)

If the functor F preserves strictness of maps and if (M, q) is a strict
F-algebra, then the least morphism h is also strict, as all the
approximating functions hn are strict.

In order to consider endomorphisms of the F-algebra (L , p) we specialize
these observations to the case L = M, p = q and we obtain

(iii) For a Scott-continuous map e: L → L the following conditions are
equivalent:
(1) e is an algebra endomorphism of (L , p);
(2) e = p(Fe)p−1;
(3) e is a fixed-point of the map

ψ = ( f �→ p(F f )p−1): [L → L] → [L → L].
There is a least F-algebra endomorphism e of (L , p), namely the least
fixed-point of the map ψ above, and e can be constructed as the sup

e = supnen (1)
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of the increasing sequence of maps defined recursively by

e0 = ⊥L ,L , en+1 = ϕ(en) = p(Fen)p−1. (2)

As the identity map is an endomorphism, we have e ≤ 1L , which implies
that e is strict. �

The preceding remarks are used in the following remarkable lemma.

Lemma IV-7.4. (Least F-Algebra Morphism Lemma) Let (L ′, p′), (L , p)
and (M, q) be F-algebras such that p: FL → L and p′: FL′ → L ′ are iso-
morphisms, while q: FM → M may be arbitrary. From IV-7.3(ii) we know that
there are least morphisms from the F-algebras (L , p) and (L ′, p′) to any other
F-algebra.

(i) If k is the least F-algebra morphism k: (L ′, p′) → (L , p) and
h: (L , p) → (M, q) an arbitrary strict F-algebra morphism, then hk is
the least F-algebra morphism from (L ′, p′) to (M, q).

(ii) If k: (L ′, p′) → (L , p) is an arbitrary F-algebra morphism and h the
least F-algebra morphism h: (L , p) → (M, q), then hk is the least
F-algebra morphism from (L ′, p′) to (M, q).

Proof: We just prove the first assertion. The proof of the second one is sim-
ilar, but one does not need the strictness assumption there. Let h′ be the least
F-algebra morphism from (L ′, p′) to (M, q). From IV-7.3(ii) we know that
h′ = supnh′n with h′0 = ⊥L ′,M , h′n+1 = q(Fh′n)p′−1. Similarly, for the least
F-algebra morphism k: (L ′, p′) → (L , p) one has k = supnkn , where k0 =
⊥L ′,L , kn+1 = p(Fkn)p′−1 For proving h′ = hk, it suffices to show –
inductively – that h′n = hkn for all n: For n = 0 we have hk0 = h⊥L ′,L =
⊥L ′,M = h′0, because h is supposed to be strict. By the recursive definition of
kn and because h is an F-algebra morphism, we have hkn+1 = (q(Fh)p−1)
(p(Fkn)p′−1) = q F(hkn)p′−1 = q(Fh′n)p′−1 = h′n+1, where we have used
the induction hypothesis hkn = h′n for the third equality. �

Definition IV-7.5. The F-algebras, and similarly the F-coalgebras, together
with their morphisms form a category. As in any category, an initial F-algebra
is an F-algebra (L , p) such that for an arbitrary F-algebra (M, q) there is one
and only one F-algebra morphism h: (L , p) → (M, q).

Dually, a final F-coalgebra is an F-coalgebra (M, q) such that for an ar-
bitrary F-coalgebra (L , p) there is one and only one F-coalgebra morphism
h: (L , p) → (M, q). One may restrict these notions of initiality and finality to
the subcategories of strict F-algebras and strict F-coalgebras. �
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Initial and final algebras exist for locally continuous self-functors on the cate-
gory DCPO⊥! and they agree in the sense stated in the following theorem. This
is a strong result. It will be an immediate consequence of Theorem IV-7.9 and
Proposition IV-7.7.

Theorem IV-7.6. Let F be a locally continuous self-functor on the cate-
gory DCPO⊥ which preserves strictness of maps and let p∞: FL∞ → L∞
be the “minimal” solution of the domain equation F X ∼= X from IV-7.1. Then
(L∞, p∞) is initial in the category of strict F-algebras and (L∞, p∞−1) is final
in the category of all F-coalgebras. �

Clearly, an initial F-algebra, and similarly a final F-coalgebra, are unique up
to isomorphism, and each allows only one endomorphism, namely the identity.
It is surprising that the converse holds in the setup of the preceding theorem, as
we shall see. An isomorphism p: FL → L with the property that the F-algebra
(L , p) allows no endomorphism different from the identity is sometimes called
F-invariant. We first show that the isomorphism p∞: FL∞ → L∞ constructed
in IV-7.1 is F-invariant:

Proposition IV-7.7. Let F be a locally continuous self-functor on the category
DCPO⊥. Then the identity function is the only endomorphism of the F-algebra
(L∞, p∞) and the only endomorphism of the F-coalgebra (L∞, p−1

∞ ).

Proof: Let h: L∞ → L∞ be any endomorphism of the F-algebra (L∞, p∞)
or of the F-coalgebra (L∞, p−1

∞ ). In both cases h = p∞(Fh)p−1
∞ . In order to

show that h is the identity map, we first show by induction that gnh = gn for all
n, where the gn: L∞ → Ln are the limit maps from IV-7.1 and ĝn: Ln → L∞
their lower adjoints.

As g0 maps everything to ⊥, clearly g0h = g0. This takes care of the case
n = 0. Now we calculate

gn+1h = gn+1 p∞(Fh)p∞−1

= (Fgn)(Fh)p∞−1 by equation (7) in IV-7.1
= F(gnh)p∞−1 as F is a functor
= (Fgn)p∞−1 by induction hypothesis
= gn+1 by equation (7) in IV-7.1.

Using equation (4) from IV-7.1, we finally get h = 1L∞h = (supn ĝngn)h =
supn ĝn(gnh) = supn ĝn = 1L∞ as desired. �

The preceding proposition allows us to say exactly in what sense L∞ is the
minimal solution of the domain equation X ∼= F X :
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Corollary IV-7.8. Whenever p: FL → L is an isomorphism, there is a surjec-
tive Scott-continuous map h: L → L∞ which has a lower adjoint ĥ: L∞ → L
(which then is injective). Moreover, h and ĥ are F-algebra morphisms between
(L , p) and (L∞, p∞).

Proof: From IV-7.3(ii) we know that there are a least F-algebra morphism
h: L → L∞ and a least F-algebra morphism ĥ: L∞ → L . Then hĥ is an
endomorphism of the F-algebra (L∞, p∞). By Proposition IV-7.7, hĥ = 1L∞ .

By IV-7.4, ĥh is the least endomorphism of the F-algebra (L , p).As the identity
map is an endomorphism, we conclude that ĥh ≤ 1L .The assertion now follows
from O-3.6, O-3.7. �

By the preceding proposition and corollary, the equivalent conditions of the
following theorem are all satisfied for the canonical isomorphism p∞: FL∞ →
L∞, which finishes the proof of Theorem IV-7.6.

Theorem IV-7.9. Let F : DCPO⊥ →DCPO⊥ be a locally continuous functor
which preserves strictness of maps. Let L be a dcpo with bottom and p: FL → L
an isomorphism. Then the following conditions are equivalent.

(1) (L , p) is initial in the category of strict F-algebras.
(2) (L , p−1) is final in the category of all F-coalgebras.
(3) 1L is the only endomorphism of the F-algebra (L , p).
(4) 1L is the only endomorphism e of the F-algebra (L , p) with e ≤ 1L .

Proof: We have seen that (2) implies (3) and, as every map below the identity
is strict, that (1) implies (4) for trivial reasons. Clearly (3) implies (4). We only
prove that (4) implies (1). The proof that (4) implies (2) is dual to it and it does
not use the strictness of the F-coalgebras.

So we suppose that the F-algebra p: FL → L does not admit any endomor-
phism strictly below the identity. By IV-7.3(iii), this means that the identity is
the least endomorphism of (L , p).

To prove initiality, we consider an arbitrary dcpo M with bottom and a strict
Scott-continuous map q: FM → M. We have to show that there is a unique
strict F-algebra morphim h: (L , p) → (M, q).

The existence of such an h has been shown in IV-7.3(ii). There is indeed
a least F-algebra morphism h′ : (L , p) → (M, q), and h′ is strict. For the
uniqueness, let h: (L , p) → (M, q) be an arbitrary strict F-algebra morphim.
If e is the least F-algebra endomorphism of (L , p), we deduce he = h′ from
IV-7.4 with L = L ′, p = p′. By our hypothesis, e = 1L , whence h = h′. �
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Domain equations for mixed variance functors

There is no obstacle to extending the above results to functors in several argu-
ments, as long as they are covariant in every argument. For functors with mixed
variance, things become more complicated. Let us consider in this subsection
a fixed locally continuous functor

B: DCPOop
⊥ × DCPO⊥ → DCPO⊥,

that is, a bifunctor which is contravariant in its first and covariant in its second
argument. First let us solve the domain equation

X ∼= B(X, X ).

From the bifunctor B we can derive a locally continuous covariant functor F
on the subcategory of all dcpos L with bottom and all Scott-continuous maps
g having a lower adjoint ĝ by

FL = B(L , L) and Fg = B(ĝ, g)

as in IV-5.9. We now can proceed exactly as in Construction IV-7.1 and define
recursively domains Ln and maps pn: Ln+1 → Ln and p̂n: Ln → Ln+1 by

L0 = 1, Ln+1 = F(Ln) = B(Ln, Ln), (7.1′)
p0 = p, p̂0 = p̂, pn+1 = F(pn) = B( p̂n, pn),

p̂n+1 = F( p̂n) = B(pn, p̂n), (7.2′)

where p: B(1, 1) → 1 is the obvious map and p̂: 1 → B(1, 1) its lower adjoint
(mapping ⊥ to ⊥). We obtain a projective limit

L∞ = limn(Ln, pn)

and an isomorphism p∞: FL∞ → L∞, i.e., an isomorphism

p∞: B(L∞, L∞) → L∞.

Thus we have a solution for our domain equation which is minimal in the
same sense as in IV-7.1. We are now going to give an analogue to the universal
properties IV-7.6 and IV-7.9. But we will have to restrict ourselves everywhere to
strict Scott-continuous functions. We henceforward suppose that B is a bifunctor
of mixed variance

B: DCPOop
⊥! × DCPO⊥! → DCPO⊥!.
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Definition IV-7.10. An isomorphism p: B(L , L) → L is B-invariant, if the
identity map 1L is the only strict Scott-continuous map h: L → L satisfying

h = pB(h, h)p−1, (1)

which is tantamount to saying that the diagram

commutes for h = 1L only. �

A slight modification of the proof of Proposition IV-7.7 yields

Lemma IV-7.11. The isomorphism p∞: B(L∞, L∞) → L∞ constructed
above is B-invariant.

Proof: Suppose that h: L∞ → L∞ is a strict Scott-continuous map satisfying

h = p∞B(h, h)p∞−1. (1)

We want to show that h is the identity map.
We first show by induction that gnh = gn and hĝn = ĝn for all n, where

the gn: L∞ → Ln are the limit maps from IV-7.1 and ĝn: Ln → L∞ their
lower adjoints. As g0 maps everything to ⊥, clearly g0h = g0. As h is strict,
hĝ0(⊥) = h(⊥) = ⊥ = ĝ0(⊥), whence hĝ0 = ĝ0. This takes care of the case
n = 0. Now we calculate

gn+1h = gn+1 p∞B(h, h)p∞−1 by (1)
= (Fgn)B(h, h)p∞−1 by equation (7) in IV-7.1
= B(ĝn, gn)B(h, h)p∞−1 by the above definition of F
= B(hĝn, gnh)p∞−1 as B is a functor of mixed variance
= B(ĝn, gn)p∞−1 by induction hypothesis
= (Fgn)p∞−1 by the above definition of F
= gn+1 by equation (7) in IV-7.1.

The inductive step for the second equations works similarly. Using equation
(4) from IV-7.1, we finally get h = 1L∞h = (supn ĝngn)h = supn ĝn(gnh) =
supn ĝngn = 1L∞ as desired. �
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We merge the concepts of initial F-algebra and final F-coalgebra into a unifying
concept:

Definition IV-7.12. An isomorphism p: B(L , L) → L is called B-bifree if,
for every dcpo M with bottom and for every pair of strict Scott-continuous
functions q: B(M, M) → M and r : M → B(M, M), there is one and only one
pair of strict Scott-continuous functions h: L → M and k: M → L such that

h = q B(k, h)p−1and k = pB(h, k)r (1)

which is tantamount to saying that the following diagrams commute:

�

A standard argument shows that, if a bifree object exists, then it is unique up to
isomorphism.

The following is the extension of Theorem IV-7.9 to functors with mixed
variance.

Theorem IV-7.13. An isomorphism p: B(L , L) → L is B-bifree if and only
if it is B-invariant.

Proof: Suppose p to be B-bifree. Choose L = M, q = p and r = p−1. As p
is B-bifree, there is a unique pair of strict Scott-continuous maps h, k from L
into L such that

h = pB(k, h)p−1 and k = pB(h; k)p−1. (1)

As these two equations are satisfied for h = 1L , k = 1L , we conclude h =
1L , k = 1L by uniqueness. In order to prove that p is B-invariant, let g: L → L
be any strict Scott-continuous map satisfying g = pB(g, g)p−1. Then the pair
h = g, k = g also satisfies the equations (1). From the uniqueness of the
solutions we conclude that g = 1L which shows that p is B-invariant.

For the converse, we first notice that the map

ψ = ( f �→ pB( f, f )p−1): [L◦→ L] → [L◦→ L]

is Scott-continuous, as B is locally continuous; hence ψ has a least fixed-
point e. As e satisfies e = pB(e, e)p−1 and as p is B-invariant, we conclude
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that e = 1L . The least fixed-point e is the sup of the recursively defined sequence
(cf. IV-7.3(iii)), equation(2))

e0 = ⊥L ,L , en+1 = pB(en, en)p−1. (2)

Thus, 1L = supn en .
In order to prove that p is B-bifree, take a dcpo M with bottom and a pair

of strict Scott-continuous maps q: B(M, M) → M, r : M → B(M, M). Then

( f, g) �→ (q B(g, f )p−1, pB( f, g)r ) : [L◦→ M]
× [M◦→ L] −→ [L◦→ M] × [M◦→ L]

is Scott-continuous, as B is locally continuous, and hence has a least fixed-point
(h, k), i.e., the maps h and k satisfy equation IV-7.12(I). We have to show their
uniqueness. For this we recall first that h and k can be approximated by the
following recursively defined sequences in the sense that h = supn hn, k =
supn kn:

h0 = ⊥L ,M , hn+1 = q B(kn, hn)p−1,

k0 = ⊥M,L , kn+1 = pB(hn, kn)r.

Now let h′: L → M and k ′: M → L be another pair of strict Scott-continuous
maps satisfying IV-7.12(1). We show by induction that

h′en = hn and enk ′ = kn.

For n = 0 this is obvious using that h′ is strict. For the induction step we
calculate

h′en+1 = h′ pB(en, en)p−1 by (2)
= q B(k ′, h′)p−1 pB(en, en)p−1 by (IV-7.12(1))
= q B(k ′, h′)B(en, en)p−1

= q B(enk ′, h′en)p−1 as B is a functor of mixed variance
= q B(kn, hn)p−1 by induction hypothesis
= hn+1 by the definition of hn+1

and similarly for the second equation.
Now we can conlude that h′ = h′1L = h′ supn en = supn h′en = supn hn = h

and similarly k ′ = k which shows the uniqueness. �

From IV-7.11 and IV-7.13 we conclude:

Theorem IV-7.14. For a locally continuous bifunctor

B: DCPOop
⊥! × DCPO⊥! → DCPO⊥!
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which is contravariant in the first and covariant in the second argument, the
isomorphism p∞: B(L∞, L∞) → L∞ which is the “minimal” solution of the
domain equation X ∼= B(X, X ) is B-bifree. �

Examples of domain equations

In the following we present a number of domain equations which are actually
used in semantics. We recall some examples of locally continuous functors from
IV-5.6 and IV-5.15: lifting FL = L⊥ – adding a new bottom element; separated
sum F(L , M) = L +M – the disjoint union with a new bottom element added;
coalesced sum F(L , M) = L ⊕ M – the disjoint union with the two bottom
elements identified; smash product F(L , M) = L ⊕ M – the direct product
with all elements (a,⊥) and (⊥, b) identified with (⊥,⊥). The reader is invited
to exhibit the functors F that are involved in the respective domain equations
and to “construct” the solutions of the domain equations as in IV-7.1 step by
step. He also should visualize explicitly the isomorphism p∞: FL∞ → L∞.

Example IV-7.15. (Domains of natural numbers) Verify that the three do-
main theoretical versions of the natural numbers depicted below are minimal
solutions of the domain equations

X ∼= X⊥, X = 1⊥ ⊕ X, X ∼= 1 + X.

�

Example IV-7.16. (The partial Cantor space) The minimal solution C of
the domain equation

X ∼= X + X

is a binary tree with infinite branches only. The space of maximal elements with
the induced Scott topology is homeomorphic to the Cantor set. The maximal



356 IV Morphisms and Functors

elements correspond to infinite sequences of zeros and ones. The nonmaximal
elements correspond to finite sequences of zeros and ones; they may be viewed
as partial elements of the Cantor space. Every finite binary tree is a retract of
the Cantor tree. �

Example IV-7.17. (Streams and lists) (i) The domain Str(N ) of streams of
natural numbers is the flat domain consisting of all infinite sequences of natural
numbers with a bottom adjoined. Alternatively, it is the minimal solution of the
domain equation

X ∼= N ⊗ X⊥.

Informally the domain equation can be read in the following way: a stream is
a pair consisting of a natural number and a stream, or undefined.

(ii) The domain L(N ) of lists of natural numbers is the minimal solution of
the domain equation

X ∼= 1⊥ ⊕ (N ⊗ X ).

L(N ) is indeed a flat domain the nonbottom elements of which can be identified
with all finite and infinite lists including the empty list. The domain equation
can be read in the following way: a list is either empty or a pair consisting of
a natural number and a list, or undefined.

In the above, N denotes the domain of at natural numbers from IV-7.15.
One may replace it by any other flat domain, for example by the flat Booleans
B = (1+ 1)⊥. The domain of streams of Booleans is isomorphic to the partial
Cantor space in the previous example. �

We remark that the minimal solution of the domain equation

X ∼= [X → X ]

is the trivial singleton domain 1. Here, the relevant functor is the function
space functor B(L , M) = [L → M], and starting with L0 = 1 yields L1 =
[1 → 1] = 1, etc. Thus, we do not obtain a nontrivial model of untyped-calculus
as a B-bifree B-algebra. Of course, as we have seen in Section IV-6, there are
lots of nontrivial solutions of this domain equation. Surprisingly, the situtation
changes by a tiny modification of the domain equation:

Example IV-7.18. (Lazy lambda-calculus) The minimal solution D of the
domain equation

X ∼= [X → X ]⊥
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is highly nontrivial. It is a model of the lazy lambda-calculus (see [Abramsky
and Ong, 1993]).

Example IV-7.19. (Lambda-calculus with arithmetic) The minimal solu-
tion D of the domain equation

X ∼= N ⊕ [X → X ]⊥

is a model for untyped lambda-calculus with arithmetic: an element of D is either
a natural number or a function, or undefined; the undefined natural number is
identified with the undefined element of D in this model, but the nowhere
defined function is not identified with the undefined element of D. �

In the preceding two examples we met bifunctors B(L , M) = [L → M]⊥ and
B(L , M) = N ⊕ [L → M]⊥ of mixed variance. Note that these bifunctors like
all of the covariant functors that we have met in the previous examples preserve
strictness of maps so that all of our results of this section on initiality, finality
and bifreeness apply.

Example IV-7.20. (Continuations) Let R be a fixed-pointed dcpo of
“responses”. The minimal solution of the domain equation

X ∼= [X → R] × X

is used as a semantic domain for the interpretation of continuations for untyped
lambda-calculus.

Exercises

Exercise IV-7.21. Reformulate Remark IV-7.3 for morphisms of F-coalgebras.
�

Exercise IV-7.22. Prove thoroughly that (4) implies (2) in Theorem IV-7.9 and
check that you do not need to suppose that the F-coalgebras are strict. �

Exercise IV-7.23. Let F be a locally continuous self-functor on the category
DCPO preserving strictness of functions. Let p∞: FL∞ → L∞ be the minimal
solution of the domain equation F X ∼= X as in IV-7.1. Let q: FM → M be any
Scott-continuous map.

Show that two F-algebra morphisms g and h from (L∞, p∞) to (M, q) agree
if and only if g(⊥) = h(⊥).
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Hint. There are different ways to attack this exercise. One possiblity is to
reduce the situation to that of strict morphisms: Let a = g(⊥) = h(⊥) and
consider the dcpo M ′ := ↑a ⊆ M , which has a as its smallest element. As
the image of h is contained in M ′, we have a factorization h = ih◦ into its co-
restriction h◦: L∞ → M ′ and the injection i : ↑a → M . Then Fg = (Fi)(Fh◦)
and q ′ = q(Fi) maps FM′ into M ′ and is strict. As h◦ and likewise g◦ are
two strict F-algebra morphisms from (L∞, p∞) to (M ′, q ′), they agree by
Theorem IV-7.9. �

The following justifies calling L∞ the “minimal” solution of the domain equa-
tion L ∼= B(L , L).

Exercise IV-7.24. Let B be a bifunctor as in Theorem IV-7.14. Show that for
every isomorphism p: B(L , L) → L there is a surjective Scott-continuous map
h: L → L∞ which has a lower adjoint ĥ: L∞ → L (which then is injective).

Hint. Compare IV-7.8. �

Exercise IV-7.25. Let C be the minimal solution of the domain equation X ∼=
[X → R] × X in IV-7.20. Show the following.

(i) The domain D = [C → R] is a (nontrivial) solution of the domain
equation X ∼= [X → X ].

(ii) The domain D = [C → R] is isomorphic to the solution R∞ of the
domain equation X ∼= [X → X ] obtained as the limit of the projective
sequence as in Construction IV-6.2 and Theorem IV-6.11 starting with

R ←− F R = [R → R] ←− F2 R = [F R → F R] ←− · · · .

Hint. See [Streicher and Reus, 1998]. �

New notes

Data types can be viewed as algebras, that is, sets endowed with finitary oper-
ations. They have been studied under the name of initial algebra semantics by
Goguen, Thatcher, Wagner and Wright (see [Goguen et al., 1977]), for example;
see also [Scott, 1976]. Coalgebras appeared in semantics shortly afterwards (see
e.g. [Rutten, 2000] for references). The book [Reynolds, b1998] is an excellent
source of information about the use of domains in semantics for programming
languages and in particular about the use of solutions of domain equations as
treated in this section. Peter Freyd based his axiomatic approach to domain
theory in the language of category theory on these developments (see [Freyd,
1991], [Freyd, 1992], [Barr, 1992]). He was the first to see how to treat the
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case of functors with mixed variance adequately by using a notion that unifies
algebras and coalgebras. A. Pitts has shown how to apply these ideas to domains
and how to use them to reason about induction and coinduction principles for
data types [Pitts, 1993; Pitts, 1994; Pitts, 1996].

There have been lots of papers dealing with solutions of domain equations
in categories slightly more general than categories of dcpos. Examples are
dcpo-enriched categories, categories in which the hom-sets are dcpos (see e.g.
[Edalat and Smyth, 1993a], [Adámek, 1997]).

An alternative approach to solving domain equations involves creating a
domain whose members consist of countably based pointed domains ordered by
inclusion and containing representatives of all countably based pointed domains
[Winskel and Larsen, 1984]. One then views the right side of a domain equation
as a continuous function on this domain and seeks the least fixed-point as a
solution of the equation. Here a domain equation is an equation and not equality
up to an isomorphism as in our approach.

IV-8 Powerdomains

Powerset constructions, for example the powerset of a set or the lattice of
closed sets of a topological space, play important roles in various mathematical
categories. In this section we examine some basic powerset constructions in
domain theory; the resulting domains are called powerdomains. They have been
important in the modeling of nondeterministic choice and of parallel processing
in theoretical computer science.

Recall that an algebra (or universal algebra) consists of a set together with
a family of finitary operations (functions from some finitary power of the set
into itself). The family of sizes or arities of the operations that one considers is
called the signature; for example, a group has signature consisting of a nullary
operation (the identity element), a unary operation (inversion), and a binary
operation (multiplication).

Definition IV-8.1. A directed complete partially ordered algebra, or dcpo-
algebra for short, is a dcpo that is also an algebra for which all the operations
are Scott-continuous (from the appropriate products endowed with the Scott
topology). A dcpo-morphism or homomorphism is a function between dcpo-
algebras of the same signature that is Scott-continuous and a homomorphism
for each of the corresponding operations. �

Given any variable set X and any signature �, there is a free (universal) alge-
bra over X , T�(X ), for the signature �, called the term algebra, consisting of
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expressions or terms that can be built up recursively from X by formally apply-
ing the various operations in the signature. Any map from X into a �-algebra
extends uniquely to an algebra homomorphism of T�(X ) into the algebra. A
family of dcpo-algebras with signature � is said to satisfy an equality τ1 = τ2

or an inequality τ1 ≤ τ2, where τ1 and τ2 are members of the term algebra, if
equality or inequality respectively holds for all homomorphic extensions of all
possible functions of X into members of the family. For a family of equalities
and inequalities E , we denote by DCPO(�, E) the category of dcpo-algebras
with signature � that satisfy all members of E .

Definition IV-8.2. Let X be a dcpo and let DCPO(�, E) be the category of
dcpo-algebras with signature � satisfying E . A pair (A, j) is the free algebra
over X with respect to DCPO(�, E) if A is an object of DCPO(�, E), j : X → A
is Scott-continuous, and any Scott-continuous map f : X → B, an object of
DCPO(�, E), extends uniquely to a dcpo-morphism h: A → B such that
hj = f . �

Free objects always exist. One method of establishing the general existence
is via the adjoint functor theorem. One ingredient that is needed is a com-
plete category DCPO(�, E) and a (forgetful) functor into DCPO that preserves
all limits. This follows from the fact that DCPO(�, E) is closed under prod-
ucts and equalizers, both defined as in the ordinary case. The other neces-
sary ingredient is that each dcpo can generate only some cardinal number
of (nonisomorphic) dcpo-algebras (sometimes called the solution set condi-
tion). We leave the discussion of this condition to Exercise IV-8.21. In the case
of the power domains that we consider, we shall seek concrete constructions
however.

We consider dcpo-algebras equipped with a binary operation, called formal
union and denoted by ,, that satisfies the commutative, associative, and idem-
potency laws (i.e., the equations x , y = y , x, x , (y , z) = (x , y) , z,
and x , x = x). Thus these dcpo-algebras are commutative idempotent semi-
groups, i.e., semilattices. We refer to them as dcpo-semilattices. Note that
the semilattice operation , is supposed to be Scott-continuous, but it is not
supposed that x , y is the least upper or the greatest lower bound of x and
y with respect to the order. These are two special cases that will be treated
first.

Throughout this section we adopt the notation

�

A :=
⋃
{ � x : x ∈ A} and �A :=

⋃
{ �x : x ∈ A}

for all nonempty A ⊆ L for L a domain.
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The Hoare powerdomain

The Hoare or lower power theory arises from adjoining to the three equations
for a dcpo-semilattice the additional inequality

x ≤ x , y

and considering the corresponding dcpo-algebras.

Definition IV-8.3. The objects of DCPO(�, E), where � consists of a single
binary operation , and E consists of the three equations for commutativity,
associativity, and idempotency together with the inequality x ≤ x , y, are
called inflationary semilattices. The free inflationary semilattice over a domain
L is called the Hoare or lower powerdomain of L and denoted by PH (L). �

Lemma IV-8.4. In an inflationary semilattice we have x , y = sup{x, y}.
Thus inflationary semilattices are dcpos that are (complete) sup semilattices
in the given order.

Proof: Let L be an inflationary semilattice. The binary operation (x, y) �→
x , y : L × L → L is Scott-continuous, hence order preserving. Thus if
x, y ∈ ↓z, x , y ≤ z , z = z. Since x ≤ x , y and y ≤ y , x = x , y
by hypothesis, it follows that x , y = x ∨ y, the least upper bound of x and
y. Since any arbitrary nonempty sup may be written as the directed sup of all
finite sups in the set, we conclude that L is a complete sup semilattice.

Conversely let L be a dcpo that is a sup semilattice. Then L is a complete sup
semilattice, as noted in the previous paragraph. Since only sup operations are
involved, one verifies directly that (x, y) �→ sup{x, y} : L × L → L is Scott
continuous, and thus x , y := sup{x, y} gives an inflationary semilattice. �

We turn now to the construction of inflationary semilattices with freeness
properties.

Proposition IV-8.5. Let X be a topological space, let (X ) denote the com-
plete sup semilattice of nonempty closed sets ordered by inclusion, and let
j : X → (X ) defined by j(x) = {x}− be the embedding of X into (X ).
If f : X → L is a continuous function into any inflationary semilattice L
(equipped with the Scott topology), then there exists a unique dcpo-morphism
h: (X ) → L such that h j = f .

Proof: By Lemma IV-8.4 x , y = x ∨ y = sup{x, y} in L . For any nonempty
closed subset A ∈ (X ), define h(A) = sup f (A) (the supremum exists by
Lemma IV-8.4). Since sup( f (A ∪ B)) = sup( f (A) ∪ f (B)) = sup( f (A)) ∨
sup( f (B)), f is a sup semilattice homomorphism. We establish the Scott
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continuity of f . Let D be a directed family of closed sets in (X ). Then
supD = (

⋃D)−, the closure of the union. Since f is a sup semilattice ho-
momorphism, it is order preserving, and thus b := sup{ f (D): D ∈ D} ≤
f (supD). Since f is continuous, f −1(↓b) = f −1({b}−) is a closed set con-
taining every D ∈ D. It follows that f −1(↓b) contains supD = (

⋃D)−. Thus
f (supD) ≤ sup{ f (D): D ∈ D}, and equality is established.

For any x ∈ X, hj(x) = h({x}−) = h(↓x) = sup f (↓x), where ↓x is taken
in the order of specialization. Since the continuous map f is monotone with
respect to the orders of specialization, it follows that sup f (↓x) = f (x), and
thus hj(x) = f (x). If g: (X ) → L is any other dcpo-morphism such that
g j = f , then g(↓F) = h(↓F) for all finite subsets F of X by the sup semilattice
homomorphism property of g, and then g = f by Scott continuity of both, since
every closed set is a directed supremum of all ↓F over its finite subsets. �

We can in particular restrict our attention to those spaces X that are dcpos or
domains equipped with the Scott topology and apply Proposition IV-8.5 in this
setting.

Corollary IV-8.6. Let L be a dcpo. Then the free inflationary semilattice over
L consists (up to isomorphism) of all nonempty Scott closed subsets with oper-
ation , given by binary union, order given by the standard inclusion relation,
and the embedding of L given by j(x) = ↓x.

Proof: Since the binary sup operation on any dcpo that is a sup semilattice is
always Scott-continuous in each coordinate, it is continuous for the Scott topo-
logy on the product. Hence the construction of the corollary yields an inflation-
ary semilattice. Its freeness follows from the preceding proposition. �

Corollary IV-8.7. If L is a domain, the Hoare powerdomain PH (L) is again
a domain. For nonempty sets A, B we have B− � A− iff there exists a finite
set F such that B ⊆ ↓F ⊆ �A. �

Proof: By II-1.14 the lattice of Scott open sets is a completely distributive
lattice, and thus the same applies to the Scott closed sets. In particular, the
lattice of Scott closed sets ordered by inclusion is a continuous lattice. Thus
throwing away the bottom element Ø still yields a domain. Suppose that there
exists a finite set F such that B ⊆ ↓F ⊆ �A. LetD be a directed family of Scott
closed sets such that the Scott closure of the union contains A− or equivalently
A. Let I = ⋃D; note I = ↓I . Let x be in the Scott closure of I . If z � x ,
then we must have z ∈ I , for otherwise

�

z is a Scott open set containing x
but missing I . Hence x = sup{z: z � x} is the sup of a directed subset of I .
Since each member of A is contained in the Scott closure of I , it follows that
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each member of F is in I , and hence that F ⊆ D for some D ∈ D, since D is
directed. Thus B ⊆ ↓F ⊆ D, and thus B− ⊆ D. This establishes B− � A−.
Since A− is the directed supremum of all ↓F , F finite, F ⊆ �A, the converse
also follows. �

The Smyth powerdomain

The Smyth or upper power theory arises from adjoining to the three equations
for a dcpo-semilattice the additional inequality

x ≥ x , y

and considering the corresponding dcpo-algebras.

Definition IV-8.8. The objects of DCPO(�, E), where � consists of a single
binary operation , and E consists of the three equations for commutativity,
associativity, and idempotency together with the inequality x ≥ x,y, are called
deflationary semilattices. The free deflationary semilattice over a domain L is
called the Smyth or upper powerdomain of L and denoted by PS(L). �

Lemma IV-8.9. In a deflationary semilattice we have x , y = inf{x, y}. Thus
deflationary semilattices are dcpos that are meet continuous inf semilattices in
the given order equipped with the binary operation of meet.

Proof: Let L be a deflationary semilattice. The binary operation (x, y) �→
x , y : L × L → L is Scott-continuous, hence order preserving. Thus if
x, y ∈ ↑z, x , y ≥ z , z = z. Since x ≥ x , y and y ≥ y , x = x , y by
hypothesis, it follows that x, y = inf{x, y}. Since (x, y) �→ x, y : L×L → L
is Scott-continuous, it follows directly that L is a meet continuous semilattice.

Conversely let L be a dcpo that is a meet continuous semilattice in its given
order. Then the meet operation is Scott-continuous in each coordinate, and
hence Scott-continuous on the product endowed with the Scott topology. Thus
L equipped with the binary meet operation is a deflationary semilattice. �

Theorem IV-8.10. The Smyth powerdomain over a domain L may be realized
as the set Q∗(L) of nonempty subsets of L that are compact and saturated in
the Scott topology ordered by reverse inclusion. The embedding j of L into
Q∗(L) is given by j(x) = ↑x.

Proof: Since L equipped with its Scott topology is locally compact and sober
(II-1.13), by II-1.22 the set Q∗(L) of all nonempty compact saturated sets
ordered by reverse inclusion is a continuous semilattice, hence meet continuous
(with binary operation (K1, K2) �→ K1 ∪ K2). Thus for , = ∪, Q∗(L) is a
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deflationary semilattice by Lemma IV-8.9 and a domain. It is straightforward
to see that j(x) = ↑x is a Scott-continuous embedding of L into Q∗(L).

Let f : L → S be a Scott-continuous map, where S is a deflationary semi-
lattice. By Lemma IV-8.9 the binary operation in S is the meet operation with
respect to its order. Let K ∈ Q∗(L). We define h(K ) as follows. Consider the
set DK = {y ∈ S : K ⊆ intσ f −1(↑y)}. Clearly each member of DK is a lower
bound for f (K ). Let y1, y2 ∈ DK and set U = intσ f −1(↑y1) ∩ intσ f −1(↑y2),
a Scott open set containing K . For each x ∈ K pick zx � x, zx ∈ U . Then
finitely many of the

�

zx cover K , say K ⊆ �

z1 ∪ · · · ∪

�

zn . Since y1 ≤ f (zi )
for each i , we have y1 ≤ w := inf{ f (zi ): 1 ≤ i ≤ n}. Similarly y2 ≤ w.
It follows from the definition of w that w ∈ DK , and we conclude that DK

is directed. Hence b = sup DK exists. Since each member of DK is a lower
bound for f (K ), we conclude that b is a lower bound for f (K ). We define
h(K ) = b = sup DK .

Since for J, K ∈ Q∗(L), J ⊆ K implies DJ ⊇ DK , we conclude that h is
monotone. Hence h(J ∪ K ) ≤ h(J )h(K ) for any J, K ∈ Q∗(L). Conversely
if y ∈ DJ and z ∈ DK , then it follows easily that yz ∈ DJ∪K . Since by
meet continuity of S, we have that h(J )h(K ) is the directed sup of all yz, y ∈
DJ , z ∈ DK , we conclude that h(J )h(K ) ≤ h(J ∪ K ). Thus h is a semilattice
homomorphism.

We next establish Scott continuity of h. Let K be a filtered family in Q∗(L)
with intersection J . For each y ∈ DJ , f −1(↑y) contains J in its Scott interior.
By II-1.21 there exists some K ∈ K such that K is contained in the Scott interior
of f −1(↑y), and thus h(K ) ≥ y. It follows that sup{h(K ): K ∈ K} ≥ h(J ); the
other inequality follows from monotonicity.

Let x ∈ L . Then hj(x) = sup D↑x . Since for each z � x, f (z) is in D↑x , we
conclude from the Scott continuity of f that f (x) ≤ hj(x). On the other hand,
since each member of D↑x is less than or equal to f (x), we have hj(x) = f (x).
Let g: Q∗(X ) → S be another morphism of deflationary semilattices such that
g j = f . Then g agrees with f on j(L), hence on the semilattice of all finitely
generated upper sets, and hence on its Scott closure Q∗(L) (see III-5.7). �

The Plotkin powerdomain

The Plotkin or convex power theory arises from considering the dcpo-algebras
corresponding to the three equations for a dcpo-semilattice.

Definition IV-8.11. The objects of DCPO (�, E), where � consists of a sin-
gle binary operation , and E consists of the three equations for commuta-
tivity, associativity, and idempotency, are called dcpo-semilattices. The free
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dcpo-semilattice over a domain L is called the Plotkin powerdomain of L and
denoted by PP (L). �

There is a general construction via rounded ideal completions (see III-4.15,
III-4.17) for obtaining the free dcpo-algebra over any domain L with respect
to DCPO(�, E) for any signature � and set of equalities and inequalities E .
We illustrate this technique for the case of the Plotkin powerdomain, i.e., the
case that � is a binary operation and E consists of the three equations for the
associative, commutative, and idempotent laws.

Let L be a domain and let B be a basis for L . We implement the associativity
law, which allows us to drop all parentheses in the term algebra over B, so that
it reduces to the free semigroup of all finite strings that can be formed from the
alphabet B with operation juxtaposition. For any stringw = b1 . . . bn we define
its alphabet by α(w) = {b1, . . . ,bn}, the set of letters appearing in w. Note that
α is a function into the set F B of nonempty finite subsets of B. We say that
two strings w1 and w2 are equivalent, written w1 ∼ w2, if α(w1) = α(w2).
This is equivalent to saying that the two strings can be transformed one to the
other by using the substitutions xy = yx and xx = x , the other two laws of E .
Since the set of finite strings equipped with the operation of juxtaposition gives
the free semigroup over B, the congruence classes with respect to ∼ give the
free semilattice. These classes may be identified with their images under α,
the semigroup of finite subsets of B with operation union. We define a relation
� on the set of strings by a1 . . . an � b1 . . . bn if ai � bi for i = 1, . . . , n.
Note that since B is a basis of a domain and hence satisfies the interpolation
property, if wi � w for i = 1, 2 then there exists w′ such that wi � w′ � w,
again for i = 1, 2.

We define a relation ≺ on the set of nonempty finite subsets F B of B by
F1 ≺ F2 if there exist strings w1, w2 such that w1 � w2, α(w1) = F1, and
α(w2) = F2. This implies that F1 ⊆ �F2 and F2 ⊆

�

F1. Conversely assume
the latter containments hold for F1 = {b1, . . . ,bm} and F2 = {a1, . . . ,an}. For
each bi , choose âi ∈ F2 such that bi � âi and for each ai , choose b̂i ∈ F1 such
that b̂i � ai . Then for w = b1 . . . bmb̂1 . . . b̂n and w′ = â1 . . . âma1 . . . an we
have that w � w′ and α(w) = F1, α(w′) = F2. Thus

F1 ≺ F2 iff F1 ⊆ �F2 and F2 ⊆

�

F1.

We use the last characterization to show that ≺ satisfies the appropriate
interpolation property and is transitive. Suppose that F1, . . . ,Fn ≺ F . By the
interpolation property of B, for each ai ∈ F , pick bi ∈ B such that bi � ai and
c � bi for each c ∈ (F1 ∪ · · · ∪ Fn)∩ �ai . Set F ′ equal to the set consisting of
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all the bi . Then it is straightforward to verify that F1, . . . ,Fn ≺ F ′ ≺ F . The
transitivity of ≺ is straightforward to verify.

Thus ≺ is a transitive relation on the set FB of nonempty finite subsets of
B that satisfies the finite interpolation property of Definition III-4.15. We may
thus take the rounded ideal completion RId F B of (F B,≺) (see III-4.15 and
III-4.17); by III-4.17 RId F B is a domain. We have a map j : F B → RId F B
given by j(F) = {G ∈ F B : G ≺ F} and a related map i : L → RId F B given
by i(x) = {F ∈ F B : F ≺ {y} for some y ∈ B, y � x}.

We wish to establish that i : L → RId F B can be identified with the Plotkin
powerdomain. First we need a semilattice operation on RId F B. For two
rounded ideals I1, I2, we define

I1 , I2 = {F : F ≺ F1 ∪ F2 for some F1 ∈ I1, F2 ∈ I2}.
If F1 ≺ G1 and F2 ≺ G2, then one sees directly that F1 ∪ F2 ≺ G1 ∪ G2. It
follows that I1, I2 is a rounded ideal that contains F1∪F2 for each F1 ∈ I1, F2 ∈
I2. Using the fact that directed sups are unions in RId F B, one obtains in a
straightforward fashion that RId F B is a dcpo-semilattice (i.e., the appropriate
Scott continuity of the operation holds). Finally note that G ≺ F1 ∪ F2 iff
G = G1 ∪ G2 for Gi = �Fi ∩ G, and Gi ≺ Fi for i = 1, 2. From this
observation it follows that j(F1∪ F2) = j(F1), j(F2), i.e., j : F B → RId F B
is a semilattice homomorphism.

We establish the universal property. Let f : L → A be a Scott-continuous
map into a dcpo-semilattice A. For any string w = b1 . . . bn , we set ξ (w) =
f (b1),· · ·, f (bn). Since f and the operation, in A are both order preserving,
w � w′ implies ξ (w) ≤ (w′). Since the set of finite subsets under union is
the free semilattice on the set L , there exists a unique homomorphism f̂ from
(F B,∪) to A given by f̂ ({b1, . . . ,bn}) = f̂ (b1) , · · · , f (bn) that extends
f | B. Since (A,,) is a semilattice, it follows that ξ = f̂ ◦ α. Thus if F ≺ G,
then F = α(w) and G = α(w′) for some w � w′, and hence f̂ (F) = ξ (w) ≤
ξ (w′) = f̂ (G). It follows that the image under f̂ of any rounded ideal of F B is
a directed subset of A, and hence we may define ψ(I ) for any I ∈ RId (F B)
by ψ(I ) = sup{ f̂ (F): F ∈ I }. It now follows directly from the calculations of
the preceding paragraph and the Scott continuity of the operation , in A that
ψ is a semilattice homomorphism. That it is Scott-continuous follows from the
fact that the sup of the union of a family of increasingly larger directed sets is
the directed sup of the set of sups of each member of the family.

Finally we establish the extension and uniqueness property of ψ . Let x ∈ L .
We considerψ(i(x)). By definition of i(x), we have for F ∈ i(x) that there exists
b ∈ B ∩ �x such that F ≺ {b} and thus f̂ (F) ≤ f̂ ({b}) = f (b) ≤ f (x); we
conclude that ψ(i(x)) ≤ f (x). Conversely for b ∈ B with b � x , there exists
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c ∈ B such that b � c � x . Then {b} ≺ {c} implies f̂ ({b}) = f (b) ≤ ψ(i(x)).
Since f is Scott-continuous and x = sup{b ∈ B : b � x}, a directed sup, we
have f (x) ≤ ψ(i(x)). Thusψ(i(x)) = f (x). It follows that for F = {b1, . . . ,bn}
(since ξ and j are semilattice homomorphisms)

ξ ( j(F)) = ξ ( j(b1)) , · · · , ξ ( j(bn)) = f (b1) , · · · , f (bn).

Thus ξ is uniquely determined from f on j(F B). Since ξ is Scott-continuous
and since j(F B) is a basis for RId F B (III-4.17), we conclude that ξ is uniquely
determined.

We have thus verified in the preceding the validity of the following construc-
tion for the Plotkin powerdomain.

Construction IV-8.12. Let L be a domain with basis B. Let F B denote the
set of nonempty finite sets equipped with the transitive relation ≺ defined by
F1 ≺ F2 iff F1 ⊆ �F2 and F2 ⊆

�
F1. Then (F B,≺) satisfies the finite interpo-

lation property, and hence the rounded ideal completion RId F B is a domain.
The domain RId F B becomes the free dcpo-semilattice, i.e., the Plotkin pow-
erdomain, when equipped with the operation

I1 , I2 = {F : F ≺ F1 ∪ F2 for some F1 ∈ I1, F2 ∈ I2}.
The map i : L → RId F B is given by i(x) = {F ∈ F B : F ≺ {y} for some
y ∈ B, y � x}. �

We turn now to more concrete realizations of the Plotkin power domain.

Proposition IV-8.13. Let L be a domain equipped with the Scott topology,
and let A, B be nonempty subsets. If A and B are compact, then the following
are equivalent:

(1) ↑B � ↑A in Q∗(L) = PS(L);
(2) A ⊆ intσ (↑B);
(3) A ⊆ �

B.

Similarly if A, B are nonempty, then the following are equivalent:

(1′) B− � A− in PH (L);
(2′) B ⊆ ↓F ⊆ �A for some finite F.

For a finite subset F and any compact G, we have (↓F,↑F) � (G−,↑G) in
PH (L) × PS (L) iff F ≺ G, i.e., F ⊆ �G and G ⊆ �

F.

Proof: The equivalence of (1) and (2) follows from I-1.24.2(ii), II-1.21, and
II-1.13. If A ⊆ �

B = ⋃{ � b: b ∈ B}, then A ⊆ intσ (↑B) since each

�

b is
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open (II-1.10). Conversely suppose that A ⊆ intσ (↑B). Then for each a ∈ A,
there exists y � a such that y ∈ intσ (↑B), since a is the directed sup of �a.
Thus a ∈ �

B, since b ≤ y for some b ∈ B. The equivalence of (1′) and (2′)
follows from Corollary IV-8.7.

The last assertion follows from the previous ones and the fact that the
relation� in PH (L)×PS(L) is the product of the� relation in the components.

�

By Construction IV-8.12 we may identify the Plotkin powerdomain with the
rounded ideal completion RId F B for a domain L with basis B. The map f (x) =
(↓x,↑x): L → PH (L)× PS(L) extends (by freeness) to a continuous semilat-
tice homomorphism ψ from the Plotkin powerdomain, since PH (L) × PS(L)
is a dcpo-semilattice. By the construction outlined above, this homomorphism
carries a rounded ideal I of (F B,≺) to the directed sup over all images f̂ (F) =
(↓F,↑F), F ∈ I . By the preceding proposition the collection {(↓F,↑F): F ∈
I } is a�-rounded ideal in f̂ (F B) and the assignment I → {(↓F,↑F): F ∈ I }
is an order isomorphism between RId F B and RId f̂ (F B). By a mild extension
of Exercise III-4.16 (see Exercise IV-8.25 below), we have that RId f̂ (F B) may
be identified with the smallest directed complete subset of PH (L)×PS(L) con-
taining all (↓F,↑F), F ∈ F B. We have thus established the following result.

Theorem IV-8.14. Let L be a domain with basis B. We may identify PP (L)
with the dcpo-subsemilattice of PH (L)×PS(L) consisting of all directed sups
taken from {(↓F,↑F): F is a finite subset of B}. The inclusion is given by
x �→ (↓x,↑x) : L �→ PP (L). �

Remark. Note that since PP (L) is a dcpo-subsemilattice of PH (L)× PS(L)
containing all (↓x,↑x), x ∈ L , it must also contain their semilattice products,
namely all (↓F,↑F), F a nonempty finite subset of L , and hence the set consist-
ing of all directed sups of these. By the preceding theorem (applied to L = B),
the latter set is PP (L).

We wish to identify both some sufficient and some necessary conditions for
a pair (A, B) ∈ PH (L) × PS(L) to be in PP (L).

Definition IV-8.15. Let L be a domain equipped with the Scott topology.
A nonempty subset A is a lens if A can be written as the intersection of a
closed set and a compact saturated set. A lens A = C ∩ K has a canonical
representation of the form A− ∩↑A (since A ⊆ A− ∩↑A ⊆ C ∩K = A); note
that ↑A is compact since A is. A pair (C, K ) ∈ PH (L)× PS(L) is called a lens
factorization if C = A− and K = ↑A for some lens A; it is then immediate
that A = C ∩ K and C ∩ K is the canonical representation of A. We denote
by Lens L the set of all lenses of L ordered by the topological Egli–Milner
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order: A ≤ B iff A ⊆ B− and B ⊆ ↑A. (The usual Egli–Milner order is given
by A ≤ B if A ⊆ ↓B and B ⊆ ↑A.) �

Remark. For any nonempty compact set A, (A−,↑A) is a lens factorization
for the lens A− ∩ ↑A, and the latter is the smallest lens containing A. �

Remark IV-8.16. We can embed Lens L into PH (L) × PS(L) by sending A
to (A−,↑A). Since A = A− ∩↑A, the function is injective. We have A− ≤ B−

in PH (L) iff A− ⊆ B− iff A ⊆ B−. Similarly ↑A ≤ ↑B ∈ PS(L) iff B ⊆ ↑A
(since the order is reverse inclusion). Thus the embedding A �→ (A−,↑A) is an
order isomorphism between Lens L equipped with the topological Egli–Milner
order and the set of pairs in PH (L)×PS(L) that are lens factorizations equipped
with the relative order. �

We show that lens factorizations are closely related to members of the Plotkin
powerdomain.

Proposition IV-8.17. For a domain L endowed with the Scott topology, if A is
a lens, then the lens factorization (A−,↑A) is in PP (L). Conversely if (C, D) ∈
PP (L), then C ∩ D is a lens and D = ↑(C ∩ D). Furthermore if L is coherent
(i.e., the intersection of any two compact saturated sets is again compact), then
C = ↓(C ∩ D) and if L is countably based, then C = (C ∩ D)−.

Proof: For any lens A, consider IA = {F ∈ FL : F ≺ A}. If F,G ≺ A, then
↑A is contained in the Scott open set U = �

F ∩ �

G. For each x ∈ A, pick
yx � x such that yx ∈ U . Then finitely many

�

yx , say y1, . . . ,yn , cover A.
We augment the set {y1, . . . ,yn} by adjoining for each x ∈ F ∪ G an element
zx ∈ U such that x � zx � a for some a ∈ A (this utilizes the fact that
F,G ⊆ �A). If H consists of all yi , i = 1, . . . ,n, and all {zx : x ∈ F ∪ G},
then H is finite and F,G ≺ H ≺ A. Thus IA is a rounded ideal (clearly it is
lower closed under ≺).

The argument of the preceding paragraph allows us to construct within any
Scott open set U containing ↑A a finite set H ≺ A such that H ⊆ U . We
conclude that ↑A = ⋂{↑F : F ∈ FL, F ≺ A}, a filtered intersection. Since
we can augment any F ≺ A with any finite set of points out of �A and get
a new set in IA, we conclude also that A− is equal to the Scott closure of
⋃{↓F : F ∈ FL, F ≺ A} = �A, where the union is a directed union. Thus
(A−,↑A) is the directed sup of {(↓F,↑F) : F ∈ IA} in PH (L) × PS(L). This
shows for any lens A that (A−,↑A) is in PP (L).

Conversely suppose that {(↓F,↑F) : F finite, F ∈ I } is a �-directed set in
PP (L) with sup (C, D), where C is the closure of

⋃{↓F : F ∈ I } and D =
⋂{↑F : F ∈ I }. Applying II-1.22 and II-1.12 to the domain C , we conclude that
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the filtered intersection
⋂{↑F ∩ C : F ∈ I } = C∩D is compact and nonempty.

Similarly for any y ∈ D, applying II-1.22 to the domain C ∩ ↓y, we conclude
that the filtered intersection

⋂{↑F ∩ C ∩ ↓y : F ∈ I } = C ∩ D ∩ ↓y
is compact and nonempty. Thus y ∈ ↑(C ∩D). Hence D ⊆ ↑(C ∩D) ⊆ ↑D =
D, so D = ↑(C ∩ D).

Suppose now that L is coherent. Let E be a directed set in ↓(C ∩ D). The
{↑e ∩ D : e ∈ E} is a filtered family of compact saturated sets (by coherence)
and hence {↑e ∩ C ∩ D: e ∈ E} is a filtered family of nonempty compact sets
in the domain C . Applying II-1.22 and II-1.12 to the domain C , we conclude
that there exists x ∈⋂{↑e ∩ C ∩ D: e ∈ E}, and thus sup E ≤ x ∈ C ∩ D. It
follows from this argument that ↓(C ∩ D) is closed.

Let y ∈ C and let z � y. Then since C is the closure of the set
⋃{↑F : F ∈ I },

we conclude that some F ∈ I meets the open set

�

z. Hence for all G ∈ I beyond
F , we have ↑z ∩ G �= Ø and hence ↑z ∩ ↑G ∩ C is a nonempty saturated
subset of C which is compact (since C is closed and ↑z ∩ ↑G is compact by
coherence). Applying II-1.22 again to the filtered collection ↑z ∩ G ∩ C , we
conclude that there exists w ∈ ↑z ∩ C ∩ D, i.e., z ∈ ↓(C ∩ D). Since z
was arbitrary in �y, we conclude that y ∈ (C ∩ D)− = ↓(C ∩ D), by the
previous paragraph. Thus C ⊆ ↓(C ∩ D), and the reverse containment always
holds.

Finally suppose that L has a countable basis B I. Assume that (C, D) ∈
PP (L). By Theorem IV-8.14 (C, D) is the supremum of a directed set of
(↓F,↑F), where each F is a finite subset of B. Since F B is countable, the
directed set will be countable. Thus we can inductively pick a countable chain
F1 ≤ F2 ≤ · · · in the directed set that is cofinal in the directed set, and hence
has supremum (C, D). As in the preceding paragraph, let y ∈ C, z � y, and
pick Fn such that z ≤ xn for some xn ∈ Fn . Since Fn ≤ Fn+1 ≤ · · · , we induc-
tively choose xn+k ∈ Fn+k such that {xn+k : k ≥ 0} is an increasing chain in C .
Thus the supremum x of the chain is in C ∩⋂{↑Fn+k : k ≥ 0} = C ∩ D. We
conclude that z ∈ ↓(C∩D), and since z was arbitrary in �y, that y ∈ (C∩D)−.

�

Theorem IV-8.18. Let L be a domain equipped with the Scott topology. If L is
coherent, resp. countably based, then the Plotkin powerdomain PP (L) may be
identified with Lens L equipped with the Egli–Milner order, resp. topological
Egli–Milner order, the embedding x �→ {x} : L → Lens L, and semilattice
operation A, B = ↓(A∪ B) ∩↑(A∪ B) resp. A, B = (A∪ B)− ∩↑(A∪ B).

