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The content from my favorite semester of Calculus is dedicated to my

favorite people: Kathy, Melody, and Joy.
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Preface

Welcome back! I hope that you are visiting Casual Calculus — Volume 3

because you found Volume 1 and / or 2 helpful.

The Preface of Volume 1 gave the set-up for the work as a whole, across

three volumes, so I won’t repeat it here. I will just reiterate some of the

organizational items in case some readers are jumping directly into this

Volume 3.

The large structure is:

• Volume 1 contains Chapters 1–6, which correspond to a standard

first semester of Calculus, ending with the Fundamental Theorem

of Calculus.

• Volume 2 contains Chapters 7–12, which go with a standard second

semester of single-variable Calculus.

• Volume 3 contains Chapters 13–18, which match what is often Cal-

culus 3 (Multivariable Calculus).

The section-by-section set up of this book is as follows: Each topic of

content begins with a narrative section that leads you through the main

ideas and presents examples along the way. After each Example is a “You

Try It” problem that’s very similar to the example. What I hope you do,

as you’re reading, is stop after an Example you think you understood, and

immediately try your hand at the associated YTI problem. The solutions to

all YTI problems are at the end of the very section they’re shown in — so, if

you think you’ve succeeded at the YTI problem, go check the solution to be

sure. Or, if you get stuck on the YTI problem, then go look at its solution

to get a hint. Once you’ve completed a section, you’ll see the YTI problems

vii
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collected, along with a set of Practice Problems and Challenge Problems.

The Practice Problems should be similar to the YTI Problems, but you’re

getting them all at once, and so you don’t necessarily know which specific

technique to use or which Example to follow — you have to think about

it! The solutions to the Practice Problems are at the back end of the book.

So while they’re all available, they are more physically separated from the

section they come from; the idea is that you might be inclined to rely on

them a bit less, although they are still there when you need them. Then

finally, the Challenge Problems are a bit tougher than the others, and you

can use those to see if you’re successfully synthesizing the ideas you’ve seen

in their section. Solutions to Challenge Problems come after those to the

Practice Problems.

At many locations in the text, I will pose some “Food For Thought”

(FFT) based on an open question left unanswered. These little puzzlers

are bracketed by the symbol (it’s supposed to be a fork, plate, and

knife).

To keep you focused on problem solving, some derivations or other more

theoretical discussions are held off until the end of a section. I have always

been a fan of heavy metal, and I see jumping into a derivation or proof as

the mathematical version of jumping into a mosh pit: you’re mostly there

to sing along, but every once in a while, you have to wade in and get a bit

bruised. So, each of these more mathematically violent discussions are set

off with a subheading of, “Into the Pit!!”

The content here in Volume 3 is by far my favorite to teach, out of all

three semesters of Calculus. I hope you enjoy it, too!
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Chapter 13

Mathematical Deja Vu

13.1 Life in Three Dimensions

Introduction

Calculus I was boring. All your work was done in the land of two dimen-

sions; you had one independent variable and one dependent variable, and

only two axes on a graph. Ha, that’s kid stuff. Now it’s time for grown-up

math! Here you start on your journey into the land of three dimensions.

Many of the concepts you’ll encounter at first will be familiar — things you

learned to do in 2D now get extended to 3D, there’s just “more”. Points

have three coordinates instead of two. Graphs require three axes, not two.

Functions can have more than one independent variable. We’ll eventually

see partial derivatives and double (and triple!) integrals.

There will be some significant changes and additions along the way.

For example, life in three dimensions is made more fruitful with the use of

vectors, vector functions, and vector fields. Sure, those things are used in

two dimensions as well, but working in higher dimensions causes us to sigh

and realize we need more robust tools: rather than worrying about whether

we’re in two, three, or even more dimensions, can we develop mathematical

tools that work the same way regardless of how many dimensions we have?

To reach that point, we’ll start off getting comfortable with the 3D

rectangular (Cartesian) coordinate system.

1
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The 3D Rectangular Coordinate System

Based on your experience with the 2D coordinate system, some extensions

of familiar concepts into 3D should not be painful:

• In 2D, we had two coordinate axes, usually called x and y; the x-axis

displayed the only independent variable (input), and the y-axis displayed

the dependent variable (output). In 3D we have three coordinate axes,

usually called x, y and z; x and y are both independent variables and

z is the dependent variable. (There is still only one dependent variable,

that will always be true no matter how many dimensions we use!)

Figure 13.1 shows a 3D coordinate system. I can’t say this is THE 3D

coordinate system, because there are several options for how the axes are

presented. Some people like to have the positive x-axis pointing out of the

page, with the positive y-axis going eastward on the page. Personally,

I prefer the x-axis to be oriented rightwards, with the positive y-axis

pointing into the page. This is like taking a 2D coordinate system on

the page and then just tipping it over so that it falls into the page. It’s

what helps me visualize things best. If you like other configurations, by

all means, use them — but to repeat what you’ve been told since middle

school: label the dang axes!

−5 −3

3 5−5
−3

3
5

−5

−3

3

5

(3, 2, 4)

(0, 0, 0)

x

y

z

Fig. 13.1 The 3D rectangular coordinate system.

• In 2D, we had one coordinate plane. It was the xy-plane. In 3D, we have

three coordinate planes: the xy-plane, the yz-plane, and the xz-plane.
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The planes intersect along the coordinate axes. The origin is the one

point that all three planes have in common. (Remember this later on

when we ask if it’s possible for three planes to intersect in only one single

point.)

• In 2D, space was divided into four quadrants. In 3D, space is divided

into octants. Can you guess how many octants there are? (Hint: it’s

implied in the name octant.)

• In 2D, each point was described uniquely by two coordinates: in rect-

angular coordinates these were x and y, and in polar coordinates they

were r and θ. In 3D, each point is described by three coordinates; the

rectangular coordinate names are (unsurprisingly) x, y and z; eventually,

we’ll see other 3D coordinates systems too.

Plotting points in 3D is rather simple. Use coordinates the same way

you do in 2D. For example, to locate the point (3, 2, 4), you start at the

origin and then:

• Move along the positive x-axis 3 units.

• Move parallel to the positive y-axis a distance of 2 units (remain

in the xy-plane).

• Move parallel to the positive z-axis a distance of 4 units. This

point now “floats in space”.

(The point (3, 2, 4) is shown in Fig. 13.1.) Negative coordinates are inter-

preted just as in 2D — you move in the opposite direction of the appropriate

positive axis.

You Try It

(1) Which axes do the points (1, 0, 0), (0, 1, 0) and (0, 0, 1) lie on?

(2) Which coordinate planes do the points (1, 1, 0), (0, 1, 1) and (1, 0, 1)

lie on?

You Try It

(3) An observer is at the 3D coordinate origin, and can pivot East /

West to look in the positive / negative x direction; North / South

to look in the positive / negative y direction, and Up / Down to

look in the positive / negative z direction. How does the observer

orient to see the point (−1, 4, 2)? (3,−3,−5)? (−3,−4,−2)?
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You Try It

(4) In 2D, it takes two points to uniquely define a line. In 3D, how

many points do you think it takes to uniquely define a line?

Descriptions of Regions, Curves, and ...?

Here is one tidbit that might actually come as a surprise:

• In 2D, the equation of a line is, in standard form, ax+ by + c = 0. You

might think, then, that the equation of a line in 3D would be ax+ by +

cz+d = 0. But it’s not. That’s the equation of a plane! The equation of

a line is usually presented in parametric form. We’ll see plenty of lines

and planes quite soon.

We must be able to describe regions and curves in 3D. Perhaps there

are also new, other things that we didn’t encounter in 2D that we will need

to describe. Here are some examples of familiar themes:

• The equation x = 1 describes the set of all points with an x-coordinate

of 1. In 2D, this is a line, parallel to the y-axis. In 3D, though, the

equation x = 1 now describes an entire plane! All the points that have

an x-coordinate of 1 comprise a plane parallel to the yz-plane. In general,

anything in 3D of the form x = a, y = b or z = c is a plane, parallel

to one of the coordinate planes. Figure 13.2 shows a scattering of points

which all have x = 1 in common.

−5 −3

3 5−5
−3

3
5

−5

−3

3

5

x

y

z

Fig. 13.2 Points on the 3D plane x = 1.
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• The inequality y ≥ 2 describes the set of all points with a y coordinate

greater than or equal to 2. In 2D, this is a portion of the coordinate

plane, the entire “half-plane” above (and including) the horizontal line

y = 2. In 3D, this inequality describes and entire portion of 3D space

— it’s a “half-space” consisting of all points “above” (and including) the

plane y = 2. I had to put “above” in quotes because the actual physical

orientation of this half-space depends on how your axes are oriented on

your paper.

You Try It

(5) What region is described by the expression x > 3 in 2D and 3D?

Here are a couple of things that are new or different:

• In 2D, curves (graphs of functions?) wiggle through the xy-plane. In 3D,

curves can be restricted to one of the coordinate planes, or can wiggle

through space. Usually, curves that wiggle through space are described

with parametric equations (coming soon!).

• In 2D, we only plot points and lines / curves. In 3D, there’s something

new! Consider that in 2D, the equation x2 + y2 = 1 describes the unit

circle. What do you think this equation describes in 3D? Hint: It’s

not a circle. Or, if we extend a familiar equation from x2 + y2 = 1 to

x2 + y2 + z2 = 1, what do we have now? Hint: This is not a circle,

either. When graphed in 3D, the equations x2 + y2 = 1 and x2 + y2 +

z2 = 1 produce entire surfaces (not just curves). We’ll look in detail

at three-dimensional surfaces very soon, however the latter of those two

expressions can be understood with the information in this very next

section.

The Distance Formula

One of the most important tools in any coordinate system is the compu-

tation of distance. You should recall that in 2D, the distance between two

(rectangular) points (x1, y1) and (x2, y2) is

d =
√

(x2 − x1)2 + (y2 − y1)2

You might imagine that the extension of this to 3D is simple, and you’d be

right: in 3D, the distance between two points (x1, y1, z1) and (x2, y2, z2) is

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2
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If you prefer this without the radical, the same relationship can be written

d2 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

In fact, you should start learning to recognize the form of the right hand

side, so that when you see something similar, you can start to think about

what the expression might mean in terms of distance. For example, if you

don’t already know what the expression x2 + y2 + z2 = 1 creates in 3D,

match it to the 3D distance formula ... if it helps, expand the expression to

(x−0)2+(y−0)2+(z−0)2. We can see that the expression x2+y2+z2 = 1

describes all points (x, y, z) whose distance from the point (0,0,0) is 1. What

is that collection of points? It’s a sphere! Specifically, it’s the sphere of

radius 1 centered at the origin, also known as the unit sphere.

You Try It

(6) What region is described by the expression x2 + y2 + z2 > 1?

The things you can do with the 3D distance formula are similar to things

you can do in 2D.

EX 1 What is the distance between the points (1, 2, 1) and (−2, 4,−1)?

We have

d =
√

(−2− 1)2 + (4− 2)2 + (−1− 1)2 =
√

9 + 4 + 4 =
√

17 �

You Try It

(7) Is the triangle defined by the points P (−2, 4, 0), Q(1, 2,−1), and

R(−1, 1, 2) an equilateral triangle?
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Life in Three Dimensions — Problem List

Life in Three Dimensions — You Try It

These appeared above; solutions begin on the next page.

(1) Which axes do the points (1, 0, 0), (0, 1, 0) and (0, 0, 1) lie on?

(2) Which coordinate planes do the points (1, 1, 0), (0, 1, 1) and (1, 0, 1) lie

on?

(3) An observer is at the 3D coordinate origin, and can pivot East / West

to look in the positive / negative x direction; North / South to look

in the positive / negative y direction, and Up / Down to look in the

positive / negative z direction. How does the observer orient to see the

point (−1, 4, 2)? (3,−3,−5)? (−3,−4,−2)?

(4) In 2D, it takes two points to uniquely define a line. In 3D, how many

points do you think it takes to uniquely define a line?

(5) What region is described by the expression x > 3 in 2D and 3D?

(6) What region is described by the expression x2 + y2 + z2 > 1?

(7) Is the triangle defined by the points P (−2, 4, 0), Q(1, 2,−1), and

R(−1, 1, 2) an equilateral triangle?

Life in Three Dimensions — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.1.1.

(1) What region is described by the expression y ≥ 0 in 2D and 3D?

(2) What region is described by the expression 1 ≤ x2 + y2 + z2 ≤ 25

(3) Is the triangle defined by the points P (1, 1, 0), Q(2, 4, 1), and

R(−1,−1, 3) a right triangle? (Hint: Remember the Pythagorean

Theorem.)

Life in Three Dimensions — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.1.1.

(1) What is described by the expression x = y in 2D and 3D?

(2) What is described by the expression x2 + y2 = 1 in 2D and 3D?

(3) Is the triangle defined by the points A(1, 2,−3), B(3, 4,−2), and

C(3,−2, 1) an isoceles triangle?



8 Casual Calculus: A Friendly Student Companion (Volume 3)

Life in Three Dimensions — You Try It — Solved

(1) Which axes do the points (1, 0, 0), (0, 1, 0) and (0, 0, 1) lie on?

� These lie on the x-, y-, and z-axes, respectively. �

(2) Which coordinate planes do the points (1, 1, 0), (0, 1, 1) and (1, 0, 1) lie

on?

� These lie in the xy-, yz-, and xz-planes, respectively. �

(3) An observer is at the 3D coordinate origin, and can pivot East / West

to look in the positive / negative x direction; North / South to look

in the positive / negative y direction, and Up / Down to look in the

positive / negative z direction. How does the observer orient to see the

point (−1, 4, 2)? (3,−3,−5)? (−3,−4,−2)?

� To see the indicated points, the observer must be oriented in the

following directions:

• for (−1, 4, 2): West, North, and Up.

• for (3,−3,−5): East, South, and Down.

• for (−3,−4,−2): West, South, and Down.

Figure 13.3 shows all three points. �

−5 −3

3 5−5
−3

3
5

−5

−3

3

5 (−1, 4, 2)

(3,−3,−5)

(−3,−4,−2)

x

y

z

Fig. 13.3 Three points and a line segment between two of them.
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(4) In 2D, it takes two points to uniquely define a line. In 3D, how many

points do you think it takes to uniquely define a line?

� In 3D, we still only need two points to define a line; the line defines

the path of shorted distance between the two points. And, two points

still define a line in 3D. But that line is shared by an infinite number

of planes! Can you picture that? Figure 13.3 shows the line between

(−1, 4, 2) and (−3,−4,−2). �

(5) What region is described by the expression x > 3 in 2D and 3D?

� The 3D region x > 3 is everywhere to the “right” of (but not includ-

ing) the plane x = 3. This would be called a “semi infinite half space”.

�

(6) What region is described by the expression x2 + y2 + z2 > 1?

� This region is everything outside the unit sphere (the sphere of ra-

dius 1 centered at the origin). �

(7) Is the triangle defined by the points P (−2, 4, 0), Q(1, 2,−1), and

R(−1, 1, 2) an equilateral triangle?

� The triangle connecting the points is equilateral if the lengths of the

sides are the same:

|PQ| =
√

(1 + 2)2 + (2− 4)2 + (−1− 0)2 =
√

14

|QR| =
√

(−1− 1)2 + (1− 2)2 + (2 + 1)2 =
√

14

|PR| =
√

(−1 + 2)2 + (1− 4)2 + (2− 0)2 =
√

14

The lengths of all three sides are the same, so the triangle is an equi-

lateral triangle. �
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13.2 Multivariable Functions

Introduction

In Calculus I, functions only had 2 variables: one independent and one

dependent. But who can be satisfied with only two variables? Not us! We

can allow as many independent variables as we want, and in “real life”,

most quantities are determined by more than one thing. The volume of a

cylinder depends on its radius and height. The temperature outside de-

pends on (among other things) your latitude, longitude, and altitude. The

distance a well hit baseball travels depends on bat speed, pitch speed, angle

of impact, wind resistance, and more.

This is a good news / bad news situation. The good news is that we’re

going to learn about functions that have more than two variables. The bad

news is that when we have two independent variables, it can become difficult

to plot the function, and with two independent variables and one dependent

variable, we have now used up all the possible axes in three-dimensional

space. The worse news is that if we have three or more independent vari-

ables, it is not possible to plot the function in a standard coordinate system,

although there may be ad-hoc methods of visualization.

In this section and the next, we’ll learn the basics of these functions (do-

main, range, etc), review functions in parametric form, see several common

types and shapes, and find alternate ways to plot & visualize functions.

Once we learn these things, then we’ll go through the same sequence of

topics as in Calc 1: limits, continuity, derivatives, and integrals. Luckily,

most topics will contain strange twists — that’s how it stays interesting,

after all.

Notation, Domain, and Range

We describe multivariable functions using the same functional notation as

before, just with more variables. We can have f(x), f(x, y), f(x, y, z),

h(p, q, w, y), etc. A function of the form z = f(x, y) is the most compli-

cated we can get and still be able to graph it. Evaluation is indicated

using this notation, too: plug in whatever sits in the variable’s spot in the

f(x, y, . . .) notation.
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EX 1 If f(x, y) = x2 + y3, what are f(1, 1), f(x, x) and f(x2, y2)?

f(1, 1) = (1)2 + (1)3 = 2

f(x, x) = (x)2 + (x)3 = x2 + x3

f(x2, y2) = (x2)2 + (y2)3 = x4 + y6 �

Some other notation we’ll use is R, R2, R3, etc. It gets old writing “two-

dimensional space” or “three-dimensional space” over and over, and so we

use the symbol R for “the set of all real numbers” accompanied by an ex-

ponent denoting the dimension of the space we’re in. Our two-dimensional

coordinate system is R2, and we are now starting to explore the three di-

mensional coordinate system R3.

The domain of a function retains the same general meaning it had be-

fore: it is the collection of values that are allowed to be used for the vari-

ables, such that the function remains defined. The difference now is that

the physical location of the domain gets more complicated. Consider the

function f(x, y) =
√
x+
√
y. Here, we know that we’re allowed to use any

x ≥ 0 and any y ≥ 0. Where are all those points located? In the first

quadrant of the xy-plane. In R2, the domain of a function was part of the

x-axis; in R3, domains are entire regions of the xy-plane.

The range of a function also retains the same general meaning it had

before: it is the collection of values that are possible outputs of the func-

tion. The range of a function f(x, y) will be part of (or all of) the z-axis.

The range of z = f(x, y) =
√
x+
√
y is the set of all values z ≥ 0.

While ranges remain restricted to the possible values of the single depen-

dent variable, regardless of how many independent variables there are, the

domain of a function gets more complicated as the number of independent

variables increases.

EX 2 Describe the domain and range of f(x, y, z) =
√
x2 + y2 + z2 − 1.

We need to collect all possible values of x, y, and z for which f(x, y, z) is

still defined; this means we need x2 + y2 + z2 − 1 ≥ 0, or in a better form,

we need x2 + y2 + z2 ≥ 1. The collection of points x2 + y2 + z2 = 1 is the

unit sphere in R3, and so x2 + y2 + z2 ≥ 1 is everything outside and on

the unit sphere. If we name the dependent variable w = f(x, y, z), then we
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can describe the range as w ≥ 0, since we’ll always get positive numbers or

zero out of the function. �

You Try It

(1) For f(x, y) = x2e3xy, find f(2, 0) and f(3x, 2y), and describe the

domain and range of f(x, y).

(2) Describe the domain and range of f(x, y) =
√
x+ y.

(3) Describe the domain and range of f(x, y, z) =
√

1− x2 − y2 − z2.

Parametric Equations and Lines in 3D

2 4 6
−5

5

−5

5

t = −4

t = 5t = 0
x

y

z

Fig. 13.4 The parametric curve x =
√
t2 + 1, y = t cos(2t), z = t3/(t2 + 1) for −4 ≤

t ≤ 5.

Functions do not have to be described as z = f(x, y). Another way to

assemble a function is to select a parameter, like t, that determines ALL

of the other variables in the function. You have already done this in 2D

(see Chapter 12), and you should recall, for example, that the equations

x = cos t, y = sin t, 0 ≤ t ≤ 2π describe the unit circle. As t varies from

t = 0 to t = 2π we create x and y values that become the points (x, y) on

the curve. (If that doesn’t sound familiar, go review!)

This idea extends to three (or more) dimensions in two ways:

(1) We can use a single parameter, say t, to determine any number of

other variables. Here is a perfectly good set of parametric equations

that form a curve in three-space:

x(t) =
√
t2 + 1 ; y(t) = t cos(2t) ; z(t) =

t3

t2 + 1
; −4 ≤ t ≤ 5

As t varies from t = −4 to t = 5, we create a collection of points

(x, y, z) that form the curve. Parametric equations like this —
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which have one parameter — form curves. Figure 13.4 shows this

particular parametric curve, with a few representative points.

(2) We can use more than one parameter to determine our variables.

Here is a perfectly good set of parametric equations in which our

variables x and y depend on TWO parameters, say u and v:

x(u, v) = u2 + v2 ; y(u, v) =
u

v
; 0 ≤ u ≤ 1, 1 ≤ v ≤ 3

It turns out parametric constructions like this — with two parame-

ters — define surfaces, and we’ll take a look at parametric surfaces

later.

You Try It

(4) As mentioned above, the parametric equations x = cos t, y = sin t

form the unit circle. With no restrictions on t, so that t can be

any real number, we trace the unit circle over and over. What do

we get if we extend these equations to the 3D parametric curve

x = cos t, y = sin t, z = t?

When studying two-dimensional forms, we noted that although the

equation ax+by+c = 0 describes a line in 2D, the equation ax+by+cz+d

= 0 does NOT describe a line in 3D, but rather an entire plane. Rather,

lines in 3D are usually described in parametric form:

Useful Fact 13.1. Parametric equations of the form

x(t) = a+ bt ; y(t) = c+ dt ; z(t) = m+ nt ; t1 ≤ t ≤ t2
form a straight line segment in R3. When t is unrestricted, we get an

infinite line.

EX 3 Find the equations of the line segment starting at the point (1, 1, 1)

and ending at (2, 3, 4).

Right now, we have no methodical way of finding the line segment’s equa-

tions, we just have to use our imagination. At some point, we have to

decide on the window of t values to apply — when in doubt, we can always

start with t = 0 to t = 1 then adapt if a more clever arrangement is found.

Here, since the x values we want to span start at 1 and end at 2, we can

write x = 1 + t for 0 ≤ t ≤ 1. Similarly, we need to have y start at y = 1

and go two units to y = 3, and have z start at z = 1 and go three units to

z = 4. So how about this, displayed in Fig. 13.5:

x(t) = 1 + t ; y(t) = 1 + 2t ; z(t) = 1 + 3t ; 0 ≤ t ≤ 1 �
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t = 1; (2, 3, 4)

x
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z

Fig. 13.5 The line segment x = 1 + t, y = 1 + 2t, z = 1 + 3t for 0 ≤ t ≤ 1.

Parametric descriptions of curves are not unique; for example, the same

line segment can be described as:

x(t) = 1 +
t

2
; y(t) = 1 + t ; z(t) = 1 +

3

2
t ; 0 ≤ t ≤ 2

Also note that with parametric equations, we get direction. These sets of

equations describe the line segment from (1, 1, 1) to (2, 3, 4). What if we

wanted to go the other way, from (2, 3, 4) to (1, 1, 1)? Then we could use

x(t) = 2− t ; y(t) = 3− 2t ; z(t) = 4− 3t ; 0 ≤ t ≤ 1

You Try It

(5) Find parametric equations form the line segment starting at the

point (0,−2, 5) and ending at (π,−1, 5). Then give equations for

the reverse segment, starting at (π,−1, 5) and ending at (0,−2, 5).

Here’s a twist on lines that differs from what you know about lines in

2D. In the xy-plane, if lines are not parallel, then they must intersect. In

3D, that’s not true. Lines which are not parallel do not have to intersect —

which is excellent news for people traveling in airplanes. In 3D, lines can

be parallel, perpendicular, skew, or none of the above. Skew lines are lines

that are not parallel but also do not intersect. It will be easier to figure out

whether lines are parallel or perpendicular later on, when we’re working

with vectors. But we can learn a few things from the parametric equations

of lines, such as ...
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EX 4 Two lines in R3 are given by the parametric equations

x = t , y = 2 + t , z = 1− 2t and x = 2s , y = −1 + 3s , z =
s

2

Do these lines intersect?

In order to intersect, the lines must share a point. That is, there must

be a pair of parameter values s and t that create the same coordinates. For

the x-coordinates to be equal, we’d need t = 2s. To have the y-coordinates

be the same, we’d need 2 + t = −1 + 3s; but to have this happen at the

same values that make the x-coordinates the same, i.e. t = 2s, we’d need

2 +2s = −1+ 3s, or s = 3 (and so also t = 6). So, with t = 6 and s = 3, we

have the same x and y coordinates. At these values the z-coordinate of the

first line is z = 1 − 2(6) = −11, and the z-coordinate of the second line is

z = 3/2. So we cannot make all three coordinates the same, and the lines

do not share a point.

A briefer way to describe this is: we can always make the x and y co-

ordinates the same by solving two equations in two unknowns, t = 2s and

2 + t = −1 + 3s. Having done that, will the resulting s and t values also

make the z-coordinates equal? Try it out! �

You Try It

(6) Do the lines x = t − 1, y = 2t, z = 1 − t and x = −2 + s, y =

−1 + s, z = 2s share a point?
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Multivariable Functions — Problem List

Multivariable Functions — You Try It

These appeared above; solutions begin on the next page.

(1) For f(x, y) = x2e3xy, find f(2, 0) and f(3x, 2y), and describe the do-

main and range of f(x, y).

(2) Describe the domain and range of f(x, y) =
√
x+ y.

(3) Describe the domain and range of f(x, y, z) =
√

1− x2 − y2 − z2.

(4) As mentioned above, the parametric equations x = cos t, y = sin t form

the unit circle. With no restrictions on t, so that t can be any real

number, we trace the unit circle over and over. What do we get if

we extend these equations to the 3D parametric curve x = cos t, y =

sin t, z = t?

(5) Find parametric equations form the line segment starting at the point

(0,−2, 5) and ending at (π,−1, 5). Then give equations for the reverse

segment, starting at (π,−1, 5) and ending at (0,−2, 5).

(6) Do the lines x = t−1, y = 2t, z = 1−t and x = −2+s, y = −1+s, z = 2s

share a point?

Multivariable Functions — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.1.2.

(1) For f(x, y) = ln(x+ y − 1), find f(e, 1) and f(4x, x+ 1), and describe

the domain and range of f(x, y).

(2) Describe the domain and range of f(x, y) = 3
√
x+ 4
√
y.

(3) Describe the domain and range of f(x, y, z) = ln(16− 4x2 − 4y2 − z2).

(4) Find the equations of the line segment starting at the point (2, 5,−1)

and ending at (3, 3, 0).

(5) Describe the curve given by the parametric equations x = 3 − t, y =

1 + 2t, z = −t for −1 ≤ t ≤ 1.

(6) Do the lines x = 1+2t, y = 2−t, z = −t and x = −s, y = 1−2s, z = 1+s

share a point?

Multivariable Functions — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.1.2.
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(1) Describe the domain and range of f(x, y) =
√
y − x ln(y + x); include

a sketch of the domain.

(2) Give TWO different sets of parametric equations that produce the line

segment starting at (1, 1, 2) and ending at (−2, 0, 2).

(3) Do the lines x = t, y = t, z = t and x = 2−s, y = −1+2s, z = (s+1)/2

share a point?

Multivariable Functions — You Try It — Solved

(1) For f(x, y) = x2e3xy, find f(2, 0) and f(3x, 2y), and describe the do-

main and range of f(x, y).

� We have f(2, 0) = 22e3·2·0 = 4 and f(3x, 2y) = (3x)2e3·3x·2y =

9x2e18xy. Since we can use all real numbers for both x and y in this

function, its domain is all of R2, i.e. the entire xy-plane. Only positive

numbers and zero can result from this function, so the range is z ≥ 0

(having named z = f(x, y)). �

(2) Describe the domain and range of f(x, y) =
√
x+ y.

� We must have x + y ≥ 0, i.e. y ≥ −x. This is everything on and

above the line y = −x in the xy-plane. �

(3) Describe the domain and range of f(x, y, z) =
√

1− x2 − y2 − z2.

� We must have 1 − x2 − y2 − z2 ≥ 0, i.e. x2 + y2 + z2 ≤ 1. This is

the surface and interior of the unit sphere centered at the origin. �
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Fig. 13.6 The helix x = cos t, y = sin t, z = t.
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(4) As mentioned above, the parametric equations x = cos t, y = sin t form

the unit circle. With no restrictions on t, so that t can be any real

number, we trace the unit circle over and over. What do we get if

we extend these equations to the 3D parametric curve x = cos t, y =

sin t, z = t?

� These parametric equations generate a helix, like DNA. In the xy-

plane, the points rotate around the unit circle, but z is increasing as

t increases. So we have circular cross sections continually elevating.

Figure 13.6 shows this parametric curve. Do you know the direction of

the curve? �

(5) Find parametric equations form the line segment starting at the point

(0,−2, 5) and ending at (π,−1, 5). Then give equations for the reverse

segment, starting at (π,−1, 5) and ending at (0,−2, 5).

� For the line going from (0,−2, 5) to (π,−1, 5), how about:

x = πt, y = −2 + t, z = 5 for 0 ≤ t ≤ 1

Then for the reverse, from (π,−1, 5) to (0,−2, 5), how about:

x = π − πt, y = −1− t, z = 5 for 0 ≤ t ≤ 1 �

(6) Do the lines x = t−1, y = 2t, z = 1−t and x = −2+s, y = −1+s, z = 2s

share a point?

� We can make the x and y coordinates match by forcing t−1 = −2+s

and 2t = −1+s. From the first equation, we have t = −1+s. Plugging

into the second, we get 2(−1+s) = −1+s, or s = 1 ... and so also t = 0.

Therefore, t = 0 and s = 1 make the x and y coordinates the same.

Passing these values to the z-coordinates we get (1) z = 1− 0 = 1 and

(2) z = 2(1) = 2. The z-coordinate can not be made the same while

the x and y coordinates are also the same. The lines do not share a

point. �
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13.3 Three-Dimensional Surfaces

Introduction

Having encountered simple regions and lines in 3D, you’re ready for more

general three-dimensional surfaces. We’ll start with the common ones, and

then look at some ways to make their visualization a bit easier.

Upscaling of Equations

In Sec. 13.1, we asked what happens to the graphical “thing” described by

x2 +y2 = 1 when we upscale it from being considered as a 2D equation to a

3D equation. Note that there are two ways we can consider this upscaling:

(1) Keep the equation exactly as it is (x2 + y2 = 1), and ask what it

now represents in 3D.

(2) Extend the equation by introducing a term that seems appropriate

for z (x2 + y2 + z2 = 1), and ask what we now get in 3D.

Remember that an equation of a graphical thing tells you what all the

points on it have in common.
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z

Fig. 13.7 Traces of x2 + y2 = 1 for z = −2,−1, 0, 1, 2.

Let’s scale up x2 + y2 = 1 using the first method: we’ll keep the equa-

tion exactly as it is, but consider it as a 3D equation. The variable z does
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not appear in the equation, and yet the equation now represents a three-

dimensional collection of points. Well, if z does not appear, then z is said to

be unrestricted — that is, it can take on any value. But regardless of what

z value we consider, the x and y coordinates of the points getting collected

by the equation still have to obey the rule x2 + y2 = 1. In 2D, this rule

gives it’s a circle since it collects all points one unit from the origin. But

in 3D, we now say, “The variable z can be anything, but for any one value

of z we fix, we must collect all the points whose (x, y, z) coordinates obey

x2 + y2 = 1”. And so, at any z-coordinate, we must see a cross section in

the x& y directions that is a circle of radius 1. When all the results from

all values of z are assembled, we get a cylinder. Figure 13.7 shows several

of these circular cross sections for different values of z; if you imagine now

filling in the figure with all the other such cross sections for all possible val-

ues of z, you will (hopefully) imagine the formation of an entire cylinder.

Note that since we have three variables to play with, we can also create

the similar equations y2 + z2 = 1 and x2 + z2 = 1. These are also infinitely

long cylinders of radius 1; the equation y2 + z2 = 1 is a cylinder centered

on the x-axis, and x2 + z2 = 1 is a cylinder centered on the y-axis. Make

sure you understand why.

Now let’s scale up x2 + y2 = 1 using the second method: we will add

to the equation a term for z that continues the pattern already displayed

by x and y, and get x2 + y2 + z2 = 1. All points collected by this equation

are the points that obey the stated rule, so (recognizing that this is just

the distance formula in action) we are looking for all points whose distance

from the origin, x2 + y2 + z2, is equal to 1 — that is, we have the sphere

of radius 1 centered at the origin. We’ll look at spheres in general down

below.

You Try It

(1) What do y = x2 and x = z2 look like in 3D?

(2) Describe the 3D surface y2 +4z2 = 4. Give identifying information

that supports your description.
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Planes

We have already considered the “upscaling” of another 2D equation,

ax+ by + c = 0. Remember that in 2D this represents a line. In this case,

both methods of upscaling result in a plane — in 3D, the specific equation

ax+ by+ c = 0, and also the more generally extended ax+ by+ cz+ d = 0

represent planes. The difference is that a plane of the form ax+ by+ c = 0

will be parallel to the z-axis, but ax + by + cz + d = 0 can be any plane.

Do you see why?

If you’re still reading a couple of chapters after this, where we introduce

vectors, we’ll revisit the subject of planes and how to describe them very

efficiently. For now, we’ll just consider some basics to get started, since

we’ll need to know about planes in general quite often.

One thing we often need to know about a plane is how it is oriented. A

quick way to determine the orientation of a plane is to ask about its three

intercepts (x, y, and z). This is easy to do.

EX 1 What are the x, y, and z intercepts of the plane 3x−2y+z−6 = 0?

The x intercept occurs where the y and z coordinates are both 0. In this

case, the equation gives 3x − 6 = 0, or x = 2. So the x intercept is the

point (2, 0, 0). The y intercept occurs where the x and z coordinates are

both 0. In this case, the equation gives −2y − 6 = 0, or y = −3. So the y

intercept is the point (0,−3, 0). The z intercept occurs where the x and y

coordinates are both 0. In this case, the equation gives z− 6 = 0, or z = 6.

So the z intercept is the point (0, 0, 6). Knowing that this plane must hit

these three points, we can get a good idea of its orientation. Figure 13.8

shows these three points of intersection and an indication of how the plane

slopes through the first octant. �

Just like it takes two points to uniquely define a line in 2D, it also only

takes two points to uniquely define a line in 3D, and it takes 3 points to

uniquely define a plane. For example, if you know the three intercepts of a

plane, you can determine its equation.

EX 2 Find the equation of the plane whose x, y, and z intercepts are

(−1, 0, 0), (0, 2, 0) and (0, 0, 4).
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Fig. 13.8 Axis intercepts of the plane 3x− 2y + z − 6 = 0.

Each point must obey the rule stated in the equation of the plane. In

general, the equation of a plane is ax+by+cz+d = 0. Plugging each point

into this general form and simplifying, we get:

a(−1) + b(0) + c(0) + d = 0 → −a+ d = 0

a(0) + b(2) + c(0) + d = 0 → 2b+ d = 0

a(0) + b(0) + c(4) + d = 0 → 4c+ d = 0

Here we have 3 equations, but 4 unknowns. That sounds bad, but it’s

actually good! The extra unknown is unrestricted, and can be anything.

Let’s let d be the “extra” unknown, and choose it to be a convenient value

— such as 4. Then:

• from −a+ d = 0, we get −a+ 4 = 0, or a = 4.

• from 2b+ d = 0, we get 2b+ 4 = 0, or b = −2.

• from 4c+ d = 0, we get 4c+ 4 = 0, or c = −1.

These values create the equation of this plane: 4x − 2y − z + 4 = 0. It’s

common to rewrite this as z = 4x − 2y + 4. FFT: Would we get an

equally valid equation of the plane if we selected a different value of d to

use to start things off, such as d = 12? Why or why not? �

Note that the three points on the plane you know do not have to be

intercepts, and we do exactly the same thing to find the equation of the

plane:

EX 3 Find the equation of the plane containing the points (1, 1, 2),

(0,−2, 1) and (2,−1, 2).
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Each point must obey the rule stated in the equation of the plane. Plugging

each point into the general form for a plane and simplifying, we get:

a(1) + b(1) + c(2) + d = 0 → a+ b+ 2c+ d = 0

a(0) + b(−2) + c(1) + d = 0 → −2b+ c+ d = 0

a(2) + b(−1) + c(2) + d = 0 → 2a− b+ 2c+ d = 0

Again, we have 3 equations, but 4 unknowns. Let’s let d be the “extra”

unknown, and choose it to be a convenient value — such as −2. With

d = −2, we then get the three equations

a+ b+ 2c = 2

−2b+ c = 2

2a− b+ 2c = 2

Do whatever it is you know to do to solve a system of equations like this.

You should get a = −4/7, b = −2/7, and c = 10/7, so that the equation of

the plane becomes

−4

7
x− 2

7
y +

10

7
z − 2 = 0

or multiplying by 7 and dividing by 2,

−2x− y + 5z − 7 = 0

We might also rewrite this as

z =
2

5
x+

1

5
y +

7

5
�

You Try It

(3) What are the x, y, and z intercepts of the plane x+3y−2z−10 = 0?

(4) Find the equation of the plane containing the points (−1,−1, 1),

(1, 0, 3) and (2, 2, 2).

Spheres

You already know that the equation x2 + y2 + z2 = 1 describes the unit

sphere, i.e. the sphere of radius 1 centered at the origin. We could general-

ize this to x2 + y2 + z2 = r2, which describes a sphere of radius r centered

at the origin. That’s easy. But think back to your experience with cir-

cles. What if a circle is not centered at the origin? It’s equation looks like

(x−x0)2+(y−y0)2 = r2, and this is a circle of radius r with center (x0, y0).
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So what if we wanted a sphere with a center at any point (x0, y0, z0)? You

might guess that its equation would be (x−x0)2 +(y−y0)2 +(z−z0)2 = r2

... and you’d be right!

Now here’s the annoying part. Remember that in 2D, the equation of

a circle doesn’t always come in that form. Often, it comes in “standard”

form, x2 + y2 + cx+dy+ f = 0. We know that this is a circle, but we don’t

know its radius or its center yet. In order to find that center and radius,

we had to .... sigh ... complete the square on the x and y terms. The same

thing happens with spheres now.

Useful Fact 13.2. The standard form of the equation of a sphere in three

dimensions is:

x2 + y2 + z2 + cx+ dy + fz + g = 0

By completing the square on x, y, and z terms, we can rewrite this as

(x− x0)2 + (y − y0)2 + (z − z0)2 = r2

which displays the center (x0, y0, z0 and radius r.

EX 4 Find the center and radius of the sphere x2 +y2 +z2−2x+4y = 0.

Remember that to complete the square, we group terms of the same vari-

able, like this:

(x2 − 2x) + (y2 + 4y) + (z2) = 0

Then we take half of the coefficient of each linear term if present, square

it, and add it to both sides of the equation:

(x2 − 2x+ 1) + (y2 + 4y + 4) + (z2) = 1 + 4

By doing so, we’ve generated perfect squares:

(x− 1)2 + (y + 2)2 + (z − 0)2 = 5

And now we know that the sphere has center (1,−2, 0) and radius
√

5. �

You Try It

(5) Find the center and radius of the sphere x2+y2+z2−6x+4y−2z =

11.
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Quadric Surfaces

In the land of two dimensions, the equation ax2 + by2 + cx + dy + f = 0

can generate several types of curves: ellipses, parabolas, and hyperbolas

(remember, circles are special ellipses). It all depends on the size and sign

of the coefficients. Remember that if a = b, and both are positive, you’ll

probably get a sphere. If a and b are opposite in sign, you can get a hyper-

bola. If a or b is zero, you’ll get a parabola, and so on. These are all called

conic sections, since each shape can be formed by passing a plane through

a full cone (with both halves) either straight or at an angle. Appendix

A.1 has a quick summary of the common quadric surfaces. When you look

there, don’t freak out about things you have not encountered yet, such as

the parametric representations of the surfaces. That will come in time.

When we generalize that concept to 3D, we get quadric surfaces. They

are generated by the equation ax2 + by2 + cz2 + dx + fy + gz + h = 0

(just take the general conic section equation and toss in the z’s). Just like

with conic sections, these surfaces are formed by various combinations of

size and sign of the coefficients a, b, and c in that standard form. There

are many more types of quadric surfaces than there are conic sections, and

Appendix A.2 has descriptions of several of the common ones. There are

ellipsoids, hyperboloids, paraboloids, hyperbolic paraboloids, hyperboloids

of one and two sheets, elliptic paraboloids, etc etc etc. While you can get

by memorizing the conic sections and their properties, it is fruitless to at-

tempt that with quadric surfaces. That would make your brain hurt. So

instead, we learn how to determine properties and appearances of quadric

surface by visualize their cross sections, or traces. It’s kind of like taking

an x-ray of a 3D surface.

Like conic sections, quadric surfaces can be aligned along any of the

axes, or rotated away from an axis. While a sphere looks the same with

respect to any axis, you can imagine a cylinder whose centerline is the x-

axis looks different than one whose centerline is the y-axis, or the z-axis.

For our purposes, alignment along different axes is the worst variations we

will have — we won’t see quadric surfaces oriented in random directions.

I’m sorry for the disappointment.
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Cross Sections and Traces

Let’s pick a random quadric surface, x2 − y2 + z2 + 4 = 0. We know this

isn’t a sphere because the coefficient of y2 is negative. So what is it? We

can visualize it via cross sections, which are formed by taking traces in

certain planes. Once we resolve cross sections in each coordinate direction,

we should have a pretty good idea of the overall structure of the surface.

• The intersection of this surface with the plane z = 1, called the trace

of the surface in that plane, is found by plugging in z = 1: we get

x2−y2 +5 = 0. Since we are good with conic sections, we know that this

equation gives a hyperbola, so we say that the trace (cross section) of

x2−y2+z2+4 = 0 in the plane z = 1 is the hyperbola x2−y2+5 = 0. (Fig.

13.9 shows this trace.) Perhaps you can also realize that not matter what

plane z = c we choose, cross sections of this surface will be hyperbolas.

• If we fix a value of x, thus finding the trace in some plane x = c, we’ll

get a hyperbola in the yz direction. Do you see why? The equation will

looks like z2−y2 +(4+c2) = 0. (Fig. 13.9 shows the trace of this surface

in the plane x = 2.)
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Fig. 13.9 Traces of x2 − y2 + z2 + 4 = 0 in planes x = 2 and y = 3.

• If we fix a value of y, thus finding the trace in some plane y = d, we’ll

see circular cross sections in the xz direction, since the equation will now

look like x2 + z2 + (4−d2) = 0. (Fig. 13.9 shows the trace of this surface

in the plane y = 3.)



Mathematical Deja Vu 27

Finally, there’s one extra thing you may have noticed: since we can

rearrange the equation to get x2 + z2 = y2 − 4; this equation will only be

valid when the right hand side is non-negative (do you see why?), so we

must have y2 ≥ 4. Therefore, this surface simply does not exist for values

of y between −2 and 2.

To summarize, we have a surface that has hyperbolic cross sections in

two directions, circular cross sections in the other, and is split into two

pieces (since nothing’s there for −2 < y < 2). If you go back to the link

containing all the pictures, I hope you’ll agree that the only shape following

these properties is a hyperboloid of two sheets. Further, we know it opens

(is symmetric) around the y-axis, since the y-axis is where the big gap is.

Other quadric surfaces might have easier traces (cross sections). For

example, the traces of x2 + 2y2 + z2 − 1 = 0 are ellipses in planes x = c or

z = c and are circles in planes y = c. (Be sure you see why.) And therefore,

by either just good personal visualization, or by searching the options in

Appendix A.2, we determine that this quadric surface is an ellipsoid.

In general, there’s no one specific system for investigating traces, you

just have to be clever. Try finding traces in the coordinate planes. Find

out if traces of the surface don’t exist for certain values of a variables (thus

showing that the surface has more than just one piece).

EX 5 Identify the surface x2 = 2y2 + 3z2 using traces. Provide at least

one trace parallel to each each of the xy-, yz-, and xz-planes.

• In the coordinate planes y = 0 and z = 0, the traces are lines. Do

you see why?

• In the coordinate plane x = 0 (the yz-plane), this surface only

exists at the point (0,0,0).

• In any plane x = c, traces look like 2y2 + 3z2 = C, which are

ellipses.

• In any plane y = c or z = c, traces look like x2 − 3z2 = C or

x2 − 2y2 = C, which are hyperbolas.

Figures 13.10 and 13.11 show some vertical and horizontal traces for this

surface. By either good personal visualization, or by searching the options

in Appendix A.2, we determine that this quadric surface can only be a cone,

opening along the x-axis. �
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Fig. 13.10 Traces of x2 = 2y2 + 3z2 in

planes x = −2,−1,−0.5, 0.5, 1, 2.
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Fig. 13.11 Traces of x2 = 2y2 + 3z2 in

planes z = −2,−1.5, . . . , 2.

You Try It

(6) Identify the surface 4x2 + 9y2 + 36z2 = 36 using traces. Provide at

least one trace parallel to each each of the xy-, yz-, and xz-planes.

Fig. 13.12 Sample topographic contours from a USGS topographic map.

Contour Plots

If you’re like me, your skills at drawing three-dimensional objects are lim-

ited. We are lucky when we have a function whose graph becomes part of

a quadric surface, but that is not always the case. The surface described

by just some random function z = f(x, y) that shows up on your doorstep

can be much more complicated than a simple quadric surface. Fortunately,
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we have a method by which we can represent the dynamics of a general 3D

function in the 2D plane: contour plots.

Whether you know it or not, you have been looking at contour plots all

your life. If you have ever seen a topographic map, a weather map with

isobars, or a bathymetric map (any boaters out there?) then you have seen

a contour map. A topographic map is a contour plot reflecting elevation

as a function of latitude and longitude. We connect all the points on a

2D map that share some common elevation (z value). If you’ve ever hiked

using a topo map as a guide, you know that tightly packed elevation con-

tours mean either a steep ascent or descent. Figure 13.12 shows a portion

of a topographic map (elevation in feet) from a topographic map.1 Did

you know that the United States Geological Survey has such topographic

maps at different scales for all areas in the US? You should look for a map

containing your home town! You might be surprised by the topography in

the area where you live.

On many weather maps you’ve seen all your life, contours connect points

on a 2D map that share the same value of some property; when the data

displayed is air pressure, the contours are called isobars; the more tightly

packed the isobars, the stronger the wind will be, since the density of isobars

is related to the pressure gradient. Surely you’ve seen a temperature plot

that shows temperature as a function of position on a map (where red rep-

resents hotter and blue represents cooler) — sometimes contour plots have

colormaps associated with them, and sometimes the contours are just curvy

lines. Either way, we have a two-dimensional display of three-dimensional

data.

Figure 13.13 shows a display of magnetic declination around the globe;

the three-dimensional globe (sorry, flat-earthers) is projected onto a two-

dimensional region, and then within that region, we see contours represent-

ing magnetic declination — which is a measure of the angular difference

between geographic north and magnetic north.2

1https://pubs.usgs.gov/gip/topomapping/topo.html
2U.S. Geological Survey Open-File Report 99-0418, by Saltus et al.

https://pubs.usgs.gov/gip/topomapping/topo.html
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Fig. 13.13 A contour map showing magnetic declination (USGS).

Here is a very generic and dry approach to contour plots (sorry). We

take a function z = f(x, y) and ask: what set of (x, y) values produce the

value z = 1? Or z = 2? Or any other chosen value of z? We identify

all those points in the xy-plane and sketch all those points together; the

resulting contour gets labelled by the associated value of z. When we gen-

erate such contours for several values of z and play connect the dots on the

resulting points in the plane, we generate a nest of contours which together

become the contour plot.

As an easy example, consider the paraboloid z = x2 +y2 (if you want to

know what this looks like, think about traces). The collection of (x, y) val-

ues that yield z = 1 are the points satisfying x2 +y2 = 1, or the unit circle.

So the contour corresponding to z = 1 is the unit circle. You can probably

see that the contour corresponding to any z = c is the circle x2 + y2 = c.

A contour plot of this function would consist of nested circles, each circle

labeled with the appropriate z value. Slightly more interesting might be

the contour plot for z = 2x2 + 3y2, in which contours are ellipses. Figure

13.14 shows a contour plot for that function.

You should be able to visualize the contour plot associated with any

quadric surface. I’ll describe the way I see it, and hope it makes sense.

Imagine the full 3D quadric surface as an inflated balloon sitting on a piece

of paper, and pretend you have a paintbrush. Trace with your brush several

solid lines around the outside of the quadric surface, each at a constant
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Fig. 13.14 Contour plot for z = 2x2 + 3y2 (for z = 1, 5, 9, 12).

elevation on the surface (at z = 0, z = 1, etc.). Then squish the surface

flat. The pattern all the wet paint from the surface will make on the piece

of paper is the contour map. Some generalities about contour maps are:

• The more tightly packed the lines, the steeper the surface

• If you move in the direction of increasing contour level values, you

are moving uphill on the surface

• If you move in the direction of decreasing contour level values, you

are moving downhill on the surface

EX 6 Does the contour plot in Fig. 13.15 represent z = x + cos(y) or

z = y+ cos(x)? Why? (And how can we tell if there are no labels?

What the heck!)

The two candidate functions would produce contours from the equations

x+ cos(y) = c or y+ cos(x) = c, respectively (where c is a constant). If we

rearrange these equations, they are either x = c− cos(y) or y = c− cos(x).

Remembering that cos(x) and cos(y) are always between −1 and 1, then

contours of the first candidate function would oscillate around vertical lines

x = c by an amount between −1 and 1 that varies in the y-direction. Sim-

ilarly, contours of the second candidate function would oscillate around

horizontal lines y = c by an amount between −1 and 1 that varies in the
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Fig. 13.15 Contours for z = x+ cos(y) or z = y + cos(x)?

x-direction. The contour map itself matches the first description, so the

contours are for the function z = x+ cos(y). �

You Try It

(7) Does the contour plot in Fig. 13.16 represent z = x2 + y2 or z =

x2 − y2? Why? (This figure is at the end of the section.)

Level Curves and Level Surfaces

Oh, no, another topic! Well, not really. A level curve of a function f(x, y) is

the collection of all members from its domain that produce the same output.

For a function f(x, y), a level curve is a contour. If f(x, y) = x2 +2y2, then

the level curve corresponding to c = 2 is the ellipse x2 + 2y2 = 2. The

reason we’re looking at this alternate terminology is to prepare us for later

on, when we’ll use the idea of a level surface. A level surface of a function

f(x, y, z) is the collection of all members from its domain that produce the

same output.
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EX 7 Describe the level surfaces of the function w = x2 + y2 + z2 for the

values w = −1, 0, 1, 100. Can you make an observation about what

all the level surfaces of this function have in common?

First, note that the function w = f(x, y, z) itself cannot be directly visual-

ized, we would need 4 axes. The best we can do is say, “well, let’s just look

at all the points (x, y, z) that give a specific value of w.

• There is no level surface for w = −1 since there are no points

(x, y, z) in R3 that yield x2 + y2 + z2 = −1.

• The level surface for w = 0 is a single point — more specifically,

the origin; we are looking for all points (x, y, z) in R3 which yield

x2 + y2 + z2 = 0. There is only one such point, (x, y, z) = (0, 0, 0).

• The level surface for w = 1 is the unit sphere, x2 + y2 + z2 = 1.

• The level surface for w = 100 is the sphere of radius 10 centered at

the origin, x2 + y2 + z2 = 100.

• Every level surface of w = f(x, y, z) is a sphere centered at the

origin. �

We get level curves from functions z = f(x, y) by collecting the

points (x, y) from R2 that yield a specific (constant) value of z. We get

level surfaces from functions w = f(x, y, z) by collecting the points (x, y, z)

from R3 that yield a specific (constant) value of z. Is there a level thing of

some sort for functions y = f(x)?

You Try It

(8) Describe the following level curves:

• the level curve of z = x2 + 2y2 corresponding to z = 3.

• the level curve of t = q − 4r corresponding to t = 7.

• the level curve of x3 = −3x21 + x2 corresponding to x3 = 2.
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Three-Dimensional Surfaces — Problem List

Three-Dimensional Surfaces — You Try It

These appeared above; solutions begin on the next page.

(1) What do y = x2 and x = z2 look like in 3D?

(2) Describe the 3D surface y2 + 4z2 = 4. Give identifying information

that supports your description.

(3) What are the x, y, and z intercepts of the plane x+ 3y − 2z − 10 = 0?

(4) Find the equation of the plane containing the points (−1,−1, 1), (1, 0, 3)

and (2, 2, 2).

(5) Find the center and radius of the sphere x2+y2+z2−6x+4y−2z = 11.

(6) Identify the surface 4x2+9y2+36z2 = 36 using traces. Provide at least

one trace parallel to each each of the xy-, yz-, and xz-planes.

(7) Does the contour plot in Fig. 13.16 represent z = x2+y2 or z = x2−y2?

Why?

(8) Describe the following level curves:

• the level curve of z = x2 + 2y2 corresponding to z = 3.

• the level curve of t = q − 4r corresponding to t = 7.

• the level curve of x3 = −3x21 + x2 corresponding to x3 = 2.

Three-Dimensional Surfaces — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.1.3.

(1) Find the equation of the plane containing the points (1, 0, 1), (0, 1, 1)

and (1, 1, 0).

(2) Identify the surface x2 + y2 + z2 = 4x − 2y. Give at least two pieces

of identifying information that distinguishes this surface from others of

the same type.

(3) Find the equation of a sphere that has center (3, 8, 1) and passes

through the point (4, 3,−1).

(4) Describe the 3D surface x2− y2 = 1. Give identifying information that

supports your description.

(5) Identify the surface z = x2−y2 using traces. Provide at least one trace

parallel to each each of the xy-, yz-, and xz-planes.

(6) Complete the squares on 4x2 +y2 +4z2−4y−24z+36 = 0 and identify

it using traces.
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Fig. 13.16 Contours for z = x2 + y2 or z = x2 − y2?

(7) Identify the surface z2 = 4x2 + 9y2 + 36 using traces. Provide at least

one trace parallel to each each of the xy-, yz-, and xz-planes.

(8) Does the contour plot in Fig. 13.17 represent z = sin(x) cos(y) or z =

sin(y) cos(x)? Why?

(9) Present the level curves of z = 3x2 − 2y2 for = −2,−1, 0, 1, 2 as a 2D

contour plot.

Three-Dimensional Surfaces — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.1.3.

(1) A plane shares x and y intercepts with the plane 2x + y − 3z − 4 = 0

but has its own z intercept of (0, 0,−2). What is the equation of this

plane?

(2) Identify the surface 4x2 + 4y2 + 4z2 − 8x+ 16y = 1. Give at least two

pieces of identifying information that distinguishes this surface from

others of the same type.

(3) Identify the surface 25y2+z2 = 100+4x2 using traces. Provide at least

one trace parallel to each each of the xy-, yz-, and xz-planes.
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Fig. 13.17 Contours for z = sinx cos y or z = sin y cosx?

(4) (Bonus! This problem will connect to others in later sections.) Find the

level surface of w = 2x2 + y2 + z corresponding to w = 4, and present

that level surface as a contour plot showing the values z = 0, 1, 2, 3.

(Thus, from a 4D hypersurface, we generate a 3D level surface, and for

that we show several 2D level curves!)
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Three-Dimensional Surfaces — You Try It — Solved

(1) What do y = x2 and x = z2 look like in 3D?

� In 2D, y = x2 is a parabola. When we expand to 3D, the z coordi-

nate is now unspecified and unrestricted. We can picture the parabola

y = x2 elongated along the z-axis. This is called a parabolic cylinder.

In the 2D xz-plane, z = y2 is a parabola. When we expand to 3D, the

x-coordinate is now unspecified and unrestricted. We get a parabolic

cylinder elongated along the x-axis.

Use tech to plot these and see what they look like. �

(2) Describe the 3D surface y2 + 4z2 = 4. Give identifying information

that supports your description.

� In the 2D yz-plane, this is an ellipse. When we expand to 3D, the

x-coordinate is now unspecified and unrestricted. We can picture the

2D ellipse y2 + 4z2 = 4 elongated along the x-axis. This is called an

elliptic cylinder. �

(3) What are the x, y, and z intercepts of the plane x+ 3y− 2z− 10 = 0?

� The x intercept occurs where the y and z coordinates are both 0.

In this case, the equation gives x− 10 = 0, or x = 10. The y intercept

occurs where the x and z coordinates are both 0. In this case, the

equation gives 3y − 10 = 0, or y = 10/3. The z intercept occurs where

the x and y coordinates are both 0. In this case, the equation gives

−2z − 10 = 0, or z = −5. So the intercepts are (10, 0, 0), (0, 10/3, 0)

and (0, 0,−5). �

(4) Find the equation of the plane containing the points (−1,−1, 1), (1, 0, 3)

and (2, 2, 2).

� Plugging each point into the general form for a plane and simplifying,

we get:

a(−1) + b(−1) + c(1) + d = 0 → −a− b+ c+ d = 0

a(1) + b(0) + c(3) + d = 0 → a+ 3c+ d = 0

a(2) + b(2) + c(2) + d = 0 → 2a+ 2b+ 2c+ d = 0

Again, we have 3 equations, but 4 unknowns. Let’s let d be the “extra”
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unknown, and choose it to be a convenient value — such as −2. With

d = −2, we then get the three equations

−a− b+ c = 2

a+ 3c = 2

2a+ 2b+ 2c = 2

The solution to this system is a = −5/2, b = 2, and c = 3/2, so that

the equation of the plane becomes

−5

2
x+ 2y +

3

2
z − 2 = 0

or multiplying by 2,

−5x+ 4y + 3z − 4 = 0

This can also be written as

z =
5

3
x− 4

3
y +

4

3
�

(5) Identify the surface x2 + y2 + z2− 6x+ 4y− 2z = 11. Give at least two

pieces of identifying information that distinguishes this surface from

others of the same type.

� To completing the square on the given equation, we have to group

the variables and include “clever” terms on both sides:

(x2 − 6x+ (−3)2) + (y2 + 4y + (2)2) + (z2 − 2z + (−1)2)

= 11 + (−3)2 + (2)2 + (−1)2

which then allows clean-up and factoring,

(x2 − 6x+ 9) + (y2 + 4y + 4) + (z2 − 2z + 1) = 11 + 9 + 4 + 1

(x− 3)2 + (y + 2)2 + (z − 1)2 = 25

So this is a sphere with center (3,−2, 1) and radius 5. �

(6) Identify the surface 4x2+9y2+36z2 = 36 using traces. Provide at least

one trace parallel to each each of the xy-, yz-, and xz-planes.

� In the plane x = 0, we get the trace 9y2 + 36z2 = 36, which is an

ellipse. In the plane y = 0, we get the trace 4x2 + 36z2 = 36, another

ellipse. The trace in the plane z = 0 is also an ellipse. In any plane

x = c, we get

4c2 + 9y2 + 36z2 = 36

9y2 + 36z2 = 36− 4c2
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which is an ellipse only defined for |c| ≤ 3. The trace in the plane y = c

looks like

4x2 + 9c2 + 36z2 = 36

4x2 + 36z2 = 36− 9c2

which is an ellipse only defined for |c| ≤ 2. The trace in the plane z = c

looks like

4x2 + 9y2 + 36c2 = 36

4x2 + 9y2 = 36− 36c2

which is an ellipse only defined for |c| ≤ 1. Since all traces are ellipses,

this is an ellipsoid. �

(7) Does the contour plot in Fig. 13.18 represent z = x2+y2 or z = x2−y2?

Why?

Fig. 13.18 Contours for z = x2 + y2 or z = x2 − y2?

� Contours of the function z = x2 + y2 are of the form x2 + y2 = c,

i.e. circles. Contours of the function z = x2 − y2 are of the form

x2 − y2 = c, i.e. hyperbolas. The contour plot shows hyperbolic con-

tours, so the plot represents z = x2 − y2. Labels of the contours have

been added here. �
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(8) Describe the following level curves:

• the level curve of z = x2 + 2y2 corresponding to z = 3.

• the level curve of t = q − 4r corresponding to t = 7.

• the level curve of x3 = −3x21 + x2 corresponding to x3 = 2.

� The level curve of z = x2 + 2y2 corresponding to z = 3 is the collec-

tion of all points (x, y) in R2 that yield x2 + 2y2 = 3. This is an ellipse,

going through (±
√

3, 0) and (0,±
√

3/2).

The level curve of t = q− 4r corresponding to t = 7 is the collection of

all points (q, r) from R2 (still a 2D plane, just with different variable

names — let’s assume assume q is horizontal, r is vertical) that yield

q − 4r = 7. This is a line, with intercepts (q, r) = (7, 0) and (0,−7/4).

The level curve of x3 = −3x21+x2 corresponding to x3 = 2 is the collec-

tion of all points (q, r) from R2 (still a 2D plane, just with different vari-

able names — let’s assume assume x1 is horizontal, x2 is vertical) that

yield −3x21 +x2 = 2. Since we can arrange this as x2 = 2 + 3x21, we are

looking at a parabola, opening upwards, with vertex (x1, x2) = (0, 2).

�
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13.4 Limits of Multivariable Functions

Introduction

Now that you are (hopefully) somewhat comfortable with the basics of mul-

tivariable functions, we can proceed through the same sequence of concepts

that we went through earlier for single variable functions. You may not

have realized it at the time, but the entirety of calculus is based on the idea

of a limit. Derivatives and definite integrals are both defined using limits.

So without further ado, let’s examine limits of multivariable functions.

Notation, Meaning, and the Easy Ones

For a single variable function f(x), we use the notation

lim
x→a

f(x) = L

This means that as a the independent variable x (in the domain of f(x))

approaches a target value a, the value of the function (in the range) is ap-

proaching a corresponding target L. When the limit is easily evaluated and

there are no surprises, the problem is boring. All the fun stuff happens in

the strange cases where there are asymptotes, infinities, or other patholo-

gies in the function.

Let’s upgrade this idea for a function of two independent variables,

z = f(x, y). If we take the notation away, the idea of a limit does not

change: as a member of the domain of the function approaches some target

value, the value of the function is approaching its own target. But when

we take a closer look, things start to get very interesting than before. For

one thing, the domain of a function of two variables is part to all of the

xy-plane, so a member of the domain is a point (x, y), not just x or y alone.

Therefore, we are interested in what happens to the function’s output value

z as (x, y) approaches some target, say (a, b), and we write

lim
(x,y)→(a,b)

f(x, y) = L

In the simplest cases, this still holds no surprises. For example, without

any further coaching, it probably makes sense to you that

lim
(x,y)→(1,2)

x2 + y2 = 5

or that

lim
(x,y)→(π/2,0)

cos y

sinx
= 1
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When you tackled single variable limits for the first time, you learned

all sorts of limit rules like

(a) lim
x→a

(c · f(x)) = c lim
x→a

f(x)

(b) lim
x→a

(f(x)± g(x)) = lim
x→a

f(x) + lim
x→a

g(x)

(c) lim
x→a

f(x) · g(x) = lim
x→a

f(x) · lim
x→a

f(x)

(d) lim
x→a

xn =
(

lim
x→a

x
)n

(e) lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)
as long as lim

x→a
g(x) 6= 0

We can expect the multivariable analogs to hold as well, but note that

these are organizational rules of limits: they show how we can simplify or

rearrange limits, not what the actual value of any one limit is. For limit

rules that actually demonstrate how to predict limit values, we have to pick

those up individually as we look into specific functions.

One helpful rule from Chapter 2 that delivered actual values for limits

said that if f(x) is a polynomial or rational function and x = a is in the

domain of f(x), then

lim
x→a

f(x) = f(a)

In other words, the limit of such a function at a given target point is just

what we get when we plug x = a in to the function. The multivariable

analog of this continues to hold, and in fact, we’ll be quite cavalier in its

implementation. We’ll even extend it to more general functions by posing

this rule of thumb: “If you have a pretty good guess as to what a limit is,

just by examining the value of the function at the limit point, that guess

is likely correct”. It is rarely technically proper to claim that you have

evaluated a limit by “plugging in a value”. But we’re all friends here, nod

nod wink wink, and so we can propose this mathematical agreement among

friends:

Useful Fact 13.3. blank line

• (Single Variable) If you want to evaluate the limit of f(x) as x approaches

a, just test the target value x = a in the function f(x). If no problems

occur, and you get a perfectly good answer L, then odds are L is the limit

you’re looking for.
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• (Multivariable) If you want to evaluate the limit of f(x, y) as (x, y) ap-

proaches (a, b), just test the target value(s) (x, y) = (a, b) in the function

f(x, y). If no problems occur, and you get a perfectly good answer L,

then odds are L is the limit you’re looking for.

Put another way, when functions behave themselves, their limits are not

surprising.

EX 1 Investigate the limit lim
(x,y)→(1,2)

x+ y

x2 + y2
.

We should not evaluate limits by plugging in values. But just between

friends, let’s try it anyway. At (x, y) = (1, 2),

x+ y

x2 + y2
=

1 + 2

12 + 22
=

3

5

Since the function is equal to 3/5 at (x, y) = (1, 2), chances are that as

(x, y) approaches (1, 2), our function is approaching 3/5. Let’s take a leap

and predict that

lim
(x,y)→(1,1)

x+ y

x2 + y2
=

3

5
�

You Try It

(1) Investigate the limit lim
(x,y)→(5,2)

(x3 − y2 +
√
x− 2y).

Would an increase in the number of variables have any significant effect

on what we do?

You Try It

(2) Investigate the limit lim
(x,y,z)→(1,−1,1)

xy

1 + z
.

These have been examples of the easy limits. They are no fun. Let’s

get to the interesting stuff.

The Interesting Limits and Path Independence

As in the single variable case, the more interesting limit problems are the

ones in which strange things happen at or near the limit point — such as

when indeterminate forms like 0/0 turn up.
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The danger of using our little mathematical agreement between friends

to investigate limits is that we can’t turn it around and use it to conclude

opposite outcomes. In other words, suppose we are given a function f(x) or

f(x, y), and we start investigating the limit by just plugging in the target

point x = a or (x, y) = (a, b). If we get a good value back, that value is

likely the correct limit value. But if we FAIL to get a good value back, we

cannot conclude that the limit does not exit.

Let me repeat that again, because this is one of the most common

sources of error by students at this stage of calculus: you cannot say a limit

doesn’t exist just because things go bad when you plug in the limit point.

Failure of a function to exist at a limit’s target point simply means you

have to take a closer look at what’s going on. Do you remember this limit?

lim
x→0

sinx

x

If we are on autopilot, we might conclude that since the denominator of this

function is zero at x = 0 — and so the function is not defined at x = 0 —

then the limit must not exist. But that’s false! This is actually a perfectly

good limit, and it is equal to 1.

One of the first strategies to employ when you encounter a function

which appears to be undefined at the limit point is to see if you can alge-

braically simplify the function:

EX 2 Investigate the limit lim
(x,y)→(1,1)

x− y
x2 − y2 .

If we try to just plug in (x, y) = (1, 1) we get 0/0. This does not mean the

limit doesn’t exist yet. If we simplify the function, we can actually see that

lim
(x,y)→(1,1)

x− y
x2 − y2 = lim

(x,y)→(1,1)

x− y
(x+ y)(x− y)

= lim
(x,y)→(1,1)

1

x+ y
=

1

2
�

You Try It

(3) Investigate the limit lim
(x,y)→(0,0)

x2 + y2√
x2 + y2 + 1− 1

. (Hint: Ratio-

nalize the denominator ... come on now, you’re reading about

multivariable calculus, you can’t let a phrase like “rationalize the

denominator” intimidate you!)
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But algebraic simplification won’t always solve our problems. Another

strategy to apply is to consider the idea of path independence. Think back

to the idea of left hand and right hand limits for single variable functions.

As x→ a, there are only two ways x can approach a: from the left or from

the right. And for a limit of some function f(x) to exist as x→ a, the left

and right hand limits must agree. This is why, for example, the limit

lim
x→0

|x|
x

does NOT exist: the left hand limit is −1 and the right hand limit is 1.

The idea of left and right hand limits does scale up to multivariable

functions, but it gets a lot worse! One the real line, there are only two

directions in which x can approach a: from the left, and from the right.

But suppose we have a multivariable limit in which the target point is

(x, y)→ (1, 2). This approach to (1, 2) happens in the xy-plane. From how

many directions can (x, y) approach (1, 2)? Here are some possibilities:

• (x, y) can approach (1, 2) along the vertical line x = 1, from above

or below.

• (x, y) can approach (1, 2) along the horizontal line y = 2, from the

left or the right.

• (x, y) can approach (1, 2) along the line y = 2x, up from the lower

left or down from the upper right.

• (x, y) can approach (1, 2) along the curve y = 2 − 2(x − 1)2, from

the left or the right. (Paths of approach do not have to be straight

lines!)

(These paths are included in Fig. 13.19, with others.) Untimately, there are

infinitely many directions of approach to the point (1, 2) in the xy-plane!

And in order for a limit

lim
(x,y)→(1,2)

f(x, y)

to exist, we have to get the same value of the limit from every single pos-

sible direction of approach. Now, how feasible is it to check a limit along

an infinite number of paths of approach? Not very. It’s impossible to ex-

haustively check all possible directions of approach of (x, y) to (a, b). We

actually never show that a limit exists by investigating different paths of

approach. Rather, this idea is used in the reverse sense: we can show a

limit does NOT exist by finding two directions of approach to our limit

point that produce different limits.
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Fig. 13.19 Paths of approach to the point (1, 2) in the xy-plane.

Before solving entire limit problems this way, we have to know how to

check a limit along a specific path of approach. Here’s how that works:

(1) Choose a path of approach to a limit point (a, b). Often we start

with a the vertical line x = a or the horizontal line y = b.

(2) Restrict the function to values on that path alone by plugging in

the expression describing the path to the function; this reduces

the function to a single variable. For example, plugging in x = a

reduces f(x, y) to a single variable function f(a, y).

(3) Investigate the limit of this single variable function using all tools

available for such limits — including L-Hopital’s Rule, if needed!

EX 3 Find the limit of f(x, y) =
xy

x2 + y2
along these paths of approach

to (0, 0): x = 0 and y = x.

Along the path x = 0, the function f(x, y) reduces to

f(x, y) = f(0, y) =
0 · y

02 + y2
=

0

0 + y2
= 0

Since the function collapses to the constant value 0 at every point on the

path x = 0, then the limit of f(x, y) as (x, y) → (0, 0) on the path x = 0

is 0. Along the path y = x, the function f(x, y) reduces to

f(x, y) = f(x, x) =
x · x

x2 + x2
=

x2

x2 + x2
=

x2

2x2
=

1

2
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Since the function collapses to the constant value 1/2 at every point on the

path y = x, then the limit of f(x, y) as (x, y)→ (0, 0) on the path y = x is

1/2. �

You Try It

(4) Find the limit of f(x, y) = sin(x + y)/(x + y) along these paths

of approach to (0, 0): y = 0 and y = x. Do we know the limit of

f(x, y) as (x, y)→ (0, 0) from these two results?

So, suppose you’re investigating lim
(x,y)→(a,b)

f(x, y), and f(x, y) happens

to be undefined at (a, b). By now you know you cannot simply say the

limit does not exist, and move on to the next problem. But maybe you’re

suspicious that the limit really doesn’t exist — here’s what you can do:

• Select one path of approach for (x, y) to approach (a, b) — perhaps

the vertical line x = a or horizontal line y = b. Determine the limit

on this specific path.

• Select another path and repeat. If the new limit value is different

than the first one, you’re done — there are two paths of approach

that give different limits, and the limit does not exist. If the limit

is the same as before, then repeat again with a new path.

• Repeat until you get contradictory limit values or you just plain

give up.

Let me repeat something important. Path testing CANNOT be used to

claim that a limit exists. You cannot test, say, 3 paths, get a limit value

L = 2 on all of them, and then conclude that the limit really is 2. You can

only use path testing to demonstrate that a limit does NOT exist.

Knowing which paths are the most strategic to use is a matter of expe-

rience and intuition. There are no magic path generators which will give

you the best paths each time.

EX 4 Investigate the limit lim
(x,y)→(0,0)

xy

x2 + y2
.

We cannot evaluate the limit directly; if we try the point (0, 0) we fail to

get a result since the function becomes 0/0 there. So now we’ll hope the

limit does NOT exist. We show above in EX 3 that along the path x = 0;

we get:
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lim
(x,y)→(0,0)

xy

x2 + y2
= lim
y→0

(0)y

(0)2 + y2
= lim
y→0

(0) = 0

along the path y = x we get

lim
(x,y)→(0,0)

xy

x2 + y2
= lim
x→0

x(x)

x2 + (x)2
= lim
x→0

x2

2x2
= lim
x→0

1

2
=

1

2

Since we have found two paths of approach to the limit point (0, 0) that

give different limit values, we can conclude that this limit does not exist.

Figure 13.20 shows f(x, y) near the origin. The graph has quite a snarl

near (0, 0), like someone poked a pencil in the (x, y) plane at the origin and

then twisted. But, you can see a “ridge” on the surface at an elevation of

z = 1/2; this is over the line y = x. �
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Fig. 13.20 The function f(x, y) = xy/(x2 + y2).

You Try It

(5) Investigate the limit lim
(x,y)→(0,0)

x2

x2 + y2
.

(6) Investigate the limit lim
(x,y)→(0,0)

xy2

x2 + y4
.
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NOTE: When picking paths to test, make sure your path actually goes

to the point you want it to. For example, we cannot use the path y = 1/x

to test a limit as (x, y)→ (0, 0). Make sure you see why!

Continuity

The concepts of limits and continuity go hand in hand. Loosely speaking, a

function is continuous anywhere that the value of the limit as (x, y)→ (a, b)

is the value the function really hits at (x, y) = (a, b). This way, there are

no breaks, holes, gaps, etc at (x, y) = (a, b). This line of thinking masks

some complications, though. For good old fashioned y = f(x) types of

functions, we introduced the idea of continuity from the left and the right;

on an interval [a, b], f(x) was continuous from, say, the left if

lim
x→b−

f(x) = f(b)

and then we would include x = b in the interval of continuity. That’s why

we say f(x) =
√

1− x2 is continuous on the closed interval [−1, 1]: the

function is not defined for x > 1, but continuity from the left at x = 1

is good enough to say the function is “continuous” there ... and similarly

for x = −1. When we scale up to domains of functions f(x, y) that are

regions of the 2D xy-plane, things along the edge of a finite domain are

more complicated than in a scenario of just left and right sided limits. How

would we assess continuity at, say, the edge of a circular domain such as

for f(x, y) =
√

1− x2 − y2? If you want to explore this in detail, take a

course in Advanced Calculus or Real Analysis (and it’s often the second

semester of either when multivariable functions are opened up again). For

our purposes, we can simply state the following:

Definition 13.1. A function f(x, y) is continuous at (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b).

At this basic level, points of continuity of a function can be seen as

points from the domain at which no strange things happen.

EX 5 Where is the function f(x, y) =
sin(xy)

ex − y continuous?

The domain of this function does not include any points from the curve

y = ex; with that, we can say that all points in the xy-plane not on that

curve are points of continuity of the function. �
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You Try It

(6) Where is the function ln(x2 + y2 − 4) continuous?

The Formal Definition of Limits

Here is an extra portion for those of you who may have enjoyed Sec. 2.5

(Volume 1) and the peek behind the curtain of formal definitions of limits

which quantify all the loose language of the function “getting closer” to its

limit as the input value(s) “get closer” to their target. We will not do any

problem solving, but rather will just update the language for those who are

interested.

In the single variable scenario, the formal definition looked like this:

Definition 13.2. lim
x→a

f(x) = L if, given any ε > 0 there exists a δ > 0

such that |f(x)− L| < ε whenever 0 < |x− a| < δ.

The quantity |f(x) − L| measures how close f(x) is getting to its sup-

posed limit, while |x−a| measures how close the input variable x is getting

to its target. Overall, the definition requires that we can link together the

measures of “closeness”, so that we can answer a challenge like, “Guaran-

tee that we can get f(x) within 0.01 of its limit value” by answering with,

“Okay, as long as you choose x to be within 0.005 of its target, then f(x)

is guaranteed to be within 0.01 of the limit value.” When we can discover

the link between these two small windows ([L− ε, L+ ε] on the y-axis and

[a−δ, a+δ] on the x-axis), regardless of how small ε is, we have conclusively

proven the limit.

When we move to the multivariable case z = f(x, y), then the idea of

the input variable(s) getting closer to their target is more complicated: we

have (x, y)→ (a, b), which takes place anywhere in a neighborhood around

the point (a, b) in the xy-plane. A measure of “how close” (x, y) is to (a, b)

relies on establishing a circle around (a, b), because — as we know — (x, y)

can approach (a, b) from any direction.
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And so, the new and improved formal definition of a (finite) limit in 3D

looks like this:

Definition 13.3. lim
(x,y)→(a,b)

f(x, y) = L if, given any ε > 0 there exists a

δ > 0 such that |f(x)− L| < ε whenever 0 <
√

(x− a)2 + (y − b)2 < δ.

An illustration of this definition in action is shown in Fig. 13.21, which

involves the limit L of f(x, y) = 1+xy as (x, y) approaches (3, 2). We know

(or, without rigid proof, we’re pretty sure) that this limit value is L = 7.

The figure shows a circle of radius 0.5 around (3, 2) in the xy-plane; we

can see that as long as input to f(x, y) comes from within that circle, the

resulting values of f(x, y) are certain to be within some ε of L = 7. This

value happens to be ε ≈ 1.7 in this case, and the image demonstrates the

statement, “Given ε = 1.7, then there is a corresponding value δ = 0.5 such

that |f(x) − L| < ε whenever 0 <
√

(x− 3)2 + (y − 2)2 < δ.” The formal

definition of the limit holds for this one particular pairing of ε and δ. That’s

great for an illustration, but it’s not the whole story.

A complete proof that our limit is correct requires that we generate a

general link between δ and ε for any epsilon; that way, we can “squeeze”

the window around L = 7, and correspondingly squeeze the window around

(3, 2) — so that no matter how small ε gets, we can always find a δ such

that |f(x) − L| < ε whenever 0 <
√

(x− a)2 + (y − b)2 < δ. Establishing

this general argument locks in the proof that the limit is correct.

Fighting through this kind of argument for multivariable functions is not

a trivial task; if these sorts of deeper mathematical details are intriguing to

you, then you definitely should plan to take a course in Advanced Calculus

or Real Analysis.
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Fig. 13.21 The ε− δ frame for a limit with f(x, y) = 1 + xy.

Limits of Multivariable Functions – Problem List

Limits of Multivariable Functions — You Try It

These appeared above; solutions begin on the next page.

(1) Investigate the limit lim
(x,y)→(5,2)

(x3 − y2 +
√
x− 2y).

(2) Investigate the limit lim
(x,y,z)→(1,−1,1)

xy

1 + z
.

(3) Investigate the limit lim
(x,y)→(0,0)

x2 + y2√
x2 + y2 + 1− 1

. (Hint: Rationalize

the denominator.)

(4) Find the limit of f(x, y) =
sin(x+ y)

x+ y
along these paths of approach to

(0, 0): y = 0 and y = x. Do we know the limit of f(x, y) as (x, y) →
(0, 0) from these two results?
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(5) Investigate the limit lim
(x,y)→(0,0)

x2

x2 + y2
.

(6) Investigate the limit lim
(x,y)→(0,0)

xy2

x2 + y4
.

(7) Where is the function ln(x2 + y2 − 4) continuous?

Limits of Multivariable Functions — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.1.4.

(1) Investigate the limit lim
(x,y)→(0,0)

xy

cos(xy)
.

(2) Investigate the limit lim
(x,y)→(0,0)

x2 + sin2 y

2x2 + y2
.

(3) Investigate the limit lim
(x,y)→(0,0)

xy4

x2 + y8
.

(4) Where is the function f(x, y) = (x− y)/(1 + x2 + y2) continuous?

Limits of Multivariable Functions — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.1.4.

(1) Investigate the limit lim
(x,y)→(0,0)

6x3y

2x4 + y4
.

(2) Investigate the limit lim
(x,y)→(0,0)

x4 − y4
x2 + y2

.

(3) Where is the function f(x, y, z) =
√

1− x2 − y2 − z2 continuous?
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Limits of Multivariable Functions — You Try It — Solved

(1) Investigate the limit lim
(x,y)→(5,2)

x3 − y2 +
√
x− 2y.

� We do not evaluate limits by plugging in values. No, sir! But let’s

try it anyway. At (x, y) = (5, 2),

x3 − y2 +
√
x− 2y = 53 − 22 +

√
5− 4 = 125− 4 + 1 = 122

Since the function is equal to 122 at (x, y) = (5, 2), chances are that as

(x, y) approaches (5, 2), our function is approaching 122. �

(2) Investigate the limit lim
(x,y,z)→(1,−1,1)

xy

1 + z
.

� We do not evaluate limits by plugging in values. No way, no how.

But let’s try it anyway. At (x, y, z) = (1,−1, 1),

xy

1 + z
=

(1)(−1)

1 + 1
= −1

2

Since the function is equal to −1/2 at (x, y, z) = (1,−1, 1), chances

are that as (x, y, z) approaches (1,−1, 1), our function is approaching

−1/2. �

(3) Investigate the limit lim
(x,y)→(0,0)

x2 + y2√
x2 + y2 + 1− 1

. (Hint: Rationalize

the denominator.)

� Remember that whole “rationalizing the denominator” business from

when you did single variable limits? Consider that

x2 + y2√
x2 + y2 + 1− 1

=
x2 + y2√

x2 + y2 + 1− 1
·
√
x2 + y2 + 1 + 1√
x2 + y2 + 1 + 1

=
(x2 + y2)(

√
x2 + y2 + 1 + 1)

(x2 + y2 + 1)− 1

=
(x2 + y2)(

√
x2 + y2 + 1 + 1)

x2 + y2
=
√
x2 + y2 + 1 + 1

so

lim
(x,y)→(0,0)

x2 + y2√
x2 + y2 + 1− 1

= lim
(x,y)→(0,0)

(
√
x2 + y2 + 1 + 1) = 2 �
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(4) Find the limit of f(x, y) =
sin(x+ y)

x+ y
along these paths of approach to

(0, 0): y = 0 and y = x. Do we know the limit of f(x, y) as (x, y) →
(0, 0) from these two results?

� Along y = 0, the function reduces to

f(x, 0) =
sin(x+ 0)

x+ 0
=

sin(x)

x

and we know that lim
x→0

sin(x)

x
= 1.

Along y = x, the function reduces to

f(x, x) =
sin(x+ x)

x+ x
=

sin(2x)

2x

and we will also have lim
x→0

sin(2x)

2x
= 1.

Since we found a limit of L = 1 on both paths, the overall limit is

L = 1, right? ... Wrong! We can make no conclusions about the limit

with these results. It might be 1, but it might not be. To conclude

that the limit is 1, we need to see the limit be 1 on every possible path

of approach to (0, 0). We now have ∞− 2 paths left to check. �

(5) Investigate the limit lim
(x,y)→(0,0)

x2

x2 + y2
.

� Along the path x = 0,

lim
(x,y)→(0,0)

x2

x2 + y2
= lim

(x,y)→(0,0)

0

0 + y2
= 0

Along the path y = 0,

lim
(x,y)→(0,0)

x2

x2 + y2
= lim

(x,y)→(0,0)

x2

x2
= 1

So we get two different limits on two different paths, and the limit does

not exist. �

(6) Investigate the limit lim
(x,y)→(0,0)

xy2

x2 + y4
.
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� Along the path x = 0,

lim
(x,y)→(0,0)

xy2

x2 + y4
= lim

(x,y)→(0,0)

0

0 + y4
= 0

Along the path y = 0, we’ll get L = 0 too. How about along the path

x = y2?

lim
(x,y)→(0,0)

xy2

x2 + y4
= lim

(x,y)→(0,0)

(y2)y2

(y2)2 + y4
= lim

(x,y)→(0,0)

y4

2y4
=

1

2

So we get two different limits on two different paths, and the limit does

not exist. �

(7) Where is the function ln(x2 + y2 − 4) continuous?

� The domain of this function is all points such that x2 + y2 − 4 > 0,

i.e. everywhere that x2 + y2 > 4. This is everywhere outside the circle

of radius 2 centered at the origin. Within this domain, all points (x,y)

are points of continuity. �
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13.5 Partial Derivatives

Introduction

Ah, life was good back in the days when functions had only one first deriva-

tive, df/dx or f ′, and only one second derivative, d2f/dx2 or f ′′. Now that

we are considering functions of more than one variable, the number of possi-

ble derivatives really starts to stack up. The number of first derivatives of a

multivariable function is the same as the number of independent variables;

for example, f(x, y) will have two first derivatives. The number of second

derivatives is the number of possible pair-wise combinations of independent

variables; f(x, y) would have four second derivatives, corresponding to the

combinations xx, xy, yx, yy. A function of three variables has three first

derivatives, nine second derivatives, and 27 third derivatives. I’ll bet you

are pretty excited now!

The Definition of a Partial Derivative

Here is the formal definition of a derivative in the old, boring single variable

setting:

df

dx
= f ′(x) = lim

h→0

f(x+ h)− f(x)

h

Try to remember the interpretation of this: df/dx measures the instanta-

neous change in output of the function caused by the instantaneous change

in the independent variable at a certain value. As we pass some x = a, how

fast is the function changing? This is called the rate of change of f with

respect to x.

In the new multivariable setting, we want to measure the same thing:

the instantaneous change in output of the function caused by the instan-

taneous change in one of the independent variables at a certain value. We

still want to examine this change one variable at a time. That’s why, as

stated above, the function f(x, y) will have two first derivatives: the rate

of change with respect to x, and the rate of change with respect to y. Each

variable contributes a part of the total change in f at a given point, say

(x, y) = (a, b), and so the first derivatives are now called partial derivatives.

Based on the fact that we’re still measuring essentially the same thing, a

rate of change of the function with respect to a variable, these new formal

definitions of first partial derivatives should make some sense:
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Definition 13.4. For a function f(x, y), the first partial derivative with

respect to x is defined by

∂f

∂x
= fx(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h

and the first partial derivative with respect to y is defined by

∂f

∂y
= fy(x, y) = lim

h→0

f(x, y + h)− f(x, y)

h

Notation: Remember that in single variable derivatives, we had two

notations to describe the derivative of f with respect to x: df/dx and f ′.
In the multivariable setting there are also two notations, shown in the def-

initions above. Operator notation uses the curly-d symbol ∂ to indicate

a partial derivative. Subscript notation shows a which variable is active

during a derivative: for example, fx represents a derivative with respect to

x (a prime, f ′, is not sufficient anymore).

We don’t really use these limit definitions to compute partial deriva-

tives, but as long as you’re going to be computing partial derivatives, you

might as well know what they mean!

FFT: This following attempted definition would be wrong:

lim
h→0

f(x+ h, y + h)− f(x, y)

h

Do you know why?

Can you construct the formal definition of the first derivative with re-

spect to y of the function u = f(x, y, z, w)?

Computing First Order Partial Derivatives

Recall from dealing with single variable functions f(x) that we can com-

pute either the numerical value of a derivative at a given point, or we can

compute a derivative function fx that will give us the derivative values at

all useable points. For example, if f(x) = x2, then the derivative function

is df/dx = 2x whereas the value of the derivative at x = 2 is 4. This

same idea holds true in the multivariable setting as well. We can compute

derivative values or derivative functions.
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We find partial derivatives by treating one variable as constant and

doing the derivative with respect to the other variable, using all the familiar

single variable derivative rules. For example, to compute fx(x, y) we treat

y as constant and do the derivative with respect to x.

EX 1 Find all first order derivatives of f(x, y) = x5 + x2y3 − 7xy + 6x−
y + 1.

Since there are two independent variables, x and y, there will be two first

order partial derivatives, ∂f/∂x and ∂f/∂y (also known as fx and fy). To

find fx, we treat y as a constant and do the “usual” derivative operations

with respect to x, so we get:

fx(x, y) = 5x4 + (2x)(y3)− 7y + 6

The y3 in the second term is temporarily treated as a multiplicative constant

on the x2, and so it doesn’t change. In the term 7xy, the 7 and the y are

treated as multiplicative constants — essentially, the term is (7y)x and so

the derivative with respect to x is 7y. The final chunk −y+ 1 is considered

constant, and so its derivative is 0. Similarly, to find fy, we treat x as a

constant and do the “usual” derivative stuff with respect to y, so we get:

fy(x, y) = 3x2y2 − 7x− 1

The term x5 is temporarily treated as a constant, so its derivative is 0. The

same is true for 6x. The x2 in the term x2y3 is a temporary multiplicative

constant, and so the derivative of that term is x2(3y2) which rearranges to

3x2y2. �

The tracking of variables gets a little trickier when the product, quotient,

or chain rules are involved.

EX 2 Find all first order derivatives of f(x, y) = xexy.

We’ll have two first partial derivatives. Note that when we take the deriva-

tive with respect to x, there’s a product rule waiting to happen, and a chain

rule within one term of the product rule:

∂f

∂x
=

(
∂

∂x
x

)
(exy) + x ·

(
∂

∂x
exy
)

= (1)exy + x

(
exy

∂

∂x
(xy)

)

= exy + x (exy(y)) = (1 + xy)exy
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The partial derivative with respect to y is a bit easier, but there’s a chain

rule again:

∂f

∂y
= xexy · ∂

∂y
(xy) = xexy · x = x2exy �

You also have to be able to do derivatives for variables other than the

usual x and y, and/or for functions that have more than two independent

variables.

EX 3 Find all first order derivatives of f(x, y, z) = x2 + xyz + xy + yz.

There are three first order partial derivatives; they are

fx = 2x+ yz + y fy = xz + x+ z fz = xy + y �

EX 4 Find all first order derivatives of z = sinα cosβ.

There are two first order first partial derivatives, with respect to α and β.

In both notations, they are:

∂z

∂α
= zα = cosα cosβ

∂z

∂β
= zβ = sinα(− sinβ) = − sinα sinβ �

You Try It

(1) Find both first order derivatives of z = xe3y.

(2) Find all three first order derivatives of f(x, y, z) = xy2z3 + 3yz.

To compute a specific derivative value, the easiest thing to do is get the

appropriate derivative function, and then plug in the point in question.

EX 5 If f(x, y) = xexy, what is fx(1, 0)?

We found the partial derivative fx in EX 2 above, and it was fx(x, y) =

(1 + xy)exy. So fx(1, 0) = (1 + 1 · 0)e1·0 = (1)e0 = 1. �

You Try It

(3) If f(x, y) =
√
x2 + y2, what is fx(3, 4)?
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Higher Order Derivatives

You should have noted by now that the partial derivatives of a function

are themselves functions of all the variables in the original. If we start

with f(x, y) then both first partial derivatives are functions of x and y,

too, and they are noted fx(x, y) and fy(x, y). Since each first derivative

is a function of both x and y, then each has its own pair of derivatives.

And you probably recall from Calc I that a derivative of a first derivative

is called a second derivative. Therefore, a function of two variables x and

y has four possible second partial derivatives:

(1) fx(x, y) has a derivative with respect to x.

(2) fx(x, y) has a derivative with respect to y.

(3) fy(x, y) has a derivative with respect to x.

(4) fy(x, y) has a derivative with respect to y.

(How many second derivatives would f(x, y, z) have?)

You have to be alert to the differences in notation for second partial

derivatives and higher depending on whether you are using subscript or

operator notation. In subscript notation, we just list the derivatives in the

order they happen, left to right. The derivative fxy represents Case 2 above

— we find the first partial derivative with respect to x then find the partial

derivative with respect to y of that. However, in operator notation (the

notation with the ∂ symbols), we’d write the explicit sequence of derivative

actions, and its more compressed form, as

∂

∂y

(
∂f

∂x

)
→ ∂2f

∂y∂x

So, we have two versions of the same derivative,

fxy or
∂2f

∂y∂x

Note that the order of the x and y is different! You have to be very aware

of which notation you’re using, and be alert to the order of derivative op-

erations that are indicated.

A relief valve in the complexity of higher order derivatives is:

Theorem 13.1. Clairaut’s Theorem: If f(x, y) has continuous second

order partial derivatives at and around a point (a, b), then fxy(a, b) =

fyx(a, b).
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The informal interpretation is that unless f(x, y) is an oddball function,

then the mixed partial derivatives are going to be the same.

EX 6 If f(x, y) = sin(x2 + y2), find all second order partial derivatives

and check for consistency with Clairaut’s Theorem.

We start with the first derivatives

fx = 2x cos(x2 + y2) ; fy = 2y cos(x2 + y2)

and then can compute second derivatives from these. First, we take the

derivative with respect to x of the first derivative with respect to x. Watch

out for the product rule!

fxx =
∂2f

∂x2
= 2 cos(x2 + y2) + 2x

(
−2x sin(x2 + y2)

)

= 2 cos(x2 + y2)− 4x2 sin(x2 + y2)

Next, we take the derivative with respect to y of the first derivative with

respect to x:

fxy =
∂2f

∂x∂y
= 2x

(
−2y sin(x2 + y2)

)
= −4xy sin(x2 + y2)

The derivative with respect to x of the first derivative with respect to y is:

fyx =
∂2f

∂y∂x
= 2y

(
−2x sin(x2 + y2)

)
= −4xy sin(x2 + y2)

And finally, the derivative with respect to y of the first derivative with

respect to y is (product rule alert!):

fyy =
∂2f

∂y2
= 2 cos(x2 + y2) + 2y

(
−2y sin(x2 + y2)

)

= 2 cos(x2 + y2)− 4y2 sin(x2 + y2)

Since fxy = fyx, these results are consistent with Clairaut’s Theorem — as

they should be, since the second partials are continuous everywhere. �

EX 7 If f(x, y) = x11 + xy2, what are fxxx(2, 5) and ∂12f/∂x12?

First, we need the third partial derivative with respect to x. Going down

the line, we have

fx = 11x10 + y2

fxx = 11 · 10x9 = 110x9

fxxx = 110 · 9x8 = 990x8
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and therefore fxxx(2, 5) = 990(2)8 = 253, 440. The derivative ∂12f/∂x12

represents the twelfth derivative with respect to x. But each derivative

knocks down the power of of xn by 1. Since we start with x11, then after

12 derivatives there will be nothing left. So ∂12f/∂x12 = 0. �

You Try It

(4) Find all second order derivatives of f(x, y) = x4 − 3x2y3.

(5) If f(x, y, z) = 3xy4 + x3y2, what are fxxy and fyyy?

(6) If u = erθ sin θ, what is uθrr?

Laplace’s Equation

Laplace’s Equation is one of the most important equations in upper level

applied mathematics. It shows up in fluid flow problems, gravitation prob-

lems, electrostatics problems, meteorology, and so forth. Its development

requires a combination of rates of change with conservation principles. of

Laplace’s Equation for a function f(x, y) is

fxx + fyy = 0

A function which satisfies Laplace’s Equation can be called a potential

function. (You have probably heard of gravitational potential and electro-

static potential — that carry over in terminology is not accidental.) We’ll

come back to potential functions in general later on, for now we’re just

identifying this important equation.3

EX 8 Does u =
√
x2 + y2 satisfy Laplace’s Equation?

Apart from the change in name of the function to u, all we need to do is

find out if uxx + uyy = 0. Getting those derivatives, we have (the quotient

rule details in the second derivatives are omitted):

ux =
x√

x2 + y2
→ uxx =

y2

(x2 + y2)3/2

uy =
y√

x2 + y2
→ uyy =

x2

(x2 + y2)3/2

The function does not satisfy Laplace’s Equation because,

uxx + uyy =
x2 + y2

(x2 + y2)3/2
=

1√
x2 + y2

6= 0 �

3If you find Laplace’s Equation and potential functions really interesting, be sure to

enroll in a course about Partial Differential Equations!
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You Try It

(7) Does u = x2 + y2 satisfy Laplace’s Equation?

Partial Derivatives — Problem List

Partial Derivatives — You Try It

These appeared above; solutions begin on the next page.

(1) Find both first order derivatives of z = xe3y.

(2) Find all three first order derivatives of f(x, y, z) = xy2z3 + 3yz.

(3) If f(x, y) =
√
x2 + y2, what is fx(3, 4)?

(4) Find all second order derivatives of f(x, y) = x4 − 3x2y3.

(5) If f(x, y, z) = 3xy4 + x3y2, what are fxxy and fyyy?

(6) If u = erθ sin θ, what is uθrr?

(7) Does u = x2 + y2 satisfy Laplace’s Equation?

Partial Derivatives — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.1.5.

(1) Find both first order derivatives of z = y lnx.

(2) Find both first order derivatives of u = tew/t.

(3) Find all first order derivatives of f(x, y, z) = x2eyz.

(4) Find all first order derivatives of w =
√
r2 + s2 + t2.

(5) If f(x, y) = sin(2x+ 3y), what is fy(−6, 4)?

(6) Find all second order derivatives of f(x, y) = ln(3x+ 5y).

(7) If f(r, s, t) = r ln(rs2t3), what are frss and frst?

(8) Does u = x2 − y2 satisfy Laplace’s Equation?

(9) For z = 3x2 − 2y2, compute zx(1, 0), zy(1, 0), zx(1, 1), zy(1, 1), zx(0, 1)

and zy(0, 1). In PP 9 of Sec. 13.3, you presented some level curves of

this function. On which level curves (specified by associated value of

z) will we find the points (1, 0), (1, 1), and (0, 1)?

Partial Derivatives — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.1.5.
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(1) Find both first order derivatives of f(s, t) =
st

s2 + t2
.

(2) Find all second order derivatives of u = e−s sin t.

(3) Does u = ln
√
x2 + y2 satisfy Laplace’s Equation?

(4) (Bonus! This problem connects to CP 4 in Sec. 13.3 and will be used

later, too.) For w = 2x2 + y2 + z, compute wx(1, 1, 1), wy(1, 1, 1),

and wz(1, 1, 1). In CP 4 of Sec. 13.3, you presented some level curves

associated with this level surface. Can you find where the point (1, 1, 1)

is indicated on the plot of those level curves?

Partial Derivatives — You Try It — Solved

(1) Find both first order derivatives of z = xe3y.

� For z = xe3y, we get

∂z

∂x
= e3y and

∂z

∂y
= 3xe3y �

(2) Find all three first order derivatives of f(x, y, z) = xy2z3 + 3yz.

� For f(x, y, z) = xy2z3 + 3yz, we get

fx = y2z3 fy = 2xyz3 + 3z fz = 3xy2z2 + 3y �

(3) If f(x, y) =
√
x2 + y2, what is fx(3, 4)?

� Find the first derivative fx then plug in (3, 4):

fx =
x√

x2 + y2
→ fx(3, 4) =

3√
32 + 42

=
3

5
�

(4) Find all second order derivatives of f(x, y) = x4 − 3x2y3.

� With this function, we have these first derivatives:

fx = 4x3 − 6xy3 and fy = −9x2y2

so that

fxx = 12x2 − 6y3 ; fxy = fyx = −18xy2 ; fyy = −18x2y �

(5) If f(x, y, z) = 3xy4 + x3y2, what are fxxy and fyyy?

� For the first one,

fx = 3y4 + 3x2y2 → fxx = 6xy2 → fxxy = 12xy

For the second one,

fy = 12xy3 + 2x3y → fyy = 36xy2 + 2x3 → fyyy = 72xy �
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(6) If u = erθ sin θ, what is uθrr?

� This is a third order derivative and there will be a product rules

involved in the derivative with respect to θ:

∂u

∂θ
= rerθ sin θ + erθ cos θ

= erθ(r sin θ + cos θ)

∂2u

∂r∂θ
=

∂

∂r

∂u

∂θ
= θerθ(r sin θ + cos θ) + erθ(sin θ)

= erθ(θr sin θ + θ cos θ + sin θ)

∂3u

∂2r∂θ
=

∂

∂r

∂2u

∂r∂θ
= θerθ(θr sin θ + θ cos θ + sin θ) + erθ(θ sin θ)

= θerθ(θr sin θ + θ cos θ + 2 sin θ) �

(7) Does u = x2 + y2 satisfy Laplace’s Equation?

� We have uxx = 2 and uyy = 2, so uxx + uyy 6= 0, and the function

does not satisfy Laplace’s equation. �



Chapter 14

Can We All Agree That Just One
Variable Was Lame?

14.1 The Chain Rule

Introduction

Here’s a question that seems relatively harmless:

• The length and width of a rectangle are increasing at rates of

1 cm/sec and 1.5 cm/sec, respectively. How fast is the total area of

the rectangle increasing at the instant when the length and width

are 5 cm and 6 cm?

Now how hard can a problem about a rectangle be? Well, first let’s think

about an answer that might be intuitive, and yet wrong. Since A = LW ,

then if L changes at 1 cm/sec and W changes at 1.5 cm/sec, it almost

makes sense that the area would be changing at (1 cm/sec)(1.5 cm/sec) =

1.5 cm2/sec. But that’s wrong! For one thing, did you notice the units don’t

work out? Units are usually not something we just plop on at the end, they

need to develop organically and properly through the mathematics. But

further, here is a quick list of all the issues surrounding this question, which

together make it more complicated than you’d think!

• We all know that for a rectangle, A = LW , and so area depends on

length and width.

• But L and W are changing, and therefore their values depend on time t.

• So ultimately, the value of area depends on time t.

• The statement “length increases at 1 cm/sec” provides the value dL/dt =

1 cm
sec .

• The statement “width increases at 1 cm/sec” provides a value of dW/dt.
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• The question “how fast is the area increasing” is requesting a value of

dA/dt.

Do you see the issue? We want a value of the derivative dA/dt. But the

formula we have only links A to L and W , so there is no formula that links

A to t. How in the world can we find the derivative dA/dt?

There is a chain of dependencies from t to L and W , and then from L

and W to A. Effectively, the independent variable is t, and the dependent

variable is A. L and W are just intermediate variables that allow A to talk

to t. As you should remember from your journey through single variable

Calculus, the method we use to find derivatives of a dependent variable with

respect to an independent variable by going through intermediate variables

is called the chain rule.