Proof: If follows from the preceding proposition IV-8.17 that (C, D) �→ C ∩
D : PP (L) → Lens L is a bijection with inverse A �→ (↓A,↑A) (resp.
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A �→ (A−,↑A)). It follows from Remark IV-8.16 that it is then an order iso-
morphism with respect to the topological Egli–Milner order, which collapses
to the Egli–Milner order by IV-8.17 if L is coherent. Since the semilattice
operation in PP (L) is set-theoretic union in both coordinates, one verifies by
direct computation that the given bijection is a semilattice homomorphism from
Lens L equipped with the semilattice operation given in the statement of the
theorem to PP (L). Finally the embedding x �→ {x} is clearly the composition
x �→ (↓x,↑x) �→ ↓x ∩ ↑x . �

We close this section with some remarks on the functorial properties of the
powerdomain constructions for P∗ ∈ {PH ,PS,PP}, which we now view as
functors from the category ofdcpos and Scott-continuous maps to the categories
of dcpo-algebras that are inflationary semilattices, deflationary semilattices or
semilattices. For f : L �→ M in DCPO, the freeness of the construction gives
rise to f ∗ = P∗( f ) : P∗(L) → P∗(M) such that

Indeed, as was remarked at the beginning of this section and as one can easily
see from the freeness, P∗ is the adjoint functor to the forgetful functor from
dcpo-algebras to dcpos.

Proposition IV-8.19. The functors PH , PS, PP are locally continuous and
hence pro-continuous functors when restricted to DCPOG.

Proof: Suppose that f ≤ g : L �→ M . Then by commutativity of the above
diagram one sees that f ∗ = P∗( f ) ≤ g∗ = P∗(g) at all points of jL (L). By the
Scott continuity of the semilattice operations on P∗(L) and P∗(M) and the fact
f ∗ and g∗ are Scott-continuous homomorphisms, one sees directly that the set
of elements of P∗(L) where f ∗ ≤ g∗ is a subalgebra of L closed under directed
sups and containing the generating set jL (L), and hence must be all of L . A
similar argument yields that if f : L �→ M is the directed (and hence pointwise)
sup of a family { fα}, then the set of points in P∗(L), where f ∗ is the pointwise
sup of the f ∗α is a subalgebra closed under directed sups and containing the
generating set. Thus f �→ P∗( f ) is Scott-continuous, and the functor is locally
continuous. The last assertion follows from Theorem IV-5.5.
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Exercises

Exercise IV-8.20. Let X be a nonempty subset of a dcpo L , and let Y be the
smallest subset of L containing X that is closed with respect to taking directed
sups, i.e., is a subdcpo. Show that the cardinality of Y is less than or equal to
the cardinality 2|X | of the powerset of X .

Hint. Let Z be the set of all existing suprema over all subsets of X . Observe
that Z contains X and is closed with respect to taking sups of any of its subsets
that exist, in particular directed subsets, and hence must contain Y . Thus the
cardinality of Y is bounded by that of Z , which in turn is bounded by 2|X |. �

Exercise IV-8.21. Let X be a dcpo and let DCPO(�, E) be the category of
dcpo-algebras with signature � satisfying E . A pair (A, j) is a dcpo-algebra
generated by X with respect to DCPO (�, E) if A is an object of DCPO
(�, E), j : X → A is Scott-continuous, and there is no proper dcpo-subalgebra
of A containing j(X ). Two such are isomorphic if there is an order and algebra
isomorphism between them commuting with the respective embeddings of X .
Show that one can pick a set of representatives of all isomorphism classes of
dcpo-algebras generated by X of bounded cardinality.

Hint. Given a dcpo X and a continuous map j : X → A, then the dcpo-
subalgebra generated by j(X ) is constructed in two stages. First let F be the
ordinary subalgebra of A which is generated (algebraically) from j(X ). Its
cardinality is bounded by an expression depending on the cardinality of X and
the cardinality of the number of operations. Then let F̄ denote the smallest
subset of A containing F closed under directed sups. Because the operations on
A are Scott-continuous, F̄ remains a subalgebra, so is a dcpo-subalgebra, the
smallest contining j(X ). By the previous exercise its cardinality is bounded by
2|F |. Thus there is some cardinal bounding the cardinality of all dcpo-algebras
generated by X . Standard arguments then finish the exercise. �

For algebraic domains it is convenient to have descriptions of the powerdomains
that can be carried out at the level of the compact elements.

Exercise IV-8.22. Let A be an algebraic domain with poset of compact
elements K (A).

(i) If M is a nonempty lower set of A, show that its Scott closure is obtained
by adding on the suprema of all directed sets (or ideals) contained in M .

(ii) Order the set (A) of all nonempty Scott closed lower sets by inclusion.
Show that the compact elements of (A) are precisely sets of the form
↓F , where F is a finite subset of compact elements.
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(iii) Order the set of finite antichains of K (A) by the Hoare order: F1 ≤ F2

iff F1 ⊆ ↓(F2). Show that the mapping F �→ ↓F is an order
isomorphism from the Hoare ordered poset of finite antichains onto the
compact elements of (A). Conclude (using IV-8.6) that PH (A) can be
realized as the ideal completion of the Hoare ordered poset of finite
antichains of A. �

Exercise IV-8.23. Let A be an algebraic domain with poset of compact ele-
ments K (A).

(i) If K is a nonempty compact saturated set and U is a Scott open set
containing K , show that there exists a finite set F ⊆ K (A) such that
K ⊆ ↑F ⊆ U . Conclude that K is the filtered intersection of all ↑F, F
finite and contained in K (A).

(ii) Show that A ∈ PS(A) is a compact element iff A = ↑F for some finite
set F ⊆ K (A).

(iii) Order the set of finite antichains of K (A) by the Smyth order: F1 ≤ F2

iff F2 ⊆ ↑(F1). Show that the mapping F �→ ↑F is an order
isomorphism from the Smyth ordered poset of finite antichains onto the
compact elements of Q∗(A). Conclude (using IV- 8.10) that PS(A) can be
realized as the ideal completion of the Smyth ordered poset of finite
antichains of A. �

Exercise IV-8.24. Let L be an algebraic domain with poset of compact ele-
ments K (L).

(i) Deduce from IV-8.14 that every (C, D) ∈ PP (L) ⊆ PH (L)× PS(L) is the
directed sup of the collection {(↓F,↑F): F finite, F ⊆ C ∩ K (L),
D ⊆ ↑F}.

(ii) Show that the compact elements of PP (L) are precisely those of the form
(↓F,↑F) for F finite contained in K (L). (Note that the compactness of
these elements follows from the preceding two exercises.)

(iii) Call a nonempty finite subset of L an extreme set if it can be written as
the union of two antichains. Order the set of extreme sets of K (L) by the
Egli–Milner order: F1 ≤ F2 iff F2 ⊆ ↑F1 and F1 ⊆ ↓F2. Show that the
mapping F �→ (↓F,↑F) is an order isomorphism from the Egli–Milner
ordered poset of finite extreme sets onto the compact elements of PP (L).
Conclude that PP (A) can be realized as the ideal completion of the
Egli–Milner ordered poset of extreme sets of L.

Hint. Observe that the inverse mapping in part (iii) sends (↓F,↑F) to the
union of the maximal and minimal elements of F , which is the union of two
antichains. �
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Exercise IV-8.25. Let L be a dcpo and let B be a nonempty subset of L such
that b is the directed sup of �b ∩ B for each b ∈ B. Show that (B,�) is an
abstract basis and I �→ sup I : RId B → M is an order isomorphism of
domains, where M is the smallest subset of L containing B that is closed under
directed sups.

Hint. Define M to be the image of the map I �→ sup I from RId B; by
hypothesis B ⊆ M . Let D be a directed set in M , and pick a rounded ideal Id

for each d ∈ D such that d = sup Id . Using the roundedness of the ideals, one
sees that

⋃
d∈D Id is again a rounded ideal, and one also sees directly that its

sup is sup D. Thus M is closed under directed sups. It is clearly the smallest
such set containing B. Since I �→ sup I has image M , it follows that B is a
basis for M . The exercise now follows by applying Exercise III-4.16. �

Exercise IV-8.26. Show that, if L is a countably based domain, then so are the
Hoare, Smyth, and Plotkin powerdomains.

Hint. Bases for these powerdomains can be constructed using the finite subsets
of a given basis in L . �

New notes

Powerdomains are domain-theoretic versions of powersets in set theory and of
hyperspaces in topology. Our approach has been to consider them first as free
dcpo-algebras in certain equational theories (which also include inequalities)
and then derive them as concrete objects represented by certain subsets of the
domain. This free algebra approach was originally suggested in [Hennessy and
Plotkin, 1979]. However, there are certainly other interesting powerdomains
that have arisen by considering directly certain subsets of domains that again
form a domain or other constructions; see, for example, the work of R. Heck-
mann [Heckmann, 1991a; Heckmann, 1991b; Heckmann, 1992a; Heckmann,
1992b; Heckmann, 1993a; Heckmann, 1993b]. One approach of Heckmann is
to define abstractly what constitutes a powerdomain construction and build a
theory upon the definition. Powerdomain theory can also be treated via domain
theory in logical form; see, for example, Section 7.3 of [Abramsky and Jung,
1994].

IV-9 The Extended Probabilistic Power Domain

The extended probabilistic powerdomain may be viewed as a domain analogue
of the space of regular Borel measures on a topological space that, among other
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things, provides a constructive framework for measure theory. One feature that
distinguishes it from classical measure theory is its order theoretic structure.
The principal goal of this section is to derive its existence. In our approach we
replace measures by their “skeletons”, valuations. We begin with their study.

We first consider a lattice of subsets of a given set X , a collection that is
closed under finite unions and intersections and contains the empty set.

Definition IV-9.1. A valuation (on L) is a function µ: L → [0,∞] from a
lattice of subsets L of X to the additive semigroup [0,∞] (with ∞+ t = ∞ =
t +∞) that is

(i) strict – µ(Ø) = 0;
(ii) monotone – V ⊆ U implies µ(V ) ≤ µ(U );

(iii) modular – µ(U ) + µ(V ) = µ(U ∪ V ) + µ(U ∩ V ).

Property (iii) is also called the inclusion–exclusion principle. The valuation is
called finite if µ(L) ⊆ [0,∞). �

Clearly, modularity together with strictness implies that a valuation is finitely
additive:

µ(U + V ) = µ(U ) + µ(V ) whenever U ∩ V = Ø.

Conversely let R be a Boolean ring of sets (or ring of sets for short), i.e., a
lattice of subsets of the powerset of X closed under relative complements:

U, V ∈ R⇒ U\V ∈ R.

Every strict and finitely additive function ν: R → [0,∞] is a valuation; such
functions are called finitely additive measures.

Given a lattice L of subsets of X , there is a smallest ring of sets containing L:

Lemma IV-9.2. Let L be a lattice of subsets of X.

(i) The ring R(L) generated by the lattice L consists of all finite unions

R =
n⋃

i=1

(Ui\Vi ) , with Ui , Vi ∈ L for i = 1, . . . ,n.

Moreover, one may suppose that Vi ⊆ Ui for each i and that the sets
Ui\Vi are pairwise disjoint.

(ii) If L contains X as a member, then the collection of subsets
U\V,U, V ∈ L, forms a semialgebra, that is, a collection closed under
finite intersection, and the complement of any member is a disjoint union
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of finitely many members of the family. In this case the ring of sets is an
algebra (closed under finite unions, finite intersections, and complements).

Proof: The (straightforward and standard) proof we leave to the reader (see
Exercise IV-9.26). �

It is a standard result, sometimes called the Smiley–Horn–Tarski Theorem, that
a finite valuation on L extends uniquely to a finitely additive measure on the
ring of sets R(L).

Proposition IV-9.3. Let L be a lattice of subsets of X, and let µ be a finite
valuation on L. Then µ has a unique extension to a finitely additive finite
measure on the ring of subsets generated by L.

Proof: We proceed with the extension in stages. First consider a set that can be
represented in the form U\V for U, V ∈ L, V ⊆ U . We then define µ̂(U\V ) =
µ(U ) − µ(V ). Suppose that U\V = U1\V1, where U ⊆ U1, V ⊆ V1. Then
U ∪ V1 = U1 and U ∩ V1 = V and by modularity

µ(U1) + µ(V ) = µ(U ∪ V1) + µ(U ∩ V1) = µ(U ) + µ(V1),

and thus µ(U1) − µ(V1) = µ(U ) − µ(V ). Thus µ̂(U\V ) is well defined in
this case. In general for U ′\V ′ = U\V , note by the argument just given that
µ(U ′) − µ(V ′) = µ(U1) − µ(V1) = µ(U ) − µ(V ) for U1 = U ∪ U ′ and
V1 = V ∪ V ′. As we want µ̂ to be additive and U is the disjoint union of V and
U\V , note that our choice of µ̂ in this case is the only one possible.

We next consider the case that the lattice L is finite. In this case for each
x ∈ ⋃L, define Ux =

⋂{U ∈ L : x ∈ U }, Vx =
⋃{V ∈ L : x /∈ V } and

Ax = Ux\Vx . We note that Ax is the equivalence class of x with respect to
the relation x ∼ y iff x ∈ U ⇔ y ∈ U for all U ∈ L, that these equivalence
classes partition all members of L , and that R(L) consists of all, necessarily
disjoint, unions of these equivalence classes. (In lattice language the Ax form the
atoms of the Boolean ring R(L).) By the preceding paragraph µ̂ is (uniquely)
defined on all Ax by µ̂(Ux\Vx ) = µ(Ux ) − µ(Ux ∩ Vx ). There is then only
one possible way to extend µ̂ to all of R(L) so that it is additive: namely
µ̂(A) = ∑{µ̂(Ax ): Ax ⊆ A}, where the empty sum is taken to be 0. This
clearly defines a finitely additive finite measure on R(L).

We show by induction on the number of equivalence classes contained in
U ∈ L that µ̂(U ) = µ(U ) on members ofL. If U contains 0 equivalence classes,
then U = Ø, which has value 0 for µ and µ̂. Suppose the equality is true for
n < k+1 and that U contains k+1 equivalence classes. If U = V ∪W , where
V,W ∈ L have strictly fewer equivalence classes, then the inductive hypothesis
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and the modularity yield the result. Otherwise there is a largest proper subset
V ∈ L of U . It follows that U\V = Ax for any x ∈ U\V , and thus that

µ̂(U ) = µ̂(V ) + µ̂(Ax ) = µ(V ) + (µ(U ) − µ(V )) = µ(U ).

For the general case note that the ring of subsets generated by any lattice L of
subsets consists of the union of all the rings of subsets over the finite sublattices
ofL, and by uniqueness of the extension in the finite case, we get a well-defined
and unique extension on the union. �

Proposition IV-9.4. Let µ: L → [0,∞] be a valuation on a lattice L of
subsets of X with X ∈ L. Then µ has an extension to a finitely additive measure
v: R(L) → [0,∞], where R(L) is the smallest algebra of sets containing L.

Proof: We first consider the lattice L0 = {U ∈ L : µ(U ) <∞} (note that it is
a sublattice by modularity). By the previous proposition we can uniquely extend
µ to a finitely additive finite measure µ̂ on the ring of subsets R0 generated
by L0. Note that if there exists a µ-finite O in L such that U\V ⊆ O , then
U\V = (O ∩U )\(O ∩U ∩V ), which is in the ring R0. Furthermore, µ̂(U\V )
must then equal µ(O ∩U )− µ(O ∩U ∩ V ). In particular if µ(U ) <∞, then
for any V ∈ L, µ̂(U\V ) = µ(U ) − µ(U ∩ V ).

We first define ν on all sets of the form A = U\V . If A contains a bad point,
a point for which every member of L containing the point is µ-infinite, we
define ν(A) = ∞. If A consists of only good points, points that have µ-finite
members of L containing them, we define ν by

ν(A) = sup{µ̂(W1\V1): W1, V1 ∈ L, (W1\V1) ⊆ A, µ(W1) <∞}.
If W1\V1 ⊆ A = U\V , then W1\V1 ⊆ W1 ∩ U\V . It thus follows (by taking
W = W1 ∩U ) that we can alternatively define ν(A) by

ν(U\V ) = sup{µ̂(W\V ): W ⊆ U, µ(W ) <∞}. (1)

The fact the µ̂ is independent of the representation of A follows from the first
equality, while the second will be the more useful for our purposes.

Note that if U\V ∈ R0, then, as above, we may assume without loss of
generality that V ⊆ U and µ(U ) < ∞. In this case it is easy to see that the
supremum defining ν(U\V ) occurs and is given by µ̂(U\V ) = µ(U )− µ(V ).
Thus ν extends µ̂ for these sets.

We next show additivity of ν on all sets of the form U\V . Consider A =
U\V = ∨n

i=1(Ui\Vi ), a disjoint union, where without loss of generality
V,U, Vi ,Ui ∈ L, V ⊂ U , and Vi ⊂ Ui ⊆ U for each i . In the case
where A contains a bad point, then some Ui\Vi must contain it and so
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ν(U\V ) = ∞ = ∑n
i=1 ν(Ui\Vi ). Hence we assume that A contains only

good points and note that

ν(A) =
n∑

i=1

sup{µ̂(W\Vi ): W ⊆ Ui , µ(W ) <∞}

= sup

{
n∑

i=1

µ̂(Wi\Vi ): Wi ⊆ Ui , µ(Wi ) <∞
}

= sup

{

µ̂

(
n⋃

i=1

Wi\Vi

)

: Wi ⊆ Ui , µ(Wi ) <∞
}

,

where the last equality follows from the additivity of µ̂. We need to show that
the right side is equal to ν(U\V ). To that end, let W ⊆ U, µ(W ) < ∞. For
Wi = W ∩Ui , we have

W\V = W ∩ (U\V ) = W ∩
n⋃

i=1

(Ui\Vi ) =
n⋃

i=1

(Wi\Vi ).

Conversely if W1, . . . ,Wn are given such that Wi ⊆ Ui , µ(Wi ) < ∞ for each
i , then for W =⋃n

i=1 Wi ⊆ U , we have

n⋃

i=1

(Wi\Vi ) =
n⋃

i=1

(Wi ∩ (Ui\Vi )) = W ∩ (U\V ) = W\V .

Therefore we can conclude that

sup

{

µ̂

(
n⋃

i=1

(Wi\Vi )

)

: W ⊆ Ui , µ(W ) <∞
}

= sup{µ̂(W\V ): W ⊆ U, µ(W ) <∞}.
To complete the proof, one partitions a member of the algebra R(L) as

a disjoint union of sets of the form U\V in two different ways, takes the
refining partition of the two partitions consisting of all nonempty pairwise
intersections, and then uses the preceding case to see that summing over either
partition equals summing over the common refinement. Thus ν defined as the
sum of the ν-measures of members of the partition is well defined. For additivity
of ν, for disjoint sets A and B in the algebra R(L), one sees directly from the
definition of ν that ν(A) + ν(B) = ν(A + B) by first partitioning A and B
and combining the partitions to partition A ∪ B. (More generally, the sets
of the form U\V,U, V ∈ L, form a semialgebra. It is a standard elementary
measure-theoretic fact that since ν is finitely additive on the semialgebra, which
we established, it is finitely additive on the algebra it generates.)

We have already observed that ν extends µ̂ on sets of the form U\V , and the
finite additivity of both on R0 ensures that they agree on it also. �
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Remark. It follows from the uniqueness of µ̂, the definition of ν, and mono-
tonicity that ν must be the smallest possible extension of µ to R(L) such that
ν is infinite on sets containing bad points. We point out that for valuations
with infinite value, there may in general be more than one extension to the
generated algebra, but we will use exclusively the one defined in the preceding
proposition.

Since we have now established that ν is an extension of µ̂, we henceforth
label the extension ν by µ̂ also and no longer use the notation ν. �

Definition IV-9.5. A valuation µ: O(X ) → [0,∞] from the lattice of open
sets of a topological space X is continuous if for any directed family D of open
sets with union U =⋃D, we have µ(U ) = sup{µ(V ): V ∈ D}. �

Every regular Borel measure restricted to the lattice of open sets is a continuous
valuation. Indeed for any open set U , by regularity its measure µ(U ) can be
approximated arbitrarily closely from below byµ(K ) for compact sets K ⊆ U .
Since the members of any directed family of open sets with union U will
eventually contain any such K , their measures must converge to µ(U ) from
below. In the converse direction, although it is not always true that a continuous
valuationµ onO(X ) extends to a regular Borel measure, this can be established
under quite general hypotheses.

For open sets U, V in a topological space X the set U\V = U ∩ (X\V )
is called a locally closed set. The family of all locally closed sets forms a
semialgebra (see Exercise IV-9.26), and their set of finite unions forms an alge-
bra called the �c-algebra. (Motivated by considerations of algebraic geometry,
members of the �c-algebra are called “globally quasiconstructible” subsets in
[Grothendieck and Dieudonné, b1971].)

We have seen above that any valuation on O(X ) can be extended to a finitely
additive measure on the �c-algebra. In the next lemma we assume the setting
of Proposition IV-9.4.

Lemma IV-9.6. Let µ: O(X ) → [0,∞] be a continuous valuation on the
lattice of open sets of a topological space X. Let D be a directed family of open
sets with union U. Then for any locally closed set U\V ,

µ̂(U\V ) = sup{µ̂(D\V ): D ∈ D}.

Proof: The case that U\V contains a bad point is trivial. Thus we assume that
U\V consists of good points. In this case by definition of the extension µ̂ to
the �c-algebra, we have

µ̂(U\V ) = sup{µ̂(W\V ): W ⊆ U, µ(W ) <∞}.
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Consider any W\V , where µ(W ) < ∞. Let ε > 0. Since µ is continuous
and W is the directed union of {W ∩ D: D ∈ D}, we have for some D ∈
D, µ(W ) − ε < µ(W ∩ D). It follows that

µ̂(W\V ) − ε = µ(W ) − µ(W ∩ V ) − ε < µ(W ∩ D) − µ(W ∩ V )
≤ µ(W ∩ D) − µ(W ∩ V ∩ D) = µ̂(W ∩ D\V ) ≤ µ̂(D\V ).

Since ε was arbitrary, we conclude that sup{µ̂(D\V ): D ∈ D} ≥ µ̂(W ∩ V ).
Since W was arbitrary as a µ-finite open subset of U , we conclude that

µ̂(U\V ) ≤ sup{µ̂(D\V ): D ∈ D}.
Since the reverse inequality is obvious from monotonicity, we are done. �

Definition IV-9.7. For a topological space X , the valuation powerdomain
(also called the extended probabilistic powerdomain) V(X ) of X is the set
of all continuous valuations on O(X ) with the pointwise order, sometimes
called the stochastic order: µ ≤ ν iff µ(U ) ≤ ν(U ) for all open sets U . The
probabilistic powerdomain P(X ) consists only of those continuous valuations
µ with µ(X ) ≤ 1. �

Lemma IV-9.8. Let X be a topological space. Then the valuation powerdo-
main and the probabilistic powerdomain are dcpos.

Proof: It is straightforward to verify that for a directed family of continuous
valuations (with µ(X ) ≤ 1), the pointwise sup is another such. �

The following elementary valuations play a basic role in the theory.

Definition IV-9.9. Let X be a topological space. A point valuation for x ∈ X
is defined by ηx (U ) = 1 if x ∈ U and ηx (U ) = 0 if x /∈ U . A finite linear
sum ξ = ∑b∈B rbηb, with 0 < rb < ∞ and |B| < ∞, and defined by
ξ (U ) = ∑b∈U rb, is called a simple valuation, and the set B is called its
support. �

Remark. (i) One observes that point valuations and hence simple valuations
are continuous, thus members of the valuation powerdomain. A simple valua-
tion
∑

b∈B rbηb is a member of the probabilistic powerdomain iff
∑

b∈B rb ≤ 1.
Also observe that a simple valuation admits an extension to a (finitely) ad-
ditive measure on the powerset of X given by ξ (A) = ∑b∈A∩B rb for ξ =
∑

b∈B rbηb.
(ii) It is sometimes notationally convenient to allow “phantom” summands

of the form rbηb where rb = 0. We identify any such finite linear sum with the
simple valuation consisting of its nonzero terms. We identify all expressions
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with all phantom terms with the constant 0 valuation, which we also regard as
a degenerate simple valuation with support Ø.

We now begin to work directly toward the principal goal of this section: the
valuation domain of a domain is indeed a domain. We henceforth assume that X
is a domain endowed with the Scott topology σ (X ), that µ: σ (X ) → [0,∞] is
some fixed continuous valuation, and will eventually show thatµ is the directed
supremum of a family of simple valuations each way below µ.

Definition IV-9.10. For a simple valuation ξ =∑b∈B rbηb and a continuous
valuation µ on X , a domain equipped with the Scott topology, we set ξ ≺ µ if
for all nonempty K ⊆ B, we have

∑
b∈K rb < µ(

⋃
b∈K

�

b). �

Lemma IV-9.11. Let ξ and ζ be simple valuations and µ a continuous valu-
ation on a domain X, and suppose ζ ≤ ξ ≺ µ. Then

(i) ζ ≺ µ,
(ii) ξ � µ,

(iii) there exists t > 1 such that tξ ≺ µ (equivalently ξ ≺ (1/t)µ).

Proof: Let ζ =∑c∈C scηc and ξ =∑b∈B rbηb.
(i) Let φ �= K ⊆ C , and let K ′ : = B ∩ ↑K . Since ↑K is saturated, hence

an intersection of open sets, there exists some open set U containing ↑K and
missing the finite set B\↑K = B\K ′. Then

0 <
∑

c∈K

sc ≤ ζ (U ) ≤ ξ (U ) =
∑

b∈U∩B

rb

=
∑

b∈K ′
rb < µ

(
⋃

b∈K ′

�

b

)

≤ µ

(
⋃

c∈K

�

c

)

;

it follows that ζ ≺ µ.
(ii) Let D ⊆ V(X ) be directed with µ ≤ sup D, and let K = U0 ∩ B �= Ø

for some open U0. Then for each open set U with U ∩ B = K ,

ξ (U ) =
∑

b∈K

rb < µ

(
⋃

b∈K

�

b

)

.

For V := ⋃b∈K

�

b, we have that there exists a σK ∈ D such that
∑

b∈B rb <

σK (V ). It follows that ξ (U ) < σK (V ) ≤ σK (U ) for all U with U ∩ B = K .
Since B is finite, it has only finitely many nonempty subsets K , and thus in the
directed set D there exists an upper bound σ of all the σK . We then have ξ ≤ σ

since for any open U with K = B ∩U ,

ξ (U ) =
∑

b∈K

rb ≤ σK (U ) ≤ σ(U ).
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(iii) Set

s := min

{
µ
(⋃

b∈K

�

b
)−∑b∈K rb

∑
b∈K rb

: Ø �= K ⊆ B

}

and t = 1 + s/2. A straightforward verification establishes (iii). �

To construct a rich supply of simple valuations, we shall use �c-partitions, finite
partitions of X where each member has the form U\V for some U, V ∈ σ (X ),
the Scott topology on the domain X . Note that we will always assume that
�c-partitions are finite.

Remark IV-9.12. Any locally closed set belongs to an �c-partition, for ex-
ample the one consisting of it and the finitely many disjoint locally closed sets
making up its complement. Since locally closed sets are closed under finite in-
tersections, two �c-partitions have a largest common refinement consisting of
all pairwise nonempty intersections of members of the two partitions. Combin-
ing these two remarks, one sees that given any finite number of locally closed
sets (in particular, open sets), there is an �c-partition such that each of the given
locally closed sets is a disjoint union of members of the partition. �

As suggested by the Remark we can manipulate �c-partitions in a manner
reminiscent of their use in elementary Riemann integration theory. And in-
deed our construction of simple valuations approximating a given continuous
valuation has certain analogies to the construction of lower Darboux sums.

Definition IV-9.13. Let P be a partition of a domain X by locally closed sets,
0 < s < 1, M > 0, and µ ∈ V(X ). We define a (P, s, M, µ)-valuation to be a
simple valuation ξ ≺ µ such that for all A ∈ P ,

sµ̂(A) ≤ ξ (A) in case µ̂(A) <∞,

M ≤ ξ (A) if µ̂(A) = ∞. �

We want both to compare and to construct simple valuations for given �c-
partitions. We assume throughout that we are now working in a fixed domain X .

Lemma IV-9.14. Suppose that ζ is a simple valuation with support B, ζ ≺ sµ
for 0 < s < 1, and ζ (X ) ≤ M, M > 0. If ξ is a (P, s, M, µ)-valuation such
that each

�

b, b ∈ B, is a union of members of P , then ζ ≤ ξ .

Proof: We note for any nonempty F ⊆ B that by hypothesis for V :=
⋃

b∈F

�

b,

sµ(V ) = sµ̂
(⋃

{P ∈ P: P ⊆ V }
)
=
∑

P∈P
P⊆V

sµ̂(P) ≤
∑

P∈P
P⊆V

ξ (P) = ξ (V ),
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provided V is µ-finite. Let ζ = ∑b∈B rbηb. For any open set U ∈ σ (X ), set
K = U ∩ B. Then

ζ (U ) =
∑

b∈K

rb < sµ

(
⋃

b∈K

�

b

)

≤ ξ

(
⋃

b∈K

�

b

)

≤ ξ (U )

in case µ(
⋃

b∈B

�

b) is finite; the other case is trivial. �

Next we give a key lemma concerning the existence of simple valuations with
desired properties.

Lemma IV-9.15. Let X be a domain, σ (X ) the lattice of Scott open sets,
µ : σ (X ) → [0,∞] a continuous valuation, P an �c-partition, 0 < s < 1, and
M > 0. Then there exists a (P, s, M, µ)-valuation ξ .

Proof: Let µ̂ be the extension given by Proposition IV-9.4 of µ to a finitely
additive measure on the whole �c-algebra.

We assume P = {T1, . . . ,Tn} and temporarily fix some locally closed set
Tj = U\V . If µ̂(Tj ) = 0, then we will choose no support points of ξ in Tj . If
U\V contains a bad point y, then there exists b � y such that b ∈ U and then
necessarily b /∈ V . Let b j = b be a support point of ξ , the only one in Tj , with
weight M . Note that µ(

�

b j ) = ∞ since y ∈ �

b j .
The remaining case is that where all points of Tj = U\V are good points

and 0 < µ̂(Tj ). Pick r such that s < r < 1. By equation (1) in the proof
of Proposition IV-9.4 there exists an open set W ⊆ U such that µ(W ) <

∞ and

sµ̂(U\V ) < rµ̂(W\V ) if µ̂(U\V ) <∞,

M < rµ̂(W\V ) if µ̂(U\V ) = ∞.

Since

W =
⋃
{

�

F

(

=
⋃

x∈F

�

x

)

: F ⊆ W, |F | <∞
}

and the union is directed, we have from Lemma IV-9.6 that

µ̂(W\V ) = sup{µ̂(

�

F\V ) : F ⊆ W, |F | <∞}.

Thus there exists a finite set F ⊆ W such that

sµ̂(U\V ) < rµ̂(

�

F\V ) if µ̂(U\V ) <∞,

M < rµ̂(

�

F\V ) if µ̂(U\V ) = ∞.
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In either case for F = {x1, . . . ,xm j }, let b j,i = xi , 1 ≤ i ≤ m j , be the
support points of ξ in Tj with weight

r j,i := rµ̂

(

�

xi

∖
(
⋃

k<i

�

xk ∪ V

))

.

(Note that some phantom points may arise at this stage.) Since the sets used to
define the r j,i are pairwise disjoint and µ̂ is additive, we have

ξ (Tj ) =
m j∑

i=1

r j,i = rµ̂

(
m j⋃

i=1

�
xi

∖
V

)

. (1)

We carry out the outlined construction of support points as above for all Tj

and suppose that Tj contains m j support points. The simple valuation ξ is now
defined by

ξ =
n∑

j=1

m j∑

i=1

r j,iηb j,i .

If 0 < µ̂(Tj ) <∞, we have

sµ̂(Tj ) < rµ̂

(
m j⋃

i=1

�

xi

∖
V

)

=
m j∑

i=1

rµ̂

(

�

xi

∖
(
⋃

k<i

�

xk ∪ V

))

=
m j∑

i=1

r j,i = ξ (Tj ).

If µ̂(Tj ) = 0, then trivially sµ̂(Tj ) ≤ ξ (Tj ).
In the case that all points of Tj are good and µ̂(Tj ) = ∞, by the choice of

the xi and equation (1) above

M ≤ rµ̂

(
m j⋃

i=1

�

xi

∖
V

)

= ξ (Tj ).

If Tk contains a bad point, then M = ξ (Tk).
Finally we must verify that ξ ≺ µ. Let B denote the support of ξ . Let

K ⊆ B be nonempty and set Q := ∪b∈K

�

b. If µ(Q) = ∞, then trivially
∑

b∈K rb < µ(Q). So we assume µ(Q) <∞. Suppose that ↑K ∩ Tj ∩ B �= Ø,
where Tj = U\V . Then

0 <
∑

b j,i∈↑K

r j,i =
∑

xi∈↑K∩Tj

rµ̂

(

�

xi

∖
(
⋃

j<i

�

x j ∪ V

))

≤ rµ̂

(
⋃

xi∈↑K∩Tj

�

xi

∖
V

)

≤ rµ̂

(
⋃

b∈K

�

b ∩ Tj

)

= rµ̂(Q ∩ Tj ) < µ̂(Q ∩ Tj ).
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Using this inequality, we obtain

0 <
∑

b∈K

rb ≤
∑

x∈B∩↑K

rx ≤
n∑

j=1

∑

x∈B∩↑K∩Tj

rx <

n∑

k=1

µ̂(Q ∩ Tj )

= µ̂(Q) = µ(Q).

This completes the proof. �

We now have the machinery in place for our main theorem.

Theorem IV-9.16. For a domain X the valuation powerdomain V(X) is a
domain. Each continuous valution µ is the directed supremum of the simple
valuations way below it, and for simple valuations ξ , one has ξ � µ iff ξ ≺ µ.

Proof: Let µ be a continuous valuation, let U be an open set, and let ξ ≺ µ

be a (P, s, M, µ)-valuation where U is a union of members of P (Lemma
IV-9.15 and Remark IV-9.12). If µ(U ) is µ-finite, then each of the members
of P contained in U is µ-finite. Then sµ(U ) = sµ̂(U ) ≤ ξ (U ) since this
inequality holds for each partition member contained in U , and hence for U
by finite additivity of µ̂ and ξ . If U is µ-infinite, then by finite additivity of µ̂
some partition element contained in U must be µ̂-infinite. Thus ξ applied to
this partition member must have value greater than or equal to M and hence
ξ (U ) ≥ M . Therefore we can approximate µ(U ) as closely as desired by ξ (U )
by choosing s sufficiently close to 1 and M sufficiently large.

We next show that the collection {ξ : ξ ≺ µ} is directed. Let ξ1, ξ2 ≺ µ.
By Lemma IV-9.11(iii), there exist 0 < s1, s2 < 1 such that ξi ≺ siµ for
i = 1, 2. Let s = max{s1, s2}. Pick an �c-partition P such that each

�

b is
a finite union of partition members (Remark IV-9.11a), as b ranges over all
support points for ξ1 and ξ2. Pick M = max{ξ1(X ), ξ2(X )}. Then by Lemma
IV-9.14 any (P, s, M, µ)-valuation will be an upper bound for ξ1 and ξ2, and
such valuations exist by Lemma IV-9.15.

The preceding two paragraphs establish that the set {ξ : ξ ≺ µ} is a directed
set with supremum µ. Since ξ � µ for each ξ in the set (Lemma IV-9.11(ii)),
we conclude that the valuation domain is continuous, i.e., is a domain, and that
each continuous valuation is a directed supremum of simple valuations way
below it. Now suppose that ζ is a simple valuation and ζ � µ. Then ζ ≤ ξ

for some ξ ≺ µ, since the latter form a directed set with supremum µ. This
establishes the converse assertion and shows the equivalence of � and ≺ for
simple valuations. �
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Corollary IV-9.17. The probabilistic powerdomain of a domain X is a con-
tinuous domain, and each element is a directed supremum of simple valuations
way below it. Furthermore, for a simple valuation ξ = ∑b∈B rbηb, ξ �
µ iff
∑

b∈K rb < µ(
⋃

b∈K

�

b) for all nonempty subsets K ⊆ B. �

Proof: This follows immediately from the preceding theorem, since the prob-
abilistic powerdomain is a Scott closed subset of the valuation powerdomain.

�

We turn now to a precise characterization of the stochastic partial order and the
way-below order on the simple valuations.

Proposition IV-9.18. (Splitting Lemma) For two simple valuations in the
valuation powerdomain V(X ), X a T0 space, we have ζ = ∑b∈B rbηb ≤
∑

c∈C scηc = ξ if and only if there exist {tb,c ∈ [0,∞) : b ∈ B, c ∈ C} such
that for each b ∈ B, c ∈ C,

∑

c∈C

tb,c = rb,
∑

b∈B

tb,c ≤ sc

and tb,c �= 0 implies b ≤ c.

Proof: Suppose the “splitting” condition holds. Let U ∈ O(X ). Then ζ ≤ ξ

since for K := U ∩ B,

ζ (U ) =
∑

b∈K

rb =
∑

b∈K

∑

c∈C

tb,c =
∑

b∈K

∑

c∈C∩↑K

tb,c

≤
∑

c∈C∩↑K

∑

b≤c

tb,c ≤
∑

c∈C∩↑K

sc = µ(U ).

The proof of the converse depends on an application of a directed graph
version of the Max-Flow, Min-Cut Theorem, which we recall. Let G be a finite
directed graph with two distinguished vertices, a source α with only outgoing
arrows and a sinkω with only incoming arrows. We associate with all (directed)
edges a number belonging to [0,∞), called the capacity of the edge. (We may
think of α as a water provider, ω as a water consumer, the edges as pipes that
can carry up to their individual capacities of water, and the direction of the
edge giving the direction of flow.) A cut of the directed, labeled graph G is a
subset T containing the source α, but not the sink ω. We assign to each cut a
number, namely the sum of all those capacities of edges that have one vertex
in T and the other in its complement (we may geometrically visualize the cut
as slicing through these edges). A minimal cut is one having a minimal value
assigned to it. A flow is an assignment to each edge of a value from [0, ∞)
that (i) does not exceed the capacity of that edge, and (ii) has the property that
the sum of the values flowing into any vertex, excluding the source and sink,
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is equal to the sum of the values flowing out. (We visualize the flow values as
giving the amount of water flowing through the pipes for some stable water
delivery scheme.) We assign to any flow a value, namely the sum of the values
flowing out from the source (which will equal the sum flowing into the sink,
a fact we don’t need). The Max-Flow, Min-Cut Theorem then asserts that the
value of the max-flow is equal to the value of the min-cut.

For the problem at hand, we construct a graph with vertices B ∪C , together
with an added source α and sink ω. The directed edges are given by arrows
from all points of α to all points b ∈ B with capacity rb, arrows from all points
of c ∈ C to ω with capacity sc, and arrows from b ∈ B to c ∈ C iff b ≤ c, each
with capacity larger than

∑
b∈B rb (note that it is possible to have arrows that

begin and end at the same point whenever B∩C �= Ø). Now a flow through the
network represents a splitting of the {rb: b ∈ B}, that is the flow along the arrow
from b to c for b ≤ c gives the value tb,c. If there is a flow that has value rb

along each arrow from α to b, b ∈ B, then this flow will give values tb,c which
satisfy the conditions of the theorem, and this flow will clearly have maximal
value.

Thus by the Max-Flow, Min-Cut Theorem it remains to show that the value
of any cut is greater than or equal to the value of such a flow (which would
have value

∑
b∈B rb). Let T be any cut. We want to show that unless T consists

of the source alone, we can find a cut of smaller value. If T were such that for
some b ∈ B and c ∈ C, b ≤ c, and b ∈ T , but c /∈ T , then the value of T would
include the capacity of the edge joining b and c and would therefore be larger
than
∑

b∈B rb. So suppose that T is such a cut that has no such pairs b and c.
Let K := B ∩ T and K ′ = B\K . From our assumption we deduce that for all
b ∈ K and all c ∈ ↑b ∩ C , we must have c ∈ T . But since ω is not in the cut
T , we then have that the value of the cut is

∑

b∈K ′
rb +
∑

c∈T

sc.

As we have already seen, we can pick an open set U containing ↑K such that
U ∩ (B ∪ C) ⊆ ↑K . Then

∑

b∈K

rb ≤
∑

b∈↑K

rb = ζ (U ) ≤ ξ (U ) =
∑

c∈↑K∩C

sc ≤
∑

c∈T

sc.

Thus
∑

b∈B

rb =
∑

b∈K

rb +
∑

b∈K ′
rb ≤
∑

c∈T

sc +
∑

b∈K ′
rb,

and so the value of the cut T is greater than or equal to
∑

b∈B rb. Hence there
is a flow with value

∑
b∈B rb. �
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There is a modified version of the Splitting Lemma that characterizes the way-
below relation.

Proposition IV-9.19. For two simple valuations, we have

ζ =
∑

b∈B

rbηb � ξ =
∑

c∈C

scηc

iff there exist tb,c ≥ 0 such that
∑

c∈C

tb,c = rb,
∑

b∈B

tb,c < sc

and tb,c �= 0 implies b � c.

Proof: Suppose ζ � ξ . We consider the directed set
∑

c∈C (sc − ε)ηc′ for any
c′ � c and ε > 0 such that minc∈C sc > ε; that it is directed and has supremum
ξ follows directly from the definition of the stochastic order. Therefore we can
find c′ � c and ε > 0 such that

∑
b∈B rbηb ≤

∑
c∈C (sc−ε)ηc′ . By the Splitting

Lemma there exist tb,c such that
∑

c∈C

tb,c = rb,
∑

b∈B

tb,c ≤ sc − ε

and such that tb,c �= 0 implies b ≤ c′ � c.
Conversely assume the conditions of the proposition for ζ and ξ . Let A ⊆ B.

Then
∑

b∈A

rb =
∑

b∈A

∑

b�c

tb,c ≤
∑

c∈C∩

�

A

∑

b�c

tb,c <
∑

c∈C∩

�

A

sc = ξ (

�

A).

Thus ζ ≺ ξ and by Theorem IV-9.16 ζ � ξ . �

In order to present the universal property of the valuation domains, we introduce
the concept of a dcpo-cone.

Definition IV-9.20. A dcpo-cone is a dcpo C equipped with a distinguished
element 0 ∈ C , an addition +: C × C → C , and a scalar multiplication
·: R

+ × C → C such that the usual axioms of a vector space hold, except
for the existence of an additive inverse (in this case, one must also postulate
that 0 · a = 0 for all a ∈ C). We assume further that addition and scalar
multiplication are Scott-continuous functions from the Scott topology on the
product into C . �

Lemma IV-9.21. For X a domain, V(X ) is a dcpo-cone. Furthermore, the
function ηX : X → V(X ) defined by ηX (x) = ηx is Scott-continuous (even an
embedding, see Exercise IV-9.28).
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Proof: One verifies directly that sums and scalar products of continuous valu-
ations are again continuous valuations. Since the operations are defined point-
wise, all the appropriate algebraic laws of a cone are satisfied.

Let {rα} be a directed net in R
+ with supremum r and {µα} and {να} be

directed nets in V(X ) with suprema µ and ν respectively. Then for any open set
U in X , (µα + να)(U ) and rαµα(U ) are directed sets with suprema (µ+ ν)(U )
and rµ(U ) respectively. Since the pointwise supremum of a directed set of
continuous valuations is again a continuous valuation and the supremum of the
collection, we have that addition and scalar multiplication are Scott-continuous.

That x �→ ηx is Scott-continuous follows directly from the definition of the
stochastic order. �

Lemma IV-9.22. Let ζ = ∑b∈B rbηb and ξ = ∑c∈C scηc be two simple
valuations on O(X ), where X is a T0-space. If ξ and ζ are distinct as linear
combinations, then they are distinct as valuations.

Proof: Suppose that there exists some b ∈ B such that either b /∈ C or if
b = c ∈ C , then rb �= sc. If ζ = ξ : O(X ) → R

+, then their extensions µ̂ and
ξ̂ to the �c-algebra will be equal, since by the Smiley–Horn–Tarski Theorem
IV-9.3, the extensions exist and are unique. By the T0-separation there exists a
locally closed set A that contains b, but no other member of B∪C (for example,
take A = U\V , where U = X\↓F , where F consists of all members of B∪C
strictly below x , and V = X\↓x). Then ζ̂ (A) = rb �= ξ̂ (A). �

We now characterize the valuation cone as the free dcpo-cone over X . We begin
with a useful general lemma.

Lemma IV-9.23. Let X be a domain, B a basis for X, Y a dcpo, and f : B →
Y an order preserving function. Then there exists a Scott-continuus function
f∗ : X → Y that is the largest continuous function such that f∗(b) ≤ f (b) for
all b ∈ B. If for each b ∈ B, there exists a directed set Db ⊆ �b ∩ B with
supremum b such that f (b) = sup{ f (d) : d ∈ Db}, then f∗ is a continuous
extension of f.

Proof: Define f∗(x) = sup{ f (b) : b ∈ B ∩ �x}. Since B is a basis the set
B ∩ �x is directed and has supremum x , and thus the supremum on the right
is a directed supremum. Clearly f∗(b) ≤ f (b) for all b ∈ B and f∗ is order
preserving.

Let D be a directed set in X with supremum x . Then for any b ∈ �x ∩
B, there exists d ∈ D such that b ≤ d. Now f∗(x) is, by definition, the
directed supremum of f (B ∩ �x), and it follows that f∗(x) must be the directed
supremum of f∗(D) as well. Thus f∗ is Scott-continuous.
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Let g : X → Y be Scott-continuous and g(b) ≤ f (b) for all b ∈ B. Then for
any x ∈ X ,

g(x) = sup{g(b) : b ∈ �x ∩ B} ≤ sup{ f (b) : b ∈ �x ∩ B} = f∗(x).

Suppose the last hypothesis of the lemma is satisfied. Then

f (b) = sup{ f (d) : d ∈ Db} ≤ sup{ f (c) : c ∈ �b ∩ B} = f∗(b).

Since we have seen that the reverse inequality always holds, we have f (b) =
f∗(b). Thus f∗ extends f . �

Theorem IV-9.24. Given any dcpo-cone C and a continuous function f : X →
C, where X is a domain equipped with the Scott topology, there exists a unique
continuous linear map f ∗ : V(X ) → C such that f ∗ηX = f .

Proof: For any simple valuation ξ = ∑b∈B rbηb, we define f ∗(ξ ) =
∑

b∈B rb f (b). By Lemma IV-9.22 f ∗ is well defined, and it readily follows
that it is linear on the subcone of simple valuations and satisfies f ∗ηX = f .

We show that f ∗ is order preserving on the subcone of simple valuations. Let
ζ = ∑b∈B rbηb ≤

∑
c∈C scηc = ξ . Then by the Splitting Lemma there exist

{tb,c ∈ [0,∞): b ∈ B, c ∈ C} such that for each b ∈ B, c ∈ C ,

ζ =
∑

c∈C

tb,c = rb, ξ =
∑

b∈B

tb,c ≤ sc

and tb,c �= 0 implies b ≤ c. From the definition of f ∗, the monotonicity of f ,
and the monotonicity of addition and scalar multiplication in the codomain, we
have

f ∗(ζ ) =
∑

b∈B

rb f (b) =
∑

b∈B

∑

c∈C

tb,c f (b)

≤
∑

c∈C

∑

b∈B

tb,c f (c) ≤
∑

c∈C

sc f (c) = f ∗(ξ ).

We now extend f ∗ to all of V(X ) by

f ∗(µ) := sup{ f ∗(ξ ) : ξ � µ, ξ is simple}.
Any µ ∈ V(X ) is a directed supremum of the set Dµ of simple valuations
way below it by Theorem IV-9.16, so the set used to define f ∗(µ) is directed,
and hence the supremum exists. By the preceding lemma f ∗ is continuous.
We verify that it is an extension. Let ξ = ∑c∈C scηc be a simple valuation.
We consider the directed set

∑
c∈C (sc − ε)ηc′ (constructed in IV-9.19) for

any c′ � c and ε > 0 such that minc∈C sc > ε; that it is directed and has
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supremum ξ follows directly from the definition of the stochastic order. Then
f ∗(
∑

c∈C (sc − ε)ηc′ ) =
∑

c∈C (sc − ε) f (c′), and the latter has directed supre-
mum f (ξ ) =∑c∈C sc f (c) by the Scott continuity of f and the Scott continuity
of the addition and scalar multiplication operators in C . Thus by the preceding
lemma the extension of f ∗ to all of V(X ) is continuous and agrees with the old
f ∗ on the subcone of simple valuations. Then finally the Scott continuity of f ∗

and of the addition and scalar multiplication on C ensures that the extension of
f ∗ to all of V(X ) is linear with respect to the operations of addition and scalar
multiplication. �

Exercises

Exercise IV-9.25. Let µ : L→ [0,∞) be a valuation on a lattice of subsets of
X . Show for A, B,C ∈ L that

µ(A ∪ B ∪ C) = µ(A) + µ(B) + µ(C) − µ(A ∩ B) − µ(A ∩ C)
−µ(B ∩ C) + µ(A ∩ B ∩ C)

and that higher order versions of the inclusion–exclusion principle are true.
Show that if the minus terms in the preceding equation are moved to the left,
then the equation also holds for µ: L→ [0,∞]. �

Exercise IV-9.26. Let X be a topological space. Verify that the locally closed
sets U\V,U, V ∈ O(X ) form a semialgebra and that the smallest algebra of
sets containing the open sets is the family of all sets that can be written as a
finite (disjoint) union of locally closed sets.

Hint. Note that (U1\V1)∩ (U2 ∩ V2) = (U1 ∩U2)\(V1 ∪ V2) and X\(U\V ) =
(X\(U ∪ V )) ∪ (V \U ). Also

⋃n
i=1 Ai =

⋃n
i=1(Ai\(

⋃
j<i A j )), where the Ai

are members of the �c-algebra. �

Exercise IV-9.27. (i) Show that the construction of the valuation power-
domain is functorial on the category of T0-spaces and continuous maps, where
V f : V(X ) → V(Y ) is defined by V f (µ)(U ) = µ( f −1(U )) for an open set U .

(ii) Show that the functor V restricted to the category DCPO (with each dcpo

equipped with the Scott topology) is locally continuous.

Hint. For part (ii), use the continuity of µ to show for a directed family
of continuous functions { fi } with supremum f that V(sup{( fi )}(µ)(U ) =
sup{V( fi )}(µ)(U ). �



392 IV Morphisms and Functors

Exercise IV-9.28. Show that the map x �→ ηx from a domain (X, σ (X )) to
(V(X ), σ (V(X ))) is a homeomorphism onto its image. �

Exercise IV-9.29. Show that if X is a countably based domain, then the valu-
ation domain V(X ) is also.

Hint. Let B be a countable base for X . Show that the simple valutions with
support contained in B and range contained in the rationals form a countable
base for V(X ). �

Exercise IV-9.30. For a dcpo X⊥ with bottom element, we define the nor-
malized probabilistic powerdomain to be all continuous valuations that have
the value 1 on the whole dcpo. This powerdomain is closely connected with
the probabilistic powerdomain on X , the dcpo with the bottom element re-
moved. For any continuous valuation µ ≤ 1 on X , extend it to one on X⊥ by
defining µ(X⊥) = 1, and conversely simply restrict a probabilistic valuation
on the open sets of X⊥ to the open sets of X . Show that this correspondence
gives an order isomorphism of powerdomains. Conclude that the normalized
probabilistic powerdomain of a domain with bottom is a domain. Characterize
the orders ≤ and � in the normalized probabilistic powerdomain (see [Edalat,
1995b]). �

New notes

The probabilistic powerdomain was introduced by C. Jones [Jones, d1989]
and Jones and Plotkin [Jones and Plotkin, 1989]. It was generalized to the
extended probabilistic powerdomain or valuation powerdomain by O. Kirch
[Kirch, d1993]. Jones proved the Splitting Lemma and showed that the prob-
abilistic powerdomain of a domain is again a (continuous) domain, and Kirch
made the nontrivial extension of these results to the extended probabilistic
power domain. We have borrowed heavily from their methods in this sec-
tion. Besides its semantic applications, the probabilistic powerdomain has been
used in [Edalat, 1995b] as a computational approach to a general Riemann
integral.

The universal property (see IV-9.24) for the probabilistic powerdomain is due
to [Jones and Plotkin, 1989], that for the extended probabilistic powerdomain to
[Tix, d1995]. The notion of a dcpo-cone has been investigated in [Tix, d1999],
[Tix, 2001].

It has been shown by [Jung and Tix, 1998] that, for Lawson compact domains,
the probabilistic powerdomain is Lawson compact. Even for finite domains it
is not known whether the probabilistic powerdomain is an FS-domain except
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for very special domains like trees, or trees turned upside down (see [Jung and
Tix, 1998]).

We have not included any of the numerous results on extending continuous
valuations to Borel measures; see [Lawson, 1982], [Norberg, 1989], [Alvarez-
Manilla et al., 1998], [Alvarez-Manilla, d2000].



V

Spectral Theory of Continuous Lattices

Spectral theory plays an important and well-known role in such areas as the
theory of commutative rings, lattices, and of C∗-algebras, for example. The
general idea is to define a notion of “prime element” (more often: ideal element)
and then to endow the set of these primes with a topology. This topological space
is called the “spectrum” of the structure. One then seeks to find how algebraic
properties of the original structure are reflected in the topological properties of
the spectrum; in addition, it is often possible to obtain a representation of the
given structure in a concrete and natural fashion from the spectrum.

By means of the spectral theory of this chapter we associate with every
complete lattice L a topological space, denoted by Spec L , and a representation
L → O(Spec L) of the given lattice into the lattice of open subsets of the
spectrum. Frequently one reduces the spectral theory in other mathematical
contexts (such as those listed above) to this lattice theoretical spectral theory by
considering a distinguished lattice of subobjects and identifying the spectrum
of this lattice with the spectrum of the original structure in a natural way. Since
the lattice of open sets of a topological space is a frame, it should be noted that
a spectral representation can be an isomorphism only if L itself is a frame.

The chapter begins with an important lemma (frequently referred to as
“The Lemma”) which plays a vital role in the spectral theory of continuous
lattices. It states that a “finitely prime” element of a continuous lattice is also
“compactly prime” with respect to the Lawson topology. Section V-2 then re-
sumes the theme of order generation begun in Section I-3, where it was shown
that in a continuous lattice the set of irreducible elements is order generating
in the sense that every element is an inf of irreducibles (see I-3.9 ff.). The
investigation is expanded here to topologically generating sets – subsets for
which the whole lattice is the smallest closed subsemilattice containing the set.
We show that the closure of the set of nonidentity irreducibles is the unique
smallest closed order generating subset of a continuous lattice as well as being

394
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the unique smallest closed topologically generating subset of the lattice. In par-
ticular, for a distributive continuous lattice, the closure of the set of nonidentity
primes is the unique smallest closed order generating subset.

This line is further pursued in Section V-3, where we identify the closure of
the primes in a distributive continuous lattice as being exactly the pseudoprimes
of I-3, or, as they are also recognized here, the set of weak primes. Analogs
results are also obtained for the weak irreducibles in a general continuous lattice.