The Chain Rule (Non) Formula

Suppose we have a function z that depends on variables x and y, which in

turn depend on yet another variable t. The notation soup for this situa-

tion is z = f(x(t), y(t)), and we are likely to be interested in the derivative

dz/dt. But we also likely do not have an equation directly relating z to t.

So how do we find that derivative? The Chain Rule!

The single variable scenario has, say, y depending on t through the in-

termediate variable x, and in that case, the applicable chain rule expression

is

dy

dt
=
dy

dx
· dx
dt

(14.1)

Now suppose we have z = f(x(t), y(t)), which means z depends on t through

the intermediate variables x and y. Think of all the derivatives implicit in

this relationship. Let’s say z is tied to x and y via z = x2 + y2. Then the

derivatives we have available from this are

∂z

∂x
= 2x and

∂z

∂y
= 2y

And let’s say x and y are tied to t via x = 2t and y = et. Then we also

have the derivatives

∂x

∂t
= 2 and

∂y

∂t
= et
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The derivative we really want is ∂z/∂t, but there’s no formula that directly

links z to t. (Please ignore that we could, in this case, plug in the expressions

for x and y to get z = (2t)2 + (et)2 ... that’s not always possible.) We can

scale up the form of Eq. (14.1) to get:

∂z

∂t
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
(14.2)

and we can now fill it in with the derivatives themselves:

∂f

∂t
= (2x)(2) + (2y)et = 4x+ y2et

And that’s the derivative we want! Technically, we should replace x and y

by their expressions with respect to t, to get

∂f

∂t
= 4(2t) + (et)(et) = 8t+ 2e2t

but in many cases this would get too messy, and so we’ll often omit that

final step. Also, very often, we have values of variables and derivatives to

put in place, so putting too much effort into the cosmetic appearance of

the derivative can be counterproductive. We just need to remember that x

and y depend on t and so the derivative shown in the second to last step is

a function of t, as desired. And, of course, read any instructions that are

given.

Equation (14.2) presents a case where the use of either style of derivative

notation (single vs. partial) can be correct. Certainly, the derivatives of z

with respect to x and y must be shown as partial derivatives with ∂. But

it would not be incorrect to write the derivatives of z, x, and y with single

derivative notation, because each of z, x, and y ultimately depend only on

t. That is, the alternate form

z′t =
∂f

∂x
x′t+

∂f

∂y
y′t

is also fine. But, I recommend being in the habit of using the partial symbols

anyway because we’re going to find situations where all of the derivatives

are partial derivatives.

There is no one magic chain rule formula that applies to all problems, we

have to generate a new one each time we’re faced with a new set of variable

names and dependencies. The general strategy is to create an expression

for the derivative we want such that
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• there is one contribution from each intermediate variable

• each contribution is made of derivatives that can be found from

the given equations

• each contribution simplifies to the derivative you want

EX 1 If z = f(x(t), y(t)) = x ln(x+2y) with x(t) = sin t and y(t) = cos t,

what is
∂z

∂t
?

Here are the derivatives we know about already from the equations:

∂z

∂x
= ln(x+ 2y) +

x

x+ 2y
;

∂z

∂y
=

2x

x+ 2y

∂x

∂t
= cos t ;

∂y

∂t
= − sin t

There are two intermediate variables, x and y. Our chain rule expression

will be

∂z

∂t
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t

This follows the guidelines above: one contribution from each intermediate

variable, all the derivatives are known, and each contribution (pair) reduces

to
∂z

∂t
. Filling in the derivatives gives:

∂z

∂t
=

(
ln(x+ 2y) +

x

x+ 2y

)
(cos t)− 2x

x+ 2y
(sin t)

This is a case when replacement of x and y with their expressions in terms

of t would get really messy, so we’ll leave it as-is. �

You Try It

(1) If z = f(x(t), y(t)) = x2y+xy2 with x(t) = 2+t4 and y(t) = 1−t3,

what is
∂z

∂t
?

More and Different Variables

Variations on chain rule problems arise when you have more than two inter-

mediate variables, or even more than one independent variable. We apply

the same ideas, and we can create chain rule expressions all day without

even having any specific functions in mind, just the variable dependencies!
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EX 2 If z = (u(s), v(s), w(s)), write a chain rule expression for
∂z

∂s
.

Since z depends on u,w, v and each of those depends on s, we have one

independent variable (s) but three intermediate variables. So we’ll have

three contributions to the overall derivative, arranged this way:

∂z

∂s
=
∂z

∂u

∂u

∂s
+
∂z

∂v

∂v

∂s
+
∂z

∂w

∂w

∂s
�

What if the intermediate variables in a function themselves depend on

more than one variable?

EX 3 If f = f(x(s, t), y(s, t)), write a chain rule expression for all possible

first derivatives of f with respect to the independent variables.

The functional notation tells us that f depends on x and y, but x and y in

turn depend on s and t. So, ultimately, the independent variables are s and

t, and x and y are the intermediate variables. There are two derivatives of

f with respect to the independent variables, ∂f/∂s and ∂f/∂t and those

derivatives can be assembled like this:

∂f

∂s
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s

∂f

∂t
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
�

You Try It

(2) If u = f(x, y) with x = x(r, s, t) and y = y(r, s, t), write the chain

rule expressions for all possible first derivatives of u with respect

to the three independent variables.

(3) If z = f(x(s, t), y(s, t)) = x2 + xy + y2 with x(s, t) = s + t and

y(s, t) = st, what are ∂z/∂s and ∂z/∂t?

To see if you’re catching on, here’s one more example with an excessive

number of variables.

EX 4 Suppose w = f(x, y, z, t) and x = x(u, v), y = y(u, v), z =

z(u, v), t = t(u, v). Ultimately, how many first derivatives of w

are there with respect to the independent variables? Write the

chain rule expression for one of them.

There are two independent variables, u and v and four intermediate vari-

ables: x, y, z, t. So there are two derivatives of w that can be computed;
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the chain rule expression for either must contain contributions from all four

intermediate variables. One of the derivatives is:

∂w

∂u
=
∂w

∂x

∂x

∂u
+
∂w

∂y

∂y

∂u
+
∂w

∂z

∂z

∂u
+
∂w

∂t

∂t

∂u
�

I hope you realize by now how essential it is that you understand functional

notation, so that when you see an expression like

w = f(x(u, v), y(u, v), z(u, v), t(u, v))

you will understand immediately what all the variable dependencies are.

So far, our examples have been of creating formal chain rule expressions

or general derivative formulas. But very often, we will be given values of

variables and derivatives that need to be put together to generate the value

of some overall derivative. In this case, there are two choices:

(1) Build the most general chain rule expression for the derivative

that’s needed, and only at the very end plug in any numerical

data.

(2) Plug in numerical data at the appropriate point in the development

of the chain rule formula.

The second option is often much cleaner, but also more fraught with op-

portunity for error — such as plugging in a numerical value too soon.

EX 5 Suppose w = xey/z with x = t2, y = 1− t, z = 1 + 2t. What is
∂w

∂t
when t = 1?

We see there is only one independent variable, t, and three intermediate

variables x, y, z. So the chain rule expression for our derivative is:

∂w

∂t
=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
+
∂w

∂z

∂z

∂t

From our given equation relating w to x, y, and z, we can immediately

compute these derivatives:

∂w

∂x
= ey/z ;

∂w

∂y
=
x

z
ey/z ;

∂w

∂z
= −xy

z2
ey/z

Let’s now follow option (2) above, and start using our numerical data right

now, rather than carrying around these general expressions. When t = 1,
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we know from the other equations that x = 1, y = 0 and z = 3, and so

these partial derivatives become:

∂w

∂x
= 1 ;

∂w

∂y
=

1

3
;

∂w

∂z
= 0

Similarly, from the equations relating x, y, and z to t, we can find

∂x

∂t
= 2t ;

∂y

∂t
= −1 ;

∂z

∂t
= 2

and so when t = 1, we have

∂x

∂t
= 2 ;

∂y

∂t
= −1 ;

∂z

∂t
= 2

Now we have values for all six derivatives that appear in our chain rule

expression, and we can plug them in to find that when t = 1,

∂w

∂t
= (1)(2) +

1

3
(−1) + (0)(2) =

5

3
�

You Try It

(4) If z = x2 + xy3 where x = uv2 + w3 and y = u + vew, find the

values of all possible first derivatives of z with respect to the three

independent variables when u = 2, v = 1, w = 0.

And just for fun, let’s answer the question that started this whole topic

— and pay close attention to units along the way.

EX 6 The length and width of a rectangle are increasing at rates of

1 cm/sec and 1.5 cm/sec, respectively. How fast is the total area of

the rectangle increasing at the instant when the length and width

are 5 cm and 6 cm?

The area of a rectangle isA = LW ; when the length and width are changing,

they are both functions of time, t. Therefore, area A is a function of time

t, with intermediate variables L and W . The proper chain rule expression

for this situation is:

∂A

∂t
=
∂A

∂L

∂L

∂t
+
∂A

∂W

∂W

∂t

Note that both length and width contribute to the overall change in area.

Now from the equation A = LW , we know that

∂A

∂L
= W and

∂A

∂W
= L
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The data in the problem tells us we are interested in the rate of change of

area when L = 5 cm and W = 6 cm, and with these values we have

∂A

∂L
= 6 and

∂A

∂W
= 5

Let’s pause and not forget that all the quantities we’re throwing around

have units. Since area (and so also ∂A) has units of cm2, and L (and so

also ∂L) has units of cm, then the units of ∂A/∂L are cm2/cm = cm.

Similarly, the units of ∂A/∂W are cm. So the new and improved versions

of these derivatives are

∂A

∂L
= 6 cm and

∂A

∂W
= 5 cm

Now let’s carry on. We are given the derivative values

∂L

∂t
= 1

cm

sec
and

∂W

∂t
= 1.5

cm

sec

and so we have the values of all 4 derivatives in our chain rule expression.

Therefore,

∂A

∂t
= (6 cm)

(
1
cm

sec

)
+ (5 cm)

(
1.5

cm

sec

)
= 13.5

cm2

sec

The area is changing at a rate of 13.5
cm2

sec
at the instant in question. �

The answer to EX 6 came with units. There are two ways that can

happen — one correct, and one incorrect.

(1) We can start off the problem saying, “Well, we are looking for rate

of change of area, so the units ought to be square centimeters per

second” ... and so just plop those units on the final number that

we get at the end.

(2) We can carry our units along at each step of the problem, and allow

our chain rule formula to generate the final units organically.

Can you guess which is the wrong way to do it? Please pay close attention

to the last few lines of EX 6, where units put into our chain rule expression

blended together to create the units we need. That is how it’s supposed

to work. You don’t just plop units onto your final result; rather, units

should develop naturally though your chain rule. So, you should know

what units to expect before you even start working, and if your chain

rule expression does not generate those units, your chain rule

expression is wrong.
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The Chain Rule — Problem List

The Chain Rule — You Try It

These appeared above; solutions begin on the next page.

(1) If z = f(x(t), y(t)) = x2y + xy2 with x(t) = 2 + t4 and y(t) = 1 − t3,

what is
∂z

∂t
?

(2) If u = f(x, y) with x = x(r, s, t) and y = y(r, s, t), write the chain

rule expressions for all possible first derivatives of u with respect to the

three independent variables.

(3) If z = f(x(s, t), y(s, t)) = x2 +xy+ y2 with x(s, t) = s+ t and y(s, t) =

st, what are ∂z/∂s and ∂z/∂t?

(4) If z = x2 +xy3 where x = uv2 +w3 and y = u+ vew, find the values of

all possible first derivatives of z with respect to the three independent

variables when u = 2, v = 1, w = 0.

The Chain Rule — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.2.1.

(1) If z = f(x(t), y(t)) =
√
x2 + y2 with x(t) = e2t and y(t) = e−2t, what

is
∂z

∂t
?

(2) If z = f(x(s, t), y(s, t)) = exy tan y with x(s, t) = s+2t and y(s, t) =
s

t
,

find both ∂z/∂s and ∂z/∂t.

(3) If w = w(x, y, z) with x = x(t, u), y = y(t, u), and z = z(t, u), write

chain rule expressions for all possible first derivatives of w with respect

to the independent variables.

(4) If u =
√
r2 + s2 where r = y+x cos t and s = x+y sin t, find the values

of all possible first derivatives of u with respect to the independent

variables when x = 1, y = 2, t = 0.

(5) If z = f(α(s, t), β(s, t)) = sinα tanβ with α(s, t) = 3s+ t and β(s, t) =

s − t, find the first derivatives of z with respect to the independent

variables.

(6) If u = u(s, t) with s = s(w, x, y, z) and t = t(w, x, y, z), write chain

rule expressions for all possible first derivatives of u with respect to the

independent variables.
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(7) If R = ln(u2 + v2 + w2) where u = x + 2y, v = 2x − y, and w = 2xy,

find the values of all possible first derivatives of R with respect to x

and y when x = 1, y = 1.

The Chain Rule — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.2.1.

(1) If z = f(α(s, t), β(s, t)) = lnα cosβ with α(s, t) = 2s+ t and β(s, t) =

s − 2t, find the first derivatives of z with respect to the independent

variables s and t. Write your final expressions in terms of s and t.

(2) If w = w(s, t) with s = s(x, y, z, p) and t = t(x, y, z, p), write chain rule

expressions for all possible first derivatives of w with respect to the four

independent variables.

(3) If T = cos(x2 + y2 + z2) where x = u + v, y = 2u − v, and z = 3uv2,

find the values of all possible first derivatives of T with respect to u

and v when u = 1, v = 2.

The Chain Rule — You Try It — Solved

(1) If z = f(x(t), y(t)) = x2y + xy2 with x(t) = 2 + t4 and y(t) = 1 − t3,

what is ∂z/∂t?

� z is a function of x and y, and then both x and y are functions of t,

so the chain rule expression is:

∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t
= (2xy + y2)(4t3) + (x2 + 2xy)(−3t2)

= (2xy + y2)(4t3)− (x2 + 2xy)(3t2)

Since x and y are functions of t, then ultimately ∂z/∂t is a function of

t. �

(2) If u = f(x, y) with x = x(r, s, t) and y = y(r, s, t), write the chain

rule expressions for all possible first derivatives of u with respect to the

three independent variables.

� There will be three first derivatives of u; these derivatives are with

respect to r, s, t going through the intermediate variables of x, y. The

chain rule formulations are:
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∂u

∂r
=
∂u

∂x

∂x

∂r
+
∂u

∂y

∂y

∂r

∂u

∂s
=
∂u

∂x

∂x

∂s
+
∂u

∂y

∂y

∂s

∂u

∂t
=
∂u

∂x

∂x

∂t
+
∂u

∂y

∂y

∂t
�

(3) If z = f(x(s, t), y(s, t)) = x2 +xy+ y2 with x(s, t) = s+ t and y(s, t) =

st, what are ∂z/∂s and ∂z/∂t?

� z is a function of x and y, and then both x and y are functions of

both s and t, so there are two chain rule expressions:

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s
= (2x+y)(1)+(x+2y)(t) = (2x+y)+(x+2y)(t)

∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t
= (2x+y)(1)+(x+2y)(s) = (2x+y)+(x+2y)(s)

Since x and y are functions of s and t, then ultimately ∂z/∂s and ∂z/∂t

are functions of s and t. �

(4) If z = x2 +xy3 where x = uv2 +w3 and y = u+ vew, find the values of

all possible first derivatives of z with respect to the three independent

variables when u = 2, v = 1, w = 0.

� There are three first partials with respect to u, v, w, going through

the intermediate variables x and y. We want all three first derivatives

when u = 2, v = 1, w = 0. First, note that for these values we have

x = 2(1)2 + (0)3 = 2

y = 2 + (1)e0 = 3

So with these values,

∂z

∂u
=
∂z

∂x

∂x

∂u
+
∂z

∂y

∂y

∂u
= (2x+ y3)(v2) + (3xy2)(1)

= (31)(1) + (54)(1) = 85

∂z

∂v
=
∂z

∂x

∂x

∂v
+
∂z

∂y

∂y

∂v
= (2x+ y3)(2uv) + (3xy2)(ew)

= (31)(4) + (54)(1) = 178

∂z

∂w
=
∂z

∂x

∂x

∂w
+
∂z

∂y

∂y

∂w
= (2x+ y3)(3w2) + (3xy2)(vew)

= (31)(0) + (54)(1) = 54 �
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14.2 Optimization

Introduction

I’ll be honest with you, the problems in this section will get lengthy. On

the other hand, this section doesn’t offer anything conceptually new. Think

back to single variable Calculus: do you remember finding maximums and

minimums? That’s here. Remember critical points? Got ’em here, too.

Do you remember the second derivative test? Guess what? That’s here as

well.

−1
−0.5

0.5
1−1

1

−1

1

x

y

z

Fig. 14.1 The saddle point at the origin for the function z = y2 − x2.

This section extends everything you learned about graphical analysis of

f(x) via derivatives to graphical analysis of f(x, y). You probably already

have an intuitive sense of what a maximum or minimum on the graph of

f(x, y) might look like, but there are a couple of new subtleties involved:

• You should recall that the graph of f(x) = x3 has a critical point at

the origin (because f ′(x) = 0 there), but that point is not a maximum

or a minimum of the function; it was called a “level point,” where the

curve just rests for a moment before going on in the same direction. The

new & improved version of this feature in three dimensions is called a

saddle point, and name tells it all: just as the center of a saddle on a

horse is a minimum point in the direction from the front to back of

the horse, but is a maximum in the direction from the left to the right

of the horse, so also a saddle point on a graph is a minimum in one

direction, but a maximum in another — such as at the origin on the
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hyperbolic paraboloid z = y2 − x2 shown in Fig. 14.1. Also, if you like

Pringles potato chips, then you enjoy the taste of saddle points.

• Maximums or minimums can occur at an infinite number of points. Con-

sider the parabolic cylinder z = 1 − x2 in three dimensions, shown in

Fig. 14.2. Every point on this surface directly above the entire y-axis is

a maximum of this function!
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Fig. 14.2 The entire y-axis helping locate local maximums of z = 1− x2.

Critical Points and the Second Derivative Test

Just as a reminder, here’s the old story: In single variable calculus, a crit-

ical point of y = f(x) is a point where the derivative f ′(x) is either 0 or

undefined. That critical point can locate any of the following: discontinu-

ity, maximum, minimum, or level point. We distinguish them by graphing

the function or by applying the second derivative test, which says: suppose

x = a is a critical point of f(x) and f ′(a) exists, then

• if f ′′(a) > 0, there is a minimum at (a, f(a))

• if dderf(a) < 0, there is a maximum at (a, f(a))

• if f ′′(a) = 0, there is a level point at (a, f(a))

Here is the new & improved version for three dimensions:

Useful Fact 14.1. The point (a, b) is a critical point of f(x, y) if fx(a, b) =

0 and fy(a, b) = 0, or if either doesn’t exist. We distinguish critical points
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through a second derivative test that is a bit more complicated than the

original. Let

D = fxx(a, b)fyy(a, b)− [fxy(a, b)]2

Then,

• if D > 0 and fxx(a, b) > 0, there is a minimum at (a, b, f(a, b))

• if D > 0 and fxx(a, b) < 0, there is a maximum at (a, b, f(a, b))

• if D < 0, there is a saddle point at (a, b, f(a, b))

• if D = 0, the test is inconclusive

EX 1 Find and categorize the critical points of f(x, y) = 2x3 + xy2 +

5x2 + y2.

We have fx = 6x2 + y2 + 10x and fy = 2xy+ 2y. These are always defined,

and so critical points will found where fx = 0 AND fy = 0. The latter is

easier to deal with, so let’s build and organize for solving fy = 0:

fy = 0 → 2xy + 2y = 0

2y(x+ 1) = 0

So fy = 0 when x = −1 or y = 0. Let’s use these values, one at a time,

and see what else it takes to make fx = 0 simultaneously. We’ll do x = −1

first, by building fx = 0:

fx = 0 → 6x2 + y2 + 10x = 0 (14.3)

and then plugging in x = −1,

6 + y2 − 10 = 0 → y2 = 4

So already knowing that x = −1 will make fy = 0, we’ve now found that

either one of y = ±2 will also make fx = 0. Putting x = −1 and y = ±2

together, we know that (−1,−2) and (−1, 2) are critical points.

Now we try y = 0 in (14.3):

6x2 + (0)2 + 10x = 0

2x(3x+ 5) = 0

So already knowing that y = 0 will make fy = 0, we’ve now found that

either one of x = 0 or x = −5/3 will simultaneously make fx = 0. Putting

y = 0 together with x = 0 and x = −5/3, we’ve found that (0, 0) and

(−5/3, 0) are also critical points.
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Altogether, this surface has four critical points! To categorize them, we

have to apply the new second derivative test from Useful Fact 14.1, and so

we need some second derivatives. Continuing from fx = 6x2 +y2 +10x and

fy = 2xy + 2y, we get:

fxx = 12x+ 10 ; fyy = 2x+ 2 ; fxy = 2y

and then the quantity required for the second derivative test is:

D(x, y) = fxxfyy − [fxy]2 = (12x+ 10)(2x+ 2)− 4y2

The second derivative test requires the value of both D(x, y) and fxx at

each critical point. For our four critical points, they are:

• At (−1,−2) : D(−1,−2) = −16 and fxx(−1,−2) = −2

• At (−1, 2) : D(−1, 2) = −16 and fxx(−1, 2) = −2

• At (0, 0) : D(0, 0) = 20 and fxx(0, 0) = 10

• At (−5/3, 0) : D(−5/3, 0) = 40/3 and fxx = (−5/3, 0) = −10

Based on the signs of these values, comparison to Useful Fact 14.1 tells us

that:

A : (−1,−2) is a saddle point C : (0, 0) is a minimum

B : (−1, 2) is a saddle point D :
(
− 5

3 , 0
)

is a maximum

Wow, that’s a lot of work! Figure 14.3 shows this surface and the four

critical points, labeled as A,B,C,D for the figure. �

EX 2 How many critical points does f(x, y) = ex cos(y) have?

We have fx = ex cos(y) and fy = −ex sin(y). Both of these will be zero

when sin(y) = cos(y) = 0. (Remember that ex is never 0.) But this never

happens! So there are no critical points of this function. �

You Try It

(1) Find and characterize the critical points of f(x, y) = 9− 2x+ 4y−
x2 − 4y2.

(2) Find and characterize the critical points of f(x, y) = 1+2xy−x2−
y2 = 1− (x− y)2.
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Fig. 14.3 Critical points of z = 2x3 + xy2 + 5x2 + y2.

Absolute Extremes

As we learned the last time we encountered critical points, they are often

only local extremes — that is, the function may attains a value at that

point which is lower or higher than anything else in its vicinity, but it may

not be the biggest or smallest value the function hits over a larger interval.

In order to to find absolute extremes over an interval [c, d], we needed to

test the function at the endpoints x = c and x = d to find if the value of f

there is bigger or smaller than at any local extremes inside the interval.

Now that our playground is three-dimensional space, and points on our

surfaces are associated with points in the xy-plane, we must search for

absolute extremes over entire regions in the xy-plane; critical points will

provide some local extremes, and these are then candidates to be absolute

extremes over the specific region. And there is additional joy to be had,

because the upgrade for examining endpoints of an interval for possible

extremes, now we must look around the entire boundary of our region in

the xy-plane. Altogether, we search for absolute extremes by:
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• Find critical points on the interior of the given region.

• Pick a boundary of the given region and write its equation; plug

that equation into f(x, y) to restrict the function to that boundary;

find other candidates for extremes there

• Repeat for all boundaries of the region

• Collect any corners of the region not already found as candidates

• Find the function’s value at all candidate points (interior, bound-

ary, corner) and compare them to discover the real extremes

Note that we don’t need to apply the second derivative test in this process,

all we have to do is identify possible extremes and get the function’s value

there.

EX 3 Find the absolute extremes of f(x, y) = x2 + y2 + x2y+ 4 over the

rectangle −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.

First, we find the critical points of this function to discover possible abso-

lute extremes on the interior of the region. We have fx = 2x + 2xy and

fy = 2y+x2. We’ll get fx = 0 only when x = 0 or y = −1. For x = 0, we’ll

also get fy = 0 when y = 0, so (0, 0) is a critical point. For y = −1, we’ll

also get fy = 0 when x = ±
√

2. But this is good news — these values are

outside the region −1 ≤ x ≤ 1, so we don’t care about them! The point

P1(0, 0) is the only critical point on the interior of our domain. Now let’s

search the boundary of the region for possible extremes:

Let edge L1 be the left edge x = −1. On L1, the function reduces to

f(−1, y) = y2 + y + 5. This is now a single variable function, which has

an extreme when 2y + 1 = 0, or y = −1/2. So P2(−1,−1/2) is a possible

absolute extreme.

Let edge L2 be the right edge x = 1. On L2, the function reduces to

f(1, y) = y2 + y + 5. This is now a single variable function, which has

an extreme when 2y + 1 = 0, or y = −1/2. So P3(1,−1/2) is a possible

absolute extreme.

Let edge L3 be the lower edge y = −1. On L3, the function reduces to

f(x,−1) = 5. This is constant, so there are no new possible extremes on

this edge.
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Let edge L4 be the upper edge y = 1. On L4, the function reduces to

f(x, 1) = 2x2 + 5. This is now a single variable function, which has an

extreme when 4x = 0, or x = 0. So P4(0, 1) is a possible absolute extreme.

The corners of this region are the points P5(−1,−1), P6(−1, 1),

P7(1,−1), and P8(1, 1).

−1 −0.5 0.5 1

−1

−0.5

0.5

1

P1

P2 P3

P4

P5

P6

P7

P8

(L1) (L2)

(L3)

(L4)

x

y

Fig. 14.4 Candidates for local extremes of z = x2 + y2 + x2y + 4.

We now have a total of 8 candidates for absolute extremes: one critical

point from the interior, three points on the boundaries of the region, and

four corners. These have been named P1 to P8, and are shown in Fig. 14.4.

To make determination on types of points, we have to check the function’s

value at each:

P1 : f(0, 0) = 4

P2 : f(−1,−1/2) = (1) + 1/4 + (1)(−1/2) + 4 = 21/4

P3 : f(1,−1/2) = (1) + 1/4 + (1)(−1/2) + 4 = 21/4

P4 : f(0, 1) = (0) + 1 + (0)(1) + 4 = 5
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P5 : f(−1,−1) = (1) + (1) + (1)(−1) + 4 = 5

P6 : f(−1, 1) = (1) + (1) + (1)(1) + 4 = 7

P7 : f(1,−1) = (1) + (1) + (1)(−1) + 4 = 5

P8 : f(1, 1) = (1) + (1) + (1)(1) + 4 = 7

Comparing these values, we see an absolute minimum at (0, 0, 4) and a pair

of absolute maximums at (−1, 1, 7) and (1, 1, 7). �

You Try It

(3) Find the absolute extremes of f(x, y) = 1+4x−5y over the domain

D that’s a triangle with vertices P (0, 0), Q(2, 0), and R(0, 3).

Optimization Problems

Now that we can find extremes of multivariable functions, we can answer

all sorts of problems that require identifying a maximum or minimum of

such functions. These are called optimization problems. These problems

often come with two important components; if you can identify them, you

have a head start. These are the objective function and the constraint.

The objective function is the quantity you are hoping to find a maximum

or minimum for. Often, objective functions are broader than the given

context calls for — such as being a function of three variables, when ulti-

mately we want only two. The constraint is some sort of restriction on the

given scenario, and the constraint usually allows us to focus the objective

function more helpfully. These terms will make more sense after a couple

of examples, I promise!

EX 4 What is the smallest distance from the point (1,1,1) to the

paraboloid z = x2 + y2 + 1?

(Fig. 14.5 shows the point (1, 1, 1), the given paraboloid, and a line from

the point to the paraboloid where the distance is a minimum.) The opening

phrase “What is the smallest distance from the point (1, 1, 1)...” tells us we

are going to look for a minimum distance of some sort from that point.

Therefore, our objective function will be related to the distance from the

point (1, 1, 1) to any other point (x, y, z); in 3D, that looks like:

d =
√

(x− 1)2 + (y − 1)2 + (z − 1)2
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Fig. 14.5 Minimizing distance from (1, 1, 1) to z = x2 + y2 + 1.

Now, strategy number one when dealing with minimizing a distance func-

tion is to note that whatever minimizes d2 also minimizes d, so our objective

function can be given as

d2 = (x− 1)2 + (y − 1)2 + (z − 1)2

and now we’ve eliminated that pesky square root (which would make deriva-

tives really awful). Note, though, that this is a function of three variables,

and we don’t quite know how to find a minimum of it. But, we don’t want

the distance from (1,1,1) to any point, we want the distance to the given

paraboloid. That is our constraint : the points under consideration are not

any points (x, y, z), but rather points of the specific form (x, y, x2 +y2 +1).

We are constrained to those points in particular, and so we can restrict the

formula for d2 by replacing the generic z with x2 + y2 + 1:

d2 = (x− 1)2 + (y − 1)2 + ((x2 + y2 + 1)− 1)2

Now it’s a function of two variables, and we’re ready to roll. First, let’s

simplify it:

d2 = (x− 1)2 + (y − 1)2 + (x2 + y2)2

Next, treating the right hand side as the function f(x, y) we want to mini-

mize, let’s get some derivatives:

fx = 2(x− 1) + 2(x2 + y2)(2x) = 2x− 2 + 4x3 + 4xy2

fy = 2(y − 1) + 2(x2 + y2)(2y) = 2y − 2 + 4x2y + 4y3
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and since we need both fx = 0 and fy = 0, we need to solve the system of

two equations in two unknowns

2x− 2 + 4x3 + 4xy2 = 0

2y − 2 + 4x2y + 4y3 = 0

I don’t know about you, but I am not looking forward to that. Fortunately,

we now have ready access to technical help. On-line resources such as

Wolfram Alpha are ready and waiting to solve your two equations in two

unknowns. From that source or any other you can access, we discover the

solution to this pair of equations is (x, y) = (1/2, 1/2). At these (x, y)

coordinates, we get the distance between the paraboloid and (1, 1, 1) by

d2 =

(
1

2
− 1

)2

+

(
1

2
− 1

)2

+

(
1

4
+

1

4

)2

=
1

2
+

1

2
+

1

4
=

3

4

and so the minimum distance is d =
√

5/2 (that is the distance of the

line connecting the point to the paraboloid in Fig. 14.5). FFT:

How do we know this is a minimum distance when we didn’t do a second

derivative test? Well, it certainly can’t be a maximum, right? What is the

maximum distance from the point (1, 1, 1) to any point on the paraboloid

z = x2 + y2 + 1? �

You Try It

(4) Find the minimum distance d from the point (2, 1,−1) to the plane

x+ y − z = 1.

EX 5 Suppose a rectangular box (with a lid) needs to hold a volume of

1m3, and the cardboard for the base and lid costs twice as much

as the cardboard for the sides. What dimensions of the box will

minimize the cost?

There are two basic geometric properties in play here, the volume of a box

and the surface area of the box. Ultimately, we want to minimize a cost,

but that cost will be based on the surface area. If the dimensions of the box

are x, y, z (length, width, height), then — with a lid — the total surface

area is S = 2xy + 2yz + 2xz. The base and lid are the xy’s. But to adapt

this to cost, we use the fact that the top and bottom are twice as expensive

as the sides. Let’s assume the price per unit area of the sides is p, so that

total cost is

C = 2p(2xy) + p(2yz + 2xz) = 2p(2xy + yz + xz)
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This cost function is our objective function. It shows the cost of any box

in which the cost of the base and lid is twice as much as the cost of the

sides. It’s what we want to minimize, but currently it’s a function of three

variables. Fortunately, we have a constraint: we don’t want just any old

box, but rather, we are constrained to those boxes whose volumes are 1m3.

The constraint V = xyz = 1 can be shuffled into z = 1/(xy), and this will

reduce the cost function from three variables to two:

C = 2p

(
2xy + y · 1

xy
+ x · 1

xy

)
= 2p

(
2xy +

1

x
+

1

y

)

Now we can proceed with the minimization. First, we get derivatives:

Cx = 2p

(
2y − 1

x2

)
and Cy = 2p

(
2x− 1

y2

)

Next, we look for where Cx = 0 and Cy = 0:

Cx = 0 → 2p

(
2y − 1

x2

)
= 0 → 2yx2 = 1

Cy = 0 → 2p

(
2x− 1

y2

)
= 0 → 2xy2 = 1

We are seeking where both happen simultaneously, so let’s merge them

together (the choice of which to plug in to which is a toss-up). From the

first, we have y = 1/(2x2), so the second becomes:

2x

(
1

2x2

)2

= 1 → x =
3

√
1

2

So Cy = 0 when x = 3
√

1/2, and then Cx = 0 at the same time when

y = 1/(2x2), or

y =
1

2( 3
√

1/2)2
=

3

√
1

2

And when we have x = y = 3
√

1/2, then the volume constraint xyz = 1

allows us to find the corresponding z:

3

√
1

2
· 3

√
1

2
· z = 1

z =
3
√

2 · 3
√

2 =
3
√

4

Altogether, the dimensions that will minimize our cost are

(x, y, z) =

(
3

√
1

2
,

3

√
1

2
,

3
√

4

)
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(these are all in meters, per the original units). Note that the actual cost

per unit area p never made a difference. FFT: How do we know

we did not just find a maximum cost? Given our conditions, what is the

maximum cost of a box? �

You Try It

(5) Find the minimum surface area of a rectangular box (with no lid)

that contains a volume of 32, 000 cm3.

Optimization — Problem List

Optimization — You Try It

These appeared above; solutions begin on the next page.

(1) Find and characterize the critical points of f(x, y) = 9−2x+ 4y−x2−
4y2.

(2) Find and characterize the critical points of f(x, y) = 1+2xy−x2−y2 =

1− (x− y)2.

(3) Find the absolute extremes of f(x, y) = 1 + 4x− 5y over the domain D

that’s a triangle with vertices P (0, 0), Q(2, 0), and R(0, 3).

(4) Find the minimum distance d from the point (2, 1,−1) to the plane

x+ y − z = 1.

(5) Find the minimum surface area of a rectangular box (with no lid) that

contains a volume of 32, 000 cm3.

Optimization — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.2.2.

(1) Find and characterize the critical points of f(x, y) = x3y + 12x2 − 8y.

(2) Find and characterize the critical points of f(x, y) = xy(1 − x − y) =

xy − x2y − xy2.

(3) Find the absolute extremes of f(x, y) = 3+xy−x−2y over the domain

D that’s a triangle with vertices P(1,0), Q(5,0) and R(1,4).

(4) Find the minimum distance d from the point (1,2,3) to the plane x −
y + z = 4 and the point on the plane where this distance occurs.

(5) What is the largest volume that can be contained in a rectangular box

(with a lid!) that has a total surface area of 64 cm2.
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(6) Find and characterize the critical points of f(x, y) = x2 + y2 +
1

x2y2
.

(7) Find the absolute extremes of f(x, y) = 4x + 6y − x2 − y2 over the

domain D with 0 ≤ x ≤ 4, 0 ≤ y ≤ 5.

(8) What dimensions should we use for a rectangular aquarium of volume

12, 000 cm3 if we want to minimize its cost, given that the base costs

5 times

Optimization — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.2.2.

(1) Find and characterize the critical points of f(x, y) = 8xy(x+y) +
√

17.

(2) Find the absolute extremes of f(x, y) = 3x2 +2xy+y2 over the domain

D with −2 ≤ x ≤ 2, 0 ≤ y ≤ 3.

(3) Identify the coordinates of the point on the plane 2x− y+ z = 16 that

is closest to the origin.

Optimization — You Try It — Solved

(1) Find and characterize the critical points of f(x, y) = 1+2xy−x2−y2 =

1− (x− y)2.

� We have that fx = 2y − 2x and fy = 2x − 2y and so fx = fy = 0

everywhere that y = x. Getting ready for the second derivative test,

we have:

fxx = −2→ fxx(x, x) = −2

fyy = −2→ fyy(x, x) = −2

fxy = 2→ fxy(x, x) = 2

D(x, x) = fxx(x, x)fyy(x, x)− [fxy(x, x)]2

= (−2)(−2)− 22 = 0

Uh oh! Since D = 0, the second derivative test told us nothing. But

we can still figure it out, because we’re smart! Note that since f(x, y) =

1− (x− y)2, the function is equal to 1 whenever y = x and is less than

1 everywhere else. So all points along y = x are local maximums. �
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(2) Find the absolute extremes of f(x, y) = 1 + 4x− 5y over the domain D

that’s a triangle with vertices P (0, 0), Q(2, 0), and R(0, 3).

� Are there extremes over the interior of D? With fx = 4 and fy = 5,

there are no points where fx = fy = 0, so there are no critical points.

Extremes of this function will be on the boundary of D.

Let edge L1 be the line segment PR. On L1, x = 0 and the function

reduces to f(0, y) = 1− 5y. Since this is linear, there are no extremes

along L1 itself.

Let edge L2 be the line segment PQ. On L2, y = 0 and the function

reduces to f(x, 0) = 1 + 4x. Since this is linear, there are no extremes

along L2 itself.

Let edge L3 be the line segment QR. This is the line y = −3x/2 + 3,

and the function reduces to f(x) = 23x/2− 14 here. Since this is also

linear, there are no extremes along L3 itself.

The extremes must be at the vertices:

f(0, 0) = 1 , f(0, 3) = −14 and f(2, 0) = 9

So, the absolute minimum is f(0, 3) = −14 and the absolute maximum

is f(2, 0) = 9. �

(3) Find the minimum distance d from the point (2, 1,−1) to the plane

x+ y − z = 1.

� To make the calculations easier, we’ll minimize d2 (whatever min-

imizes d2 also minimizes d). The distance between (2,1,-1) and any

point at all is given by:

d2 = (x− 2)2 + (y − 1)2 + (z + 1)2

This is our objective function which we want to minimize, but it has

three variables. We need our constraint to, well, constrain it. We aren’t

interested in the distance from (2, 1,−1) to any point in the universe.

We are only interested in points on the plane x+ y − z = 1, or rather,

z = x+y−1. This is our constraint, and it helps us mush our objective

function down to having only two variables:

d2 = (x− 2)2 + (y − 1)2 + (x+ y)2
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Treating the right hand side as the function f(x, y) we want to mini-

mize, let’s get some derivatives:

fx = 2(x− 2) + 2(x+ y) = 4x+ 2y − 4

fy = 2(y − 1) + 2(x+ y) = 2x+ 4y − 2

Our critical points come from there fx = 0 and fy = 0 simultaneously.

The equation fx = 0 reduces to 2x+ y − 2 = 0, and fy = 0 reduces to

x+ 2y− 1 = 0. From the former, we have y = 2− 2x; plugging that in

to the latter gives

x+ 2(2− 2x)− 1 = 0

−3x+ 3 = 0

x = 1

and that value handed back to either y = 2 − 2x gives us y = 0.

Therefore (x, y) = (1, 0) is a critical point. What kind of critical point

is this? Let’s keep going with second derivatives, and plan to use Useful

Fact 14.1. With

fxx = 4 ; fyy = 4 ; fxy = 2

we have

D(x, y) = fxxfyy − [f(x, y)]2 = 12

Since D(x, y) > 0 and fxx > 0 everywhere, any critical point is a local

minimum, per Useful Fact 14.1. So (x, y) = (1, 0) presents the minimum

distance; the z-coordinate on the given plane there is z = 1−x− y = 0

and so the minimum distance to (2, 1,−1) happens at the point (1,0,0).

The distance between the two points is d =
√

3. �

(4) Find the minimum surface area of a rectangular box (with no lid) that

contains a volume of 32, 000 cm3.

� Let the dimensions of the box be x, y, z (length, width, height). We

have no lid, so there is only one face of area xy and two of each other,

xz and yz. The surface area of such a box is

S = xy + 2xz + 2yz

and this is our objective function, since we want to minimize this. It’s

currently a function of three variables, which is bad news. But, we
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don’t want just any old box, we want a box that has a specific volume;

this provides our constraint, we need to adhere to

xyz = 32000 or z =
32000

xy

This constraint, when plugged in to the objective function, reduces the

objective function to two variables:

S = xy + 2x

(
32000

xy

)
+ 2y

(
32000

xy

)

= xy +
64000

y
+

64000

x

Now we need derivatives:

Sx = y − 64000

x2
and Sy = x− 64000

y2

Setting these equal to zero,

Sx = 0→ y =
64000

x2

Sy = 0→ x =
64000

y2

We need to merge these two conditions to find when both happen si-

multaneously. There is no one magic way to do this; how about we

square the first, from Sx = 0:

y2 =
640002

x4

then hand it to the second,

x =
64000

y2
= 64000 · x4

640002
=

x4

64000

Rearranged, we get x3 = 64000, or x = 40. When x = 40, we have

y =
64000

x2
= 40 and z =

32000

xy
= 20

Altogether, the surface area is minimized for dimensions (x, y, z) =

(40, 40, 20). �
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14.3 Double Integrals

Introduction

I’ll bet you think back fondly on this expression:

lim
n→∞

n∑

i=1

f(x?i )∆x =

∫ b

a

f(x) dx

To the left of the equals sign is the Riemann Sum computation of the

area under f(x) over the interval [a, b]. To the right of the equals sign is

the symbol we use to denote this value; this computation is called a definite

integral. The Fundamental Theorem of Calculus gives us an easy way to

compute the definite integral, but that theorem is not in itself the definition

of a definite integral, this expression is. Well, if single integrals are fun to

develop this way, imagine how much fun double integrals are.

Generalizing the Integration Process

The single integral definition above is formed by this (hopefully familiar)

process, based on the fact that we want to compute the area under f(x)

over the interval [a, b]:

(1) Divide the interval [a, b] into n partitions. Each partition has width

∆x. This width represents the base of a rectangle.

(2) Within each partition i of the n total, select a representative point x?i .

(3) Plug that value into the function, obtaining f(x?i ); this value then acts

as the height of a rectangle.

(4) Multiply this height f(x?i ) by the width (∆x) to obtain the area

f(x?i )∆x of our rectangle standing over the partition.

(5) Sum the resulting areas from all n partitions to get an estimate of the

total area under f(x),

A ≈
n∑

i=1

f(x?i )∆x

(6) Recognize that our estimate of the area under f(x) improves as the

number of partitions increases, and ultimately the area is exactly

A = lim
n→∞

n∑

i=1

f(x?i )∆x

(7) Give this area the symbol

∫ b

a

f(x)dx.



Just One Variable Was Lame 95

Now we’re going to upgrade from a single variable function f(x) to a

multivariable function f(x, y) and try the same sort of thing. As a first

step, let’s rewrite all these items with the intention of making the process

much more general (and thus more adaptable). For example, we’ve always

known [a, b] as the interval of integration, but more generally, it can be

called a region of integration, which is carved out from the domain of the

function. This removes any mention of the number of dimensions we’re

talking about. Also, rather than finding the “area” under f(x), how about

we just “obtain a measure of the region below f(x)”. In a single integral,

that measure is area — but what will it be when we consider f(x, y)? So

here is the integration process, described in more general terms:

(1) Select a region of integration from the domain of the function.

(2) Partition the region of integration into tiny pieces. Each tiny piece, or

partition,1 will have its own size.

(3) Within each individual partition, select a representative point.

(4) Plug the coordinate(s) of that representative point into the function.

(5) Multiply the function’s value at the representative point by the size of

the partition.

(6) Sum these resulting contributions from all partitions.

(7) Find the limit of this sum as the number of partitions goes to ∞.

(8) Give this limit a name and symbol.

This now provides the integration process for any of f(x), f(x, y), or

f(x, y, z). We just have to figure out the specifics for each case, and see

if there is a geometric interpretation for the calculation. With f(x), you

already know the geometric interpretation of the result of this partitioning

process.

The Definition of a Double Integral

Let’s go through the general integration process given above and figure out

what each step really means for a function of two variables, f(x, y). This

process is not how we actually compute double integrals, but it will help

you understand why double integrals give the results that they do.

1Yes, we are now using partition as a verb and a noun...
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(1) Select a region of integration from the domain of the function.

The domain of a function f(x, y) is part to all of the xy-plane. Therefore,

our region of integration will be a portion of the xy-plane. For reasons

that should become clear later, we’ll assume that this region has at least

two straight edges; that is, at least two boundaries of the region must be

straight lines described by constant values of either x or y x or y values.

Figures 14.6 and 14.7 show the two possible configurations: the region is

either bounded by constant values of x (x = a and x = b), or it’s bounded by

constant values of y (y = c and y = d). Be careful that you understand these

figures just show possible regions of integration from within the xy-plane;

the function f(x, y) that will be integrated over this region; is floating above

(or below) these regions. A chosen region of integration is often generically

named R (for region) or D (for domain).

y = g(x)

y = h(x)

x
=

a

x
=

b

x

y

Fig. 14.6 2D region with vertical
straight-line (constant) boundaries.

x
=
g(
x
) x
=
h

(x
)

y = c

y = d

x

y

Fig. 14.7 2D region with horizontal
straight-line (constant) boundaries.

(2) Divide the region of integration into partitions. Each partition may

have its own size.

The region of integration R is part of the xy-plane. In single variable

integrals, we partitioned our interval [a, b] into pieces of size ∆x. Now we

partition in both the x and y directions, creating pieces of size ∆x in one

direction and ∆y in the other. Thus, each partition is a tiny rectangle, and

it has size (area) ∆A = ∆x∆y. Such a partition is indicated in Fig. 14.8.

Let’s say there are n divisions in the x-direction and m divisions in the y

direction, and thus a total of nm small rectangles of size ∆A.
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∆x

∆y∆A

x?i

y?j

x

y

Fig. 14.8 Partitioning the xy-plane.

(3) Within each individual partition, select a representative point.

In the partition of size ∆A, we can select a representative point (x?i , y
?
j ).

(The indices i and j simply locate it, for example the point in the 2nd

x-column and 4th y-row would be (x2, y4).) Such representative point is

shown in Fig. 14.8.

(4) Plug the coordinate(s) of that representative point into the function.

When we plug the representative point (x?i , y
?
j ) into our function, we get

f(x?i , y
?
j ). Do you see what we’re building yet? In a single integral, we built

rectangles with width ∆x and height f(x?i ). Now, we’re building standing

rectangular columns; the base of each column has area ∆A, and now we’ve

computed the height of the column. And therefore, when we do this:

(5) Multiply the function’s value at the representative point by the size of

the partition.

We’ve now found the volume of that standing column, Vij = f(x?i , y
?
j ) ·∆A.

There are nm total standing columns, so when we do this:

(6) Sum these resulting contributions from all partitions.

We’ve found an estimate of the total volume underneath the function f(x, y)

over the region R. We have to sum over both counters i (in the x-direction)
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and j (in the y-direction) and therefore have a double sum:

Vtot ≈
m∑

j=1

n∑

i=1

f(x?i , y
?
j )∆A

As in the single variable case, this estimate to the total volume under

f(x, y) will improve as the number of partitions in both directions go to∞,

and so when we do this:

(7) Find the limit of this sum as the number of partitions goes to ∞.

We get the true volume under f(x, y):

Vtot = lim
n,m→∞

m∑

j=1

n∑

i=1

f(x∗i , y
∗
j )∆A

And there we have the Riemann Sum definition of the volume under

f(x, y) over a region of integration R.

(8) Give this limit a name and symbol.

This is a clunky thing to write all the time, so we’ll give it this symbol:
∫∫

R

f(x, y)dA

and write the formal definition of a double integral as:
∫∫

R

f(x, y)dA = lim
n,m→∞

m∑

i=j

n∑

i=1

f(x∗i , y
∗
j )∆A

This notation now identifies the function being integrated and the region

of integration R. We know that the result of this calculation will be the

volume “under” f(x, y) over the region R. (The word “under” has to be

taken loosely, just like saying that single integrals give the area “under” a

curve must be taken loosely, because the curve itself might be below the

axis.)

The Computation of a Double Integral: Rectangular Regions

Fortunately, we don’t use the Riemann Sum and limit definition of a double

integral to evaluate the integral. Rather, we basically do the same thing

as for single integrals — just twice! Let’s start with the easiest case, when

all the edges of the region of integration R are straight lines. That is, R is

a rectangle defined by the statement R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}.
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The computation of a double integral of f(x, y) over such a rectangle is

made possible by Fubini’s Theorem, which says,
∫∫

R

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dydx

or equivalently
∫∫

R

f(x, y) dA =

∫ d

c

∫ b

a

f(x, y) dxdy

These are “iterated integrals”. The dA is exchanged for dxdy or dydx,

and the integral is solved inside-out using all the integral techniques you

already know and love. Think of it as,

∫ b

a

∫ d

c

f(x, y) dydx =

∫ b

a

(∫ d

c

f(x, y)dy

)
dx

When we are integrating with respect to x, we treat y as a constant,

and vice versa. The inner integral should remove one variable completely,

and then the outer integral removes the other variable and leaves only

numbers. The final answer should be a number. The result represents the

volume “under” f(x, y), and so if you don’t get a number, something is

wrong.

EX 1 Evaluate

∫ 3

1

∫ 1

0

(1 + 4xy) dxdy.

We start working on the inner integral; it’s an integral with respect to x,

and therefore we treat y as a constant. This inner integral should remove

all references to x and leave only y’s behind:
∫ 1

0

(1 + 4xy) dx = (x+ 2x2y)

∣∣∣∣
1

0

= (1 + 2(1)2y)− (0 + 2(0)2y) = 1 + 2y

Now we pass this result to the outer integral; this outer integral will get rid

of y and leave the final answer:
∫ 3

1

∫ 1

0

(1+4xy) dxdy =

∫ 3

1

(1+2y)dy = (y+y2)

∣∣∣∣
3

1

= (3+32)−(1+12) = 10

We can interpret this result as: The volume under the surface z = 1 + 4xy

over the region R = {(x, y) : 0 ≤ x ≤ 1, 1 ≤ y ≤ 3} is 10. �

We can also nest all the computations into one sequence; you can decide

on your preference:
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EX 2 Evaluate

∫∫

R

1 + x2

1 + y2
dA over the region R = {(x, y) : 0 ≤ x ≤

2, 0 ≤ y ≤ 1}.

We convert the boundaries of the region into limits of integration; make

sure to match the right limits with the right variable! We can choose either

dA = dydx or dA = dxdy, it doesn’t matter in this case. I’ll show the

latter:

∫ 1

0

∫ 2

0

1 + x2

1 + y2
dxdy =

∫ 1

0

(
1

1 + y2

(
x+

x3

3

) ∣∣∣∣
2

0

)
dy

=

∫ 1

0

(
1

1 + y2

(
2 +

23

3

))
dy

=
14

3

∫ 1

0

1

1 + y2
dy =

14

3
tan−1(y)

∣∣∣∣
1

0

=
14

3
(tan−1(1)− tan−1(0)) =

14

3

(π
4
− 0
)

) =
7π

6
�

You Try It

(1) Evaluate

∫ 2

0

∫ π/2

0

x sin y dydx.

(2) Evaluate

∫∫

R

(6x2y3 − 5y4) dA, where R is the region {(x, y) : 0 ≤
x ≤ 3, 0 ≤ y ≤ 1}.

(3) Find the volume under 3x + 2y + z = 12 over the region R =

{(x, y) : 0 ≤ x ≤ 1,−2 ≤ y ≤ 3}.

The Computation of a Double Integral: General Regions

Now we consider double integrations over a region R which has one or two

boundaries that are not straight. Not much changes in the overall scheme

of things, we still do a double integral as an iterated integral. But this

time, one or more of the limits of integration will not be constant. Here are

guidelines:

• The variable which has one or more non-constant limits must be

integrated first, i.e. must be placed on the inner integral. In this

case, the result of the inner integral might not be a number, but it

should still completely remove the inner variable.
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• At most two boundaries of the region can be identifiable as curves

like y = g(x) or x = g(y), the rest must be lines such as x = a or

y = c. (Refer back to Figs. 14.6 and 14.7 if needed.)

• The outer integral must have constant endpoints, so that the final

answer is a number. (Can you imagine what would happen if one

of the outer integral’s limits was not constant?)

x
=
y

x = ey

y = 1

y = 0

x

y

Fig. 14.9 Region between x = y, x = ey , y = 0, y = 1 (w/ EX 3).

EX 3 Evaluate

∫ 1

0

∫ ey

y

x dxdy.

We can interpret this integral as seeking the volume under f(x, y) = x over

the region R bounded by the curves x = y and x = ey, and the lines y = 0

and y = 1. That region is shown in Fig. 14.9. Let’s evaluate the inner

integral by itself:

∫ ey

y

x dx =
1

2
x2
∣∣∣∣
ey

y

=
1

2

(
(ey)2 − (y)2

)
=

1

2
(e2y − y2)

Note that we have removed all instances of x, and are left with a function

of y, which can now safely be passed to the outer integral:

∫ 1

0

∫ ey

y

x dxdy =

∫ 1

0

1

2
(e2y − y2) dy =

(
1

4
e2y − 1

6
y3
) ∣∣∣∣

1

0

=

(
1

4
e2 − 1

6

)
− 1

4
=
e2

4
− 5

12
�
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EX 4 Evaluate

∫∫

D

4y

x3 + 2
dA over the region D = {(x, y) : 1 ≤ x ≤

2, 0 ≤ y ≤ 2x}.

In this region, the variable x has constant limits, and the variable y has

non-constant limits. So we must integrate with respect to y first. (Note

that it would be impossible to integrate with respect to x first anyway!).

To integrate with respect to y first, we set dA = dydx:
∫ 2

1

∫ 2x

0

4y

x3 + 2
dydx =

∫ 2

1

(
2y2

x3 + 2

∣∣∣∣
2x

0

)
dx

=

∫ 2

1

(
2(2x)2

x3 + 2
− 0

)
dx =

∫ 2

1

8x2

x3 + 2
dx

Now we pause for a moment and consider how the result of the inner integral

has left us with a nice solvable substitution problem. We can choose to

replace x3 + 2 with u, and so also x2dx with du/3, to obtain (don’t forget

to change the limits),
∫ 2

1

8x2

x3 + 2
dx =

∫ 10

3

8

3u
du =

8

3
ln |u|

∣∣∣∣
10

3

=
8

3
(ln |10| − ln |3|) =

8

3
ln

10

3
�

You Try It

(4) Evaluate

∫∫

D

2y

x2 + 1
dA, where D is the region D = {(x, y) : 0 ≤

x ≤ 1, 0 ≤ y ≤ √x}.
(5) Evaluate

∫∫

D

x cos y dA, where D is the region bounded by y =

0, y = x2, and x = 1.

(6) Evaluate

∫∫

D

(x+2y) dA, where D is the region between the curves

y = x and y = x4.

The Order of Integration

Here are two things to know about order of integration:

(1) When the region of integration is a rectangle, i.e. all 4 limits of inte-

gration are constant, you can exchange the order of integration and get

the same result. That is,
∫ b

a

∫ d

c

f(x, y) dydx =

∫ d

c

∫ b

a

f(x, y) dxdy
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This means that if it looks like the integration might be easier in one

of the two possible orders, feel free to change the order of integration!

(2) You can also exchange (reverse) the order of integration for more gen-

eral regions; that is, we can find two integrals that can produce the

same result:∫ b

a

∫ h(x)

g(x)

f(x, y) dydx =

∫ d

c

∫ H(y)

G(y)

f(x, y) dxdy

as long as the limits of integration in each case delineate the same region

of integration! After all, the double integral represents the volume

under f(x, y) over the region R, so as long as you describe the region R

properly, it shouldn’t matter which variable you take care of first. This

is essential in the case that an integral cannot be done in one order;

you have to be able to reverse the order of integration when needed.

y = 4

y
=

4x
ak

a
x

=
y/

4

x = 1

x

y

Fig. 14.10 Region between y = 4x and y = 4 (w/ EX 5).

EX 5 Write the equivalent integral in which the order of integration is

reversed:

∫ 1

0

∫ 4

4x

f(x, y) dydx.

The limits of integration delineate the region R bounded by the lines y = 4x

and y = 4, and the lines x = 0 and x = 1. That region is shown in

Fig. 14.10. Note that we can also describe this region as being the region

between the lines x = 0 and x = y/4 and the lines y = 0 and y = 4 — it’s

the same region, with different description of the boundaries. Therefore,

we can reverse the order of integration like this:∫ 1

0

∫ 4

4x

f(x, y) dydx =

∫ 4

0

∫ y/4

0

f(x, y) dxdy
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Note that we didn’t even need to supply a function f(x, y), because the

creation and reversal of limits of integration has absolutely nothing to do

with the function being integrated! �

1 3 5 7 9

2

3

x
=

9y
=
p x

ak
a
x
=
y
2

x

y

Fig. 14.11 Region between x = y2 and x = 9 (w/ EX 6).

EX 6 Do something to make this integral solvable:

∫ 3

0

∫ 9

y2
y cos(x2) dxdy.

This integral is not solvable as-is because we can’t find the inner antideriva-

tive with respect to x. However, consider what happens if we reverse the

order of integration. The region of integration is between the curves x = y2

and x = 9 and the lines y = 0 and y = 3. That region is shown in Fig.

14.11. We can describe the same region as being between the curves y = 0

and y =
√
x and the lines x = 0 and y = 9. Therefore, we can reverse the

order like this:∫ 3

0

∫ 9

y2
y cos(x2) dxdy =

∫ 9

0

∫ √x

0

y cos(x2) dydx

The new version of the integral is now easily solvable. Try it out if you

don’t believe me! �

You Try It

(7) Write the equivalent integral in which the order of integration is

reversed:

∫ 1

0

∫ 3

3y

ex
2

dxdy.
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Double Integrals — Problem List

Double Integrals — You Try It

These appeared above; solutions begin on the next page.

(1) Evaluate

∫ 2

0

∫ π/2

0

x sin y dydx.

(2) Evaluate

∫∫

R

(6x2y3 − 5y4)dA, where R is the region {(x, y) : 0 ≤ x ≤
3, 0 ≤ y ≤ 1}.

(3) Find the volume under 3x + 2y + z = 12 over the region R = {(x, y) :

0 ≤ x ≤ 1,−2 ≤ y ≤ 3}.

(4) Evaluate

∫∫

D

2y

x2 + 1
dA, where D is the region D = {(x, y) : 0 ≤ x ≤

1, 0 ≤ y ≤ √x}.

(5) Evaluate

∫∫

D

x cos y dA, where D is the region bounded by y = 0, y =

x2, and x = 1.

(6) Evaluate

∫∫

D

(x + 2y) dA, where D is the region between the curves

y = x and y = x4.

(7) Write the equivalent integral in which the order of integration is re-

versed:

∫ 1

0

∫ 3

3y

ex
2

dxdy.

Double Integrals — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.2.3.

(1) Evaluate

∫ 4

1

∫ 2

0

x+
√
y dxdy.

(2) Evaluate

∫∫

R

xy2

x2 + 1
dA, where R is the {(x, y) : 0 ≤ x ≤ 1,−3 ≤ y ≤

3}.
(3) Find the volume under z = 4 + x2 − y2 over the region R = {(x, y) :

−1 ≤ x ≤ 1, 0 ≤ y ≤ 2}.

(4) Evaluate

∫∫

D

ey
2

dA, where D is the region {(x, y) : 0 ≤ x ≤ y, 0 ≤
y ≤ 1}.
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(5) Evaluate

∫∫

D

(x+ y) dA, where D is between y =
√
x and y = x2.

(6) Evaluate

∫∫

D

(2x+ y2) dA, where D is the region between x = y2 and

x = y3.

(7) Write the equivalent integral in which the order of integration is re-

versed:

∫ 1

0

∫ 1

√
y

√
x3 + 1 dxdy.

(8) Evaluate

∫∫

D

xy2 dA, where D is the region bounded by x = 0 and

x =
√

1− y2.

(9) Find the volume under the paraboloid z = x2 + 3y2 over the region in

the xy-plane bounded by the the lines y = 1, x = 0, and y = x.

(10) Evaluate

∫ 1

0

∫ 1

x2

x3 sin(y3) dydx.

Double Integrals — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.2.3.

(1) Evaluate

∫∫

D

(1) dA where D is the region to the right of the parabola

x = y2 − 1 and to the left of the semicircle x =
√

1− y2. Once you

find the value of the integral, state what geometric measure you just

calculated.

(2) Find the volume under the surface z = 2x + y2 over the region in the

first quadrant bounded by y = x5 and y = x.

(3) Reverse the order of integration of, and then evaluate, the following

integral
∫ 0

−1

∫ √y+1

−√y+1

y2 dxdy
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Double Integrals — You Try It — Solved

(1) Evaluate

∫ 2

0

∫ π/2

0

x sin y dydx.

�
∫ 2

0

∫ π/2

0

x sin y dydx =

∫ 2

0

[
−x cos y

∣∣∣∣
π/2

0

]
dx

=

∫ 2

0

x dx =

(
1

2
x2
) ∣∣∣∣

2

0

= 2 �

(2) Evaluate

∫∫

R

(6x2y3 − 5y4) dA where R is the region {(x, y) : 0 ≤ x ≤
3, 0 ≤ y ≤ 1}.
� Setting the limits of integration,

∫∫

R

(6x2y3 − 5y4) dA =

∫ 3

0

∫ 1

0

(6x2y3 − 5y4) dydx

=

∫ 3

0

(
3

2
x2y4 − y5

) ∣∣∣∣
1

0

dx =

∫ 3

0

(
3

2
x2 − 1

)
dx

=

(
1

2
x3 − x

) ∣∣∣∣
3

0

=
27

2
− 3 =

21

2
�

(3) Find the volume under 3x + 2y + z = 12 over the region R = {(x, y) :

0 ≤ x ≤ 1,−2 ≤ y ≤ 3}.
� We rewrite the function as z = 12− 3x− 2y and then

∫ 3

−2

∫ 1

0

(12− 3x− 2y) dxdy =

∫ 3

−2

(
12x− 3

2
x2 − 2xy

) ∣∣∣∣
1

0

dy

=

∫ 3

−2

(
21

2
− 2y

)
dy =

(
21

2
y − y2

) ∣∣∣∣
3

−2

=
21

2
(3− (−2))− (9− 4) =

95

2
�

(4) Evaluate

∫∫

D

2y

x2 + 1
dA where D is the region D = {(x, y) : 0 ≤ x ≤

1, 0 ≤ y ≤ √x}.
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Fig. 14.12 Region of integration for

YTI 4.

0.5 1

0.5
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Fig. 14.13 Region of integration for

YTI 5.

� The region is shown in Fig. 14.12. We have to integrate with respect

to y first, since the boundaries of y are not constant:

∫∫

D

2y

x2 + 1
dA =

∫ 1

0

∫ √x

0

2y

x2 + 1
dydx =

∫ 1

0

(
y2

x2 + 1

) ∣∣∣∣

√
x

0

dx

=

∫ 1

0

x

x2 + 1
dx =

1

2
ln(x2 + 1)

∣∣∣∣
1

0

=
ln 2

2
�

(5) Evaluate

∫∫

D

x cos ydA where D is the region bounded by y = 0, y =

x2, and x = 1.

� The region D is also known as {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x2},
i.e. the area under y = x2 from x = 0 to x = 1. The region is shown

in Fig. 14.13. We have to integrate with respect to y first, since the

boundaries of y are not constant:

∫∫

D

x cos y dA =

∫ 1

0

∫ x2

0

x cos y dydx =

∫ 1

0

(x sin y)

∣∣∣∣
x2

0

dx

=

∫ 1

0

x sin(x2) dx = −1

2
cos(x2)

∣∣∣∣
1

0

=
1

2
(1− cos 1) �

(6) Evaluate

∫∫

D

(x + 2y) dA, where D is the region between the curves

y = x and y = x4.
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Fig. 14.14 Region of integration for YTI 6.

� Since y = x and y = x4 intersect at (0,0) and (1,1) and y = x4 is

below the other on that interval, the region D bounded by them is the

area under y = x and over y = x4 from x = 0 to x = 1. This region is

shown in Fig. 14.14. To find the volume under the plane x+ 2y− z = 0

over this region, we have to integrate z = x+ 2y with respect to y first,

since the boundaries of y are not constant:
∫∫

D

(x+ 2y) dA =

∫ 1

0

∫ x

x4

(x+ 2y) dydx =

∫ 1

0

(
xy + y2

) ∣∣∣∣
x

x4

dx

=

∫ 1

0

(
2x2 − (x5 + x8)

)
dx =

(
2

3
x3 − 1

6
x6 − 1

9
x9
) ∣∣∣∣

1

0

=
2

3
− 1

6
− 1

9
=

7

18
�

1 2 3 4

0.5

1

x =
3y

x = 3

x

y

Fig. 14.15 Region of integration for YTI 7.
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(7) Write the equivalent integral in which the order of integration is re-

versed:

∫ 1

0

∫ 3

3y

ex
2

dxdy.

� We note that the limits of integration describe the triangular region

to the right of the line x = 3y and left of x = 3, from y = 0 to y = 1.

This is the same as the region between above the line y = 0 and below

y = x/3 from x = 0 to x = 3. The region is shown in Fig. 14.15. So,

we have
∫ 1

0

∫ 3

3y

(x2 + 3y2) dxdy =

∫ 3

0

∫ x/3

0

ex
2

dydx

This can now be solved, whereas the original could not. �
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14.4 Triple Integrals

Introduction

Single integrals are for functions like y = f(x). Double integrals are

for functions like z = f(x, y). So, triple integrals are for functions like

w = f(x, y, z). The leap from single integrals to double integrals is an

impressive one. You have to change the way you visualize problems and re-

gions of integration. Once you’ve gotten comfortable with double integrals,

triple integrals may not be as scary. In fact, without even seeing anything

else, you might already have insight into the fundamental definition for

triple integrals. Having started with the Riemann sum definition for single

integrals,
∫ b

a

f(x) dx = lim
n→∞

n∑

i=1

f(x?i ),∆x

and then scaling up to double integrals,
∫∫

D

f(x, y) dA = lim
n,m→∞

m∑

i=j

n∑

i=1

f(x∗i , y
∗
j ) ∆A

Can you guess how many summations will be involved for a triple in-

tegral? Better yet, can you guess the fundamental measurement of the

partitioning? For single integrals, we used a bit of length, ∆x; for double

integrals, we used a bit of areal ∆A. What might we use for triple integrals?

You can also probably guess how this pattern plays out to triple integrals:
∫ b

a

f(x) dx→
∫∫

D

f(x, y) dA → ???

Can you imagine what a triple integral actually computes? They are

strange creatures. Consider this: it takes two axes to plot y = f(x). It

takes three axes to plot z = f(x, y). How many axes does it take to plot

w = f(x, y, z)? Four! Which means we’re now integrating functions we

can’t even plot. But wait, it gets better!

Remember that a single integral gives the AREA under a function f(x)

over a region (interval) of integration. A double integral gives the VOL-

UME under a function f(x, y) over a region (area) of integration.

So, naturally, a triple integral gives... ?? We sort of ran out of measur-

able quantities. What comes after area and volume? Beats me. So now we
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have a type of integral whose fundamental geometric interpretation is a bit

dodgy.

Here’s another fun fact about triple integrals: in single integrals, there

was only one possible order of integration: dx. In double integrals, the

area element could be written two ways: dxdy or dydx. In triple integrals,

we will have SIX different possible orderings of variables and their limits

within the integral. (That sounds worse than it is, though, usually the

order doesn’t matter or there are clearly only one or two viable options.)

The Definition of a Triple Integral

Remember from the discussion of double integrals that we have a general-

ized integration process to build from:

(1) Select a region of integration from the domain of the function.

(2) Partition the region of integration into tiny pieces. Each tiny piece, or

partition,2 will have its own size.

(3) Within each individual partition, select a representative point.

(4) Plug the coordinate(s) of that representative point into the function.

(5) Multiply the function’s value at the representative point by the size of

the partition.

(6) Sum these resulting contributions from all partitions.

(7) Find the limit of this sum as the number of partitions goes to ∞
(8) Give this limit a name and symbol.

Let’s go through this process for a function of three variables, f(x, y, z),

so that you know what a triple integral really is, then we’ll see how to

compute them.

(1) Select a region of integration from the domain of the function.

The domain of a function f(x, y, z) is part to all of the three-dimensional

coordinate system R3. Therefore, our region of integration will be a por-

tion of R3. We will have to assume that a region of integration has at

least two flat edges; in other words, at least two boundaries of the region

will be planes described by constant x, y or z values. Having dealt with

double integrals, you should understand the reason for this: since we pro-

gressively eliminate the variables through each step of integration, then the

2Yes, we are now using partition as a verb and a noun...
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final (outermost) limits of integration must be constants to ensure we get

a numerical value as the final result. Therefore, at least one variable must

be bound by constants. Let’s name our 3D regions of integration E (for, I

suppose, “Ewww, this is terrible!”).

(2) Divide the region of integration into partitions. Each partition will

have its own size.

The region of integration E is a full three-dimensional solid. In single

variable integrals, we partitioned our interval [a, b] into pieces of size ∆x.

In double integrals, we partitioned our domain into pieces of size ∆A. Now

we’ll divide our solid of integration into little rectangular boxes of size

(volume) ∆V . Each individual coordinate direction is partitioned as before,

with lengths ∆x, ∆y, and ∆z, so that ∆V = ∆x·∆y·∆z. Such an individual

piece of the partition is called a representative elementary volume. (Imagine

a large wedding cake being cut by a straight knife in all three directions;

each individual piece is a representative elementary volume of the cake.)3

(3) Within each individual partition, select a representative point.

In the partition of size ∆V , we can select a representative point (x?i , y
?
j , z

?
k).

Figure 14.16 shows a sample partition; we see a representative elementary

volume with edges ∆x, ∆y, and ∆z respectively, along with a representative

point (x?i , y
?
j , z

?
k) chosen at the midpoint of each coordinate length.

(4) Plug the coordinate(s) of that representative point into the function.

When we plug the representative point (x?i , y
?
j , z

?
k) into our function, we get

f(x?i , y
?
j , z

?
k).

(5) Multiply the function’s value at the representative point by the size of

the partition.

Here’s where we start to lose our connection to known geometric measure-

ments. In a single integral, we built rectangles, and found the area of

each rectangle, f(x?i )∆x. In double integrals, we built standing rectangu-

lar columns, and found the volume of each column, f(x?i , y
?
j )∆A. What

the heck does f(x?i , y
?
j , z

?
k) ·∆V compute?? We don’t really know, but that

won’t stop us from proceeding.

3But I don’t recommend saying, “Thank you for my representative elementary volume!”

because you may be asked to leave.
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Fig. 14.16 Partitioning the 3D rectangular coordinate system.

(6) Sum these resulting contributions from all partitions.

This sum won’t be an area A or volume V , so let’s just call it T for total:

T ≈
p∑

k=1

m∑

j=1

n∑

i=1

f(x?i , y
?
j , z

?
k)∆V

Now, whatever we’re computing will undoubtedly improve as the num-

ber of partitions in all three directions go to ∞, so we can still do this:

(7) Find the limit of this sum as the number of partitions goes to ∞

T = lim
n,m,p→∞

p∑

k=1

m∑

j=1

n∑

i=1

f(x?i , y
?
j , z

?
k)∆V

And there we have the Riemann Sum definition of the triple integral of

f(x, y, z) over a 3D region of integration E.

(8) Give this limit a name and symbol.

Why ruin a good pattern? Let’s write the formal definition of a triple

integral as:

∫∫∫

E

f(x, y, z) dV = lim
n,m,p→∞

p∑

k=1

m∑

j=1

n∑

i=1

f(x?i , y
?
j , z

?
k)∆V
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The Computation of a Triple Integral

The process of computation of a triple integral is not that much different

as for a double integral, there’s just one more step. In fact, if the limits are

all already given, you probably already know what to do:

EX 1 Evaluate

∫ 1

0

∫ z

0

∫ y

0

ze−y
2

dxdydz.

We use Fubini’s Theorem again, and work from the inside, outwards:

∫ 1

0

∫ z

0

∫ y

0

ze−y
2

dxdydz =

∫ 1

0

∫ z

0

(xze−y
2

)

∣∣∣∣
y

0

dydz =

∫ 1

0

∫ z

0

yze−y
2

dydz

=

∫ 1

0

(
−1

2
ze−y

2

) ∣∣∣∣
z

0

dz = −1

2

∫ 1

0

(ze−z
2 − z) dz

= −1

2

[(
−1

2
e−z

2

)
− 1

2
z2
] ∣∣∣∣

1

0

=
1

4

(
e−z

2

+ z2
) ∣∣∣∣

1

0

=
1

4
(e−1 + 1− 1) =

1

4e
�

You Try It

(1) Evaluate

∫ 1

0

∫ z

0

∫ x+z

0

(6xz) dydxdz.

In the case that you need to decide on your own limits because the

region of integration is described by its boundaries, we have similar general

guidelines as for double integrals:

• At least one variable must have constant boundaries; the rest can be

identifiable as surfaces like z = f(x, y), y = g(x, z) or x = h(y, z).

• The variable which has constant limits must be integrated last, i.e.

must be placed on the outer integral. The other two variables must

be progressively eliminated from the inside, out.

These guidelines mean that the innermost variable can have limits that

refer to the other two. But the limits on the middle integral can only refer

to the outer variable. The innermost integral should eliminate all references

to the inner variable. The middle integral should eliminate all references to

itself. By the time we get to the outermost integral, only that final third

variable should remain. See the example EX 1 above, since it followed the



116 Casual Calculus: A Friendly Student Companion (Volume 3)

guidelines and worked out well. Can you identify which of the following are

proper triple integrals that will result in a number?

(1)

∫ y

0

∫ 2

0

∫ 4

x2

xyz dydxdz

(2)

∫ 1

0

∫ x2

0

∫ y

1

xyz dxdydz

(3)

∫ 1

0

∫ 1

0

∫ x

0

xyz dxdydz

The answer is ... none of them! The final answer for the first will have

y’s in it. In the second integral, the inner variable is x, but that variable

gets reintroduced in the limits of the middle variable, and those new x’s

will not go away. The same kind of thing happens in the third, too. Do

you see why?

In all, the scheme for determining limits of integration (when they’re not

given explicitly) relies on your visualization of the 3D region of integration.

One pair of boundaries will likely be surfaces, say z1 = f(x, y) and z2 =

g(x, y), and these can be placed on the innermost integral as limits for z.

(Often, one or both of these might even be constants.) What’s left as the

two inner integrals, then, forms a double integral; you can think of the

triple integral as:

∫∫

D

(∫ g(x,y)

f(x,y)

f(x, y, z) dz

)
dA

The trick in these problems isn’t coming up with limits on z; they’re often

given, or easy to determine. Rather, the trick is to come up with the other

limits. But the limits in the other directions x and y must cover the lateral

extent of the full solid of integration, and I find there are three good ways

to visualize this — you pick what works for you.

(1) The region in the xy-plane that must be described by the limits on x

and y is the shadow of the full 3D solid of integration, as would be

generated by a spotlight that’s above the solid, pointing directly down.

(2) Imagine you are a tailor fitting the full 3D solid of integration for cloth-

ing. You wrap your tape measure around the top or bottom of solid,

and slide it up and down to determine the shape and size of the cross

section at all elevations. Whatever you found as the widest / largest
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cross section anywhere on the solid is the shape you use to determine

limits on x and y.

(3) (This is my favorite.) If you have seen the old British comedy show

Monty Python’s Flying Circus, then you are familiar with the animated

“Monty Python Foot”, which comes down from above and squishes

other animated objects, usually at the end of the opening credits. If

you imagine the Monty Python foot coming down from high on the

z-axis and precisely squishing your solid of integration down flat into

the xy-plane, what region would the splat! cover? A sphere would get

smushed into a circle; an upright paraboloid would get smushed into

a circle, but a paraboloid lying on its side would get smushed into a

parabola. An upright hyperboloid of one sheet would get smushed into

a circle. An ellipsoid whose long axis is parallel to the xy-plane would

get smushed into an ellipse, but an ellipsoid whose long axis is parallel

to the z-axis would get smushed into a circle. (Lots of 3D surfaces have

circular 2D cross sections.)

But again, once you have pinned down limits on z and can visualize the

region in the xy-plane covered by the solid, then you describe the bounds

of this 2D region just like you would for a double integral — perhaps by

bounding y with y1 = h1(x) and y2 = h2(x) and then x itself by constants,

x = a and x = b.

This entire discussion can get flipped on its side if it is more convenient

to determine limits in, say, the y direction first — leaving the limits in x

and z to be treated as a double integral.

No matter what else happens, the golden rule of setting limits is: make

sure that a variable will completely disappear with successive integration

from the inside out. If the inner-most integral goes with dz, then its limits

can involve both x and y. But the middle integral can only involve one

variable, and the outermost limits must both be constants.

EX 2 Evaluate

∫∫∫

E

6xy dV where E lies under the plane z = 1 + x+ y

and above the region in the xy-plane bounded by y =
√
x, y = 0,

and x = 1.

This is an irregularly shaped solid due to the base of the solid given by the

x and y bounds. The top of the solid is the plane z = 1+x+y; the bottom
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3
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z

Fig. 14.17 The surface z = 1 + x+ y.

of the solid must is inferred from the phrase “above the xy-plane” to be

z = 0. Figure 14.17 shows the plane, the border curves in the xy-plane, and

the trace of y =
√
x in the plane. Since the limits on z refer to both x and

y, then we must integrate z first. We don’t really need to visualize what’s

happening down in the xy-plane since those limits are given explicitly: y

is bound by y − 0 and y =
√
x, and x is then also bounded by x = 0 and

x = 1. The integral we need is:
∫∫∫

E

6xy dV =

∫ 1

0

∫ √x

0

∫ 1+x+y

0

6xy dzdydx

and its evaluation proceeds like this:
∫ 1

0

∫ √x

0

∫ 1+x+y

0

6xy dzdydx =

∫ 1

0

∫ √x

0

6xyz

∣∣∣∣
1+x+y

0

dydx

=

∫ 1

0

∫ √x

0

6xy(1 + x+ y) dydx =

∫ 1

0

∫ √x

0

6xy + 6x2y + 6xy2 dydx

=

∫ 1

0

3xy2 + 3x2y2 + 2xy3
∣∣∣∣

√
x

0

dx =

∫ 1

0

3x(x) + 3x2(x) + 2x(x3/2) dx

=

∫ 1

0

3x2 + 3x3 + 2x5/2 dx = x3 +
3

4
x4 +

4

7
x7/2

∣∣∣∣
1

0

= 1 +
3

4
+

4

7
=

65

28
�

You can see that evaluation of triple integrals is — even with “simple”

limits — long and tedious. For me, once the integral is set up properly, the

details of evaluation are secondary. The use of technology is encouraged for

evaluation, and in all examples from here on, once the integral is presented,

we will leap right to the final result. After all, there’s only so much time
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in the day, and sadly, time for Calculus is often limited. In your allotted

time, is it better to do two or integrals all the way out by hand, or set up

six or eight integrals and use tech to evaluate them? I’ll take the latter.

You Try It

(2) Evaluate

∫∫∫

E

x2ey dV , where E is the region between z = 1−y2,

z = 0, x = −1, and x = 1. (Once the integral is set up, you can

use a CAS to evaluate it.)

OK, So They Do Compute Something!

I’ve been lying ... sort of ... as I’ve tried to lead you to believe that the

result of a triple integral doesn’t have any geometric meaning. Sometimes

it does, as long as you integrate the proper function: f(x, y, z) = 1.

Let’s think about this from the ground up. What do we get when we

take a single integral of f(x) = 1 over the interval [a, b]?

∫ b

a

(1)dx = x

∣∣∣∣
b

a

= b− a

You should recognize b− a as the length of the interval [a, b]. So in general

terms, the (single) integral of f(x) = 1 gave us a measure of the region of

integration. Now how about the double integral of f(x, y) = 1 over a region

R?
∫∫

R

(1)dA

From our general knowledge, this gives us the total volume underneath the

plane z = 1 over the region of integration R. But the height of this region

is 1, so if A is the area of the region of integration in the xy-plane, then

the volume we’re computing is V = area × height = A · 1 = A. In other

words, the result of this double integral is equal to the area of the region

of integration R. So in general terms, the integral of f(x, y) = 1 gave us a

measure of the region of integration.

And so, now, what do you think we get from this integral?
∫∫∫

E

(1) dV
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We will get the volume of the solid of integration E! In other words, we can

compute the volume of a 3D region bounded by pretty much any surfaces

as long as we can describe that region using the limits of integration of a

triple integral, and use those limits to integrate f(x, y, z) = 1.

−2

2−2

2

5

x

y

z

Fig. 14.18 Region between x2 + y2 = 9, y + z = 5, z = 1.

EX 3 Find the volume of the region enclosed by the cylinder x2 + y2 = 9

and the planes y + z = 5 and z = 1.

This cylinder has radius 3, and is centered around the z-axis. Figure 14.18

shows the cylinder and planes, with the intersections traced out. We enter

the cylinder at the bottom through the flat plane z = 1 and exit its top

through the slanted plane y + z = 5. Therefore, z is bounded by z = 1

and z = 5 − y. The 2D “shadow” of this solid down in the xy-plane is

from the interior of the cylinder itself: x2 + y2 = 9; therefore, y is bounded

by ±
√

9− x2 and x is bounded by −3 and 3. (We progressively eliminate

variables in the limits.) The triple integral needed to compute this volume

is then

∫ 3

−3

∫ √9−x2

−
√
9−x2

∫ 5−y

1

(1) dzdydx = 36π

(The value of the integral computed using tech.) �
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You Try It

(3) Find the volume of the tetrahedron (in the first octant) enclosed

by the coordinate planes and the plane 2x+ y + z = 4. (Once the

integral is set up, you can use tech to evaluate it.)

Triple Integrals — Problem List

Unless stated otherwise, once you have set up an integral, you can use tech

to evaluate it.

Triple Integrals — You Try It

These appeared above; solutions begin on the next page.

(1) Evaluate

∫ 1

0

∫ z

0

∫ x+z

0

(6xz) dydxdz by hand.

(2) Evaluate

∫∫∫

E

x2ey dV , where E is the region between z = 1 − y2,

z = 0, x = −1, and x = 1.

(3) Find the volume of the tetrahedron (in the first octant) enclosed by the

coordinate planes and the plane 2x+ y + z = 4.

Triple Integrals — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.2.4.

(1) Evaluate

∫ 1

0

∫ 2x

x

∫ y

0

(2xyz) dzdydx by hand.

(2) Evaluate

∫∫∫

E

x dV , where E is the region between the paraboloid

x = 4y2 + 4z2 the plane x = 4.

(3) Find the the volume of the solid bounded by the parabolic cylinder

y = x2 and the planes z = 0, z = 4, and y = 9.

(4) Describe and sketch the 3D region whose volume is being computed in

the following integral:

∫ 3

−3

∫ √9−x2

−
√
9−x2

∫ 9−x2−y2

x2+y2−9
(1) dzdydx
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(5) Evaluate (by hand)

∫∫∫

E

yz cos(x5) dV where E is defined as the region

E = {(x, y, z) : 0 ≤ x ≤ 1; 0 ≤ y ≤ x;x ≤ z ≤ 2x}.
(6) Find the volume of region between the paraboloid x = y2 + z2 and the

plane x = 16.

Triple Integrals — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.2.4.

In these problems, once an integral is set up with all limits in place, you

can use a CAS to evaluate it.

(1) Given a 3D region of integration E and a function f(x, y, z) defined in

that region, the average value of f over E is given by

favg =
1

V (E)

∫∫∫

E

f(x, y, z) dV

where V (E) is the volume of E. Find the average value of f(x, y, z) =

xz + 5z + 10 over the region in the first octant between the plane

x+ y + z = 5 and the coordinate planes.

(2) Evaluate

∫∫∫

E

y ln(x) + z dV , where E is defined as the region E =

{(x, y, z) : 1 ≤ x ≤ e; 0 ≤ y ≤ ln(x); 0 ≤ z ≤ 1} using TWO equivalent

orderings of integration. Obviously, you should get the same value from

the integral with each ordering.

(3) Find the volume of region between the elliptic paraboloid z = 2x2 + y2

and the plane z = 10. (Use of tech for evaluation is highly recom-

mended!)
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Triple Integrals — You Try It — Solved

(1) Evaluate

∫ 1

0

∫ z

0

∫ x+z

0

(6xz) dydxdz by hand.

� It’s always nice when the integral comes with limits already in place!

∫ 1

0

∫ z

0

∫ x+z

0

(6xz) dydxdz =

∫ 1

0

∫ z

0

(6xzy)

∣∣∣∣
x+z

0

dxdz

=

∫ 1

0

∫ z

0

6xz(x+ z) dxdz =

∫ 1

0

∫ z

0

(6x2z + 6xz2) dxdz

=

∫ 1

0

(2x3z + 3x2z2)

∣∣∣∣
z

0

dz =

∫ 1

0

5z4dz = 1 �

−1

1−1

1

1

x

y

z

Fig. 14.19 Region between z = 1− y2, x = ±1, z = 0.

(2) Evaluate

∫∫∫

E

x2ey dV where E is the region between z = 1 − y2,

z = 0, x = −1, and x = 1.

� The roof of the region E is the parabolic cylinder z = 1 − y2. It

looks like a quonset hut. According to the x and y bounds, the floor

of this region is the square with both x and y bounds of ±1. Figure

14.19 shows the surface and the bounds in the xy-plane. We must set

up limits of integration so that variables are progressively eliminated;

the final limits must be constants. The variable z must go first, but

then the order of x and y doesn’t really matter. The default ordering

is dzdydx, and there’s no reason to deviate from that. So we have,

∫∫∫

E

x2ey dV =

∫ 1

−1

∫ 1

−1

∫ 1−y2

0

x2ey dzdydx =
8

3e
�
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1
2

2

4

2

4

x

y

z

Fig. 14.20 The plane 2x+ y+ z = 4 in

the first octant (w/ YTI 3).

1 2

2

4

2x
+
y

=
4

x

y

Fig. 14.21 2D region under 2x+y+z =

4 (w/ YTI 3).

(3) Find the volume of the tetrahedron enclosed by the coordinate planes

and the plane 2x+ y + z = 4.

� The defining points of this solid will be the corners of the tetra-

hedron, i.e. the intercepts of the plane on the coordinate axes. To

get these corners, simply set two coordinates to zero and solve for the

third; for example, with y = z = 0 we find this tetrahedron intersects

the x-axis at 2x = 4 or x = 2. Repeat. Altogether, we find that this

tetrahedron has corners (2, 0, 0), (0, 4, 0) and (0, 0, 4). Then, we also

know that in the xy-plane, the footing of this region is the triangle with

coordinates (2, 0), (0, 4), and (0, 0). Figure 14.20 shows this tetrahe-

dron; Fig. 14.21 shows the extent of the region in the xy-plane which

is used to determine limits on x and y.

In the z-direction, the tetrahedron goes from z = 0 up to the plane

z = 4 − 2x − y. With z pinned down, we get limits on x and y by

exploring the region of the xy-plane used by this tetrahedron.

The intersection of the tetrahedron with the xy-plane (i.e. z = 0) is

the line 2x+ y = 4, i.e. y = −2x+ 4. So limits on y are from y = 0 to

y = −2x + 4. Now that z and y are pinned down, we need x. But we

know that only 0 ≤ x ≤ 2 is used.

We must order limits of integration so that variables are progressively

eliminated; the final limits must be constants. So, z must go first, then
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y and finally x: So,

V =

∫∫∫
E dV =

∫ 2

0

∫ −2x+4

0

∫ 4−2x−y

0

dzdydz =
16

3

FFT: A common error is to use the corners of the tetrahedron to

immediately set bounds on the variables as 0 ≤ x ≤ 2, 0 ≤ y ≤ 4 and

0 ≤ z ≤ 4. Why is this wrong? �



B1948  Governing Asia

B1948_1-Aoki.indd   6B1948_1-Aoki.indd   6 9/22/2014   4:24:57 PM9/22/2014   4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank



Chapter 15

And Can We Agree Rectangular
Coordinates Are Rather Dull?

15.1 Double Integrals in Polar Coordinates

Introduction

You may guess from the title of this chapter that polar coordinates are going

to be involved. If you’ve been engaged with this content since Chapter 1,

then you’ve seen polar coordinates. If you’ve jumped into this book at the

start of the multivariable calculus chapters, you can backtrack to Chapter

12 to catch up on polar coordinates. If nothing else, you can get a lot of

mileage out of the conversion equation r2 = x2 +y2; draw that information

onto a right triangle with inner angle θ, and you’ll see everything you need

to see about polar coordinates.

Double integrals are sometimes easier if we do them in polar coordinates

instead of rectangular coordinates. So first, we need to see what that even

means in the first place, and then find how to either set up a double integral

from scratch in polar coordinates, or to convert one posed in rectangular

coordinates into polar coordinates.

If changing coordinate systems in an integral sounds awful, be aware

that you’ve already done this in a simpler setting. By now you should

be well versed in “u-substitution”; in that process, you replace your x-

coordinate with a new coordinate, called u. That is a change of coordinates

in one dimension. Now we have two dimensions, but in one aspect, the con-

version is even easier than in regular substitution. In substitution problems

for single integrals, YOU had to decide on the right choice of conversion

from x to u; in polar coordinates, the conversion is always done using the

same equations — and either it works or it doesn’t. There’s less guesswork

127
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involved. An additional benefit is that, unlike in rectangular coordinates

where there are two possible orders of integration for double integrals, once

a double integral is set in polar coordinates, we usually maintain the same

order of integration.

The problems given here are all problems that work well in polar co-

ordinates. In later topics, you will encounter double integrals for which

you will have to decide whether polar or rectangular coordinates are more

convenient.

∆θ

∆r

∆A

Fig. 15.1 Partitioning in polar coordinates.

When and How To Use Polar Coordinates

Some signs that you should consider using polar coordinates are:

(1) The problem explicitly tells you to use polar coordinates. (That

one’s sort of obvious, eh?)

(2) The region of integration is a circle or a portion of a circle. (Did

you notice that when working in rectangular coordinates, a rect-

angular region of integration led us to limits of integration which

were all constant? This is analogous to having constant limits in

rectangular coordinates over a rectangular region. When our re-

gion of integration is circular, the limits of integration with respect

to r and θ are constants.

(3) The function f(x, y) being integrated contains the term x2 + y2,

since that can be replaced by r2.
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In polar coordinates, a double integral has the form
∫∫

R

f(r, θ)dA =

∫ θ2

θ1

∫ r2

r1

f(r, θ)rdrdθ

That is,

• The area element dA becomes rdrdθ (see below for the reason why).

• Limits of integration are the bounds of r and θ which describe the

region of integration.

• The function must be written in terms of r and θ.

It may be surprising that the area element in polar coordinates is not

dA = drdθ but rather dA = r dr dθ (note the extra r). Here’s why. If

we discretize a region of integration with respect to r and θ in divisions of

size ∆r and ∆θ, we won’t get rectangles but rather little radial sectors like

the one shown in Fig. 15.1.

In rectangular coordinates, we’d write ∆A = ∆y∆x. But how do we

write ∆A in polar coordinates? Note that the sector is almost a rectangle,

and if it was, we’d have to come up with lengths of two sides to get the area.

One side of the sector is already a length (∆r), but the other measure (∆θ)

is certainly not a length. Well, do you remember that old formula from

geometry saying the length of a circular arc is s∆θ, where s is the radius of

the arc and ∆θ is the angle swept out by that arc? If we adapt our notation

to that idea, the other edge of the sector has length r∆θ, and so the area

of the sector is approximately

∆A ≈ ∆r(r∆θ) = r∆r∆θ

Then, when we go through the usual limiting process involved in the back-

ground of integration, this turns into dA = rdrdθ.

Never forget that extra r, because if you do, your answers will be wrong!

Describing Polar Regions With r and θ

In order to generate correct limits of integration for double integrals in

polar coordinates, we must be able to delineate regions in R2 by specifying

bounds on r and θ. Here are some quick examples of doing that.

EX 1 Describe the following regions in polar coordinates:

(a) The upper semicircle of radius 4.
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−4 −2 2 4

−4

−2

2

4r = 4

θ = −π θ = π

Fig. 15.2 The upper semicircle of ra-

dius 4.

−4 −2 2 4

−4

−2

2

4

r
=

4

θ = −π/2

θ = π/2

Fig. 15.3 The region between the right

half of x2 + y2 = 16 and the y-axis.

(b) The region between the right half of x2 + y2 = 16 and the

y-axis.

(c) The region y = |x| and x2 + y2 = 9.

(d) The region above y = −
√

25− x2 and below the x-axis.

(e) One loop of the polar graph r = cos 2θ.

(a) The upper semicircle of radius 4, otherwise known as y =
√

16− x2,

has polar bounds 0 ≤ r ≤ 4, and 0 ≤ θ ≤ π, see Fig. 15.2.

(b) The region between the right half of x2 + y2 = 16 and the y-

axis, otherwise known as x =
√

16− y2, is just a different portion of the

same circle as the curve in (a), and has polar bounds 0 ≤ r ≤ 4, and

−π/2 ≤ θ ≤ π/2 — see Fig. 15.3.

(c) The region between y = |x| and x2 + y2 = 9 is shown in Fig. 15.4;

this has polar bounds 0 ≤ r ≤ 3 and π/4 ≤ θ ≤ 3π/44.

(d) The region above y = −
√

25− x2 and below the x-axis is the lower

half of a circle of radius 5 centered at the origin. Do we even need a picture

for yet more parts of circles? This region uses 0 ≤ r ≤ 5, and the angular

bounds can be described in many ways, but usually either as −π ≤ θ ≤ 0

or π ≤ θ ≤ 2π, depending on how these bounds might be combined with

others.

(e) You may remember r = cos 2θ as a rose-petal shaped graph. We

will describe the start and stop of a loop by two adjacent θ values that
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produce r = 0 (since the loop starts with r = 0 and then closes out when

r = 0 again). We know that cos 2θ = 0 when 2θ1 = −π/2 and then again

at 2θ2 = π2. So a pair of θ values that start and stop a loop are θ1 = −π/4
and θ2 = π/4. The radial variable is bound by the function itself, as r1 = 0

and r2 = cos 2θ. A graph of this curve is shown in Fig. 15.5. �

−3 −1 1 3

−3

−1

1

3
r = 3

θ
=

3π/4
θ

=
π/

4

Fig. 15.4 The region between y = |x|
and x2 + y2 = 9.

−1 1

−1

1

θ = −π/4

θ = π/4

Fig. 15.5 One loop of the polar curve

r = cos(2θ).

You Try It

(1) Describe the following regions in polar coordinates:

(a) The region inside x2 + y2 = 4 and above y = x.

(b) The region between the circles x2 + y2 = 4 and x2 + y2 = 9,

such that y ≥ 0.

(c) The region between above the x-axis, inside y =
√

10− x2,

and to the right of y = −x.

(d) One loop of the polar graph r = 2 sin 2θ.

Examples of Double Integrals in Polar Coordinates

Types of problems in which we might need polar coordinates include

• a generic integral which is easier in polar coordinates

• a problem requiring the area inside a polar curve
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• the volume under a surface, when the volume integral

∫∫

R

f dA is

easier to handle in polar coordinates

Here are examples of each type. First, let’s see a problem which is just

plain easier in polar coordinates.

−2 −1 1 2

−2

−1

1

2

r
=

2

θ = −π/2

θ = π/2

Fig. 15.6 Polar region between x =
√

4− y2 and the y-axis.

EX 2 Evaluate the integral

∫∫

R

e−x
2−y2 dA where R is the region

bounded by x =
√

4− y2 and the y-axis.

This does not call for polar coordinates explicitly, but it will sure help. In

fact, we can’t even begin this problem in rectangular coordinates since we

don’t know the antiderivative of the function with respect to either x or y.

Now, the region bounded by x =
√

4− y2 and the y-axis is the inner half

of the circle x2 + y2 = 4 to the right of the y-axis — see Fig. 15.6. We can

describe this same region much easier in polar coordinates, as 0 ≤ r ≤ 2

and −π/2 ≤ θ ≤ π/2. In the function itself, we see the term x2 +y2 hiding,

and so we can easily convert the function to polar coordinates:

e−x
2−y2 = e−(x

2+y2) = e−r
2
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And so, remembering that dA = r drdθ, the integral becomes

∫∫

R

e−x
2−y2 dA =

∫ π/2

−π/2

∫ 2

0

e−r
2

r drdθ =

∫ π/2

−π/2

(
−1

2
e−4 +

1

2

)
dθ

=
1

2

(
(1− e−4)θ

) ∣∣∣∣
π/2

−π/2
=
π

2
(1− e−4)

Did you notice that the extra r in dA = rdrdθ is what made the integration

possible because of the substitution necessary (but not shown, since we’ve

done those a lot) in the second step? �

You Try It

(2) Use polar coordinates to evaluate

∫∫

R

cos(x2 + y2) dA where R is

the region above the x-axis and inside the circle x2 + y2 = 9.

EX 3 Find the area of one loop of r = cos 2θ

Regardless of whether we are going to use rectangular or polar coordi-

nates, we can find the area of a general 2D region R by doing the integral∫∫
R

(1)dA. This particular region suggests polar coordinates will be best.

The bounds of this region were developed in EX 1 (see Fig. 15.5), and the

resulting integral we need to solve is

∫∫

R

(1) dA =

∫ π/4

−π/4

∫ cos 2θ

0

(1) r drdθ =

∫ π/4

−π/4

1

2
r2
∣∣∣∣
cos 2θ

0

dθ

=
1

2

∫ π/4

−π/4
cos2(2θ) dθ =

1

2

(
θ

2
+

1

8
sin 4θ

) ∣∣∣∣
π/4

−π/4

=
1

2

[π
8
−
(
−π

8

)]
=
π

8

and this is the area of one loop of the curve. Note that when we encoun-

tered the antiderivative of cos2 2θ, we just relied on prior knowledge of that

integral ... you can look it up if you need to. �

You Try It

(3) Find the area of one loop of the curve r = cos 3θ.

How about a volume problem?
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−2

2−2

2

2

x

y

z

Fig. 15.7 The cone z =
√
x2 + y2; the upper half of x2 + y2 = 4.

EX 4 Find the volume under the cone z =
√
x2 + y2 and over the upper

half of the circle x2 + y2 = 4.

−2 2

−2

2 r =
2

θ = −π θ = π

Fig. 15.8 The upper half of x2 + y2 = 4.

To find the volume under a 3D surface, we must evaluate the double

integral

∫∫

R

z dA, where z is the surface under which we’re looking, andR is

the region from the xy-plane over which the volume sits. Nothing changes

here, except now we’ll consider doing this problem in polar coordinates.

Why? Because the region of integration is part of a circle and the function

contains our friend x2+y2. In polar coordinates, the surface is z =
√
r2 = r.
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The region of integration has bounds 0 ≤ r ≤ 2 and 0 ≤ θ ≤ π. Figures

15.7 and 15.8 show the full surface as well as the corresponding polar region

in the 2D plane. Therefore, the integral that gives the volume we want is:

∫∫

R

z dA =

∫ π

0

∫ 2

0

(r) r drdθ =

∫ π

0

∫ 2

0

r2 drdθ =

∫ π

0

1

3
r3
∣∣∣∣
2

0

dθ

=

∫ π

0

(
8

3

)
dθ =

8

3
θ

∣∣∣∣
π

0

=
8π

3

so the volume we wanted is V = 8π/3. �

You Try It

(4) Use polar coordinates to find the volume under the paraboloid z =

x2 + y2 over the region x2 + y2 ≤ 9.

Finally, how about some practice converting a given integral? There

are many cases where an integral posed in rectangular coordinates will be

easier to solve after a conversion to polar coordinates.

−3 −1 1 3

−3

−1

1

3

r
=

3

θ = −π/2

θ = π/2

Fig. 15.9 The right half of x2 + y2 = 9.

EX 5 Convert the following integral into polar coordinates:

∫ 3

0

∫ √9−x2

−
√
9−x2

(x+ y) dydx



136 Casual Calculus: A Friendly Student Companion (Volume 3)

While the inner integral isn’t bad, by the time we solved that integral

and plugged in the inner limits of integration, the resulting outer integral

would be horrid. This integral might be better posed in polar coordinates.

The limits on y show that our region is bounded by y1 = −
√

9− x2 and

y2 =
√

9− x2. These are the lower and upper halves of the circle x2+y2 = 9.

But the x limits restrain x between 0 and 3. Therefore, our region of

integration is only the right half of the circle x2 + y2 = 9 — see Fig.

15.9. In polar coordinates, this region is described as 0 ≤ r ≤ 3 and

−π/2 ≤ θ ≤ π/2. The function we’re integrating is x + y, which we can’t

really do much with except use the conversion equations x = r cos θ and

y = r sin θ. Essentially, we’re going to make the limits of integration easier

but make the function a bit yuckier. It’s a good trade. Finally, don’t forget

to change the area element from dydx to rdrdθ!

∫ 3

0

∫ √9−y2

−
√

9−y2
(x+ y) dxdy =

∫ π/2

−π/2

∫ 3

0

(r cos θ + r sin θ) r drdθ

I suppose we should clean the integral up a bit, and get:

∫ 3

0

∫ √9−y2

−
√

9−y2
(x+ y) dxdy =

∫ π/2

−π/2

∫ 3

0

(cos θ + sin θ)r2 drdθ �

You Try It

(5) Convert the following integral into polar coordinates:

∫ 1

0

∫ √1−x2

0

ex
2+y2 dydx
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Double Integrals in Polar Coordinates — Problem List

Double Integrals in Polar Coordinates — You Try It

These appeared above; solutions begin on the next page.

(1) Describe the following regions in polar coordinates:

(a) The region inside x2 + y2 = 4 and above y = x.

(b) The region between the circles x2 + y2 = 4 and x2 + y2 = 9, such

that y ≥ 0.

(c) The region between above the x-axis, inside y =
√

10− x2, and to

the right of y = −x.

(d) One loop of the polar graph r = 2 sin 2θ.

(2) Use polar coordinates to evaluate

∫∫

R

cos(x2 + y2) dA, where R is the

region above the x-axis and inside the circle x2 + y2 = 9.

(3) Find the area of one loop of the curve r = cos 3θ.

(4) Use polar coordinates to find the volume under (and outside of) z =

x2 + y2 over the region x2 + y2 ≤ 9.

(5) Convert the following integral into polar coordinates:

∫ 1

0

∫ √1−x2

0

ex
2+y2dydx

Double Integrals in Polar Coordinates — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.3.1.