In Section V-4 begins the principal topic of the chapter, the spectral theory of
frames in which the primes order generate. We give the set of nonidentity primes
the hull–kernel topology and call this space the spectrum; the given lattice is
isomorphic to the lattice of open subsets of this space. In this fashion we record
the duality between the category of frames with points and lattice morphisms
preserving arbitrary sups on one hand, and sober spaces and continuous maps
on the other. This prepares the way for the specific spectral theory of continuous
lattices discussed in Section V-5: the spectrum of a continuous lattice is locally
compact and sober, and all locally compact sober spaces are so obtained. The
category of continuous frames is dual to the category of locally compact sober
spaces and continuous maps.

Unlike the previous chapters, lattices are predominant in this chapter on
primes and spectral theory. More general dcpos play a marginal role only.

We collect a good deal of supplementary information in the exercises. Several
important applications of the spectral theory of continuous lattices will be given
in Section VI-7 and Chapter VII, when more information on the topological
algebra of continuous lattices will be available.

V-1 The Lemma

Let us recall that an element p of a lattice L is called irreducible, if the relation
a ∧ b = p always implies a = p or b = p. The element p is called prime,
if a ∧ b ≤ p always implies a ≤ p or b ≤ p. (See Section I-3, especially
Definitions I-3.5 and I-3.11.)

These definitions can be rephrased in the following way: p is irreducible, resp.
prime, if inf F = p, resp. inf F ≤ p, implies p ∈ F , resp. p ∈ ↑F , for every
finite nonempty subset F of L . In the presence of a topology on L , one could
define p to be strongly irreducible, resp. strongly prime, if inf K = p, resp.
inf K ≤ p, implies p ∈ K , resp. p ∈ ↑K , for every nonempty compact subset
K of L . Since compactness is often a kind of substitute for finiteness, one may
conjecture that these strengthened notions of irreducibility and primality are in
reality identical with the first ones. We shall prove this conjecture in the case of
continuous lattices. The following lemma is crucial, and we give two versions.
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Theorem V-1.1. (The Lemma) Let L and M be complete lattices and let i:
L → M be Scott-continuous.

(i) Suppose that p is a prime element of M and that A ⊆ L is such that
inf i(A) ≤ p. Then there is an ultrafilter U on A with i(lim U) ≤ p.

(ii) Suppose that the map i also preserves arbitrary infs. Suppose that p is an
irreducible element of M and that A ⊆ L is such that inf i(A) = p. Then
there is an ultrafilter U on A with i(lim U) = p.

Proof: (i) Let A and p satisfy the hypotheses of (i) and define I to be the set
of all subsets B of A with inf i(B) �≤ p. Then we can assert:

(a) A /∈ I;
(b) if C ⊆ B ∈ I, then C ∈ I;
(c) if B ∈ I and C ∈ I, then B ∪ C ∈ I.

Clauses (a) and (b) are immediate. For (c), note that if B ∈ I and C ∈ I,
then inf i(B) �≤ p and inf i(C) �≤ p, whence we see that inf i(B ∪ C) =
inf i(B) ∧ inf i(C) �≤ p by the primality of p. Thus, I is a proper ideal of
subsets of A. But then there is an ultrafilter U on A disjoint from I (by I-3.20
and its preceding Remark). The latter means that inf i(B) ≤ p for all B ∈ U .
We conclude that

i(lim U) = i(sup {inf B: B ∈ U}) = sup {i(infB): B ∈ U }
≤ sup {inf i(B): B ∈ U} ≤ p,

where we have only used the fact that i preserves directed sups.
(ii) The proof is the same as that of (i), if one replaces everywhere �≤ by>, and

≤ by =. (One needs that i preserves arbitrary infs to replace the first≤ by = in
the last equation.) �

If the set A contains limU for every ultrafilter U on A, we may conclude under
the hypotheses of V-1.1(i), resp. (ii), that inf i(A) ≤ p, resp. inf i(A) = p,
implies p ∈ ↑i(A), resp. p ∈ i(A). Since in a continuous lattice lim U is the
topological limit of U with respect to the Lawson topology (III-3.17), we have
proved

Corollary V-1.2. Let L be continuous and M be complete. If i : L → M is
Scott-continuous and K ⊆ L is compact in the Lawson topology, then

(i) if p is prime in M, then inf i(K ) ≤ p implies p ∈ ↑i(K );
(ii) if p is irreducible in M and, in addition, i preserves arbitrary infs, then

inf i(K ) = p implies p ∈ i(K ). �
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If we specialize V-1.1 to the case where L = M and i is the identity map, then
we obtain

Corollary V-1.3. Let L be a complete lattice.

(i) If p is prime in L, then on every subset A of L with inf A ≤ p there is an
ultrafilter U such that lim U ≤ p.

(ii) If p is irreducible in L, then on every subset A of L with inf A = p there
is an ultrafilter U such that lim U = p. �

If L is a continuous lattice, then the set of all liminfs of ultrafilters on A is
just the closure A− of A with respect to the Lawson topology (III-3.17) . Thus
V-1.3 implies

Corollary V-1.4. Let L be a continuous lattice.

(i) If p is prime in L, then inf A ≤ p implies p ∈ ↑(A−) for every nonempty
subset A of L.

(ii) If p is irreducible in L, then inf A = p implies p ∈ A− for every
nonempty subset A of L. �

We can now state the result that we promised.

Theorem V-1.5. Let L be a continuous lattice. Then for every nonempty subset
K of L which is compact in the Lawson topology we have:

(i) if p is prime in L, then inf K ≤ p implies p ∈ ↑K ;
(ii) if p is irreducible in L, then inf K = p implies p ∈ K . �

Applying The Lemma on primes, we next complete a theme begun in
Exercise I-3.39, where we started to investigate the relationship between com-
pletely distributive lattices (I-2.8, I-2.9, I-3.16, I-3.39) and domains.

Lemma V-1.6. Let L be a completely distributive lattice and p �= 0 a co-
prime. Then �p ∩ P is directed, where P denotes the set of nonzero co-primes.

Proof: Let q , r be two nonzero co-primes with q � p and r � p. Then�

q ∩ �

r is a Scott (hence, Lawson) open neighborhood of ↑p. But in a
completely distributive lattice we have λ(L) = λ(Lop). (This follows imme-
diately from the fact that L can be embedded into a cube [0, 1]X for some X
under a map preserving arbitrary sups and infs: see IV-3.32; alternatively refer
to Proposition VII-2.10.) From I-3.39 we know then that p = sup( �p ∩ P),
whence ( �p ∩ P)− ∩↑p �= Ø, with closure taken with respect toλ(Lop) = λ(L)
by an application of V-1.4 to Lop. Then we find ( �p∩ P)∩ �

q ∩ �

r �= Ø, since�

q ∩ �

r is an open neighborhood of ↑p. �
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We now are ready for the following theorem.

Theorem V-1.7. If L is a completely distributive lattice, then the poset P of
nonzero co-primes in the induced order is a domain. Dually, if Q is the set of
primes p < 1, then Qop is a domain. �

Proof: Take I-3.39 and note that Lemma V-1.6 above shows that �P p is di-
rected for p ∈ P . For the dual statement apply the preceding result to Lop.

�

Lemma V-1.8. If L is completely distributive and P the poset of nonzero co-
primes, and if U is an open filter in P, then ↑U is an open prime filter in L.

Proof: Let v ∈ ↑U ; then u ≤ v with u ∈ U ; then by I-3.39 and V-1.6 above,
there is a u∗ ∈ �u ∩ P with u∗ ∈ U ; but then u∗ � v. Moreover, ↑U is a prime
filter. For if a ∨ b ∈ ↑U , then a ∨ b ≥ p for some p ∈ U , whence a ≥ p or
b ≥ p, as p is co-prime. �

We can now throw additional light on the Lawson duality which we discussed
in Section IV-2.

Proposition V-1.9. Let L be a completely distributive lattice. Let Q be the
domain of primes different from 1 with the partial order induced from≥ and let
P be the domain of nonzero co-primes with the partial order induced from ≤.
Then P and Q are duals of each other in the sense of Lawson duality of IV-2.14.

Proof: Let U be an open filter of P . Then ↑U is an open prime filter in L
(see V-1.8). Let qU = max(L\↑U ). Then qU ∈ Q. Conversely if q ∈ Q, let
Uq = P\↓q; then Uq is an open filter in P . The maps U �→ qU : OFilt P → Q
and q �→ Uq : Q → OFilt P are inverses of each other. Hence Q ∼= OFilt P .
In the light of Lawson duality, this gives the assertion. �

The preceding proposition sheds a new light on Lawson duality for domains:
For a domain L the Scott open sets form a completely distributive lattice σ (L).
Thus, also the Scott closed sets form a completely distributive lattice γ (L)
ordered by inclusion. There is an obvious order embedding a �→ ↓a of the
domain L into γ (L) mapping L onto the set of co-primes of γ (L), i.e., L may
be viewed as the domain of co-primes of the completely distributive lattice
γ (L). The Lawson dual of L may be viewed as the domain of prime elements
of γ (L), i.e., the set of Scott closed subsets B of L , whose complement is a
filter, ordered by ⊇.
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Exercises

Exercise V-1.10. Give an independent proof of Corollary V-1.2(i) under the
following weaker primality condition on p: For every nonempty finite subset
F of L , inf i(F) ≤ p implies p ∈ ↑i(F). �

Exercise V-1.11. Let K be a compact convex subset of a locally convex topo-
logical vector space, and denote by Con(K ) the lattice of all closed convex
subsets of K . Recall that Con(K )op is a continuous lattice (see Example I-1.23).
Prove that if A ⊆ K has the property that its closed convex hull is equal to K ,
then A− contains all extreme points of K (see I-3.36). �

Exercise V-1.12. Let X be a compact Hausdorff space. Show that for every
closed prime ideal I of the ring C(X ) of real- or complex-valued continuous
functions on X , there is an element x ∈ X such that I = { f ∈ C(X ) :
f (x) = 0}.

Hint. Consider X as a subset of O(X ) via the embedding x �→ X\{x} and
use for i the map U �→ { f ∈ C(X ) : f (x) = 0 for all x �∈ U } from the
lattice L = O(X ) of all open subsets of X to the lattice M of all closed ideals
of C(X ). �

Exercise V-1.13. Prove the following.

(i) Let i : L → M be a morphism in INF↑. If p < 1 is a prime in M and
x ∈ L satisfies i(x) ≤ p, then there is an irreducible q ∈ L with x ≤ q
and i(q) ≤ p.

(ii) The conclusion also holds for L a dcpo semilattice and M any poset
(where p ∈ M is prime iff M\↓p is a filter in M), provided that i−1(U ) is
an open filter for any open filter U of M .

Hint. Pick q maximal in ↑x\i−1(M\↓p). �

Old notes

The Lemma (V-1.1) is an abstract version of the so-called Jónsson Lemma which
plays an important role in universal algebra [Jónsson, 1967]. Its relevance in
continuous lattices in the form of V-1.2, V-1.4, V-1.5 was discovered by Gierz
and Keimel [Gierz and Keimel, 1976]. From that latter paper we have also
drawn the exercises; V-1.11 and V-1.12 are well-known theorems in analysis.
The same paper contains more material on the uses of The Lemma; in particular
one obtains a characterization of the extreme points in the dual unit ball of
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semicontinuous function spaces originally due to [Cunningham and Roy, 1974].
The results on irreducibles contained in V-1.4 and V-1.5 are from [Hofmann
and Lawson, 1976]. The duality of domains and completely distributive lattices
in V-1.6–V-1.9 is due to [Lawson, 1979]. Finally, Exercise V-1.13 is from
Hofmann, Keimel, and Watkins [scs 51; scs 52].

V-2 Order Generation and Topological Generation

A subset X of a lattice L has been called order generating (I-3.8), if every
element of L is the inf of a subset of X . It has been proved (I-3.10) that, in
a continuous lattice L , the set IRR L of all irreducible elements of L is or-
der generating. In an algebraic lattice, the set Irr L of completely irreducible
elements is the (unique) smallest order generating subset (I-4.26). But in gen-
eral a continuous lattice does not have any minimal order generating subset.
In the unit interval [0, 1] every order dense subset is order generating, but
there is no minimal subset of this type. For this reason we restrict our atten-
tion for the moment to order generating sets which are closed with respect to
the Lawson topology. As a consequence of The Lemma of Section V-1 we
obtain

Theorem V-2.1. Among the order generating subsets of a continuous lattice L
which are closed with respect to the Lawson topology there is a unique smallest
one: the closure (IRR L\{1})− of the set of irreducible elements <1 in L.

Proof: By I-3.10, (IRR L\{1})− is order generating. Let X be any Lawson
closed order generating subset of L . Then V-1.5(ii) implies that X contains
every irreducible element; whence, (IRR L\{1})− ⊆ X . �

In a topological semilattice another notion of generation is natural:

Definition V-2.2. A subset X of a topological semilattice L is said to be
topologically generating if the smallest closed subsemilattice of L containing
X and 1 is L itself. �

As a matter of convention in a continuous lattice topological generation is always
understood with respect to the Lawson topology. In compact semilattices, and
in particular in continuous lattices, topological generation is weaker than order
generation:

Proposition V-2.3. Let L be a continuous lattice. Then every order generating
subset of L is topologically generating with respect to the Lawson topology.
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Proof: Let X be an order generating subset and T the smallest closed sub-
semilattice of L containing X and 1. Then T is closed under arbitrary infs by
virtue of III-1.12(2). Thus for all x ∈ L , we have x = inf(↑x ∩ X ) ∈ T , and
consequently L = T . �

The preceding proposition remains true for arbitrary compact semilattices (see
VI-2.9 below) and, in fact, for a complete lattice with a compact topology in
which ↑x and ↓x are always closed (cf. O-4.4 and VI-1.3 below). The converse
of Proposition V-2.3, however, is false. In the unit square [0, 1] × [0, 1] with
the usual order, the set [0, 1[ × [0, 1[ is topologically but not order generating.

How does topological generation work in continuous lattices? Let X be any
subset of a continuous lattice L . If we assign to every filter F on X the element
limF of L , we obtain a map preserving arbitrary infs and directed sups from the
lattice F = Filt 2X of all filters on X into L . (This is nothing but the theorem that
the lattice F is the free continuous lattice on the set X (I-4.19).) By III-1.8 and
III-3.17, the image of this map is the smallest closed subsemilattice containing
X . In other words, we obtain the smallest closed subsemilattice containing X
by taking the set of all directed sups in the set of all infs of subsets of X . In
particular, L is topologically generated by X if every element of L is a directed
sup of infs of subsets of X . This remark leads us to

Proposition V-2.4. Let L be a continuous lattice.

(i) A subset X is topologically generating if and only if its closure X− with
respect to the Lawson topology is order generating.

(ii) Among the Lawson closed topologically generating subsets of L there is a
(unique) smallest one: the closure (IRR L\{1})− of the set of irreducible
elements <1.

Proof: (i) From V-2.3 and V-2.2, we deduce “if”. In order to prove “only if”
we let Y be the set of all infs of subsets of X−. We use III-1.12 to show that Y
is a closed subsemilattice. Firstly, Y is clearly closed under the formation of all
infs. We must show that for every directed subset D ⊆ Y , we have sup D ∈ Y .
For this purpose set s = sup D and t = inf(↑s ∩ X−) ∈ Y ; then s ≤ t , and
we must now show t ≤ s. In view of I-1.6 it suffices to show w ≤ s for any
w � t : Now d = inf(↑d ∩ X−) since d ∈ Y , and so

⋂

d∈D

(↑d ∩ X−) =
(
⋂

d∈D

↑d

)

∩ X− = ↑s ∩ X− ⊆ ↑t.

Thus the intersection of the filter basis of the λ(L) compact sets ↑d ∩ X− is
contained in the open neighborhood

�

w of ↑t . Hence there is some c ∈ D with
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↑c ∩ X− ⊆ �

w, whence c = inf(↑c ∩ X−) ≥ w, and since c ≤ s we have
indeed w ≤ s.

If we now assume that X is topologically generating, then Y ∪{1} = L . This
means that X− is order generating.

(ii) Use (i) and V-2.1 above. �

Exercises

Exercise V-2.5. Let L be an algebraic lattice endowed with its Lawson
topology.

(i) Show that (Irr L)− is the smallest closed order generating and
topologically generating set, where Irr L denotes the set of completely
irreducible elements (see I-4.21).

(ii) If Y is a topologically generating subset of L , show that every compact
element of L is the inf of a subset of Y . �

Exercise V-2.6. Let L be a continuous lattice and Id L its ideal lattice. Consider
the adjunction i = (x �→ ↓x) and r = (I �→ sup I ) between L and Id L as in
O-3.15.

(i) If X is order generating in L , show that i(X ) is topologically generating in
Id L .

(ii) If Y is topologically generating in Id L , show that r (Y ) is order generating
in L .

Hint. Use I-1.10 and V-2.5(ii) above. �

Exercise V-2.7. Let L be a complete lattice for which IRR L is order generat-
ing. Show that among the subsets of L which are order generating and closed
with respect to the liminf topology (see Section III-3) there is a smallest one.
(Compare Theorem V-2.1.) �

Hint. Use III-3.15 and V-1.3(ii) above. �

Exercise V-2.8. Let L and M be complete lattices and f : L → M a surjective
UPS-map preserving finite infs. Show that IRR M ⊆ f (IRR L).

Hint. For p ∈ IRR M pick q maximal in f −1(p). Show that q is irreducible.
�
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Old notes

R. Jamison [Jamison, d1974] gave a slightly restricted version of Theorem V-2.1
in his dissertation. His interest was in abstract theories of convexities. In his
context subsemilattices were “convex” subsets, and from this viewpoint irre-
ducibles become “extreme points”. Theorem V-2.1 then becomes an analogue
to the Krein–Milman theorem: the closed convex hull of the extreme points
(that is, the smallest closed subsemilattice containing the irreducibles) is all of
L , and conversely any closed set whose closed convex hull is all of L contains
the extreme points.

The treatment given in this section is essentially that of [Hofmann and
Lawson, 1976].

V-3 Weak Irreducibles and Weakly Prime Elements

Throughout this section L denotes a continuous lattice in the Lawson topology.
In the preceding section we characterized the closure of the set of irreducible
elements as being the smallest closed order generating subset of L . In this section
we characterize the individual elements of (IRR L)−. The distributive case is
of particular interest in this regard; here (IRR L)−(= (PRIME L)−) consists
precisely of the pseudoprime elements already introduced in Chapter I. (Indeed
the notion of a pseudoprime element arose in the context of characterizing
those distributive continuous lattices for which the set of prime elements is
closed.)

Definition V-3.1. An element p of L is called weakly irreducible if for any
finite family X1, X2, . . . , Xn of subsets of L , the relation p ∈ int(X1 X2 . . . Xn)
implies p ∈ X−

k for some k. We call p weakly prime if for any finite family
X1, X2, . . . , Xn of subsets of L , the relation p ∈ int↑(X1 X2 . . . Xn) implies
p ∈ (↑Xk)− for some k. We denote by WIRR L and WPRIME L the sets of
weakly irreducible and weakly prime elements of L , respectively. �

In the definition, the notation X1 X2 . . . Xn stands for the pointwise product,
that is, the pointwise inf, of the sets. Recall that an element p of L is called
pseudoprime if p is the sup of a prime ideal of L (see Definition I-3.24). The
set of pseudoprimes is denoted by PRIME L . One easily verifies that every
irreducible element is weakly irreducible and that every prime element is weakly
prime; that is, we have IRR L ⊆ WIRR L , and PRIME L ⊆ WPRIME L . We
already have seen that PRIME L ⊆ PRIME L in the remarks following
I-3.24.
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Lemma V-3.2. The sets WIRR L and WPRIME L are closed.

Proof: As the proofs in the two cases are similar, we only consider W =
WIRR L . Let p ∈ W−. We want to show p ∈ W . So we take an arbitrary
finite family X1, . . . , Xn of subsets of L such that p ∈ int X1 . . . Xn. Pick
any net (p j ) j∈J in W such that p = lim j p j . Then we can find a j0 such
that p j ∈ int X1 . . . Xn for all j ≥ j0. As all the p j are weakly irreducible,
we conclude that p j ∈ X−

1 ∪ · · · ∪ X−
n for all j ≥ j0. But this implies p =

lim j p j ∈ X−
1 ∪ · · · ∪ X−

n ; that is, p is weakly irreducible. �

Definition V-3.1 makes sense in every semilattice endowed with a topology and
Lemma V-3.2 remains true in general. But in order to show that the elements
in the closure of IRR L are exactly the weakly irreducible elements, we have to
use our standing hypothesis that L is a continuous lattice:

Proposition V-3.3. In a continuous lattice L, we have (IRR L)− = WIRR L.

Proof: Suppose that there is an element p ∈ L\(IRR L)−. Then every x ∈
(IRR L)− has a neighborhood U (x) not containing p. By III-2.15, we may
suppose that all the U (x) are closed subsemilattices of L . As the interiors of
the U (x) cover the compact space (IRR L)−, we find a finite subcover of com-
pact subsemilattices X1, . . . , Xn which do not contain p but where IRR L ⊆
X1 ∪ · · · ∪ Xn .

By adjoining the identity to each of the Xk if necessary, we can assert that the
pointwise product X1 . . . Xn is a closed subsemilattice of L containing IRR L .
As IRR L is order generating in L (I-3.10), we conclude that L = X1 . . . Xn .
In particular, p ∈ int X1 . . . Xn . As p �∈ Xk for each k, we conclude that
p �∈ WIRR L . �

We do not have an order theoretical characterization of weakly irreducible ele-
ments. However, for weakly prime elements such a characterization is possible.
Note that condition (2) in the following theorem is the primality condition of
I-3.25(2), and that condition (3) is analogs to V-1.5.

Proposition V-3.4. For an element p of a continuous lattice L the following
conditions are equivalent:

(1) p is weakly prime;
(2) for any nonempty finite set of elements x1, . . . , xn in L, the relation

x1 ∧ · · · ∧ xn � p implies xk ≤ p for some k;
(3) for any nonempty compact subset K of L, the relation inf K � p implies

p ∈ ↑K .
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Proof: (3) implies (2): Immediate.
(2) implies (1): Suppose that p ∈ int↑(X1 . . . Xn). Then there is an x � p

with x ∈ ↑(X1 . . . Xn) by III-1.6(i) and II-1.10(i). Thus x ≥ x1 ∧ · · · ∧ xn

with suitable xk ∈ Xk . Now (2) implies xk ≤ p for some k; whence, we find
p ∈ ↑Xk ⊆ (↑Xk)−.

(1) implies (3): Assume that x �≤ p for all x ∈ K . As L is a continuous
lattice, for each x ∈ K we find an element u(x) � x with u(x) �≤ p. As ↑u(x)
is a neighborhood of x , the compactness of K implies the existence of finitely
many elements x1, . . . , xn in K such that K ⊆ ↑u(x1)∪ · · ·∪↑u(xn). From the
relation inf K � p we conclude p ∈ int↑inf K ⊆ int ↑(u(x1) ∧ · · · ∧ u(xn));
whence, p ∈ (↑u(xk))− = ↑u(xk) for some k by (1). But this is a contradiction
to the choice of u(x) �≤ p. �

In the preceding proposition condition (2) cannot be strengthened to x1 ∧ · · · ∧
xn � p implies xk � p for some k. Indeed, in the unit square L = [0, 1] ×
[0, 1] the element p = (1, 1) is prime; but for x1 = (1, 0) and x2 = (0, 1), we
have x1 ∧ x2 � p and neither x1 � p nor x2 � p.

In I-3.25 it had been shown if a continuous lattice that every pseudoprime
element satisfies condition (2) of the preceding proposition and that (2) char-
acterizes pseudoprimes for distributive continuous lattices. Thus:

Corollary V-3.5. PRIME L ⊆ WPRIME L and if L is distributive, then
equality holds. �

Condition (3) in Proposition V-3.4 allows us to conclude that every weakly
prime element is weakly irreducible:

Proposition V-3.6. For a continuous lattice, WPRIME L ⊆ WIRR L.

Proof: Let p be weakly prime. For every t � p, we have

t = inf(↑t ∩ WIRR L),

as IRR L ⊆ WIRR L and as IRR L is order generating (I-3.10). Because
we know ↑t ∩ WIRR L is compact by V-3.2, we can find an element pt ∈
WIRR L such that t ≤ pt ≤ p by V-3.4(3). Because in the Lawson topology
p = lim(t)t�p, we conclude that p = lim(pt )t�p. As pt ∈ WIRR L and as
WIRR L is closed, we get p ∈ WIRR L . �

The containment relations between the different kinds of irreducible and prime
elements in a continuous lattice are summarized in the following diagram:

Irr L ⊆ IRR L ⊆ (IRR L)− = WIRR L
∪‖ ∪‖

{1} ⊆ PRIME L ⊆ PRIME L ⊆ WPRIME L
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In the distributive case one has IRR L = PRIME L by I-3.12 and
PRIME L = WPRIME L by I-3.25 and V-3.4. Thus, the containment di-
agram simplifies considerably for distributive continuous lattices L:

Irr L ⊆ IRR L ⊆ (IRR L)− = WIRR L
‖ ‖ ‖

{1} ⊆ PRIME L ⊆ (PRIME L)− = PRIME L = WPRIME L

In particular, the pseudoprimes are exactly the elements in the closure of
the set of primes. As we had characterized in I-3.28 and I-4.8 the distributive
continuous lattices and, in particular, the algebraic lattices for which every pseu-
doprime element is prime, we obtain the following criterion for the closedness
of PRIME L .

Proposition V-3.7.

(i) In a distributive continuous lattice L the set PRIME L of prime elements
of L is closed iff the relation � on L is multiplicative, that is, iff L is stably
continuous.

(ii) In a distributive algebraic lattice L the set PRIME L of prime elements is
closed iff L is arithmetic (that is, if the compact elements form a sublattice
of L). �

In the nondistributive case we do not know similar characterizations of those
continuous lattices L in which IRR L or PRIME L is closed.

Example V-3.8.

(1) The left hand figure below indicates a distributive continuous lattice L
with a pseudoprime element p which is not prime. Thus, PRIME L is not
closed; indeed, PRIME L is just L\{p} in this example. The prime ideal P
with p = sup P is P = {x : x < p}.

(2) The right hand figure above indicates a nondistributive continuous lattice
with no prime element except 1 but with a pseudoprime element p
different from 1. Again P = {x : x < p} is a prime ideal with sup P = p.

Exercises

Exercise V-3.9. Let L be a continuous lattice in which the set PRIME L of
prime elements is topologically generating. Show that L is distributive if and
only if the set T ={x ∈ L : x = inf (↑x ∩ PRIME L)} is a sublattice of L . �

Hint. See [Hofmann and Lawson, 1976]. �
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Exercise V-3.10. Let K be a compact convex set in a locally convex topological
vector space with the property that the set of extreme points is dense in K .
(Such K exist.) Show that in the lattice L = Con (K )op the set PRIME L is
topologically generating but that L is not distributive except in the case where
K is a singleton.

Hint. Cf. I-1.23, I-3.36 and Exercise V-1.11. �

Exercise V-3.11. Show that for a continuous lattice L the following condition
is equivalent to the conditions (1)–(4) of I-3.38:

(5) WIRR L = WPRIME L . �

Note that the conditions in Exercises V-3.11 and I-3.38 represent a kind of weak
distributivity; indeed, a lattice is distributive if and only if a1 ∧ a2 ≤ x implies
(a1 ∨ x) ∧ (a2 ∨ x) = x . Note also that the equivalent conditions (1)–(5) in
Exercise V-3.11 and I-3.38 are satisfied, whenever the set PRIME L of prime
elements is topologically generating. Thus Exercise V-3.10 gives an example
of a nondistributive continuous lattice which is weakly distributive in the sense
of V-3.11.

Old notes

Most of the material contained in this section is due to [Hofmann and Lawson,
1976]. Pseudoprimes appear in a second paper of [Hofmann and Lawson,
1978], sec. 8, after having been motivated in an SCS Memo of Keimel and
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Mislove [scs 19], where Proposition V-3.7 appears. More on the subject of
Exercise V-3.11 can be found in the 1976 paper of Hofmann and Lawson men-
tioned above. The same paper also contains results on the so-called spanning
dimension of a continuous lattice L: this is the least cardinal α such that L is
topologically generated by a set which is the union of α nonempty chains. The
relations of this and similar dimensional concepts with width and breadth of L
and IRR L are discussed there in detail. These notions of breadth and width in
compact semilattices have also been studied in [Baker and Stralka, 1970] and
[Lea, 1972].

V-4 Sober Spaces and Complete Lattices

In this section we assign to every complete lattice a sober topological space and
to every topological space a certain distributive complete lattice. These assign-
ments are functorial and establish a dual equivalence between the category of
all sober spaces and a certain category of distributive complete lattices, namely
primally generated frames. In the next section we specialize to distributive
continuous lattices, that is, continuous frames.

On the level of objects, the essential results can be summarized as follows:
a complete lattice L can be represented as the lattice of open subsets of a
topological space iff L is order generated by its prime elements. In particular,
these lattices are frames. A topological space X is homeomorphic to the space
Spec L of nonunit prime elements endowed with the hull–kernel topology of
some lattice L iff X is sober.

Definition V-4.1. For a complete lattice L we denote by Spec L the set of all
prime elements of L different from 1; that is,

Spec L = PRIME L\{1}.
For every a ∈ L , let

∇L (a) = {p ∈ Spec L : a ≤ p} = ↑a ∩ Spec L

be the hull of a, and let

�L (a) = Spec L\∇L (a) = Spec L\↑a

be the complement of the hull of a in Spec L . �

Proposition V-4.2. We have for all X ⊆ L and all finite F ⊆ L:

(i) �L (0) = Ø, ∇L (0) = SpecL;
(ii) �L (1) = SpecL , ∇L (1) = Ø;



V-4 Sober Spaces and Complete Lattices 409

(iii)
⋃{�L (a): a ∈ X} = �L (sup X ),

⋂{∇L (a): a ∈ X} = ∇L (sup X );
(iv)
⋂{�L (a): a ∈ F} = �L (infF),

⋃{∇L (a): a ∈ F} = ∇L (infF).

Proof: Parts (i) and (ii) are clear. For (iii) it suffices to remark that the condition
p ∈ ⋂{∇L (a): a ∈ X} means p ≥ a for all a ∈ X ; this in turn is equivalent
to saying that p ≥ sup X ; that is, p ∈ ∇L (sup X ). The first equation is proved
similarly. For (iv) we note that p ∈ ∇L (inf F) means p ≥ inf F ; as F is
finite and as p is prime, this is equivalent to p ≥ a for some a ∈ F , that is,
p ∈⋃{∇L (a): a ∈ F}. The first equation is similar. �

From V-4.2 we conclude that the sets of the form ∇L (a) for a ∈ L are exactly
the closed sets and the sets of the form �L (a) for a ∈ L are exactly the open
sets of one and the same topology on Spec L .

Definition V-4.3. The hull–kernel topology on Spec L is defined to be the
topology the open sets of which are the sets of the form �L (a) for a ∈ L . �

From now on, Spec L will always be endowed with this topology; that is,
O(Spec L) = {�L (a): a ∈ L}. Recall that the lower topology ω(L) on L
is defined to have the principal filters ↑a for a ∈ L as subbasic closed sets
(III-1.1). As ∇L (a) = ↑a ∩ Spec L and as these sets are the closed sets of the
hull–kernel topology, we conclude that the hull–kernel topology on Spec L is
the subspace topology induced from the lower topology ω(L) on L . It follows
that the hull–kernel topology is coarser than the topology induced from the
Lawson topology on L (see III-1.5).

Remark. The assignment a �→ �L (a) : L → O(Spec L) is surjective and
preserves arbitrary sups and finite infs (V-4.2); the map is bijective if and only
if Spec L is order generating in L . Indeed, since X = ∇L (inf X ) iff X is a
hull–kernel closed subset of Spec L , then ∇L is injective iff a = inf∇L (a)
for all a ∈ L iff Spec L is order generating. In this case, the inverse of �L is
given by

U �→ inf(Spec L\U ) : O(Spec L) → L .

It is important to recall at this point the notion of a sober space and that of
an irreducible closed set (see O-5.6 and O-5.6).

Proposition V-4.4. For every complete lattice L, the space Spec L is sober.

Proof: It is obvious that {p}− = ∇L (p) for every p ∈ Spec L . Now, if p, q are
elements in Spec L with {p}− = {q}−, then p ≤ q and q ≤ p. Thus, we have
proved Spec L is a T0-space.
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Now let A be any nonempty irreducible closed subset of Spec L . We show
that A = {p}− for some p ∈ Spec L . Since A is closed, A = ∇L (a) for some
a ∈ L . Let p = inf ∇L (a). Then p �= 1 and ∇L (a) = ∇L (p). We wish to show
that p is prime.

Suppose that b ∧ c ≤ p. If x ∈ A, then b ∧ c ≤ p ≤ x . Since x is prime
either b ≤ x or c ≤ x ; that is, x ∈ ↑b ∪ ↑c. Thus, A ⊆ ∇L (b) ∪�L (c). Since
A is irreducible, either A ⊆ ↑b or A ⊆ ↑c. Hence, either b ≤ p or c ≤ p. �

We now have assigned to every complete lattice L a topological space Spec L .
In order to make this assignment functorial, we consider a map ϕ: L → M of
complete lattices preserving arbitrary sups and finite infs (cf. O-3.24). (Note
that the preservation of finite infs includes the property ϕ(1) = 1.) The upper
adjoint (recall O-3.1, O-3.5) τ = (y �→ maxϕ−1(↓y)) : M → L has the
fundamental property

τ (b) ≥ a iff b ≥ ϕ(a) for all a ∈ L and all b ∈ M,

which is equivalent to

τ−1(↑a) = ↑ϕ(a) for all a ∈ L .

We note

Lemma V-4.5. The adjoint τ maps Spec M into Spec L.

Proof: By IV-1.22, τ (PRIME M) ⊂ PRIME L . Let p ∈ Spec M . We have
τ (p) �= 1; indeed τ (p) = 1 would imply p ≥ ϕ(1) = 1; that is, p = 1. Hence
τ (Spec M) ⊂ Spec L . �

We therefore denote by

Spec ϕ: Spec M → Spec L

the restriction and co-restriction of τ : M → L . The following formula clearly
implies that Spec ϕ is continuous with respect to the hull–kernel topologies on
Spec M and Spec L .

Lemma V-4.6. (Spec ϕ)−1(�L (a)) = �M (ϕ(a)) for all a ∈ L.

Proof:

(Spec ϕ)−1(�L (a)) = τ−1(Spec L\↑a) ∩ Spec M

= Spec M\τ−1(↑a) = Spec M\↑ϕ(a) = �M (ϕ(a)). �

If ϕ has an upper adjoint τ and ϕ′ an upper adjoint τ ′, then τ ′ ◦ τ is the upper
adjoint ofϕ ◦ ϕ′. Thus Spec (ϕ ◦ ϕ′) = Spec ϕ′◦ Spec ϕ. This and the preceding
remarks show that we have indeed a functor

Spec: SUP∧ → TOPop
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Here TOP is the category of all topological T0-spaces and all continuous maps
(cf. O-5.1) and SUP∧ is the category of all complete lattices and all maps
between them preserving arbitrary sups and finite infs (see IV-1.23).

There is an obvious functor the other way around,

O: TOPop → SUP∧,

where to every topological space X we assign its lattice O(X ) of open subsets,
and for every continuous function f : X → Y we assign the function

O( f ) = (U �→ f −1(U )): O(Y ) → O(X ),

which clearly preserves arbitrary unions and finite intersections and, hence, is
a morphism in the category SUP∧.

For an arbitrary topological space X , we now consider the set Spec O(X ) of
all prime elements U �= X of the lattice O(X ) endowed with the hull–kernel
topology. Since for every x ∈ X the open set X\{x}− is prime in O(X ), we
may define a function

ξX = (x �→ X\{x}−): X → Spec O(X ).

Note that U = ξ−1
X (�O(X )(U )) for every open subset U of X ; in particular, we

find that ξX : X → Spec O(X ) is continuous. Indeed,

x ∈ ξ−1
X

(
�O(X )(U )

)
iff ξX (x) ∈ �O(X )(U )
iff U �⊆ ξX (x) = X\{x}−
iff x ∈ U.

Note also that ξX (U ) = �O(X )(U ) ∩ ξX (X ) for every open subset U of X ;
in particular, ξX is an open map onto its image. Furthermore ξX is injective iff
{x}− = {y}− implies x = y; that is, iff X is a T0-space. And in this case ξX is
an embedding. Finally, ξX is surjective iff every prime element of O(X ) can be
written in the form X\{x}− for some x ∈ X , which is equivalent to saying that
every irreducible closed subset of X is of the form {x}− for some x ∈ X . We
thus conclude that ξX is bijective iff X is a sober space, and that in this case ξX

is a homeomorphism.
Now we formulate the main result of this section. In the following SOB

denotes the full subcategory of TOP whose objects are the sober topological
spaces, and FRM0 the full subcategory of SUP∧ whose objects are the com-
plete lattices in which the prime elements are order generating. Note that the
category FRM0 is a full subcategory of FRM, the category of all frames (see
remarks preceding II-2.24). As prime elements of a frame are often called
“points”, one also says that a frame has “enough points” if the primes are order
generating.
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Proposition V-4.7.

(i) The functor

Spec: SUP∧ → TOPop

is left adjoint to the functor

O: TOPop → SUP∧.

Front and back adjunctions are given by

�L : L → O(Spec L) and ξX : X → Spec O(X )

where �L (a) = SpecL\↑a and ξX (x) = X\{x}− for any complete lattice
L and any topological space X. Moreover,

�O(X ): O(X ) → O(Spec O(X )) and ξSpec L : Spec L → Spec O(Spec L)

are isomorphisms.
(ii) The categories SOB and FRM0 are dual under the restrictions of the

functors Spec and O.
(iii) The functors

O Spec: SUP∧ → FRM0 and Spec O: TOP → SOB

are reflections. In particular, �L is an isomorphism iff L ∈ FRM0 and ξX

a homeomorphism iff X is sober.

Remark. For any space X , its sober reflection X S = Spec O(X ) is called the
sobrification of X and the natural map ξX : X → X S is called the sobrifica-
tion map.

Proof of proposition: We first prove the naturality of �L and ξX . The com-
mutativity of the diagram

follows from the fact that

(OSpec ϕ)(�L (a)) = (Spec ϕ)−1(�L (a)) = �M (ϕ(a))
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for every a ∈ L (see V-4.6). The commutativity of

can be seen in the following way:

(Spec O( f ))(ξX (x)) = (Spec O( f ))(X\{x}−)

=
⋃

O( f )−1(↓(X\{x}−))

=
⋃
{U ∈ O(Y ) : O( f )(U ) ⊆ X\{x}−}

=
⋃
{U ∈ O(Y ) : x �∈ f −1(U )}

=
⋃
{U ∈ O(Y ) : f (x) �∈ U }

= Y\{ f (x)}−
= ξY ( f (x)),

for all x ∈ X .
The fact that�O(X ):O(X ) → O(Spec O(X )) is a lattice isomorphism follows

from the comments before V-4.4 and before V-4.7 as does the fact that the
mapping ξSpec L: Spec L → Spec O(Spec L) is a homeomorphism.

In order to show the adjointness of the functors Spec and O, we prove the
commutativity of the following diagrams:

This can be done in the following way:

(Spec �L )(ξSpec L (p)) = (Spec �L )(Spec L\{p}−)
= (Spec �L )(�L (p))
= sup�−1

L (↓�L (p))
= p
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for every p ∈ Spec L , and

O(ξX )(�O(X )(U )) = ξ−1
X

(
�O(X )(U )

) = U

for every U ∈ �(S).
The remaining assertions now follow in a routine manner. �

Exercises

Exercise V-4.8.

(i) Let L be a complete lattice, X ⊆ L . Show that the following statements
are equivalent.
(1) X is sober with respect to the relative lower topology.
(2) For x ∈ L , if x = lim F for some ultrafilter F on ↑x ∩ X , then x ∈ X .

(ii) Show that the set Spec L satisfies condition (2) in any complete lattice.
This gives an alternative argument that Spec L is sober.

Hint. Use Proposition III-3.18. �

The following gives an alternative approach to constructing the sobrification of
a space.

Exercise V-4.9. Let X be a topological space.

(i) Define a set X S by

X S = {A ⊆ X : A is closed, irreducible, and nonempty}.
Topologize X S by open sets U S = {A ∈ X S : A ∩U �= Ø} for each open
set U of X . If we let j : X → X S be the map x �→ {x}−, show that
(X S, j) is – up to commuting homeomorphism – the sobrification of X .

(ii) Show that if f : X → Y is continuous and Y is sober, then there exists a
unique continuous h: X S → Y such that f = hj .

(iii) Show that the universal property given in (ii) characterizes the
sobrification – up to commuting homeomorphism. �

Exercise V-4.10. Let L be a complete lattice. A filter F ⊆ L is said to be
completely prime if sup A ∈ F and A �= Ø always imply A ∩ F �= Ø. Show
that the following statements are equivalent for a proper filter F .

(1) F is completely prime.
(2) F is Scott open and prime.
(3) There exists a prime p �= 1 such that F = L\↓p. �
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The following exercise gives an alternative approach to defining Spec L .

Exercise V-4.11. Let L be a complete lattice. Define

Spec L = {F ⊆ L : F is a proper completely prime filter}.
Topologize Spec L by taking as open sets all sets of the form

$(x) = {F ∈ Spec L : x ∈ F}.
Show that all sets of the form $(x) for x ∈ L form a topology on Spec L , and
show that this definition is equivalent to the one given in the text.

Hint. Use part (3) of V-4.10 to set up the equivalence. �

Old notes

The material contained in this section is standard. The theme of representing
lattices by suitable topologies – usually hull–kernel topologies – goes back
to M.H. Stone’s famous papers [Stone, 1936; Stone, 1937] on the topological
representation of Boolean algebras and distributive lattices. Of the authors who
have pursued this theme we only quote [Büchi, 1952], [Papert, 1959], [Bruns,
1962a], [Thron, 1962], and [Drake and Thron, 1965]. In these papers one finds
the duality between sober spaces and complete lattices order generated by their
prime elements, at least on the object level. Explicit formulations of this and
other dualities in the language of category theory have been collected in the
memoir [Hofmann and Keimel, b1972].

V-5 Duality for Distributive Continuous Lattices

In this section it is our aim to show that there is a one-to-one correspondence
between distributive continuous lattices (that is, continuous frames) and locally
compact sober spaces in the sense of a duality of categories. It will take some
development, however, to specify the maps of the desired categories precisely.

If X is a locally compact space (meaning that every point in X has a neigh-
borhood basis of compact sets), it is easy to see that the lattice O(X ) of open
subsets is a distributive continuous lattice (see I-1.7(5)). Conversely, if L is
a distributive continuous lattice, then the space Spec L of all prime elements
p �= 1 endowed with the hull–kernel topology is sober by V-4.4; we have
to prove that Spec L is locally compact, too. For this we first need a general
criterion for compactness of sets in Spec L .
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Lemma V-5.1. Let L be a complete lattice. A subset Q of Spec L is compact
for the hull–kernel topology iff ↓Q is Scott closed in L.

Proof: Suppose that Q ⊆ Spec L is compact, and let D be a directed set in
↓Q. Then {∇L (d) ∩ Q: d ∈ D} is a filter base of (nonempty) closed subsets
of Q. As Q is compact, we have

⋂
{∇L (d) ∩ Q: d ∈ D} =

⋂
{∇L (d): d ∈ D} ∩ Q

= ∇L (sup D) ∩ Q �= Ø.

But this means that sup D ∈ ↓Q. Thus, ↓Q is Scott closed.
Suppose conversely that ↓Q is Scott closed. In order to show that Q is

compact, let F be a filter base of closed subsets F of Spec L with F ∩ Q �= Ø
for all F ∈ F . Then F = ∇L (inf F) for all F ∈ F , and the set {inf F : F ∈ F}
is directed and contained in ↓Q as F ∩ Q �= Ø. As ↓Q is Scott closed, we
see that sup{inf F : F ∈ F} ∈ ↓Q. Thus, an element q ∈ Q exists such that
q ≥ sup{inf F : F ∈ F}; that is, q ∈ ∇L (inf F) = F for all F ∈ F . �

For a more specific criterion of compactness we recall the following notion
(see O-5.3).

Definition V-5.2. A subset Q of a topological space X is called saturated if
{x}− ∩ Q �= Ø always implies x ∈ Q. �

Using the specialization order on X , where x ≤ y iff x ∈ {y}− (see II-3.6),
we can say that Q is saturated in X iff q ∈ Q and q ≤ x ∈ X always imply
x ∈ Q iff Q = ↑Q in �X (cf. II-3.6). For more information on saturation, see
Exercise O-5.14. In the case X = Spec L with the hull–kernel topology, where
L is a complete lattice, we have {x}− = ∇L (x); thus, Q is saturated in Spec L
iff q ∈ Q and q ≥ x ∈ Spec L always imply x ∈ Q iff Q is a lower subset
of Spec L . The reader should note that on Spec L the specialization order is
opposite to the order induced from L .

Lemma V-5.3. Let L be a complete lattice. A subset Q of Spec L is saturated
and compact for the hull–kernel topology iff there is a Scott open filter F ⊆ L
such that Q = Spec L\F and ↓Q = L\F.

Proof: First let Q be saturated and compact. Then ↓Q is Scott closed by
V-5.1. Thus F = L\↓Q is Scott open. As L\↓Q = ⋂{L\↓p: p ∈ Q} and
as all p ∈ Q are prime, L\↓Q is a filter. Clearly, because Q is saturated, we
have ↓Q = L\F and Q = Spec L\F .

Conversely, if there is a Scott open filter F with both Q = Spec L\F
and ↓Q = L\F , then Q is saturated and compact by V-5.1. �



V-5 Duality for Distributive Continuous Lattices 417

Corollary V-5.4. Let L be a distributive complete lattice. Then a subset Q of
Spec L is saturated and compact for the hull–kernel topology iff there is a Scott
open filter F ⊆ L such that Q = Spec L\F.

Proof: By V-5.3 we only have to show that if F is a Scott open filter and if
Q = Spec L\F , then ↓Q = L\F . Indeed, if F is Scott open, then L\F is
Scott closed. Thus, every element in L\F is dominated by a maximal element
of that set. As F is a filter, these maximal elements are prime (cf. I-3.12(4)) by
the distributivity of L . Hence, they belong to Q, and so ↓Q = L\F . �

Now we prove the two principal results of this section:

Theorem V-5.5. Let L be a distributive continuous lattice. The space Spec L
is sober and locally compact and ∇L : L → O(Spec L) is an isomorphism.

Remark. As a consequence of I-3.40.9, all these spaces are Baire spaces. If
L is infinite, one has for the weights w(Spec L) = w(L) by III-4.8.

Proof of theorem: By V-4.4, Spec L is sober. Let U be a neighborhood of a
point p in Spec L . We want to find a compact neighborhood Q of p contained
in U . We may suppose that U = �L (a) = Spec L\↑a for some a in L . As L
is continuous, there is an element b � a with b �≤ p. By I-3.3 there is a Scott
open filter F with a ∈ F ⊆ ↑b. Let Q = Spec L\F . By V-5.4 Q is compact.
Further, a ∈ F ⊆ ↑b implies �L (b) ⊆ Q ⊆ �L (a) = U . As b �≤ p, we have
p ∈ �L (b), and Q is a compact neighborhood of p contained in U . Finally,
V-4.7 shows that �L is an isomorphism. �

Theorem V-5.6. For a sober space X, the lattice O(X ) of open subsets is
continuous iff X is locally compact.

Proof: In I-1.7(5) it has been shown that O(X ) is continuous for every locally
compact space. Finally, let X be sober. Then X is homeomorphic to SpecO(X )
by V-4.7. If, in addition, O(X ) is continuous, then SpecO(X ), and hence X , is
locally compact by V-5.5. �

As every Hausdorff space is sober, Theorem V-5.6 yields

Corollary V-5.7. For a Hausdorff space X, the lattice O(X ) of open subsets
is continuous iff X is locally compact. �

In general, that is, for nonsober spaces X , we do not have any characterization
of the continuity of O(X ) that is as satisfactory as Theorem V-5.6. Of course,
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we can say that O(X ) is continuous if and only if the sobrification X S of X is
locally compact. For T0-spaces this can be made more specific:

Definition V-5.8. A function f : X → Y is called a quasihomeomorphism if
the map U �→ f −1(U ): O(Y ) → O(X ) is bijective and, hence, an isomorphism
of lattices. A topological embedding i : X → Y of topological spaces is called
strict if i is a quasihomeomorphism. �

We observe that the image of a strict embedding is always dense. The sobrifi-
cation map ξX : X → X S = SpecO(X ) is a strict embedding if X is a T0-space
by the results of Section V-4.

Lemma V-5.9. Let L be a complete lattice in which Spec L is order generating.
For a subset � ⊆ Spec L the inclusion map � → Spec L is a strict embedding
iff � is also order generating in L.

Proof: The inclusion � → Spec L is a strict embedding iff

∇L (s) ∩� = ∇L (t) ∩� implies ∇L (s) = ∇L (t)

for all s, t in L . As Spec L is order generating, this is equivalent to saying that
∇L (s) ∩� = ∇L (t) ∩� implies s = t . As in any case

∇L (s) ∩� = ∇L (inf(∇L (s) ∩�)) ∩�,

the foregoing statement implies that s = inf(∇L (s) ∩ �) for all s in L; that is,
� is order generating in L . Clearly, if � is order generating, then we find that
∇L (s) ∩ � = ∇L (t) ∩ � implies s = inf(∇L (s) ∩ � = inf(∇L (t) ∩ �) = t .

�

Proposition V-5.10. For a T0-space X, the following statements are
equivalent:

(1) O(X ) is a continuous lattice;
(2) X allows a strict embedding into a locally compact space;
(3) X allows a strict embedding into a locally compact sober space;
(4) X is homeomorphic to an order generating subspace of Spec L for some

distributive continuous lattice L;
(5) the sobrification X S of X is locally compact.

Proof: (1) iff (5): This follows from Theorem V-5.6 and from the fact that
O(X ) ∼= O(Spec (O(X ))) = O(X S) by V-4.7.

(5) implies (4): As X is a T0-space, the sobrification map ξX : X → X S =
Spec (O(X )) is a strict embedding. Hence ξX (X ) is order generating in O(X )
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by V-5.9, and O(X ) ∼= O(X S) is distributive and continuous.
(4) implies (3): By V-5.9.
(3) implies (2) implies (1): Clear. �

The reader should recall that the spaces characterized by the equivalent condi-
tions in the preceding proposition have been considered in Section II-4 because
of their good behavior with respect to function spaces.

We have seen that the hull–kernel topology of Spec L is induced from the
lower topology ω(L) of L . We now show that the topology induced from the
Lawson topologyλ(L) of L on Spec L can be characterized – in the case of a con-
tinuous distributive lattice L – in terms of the hull–kernel topology of Spec L .
The procedure we are using associates with every topological space a refinement
of its topology called the patch topology already introduced in O-5.10.

Definition V-5.11. Let X be a topological space. The co-compact topology is
the topology generated by the complements X\Q of arbitrary compact saturated
subsets Q of X . We define the patch topology on X to be that generated by the
original topology O(X ) together with the co-compact topology. �

We now consider a complete lattice L and the patch topology for X =
Spec L with the hull–kernel topology, which is the topology induced by the
lower topology on L . In parallel, we consider PRIME L = Spec L ∪ {1} also
topologized by the topology induced by the lower topology on L .

We wish next to compare the patch topology on Spec L and PRIME L with
the topology induced from the Lawson topology on L . Recall from III-1.5 that
the Lawson topology is generated by the lower topology together with the Scott
topology. But the lower topology induces on Spec L and on PRIME L exactly the
hull–kernel topology. By V-5.3, every set of the form Spec L\Q, for a compact
saturated subset Q of Spec L can be written as F ∩Spec L for some Scott open
filter F of L . Thus, the patch topology on Spec L is coarser than the topology
induced from the Lawson topology on L . The same holds for PRIME L .

If L is distributive, then by V-5.4 the sets of the form Spec L\Q with Q
compact and saturated are exactly the sets of the form F ∩ Spec L with F
a Scott open filter on L . Since on a continuous lattice the Scott topology is
generated by the Scott open filters (II-1.14), we have

Proposition V-5.12. (i) In an arbitrary complete lattice L, the patch topology
on Spec L and on PRIME L = Spec L ∪ {1} is coarser than the topology
induced by the Lawson topology on L.

(ii) In a distributive continuous lattice L, the two topologies agree on SpecL
and on PRIME L = Spec L∪{1}. In particular, the patch topology is Hausdorff.

�
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The criteria in V-3.7 for PRIME L to be closed with respect to the Lawson
topology together with V-5.12 yield the following.

Corollary V-5.13. (i) In a distributive continuous lattice L, the patch topology
on PRIME L is compact iff L is stably continuous.

(ii) In a distributive algebraic lattice L, the patch topology on PRIME L is
compact iff L is arithmetic. �

In a countably based domain L the Lawson topology has a countable base and
it is metrizable (see III-4.5, III-4.6). We shall see now that it is even completely
metrizable, that is, every countably based domain with its Lawson topology is a
Polish space. Recall (O-5.13) that a space is called Polish if it is separable and its
topology is completely metrizable. As any compact metric space is complete, a
countably based continuous lattice with its Lawson topology is always Polish.
We shall use the result that a Gδ-subset, i.e., an intersection of countably many
open sets, of a Polish space is also a Polish space (cf. remarks after O-5.13).

Lemma V-5.14. In a countably based continuous lattice L, the set IRR L of ir-
reducible elements is a Gδ-set for the Lawson topology and hence a Polish space.

Proof: Consider L with its Lawson topology. In L × L the set C of all pairs
(x, y) of comparable elements is closed, hence compact, with respect to the
Lawson topology. In fact, the graph G of the order relation ≤ is closed, and C
is the union of G and the graph G−1 of the opposite order ≥. The set L\IRR L
is the image of the complement (L × L)\C under the map (x, y) �→ x ∧ y
(see Exercise I-3.37). As the Lawson topology on L has a countable basis, the
compact set C is the intersection of countably many open subsets Un of L × L .
Their complements An = (L × L)\Un are compact, so their images Bn ⊆ L
under the inf map, which is continuous, are compact and hence closed, and the
Bn do not meet IRR L . Thus IRR L is the intersection of the countable family
of open sets Vn = L\Bn , which shows that it is a Gδ-set. �

Lemma V-5.15. On every quasicontinuous domain, in particular on every
continuous domain, the Lawson topology agrees with the patch topology asso-
ciated to the Scott topology.

Proof: It suffices to show that the lower topology agrees with the co-compact
topology associated to the Scott topology: The finitely generated upper sets
form a basis for the closed sets of the lower topology, and these sets are Scott
compact and saturated. Thus the co-compact topology is finer than the lower
topology. On the other hand, by III-5.7 every Scott compact saturated set is an
intersection of finitely generated upper sets, hence closed for the lower topology.
Thus, the lower topology is finer than the co-compact topology. �
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Lemma V-5.16. For a quasicontinuous domain S, the map ξS: x �→ (S\↓x) :
S → Spec σ (S) is a homeomorphism for the Lawson toplogy on S and the
topology on Spec σ (S) induced by the Lawson topology on the continuous
lattice σ (S).