(1) Use polar coordinates to evaluate

∫∫

R

√
4− x2 − y2 dA, where R is the

region {(x, y) : x2 + y2 ≤ 4, x ≥ 0}.
(2) Find the area inside the curve r = 4 + 3 cos θ.

(3) Find the volume inside the sphere x2 + y2 + z2 = 16 and outside the

cylinder x2 + y2 = 4.

(4) Convert this integral into polar coordinates:

∫ a

−a

∫ √a2−y2

0

(x2 +

y2)3/2 dxdy.

(5) Find the area outside r = 2 and inside r = 4 sin θ.

(6) Find the volume between the paraboloid z = 10 − 3x2 − 3y2 and the

plane z = 4.
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(7) Convert this integral into polar coordinates:

∫ 2

0

∫ √4−y2

−
√

4−y2
x2y2 dxdy.

Double Integrals in Polar Coordinates — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.3.1.

Once these integrals are set up, you can use tech for the evaluation.

(1) Given a 2D region R and a function f defined in that region, the average

value of f over R is given by

favg =
1

A(R)

∫∫

R

f dA

where A(R) is the area of R. Find the average value of f(x, y) =√
x2 + y2 over the region bounded by r = 3 sin 2θ between θ = 0 and

θ = π/2.

(2) Use a double integral in polar coordinates to find the volume between

the paraboloid z = 16− 2x2 − 2y2 and the plane z = 2.

(3) Convert the following integral into polar coordinates and then evaluate:

∫ 3

0

∫ √9−y2

−
√

9−y2
(x2 + y2)2 dxdy
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Double Integrals in Polar— You Try It — Solved

−2 2

−2

2r = 2

θ
=
π/

4

θ
=

5π
/4

Fig. 15.10 The region inside x2 +y2 =
4 and above y = x.

−3 −2 2 3

−3

−2

2

3

r =
2r

=
3

Fig. 15.11 Between x2 + y2 = 4 and
x2 + y2 = 9, y ≥ 0.

(1) Describe the following regions in polar coordinates:

(a) The region inside x2 + y2 = 4 and above y = x.

(b) The region between the circles x2 + y2 = 4 and x2 + y2 = 9, such

that y ≥ 0.

(c) The region between above the x-axis, inside y =
√

10− x2, and to

the right of y = −x.

(d) One loop of the polar graph r = 2 sin 2θ.

� (a) The region inside x2 + y2 = 4 and above y = x is shown in

Fig. 15.10. It has polar bounds 0 ≤ r ≤ 2 and π/4 ≤ θ ≤ 5π/4. When

interpreting the description of a region, it’s just as important to note

what is not said as much as what is said. In this example, it’s tempting

to stop the region at the positive y-axis, since very often we work in

the first quadrant. But no such restriction is explicitly given in the

description of the region.

(b) The region between the circles x2 + y2 = 4 and x2 + y2 = 9, such

that y ≥ 0, is shown in Fig. 15.11. It has polar bounds 2 ≤ r ≤ 3 and

0 ≤ θ ≤ π.

(c) The region between above the x-axis, inside y =
√

10− x2, and

to the right of y = −x, is shown in Fig. 15.12. It has polar bounds

0 ≤ r ≤
√

10 and 0 ≤ θ ≤ π/4.
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(d) To find one loop of the polar graph r = 2 sin 2θ, we must find two

adjacent θ values that produce r = 0 (since a loop starts and closes

when r = 0). We know that 2 sin 2θ = 0 when 2θ1 = 0 and then again

at 2θ2 = π. So a pair of θ values that start and stop a loop are θ1 = 0

and θ2 = π/2. The radius variable is bound by the function itself, as

r1 = 0 and r2 = 2 sin 2θ. A graph of this curve is shown in Fig. 15.13.

�

−3 −1 1 3

−3

−1

1

3
r = √

10
θ

=
3π/4

θ = 0

Fig. 15.12 Above the x-axis, inside

y =
√

10− x2, right of y = −x.

−2 2

−2

2

θ = 0

θ = π/2

Fig. 15.13 One loop of the polar curve

r = 2 sin(2θ).

(2) Use polar coordinates to evaluate

∫∫

R

cos(x2 + y2) dA, where R is the

region above the x-axis and inside the circle x2 + y2 = 9.

� I’m going to take a leap of faith that we don’t need a figure for this

one. The region R is swept out by the polar values 0 ≤ r ≤ 3 and

0 ≤ θ ≤ π. Since x2 + y2 = r2, and dA = rdrdθ in polar coordinates,
∫∫

R

cos(x2 + y2) dA =

∫ π

0

∫ 3

0

cos(r2)r drdθ

=

∫ π

0

(
1

2
sin(r2)

) ∣∣∣∣
3

0

dθ =

∫ π

0

1

2
sin 9 dθ

=

(
1

2
sin 9θ

) ∣∣∣∣
π

0

=
π

2
sin 9 �
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(3) Find the area of one loop of the curve r = cos 3θ.

−1 1

−1

1

θ = −π/6

θ = π/6

Fig. 15.14 One loop of r = cos(3θ).

� A graph of this curve is shown in Fig. 15.14. A single loop of the

curve starts and stops at two consecutive locations where r = 0; this is

when, for example, 3θ = ±π/2, i.e. θ = ±π/6. The limits on r come

from the equation of the curve itself. The double integral for the area

starts off as
∫∫

D

dA =

∫ π/6

−π/6

∫ cos 3θ

0

rdr dθ =

∫ π/6

π/6

(
1

2
r2
) ∣∣cos 3θ

0
dθ

=

∫ π/6

π/6

1

2
cos2 3θ dθ · · ·

Now a quick substitution of 3θ by u and so also dθ by du/3 (and remem-

ber that the substitution changes the limits, too!), we can continue,

· · · =
∫ π/2

−π/2

1

6
cos2 u du =

1

6

(
1

2
u+

1

4
sin 2u

) ∣∣∣∣
π/2

−π/2

The contribution from sin 2u is zero at both endpoints, and so finally:

· · · = 1

12
(u)

∣∣∣∣
π/2

−π/2
=

π

12

(We can refer to prior knowledge of the antiderivative of cos2 u here.)

�
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(4) Use polar coordinates to find the volume under (and outside of) z =

x2 + y2 over the region x2 + y2 ≤ 9.

−3

3−3

3

3

6

9

x

y

z

Fig. 15.15 Region under (outside of)
z = x2 + y2, over x2 + y2 ≤ 9.

−3 3

−3

3 r
=

3

Fig. 15.16 Inside x2 + y2 = 9.

� Figures 15.15 and 15.16 show the full surface as well as the corre-

sponding polar region in the 2D plane. The stated domain is the area

inside r = 3 for 0 ≤ θ ≤ 2π. So the volume under z = x2 + y2 i.e.

z = r2 over that domain is:
∫∫

D

r2 dA =

∫ 2π

0

∫ 3

0

r2 · r drdθ =

∫ 2π

0

(
1

4
r4
) ∣∣∣∣

3

0

dθ

=

∫ 2π

0

81

4
dθ =

81π

2
�

(5) Convert the following integral into polar coordinates:

∫ 1

0

∫ √1−x2

0

ex
2+y2 dydx

� The limits of integration describe the quarter of the unit circle in the

first quadrant — see Fig. 15.17 — which is the region 0 ≤ r ≤ 1 and

0 ≤ θ ≤ π/2. The overworked formula x2 + y2 = r2 converts ex
2+y2

into er
2

, and of course the area element dydx become r drdθ. Together,
∫ 1

0

∫ √1−x2

0

ex
2+y2 dydx =

∫ π/2

0

∫ 1

0

er
2 · r drdθ

Now the integral would be much easier to solve. �
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0.5 1

0.5

1 r = 1

θ
=
π
/2

θ = 0

Fig. 15.17 The unit circle in the first quadrant.

15.2 Cylindrical and Spherical Coordinates

Introduction

Your entire Calculus life before Chapter 14 was spent with single integrals,

and then — wham — you got hit with the one-two punch of double and

then triple integrals.

Well, the same thing is about to happen with coordinate systems. You

spent many years only knowing the rectangular coordinate system, and

then only recently encountered the two-dimensional polar coordinate sys-

tem — and now, wham, you’re about to get hit with the one-two punch of

two three-dimensional coordinate systems: cylindrical and spherical coor-

dinates.

However, the thing to keep in mind is that even though they have scary

names, the point of having access to cylindrical and spherical coordinates

is to make your life easier. Really!

Cylindrical Coordinates

The good news is that if you get along with polar coordinates, then you’ll

be just fine with cylindrical coordinates, too. Cylindrical coordinates are

just the polar coordinates r and θ with the cartesian z-coordinate tossed
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P (r, θ, z)

z

x

y
r

r

θ

z

Fig. 15.18 A point’s cylindrical coor-

dinates (r, θ, z).

−2

2−2

2

−2

2

x

z

Fig. 15.19 This point’s cylindrical co-

ordinates are (3/2, 2π/3,−2).

in. A point’s cylindrical coordinates are presented as (r, θ, z), where r and

θ are the same as in polar coordinates, and z is the same as in rectangular

coordinates. In other words,

• r is the horizontal distance to the point as measured straight

out from the z-axis. Equivalently, it’s the distance of the point’s

shadow in the xy-plane to the origin (0, 0).

• θ is the horizontal angle you have to turn, counterclockwise from

the positive x-axis, to find the point’s shadow in the xy-plane.

• z is the point’s elevation

A general diagram of cylindrical coordinates is shown in Fig. 15.18, and

the location of the point whose cylindrical coordinates are (r, θ, z) =

(3/2, 2π/3,−2) are in Fig. 15.19.

The conversion equations we can use to go back and forth between

cylindrical and rectangular coordinates are based on the polar-rectangular

equations.

Useful Fact 15.1. A point’s rectangular coordinates (x, y, z) and cylindri-

cal coordinates (r, θ, z) can be traded back and forth with these conversion

equations:

r2 = x2 + y2 ; tan θ =
y

x
; z = z (15.1)

and

x = r cos θ ; y = r sin θ ; z = z (15.2)
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Since polar coordinates are most natural when describing something

circular, you can probably imagine that cylindrical coordinates are most

natural when describing ... something cylindrical? In fact, the equation

r = 1 not only describes a circle in two dimensions (polar), it also describes

a cylinder in three dimensions.

EX 1 Determine the cylindrical coordinates of the point whose rectangu-

lar coordinates are (2
√

3,−2,−1).

Since the z-coordinate is the same in cylindrical and rectangular coordi-

nates, we don’t have to convert z = −1. We can convert x = 2
√

3 and

y = −2 into cylindrical coordinates using (15.1):

r2 = x2 + y2 = (2
√

3)2 + (2)2 → r = 4

tan θ =
y

x
=
−2

2
√

3
= − 1√

3
→ θ = −π

6

The cylindrical coordinates of this point are (r, θ, z) = (4,−π/6,−1). �

You Try It

(1) Locate the point whose cylindrical coordinates are (r, θ, z) =

(2, π/4, 1) and determine its rectangular coordinates.

(2) What are the cylindrical coordinates of the point whose rectangular

coordinates are (1,−1, 4)?

In addition to converting individual points with the conversion equa-

tions, we can also convert equations of surfaces. You already know how

to do this, for example, by realizing that the circle whose equation is

x2 + y2 = 9 in rectangular coordinates has the equation r = 3 in polar

coordinates.

EX 2 Identify the surface and convert its rectangular equation into cylin-

drical form:

(a) z = 2x2 + 2y2 , (b) x2 + y2 + z2 = 9 , (c) x = 3

� (a) z = 2x2 + 2y2 is a paraboloid, and the equation can be written as

z = 2(x2 + y2), and so in cylindrical form we have z = 2r2.

(b) x2 +y2 +z2 = 9 is a sphere of radius 3, and in cylindrical form, it’s

r2 + z2 = 9. (Remember: this does NOT simplify to r + z = 3 no matter

how much you want it to!)
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(c) x = 3 is a plane, and all we can do is replace x with its direct

equivalent to get r cos θ = 3.

Note that the two shapes with circular cross sections have nicer equa-

tions in cylindrical coordinates, while the surface which is a flat plane has

a much better equation in rectangular coordinates. �

You Try It

(3) What surface is described in cylindrical coordinates by the equation

r = 3?

(4) Convert the equation z = x2/3 + y2/2 into cylindrical coordinates.

Spherical Coordinates

Spherical coordinates are useful when describing a 3D region that’s shaped

like .... well, I’ll let you guess this one.

There are three coordinates of a point in the spherical system:

• ρ is the point’s straight-line distance from the origin (This is the

actual distance from the origin (0,0,0), not just distance outward

from the z-axis, as r is in cylindrical coordinates.)

• θ is the horizontal angle you have to turn, counterclockwise from

the positive x-axis, to find the point’s image in the xy-plane. This

is the same as θ in polar or cylindrical coordinates. θ usually ranges

from 0 to 2π or −π to π.

• φ is the point’s azimuthal angle. That is, if you are standing at

the origin looking straight overhead up the positive z-axis, φ is the

angle you look down from overhead to get the point in sight. φ = 0

is straight overhead, φ = π/2 is straight out along the xy-plane,

and φ = π is looking down through your feet. We would never use

a φ value larger than π, because if the point is behind you, you’re

not going to find it by bending over and looking back up through

your knees; rather, you’re just going stay upright and turn around

— and that move changes your θ coordinate instead.

A general diagram of spherical coordinates is shown in Fig. 15.20,

and the location of the point whose cylindrical coordinates are (r, θ, z) =

(2, π/4, 3π/4) are in Fig. 15.21.
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When reading in other sources, be very alert to the naming of spheri-

cal coordinates. There is universal agreement about coordinate names in

rectangular coordinates, but no so much in cylindrical and spherical coor-

dinates. In some places, the names of the angular coordinates are swapped;

the radial angle we’re calling θ might be named φ instead, and the azimuthal

angle we’re calling φ might be θ. Sometimes the ordering is swapped so that

even if they measure the same thing, the variables are ordered as (r, φ, θ).

Some weirdos will even use ρ for the radial coordinate in polar and cylindri-

cal coordinate, can you imagine that? Just be alert to notation whenever

you switch from one source to another.

P (ρ, θ, φ)

ρ

θ

φ

z

Fig. 15.20 A point’s spherical coordi-

nates (ρ, θ, φ).

1

1

−1

1

x

z

Fig. 15.21 This point’s spherical coor-

dinates are (2, π/4, 3π/4).

Useful Fact 15.2. A point’s rectangular coordinates (x, y, z) and spheri-

cal coordinates (ρ, θ, φ) can be traded back and forth with these conversion

equations:

ρ2 = x2 + y2 + z2 ; tan θ =
y

x
; cosφ =

z

ρ
(15.3)

x = ρ cos θ sinφ ; y = ρ sin θ sinφ ; z = ρ cosφ (15.4)

Conversion of coordinates of single points should be second nature for

you by now, so just go ahead and give it a shot without prior coaching:
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You Try It

(5) Locate the point whose spherical coordinates are (ρ, θ, φ) =

(1, π/6, π/6) and determine its rectangular coordinates.

(6) What are the spherical coordinates of the point whose rectangular

coordinates are (1,
√

3, 2
√

3)?

As above, we can also convert equations of surfaces in addition to indi-

vidual points.

EX 3 Identify the surface and convert its rectangular equation into spher-

ical form:

(a) 3x2 + 3y2 + 3z2 = 9 , (b) z =
√
x2 + y2 , (c) y = 1

� (a) 3x2 + 3y2 + 3z2 = 9 is a sphere, and the equation can be written

as 3(x2 + y2 + z2) = 9, i.e. x2 + y2 + z2 = 3; so, in spherical form we have

ρ2 = 3 or ρ =
√

3.

(b) z =
√
x2 + y2 is the upper half of a cone, and to get it in spherical

form, it is convenient to write it as z2 = x2 +y2 and apply conversions from

(15.3):

z2 = x2 + y2

(ρ cosφ)2 = (ρ cos θ sinφ)2 + (ρ sin θ sinφ)2

cos2 φ = cos2 θ sin2 φ+ sin2 θ sin2 φ

cos2 φ = sin2 φ(cos2 θ + sin2 θ)

cos2 φ = sin2 φ

sinφ = cosφ (ignoring the ± keeps the upper half of the cone only!)

tanφ = 1

φ = π/4

So, note that this cone has a spherical equation of the form φ = c, where c

is a constant.

(c) y = 1 is a plane, and all we can do is replace y directly to get

ρ sin θ sinφ = 1.

Like in EX 2, the shapes with circular or spherical characteristics have

nicer equations in spherical coordinates, while the surface which is a flat

plane still has a much better equation in rectangular coordinates. �
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You Try It

(7) What surface is described by the spherical equation ρ cosφ = 2?

(8) Convert the equation z = x2 + y2 into spherical coordinates.

You may notice that we do not go through direct conversion between

cylindrical and spherical coordinates. That’s because those conversions are

messy (well, apart from θ being the same in each system) and if you really

need to get from one to the other, you can always go through rectangular

coordinates. So let’s not clutter this up more than necessary.

Choosing Coordinates

The reason we want to be able to choose among coordinate systems is that

some surfaces or regions are more easily and more naturally described in

different systems. To see which system is best in which situations, consider

what surfaces are found by setting each variable to a constant.

• In rectangular coordinates, any equation of the form x = a, y = b or

z = c is a horizontal or vertical plane parallel to the yz-, xz- or xy-

planes. Therefore, these coordinates are best for describing regions

bounded by planes that are parallel to the coordinate planes.

• In cylindrical coordinates, any equation of the form r = a is a

cylinder. Any equation of the form θ = b is a vertical plane through

the z-axis, but at an angle to the xz- or yz-planes. As in rectangular

coordinates, an equation z = c is a horizontal plane parallel to the

xy-plane. Therefore, cylindrical coordinates may be best when

describing a region that’s cylindrical, or part of a vertical plane

angled with respect to the rectangular coordinate planes.

• In spherical coordinates, any equation of the form ρ = a is a sphere.

Any equation of the form θ = b is a vertical plane through the z-

axis, but at an angle to the xz- or yz-planes, as in cylindrical

coordinates. Any equation of the form φ = c is a cone (see example

EX 3 above). Therefore, spherical coordinates may be best when

describing a region that’s spherical or conical.

A surface that arises when we set a particular variable to a constant

value is called an isosurface.1

1You may recognize “iso” from isobars, isoclines, and isotherms.
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Several figures demonstrate isosurfaces that arise in conjunction with

cylindrical and spherical coordinates:

• Fig. 15.22 shows a cylindrical isosurface r = 2.

• Fig. 15.23 shows a cylindrical and spherical isosurface θ = π/4.

• Fig. 15.24 shows a spherical isosurface ρ = 2.

• Fig. 15.25 shows a spherical isosurface φ = π/4.
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z

Fig. 15.22 Cylindrical isosurface r =

2.
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1
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z

Fig. 15.23 Cylindrical isosurface θ =

π/4.
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Fig. 15.24 Spherical isosurface ρ = 2.
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Fig. 15.25 Spherical isosurface φ =
π/4.
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Describing Regions

I hate to be the bearer of bad news, but we are close to using cylindrical

and spherical coordinates in the context of triple integrals. Much like with

double integrals in polar coordinates, we will have to get good at delimiting

3D regions of integration by quantities which become our limits of integra-

tion. But again, remember that the entire purpose of having these other

coordinate systems and your beck and call is to make your mathematical

life easier! As an example, let’s consider a scenario which seems like it

would be quite benign — describing a spherical region of integration. In

particular, let’s think about a sphere of radius 3 centered at the origin.

In rectangular coordinates, it would be spectacularly wrong to assign

our limits as −3 ≤ x ≤ 3, −3 ≤ y ≤ 3, and −3 ≤ z ≤ 3. These six bounds

do make for very simple limits of integration, but the collection of these

bounds describes a cube. Instead, we have to solve the equation of the

sphere (x2 + y2 + z2 = 9) for z and use those as our bounds on z:

−
√

9− x2 − y2 ≤ z ≤
√

9− x2 − y2

With limits on z determined, we next have to pick out the maximum ex-

panse of this solid in the x and y directions; this maximum expanse is

a circle of radius 3 (it’s the trace of the sphere in the plane z = 0), i.e.

x2 + y2 = 3. And from your experience with double integrals, you should

recall that proper limits on this 2D region can be assigned as:

−
√

9− x2 ≤ y ≤
√

9− x2 and − 3 ≤ x ≤ 3

Let’s say we’re integrating some f(x, y, z) over this solid region of inte-

gration; our triple integral would look like:

∫ 3

−3

∫ √9−x2

−
√
9−x2

∫ √9−x2−y2

−
√

9−x2−y2
f(x, y, z) dV

Now take a good hard look at that thing. It’s horrible. And now, you

should thank your lucky stars that we have other coordinate systems to use

for this triple integral; in particular, you should be thankful for spherical

coordinates, because when we use those and convert our function f(x, y, z)

to a function in spherical coordinates f(ρ, θ, φ), then the triple integral will

be this:
∫ 3

0

∫ π

0

∫ 2π

0

f(ρ, θ, φ) dV
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That is so much better! And this becomes our game — to take a given

region / solid of integration in R3, decide which coordinate system will

provide the most benign limits of integration, and put that system to good

use. In order to generate correct limits of integration for triple integrals in

cylindrical and spherical coordinates, we must be able to delineate regions

in R3 by specifying bounds on the appropriate coordinates. Here are some

examples of that.

2
4

2
4

2

4

x

y

z

Fig. 15.26 Upper hemisphere of radius

4.

1 2

1
2

−1

2

4

x

y

z

Fig. 15.27 x2 + y2 = 3 between z =

−1, z = 4.

EX 4 Delineate the following regions by setting appropriate bounds on

cylindrical coordinates:

(a) The upper hemisphere of radius 4.

(b) The region between x2 + y2 = 3, and the planes z = −1 and

z = 4.

(c) The region under z = 5− x2 − y2 and above the xy-plane.

(d) The enclosed region between x = 5−y2−z2 and the yz-plane.

(a) This region is shown in Fig. 15.26. The “floor” of the upper hemi-

sphere of radius 4 is the xy-plane, i.e. z = 0. The “roof ” is the hemi-

sphere itself, z =
√

16− x2 − y2. But in cylindrical coordinates, this is

z =
√

16− r2. Radial limits for r and θ must cover the maximum extent

of this solid found in the xy-plane, which is a circle of radius 4, and so we

have 0 ≤ r ≤ 4 and 0 ≤ θ ≤ 2π. Altogether,

0 ≤ θ ≤ 2π ; 0 ≤ r ≤ 4 ; 0 ≤ z ≤
√

16− r2
(b) This region is shown in Fig. 15.27. The region between x2 +y2 = 3

and the planes z = −1 and z = 4 has those values of z as constant limits
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on z. Then the circular cross section is described by polar coordinates as

usual for a circle of radius
√

3; together,

0 ≤ θ ≤ 2π ; 0 ≤ r ≤
√

3 ; −1 ≤ z ≤ 4

(It should be no surprise that all six limits in cylindrical coordinates are

constants for a cylindrical region.

(c) This region is shown in Fig. 15.28. The region under z = 5−x2−y2
and above the xy-plane is like a parabolic tent. The “roof ” is the paraboloid

itself, which is z = 5 − r2 in cylindrical coordinates. Radial limits for r

and θ must cover the maximum extent of this solid found in the xy-plane,

which comes from the intersection of the paraboloid with the xy-plane:

5−x2− y2 = 0 becomes x2 + y2 = 5; it’s is a circle of radius 5. Altogether,

0 ≤ θ ≤ 2π ; 0 ≤ r ≤
√

5 ; 0 ≤ z ≤ 5− r2

(d) This region is shown in Fig. 15.29, and is is just the region from part

(c) flipped on its side. In the vast majority of cases, we set up cylindrical

coordinates so that z is the non-polar direction, but we can also choose

either x or y to be the non-polar direction — so that r and θ take up

the other two spots. That is, cylindrical coordinates can also be arranged

as (x, r, θ) or (r, y, θ). When we look at the enclosed region between x =

5− y2 − z2 and the yz-plane, we see that the traces of this region parallel

the yz-plane are circular. In particular, the “floor” of this region is the

intersection of x = 5− y2 − z2 with x = 0, i.e. the circle y2 + z2 = 5. So in

this case, we’d like the x direction to be the non-polar direction, and have

r and θ active in the yz-plane’s direction. We can describe the region as

being bounded by points (x, r, θ) such that:

0 ≤ θ ≤ 2π ; 0 ≤ r ≤
√

5 ; 0 ≤ x ≤ 5− r2 �

EX 5 With respect to spherical coordinates:

(a) Delineate the upper hemisphere of radius 4.

(b) Explain why it would be a bad idea to delineate the region

between x2 + y2 = 3, and the planes z = −1 and z = 4, in

spherical coordinates.

(c) Delineate the region above the cone z2 = x2 + y2 and below

the unit sphere.

(a) (See Fig. 15.26 again.) The full sphere of radius 4 is, in spheri-

cal coordinates, ρ = 4. We want the full sphere all the way around the
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Fig. 15.28 Region under z = 5− x2 −
y2, above z = 0.
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Fig. 15.29 Region between x = 5−y2−
z2 and x = 0.

“equator”, so we need 0 ≤ θ ≤ 2π. However, since we just want the upper

hemisphere, it’s like slicing off the lower half of a globe at the equator. We

only want to keep points for which 0 ≤ φ ≤ π/2. Together,

0 ≤ ρ ≤ 4 ; 0 ≤ θ ≤ 2π ; 0 ≤ φ ≤ π

2
FFT: If we wanted the lower hemisphere of radius 4 instead, how would

these limits change?

(b) (See Fig. 15.27 again.) The spherical coordinate ρ is the distance

from the origin. If we take the cylinder x2 + y2 = 3 and give it a flat

“roof ” at z = 4, then points on that roof are not all the same distance from

the origin; imagine a spotlight at the origin trying to track an ant that is

walking all over this roof. The length of the beam of the spotlight would

vary as the ant walked around. Because this distance is not constant, we

will not get constant limits for ρ in this region. So spherical coordinates

are a bad idea.

(c) As we move into setting up triple integrals in these other coordinate

systems, we are going to be thinking of food a lot. The region above the

cone z2 = x2 + y2 and below the unit sphere (ρ = 1) can be seen in Fig.

15.30, and it looks like an ice cream cone! The cone z2 = x2 + y2 is the one

which cuts a perfect diagonal through the upper octants, and so we can

bound the azimuthal angle φ by 0 and π/4. As we look out from the origin,

the “roof ” of this region is always the sphere, and so we have 0 ≤ ρ ≤ 1.

Because our region goes all the way around radially, we have 0 ≤ θ ≤ 2π.

Together,

0 ≤ ρ ≤ 1 ; 0 ≤ θ ≤ 2π ; 0 ≤ φ ≤ π

4
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We did play a little loose in coming up with the bounds on φ here. Usually,

for the intersection of a cone and a hemisphere, we have to do algebra to

discover what value of φ describes the intersection. �

1
1

1

x
y

z

Fig. 15.30 Above z2 = x2 + y2, inside ρ = 1.

You Try It

(9) Choose whether spherical or cylindrical coordinates might be best

for each region, and delineate the region in the coordinate system

you choose.

(a) The region bounded by the planes z = 0 and z = x + y + 5,

and the cylinder x2 + y2 = 9.

(b) The region outside the sphere x2 + y2 + z2 = 1 and inside the

sphere x2 + y2 + z2 = 9.

(c) The region in the first octant that’s outside the cylinder x2 +

y2 = 1 but inside the sphere x2 + y2 + z2 = 4.
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Cylindrical and Spherical Coordinates — Problem List

Cylindrical and Spherical Coordinates — You Try It

These appeared above; solutions begin on the next page.

(1) Locate the point whose cylindrical coordinates are (r, θ, z) = (2, π/4, 1)

and determine its rectangular coordinates.

(2) What are the cylindrical coordinates of the point whose rectangular

coordinates are (1,−1, 4)?

(3) What surface is described in cylindrical coordinates by the equation

r = 3?

(4) Convert the equation z = x2/3 + y2/2 into cylindrical coordinates.

(5) Locate the point whose spherical coordinates are (ρ, θ, φ) =

(1, π/6, π/6) and determine its rectangular coordinates.

(6) What are the spherical coordinates of the point whose rectangular co-

ordinates are (1,
√

3, 2
√

3)?

(7) What surface is described by the spherical equation ρ cosφ = 2?

(8) Convert the equation z = x2 + y2 into spherical coordinates.

(9) Choose whether spherical or cylindrical coordinates might be best for

each region, and delineate the region in the coordinate system you

choose.

(a) The region bounded by the planes z = 0 and z = x + y + 5, and

the cylinder x2 + y2 = 9.

(b) The region outside the sphere x2 + y2 + z2 = 1 and inside the

sphere x2 + y2 + z2 = 9.

(c) The region in the first octant that’s outside the cylinder x2+y2 = 1

but inside the sphere x2 + y2 + z2 = 4.

Cylindrical and Spherical Coordinates — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.3.2.

(1) Locate the point whose cylindrical coordinates are (1, 3π/2, 2) and give

its rectangular coordinates.

(2) What are the cylindrical coordinates of the point whose rectangular

coordinates are (3, 3,−2)?

(3) What surface is described in cylindrical coordinates by the equation

r2 + z2 = 25?
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(4) Convert the cylindrical equation r2 − 2z2 = 4 into rectangular coordi-

nates, and identify the kind of surface it is.

(5) Locate the point whose spherical coordinates are (ρ, θ, φ) = (5, π, π/2)

and give its rectangular coordinates.

(6) What are the spherical coordinates of the point whose rectangular co-

ordinates are (0,
√

3, 1)?

(7) What surface is described by the spherical equation ρ = 3?

(8) Convert the equation x2 + y2 + z2 = 2 into spherical coordinates.

(9) What are the spherical coordinates of the point whose cylindrical co-

ordinates are (r, θ, z) = (
√

6, π/4,
√

2)?

(10) What are the cylindrical coordinates of the point whose spherical co-

ordinates are (ρ, θ, φ) = (2
√

2, 3π/2, π/2)?

(11) Convert the rectangular equation y2 + z2 = 1 into both cylindrical and

spherical coordinates.

Cylindrical and Spherical Coordinates — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.3.2.

(1) What are the cylindrical coordinates of the point whose spherical co-

ordinates are (ρ, θ, φ) = (2, 3π/4, π/6)?

(2) Suppose a three-dimensional region is described with the following

bounds in rectangular coordinates:

• The full 3D region is bounded below by the paraboloid z = x2+y2

and above by the cone z =
√
x2 + y2

• In the xy-plane, the region covers the right half of the unit circle,

thus we have 0 ≤ x ≤
√

1− y2 and −1 ≤ y ≤ 1.

Describe the bounds of this same region in cylindrical coordinates by

giving the bounds of r, θ, and z.

(3) Suppose a three-dimensional region is described with the following

bounds in rectangular coordinates:

• The full 3D region is underneath the hemisphere z =
√

4− x2 − y2
and above the xy-plane

• In the xy-plane, the region covers the upper half of a circle of

radius 2 centered at the origin, thus we have −2 ≤ x ≤ 2 and

0 ≤ y ≤
√

4− x2.

Describe the bounds of this same region in spherical coordinates by

giving the bounds of ρ, θ, and φ.
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Cylindrical and Spherical — You Try It — Solved

(1) Locate the point whose cylindrical coordinates are (r, θ, z) = (2, π/4, 1)

and determine its rectangular coordinates.

� With cylindrical coordinates (2, π/4, 1), this point will be in the first

octant. Its rectangular coordinates are found using Eq. (15.2):

x = 2 cos
(π

4

)
=
√

2

y = 2 sin
(π

4

)
=
√

2

z = 1

so this is the rectangular point (
√

2,
√

2, 1). �

(2) What are the cylindrical coordinates of the point whose rectangular

coordinates are (1,−1, 4)?

� With rectangular coordinates (1,−1, 4) we have cylindrical coordi-

nates

r =
√

12 + (−1)2 =
√

2

θ = tan−1
(
−1

1

)
= −π

4
=

7π

4

z = 4

so this is the cylindrical point (
√

2, 7π/4, 4). �

(3) What surface is described in cylindrical coordinates by the equation

r = 3?

� This is a cylindrical equation describing all points whose r coordi-

nate (distance from the z-axis) is 3. So, the surface is a cylinder of

radius 3 centered on the z-axis. �

(4) Convert the equation z = x2/3 + y2/2 into cylindrical coordinates.

� This is an elliptic paraboloid; since traces (cross sections) at con-

stant levels of z are ellipses and not pure circles, we lose the benefit of

cylindrical coordinates. At best, we can do this:

z =
x2

3
+
y2

2
=

(r cos θ)2

3
+

(r sin θ)2

2
= r2

(
cos2 θ

3
+

sin2 θ

2

)

We can clean up a bit by multiplying both sides by 6:

6z = r2(2 cos2 θ + 3 sin2 θ �
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(5) Locate the point whose spherical coordinates are (ρ, θ, φ) =

(1, π/6, π/6) and determine its rectangular coordinates.

� This point will be in the first octant. We can convert to rectangular

coordinates using Eq. (15.4):

x = ρ sinφ cos θ = 1 sin
(π

6

)
cos
(π

6

)
=

1

2
·
√

3

2
=

√
3

4

y = ρ sinφ sin θ = 1 sin
(π

6

)
sin
(π

6

)
=

1

2
· 1

2
=

1

4

z = ρ cosφ = 1 cos
(π

6

)
=

√
3

2

So this is the rectangular point (x, y, z) = (
√

3/4, 1/4,
√

3/2). �

(6) What are the spherical coordinates of the point whose rectangular co-

ordinates are (1,
√

3, 2
√

3)?

� With rectangular coords (x, y, z) = (1,
√

3, 2
√

3) we can get spherical

coordinates using Eq. (15.3):

ρ =
√
x2 + y2 + z2 =

√
1 + 3 + 12 = 4

cosφ =
z

ρ
=

2
√

3

4
=

√
3

2
→ φ =

π

6

cos θ =
x

ρ sinφ
=

1

4 sin(π/6)
=

1

4(1/2)
=

1

2
→ θ =

π

3

So this is the spherical point (ρ, θ, φ) = (4, π/3, π/6). �

(7) What surface is described by the spherical equation ρ cosφ = 2?

� This directly matches the conversion equation in (15.4) z = ρ cosφ,

so the surface is also known as z = 2. �

(8) Convert the equation z = x2 + y2 into spherical coordinates.

� The conversion equation x2 + y2 + z2 = ρ2 gives x2 + y2 = ρ2 − z2,

so this equation is (temporarily)

z = ρ2 − z2
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But z itself is not a spherical coordinate, so we need to bring in z =

ρ cosφ to write

ρ cosφ = ρ2 − ρ2 cos2 φ

cosφ = ρ(1− cos2 φ)

cosφ = ρ sin2 φ

About the only thing we can do here is divide both sides by cosφ and

say that the equation is also known as ρ sinφ tanφ = 1. �

1
3

1

3

4

6

8

x

y

z

Fig. 15.31 x2 + y2 = 9 between z = 0, z = x+ y + 5.

(9) Choose whether spherical or cylindrical coordinates might be best for

each region, and delineate the region in the coordinate system you

choose.

(a) The region bounded by the planes z = 0 and z = x + y + 5, and

the cylinder x2 + y2 = 9.

(b) The region outside the sphere x2 + y2 + z2 = 1 and inside the

sphere x2 + y2 + z2 = 9.

(c) The region in the first octant that’s outside the cylinder x2+y2 = 1

but inside the sphere x2 + y2 + z2 = 4.

� (a) The region bounded by the planes z = 0 and z = x+ y+ 5, and

the cylinder x2 + y2 = 9, is shown in Fig. 15.31. The tilted circle is

the upper boundary of the solid. Because the walls of this region come

from a cylinder, let’s use cylindrical coordinates; we’ll have 0 ≤ r ≤ 3

and 0 ≤ θ ≤ 2π. The lower bound for z is just z = 0. The “roof ”
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of this solid is a slanted plane; we need to convert z = 5 − x − y to

cylindrical coordinates, and there’s no nice way to do that except direct

substitution. And so, we have

0 ≤ z ≤ 5− r cos θ − r sin θ ; 0 ≤ r ≤ 3 ; 0 ≤ θ ≤ 2π

Even though the upper bound on z is gross, it’s worth it for the cylin-

drical cross sections.

1 2 3

1
2

31

2

3

x

y

z

Fig. 15.32 Outside ρ = 1, inside
ρ = 3.

1

2

1
2

1

2

x

y

z

Fig. 15.33 Outside r = 1, inside
ρ = 2.

(b) The region outside the sphere x2 + y2 + z2 = 1 and inside the

sphere x2 + y2 + z2 = 9 is shown in Fig. 15.32. We are going all the

way around in both angular directions; the radial coordinate begins

at the radius of the inner sphere and ends at the radius of the outer

sphere. Altogether,

1 ≤ ρ ≤ 3 ; 0 ≤ θ ≤ 2π ; 0 ≤ φ ≤ π

(c) The region in the first octant that’s outside the cylinder x2+y2 = 1

but inside the sphere x2 + y2 + z2 = 4 is shown in Fig. 15.33. There

is no nice way to form the inner wall of this region (the cylinder) out

of limits on ρ, so let’s go for cylindrical coordinates. (Often, spherical

coordinates have to defer to another set.) As we float around in this

solid region, the “floor” is the lower hemisphere and the “roof ” is the

upper hemisphere. Therefore, we have −
√

4− r2 ≤ z ≤
√

4− r2. The
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lateral extent of the region has an inner edge from the cylinder (a circle

of radius 1), and an outer edge from the sphere (a circle of radius 2).

These give 1 ≤ r ≤ 2. Since we only need to sweep out the first octant

radially, we have 0 ≤ θ ≤ π/2. Altogether,

−
√

4− r2 ≤ z ≤
√

4− r2 ; 1 ≤ r ≤ 2 ; 0 ≤ θ ≤ π

2
�
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15.3 The Calc 3 Boss Fight: Triple Integrals in Cylindrical

& Spherical Coordinates

Introduction

Your experience converting double integrals from rectangular to polar co-

ordinates will serve you well in converting triple integrals from rectangular

coordinates to cylindrical or spherical coordinates. Suppose you have a re-

gion of integration whose bounds in rectangular coordinates are just gross.

Or suppose you have a triple integral containing a function you can’t work

with in rectangular coordinates. Or suppose you have both of these cases!

Then you’ll need to convert the problem from rectangular coordinates to

either cylindrical or spherical coordinates, depending on which is more ap-

propriate. To summarize what we know from before,

• Cylindrical coordinates may be useful when the region of integration is

bound by a cylinder, or if the function being integrated contains x2 + y2.

Also, if the region of integration is bound by a paraboloid, cylindrical

coordinates may help, too, since z = x2 + y2 is easily written as z = r2

in cylindrical coordinates.

• Spherical coordinates may be useful when the region of integration is

bound by a sphere and/or a cone, or if the function being integrated

contains x2 + y2 + z2.

When we converted double integrals in rectangular coordinates to polar co-

ordinates, we had to be careful to adjust the area element dA appropriately.

In rectangular coordinates, dA could either be dxdy or dydx. In polar co-

ordinates, the area element is dA = rdrdθ. In triple integrals, we will have

to carefully convert the volume element dV . In rectangular coordinates,

there are six possible configuration of dV (dzdydz, dydzdx, etc.). While

the bad news is that both cylindrical and spherical coordinates have their

own versions of dV to use, the good news is that we rarely deviate from

one particular ordering in each:

Variations in dV

At this point, you can probably imagine the general partitioning process

which leads to triple integrals in cylindrical and spherical coordinates. Div-

ing in to the deep details would take us down some long geometric side roads

that can distract us from our true goal, which is construction and evalu-

ation of triple integrals. There are many resources you can consult if you
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want to see these details. For now, let’s concentrate on construction and

solution of triple integrals in non-rectangular coordinates.

The differential dV has six different forms rectangular coordinates (the

possible rearrangements of dxdydz). In non-rectangular coordinates, the

good news is that we usually only have one form for dV in each system.

The bad news is that — especially for spherical coordinates — they are a

bit messy.

Useful Fact 15.3. In cylindrical coordinates, we write dV = r dzdrdθ. In

spherical coordinates, we write dV = ρ2 sinφdρdφdθ.

Again, remember that these are artifacts of the partitioning process.

We may not like them (especially for spherical coordinates), but we have

to accept them.

Triple Integrals in Cylindrical Coordinates

Given a triple integral

∫∫∫

E

f dV that is awkward or impossible to do in

rectangular coordinates, you may choose to do the integral in cylindrical

coordinates instead. To do so, you may have to do one or more of the

following:

• write the function in cylindrical form, using known conversion equations

r2 = x2 + y2 ; tan θ =
y

x
; x = r cos θ ; y = r sin θ

• write dV in cylindrical form, dV = r dzdrdθ

• describe the solid E using cylindrical coordinates, creating proper limits

of integration

• solve the integral

First, let’s just practice “reading” triple integrals in cylindrical coordi-

nates.

EX 1 Recall that we can find the volume of a general 3D region E by

evaluating the triple integral

∫∫∫

E

(1)dV . What solid’s volume is

represented by the integral

∫ π

0

∫ 4

0

∫ r2

0

r dzdrdθ?

Since dV = rdzdrdθ in cylindrical coordinates, this really is a volume inte-

gral. z is bound below by z = 0 and above by z = r2. But z = r2 is the
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paraboloid also known as z = x2 + y2. The variable r is bound by r = 0

and r = 4, and θ goes half-way around from 0 to π. Therefore, this integral

computes the volume under the paraboloid z = x2 + y2 over the upper half

of the circle x2 + y2 = 16 in the xy-plane. �

You Try It

(1) What solid’s volume is represented by the integral∫ π/2

0

∫ 2

0

∫ 9−r2

0

r dzdrdθ?

Now let’s try setting up and evaluating an integral in cylindrical coor-

dinates. NOTE: In this section, we’ll consider the most important part of

any problem to be the correct determination of limits of integration and

set-up of the triple integral. Therefore, once our integrals are set up, we

can use tech to evaluate them.

EX 2 Evaluate

∫∫∫

E

(x3+xy2) dV , where E is the solid in the first octant

beneath z = 1− x2 − y2.

The surface z = 1 − x2 − y2 is the inverted paraboloid z = 1 − r2, so

cylindrical coordinates are likely most appropriate. The function x3 + xy2

can be rewritten as x(x2 + y2) and so then also as (r cos θ)(r2), or r3 cos θ.

Bounds on z are 0 and 1− r2. Bounds on r and θ come from the region in

the xy-plane used by our solid E. The inverted paraboloid intersects the

xy-plane in the unit circle x2+y2 = 1 (we determine that by setting z = 0).

Since we only want the portion of this circle in the first octant / quadrant,

our limits on r and θ will be 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π/2. Remembering

that the volume element in cylindrical coordinates is dV = r dzdrdθ, the

integral and its result are:

∫∫∫

E

(x3 + xy2) dV =

∫ π/2

0

∫ 1

0

∫ 1−r2

0

(r3 cos θ)r dzdrdθ =
2

35

Note that the result is NOT the volume of anything, since the integral is

not of the form

∫∫∫

E

(1)dV . �

EX 3 Find the volume of the solid inside the cylinder x2 + y2 = 1, above

z = 0 and below the cone z2 = 4x2 + 4y2.
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This solid of integration is shown in Fig. 15.34. The cone forms the top of

our region. In cylindrical coordinates, we can write the cone as z2 = 4r2, or

z = 2r, so z is bound by 0 and 2r. The cylinder forms the sides of the region,

and helps us determine bounds on r and θ. The portion of the xy-plane

used by this solid is the circle x2 + y2 = 1 (since the volume is inside the

cylinder with the same equation), and so we have 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π.

To compute a volume, we set up the integral

∫∫∫

E

(1)dV . Remembering

that the volume element in cylindrical coordinates is dV = r dzdrdθ, we

have

V =

∫∫∫

E

(1)dV =

∫ 2π

0

∫ 1

0

∫ 2r

0

(1)rdzdrdθ =
4π

3
�

1

1

1

2

x

y

z

Fig. 15.34 Inside r = 1, below z − 2r, above z = 0.

You Try It

(2) Evaluate

∫∫∫

E

ez dV , where E is the region between the paraboloid

z = 1 + x2 + y2, the cylinder x2 + y2 = 5, and the xy-plane.

(3) Evaluate the following integral by first converting it to cylindrical

coordinates:
∫ 1

−1

∫ √1−x2

−
√
1−x2

∫ 2−x2−y2

x2+y2
(x2 + y2)3/2dzdydx
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Triple Integrals in Spherical Coordinates

Let’s repeat the above shenanigans with spherical coordinates instead of

cylindrical coordinates. Remember that the volume element in spherical

coordinates is dV = ρ2 sinφdρdφdθ. Perhaps a review of the conversion

equations would be handy, too?

ρ2 = x2 + y2 + z2 ; tan θ =
y

x
; cosφ =

z

ρ

and

x = ρ cos θ sinφ ; y = ρ sin θ sinφ ; z = ρ cosφ

First, let’s just practice “reading” triple integrals in spherical coordi-

nates.

EX 4 What solid’s volume is represented by this integral ?

∫ π/2

0

∫ π/6

0

∫ 3

0

ρ2 sinφdρdφdθ

Since dV = ρ2 sinφdρdφdθ, this really is an integral of the form

∫∫∫

E

(1)dV ,

although it may not have looked like it at first. The limits of integration

show that ρ is bound by ρ = 0 and ρ = 3, so our region E is at least part

of the interior of the sphere ρ = 3, A.K.A. x2 + y2 + z2 = 9. The variable

φ is bound by φ = 0 and φ = π/6. Remembering that a spherical equation

of the form φ = c is a cone, it looks like our region is also above the cone

φ = π/6. (We know it’s above rather than below, since φ = 0 point straight

overhead.) Finally, θ only goes a quarter of the way around, from 0 to π/2.

Therefore, this integral represents the volume above the cone φ = π/6, in-

side the sphere ρ = 3, in the first octant. This solid is shown in Fig. 15.35.

�

You Try It

(4) What solid’s volume is represented by this integral?
∫ 2π

0

∫ π

π/2

∫ 2

1

ρ2 sinφdρdφdθ

Now let’s try setting up and evaluating an integral in spherical coordi-

nates.
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1 2

1
2

1

3

x

z

Fig. 15.35 Above φ = π/6, below ρ = 3, inside first octant.

EX 5 Evaluate

∫∫∫

E

(x2+y2+z2) dV , where E is the sphere x2+y2+z2

= 1.

In spherical coordinates, the function becomes x2 + y2 + z2 = ρ2. The

volume element is dV = ρ2 sinφdρdφdθ. The solid E is just the unit sphere,

and so we have

0 ≤ ρ ≤ 1 ; 0 ≤ φ ≤ π ; 0 ≤ θ ≤ 2π

The integral and its result are then:

∫ 2π

0

∫ π

0

∫ 1

0

(ρ2)ρ2 sinφdρdφdθ =

∫ 2π

0

∫ π

0

∫ 1

0

ρ4 sinφdρdφdθ =
4π

5

If spherical coordinates are making you sweat, here’s a reminder of why it’s

beneficial to have these alternate coordinate systems. As bad as that triple

integral looks, the rectangular version would look even worse:

∫ 1

−1

∫ √1−x2

−
√
1−x2

∫ √1−x2−y2

−
√

1−x2−y2
x2 + y2 + z2 dV

So, be glad we have spherical coordinates! �
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You Try It

(5) Evaluate

∫∫∫

E

z dV , where E is the region between the spheres

x2 + y2 + z2 = 1 x2 + y2 + z2 = 4 in the first octant.

(6) Evaluate the following integral by first converting the integral into

spherical coordinates:

∫ 3

−3

∫ √9−x2

−
√
9−x2

∫ √9−x2−y2

0

z
√
x2 + y2 + z2 dzdydx

Choosing Between Cylindrical and Spherical Coordinates

In some problems, you won’t be explicitly told which coordinate system to

use, in which case the choice is yours. Just remember the guidelines stated

at the beginning of this section,

• Cylindrical coordinates may be useful when the region of integra-

tion is bound by a cylinder or paraboloid, or if the function being

integrated contains x2 + y2.

• Spherical coordinates may be useful when the region of integra-

tion is bound by a sphere and/or a cone, or if the function being

integrated contains x2 + y2 + z2.

EX 6 Find the volume of the solid above the paraboloid z = x2 + y2 and

below the cone z =
√
x2 + y2.

Here, we have both a cone and a paraboloid, so it’s not immediately clear

which coordinate system is best. However, if you attempt to write the

equation of the paraboloid in spherical coordinates, you will quickly dis-

cover it’s messy. On the other hand, the equation of a cone in cylindrical

coordinates isn’t that bad. So let’s go with cylindrical coordinates. The

equation of the paraboloid is z = r2, and the equation of the cone is z = r.

Those provide the lower and upper bounds of z, respectively. To find the

bounds of r and θ, we must see what region of the xy-plane is spanned by

this solid. The maximum horizontal extent of the solid comes from where

these two surfaces intersect, i.e. where x2 + y2 =
√
x2 + y2. This can only

happen where x2 + y2 = 1, and so the intersection of these two surfaces

occurs when x2 + y2 = 1; this gives r and θ bounds corresponding to the
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unit circle, and we’ve seen those before. Therefore, the volume is:

V =

∫∫∫

E

(1)dV =

∫ 2π

0

∫ 1

0

∫ r

r2
(1)r dzdrdθ =

π

6

(Reminder: Don’t forget to use the correct dV !) �

Triple Integrals in Cyl. & Spher. Coords — Problem List

Triple Ints in Cyl. and Spher. Coords — You Try It

These appeared above; solutions begin on the next page.

(1) What solid’s volume is represented by the integral∫ π/2

0

∫ 2

0

∫ 9−r2

0

r dzdrdθ?

(2) Evalaute

∫∫∫

E

ez dV , where E is the region between the paraboloid

z = 1 + x2 + y2, the cylinder x2 + y2 = 5, and the xy-plane.

(3) Evaluate the following integral by first converting it to cylindrical co-

ordinates:

∫ 1

−1

∫ √1−x2

−
√
1−x2

∫ 2−x2−y2

x2+y2
(x2 + y2)3/2 dzdydx

(4) What solid’s volume is being represented by this integral?

∫ 2π

0

∫ π

π/2

∫ 2

1

ρ2 sinφdρdφdθ

(5) Evaluate

∫∫∫

E

z dV , where E is the region between the spheres x2 +

y2 + z2 = 1 x2 + y2 + z2 = 4 in the first octant.

(6) Evaluate the following integral by first converting it to spherical coor-

dinates:

∫ 3

−3

∫ √9−x2

−
√
9−x2

∫ √9−x2−y2

0

z
√
x2 + y2 + z2 dzdydx

Triple Ints in Cyl. and Spher. Coords — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.3.3.
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(1) Evaluate

∫∫∫

E

x dV , where E is the region bounded by the planes

z = 0 and z = x + y + 5, and the cylinders x2 + y2 = 4 (i.e. r2 = 4)

and x2 + y2 = 9.

(2) Evaluate

∫∫∫

E

e
√
x2+y2+z2 dV , where E is the region inside the sphere

x2 + y2 + z2 = 9 in the first octant.