Proof: Let L denote the continuous lattice σ (S) of Scott open subsets of S.
By V-5.12(ii) the topology induced on Spec L by the Lawson topology on L
coincides with the patch topology of Spec L . As every quasicontinuous domain
is sober in its Scott topology by III- 3.7, the spectrum of Spec L is homeomorphic
to S with its Scott topology by V-4.7(iii). As the patch topology associated with
the Scott topology on S is equal to the Lawson topology on S by V-5.15, we
see that S with its Lawson topology is homeomorphic to Spec L endowed with
the topology induced by the Lawson topology of L . �

Proposition V-5.17. A countably based domain with its Lawson topology is
a Polish space.

Proof: Consider a countably based domain S with its Scott topology. The Scott
open sets form a distributive continuous lattice L := σ (S) which is countably
based by III-4.5. By V-5.14 the spectrum Spec L is a Polish space when endowed
with the topology induced by the Lawson topology on L . As this space is
homeomorphic to S with its Lawson topology by V-5.16, S is also a Polish
space for its Lawson topology. �

Let us turn now to the functorial aspects of the correspondence between dis-
tributive continuous lattices and locally compact sober spaces. Recall the duality
between the categories SOB and FRM0 of the last section. This duality restricts,
by what we have just shown, to a duality between the full subcategory of SOB
consisting of the locally compact sober spaces and the full subcategory of FRM
consisting of the distributive continuous lattices, or, equivalently, the continu-
ous frames. Indeed, O(X ) is a continuous distributive lattice for every locally
compact sober space, and Spec L is a locally compact sober space for every
distributive continuous lattice L by V-5.5.

Unfortunately, the morphisms in SUP∧ and in particular in FRM (that is, the
maps preserving arbitrary sups and finite infs) are of no particular significance
for continuous lattices. What we want to do is to restrict attention to maps
which, in addition, preserve the relation �. This is motivated by the fact that
a map ϕ: L → M between continuous lattices preserves arbitrary sups and �
if and only if its upper adjoint τ : M → L preserves arbitrary infs and directed
sups (see IV-1.4). (That is, τ is a ∧-semilattice homomorphism which is con-
tinuous for the respective Lawson topologies; see III-1.8.) Now by V-4.5, the
upper adjoint maps Spec M into Spec L , and the restriction and co-restriction
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Specϕ: Spec M → Spec L is continuous for the respective hull–kernel topolo-
gies. What is new in the discussion is that we can verify an additional property
for these maps, as we show in the next two lemmas.

Lemma V-5.18. Let L and M be distributive continuous lattices and ϕ: L →
M a map preserving arbitrary sups, finite infs and the relation �. Then for
every saturated compact subset Q of Spec L, the preimage (Specϕ)−1(Q) is
also saturated and compact.

Proof: Let Q be saturated and compact in Spec L . By V-5.4, we can write Q =
Spec L\F for some Scott open filter F of L . Since the upper adjoint τ : M → L
is a ∧-homomorphism which is continuous for the respective Lawson tologies,
τ−1(F) is a Scott open filter of M . As Specϕ is the restriction of τ , we conclude
from V-5.4 that the set

(Specϕ)−1(Q) = τ−1(Spec L\F) = Spec M\τ−1(F)

is a saturated compact subset of Spec M . �

Lemma V-5.19. Let X and Y be locally compact spaces and f : X → Y a
continuous map with the property that f −1(Q) is compact in X for every sat-
urated compact subset Q of Y . Then the map O( f ): O(Y ) → O(X ) preserves
the relation �.

Proof: Let U � V in O(Y ). We want to show that f −1(U ) � f −1(V ). By
I-1.4(ii) there is a compact set Q with U ⊆ Q ⊆ V . Let P be the saturation
of Q, that is, P = {y ∈ Y : {y}− ∩ Q �= Ø}. Since every open set is saturated,
the open coverings of Q and of P are the same. Thus P is also compact, and
we still have U ⊆ P ⊆ V . By hypothesis, f −1(P) is also compact. Because
f −1(U ) ⊆ f −1(P) ⊆ f −1(V ), we conclude that f −1(U ) � f −1(V ). �

A continuous map f : X → Y is called proper if it is closed (for any A closed in
X ,↓ f (A) is closed in Y ) and f −1(B) is compact for all B compact and saturated
in Y ; see Definition VI-6.20. By Lemma VI-6.21 the maps of the preceding two
lemmas are precisely the proper maps if the spaces X and Y belong to the class
of locally compact sober spaces, the class we consider in the following.

Consider now the following categories:

LCSOB which has as objects the locally compact sober spaces and as
morphisms the proper maps,

CLop ∩ FRM which has as objects continuous distributive lattices and as maps
the morphisms ϕ: L → M preserving arbitrary sups, finite infs and the
relation �,
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DL which has as objects continuous distributive lattices and CL-maps
preserving spectra.

Then DL and CLop FRM are dual by IV-1.24.

Proposition V-5.20. (i) A dual equivalence of categories is given by the
functors

Spec: CLop ∩ FRM → LCSOB and O: LCSOB → CLop ∩ FRM.

(ii) The categories DL and LCSOB are equivalent. �

Exercises

Exercise V-5.21. (i) Let L be a distributive algebraic lattice. Show that the
open set �L (k) ⊆ Spec L is compact for the hull–kernel topology whenever
k is a compact element of L , and that conversely every compact open subset
of Spec L is of this form. Show that, moreover, Spec L has a basis of compact
open sets (cf. also I-4.24).

(ii) Using V-5.19 show that the functors Spec and O establish a dual equiv-
alence between the following categories:

ALop∩ FRM, whose objects are the distributive algebraic lattices and whose
morphisms are the maps ϕ: L → M which preserve arbitrary sups, finite
infs and which map compact elements of L to compact elements of M ;

BCSOB, whose objects are the sober spaces having a basis of compact open
sets and whose maps are the continuous functions f : X → Y such that
f −1(Q) is compact for every compact open subset Q of Y . �

Exercise V-5.22. Consider the following categories.

The full subcategory DAR of ArLop ∩ FRM the objects of which are the
distributive arithmetic lattices with 1 a compact element.

The full subcategory CCSOB of BCSOB the objects of which are the compact
sober spaces with a basis of compact open sets closed under finite
intersections.

The category DLat of distributive lattices with 0 and 1 and all 0 and 1
preserving lattice homomorphisms.

Show that the categories DAR and CCSOB are dually equivalent under the
functors Spec and O, and that similarly, the categories DLat and CCSOB are
dually equivalent.
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Hint. The categories DLat and DAR are equivalent. One may use the functor
Id: DLat → DAR which associates with every distributive lattice its ideal
lattice, and the functor K : DAR → DLat which associates with each arithmetic
distributive lattice its lattice of compact elements (cf. IV-1.16). �

Exercise V-5.23. (i) Let X be a sober space and L a continuous distributive
lattice. Show that Spec [X, �L] ∼= X × Spec L (see II-4.23, II-4.24).

Hint. We know from II-4.19 that [X, �L] is a frame if L is one. In II-4.24,
for a sober space X and an arbitrary continuous lattice L we constructed
a bijection β: X × (IRR L\{1}) → IRR [X, �L]\{1}, which was given by
β(x, p) = χX\{x}− ∨ constp. As in distributive lattices irreducible elements are
prime, we have indeed a bijection β: X × Spec L → Spec [X, �L].

We show that β is a homeomorphism. The generic closed sets of S =
Spec [X, �L] are of the form ↑ f ∩ S, f ∈ [X, �L]. Now β−1(↑ f ∩ S) =
{(x, p): x ∈ X, p ∈ Spec L , f (x) ≤ p}. We claim that the complement of this
set is open in X × Spec L . Indeed suppose f (x) �≤ p. Pick an s ∈ L with
s �≤ p and s � f (x). Then U = f −1(

�

s) is an open neighborhood of x in X ,
and V = (Spec L)\ ↑ s is an open neighborhood of p in Spec L . If u ∈ U and
v ∈ V , then f (u) �≤ v, since otherwise s � f (u) ≤ v implies v ∈ ↑s. This
proves the claim. Conversely, let A be closed in X and s in L so that↑s∩Spec L
is a generic closed set of Spec L . Define f : X → L by

f (x) =
{

s, if x ∈ A,
1, otherwise.

Then f is continuous, that is, f ∈ [X ; σ L]. Moreover, f ≤ β(x, p) iff f (x) ≤
p iff s ≤ p for x ∈ A and 1 ≤ p for x �∈ A; but p < 1, hence a ≤ β(x, p) iff
x ∈ A and p ∈ ↑s. Thus A × (↑s ∩ Spec L) = β(↑ f ∩ S) is the image of a
generic closed set in Spec [X, �L].

Remark. We have in fact proved a stronger statement, since in the proof we
did not use the distributivity of L .

(ii) With L = O(Y ) for a locally compact sober space, and in view of the
duality between these spaces and continuous distributive lattices, retrieve the
following corollary (cf. II-4.10): for two locally compact sober spaces X and
Y , one has [X, �O(Y )] ∼= O(X × Y ). �

Exercise V-5.24. Let L1 and L2 be two continuous distributive lattices. Prove
the following.

(i) Spec (L1 ⊗ L2) ∼= Spec L1 × Spec L2(cf. IV-1.27 f.).
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(ii) Dually, for two locally compact sober spaces X and Y , one has
O(X × Y ) ∼= O(X ) ⊗O(Y ). (See [Bandelt, 1980b].) �

The following exercise gives an indication of an example of a T0-space X for
which O(X ) is a continuous lattice but which fails to be locally compact so
badly that every compact subset of X has empty interior.

Exercise V-5.25. Let I = [0, 1] be the unit interval and L the continuous lattice
[I → I] = LSC(I, I) of lower semicontinuous functions from I into I. Then
Y = Spec L may be identified with I × (I\{1}) via V-5.23 above, where we
transport the hull–kernel topology of the spectrum to the topless unit square. By
heavy use of the axiom of choice we pick a dense subset A of I\{1} such that
A ∩U is not a Borel set (or, if one prefers, not even Lebesgue measurable) for
every nonempty open subset U of the unit interval. Let Q be the set of rational
points of I. Now define

X = (A × Q\{1}) ∪ (I\A) × (I\Q),

and give X the topology inherited from the spectrum of L . Prove the following:

(i) X is a T0-space for which O(X ) = L; in particular, O(X ) is a continuous
lattice;

(ii) every compact subset of X has empty interior. (For details see [Hofmann
and Lawson, 1978].) �

Exercise V-5.26. Let X be a sober topological space and �X the set X consid-
ered as a poset with the specialization order (see O-5.2). Show that the following
statements are equivalent:

(1) O(X ) is completely distributive;
(2) X is locally compact, σ (�X ) ⊆ O(X ) and �X is a domain.

Moreover, show that, if these conditions are satisfied, then σ (�(X ) = O(X ).

Hint. (1) implies (2): If O(X ) is completely distributive, we may identify X
with SpecO(X ) and �X with (SpecO(X ),⊇). Then V-1.7 shows that �X is a
domain.

(2) implies (1): We identify X with Spec L for the lattice L = O(X ), and
�X with (X,≥). Since X is locally compact, L is continuous (V-5.6), and the
given topology on X is identified with the hull–kernel topology on X . Thus
U ∈ O(X ) means U = X\↑x for some x ∈ L . But then clearly U ∈ σ (�X ).
Hence O(X ) ⊆ σ (�X ). Thus O(X ) = σ (�X ). But σ (�X ) is completely
distributive by II-1.14. �
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We utilize this information to give a detailed analysis of the subcategories of the
category FRM of frames with morphisms preserving arbitrary sups and finite
infs and their duals. This is best depicted in diagram form.

Exercise V-5.27.

(i) Consider the categories shown in the two tables at the end of this section.
Show that the corresponding categories are dual under the duality

FRM0
→←Spec

O SOB

(ii) The category FRM has no dual based on topological spaces. (This has
given rise to the study of “pointless topology” by passing to the formal
dual (with objects sometimes called “locales”).) Show that by Theorem
IV-1.22, FRMop, however, can be realized as a concrete category: namely
the category of all frames (“locales”) together with all maps g preserving
arbitrary infs and prime ideals (that is, ↓ g(P) is prime for any prime
ideal P). �

Exercise V-5.28. Let CLd be the full subcategory in CL of all distributive con-
tinuous lattices. For a CL-morphism f : L → M between distributive continu-
ous lattices L and M , let Spec f be the multivalued function Spec L → Spec M
which associates with a p ∈ Spec L the subset ∇L ( f (p)) ⊆ Spec M . Prove the
following.

(i) Spec f g = Spec f ◦ Spec g (with composition of binary relations on the
right hand side).

(ii) Spec f is a multivalued function F : X → Y between locally compact
sober spaces satisfying the following properties:
(a) The image of a point is closed.
(b) F(A−) = F(A)− for all A ⊆ X .
(c) F−1(Q) is compact and saturated whenever Q is compact and

saturated in Y .
(iii) Spec is a functor from the category CLd to the category of all multivalued

maps between locally compact sober spaces satisfying (a), (b) and (c)
above, and this functor gives an equivalence of categories. (This result
generalizes V-5.20.)

Hint. (i) Use V-1.13.
(ii) Condition (a) is clear from the definition. For (b), F(A)−1 ⊆ F(A−), use

V-1.13. For (c) recall V-5.4. (iii) Find an inverse functor for Spec by associating
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with a space X the lattice �(X )op (O-2.7(3)) and with a multivalued map
F : X → Y satisfying (a), (b) and (c) the function A �→ F(A): �(X )op →
�(Y )op. �

Exercise V-5.29. Let X be a locally compact sober space. The co-compact
topology generated by the set of all compact saturated sets as a subbasis for
the closed sets is precisely the one making the function x �→ X\{x}− : X →
�O(X ) an embedding.

Hint. Consider X as Spec L for L = O(X ) and modify the proof of V-5.12(ii).
�

Exercise V-5.30. Prove the following.

(i) Let X be a T0-space such that O(X ) is a continuous lattice (cf. V-5.10
above) and that its sobrification X S (see Remark after V-4.7, and V-4.9) is
first countable. Then the following conditions are equivalent:
(1) X is sober;
(2) all closed subspaces of X are Baire spaces (cf. O-5.13);
(3) all closed irreducible subspaces of X are Baire spaces.

(ii) If X is a second countable T0-space such that O(X ) is continuous, then X
is sober iff all closed subspaces are Baire spaces.

Remark. It is known that the primitive ideal spectrum Prim A of a C∗-algebra
A is a locally compact Baire space and that it is second countable if A is sepa-
rable. Every closed subset is a primitive ideal spectrum. Hence (ii) above shows
that Prim A is sober in this case. This means that Prim A = Spec L , where L is
the lattice of closed ideals ofA, in the case of a separableC∗-algebra (cf. I-3.34).

Hint. Part (ii) is a consequence of (i). In order to prove (i) we consider X as an
order generating subset of Spec L for a continuous distributive lattice L (see
V-5.10). First show that if t ∈ (SpecL)\X and ω(L) has a countable basis at t ,
then X is not a Baire space. For this purpose it is useful to argue that for s �= t ,
the set ↑s ∩ X is nowhere dense in X .

Next show that if each p ∈ SpecL has a countable ω(L) neighborhood basis
in ↑p, then for each p ∈ (SpecL)\X the set ↑p ∩ X is a closed irreducible
subset of X which is not a Baire space.

In order to complete the proof, observe that (1) is equivalent to X = Spec L
(see discussion of ξX preceding V-4.7). Since closed subspaces of sober spaces
are sober, (1) implies (2). That (2) implies (3) is clear, and not (1) implies not
(3) follows now from the statement in the last paragraph. �

In the next exercises we expand on ideas related to strict embeddings (see
Definition V-5.8).
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Exercise V-5.31. Let X be a T0-space. Show that the following refinement
topologies are all equal:

(i) the topology with basis all locally closed sets, where a set is locally
closed if it is the intersection of an open and a closed subset;

(ii) the topology with subbasis for the open sets given by the union of the
family of all open sets and the family of all closed sets;

(iii) the topology with a basis of neighborhoods at each point x given
by ↓x ∩U , where ↓x is taken in the order of specialization and U is an
open set;

(iv) the join of the original topology with the topology of all lower sets (in the
specialization order); the second is just the order dual Alexandroff or
A-discrete topology.

The common topology that arises from the preceding definitions will be called
the strong topology. �

Exercise V-5.32. For a continuous map j : X → Y between T0-spaces, show
that the following are equivalent:

(1) j is a strict embedding;
(2) j is a quasihomeomorphism;
(3) j is a topological embedding and j(X ) is dense in the strong topology

of Y .

Hint. Note that (2) is just condition (1) with the requirement that j is an
embedding dropped. If (2) is assumed, then the open set lattice isomorphism
induces a homeomorphism of the spectra, which are the sobrifications of X
and Y , and the map j is then the restriction and co-restriction of this homeo-
morphism to the embedded images of X and Y . If j(X ) misses some ↓y ∩ V ,
where y ∈ V open, then j−1(Y\↓y) = j−1((Y\↓y) ∪ V ), a contradiction.
Assume (3) and suppose that j−1(U ) = j−1(V ) for U �= V ; then there ex-
ists x ∈ U\V , say. Thus ↓x ∩ U misses V , since x �∈ V and V is an up-
per set. It then follows from j−1(U ) = j−1(V ) that j(X ) misses ↓x ∩ U , a
contradiction. �

Exercise V-5.33. Let f : X → Y be a continuous map between T0-spaces.
Show that the following are equivalent:

(1) f is an epimorphism in the category of T0-spaces;
(2) the image f (X ) is strongly dense, that is, dense in the strong topology

of Y ;



Exercises 429

(3) the inclusion of f (X ) into Y is a quasihomeomorphism, or a strict
embedding.

Hint. The equivalence of (2) and (3) follows from the preceding exercise.
Assume (1) and suppose that f (X ) is not dense in the strong topology of Y .
Then there exist y ∈ Y and U open containing y such that f (X ) misses ↓y\U .
Define g, h: Y → {0, 1}, the Sierpinski space, by g(↓y) = 0, h(↓y\U ) = 0,
otherwise 1. Then g f = h f , but g �= h, a contradiction. Conversely assume (2).
Since the continuous functions into the Sierpinski space separate points, it
suffices to show that if g, h: Y → {0, 1} satisfy g f = h f , then g = h. Suppose
not; then U = g−1(1) �= h−1(1) = V for some g, h. Then U\V �= Ø, say. It
follows from g f = h f that the image of f misses U\V = U ∩ (Y\V ), an open
set in the strong topology. �

Exercise V-5.34. Show that a mapping j : X → X̂ between T0 spaces is the
sobrification of X (up to an X -homeomorphism) iff X̂ is sober and j is a strict
embedding.

Hint. If X̂ is sober and j is a strict embedding, then the induced isomomorphism
between their lattices of open sets induces a homeomorphism between their
spectra. Compose this homeomorphism with the one that identifies X̂ with the
spectrum of its open set lattice. �

Old notes

The results in the body of this section are to be found in the paper [Hofmann
and Lawson, 1978]. Corollary V-5.7 was already found in [Day and Kelly,
1970] as well as in [Isbell, 1975a]. Exercise V-5.21 shows how a duality the-
orem on algebraic lattices in Hofmann and Keimel’s memoir [Hofmann and
Keimel, b1972] fits into the framework of this section, and Exercise V-5.22
establishes the link with M. H. Stone’s original representation theorem for dis-
tributive lattices [Stone, 1937]. For remarks on the spaces X for which O(X )
is continuous (V-5.10) we refer to the Old Notes of Section II-4. The result
in V-5.23 is due to Hofmann and Scott [scs 41], and the example in V-5.25
to [Hofmann and Lawson, 1978]; a similar example had been given by [Isbell,
1975b]. The result of V-5.26 is due to Lawson. Exercise V-5.29 is from Hofmann
and Watkins [scs 51], while Exercise V-5.30 is from Hofmann [scs 43]. Some
of the material in Exercises V-5.32 through V-5.34 is closely related to results
in [Grothendieck and Dieudonné, b1971]; the terminology “quasihomeomor-
phism” and “strongly dense”, for example, comes from that source.
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Let us note, in passing, that the fact that for most topological spaces, all the
information on the space is already contained in its lattice of open subsets has led
to the idea of considering certain types of lattices as substitutes for topological
spaces (see, e.g., [Dowker and Papert, 1966], [Isbell, 1972]). This suggests that
continuous lattices are in a sense substitutes for locally compact spaces.

Lemma V-5.14 is a lattice theoretical version of a result of [Dixmier, 1968].
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V-6 Domain Environments

Domain theory can be useful for providing appropriate partially ordered struc-
tures for the study, the modeling and the computation of computable func-
tions. A basic illustrative example of such an ordered structure is the set
of all closed subintervals of a closed real interval (viewed as a partially or-
dered set ordered by reverse inclusion), which is a useful computational
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model for the study of continuous and computable functions on the closed
interval.

Consider, for example, a standard basic problem of numerically approximat-
ing a zero of a continuous computable function. Suppose that the continuous
function f is defined on [0, 1], is strictly increasing, and satisfies f (0) < 0
and f (1) > 0. If we trisect the interval by 0 < 1/3 < 2/3 < 1, then since
f must be nonzero at one of the trisection points, we can determine at some
finite stage whether 0 < f (2/3), in which case we pass to the subinterval
[0, 2/3], or f (1/3) < 0, in which case we pass to the subinterval [1/3, 1]. (The
motivation for the trisection scheme instead of a bisection scheme is that it
may be impossible in general to determine whether f (x) = 0 with a finite
computation.) We repeatedly apply this trisection scheme to the subintervals
obtained at each stage. By this procedure we obtain a sequence of nested in-
tervals having a one point intersection, and it follows from continuity that
this point must be a zero of f . This procedure may be terminated at any fi-
nite stage at which the interval obtained lies within a predetermined range of
accuracy.

An important goal of domain theory is to identify essential mathematical fea-
tures of such computational examples, abstract and axiomatize these features,
and develop general constructions that provide an appropriate computational
framework for the space [0, 1] and a much wider class of spaces besides.
The construction of these computational frameworks will typically involve
“powerset- or hyperspace-like” constructions. We model the trisection algo-
rithm and other computational algorithms on I = [0, 1] in the “approximate
unit interval”

PI := {[a, b] : 0 ≤ a ≤ b ≤ 1}.
Points a of I are identified with the degenerate closed intervals [a, a]. Since
successful algorithms for computing some real number compute smaller and
smaller intervals (“approximate reals”) containing that number, we order PI

with the “information ordering” (i.e., smaller intervals give more information
about the point in question):

[a, b] ≤ [c, d] ⇔ [a, b] ⊇ [c, d].

The computation of the trisection algorithm may be represented in the model PI

by an increasing sequence [an, bn] (m ≤ n implies [am, bm] ≤ [an, bn]) with
intersection point x̄ =⋂n[an, bn], the directed sup. Since typical computational
algorithms anvolve infinitely many iterations of increasing accuracy, in actual
computations one must settle for approximate solutions of a = [a, a] given by
an interval [a − ε, a + ε].
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With this motivation we introduce the fundamental concept of this section.
We abstain from the terminology “computational model” since we introduce a
much more general mathematical structure.

Definition V-6.1. A domain environment for a topological space X is an
embedding

j : X ↔ MaxP ↪→ P

such that the double arrow represents a homeomorphism onto the space Max P
of maximal elements of a domain P equipped with relative Scott topology and
the hooked arrow is the inclusion map.

We often consider domains P satisfying the condition

(†) for all p ∈ P , (∃A Scott closed in P) ↑p ∩ MaxP = A ∩ MaxP ,

where again Max P is the set of elements in P which are maximal in the partial
order. Alternatively

(‡) Scott topology|Max P = Lawson topology|Max P ,

i.e., the Scott and Lawson topologies restricted to the set of maximal elements
agree. �

Indeed the subbasic closed sets in the Lawson topology on P are either Scott
closed or of the form ↑p for some p ∈ P , and from this it follows easily that
(†) and (‡) are equivalent. In this case, Max P is a regular Hausdorff space
and a separable metric space in the case that P is countably based, since these
assertions are true for the Lawson topology on P (see Corollary III-4.6 and
Proposition III-3.7) and the properties are hereditary.

Example V-6.2. The approximate unit interval PI is a domain environment
satisfying (†) for I, where the inclusion is the obvious one, x �→ [x, x] : I → PI.

�

Example V-6.3. (The upper space) For a locally compact Hausdorff space X ,
there is a standard domain environment for X called the upper space UX, which
consists of the set of all nonempty compact subsets of X ordered by reverse
inclusion. Since X is locally compact, UX is a domain and the homeomorphic
injection x �→ {x} : X → UX is a domain environment for X . The Scott
topology on UX is the topology with basis

(U ) := {K ∈ UX : K ⊆ U }, for all U open in X.

The Lawson topology is the usual Vietoris topology, or equivalently the topology
on UX induced by the Hausdorff metric in case X is metrizable. This example
also satisfies (†). �
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The next example is a typical one arising in computer science settings.

Example V-6.4. (The Cantor tree) Consider the set P consisting of all finite
and infinite strings of {0, 1} (including the empty string⊥) ordered by the prefix
order, i.e., one string is less than or equal to a second string if and only if it
is a prefix of the second. The set of maximal elements Max P consists of all
infinite strings. The restriction of the Scott (or Lawson) topology to Max P
gives a space homeomorphic to the usual Cantor set. Hence the Cantor tree is
a domain environment for the Cantor set. �

Recall that a Polish space is a separable metric space for which the topology
is given by a complete metric. Polish spaces have an important alternative
characterization involving domain environments.

Lemma V-6.5. A domain P satisfies condition (†) for the set X of maximal
points iff given any x ∈ X and any Lawson open set U containing x, there
exists a Scott open set V such that x ∈ V ⊆ U.

Proof: Suppose that (†) is satisfied. We may assume that U is a basic Lawson
open set, i.e., is of the form W\↑F , where W is Scott open and F is finite. By
condition (†) ↑F ∩ X is relatively Scott closed in X ; hence there exists a Scott
closed set A such that A ∩ X = ↑F ∩ X . Set V = W ∩ (P\A). Then x ∈ V
and V is Scott open. We claim that V ⊆ U . Suppose there exists y ∈ V \U .
Then there exists a maximal element x∗ above y, and since y �∈ U , but y ∈ W ,
we conclude that y ∈ ↑F and hence x∗ ∈ ↑F ∩ X = A∩ X . But y ∈ V = ↑V
also implies x∗ ∈ V ⊆ P\A, a contradiction.

Conversely suppose the second condition holds, and let y ∈ P, x ∈ X ∩
(P\↑y). By hypothesis there exists a Scott open set V such that x ∈ V ⊆ P\↑y.
This shows that P\↑y is relatively Scott open in X , and hence that (†) is satisfied.

�

Theorem V-6.6. A topological space X has a countably based domain envi-
ronment satisfying (†) if and only if it is a Polish space.

Proof: Suppose that j : X → P is a domain environment satisfying (†), where
P is a countably based domain. We identify X with its homeomorphic image
in P . By Corollary III-4.6 the domain P is separable metrizable in the Lawson
topology and by Proposition V-5.17 it is a Polish space. As a Gδ-subset of a
Polish space is again a Polish space (see remarks after O-5.13), we need only
show that X is a Gδ-subset of P .

Let d be a metric on P that gives the Lawson topology. Define An for each n
by y ∈ An iff d(x, y) < 1/n for all x ∈ X ∩ ↑y. Note that X ⊆ An for all n.
For each m and each x ∈ X pick xm � x in P such that

�

xm ⊆ B1/m(x);
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this is possible by Lemma V-6.5 since the sets

�

y form a basis for the Scott
topology and B1/m(x) is Lawson open. For fixed n, pick m = 2n. Then for
x ∈ X , y ∈ �

xm , and z ∈ X ∩ ↑y, we have z ∈ ↑y ⊆ �

xm ⊆ B1/m(x). Thus
d(y, z) ≤ d(y, x) + d(x, z) < 1/m + 1/m = 1/n. This shows that X is con-
tained in the Scott interior of each An . Since every point not in X has a maximal
point strictly above it, it follows that the intersection of the An is just X . Hence
X is the countable intersection of their interiors. This complete the first half of
the proof.

To prove the reverse direction we give a general construction of domain
environments for metric spaces due to A. Edalat and R. Heckmann [Edalat and
Heckmann, 1998] culminating in Proposition V-6.9.

First, however, we note a corollary of the proof.

Corollary V-6.7. Let P be a countably based domain satisfying (†). Then the
space of maximal points is a countable intersection of Scott open sets.

Example V-6.8. (The domain of closed formal balls) Let (X, d) be a metric
space. The set of closed formal balls is given by

BX := X × R
+, where R

+ = [0,∞).

Intuitively the pair (x, r ) represents the closed formal ball of radius r around
x . A partial order ≤ of formal reverse inclusion is defined on BX by

(x, r ) ≤ (y, s) if d(x, y) ≤ r − s.

If X be a normed linear space, then the ordered set of closed formal balls is
order isomorphic to the set of closed balls ordered by reverse inclusion,

(BX,≤) ≈ ({B≤ε(x) : x ∈ X, ε ≥ 0},⊇),

where the order isomorphism is the obvious one taking (x, r ) to the closed ball
of radius r around x . However, for more general metric spaces, this function
need no longer be an order isomorphism. �

It follows immediately from the definition of the order that if (x, r ) ≤ (y, s),
then r ≥ s. Thus for any directed set (xi , ri ) in BX , it must be the case that the
net {ri } is a decreasing net on R

+, and hence must converge to its inf r ≥ 0.
Since d(xi , x j ) ≤ |ri − r j |, we conclude that the net {xi } is a Cauchy net. If the
metric is complete, then this net converges to some x , so

d(x, x j ) = limi d(xi , x j ) ≤ limi (r j − ri ) = r j − r
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and thus (x j , r j ) ≤ (x, r ) for all j . Morever, if (xi , ri ) ≤ (y, s) for all i , then

d(x, y) = limi d(xi , y) ≤ limi (ri − s) = r − s

and thus (x, r ) ≤ (y, s), that is, (x, r ) is the supremum of the directed set. Hence
BX is a dcpo if X is a complete metric space.

There is a very nice connection between completeness for metric spaces and
directed compdeteness for domains, namely, a metric space is complete iff the
domain of closed formal balls is directed complete. We have just established
one direction and leave the analogs reverse implication to the exercises.

But even more is true: for a complete metric space X, the dcpo BX is a
domain with

(x, r ) � (y, s) ⇔ d(x, y) < r − s.

Indeed suppose the condition holds and (ui , ti ) is a directed set with supremum
(u, t) ≥ (y, s). Then from our preceding computation ti → t and ui → u, so

d(x, u) ≤ d(x, y) + d(y, u) < r − s + s − t = r + limi ti .

Since d(x, ui ) → d(x, u), we conclude that d(x, ui ) < r + ti for large i ,
i.e., (x, r ) ≤ (ui , ti ). Thus (x, r ) � (y, s). We again leave the converse as an
exercise. Since (y, s + 1/n) � (y, s) for each n and the former is an ω-chain
with supremum (y, s), we conclude that BX is a domain.

The domain BX has maximal elements Max (BX ) consisting of all (x, 0),
x ∈ X, and satifies condition (†). Indeed the maximality assertion follows
directly from the definition of the order. We verify the validity of condition (†).
Suppose that (y, 0) /∈ ↑(x, r ). Then ε := d(y, x) − r > 0. Hence

�

(y, ε) is a
Scott open set containing (y, 0) and missing ↑(x, r ), and thus we conclude that
the complement of ↑(x, r ) intersected with Max(BX ) is relatively Scott open.

Since (y, ε) � (x, 0) iff d(x, y) < ε, we have

�

(y, ε) ∩ X × {0} =
Bε(y) × {0}. We obtain our final observation: the embedding x �→ (x, 0) :
X → BX is an embedding from X onto the maximal points of BX. Hence for
a complete metric space X, BX gives a domain environment of X that satisfies
condition (†).

Via the domain of closed formal balls, one has available an order theo-
retic approach to the theory of metric spaces. Standard properties of metric
spaces typically have very natural order theoretic counterparts in the corre-
sponding domain of closed formal balls. For example the metric space X
is separable iff BX is countably based. Indeed it is not difficult to show,
given our preceding results, that if {xn} is a countable dense subset for X , then
{(xn, r ): r > 0 and r is rational} is a countable base for BX . Conversely given
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a countable base for BX , then the Scott topology is second countable (III-4.5),
and hence the subspace X = X × {0} is second countable, thus separable.

Combining all the preceding results together, we conclude as follows.

Proposition V-6.9. Let (X, d) be a complete separable metric space, and let
BX denote the ordered set of closed formal balls. Then x �→ (x, 0) : X → BX
is a countably based domain environment satisfying (†) for X.

LetLdenote the category with objects complete metric spaces and morphisms
Lipschitz maps ( f, c) where f : X → Y satisfies d( f (x), f (x ′)) ≤ cd(x, x ′)
for all x, x ′ ∈ X . Let DOM denote the category with objects domains and
morphisms Scott-continuous functions. Then there is a functor B: L → DOM
which sends a space X to BX , the domain of closed formal balls, and sends
( f, c): X → Y to B( f, c): BX → BY defined by B( f, c)(x, r ) = ( f (x), cr ).
Thus the construction of the domain of closed formal balls is functorial on L,
and hence on any subcategory. In particular, it carries the complete separable
metric spaces to domain environments for those spaces. �

Exercises

Exercise V-6.10. Show that if the poset of closed formal balls of a metric space
(X, d) is a dcpo, then the metric space is complete. �

Exercise V-6.11. For the poset of closed formal balls of a metric space (X, d),
prove that (x, r ) � (y, s) implies d(x, y) < r − s. �

New notes

Dana Scott suggested in the early days of domain theory the possibility of using
domains to study computability on metric spaces [Scott, 1970], although notions
of computability on metric spaces had certainly surfaced much earlier. An early
study of a variant notion of a maximal point space is found in [Weihrauch and
Schreiber, 1981]. Maximal point spaces were studied by Kamimura and Tang
[Kamimura and Tang, 1984] for the case that the domain environments were
bounded complete domains. They called such spaces “total spaces”.

The notion of a domain environment in the form presented in this section is
due to [Lawson, 1997], [Lawson, 1998a]. The domain of closed formal balls
was introduced and studied in [Edalat and Heckmann, 1998]. A more general
concept of domain representations of classical spaces than that of a domain
environment has been investigated in [Blanck, 1997], [Blanck, 1998], [Blanck,
1999].
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Given some computational structure, one can seek to embed it in a larger
structure that allows one to model computational algorithms and study com-
putational questions. In this case one might seek a domain environment of
the original structure that was especially adapted for such purposes, and in
this case call the specific domain environment a “computational model”. The
survey of Edalat [Edalat, 1997a] provides a variety of specific examples of
this type.

K. Martin has introduced the notion of a “measurement” in the study of
domain environments [Martin, d2000]. These are special functions from a do-
main into the nonnegative reals that “measure” how far an element is from the
maximal elements. His work represents one important contribution to what one
might refer to as “quantitative domain theory”, in which the domain is enriched
with some appropriate numerical function that gives some measurement of how
far one element is below another.



VI

Compact Posets and Semilattices

As the title of the chapter indicates, we now turn our attention from the prin-
cipally algebraic properties of continuous lattices to the position these lattices
hold in topological algebra as certain compact semilattices. Indeed, as the Fun-
damental Theorem VI-3.4 shows, complete continuous semilattices are exactly
the compact semilattices with small semilattices in the Lawson topology. Thus,
complete continuous semilattices not only comprise an intrinsically important
subcategory of the category of compact semilattices but also form the most
well-understood category of compact semilattices. In fact, there are only two
known examples of compact semilattices which are not complete continuous
semilattices; these are presented in Section VI-4. The paucity of such examples
attests to the unknown nature of compact semilattices in general.

We begin the chapter with some background remarks on compact pospaces
and topological semilattices. This is followed by a order theoretic description
of the topology of a compact semilattice in Section VI-2. Starting from any
compact topological semilattice whatsoever, we deduce that the topology may
be derived from the order. Indeed the topology is a variant “liminf” topology,
one considerably more complicated than earlier ones we have considered. This
allows order theoretic descriptions of continuous semilattice morphims, closed
subsemilattices, etc., much in the spirit that we have already encountered for the
Lawson topology is Section III-1. While this section is not in the mainstream of
our development of continuous lattice theory, Theorem VI-2.7, Lemma VI-2.8
and their corollaries VI-2.9 and VI-2.10 will prove invaluable in our further
developments in Chapter VII.

Section VI-3, the principal section of the chapter, contains the Fundamental
Theorem together with numerous other useful results about continuous lattices
as compact semilattices. It identifies compact topological semilattices with a
basis of subsemilattices as complete continuous semilattices equipped with the
Lawson topology. Section VI-4 is devoted to the examples alluded to above,

439
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compact topological semilattices which do not have a basis of subsemilattices
and are hence not domains. Section VI-5 considers chains and order arcs in
compact semilattices.

Section VI-6 develops the important theory of stably compact spaces, which
may be viewed as T0-variants of compact pospaces. This provides a more general
topological setting to the relationship between the Lawson and Scott topolo-
gies. Section VI-7 continues the theme of Chapter V by developing the spectral
theory of stably compact spaces. This leads to a duality between the category
of compact pospaces and continuous monotone maps, on the one hand, and a
category of stably continuous frames, on the other.

VI-1 Pospaces and Topological Semilattices

There are several ways of interrelating a topology and a partial order. Our
first definition singles out some of the topological properties of a relation that
we often meet. We have already met one of these properties in Chapter III
(see III-5.1).

Definition VI-1.1. Let X be a topological space. A partial order ≤ is said to
be lower semiclosed if↓x is closed for each x ∈ X ; upper semiclosed if each↑x
is closed; semiclosed if it is both lower and upper semiclosed. The relation ≤ is
said to be closed or have a closed graph if the relation ≤ is a closed subset of
X × X in the product topology. In that case (X,≤) is called a pospace. �

Note that the concepts of semicontinuity and pospaces are symmetric with
respect to the partial order; hence, all of the theorems and properties concerning
them have order duals which are also valid. Note also that all pospaces are
semiclosed.

Recall from O-1.2 that a net (x j ) j∈J in a poset is directed if for i, j ∈ J there
exists k ∈ J such that if k ≤ m, then xi ≤ xm and x j ≤ xm . If the net is directed
and the set {x j : j ∈ J } has a supremum x , then x is called the directed sup of
the net. Filtered nets and filtered infs of nets are defined dually. The notions of
directed sups and filtered infs give an “algebraic” notion of convergence in a
poset – in general we desire that such algebraic convergence imply topological
convergence.

Definition VI-1.2. Let (X,≤) be a poset equipped with a topology. The topo-
logy is said to be compatible if whenever x is the directed sup or filtered inf of
a net (x j ) j∈J , then the net converges to x topologically. �
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Proposition VI-1.3. Let (X,≤) be a poset equipped with a topology. Let
(x j ) j∈J be a directed net in X.

(i) If ≤ is upper (resp. lower) semiclosed, x is the directed sup of the net, and
if the net clusters to y in the topological space X, then x ≤ y (resp.,
y ≤ x). Hence, if the relation is semiclosed, then x = y.

(ii) If X is compact and ≤ is semiclosed, then (x j ) j∈J has a directed sup to
which it converges topologically. Hence, in this case the topology is
compatible.

Proof: (i) Suppose≤ is upper semiclosed. Then for each j,↑x j is closed. Since
the net is directed, there exists an index k0 such that xk ∈ ↑x j for k ≥ k0. Hence,
y ∈ ↑x j ; that is, x j ≤ y for each j ∈ J . Thus x = sup x j ≤ y.

Suppose now that ≤ is lower semiclosed. Then ↓x is closed, and of course
it contains (x j ) j∈J . Since the net clusters to y, we have y ∈ ↓x ; that is y ≤ x .

(ii) If X is compact, then the net has a cluster point x . Since each ↑x j is
closed and the net is eventually in this set, we have x j ≤ x for each j . Thus, x
is an upper bound. Suppose y is also an upper bound. Then ↓y is closed and
contains the net. Hence x ∈ ↓y, that is x ≤ y. Therefore, x is a least upper
bound. Since, as we have just seen, any cluster point is the directed sup of the
net, there is a unique cluster point. But, as X is compact,this implies that the net
converges to x . By what we have just proved and its dual, it follows that the
topology on X is compatible. �

The next, obvious, proposition gives a straightforward equivalent form of the
definition of a pospace in terms of open sets.

Proposition VI-1.4. Let (X,≤) be a poset with a topology. The relation ≤ is
closed iff whenever a �≤ b, there exist open sets U and V with a ∈ U and b ∈ V
such that if x ∈ U and y ∈ V , then x �≤ y. Hence, a pospace is Hausdorff.

�

Definition VI-1.5. A subset A of a poset X is order convex (or simply convex)
if p ≤ q ≤ r and p, r ∈ A always imply q ∈ A. For an arbitrary set A ⊆ X , the
order convex hull [A] of A is defined to be ↑A ∩ ↓A; it is the smallest convex
set containing A. A pospace X is locally order convex if X has a basis of open
sets each of which is order convex. �

Proposition VI-1.6.

(i) Let X be a topological space with an upper semiclosed partial order. If A
is a compact subset of X, then ↓A is Scott closed.

(ii) Let X be a pospace. If A is a compact subset, then ↓A,↑A, and [A] are
closed subsets of X. Hence, in particular, ≤ is semiclosed.
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Proof: (i) Let D be a directed subset of ↓A. For each d ∈ D,↑d ∩ A is non-
empty and closed in A. Since A is compact, there exists an a ∈⋂{↑d ∩ A: d ∈
D}. Thus, a is an upper bound for D, and hence sup D ∈ ↓A.

(ii) Letπ1 denote projection into the first coordinate from X×A into X . Since
↓A = π1((graph ≤) ∩ (X × A)), and since projection into the noncompact
factor is a closed mapping, ↓A is closed. Dually, ↑A is closed, and hence
[A] = ↓A ∩ ↑A is closed. �

Definition VI-1.7. A pospace X is said to be monotone normal if given two
closed sets A = ↓A and B = ↑B such that A ∩ B = Ø, then there exist open
sets U = ↓U and V = ↑V such that A ⊆ U, B ⊆ V , and U ∩ V = Ø. �

Proposition VI-1.8. If X is a compact pospace, then X is monotone normal.

Proof: Let A = ↓A and B = ↑B be disjoint closed sets. Since X is compact
Hausdorff, there exist open sets P and Q such that A ⊆ P, B ⊆ Q, and
P ∩ Q = Ø. Let U = X\↑(X\P) and V = X\↓(X\Q). By VI-1.6 U and V
are open. Since A = ↓A, we have A ⊆ U ; similarly B ⊆ V . Also U ⊆ P and
V ⊆ Q. Hence U ∩ V = Ø. �

Corollary VI-1.9. A compact pospace has a subbasis of open upper and open
lower sets. Hence, it is locally order convex.

Proof: Let X be a compact pospace with topology U . Let V be the topology
generated by the open upper and open lower sets. By definition U is finer than
V . Hence, if V is Hausdorff, then U = V .

Let x, y ∈ X, x �= y. Then x �≤ y or y �≤ x . Assume x �≤ y. Then ↑x ∩↓y =
Ø. By VI-1.8 there exist open sets U = ↑U, V = ↓V such that x ∈ U, y ∈ V
and also U ∩ V = Ø. Thus (X,V) is Hausdorff.

Since open upper and open lower sets are order convex and the intersection
of order convex sets is order convex, the space is locally order convex. �

Proposition VI-1.10. Let X be a compact pospace. Then X has a basis of
order convex compact neighborhoods at each point.

Proof: Let p ∈ X and let U be an open neighborhood of p. By VI-1.9 there
exists an open order convex set V such that p ∈ V ⊆ U . Since X is compact
Hausdorff, there exists a compact neighborhood A of p such that p ∈ A ⊆ V .
Then, by VI-1.6, the set [A] is compact, and since it is the order convex hull of
A, we find [A] ⊆ V . Thus, [A] is a compact order convex neighborhood of p
contained in U . �

We now specialize our considerations from pospaces to topological semilattices,
but first we recall the definition.
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Definition VI-1.11. Let S be a semilattice endowed with a topology. The meet
operation is said to be separately continuous on S if for each y ∈ S, the function
x �→ xy from S to S is continuous. In this case S is called a semitopological
semilattice. The meet operation is said to be jointly continuous (or continuous)
if the function (x, y) �→ xy is continuous from S × S into S, and in this case S
is called a topological semilattice. If S is a lattice and the join operation is also
continuous, then S is called a topological lattice.

Topological semilattices are not necessarily Hausdorff; however, we use the
term “compact semilattice” as a shorthand notation for “compact Hausdorff
topological semilattice”. �

Remark VI-1.12.

(i) The meet operation is separately continuous iff given x, y ∈ S and an
open set U containing xy, there exists an open set V containing x such
that V y ⊆ U.

(ii) The meet operation is jointly continuous iff given x, y ∈ S and an open
set U containing xy, there exist open sets V and W such that
x ∈ V, y ∈ W , and V W ⊆ U. �

Dual definitions and remarks can be made for the join operation in a sup semi-
lattice or lattice. The next proposition lists several of the elementary properties
of semitopological semilattices. Some of these results have appeared earlier,
but we collect them here for convenient reference.

Proposition VI-1.13. Let S be a Hausdorff semitopological semilattice.

(i) For each x ∈ S, ↓x = Sx is a retract of S and hence closed;
(ii) the relation ≤ is semiclosed;

(iii) if U is open, then ↑U is open (this holds without Hausdorffness).

If further S is compact, then

(iv) the topology of S is compatible;
(v) S is a complete semilattice, and hence has a least element 0. Also if S

has a 1, it is a complete lattice;
(vi) for all A ⊆ S, we have ↓A− ⊆ (↓A)−;

(vii) the semilattice S is meet continuous.

Proof: (i) The mapping y �→ xy is a retraction of S onto ↓x . A retract of a
Hausdorff space is closed.

(ii) Let λx : S → S be defined by λx (y) = xy. Then ↑x = (λx )−1({x}), and
hence is closed. Thus ≤ is semiclosed.
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(iii) For an open set U , we have ↑U = ⋃{(λx )−1(U ): x ∈ U }, and hence
↑U is open.

(iv) and (v): By Proposition VI-1.3 filtered and directed sets converge to their
greatest lower bounds and least upper bounds, respectively. Hence, by O-2.14,
S is a complete semilattice. A complete semilattice with a 1 is a complete lattice
(O-2.12).

(vi) Let y ≤ x for some x ∈ A−. Then there exists a net (x j ) ⊆ A converging
to x . Then yx j converges to yx = y and yx j ∈ ↓A for each j . Hence, y ∈
(↓A)−.

(vii) This was shown in O-4.4. �

Proposition VI-1.14. Let S be a Hausdorff topological semilattice. The par-
tial order ≤ is closed, and hence S is a pospace.

Proof: Define f : S × S → S × S by f (x, y) = (x, xy). Then graph ≤ =
f −1(�), where � = {(x, x): x ∈ S}. But � is closed since S is Hausdorff.

�

Note that the proof of VI-1.14 was used in proving III-2.9. The next result
connects pospaces with domain theory.

Proposition VI-1.15. A quasicontinuous domain, in particular a domain, is
a pospace with respect to its Lawson topology.

Proof: Suppose that x �≤ y. By Lemma III-5.7 there exists a finite set F such
that x ∈ �

F ⊆ ↑F ⊆ L\↓y and

�

F is Scott open. Then x ∈ U = �

F
and y ∈ V = L\↑F satisfy the conditions of Proposition VI-1.4, and thus the
partial order is closed. �

Exercises

Exercise VI-1.16. (The Urysohn–Nachbin Lemma) Let X be a monotone
normal pospace. If A is a closed upper set, B is a closed lower set, and
A ∩ B = Ø, show that there exists a continuous order preserving function
f : X → I such that f (B) = 0, f (A) = 1.

Hint. Construct inductively a collection of open sets Ur , where r is a dyadic
rational between 0 and 1, with U1 = X and such that each Ur is lower and
r < s always implies B ⊆ Ur ⊆ U−

r ⊆ Us ⊆ X\A (by a process analogous to
that employed in Urysohn’s Lemma).

Define f : X → I by f (x) = inf{r ∈ I : x ∈ Ur }. As in Urysohn’s Lemma,
f is continuous. It follows easily that f is order preserving and that we have
f (A) = 1 and f (B) = 0. �
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Definition VI-1.17. A metric p on a poset X is radially convex if x ≤ y ≤ z
implies that p(x, y) + p(y, z) = p(x, z). �

Exercise VI-1.18. (The Urysohn–Carruth Metrization Theorem) Let X be
a compact metrizable pospace. Show that there exists a radially convex metric
giving rise to the original topology.

Hint. If g is a continuous order preserving function from X into I = [0, 1], then
Wg = {(x, y) ∈ X × X : g(x) < 1/2 < g(y)} is an open subset of X × X . By
Exercise VI-1.16 if y �≤ x , there exists a continuous order preserving function
g: X → I such that g(x) = 0, g(y) = 1. Hence (x, y) ∈ Wg . Since X is
a compact metric space, there exists a sequence {gn}n∈N of continuous order
preserving functions such that if y �≤ x , then (x, y) ∈ Wgn , for some n. Then
the mapping g = (x �→ (gn(x))n∈N): X → I

N is a topological and order
isomorphism. The metric p(x, y) = ∑n(|xn − yn|/2n) is a radially convex
metric on I

N; when restricted to g(X ), it gives a radially convex metric on X .
�

Old notes

The notion of a pospace has proved useful in topological algebra and in some
aspects of functional analysis, and, in particular, in the study of topological
semilattices. Although there were certainly important forerunners to his work,
apparently L. Nachbin was the first to explicitly define and to investigate the no-
tion of a pospace ([Nachbin, b1965], originally published in 1960). Most of the
important results of this section are due to him (Propositions VI-1.6(ii), VI-1.8,
Definition VI-1.7, Corollary VI-1.9). J. H. Carruth’s work on metrization ap-
pears in [Carruth, 1968], where a slightly weaker version of Exercise VI-1.18
appears.

Topological semilattices appear as early as [Nachbin, b1965]. They were also
studied by workers in topological algebra as a special and important class of
topological semigroups (see, e.g., [Anderson and Ward, 1961], [Koch, 1959],
[Brown, 1965] for some of the earlier work on topological semilattices). This
section gives some of the most basic results concerning topological semilattices
from the folklore of the subject.

VI-2 Compact Topological Semilattices

In this section we extend some of the theory of continuous lattices to compact
semilattices. Principally we show that the topology of a compact topological
semilattice must arise as a certain liminf topology, and hence be definable from
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the order itself. This allows standard order theoretic descriptions of closed lower
sets, closed subsemilattices, and continuous semilattice homomorphisms. Since
this development goes beyond the main scope of the book, the reader may wish
only to skim this material at first reading. Although such generalizations are
usually more difficult and tedious than the corresponding results for continuous
lattices (as we saw, for example, in the presentation of quasicontinuous lattices
in Chapter III), we obtain such important results as an algebraic characterization
of the topology of a compact semilattice (VI-2.6) and its consequences (VI-2.7,
VI-2.8, VI-2.9).

We recall the standard topological notion of a pseudometric: it fails to be a
metric only to the extent that d(x, y) = 0 does not necessarily imply that x = y.

Definition VI-2.1. Let S be a semilattice. A pseudometric d is said to be
subinvariant if d(ax, ay) ≤ d(x, y) for all a, x, y ∈ S. �

Remark VI-2.2. If d is a subinvariant pseudometric on S, then

d(ax, by) ≤ d(ax, ay) + d(ay, by) ≤ d(x, y) + d(a, b).

Hence, by induction,

d(a1 . . . an, b) = d(a1 . . . an, bn) ≤ d(a1, b) + · · · + d(an, b). �

The topology of any compact semigroup is defined by a set of subinvariant
pseudometrics. This fact is one of the early theorems about compact semigroups,
first proved by S. Eilenberg around 1938. Alternative proofs have been given
by [Hofmann and Mostert, b1966], [Hofmann, 1970] and [Friedberg, 1972].
The proof is deferred until the exercises.

Proposition VI-2.3. Let S be a compact topological semilattice, and let P be
the set of continuous subinvariant pseudometrics on S. If C is an open cover of
S, then there exist d ∈ P and an ε > 0 such that the set of all neighborhoods
Nε(x) = {y: d(x, y) < ε} for x ∈ S refines C. �

We next give a lattice theoretical characterization of convergence in a compact
semilattice.

Lemma VI-2.4. Let S be a compact semilattice and d a continuous subin-
variant pseudometric on S. Let (x j ) j∈J be a net in S with limit x. Then for
each sequence f : N → J , there exists a (monotone) sequence f0: N → J with
f ≤ f0 such that whenever f0 ≤ g then d(lim xg(n), x) = 0.

Remark. Recall that lim xg(n) = supn infm≥n xg(m).
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Proof of lemma: Let n ∈ N. Since x = lim x j , there is an index f0(n) ≥ f (n)
(and also f0(n) ≥ f0(n − 1)) such that d(x j , x) ≤ 1/2n+1 for all j ≥ f0(n).
Let g ≥ f0. For each n, let yn = infm≥n xg(m). Since a filtered net converges to
its infimum (by the dual of Proposition VI-1.3), we have

yn = lim k xg(n)xg(n+1) . . . xg(n+k).

Employing the earlier Remark VI-2.2, we calculate

d(xg(n) . . . xg(n+k), x) ≤
∑

0≤i≤k

d(xg(n+i), x) ≤
∑

1≤i≤k+1

1

2n+i
≤ 1

2n

for all k ∈ N. Thus, we conclude d(yn, x) ≤ 1/2n for all n. Since, by def-
inition, lim xg(n) = sup yn , and since this is a directed supremum, we find
that lim xg(n) = lim yn . Because yn converges to both x and lim xg(n), we have
d(lim xg(n), x) = 0. �

Proposition VI-2.5. If (x j ) j∈J is a net in a compact semilattice S converging
to x, then x = lim f limn x f (n), where f ranges in J N and that set has the
pointwise ordering.

Remark. The proposition remains valid if only monotone f are considered.

Proof of proposition: Let d be an arbitrary subinvariant pseudometric on S.
For each g ∈ J N, set yg = lim xg(n). By Lemma VI-2.4 above, for every f ∈ J N

there exists an f0 such that d(yg, x) = 0 for all g ≥ f0. If F is any finite set in
{g ∈ J N : g ≥ f0}, then d(infg∈F yg, x) = 0 by Remark VI-2.2. Since

infg≥ f0 yg = infF finite infg∈F yg = limF finite infg∈F yg,

because the first infimum is filtered, we conclude that d(infg≥ f0 yg, x) = 0.
Once again, since

lim y f = sup f infg≥ f yg = lim f infg≥ f yg,

because the supremum is directed, we conclude that d(lim f y f , x) = 0. Now
this holds for any continuous subinvariant pseudometric d, and these generate
the topology, thus we conclude that x = lim f y f = lim f limn x f (n). �

Theorem VI-2.6. Let (x j ) j∈J be a net in a compact semilattice. Then the
following are equivalent:

(1) x = lim x j ,
(2) x = lim f limn y f (n) where f ranges in K N for all subnets (yk)k∈K of the

given net.
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Proof: If x = lim x j , then the same is true for any subnet. Hence (2) follows
from Proposition VI-2.5.

Conversely suppose (2) holds. If x is not equal to lim x j , then there ex-
ists a subnet converging to some z �= x since S is compact. Again by
Proposition VI-2.5 we have z = lim f limn y f (n) for this subnet. But, by hy-
pothesis, this double limit must be x , a contradiction. Thus, x = lim x j . �

Theorem VI-2.7. Let f : S → T be a semilattice homomorphism between
compact semilattices. Then the following are equivalent:

(1) f is continuous;
(2) f preserves infs of arbitrary nonempty sets and directed sups;
(3) f preserves liminfs of nets.

If, in addition, T is a continuous lattice, then these conditions are equivalent to

(4) the lower adjoint d: T → S preserves �.

Proof: The equivalence of (2) and (3) follows from the proof of Theorem
III-1.8. The equivalence of (1) and (3) is a straightforward consequence of
Theorem VI-2.6. Now suppose that T is a continuous lattice. Then (4) is equi-
valent to (2) by IV-1.4. �

Note that in view of Theorems III-1.8 and VI-2.7 a semilattice morphism
between compact unital semilattices is continuous iff it is Lawson-continuous.

Lemma VI-2.8. Let S be a complete semilattice and T a subsemilattice. We
denote by

∧
(T ) the set of infima of nonempty subsets of T . Let ↗(T ) denote

the set of all suprema of directed subsets of T . We let
∧

ω(T ) and↗ω(T ) denote
the corresponding notions employing only countable subsets of T .

(i) If S is a compact topological semilattice, then the topological closure can
be written as T− = ↗∧↗ω

∧
ω(T ).

(ii) If T = ↓T , then T− = ↗↗ω (T ).

Proof: Since T is a subsemilattice,
∧

ω(T ) consists of meets of down-directed
sequences in T . Since S is compact, these sequences converge to their infima.
Hence

∧
ω(T ) ⊆ T−. It is easily verified

∧
ω(T ) is again a subsemilattice.

Again since S is compact, upward directed sequences in
∧

ω(T ) converge to their
suprema. Thus ↗ω

∧
ω(T ) ⊆ T−. Continuity of the meet operation implies

↗ω

∧
ω(T ) is a subsemilattice. By an argument which is essentially a repetition

of what we have just done, one concludes that ↗∧↗ω

∧
ω(T ) ⊆ T−.

Conversely if x ∈ T−, then there exists a net in T converging to x . Now
employ Theorem VI-2.6. �
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The next two results follow easily from the preceding lemma.

Proposition VI-2.9. Let T be a subsemilattice of a compact semilattice S.
The following statements are equivalent:

(1) T is closed (topologically);
(2) T is closed with respect to infs of arbitrary nonempty sets and directed

sups (see O-2.1);
(3) T is closed with respect to taking liminfs. �

Proposition VI-2.10. Let A = ↓A be a subset of a compact semilattice S.
The following statements are equivalent:

(1) A is closed (topologically);
(2) A is Scott closed (that is, A = ↗(A)).

Thus the closed lower sets are precisely the Scott closed sets. �

Exercises

Exercise VI-2.11. Prove Proposition VI-2.3.

Hint. By Urysohn’s Lemma S can be topologically embedded in a product of
intervals, I

A. For each finite subset F ⊆ A one defines a pseudometric on the
product (and hence on S) by using the Euclidean metric dF on the coordinates
of F . Define a new pseudometric pF in terms of dF by

pF (u, v) = sup{dF (xu, xv): x ∈ S ∪ {1}}.

Continuity from (S, pF ) to (S, dF ) is clear. Using the compactness of S and
continuity of the meet operation, one obtains continuity in the other direction.
Hence pF and dF give rise to the same topology. It is easily verified that
pF is subinvariant. All such pseudometrics generate the topology of S; the
compactness of S allows one to complete the proof. �

Exercise VI-2.12. Let S be a compact topological semilattice. Show that if
k ∈ S is a compact element, then ↑k is open in S.

Hint. If a net (x j ) in S\↑k converges to x ∈ ↑k, then Proposition VI-2.5 and
the compactness of k imply x j ∈ ↑k for some index j . �
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Old notes

The ideas behind the results of this section originate in the work of Lawson
[Lawson, 1973]. The ideas are only implicit there although Theorem VI-2.7
and slightly weaker versions of VI-2.8, VI-2.9 and VI-2.10 do appear explicitly.
H. Bauer and G. Gierz pointed toward the explicit characterization of conver-
gence in compact semilattices given here; the pattern of proof was suggested
by Gierz and Hofmann [scs 34] (replacing a somewhat more technical version
given by Lawson).

VI-3 The Fundamental Theorem of Compact Semilattices

The class of topological semilattices which, at each point, possess a basis of
neighborhoods which are subsemilattices was early singled out as an extremely
important class of semilattices – because of both its widespread occurrence and
its greater theoretical tractability. In their study of the algebraic properties of
these semilattices, Hofmann and Stralka [Hofmann and Stralka, 1976] discov-
ered that the compact members of this class possessing a 1 are precisely the
continuous lattices, in a sense to be made explicit shortly. (This identification
was actually only implicit in the paper and explicitly pointed out shortly there-
after by Stralka.) The consequences of this realization have been far reaching
for both the theory of topological semilattices and that of continuous lattices.

We repeat, for the sake of easy reference, Definition III-2.12:

Definition VI-3.1. A topological semilattice S is said to have small semilat-
tices at x if the point x has a basis of neighborhoods which are subsemilattices
of S. The semilattice S has small semilattices iff it has small semilattices at
every point. �

Note that if S is regular and has small semilattices at x , then x has a basis
of closed neighborhoods which are subsemilattices – because the closure of a
subsemilattice is a subsemilattice. The next proposition is an easy consequence
of the definition.

Proposition VI-3.2.

(i) Let S be a topological semilattice with small semilattices, and let T be a
subsemilattice (equipped with the relative topology). Then T has small
semilattices.

(ii) Let {Sj : j ∈ J } be a collection of topological semilattices with small
semilattices. Then

∏
J S j endowed with coordinatewise operations and

the product topology has small semilattices. �
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There are some rather useful reformulations of the property of having small
semilattices at a point. (Compare II-1.14(3) and III-2.13, III-2.15.)

Proposition VI-3.3. Let S be a locally compact Hausdorff topological semi-
lattice. For x ∈ S the following statements are equivalent:

(1) S has small semilattices at x;
(2) the semilattice ↓x has small semilattices at x;
(3) if U = ↑U is open and x ∈ U, then there exists a filter F such that

x ∈ int(F) ⊆ F ⊆ U;
(4) if V is open and x ∈ V , then there exists a y ∈ V such that x ∈ int(↑y).

Proof: (1) implies (2): Straightforward.
(2) implies (4): Let V be open, x ∈ V . By regularity there exists an open set

U such that x ∈ U and the closure of U is compact and a subset of V . Let N
be a neighborhood of x in ↓x which is both a subsemilattice and a subset of
U ∩ ↓x . Then N− is a compact semilattice and, hence, has a least element y.
Since N is a neighborhood of x in ↓x , and since translation by x from S to ↓x
is continuous, we have {w ∈ S : xw ∈ N } is a neighborhood of x in S. Since
this set is contained in ↑y, then ↑y is a neighborhood of x . Clearly y ∈ V .

(4) implies (3): Let x ∈ U = ↑U . Then there exists an element y ∈ U such
that x ∈ int(↑y). Let F = ↑y.

(3) implies (1): Let U be an open set, x ∈ U . Without loss of generality we
may assume that U− is compact.

Since as a partially ordered space U− is locally order convex, there exist open
sets V,W ⊆ U such that x ∈ W,W W ⊆ V, V V ⊆ U , and V is order convex
in U−. Choose a filter F such that x ∈ int(F) ⊆ F ⊆ ↑W . Let N = V ∩ F .
Then x ∈ int(N ) ⊆ N ⊆ U . If p, q ∈ N , then there exist u, v ∈ W such that
u ≤ p, v ≤ q (since N ⊆ ↑W ). Then uv ∈ W W ⊆ V, uv ≤ pq ≤ p ∈ V , and
pq ∈ V V ⊆ W imply pq ∈ V (since V is order convex in W ). Also pq ∈ F ,
and thus pq ∈ N . Hence, N is a subsemilattice. �

We come now to the main theorem of this section and chapter.

Theorem VI-3.4. (The Fundamental Theorem of Compact Semilattices)

(i) Let L be a complete continuous semilattice, resp. continuous lattice.
Then with respect to the Lawson topology L is a compact, resp. unital,
topological semilattice with small semilattices.

(ii) Conversely, if S is a compact, resp. unital, topological semilattice with
small semilattices, then with respect to its semilattice structure S is a
complete continuous semilattice, resp. continuous lattice. Furthermore,
the topology of S is equal to the Lawson topology.
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(iii) Let L and M be compact, resp. unital, topological semilattices with small
semilattices, and let f : L → M be a semilattice homomorphism. The
following are equivalent:
(1) f is continuous;
(2) f preserves directed sups and arbitrary nonempty infs.

If, moreover, f (1) = 1, then (1) and (2) are equivalent to

(3) the lower adjoint d of f exists and preserves the relation �.

Remark. The functor � which assigns to a complete continuous semilattice,
resp. continuous lattice, the semilattice endowed with its Lawson topology and
is the identity on homomorphisms is an isomorphism from the category of
complete continuous semilattices and morphisms preserving directed sups and
arbitrary nonempty infs, resp. CL (see IV-1.7), to the category of compact, resp.
unital, topological semilattices with small semilattices and continuous, resp.
semilattice, homomorphisms preserving units. One may therefore identify the
two categories.

Proof of theorem: It suffices to carry out the proof in the lattice (equivalently
complete semilattice with 1) case, since the general case then follows by ad-
joining discrete 1s to all complete semilattices and taking identity preserving
mappings.

(i) By Theorem III-2.15.
(ii) Conversely suppose S is a compact unital topological semilattice with 1

and with small semilattices. By Proposition VI-1.13, S is a complete lattice.
Let x ∈ S. By VI-3.3(4), x = sup{y ∈ S : x ∈ int(↑y)}, since if x �≤

w, S\↓w is an open set around x . Suppose x ∈ int(↑y), that is, there exists an
open set U such that x ∈ U ⊆ ↑y. Then x ∈ ↑U ⊆ ↑y and ↑U is open by
VI-1.13(iii). If D is directed and sup D ≥ x , then since D converges to sup D ∈
↑U , there exists d ∈ ↑U ⊆ ↑y. Hence y � x .Thus S is a continuous lattice.

To complete the proof, we must argue that the topology of S is the Lawson
topology. It follows from Proposition VI-1.13 that each set of the form S\↓x
is open in S. Let V be a Scott open set, x ∈ V . By the preceding paragraph
we have that x = sup{z ∈ S : x ∈ int(↑z)}. This set is easily verified to be
directed. Thus, there exists z ∈ V such that x ∈ int(↑z) ⊆ ↑z ⊆ V . Hence,
the identity function on S is continuous from S with the given topology to S
with the Lawson topology. Since the given topology is compact and the Lawson
topology is Hausdorff (see III-1.10), we conclude that they agree.

(iii) This part is a consequence of part (i), III-1.8 and IV-1.4 (where, if nec-
essary, discrete (isolated) identities are adjoined to L and M and f is extended
by sending the new identity of L to that of M). �
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Theorem VI-3.4 is a powerful tool for the study of continuous lattices and
compact semilattices. It allows an algebraic treatment of topological problems
and vice versa. We illustrate this with the following important proposition.

Proposition VI-3.5. Let S and T be compact topological semilattices and let
f be a continuous homomorphism from S onto T . If S has small semilattices,
then T has small semilattices, too.

Proof: By adjoining discrete identities to S and T and extending f to be
identity preserving, we may assume without loss of generality that S and T
have identities and f is identity preserving. The proposition now becomes a
corollary to Theorem VI-3.4 and I-2.11(iii). �

We close this section with three important examples. In general these examples
seem better suited to a free-flowing exposition rather than a formal series of
propositions and proofs, and hence are presented in this fashion (although many
of the properties displayed actually could easily be presented as propositions).

Example VI-3.6. (The role of the unit interval) Let I = [0, 1] be the unit
interval equipped with its usual topology and order. Then I is a compact con-
nected topological semilattice (in fact a topological lattice) which has small sub-
semilattices. Furthermore any topologically closed subsemilattice of a product
of copies of I with the relative topology is again a compact semilattice. Fur-
thermore, this example is exhaustive in a way the following proposition makes
precise.

Proposition VI-3.7. Let S be a compact topological semilattice. The following
statements are equivalent:

(1) S is a complete continuous semilattice with respect to its order structure;
(2) S has small semilattices;
(3) Hom(S, I) separates points, where Hom(S, I) denotes the set of all

continuous semilattice homomorphisms;
(4) S is topologically isomorphic to a closed subsemilattice of a product of

copies of I.

Proof: The equivalence of (1) and (2) follows easily from the Fundamental
Theorem, and that of (1) and (3) was established in IV-3.2 (where we use the
characterization of continuous homomorphisms as those preserving arbitrary
meets and directed joins). To see that (3) implies (4), consider T = I

Hom(S,I).
Define F : S → T by π f (F(x)) = f (x). Then F is a continuous isomor-
phism; since S is compact, F is a homeomorphism. Finally, (4) implies (2) by
Proposition VI-3.2 (or (4) implies (1) by IV-3.20). �
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Example VI-3.8. (The Vietoris topology)
(i)�(·)op as a functor: Let X be a compact Hausdorff space. Let�(X ) denote

the set of closed subsets ordered by inclusion. The lattice �(X )op is isomorphic
(via complementation) to the lattice of open sets and hence is a continuous lattice
(see Example I-1.7(5)). The set�(X ) is an object of great interest to topologists,
and is standardly endowed with the Vietoris topology in order to make it a
topological space. The Vietoris topology has as subbasis sets of the forms

N (U ) = {A ∈ �(X ) : A ⊆ U } and D(V ) = {A ∈ �(X ) : V ∩ A �= Ø},
where U and V are open sets in X . Note that sets of the form N (U ) are open
filters in the lattice �(X )op, and hence they generate the Scott topology since
�(X )op is a continuous lattice. Also D(V ) is the complement of the princi-
pal filter generated by X\V , hence, these sets generate the lower topology on
�(X )op. Thus, the Vietoris topology is precisely the Lawson topology of the
lattice �(X )op and so is compact and Hausdorff. Since in a continuous lattice
convergence in the Lawson topology is liminf convergence, it follows that if a
net of closed sets A j converges to A, then A is indeed the limit (in the technical
topological sense) of the A j .

The assignment of �(X )op to X extends to a functor from the category of
compact Hausdorff spaces to the category CL of continuous lattices and Lawson-
continuous identity preserving homomorphisms. If f : X → Y is a continuous
function between compact Hausdorff spaces, define

�( f ) = (A �→ f (A)) : �(X )op → �(Y )op.

It is easily verified that

[ f −1] = (B �→ f −1(B)) : �(Y )op → �(X )op

is a lower adjoint for �( f ). From Proposition I-1.4(ii), it follows that A � B
if and only if B ⊆ int(A). Thus [ f −1] preserves �, and therefore �( f ) is a
CL-morphism.

(ii) The free continuous lattice generated by a compact Hausdorff space:
We next observe that � is the “free” functor on the category of compact
Hausdorff spaces to the category CL in the sense that if f : X → L is a contin-
uous mapping from a compact Hausdorff space X into a continuous lattice L
(equipped with the Lawson topology), then there exists a unique, continuous,
identity preserving homomorphism F from �(X )op → L such that F ◦ i = f
where i = (x �→ {x}) : X → �(X )op. By standard categorical arguments, this
is equivalent to saying that the functor � and the “forgetful” functor from CL
to the category of compact Hausdorff spaces are adjoint functors.
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To prove the assertion, let f : X → L; then we have a continuous homomor-
phism �( f ): �(X )op → �(L)op. By applying Proposition VI-3.9 below, the
mapping (A �→ inf A): �(L)op → L is a continuous homomorphism. Hence,
we may let F : �(X )op → L be the composition, which is continuous, identity
preserving, and a semilattice homomorphism. Moreover

F ◦ i(x) = F({x}) = inf{ f (x)} = f (x).

The uniqueness of F follows from the fact i(X ) order generates �(X )op. �

Proposition VI-3.9. Let S be a compact unital topological semilattice. The
function A �→ inf A : �(S)op → S is continuous iff S is a continuous lattice.

Proof: Since {x} goes to x , the function is onto. Hence, by Proposition VI-3.5,
S is a continuous lattice if the function is continuous.

Conversely suppose S is a continuous lattice. It is easily verified that x �→
↑x : S → �(S)op is a lower adjoint. If x � y, then ↑y ⊆ int(↑x). Whence,
↑x � ↑y in �(S)op. Thus, the way-below relation is preserved; and therefore
we have shown that A �→ inf A is continuous. �

The preceding discussion has given us a free continuous lattice over any compact
Hausdorff space. But in I-4.19 we have shown that the free continuous lattice
over a set is the lattice of filters on X . We may rederive this result now as follows:
recall that the free compact Hausdorff space over the set X is the Stone–Čech
compactification β(X ) of X as a discrete space. The free continuous lattice over
β(X ) is �(β(X ))op. Since the composition of free functors is a free functor, it
follows that �(β(X ))op is the free continuous lattice over the set X . This latter
turns out to be isomorphic to the lattice of filters on X . We suggest a detailed
verification in the exercises (see VI-3.23) which can also be regarded as an
alternative proof of I-4.19.

Example VI-3.10. (Another free construction) Let X be a compact pospace.
Let �(X ) denote the closed upper subsets of X ordered by inclusion. Then
�(X )op is a continuous lattice.

By way of proof note that if A, B ∈ �(X )op, and A ⊆ int(B), then B � A.
Since X is monotone normal (by VI-1.8), we have A = sup �A. Hence,�(X )op

is a continuous lattice.
The Lawson topology on �(X )op is a modified version of the Vietoris topol-

ogy on �(X )op. Take for a subbase of open sets, sets of the form N (U ) and
D(V ) where U is open in X and V is open in X and satisfies V = ↓V . In
�(X ) arbitrary meets are just intersections, finite joins are unions, and the join
of {Ai : i ∈ I } is given by ↑A where A = (

⋃
i∈I Ai )−.
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The lattice�(X )op is the “free” continuous lattice on the compact pospace X.
Alternatively� is the adjoint to the forgetful functor from the category CL to the
category of compact pospaces and continuous order preserving mappings. The
arguments are similar to those presented in Example VI-3.8 and are deferred to
the exercises (see VI-3.20, VI-3.21). �

Remark. Since the opposite of a pospace is a pospace, the lattice ϒ(X ) of
closed lower subsets is also a continuous lattice; however, it is not the “free”
continuous lattice on X but on Xop.

Example VI-3.10 and the following Proposition VI-3.11 should be viewed
in the context of Section VI-6. The hypothesis of VI-3.11 is slightly different
from that of VI-3.10.

Proposition VI-3.11. Let S be a compact semilattice.

(i) ϒ(S), the lattice of closed lower sets, is the lattice of Scott closed sets.
(ii) ϒ(S)op forms a continuous lattice.

(iii) ϒ(S)op is a closed subspace of �(S)op with the Lawson topology being
the relative Vietoris topology.

Proof: We saw in VI-2.10 that the Scott closed sets are precisely the topo-
logically closed sets A such that A = ↓A. Another proof will be given in
Section VII-1. This proves (i). The remarks in VI-3.10 establish (ii).

(iii) Let A = ↓A, let x ∈ A−, and let y ≤ x . We show y ∈ A−. Let (x j ) be
a net in A converging to x ; by continuity x j y converges to xy = y. Since we
have A = ↓A, x j y ∈ A for all j , and so y ∈ A−. Thus A− = ↓A−.

If (A j ) j∈J is a collection of closed lower sets, then in �(S) the meet of
the collection is

⋂
j∈J A j and the join is (

⋃
j∈J A j )−. Since both of these are

again closed lower sets, ϒ(S) is closed in �(S) by III-1.12. It follows from the
Fundamental Theorem that the relative Vietoris topology must be the Lawson
topology, since the latter is the only one makingϒ(S) into a compact topological
semilattice with small semilattices. �

In earlier chapters we have seen that algebraic lattices form a basic subcategory
of the category of continuous lattices. We close this section with that version
of the Fundamental Theorem which applies to them.

Lemma VI-3.12. Let S be a compact topological semilattice. If the connected
component of x in S is contained in ↑x, then S has small semilattices at x.
Furthermore, x is the sup of compact elements.

Proof: Let U be an open convex set in ↓x containing x . Then ↑U is open
containing ↑x . Since every component in a compact Hausdorff space is the
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directed intersection of open and closed (clopen) sets, there exists a clopen set
V such that C ⊆ V ⊆ ↑U , where C is the component of x in S. Let Q = V ∩↑x .
Then Q is clopen in ↓x . Let W = {y ∈ Q : yQ ⊆ Q}. By continuity of the
meet operation W is clopen in ↓x . Clearly x ∈ Q since x is an identity for ↓x .
If y, z ∈ W , then yzQ ⊆ yQ ⊆ Q and yz = yzx ∈ yzQ ⊆ Q. Thus yz ∈ W ,
that is, W is a subsemilattice. Now W ∩ ↓x ⊆ V ∩ ↓x ⊆ ↑U ∩ ↓x ⊆ U as U
is convex.

By VI-1.10, the arguments of the preceding paragraph show that↓x has small
semilattices at x , and hence by Proposition VI-3.3 so also does S.

Now W is a compact semilattice and by VI-1.13(v) has a least element z.
Let D be a directed set with z = sup D. Then by VI-1.13(iv) D converges to z.
Since D ⊆ ↓x and W is open in ↓x , there exists d ∈ D such that d ∈ W .
Hence z ≤ d . Since S is meet continuous, z is a compact element. As U was an
arbitrary open convex set around x and z ∈ U , we conclude x is the supremum
of the compact elements below it. �

Theorem VI-3.13. (The Fundamental Theorem for Compact Totally
Disconnected Semilattices)

(i) Let L be an algebraic lattice. Then with respect to the Lawson topology L
is a compact totally disconnected topological semilattice with unit.

(ii) Conversely if L is a compact totally disconnected topological semilattice
with unit, then L has small semilattices and with respect to its semilattice
structure is an algebraic lattice. Furthermore the topology of L is the
Lawson topology.

Proof: The proof follows from III-2.16, the Fundamental Theorem of Compact
Semilattices, and VI-3.12. �

Note that we did not assume the existence of small semilattices in the preced-
ing theorem. For compact totally disconnected topological semilattices this is
guaranteed.

Exercises

Exercise VI-3.14. (i) Formulate and prove in the context of VI-3.13 the proper
analogue to VI-3.4(iii).

(ii) Establish the analogue of VI-3.4 for compact semilattices for the totally
disconnected case. �
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Definition VI-3.15. A metric ρ on a semilattice S is called an ultrametric if

ρ(ax, by) ≤ max{ρ(a, b), ρ(x, y)}
holds for all a, b, x, y ∈ S. �

Exercise VI-3.16. (i) If ρ is an ultrametric on a semilattice, then prove that
each open and each closed ε-ball around a point is a semilattice.

(ii) Establish in addition the formula

ρ(xy, p) ≤ max{ρ(x, p), ρ(y, p)}. �

Exercise VI-3.17. Let S be a compact metric topological semilattice. Show
that the following are equivalent.

(1) S has small semilattices.
(2) The topology of S is given by an ultrametric.

Hint. Condition (2) implies (1) by VI-3.16. Conversely by VI-3.7 Hom(S, I)
separates points. Since S is compact metric, countably many members of
Hom(S, I) separate points. Embed S in I

N with these homomorphisms. The
metric ρ((xi ), (yi )) = maxi {|xi − yi |/2i } is an ultrametric on I

N, and, hence, is
also one when restricted to the image of S. �

The next exercise is a restatement of Example VI-3.8 for complete continuous
semilattices.

Exercise VI-3.18. Let X be a compact Hausdorff space and let �0(X ) denote
the set of nonempty closed subsets ordered by inclusion. Prove the following.

(i) The Vietoris topology on �0(X )op is the Lawson topology; with respect to
this topology �0(X )op is a compact topological semilattice with small
semilattices.

(ii) Furthermore if f : X → S is a continuous mapping into a compact
topological semilattice with small semilattices, then there exists a unique
continuous homomorphism F : �0(X )op → S such that F ◦ i = f where
we define i : X → �0(X )op by i(x) = {x}.

Hint. The proof follows from Example VI-3.8 by throwing in empty sets and
identities where needed. �

Exercise VI-3.19. Let S be a compact topological semilattice. Show that the
function A �→ inf A : �0(S)op → S is continuous iff S has small semilattices.

Hint. Adjoin identities and use VI-3.9. �
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If S is a compact topological semilattice with small semilattices, then the map-
ping A �→ inf A is a retraction of �0(S)op onto S. It is an old result that if S is a
Peano continuum, then �0(S) is an absolute retract; indeed it has been proved
that �0(S) is topologically the Hilbert cube; that is, it is a countable product
of intervals (see [Wojdysl�awski, 1939], [Curtis, 1974] and [Curtis and Schori,
1974]). Thus, in this case S is also an absolute retract.

Exercise VI-3.20. Let X be a compact pospace. Show that the mapping from
X to �(X )op, the lattice of closed upper subsets endowed with the Lawson
topology, which sends x to ↑x is continuous.

Hint. Suppose B ∈ �(X ), B � ↑x . Then ↑x ⊆ int(B). If (xα) is a net
converging to x , then eventually xα ∈ B. Since B = ↑B, eventually ↑xα ⊆ B,
that is, B ≤ ↑xα . Suppose D ∈ �(X ),↑x �⊆ D. Since D = ↑D, x �∈ D. Since
D is closed, eventually xα �∈ D. Thus for sets of the form ↑↑B and �(X )\↑D
which contain ↑x we have eventually that ↑xα belongs to such sets. Since
such sets form a subbase for the Lawson topology for continuous lattices, we
conclude that the injection of X into �(X )op is continuous. �

Exercise VI-3.21. Let P be a compact pospace and let i : P → �(P)op be the
embedding x �→ ↑x . If f : P → L is a continuous order preserving function
from P into a compact topological semilattice with small semilattices, then
there exists a unique continuous homomorphism F : �(P)op → L such that
F ◦ i = f .

Remark. There are actually two versions of this exercise depending on
whether one includes the empty set as a closed descending set or not. If it
is included then L must have an identity, that is, be a continuous lattice; the
empty set is then mapped to this identity.

Hint. Define F : �(P)op → L by F(A) = inf f (A) for a closed upper set A.
Let M = ↓( f (P)); note that f (P) is compact and hence also M is. Also we note
that F(�(P)) ⊆ M . Define G: M → �(P)op by G(y) = f −1(↑y). Since f is
continuous and order preserving G(y) ∈ �(P) (and is nonempty). A straight-
forward calculation gives that G is a lower adjoint for F (with codomain M).
If z � y in M , then by continuity of f, f −1(↑y) ⊆ int ( f −1(↑z)). Thus
G preserves �. Therefore F is continuous from �(P)op to M and hence
also to L . �

Exercise VI-3.22. Let S be compact topological semilattice. If A, B ∈ ϒ(S),
show that B � A in ϒ(S)op iff A ⊆ int B.
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Hint. Suppose A ⊆ int B. If D is a descending family of closed lower sets and
⋂D ⊆ A, then by compactness D ⊆ B for some D ∈ D. Thus B � A in
ϒ(S)op.

Conversely suppose B � A. Define D by

D = {D ⊆ S : D is closed, ↓D = D, A ⊆ intD}.
Then D is descending and using the monotone normality of S, one sees that in
fact A =⋂D. Since B � A in ϒ(S)op, there exists D ∈ D such that D ⊆ B.
Hence A ⊆ int B. �

Exercise VI-3.23. Prove the following.

(i) Let X be a set and let (β(X ), i) be the Stone–Čech compactification of
the discrete X . Then (�(β(X ))op, j) is the free continuous lattice over X
where j(x) = {i(x)} for x ∈ X ; that is, if f : X → L is a function into a
continuous lattice L , then there exists a unique continuous homo-
morphism F : �(β(X ))op → L such that F ◦ j = f .

(ii) Alternatively let Filt 2X denote the lattice of all set-theoretic filters on X
ordered by inclusion (with the powerset of X included as the largest
element of Filt 2X ) and define j : X → Filt 2X by j(x) =
{A ⊆ X : x ∈ A}. Then (Filt 2X , j) forms the free continuous lattice over
X . (See I-4.19).

(iii) Therefore, the two constructions are isomorphic.

Hint. (i) Let f : X → L where L is a continuous lattice. If L is equipped
with the Lawson topology, then by the universal properties of β(X ), there
exists an unique f −: β(X ) → L such that f − ◦ i = f . By Example VI-3.8
there exists a unique continuous homomorphism F : �(β(X ))op → L such that
F ◦ k = f where k: β(X ) → �(β(X ))op is defined by k(y) = {y}. Then
F ◦ j = F ◦ k ◦ i = f ◦ i = f . The uniqueness follows from the uniqueness
of f − and F .

(ii) Since F = Filt 2X is the set of all filters of the lattice of all subsets of
X , we know that it is an algebraic lattice. If f : X → L is a function into a
continuous lattice L , define G: L → F by

G(y) = {A ⊆ X : f −1(↑z) ⊆ A for some z � y}.
Since {z: z � y} is directed, it follows that G(y) ∈ F for each y ∈ L .

We claim G is a lower adjoint for the function F(F) = limF . Indeed suppose
F(F) ≥ y. If A ∈ G(y) then f −1(↑z) ⊆ A for some z � y. By definition
of F , there exists B ∈ F such that z ≤ inf B; that is, B ⊆ f −1(↑z). Thus,
A ∈ F since F is a filter. Hence F ⊇ G(y). Conversely, suppose G(y) ⊆ F .
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Then f −1(↑z) ∈ F for all z � y. Hence, limF ≥ lim{z: z � y} = y, that is,
F(F) ≥ y.

To show F is continuous it suffices by IV-1.4 to show that G preserves �.
Let z � y. Then there exists w ∈ L such that z � w � y. Then F =
{A ⊆ X : f −1(↑w) ⊆ A} is a principal filter on the lattice of all subsets of X ,
and hence is a compact element of F . Since G(z) ⊆ F ⊆ G(y), we conclude
G(z) � G(y). Thus F is a continuous homomorphism.

Clearly F ◦ j = f . Now every principal filter is the intersection of principal
ultrafilters, every filter is the directed union of principal filters, and j(X ) is
the set of principal ultrafilters. Hence, there exists at most one F such that
F ◦ j = f . Since we have seen that one does exist, it is unique. Therefore
(F, j) is free over X .

(iii) The equivalence between the two preceding constructions for the free
object is obviously obtained by using (i) and (ii) to get maps in both directions
whose compositions are both identity functions. However, the conclusion can
also be obtained by assigning to a filter all the ultrafilters containing it (and
identifying β(X ) with the set of all ultrafilters on X ). It turns out this association
defines a lattice isomorphism from Filt 2X to �(β(X ))op. �

If we denote by CS the category of compact semilattices with identities and con-
tinuous semilattice morphisms preserving identities, and if we consider the cat-
egory CL as a full subcategory of CS according to VI-3.4, then we can reinterpret
Proposition VI-3.7 by saying that CL is the full subcategory in CS cogenerated
by I = [0, 1]. This allows us to apply Freyd’s existence theorem to obtain a left
reflection of CS into CL. However, the construction of the reflection of a compact
semilattice S with identity into the category CL can easily be given explicitly.

Exercise VI-3.24. Let S be a compact semilattice with identity. Show that
there is a universal continuous lattice quotient q: S → T such that all compact
semilattice morphisms S → L into a continuous lattice L factor through q in a
unique fashion.

Hint. Consider H = Hom(S, I) as in VI-3.7(3). Let q∗: S → I
H be the

evaluation map. Then T = q∗(S) and the co-restriction q of q∗ to its image
satisfy the requirements. �

Exercise VI-3.25. Let q: S → T be as in Exercise VI-3.24. If s and t are in
distinct connected components of S, show that q(s) �= q(t).

Hint. Consider the morphism S → S/R where R is the connectivity relation.
Then S/R is a zero dimensional compact semilattice which is a continuous
lattice by VI-3.13. Apply VI-3.24. �
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Old notes

The notion of a topological semilattice with small semilattices was introduced
and studied in the 1967 University of Tennessee dissertation of J. Lawson
[Lawson, d1967]. The major results appeared in [Lawson, 1969]. The same
idea appeared independently and simultaneously in a paper of M. McWaters
[McWaters, 1969].

The problem of whether every compact topological semilattice has small
semilattices attracted attention to this class of semilattices. In [Lawson, 1973]
it was shown that the topology of any compact semilattice was an “intrinsic”
topology, one that can be defined from the semilattice structure. This result
indicated that these semilattices were some class of semilattices that could be
defined in terms of the semilattice structure. Hofmann and Stralka [Hofmann
and Stralka, 1976] addressed themselves to this problem and showed that a
complete lattice L admitted a topology for which it was a compact topological
semilattice with small semilattices (what they called a “Lawson semilattice”)
if and only if for every x ∈ L there existed a smallest ideal I with sup I ≥ x .
(Of course by I-2.1 this is equivalent to L being a continuous lattice.)

The first explicit version of the Fundamental Theorem to appear in print was
given by J. Lea [Lea, 1976b].

Example VI-3.8 is a composite from numerous sources. Lawson observed in
his dissertation that �(X )op forms a topological semilattice with small semilat-
tices for a compact Hausdorff space X . Hofmann (unpublished notes) recog-
nized the “freeness” of the construction. A detailed treatment from a categorical
viewpoint has been given by O. Wyler [Wyler, 1981a; Wyler, 1985].

A thorough treatment of algebraic lattices and compact totally disconnected
topological semilattices appears in [Hofmann et al., b1974]. Additional results
related to Example VI-3.10 may be found in [Gierz and Keimel, 1977].

For a treatment of ultrametrics and an alternative approach to Exercise
VI-3.17, see [Hofmann, 1970].

Several of the results of this section were discovered much earlier than the
Fundamental Theorem and hence were proved without the machinery of con-
tinuous lattices. For example it was shown that a compact semilattice with small
semilattices could be embedded in a product of intervals by techniques similar
to those employed in the proof of Urysohn’s Lemma. This type of approach
appears in [Lawson, 1969].

VI-4 Some Important Examples

We give in this section two examples of unital compact topological semilattices
which have no basis of subsemilattices and are thus not continuous lattices.



VI-4 Some Important Examples 463

The examples are important because they show that the theory of compact
topological semilattices stretches strictly beyond domain theory (although the
latter is our chief interest in this work). The first example is topologically
contained in the product of the unit interval and the Cantor set and, hence, is
one dimensional and metric. The second example is constructed in terms of a
space of closed convex subsets of a topological vector space and its topological
structure, therefore, is not quite so immediate.

As in the previous section, a compact semilattice is tacitly assumed to be
Hausdorff.

For the first example we develop a general method of construction and then
apply it to a specific situation.

Proposition VI-4.1. Let (T,∧) and (S, ·) be semilattices, and let f : S → T
be any order preserving function. Set W = {(t, s) ∈ T × S : t ≤ f (s)}. Then
W is a semilattice with respect to the operation

(t, s) ∧ (u, v) = (t ∧ u ∧ f (sv), sv).

Proof: The set W is a partially ordered set with respect to the order inherited
from T × S. Clearly W is closed under this product, and a product is a lower
bound to any pair of arguments. To show that it is the greatest lower bound,
suppose that (p, q) ≤ (t, s) and (p, q) ≤ (u, v) hold for three pairs in W . Then
q ≤ sv, and hence p ≤ f (q) ≤ f (sv). Thus, it follows that p ≤ t ∧ u∧ f (sv).
Therefore, (p, q) ≤ (t, s) ∧ (u, v), as we wished to show. �

Another way to regard this construction is to think of (t, s) �→ (t ∧ f (s), s) as a
kernel operator k on T ×S, which is a semilattice under the pointwise operation.
The set W is just the range of k, which is easily proved to be a semilattice under
the operation of composing k with the product in T × S.

Let now T be a continuous lattice and {Sj : j ∈ J } be a collection of compact
topological semilattices. For each j let f j : Sj → T be a given continuous order
preserving function. Let S =∏ j∈J S j , and let π j : S → Sj be the projection
onto the j th coordinate. Define f : S → T by f (s) = ∧ j∈J f jπ j (s). This
function is order preserving. Define the semilattice W as in VI-4.1. In view of
the topological assumptions, T, S and T × S are compact pospaces, and, since
the maps f jπ j are continuous, W is closed and therefore compact – because
we can write W = {(t, s) ∈ T × S : t ≤ f jπ j (s) for all j ∈ J }. To prove that
W is a topological semilattice with respect to the operation of VI-4.1 and the
relative topology, we require a further assumption.

Proposition VI-4.2. W is a compact topological semilattice provided that for
all x, y ∈ T with x � y, there exists a finite F ⊆ J such that y ≤ f (u)∧ f (v)
always implies x ≤ f jπ j (uv) for all j �∈ F.
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Proof: All that is really required to be shown is that the semilattice operation in
W is continuous. To this end let (aα, rα) and (bαsα) be two nets in W converging
to (a, r ) and (b, s) respectively. Clearly rαsα converges to rs by hypothesis on
S, so what remains to be shown is that zα = aα ∧ bα ∧ f (rαsα) converges to
z = a ∧ b ∧ f (rs). (This would be easy if f were continuous, but that is not
quite our assumption.) We wish to show that for any subbasic neighborhood U
of z, eventually zα ∈ U .

Let x � z and pick y such that x � y � z. Let F be the finite set
promised by assumption. For an arbitrary i , we have fiπi (rαsα) converges to
fiπi (rs). Since z ≤ f (rs) ≤ fiπi (rs) and y � z, we have eventually that
the net fiπi (rαsα) is in ↑y ⊆ ↑x , because ↑y is a neighborhood of z. Thus,
because F is finite, there is a β0 such that x ≤ fiπi (rαsα) for all α ≥ β0

and i ∈ F .
Since z ≤ a ∧ b, there exists a β1 such that α ≥ β1 implies aα, bα ∈ ↑y,

by the same style of argument. By reference to the definition of W and since
the nets are in W , we conclude that also f (rα), f (sα) ∈ ↑y for α ≥ β1. Hence,
by our special assumption on F , we see that x ≤ f jπ j (rαsα) for all α ≥ β1,

j �∈ F .
Putting the two cases together, we have shown that eventually for all j

simultaneously we have x ≤ f jπ j (rαsα). Hence, eventually it is the case that
x ≤ zα = aα ∧ bα ∧ f (rαsα). Since given any subbasic open set of the form
U = {p: q � p} for some q � z, we can find x � z such that q � x , it
follows from this argument that the net zα is eventually in U .

The other type of subbasic open set is one of the form T \↑d where z �∈ ↑d.
Hence either a �∈ ↑d, b �∈ ↑d or f (rs) �∈ ↑d . If a �∈ ↑d or b �∈ ↑d , then
eventually aα �∈ ↑d or bα �∈ ↑d respectively. Thus aα ∧ bα ∧ f (rαsα) �∈
↑d eventually. If f (rs) �∈ ↑d , then f jπ j (rs) �∈ ↑d for some j . Since f jπ j

is continuous, eventually f jπ j (rαsα) �∈ ↑d . Therefore eventually aα ∧ bα ∧
f (rαsα) �∈ ↑d . Either way we eventually have zα ∈ T \↑d . �

We now specialize further by letting T denote [0,∞], the extended non-
negative reals, which is a topological lattice with respect to its natural or-
der. For each positive integer i , we will choose an integer s(i) ≥ 2 and set
Si = {0, 1}s(i), a finite lattice with respect to the coordinatewise order. We re-
quire a lemma to give us a suitably divergent series governing the choice of
the s(i).

For each positive integer n larger than 1, we set αn = 1/m2m−1 where
2m−1 < n ≤ 2m . The series

∑
n≥2 αn may be thought of as the result of dividing

the m th term of the harmonic series into 2m−1 parts. Hence this series is divergent.
The rate of growth is slow, however:
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Lemma VI-4.3. For any ε > 0, there is an integer p ≥ 1 such that if k ≥ p,
then

k∑

n= 2

αn + ε >

2k∑

n= 2

αn.

Proof: We first note that
∑

n∈A αn = 1/m if A = {n: 2m−1 < n ≤ 2m}. Choose
q and p such that 2/ε < q and 2q−1 < p. If k ≥ p, there exists a unique m
such that 2m−1 < k ≤ 2m . Then

2k∑

n= 2

αn ≤
2m+1∑

n= 2

αn =
2m−1∑

n= 2

αn + (1/m + 1/(m + 1)) ≤
k∑

n= 2

αn + 2/m.

Since m ≥ q, we have 2/m ≤ 2/q < ε; this completes the proof. �

For each positive integer i , let s(i) be the least integer where

i ≤
s(i)∑

n= 2

αn.

Such an integer exists since
∑

αn is divergent. For x ∈ Si , let θ (x) ≤ s(i)
denote the number of zero entries of x . We define fi : Si → T by

fi (x) =






∞ if θ (x) = 0,
i if θ(x) = 1,
0 if θ(x) = s(i),
i −∑θ (x)

n= 2 αn for all other cases.

Lemma VI-4.4. (i) Each fi is a continuous order preserving function from Si

into T .
(ii) If τ > ε > 0, there exists a positive integer q such that, for all i ≥ q and

all u, v ∈ Si , if fi (u) > τ and fi (v) > τ , then fi (uv) > τ − ε.
(iii) Consequently, f satisfies the assumption of VI-4.2.

Proof: (i) That each fi is order preserving is a straightforward consequence of
its definition. Continuity is trivial since the lattice Si is finite.

(ii) Assume that τ > ε > 0. Choose the p guaranteed by Lemma VI-4.3
which corresponds to ε. Choose q larger than τ +∑2≤n≤2p αn .

We suppose that i ≥ q, u, v ∈ Si , fi (u) > τ and fi (v) > τ . If z = uv,
then either θ (z) ≤ 2θ (u) or θ(z) ≤ 2θ (v) obtains; we arbitrarily assume θ(z) ≤
2θ (u). (The reason one of the inequalities prevails is that uv can have at most
twice as many zero entries as either u or v.) We note from the definition of fi
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that in all cases

fi (z) ≥ i −
θ (z)∑

n= 2

αn,

if the summation is interpreted to be 0 for θ (z) equal to 0 or 1. If θ (u) ≤ p, then

fi (z) ≥ i −
θ (z)∑

n= 2

αn ≥ q −
2θ(u)∑

n= 2

αn ≥ q −
2p∑

n= 2

αn ≥ τ.

The last inequality follows from the choice of q . Hence fi (z) > τ − ε if
θ (u) ≤ p.

If p < θ (u), then

fi (z) ≥ i −
θ (z)∑

n= 2

αn ≥ i −
2θ(u)∑

n= 2

αn ≥ i −
(

θ(u)∑

n= 2

αn + ε

)

= fi (u) − ε > τ − ε.

Hence fi (z) > τ − ε for both cases.
(iii) Suppose now that x � y holds in T . The case x = 0 is trivial, so

we suppose that the element is positive. We then interpolate τ and ε so that
x < τ − ε < τ < y. We choose q as in (ii) and let F be the set of indices below
q. If we then had y ≤ f (u)∧ f (v) for u, v ∈ S, this would imply fiπi (u) > τ

and fiπi (v) > τ for all indices i.But then by (ii), we would have x ≤ f jπ j (uv)
for all j �∈ F as desired. �

Theorem VI-4.5. W is a unital compact topological semilattice without a
basis of subsemilattices.

Proof: Note that 1 = (∞, (ui )) where each ui has entries all 1, and that 1 ∈ W .
(For simplicity we are using the subscript notation rather than the projection
notation on S.) All that remains to check is the basis assertion; in fact, we show
that if A is a subsemilattice and 1 ∈ int(A), then A ∩ (0 × S) �= Ø.

There exists at 1 a basis of open sets of the form U = {(t, (ui )) ∈ W : n < t ,
ui has entries all 1 for i ≤ n}, where n is a positive integer. We assume n
is chosen so that U ⊆ int(A). Let B be the set of all elements of the form
(n + 1, (ui )) such that ui has entries all 1 for i �= n + 1 and un+1 has one zero
entry. Then B has s(n + 1) elements. For each element of B, inf{ fi (ui ): 1 ≤
i} = fn+1(un+1) = n + 1; hence B ⊆ W and thus B ⊆ U . Let (t, (zi )) be the
greatest lower bound in W of B. Then (t, (zi )) ∈ A, since A is a subsemilattice.
As (t, (zi )) ∈ W, t ≤ fn+1(zn+1) = 0, since zn+1 has entries all 0. Hence t = 0.
This completes the proof. �

The reader should consult Exercise VII-2.13 for an important further develop-
ment of this example.
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Example VI-4.6. For the second example let V be any Hausdorff topological
vector space and let K be a compact, convex subset of V . As in I-1.23 let
Con(K ) denote the set of closed convex subsets of K (including the empty set).
Define the function f : K × K × [0, 1] → K by f (x, y, t) = t x + (1 − t)y.
Then f is continuous since V is a topological vector space. The function f
induces a continuous mapping F : �(K ) × �(K ) × �([0, 1]) → �(K ) by

F(A, B, M) = {ta + (1 − t)b: a ∈ A, b ∈ B, t ∈ M}.

If A, B ∈ Con(K ), then F(A, B, [0, 1]) is the closed convex hull of A and
B. Hence (A, B) �→ closed convex hull of A ∪ B is a continuous function on
Con(K ), and with respect to this operation Con(K )op is a compact topological
semilattice.

Now if V is a locally convex vector space, then a closed convex subset of
K has a basis of neighborhoods in K which are closed and convex. It is easily
verified that if K1 ⊆ int(K2), then K2 � K1. Hence in this case Con(K )op is a
continuous lattice (cf. I-1.23). Conversely, it is shown in [Lawson, 1976b] that
if Con(K )op is a continuous lattice, then K can be embedded in a locally convex
separated topological vector space by an affine homomorphism. J.W. Roberts
[Roberts, 1977] has obtained examples of compact convex sets which have
no extreme points and hence admit no such embedding; thus for such a K ,
Con(K )op is not a continuous lattice, although it is a compact unital topological
semilattice. However, Roberts’ constructions are at least as complicated as the
one given for VI-4.5. �

Old notes

After the notion of a compact topological semilattice with small semilattices
was introduced, it remained an open question for several years whether ev-
ery compact topological semilattice had small semilattices. Lawson solved the
problem in the negative with the first counterexample of this section which
appeared in [Lawson, 1970].

An interesting topological question is to find topological properties which
insure that a compact topological semilattice will have small semilattices.
Theorem VI-3.13 states that total disconnectedness is such a condition.
[Lawson, 1969] showed that this conclusion remains true for finite dimensional
Peano continua. The most general class of spaces so far discovered appear
in [Lawson, 1977]; this class includes spaces that locally are homeomorphic
to a product of a totally disconnected space and a finite dimensional Peano
continuum.
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VI-5 Chains in Compact Pospaces and Semilattices

In this section we investigate the nature of chains (totally ordered sets) in
pospaces, topological semilattices and lattices. Maximal chains are a particu-
larly useful tool, and we invoke freely the axiom – equivalent to the Axiom
of Choice – that in a poset every chain is contained in a maximal chain, the
well-known Hausdorff Maximality Principle. Theorems VI-5.11 and VI-5.15
employ chains to give a criterion for connectedness.

The first proposition is quite straightforward.

Proposition VI-5.1. If M is a maximal chain in a poset equipped with a
topology, then we have

M =
⋂
{↓x ∪ ↑x : x ∈ M}.

Hence, if ≤ is semiclosed, M is closed. �

Corollary VI-5.2. If ≤ is semiclosed, then the closure of a chain is a chain.

Proof: Any chain is contained in a maximal chain, which is closed and contains
the closure of the given chain. Thus, the closure being contained in a chain is
itself a chain. �

The next proposition is due to A. D. Wallace [Wallace, 1945] and is one of the
oldest results in the theory of topological ordered spaces.

Proposition VI-5.3. Consider a poset equipped with a compact topology for
which the order is lower semiclosed. Then any element has a minimal element
below it.

Proof: Let M be a maximal chain containing a given element q. Then {↓x : x ∈
M} is a tower of closed sets whose intersection is nonempty since the space
is compact. Let p be in the intersection. Then {p} ∪ M is a chain, and hence
p = inf M ∈ M . Then p is minimal in the whole poset, for otherwise the chain
M could be extended. �

Proposition VI-5.4. If ≤ is semiclosed and C is a compact chain, then the
relative topology of C is the order topology. Moreover, if C is nonempty, then
C is complete.

Proof: Since {x ∈ C : a < x < b} = C\(↓a ∪ ↑b), the relative topology is
finer than the order topology. Since the order topology is Hausdorff, the two
agree.
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In case C is nonempty, then by VI-5.3 it has a minimum and a maximum
element; hence, in particular, every subset is bounded from below. If S ⊆ C is
nonempty, let L be the set of lower bounds of S. The family of closed intervals
[x, y] for x ∈ L and y ∈ S must have a nonempty intersection in C ; it is easy
to argue that the intersection is in fact {inf S}. �

Definition VI-5.5. Let X be a pospace. We say A ⊆ X is an arc chain iff A
is a nontrivial, compact, connected chain. �

Since we have just seen that the relative topology on an arc chain A is the order
topology, it follows that, topologically, A is an arc, that is, a continuum with
exactly two noncutpoints.

Proposition VI-5.6. Let X be a pospace, and let A ⊆ X.

(i) If A is an order dense compact chain, then A is an arc chain.
(ii) If X is compact and order dense and A is a maximal chain, then A is

either an arc chain or a point.
(iii) If X has a 0 and 1 and A is a connected chain containing 0 and 1, then A

is a maximal chain.

Proof: (i) The proof that A is connected is analogous to the proof that the unit
interval is connected and can be left to the reader.

(ii) It follows easily from hypothesis that every maximal chain is order dense;
hence, the conclusion follows from part (i) and VI-5.1.

(iii) Suppose A is not maximal. Then there exists p ∈ X\A such that A ⊆
↑p ∪ ↓p. Then A ∩ ↑p and A ∩ ↓p are closed, nonempty, disjoint subsets of
A, which contradicts the assumption that A is connected. �

Proposition VI-5.7. Let X be a compact pospace. Every convergent net of
arc chains in X converges in the space of closed subsets of X endowed with the
Vietoris topology to an arc chain or a point.

Proof: Let A be the limit of such a net. It is well known that the limit of continua
is a continuum. Also a set K is a chain if and only if K ×K ⊆ (≤ ∪ ≥), and the
latter is a closed set, since X is a pospace. Hence, in the Vietoris topology, the
family of all closed subsets whose squares are contained in (≤ ∪ ≥) is closed;
thus, A is a chain. �

Definition VI-5.8. Let X be a pospace. A point p ∈ X is a local minimum iff
there exists an open set U with ↓p ∩U = {p}; that is, {p} is open in ↓p. �

The next result was the discovery of R.J. Koch [Koch, 1959] and is one of the
principal results in the theory of pospaces.
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Theorem VI-5.9. (Koch’s Arc Theorem) Let U be an open subset with com-
pact closure in a pospace X. If U contains no local minimum, then every point
of U lies on an arc chain which meets the boundary of U. �

The proof of this theorem is rather lengthy and is deferred to the exercises. The
idea of the proof is to employ the nonexistence of local minima to construct,
for each neighborhood U of the diagonal � = {(x, x) ∈ X × X}, a chain in
U− from p to X\U such that the chain is U-connected (that is, if the chain is
written as the disjoint union of two nonempty sets P and Q, then there exist
a ∈ P, b ∈ Q such that (a, b) ∈ U). One then takes a limit of these chains over
all neighborhoods U of the diagonal in the compact space of closed subsets of
U−. This limit is the desired chain.

We turn now to the topic of the existence of arc chains in topological
semilattices.

Lemma VI-5.10. Let S be a semitopological semilattice.

(i) Then k ∈ S is a local minimum iff ↑k is open.
(ii) If S is a compact topological semilattice, then k ∈ S is a local minimum

iff k ∈ K (S).

Proof: (i) If ↑k is open, clearly k is a local minimum. Conversely, if {k} is open
in ↓k = Sk, then ↑k is open as the inverse image of {k} under the continuous
map x �→ xk : S → ↓k.

(ii) If ↑k is open, then k ∈ K (S) as long as the topology is compatible
(VI-1.2). Conversely if k ∈ K (S), then ↑k is open by Exercise VI-2.12. �

Theorem VI-5.11. Let S be a compact semilattice. The following statements
are equivalent:

(1) S is connected;
(2) 0 is the only compact element of S;
(3) 0 is the only local minimum in S;
(4) each point of S lies on an arc chain containing 0.

Proof: The equivalence of (2) and (3) follows from Lemma VI-5.10. That
(3) implies (4) follows easily from Theorem VI-5.9 applied to the open set
U = S\{0}. If (4) holds, then S is arcwise connected and hence connected.
Finally if S is connected, then for x ∈ S, we have ↓x is connected. If x is a
local minimum, then {x} is open and closed in ↓x , so ↓x = {x}, whence x = 0.
Hence, (1) implies (3). �

It is not necessarily the case that there exists an arc chain between x and y
whenever x ≤ y in a compact connected topological semilattice. It becomes of
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interest to consider those pairs which are so connected, and we write x # y for
this relationship (including the case x = y and always implying x ≤ y).

Proposition VI-5.12. Let S be compact semilattice. Then the following hold:

(i) # is a partial order having a closed graph;
(ii) x # y iff x ≤ y and [x, y] is connected.

Proof: (i) Everything is immediate except that # is closed. Let nets (xα) con-
verge to x, (yα) converge to y, and xα # yα . For each α, let Aα be an arc chain
between xα and yα . Then by Proposition VI-5.7 a subnet of the Aαs converges
to an arc chain A containing x and y. Hence, x # y.

(ii) Suppose x # y. Then there exists an arc chain A between x and y. Then
[x, y] = ⋃{Az: x ≤ z ≤ y}. Since each Az is connected and contains x , their
union is connected; hence [x, y] is connected.

Conversely, suppose [x, y] is connected. Then [x, y] is a compact connected
topological semilattice, and, by Theorem VI-5.11, there exists an arc chain
between x and y. �

Definition VI-5.13. A topological semilattice S is order connected iff [x, y]
is connected for all x, y ∈ S with x ≤ y. �

Proposition VI-5.14. The following statements are equivalent in a compact
topological semilattice S:

(1) S is order connected;
(2) the relations ≤ and # agree;
(3) ↑x is connected for all x ∈ S;
(4) S is order dense.

If S is unital, the above are also equivalent to

(5) for all x ∈ S, there exists an arc chain from 1 to x.

Proof: The equivalence of (1) and (2) follows from Theorem VI-5.11.
Since ↑x =⋃x≤y[x, y], (1) implies (3). Conversely if ↑x is connected, then

[x, y] = (↑x)y is connected.
Clearly (2) implies (4). Conversely, if x < y, let A be a maximal chain

between x and y. Then A is closed and order dense and hence an arc chain (see
Proposition VI-5.6).

To conclude the proof, note that if S has a 1, then (2) implies (5). Assume (5)
and let x, y ∈ S, x < y. If A is an arc chain from 1 to x , then y A is a connected
set containing x and y. Hence, ↑x is connected. Thus, (5) implies (3). �
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We consider now the existence of arc chains in topological lattices. The third
condition gives an algebraic characterization.