(3) Evaluate the following integral by first converting it to the most appro-

priate coordinate system:
∫ 1

0

∫ √1−y2

0

∫ √x2+y2

x2+y2
(xyz)dzdxdy

(4) The region above the cone z2 = x2 +y2 and below the sphere x2 +y2 +

z2 = 5 is shaped like an ice cream cone. What is the volume of this

region?

(5) Find the volume of the region common to (inside) both the cylinder

x2 + y2 = 1 and the sphere x2 + y2 + z2 = 4.

(6) Evaluate

∫∫∫

E

xyz dV , where E is the region between the spheres ρ = 2

and ρ = 4 and above the cone φ = π/3.

(7) Evaluate the following integral by first converting it to an appropriate

coordinate system:
∫ 3

0

∫ √9−y2

0

∫ √18−x2−y2

√
x2+y2

(x2 + y2 + z2) dzdxdy

Triple Ints in Cyl. and Spher. Coords — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.3.3.

(1) Let’s pretend the corn silo pictured in Fig. 15.36 is bounded on its sides

by the cylinder x2 + y2 = 225 and above by the (inverted) cone z =

50−
√
x2 + y2/9. Construct a triple integral in cylindrical coordinates

that would give the volume of this silo, and compute it.

(2) Evaluate

∫∫∫

E

xyz dV , where E is the region between the spheres ρ = 1

and ρ = 3 and above the cone φ = 2π/3.

(3) Evaluate the following integral by first converting it to an appropriate

coordinate system; explain the geometric meaning of your final value:
∫ 4

−4

∫ √16−y2

0

∫ 5

−
√

16−x2−y2
(1) dzdxdy
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Fig. 15.36 Corn silo with cylinder and cone (with CP 1).

Triple Ints in Cyl. & Spher. Coords — You Try It — Solved

(1) What solid’s volume is represented by the integral∫ π/2

0

∫ 2

0

∫ 9−r2

0

r dzdrdθ?

� z is bound below by = 0 and above by z = 9− r2. But z = 9− r2 is

the inverted paraboloid also known as z = 9− x2 − y2. The variable r

is bound by r = 0 and r = 2, and θ goes one-fourth of the way around

from 0 to π/2. Therefore, this integral computes the volume under the

inverted paraboloid z = 9 − x2 − y2 over the circle x2 + y2 = 4 in the

first quadrant. �

(2) Evaluate

∫∫∫

E

ez dV , where E is the region between the paraboloid

z = 1 + x2 + y2, the cylinder x2 + y2 = 5, and the xy-plane.

� Since a cylinder is involved, we should probably use cylindrical co-

ordinates! The paraboloid z = 1 + x2 + y2 is also known as z = 1 + r2

in cylindrical coordinates. The cylinder x2 + y2 = 5 becomes r2 = 5

and the xy-plane is also known as z = 0.). Note that the cylinder en-

closes the paraboloid below their intersection, so this region is under

the paraboloid and over a circle of radius
√

5 in the xy-plane. This 3D
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region is shown in Fig. 15.37. Thus, we have

1 ≤ z ≤ 1 + r2 ; 0 ≤ r ≤
√

5 ; 0 ≤ θ ≤ 2π

and the integral is (with the volume element dV = r dzdrdθ in cylin-

drical coordinates):

∫∫∫

E

ezdV =

∫ 2π

0

∫ √5

0

∫ 1+r2

1

ezrdzdrdθ = πe(e5 − 6) �

(3) Evaluate the following integral by first converting it to cylindrical co-

ordinates:
∫ 1

−1

∫ √1−x2

−
√
1−x2

∫ 2−x2−y2

x2+y2
(x2 + y2)3/2 dzdydx

� From the given limits of integration on x and y, we can recognize

that in the xy-plane, our region of integration is the full unit circle.

From the limits on z, we go from the paraboloid z = x2 + y2 to the

upside down paraboloid z = 2 − x2 − y2. In cylindrical coordinates,

this solid is bounded by z = r2, z = 2− r2, and r = 1. This 3D region

is shown in Fig. 15.38. Remember that for cylindrical coordinates, the

volume element is dV = r dzdrdθ. So we get

∫ 1

−1

∫ √1−x2

−
√
1−x2

∫ 2−x2−y2

x2+y2
(x2 + y2)3/2dzdydx

=

∫ 2π

0

∫ 1

0

∫ 2−r2

r2
(r2)3/2rdzdrdθ

=

∫ 2π

0

∫ 1

0

∫ 2−r2

r2
r4dzdrdθ =

8π

35
�

(4) What solid’s volume is represented by this integral?
∫ 2π

0

∫ π

π/2

∫ 2

1

ρ2 sinφdρdφdθ

� The limits of integration show that ρ is bound by ρ = 1 and ρ = 2,

so our region E is at least part of the region between two concentric

spheres of radius 1 and 2 (centered at the origin, of course). The vari-

able φ is bound by φ = π/2 and φ = π. Remembering that φ = π/2

is the xy-plane and φ = π looks straight down the negative z-axis, it

looks like we want our region to be below the xy-plane. Finally, θ goes
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2 3

2 3

3

6

x

y

z

Fig. 15.37 Between z = 1 + x2 + y2,
x2 + y2 = 5, and z = 0.

1 2

1
2

1

2

x

y

z

Fig. 15.38 Between z = 2−x2−y2 and
z = x2 + y2.

all the way around, from 0 to 2π. Therefore, this integral computes the

volume between the two spheres x2 + y2 + z2 = 1 and x2 + y2 + z2 = 4

below the xy-plane. This solid is shown in Fig. 15.39. �

(5) Evaluate

∫∫∫

E

z dV , where E is the region between the spheres x2 +

y2 + z2 = 1 x2 + y2 + z2 = 4 in the first octant.

� Since spheres are involved, we should use spherical coordinates! The

sphere x2 + y2 + z2 = 1 is also known as ρ = 1 in spherical coordinates.

The sphere x2 +y2 +z2 = 4 is ρ = 2. Since we’re in the first octant, we

restrict θ to 0 ≤ θ ≤ π/2 and φ to 0 ≤ θ ≤ π/2. The volume element

in spherical coordinates is dV = ρ2 sinφdρdφdθ. So,
∫∫∫

E

z dV =

∫ π/2

0

∫ π/2

0

∫ 2

1

(ρ cosφ)ρ2 sinφdρdφdθ =
15π

16
�

(6) Evaluate the following integral by first converting the integral into

spherical coordinates:

∫ 3

−3

∫ √9−x2

−
√
9−x2

∫ √9−x2−y2

0

z
√
x2 + y2 + z2 dzdydx
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1
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2

−1

−2

x

y

z

Fig. 15.39 Between ρ = 1 and ρ = 2,
below z = 0.

1 2 3

1
2

3

1

2

3

x

y

z

Fig. 15.40 Below ρ = 3, above z = 0.

� From the given limits of integration on x and y, we can recognize

that in the xy-plane, our region of integration is a full circle of radius

3. From the limits on z, we go from z = 0 to z =
√

9− x2 − y2, that is

from z = 0 to x2 +y2 +z2 = 9. So, we’re inside the top half of a sphere

of radius 3. This region is shown in Fig. 15.40. In spherical coordinates,

we have restrict 0 ≤ φ ≤ π/2 for the upper half of the sphere, then

0 ≤ ρ ≤ 3 and 0 ≤ θ ≤ 2π. Remember that for spherical coordinates,

the volume element is dV = ρ2 sinφdρdφdθ. So we get:

∫ 3

−3

∫ √9−x2

−
√
9−x2

∫ √9−x2−y2

0

z
√
x2 + y2 + z2 dzdydx

=

∫ 2π

0

∫ π/2

0

∫ 3

0

(ρ cosφ)(ρ)ρ2 sinφdρdφdθ

=

∫ 2π

0

∫ π/2

0

∫ 3

0

ρ4 cosφ sinφdρdφdθ

=
243π

5
�
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Interlude: Is Your Integral Zero?

Introduction

After your experience in single variable Calculus, you can probably easily

answer this question: What do the following integrals have in common?

∫ 1

−1
x3 dx

∫ 2π

0

sin(x) dx

∫ π

−π
cos(x) dx (15.5)

If you say it’s that all these integrals equal zero, you’re correct! There

was something special about the first time you saw the connection between

the graph of sin(x) on [0, 2π] and the value of the corresponding integral.

The symmetry of the graph is pleasing, as was that brief rush of endorphins

that came when you realized the positive / negative symmetry caused the

value of

∫ 2π

0

sin(x) dx to be zero. Be honest, you thought that was cool.

This partnership between the symmetry of a region of integration and

the positive & negative values of the function being integrated there which

leads to a result of zero for the integral continues into higher order inte-

gration. One way to practice visualizing the interplay between functions

and regions of integration is to try to predict — without doing the full

calculation in advance — whether given double and triple integrals (in any

coordinate system) will yield a value of zero.

Is This Integral Zero?

In order to assess whether a given integral may have a value of zero, we

have to consider a few things:

(1) Is the region of integration symmetric, such as around the origin,

or an axis, or on both sides of a coordinate plane? If not, then

making predictions about any results without calculations might

be difficult. For example, the one-dimensional region of integration

[−π, π] is symmetric about the origin; [0, 2π] is symmetric about

x = π. So, if you understand how sin(x) behaves, it’s easy to

predict that both

∫ π

−π
sin(x) dx and

∫ 2π

0

sin(x) dx
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are equal to zero. But recognizing that both
∫ 13π/6

π/6

sin(x) dx = 0 and

∫ 11π/6

π/6

sin(x) dx = 0

while
∫ 13π/6

5π/6

sin(x) dx 6= 0

is a bit harder.

(2) Given a “nicely shaped” region of integration for a function f

(whether 1D, 2D, or 3D), can you assess that for every positive

value of f within the region, there is a negative value of f to coun-

teract it? For example, while [−2, 2] is a region of integration nicely

symmetric about the origin, we would have
∫ 2

−2
x3 dx = 0 but

∫ 2

−2

(
x− 1

4

)3

dx 6= 0

and we should be able to make those determinations without ac-

tually using the Fundamental Theorem of Calculus to evaluate the

integral.

Seeing a balance between the integrand and the region of integration can

be helpful for integrals which cannot be evaluated by hand. For example,

while the following integral cannot be solved using any techniques seen in

standard Calculus courses, we can still determine that
∫ 2

−2
x sin(x2) cos(x4 + π) dx = 0

Now that we’ve opened up two and three-dimensional integrals in rect-

angular, polar, cylindrical, and spherical coordinate systems, we should still

be able to consider the (more complicated) interplay between a region of

integration and an integrand which generates both positive and negative

values over that region, and make predictions about which integrals will

yield a value of zero and which will not. And sure, this is lots of fun, but

it’s also good practice visualizing regions of integration.

EX 1 Without performing the full calculation, decide whether or not∫∫

D

xy dA = 0, where D is (a) the unit square centered at the

origin, (b) the region between between the full circles r = 1 and

r = 2, and (c) the region between between the circles r = 1 and

r = 2 between the rays θ = π and θ = 3π/2.
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(a) The unit square centered at the origin uses −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1;

it’s symmetric around the origin with equal areas (area of 1) in each Quad-

rant I to IV. In Quadrant I, both x and y are positive and in Quadrant III,

both x and y are negative, but in both regions, the value of xy will be posi-

tive. But in Quadrants II and IV, the value of xy will be negative, because

one of either x or y will be positive while the other is negative. Because of

the symmetric nature of the overall region, the positive contributions of xy

from QI and QIII are exactly balanced out by negative contributions from

QII and QIV. So, overall, we will have

∫∫

D

xy dA = 0.

(b) Given the circular geometry of this region, evaluation of the integral

would be done in polar coordinates. But still, we can see — like in (a), that

because the portions of the overall region of integration in each of the four

quadrants are symmetrically shaped, and we would have positive contribu-

tions to the integral from QI and QIII balanced by negative contributions

from QII and QIV, then we would have

∫∫

D

xy dA = 0.

(c) The region between the rays θ = π and θ = 3π/2 is Quadrant III, and

so contributions from this region to the given integral will only be positive

(xy > 0 when both x < 0, y < 0). Therefore we would have

∫∫

D

xy dA > 0

here. �

EX 2 Without performing the full calculation, decide whether or not∫∫∫

D

x2yz dV = 0, where E is (a) the unit cube centered at the

origin, (b) the region between between the full spheres ρ = 1 and

ρ = 4, and (c) the region between between the spheres ρ = 1 and

ρ = 4 above the cone φ = π/3.

The contribution to the integrand from x2 is always positive, so it will

not be a distinguishing factor in any of the three cases. We only need to

consider y and z for contributions of negative values to balance positive

values. In the perfect symmetry in all directions around the origin of cases

(a) and (b), each contribution of y and z will be balanced by a negative

contribution. In (c), the restriction to the region above θ = π/3 results in

having z > 0 for all points in the region, and so we only have to consider

y. But even so, all positive y values have a corresponding negative value
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within the region. In all cases, net positive and negative contributions are

equal but opposite, and so

∫∫∫

D

x2yz dV = 0 for all cases. �

There are plenty other varieties of integrals to be examined, but we have

to wait until we see them in Chapter 18 — where they will be appended to

problem sets in a couple of sections.

Is Your Integral Zero? — You Try It

These appeared above; solutions begin on the next page.

(1) We expect

∫∫
Df(x, y) dA = 0 for which of the following combi-

nations of function f(x, y) and region of integration D?

I1) f(x, y) = x3
√
y2 + 1 and D is the rectangle {(x, y) : −1 ≤

x ≤ 1;−3 ≤ y ≤ 2}
I2) f(x, y) = e−xy and D is the upper half of the unit circle

I3) f(x, y) = x/y2 and D is the region between the parabola

y = x2 + 1 and y = 10

(2) We expect

∫∫∫
Ef(x, y, z) dV = 0 for which of the following com-

binations of function f(x, y, z) and region of integration E?

I4) f(x, y, z) = xyz2 and E is the rectangle {(x, y, z) : −1 ≤ x ≤
1;−2 ≤ y ≤ 2;−5 ≤ z ≤ 5}

I5) f(x, y, z) = xyz and E is the region between two concentric

spheres of radii 2 and 4

I6) f(x, y, z) = x2 + y2 + z2 and E is the upper half of the unit

sphere

(3) Which of the following integrals will yield 0?

I7)

∫ 2π

0

∫ 4

0

∫ √16−r2

0

(r cos θ)2(r sin θ)z2 · rdzdrdθ

I8)

∫ 2π

0

∫ π/2

0

∫ 1

0

ρ4 sinφdρdφdθ
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Is Your Integral Zero? — You Try It — Solved

(1) We expect

∫∫
Df(x, y) dA = 0 for which of the following combinations

of function f(x, y) and region of integration D?

I1) f(x, y) = x3
√
y2 + 1 and D is the rectangle {(x, y) : −1 ≤ x ≤

1;−3 ≤ y ≤ 2}
I2) f(x, y) = e−xy and D is the upper half of the unit circle

I3) f(x, y) = x/y2 and D is the region between the parabola y = x2+1

and y = 10

� Integrals (I1) and (I3) will yield 0, while (I2) will not. The inte-

grand in (I2) is always positive, so the integral will be positive. In (I1),

consider a fixed value of y; for that value of y, every positive x has a

negative counterpart, such as 1/3 and −1/3. These contribute in equal

but opposite fashions to the integrand via x3. So the net integral will

be zero. The result of (I3) arises similarly. I highly recommend drawing

a diagram of each region of integration to visualize these results. �

(2) We expect

∫∫∫
Ef(x, y, z) dV = 0 for which of the following combi-

nations of function f(x, y, z) and region of integration E?

I4) f(x, y, z) = xyz2 and E is the rectangle {(x, y, z) : −1 ≤ x ≤
1;−2 ≤ y ≤ 2;−5 ≤ z ≤ 5}

I5) f(x, y, z) = xyz and E is the region between two concentric

spheres of radii 2 and 4

I6) f(x, y, z) = x2 +y2 +z2 and E is the upper half of the unit sphere

� Integrals (I4) and (I5) will yield 0, while (I6) will not. In (I6), the

integrand is always positive, so the net value of the integral will be

positive. In (I4), consider a fixed value of z; for that fixed value, the

cross section of the region of integration is a rectangle in the x, y di-

rections that’s symmetric in both directions around the origin. Each

positive value of either x or y has a negative counterpart, and the two

contributions to the integral balance to zero. In (I5), imagine a sphere

for any fixed radius between 2 and 4; for every point on that sphere

with coordinates (x, y, z), there is a negative counterpart (−x,−y,−z).
These contribute in equal but opposite fashions to the integrand xyz.

Draw pictures! �
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(3) Which of the following integrals will yield 0?

I7)

∫ 2π

0

∫ 4

0

∫ √16−r2

0

(r cos θ)2(r sin θ)z2 · r dzdrdθ

I8)

∫ 2π

0

∫ π/2

0

∫ 1

0

ρ4 sinφdρdφdθ

� In (I7), the only part of the integrand which contributes both posi-

tive and negative values is the term sin θ. Since the integral takes place

over 0 ≤ θ ≤ 2π, every value of sin θ comes with an equal but oppo-

site counterpart. So the net value of the integral will be zero. In (I8),

the only term which might contribute negative values to the integral is

sinφ; however, since the integral takes place over 0 ≤ φ ≤ π/2, we will

see no negative values of sinφ in the integral, and overall, the value of

the integral must be positive. �

FFT: We have not picked up this idea before, but it turns out

that when double and triple integrals with constant limits have inte-

grands that are “separable” according to the variables, i.e. f(x)g(y),

f(ρ)g(φ)h(θ), and so on, then the double or triple integral can be sep-

arated as a product of single integrals for each variable. For example,

if we have a double integral with an integrand that can be written as

F (x, y) = f(x)g(y), then
∫ d

c

∫ b

a

F (x, y) dydx =

∫ d

c

∫ b

a

f(x)g(y) dydx =

∫ b

a

g(y) dy ·
∫ d

c

f(x) dx

(15.6)

Or, if an integrand F (ρ, φ, θ) can be written as f(ρ)g(φ)h(θ), then
∫ θ2

θ1

∫ φ2

φ1

∫ ρ2

ρ1

F (ρ, φ, θ) dρdφdθ =

∫ θ2

θ1

∫ φ2

φ1

∫ ρ2

ρ1

f(ρ)g(φ)h(θ) dρdφdθ

=

∫ θ2

θ1

h(θ) dθ ·
∫ φ2

φ1

g(φ) dφ ·
∫ ρ2

ρ1

f(ρ) dρ

Does this help resolve which integrals from (I1) to (I8) would be zero?

Also, if you enjoy the constructive side of things that we occasionally

encounter in “the Pit”, can you establish relation (15.6) from the orig-

inal definition of a double integral shown in Sec. 14.3?
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Chapter 16

Player V Has Entered the Game

16.1 Vector Basics

Introduction

Most of you have encountered vectors in one form or another. They are the

backbone of much of the mathematics which relates to the physical world.

There’s only so much we can do with scalars and scalar functions, and we

can no longer avoid vectors in our development of tools. So let’s review

the basic concepts of, and simple operations we can do with, vectors. Then

we’ll start putting them to good use.

Climbing the Conceptual Ladder to Vectors

One of the fun things mathematicians do is invent multiple words that seem

to mean the same thing, and it seems like the evil goal of this practice is

to cause maximum confusion. However, what’s really happening is you’re

learning that something you may have thought was special is just one spe-

cific case of a much broader concept. For example, those things you called

“numbers” for a long time started being called “constants”. At first, you

just used numbers for counting, but then you started learning about func-

tions which display change, yet those numbers can act as perfectly good

functions, too — like y = 5 — and in that context, the function displays

no change; in other words, it is constant.

Numbers (constants) are the building blocks for points, which determine

locations in space. A single number, like 4, can be considered a point in one

dimension. To get to a point in space, you need a map, and the coordinates

of a point provide that map — with reference to some starting point, or

183
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origin. The coordinate to a point in one dimension comes from the number

itself: to find the number (point) 4, we move four units to the right of the

origin; to find the number (point) −4, we move four units to the left.

The one-dimensional coordinate system, i.e. the real number line, is

denoted R.

When we start pairing numbers (constants) together, we have the abil-

ity to describe two-dimensional space. A point in two dimensional space —

which is denoted R2 — is described by two coordinates, and those coordi-

nates locate the point relative to the origin of the coordinate system. To

get from the origin to the point (3,−2), we move 3 units to the right of the

origin, then two units down. The coordinate axes align these directions;

the x-axis designates “left” and “right”, and the y-axis designates “up” and

“down”. (Based on your experience with polar coordinates, you know there

are other ways to describe locations, but let’s keep our focus on rectangular

coordinates for now.)

In three dimensional space R3, we have more of the same. A point has

three coordinates, all of which are needed to fix the position of a point

relative to the origin of the 3D coordinate system. With the x-, y-, and

z-axes in place, all perpendicular to each other, we can give road maps to

points; the point (3, 2, 1) is three units in the direction of the x-axis, and

so on.

Once we move up to more dimensions, we can still describe points, such

as (1, 2, 3, 4), but now we can’t directly visualize them.

Notice that even in this very basic conversation about things you al-

ready know, there is terminology that’s undefined. What, exactly, is a

“dimension”? What’s do we mean by “space”? And there are other con-

siderations: I’ll bet when you draw R2 via x- and y-axes, you draw these

parallel to the bottom and side edges of your paper. But what if you drew

axes such that one pointed from, say, the lower left corner of your paper to

the upper right corner, and the other one was perpendicular to it ... would

these still be called x- and y-axes? Could we create unique locations of

points in space with reference to axes that weren’t perpendicular to each

other? Are coordinates of a point unique? The answers to all of these

questions go way beyond what we need here, but if these sound interesting,
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then you should take a class in Linear Algebra. It will blow your mind. We

need to barely skim the surface of some concepts from Linear Algebra, and

those concepts are all rooted in vectors.

Simple Vector Concepts and Properties

Where points in one, two, and three dimensions are tied to their positions

in space, a vector is a mathematical creature which exists independent of

position. A vector is defined by its size and direction, not its location. No

matter whether we’re in one, two, or three dimensions, it takes two points

to define a single vector — an initial point and a terminal point. A vector

is usually represented in a visual fashion by an arrow which points from the

initial point to the terminal point. But the visual representation only gets

us so far. Go ahead and draw an arrow on a piece of paper to represent

a vector ... I’ll wait ... OK, good. Now, if you had to tell someone over

the phone how to draw exactly that same arrow, you can’t say “look at

my vector and draw the same thing”. Rather, you’d probably describe the

direction in which it points, and its length in that direction. You probably

would not be so concerned about where on the paper the arrow is drawn,

so position isn’t an issue.

In geometry classes, you very likely named points by things like P and

Q. Vectors also need names, but we have to do better than just assigning

a letter, because we need to know when we’re looking at a vector and not

a constant or a point. And so, we usually pick one of two notations. If we

want to name a vector with the letter v (because we’re clever that way), we

will either place a little arrow hat on it (v), or put it in bold face (v). The

former is best when you’re writing by hand, and the latter is best when

there is mechanical typesetting, like here.

Vectors are built with their components, which describe the distance

moved in each coordinate direction to get from the initial point to the ter-

minal point of the vector. Components are to vectors what coordinates are

to points; a vector has the same number of components as a point in the

same space. But be alert to the difference: coordinates of a point give the

distance in each coordinate direction from a fixed origin, and fix the point

at one location in space. But the components of a vector simply locate the

terminal point relative to the initial point, and therefore, the vector is inde-

pendent of location. All of the vectors shown in Fig. 16.1 have components
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Fig. 16.1 Multiple representations of v = < 2, 1 >.

2 and 1 because for each vector, we move two units horizontally and one

unit vertically to get from the initial point to the terminal point.

To maintain distinction between points and vectors, we can’t list out a

vector’s components by grouping them in parentheses; the creature (1, 2)

needs to be known distinctly as the point with coordinates (1, 2). The stan-

dard notations for vector components are to group them either in pointy

brackets, like v = 〈2, 1〉, or in square brackets, like v = [2, 1]. Here, we’ll

rely on the pointy brackets unless I accidentally slip and use square ones

— but you’ll understand either one, right?

Even though we want to keep points and vectors distinct conceptually,

they are certainly related. The initial point and terminal points of a vector

are points, after all, and so here is a first constructive step: the components

of a vector can be found by subtracting the coordinates of the initial point

from the coordinates of the terminal point. For example, consider the 2D

vector 〈1, 2〉. If the initial point of this vector is at the origin, then this

vector ends at the point (1, 2). But if the initial point of this vector is, say,

(2, 2), then the terminal point of the vector is (3, 4). As stated, it takes two

points to define a single vector, and this is why.

EX 1 Find the components of the vector with initial point (1,−2, 2) and

terminal point (0, 3, 1).

We need to take each pair of coordinates of the initial and terminal points

and subtract them:



Player V Has Entered the Game 187

• The first pair: 0− 1 = −1.

• The second pair: 3− (−2) = 5.

• The third pair: 1− 2 = −1.

Therefore, the vector is identified as v = 〈−1, 5,−1〉. �

You Try It

(1) Find the components of the vector from A(2, 3) to B(−2, 1).

Since a vector is determined by the straight line path from its initial

point to its terminal point, you may think that its length would be one of

its most important features, and you’d be right. Often, in the grand tradi-

tion of having more than one term available, we will refer to the length of

a vector as its magnitude. There are a few reasons for this. First, saying

“length” is fine in dimensions up to three since we have an intuitive idea of

what it means, but in dimensions higher than 3, what does “length” mean

anymore? So, we have a catch-all phrase that works for any dimension. Sec-

ond, it turns out that what we’re calling vectors are just one type of a huge

category of mathematical objects, many of which have nothing to do with

physical space — and so the term length would be meaningless.1 Finally,

saying “magnitude” is more impressive and makes you sound smarter, and

the word is worth more points when playing Scrabble.

The length (or magnitude) of a vector v is given as |v|. It’s not an

accident that we’re using what we’d otherwise call absolute value bars. In

fact, if you think about the fact that the size of both the one-dimensional

vectors 〈−5〉 and 〈5〉 are the same, and equal to 5, that notation should

make a lot of sense! To compute the length, note that the horizontal and

vertical lines that get you from the initial to terminal point of the vector

are the two legs of a right triangle whose hypotenuse is the vector itself,

and so we can invoke the Pythagorean Theorem.

Useful Fact 16.1. The magnitude of a vector v is determined through its

components in a recognizable way:

• In one dimension, the magnitude of v = 〈v1〉 is |v| = |v1| (literally

the absolute value of its one component).

1For example, it turns out that functions can be considered vectors, too .. for more

information, take Linear Algebra!
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• In two dimensions, the magnitude of v = 〈v1, v2〉 is |v| =
√
v21 + v22

(the Pythagorean Theorem applied to its two components).

• In three dimensions, the magnitude of v = 〈v1, v2, v3〉 is |v| =√
v21 + v22 + v23 (the 3D version of the Pythagorean Theorem).

I’ll bet you can now guess the pattern for v = 〈v1, . . . , v4〉 and higher.

EX 2 Find the magnitude of the vector found in EX 1.

In EX 1, we found v = 〈−1, 5,−1〉. Therefore,

|v| =
√

(−1)2 + (5)2 + (−1)2 =
√

1 + 25 + 1 =
√

27 �

You Try It

(2) Find the magnitude of the vector v that you found in YTI 1.

Combining Vectors With Vectors

Just like numbers (pardon me, scalars!) can be combined together to make

new scalars (via addition, subtraction, and so forth), we can also combine

vectors in various ways.

Operations on vectors are done using their components. The simplest

operation on vectors is vector addition, and all we do is go through the

components and add them pairwise. In 2D, we have

v + w = 〈v1, v2〉+ 〈w1, w2〉 = 〈v1 + w1, v2 + w2〉

I’m sure you can imagine what this would look like in 3D or higher. To see

what is happening geometrically, we (1) draw v, (2) use the terminal point

of v as the initial point of w and draw w, and then (3) draw a new vector

that completes the developing triangle, i.e., that connects the initial point

of v to the terminal point of w. Figure 16.2 shows v +w for v = 〈3, 1〉 and

〈w〉 = 〈−1, 3〉. Algebraically, we get v + w = 〈2, 4〉, and you can confirm

that visually in the figure.

Subtraction should be the next obvious way to combine two vectors,

but we’ll defer that until a bit later.
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< 3, 1
>

<
−

1, 3
>

<
3,

1
>

+
<
−1
, 3
>

Fig. 16.2 Vector addition: < 3, 1 > + < −1, 3 >.

After addition and subtraction, you might think multiplication and divi-

sion would get their turn. But there is no such thing as one vector “times”

another, nor one vector divided by another. Rather, there are two ways

to combine vectors that are akin to multiplication. These are called the

dot product and cross product, respectively. In the dot product, we take

two vectors, do something to them (via their components), and produce a

scalar. In the cross product, we take two vectors, do something to them,

and produce another vector. These operations are so much fun, they have

their own section, coming up soon!

Combining Vectors With Scalars

There are things you can and cannot do with vectors and scalars. For

example, if v is a vector and c is a scalar, the expression v + c makes no

sense. You can’t add apples to oranges. But there is an operation, called

scalar multiplication, that does make sense, and it proceeds as follows in

2D:

cv = c · 〈v1, v2〉 = 〈cv1, cv2〉

Again, I’m sure you can imagine what it would look like in 3D or higher.

There are two potential effects of scalar multiplication:

• If c > 0, then the length of cv is c times the length of v. If

0 < c < 1, the new vector is shorter than the original; if c > 1, the

new vector is longer. For example, if v = 〈2, 1, 3〉, then 3v is a new

vector three times as long as v but having the same direction.
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• If c > 0, the rescaling of the length is the same, but the direction

of the vector gets reversed. The vector −v has the same length but

opposite direction as v. The vector −(1/2)v has half the length

and the opposite direction as v.

EX 3 If v = 〈−2, 0, 4〉, then what are −2v and (1/2)v?

−2v = −2〈−2, 0, 4〉 = 〈4, 0,−8〉 ;
1

2
v =

1

2
〈−2, 0, 4〉 = 〈−1, 0, 2〉 �

You Try It

(3) If w = 〈5, 2〉, then find 3w and show using Useful Fact 16.1 that

the length of 3w is three times the length of w.

With scalar multiplication in place, considering subtraction of vectors

is now suitable, because rather than learning a bunch of new rules, we can

just consider v −w as v + (−w). If v = 〈3,−1, 3〉 and w = 〈1, 1, 1〉, then

algebraically we have v − w = 〈3 − 1,−1 − 1, 3 − 1〉 = 〈2,−2, 2〉. That’s

easy. Graphically, we attach −w to the terminal point of v and complete

the resulting triangle. Figure 16.3 shows an example in R2, where we have

u−w for u = 〈2, 3〉 and v = 〈3, 2〉. Algebraically, we have u−w = 〈−1, 1〉;
is that consistent with what you see in the figure?

u

−v

u
+

(−
v
)

Fig. 16.3 u− v for u = < 2, 3 >,v = < 3, 1 >.

EX 4 If a = 〈1,−2,−2〉 and b = 〈3, 2, 0〉, then predict whether each of

the following will be a vector or a scalar, and compute them: (1)

a− 2b, (2) |a + b|, (3) b/|b|, and (4) the length of b/|b|?
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(1) is the difference of two vectors, and so will be a vector,

a− 2b = 〈1,−2,−2〉 − 〈6, 4, 0〉 = 〈−5,−6,−2〉

(2) is the length of a sum of vectors, and will be a scalar. Since a + b =

〈4, 0,−2〉, then

|a + b| =
√

42 + 02 + (−2)2 =
√

20 = 2
√

5

(3) is a vector divided by a scalar, or rather, a vector times the reciprocal

of a scalar, so the result will be another vector. Since |b| =
√

13, then

b

|b| =
1

|b| b =
1√
13
〈3, 2, 0〉 =

〈
3√
13
,

2√
13
, 0

〉

(4) is asking for the length of the vector found in (3), and so we expect the

result to be a scalar. We have

∣∣∣∣
b

|b|

∣∣∣∣ =

√(
3√
13

)2

+

(
2√
13

)2

=

√
9

13
+

4

13
=

√
13

13
= 1

Hey, I wonder if there’s something to the fact that we got a length of 1 in

(4)? �

You Try It

(4) If a = 〈−4, 3〉 and b = 〈6, 2〉, what are |a|, a + b, a − b, 2a, and

3a + 4b?

Unit Vectors

In the last part of EX 4 above, we saw a very important result. We took a

vector, divided it (rescaled it) by its own length (sorry, magnitude!), then

found the magnitude of the resulting vector. That new magnitude was 1,

which is not an accident. Vectors with a magnitude of 1 are extremely

special.

Definition 16.1. A vector v for which |v| = 1 is called a unit vector.

For any vector v except 0,2 we can construct a unit vector u in the same

direction:

If u =
v

|v| then |u| = 1 (16.1)

2The zero vector 0 is a vector whose components are all 0.
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Unit vectors are very important. In fact, some unit vectors are so im-

portant they get their own names. In R2, the two most special unit vectors

are

i = 〈1, 0〉 and j = 〈0, 1〉
In R3, the three most special unit vectors are

i = 〈1, 0, 0〉 and j = 〈0, 1, 0〉 and k = 〈0, 0, 1〉
Do you see why these are important vectors? Hopefully you are thinking

along these lines:

• These vectors define the coordinate axes in their 2D or 3D plane. If

we join their initial points, then that intersection can be considered

the origin, and any point x on the x-axis is located by the terminal

point of xi, and and point y on the y-axis is located by the terminal

point of yj. Better yet,

• Any vector in 2D or 3D can be formed by a combination of these

vectors; because 〈x, y〉 = xi + yj. For example, the vector 〈17, 295〉
can be written as the vector sum 17i + 295j.

The introduction of these unit vectors gives us a new way to denote vectors

and their components. In R3, for example,

〈v1, v2, v3〉 = v1i + v2j + v3k

You need to be able to identify and handle vectors no matter which notation

is used to presented them. It is common practice to give your answer in

the same notation as the question was posed. Since many calculations are

tidier when tracked using bracket notation, feel free to switch to it, but

return your answer to unit vector notation if that’s how the question was

posed.

EX 5 If a = 3i− j + 2k, and b = i + j + 2k, what are |a| and a− 3b?

• The vector a is also known as 〈3,−1, 2〉; we have |a| =
√

9 + 1 + 4 =√
14.

• Asking for a − 3b is the same as asking for 〈3,−1, 2〉 − 3〈1, 1, 2〉,
and so

a− 3b = 〈3,−1, 2〉 − 〈3, 3, 6〉 = 〈0,−4,−4〉 �

You Try It

(5) Find a unit vector in the same direction as v = 9i− 5j.
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Vector Basics — Problem List

Vector Basics — You Try It

These appeared above; solutions begin on the next page.

(1) Find the components of the vector v from A(2, 3) to B(−2, 1).

(2) Find the magnitude of the vector v that you found in YTI 1.

(3) If w = 〈5, 2〉, then find 3w and show using Useful Fact 16.1 that the

length of 3w is three times the length of w.

(4) If a = 〈−4, 3〉 and b = 〈6, 2〉, what are |a|, a+b, a−b, 2a, and 3a+4b?

(5) Find a unit vector in the same direction as v = 9i− 5j.

Vector Basics — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.4.1.

(1) If a = 2i−3j and b = i+5j, what are |a|, a+b, a−b, 2a, and 3a+4b?

(2) Find a unit vector in the same direction as 8i− j + 4k.

(3) Find a vector of length 6 in the same direction as v = 〈−2, 4, 2〉.
(4) If v = 〈v1, v2〉 and c > 0, prove that |cv| = c|v|, i.e. prove that the

length of the vector cv is c times the length of v. (You can use specific

examples to test out the process, but in the end, you should prove the

general rule for any vector v = 〈v1, v2〉.)
(5) If v = 〈v1, v2〉, prove that |v/|v|| = 1. (You can use specific examples

to test out the process, but in the end, you should prove the general

rule for any vector v = 〈v1, v2〉.)

Vector Basics — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.4.1.

(1) Find a vector of length 3 in the opposite direction of v = 〈1,−1, 2〉.
(2) Find a unit vector that points in the direction of a minute hand on an

analog 12-hour clock when it is exactly 10 minutes past the hour.

(3) If v is any vector 〈v1, v2, v3〉 and w = 5v, use the definition of magni-

tude (length) to prove that the length of w is always 5 times the length

of v. (Sure, we can say “Well, duh, of course it is!”, but can you prove

it in the mathematical court of law?)
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Vector Basics — You Try It — Solved

(1) Find the components of the vector v from A(2, 3) to B(−2, 1).

� Remember from your geometry that the symbol ĀB represents the

line segment connecting A to B. We now have the vector from A to B:

AB = 〈−2− 2, 1− 3〉 = 〈−4,−2〉. �

(2) Find the magnitude of the vector v that you found in YTI 1.

� The vector v = ĀB from YTI 1 was 〈−4,−2〉. The magnitude of

this vector is

|v| =
√

(−4)2 + (−2)2 =
√

16 + 4 =
√

20 = 2
√

5 �

(3) If w = 〈5, 2〉, then find 3w and show using Useful Fact 16.1 that the

length of 3w is three times the length of w.

� Since 3w = 3〈5, 2〉 = 〈15, 6〉, the length of this vector is

|3w| =
√

152 + 62 =
√

261 =
√

9 · 29 = 3
√

29

The original length of w is

|w| =
√

52 + 22 =
√

29

and therefore |3w| = 3|w|. �

(4) If a = 〈−4, 3〉 and b = 〈6, 2〉, what are |a|, a+b, a−b, 2a and 3a+4b?

� The results are:

|a| =
√

16 + 9 = 5

a + b = 〈2, 5〉
a− b = 〈−10, 1〉

2a = 〈−8, 6〉
3a + 4b = 〈−12 + 24, 9 + 8〉 = 〈12, 17〉 �

(5) Find a unit vector in the same direction as v = 9i− 5j.

� Since |v| =
√

81 + 25 =
√

106, then a unit vector in the same direc-

tion is

v

|v| =
9√
106

i− 5√
106

j �
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Interlude: Determinants

Introduction

In order to proceed into the topic of cross products, you’ll want to be

familiar with determinants. If you already know how to set up and compute

3×3 determinants through the technique of expansion by minors, then you

can skip this. If that sentence made no sense, then read on!

2-By-2 Determinants

For our purposes, all you need to know about determinants is that they

are a computation performed on a square arrays of mathematical objects

(most commonly numbers, but not necessarily). Suppose A represents a

2-by-2 array of numbers,

A =

(
a1 a2
b1 b2

)

(This is actually called a matrix, but we don’t need to know that right

now!) The determinant of this array of numbers is det(A) and is written

using something like absolute value bars:

det(A) =

∣∣∣∣
a1 a2
b1 b2

∣∣∣∣

This is evaluated by subtracting the products of the two diagonals, upper-

left to lower-right and lower-left to upper-right:

det(A) =

∣∣∣∣
a1 a2
b1 b2

∣∣∣∣ = a1b2 − b1a2

For example,

∣∣∣∣
1 2

3 4

∣∣∣∣ = (1)(4)− (3)(2) = 4− 6 = −2

As mentioned, the entries in the array do not need to be numbers. For

example,

∣∣∣∣
x2 −x
1 1

x

∣∣∣∣ = (x2)

(
1

x

)
− (1)(−x) = x+ x = 2x
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3-By-3 Determinants

Suppose A is a 3-by-3 array,

A =



a1 a2 a3
b1 b2 b3
c1 c2 c3




then the determinant is presented like this:

det(A) =

∣∣∣∣∣∣

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣

The value of this determinant is (are you ready?),

det(A) = (a1b2c3 + a2b3c1 + a3b1c2)− (c1b2a3 + c2b3a1 + c3b1a2)

That’s definitely a formula you don’t want to have to memorize, but

fortunately there is a very routine procedure to follow, which is called ex-

pansion by minors. Now don’t get worried about that new terminology; a

minor determinant is simply a determinant that’s smaller than the one you

already have. For a 3 × 3 array like our friend A here, there are “minor

determinants” associated with A that are just 2× 2 determinants made of

some numbers pulled from A.

Specifically, a minor determinant is found like this:

• Select an entry from your given array. For example, let’s say we

select the entry a2 from our 3-by-3 array A.

• Create the 2 × 2 array that’s created when we strike out the row

and column in which our selected entry sits. Note the position

of the entry a2 we’ve selected, so that we can yank out that row

(Row 1) and column (Column 2) to see what’s left:


a1 a2 a3

b1 b2 b3
c1 c2 c3


 →

(
b1 b3
c1 c3

)

• Find the determinant of the result. Since we struck out Row 1 and

Column 2, this determinant is named the minor M12, and we have

M12 =

∣∣∣∣
b1 b3
c1 c3

∣∣∣∣ = b1c3 − c1b3



Player V Has Entered the Game 197

Now we can put all this together:

Useful Fact 16.2. To evaluate a 3-by-3 determinant, we move along the

top row, stop at each spot and form the resulting minor (so we find M11,

M12 and M13) and then compute

det(A) = a1M11 − a2M12 + a3M13 (16.2)

The three determinants given by the minors M11, M12 and M13 are all

2-by-2 determinants, and are easy to compute. Pay very close attention to

the fact that the second term in (16.2) is substracted; that’s not a typo.3

Here’s an example:
∣∣∣∣∣∣

−1 2 1

2 1 −1

0 1 2

∣∣∣∣∣∣
= (−1)

∣∣∣∣
1 −1

1 2

∣∣∣∣− (2)

∣∣∣∣
2 −1

0 2

∣∣∣∣+ (1)

∣∣∣∣
2 1

0 1

∣∣∣∣

= (−1)(2− (−1))− (2)(4− 0) + (1)(2− 0) = −9

Here are a few for you to try. There are no separate solutions, just

make sure you can produce the given result. In the third example, note

that the top row has unit vectors in it rather than numbers, which has an

influence on the form of the final result. If that third example works for

you and makes sense, then congratulations, you have already learned how

to compute a cross product of two vectors!

You Try It
(1) Show that det(A) = −38 where

A =



−2 3 1

0 1 −4

2 1 2




You Try It
(2) Show that det(A) = −3x+ 3x2 where

A =



x x2 x3

1 1 2

2 2 −1




3If you want to learn why the second term is negative, then ... here we go again ... take

Linear Algebra!
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You Try It
(3) Show that det(A) = −6i + 5j− 2k where

A =




i j k

−1 0 3

2 2 −1




and i, j, and k are the special 3D unit vectors.
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16.2 Dot and Cross Products

Introduction

Although we can add and subtract vectors, there is no such thing for us

as vector multiplication, nor vector division. Rather, there are two analogs

to multiplication, and these are called the dot product and cross product.

(At a higher level, these are tangled up in an operation that is more like

what we might call vector multiplication, but we don’t need to worry about

that). In the dot product, we take two vectors, do something to them (via

their components), and produce a scalar. In the cross product, we take

two vectors, do something to them, and produce another vector. Both

operations have a variety of applications.

The Dot Product

Definition 16.2. If v and w are vectors in 3D, then their dot product is

v ·w = v1w1 + v2w2 + v3w3 (16.3)

You can shrink or expand this definition to lower (2D) or higher dimen-

sions.

EX 1 If a = 〈2,−2, 1〉 and b = 〈0,−1, 1〉, what is a · b?

According to the above definition,

a · b = (2)(0) + (−2)(−1) + (1)(1) = 0 + 2 + 1 = 3 �

You Try It

(1) If a = 〈5, 0, 2〉 and b = 〈3,−1, 10〉, what is a · b?

Based on the definition of the dot product, which of the following prop-

erties do you think are true?

• v ·w = w · v
• v · (w + u) = v ·w + v · u
• If v ·w = 0 then either v = 0 or w = 0

• v · 0 = 0 for all v

The first and second are true; they follow pretty much immediately from

the definition of the dot product (although proving the second one is a little

messy — not hard, but messy). The third is NOT true. If v = 〈1, 1〉 and
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w = 〈1,−1〉 then v ·w = 0. So, there’s an example of the fact that you can

get a dot product of zero from two vectors which are not zero vectors. It

turns out that having a dot product of zero tells you something important

about your two vectors, and we’ll see that below. The fourth one is true.

Does anything interesting happen when you take the dot product of a

vector with itself? Let’s see. If v = 〈v1, v2, v3〉, then

v · v = (v1)(v1) + (v2)(v2) + (v3)(v3) = v21 + v22 + v23

Now that right hand side should look pretty familiar — it’s the square of

the magnitude of v. So we’ve discovered an interesting relationship:

Useful Fact 16.3. The magnitude of a vector is related to the dot product

of the vector with itself, as

v · v = |v|2 (16.4)

This doesn’t really give us a new formula for the length of a vector,

it just tidies up the ones we already have. The expression in Eq. (16.4)

stays exactly the same regardless of whether the vector v lives in R2, R3,

or higher. It’s certainly much more efficient to write (16.4) than for all of

the individual components to be on display.

The Angle Between Vectors

v

uθ

Fig. 16.4 u · v = |u| |v| cos θ

There is geometry hiding behind the dot product.

Useful Fact 16.4. The dot product between two vectors v and w is related

to the angle θ between them (see Fig. 16.4):

v ·w = |v||w| cos θ (16.5)
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Equation (16.5) is a consequence of the Law of Cosines, and I encourage

you to do some digging to see how it’s derived.4 This equation is most

commonly used to find the angle between two vectors.

EX 2 What is the angle between the vectors a = 〈1, 1〉 and b = 〈0,−1〉

Since |a| =
√

2, |b| = 1, and a · b = −1, we have

a · b = |a||b| cos θ

−1 = (
√

2)(1) cos θ

cos θ = − 1√
2

θ =
3π

4
�

You Try It

(2) What is the angle between the vectors a = 〈1, 2, 3〉 and b =

〈4, 0,−1〉?

But wait, Eq. (16.5) keeps on giving! Think about the angle between

two vectors that are perpendicular: it’s either θ = π/2 or θ = −π/2. But

in either case, cos θ = 0. So we have an immediate way to tell whether two

vectors are perpendicular.

Useful Fact 16.5. If two vectors v and w are perpendicular, then v·w = 0.

If we can determine that two vectors are perpendicular with the dot

product, can we determine whether two vectors are parallel? Sure! If two

vectors are parallel and point in the same direction, the angle between them

is θ = 0. If they are parallel and point in the opposite direction, then the

angle between them is θ = π (or θ = −π, either one). And when θ = 0 or

θ = ±π, then cos θ = ±1.

Useful Fact 16.6. If two vectors v and w are parallel, then |v·w| = |v||w|.

This particular result is not nearly as useful as the one that helps spot

perpendicular vectors, though.

EX 3 Are the vectors u = 〈1,−1, 2〉 and v = 〈2,−1, 1〉 parallel, perpen-

dicular, or neither?

4or take Linear Algebra!
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We have u · v = 5, |u| =
√

6 and |v| =
√

6 so that

u · v = |u||v| cos θ

5 = (
√

6)(
√

6) cos θ

cos θ =
5

6

This is enough to tell us that since u · v 6= 0, the vectors are not perpen-

dicular. Since θ 6= 0 or π they are not parallel either. �

You Try It

(3) Are the vectors a = 〈4, 6〉 and b = 〈−3, 2〉 parallel, perpendicular,

or neither?

(4) Are the vectors a = 〈−5, 3, 7〉 and b = 〈6,−8, 2〉 parallel, perpen-

dicular, or neither?

Here’s another situation where a new word is going to be introduced,

which might seem unnecessary at first:

Definition 16.3. If v ·w = 0, then v and w are said to be orthogonal.

We really do need this new terminology. The concept of two vectors

being perpendicular makes sense in 2D and 3D, when the angle between

them can be physically measured as a right angle. But what about in 4D?

If you have vectors with 4 components, it’s still pretty special to have their

dot product be zero, but the idea of them being perpendicular makes no

sense anymore. So we use the word orthogonal to describe two vectors that

have a dot product of zerp, and it just so happens that in 2D and 3D,

orthogonal vectors are physically perpendicular. The word perpendicular

is actually the less desirable term. If we all called things at right angles

“orthogonal” all along, we wouldn’t even need to have this conversation.

So blame your geometry teachers, not me!

Components and Projections

A recurring theme here is that many things you learned along the way

that seemed special really turn out to be just one case of a much broader

concept. Here is another story like that. When we’ve considered the com-

ponents of a vector so far, we’ve taken those components relative to the

coordinate axes. The vector 〈1, 2〉 can be broken down into two pieces,

each of which is parallel to a coordinate axis: we say that the components
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of v are 1 and 2, and we can write 〈1, 2〉 = 〈1, 0〉 + 2〈0, 1〉 = i + 2j; those

unit vectors i and j are parallel to the x- and y-axes, respectively, and their

coefficients 1 and 2 are the components of the vector. To state this a bit

more generally, we can take j out of the mix and state that we currently

know how to decompose a vector into two pieces, one of which is parallel

to i and the other is perpendicular to i.

Well, it turns out that using the coordinate axes (or i specifically) to

determine a vector’s components is a totally arbitrary choice.

Definition 16.4. Given two vectors v and w, and also p which is perpen-

dicular to w, we can find two scalars compwv and comppv such that

v = (compwv)w + (comppv)p

The scalars compwv and comppv are called the components of v along w

and p.

What you’ve called the components of a vector all along have not been

unique things; they were just the components of that vector along i and j

specifically.

v

u

projuv

Fig. 16.5 The vector projection of v onto u.

If we think about compww as the length of the shadow of v along w,

we should recognize that the shadow of v along w can be considered as a

vector in itself. There are two quantities associated with this shadow. One

is that component, which we’ve already defined. But also, when we take
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the shadow of v along w (which has length compwv) and make a vector

out of that shadow, we’ve created the vector projection of v along w. Let’s

put all this together and give means to find these quantities:

Definition 16.5. The component of v along w is found by

compwv =
v ·w
|w| (16.6)

The vector projection of v along w is the vector

projwv = compwv
w

|w| =

(
v ·w
|w|

)
w

|w| (16.7)

(Fig. 16.5 shows the projection of v along w.) Be sure you see what’s

going on in Eq. (16.7): we simply take the length we need (compwv) times

a unit vector in the direction of w to produce a vector of length compwv

in the direction of w.

Here are two things to keep in mind when finding components and

projections:

(1) When asked to compute components and projections, compute the

component first, then use that result to compute the projection.

(2) It’s important to keep track of which vector is being projected onto

which, and place values in the expression carefully!

EX 4 If v = 〈1, 0, 3〉 and w = 〈1, 1, 1〉, what are compwv and projwv?

We want the component and projection of v onto w. To compute these,

we need v ·w = 4 and |w| =
√

3 so that

compwv =
v ·w
|w| =

4√
3

We can use this value in the computation of the projection,

projwv = compwv
w

|w| =
4√
3
· 〈1, 1, 1〉√

3
=

4

3
〈1, 1, 1〉 =

〈
4

3
,

4

3
,

4

3

〉
�

You Try It

(5) If a = 〈4, 2, 0〉 and b = 〈1, 1, 1〉, what are compab and projab?
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The Cross Product

The cross product is an operation on two vectors, via their components,

that results in a third vector.