Proposition VI-5.15. Let L be compact topological lattice. The following
statements are equivalent:

(1) L is connected;
(2) if x < y, then there exists an arc chain between x and y;
(3) L is order dense.

Proof: (1) implies (2): Since L is compact and connected and since [x, y] =
y(L ∨ x), we have that [x, y] is a compact connected topological lattice.
Hence by VI-5.11 (applied to [x, y]) there exists an arc chain between x
and y.

(2) implies (3): Trivial.
(3) implies (1): Let x and y be elements of L , and let A and B be maximal

chains containing {x, xy} and {y, xy} respectively. By VI-5.6, A and B are arc
chains which both contain xy. Thus, x and y lie in the same component of L .
Hence, L is connected. �

Exercises

Exercise VI-5.16. Let X be a compact pospace, let x < y, and let U and V be
disjoint open sets containing x and y respectively. Define a new relation 1 by

p 1 q iff p ≤ q and either (p, q) �∈ U × V or there exists t �∈ U ∪ V such
that p ≤ t and t ≤ q.

(i) Show 1 is a closed partial order contained in the original order.
(ii) Show that X has the same set of local minima for both orders.

Hint. (i) Reflexivity and antisymmetry of 1 are immediate. Suppose x 1 y
and y 1 z. Then x ≤ y ≤ z. If (x, z) �∈ U ×V , then x 1 z. If x ∈ U, z ∈ V and
y �∈ U ∪ V , then x 1 z. If y ∈ U , then y 1 z implies there exists w �∈ U ∪ V
such that y ≤ w and w ≤ z. Then x ≤ w and w ≤ z imply x 1 z. Similarly if
y ∈ V . Hence 1 is transitive.

Let (xα, yα) be a net in X× X converging to (x, y) such that xα 1 yα for each
α. Then xα ≤ yα for each α, and hence x ≤ y. If (x, y) �∈ U × V then x 1 y.
Otherwise suppose x ∈ U, y ∈ V . Then eventually xα ∈ U and yα ∈ V . Thus,
eventually there exists wα �∈ U ∪ V and then clearly xα ≤ wα ≤ yα . The net
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wα clusters to some w �∈ U ∪ V such that x ≤ w ≤ y. Hence x 1 y, and 1 is
a closed relation.

(ii) A local minimum for ≤ is clearly one for 1. Conversely let p be a local
minimum for 1. If p �∈ V , then the lower set of p is the same for ≤ and 1.
Hence p is a local minimum for ≤. If p ∈ V , then since U ∩ V = Ø the lower
set of p intersected with V is the same for 1 and ≤. �

Exercise VI-5.17. Let X be a compact Hausdorff space and let U be an open
subset. If P is a descending family of closed partial orders on X each of which
has no local minimumin U , show that the intersection is also a closed partial
order with no local minimum in U .

Hint. The intersection is easily seen to be a closed partial order. Let x ∈ U
and let W be an open set containing x . Pick open sets N and V such that
x ∈ N ⊆ N− ⊆ V ⊆ V− ⊆ W ∩U .

Let≤ be a partial order in P . By Proposition VI-5.3 there exists an element y
minimal (with respect to ≤) in N− such that y ≤ x . Since y is not a local
minimum, there exists z ∈ V such that z < y. Then we must have z ∈ V \N−.
Hence for each partial order (≤)α ∈ P , there exists zα ∈ V \N− such that
zα < x . Since each zα lies in the compact set V−\N , they cluster to some
z ∈ V−\N . One argues that the pair (z, x) is in each partial order and hence in
the intersection. Since z < x and z ∈ W , we conclude x is not a local minimum.

�

Exercise VI-5.18. Prove Theorem VI-5.9.

Hint. We may assume that X itself is a compact pospace. By picking a maximal
chain of closed partial orders containing the given order which have no local
minimum in U and taking the intersection, one obtains (VI-5.17) a minimal
such partial order. In this new order pick a maximal chain M containing p, and
let q = sup(M ∩↓p)\U . Since M is closed, q ∈ M\U . To complete the proof,
we need only show that A = [q, p] ∩ M is an arc chain.

If A is order dense, then by Proposition VI-5.6 it is an arc chain. But if
x, y ∈ A, x < y, and [x, y] ∩ A = {x, y}, then [x, y] = {x, y} (otherwise one
extends the maximal chain M by adding some element between x and y). But
then (VI-5.16) one eliminates thepair (x, y) from the order, contradicting the
fact the order is minimal. Hence, A is order dense. �

Old notes

Koch’s Arc Theorem was one of the major early advances in the theory of
pospaces and topological semilattices and has continued to be an important
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tool. The proof given in Exercises VI-5.16 through VI-5.18 is Ward’s [Ward,
1965a]. Koch’s work led to a detailed study of the existence of arc chains in
topological semilattices and lattices (see, e.g., [Anderson and Ward, 1961],
[Brown, 1965], [Lawson, 1969]).

VI-6 Stably Compact Spaces

Compactness alone is a rather weak hypothesis for T0 spaces; for example,
compact spaces need not be locally compact. However, there is a particu-
larly well-behaved and important class of spaces that has emerged which
does appear to be a suitable generalization of compact Hausdorff spaces
to the T0-setting. In this section we develop the basic properties of these
spaces, called stably compact spaces, and their close connections with com-
pact pospaces. In relation to domain theory, stably compact spaces are analo-
gous to compact domains equipped with the Scott topology, while the associ-
ated patch topology that we study in this section is analogous to the Lawson
topology.

We begin with a strengthening of certain conclusions in the machinery of the
Hofmann–Mislove Theorem (II-1.20).

Lemma VI-6.1. Let X be a sober space. Let K be a nonempty filtered family
of compact saturated sets and let C be a filtered family of closed sets. If for each
C ∈ C and K ∈ K, we have C ∩ K �= Ø, then the intersection (

⋂ C) ∩⋂K is
compact and nonempty. Furthermore, every open set containing the intersection
contains some C ∩ K .

Proof: Set A = (
⋂ C)∩⋂K and K0 =

⋂K. If K0 ∩C = Ø for some C ∈ C,
then
⋂K ⊆ X\C , and by Theorem II-1.21(3), there exists K ∈ K such that

K ⊆ X\C , i.e., C ∩K = Ø, a contradiction. Thus {K0∩C : C ∈ C} is a filtered
family of nonempty sets closed in the compact space K0. By compactness such
a family must have a nonempty intersection (equal to A) that is compact in K0

and hence in X .
Now let U open contain A. We modify the familyC of the preceding paragraph

to C ′ = {C ∩ X\U : C ∈ C}. If no C ∩ K is contained in U , then every
(C ∩ X\U ) ∩ K is nonempty. By the argument of the preceding paragraph
applied to K and C ′ we conclude that the intersection K ∩ C ′ is nonempty. But
this contradicts K ∩ C ⊆ U . �

Definition VI-6.2. A space X is coherent if the intersection of any two com-
pact saturated sets is again compact. �
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Example VI-6.3. The following is a simple example of a domain, actually an
L-domain, that is compact and locally compact, but not coherent, in its Scott
topology.

�

Lemma VI-6.4. In a sober coherent X space the intersection of any nonempty
family of compact saturated sets is again compact and saturated. The intersec-
tion is nonempty if every finite intersection is nonempty.

Proof: Any intersection of saturated (equivalently, upper) sets is again satu-
rated, and by induction any finite intersection is compact. The remaining asser-
tions follow from the machinery of the Hofmann–Mislove Theorem, or from
Lemma VI-6.1 with the collection C = {X}, applied to the collection of finite
intersections of the given family. �

Recall that the patch topology arises by taking all closed sets together with all
compact saturated sets as a subbasis for the closed sets of the patch topology
(O-5.10).

Lemma VI-6.5. Let X be a compact coherent sober space. Then the patch
topology is compact.

Proof: By the Alexander Lemma for compactness, showing that any subbasis of
closed sets with the finite intersection property (fip) has nonempty intersection
establishes compactness. Thus let K be a family of compact saturated sets and
let C be a family of closed sets such that any finite intersection of sets from
K∪C is nonempty. Note that we can assume without loss of generality that K is
a nonempty family by adding the compact saturated set X if necessary; doing so
will not change the intersection. Without loss of generality we can augment K
by adding all finite intersections of its members (since X is coherent) and C by
adding all finite intersections of its members. We denote the new collections
again by K and C respectively; note they are filtered families, and note that
by hypothesis K ∩ C is nonempty for any K ∈ K and any C ∈ C. Then by
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Lemma VI-6.1 the intersection
⋂K∩⋂ C is nonempty, and thus X is compact

in the patch topology. �

Lemma VI-6.6. A locally compact space (X, τ ) is a pospace with respect to
its order of specialization and the patch topology.

Proof: Let x �≤ y in X in the order of specialization. Then U := X\↓y is a
τ open set containing x , and thus there exist a τ open set V and a compact set K
such that x ∈ V ⊆ K ⊆ U . Without loss of generality we may assume that K is
saturated, since its saturation remains compact and the same containments hold.
Then V contains x and is an open upper set in the order of specialization, X\K
contains y and is a lower set open set in the patch topology, and V∩ (X\K ) = Ø.
Thus the order of specialization is a closed set in the product X × X equipped
with the product of the patch topology. �

Definition VI-6.7. A space is stably compact if it is compact, locally compact,
coherent, and sober. It is stably locally compact if it is locally compact, coherent,
and sober. �

Proposition VI-6.8. Let (X, τ ) be a stably compact space. Then with respect
to the patch topology and the order of specialization X is a compact pospace.
Furthermore the patch open upper sets are precisely the members of τ .

Proof: The first assertions follow immediately from Lemmas VI-6.5 and
VI-6.6. Since τ open sets are upper sets in the order of specialization, they
are patch open upper sets. Conversely, let U be a patch open upper set and
let x ∈ U . Since (X, τ ) is locally compact, the set K of compact saturated
neighborhoods of x in the τ -topology is filtered with intersection ↑x . By defi-
nition each member of K is closed in the patch topology, hence compact since
the patch topology is compact. Since ↑x ⊆ ↑U = U , we conclude that some
member of K must be in U . Thus U is a neighborhood of x in the τ -topology.
Since x was arbitrary in U we conclude that U is τ open. �

Thus stably compact spaces give rise to compact pospaces. We show that there
is a reverse construction.

Definition VI-6.9. Let (X, π,≤) be a pospace. We defineπ! to be the topology
of all upper open sets, called the open upper set topology and π" to be the
topology of all open lower sets, the open lower set topology. �

Lemma VI-6.10. Let (X, π,≤) be a compact pospace. An upper set A is
compact in the π!-topology iff it is compact in the π -topology.



VI-6 Stably Compact Spaces 477

Proof: We establish the nontrivial direction of proof. Let A be an upper set
compact in the π!-topology and let y �∈ A. Note that for each x ∈ A, ↑x
and ↓y are disjoint closed sets. By Proposition VI-1.8 for each x ∈ A, there
exist disjoint π open sets Ux = ↑Ux and Vx = ↓Vx such that ↑x ⊆ Ux and
↓y ⊆ Vx . Since each Ux is π! open, finitely many, say U1, . . . ,Un , cover A.
Set V = ⋂n

i=1 Vi , the corresponding intersection. This shows that the closure
of A in the π -topology misses y. Since y was arbitrary outside A, we conclude
that A is closed in the π -topology, hence compact. �

Proposition VI-6.11. Let (X, π,≤) be a compact pospace. Then (X, π!), resp.
(X, π"), is a stably compact space with order of specialization the original order,
resp. the reverse ≥ of the original order.

Proof: Since X is compact in the π -topology, it is compact in the coarser
π!-topology. Given two π! compact saturated sets A, B, they are π compact
by the preceding lemma, and hence their intersection isπ - and thusπ! compact.
Thus (X, π!) is coherent.

Suppose that x ≤ y. Then every open upper set containing x contains y, and
thus x is below y in the order of specialization for π!. Conversely suppose that
every open upper set that contains x contains y. Then ↓y must contain x , for
otherwise its complement would be an open set containing x , but missing y.
Thus we obtain x ≤ y. Hence the order of specialization for π! and the original
order ≤ agree.

For local compactness let x ∈ U = ↑U . By Proposition VI-1.8 there exist
disjoint open sets V,W such that ↑x ⊆ V = ↑V and X\U ⊆ W = ↓W . Then
x ∈ V ⊆ X\W ⊆ U and X\W is compact in (X, π ), hence in (X, π!).

To show X is sober we apply Theorem II-1.21(3), since we now have local
compactness. But then any filter base of compact saturated sets in (X, π!) is
also a filtered family of compact sets in (X, π ) (by the preceding lemma), and
hence the conditions of (3) are easily seen to be true in the Hausdorff space
(X, π ).

The assertions about (X, π") follow by applying the preceding results to the
compact pospace (X, π,≥). �

We derive an alternative topological characterization of stably compact
spaces.

Definition VI-6.12. A topological space is called strongly sober if for every
ultrafilter the set of limit points is nonempty and consists of the closure of a
unique singleton set. The space is locally strongly sober if every ultrafilter has
either no limit points or the set of limit points consists of the closure of a unique
singleton set. �
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Lemma VI-6.13. Locally strongly sober spaces are sober. Furthermore, a
space is strongly sober iff it is locally strongly sober and compact.

Proof: Let A be an irreducible closed set in a locally strongly sober space X .
Then every subset of A which is open in A is dense in A; hence, the open
subsets of A form a filter base. Extend this filter base to an ultrafilter F on X .
Since A is closed and in F , the set of points of convergence of F is a subset
of A. Conversely let x ∈ A, and let U be an open neighborhood of x . Since
U ∩ A ∈ F by definition of F , we conclude F converges to x . We see then that
A is precisely the set of limit points of F . Thus, A is the closure of a unique
singleton, and we have proved that X is sober.

A space X is both compact and locally strongly sober iff for every ultrafilter
the set of limit points is nonempty and hence the closure of a unique singleton
iff X is strongly sober. �

Lemma VI-6.14. A locally strongly sober space is coherent.

Proof: Let A, B be compact saturated sets and let F be an ultrafilter having
A ∩ B as a member. Then by compactness of A and B the set of limit points of
F exists and meets both A and B. Then by local strong sobriety there exists a
limit point y of F such that the set of all its limit points is ↓y. Since ↓y must
meet both A and B, we have y ∈ A ∩ B (by saturation). Thus any ultrafilter
containing A ∩ B converges to some point of A ∩ B, so it is compact. �

Proposition VI-6.15. A space is stably compact iff it is locally compact and
strongly sober.

Proof: Suppose that X is locally compact and strongly sober. By Lemma
VI-6.13 it is compact and sober. Coherence follows from Lemma VI-6.14.

Conversely suppose that (X, τ ) is stably compact. Then it is locally compact
and we must show it is strongly sober. Let F be an ultrafilter. By VI-6.8 the
patch topology gives a compact pospace, in particular a compact Hausdorff
space, and hence the ultrafilter F converges to some unique point x in the patch
topology. HenceF → x in the τ -topology. Since the set of limit points is always
closed, it follows that the set of limit points contains ↓x . Suppose y �≤ x . Then
by Proposition VI-1.8 we find an open upper set U containing ↑y and an open
lower set V containing ↓x disjoint from U . Then U is a patch open upper set,
hence τ open by Proposition VI-6.8. Since the ultrafilter converges to x in the
patch topology, we have V ∈ F , which implies that U is not in F . We conclude
that y is not a limit point of F in (X, τ ). Thus F → ↓x . �

Corollary VI-6.16. A space X is stably locally compact iff it is locally compact
and locally strongly sober.
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Proof: Let X be stably locally compact. Let X⊥ denote X with a bottom element
attached and one new open set, X⊥ itself. It is straightforward to verify that if X
is stably locally compact, then X⊥ is stably compact, hence strongly sober. But
it is easy to see that an upper set of a strongly sober space is locally strongly
sober; hence X is locally strongly sober. The converse follows from VI-6.13
and VI-6.14. �

Definition VI-6.17. Let (X, τ ) be a topological space. The co-compact topo-
logy τ k on a space has as a subbasis for the closed sets all compact saturated
sets in the original topology (see O-5.10). The patch topology π , as already
mentioned, is defined as τ ∨ τ k , the join of the two topologies. A topology τd

on X is called a dual topology if the order of specialization is ≥, the reverse or
opposite of the order of specialization for τ . A separating dual topology is a
dual topology τd such that if x �≤ y, then there exist a τ open set U containing
x and a τd open set V containing y such that U ∩ V = Ø. �

We now gather together our results.

Theorem VI-6.18. The following are equivalent for a T0 space (X, τ ) with
order of specialization ≤.

(1) X is a stably compact space.
(2) X is strongly sober and locally compact.
(3) The patch topology π makes (X,≤) a compact pospace with x! = τ and

π" = τ k , the co-compact topology.
(4) There exists a compact pospace topology on (X,≤) such that τ is the

collection of open upper sets.
(5) There exists a separating dual topology τd such that the join of this

topology with τ makes X a compact space.
(6) There exists a compact Hausdorff topology ω on X containing τ such that

given y �≤ x, there exists disjoint U ∈ τ containing y and V ∈ ω

containing x.
(7) X is locally compact and the patch topology is compact.

Suppose that (X, τ ) satisfies any, and hence all, of the equivalent (1)–(7).
Then the compact topology in (4) and (6) is unique and is equal to the patch
topology. In part (5) the topology predicated to exist is unique and is equal to
the co-compact topology, which is also (patch)".

Proof: (1)⇔(2): Proposition VI-6.15.
(2)⇒(3): Proposition VI-6.8 yields the first two assertions. Let V be a lower

open set. Then X\V is a π compact upper set, hence a π compact saturated
set. Thus the topology π" is contained in τ k . Conversely let K be a τ compact
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saturated set. Then K is an upperset and π! compact, hence π compact by
Lemma VI-6.10, hence π closed. Thus X\K is a π open lower set. Hence
π" = τ k .

(3)⇒(4): Immediate.
(4)⇒(1): Proposition VI-6.11.
uniqueness in (4): Assume that the equivalent conditions (1) through (4)

are satisfied. Let ω be any compact pospace topology on (X,≤) with τ = ω!.
Then by Lemma VI-6.10 the ω compact upper sets are precisely the τ com-
pact saturated sets, and thus the ω open lower sets are their complements. By
Corollary VI-1.9 these sets together with τ are a subbasis for the ω open sets.
Hence ω must be the patch topology of τ .

(1)⇒(5): Consider the co-compact topology τ k . Since principal filters are
compact and compact saturated sets are upper sets, we conclude that the co-
compact topology is a dual topology. If x �≤ y, then there exist by local com-
pactness an open set V and a compact set K such that x ∈ V ⊆ K ⊆
X\↓y. By passing to the saturation of K , we may assume that K is satu-
rated. Then the pair V and X\K show that τ and τ k are separated. Since
(1) implies (3), we conclude their join, the patch topology, yields a compact
pospace.

(5)⇒(4): Let τd be a separating dual topology for which the join ω = τ ∨ τd

is compact. Suppose that x �≤ y. By hypothesis there exist a τ open set U
containing x and a τd open set containing y such that U ∩ V = Ø. Then with
respect to ≤, U is an upper set and V is a lower set. It follows that ≤ is closed
in (X, ω) × (X, ω), and hence (X, ω,≤) is a compact pospace.

To complete the implication, we show that the open upper sets U of with
respect to ω are τ open (note that τ open sets are automatically ω open upper
sets). Let x ∈ U . For each y ∈ X\U , pick Uy ∈ τ containing x and Vy in
τd containing y such that Uy ∩ Vy = Ø (possible since the topologies are
separated). Let Ky = X\Vy . Then each Ky is compact in the patch topology,
misses y, and is a τ neighborhood of x . Since their intersection is contained
in U , by compactness there exist finitely many whose intersection is inside U .
This finite intersection is a τ neighborhood of x inside U . Since x was arbitrary
in U , we conclude that U is τ open. Thus the open upper sets in the compact
pospace (X, ω,≤) are precisely the τ open sets.

uniqueness in (5): The topologies τ and τd stand in symmetric relationship to
one another. Thus reversing the roles of them in the argument of the preceding
paragraph, we conclude that the open lower sets in (X, ω,≤) are precisely the
τd open sets. By the uniqueness of the compact pospace in (4), the topology
ω must be π , the patch topology, and hence τd = π", which by (3) is also the
co-compact topology.
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(4)⇔(6): Property (4) easily implies (6) using the monotone normal property
of compact pospaces (VI-1.8). The converse arises by showing that X with the
postulated compact Hausdorff topology is a pospace, and then that the open
upper sets are precisely the τ open sets. The proof mimics the techniques used
in (5) ⇒ (4) and is left as an exercise. The uniqueness of the topology in (6)
then follows from the uniqueness in (4).

(3)⇒(7): (3) implies (2) and the two together immediately imply (7).
(7)⇒(5): We saw in the preceding proof of (1) implies (5) that the co-compact

topology is a separating dual topology for a locally compact space. Since the
patch topology is assumed compact, we are done. �

Remark. Property (5) of Theorem VI-6.18 asserts that a stably compact space
is one for which there exists a (unique) suitable partner topology with which
it can produce a compact Hausdorff space. Property (6) says that the original
topology can be strengthened (uniquely) in an appropriate way to get a compact
Hausdorff space.

Corollary VI-6.19. Let (X, τ ) be a stably compact space. Then (X, τ k) is a
stably compact space, where τ k is the co-compact topology. Furthermore, τ is
the co-compact topology for τ k .

Proof: The first assertion follows from Proposition VI-6.11 and
Theorem VI-6.18(3). The last assertion follows from the uniqueness in
Theorem VI-6.18(5). �

Definition VI-6.20. A continuous map f : X → Y between topological spaces
is proper if (i) for any closed set A ⊆ X,↓ f (A) is closed in Y , and (ii) the
inverse image of a compact saturated set is compact and saturated. �

Lemma VI-6.21. A continuous f : X → Y is proper

(i) if ↓ f (A) is closed for all A closed in X and f −1(↑y) is compact for all
y ∈ Y , or

(ii) if X is sober, Y is locally compact, and inverse images of compact
saturated sets are compact.

Proof: (i) Since a continuous map is order preserving with respect to the orders
of specialization, the inverse image of saturated sets is again saturated. Let U
be a collection of open sets in X which cover f −1(K ), where K is compact
saturated in Y . For y ∈ K , there exist finitely many that cover f −1(↑y). Let
Wy be their union. Then Vy = Y\↓ f (X\Wy) is an open set containing ↑y such
that f −1(Vy) ⊆ Wy . Then finitely many Vy cover K , so finitely many Wy cover
f −1(K ) and thus finitely many members of U also cover.
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(ii) We must show that ↓ f (A) is closed for A closed in X . Let y ∈ Y\↓ f (A).
Since Y is locally compact, there exists a filter base K of compact saturated
neighborhoods of Y such that

⋂K = ↑y. Then f −1(K) = { f −1(K ): K ∈
K} is a filtered collection of compact saturated sets in X with intersection
f −1(↑y), and thus the intersection is contained in X\A. By the Hofmann–
Mislove machinery (II-1.21) there exists K ∈ K such that f −1(K ) ⊆ X\A. We
conclude that the neighborhood K of y misses ↓ f (A). Since y was arbitrary in
the complement, we are done. �

Definition VI-6.22. Let SCTOP denote the category with objects stably com-
pact spaces and morphisms proper maps, and let CPOSP denote the category
of compact pospaces with morphisms continuous monotone maps. �

Proposition VI-6.23. The categories SCTOP and CPOSP are functorially
equivalent via the functors F and G, where F assigns to a stably compact space
(X, τ ) the compact pospace (X, π,≤) equipped with the patch topology and the
order of specialization, G assigns to a compact pospace (X, ω,≤) the stably
compact space (X, ω!), and F and G carry functions to themselves. These
functors are inverse functors, the composition either way being the identity.

Proof: We check first that morphisms go to morphisms. Suppose that f : X →
Y is a proper map between stably compact spaces. Then f is continuous implies
that it is monotone. Also since the inverse of a compact saturated set is again
compact, f is continuous for the patch topologies.

Conversely suppose that f : X → Y is a monotone continuous map between
compact pospaces. If W is an open upper set in Y then f −1(W ) is open and an
upper set (by monotonicity). Thus f is continuous for the topologies of open
upper sets. Let K be a compact saturated set in the open upper set topology of Y .
Then by Lemma VI-6.10 K is compact, hence closed, in the given topology
of Y , hence its inverse image is closed, hence compact in the given topology
of X , and thus compact in the open upper set topology.

By Proposition VI-6.8 G ◦ F is the identity on objects (and it is trivially so
on morphisms). Let X be a compact pospace. Then the open upper topology
gives a stably compact space by Proposition VI-6.11. This topology is the open
upper topology for the original compact pospace and for the pospace obtained
by applying F to it by Theorem VI-6.18(3). But by part (4) of the same theorem
the pospace topology is unique, and hence G ◦ F is the identity. �

We close this section by specializing our results to the case of domains.

Proposition VI-6.24. Let L be a domain (or even a quasicontinuous domain).
Then the co-compact topology for the Scott topology is the lower topology, and
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the patch topology is the Lawson topology. If further the domain is compact,
then the Scott and lower topologies are each stably compact, are co-compact
duals for each other, and the patch topology is again the Lawson topology.

Proof: Let A be a compact saturated set with respect to the Scott topology.
Then A is an upper set, and by Lemma III-5.7 A is a directed intersection of
finitely generated upper sets. It follows that A is closed in the lower topology.
Conversely any principal filter is certainly compact in the Scott topology, so the
lower topology is contained in the co-compact topology. Hence the co-compact
topology and the lower topology agree. It is then immediate that the Lawson
topology and the patch topology agree.

Assume that L is compact in the Lawson topology. By VI-1.15 L is a pospace
with respect to the Lawson topology. Since the closed lower sets are precisely the
Scott closed sets (III-1.6), it follows from Proposition VI-6.11 that L is stably
compact with respect to the Scott topology. By the first part the lower topology is
the co-compact topology for the Scott topology, and thus by Corollary VI-6.19
stably compact with co-compact topology equal to the Scott topology. �

The preceding material gives an alternative approach to the study of the topology
of an arbitrary compact topological semilattice.

Proposition VI-6.25. Let S be a compact topological semilattice. Then with
respect to the Scott topology S is a stably compact space, and the original
topology on S arises as the patch topology associated to the Scott topology.
This topology will be the Lawson topology iff S has small semilattices.

Proof: By Proposition VI-2.10 the closed lower sets of S are the Scott closed
sets. Hence the open upper sets are precisely the Scott open sets. Hence by
Theorem VI-6.18 S equipped with the Scott topology is a stably compact space,
since S is a pospace by Proposition VI-1.14. By the uniqueness of the pospace
topology (VI-6.18(4)), we conclude that the original topology is the patch
topology for the Scott topology.

By the Fundamental Theorem VI-3.4 if the semilattice has small semilattices
then its topology is the Lawson topology. Conversely, if the Lawson topology is
equal to the original topology, then by III-3.11 S1 is a quasicontinuous lattice.
Since by Proposition VI-1.13(vii) S is meet-continuous, it follows from III-3.10
that S1 is a continuous lattice. Hence S is a complete continuous semilattice
endowed with the Lawson topology and thus has small semilattices by III-2.15.

�

Condition (4) of Theorem VI-6.18 can be strengthened for the case of the
Scott topology. Thus the following condition is equivalent to the others of
Theorem VI-6.18 for the Scott topology.
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Proposition VI-6.26. Let (P,≤) be a poset endowed with a compact
Hausdorff topology such that the order is semiclosed and the open upper sets
contain the Scott open sets. Then the given compact Haudorff topology makes
P a compact pospace, and the open upper sets are precisely the Scott open sets.

Proof: We need to show under the given hypotheses that P has a closed
partial order. Suppose that y �≤ x . Then ↑y is a closed set missing x , so
there exist disjoint open sets U and V such that ↑y ⊆ U and x ∈ V . By
VI-1.6(i) A = ↓(X\U ) is Scott closed, hence closed by hypothesis. Thus
(X\A) × V is an open set containing (y, x) that misses the partial order ≤.
Hence the order is closed. That every open upper set is Scott open follows from
Proposition VI-1.3(ii) �

Proposition VI-6.27. Let S and T be domains endowed with the Scott topology
and let f : S → T be a Scott-continuous upper adjoint with lower adjoint d.
Then f is a proper map, and hence continuous for the Lawson topologies.

Proof: For y ∈ Y , we have

x ∈ f −1(↑y) ⇔ y ≤ f (x) ⇔ d(y) ≤ x ⇔ x ∈ ↑d(y).

Thus f −1(↑y) = ↑d(y), and the latter is compact in the Scott topology. Also
for Scott closed A = ↓A ⊆ X , we have

y ∈ ↓ f (A) ⇔ ∃x ∈ A, y ≤ f (x) ⇔ ∃x ∈ A, d(y) ≤ x ⇔ d(y) ∈ A.

Thus ↓ f (A) = d−1(A). The latter is Scott closed, since d as a lower adjoint
preserves all existing sups, in particular, directed sups, and thus↓ f (A) is closed.
Hence f is proper, and thus patch continuous since the inverse of any compact
saturated set is again compact. But by VI-6.24 the patch topology is the Lawson
topology.

Exercises

Exercise VI-6.28. Provide the details of the proof that (6)⇒(5) in Theorem
VI-6.18. Proceed along the lines of (5)⇒(4). �

Exercise VI-6.29. Show that if S is a compact topological semilattice for which
the Lawson topology is Hausdorff, then its topology is the Lawson topology
and S has small semilattices.

Hint. Adapt the methods in the proof of VI-6.25. �
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Exercise VI-6.30. Let X be a poset with an order consistent topology. Prove
the following:

(i) the saturated sets are precisely the upper sets;
(ii) each set of the form ↑x is a saturated compact set;

(iii) each saturated compact set is Scott closed in Xop;
(iv) the co-compact topology is order consistent on Xop;
(v) if X is locally compact, then under the patch topology X is a pospace

(and hence Hausdorff).

Hint. (i) Each open set is an upper set and hence the same is true for the
intersection. Conversely if A = ↑A, then A = ⋂{X\↓x : x �∈ A}. Hence A is
saturated.

(ii) Any open set containing x contains ↑x . Hence ↑x is compact.
(iii) Apply VI-1.6(i) to Xop.
(iv) It follows immediately from (ii) and (iii) that the co-compact topology

contains the upper topology and is contained in the Scott topology on Xop.
Hence it is order consistent.

(v) Let x, y ∈ X, x �≤ y. Since X\↓y is an open set containing x , there exists
a compact neighborhood Q of x contained in X\↓y. It is easily verified that
↑Q is also compact and ↑Q ⊆ X\↓y. The interior of Q is an open upper set
containing x in the given, and hence in the patch, topology. The complement of
↑Q is a lower set which is a neighborhood of y in the co-compact and, hence,
in the patch topology. Clearly the two are disjoint. Therefore, we may apply
VI-1.4. �

In the next exercise we connect the considerations of this section with related
work of Ralph Kopperman [Kopperman, 1995].

Exercise VI-6.31. A bitopological space (X, τ, σ ) is an asymmetric space if σ
and τ are T0-topologies with orders of specializations being the order dual of
each other. We order X with the order of specialization of the first topology. The
asymmetric space X is pseudo-Hausdorff if given x �≤ y, there exists U ∈ τ

and V ∈ σ such that x ∈ U, y ∈ V , and U ∩ V = Ø, and join compact if τ ∨σ

is a compact topology. Prove the following.

(i) If (X, τ ) is a stably compact space, then (X, τ, τ k) is a join compact
pseudo-Hausdorff asymmetric space.

(ii) If (X, τ, σ ) is a join compact pseudo-Hausdorff asymmetric space, then
(X, τ ) and (X, σ ) are stably compact and σ = τ k .

Hint. Use Theorem VI-6.18. �



486 VI Compact Posets and Semilattices

New notes

This material represents an expanded version of material originally formulated
by Gierz and Lawson that appeared in the Exercises to Section VII-1 of the
Compendium. Various papers have elaborated on these notions including
[Hofmann, 1984b], [Smyth, 1991], [Smyth, 1992a], [Kegelmann, d1999], and
[Kopperman, 1995]. These references indicate the increasingly important
role that stably compact spaces have played since the publication of
the Compendium. We have opted for the terminology “stably compact”, al-
though a variety of other terminology has been suggested and can be found in
the literature ([Kopperman, 1995], for example, uses the terminology “skew
compact”).

VI-7 Spectral Theory for Stably Compact Spaces

In this section we consider the spectral theory of the stably compact and stably
locally compact spaces studied in Section VI-6. Since their theory is intimately
connected with that of compact pospaces, the latter are also included in the cur-
rent discussion. We recall from Section V-5, particularly Proposition V-5.20, the
duality between the categories LCSOB, which has as objects the locally compact
sober spaces and as its maps the continuous functions f : X → Y with the prop-
erty that f −1(Q) is compact for every saturated compact subset Q of Y (equiva-
lently the proper maps by Lemma VI-6.21(ii)), and the category CLop ∩ FRM,
which has as objects continuous distributive lattices and as maps the morphisms
ϕ: L → M preserving arbitrary sups, finite infs and the relation�. The duality
is given by the functors O, assigning the lattice of open sets to a space, and
Spec, which assigns to a distributive continuous lattice its spectrum with the
hull–kernel topology. In this section we consider the full subcategories of stably
locally compact and stably compact spaces and their dual continuous frames.

On a continuous distributive lattice L , we consider X = Spec L with the
hull–kernel topology, which is also the topology induced by the lower topol-
ogy on L , and the corresponding patch topology, which is also the relative
Lawson topology (V-5.12). In parallel, we consider PRIME L = Spec L ∪ {1}
also topologized by its hull–kernel topology induced by the lower topology
on L , and the corresponding patch topology, which again by V-5.12 is the
relative Lawson topology. However, it is convenient to distinguish the orders:
with the Lawson topology we associate the order of L restricted to the spec-
trum, and with the patch topology we associate the order of specialization from
the hull–kernel topology, which is the opposite order of the order inherited
from L .
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Now let L be a distributive continuous lattice in which the set PRIME L of
prime elements is closed with respect to the Lawson topology. From V-3.7 we
know that the latter is the case iff the way-below relation is multiplicative on L .
If we alternatively assume that Spec L is closed with respect to the Lawson
topology, then PRIME L = Spec L ∪ {1} is also closed, hence the way-below
relation is again multiplicative. But additionally, since L is primally generated,
{1} = L\↓Spec L is Lawson open, hence Scott open, hence a compact element.
Conversely if PRIME L is Lawson closed and 1 is compact element, then
{1} is Lawson open, and hence Spec L = PRIME L\{1} is Lawson closed.
Since L is continuous, Spec L and PRIME L are locally compact, and thus by
Theorem VI-6.18(7) we know that Spec L , resp. PRIME L , is compact in the
Lawson topology iff Spec L , resp. PRIME L , is a stably compact space in the
relative lower topology.

Proposition VI-7.1. Let L be a distributive continuous lattice. The following
are equivalent:

(1) the way-below relation is multiplicative;
(2) PRIME L endowed with the hull–kernel topology is stably compact;
(3) PRIME L is closed in the Lawson topology of L;
(4) Spec L (with the hull–kernel topology) is stably locally compact.

Also the following are equivalent:

(1) the way-below relation is multiplicative and 1 is a compact element;
(2) Spec L endowed with the hull–kernel topology is stably compact;
(3) Spec L is closed in the Lawson topology of L.

In each case the patch topology (for the hull-kernel topology) of PRIME L or
Spec L agrees with the relative Lawson topology from L. The function�L (a) :=
PRIME L\↑a, resp.�L (a) := SpecL\↑a, is a lattice isomorphism from L onto
the nonempty, resp. all lower, sets in the inherited order from L that are relatively
Lawson open.

Proof: The proof that items (1)–(3) are equivalent in both settings follows from
the comments preceding the lemma. The equivalence of (2) and (4) follows
from the elementary observation that a space is stably locally compact (locally
compact, coherent, and sober) iff adding on a bottom element (in the order of
specialization) makes it stably compact.

By V-5.12 the Lawson and patch topologies agree on Spec L and PRIME L .
Since these are stably compact in the hull-kernel topologies, by Proposition
VI-6.8 the patch open upper sets in the order of specialization are precisely the
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hull–kernel open sets; these are then the relative Lawson open lower sets, since
the order of specialization is the order dual of the relative order from L . �

Consider now the following categories:

SCTOP, which has as objects the stably compact spaces and as its maps the
proper maps f : X → Y ;

SLCTOP, which has as objects the stably locally compact spaces and as its
maps the proper maps f : X → Y ;

SCFRM, which has as objects continuous distributive lattices L with
multiplicative way-below relation (equivalently stably continuous frames)
and as maps the morphisms ϕ: L → M preserving arbitrary sups, finite
infs and the relation �;

SCFRM1, which has as objects stably continuous frames with 1 compact, and
as maps the morphisms ϕ: L → M preserving arbitrary sups, finite infs
and the relation �.

Corollary VI-7.2. The functor Spec is a functor from the category SCFRM,
resp. SCFRM1, to the category SLCTOP, resp. SCTOP.

Proof: This follows immediately from the preceding proposition and Proposi-
tion V-5.20. �

We consider now the functor O.

Proposition VI-7.3. Let X be a T0 space. The following are equivalent:

(1) X is stably locally compact;
(2) X⊥ = X ∪ {⊥} with the patch topology and order of specialization is a

compact pospace;
(3) O(X ) is a stably continuous frame.

Also the following are equivalent:

(1) X is stably compact;
(2) X with the patch topology and order of specialization is a compact

pospace;
(3) O(X ) is a stably continuous frame with compact 1.

Proof: That X⊥ (with the only neighborhood of ⊥ being the whole space)
is locally compact, coherent, sober, and compact is straightforward. Hence (1)
implies (2) by Proposition VI-6.8 and the reverse implication is straightforward.

Now by spectral duality X is naturally homeomorphic to Spec (O(X )), and
it then follows from Proposition VI-7.1 that if X is stably locally compact, then
the distributive continuous lattice O(X ) has multiplicative way-below relation
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and conversely. Hence (1) is equivalent to (3). The arguments for the second
group of equivalences are similar. �

Theorem VI-7.4. The functors Spec: SCFRM → SLCTOP, resp. Spec:
SCFRM1 → SCTOP, and O: SLCTOP → SCFRM, resp. O: SCTOP →
SCFRM1, define a duality of categories.

Proof: This theorem follows readily from the previous results of this section
and Proposition V-5.20, since the asserted duality of the theorem is just a re-
striction of that given in V-5.20. �

In Section VI-6 we have established the functorial equivalence of the categories
SCTOP consisting of stably compact spaces and proper maps and CPOSP con-
sisting of compact pospaces and continuous monotone maps. We can compose
this equivalence with the duality functors of this section to obtain a duality of
CPOSP and SCFRM1.

Remark VI-7.5. For a compact pospace X, let O↑(X ) denote the lattice of
open upper sets. Since X endowed with the topology of open upper sets is a
stably compact space (VI-6.11), it follows from VI-7.3 above that O↑(X ) is
a distributive continuous lattice with multiplicative way-below and compact
unit 1, i.e., an object in SCFRM1. Since the functor of passing to the topology of
open upper sets and viewing a continuous monotone map as a proper map is an
equivalence of categories from CPOSP to SCTOP (VI-6.23) and since O yields
a duality of the categories SCTOP and SCFRM1 (VI-7.4), we conclude that the
composition of sending X toO↑(X ) and a continuous monotone map f : X → Y
to O↑( f ): O↑(Y ) → O↑(X ) defined by O↑( f )(V ) = f −1(V ) for V = ↑V
open in Y is one of a pair of unctors that defines a duality between CPOSP
and SCFRM1. The other functor is the spectrum functor Specλ that assigns to
a continuous distributive lattice L with multiplicative way-below relation and
compact 1, the spectrum Spec L equipped with the order of specialization (the
reverse of the inherited order from L) and the patch topology of the hull-kernel
topology, which is the same as the relative Lawson topology. At the morphism
level Specλ( f ) for f : L → M is the restriction of the upper adjoint of f to
Spec (M), and is a continuous monotone map (by VI-7.4 and VI-6.23). Thus
the categories CPOSP and SCFRM1 are dual with duality given by the functors
O↑ and Specλ. �

Exercises

Exercise VI-7.6. (Functoriality of the patch topology) Let L and M be com-
plete lattices and τ : M → L a map preserving arbitrary infs and directed
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sups. Suppose, in addition, that the lower adjoint ϕ: L → M of τ preserves
finite infs. Show that τ (PRIME M) ⊆ PRIME L and that the restriction of τ
to PRIME M is continuous with respect to the patch topologies on PRIME M
and PRIME L .

Hint. Use V-4.5 and V-5.3. �

Exercise VI-7.7. Let X be a stably locally compact space. By Proposition
V-4.7, the mapping ξX : X → Spec(O(X )) is a homeomorphism. Let X⊥ denote
X with a bottom element adjoined whose only neighborhood is all of X⊥. Extend
ξX by ξX (⊥) = X , the largest element of O(X ).

(i) Show that the extended ξX : X⊥ → PRIME O(X ) is a homemorphism
from X⊥ to PRIME O(X ) with the relative lower topology.

(ii) Show that ξX from X⊥ with the patch topology to PRIME O(X ) with the
relative Lawson topology is a homeomorphism. In particular, the relative
Lawson topology and patch topology agree on PRIME O(X ) (by letting
X = Spec O(X )).

(iii) Show that both spaces X⊥ and PRIME O(X ) are stably compact. �

Exercise VI-7.8. Show that the compact open subsets form a basis for a sta-
bly compact space iff it is a totally order disconnected compact pospace in
the patch topology, that is, a compact pospace such that for any two ele-
ments x and y with x �≤ y there is an open–closed upper set containing x but
not y. �

Exercise VI-7.9. (i) Let L be a distributive arithmetic lattice with compact 1.
Show that Spec L is closed with respect to the Lawson topology; endowed
with the topology induced from the Lawson topology on L , Spec L is a totally
order disconnected compact pospace; moreover, L is isomorphic to the lattice
O↑(Spec L) of all patch open upper sets in Spec L , which are the relative
Lawson open lower sets; the compact elements of L correspond to the open–
closed lower sets in Spec L .

(ii) Let X be a totally order disconnected compact pospace. Show thatO↑(X )
is a distributive arithmetic lattice such that X is homeomorphic to the space
Spec O↑(X ) endowed with the topology induced from the Lawson topology on
O↑(X ).

(iii) Let M be a distributive lattice with 0 and 1. Let L be the lattice of all
ideals of M. Show that L is a distributive arithmetic lattice (see V-5.22) and that
M is isomorphic to the lattice Oϒ(Spec L) of all clopen lower sets of Spec L
endowed with the topology induced from the Lawson topology on L . �
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Exercise VI-7.10. (Priestley duality) Consider the following categories:

DAR has as objects all distributive arithmetic lattices with compact 1 and as
morphisms all maps preserving arbitrary sups, finite infs and compact
elements (cf. V-5.22);

TCPOSP has as objects all totally order disconnected compact pospaces and
as morphisms all continuous order preserving maps;

DLat is the category of all distributive lattices with 0 and 1 and all 0 and
1 preserving lattice homomorphisms.

Show that the categories DAR and TCPOSP and likewise the categories DLat
and TCPOSP are dually equivalent. �

Old notes

To the best of our knowledge, the first to consider the patch topology was
[Hochster, 1969] who defined this topology for the spectrum of commutative
rings. In a general setting, the patch topology has been introduced by Hofmann
and Lawson [Hofmann and Lawson, 1978]. In Section 6 of that paper one finds
most of the material treated here from the perspective of compact pospaces (but
no stable compactness). Duality and representation theorems similar to ones
appearing here are already contained in a paper of Gierz and Keimel [Gierz
and Keimel, 1977], although in the latter paper other morphisms are used. The
exercises VI-7.9 and VI-7.10 show how our results are related to Priestley’s
representation theorems for distributive lattices by compact totally order dis-
connected partially ordered spaces, and related duality theorems [Priestley,
1970; Priestley, 1972]. The representation theorems for distributive lattices
of Priestley are more appealing to the average mathematical intuition than the
original ones of M.H. Stone, since the representing spacesare Hausdorff spaces.



VII

Topological Algebra and Lattice
Theory: Applications

Our final chapter is devoted to exploring further links between topological
algebra and continuous lattice and domain theory. This theme has already
played an important role: the Fundamental Theorem of Compact Semilattices
(VI-3.4) is just one example. In this chapter, however, the methods of topologi-
cal algebra occupy a more central role, while the methods of continuous lattices
are somewhat less prominent.

Section VII-1 is devoted to somewhat technical results about certain non-
Housdorff topological semilattices; they are included primarily to facilitate the
proof of later results concerning separate continuity of semilattice and lattice
operations implying joint continuity. Section VII-2 makes various observa-
tions about topological lattices and their topologies, with a particular focus on
completely distributive lattices.

Section VII-3 introduces the class of continuous lattices for which the
Lawson topology is equal to the interval topology: the hypercontinuous
lattices. The distributive ones are paired with the quasicontinuous domains
via the spectral theory of Chapter V. Thus several earlier themes are nicely
rounded out.

Section VII-4 characterizes those meet continuous complete lattices which
admit a compact semilattice topology as being exactly those lattices whose
lattice of Scott open sets forms a continuous lattice; this augments II-1.14,
which shows that the continuous lattices are exactly those complete lattices
whose Scott open sets form a completely distributive lattice. The final part of
Section VII-4 is devoted to a proof that a compact semitopological semilattice
is in fact topological. This is a particularly appropriate note on which to end
this treatise, since the proof we present utilizes those aspects of the theory of
continuous lattices which we have sought to stress: namely, the algebraic theory
and its utility in applications to related areas of mathematics.

492
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VII-1 One-Sided Topological Semilattices

So far, our consideration of topological semilattices has assumed that they are
Hausdorff; however, in II-4.15 we had occasion to consider those non-Hausdorff
topological semilattices that were topological semilattices with respect to the
Scott topology. The purpose of this section is to study non-Hausdorff semilat-
tices in more detail; not only is this class of interest in itself, but also we shall
find useful applications of the theory to the Hausdorff setting.

We introduce first some convenient notation and af easy lemma.

Definition VII-1.1. Let S be a semilattice, A ⊆ S. If x ∈ S, we define

x [−1] A = {y ∈ S : xy ∈ A}. �

Lemma VII-1.2. A semilattice S is a semitopological semilattice under a
topology U iff x ∈ S and U ∈ U always imply x [−1]U ∈ U . �

Every semitopological semilattice gives rise to a “one-sided” one, in the sense
of having a new topology where all open sets are upper sets as was the case in
the Scott topology.

Proposition VII-1.3. Let (S,U) be a semitopological semilattice. Set

V = {U ∈ U : U = ↑U }.
Then (S,V) is a semitopological semilattice.

Proof: Let V ∈ V . Then V ∈ U and V = ↑V . If x ∈ S, then by Lemma
VII-1.2 x [−1]V ∈ U . If y ∈ x [−1]V and z ≥ y, then xz ≥ xy ∈ V . Thus
xz ∈ V , that is, z ∈ x [−1]V . Thus x [−1]V is also an upper set and hence in V .
By Lemma VII-1.2 again, (S,V) is a semitopological semilattice.

Definition VII-1.4. For a topology U on a semilattice S, define U∧ to be the
topology generated by the subbase

{
x [−1]U : x ∈ S,U ∈ U} ∪ U . �

Proposition VII-1.5. For any topology U on a semilattice S the topology U∧

is the weakest topology on S containing U for which S is a semitopological
semilattice.

Proof: To show (S,U∧) is a semitopological semilattice, we apply
Lemma VII-1.2 to the subbasis of U∧. If U ∈ U , clearly x [−1]U ∈ U∧. If x ∈ S
and y[−1]U ∈ U∧, then x [−1](y[−1]U ) = (yx)[−1]U ∈ U∧.

If (S,V) is a semitopological semilattice andU ⊆ V , then by Lemma VII-1.2
each x [−1]U is in V; hence, U∧ ⊆ V . �
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Recall from Definition II-1.30 that a topology U on a dcpo X is called order
consistent if the lower set of a point is the closure of that point and if directed
nets converge to their sups. Equivalently we could say that U contains the upper
topology and is contained in the Scott topology. The next definition introduces
some other connections between order and topology and is somewhat technical,
but it includes notions which will prove quite useful in the development of
this section. We recall from Definition VI-1.2 that a topology on a poset is
called compatible if directed nets converge to their sups, and dually filtered
nets converge to their infs. For a subset V ⊆ X , we write V ♦ for the set of
all such directed sups and filtered infs of nets in V , and we remark that in the
compatible case we have V ⊆ V ♦ ⊆ V−.

Definition VII-1.6. A topology on a poset X is called order regular (or
o-regular) if for every open neighborhood U ∈ U of a point there exists another
neighborhood V ∈ U of the point such that V ♦ ⊆ U and filtered sets in V have
infs.

A point in X is called anω-point if there exists a countable collection of open
neighborhoods of the point, {Un: n ∈ N}, such that U ♦

n+1 ⊆ Un , and the point
is a minimal element of the set

⋂{Un: n ∈ N}. �

Proposition VII-1.7. Let X be a poset equipped with a topology.

(i) If the relation ≤ is lower semiclosed and the topology is compatible, then
the set of open upper sets is an order consistent topology on X.

(ii) If X is a compact pospace, then the set of open upper sets forms an
o-regular order consistent topology on X.

(iii) If the relation ≤ is lower semiclosed and the topology is o-regular, then
each point in X is the supremum of the ω-points below it.

Proof: (i) It is immediate that the collection of open upper sets is closed under
arbitrary unions, finite intersections, and contains X and Ø; hence it forms a
topology.

For x ∈ X with respect to this topology {x}− is a lower set since its com-
plement is open; thus ↓x ⊆ {x}−. Since the order is lower semiclosed, ↓x is
closed in both topologies; thus {x}− ⊆ ↓x . Hence, the two sets are equal, and
the first condition for being order consistent is satisfied. The second condition
follows from the compatability of the topology.

(ii) By part (i) the topology is order consistent. Suppose x ∈ X and U is
an open upper set containing x . Then ↑x and X\U are disjoint, ↑x is a closed
upper set and X\U is a closed lower set. Since X is monotone normal (see
VI-1.8), there exist an open upper set P and an open lower set Q such that
↑x ⊆ P , X\U ⊆ Q, and P ∩ Q = Ø. Let F be a filtered set in P . Since X
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has a compatible topology, inf F ∈ P− ⊆ X\Q ⊆ U . Clearly, since P = ↑P ,
if D is a directed subset of P then sup D ∈ P ⊆ U . Thus the open upper sets
form an o-regular topology.

(iii) Let X be a lower semiclosed space equipped with an o-regular topology,
and let x ∈ X . Suppose y is an upper bound for all ω-points below x . We show
then that x ≤ y and hence x is the supremum of all ω-points below it.

Suppose on the contrary that x �≤ y. Then U1 = X\↓y is an open neighbor-
hood of x . Pick U2 such that U2 is open, x ∈ U2, and U ♦

2 ⊆ U1. Continue this
procedure inductively. Let P =⋂{Un: n ∈ N}.

Let M be a maximal chain in P containing x . Then since M ⊆ Un+1, inf M
exists and is a member of Un for all n. Hence inf M ∈ P . Clearly inf M ≤ x .
Also inf M is minimal in P (otherwise the maximal chain M could be extended).
Thus inf M is anω-point. Since inf M ∈ P ⊆ U1 ⊆ X\↓y, we have inf M �≤ y,
a contradiction. Thus x ≤ y. �

We come now to a key (and difficult) lemma.

Lemma VII-1.8. Let L be a complete lattice with a topology U and a1, . . . ,

an ∈ L be a finite set of ω-points. If an ultrafilter on L converges to each of the
points a1, . . . , an in the topology U∧, then it converges to s = a1 ∨ · · · ∨ an in
the Scott topology.

Proof: The proof for any finite number of points is essentially the same as
that for two. We restrict our attention to the latter case in order to simplify
the bookkeeping. Suppose then that a and b are ω-points and the ultrafilter F
converges to both a and b in the U∧ topology. Let M be a Scott open set around
s = a ∨ b. Let {Un} and {Vn} be the sequences of open neighborhoods of a and
b guaranteed by the definition of ω-points. Let F ∈ F .

We proceed recursively to obtain three sequences {an}, {bn}, and {xn} such
that for all n and all j < n we have

(i) an = axn ∈ Un and bn = bxn ∈ Vn ,
(ii) a j a j+1 . . . an = a j a j+1 . . . xn ∈ U j and b j b j+1 . . . bn = b j b j+1 . . .

xn ∈ Vj ,
(iii) xn ∈ F .

Since a ∈ a[−1]U1 ∈ U∧ and b ∈ b[−1]V1 ∈ U∧, we have a[−1]U1 ∈ F
and b[−1]V1 ∈ F ; thus a[−1]U1 ∩ b[−1]V1 ∩ F ∈ F . Let x1 be a point in this
intersection. Then a1 = ax1 ∈ U1 and a1 ≤ a; similarly b1 = bx1 ∈ V1 and
b1 ≤ b.
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Next a ∈ a[−1]U2 and a ∈ a[−1]
1 U1, because aa1 = a1. Similarly we find

b ∈ b[−1]V2 ∩ b[−1]
1 V1 ∈ U∧. Thus there exists an element

x2 ∈ a[−1]U2 ∩ a[−1]
1 U1 ∩ b[−1]V2 ∩ b[−1]

1 V1 ∩ F.

Let a2 = ax2 and b2 = bx2. Then a2 ≤ a, a2 ∈ U2, and a1a2 = a1x2 ∈ U1;
analogs statements hold for b2. The recursive procedure should now be clear.

We set cn =
∧{a j : j ≥ n}, dn =

∧{b j : j ≥ n}, and yn =
∧{x j : j ≥ n}.

Then the sequences {cn}, {dn}, and {yn} are all directed. Let y = ∨n yn . By
part (ii) of the recursive definition, for each k,

∧
i≤k an+i ∈ Un . Since cn is the

filtered inf of {∧i≤k an+i : k ≥ 1}, we have cn ∈ Un−1 (from the definition of
ω-point). Similarly dn ∈ Vn−1 for all n > 1.

Let c =∨{cn: n ≥ 1}. Since the set {Un} is towered, the preceding paragraph
implies cm ∈ Un+1 for m > n + 1. Since {cn} is a directed set, c ∈ Un (from
the definition of an ω-point). Since n was arbitrary, c ∈ ⋂n Un . Similarly
d ∈ ⋂n Vn . For each n, cn ≤ an ≤ a; hence c ≤ a. Since a is minimal in
⋂

n Un , we conclude c = a. Similarly d = b.
From the definition of cn, dn and yn we conclude cn ≤ yn and dn ≤ yn . Hence

c ≤ y and d ≤ y, that is, s = a ∨ b = c ∨ d ≤ y. Since we began with a Scott
open set M around s and s ≤ y, we conclude y ∈ M . Since y is the sup of a di-
rected set, there exists n such that yn ∈ M . Since yn ≤ xn , we conclude xn ∈ M .
Finally, xn ∈ F (part (iii) of the recursive definition) implies F ∩ M �= Ø.

Now F was an arbitrary member of F , so we conclude F ∩M �= Ø for every
F ∈ F . As F is an ultrafilter, this implies M ∈ F . Since M was an arbitrary
Scott open set around s, we conclude thatF converges to s in the Scott topology.

�

We come now to a major theorem.

Theorem VII-1.9. Let L be a complete lattice with a topology U in which
every open set is an upper set.

(i) If each point is a supremum of ω-points, then U∧ contains the Scott
topology.

(ii) If U is order consistent and o-regular and L is meet continuous, then U∧

is the Scott topology.
(iii) If U is order consistent and o-regular and if L is a semitopological

semilattice with respect to the meet operation, then U is the Scott
topology.

Proof: (i) ShowingU∧ contains the Scott topology is equivalent to showing the
identity function is continuous from (L ,U∧) to (L , σ (L)). For this it suffices
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to show that if an ultrafilter F converges to x in (L ,U∧), then the same obtains
in (L , σ (L)).

Let M be a Scott open set containing x . Since M is Scott open and x is
the sup of all ω-points below it, we conclude there exist ω-points x1, . . . , xn

such that y = x1 ∨ · · · ∨ xn ∈ M and y ≤ x . Since each open set in U , and
hence in U∧, is an upper set, the ultrafilter F also converges to each of the
points x1, . . . , xn in (L ,U∧). By Lemma VII-1.8 F converges to y in the Scott
topology. Since y ∈ M , we conclude M ∈ F . Since M was an arbitrary Scott
open set containing x , we conclude F converges to x in σ (L).

(ii) Since L is meet-continuous, (L , σ (L)) is a semitopological semilattice.
Hence by Proposition VII-1.5 U∧ ⊆ σ (L).

Conversely by Proposition VII-1.7(iii), each point in L is a supremum of
ω-points. Hence by part (i), we have σ (L) ⊆ U∧. Thus σ (L) = U∧.

(iii) Since U is order consistent, U ⊆ σ (L). Conversely by VII-1.7(iii) each
point is a supremum of ω-points, and hence σ (L) ⊆ U∧ by part (i). But since
(L ,U) is a semitopological semilattice, we have U∧ = U . �

Lattices of the types appearing in Theorem VII-1.9 possess other interest-
ing properties; in the following we make a rather brief allusion to some of
these.

Theorem VII-1.10. Let L be a meet continuous complete lattice with an
order consistent o-regular topology U . Then (L , σ (L)) is strongly sober;
that is, every ultrafilter in L has a largest point of convergence in the Scott
topology.

Proof: Let F be an ultrafilter which converges to points x and y in the Scott
topology. Let A = {z: z is an ω-point, z ∈ ↓x ∪↓y}. Since x and y are each the
supremum of the ω-points below them by VII-1.7(iii), we conclude sup A =
x ∨ y.

Since F converges to each of x and y, we have F converges to every member
of A in the Scott topology. By Theorem VII-1.9 U∧ = σ (L); thus, by Lemma
VII-1.8, the ultrafilter F Scott-converges to sup F for every finite set F ⊆ A.
Since the set {sup F : F is finite, F ⊆ A} is directed, F converges to its supre-
mum, x ∨ y.

Since x and y were arbitrary points of convergence for F , we conclude the
set of convergence points of F is directed. Then F will also converge to the
supremum of the convergence points, since the set of all convergence points of
F must be Scott closed. Finally note that any ultrafilter converges to 0 in the
Scott topology, so (L , σ L) must be strongly sober. �
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Proposition VII-1.11. Let L be a meet continuous complete lattice such that
the Scott topology on L × L is strongly sober.

(i) The Scott topology on L × L is the square of the Scott topology on L.
(ii) (L , σ (L)) is a topological lattice.

Proof: (i) Since the product of two Scott open sets is Scott open, we have always
that σ (L) × σ (L) ⊆ σ (L × L). To show containment in the other direction,
we must show that any ultrafilter F which converges to (x, y) in the product
topology also converges to the same point in the Scott topology on L × L .

Since each open set in the product topology is an upper set, F also converges
to (x, 0) in the product topology. Let U be a Scott open set around (x, 0). Let
A = {p ∈ L: (p, 0) ∈ U }. Since U is Scott open, it follows that A is Scott
open in L . Since U is an upper set, A × L ⊆ U . But A × L is open in the
product topology; hence A × L ∈ F and thus U ∈ F . Since U was arbitrary,
F converges to (x, 0) in the Scott topology. Similarly F converges to (0, y) in
the Scott topology. Since F has a largest point of convergence, we conclude
that F converges to (x, y) in the Scott topology.

(ii) It is easily verified that the inverse image of a Scott closed set in L is Scott
closed in L × L for the mapping (x, y) → x ∨ y; a similar conclusion holds
for (x, y) → xy if L is meet continuous. Since by part (i) the Scott topology is
the product topology we conclude both mappings are continuous. �

Corollary VII-1.12. Let L be a complete lattice that is a semitopological
semilattice with an order consistent o-regular topology. Then the topology is
the Scott topology, and L is a strongly sober topological lattice.

Proof: Use VII-1.9, VII-1.10 and VII-1.11. (To apply VII-1.11 note that the
product topology on L × L is order consistent and o-regular and that L × L is
also meet continuous since L is; thus, by Theorem VII-1.10, L × L is strongly
sober with respect to the Scott topology.) �

Exercises

Exercise VII-1.13. For each α ∈ A, let Lα be a complete lattice with an order
consistent o-regular topology. Show the Scott-topology on

∏
α Lα is the product

of the Scott topologies. �

Exercise VII-1.14. Assume that X is a dcpo which is a sup semilattice and has
an order consistent topology. Show that X is locally strongly sober implies that
X is a (T0) topological semilattice, and that the latter in turn implies coherence.
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Conclude that the three conditions are equivalent if X is locally compact and
sober.

Hint. Let F be an ultrafilter on X × X converging to (x, y) in the product
topology. Let G be the ultrasfilter generated by the image of F under the sup
mapping. One verifies easily that if π1: X × X → X is the projection into the
first coordinate, then ↑(π1(F)) ∈ G for each F ∈ F . Since the topology on X
is order consistent and since the first projection of F converges to x , it follows
that G converges to x . Similarly G converges to y. By local strong sobriety G
converges to something greater than or equal to x ∨ y. Thus, the sup mapping
is continuous.

Since the intersection of the two upper sets is just their image under the sup
mapping, sup continuity implies coherence. Use Corollary VI-6.16 for the last
assertion. �

Problem. Characterize those complete lattices for which the Scott topology is
strongly sober. (This is true for lattices that are compact topological semilattices
by VI-6.25 and for quasicontinuous lattices by VI-6.24.) �

Problem. Let L be a meet continuous complete lattice. If L can be given some
topology making it a compact pospace, is the Scott topology locally compact?

�

Old notes

The techniques and results of this section constitute previously unpublished
work of Gierz and Lawson. Traditionally topological algebraists have restricted
their attention to the Hausdorff setting, but with the advent of non-Hausdorff
topologies one is motivated to consider other assumptions. Certainly much
remains to be done in this area.

VII-2 Topological Lattices

There are many examples of topological lattices (always assumed Hausdorff
unless this is clearly not the case from context). The unit interval I = [0, 1],
as everyone knows, is a topological lattice with respect to its usual order and
topology. (In fact, more generally any chain under the order topology is a
topological lattice.) Moreover, any cartesian product of the interval

∏
α Iα

of any number of copies of I is a distributive topological lattice with re-
spect to the product topology and the coordinatewise order. We shall return
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to a characterization of certain sublattices of such products at the end of this
section.

Examples of a different kind can be extracted from “hyperspaces” of closed
subsets of suitable semilattices. Recall the discussion of the Vietoris topology
in VI-3.8 and VI-3.10. Let S be a compact topological semilattice, hence,
a compact pospace. In the notation adopted in the remark preceding VI-3.11,
ϒ(S) is the lattice of all closed lower sets in S ordered by inclusion and equipped
with the relative Vietoris topology. We have already remarked that ϒ(S)op is a
continuous lattice (VI-3.11 and VI-3.22), but we can say more:

Proposition VII-2.1. Let S be a compact topological semilattice. Then ϒ(S)
is a distributive topological lattice. Furthermore, the embedding x �→ ↓x : S →
ϒ(S) is a topological and semilattice monomorphism.

Proof: Recall that ϒ(S) is a closed subset of �(S). It is standard fare in point-
set topology that continuous mappings on compact Hausdorff spaces induce
continuous mappings between their hyperspaces (see Example VI-3.8); thus,
the mapping (A, B) �→ AB = {ab: a ∈ A, b ∈ B} is continuous from �(S) ×
�(S) → �(S) and also when restricted to ϒ(S). Since the lattice operations
are just union and intersection, ϒ(S) is distributive. The mapping x �→ ↓x is
easily verified to be a semilattice monomorphism from S to ϒ(S). It is also
continuous (see Exercise VI-3.20). �

In the example just given the join operation is very quickly shown to be jointly
continuous (indeed ϒ(S) is a closed subsemilattice of the continuous lattice
of closed sets of S under reverse inclusion). But it is often enough to check
separate continuity. In this regard the next proposition demonstrates the power
of the theory developed in the preceding section.

Proposition VII-2.2. Let L be a complete lattice endowed with a Hausdorff
topology making L into a compact topological semilattice. If the join operation
is separately continuous, then L is a topological lattice.

Proof: By VI-1.14 we know that L is a compact pospace. By VII-1.3 applied
to Lop, we find L endowed with the topology of all open lower sets is a semi-
topological semilattice with respect to the join operation, and by VII-1.7(ii) this
topology is order consistent and o-regular. Corollary VII-1.12 then implies L is
a topological lattice with respect to this topology. A similar argument implies
that L is a topological lattice when endowed with the topology of all open
upper sets. Since VI-1.9 shows L has a subbasis of open increasing and open
decreasing sets, we conclude that L with its original topology is a topological
lattice. �
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Corollary VII-2.3. A compact topological lattice L has for its topology the
topology generated by the Scott open sets and their duals (the Scott open subsets
of Lop).

Remark. The topology just mentioned will sometimes be referred to as the
bi-Scott topology. See Exercise VII-2.12 for a general condition implying the
Hausdorff property.

Proof of corollary: The proof follows immediately from the proof of VII-2.2
if one notes that by VII-1.12 the increasing open sets are the Scott open sets
and the decreasing open sets the dual Scott open sets. �

Corollary VII-2.4. Let L be a distributive continuous lattice. The following
statements are equivalent:

(1) L is join continuous;
(2) L is a topological lattice with respect to the Lawson topology.

Proof: (2) implies (1): Use O-4.4.
(1) implies (2): We need only show the join operation is separately continuous.

But this follows from the Fundamental Theorem VI-3.4 since the mapping x →
x ∨ y for a fixed y ∈ L preserves arbitrary nonempty sups and meets. �

Definition VII-2.5. A complete lattice L is a bicontinuous lattice if L is a
continuous lattice with respect to both the meet and join operations (that is,
both L and Lop are continuous). If further the two Lawson topologies on L and
Lop agree, the lattice is called a linked bicontinuous lattice. �

Definition VII-2.6. Let L be a complete lattice. The interval topology on L
is the join of the lower topology and its order dual, the upper topology. Hence,
the set of principal filters and principal ideals form a subbasis for the closed
sets for the interval topology. �

Lemma VII-2.7. Let L be a complete lattice. The Lawson and the dual Lawson
topologies agree (that is, the lattice is linked) iff they are both the interval
topology. This is the case if the interval topology is Hausdorff.

Proof: Assume the lattice is linked. By III-3.18(ii) the closed upper sets in the
Lawson topology are closed sets in the lower topology and hence are closed in
the interval topology. Dually the closed lower sets in the dual Lawson topology
(equal to the Lawson topology) are closed sets in the upper topology; this means
the Scott topology is equal to the upper topology. Since the two generate the
Lawson topology we conclude the Lawson topology is contained in the interval
topology, and the reverse inclusion always holds.
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Since the Lawson topology on a complete lattice is compact (III-1.9), we
conclude that it must agree with the interval topology, if the latter is Hausdorff.

We now formulate a version of the Fundamental Theorem VI-3.4 appropriate
to topological lattices.

Proposition VII-2.8. (i) Let L be a linked bicontinuous lattice. Then with
respect to the Lawson topology L is a compact topological lattice which at
each point has a basis of neighborhoods which are sublattices.

(ii) Conversely, given a compact topological lattice L which has small semi-
lattices for both operations, then L is a linked bicontinuous lattice, and the
topology on L is the Lawson topology.

Proof: (i) Applying the Fundamental Theorem VI-3.4 to L endowed with the
meet and join operations we conclude that L is a topological lattice. Let x be
a member of an open set U = ↑U . Since L is continuous there exists an open
filter F such that x ∈ F ⊆ U . Dually if x ∈ V, V is open, and ↓V = V , there
exists an open ideal M such that x ∈ M ⊆ V . Since the intersection of open
filters (resp., open ideals) is again an open filter (resp., open ideal) and since the
intersection of an open filter and an open ideal is an open sublattice, it follows
from VI-1.9 and VI-1.14 that L has a basis of open sublattices.

(ii) Conversely suppose L is a compact topological lattice which has small
semilattices for both operations. Then by the Fundamental Theorem VI-3.4 L
is a continuous lattice with respect to both the meet and join operations and the
topology of L has to be the same as the Lawson topology and the dual Lawson
topology. Thus, L is linked bicontinuous. �

The next proposition gives another important characterization of linked bicon-
tinuous lattices.

Proposition VII-2.9. Let L be a complete lattice. The following statements
are equivalent:

(1) L is a linked bicontinuous lattice;
(2) L is a meet continuous and join continuous lattice and the interval

topology is Hausdorff;
(3) L admits the structure of a compact topological lattice (with respect to the

interval topology) with a basis of sublattices.

Proof: (1) ⇒ (2): If L is a linked bicontinuous lattice, then the Lawson and
dual Lawson topologies agree with the interval topology by Lemma VII-2.7.
That L is meet and join continuous follows from I-1.8.

(2) ⇒ (1): Suppose L is both meet and join continuous and that the inter-
val topology is Hausdorff. By Lemma VII-2.7 L is linked, and the Lawson
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topologies agree with the Hausdorff interval topology. By III-2.11, L is a con-
tinuous lattice and dually is also cocontinuous. Therefore, L is bicontinuous
and linked.

(1) ⇒ (3): By VII-2.8 L with the Lawson topology is a compact topological
lattice with a basis of open sublattices with respect to the Lawson topology. But
since also (1) implies (2) the coarser interval topology is Hausdorff, and hence
must agree with the Lawson. Dually it agrees with the dual Lawson topology.

(3) ⇒ (1): Follows from Proposition VII-2.8. �

Completely distributive lattices have already made their appearances in our
study (see I-2.8, I-2.9, I-3.16, I-3.39 and II-1.13). The next proposition relates
them to the considerations of this section.

Proposition VII-2.10. Let L be a distributive complete lattice. The following
statements are equivalent:

(1) L is completely distributive;
(2) L is linked bicontinuous;
(3) the set of lattice homomorphisms into I preserving arbitrary meets and

joins separates points;
(4) L admits a topology making it a compact topological lattice for which the

set of continuous lattice homomorphisms into I separates points;
(5) L is bicontinuous;
(6) L is order isomorphic to the lattice of Scott open sets of some domain, or

equivalently L has spectrum a domain with the Scott topology;
(7) L is a continuous lattice in which every element is a sup of co-primes;
(8) L is meet continuous, join continuous, and has Hausdorff interval

topology;
(9) L admits the structure of a compact topological lattice with a basis of

sublattices.

Remark. The conditions of this theorem therefore completely characterize
those lattices representable as sublattices of direct powers of the unit interval
closed under arbitrary inf and sup.

Proof of proposition: The equivalence of (1), (5), and (7) follows from I-3.16,
and the further equivalence with (3) follows from the note following its proof.
(See also Exercise IV-3.30.) The equivalence of (2), (8), and (9) follows from
Proposition VII-2.9.

(3) implies (4): Embed L in a product of intervals with lattice homomor-
phisms preserving arbitrary joins and meets. Then the image is closed under
arbitrary joins and meets. Thus the image is closed under arbitrary infs and
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directed sups, and hence is closed in the product topology by III-1.12. Thus,
with respect to the relative topology, it is a compact topological lattice. The
projections into the coordinates show there are enough continuous lattice ho-
momorphisms to separate points.

(4) implies (2): The hypothesis implies that L can be embedded in a product
of intervals by a topological lattice isomorphism. Since a closed sublattice of a
product of intervals is linked bicontinuous, (2) follows.

(2) implies (5): Immediate.
(1) iff (6): That (1) implies (6) follows from II-1.14 and the converse fol-

lows from the spectral theory of continuous lattices, since the spectrum of a
completely distributive lattice is a domain endowed with its Scott topology (see
Sections V-1 and V-4). �

Without assuming (1) implies (3), one can argue directly that (2) implies (4)
and hence (3) by an Urysohn-type argument (employing Lemma I-3.20). These
Urysohn-type arguments appear in [Davies, 1968] and [Lawson, d1967].

We have just seen that a distributive lattice for which L and Lop are both
continuous lattices is linked bicontinuous. This conclusion can fail if the lattices
are not assumed to be distributive. Indeed, let C be a countably infinite set with
the trivial partial ordering (just the equality relation). Let L = {0, 1}∪C be the
resulting lattice obtained by adjoining a zero and a unit. Then L and Lop are
(isomorphic) algebraic lattices. However, in the Lawson topology on L , 0 is the
one point compactification of C , while 1 is the one point compactification of C
in Lop. (That is to say, {0} ∪ C is closed but not open in the Lawson topology
of L; whereas {1} ∪ C is open but not closed.) Thus, the two topologies are
different.

Exercises

Exercise VII-2.11. Consider the following already established statements.

(i) Hom(L , I), the set of continuous lattice homomorphisms, separates points
if L is a completely distributive complete lattice (Proposition VII-2.9).

(ii) Hom(S, I), the set of continuous semilattice homomorphisms, separates
points if S is a continuous lattice with the Lawson topology (Proposition
VI-3.7).

(iii) Hom(X, I), the set of continuous order preserving functions, separates
points if X is a compact pospace (Exercise VI-1.16).

Show that (i) implies (ii) implies (iii).
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Hint. (i) implies (ii): If S is as hypothesized, then ϒ(S), the set of closed
lower sets, is dual to the Scott topology, and hence completely distributive
(II-1.14). Furthermore S can be embedded in ϒ(S) by a topological semilattice
isomorphism by sending s to ↓s. Compose the members of Hom(ϒ(S), I) with
the embedding.

(ii) implies (iii):ϒ(X ), the set of closed lower sets, is a continuous lattice (see
Example VI-3.10). Embed X in ϒ(X ) by sending x to ↓x . Compose members
of Hom(ϒ(X ), I ) with the embedding. �

Exercise VII-2.12. Let L be the lattice of regular open sets of the unit interval
ordered by inclusion (an open set is regular if it is equal to the interior of its
closure). Prove the following.

(i) For any collection A of regular open sets, the interior of
⋂A is regular

and open. Hence L is a subset of the open set lattice of the unit interval
which is closed under arbitrary infs, and therefore a complete lattice in its
own order (note, however, that it is not a sublattice of the full open set
lattice).

(ii) The lattice L is a Boolean lattice, where complement is given by taking
the interior of the set complement.

(iii) L is meet and join continuous.
(iv) Any dual Scott open set of which the empty set is a member contains a

monotone increasing sequence with supremum equal to 1 = [0, 1].
(v) Any order consistent topology on L is not o-regular, and the bi-Scott

topology is not Hausdorff.

Hint. Items (i) and (ii) are straightforward. By Lemma O-3.16 and
Exercise O-3.19 a Boolean lattices is meet continuous. Since complementa-
tion in L is an order anti-isomorphism, L is also join continuous. For item (iv),
we refer the reader to [Floyd, 1955]. Again by complementarity every Scott
open set containing 1 must contain a monotone decreasing sequence with in-
fimum 0 = Ø. This shows that L cannot be o-regular, nor can one separate 0
and 1 in the bi-Scott topology. �

Similar pathologies are proved for the lattice of closed congruences on [0, 1]
in [Clinkenbeard, 1981].

Exercise VII-2.13. Show that Corollary VII-2.4 cannot be sharpened to con-
clude that Lop is a continuous lattice.

Hint. Let S be the compact unital topological semilattice constructed in
Section VI-4 which is not a continuous lattice by Theorem VI-4.5. Then ϒ(S),
the set of all (topologically) closed lower sets, is a compact distributive
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topological lattice, that is dually a continuous lattice with respect to the op-
eration of union, and that the embedding s �→ ↓s from S to ϒ(S) is a topo-
logical and semilattice monomorphism. Hence, since S fails to have a basis of
subsemilattices, the same must be true of ϒ(S) with respect to the intersection
operation. We have the peculiar phenomenon that a compact distributive topo-
logical lattice can be a continuous lattice with respect to one operation, but may
fail to be one with respect to the other. �

Exercise VII-2.14. Let L and Lop be dcpos. Show that the Lawson topologies
are linked iff they are both equal to the bi-Scott topology. Conclude that the
Lawson topologies on a complete lattice are linked iff the bi-Scott topology is
equal to the interval topology.

Hint. Using III-1.6, proceed as in the proof of Lemma VII-2.7. The second
assertion follows from the first and VII-2.7. �

In the next exercise we examine equivalent conditions for the interval topology
to be Hausdorff on a complete lattice. Conditions (4), (5), and (6) have equivalent
dual conditions which we do not bother to list.

Exercise VII-2.15. Let L be a complete lattice. Show that the following are
equivalent:

(1) the interval topology is Hausdorff;
(2) for every ultrafilter F , liminfF = limsupF ;
(3) L and Lop are quasicontinuous and the Lawson topologies are linked;
(4) L is quasicontinuous and the interval topology is equal to the bi-Scott

topology.
(5) L is quasicontinuous and the Scott topology is contained in the dual

Lawson topology.
(6) L is quasicontinuous and the Scott topology is equal to the upper topology.

Hint. For the equivalence of (1) and (2), see Exercise III-5.23. That (1) implies
(3) follows from Lemma VII-2.7 and Theorem III-3.11. If L is quasicontinuous
and the Lawson topologies are linked, then they are equal to the interval topology
by VII-2.7 again, and then all are Hausdorff by III-3.7(ii). Thus (1), (2), and
(3) are equivalent.

If (4), then since the Lawson topology is trapped between the bi-Scott and
interval topologies, it must agree with them. Again by III-3.7(ii) the inter-
val topology must be Hausdorff. That (3) implies (4) follows by the previous
exercise.



Exercises 507

Assume (5). Then the bi-Scott topology is contained in and hence equal to the
dual Lawson topology (since the reverse containment always holds). Thus the
bi-Scott topology is compact (III-1.9). Since the Lawson topology is Hausdorff
(III-3.7(ii)), we conclude that the bi-Scott and Lawson also agree, and thus the
Lawson topologies are linked. It follows from VII-2.7 that they are equal to the
interval topology, and thus the interval topology is Hausdorff. Conversely if (3)
is assumed, then the Scott topology is contained in the Lawson topology, which
is the dual Lawson topology.

Condition (6) easily implies (5). That (3) implies (6) follows from III-1.6
applied to the Lawson topology and III-3.18(ii) applied to the dual Lawson
topology. �

There is an interesting connection between the interval topology and the topo-
logical notion of a supercompact space. A compact Hausdorff space is said to
be supercompact if it admits a subbasis of open sets for which every covering
of the space by members of the subbasis admits a subcovering of cardinality 2.

Exercise VII-2.16. Let L be a complete lattice endowed with a Hausdorff inter-
val topology. Show that L is supercompact with respect to the interval topology.

Hint. Choose for the subbasis of L all complements of principal ideals and prin-
cipal filters, the standard subbase for the interval topology. Take some cover of
L by subbasic open sets and let x be the supremum of all xi such that L\↑xi

is in the given cover. Then the complement of ↑x is equal to the union of all
L\↑xi . It must be the case that x ∈ L\↓y for some member of the cover, and
thus xi �≤ y for some i . Then L\↓y and L\↑xi form a subcover. �

Old notes

Topological lattices have a rather long-standing history. The idea of a topologi-
cal lattice is implicit in the work of G. Birkhoff on the order topology in the late
1930s and a short time later in the work of O. Frink on the interval topology in
a lattice. The theory of topological lattices was first explicitly studied by L.W.
Anderson in his 1954 thesis directed by A.D. Wallace. The early work on topo-
logical lattices actually preceded the investigation of topological semilattices
and was instrumental in shaping the direction of the latter research, although
the study of semilattices has surpassed that of topological lattices in recent
years.

The equivalence of (1) and (3) in Proposition VII-2.10 is an old result of
Raney’s [Raney, 1953]. The construction of ϒ(S) was early recognized by
D.R. Brown and others as an important one in the investigation of topological
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semilattices. Proposition VII-2.2 is a result of Lawson’s. The original proof
employed the rather difficult theorem that a separately continuous compact
Hausdorff topological semilattice is jointly continuous (a result we obtain in
Section VII-4). The present proof is new and employs the machinery built up in
Section VII-1 (rather than the intricate topological machinery involved in the
other route). For further related details concerning intrinsic lattice topologies,
topological lattices, and completely distributive lattices, see [Strauss, 1968],
[Lawson, 1973], [Gierz and Lawson, 1981].

New notes

Gierz and Stralka have rather extensively investigated sublattices of Euclidean
space, in particular what they call homogeneous sublattices [Gierz and Stralka,
1995]. A particular class of linked bicontinuous lattices that are lattice analogs
of FS-domains has been employed by Huth, Jung, and Keimel as objects for
their model of linear logic [Huth et al., 2000]. A rich class of linked bicontinuous
algebraic lattices has recently been discovered – see [Adaricheva et al., 2001].
These lattices are not supposed to be complete, but they can be completed and
are linked bicontinuous. These lattices are not distributive.

VII-3 Hypercontinuity and Quasicontinuity

We have seen in Section VII-2 circumstances in which the interval topology
on a complete lattice is Hausdorff and hence agrees with the Lawson topology
and dual Lawson topology, that is the topologies are linked. We here explore
the interesting class of continuous lattices which have this property. In the
distributive case we will find that they stand in duality with quasicontinuous
domains through spectral theory.

The next three items develop basic properties of hypercontinuous lattices,
analogs of continuous lattices.

Let L be a dcpo. We define a relation --< on L by x --< y iff whenever the
intersection of a nonempty collection of upper sets is contained in ↑y, then the
intersection of finitely many is contained in ↑x .

Lemma VII-3.1. Let L be a dcpo.

(i) The following statements are equivalent:
(1) x --< y;
(2) if the intersection of a nonempty collection of sets open in the upper

topology ν(L) (see O-5.4) is contained in ↑y, then the intersection of
finitely many of them is contained in ↑x;
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(3) if T ⊆ L, T �= Ø, and
⋂{L\↓t : t ∈ T } ⊆ ↑y, then there exists a

finite subset F ⊆ T such that
⋂{L\↓t : t ∈ F} ⊆ ↑x;

(4) y ∈ intν↑x, where the interior is taken in the upper topology.
(ii) If x --< y, then x � y.

(iii) The relation --< is an auxiliary relation such that u --< y and v --< y together
imply u ∨ v --< y, whenever u ∨ v exists in L.

Proof: (i) It is straightforward that (1) implies (2) implies (3) implies (4).
(4) implies (1): There exists a basic open set U = ⋂n

i=1(L\↓xi ) in the up-
per topology such that y ∈ U ⊆ ↑x . Then for any collection of upper sets
with intersection contained in ↑y, pick for each i one missing xi . This finite
subcollection will intersect inside of ↑x .

(ii) For a directed set D with y ≤ sup D, consider the family of principal
filters generated by members of D. Their intersection is contained in ↑y, and
hence some ↑d ⊆ ↑x . The verification that --< is an auxiliary relation satisfying
(iii) is straightforward. �

Definition VII-3.2. Let L be a complete lattice. The lattice L is called a
hypercontinuous lattice if the auxiliary relation --< is approximating, that is, if
for all y ∈ L , we have y = sup{x : x --< y}. (Note that for every element y in a
complete lattice L , the set {x : x --< y} is directed by VII-3.1(iii).) �

Proposition VII-3.3. Let L be a complete lattice. The following statements
are equivalent:

(1) L is a hypercontinuous lattice;
(2) L is a continuous lattice in which x � y implies x --< y;
(3) for all y ∈ L,

y = sup{inf U : y ∈ U and U is open in the upper topology}.

Proof: (1) iff (2): If L is a hypercontinuous lattices, then the relation --< is
approximating. By I-1.15, � is contained in every approximating auxiliary
relation, that is z � y implies z --< y. From Lemma VII-3.1(ii) the relation �
is approximating since --< is. Thus L is continuous.

Conversely if (2) holds, then --< is approximating since � is.
(1) iff (3): This equivalence follows readily from the equivalence of (1) and

(4) in VII-3.1(i). �

The next proposition gives various equivalent formulations for the notion of a
hypercontinuous lattice in the context of continuous lattices.
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Theorem VII-3.4. Let L be a continuous lattice. The following statements
are equivalent:

(1) L is hypercontinuous;
(2) for all x, y ∈ L, x --< y iff x � y;
(3) the Scott topology is the upper topology (σ (L) = ν(L));
(4) the Lawson topology is the interval topology (λ(L) = ω(L) ∨ ν(L));
(5) the Lawson topologies on L and Lop are linked;
(6) Lop is a quasicontinuous lattice and the Lawson topologies are linked;
(7) the interval topology is Hausdorff;
(8) for every ultrafilter F on L, sup{inf F : F ∈ F} = inf{sup F : F ∈ F}.

�

Proof: (1) implies (2): Lemma VII-3.1(ii) and Proposition VII-3.3(2).
(2) implies (3): Since the upper topology is always coarser than the Scott

topology, we need to show that a Scott open set U is open in the upper topology.
Let y ∈ U . Since y is the directed sup of x --< y (by continuity of L and (2)),
there exists x ∈ U such that x --< y. By (4) of Lemma VII-3.1(i), y ∈ intν↑x ,
where the interior is taken in the upper topology, and this interior is contained
an ↑x , a subset of U .

(3) implies (4): This is immediate since the Lawson topology is the join of
the Scott topology and the lower topology, and the interval is the join of the
upper and lower.

(4) implies (5): Recall from Theorem III-1.10 that the Lawson topology is
Hausdorff, and hence the interval topology is Hausdorff. Now apply Lemma
VII-2.7.

(5) implies (6): That Lop is quasicontinuous follows from the Hausdorffness
of the dual Lawson topology by III-3.11.

(6) implies (7): This follows immediately from Lemma VII-2.7 and Theorem
III-1.10

(7) implies (4): This is immediate from Lemma VII-2.7.
(6) implies (8): This follows immediately from Theorem III-3.17(ii) and its

order dual.
(8) implies (1): Suppose that x � y and that there exists a family A of upper

sets such that
⋂A is contained in ↑y, but no finite intersection of members of

A is contained in ↑x . Let F be the filter generated by the filter base (A1 ∩ · · ·
∩ An)\↑x over all finite collections A1, . . . , An ∈ A. Extend F to an
ultrafilter U .

Consider u = sup U for some U ∈ U . For any A ∈ A, A ∩ U �= Ø, so
u ∈ ↑A = A. Since A was arbitrary, we conclude that u ∈ ⋂A ⊆ ↑y. Thus
y ≤ inf{sup U : U ∈ U}. Thus y ≤ sup{inf U : U ∈ U}, and hence x ≤ inf U for
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small enough U ∈ U since the family of anfima is directed. But this contradicts
the fact that U ∩ ↑x = Ø for small enough U .

We conclude that x � y implies that x --< y, and hence that L is
hypercontinuous. �

As we have seen, even a bicontinuous lattice need not necessarily be linked,
but this is the case for distributive lattices. We see that this generalizes to the
current setting.

Proposition VII-3.5. Let L be a distributive continuous lattice. Then L is a
hypercontinuous lattice iff Lop is a quasicontinuous lattice.

Proof: One implication is immediate from part (6) of the preceding theorem.
Suppose that Lop is a quasicontinuous lattice. Suppose that there exists an

ultrafilterF such that its liminf x is strictly smaller than its limsup y. Then there
exists a finite set H = {h1, . . . , hn} such that H � x in Lop and ↓H ∩↑y = Ø,
since Lop is quasicontinuous. Since L is primally generated (I-3.15), there exist
primes p1, . . . , pn such that hi ≤ pi and y �≤ pi for each i . Let K =⋃n

i=1 ↓pi .
The L\K = ⋂n

i=1(L\↓pi ), an open filter containing y. If K ∈ F , then one of
the sets ↓pi in the finite union must be in F ; but then the limsup x is less than or
equal to pi , a contradiction. We conclude that the open filter L\K ∈ F . Since
x = sup{inf F : F ∈ F} and H � x in Lop, we conclude that inf(L\K ) ≤ x ,
and hence inf G ∈ ↓H for some finite subset G ⊆ L\K . But this contradicts
the fact L\K is a filter. Hence by condition (8) of the preceding theorem, L is
hypercontinuous. �

We turn now to the spectral theory of hypercontinuous lattices.

Lemma VII-3.6. Let L and M be continuous lattices, and let f : L → M be
a surjective order preserving map that preserves directed sups and filtered infs.
If L is hypercontinuous, then so is M.

Proof: Since the image of the liminf is less than or equal to the liminf of the
image and the image of the limsup is greater than or equal to the limsup of
the image for any order preserving map, it follows from the hypothesis for
any ultrafilter in L that condition (8) of VII-3.4 is preserved by f . Since any
ultrafilter in M is the image of one in L , the lemma follows. �

Proposition VII-3.7. Let P be a quasicontinuous domain, and let U(P) be
the completely distributive lattice of all upper sets ordered by inclusion. Then
the function intσ : U(P) → σ (P) that sends an upper set to its Scott interior
perserves arbitrary infs and directed sups. Hence σ (P) is a hypercontinuous
lattice.
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Proof: The inclusion mapping from σ (P) to U(P) is easily seen to be a lower
adjoint to the map A �→ intσ (A). Thus the latter preserves arbitrary infs (I-3.5).
Let A be a directed family of upper sets in U(P) and let B = ⋂A. We need
to show that intσ (B) = ⋃{intσ (A): A ∈ A}. Since taking interior is order
preserving, intσ (B) ⊇ ⋃{intσ (A): A ∈ A}. Suppose that x ∈ intσ (B). By
III-3.6(i), there exists a finite set F ⊆ intσ (B) such that F � x . Since F ⊆ B
and A is directed, there exists A ∈ A such that F ⊆ A. Then we have (again
by III-3.6) that x ∈ intσ (↑F) ⊆ intσ (↑A) = intσ (A). Since x was arbitrary in
intσ (B), we conclude that intσ (B) ⊆⋃{intσ (A): A ∈ A}.

Now U(P) is completely distributive, being a complete sublattice of the
powerset lattice, hence has Hausdorff interval topology by VII-2.10, and thus is
hypercontinuous by VII-3.4. Hence σ (P) is hypercontinuous by the preceding
lemma. �

Proposition VII-3.8. Let L be a distributive hypercontinuous lattice. Then its
spectrum is a quasicontinuous domain equipped with the Scott topology. Hence
L is isomorphic to the lattice of Scott open sets of a quasicontinuous domain.

Proof: We show that Spec L (equipped with the reverse order) is a quasicon-
tinuous domain and that its hull–kernel topology is the Scott topology. Since
the filtered inf of primes is again a prime (the order dual of I-3.39(i)), we have
that Spec L is a dcpo (always with respect to the reverse order).

Let p ∈ Spec L , and let F(p) = {F ⊆ Spec L: F is finite, ↓p ⊆ int (↓F)},
where ↓F is taken in L and the interior is taken in the dual Scott topology. We
claim for each F ∈ F(p), F � p in (Spec L ,≥). Indeed suppose that D is a
filtered set in Spec L with q = inf D ≤ p. Since filtered sets converge to their
infima in the dual Scott topology, we have d ∈ int(↓F) for some d ∈ D, and
thus F � p.

Next we show that the family F(p) is a descending family in Spec L . Let
F1, F2 ∈ F(p). Then U := int(F1)∩ int(F2) is a dual Scott open set containing
p. By Theorem VII-3.4(5), we have that U is open in the Lawson topology
of L , and hence A = L\U is a compact upper set in the Lawson topology
of L . Since A ∩ ↓p = Ø, it follows from the Lemma on Primes (V-1.5) that
y = inf A �≤ p. Then V = L\↑y is a dual Scott open lower set containing
↓p and V ⊆ U . Since L equipped with the dual order is a quasicontinuous
domain by VII-3.4(6), there exists a finite set G ⊆ V such that G � p in Lop,
and thus p ∈ int (↓G) (Proposition III-3.6(i)). Since L is primally generated
(see I-3.10 and I-3.12), for each x ∈ G, there exists qx ∈ Spec L such that
x ≤ qx , but y �≤ qx . Then F :={qx : x ∈ G} is a finite set contained in V and
thus ↓F ⊆ V ⊆ U . Also p ∈ int↓G ⊆ int↓(F). The argument just given
applies to any L\↑y for y �≤ p, and thus the intersection of all ↓F, F ∈ F(p),
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is contained in ↓p. Thus Spec L is a quasicontinuous domain (actually we have
verified the alternative definition given in Exercise III-3.19).

Finally we establish that the spectral topology on Spec L agrees with the
Scott topology on (Spec L ,≥). Since Spec L is closed with respect to filtered
infs, it follows easily that any ↑x ∩ Spec L is Scott closed in (Spec L ,≥).

Conversely let A be Scott closed in Spec L , i.e., A is closed with respect to
filtered infs and ↑A ∩ Spec L = A. Let p ∈ Spec L\A. Let G = {F ∩ A: F ∈
F(p)}. If each of these sets is nonempty, it follows from Rudin’s Lemma III-3.3
applied to (Spec L ,≥) that there is a filtered set D ⊆ ⋂{F ∩ A: F ∈ F(p)}
such that D∩ F �= Ø for all F ∈ F(p). Then inf D ∈ A since A is Scott closed.
On the other hand,

inf D ∈
⋂
{↓d: d ∈ D} ⊆

⋂
{↓F : F ∈ F(p)} ⊆ ↓p.

This contradiction implies A ∩ F = Ø for some F ∈ F(p), and thus ↑A ∩
int (↓F) = Ø. The Lemma on Primes (Corollary V-1.4(i)) implies that for
z := inf A, z �≤ p. Since p was arbitrary in Spec L\A, we conclude A = ↑z∩A.
Thus A is closed in the spectral topology.

Finally from the duality between sober spaces and primally generated lattices
(Section V-4), we know that L is isomorphic to the lattice of open sets of its
spectrum. �

Theorem VII-3.9. Let P be adcpo. The following statements are equivalent:

(1) P is a quasicontinuous domain;
(2) the mapping A �→ int (A) from U(P) to σ (P) preserves arbitrary infs and

directed sups;
(3) the lattice σ (P) of Scott open sets is hypercontinuous.

Proof: That (1) implies (2) implies (3) follows from VII-3.7. Thus we need
only show that (3) implies (1).

Now P embeds in σ (P) (with the order reversed) by x �→ P\↓x = P\{x}−.
Since for every upper set A, A =⋂{P\↓x : x �∈ A}, we have that the image of
P in σ (P) is order generating. Furthermore, each P\↓x is prime in σ (P). Thus
the image of P in σ (P) is an order generating subset of primes. We identify P
with its image; note that the order of P is the restricted reverse order of σ (P).

Let p ∈ Spec σ (P). The proof of the preceding proposition carries over to
the embedded image of P in Spec σ (P) (since the image is order generating)
to show that {F ⊆ P: F is finite, ↓p ⊆ int (↓F)} is a directed family in
Spec σ (L) with intersection contained in ↓p. We apply Rudin’s Lemma III-3.3
to the family of all ↑p ∩ F to obtain a directed set in P with infimum p.
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Since P is a dcpo endowed with the Scott topology and the embedding into the
spectrum is a homeomorphic embedding (see Section V-4), it follows that p is
in P . Thus P maps onto Spec σ (P), and hence is a quasicontinuous domain.

�

We close with an alternative characterization of a quasicontinuous domain in
terms of the liminf and Lawson topologies (cf. III-3.11).

Proposition VII-3.10. Let L be a dcpo for which every ultrafilter has a liminf,
which will be the case if L is a complete lattice or semilattice. If L is Hausdorff in
the Lawson or liminf topology, then L is a quasicontinuous domain. Conversely
if L is a quasicontinuous domain, then the Lawson and liminf topologies agree
and L is a compact pospace for this topology.

Proof: Suppose first that the liminf topology is Hausdorff. By Lemma III-3.15
each ultrafilter converges to its liminf in the liminf topodogy, and thus the liminf
topology is compact. Since this topology is Hausdorff, the liminf of an ultrafiler
must be its unique limit point.

By Proposition III-3.14 the closed lower sets in the liminf topology are pre-
cisely the Scott closed sets. Since by III-3.17 the Lawson topology is contained
in the liminf topology we conclude that principal filters are also closed in the
liminf topology. Then by Proposition VI-6.26 we conclude that L is a compact
pospace in the liminf topology.

To show that L is a quasicontinuous domain, we show for any x ∈ L and Scott
open set U containing x , there exists a finite set F ⊆ U such that x ∈ intσ (↑F)
(see III-3.19(ii)). On the contrary suppose that for all finite F ⊆ U , x is not
in the Scott interior of ↑F . Then the collection of all V \↑F such that V is
a Scott open set containing x and F is a finite set contained in U is a filter
base of nonempty sets. Extend it to an ultrafilter F . Then F converges to its
liminf y. It follows from Proposition VI-1.8 that y ∈ ↑x (since any Scott open
set containing x is in the ultrafilter). By definition of the liminf, there exists a
directed set D such that ↑d ∈ F for each d ∈ D and y = sup D. Then d ∈ U
for some d , and thus U\↑d ∈ F , a contradiction.

If the Lawson topology is Hausdorff, then the finer liminf topology as
Hausdorff, so the former case reduces to the latter.

Conversely suppose that L is a quasicontinuous domain. Then by
Proposition VI-1.15 L is a pospace with respect to its Lawson topology, in
particular Hausdorff. By Lemma III- 3.15 L is compact with respect to the lim-
inf topology (since ultrafilers converge), and thus the weaker Hausdorff Lawson
topology agrees with the stronger compact liminf topology. �
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Exercises

Exercise VII-3.11. Define the notion of a hypercontinuous domain and deter-
mine how many of the equivalences in Theorem VII-3.4 remain valid in this
setting. �

Exercise VII-3.12. Show that a completely distributive lattice is hyper-
continuous.

Hint. A completely distributive lattice has a Hausdorff interval topology
(see VII-2.10). �

Exercise VII-3.13. A complete lattice L is said to be lean if every upper set
closed in the dual Scott topology is compact in the Scott topology. Show that a
lean continuous lattice L for which the dual Lawson topology is Hausdorff is
hypercontinuous.

Hint. It follows from Proposition VI-6.24 that the dual Scott topology is con-
tained in the lower topology, and hence that the two are equal, since the reverse
containment always holds. Hence the Lawson topology and the bi-Scott topol-
ogy agree. Since the dual Lawson topology is Hausdorff and coarser than the
compact bi-Scott topology, they also are equal, and thus the Lawson topologies
are linked. Now apply Theorem VII-3.4. �

New notes

For more details on hypercontinuous lattices, see [Gierz and Lawson, 1981],
where the concept was first introduced, and [Gierz et al., 1983b]. The notion
of leanness (Exercise VII-3.13) was introduced in [Huth et al., 2000].

VII-4 Lattices with Continuous Scott Topology

In Chapter II we have provided much information on dcpos and on complete
lattices L for which the lattice σ (L) of Scott open subsets is continuous (II-1.13,
II-4.13, II-4.15, II-4.16, II-4.18). In this section, we give a characterization of
these complete lattices. Remarkably, the fact that σ (L) is a continuous lattice
relates to the existence of a compact semilattice topology on L itself.

The key idea is the following: recall in V-4.7 the use made of the natural map
ξX = (x �→ X\{x}−): X → O(X ) for an arbitrary topological space X . For
each x ∈ X , we have ξ (x) ∈ SpecO(X ), the set of all prime elements of O(X )
other than X itself, and this map is continuous if SpecO(X ) is endowed with
the hull–kernel topology.
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We now assume that X = (L , σ (L)) where L is an arbitrary complete lattice
with its Scott topology σ (L). In this topology {x}− = ↓x , so we have the
natural map

ξL = (x �→ L\↓x): L → Spec σ (L)

which is continuous on L under the Scott topology to Spec σ (L) with the hull–
kernel topology. We also may consider Spec σ (L) ⊆ σ (L) as a set ordered by
inclusion. One then has for every subset A ⊆ L and for every directed D ⊆ L

ξL (inf A) =
⋃
{ξL (a): a ∈ A} and ξL (sup D) = int

(⋂
{ξL (d): d ∈ D}

)
.

This means that the image of L under ξL is closed in σ (L) with respect to
arbitrary sups and filtered infs. Moreover, Lop is order isomorphic to its image.

Note that the image of ξL is not closed in σ (L) under finite infs. Indeed, if x
and y are incomparable elements of L , then ξL (x) ∩ ξL (y) = L\(↓x ∪ ↓y) �=
L\↓z = ξL (z) for all z ∈ L .

Under the assumption that σ (L) is continuous we can say rather more.

Proposition VII-4.1. Let L be a complete lattice such that σ (L) is continuous.

(i) ξL : L → Spec σ (L) is a homeomorphism, if L is endowed with the Scott
topology and Spec σ (L) with the hull–kernel topology.

(ii) ξL : L → Spec σ (L) is an order anti-isomorphism, and Spec σ (L) is
closed in σ (L) with respect to arbitrary sups and filtered infs.

(iii) With respect to the Scott topology, L is a locally compact sober space.
(iv) Spec σ (L) is closed in σ (L) with respect to the Lawson topology.

Proof: (i) By II-4.16, L is sober with respect to the Scott topology. Thus ξL is
a homeomorphism by the remarks preceding V-4.7.

(ii) Use (i) and the remarks preceding this proposition.
(iii) As σ (L) is supposed to be a continuous lattice, (L , σ (L)) is locally

compact by V-5.6.
(iv) From I-1.4(ii) we see that two Scott open sets U and V satisfy the relation

U � V iff there is a compact set Q such that U ⊆ Q ⊆ V . As all Scott open sets
are upper sets, Q is compact iff↑Q is compact, and we may restrict our attention
to compact upper sets. Let U, V,W be Scott open sets such that U � V and
U � W . There are compact upper sets Q1 and Q2 such that U ⊆ Q1 ⊆ V and
U ⊆ Q2 ⊆ W . Then U ⊆ Q1 ∩ Q2 ⊆ V ∩ W , and Q1 ∩ Q2 is also compact;
indeed, Q1 ∩ Q2 = Q1 ∨ Q2 as Q1 and Q2 are upper sets, and Q1 ∨ Q2 is the
image of Q1 × Q2 under the map (x, y) �→ x ∨ y: (L , σ (L)) × (L , σ (L)) →
(L , σ (L)), which is continuous by II-4.15. Thus,U � V∩W , that is, the relation
� on σ (L) is multiplicative. By V-3.7, PRIME σ (L) is then closed with respect
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to the Lawson topology, and as L (as an element of σ (L)) is isolated, we have
the desired result that Spec σ (L) = PRIME σ (L)\{L} is also closed. �

We can now characterize those lattices L for which σ (L) is continuous.

Theorem VII-4.2. For a semilattice L with 1, the following properties are
equivalent.

(1) L is a complete lattice for which the lattice σ (L) of Scott open subsets is
continuous.

(2) L admits a topology τ finer than the Scott topology such that (L , τ ) is a
compact pospace.

(3) L admits a topology τ such that (L , τ ) is a compact pospace and such
that a lower subset of L is τ closed iff it is Scott closed.

Proof: (1) implies (2): By VII-4.1(iv) Spec σ (L) is Lawson closed in the
continuous lattice σ (L). Thus, the restriction of the Lawson topology to
Spec σ (L) yields a compact pospace topology τ ′ on Spec σ (L). This topo-
logy is finer than the hull–kernel topology on Spec σ (L) (cf. remarks following
Definition V-5.11). Let τ be the inverse image of the topology τ ′ under the map
ξL : L → Spec σ (L). As ξL is an order anti-isomorphism by VII-4.1(ii), τ is a
compact pospace topology on L . From VII-4.1(i) we conclude that τ is finer
than the Scott topology.

(2) implies (3): Indeed a closed lower set in a compact pospace is closed for
directed sups, that is, Scott closed (see VI-1.3).

(3) implies (1): Under the assumption (3), the latticeσ (L) of Scott open sets in
L is the opposite of the lattice of all τ closed lower sets of the compact pospace
(L , τ ) and, hence, continuous by VI-3.10. Moreover, a compact pospace has
filtered infs; if in addition it has finite infs and a greatest element, then it is a
complete lattice. �

We insert at this point an interesting addendum to VII-4.2 concerning the exis-
tence of the compact topology.

Proposition VII-4.3. If a complete lattice L has a topology satisfying (2) or
(3) in VII-4.2, then this topology is unique.

Proof: This follows readily from Theorem VI-6.18. �

The following theorem characterizes those lattices that admit a compact semi-
lattice topology.
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Theorem VII-4.4. For a semilattice L with 1, the following properties are
equivalent.

(1) L admits a compact ∧-semilattice topology; that is, a compact Hausdorff
topology such that the operation (x, y) �→ x ∧ y: L × L → L is
continuous.

(2) L is a meet continuous lattice which admits a compact pospace topology
finer than the Scott topology.

(3) L is a meet continuous lattice such that σ (L) is continuous.
(4) L is a complete lattice such that σ (L) is continuous and join continuous.

Proof: Let L be a compact semilattice with 1. Then L is meet continuous by
VI-1.13(vii); the topology of L is a pospace topology by VI-1.14 and finer
than the Scott topology by VI-2.10. Thus, (1) implies (2). The implication (2)
implies (3) follows from VII-4.2, and (3) implies (4) from II-4.17. Let us show
finally that (4) implies (1). By VII-2.4 every continuous and join continuous
lattice endowed with the Lawson topology is a compact lattice; in particular,
the join operation is continuous on the lattice σ (L) with respect to the Lawson
topology on σ (L) if (4) is fulfilled. By VII-4.1 L is order anti-isomorphic to a
subset of σ (L) which is closed with respect to joins and closed with respect to
the Lawson topology. Thus, L can be endowed with a compact ∧-semilattice
topology by VI-2.9. �

In the following table we collect the information contained in this volume about
the transfer of properties from a complete lattice L to its lattice σ (L) of Scott
open sets and vice versa:

L σ (L) Reference

Meet continuous Join continuous II-4.15
Admits a (unique) compact

pospace topology τ finer than
the Scott topology

Continuous VII-4.2

Admits a (unique) compact
∧-semilattice topology

Continuous and join continuous VII-4.4

Continuous Completely distributive II-1.14
Algebraic Algebraic and completely

distributive
II-1.15

Our next goal is to show that the category of compact semilattices is (dually)
equivalent to a certain subcategory of distributive continuous lattices (which
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itself is a subcategory of the category of compact semilattices). More precisely,
we shall consider the following categories.

CS is the category of compact semilattices with 1 and all continuous semilattice
homomorphisms.

H is the category whose objects are the lattices L with the following properties:

(1) L is distributive, continuous and join continuous;
(2) Spec L is closed in L with respect to arbitrary sups.

The morphisms are the maps ϕ: L → M which

(1) preserve arbitrary sups, finite infs and the relation �,
(2) have an adjoint τ : M → L preserving finite sups.

Clearly, CS is a subcategory of the category CPOSP of compact pospaces
considered in Section VI-7. The following lemma shows that H is a subcategory
of the category SCFRM1 also introduced in Section VI-7.

Lemma VII-4.5. If L is in H, then Spec L is closed in L with respect to the
Lawson topology on L and also is a compact ∨-semilattice with respect to this
topology.

Proof: By definition, Spec L is closed in L with respect to arbitrary sups; as the
inf of a filtered set of prime elements is also prime, Spec L is also closed with
respect to filtered infs. As L is distributive continuous and join continuous,
L is a compact lattice with respect to the Lawson topology by VII-2.4 and
in particular, a compact ∨-semilattice. From VI-2.9 we conclude that Spec L
is closed with respect to the Lawson topology on L , and hence a compact
∨-subsemilattice of L . �

In VI-7.5 we have seen that the category of compact pospaces is dually equiv-
alent to the category of continuous distributive lattices L for which Spec L is
Lawson closed with appropriate morphisms; the duality is given by the functors
Spec λ and O↑. We now show that the restrictions of these functors establish a
dual equivalence between the categories H and CS.

Proposition VII-4.6. The categories CS and H are dually equivalent.

Proof: With every object L ∈ H we associate Specλ L , that is, the set Spec L
with the topology induced from the Lawson topology on L and the order
opposite to the order induced from the order on L . By VII-4.5 SpecλL is a
compact ∧-semilattice. For every H -morphism ϕ: L → M , Specλϕ is the
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upper adjoint of ϕ restricted to SpecλM ; as in Section VII-3, Specλϕ is con-
tinuous and order preserving. As, by hypothesis, τ also preserves finite sups,
Specλϕ preserves finite infs and is a CS-morphism. Thus Specλ is indeed a
functor from H to CS.

Conversely, we associate with every compact semilattice S its Scott topology
σ (S) which is an H -object by VII-4.1 and VII-4.4. For every continuous semi-
lattice homomorphism f : S → T we define σ ( f ): σ (T ) → σ (S) as usual by
U �→ f −1(U ). As in Section VII-3,σ ( f ) preserves arbitrary sups, finite infs and
the relation�. Let us show that the upper adjoint τ ofσ ( f ) preserves finite sups:
a straightforward calculation shows that τ is given by τ (V ) = T \↓ f (S\V ) for
all V ∈ σ (S). We want to show that τ (V ∪ W ) = τ (V ) ∪ τ (W ) for arbitrary
V,W ∈ σ (S). This is equivalent to saying that ↓ f (A ∩ B) = ↓ f (A) ∩ ↓ f (B)
for arbitrary Scott closed sets A and B. Thus equality holds, as A∩ B = A∧ B
for all lower sets and as f (A ∧ B) = f (A) ∧ f (B) by the hypotheses on f .
Thus, σ is indeed a functor from CS to H .

Now, Specλ is the functor of VI-7.5 and σ is nothing but the functor O↑,
as the Scott open upper sets are exactly the open upper sets for the original
topology on a compact semilattice (VI-2.10). Thus VI-7.5 yields the desired
duality result. �

We note that the preceding duality result means in particular that the objects of
H , that is, the distributive, continuous, and join continuous lattices L in which
Spec L is closed with respect to arbritrary sups, are exactly the lattices which
arise as Scott topologies of compact semilattices.

We close our work with an interestang application of the theory we have
built up to compact semilattices. We first recall that a compact semitopological
semilattice with identity is a meet continuous lattice (VI-1.13(vii)). We next
identify the open upper sets in S.

Proposition VII-4.7. The family of open upper sets in a compact semitopo-
logical semilattice is the family of Scott open subsets of S. Hence, the graph
of ≤ is closed in S × S.