Definition 16.6. Given two vectors v = 〈v1, v2, v3〉 and w = 〈w1, w2, w3〉,
their cross product is

v ×w = 〈v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1〉

or, in a more convenient determinant form,

v ×w =

∣∣∣∣∣∣

i j k

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣

You can see from the definition, particularly the determinant form, that

the cross product is only defined for vectors in 3D (although you can also

cheat and do the cross product of two vectors from R2 by assigning a third

coordinate of 0 to both of them). The top row of the determinant contains

the three special 3D unit vectors, i, j, and k.5 Hopefully you can see

that this determinant will result in the form ai + bj + ck, which is another

vector. It so happens that this vector resulting from the cross product will

be perpendicular (orthogonal) to both of the original vectors.

EX 5 If v = 〈1, 0, 3〉 and w = 〈1, 1, 1〉, find v ×w and demonstrate that

it is orthogonal to both v and w.

Let’s call the cross product c, so that

c = v ×w =

∣∣∣∣∣∣

i j k

1 0 3

1 1 1

∣∣∣∣∣∣
=

∣∣∣∣
0 3

1 1

∣∣∣∣ i−
∣∣∣∣
1 3

1 1

∣∣∣∣ j +

∣∣∣∣
1 0

1 1

∣∣∣∣ ,k

= (0− 3)i− (1− 3)j + (1− 0)k = −3i + 2j + k

And then we have

c · v = (−3)(1) + (2)(0) + (1)(3) = 0

c ·w = (−3)(1) + (2)(1) + (1)(1) = 0

so that v ×w is orthogonal to both v and w. �

5See Sec. 16.1 for a review on how to evaluate determinants.
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You Try It

(6) If a = 〈2, 1,−1〉 and b = 〈0, 1, 2〉, demonstrate that a × b is or-

thogonal to a and b.

(7) Find two unit vectors orthogonal to both a = 〈1,−1, 1〉 and b =

〈0, 4, 4〉.

u

v

A
=
|u
× v|

Fig. 16.6 Cross product gives area of a parallelogram.

The cross product is also useful for several other things, like finding the

area of a parallelogram whose edges are defined by two vectors (see Fig.

16.6), or finding the volume of a parallelelpiped whose edges are defined by

three vectors. Even these, then, have their own applications. For example,

you can determine if four points (say A,B,C,D) are co-planar by finding the

vectors AB, AC, and AD and then seeing if the volume of the resulting

parallelepiped is zero.

Since we could spend several days going over geometrical applications of

both the dot and cross products, we’ll stick here to the aspects of them that

that are of immediate interest in upcoming subjects. If you find that you

like dealing with vectors and things like dot and cross products, then make

sure to take Linear Algebra! In the meantime, here is the most concise

summary of what you can get out of these examples:

• If you need to determine if two things are perpendicular or not, the

dot product will likely be involved. You may have to create vectors

to act as surrogates for whatever you’re testing — for example, to
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find if two planes are perpendicular, we’ll have to identify vectors

that can be used to represent the plane in a calculation. That’s

coming up!

• If you need to find a vector that’s perpendicular, sorry, orthogonal

to something, the cross product will probably get involved. Soon,

we’re going to need vectors that are orthogonal to curves, planes,

and surfaces. In many cases, we’ll need a unit vector that’s orthog-

onal to something — but, perhaps you now realize that if we ever

need a unit vector to do a job, all we have to do is find ANY vector

that does the job, and then divide that vector by its own length,

sorry, magnitude to turn it into a unit vector.

The one last danger of learning new operations like the dot and cross

product is losing track of what you can and cannot do, or losing track of

proper notation. Vectors must be indicated as vectors, with an arrow or

boldface, so that they are not confused with numbers. Operations should

be understood by their context. Also, operations must be allowed to act

on the types of things they are designed for. The dot and cross prod-

ucts require two vectors. So, for example, we all know that the expression

(a + b) + c makes perfect sense when a, b and c are numbers. But the ex-

pression (a ·b) · c makes NO sense. The left parentheses (a ·b) results in a

scalar and so trying to take another dot product of that value with c is silly.

Or, make sure that you see a× b and a×b as two entirely different things.

The first is multiplication of two scalars, the second is a cross product of

two vectors. Both use the same symbol, ×. But we can tell them apart

because we know how to interpret the symbol × based on how it’s being

used. So if you really mean a×b, then don’t get sloppy with your notation

and write a × b. (Remember, while I’m using a × b for typing purposes,

you are likely using arrows in your writing: a× b.)

Here’s some practice identifying legitimate expressions.

You Try It

(8) Which of the following are legitimate expressions? (a) a · (b × c),

(b) a× (b× c), and (c) a · b× c · d.
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Dot and Cross Products — Problem List

Dot and Cross Products — You Try It

These appeared above; solutions begin on the next page.

(1) If a = 〈5, 0, 2〉 and b = 〈3,−1, 10〉, what is a · b?

(2) What is the angle between the vectors a = 〈1, 2, 3〉 and b = 〈4, 0,−1〉?
(3) Are the vectors a = 〈4, 6〉 and b = 〈−3, 2〉 parallel, perpendicular, or

neither?

(4) Are the vectors a = 〈−5, 3, 7〉 and b = 〈6,−8, 2〉 parallel, perpendicu-

lar, or neither?

(5) If a = 〈4, 2, 0〉 and b = 〈1, 1, 1〉, what are compab and projab?

(6) If a = 〈2, 1,−1〉 and b = 〈0, 1, 2〉, demonstrate that a×b is orthogonal

to a and b.

(7) Find two unit vectors orthogonal to both a = 〈1,−1, 1〉 and b =

〈0, 4, 4〉.
(8) Which of the following are legitimate expressions? (a) a · (b × c), (b)

a× (b× c), and (c) a · b× c · d.

Dot and Cross Products — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.4.2.

(1) What is the angle between a = 〈6,−3, 2〉 and b = 〈2, 1,−2〉?
(2) Are the vectors a = 〈−1, 2, 5〉 and b = 〈3, 4,−1〉 parallel, perpendicu-

lar, or neither?

(3) Are the vectors a = 〈2, 6,−4〉 and b = 〈−3,−9, 6〉 parallel, perpendic-

ular, or neither?

(4) If a = 〈−1,−2, 2〉 and b = 〈3, 3, 4〉, what are compab and projab?

(5) If a = 〈1,−1, 1〉 and b = 〈1, 1, 1〉, demonstrate that a×b is perpendic-

ular to both a and b.

(6) Which of the following are legitimate expressions? (a) a · (b · c), (b)

a× (b · c), and (c) (a× b) · (c× d).

(7) If a = 〈2,−3, 1〉 and b = 〈1, 6,−2〉, what are compab and projab?

(8) Find a unit vector orthogonal to both i + j and i + k.

(9) We know that the dot product of a vector with itself is related to the

length of the vector. What is special about the cross product of a vector

with itself? Test this out for the general case v = 〈v1, v2, v3〉 and show

all the details to support your conclusion.
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Dot and Cross Products — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.4.2.

(1) If a = 〈1, 6,−2〉 and b = 〈2,−3, 1〉, what are compab and projab?

(2) Find a unit vector orthogonal to both i− 2j and i + k.

(3) Let v = 〈v1, v2, v3〉 be any vector in R3 and let w be any scalar multiple

of v, i.e. w = cv. The cross product v × w will always be the same

value; what is that value, and show how you know what it is.

(4) If a = 〈2,−3, 1〉 and b = 〈1, 6,−2〉, what are compab and projab?

(5) Find a unit vector orthogonal to both i + j and i + k.

(6) Let v = 〈p, q, r〉 be any vector in R3 and let w be any scalar multiple

of v, i.e. w = cv. The cross product v ×w will always have the same

result; find that result, and show how you know what it is.

Dot and Cross Products — You Try It — Solved

(1) If a = 〈5, 0, 2〉 and b = 〈3,−1, 10〉, what is a · b?

� a · b = (5)(3) + (0)(−1) + (2)(10) = 35 �

(2) What is the angle between the vectors a = 〈1, 2, 3〉 and b = 〈4, 0,−1〉?

� We have a · b = 1, |a| =
√

14 and |b| =
√

17 so that

a · b = |a||b| cos θ

1 =
√

14
√

17 cos θ

cos θ =
1√
238

θ ≈ 86◦ �

(3) Are the vectors a = 〈4, 6〉 and b = 〈−3, 2〉 parallel, perpendicular, or

neither?

� Since a · b = 0, the vectors are perpendicular. �

(4) Are the vectors a = 〈−5, 3, 7〉 and b = 〈6,−8, 2〉 parallel, perpendicu-

lar, or neither?
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� We have a · b = −40, |a| =
√

83 and |b| =
√

104 so that

a · b = |a||b| cos θ

−40 =
√

83
√

104 cos θ

cos θ = − 40√
8362

This is enough to tell us that since a · b 6= 0, the vectors are not per-

pendicular. Since θ 6= 0, π they are not parallel either. �

(5) If a = 〈4, 2, 0〉 and b = 〈1, 1, 1〉, what are compab and projab?

� We want the component and projection of b along a. We need

a · b = 6 and |a| =
√

20 = 2
√

5 so that

compab =
a · b
|a| =

3√
5

which we can then use in:

projab = compab

(
a

|a|

)
=

(
3√
5

)(
1

2
√

5

)
〈4, 2, 0〉

=
3

10
〈4, 2, 0〉 =

〈
6

5
,

3

5
, 0

〉
�

(6) If a = 〈2, 1,−1〉 and b = 〈0, 1, 2〉, demonstrate that a×b is orthogonal

to a and b.

� We have

c = a× b =

∣∣∣∣∣∣

ccci j k

2 1 −1

0 1 2

∣∣∣∣∣∣
=

∣∣∣∣
1 −1

1 2

∣∣∣∣ i−
∣∣∣∣
2 −1

0 2

∣∣∣∣ j +

∣∣∣∣
2 1

0 1

∣∣∣∣ k

= (2− (−1))i− (4− 0)j + (2− 0)k = 3i− 4j + 2k

And then we have

c · a = (3)(2) + (−4)(1) + (2)(−1) = 0

c · b = (3)(0) + (−4)(1) + (2)(2) = 0

so that a× b is orthogonal to both a and b. �

(7) Find two unit vectors orthogonal to both a = 〈1,−1, 1〉 and b =

〈0, 4, 4〉.
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� The positive and negative cross product of a = 〈1,−1, 1〉 and b =

〈0, 4, 4〉 will both be orthogonal to both, and we can scale them to unit

vectors:

c = a× b =

∣∣∣∣∣∣

i j k

1 −1 1

0 4 4

∣∣∣∣∣∣
=

∣∣∣∣
−1 1

4 4

∣∣∣∣ i−
∣∣∣∣
1 1

0 4

∣∣∣∣ j +

∣∣∣∣
1 −1

0 4

∣∣∣∣ k

= (−4− 4)i− (4− 0)j + (4− 0)k = −8i− 4j + 4k

We know that ±c/|c| are unit vectors orthogonal to both of the given

vectors. Since |c| = 4
√

6, these are:

±
〈
− 2√

6
,− 1√

6
,

1√
6

〉
�

(8) Which of the following are legitimate expressions? (a) a · (b × c), (b)

a× (b× c), and (c) a · b× c · d.

� (a) is fine, it’s the dot product of two vectors, a and b× c.

(b) is fine, it is the cross product of two vectors, a and b× c.

(c) is not valid, a · b and c · d are both scalars, so their cross product

is not defined. �
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16.3 Vector Functions

Introduction

Think about how much fun we had with garden variety functions of the

y = f(x) variety, which had one input and one output. Now imagine how

much more fun we can have with functions that have one input, but multi-

ple outputs! A function of the y = f(x) variety is called a scalar function,

since it takes a scalar as input, and produces another scalar as output. That

is, it does this: f : R → R. Now we have the ability to create functions

that take scalars as input, and create vectors as output. We will call these

vector-valued functions, or “vector functions” for short. If such a function

takes a scalar as input and uses it to produce a vector with, say, three

components, we could write f : R→ R3.

The idea of a vector function may seem strange, but there are many

quantities you already know about that are natural vector functions. Ve-

locity is one. Velocity is a vector; it has size (speed) and direction. If

you drive your car through town, your velocity is a function of time; as

t changes, so do both your speed and direction. In other words, different

values of t give different velocity vectors. Voila, you have a vector function!

If you are worried about yet another thing to learn, the good news is

that if you’re comfortable with parametric equations, then you don’t really

need to learn anything new to handle vector functions. For example, we’ve

seen that lines in three dimensions are described with parametric equations,

x(t) = a+ bt ; y(t) = c+ dt ; z(t) = m+ nt for a ≤ t ≤ b
To make this a vector function, we just collect the three separate equations

into vector brackets, so that we present three small component functions

which each describe how the x, y, and z components of the vector function

change with t. Like f is the usual generic name for a scalar function, we

often use r(t) as the generic name for a vector function.6 So a line segment

is associated with a vector function

r(t) = 〈x(t), y(t), z(t)〉 = 〈a+ bt, c+ dt,m+ nt〉 for a ≤ t ≤ b
Similarly, do you already know what this vector function looks like in R2?

r(t) = 〈x(t), y(t)〉 = 〈cos(t), sin(t)〉 for 0 ≤ t ≤ 2π

Just like scalar functions have algebra, limits, derivatives, and antideriva-

tives, so do vector functions.

6“r” for ... vector? Don’t ask me!
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Defining and Visualizing Vector Functions

The domain of a vector function is the set of values for t that are allowed

(or specified) to be used in the component functions. For example, the

domain of r(t) = 〈
√
t, (t− 1)−1, t2〉 is all t ≥ 0 except t = 1.

The range of a vector function is its collective output, and the collective

output of a vector function is a curve in the appropriate Rn. To visualize

this, imagine rubber pencil with the non-writing end thumb-tacked at the

origin, and the terminal (writing) end free to move; this pencil will be the

vector function. As t varies, the pencil / vector moves around and stretches

in and out, and the tip of the pencil draws a curve. This curve represents

the evolution of the vector function as t increases. Figure 16.7 shows the

evolution of a vector function’s curve, as the curve is drawn out through

successive values of t, indicated by t1, t2, t3; these specific values are only

there for display, we are using all values of t before, between, and after

these values as well.

r(
t 1

)

r(
t2

) r(t
3
)

x

y

Fig. 16.7 Evolution of a vector function.

There is a match between the curve traced out by the vector func-

tion v(t) = 〈x(t), y(t), z(t)〉 and the parametric curve with equations

{x(t),y(t),z(t)}. The parametric curve is the collection of points gener-

ated by the equations x(t), y(t), and z(t); the vector function draws out

the same set of points. So we can use what we know about parametric

equations to decide what a vector function looks like.
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EX 1 Identify the curve given by r(t) = 〈sin t, cos t, t〉.

This is equivalent to the curve drawn out by the parametric equations

x(t) = sin t, y(t) = cos t, z = t. There are no restrictions on t, so we want

all possible points. In the horizontal cross section, this curve is circular,

and going in the clockwise direction. But while the curve rotates circularly

in the horizontal plane, the z-coordinate is increasing as t increases. There-

fore, we get a helix. �

You Try It

(1) Identify the curve given by r(t) = (1 + t)i + t2j.

With vector functions, we can recast our descriptions of lines and line

segments, and better determine the necessary ingredients for forming the

vector equation of a line. In R2, we say that a slope and a point on a

line are necessary ingredients to find the equation of a line; but in R3, how

do we describe a slope? Let’s follow the trail. We can start with the the

parametric equations of a full line in R3:

x(t) = a+ bt ; y(t) = c+ dt ; z(t) = m+ nt for −∞ ≤ t ≤ ∞

and collect them into a vector function

r(t) = 〈x(t), y(t), z(t)〉 = 〈a+ bt, c+ dt,m+ nt〉 for −∞ ≤ t ≤ ∞

Let’s regroup this vector function to isolate the constants and the vari-

able t:

r(t) = 〈a+ bt, c+ dt,m+ nt〉
= 〈a, c,m〉+ 〈bt, dt, nt〉
= 〈a, c,m〉+ 〈b, d, n〉 · t

Here we see that the vector function of a line is made of two constant

vectors (〈a, c,m〉 and 〈b, d, n〉) along with the variable t. These constant

vectors play the role of a point on the line and its slope: one is a vector

pointing to any point known to be on the line, and the other is a vector

parallel to the direction of the line. Let’s name them as r0 = 〈a, c,m〉 and

r1 = 〈b, d, n〉. When we write r(t) = r0 + r1t, we see a structure similar to

y = b+mx. However, normally, the t is placed before the vector r1:
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Useful Fact 16.7. The vector equation of a line is given by r(t) = r0+t·r1,

where

• r0 is a vector pointing to any point on the line

• r1 is a vector parallel to the direction of the line

A full line requires −∞ < t < ∞, whereas a ≤ t ≤ b determines a line

segment.

A line segment in 3D from a point P to another point Q can be de-

termined by a starting point / vector and a parallel vector. The parallel

vector goes in the direction from P to Q, and can be found specifically as

the vector PQ. The act of drawing out the line segment consists of (1)

starting at the initial vector r0, and then (2) following along the parallel

vector r1 = PQ. How do we follow along the parallel vector? Remember

that any multiple of the parallel vector r1 goes in the same direction, but

perhaps with different length. So when we start at r0 and then add on

vectors t · r1, we march our way from P to Q. Figure 16.8 shows a vector

r0 pointing to one fixed point on the line, a vector r1 which is parallel to

the line, some multiple t r1 (for t〉1), and the resulting sum r0 + tr1, which

lands us farther down the line. When this is done continuously for a suite

of t values a ≤ t ≤ b, we will trace out a full line segment. There is no

reference to specific points P or Q, because once we’ve used them to find

the parallel vector r1, their job is done.

r 0

r 0
+
t r
1

t r1

r1

x

y

Fig. 16.8 The building blocks of the vector equation of a line.
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A fact that really helps with this is that the vector pointing from the

origin to a point P (a, b, c) is the vector 〈a, b, c〉. So if we are given a point

on a line, we also know the vector r0 right away.

EX 2 Find the vector equation of the line segment joining the points

P (−2, 4, 0) and Q(6,−1, 2).

The initial point is (−2, 4, 0), and so the initial vector is r0 = 〈−2, 4, 0〉. A

vector parallel to our line segment is r1 = PQ = 〈8,−5, 2〉. Therefore, we

can form the equation(s) of the line through P and Q as

r0 + tr1 = 〈−2, 4, 0〉+ t〈8,−5, 2〉 = 〈−2 + 8t, 4− 5t, 2t〉

To restrict this to the line segment that starts at P and ends at Q, we

need 0 ≤ t ≤ 1. If we want this back in parametric form, then we have

x = −2 + 8t ; y = 4− 5t ; z = 2t ; 0 ≤ t ≤ 1 �

You Try It

(2) Give both the vector function and parametric equations for the line

segment joining the points P (0, 0, 0) and Q(1, 2, 3).

Limits, Derivatives, and Antiderivatives of Vector Functions

There are really no surprises in the computation of limits, derivatives, and

antiderivatives of vector functions. They’re just more work, because we

have to deal with individual component functions. For example, the deriva-

tive of a vector function in R3 requires three individual “regular” deriva-

tives. We are going to speed through these operations quickly, with little

to no background information.

Limits

Useful Fact 16.8. The limit of a vector function r(t)−〈f(t), g(t), h(t)〉 in

R3 is defined as follows:

lim
t→t0

r(t) = lim
t→t0
〈f(t), g(t), h(t)〉 =

〈
lim
t→t0

f(t), lim
t→t0

g(t), lim
t→t0

h(t)

〉

In other words, just find the limits of the individual component func-

tions, then slap them back together again as a the vector.



Player V Has Entered the Game 217

EX 3 Evaluate lim
t→0

〈
et − 1

t
,

√
1 + t− 1

t
,

3

1 + t

〉
.

The limits of the first and second components will require L-Hopital’s

rule, while the third is straightforward:

lim
t→0

et − 1

t
= lim

t→0

et

1
= 1

lim
t→0

√
1 + t− 1

t
= lim

t→0

1/(2
√

1 + t)

1
=

1

2

lim
t→0

3

1 + t
= 3

So

lim
t→0

〈
et − 1

t
,

√
1 + t− 1

t
,

3

1 + t

〉
=

〈
1,

1

2
, 3

〉
�

You Try It

(3) Evaluate lim
t→0+

〈cos t, sin t, t ln t〉.

Derivatives

The official definition of the derivative of a vector function r(t) at a location

fixed by t = t0 looks very much like other definitions of derivatives:

dr(t)

dt
= r ′(t0) = lim

h→0

r(t0 + h)− r(t0)

h

The geometry hiding in this limit process determines that r ′(t0) gives a

vector tangent to the curve of r(t) at t = t0. (I encourage you to draw

some pictures and convince yourself of this.)

In practice, we find derivatives of vector functions this way:

Useful Fact 16.9. For a vector function r(t)− 〈f(t), g(t), h(t)〉 in R3,

dr(t)

dt
= r ′(t) =

〈
d

dt
f(t),

d

dt
g(t),

d

dt
h(t)

〉

In other words, we just operate on each component function one at a

time.



218 Casual Calculus: A Friendly Student Companion (Volume 3)

EX 4 If r(t) = sin−1(t) i +
√

1− t2 j + k, what is r ′(t)?

Hey, we switched to unit vector notation! That should not be a cause for

concern. The derivatives of the component functions are:

d

dt
sin−1(t) =

1√
1− t2

d

dt

√
1− t2 =

t√
1− t2

d

dt
1 = 0

and putting those together,

r ′(t) =
1√

1− t2
i− t√

1− t2
j + 0 k �

You Try It

(4) If r(t) = et
2

i− j + ln(1 + 3t) k, what is r ′(t)?

EX 5 Find a vector tangent to the curve p(t) = 〈t5, t4, t3〉 at t = 2.

Since p ′(t) = 〈5t4, 4t3, 3t2〉, then a vector tangent to the curve at t = 2

is p ′(2) = 〈80, 32, 12〉. (We say a vector tangent to the curve, not the

vector, since any scalar multiple of this vector will also be tangent to the

curve.) Just to summarize the information we have now, at t = 2 the vec-

tor p(2) = 〈32, 16, 8〉 points from the origin to the curve, and the vector

〈80, 32, 12〉 is tangent to the curve at that location. �

You Try It

(5) Find a vector tangent to the curve rt = (1 + t) i + t2 j at t = 1.

Now let’s try putting some concepts together:

EX 6 Find the equations of the line tangent to r(t) = 〈ln t, 2
√
t, t2〉 at

〈0, 2, 1〉.

Note that we’re looking for a tangent line now, not a tangent vector. But

to make the vector equation of a line, we need a vector parallel to that line;

this vector will be the tangent vector we can find using the derivative! Now,

we need to know the value of t which leads us to where all the action is;
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comparing the components of r(t) to the location 〈0, 2, 1〉 we can see that

the vector 〈0, 2, 1〉 is given by t = 1. Now, the derivative vector function is

r ′(t) =

〈
1

t
,

1√
t
, 2t

〉

and so at t = 1, we have r ′(1) = 〈1, 1, 2〉.

Now we have enough information for our tangent line. Its initial vector

is the vector given as the location for our tangent line, r0 = 〈0, 2, 1〉. A

vector parallel to the tangent line is the tangent vector r ′(1) = 〈1, 1, 2〉.
Therefore, the parametric equations of the line are built by

r0 + tr ′(1) = 〈0, 2, 1〉+ t〈1, 1, 2〉

giving the vector equation of the line as 〈t, 2+t, 1+2t〉; in parametric form,

we have

x = t ; y = 2 + t ; z = 1 + 2t �

You Try It

(6) Find the vector equation of the line tangent to r(t) = 〈t5, t4, t3〉 at

〈1, 1, 1〉.

In single variable calculus, the introduction of derivatives was followed

by a cascade of further derivative techniques, like the product rule, chain

rule, and quotient rule. Each of these rules is still effective when acting

on individual components of vector functions, but there can be further

extensions to new structures. For example, here is a product-rule type of

derivative relationship for the dot product of two vector functions. The

derivation is below, in the Pit !

Useful Fact 16.10. Suppose p(t) and r(t) are vector functions with dif-

ferentiable component functions. Then

d

dt
p(t) · r(t) = p ′(t) · r(t) + p(t) · r ′(t) (16.8)

EX 7 Let p(t) and r(t) be the vector functions from EX 5 and EX 6,

respectively. Confirm Useful Fact 16.10 by (a) computing the dot

product and then finding the derivative, and (b) applying the re-

lation in Eq. (16.8).
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With p(t) = 〈t5, t4, t3〉 and r(t) = 〈ln t, 2
√
t, t2〉, we have

p(t) · r(t) = t5(ln t) + t4(2
√
t) + t3(t2) = t5 ln t+ 2t9/2 + t5

so that with a “regular” product rule on the first term,

d

dt
p(t) · r(t) = (5t4 ln t+ t4) + 9t7/2 + 5t4 = 5t4 ln t+ 6t4 + 9t7/2

On the other hand, with individual derivatives p ′(t) = 〈5t4, 4t3, 3t2〉 and

r ′(t) = 〈1/t, 1/
√
t, 2t〉, we get

p ′(t) · r(t) = 〈5t4, 4t3, 3t2〉 · 〈ln t, 2
√
t, t2〉

= 5t4(ln t) + 4t3(2
√
t) + 3t2(t2) = t4(5 ln t+ 3) + 8t7/2

p(t) · r ′(t) = 〈t5, t4, t3〉 · 〈1
t
,

1√
t
, 2t〉

= t5
(

1

t

)
+ t4

(
1√
t

)
+ t3(2t) = 3t4 + t7/2

So that by Useful Fact 16.10,

d

dt
p(t) · r(t) = p ′(t) · r(t) + p(t) · r ′(t)

= t4(5 ln t+ 3) + 8t7/2 + (3t4 + t7/2)

= 5t4 ln t+ 6t4 + 9t7/2

and the results of the two methods match. Note that while Eq. (16.8) gives

a relation that is analogous to the product rule, it still seems easier to com-

pute the derivative of p(t) · r(t) by finding the dot product first, and then

performing the derivative — rather than finding the individual derivatives

and employing Eq. (16.8). �

You Try It

(7) Let p(t) = 〈sin t, cos t, e−t〉 and r(t) = 〈2 sin t, 2 cos t, et〉. Con-

firm Useful Fact 16.10 by (a) computing the dot product and then

finding the derivative, and (b) applying the relation in Eq. (16.8).

Antiderivatives

Having done derivatives of vector functions, you can probably imagine how

antiderivatives are going to go. There’s one extra wrinkle, though: what

used to be a single arbitrary constant is now going to be multiple constants

... which get bundled into an arbitrary vector. Just like we find derivatives
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of vector functions component by component, we also find antiderivatives

component by component. The general structure for the indefinite integral

of r(t) = 〈f(t), g(t), h(t)〉 is this:∫
r(t) dt =

∫
〈f(t), g(t), h(t)〉 dt =

〈∫
f(t)dt,

∫
g(t)dt,

∫
h(t)dt

〉

= 〈F (t) + C1, G(t) + C2, H(t) + C3〉
= 〈F (t), G(t), H(t)〉+ 〈C1, C2, C3〉

The antiderivative of each component function comes with an arbitrary

constant; those constants are then collected into an arbitrary vector. Defi-

nite integrals are structured similarly, although no arbitrary constants are

generated. Here’s a summary:

Useful Fact 16.11. For the vector function r(t) = 〈f(t), g(t), h(t)〉, we

have ∫
r(t) dt =

〈∫
f(t) dt,

∫
g(t) dt,

∫
h(t) dt

〉
+ C

and
∫ b

a

r(t)dt =

〈∫ b

a

f(t)dt,

∫ b

a

g(t)dt,

∫ b

a

h(t)dt

〉

EX 7 Find

∫
r(t) dt for r(t) = 〈et, 2 cos t, 1/(1 + t)〉.

According to Useful Fact 16.11,∫
r(t)dt =

〈∫
et dt,

∫
2 cos t dt,

∫
1

1 + t
dt

〉

Taking the components one at a time,∫
et dt = et + c1

∫
2 cos t dt = 2 sin t+ c2

∫
1

1 + t
dt = ln |1 + t|+ c3

Putting these together and separating the constants,∫
r(t)dt =

〈
et + c1, 2 sin t+ c2, ln |1 + t|+ c3

〉

=
〈
et, 2 sin t, ln |1 + t|

〉
+ 〈c1, c2, c3〉

=
〈
et, 2 sin t, ln |1 + t|

〉
+ C
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Reminder: the arbitrary vector should be reported properly as +C, not

just +C. C represents one constant, C represents many. You don’t want

graders taking off one point for each constant missed! �

Here’s an example of a definite integral; there are no surprises here:

EX 8 Evaluate

∫ 4

1

(√
t i + te−t j +

1

t2
k

)
dt.

∫ 4

1

(√
ti + te−tj +

1

t2
k

)
dt =

(
2

3
t3/2i− (t+ 1)e−tj− 1

t
k

) ∣∣∣∣
4

1

=

(
16

3
i− 5e−4j− 1

4
k

)
−
(

2

3
i− 2e−1j− k

)

=
14

3
i +

(
2

e
− 5

e4

)
j +

3

4
k

(The integral in the second component required integration by parts, which

was not shown here as it should be old news.) �

You Try It

(8) Evaluate

∫ 1

0

(16t3 i− 9t2 j + 25t4 k) dt.

Arc Length

We can put definite integrals of vector functions to good use right away.

Useful Fact 16.12. The arc length L of the curve given by the vector

function r(t) = 〈f(t), g(t), h(t)〉 for a ≤ t ≤ b is:

L =

∫ b

a

|r ′(t)|dt

=

∫ b

a

√
[f ′(t)]2 + [g′(t)]2 + [h′(t)]2dt

The two expressions shown are equivalent, you can use whichever one you

like better.

EX 9 Find the arc length of r(t) = 〈2t, 1 − 3t, 5 + 4t〉 from (0, 1, 5) to

(4,−5, 13).
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First, note that (0, 1, 5) is given by t = 0 and (4,−5, 13) is given by t = 2.

With

f(t) = 2t ; g(t) = 1− 3t ; h(t) = 5 + 4t

we have

f ′(t) = 2 ; g′(t) = −3 ; h′(t) = 4

so that

L =

∫ b

a

√
[f ′(t)]2 + [h′(t)]2 + [h′(t)]2dt =

∫ 2

0

√
22 + (−3)2 + 42 dt

=

∫ 2

0

√
29 dt =

√
29 t

∣∣∣∣
2

0

= 2
√

29

Note that the vector function describes a line, and so this arc length is

just the straight-line distance between the two points,
√

42 + (−6)2 + 82 =√
116 = 2

√
29. �

You Try It

(9) Find the arc length of r(t) = 〈
√

2t, et, e−t〉 for 0 ≤ t ≤ 1.

A Vector Function Product Rule

We are going to prove Useful Fact 16.10 for vector functions in R3 that have

differentiable scalar component functions. Let p(t) = 〈p1(t), p2(t), p3(t)〉
and r(t) = 〈r1(t), r2(t), r3(t)〉, where each function pi(t) and ri(t) are dif-

ferentiable. We can compute the derivative of p(t) ·r(t) by building the dot

product first, and then seeking the derivative. Since

p(t) · r(t) = p1(t)r1(t) + p2(t)r2(t) + p3(t)r3(t)

then with several individual scalar product rules,

d

dt
p(t) · r(t) = p ′1(t)r1(t) + p1(t)r ′1(t)

+ p ′2(t)r2(t) + p2(t)r ′2(t) + p ′3(t)r3(t) + p3(t)r ′3(t) (16.9)
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Now we can assemble the right side of Eq. (16.8) for comparison. With

p ′(t) · r(t) = 〈p ′1(t), p ′2(t), p ′3(t)〉 · 〈r1(t), r2(t), r3(t)〉
= p ′1(t)r1(t) + p ′2(t)r2(t) + p ′3(t)r3(t)

p(t) · r ′(t) = 〈p1(t), p2(t), p3(t)〉 · 〈r ′1(t), r ′2(t), r ′3(t)〉
= p1(t)r ′1(t) + p2(t)r ′2(t) + p3(t)r ′3(t)

we get

p ′(t) · r(t) + p(t) · r ′(t) = [p ′1(t)r1(t) + p ′2(t)r2(t) + p ′3(t)r3(t)]

+ [p1(t)r ′1(t) + p2(t)r ′2(t) + p3(t)r ′3(t)]

or, rearranged,

p ′(t) · r(t) + p(t) · r ′(t) = p ′1(t)r1(t) + p1(t)r ′1(t) (16.10)

+ p ′2(t)r2(t) + p2(t)r ′2(t) + p ′3(t)r3(t)) + p3(t)r ′3(t))

Comparing (16.9) and (16.10) confirms that for vector functions in R3,

d

dt
p(t) · r(t) = p ′(t) · r(t) + p(t) · r ′(t)

The proof would be similar for vector functions with other numbers of

components, and could even be expanded to consider all cases at once.

Vector Functions — Problem List

Vector Functions — You Try It

These appeared above; solutions begin on the next page.

(1) Identify the curve given by r(t) = (1 + t)i + t2j.

(2) Give both the vector function and parametric equations for the line

segment joining the points P (0, 0, 0) and Q(1, 2, 3).

(3) Evaluate lim
t→0+

〈cos t, sin t, t ln t〉.
(4) If r(t) = et

2

i− j + ln(1 + 3t)k, what is r ′(t)?
(5) Find a vector tangent to the curve rt = (1 + t)i + t2j at t = 1.

(6) Find the vector equation of the line tangent to rt = 〈t5, t4, t3〉 at

〈1, 1, 1〉.
(7) Let p(t) = 〈sin t, cos t, e−t〉 and r(t) = 〈2 sin t, 2 cos t, et〉. Confirm Use-

ful Fact 16.10 by (a) computing the dot product and then finding the

derivative, and (b) applying the relation in Eq. (16.8).

(8) Evaluate

∫ 1

0

(16t3 i− 9t2 j + 25t4 k) dt.

(9) Find the arc length of r(t) = 〈
√

2t, et, e−t〉 for 0 ≤ t ≤ 1.
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Vector Functions — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.4.3.

(1) Find the vector and parametric equations of the line segment joining

the points P (1, 0, 1) and Q(2, 3, 1).

(2) Evaluate lim
t→1

(√
t+ 3 i +

t− 1

t2 − 1
j +

tan t

t
k

)
.

(3) If r(t) = (at cos 3t) i + (b sin3 t) j + (c cos3 t) k, what is r ′(t)?
(4) Identify the curve given by r(t) = et i + e−t j and find a vector tangent

to the curve at t = 0.

(5) Find the vector equation of the line tangent to r(t) = 〈t2−1, t2+1, t+1〉
at 〈−1, 1, 1〉.

(6) Find the vector equation of the line tangent to r(t) = 〈ln t, 2
√
t, t2〉 at

〈0, 2, 1〉.
(7) Based on Useful Fact 16.10, you may be suspicious that there could be

an expression like this:

d

dt
p(t)× r(t) = p ′(t)× r(t) + p(t)× r ′(t)

Test this relation on the vector functions p(t) = 〈1, t, t2〉 and r(t) =

〈t2, t, 1〉 by constructing both sides separately and comparing the re-

sults.

(8) Evaluate

∫ 1

0

(
4

1 + t2
j +

2t

1 + t2
k

)
dt.

(9) Write the integral that gives the arc length of the vector function from

Practice Problem 5 from the point (0, 2, 2) to the point (15, 17, 5).

Vector Functions — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.4.3.

(1) Suppose object A is moving along the path r1(t) = 〈t, t2, t3〉 and object

B is moving along the path r2(s) = 〈1 + 2s, 1 + 6s, 1 + 14s〉.
(a) Find a vector that points from object A to object B at t = s = 2.

(b) How far apart are the objects at that instant?

(c) Are there any points that the two paths share? If so, find them.

If not, say how you know.
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(2) Consider the vector curve r(t) = 〈2 cos t, 2t/π, 2 sin t〉.
(a) Find the equation(s) of the line tangent to the vector curve at the

location given by 〈0, 1, 2〉.
(b) Write the integral that would give the total arc length of the curve

from 〈2, 0, 0〉 to 〈0, 1, 2〉.
(3) If tangent lines to a vector function r(t) can be found as

〈
1

1 + t2
,

1

2
√
t
, e−t

〉

and the vector function passes through the point (π/4, 1, 1−1/e), what

is the vector function r(t)?

(4) (Bonus Time in the Pit !) Can you apply the technique used to prove

Useful Fact 16.10 (in the Pit !) to prove the expression which Practice

Problem 8 suggests might be true?

Vector Functions — You Try It — Solved

(1) Identify the curve given by r(t) = (1 + t)i + t2j.

� By eliminating t from x(t) = 1 + t, y(t) = t2, we get t = x − 1, so

that y = t2 becomes y = (x−1)2. This is a parabola with vertex (1, 0).

�

(2) Give both the vector function and parametric equations for the line

segment joining the points P (0, 0, 0) and Q(1, 2, 3).

� The vector function has initial vector r0 = 〈0, 0, 0〉 and parallel

vector r1 = PQ = 〈1, 2, 3〉 so that its equation is

r0 + tr1 = 〈0, 0, 0〉+ t〈1, 2, 3〉 = 〈t, 2t, 3t〉

To restrict this to the line segment that starts at P and ends at Q, we

need 0 ≤ t ≤ 1. So we get

x = t ; y = 2t ; z = 3t ; 0 ≤ t ≤ 1 �

(3) Evaluate lim
t→0+

〈cos t, sin t, t ln t〉.

� For the limit of 〈cos t, sin t, t ln t〉 as t → 0+, note that the third

component’s limit is indeterminate (of the form 0·∞) and so L-Hopital’s
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Rule is needed:

lim
t→0+

〈cos t, sin t, t ln t〉 = lim
t→0+

〈
cos t, sin t,

ln t

1/t

〉

= lim
t→0+

〈
cos t, sin t,

1/t

−1/t2

〉

= lim
t→0+

〈cos t, sin t, (−t)〉 = 〈1, 0, 0〉 �

(4) If r(t) = et
2

i− j + ln(1 + 3t)k, what is r ′(t)?

� By direct evaluation, we have

r ′(t) = 2tet
2

i +
3

1 + 3t
k �

(5) Find a vector tangent to the curve r(t) = (1 + t) i + t2 j at t = 1.

� Since r ′(t) = i+2t j, then at t = 1, a tangent vector is r ′(1) = i+2j.

�

(6) Find the vector equation of the line tangent to r(t) = 〈t5, t4, t3〉 at

〈1, 1, 1〉.

� Note that since we want the tangent line at 〈1, 1, 1〉, we’re going to

use t = 1. We need:

r ′(t) = 〈5t4, 4t3, 3t2〉
r ′(1) = 〈5, 4, 3〉

So we have an initial vector r0 = 〈1, 1, 1〉 and a parallel vector r ′(1),

and the equation of the line is

r(t) = r0 + tr ′(1) = 〈1, 1, 1〉+ t〈5, 4, 3〉 = 〈1 + 5t, 1 + 4t, 1 + 3t〉 �

(7) Let p(t) = 〈sin t, cos t, e−t〉 and r(t) = 〈2 sin t, 2 cos t, et〉. Confirm Use-

ful Fact 16.10 by (a) computing the dot product and then finding the

derivative, and (b) applying the relation in Eq. (16.8).

� Since p(t) · r(t) = 2 sin2 t+ 2 cos2 t+ 1 = 3, then

d

dt
p(t) · r(t) =

d

dt
(3) = 0

Separately, we have

p ′(t) = 〈cos t,− sin t,−e−t〉 ; r ′(t) = 〈2 cos t,−2 sin t, et〉
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so that

p ′(t) · r(t) = 〈cos t,− sin t,−e−t〉 · 〈2 sin t, 2 cos t, et〉
= 2 sin t cos t− 2 sin t cos t− 1 = −1

p(t) · r ′(t) = 〈sin t, cos t, e−t〉 · 〈2 cos t,−2 sin t, et〉
= 2 sin t cost− 2 sin t cos t+ 1 = 1

So that by Useful Fact 16.10,

d

dt
p(t) · r(t) = p ′(t) · r(t) + p(t) · r ′(t) = −1 + 1 = 0

and the resulting derivative expressions match. �

(8) Evaluate

∫ 1

0

(16t3 i− 9t2 j + 25t4 k) dt.

� It really is this simple:
∫ 1

0

(16t3i− 9t2j + 25t4k)dt = (4t4i− 3t3j + 5t5k)

∣∣∣∣
1

0

= 4i− 3j + 5k �

(9) Find the arc length of r(t) = 〈
√

2t, et, e−t〉 for 0 ≤ t ≤ 1.

� We’re going to use Useful Fact 16.12; let’s build the integrand first.

Since r ′(t) = 〈
√

2, et,−e−t, then the integrand will be
√

(
√

2)2 + (et)2 + (−e−t)2 =
√
e2t + 2 + e−2t =

√
(et + e−t)2 = et+e−t

and so the arc length is

L =

∫ 1

0

et + e−t dt = et − e−t
∣∣∣∣
1

0

= e− 1

e
�
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16.4 Vector Fields and the Gradient

Introduction

Ask yourself if you have ever seen a vector field before. If your self answers,

“No”, then your self is misinformed. Everyone has seen vector fields, even

if that specific term was not used. If you’ve seen a picture with a bunch of

arrows on it, indicating that the magnitude and direction of some quantity

varies with location, then you have seen a vector field. A wind speed map

on a weather report might be presented as a vector field. The magnetic

field around the north and south poles of a magnet might be displayed as

a vector field. Figure 16.9 shows a vector field representation of the solar

magnetic field. Figure 16.10 shows a vector field representation of wind

speed in the upper part of North America.7

Fig. 16.9 The solar magnetic field
(NCAR / HAO).†

Fig. 16.10 A vector field represen-
tation of wind speed.‡

Vector fields should not be confused with vector functions. Vector func-

tions use vectors to select points in space, and we often collect those points

together into a curve. On the other hand, vector fields assign a single vec-

tor to every point in space, and then we can visualize that vector field by

drawing a bunch of those vectors.

Vector Fields

Vector fields associate a vector with each point in space. While vector fields

can exist in all dimensions, useful visualizations only happen in R2 and R3.

A vector field comes with some recipe that takes the coordinates of a point

7†https://www2.hao.ucar.edu/news/2019-aug/what-causes-seasons-space-weather;
‡Courtesy of K. Goebbert, Dept. of Geography and Meteorology, Valparaiso University.
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and produces a vector out of them. So to “see” a vector field, we go to a

point, use its coordinates to come up with a vector using the given recipe,

and draw the vector right there. We end up with a plot that has arrows all

over it. The following are several examples of vector fields:

(1) F1(x, y) = 〈x,−y〉

(2) F2(x, y) =

〈
− y√

x2 + y2
,

x√
x2 + y2

〉

(3) F3(x, y) = 〈y, sinx〉
(4) F4(x, y, z) = 〈y,−x, z〉

(5) F5(x, y, z) =

〈
1

y
,

1

x+ z
, sin(xyz)

〉

A capital F is often the generic name for a vector field, and the arguments

(i.e. the information passed to the recipe for F are the components of any

point. Then the recipe follows, and you can see how to construct each

component based on the coordinates of the given point.

−4 −2 0 2 4
−4

−2

0

2

4

Fig. 16.11 Vortex vector field.

Figure 16.11 shows one of the first two vector fields in that list. The

vector field in the figure represents a vortex ; if you dropped a small feather

into a bathtub that had water continually swirling around the drain, these

arrows show the path the vector might follow. Can you decide which of
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those first two vector fields this figure shows? Here are some hints:

• What would happen to the size of the vectors in F1 as we moved

farther and farther away from the origin? Do you see that trend in

the figure?

• Examine the signs of the components in F1. Do the vectors dis-

played in the figure reflect that pattern?

The figure shows the second vector field, F2. The denominator
√
x2 + y2

normalizes the lengths of the vectors so that their sizes do not get out of

hand.

EX 1 Which vector field in shown in Fig. 16.12?

F1(x, y) =

〈
x√

x2 + y2
,

y√
x2 + y2

〉
or

F2(x, y) =
〈√

x2 + y2,−
√
x2 + y2

〉

−4 −2 0 2 4
−4

−2

0

2

4

Fig. 16.12 Sample vector field, with EX 1.

The figure shows the vector field F1. The magnitude of the vectors in F2

will get larger with increased distance from the origin; that’s not happening

in the figure. Also, all the vectors in F2 would point downwards, because

the second component is always negative.



232 Casual Calculus: A Friendly Student Companion (Volume 3)

It turns out that F1 is the vector field of a source of a flow field — such

as fluid flow or electric charge. Something in the middle of the image is

generating flow or current. The vector field of a sink would look similar,

except the vectors would point inwards towards the center. �

You Try It

(1) Which vector field in shown in Fig. 16.14?

F1(x, y) =
〈
x2 cos(y), 2x sin(y)

〉
; F2(x, y) =

〈
y2 cos(x), 2y sin(x)

〉

(The figure is displayed at the end of this section.)

−4 −2 0 2 4
−4

−2

0

2

4

Fig. 16.13 Flux vectors from a source.

Divergence and Curl

Vector fields come with properties called divergence and curl, which each

have significant meaning in the physical world. Thinking about fluid flow is

a good way to help visualize vector fields and their properties, we’ll do that

a lot. To use this setting for our vector fields, it helps to understand that

the vectors in the vector field, seen as the arrows, represent flux at a given

point — which is a measure of the volume of flow moving past that point

per unit area per unit time. Figure 16.13 reproduces Fig. 16.11 except with

two circles around the source of flow (we’ll use them soon). At any point,

imagine the page is one unit deep, then each arrow shows the magnitude
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and direction of flux; that is, the amount of flow past that point through

one square unit of area perpendicular to the page. A bigger arrow means

there is more flux, a smaller arrow represents less.

It may be hard to tell on the scale of the figure, but the arrows are

getting smaller as we move away from the source in the center. This is

because the flow is spreading out. If we measure the total flow around

the perimeter of each circle in the figure (by integrating), it should be the

same. The total flow entering the field at the center per unit time must

be the same as the total flow per unit time across each circle — but since

the outer circle is larger, there is more area to work with, and so we have

smaller amounts of flow at each point per unit area.

Now, suppose we measured the total amount of flux across the outer

circle in one unit of time and discovered that it was larger than the total

amount moving across the inner circle in that same unit of time. This

means the flow field is exhibiting divergence. In other words, divergence

measures the ability of a vector field to “spread” and make room for new

flow. But that spread is not the macro scale and natural spreading out of

flow that’s exhibited in the figure. Rather, it would mean additional flow

merging in on the micro scale from the medium itself even in the absence

of other sources. The vector field in Fig. 16.13 has no divergence. A flow

field that displays no divergence is called incompressible; the flow cannot

be “compressed” at the micro scale to absorb more flow and — in the case

of Fig. 16.13 — make the total flow across the outer circle larger than the

flow across the inner circle.

The curl of a vector field measures how much rotation there is in the

vector field. A vector field with no curl is called irrotational. Like diver-

gence, this is a measure of what happens on the micro scale. Imagine a leaf

floating in the current of a stream. As the stream itself bends, the leaf’s

path will curve too. This is not curl or rotation, it’s just a macro-scale

change in direction. But if the leaf is spinning in circles while it’s floating

down the stream, then we have curl / rotation in the flow field.

That’s a lot of words, now let’s see some math! To show the formulations

of divergence and curl, we need a new symbol, which is a “differential

operator”.8 The “del operator” is a vector built out of derivative operators:

8Don’t freak out. An operator is just a mathematical object that has a job to do.
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Definition 16.7. The differential operator called “del” or “nabla” is a vec-

tor quantity:

∇ =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉

The term nabla comes from the Greek word for harp, since the the sym-

bol apparently looked like a harp to one of those old Greek math guys. In

fact, while typing this content, I have to call the command \nabla to

make the symbol ∇ appear.

The first thing to notice about the del operator is that, like a square

root symbol, it is totally meaningless unless it’s attached to something else.

Del is a vector, and we can put it into dot and cross products. That may

seem strange, but you’ll know what to do in any situation by tracking how

the derivative operators get attached to the other things. For example, let’s

have a sneak preview of a full definition coming next: the divergence of a

vector field F = 〈P,Q,R〉 will be

div(F) =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

That structure looks an awful lot like a dot product. If we pull it apart, we

can see that

div(F) =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· 〈P.Q,R〉

And there is our differential operator in action. More formally,

Definition 16.8. Given a 3D vector field F(x, y, z), the divergence of F

is

div(F) = ∇ · F

And guess what the cross product with del does:

Definition 16.9. The curl of a 3D vector field F(x, y, z) is

curl(F) = ∇× F

Now, here is how that cross product plays out:

curl(F) =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣

(remember that P,Q,R are the component functions of F). Here are a

couple of important things to note about these quantities:
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• The divergence of a vector field is a scalar function.

• The curl of a vector field is another vector field.

Don’t be worried about the strange determinant we use for curl. You’ll

know what to do with those derivative operators, the computations sort of

build themselves. The important thing is to maintain notation; in this de-

terminant scheme, we are worried about operation not multiplication. So in

the process of evaluating one of these determinants, don’t write something

like

P · ∂
∂y

That makes no sense. You wouldn’t write “16
√

” for the square root of 16,

so don’t write derivative operations out of order either. Multiplication can

be scrambled up, these operations cannot.

With divergence and curl, we can now do better with some other terms

mentioned above:

Definition 16.10. Given a 3D vector field F(x, y, z),

• F is irrotational if ∇× F = 0.

• F is incompressible if ∇ · F = 0.

EX 2 Find the curl and divergence of F(x, y, z) = 〈xz, xyz, xy〉. Is this

vector field irrotational or incompressible?

The curl of F is
∣∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

xz xyz xy

∣∣∣∣∣∣∣
=

(
∂

∂y
(xy)− ∂

∂z
(xyz)

)
i−
(
∂

∂x
(xy)− ∂

∂z
(xz)

)
j

+

(
∂

∂x
xyz − ∂

∂y
(xz)

)
k

= (x− xy) i + (x− y) j− yz k

Since∇×F 6= 0, the vector field is not irrotational. I guess it’s “rotational”?

The divergence of F is

∂

∂x
(xz) +

∂

∂y
(xyz) +

∂

∂z
(xy) = z + xz + 0 = z(1 + x)

Since ∇ · F 6= 0, the vector field is not incompressible. �
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You Try It

(2) Find the curl and divergence of r(x, y, z) = 〈x, y, z〉. Is this vector

field irrotational or incompressible?

(3) Find the curl and divergence of F(x, y, z) = 〈1, x + yz, xy − √z〉.
Is this vector field irrotational or incompressible?

We will use divergence and curl a lot in upcoming sections. First, we

need to encounter one more application of ∇.

The Gradient

In divergence and curl calculations, the differential operator ∇ acted on

a vector field. But ∇ is a very versatile symbol; it can also interact with

scalar functions — and this operation creates a quantity called a gradient.

The gradient of a scalar function is the single most important vector field

you’ll ever see.

Definition 16.11. Suppose f(x, y, z) is a scalar function. Then the gra-

dient of f is given by

∇f =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
(f) =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉

In the gradient operation, we take a scalar function and created a vector

field out of derivatives of its components. This vector field contains a lot

of good information which we will see in upcoming sections. But for now,

we just practice.