Proof: We want to apply Theorem VII-1.9, and so we show that the family U
of open upper sets in S is an order consistent, o-regular topology and (S,U) is
a semitopological semilattice.

If x ∈ S, then x S = ↓x is closed in S by VI-1.13(i). Moreover, directed
subsets of S converge to their sups by VI-1.13(iv), and so they do also in the
topology U . Thus, U is order consistent.

To show U is o-regular, assume that x ∈ U ∈ U , and then choose an open
subset V of S with x ∈ V ⊂ V− ⊂ U . Then ↑V ⊆ ↑V− ⊆ U and ↑V is open.
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By VI-1.13(ii) and the dual of VI-1.6(i) ↑V− is closed with respect to taking
filtered infs. This shows that U is o-regular. Now (S,U) is semitopological,
since S is; therefore, we have satisfied the hypotheses of Theorem VII-1.9(iii).
We conclude that U = σ (S), the Scott topology on S.

Corollary VII-1.12 now shows that the graph of ≤ is closed in S × S. �

Theorem VII-4.8. A compact semitopological semilattice is in fact
topological.

Proof: By Proposition VII-4.7, σ (S) is the family of open upper sets in S and
S is a pospace. Hence by VII-4.2, σ (S) is a continuous lattice.

Now, each compact semitopological semilattice is a meet-continuous lattice,
and so Theorem VII-4.4 implies that S is a compact semilattice in the patch
topology S inherits as the spectrum of σ (S). By VII-4.3 the latter topology
coincides with the original one. �

Exercises

Exercise VII-4.9. Show that the morphisms ϕ: L → M in the category H are
characterized by the property that they are lower adjoints of maps τ : M → L
preserving arbitrary sups and infs, as well as primes. �

Exercise VII-4.10. Show that the category of continuous (algebraic) lattices
is dually equivalent to a subcategory of the category of completely distributive
lattices; more exactly, to the full subcategory of H whose objects are com-
pletely distributive (algebraic) lattices L for which the set Spec L is closed
under arbitrary sups.

Hint. Use VII-4.6, II-1.13 and II-1.14. �

The next exercise is an alternative proof to Theorem VII-4.8.

Exercise VII-4.11. Show that each compact semitopological semilattice is
topological.

Hint. Note that S×S in the product topology is also a compact semitopological
semilattice, and so Proposition VII-4.7 applies to both S and S × S to show
that the Scott topology on each is the family of open upper sets on each and
that each is a pospace. Since the products of open upper sets in S form a base
for the open upper sets in S × S, it follows that the Scott topology on S × S is
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the product of the Scott topology on S with itself. Since S is a meet continuous
lattice, we easily conclude that the semilattice map (x, y) �→ xy : S × S → S
is continuous with respect to the Scott topologies.

Thus, the result is proved if we show that this map is also continuous when
S and S × S are equipped with the topologies consisting of open lower sets,
since both S and S × S are monotone normal by Nachbin’s Lemma VI-1.8.
Thus, we need to show that xy ∈ U = ↓U and U open in S imply that there
are open lower sets V and W containing x and y, respectively, with V W ⊆ U .
But, V W = V ∩ W since V and W are lower sets. Finally, ↓x and ↓y are the
intersection of those compact neighborhoods which are lower sets, and ↓xy is
then the intersection of these compact sets. Since ↓xy ⊆ U and U is open, it
follows that there are indeed some compact neighborhood V of ↓x and some
compact neighborhood of W of ↓y with V ∩ W ⊆ U . This proves the results.

�

Old notes

The material of this section through VII-4.6 is due to Gierz and Hofmann
[scs 34]. Let us indicate the following consequence. There are compact dis-
tributive lattices that are not completely distributive or, equivalently, there are
compact distributive lattices which are continuous, but the opposites of which
are not continuous. Take any compact semilattice S with 1 which is not a con-
tinuous lattice (see Section VI-4 for examples). Then the lattice σ (L) of all
Scott open subsets of S is distributive, continuous and join continuous, hence
a compact lattice by VII-2.4; but S is not completely distributive by II-1.13.

Theorem VII-4.8 was first shown by [Lawson, 1976a], but the proof con-
tained therein utilizes some rather technical results from topology. An alterna-
tive proof was announced by Mislove [scs 40], but a gap in the proof of what
appears here as Corollary VII-2.4 was found by Harvey Carruth. The results of
Section VII-1 serve to patch that gap, and also provide a much simpler proof
of the theorem. The alternative proof presented as Exercise VII-4.11 was first
noticed by Gerhard Gierz.
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dings of M-distributive lattices. Houston Journal of Mathematics, 10:315–324,
1984.

[Baranga, 1996] A. Baranga. Z -continuous posets. Discrete Mathematics, 152:33–45,
1996.

[Barendregt et al., 1983] H. Barendregt, M. Coppo, and M. Dezani. A filter lambda model
and the completeness of type assignment. Journal of Symbolic Logic, 48:931–940,
1983.

[Barr, 1992] M. Barr. Algebraically compact functors. Journal of Pure and Applied
Algebra, 82:211–231, 1992.

[Beer, 1982] G. Beer. Upper semicontinuous functions and the Stone approximation
theorem. Journal of Approximation Theory, 34:1–11, 1982. [MR 83h:26005].

[Berardi, 1991] S. Berardi. Retractions on dI-domains as a model for type:type. Infor-
mation and Computation, 94:204–231, 1991.

[Berger, 1993] U. Berger. Total sets and objects in domain theory. Annals of Pure and
Applied Logic, 60:91–117, 1993.
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Conference on Categorical Algebra at La Jolla, La Jolla, Calif., June 7–12, 1965,
pages 421–562. Springer-Verlag, 1966. [MR 37:1432].

[Erker, 1998] T. Erker. Right Kan spaces and essentially complete T0-spaces. In [1997,
Birmingham].

[Erker et al., 1998] T. Erker, M.H. Escardó, and K. Keimel. The way-below relation of
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[Erné, 1985] M. Erné. Posets isomorphic to their extensions. Order, 2:199–210, 1985.
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[Escardó, 1998b] M.H. Escardó. Properly injective spaces and function spaces. Topology
and Its Applications, 89:75–120, 1998.
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dations of Computer Science, volume 74 of Lecture Notes in Computer Science,
Springer-Verlag, 1979.

[Higgs, 1971] D.A. Higgs. Lattices isomorphic to their ideal lattices. Algebra Univer-
salis, 1:71–72, 1971. [MR 45:123].

[Hochster, 1969] M. Hochster. Prime ideal structure in commutative rings. Transactions
of the American Mathematical Society, 142:43–60, 1969. [MR 40:4257].

[Hoffmann, 1975] R.-E. Hoffmann. Charakterisierung nüchterner Räume. Manuscripta
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Contributions in Honour of Corrado Böhm on the Occasion of His Seventieth
Birthday.

[Plotkin, 1999] G.D. Plotkin. Full abstraction, totality and PCF. Mathematical Structures
in Computer Science, 9:1–20, 1999.

[Plotkin and Abadi, 1993] G.D. Plotkin and M. Abadi. A logic for parametric polymor-
phism. In M. Bezem and J.F. Groote, editors, Typed Lambda Calculi and Applica-
tions. International Conference on Typed Lambda Calculi and Applications, TLCA
’93, March 16–18, 1993, Utrecht, The Netherlands, volume 664 of Lecture Notes
in Computer Science, pages 361–375. Springer-Verlag, 1993.

[Plotkin and Winskel, 1994] G.D. Plotkin and G. Winskel. Bistructures, bidomains and
linear logic. In In Proceedings of ICALP 1994, volume 820 of Lecture Notes in
Computer Science, pages 352–363. Springer-Verlag, 1994.

[Priestley, 1970] H.A. Priestley. Representation of distributive lattices by means of
ordered Stone spaces. Bulletin of the London Mathematical Society, 2:186–190,
1970. [MR 42:153].

[Priestley, 1972] H.A. Priestley. Ordered topological spaces and the representation of
distributive lattices. Proceedings of the London Mathematical Society, 24:507–530,
1972. [MR 46:109].

[Priestley, 1975] H.A. Priestley. The construction of spaces dual to pseudo-
complemented distributive lattices. The Quarterly Journal of Mathematics (Second
Series), 26:215–228, 1975. [MR 52:13548].

[Priestley, 1984a] H.A. Priestley. Catalytic distributive lattices and compact zero-
dimensional topological lattices. Algebra Universalis, 1984.

[Priestley, 1984b] H.A. Priestley. Ordered sets and duality for distributive lat-
tices. In M. Pouzet and D. Richard, editors, Orders: Description and Roles,
Annals of Discrete Mathematics, 23:39–60, 1984. North-Holland Publishing
Company.

[Priestley, 1985] H.A. Priestley. Algebraic lattices as dual spaces of distributive lattices.
In [1982, Bremen], pages 237–249.

[Puhlmann, 1993] H. Puhlmann. The snack powerdomain for database semantics. In
A.M. Borzyszkowski and S. Sokol�owski, editors, Mathematical Foundations of
Computer Science, volume 711 of Lecture Notes in Computer Science, pages 650–
659 Springer-Verlag, 1993.



552 Bibliography

[Puhlmann, 1998] H. Puhlmann. Re-grouping information in a domain theoretic data
model. Mathematical Structures in Computer Science, 8:67–92, 1998.

[Raney, 1952] G.N. Raney. Completely distributive complete lattices. Proceedings of
the American Mathematical Society, 3:677–680, 1952. [MR 14-612].

[Raney, 1953] G.N. Raney. A subdirect-union representation for completely distributive
complete lattices. Proceedings of the American Mathematical Society, 4:518–522,
1953. [MR 15-389].

[Raney, 1960] G.N. Raney. Tight Galois connections and complete distributivity. Trans-
actions of the American Mathematical Society, 97:418–426, 1960. [MR 22:10928].

[Rauch, 1982] M. Rauch. Stetige Verbände in der axiomatischen Potentialtheorie. In
[1981, Bremen], pages 260–308.

[Rennie, 1951] B.C. Rennie. Lattices. Proceedings of the London Mathematical Society,
52:386–400, 1951. [MR 13-7].

[Reus and Streicher, 1997] B. Reus and T. Streicher. General synthetic domain theory –
a logical approach (extended abstract). In E. Moggi and G. Rosolini, editors, Seventh
Conference on Category Theory in Computer Science, volume 1290 of Lecture
Notes in Computer Science, pages 293–313. Springer-Verlag, 1997.

[Reynolds, 1975] J.C. Reynolds. On the interpretation of Scott domains. Symposia Math-
ematica, 15:123–135, 1975. [MR 54:1704].

[Richter, 1997] G. Richter. An elementary approach to exponential spaces. In
Mathematik-Arbeitspapiere, volume 48, pages 391–396. Universität Bremen,
1997.

[Roberts, 1977] J.W. Roberts. A compact convex set with no extreme points. Studia
Mathematica, 60:255–266, 1977. [MR 57:10595].

[Rounds and Zhang, 1995] W. Rounds and G.-Q. Zhang. Domain theory meets default
logic. Journal of Logic and Computation, 5:1–25, 1995.

[Rudin, 1981] M.E. Rudin. Directed sets which converge. In L.F. McAuley and M.M.
Rao, editors, General Topology and Modern Analysis, University of California,
Riverside, 1980, pages 305–307. Academic Press, 1981. [MR 82f:54006].

[Rutten, 1996] J.J.M.M. Rutten. Elements of generalized ultrametric domain theory.
Theoretical Computer Science, 170:349–381, 1996.

[Rutten, 1998] J.J.M.M. Rutten. Weighted colimits and formal balls in generalized metric
spaces. Topology and Its Applications, 89:179–202, 1998.

[Rutten, 2000] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical
Computer Science, 249:3–80, 2000.

[Rutten and Turi, 1993] J.J.M.M. Rutten and D. Turi. On the foundations of final se-
mantics: non-standard sets, metric spaces, partial orders. In J.W. de Bakker, W.-P.
de Roever, and G. Rozenberg, editors, Semantics: Foundations and Applications
REX Workshop, Beekbergen, The Netherlands, June 1–4, 1992, volume 666 of
Lecture Notes in Computer Science, pages 477–530. Springer-Verlag, 1993.

[Saheb-Djahromi, 1980] N. Saheb-Djahromi. CPO’s of measures for non-determinism.
Theoretical Computer Science, 12(1):19–37, 1980.

[Sambin et al., 1996] G. Sambin, S. Valentini, and P. Virgili. Constructive domain theory
as a branch of intuitionistic pointfree topology. Theoretical Computer Science,
169:319–342, 1996.

[Schalk, 1993] A. Schalk. Domains arising as algebras for powerspace constructions.
Journal of Pure and Applied Algebra, 89:305–328, 1993.



Articles 553

[Schnare, 1965] P.S. Schnare. Two definitions of local compactness. American Mathe-
matical Monthly, 72:764–765, 1965.

[Schwarz, 1981] F. Schwarz. “Continuity” properties in lattices of topological structures.
In [1979, Bremen], pages 335–347.

[Schwarz, 1982] F. Schwarz. Exponential objects in categories of (pre) topological spaces
and their natural function spaces. La Société Royale du Canada. L’Académie des
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[scs 73] 14. September 1982, M. Erné and H. Gatzke. Meet-continuous lattices in which

meet is not continuous.
[scs 74] 12. November 1982, H. Dobbertin. Distributive semilattices.
[scs 75] 18. November 1982, H. Dobbertin. Distributive semilattices, Heyting algebras,

and V-homomorphisms.
[scs 76] 9. January 1983, R.-E. Hoffmann. The trace of the weak topology and of the

�-topology of Lop coincide on the pseudo-meet-prime elements of a continuous
lattice L .



Memos Circulated in the Seminar on Continuity in Semilattices (SCS) 567

[scs 77] 12. January 1983, K.H. Hofmann. On the pseudo-spectrum of a continuous
distributive lattice.

[scs 78] 14. February 1983, R.-E. Hoffmann. “Duality” for distributive compact multi-
plicative continuous lattices.

[scs 79] 14. July 1983, O. Wyler. The lower topology for continuous lattices is a monadic
functor.

[scs 80] 1. September 1983, O. Wyler. Compact ordered spaces and prime Wallman
compactifications: summary of results.

[scs 81] 23. November 1983, G. Gierz, J.D. Lawson, and A.R. Stralka. Intrinsic topolo-
gies on semilattices of finite breadth.

[scs 82] 1. December 1983, G. Gierz and A.R. Stralka. Compactifying distributive
lattices.

[scs 83] 5. December 1983, K. Keimel. Continuous lattices, general convexity spaces,
and a fixed-point theorem.

[scs 84] 6. December 1983, G. Gierz and A.R. Stralka. The Zariski topology on semi-
lattices and essential extensions.

[scs 85] 19. January 1984, K. Keimel. The space of compact convex subsets of a locally
convex topological vector space.

[scs 86] February 1984, K. Keimel. Korovkin theorems for multivalued functions.
[scs 87] 23. February 1984, J. Tiller. The way-below relation is not what I think.
[scs 88] 1. April 1984, K. Keimel. A proof of a theorem of BB.
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, order consistent topology on 152 II-1.30
, Scott closed subsets 279 IV-1.25
, Scott topology is a continuous lattice 197

II-4.13
, on 134 II-1.3

, when Lawson topology is productive 221
III-2.6

, with continuous Scott topology 221
III-2.6

, with nonsober Scott topology 155 II-1.36
dcpo-algebra 359 IV-8.1

, free over X 360 IV-8.2
dcpo-cone 388 IV-9.20
dcpo-semilattice 360 remarks following

IV-8.2, 364 IV-8.11
Deflationary semilattice 363 IV-8.8
Dense element, in a lattice 113 I-3.5
Densely injective space 182 II-3.10

and bounded complete domains 182
II-3.11

Density, of a domain 248 III-4.13
Diagonal, of a space 88 I-2.13
Diagram, cone over 305 IV-4.1

, in a category 305 IV-4.1
Direct limit, in a category 308 remarks

following IV-4.3
Direct system, in a category 308 remarks

following IV-4.3
Directed complete poset 9 O-2.1 see also

dcpo
Directed complete semilattice 9 O-2.1, 40

O-4.7, 40 O-4.11
Directed distributive law 83 I-2.7
Directed net 2 O-1.2
Directed set 1 O-1.1
Disjoint sum 73 I-1.31, 321 IV-5.6
Distributive algebraic lattice, compact open

sets are a basis for the spectrum 423
V-5.21(i)

, patch topology on primes is compact 420
V-5.13(ii)

Distributive arithmetic lattice, categorically
equivalent to distributive lattices 423
V-5.22

, Priestley duality 491 VI-7.10
, primes are closed 406 iiV-3.7(ii)
, spectrum is totally order disconnected

490 VI-7.9(i)
Distributive complete lattice is linked

bicontinuous if bicontinuous 503
VII-2.10

, way-below relation in 105 I-3.23
Distributive continuous lattice, see also

Continuous frame
and prime preserving maps 278 IV-1.23

, dual to locally compact sober spaces 423
V-5.20, 426 V-5.28

is a continuous frame 101 I-3.15
, is a frame 101 I-3.15
is topological 501 VII-2.4

, patch topology on primes is compact 420
V-5.13
, is the Lawson topology 419 V-5.12

, prime element in 99 I-3.12
, primes are closed 406 V-3.7(i)
, pseudoprimes equal weak primes 405

V-3.5
, spectrum is sober locally compact 417

V-5.5
, when stably continuous 420 V-5.13
, when way-below relation is multiplicative

406 V-3.7(i)
Distributive lattice 12 O-2.6

, algebraic see Distributive algerabic lattice
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, arithmetic see Distributive arithmetic
lattice

, continuous see Distributive continuous
lattice

Distributive semilattice 98 I-3.11
, prime element in 99 I-3.12

Domain 54 I-1.6
, basis for 240 III-4.1
, basis for the Scott topology 138 II-1.10
, characterization in Scott topology 142

II-1.14, 154 II-1.35
, through S-convergence 138 II-1.9

, countably based 242 III-4.4, 244 III-4.6,
250 III-4.20

, density of 248 III-4.13
environment 433 V-6.1
is a quotient of an algebraic domain 246
I-4.17
, of same weight 245 III-4.7

is embeddable in a cube 291 IV-3.2
, is meet continuous 222 III-2.11
, Lawson topology is productive 221

III-2.6
, is separable metric 244 III-4.6

, morphisms into the unit interval 291
IV-3.1

not closed under quotients 262 III-5.22
of formal balls 435 V-6.8, 437 V-6.9

, properties of weight on 247 III-4.12
, quasicontinuous 226 III-3.2
, relation between weight and density 248

III-4.14
, Scott open subsets 136 II-1.6
, Scott topology has basis of open filters

142 II-1.14
, is Baire 142 II-1.13
, is locally compact sober 142 II-1.13

, topological characterization 184 II-3.16
, way-below relation in 62 I-1.20
, weight of 242 III-4.4, 243 III-4.5

Domain equation, construction of minimal
solution 344 IV-7.1

Dual of a dcpo 283 IV-2.7
Dual topology 479 VI-6.17
Duality of categories 266 IV-1

, AL−SEM 274 IV-1.16
, ALGDOM−POID 274 IV-1.15
, algebraic lattices and completely

distributive algebraic lattices 521
VII-4.10

, CL−CLop 271 IV-1.10(iv)

, compact semilattices and distributive
continuous lattices 519 VII-4.6

, continuous lattices and completely
distributive lattices 521 VII-4.10

, DAR−CCSOB 423 V-5.22
, DCPOG−DCPOD 271 IV-1.10(i)
, distributive algebraic lattices and sober

spaces having a basis of compact open
sets 423 V-5.21(ii)

, distributive arithmetic lattices and totally
order disconnected pospaces 490 VI-7.9

, distributive continuous lattices and locally
compact sober spaces 423 V-5.20, 426
V-5.28

, distributive continuous resp., lattices with
CL-maps preserving primes and
distributive continuous resp., lattices with
CLop-maps preserving finite infs 278
IV-1.24

, distributive lattices and totally order
disconnected pospaces 491 VI-7.10

, DLat−CCSOB 423 V-5.22
, DOMG−DOMD 271 IV-1.10(iii)
, domains and completely distributive

lattices 398 V-1.7
, frames with enough points and sober

spaces 426 V-5.27
, INF−SUP 267 IV-1.3
, INF↑−SUP 0 271 IV-1.10(ii)
, Lawson duality 286 IV-2.14, 287 IV-2.16
, POSETG−POSET D 267 IV-1.3
, stably continuous frames and stably locally

compact spaces 489 VI-7.4
Duality open–compact 288 IV-2.18

E
Environment 433 V-6.1
Equivalence of categories, ArLop−LAT 274

IV-1.18
, stably compact spaces and compact

pospaces 482 VI-6.23
Evaluation map is Scott-continuous 163

II-2.9
, on [L → A] 340 IV-6.14

Exponentiable space 196 II-4.11
, characterization 196 II-4.12

Extremally disconnected space 17 O-2.9

F
F-algebra 333 IV-6.3, 346 IV-7.2

endomorphism 346 IV-7.2
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morphism 333 IV-6.3, 346 IV-7.2
, quotient of 338 remarks preceding IV-6.9

F-algebra isomorphisms, construction by a
pro-continuous functor F 338 IV-6.9

F-coalgebra 346 IV-7.2
endomorphism 346 IV-7.2
morphism 346 IV-7.2

Family of finite character, in a power set 136
II-1.5(4)

Filter 3 O-1.3
, of sets 103 remarks precedingI-3.18
, open see Open filter
, prime see Prime filter
, principal 3 O-1.3
, Scott open 135 remarks following II-1.3

Filtered net 2 O-1.2
Filtered set 1 O-1.1
Final F-coalgebra 348 IV-7.5, 349 IV-7.6
Finite element 128 remarks preceding

I-4.29
Finitely additive 375 remarks following

IV-9.1
Finitely separating function 166 II-2.15
Fixed point theorem, for monotone self-maps

20 O-2.20
, for Scott-continuous self-maps 160 II-2.4
, Pataraia’s 20 O-2.21
, Tarski’s 10 O-2.3

Formal ball 435 V-6.8
Formal union 360 remarks following IV-8.2
Frame 12 O-2.6, 101 I-3.15

, as a function space 200 II-4.19
, closure properties 34 O-3.25
, dual to sober spaces 426 V-5.27

homomorphism 34 O-3.24
is meet continuous 38 O-4.3

, subalgebra 34 O-3.24
Free continuous lattice 123 I-4.19, 455

remarks following VI-3.9, 460 VI-3.23
see also Continuous lattice

, over a compact Hausdorff space 454
VI-3.8(ii)

, over a compact pospace 455 VI-3.10
Free deflationary semilattice, over a domain

363 IV-8.10
Free inflationary semilattice, over a dcpo

362 IV-8.6
Free semilattice, over a domain 367 IV-8.12
FS-domain 166 II-2.15

is Lawson-compact 258 III-5.14
, preservation properties 167 II-2.17

Function, idempotent 25 remarks preceding
O-3.6

, lower semicontinuous see Lower
semicontinuous function

, monotone 5 O-1.9
, open 269 remarks preceding VI-1.5
, order preserving 5 O-1.9
, partial 15 O-2.7(10)
, preserving arbitrary infs 5 O-1.9
, preserving arbitrary sups 5 O-1.9
, preserving directed sups 5 O-1.9
, preserving filtered infs 5 O-1.9
, preserving finite infs 5 O-1.9
, preserving finite sups 5 O-1.9
, Scott-continuous see Scott-continuous

function
, semicontinuous 17 O-2.10
, upper semicontinuous 17 O-2.10

Function space 162 II-2.6
, is a continuous lattice 192 II-4.6, 193

II-4.7
, is a domain 190 II-4.4
, Isbell and Scott topology agree 192

II-4.6, 260 III-5.17, 261 III-5.18
Function space functor 162 II-2.7, 321 IV-5.6

Funct 324 IV-5.10
preserves injective (surjective) maps

325 IV-5.10
preserves projective limits 325 IV-5.10

G
Galois adjunction see Galois connection
Galois connection 22 O-3, 22 O-3.1
Greatest lower bound 1 O-1.1

H
Hausdorff space is locally compact iff O(X ) is

continuous 417 V-5.7
Heyting algebra 30 O-3.16 see also Frame

, complete 12 O-2.6
, Continuous see Distributive continuous

lattice
Hilbert space 15 O-2.7(8)
Hoare powerdomain 361 IV-8.3, 362 IV-8.7

of an algebraic domain 372 IV-8.22
Hofmann-Mislove Theorem 146 II-1.20, 288

IV-2.18, 417 V-5.4
, holds only for sober spaces 147 II-1.21

Homomorphism of L-domains 92 I-2.23
, of continuous lattices and bounded

complete domains 86 I-2.10
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, of frames 34 O-3.24
, of semilattices 5 remarks following O-1.9
onto chains, separation of points in
complete lattices 299 IV-3.19

Hull–kernel topology, on the spectrum 409
V-4.3

Hypercontinuous lattice 509 VII-3.2
, characterizations 510 VII-3.4
is continuous 509 VII-3.3

, Scott topology is the upper topology 510
VII-3.4

I
Ideal 3 O-1.3

, prime see Prime ideal
, principal 3 O-1.3

Ideal functor Id 325 IV-5.12
, is locally order preserving 325 IV-5.12
, is not locally continuous 325 IV-5.12

Idempotent function 25 remarks preceding
O-3.6

Infimum 1 O-1.1
Inflationary semilattice 361 IV-8.3
Initial F-algebra 348 IV-7.5
Initial F-algebra – final F-coalgebra

coincidence 349 IV-7.6, 350 IV-7.9
Injective space 176 II-3, 177 II-3.1

and algebraic lattices 186 II-3.18
, characterization of 178 II-3.4
, closure properties of 177 II-3.2
, equivalent conditions for 185 II-3.17
is a continuous lattice 180 II-3.7

Interpolation property 56 I-1.9, 60 I-1.17
see also Auxiliary relation

Interval domain 70 I-1.26.1
Interval topology 43 O-5.4, 217 III-1.17, 501

VII-2.6
is the Lawson topology 510 VII-3.4

, when Hausdorff 239 III-3.31, 506
VII-2.15, 510 VII-3.4

Irreducible closed set 43 O-5.5, 101 remarks
following I-3.14, 141 remarks preceding
II-1.12

Irreducible element 95 I-3, 97 I-3.5
, in a continuous semilattice 97 I-3.7
, in a function space 202 II-4.23, 203

II-4.24
, in a modular lattice 108 I-3.29
, order generate a continuous semilattice

98 I-3.10

Irreducible subset of a space 43 O-5.5, 46
O-5.15

Isbell topology 188 II-4.1
Isolated element 49 I-1.1
Isomorphism 5 O-1.9

J
Join 1 O-1.1
Join-compact space 485 VI-6.31
Join continuous lattice 36 O-4.1
Join continuous semilattice 36 O-4.1
Join-irreducible element 97 remarks

following I-3.5
Joint continuity, of the sup operation 139

remarks following II-1.10

K
Kernel operator 26 O-3.8

has continuous image 270 IV-1.7
, lattice of, on a complete lattice 301

IV-3.25
, on a continuous lattice 302 IV-3.26
, on an algebraic lattice 302 IV-3.26

, lattice of continuous is algebraic 302
IV-3.26

, lattice of continuous is continuous 302
IV-3.26

, on a continuous lattice 88 I-2.15, 89
I-2.16

preserves infs 29 O-3.12
preserving directed sups 270 IV-1.7

Koch’s Arc Theorem 470 VI-5.9

L
L-domain 54 I-1.6

, characterizations of 75 I-1.38
, closure properties of 92 I-2.24

of subcontinua 71 I-1.26.3
with five elements 74 I-1.36

Lattice 5 O-1.8
, algebraic see Algebraic lattice
, arithmetic see Arithmetic lattice
, bicontinuous see Bicontinuous lattice
, Boolean see Boolean algebra
, compact see Compact lattice
, complemented 12 O-2.6
, complete 9 O-2.1 see also Complete

lattice
, completely distributive see Completely

distributive lattice
, continuous see Continuous lattice
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, distributive 12 O-2.6 see also
Distributive lattice

, distributive algerabic see Distributive
algebraic lattice

, distributive arithmetic see Distributive
arithmetic lattice

, distributive continuous see Distributive
continuous lattice

, hypercontinuous see Hypercontinuous
lattice

, join continuous see Join continuous
lattice

, M-distributive 93 I-2.25
, meet continuous see Meet continuous

lattice
, modular see Modular lattice

of closed congruences, of a topological
algebra 15 O-2.7(6)

of closed ideals, of a C∗-algebra 63
remarks I-1.21.1 preceding. 1

, of a topological ring 15 O-2.7(7)
of closed subsets of a space 13 O-2.7(3)
of closed subspaces, of a Hilbert space
15 O-2.7(8)

of compact normal subgroups is algebraic
for almost connected groups 128 I-4.29

of congruence relations, on an algebra 14
O-2.7(4)

of congruences on a continuous lattice
303 IV-3.29(i)

of filters, of a semilattice 16 O-2.8(2)
of ideals, of a lattice 14 O-2.7(4)(iii), 16
O-2.8(3)

of lower sets, of a poset 16 O-2.8(1)
of monotone functions, on the unit interval
15 O-2.7(9)

of normal subgroups, of a group 14
O-2.7(4)(i)

of open sets 13 O-2.7(3)
is a continuous lattice 73 I-1.34
is algebraic 127 I-4.28(ii)
is arithmetic 127 I-4.28(iii)

, way-below relation in 53 I-1.4
of partial functions, from X to Y 73
I-1.32
, on the natural numbers 15 O-2.7(10)

of regular open sets 33 O-3.22(iii)
of Scott open sets, co-primes in 140
II-1.11

is a continuous lattice 142 II-1.14
is completely distributive 142 II-1.14

, on a domain 140 II-1.11
, primes in 140 II-1.11

of subalgebras, of an algebra 14 O-2.7(5)
of subsets 375 remarks preceding IV-9.1
of two-sided ideals, of a ring 14
O-2.7(4)(ii)

is a continuous lattice 55 I-1.7
, way-below relation in 52 I-1.3(5)

of upper sets, of a poset 16 O-2.8(1)
, Scott topology on see Scott topology
, topological 443 VI-1.11

Lawson dual 283 remarks following IV-2.7
Lawson duality 398 V-1.9

for continuous semilattices 287 IV-2.16
for domains 286 IV-2.14

Lawson topology 209 III-1, 211 III-1.5
and patch topology 420 V-5.15

, closed lower sets 212 III-1.6
, continuous function for 213 III-1.8
has small compact semilattices 224
III-2.15

has small open closed semilattices 224
III-2.16

has small open semilattices 223 III-2.13,
224 III-2.15

is compact and T1 for complete
(semi)lattices 214 III-1.9

is compact Hausdorff for complete
continuous (semi)lattices 215 III-1.11

is compact zero-dimensional 224 III-2.16
is completely metrizable for countably
based domains 421 V-5.17

is Hausdorff, for domains 215 III-1.10
, for quasicontinuous domains 229

III-3.7
is separable metric 244 III-4.6
is the interval topology 510 VII-3.4
on an algebraic domain 216 III-1.14

, open lower sets 238 III-3.28(iv)
, open upper sets 212 III-1.6
, when compact 254 III-5.5, 255 III-5.8,

258 III-5.13
, when Hausdorff 230 III-3.11
, when productive 221 III-2.6

Lean lattice 515 VII-3.13
Least F-algebra Morphism Lemma 348

IV-7.4
Least fixed point operator, is Scott-continuous

172 II-2.29
Least Fixed Point Theorem, for monotone

self-maps 20 O-2.20
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, for Scott-continuous self-maps 160 II-2.4
Least upper bound 1 O-1.1
Lens in a domain 368 IV-8.15
Lifting functor 321 IV-5.6
Liminf, of a net 133 II-1.1
Liminf convergence 232 III-3.13

is topological 234 III-3.17
Liminf topology 226 III-3, 232 III-3.13

agrees with the Lawson topology 234
III-3.17

, closed lower sets 232 III-3.14
, closed sets 232 III-3.15
, open upper sets 232 III-3.14
, when compact 233 III-3.16

Limit, of a diagram 306 IV-4.1
Limit–Colimit coincidence 309 IV-4.5, 313

IV-4.6
Limit cone, over a diagram 305 IV-4.1
Limit maps 306 IV-4.1
Limit preserving functor 318 IV-5.1
Linked bicontinuous lattice 501 VII-2.5

is a compact lattice in Lawson topology
502 VII-2.8

is completely distributive, if distributive
503 VII-2.10

is embeddable in a cube 503 VII-2.10
, Lawson topology has small lattices 502

VII-2.8
Local minimum in a pospace 469 VI-5.8
Locally compact sober space, duality with

distributive continuous lattices 423
V-5.20, 426 V-5.28

Locally compact space 44 O-5.9, 53 I-1.4(ii)
, co-compact topology 427 V-5.29
, lower topology on the lattice of closed sets

216 III-1.15(iii)
, open sets form a continuous lattice 55

I-1.7
, Scott topology on the lattice of closed sets

216 III-1.15(ii)
Locally continuous functor 320 IV-5.3

, contravariant case 323 IV-5.7
preserves adjoints and projective limits
320 IV-5.5

Locally order preserving functor 320 IV-5.3
, contravariant case 323 IV-5.7
preserves adjoints 320 IV-5.4

Locally strongly sober space 477 VI-6.12
is coherent 478 VI-6.14

Lower adjoint 22 O-3.1
is a lattice homomorphism 277 IV-1.22

is injective 26 O-3.7
is Scott-continuous 159 II-2.3(1)
is surjective 26 O-3.7
preserves sups 24 O-3.3
preserving compact elements 271
IV-1.11, 272 IV-1.12

preserving Scott open sets 268 IV-1.4
preserving the way-below relation 268
IV-1.4, 271 IV-1.11

Lower bound 1 O-1.1
Lower limit, of a net 133 II-1.1
Lower semicontinuous function 17 O-2.10,

132 remarks preceding II-1.1
, form a continuous lattice 64 I-1.22

is Scott-continuous 159 II-2.3(3)
Lower set 3 O-1.3
Lower topology 43 O-5.4, 210 III-1.1

, continuous function for 210 III-1.2
is productive 211 III-1.3

, open sets 238 III-3.28(i)

M
Meet 1 O-1.1
Meet continuous (semi)lattice 56 I-1.8

, auxiliary relations on 59 I-1.14
, Lawson topology has small semilattices

223 III-2.13, 224 III-2.15
, is compact Hausdorff 224 III-2.15
, is Hausdorff 222 III-2.9
, is semitopological 221 III-2.8
, is zero dimensional 224 III-2.16

, open filters are a basis for the Scott
topology 223 III-2.13

, order compatible topologies 154 II-1.34
, Scott topology is a dual frame 206 II-4.28
, way-below relation in 53 I-1.5(i)(3), 60

I-1.15
, when a continuous (semi)lattice 60

I-1.16, 224 III-2.15
, when an algebraic (semi)lattice 224

III-2.16
, with algebraic Scott topology 224

III-2.16
, with continuous Scott topology 221

III-2.8, 222 III-2.9, 224 III-2.15
Meet continuous dcpo 219 III-2.1

, closed lower sets 221 III-2.5
, open upper sets 221 III-2.5
, when a domain 222 III-2.11

Meet-continuous lattice 36 O-4.1
, closure properties of 40 O-4.8
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is a topological lattice in the Scott
topology 498 VII-1.11

, Scott topology on 198 II-4.17, 199 II-4.18
, when a compact pospace 518 VII-4.4
, when a continuous lattice 74 I-1.35
, when locally strongly sober 497 VII-1.10
, when Scott topology is productive 498

VII-1.11
, with continuous Scott topology 199

II-4.18, 518 VII-4.4
, with join continuous Scott topology 198

II-4.17, 199 II-4.18
Meet continuous semilattice 36 O-4.1
Meet-irreducible element see Irreducible

element
Minimal upper bound 253 III-5.3
Modular lattice 108 I-3.29
Modular law, for valuations 375 IV-9.1
Monogeneric subset 186 II-3.18
Monotone convergence space 183 II-3.12

, is a domain 184 II-3.16
Monotone function 5 O-1.9
Monotone net 2 O-1.2
Monotone normal pospace is embeddable in a

cube 444 VI-1.16
mub-complete 253 III-5.3

N
Net 2 O-1.2

, antitone 2 O-1.2
, directed 2 O-1.2
, filtered 2 O-1.2
, lower limit of 133 II-1.1
, monotone 2 O-1.2

O
O-regular topology, for a poset 494 VII-1.6
ω-complete posets 328 IV-5.16
ω continuous function 328 IV-5.16

is Scott-continuous on countably based
domains 250 III-4.20

Open filter, form a continuous semilattice (on
a continuous semilattice) 145 II-1.17

, form a domain (on a domain) 145 II-1.17
, on a dcpo 95 I-3.1
, on a domain 96 I-3.3

Open function 269 Remarks preceding
VI-1.6

Open upper set, in a dcpo 95 I-3.1
, maximal element in the complement 96

I-3.4

Operator, closure see Closure operator
, kernel see Kernel operator

Opposite relation 4 O-1.7
Order, auxiliary see Auxiliary relation
Order-compatible topology 154 II-1.34
Order connected 471 VI-5.13
Order consistent topology 152 II-1.30, 152

II-1.31, 186 II-3.21
on a poset 485 VI-6.30

Order convergence, of a net 217 remarks
preceding III-1.17

Order preserving function 5 O-1.9
Order regular topology, for a poset 494

VII-1.6
Order topology 217 remarks preceding

III-1.22, 217 III-1.18
Order-generating set, in a poset 97 I-3.8, 97

I-3.9

P
Partial function 15 O-2.7(10)
Partial order, closed 440 VI-1.1

, lower semiclosed 440 VI-1.1
, semiclosed 253 III-5.1, 440 VI-1.1
, upper semiclosed 440 VI-1.1
, with closed graph 440 VI-1.1

Partially ordered set 4 O-1.6 see also 4
Poset

Patch topology 44 O-5.10, 419 V-5.11
is functorial 489 VI-7.6
on a compact coherent space 475 VI-6.5

, on a domain 482 VI-6.24
, on the primes is compact 420 V-5.13

, is the Lawson topology 419 V-5.12
Plotkin powerdomain 364 IV-8.11, 367

IV-8.12, 368 IV-8.14
and the domain of lenses 370 IV-8.18
of an algebraic domain 373 IV-8.24

Point valuation 380 IV-9.9
Pointed dcpo 9 O-2.1
Polish space 45 O-5.13

, domain environment 434 V-6.6
Poset 4 O-1.6

, algebraic see Algebraic poset
, as a category 23 remarks following O-3.1
, bounded complete 9 O-2.1
, continuous see Continuous poset
, directed complete 9 O-2.1
has an order consistent topology 494
VII-1.7

, o-regular topology for 494 VII-1.6
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, ω-point in 494 VII-1.6
, order convex hull of a subset 441

VI-1.5
, order convex subset of 441 VI-1.5
, order regular topology for 494 VII-1.6
, radially convex metric for 445 VI-1.17
, when each point is sup of ω-points 494

VII-1.7(iii)
, with compatible topology 440 VI-1.2

Pospace 440 VI-1.1
, arc chain in 469 VI-5.5
, compact see Compact pospace
is Hausdorff 441 VI-1.4
is locally order convex if compact 442
VI-1.9

is monotone normal if compact 442
VI-1.8

is semiclosed 440 remarks following
VI-1.1

, local minimum in 469 VI-5.8
, locally order convex 441 VI-1.5
, monotone normal 442 VI-1.7
, open upper sets, form, an o-regular

topology 494 VII-1.7
, form, an order consistent topology
494 VII-1.7

, radially convex metric for 445 VI-1.17
Powerdomains 359 IV-8

, extended probabilistic 380 IV-9.7
, universal property 390 IV-9.24

, probabilistic 380 IV-9.7
Powerset of a set 13 O-2.7(1)

, is an algebraic lattice 120 I-4.15(1)
Preorder 1 O-1.1
Preordered set 1 O-1.1
Priestley duality, for distributive arithmetic

lattices 491 VI-7.10
Prime element 98 I-3.11, 99 I-3.12

in a completely distributive lattice 398
V-1.7

, in O(X ) 100 I-3.14
, in Q(X ) 100 I-3.14
is compactly prime 397 V-1.5

, order generate a continuous semilattice
99 I-3.13

, The Lemma 396 V-1.1
Prime filter 103 I-3.18

, in a power set 104 I-3.19
Prime ideal 103 I-3.18

, in a distributive lattice 104 I-3.20
in a poset or semilattice 103 I-3.17

in C(X ), closed, for X compact Hausdorff
399 V-1.12

Principal filter 3 O-1.3
Principal filter embedding, on a poset 16

O-2.8(4)
Principal ideal 3 O-1.3
Principal ideal embedding, on a poset 16

O-2.8(4)
Pro-complete category 331 IV-6.1
Pro-continuous functor 318 IV-5.1

, between pro-complete categories 331
IV-6.1

Probabilistic powerdomain, is a domain 386
IV-9.17

Product, in a category 306 remarks following
IV-4.1

, of domains 79 I-2.1
Projection 11 remarks preceding O-2.5, 26

O-3.8 see also Projection operator
, on a continuous poset preserving directed

sups 80 I-2.2
preserving (directed) sups 28 O-3.11
preserving (filtered) infs 28 O-3.11

Projection maps, on a product 306 Remarks
following IV-4.1

Projection operator 11 remarks preceding
O-2.5

, on a continuous lattice 89 I-2.17
Projective limit, in a category 307 IV-4.2

of algebraic domains 316 IV-4.11
of bounded complete domains 317
IV-4.13

of dcpos 308 IV-4.3
of domains 316 IV-4.10
of finite domains 316 IV-4.12
of finite lattices 317 IV-4.14
of L-domains 317 IV-4.13
of Lawson compact domains 317
IV-4.15

Projective limit cone, in a category 307
IV-4.2

Projective limit preserving functor 318
IV-5.1, 318 IV-5.2

Projective sequences 328 IV-5.16
Projective system, in a category 307 IV-4.2
Proper map 422 remarks preceding V-5.20,

481 VI-6.20
Property M 257 III-5.11
Pseudo-Hausdorff space 485 VI-6.31
Pseudoprime element 106 I-3.24, 403

remarks following V-3.1
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in a continuous semilattice 106 remarks
following I-3.24

in a distributive continuous lattice 106
I-3.25

Q
Quasialgebraic domain 237 III-3.23
Quasicontinuous domain 226 III-3.2

closed under quotients 262 III-5.21
, closure properties of 239 III-3.30

is a pospace 444 VI-1.15
is Lawson-compact 255 III-5.8

, Scott topology is hypercontinuous 513
VII-3.9

Quasicontinuous lattice 230 III-3.8
, Scott cluster points of ultrafilters 238

III-3.29
, sup map characterization 263 III-5.23

Quasihomeomorphism 418 V-5.8
Quotient, of a continuous lattice 88 I-2.15

R
Random unit interval 92 remarks following

I-2.22
Regular open sets, in a topological space 13

O-2.7(3)
Relation

, auxiliary see Auxiliary relation
, converse 4 O-1.7
, opposite 4 O-1.7
, with closed graph 440 VI-1.1

Relatively compact element 50 remarks
following I-1.2

Retract 179 remarks preceding II-3.5
Retraction 179 remarks preceding II-3.5
Ring of sets 375 remarks following IV-9.1
Rounded ideal 242 III-4.3(ii), 249 III-4.15
Rounded ideal completion 250 III-4.17
Rudin’s Lemma 227 III-3.3

S
S-convergence 133 II-1.1

and topological convergence 138 II-1.9
Saturated compact sets 66 I-1.24

in the spectrum 416 V-5.3
and Scott-open filters 417 V-5.4

Saturated subset, of a space 43 O-5.3, 416
V-5.2

Scott topology 132 II-1, 134 II-1.3
, basis for (on domains) 138 II-1.10
, co-primes in 140 II-1.11

forms a continuous lattice 197 II-4.13,
198 II-4.16

functor, preserves injective (surjective)
maps 325 IV-5.11

preserves projective limits 325 IV-5.11
has a basis of open filters 223 III-2.13
has enough co-primes 142 II-1.14

, induced on subsets 151 II-1.26
is a continuous lattice 142 II-1.14, 199
II-4.18

is a function space 165 II-2.11
is an algebraic lattice 143 II-1.15
is Baire 142 II-1.13
is completely distributive 142 II-1.14
is finest order consistent topology 152
II-1.31(i)

is locally compact and sober for
quasicontinuous domains 229 III-3.7

(on a domain) 142 II-1.13
is productive 197 II-4.13
is sober 141 II-1.12, 198 II-4.16

, on a meet continuous lattice 198 II-4.17,
199 II-4.18

, on a meet continuous semilattice 206
II-4.28

, primes in 140 II-1.11
, when a topological lattice 199 II-4.18
, when hypercontinuous 513 VII-3.9
, when join continuous 198 II-4.17, 199

II-4.18
, when strongly sober 497 VII-1.10

Scott closed set 134 II-1.3
, characterization of 135 II-1.4

Scott-continuous function 157 II-2, 158
II-2.2

, between algebraic domains 157 II-2.1
, between dcpos 157 II-2.1
, between domains 157 II-2.1
, characterization of 157 II-2.1
, form a dcpo 161 II-2.5
is always monotone 157 II-2.1

, joint continuity on products 162 II-2.8,
171 II-2.27

Scott open set 134 II-1.3
, characterization of 135 II-1.4
, in a chain 136 II-1.5(2)
, in a domain 136 II-1.6
, in a finite lattice 136 II-1.5(1)
, in a quasicontinuous domain 228 III-3.6
, in the square 136 II-1.5(5)

Second countable space 44 O-5.8
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Semicontinuous function 17 O-2.10, 64
I-1.22

Semilattice 5 O-1.8
, algebraic see Algebraic semilattice
, compact see Compact semilattice
, complete see Complete semilattice
, complete continuous see Complete

continuous semilattice
, continuous see Continuous semilattice
, deflationary 363 IV-8.8
, directed complete 9 O-2.1 see also

Directed complete semilattice
has small semilattices 223 III-2.12 see
also Semilattice with small semilattice

, homomorphism is Lawson continuous
213 III-1.8

, inflationary 361 IV-8.3
is a pospace if topological 444 VI-1.14
is topological in the lower topology 211
III-1.4

, meet continuous see Meet continuous
semilattice

, order connected 471 VI-5.13
, prime element in 99 I-3.12
, prime filter in 103 I-3.18
, prime ideal in 103 I-3.18
, semitopological see Semitopological

semilattice
, topological 443 VI-1.11
, when a compact pospace 517 VII-4.2
, when a compact semilattice 518 VII-4.4
with small semilattices 450 VI-3.1

, characterization of 451 VI-3.3
, closure properties of 450 VI-3.2

Semitopological semilattice 33 O-3.23, 38
O-4.4, 153 II-1.31(v), 443 VI-1.11

, compact see Compact semitopological
semilattice

has the Scott topology 498 VII-1.12
is a strongly sober topological lattice 498
VII-1.12

is semiclosed 443 VI-1.13
, local minimum in 470 VI-5.10
, when topology is Scott topology 496

VII-1.9(iii)
Separable space 44 O-5.8
Separated sum 73 I-1.31, 321 IV-5.6
Set, directed 1 O-1.1

, filtered 1 O-1.1
, lower 3 O-1.3
, partially ordered see Poset

, preordered 1 O-1.1
, totally ordered see Chain
, upper 3 O-1.3

Sierpinski space 136 II-1.5(3)
is injective 178 II-3.3

Simple valuation 380 IV-9.9
Smash product 327 IV-5.15
Smyth powerdomain 363 IV-8.8, 363 IV-8.10

of an algebraic domain 373 IV-8.23
Sober space 43 O-5.6, 101 remarks following

I-3.14, 141 remarks preceding II-1.12
, closure properties 46 O-5.16
, compact saturated sets and open filters in

O(X ) 146 II-1.20
, dual to frames 426 V-5.27
, function space on 424 V-5.23(i)

is locally compact iff O(X ) is continuous
417 V-5.6

, spectrum of a complete lattice 409 V-4.4
, when a domain 425 V-5.26
, with completely distributive topology

425 V-5.26
Sobrification, of a T0-space 412 Remarks

following V-4.7, 414 V-4.9, 429 V-5.34
Spec : SUP∧ → TOPop is left adjoint to

O : TOPop → SUP∧ 412 V-4.7
Specialization order 42 O-5.2, 180 II-3.6
Spectrum 408 V-4.1

, compact subsets 416 V-5.1
is a Gδ-set and a Polish space 420 V-5.14

, is sober 409 V-4.4
of a complete lattice 408 V-4.1
of a distributive continuous lattice 417
V-5.5

of distributive algebraic lattices 423
V-5.21

, of stably continuous frames 487 VI-7.1
Splitting Lemma 386 IV-9.18
Stably compact space 476 VI-6.7, 479

VI-6.18
is a compact pospace 476 VI-6.8
is strongly sober 478 VI-6.15

Stably continuous frame, spectrum is stably
locally compact 487 VI-7.1

Stably continuous (semi)lattice 256 III-5.9
Stably locally compact space 476 VI-6.7

, stable compactification 490 VI-7.7
Stochastic order 380 IV-9.7

for simple valuations 386 IV-9.18
Stone-Čech compactification, of a set 455

remarks following VI-3.9, 460 VI-3.23
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Strict chain, in a complete lattice 293 IV-3.4
satisfies the interpolation property 294

remarks following IV-3.8
, separates points in complete lattices 298

IV-3.15
Strict embedding, of a topological space 418

V-5.8, 428 V-5.32, 428 V-5.33
Strict (endo)morphism 346 IV-7.2
Strict function 327 IV-5.15
Strict function space 327 IV-5.15
Strong interpolation property see Auxiliary

relation
Strong topology 428 V-5.31
Strongly dense 428 V-5.33
Strongly sober 498 VII-1.11

locally compact space is stably compact
478 VI-6.15

space 477 VI-6.12, 479 VI-6.18
Subalgebra, of a continuous lattice or bounded

complete domain 86 I-2.10
Subcontinua of a continuum 70 I-1.26
Subinvariant pseudometric 446 VI-2.1
Sup map, has a lower adjoint 57 I-1.10

, is a homomorphism 36 O-4.2
is jointly continuous 198 II-4.15, 204
II-4.25

, on the ideals of a complete lattice 30
O-3.15

preserves arbitrary infs 57 I-1.10
Sup semilattice 5 O-1.8

, conditional 117 I-4.5
Support of a simple valuation 380 IV-9.9
Supremum 1 O-1.1

T
T0 space, all irreducible subspaces are Baire

427 V-5.30
, all subspaces are Baire 427 V-5.30

is sober 427 V-5.30
, order generates a continuous lattice 418

V-5.10
, sobrification is locally compact 418

V-5.10
, strict embedding in a locally compact

space 418 V-5.10
, when O(X ) is a continuous lattice 418

V-5.10
, with O(X ) continuous but not locally

compact 425 V-5.25(i)
Tarski’s fixed-point theorem 10 O-2.3

Tensor product of complete lattices 279
IV-1.27, 279 IV-1.28

of continuous lattices 279 IV-1.27, 279
IV-1.28

, of distributive continuous lattices 424
V-5.24

, of topologies of locally compact spaces
424 V-5.24

Top, of a poset 5 O-1.8
Topological lattice 443 VI-1.11
Topological semilattice 221 III-2.7, 443

VI-1.11
Topological space, compact 43 O-5.7

, locally compact 44 O-5.9
, patch topology on 419 V-5.11
, saturated subset 43 O-5.3
, saturation of a subset 43 O-5.3, 45 O-5.14
, sober 43 O-5.6
, weight of 243 remarks preceding III-4.5
with O(X ) a continuous lattice 190
II-4.4, 192 II-4.6, 193 II-4.7, 194 II-4.10,
196 II-4.12

Topologically generating subset, of a
topological semilattice 400 V-2.2

Totally disconnected space 127 I-4.28(iv)
Totally order disconnected compact pospace

490 VI-7.8
Totallly ordered set see Chain

U
Ultrafilter 45 O-5.12

, cluster points, in the lower topology 235
III-3.15
, in the liminf topology 232 III-3.18

, in the power set of a set 104 remarks
following I-3.19

, in the power set of a topological space
104 I-3.21

Ultrametric, on a semilattice 458 VI-3.15
Unit, in a semilattice 5 O-1.8
Unit interval 453 VI-3.6

, approximate 433 V-6.2
Unital semilattice 5 O-1.8
Upper adjoint 22 O-3.1

is injective 26 O-3.7
is surjective 26 O-3.7
preserves infs 24 O-3.3
preserving directed sups 268 IV-1.4, 272
IV-1.12

preserving primes 268 IV-1.4, 277
IV-1.22
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Upper bound 1 O-1.1
Upper semicontinuous function 17 O-2.10
Upper set 3 O-1.3
Upper space 433 V-6.3
Upper topology 43 O-5.4, 152 II-1.30

is coarsest order consistent topology 152
II-1.31(i)

Urysohn-Carruth Metrization Theorem 445
VI-1.18

Urysohn-Nachbin Lemma 444 VI-1.16

V
Valuation 375 IV-9.1

, continuous 379 IV-9.5
, extension to a finitely additive measure

376 IV-9.3, 377 IV-9.4
, finite 375 IV-9.1
powerdomain 380 IV-9.7

, is a domain 385 IV-9.16
, simple 380 IV-9.9

Vertex, of a cone 305 IV-4.1
Vietoris topology 454 VI-3.8

W
Way-below relation 49 I-1, 49 I-1.1

, axiom of approximation 54 I-1.6
, for closed lower sets of a compact

semilattice 459 VI-3.22
, for simple valuations 388 IV-9.19
, for subsets 226 III-3.1
, fundamental properties of 50 I-1.2
, in a Boolean algebra 52 I-1.3(3)
, in a chain 51 I-1.3(1)
, in a complete distributive lattice 105

I-3.23
, in a direct product 51 I-1.3(2)
, in a domain 62 I-1.20
, in a finite poset 52 I-1.3(4)

, in a meet continuous lattice 53
I-1.5I-1.5(i)(3)

, in the domain of open filters 145 II-1.17
, in the lattice of open sets of a space 53

I-1.4, 104 I-3.21, 105 I-3.22
, in the lattice of two-sided ideals of a ring

52 I-1.3(5)
, interpolation property 56 I-1.9, 62 I-1.20,

228 III-3.5
, multiplicative 107 I-3.27, 256 III-5.9,

289 IV-2.22
, on function spaces 200 II-4.20, 205

II-4.27
, on the closed sets of a locally compact

space 216 III-1.15(i)
, on the extended probabilistic

power-domain 385 IV-9.16
, topological analogue 153 II-1.32, 153

II-1.33
Way-below set, of an element 51 remarks

following I-1.2
is an ideal 51 remarks following I-1.2

Way-way-below relation 303 IV-3.31
, on a completely distributive lattice 303

IV-3.31
Weak irreducible 403 V-3.1
Weak prime 110 remarks following I-3.37,

403 V-3.1, 404 V-3.4
order-generate 111 I-3.38

Weight, of a domain 242 III-4.4
, of a topological space 243 remarks

preceding III-4.5
, of function spaces 245 III-4.9

Well-filtered space 67 I-1.24.1
, and soberness 147 II-1.21

Z
Zero, of a poset 5 O-1.8