EX 3 Find the gradient of f(x, y, z) = xy2z3.

We have

∇f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= 〈y2z3, 2xyz3, 3xy2z2〉 �

So you see, gradients are not hard to compute; they are only as hard as

any of the individual derivatives of f . If we want the gradient of a func-

tion of only two variables, then we just use the x and y derivatives. Also,

note that we can use subscript notation to write ∇f = 〈fx, fy, fz〉. Use

whichever derivative notation you like better.
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You Try It

(4) Find the gradient of f(x, y) = 5xy2−4x3y, and determine∇f(1, 2).

(5) Find the gradient of g(x, y, z) = x2 + 2y2 + 3z2.

Here are a couple of the interesting questions we’ll soon ask about gra-

dients:

• We can always take a scalar function f and find its gradient, which

is a vector field. But, if we pick a vector field at random, does

there have to be a scalar function f of which our vector field is the

gradient?

• In “real life”, you probably recognize the word gradient to mean

something to do with slope — like on a hill. In the context of scalar

functions and their gradients, do you think the word “gradient” was

picked by accident?

• Will knowing how to find gradients make our mathematics lives

easier?

The answer to two of these questions is YES! But which two?

Math Symbol Soup

In this section, we’ve learned about three new operations; each requires

certain input and produces a certain kind of output, and you have to keep

them straight:

• The gradient takes in a scalar function and spits out a vector field.

• The divegence takes in a vector field and spits out a scalar function.

• The curl takes in a vector field and spits out another vector field.

All of these are based on the differential operator ∇, however, the com-

binations of this operator with other quantities is not unlimited. Some

combinations work and some don’t. You have to become adept at knowing

how to create and recognize valid combinations of operations related to ∇.

Can we find the divergence of a divergence? Can we find the curl of a curl?

Can we find the divergence of a curl? And so on...

EX 4 Let f be a scalar function and F a vector field. Describe why each

operation is defined or undefined: (a) ∇×f ; (b) ∇F; (c) ∇·F; (d)

∇× (∇f).
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(a) ∇× f is undefined since f is a scalar function and we find the curl of

vector functions.

(b) ∇F is undefined; with no dot or cross product symbol, we have to as-

sume this is an attempt at a gradient; but since F is a vector field, it does

not have a gradient

(c) ∇ · F is OK since F is a vector function and we find the divergence of

vector functions.

(d) ∇× (∇f) is OK since ∇f is a vector function and we find the curl of

vector functions. �

You Try It

(6) Let f be a scalar function and F a vector field. Describe why

each operation is defined or undefined: (a) ∇F; (b) ∇(∇ · F); (c)

∇ · (∇f); (d) ∇(∇ · f).

In Volume 1, the chapter in which definite integrals were introduced had

the title, “The Best Mathematics Symbol There Is ... So Far.” And sure,

it’s fun to draw the integral symbol. It looks cool to the Calculus novice.

It’s both impressive and scary to people who are not familiar with it. But

∇ is even better. It’s symmetric. It’s very flexible in how it gets used. I

mean, just look at all the expressions there in You Try It 6. It doesn’t get

better than this. ∇ gets my vote for the best mathematical symbol there

is. Sorry, integration.



Player V Has Entered the Game 239

Vector Fields and the Gradient — Problem List

Vector Fields and the Gradient — You Try It

These appeared above; solutions begin on the next page.

(1) Which vector field in shown in Fig. 16.14?

F1(x, y) =
〈
x2 cos(y), 2x sin(y)

〉
or F2(x, y) =

〈
y2 cos(x), 2y sin(x)

〉

(2) Find the curl and divergence of r(x, y, z) = 〈x, y, z〉. Is this vector field

irrotational or incompressible?

(3) Find the curl and divergence of F(x, y, z) = 〈1, x+yz, xy−√z〉. Is this

vector field irrotational or incompressible?

(4) Find the gradient of f(x, y) = 5xy2 − 4x3y, and determine ∇f(1, 2).

(5) Find the gradient of g(x, y, z) = x2 + 2y2 + 3z2.

(6) Let f be a scalar function and F a vector field. Describe why each

operation is defined or undefined: (a) ∇F; (b) ∇(∇ · F); (c) ∇ · (∇f);

(d) ∇(∇ · f).

−2 0 2

−2

0

2

Fig. 16.14 Sample vector field, with YTI 1.

Vector Fields and the Gradient — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.4.4.



240 Casual Calculus: A Friendly Student Companion (Volume 3)

(1) Find the curl and divergence of F(x, y, z) = 〈0, cos(xz),− sin(xy)〉. Is

this vector field irrotational or incompressible?

(2) Is this vector field irrotational or incompressible?

F(x, y, z) =

〈
x

x2 + y2 + z2
,

y

x2 + y2 + z2
,

z

x2 + y2 + z2

〉

(3) Find the gradient of f(x, y) = y lnx, and determine |∇f(1,−3)|.
(4) Assuming s and t are still rectangular coordinates, find the gradient of

g(s, t) = e−s sin t.

(5) Let f be a scalar function and F a vector field. Describe why each

operation is defined or undefined: (a) ∇× (∇×F); (b) ∇ · (∇ ·F); (c)

∇f ×∇ · F; (d) ∇ · (∇× (∇f)).

(6) Use the partial derivatives found in PP 9 of Sec. 13.5 to construct

gradient vectors for the function z = 3x2−2y2 at the points (1, 0), (1, 1),

and (0, 1). Draw the gradient vectors at these locations as carefully

as you can into a new version of Fig. B.3. Do you notice anything

interesting?

Vector Fields and the Gradient — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.4.4.

(1) Find the curl and divergence of F(x, y, z) = 〈xyz, x2y2z2, y2z3〉. (Sim-

plify each as much as possible.)

(2) Some of you may be familiar with the idea that the gravitational force

due to an object is inversely proportional to the square of the distance

between the object and the point of interest,

F =
c

r2
=

c

x2 + y2

where c is a constant containing several other constants mushed to-

gether, and r is the distance from the large body (presuming the ob-

ject is at the coordinate origin. Find the gradient of this function.

(Optional: In your expression for the gradient, try to introduce r any-

where you see an equivalent expression in x and y.)

(3) This is a problem for those of you who like puzzlers. Make up a couple

of simple scalar functions f(x, y, z). Find the gradient of each function,

then find the curl of each gradient. What do you get? Make a conjecture

as to what you’ll always get for ∇ × (∇f), the curl of a gradient.

Demonstrate why your conjecture will be true no matter what scalar

function f(x, y, z) you start with.
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(4) (Bonus! This problem has been developing in CP 4 of Secs. 13.3 and

13.5.) Use the partial derivatives found in CP 4 of Sec. 13.5 to con-

struct gradient vectors for the function w = 2x2 + y2 + z at the point

(1, 1, 1). Draw the projection of this gradient vector into a new version

of Fig. C.3. Do you notice anything interesting?

Vector Fields and the Gradient — You Try It — Solved

−2 0 2

−2

0

2

Fig. 16.15 Sample vector field, with YTI 1.

(1) Which vector field in shown in Fig. 16.15?

F1(x, y) =
〈
x2 cos(y), 2x sin(y)

〉
or F2(x, y) =

〈
y2 cos(x), 2y sin(x)

〉

� The image goes with F2. The vectors are pretty much constant at

any y, apart from a slight oscillation that varies in the x-direction. It

can’t be F1, since oscillations in that vector field would be along the

y-direction. �

(2) Find the curl and divergence of r(x, y, z) = 〈x, y, z〉. Is this vector field

irrotational or incompressible?
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� The curl is

∇× r =

∣∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

x y z

∣∣∣∣∣∣∣

=

(
∂

∂y
(z)− ∂

∂z
(y)

)
i−
(
∂

∂x
(z)− ∂

∂z
(x)

)
j +

(
∂

∂x
(y)− ∂

∂y
(x)

)
k

= 0

The divergence is

∇ · r =
∂

∂x
(x) +

∂

∂y
(y) +

∂

∂z
(z) = 1 + 1 + 1 = 3

Since ∇ × r = 0, the vector field is irrotational. Since ∇ · r 6= 0, the

vector field is not incompressible. �

(3) Find the curl and divergence of F(x, y, z) = 〈1, x+yz, xy−√z〉. Is this

vector field irrotational or incompressible?

� The curl is:

∇× F =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

1 x+ yz xy −√z

∣∣∣∣∣∣
= 〈x− y,−y, 1〉

The divergence is

∇ · F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· 〈1, x+ yz, xy −√z〉

=
∂

∂x
(1) +

∂

∂y
(x+ yz) +

∂

∂z
(xy −√z) = z − 1

2
√
z

This vector field is neither irrotational nor incompressible. �

(4) Find the gradient of f(x, y) = 5xy2 − 4x3y, and determine ∇f(1, 2).

� This is only a 2D example, so we just don’t worry about the third

component. Let’s find the vector field ∇f and then plug in the point

(1, 2).

∇f(x, y) = 〈fx, fy〉 = 〈5y2 − 12x2y, 10xy − 4x3〉
∇f(1, 2) = 〈−4, 16〉 �
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(5) Find the gradient of g(x, y, z) = x2 + 2y2 + 3z2.

� No problem:

∇g(x, y, z) = 〈gx, gy, gz〉 = 〈2x, 4y, 6z〉 �

(6) Let f be a scalar function and F a vector field. Describe why each

operation is defined or undefined: (a) ∇F; (b) ∇(∇ · F); (c) ∇ · (∇f);

(d) ∇(∇ · f).

� (a) ∇F is undefined since F is a vector function and we find the

gradient of scalar functions.

(b) ∇(∇ · F) is OK since ∇ · F is a scalar function and we find the

gradient of scalar functions.

(c) ∇ · (∇f) is OK since ∇f is a vector function and we find the diver-

gence of vector functions.

(d) ∇(∇ · f) is undefined since f is a scalar function and we find the

divergence of vector functions. �
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16.5 Planes and Tangent Planes

Introduction

A long time ago, we noticed that the since the equation of a line in 2D is of

the standard form ax+ by + c = 0, it might be reasonable to guess that a

line in 3D would have the equation ax+ by+ cz + d = 0. We then learned,

though, that this is actually the equation of a plane! But we never pursued

that in any detail.

And, you may have noticed that while we’ve been dealing with (partial)

derivatives quite a bit, we never actually got around to talking about tan-

gents (except in the context of vector functions). But if you think about

it, the problem of tangency is a bit more complicated for a surface f(x, y).

If we go to a point on the surface described by f(x, y), how many lines are

tangent to the surface at any one point? For example, how many tangent

lines can you imagine touching the top of a balloon / sphere? An infinite

number of them! (Better yet, think about a propeller beanie cap like the

one shown in Fig. 16.16; the propeller is attached at a point on the surface

of the cap — OK, you have to use your imagination a bit here — and as

the propeller spins around, it is moving through all of the infinitely many

lines tangent to the surface of the cap there.) There is only one type of

object that can be uniquely tangent to a surface at a point, and that’s a

plane. So rather than finding tangent lines on a surface, we’re looking for

tangent planes.

It’s now time to fill in both of these earlier omissions. We had to wait

until now because we’ll be using vectors and gradients in these -discussions.

How to Build a Plane

Being lazy creatures, we always want to get by with the minimum effort,

right? When describing a line, we know that the minimum set of data

requires two items — either two points, or a point and a slope. We already

know that it takes three points to define a plane, so it makes sense that the

minimum pieces of data needed to describe a plane in 3D is three. But, I’ll

argue that in order to fully describe a plane, we still need only two things.

Do you believe me?
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Fig. 16.16 A high tech visualization.

First, we need a point on the plane, that’s kind of obvious. But one

point alone isn’t enough.

For the second piece of information we need, imagine a pencil stuck

through the center of a flat piece of paper. As you move the pencil around,

the paper moves around, too. In fact, the direction of the pencil deter-

mines the direction the paper is facing, right? Well, pretend the pencil is a

vector. The direction of this “steering vector” determines the direction of

the plane. And how is the pencil oriented to the paper? It’s perpendicular!

So if we have one point on a plane, and we also know a vector which is

perpendicular to a plane, we have uniquely positioned the plane in space

and determined its orientation.

And these two things are enough. With knowledge of (1) one point on a

plane, and (2) a vector perpendicular to the plane, we cannot confuse that

plane with any other, it is uniquely determined. Now how do we turn this

information into the equation of a plane? First, let’s name these two things.

The point on the plane will be (x0, y0, z0). The vector perpendicular to the

plane will be called n = 〈a, b, c〉, and it is called the normal vector. (There

we go again, using a new word for something we can already describe!) Now

consider,

• From our dealings with vector functions, we know there is a

direct association between the point (x0, y0, z0) and the vector

r0 = 〈x0, y0, z0〉 pointing from the origin to our point, since this

vector ends at our point.
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• If the vector r = 〈x, y, z〉 points from the origin to any other point

on the plane, then the vector r− r0 lies in the plane itself.

• If r− r0 is in the plane, and n is normal to the plane, then n · (r−
r0) = 0.

• These vectors are illustrated in Fig. 16.17.

And voila, we have the ingredients for the equation of our plane:

n · (r− r0) = 0

〈a, b, c〉 · 〈x− x0, y − y0, z − z0〉 = 0

a(x− x0) + b(y − y0) + c(z − z0) = 0

Definition 16.12. A plane in R3 is uniquely determined by one point on

the plane (x0, y0, z0) and a vector normal (perpendicular) to the plane, n =

〈a, b, c〉. The equation of the plane is, in standard form,

a(x− x0) + b(y − y0) + c(z − z0) = 0

1

3

1

3

2

4

6

r 0

r− r1

r

n

x

z

Fig. 16.17 Determining geometry of a plane.

Note that if we multiply out all the terms in this equation, we’ll get:

ax+ by + cz − (ax0 + by0 + cz0) = 0
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and the terms grouped in the parentheses are all constants, so we can set

d = −(ax0 + by0 + cz0) and have another form of the equation of a plane,

ax+ by + cz + d = 0

Having two forms of an equation is not new to you. After all, you know

both the standard form of the equation of a line, y − y0 = m(x − x0), as

well as the slope-intercept form, y = mx+ b.

The standard form is always preferable to the multiplied-out form.

Here’s why. Given a plane in that second form, we can immediately see what

normal vector the plane has, but that’s it. The plane 2x− 3y + 7z = −13

is seen immediately to have a normal vector 〈2,−3, 7〉, but it would take a

bit more work to determine a point on the plane from that equation. On

the other hand, given that plane’s equation in standard form,

2(x− 2)− 3(y − 1) + 7(z + 2) = 0

we can immediately see both the normal vector 〈2,−3, 7〉 and a point on

the plane, (2, 1,−2).

EX 1 Find the equation of a plane containing the point (−2, 2, 3) and

with normal vector 〈−1, 1, 2〉.

This is just a plug-n-chug operation, since we are explicitly given all

the information we need. We already know (x0, y0, z0) = (−2, 2, 3) and

〈a, b, c〉 = 〈−1, 1, 2〉 so all that’s left is to do this:

a(x− x0) + b(y − y0) + c(z − z0) = 0

−1(x− (−2)) + 1(y − 2) + 2(z − 3) = 0

−(x+ 2) + (y − 2) + 2(z − 3) = 0

We can leave the equation of the plane in standard form, or collect the

constants together and write the equation as −x+ y + 2z = 10. �

Problems in which you’re given all the information you need right away

are no fun, it’s better to have to figure something out for yourself. There

are lots of ways we can be given information about a plane, and it can be

interesting to see how to distill a normal vector from that information.

EX 2 Find the equation of the plane containing the points P (3,−1, 2),

Q(8, 2, 4) and R(−1,−2,−3).
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We’re certainly OK in the area of needing one point on the plane, we have

three. But we don’t yet know a vector perpendicular to this plane. However,

if we form the two vectors PQ and PR, then both of those vectors will be

in the plane, and therefore their cross product will be perpendicular to the

plane.

PQ = 〈5, 3, 2〉
PR = 〈−4,−1,−5〉

PQ×PR = 〈−13, 17, 7〉

So the equation of the plane is (using P as the point) −13(x−3)+(17)(y+

1) + (7)(z − 2) = 0, or −13x+ 17y + 7z = −42. �

You Try It

(1) Find the equation of the plane containing the point (1,−1, 1) and

with normal vector 〈1, 1,−1〉.
(2) Find the equation of the plane containing the points P (0, 1, 1),

Q(1, 0, 1), and R(1, 1, 0).

We can use the normal vectors of planes to assess how planes are posi-

tioned to each other. If two planes’ normal vectors are parallel, then the

planes are parallel. If their normal vectors are perpendicular, then the

planes themselves are perpendicular.

EX 3 Are the planes 2x − y − z = 1 and 4x − 2y − 2z = 0 parallel,

perpendicular, or neither?

The normal vector of the first plane is n1 = 〈2,−1,−1〉 and the normal

vector of the second plane is n2 = 〈4,−2,−2〉. Since n2 = 2n1, these nor-

mal vectors are parallel, and so the planes are parallel, too. There’s also

the possiblity that these equations both describe the same plane; but the

second plane contains the point (0, 0, 0) and the first one does not (make

sure you know how we can tell!) — so they can’t be the same plane. �

You Try It

(3) Are the planes x + 4y − 3z = 1 and −3x + 6y + 7z = 0 parallel,

perpendicular, or neither?
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Tangent Planes

Hopefully you remember that the value of a derivative f ′(x0) gives the

slope of a line tangent to a function f(x) at x0, and the equation of that

line could be written as:

y − y0 = f ′(x0)(x− x0)

It should then not be much of a surprise that the equation of the plane

tangent to the surface z = f(x, y) at (x0, y0, z0) is

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) (16.11)

And even if it is a surprise, it should (soon) make sense. In order to

see why, I need you to believe one geometric fact: Suppose you know an

infinite number of lines are contained in a single plane (that is, all the lines

are coplanar), and you have a candidate plane that may or may not be the

right one that contains them. If your candidate plane contains only one

of the lines you know must be in the target plane, there are no guarantees

that your plane contains more of the lines. But if your candidate plane

contains is positioned properly to capture two of the lines, it has to capture

all of them.

So, how does this tie to tangent planes? Well, we noted before that there

are infinite number of lines tangent to z = f(x, y) at any point (x0, y0). The

tangent plane must contain all of these lines. We can show that the tan-

gent plane given by the above surface contains at least two of them, and

therefore contains all of them.

Consider the intersection of the plane y = y0 with the surface z =

f(x, y). The candidate equation of the tangent plane (16.11) reduces there

to

z − z0 = fx(x0, y0)(x− x0)

and this is precisely the equation of the line tangent to the surface in the

plane y = y0, with slope fx(x0, y0). If we take the intersection of the plane

x = x0 with the surface, the candidate equation of the tangent plane (16.11)

reduces there to

z − z0 = fy(x0, y0)(y − y0)

which is precisely the equation of the line tangent to the surface in the

plane x = x0, with slope fy(x0, y0).
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Therefore, the plane described by (16.11) contains two of the lines the

actual tangent plane must contain, and so it must contain all of them. Let’s

make it official:

Useful Fact 16.13. Given a surface z = f(x, y) and a point on the sur-

face (x0, y0, z0) such that the first derivatives of f(x, y) are continuous at

(x0, y0, z0), then the equation of the plane tangent to z = f(x, y) at that

point is:

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

EX 4 Find the equation of the plane tangent to z = 4x2− y2 + 2y where

(x, y) = (−1, 2).

We know x0 = −1 and y0 = 2, so we’re still going to need z0 and the values

of fx and fy at this point. So,

z0 = f(x0, y0) = 4(−1)2 − (2)2 + 2(2) = 4

fx(x, y) = 8x → fx(−1, 2) = −8

fy(x, y) = −2y + 2 → fy(−1, 2) = −2

so the equation of the tangent plane is

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

z − 4 = (−8)(x− (−1)) + (−2)(y − 2)

z − 4 = −8x− 2y − 4

That last step reduces to the equation of our tangent plane, 8x+2y+z = 0.

Figure 16.18 shows the surface and point of tangency, and then Fig. 16.19

shows a small patch of the tangent plane at the point of tangency. �

You Try It

(4) Find the the equation of the plane tangent to z =
√

4− x2 − 2y2

at (1,−1, 1).

Here is a fun fact about the equation of a tangent plane given in Useful

Fact 16.13, and I’ll let you stew over it for a while. We can rearrange

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

to

fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)− (z − z0) = 0
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Fig. 16.18 The surface z = 4x2 − y2 +

2y and point (−1, 2, 4), with EX 4.

−1

1−1

1

2

3

4

5

x

z

Fig. 16.19 A tangent plane on z =

4x2 − y2 + 2y, with EX 4.

The left side of this new version looks like a dot product! In fact, we can

write the equation as:

〈fx(x0, y0), fy(x0, y0),−1〉 · 〈x− x0, y − y0, z − z0〉 = 0

The vector on the right, 〈x − x0, y − y0, z − z0〉 is a vector that’s in the

plane, connecting any (x, y, z) in the plane to the fixed point (x0, y0, z0)

we use to define the plane. Can you see anything interesting about the

vector 〈fx(x0, y0), fy(x0, y0),−1〉 on the left? It looks sort of like a gradient.

But the gradient of what? The gradient of f(x, y) itself would only have

two components ... But regardless of all that, we need to flag this bit of

information for use elsewhere, because it’s a Useful Fact!

Useful Fact 16.14. Assuming the partial derivatives exist, the vectors

〈fx(x0, y0), fy(x0, y0),−1〉, and so also 〈−fx(x0, y0),−fy(x0, y0), 1〉, will be

perpendicular to the surface z = f(x, y) at the point (x0, y0, z0).

Total Differentials

Here’s a quick application of tangent planes. You should recall from single

variable Calculus that we can have a process called “local linear approx-

imation”. This is based on the idea that if you zoom in close enough to
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a point of tangency, a line tangent to a function there and the function

itself are somewhat indistinguishable. Therefore, in the local vicinity of the

point of tangency, the tangent line can be used as a surrogate for the func-

tion itself — often resulting in much easier computations. (This is the idea

that’s then exploited later for local quadratic approximation, local cubic

approximation, and so forth, ultimately leading to Taylor polynomials and

series.)

Now that we’re discussing surfaces and tangent planes, the same idea

applies: if we zoom in on the very local vicinity of the point of tangency,

the tangent plane and the surface itself will be somewhat indistinguishable.

The tangent plane can then be used as a surrogate for the full function

z = f(x, y) — again resulting, perhaps, in easier computations. To see this

happen, we begin with the equation of the tangent plane,

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

and rename x− x0 to dx, y − y0 to dy and z − z0 to dz, to get this:

Definition 16.13. Given a function z = f(x, y) and a point (x0, y0) where

the first derivatives of f(x, y) are continuous, then the total differential

of z at that point is defined as:

dz = fx(x0, y0) dx+ fy(x0, y0) dy

The total differential quantifies the idea that the total change of f(x, y)

at a given location is a combination of the change in f due to a change

in x (i.e. fx) and the change in f due to a change in y (i.e. fy). It’s no

accident that we call these “partial” derivatives, since they each give a part

of the total chance in f(x, y). Total differentials have applications in error

estimation and numerical computation.

We can use general expressions for fx and fy to build a general expres-

sion for dz before zooming in to a specific point.

EX 5 Find the total differential of z = ln
√
x2 + y2. What is the to-

tal change dz found when (x, y) changes from (1/
√

2, 1/
√

2) to

(1/2, 1/2)?

Let’s rewrite the function to make the derivatives easier, it’s

z = ln
√
x2 + y2 =

1

2
ln(x2 + y2)
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Then the partial derivatives are:

fx(x, y) =
x

x2 + y2
and fy(x, y) =

y

x2 + y2

so that the total differential dz is

dz =
x

x2 + y2
dx+

y

x2 + y2
dy

We can now use this to investigate total change at any location. Specifically,

if (x, y) changes from (1/
√

2, 1/
√

2) to (1/2, 1/2), then dx and dy are both

dx = dy =
1

2
− 1√

2

When measuring change, we generally take the first point as the anchor

point, so

dz =
1/
√

2

(1/
√

2)2 + (1/
√

2)2

(
1

2
− 1√

2

)
+

1/
√

2

(1/
√

2)2 + (1/
√

2)2

(
1

2
− 1√

2

)

=
1√
2

(
1

2
− 1√

2

)
+

1√
2

(
1

2
− 1√

2

)

=
2√
2

(
1

2
− 1√

2

)
=

1√
2
− 1

The total change in z is 1/
√

2− 1. �

You Try It

(5) Find the total differential of z = x3 ln(y2). What is the total change

dz found when (x, y) changes from (1, 1) to (1,
√
e)?
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Planes and Tangent Planes — Problem List

Planes and Tangent Planes — You Try It

These appeared above; solutions begin on the next page.

(1) Find the equation of the plane containing the point (1,−1, 1) and with

normal vector 〈1, 1,−1〉.
(2) Find the equation of the plane containing the points P (0, 1, 1), Q(1, 0, 1)

and R(1, 1, 0).

(3) Are the planes x + 4y − 3z = 1 and −3x + 6y + 7z = 0 parallel,

perpendicular, or neither?

(4) Find the the equation of the plane tangent to z =
√

4− x2 − 2y2 at

(1,−1, 1).

(5) Find the total differential of z = x3 ln(y2). What is the total change

dz found when (x, y) changes from (1, 1) to (0, e)?

Planes and Tangent Planes — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.4.5.

(1) Find the equation of the plane containing the point (4, 0, 3) and with

normal vector 〈0, 1, 2〉.
(2) Find the equation of the plane containing the points P (0, 0, 0),

Q(2,−4, 6), and R(5, 1, 3).

(3) Are the planes 2z = 4y−x and 3x−12y+6z = 1 parallel, perpendicular,

or neither?

(4) Find the equation of the plane tangent to z = y lnx at (1, 4, 0).

(5) If z = 5x2 + y2 and (x, y) changes from (1, 2) to (1.05, 2.1), then what

is the resulting dz?

(6) Find the equation of the plane containing the point (−2, 8, 10) and

perpendicular to the line x = 1 + t, y = 2t, z = 4− 3t.

(7) Find the equation of the plane tangent to z = ex
2−y2 where (x, y) =

(1,−1).

(8) The length and width of a rectangle are measured as 30cm and 24cm

respectively. There is a possible error in measurement of 0.1cm in each

direction. Estimate the maximum possible error in the calculated area

of the rectangle. (Hint: This is a total differential problem.)



Player V Has Entered the Game 255

Planes and Tangent Planes — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.4.5.

(1) Find the equation of the plane containing the point (3,−5, 4) and per-

pendicular to the line x = 1 + 2t, y = 1− t, z = 4− 3t.

(2) Find the equation of the plane tangent to z =
√
x2 − y2 where (x, y) =

(2,−1).

(3) The radius and height of a cylinder are measured as 30cm and 24cm

respectively. There is a possible error in measurement of 0.1cm in

each direction. Estimate the maximum possible error in the calculated

volume of the cylinder.

Planes and Tangent Planes — You Try It — Solved

(1) Find the equation of the plane containing the point (1,−1, 1) and with

normal vector 〈1, 1,−1〉.

� We have all the information we need: a point (x0, y0, z0) = (1,−1, 1)

and a normal vector n = 〈a, b, c〉 = 〈1, 1,−1〉 so using the standard form

of a plane,

a(x− x0) + b(y − y0) + c(z − z0) = 0

1(x− 1) + 1(y + 1) + (−1)(z − 1) = 0

x+ y − z = −1 �

(2) Find the equation of the plane containing the points P (0, 1, 1),

Q(1, 0, 1), and R(1, 1, 0).

� We have our choice of three points on the plane, but we still need a

vector perpendicular to this plane. But PQ×PR is such a vector:

PQ = 〈1, 0〉
PR = 〈1, 0,−1〉

PQ×PR = 〈1, 1, 1〉
So the equation of the plane is (using P as the point),

a(x− x0) + b(y − y0) + c(z − z0) = 0

1(x− 0) + (1)(y − 1) + (1)(z − 1) = 0

x+ y + z = 2 �
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(3) Are the planes x + 4y − 3z = 1 and −3x + 6y + 7z = 0 parallel,

perpendicular, or neither?

� From the equation of the plane x + 4y − 3z = 1, we know its per-

pendicular vector is n1 = 〈1, 4,−3〉. From the equation of the plane

−3x+ 6y+ 7z = 0, we know its perpendicular vector is n2 = 〈−3, 6, 7〉.
Since n1 · n2 = 0, these vectors, and so also the planes, are perpendic-

ular to each other. �

(4) Find the the equation of the plane tangent to z =
√

4− x2 − 2y2 at

(1,−1, 1).

� We need

fx = − x√
4− x2 − 2y2

→ fx(1,−1) = − 1√
4− 1− 2

= −1

fy = − 2y√
4− x2 − 2y2

→ fy(1,−1) =
2√

4− 1− 2
= 2

so that the plane is:

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

z − 1 = −1(x− 1) + 2(y + 1)

x− 2y + z = 4 �

(5) Find the total differential of z = x3 ln(y2). What is the total change

dz found when (x, y) changes from (1, 1) to (0, e)?

� The total differential is:

dz = fx(x, y)dx+ fy(x, y)dy = 3x2 ln(y2) dx+
2x3

y
dy

When we move from (1, 1) to (0, e), then we have dx = −1 and dy =

e− 1. Using (x, y) = (1, 1) as the reference point,

dz = 3(1)2 ln(1)2 (−1) +
2(1)3

1
(e− 1) = 0 + 2(e− 1) = 2(e− 1) �
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16.6 Directional Derivatives

Introduction

Did you think you were done with derivatives? Hardly! You were only done

with derivatives that didn’t require the use of vectors. Regular partial

derivatives are fun, but somewhat inflexible in terms of the information

they give by themselves. The partial derivative of f(x, y) with respect to

x quantifies how f(x, y) changes with x assuming y is constant; in other

words, it looks at the rate of change of f(x, y) only in a direction parallel

to the x-axis. Similarly, fy examines the rate of change of f(x, y) only in

a direction parallel to the y-axis. This is like going on a hike and having a

map that only shows you the terrain looking due east and due north. What

if you wanted to walk northeast?

Directional Derivatives

The definitions of the partial derivative of f(x, y) with respect to x and y

were:

lim
h→0

f(x+ h, y)− f(x, y)

h
and lim

h→0

f(x, y + h)− f(x, y)

h
(16.12)

(Do you remember how they work?) Now, here is a limit structure

that allows us to observe the same trends, but not just in the coordinate

directions:

lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h
(16.13)

Exploiting the equivalence between vectors and points that we have

when we assume the initial point of all our vectors is the origin, and also

abusing our functional notation a bit, we can rewrite this as

lim
h→0

f(〈x0, y0〉+ h〈a, b〉)− f(〈x0, y0〉)
h

(16.14)

Take a close look at the argument in the left hand term of the numerator.

The vector 〈x0, y0〉 + h〈a, b〉 is a vector offset from 〈x0, y0〉 in a direction

parallel to some fixed vector 〈a, b〉 by a distance scaled with h — see Fig.

16.20. In partial derivatives, we have either 〈a, b〉 = 〈1, 0〉 or 〈a, b〉 = 〈0, 1〉,
whereas now we allow 〈a, b〉 to be any vector. And as h goes to 0, the
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vector 〈x0, y0〉+ h〈a, b〉 creeps back towards 〈x0, y0〉 itself. What this new

and improved difference quotient does, with the limit, is looks at the rate

of change in f at (x0, y0) in the direction of the vector 〈a, b〉.

〈x 0
, y
0
〉

〈a, b〉

h〈a, b〉

〈x0
, y0
〉+

h〈a
, b
〉

(h→ 0)

x

y

Fig. 16.20 Building blocks of a directional derivative.

It’s important to keep in mind that all this action regarding location

and direction is taking place in the xy-plane; as we stand at (x0, y0) in the

xy-plane and then face in the direction of the vector 〈a, b〉, we then look up

(or down) to the surface f(x, y) to see how “steep” the surface is in that

direction. This improvement in the difference quotient frees up our prior

derivative definitions from being restricted to directions parallel to the x-

or y-axes. While the “vectorized” version of this limit process, shown as

(16.14), has been useful for visualizing what’s happening, the formalizing

of this process requires us to go back to (16.13):

Definition 16.14. The directional derivative of f(x, y) at (x0, y0) in

the direction of the vector u = 〈a, b〉 is denoted Duf(x0, y0), and is defined

as

Duf(x0, y0) = lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h
(16.15)

NOTE: In order for the scaling by h in the difference quotient to work

properly, the vector u must be a unit vector.

We need to convert Eq. (16.15) into a usable expression. After all, we

don’t want to actually compute our directional derivatives with this for-
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mula, any more than we wanted to compute partial derivatives by their

technical definitions in (16.12). The details of the derivation of a better

expression for Du are pushed to the end of this section so that we can get

to work right away. But I definitely recommend spending some time with

that derivation because your ability to hang in there and follow it is a good

check on how much you’ve retained from several prior concepts. Here is the

payoff:

Useful Fact 16.15. The directional derivative of f(x, y) at (x0, y0) in the

direction of the unit vector u = 〈a, b〉 can be computed as

Duf(x0, y0) = ∇f(x0, y0) · 〈a, b〉 (16.16)

(assuming that the first derivatives of f exist).

Useful Fact 16.15 tells us that in order to determine the directional

derivative of a function f at some point, we must

• Find a unit vector that describes the direction of interest.

• Compute the gradient of the function at the point of interest.

• Compute the dot product of the gradient with the (unit) direction

vector.

EX 1 Find the derivative of f(x, y) = x2y2 − xy at (x, y) = (1, 1) in the

direction given by 〈1, 1〉.

First, note that the direction vector is not a unit vector, so let’s fix that to

get

u =
〈1, 1〉
|〈1, 1〉| =

〈1, 1〉√
2

=

〈
1√
2
,

1√
2

〉

Then, let’s find the gradient of f at the point (1, 1):

∇f(x, y) = 〈fx, fy〉
= 〈2xy2 − y, 2x2y − x〉

∇f(1, 1) = 〈2− 1, 2− 1〉 = 〈1, 1〉

and therefore

Duf(1, 1) = ∇f(1, 1) · u = 〈1, 1〉 ·
〈

1√
2
,

1√
2

〉
=

2√
2

=
√

2 �
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You Try It

(1) Find the directional derivative of f(x, y) = 5xy2 − 4x3y at (1,2) in

the direction of u = 〈5/13, 12/13〉.
(2) Find the directional derivative of g(s, t) = s2et at (2,0) in the

direction of v = i + j = 〈1, 1〉.

Sometimes the direction of interest can be given more cryptically, by

specification of a polar angle θ. But of course you know that a unit vector

(r = 1) in the direction of a polar angle θ would be u = 〈cos θ, sin θ〉.

EX 2 Find the derivative of f(x, y) = 1 + 2x
√
y at (3, 4) in the direction

given by θ = π/3.

A unit vector pointing in the direction of the angle θ = π/3 is

u =
〈

cos
π

3
, sin

π

3

〉
=

〈
1

2
,

√
3

2

〉

Since the gradient of f(x, y) is ∇f = 〈2/√y, x/√y〉, then ∇f(3, 4) =

〈4, 3/2〉 and

Duf(3, 4) = ∇f(3, 4) · u =

〈
4,

3

2

〉
·
〈

1

2
,

√
3

2

〉
= 2 +

3
√

3

4
�

You Try It

(3) Find the directional derivative of f(x, y) =
√

5x− 4y at (4,1) in

the direction given by θ = −π/6.

The Direction of Steepest Ascent

The question in hand so far has been: given a function f(x, y), a location

(x0, y0) and a predetermined direction u, what is the rate of change of f

at that point in the given direction? We could turn this question around

and ask something a bit different, and often more important: If we’re at a

location given by (x0, y0) on a surface f(x, y), in what direction should we

look to see the largest rate of change possible from that point? This is called

the direction of steepest ascent. When you’re hiking up a mountainside, you

probably do not want to walk in the direction of steepest ascent, so you may

want to find and avoid the direction of steepest ascent from your location.

The direction of steepest descent is exactly the opposite of the direction of
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steepest ascent. If we are standing at (x0, y0) and set a ball on the ground,

it will roll in the direction of steepest descent. Finding these directions is

important in many physical problems. Fluid or air flows from high pressure

to low, following the direction of steepest descent within a pressure field.

The following is stated without proof, you’ll just have to trust me!

Useful Fact 16.16. The derivatives of f(x, y) behave themselves at a point

(x0, y0), then...

• The maximum value of the directional derivative Duf(x, y) at

(x0, y0 is |∇f(x0, y0)| and it occurs in the direction of ∇f(x0, y0).

• The minimum value of the directional derivative Duf(x, y) at

(x0, y0 is −|∇f(x0, y0)| and it occurs in the direction −∇f(x0, y0).

In other words, the direction of steepest ascent at any location is the

direction indicated by the gradient vector; the direction of steepest descent

is therefore opposite the gradient. The size of the maximum and minimum

rates of change in these directions are the positive and negative magnitudes

of the gradient vector.

In Useful Fact 16.16, don’t let the phrase “minimum” fool you. Often

this makes us think of a number that’s smallest, but positive. But it really

means “farthest to the left on the number line”. The minimum of the

numbers 2, 6,−5, 7, 11,−3.7 is −5. So we usually expect a minimum rate

of change (i.e. a minimum value of a directional derivative) to be negative.

The only time a minimum directional derivative would not be negative is

if it’s zero — such as at the vertex of an upwards paraboloid.

EX 3 Find the minimum rate of change of f(x, y) = x2y−y2x at the point

(1,−1), and the direction in which this rate of change occurs.

We are looking for the direction of steepest descent (since we want the min-

imum rate of change) and the magnitude of that steepest descent. Plan-

ning to use Useful Fact 16.16, we build up some data. First, we have

fx = 2xy−y2 and fy = x2−2xy, so that fx(1,−1) = −3 and fy(1,−1) = 3.

And then,

∇f(1,−1) = 〈−3, 3〉 ; |∇f(−3, 3)| =
√

18 = 3
√

2

So, the minimum rate of change of f at (1,−1) is then −|∇f(1,−1)| =

−3
√

2, and this minimum rate occurs in the direction opposite the gradi-

ent, i.e. −∇f(1,−1) = 〈3,−3〉. �
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You Try It

(4) Find the maximum rate of change of f(x, y) = y2/x at the point

(2, 4), and the direction in which this rate of change occurs.

All the examples provided here have used a function of two variables,

f(x, y). However, all the concepts can extend to f(x, y, z) or even more

variables. You just do the same computations, but with more components.

Into the Pit! The Details Behind Equation (16.16)

Let’s dig into Eq. (16.15),

Duf(x0, y0) = lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h

and see how it turns into Equation (16.16).

We can consider the expression f(x0 + ha, y0 + hb) (in the numerator)

as a function of h: different values of h lead to different results right? So

let’s name it g(h) = f(x0 + ha, y0 + hb). As an example of this naming, we

have g(0) = f(x0, y0). Having installed that name, we can tidy the limit

expression in the definition of Duf(x0, y0) as

Duf(x0, y0) = lim
h→0

g(h)− g(0)

h

You should recognize the right side of this expression as the limit definition

of the plain old derivative g′(0). So in one sense, our directional derivative

is equivalent to g′(0):

g′(0) = Duf(x0, y0) (16.17)

Hold that thought.

Now step back and reconsider the new naming situation we have going

on. We’ve created a function g(h) for which g(h) = f(x, y) for x = x0 + ha

and y = y0 + hb — that is, g uses x and y as intermediate variables: g

depends on x and y, but then x and y depend on h. Does this overall

scenario sound familiar? This is a chain rule situation! And so if we ask

what g′(0) looks like from that perspective, we get:
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g′(h) =
∂f

∂x

∂x

∂h
+
∂f

∂y

∂y

∂h
= fx(x, y)a+ fy(x, y)b

and so when h = 0,

g′(0) = fx(x0, y0)a+ fy(x0, y0)b (16.18)

Now we have two versions of g′(0), in (16.17) and (16.18):

g′(0) = Duf(x0, y0)

g′(0) = fx(x0, y0)a+ fy(x0, y0)b

Since both expressions give g′(0), they must be equal:

Duf(x0, y0) = fx(x0, y0)a+ fy(x0, y0)b

Do you notice anything interesting about that right hand side? Like the

fact that it looks an awful lot like a dot product? Let’s write it like this:

Duf(x0, y0) = fx(x0, y0)a+ fy(x0, y0)b = 〈fx(x0, y0), fy(x0, y0)〉 · 〈a, b〉
(16.19)

We’re almost done! Remember that 〈fx(x0, y0), fy(x0, y0)〉 is just the gra-

dient of f(x, y) at (x0, y0, and 〈a, b〉 is the unit direction vector u. So now,

we can package up (16.19) as

Duf(x0, y0) = ∇f(x0, y0) · 〈a, b〉

and this is (16.16).
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Directional Derivatives — Problem List

Directional Derivatives — You Try It

These appeared above; solutions begin on the next page.

(1) Find the directional derivative of f(x, y) = 5xy2 − 4x3y at (1,2) in

the direction of u = 〈5/13, 12/13〉.
(2) Find the directional derivative of g(s, t) = s2et at (2,0) in the direc-

tion of v = i + j = 〈1, 1〉.
(3) Find the directional derivative of f(x, y) =

√
5x− 4y at (4,1) in the

direction given by θ = −π/6.

(4) Find the maximum rate of change of f(x, y) = y2/x at the point

(2, 4), and the direction in which this rate of change occurs.

Directional Derivatives — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.4.6.

(1) Find the directional derivative of f(x, y) = y lnx at (1,-3) in the

direction of u = 〈−4/5, 3/5〉.
(2) Find the directional derivative of g(x, y) = e−x sin y at (0, π/3) in

the direction of v = 〈3,−2〉.
(3) Find the the directional derivative of f(x, y) = x2y3 − y4 at (2,1) in

the direction given by θ = π/4.

(4) Find the maximum rate of change of f(p, q) = qe−p + pe−q at (0,0),

and the direction in which this rate of change occurs. (Assume p, q

are renamed rectangular coordinates.)

(5) Find the directional derivative of f(x, y, z) =
√
x+ yz at (1,3,1) in

the direction of u = 〈2/7, 3/7, 6/7〉.
(6) Find the directional derivative of f(x, y, z) =

x

y + z
at (4,1,1) in the

direction of v = 〈1, 2, 3〉.
(7) Given the 3D temperature function T (x, y, z) = 20e−x

2−y2−2z2 ,

what is the maximum rate of change of the temperature at the point

(2,−1, 2), and in what direction does this rate of change occur?
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Directional Derivatives — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.4.6.

(1) Find the directional derivative of f(x, y, z) =
√
xy + z at (1,3,1) in

the direction of w = 〈3, 2, 6〉.
(2) Find the directional derivative of f(x, y, z) = y/(x+ z) at the point

P = (1, 4, 1) in the direction of v = 〈1, 2, 1〉. If S is the surface

represented by the graph of f , and a bug standing at P started

walking on S in the direction of v, would the bug be walking uphill

or downhill?

(3) Given the 3D temperature function T (x, y, z) = 5e−x
2−y2−2z2 , what

is the (simplified) maximum rate of change of the temperature at

the point (1/
√

2, 0, 1/
√

2), and in what direction does this rate of

change occur?

Directional Derivatives — You Try It — Solved

(1) Find the directional derivative of f(x, y) = 5xy2 − 4x3y at (1,2) in the

direction of u = 〈5/13, 12/13〉.
� The direction vector u is already a unit vector, so computing the

gradient and then bringing in the direction vector,

∇f(x, y) = 〈fx, fy〉 = 〈5y2 − 12x2y, 10xy − 4x3〉

∇f(1, 2) = 〈−4, 16〉

Duf(1, 2) = ∇f(1, 2) · u = 〈−4, 16〉 ·
〈

5

13
,

12

13

〉
=

172

13
�

(2) Find the directional derivative of g(s, t) = s2et at (2,0) in the direction

of v = i + j = 〈1, 1〉.
� The given direction vector is not a unit vector, so let’s fix that. A

unit vector u in the direction of v can be found this way:

u =
v

|v| =

〈
1√
2
,

1√
2

〉
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And then, computing the gradient and using the direction vector:

∇g(s, t) = 〈gs, gt〉 = 〈2set, s2et〉

∇g(2, 0) = 〈4, 4〉

Dug(2, 0) = ∇g(2, 0) · u = 〈4, 4〉 ·
〈

1√
2
,

1√
2

〉
= 4
√

2 �

(3) Find the directional derivative of f(x, y) =
√

5x− 4y at (4,1) in the

direction given by θ = −π/6.

� We need a unit vector in the given direction; this is

u =
〈

cos
(
−π

6

)
, sin

(
−π

6

)〉
=

〈√
3

2
,−1

2

〉

So, computing the gradient and then bringing in the direction vector,

∇f(x, y) = 〈fx, fy〉 =

〈
5

2
√

5x− 4y
,− 2√

5x− 4y

〉

∇f(4, 1) =

〈
5

8
,−1

2

〉

Duf(4, 1) = ∇f(4, 1) · u =

〈
5

8
,−1

2

〉
·
〈√

3

2
,−1

2

〉

=
5
√

3

16
+

1

4
�

(4) Find the maximum rate of change of f(x, y) = y2/x at the point (2, 4),

and the direction in which this rate of change occurs.

� We can easily get fx = −y2/x2 and fy = 2y/x, so that fx(2, 4) = −4

and fy(2, 4) = 4. Then ∇f(2, 4) = 〈−4, 4〉 and |∇f(2, 4)| = 4
√

2.

So, the maximum rate of change of f at (2,4) is then |∇f(2, 4)| = 4
√

2

and this maximum rate occurs in the direction of the gradient, 〈−4, 4〉
— which is also the direction of 〈−1, 1〉. �



Chapter 17

We’ve Been Framed!

17.1 Arc Length Parameterization

Introduction

Vector functions are useful for conceptualizing many physical processes,

such as tracking the path of a moving object. We usually visualize vector

functions as curves, or contours, in two or three-dimensional space. Finding

the arc length of (a portion of) a curve presented as a vector function is a

natural calculation to do. Fortunately, we’ve already laid the groundwork

for this calculation.

Arc Length

In (Volume 1) Sec. 12.2, we saw that the arc length of a parametric curve

with equations x = x(t), y = y(t), and z = z(t) on an interval a ≤ t ≤ b is

given by

L =

∫ b

a

√
[x′(t)]2 + [y′(t)]2 + [z′(t)]2dt (17.1)

Now that we’ve become smarter about such quantities, we can recognize

the integrand as the magnitude of r′(t) for the vector function r(t) =

〈x(t), y(t), z(t)〉; so, a new and improved definition is:

Definition 17.1. The length of a piecewise continuous vector function r(t)

on a ≤ t ≤ b is given by

L =

∫ b

a

|r ′(t)|dt (17.2)

We can put this to use right away.

267
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EX 1 Find the arc length of r(t) = 〈2t, 1 − 3t, 5 + 4t〉 from (0, 1, 5) to

(4,−5, 13).

First, note that (0, 1, 5) is given by t = 0 and (4,−5, 13) is given by t = 2.

To use (17.2), we must build the magnitude of r ′(t) — but that’s easy in

this case. From r(t) = 〈2t, 1− 3t, 5 + 4t〉 we get r ′(t) = 〈2,−3, 4〉, so that

|r ′(t)| =
√

22 + (−3)2 + 42 =
√

29

By (17.2),

L =

∫ b

a

|r ′(t)| dt =

∫ 2

0

√
29 dt =

√
29 t

∣∣∣∣
2

0

= 2
√

29

If you happened to notice that r(t) is just a simple line segment, then it’s

no surprise that this arc length is just the straight-line distance between

the two given points,

√
(4− 0)2 + (−5− 1)2 + (13− 5)2 =

√
116 = 2

√
29 �

EX 2 Find the arc length of r(t) = 〈2 sin t, 2 cos t, t + 1〉 from t = 0 to

t = 2π.

For this vector function, r ′(t) = 〈2 cos t,−2 sin t, 1〉, so

|r ′(t)| =
√

4 cos2 t+ 4 sin2 t+ 1 =
√

5

And

L =

∫ b

a

|r ′(t)| dt =

∫ 2π

0

√
5 dt = 2π

√
5

Keep tabs on this EX 2 as we continue below, because it will be refer-

enced as an on-going example. �

You Try It

(1) Find the arc length of of r(t) = 〈t2/2, t3/3〉 for 0 ≤ t ≤ 4.

(2) Find the arc length of r(t) = 〈sin(2t), 2t, cos(2t)〉 for 0 ≤ t ≤ π.
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Arc Length Parameterization

Since r(t) commonly represents the path of a moving object, then if t rep-

resents time, the parameter has an intuitive meaning. But this parameter

t (time?) we’ve been using in vector functions is not the only one that is

available. In fact, as we know from our experience crafting lines in three

dimensions, there is an unlimited supply of parameters and corresponding

ranges that can produce the same function or curve.

In EX 2 above, we saw a vector function r(t) = 〈2 sin t, 2 cos t, t+1〉 and

learned that at the location corresponding to t = 2π, the total arc length

covered from t = 0 was 2π
√

5. If we repeated similar calculations, we could

have learned that at t = 6 we would have achieved a total arc length of

6
√

5; at t = 100, we would have an arc length of 100
√

5. In general, for

any interval [0, t], we would have an arc length of t
√

5. That is, we have a

relation between the parameter t and the arc length. We will now introduce

s to represent arc length (don’t ask why s means arc length, just go with

it). For this particular vector function, we have determined that the total

arc length on some interval [0, t] can be found by s = t
√

5.

Now, it’s great to be able to calculate arc length for any given value of

t, but wouldn’t it also be neat to specify an arc length and be handed the

point at which we reach that particular arc length? That is the job of arc

length parameterization; if we correctly swap the original parameter t for a

new “arc length parameter” s, the new version of the vector function will

allow us to do just that.

In our continuing example at hand, since we have s = t
√

5, then we also

have t = s/
√

5; if we substitute that into r(t) = 〈2 sin t, 2 cos t, t + 1〉, we

get a newly parameterized version of the same vector function:

r(s) =

〈
2 sin

s√
5
, 2 cos

s√
5
,
s√
5

+ 1

〉

Now with this new version of the vector function, let’s calculate the

total arc length achieved at the point marked by s = 2π
√

5. First, we need

to see the derivative of the vector function:

r ′(s) =

〈
2√
5

cos
s√
5
,− 2√

5
sin

s√
5
,

1√
5

〉
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Then, we compute the magnitude of this new (derivative) vector function,

|r ′(s)| =
√

4

5
cos2

s√
5

+
4

5
sin2 s√

5
+

1

5
= 1 (17.3)

On the interval [0, 2π
√

5] for s, then,

L =

∫ b

a

|r ′(s)| ds =

∫ 2π
√
5

0

(1) ds = 2π
√

5 (17.4)

So at the point located by the arc length parameter s = 2π
√

5, we have

achieved an arc length of 2π
√

5. If we repeat a similar calculation for s = 1,

we can find that the total arc length achieved at the point located by s = 1

is

L =

∫ b

a

|r ′(s)| ds =

∫ 1

0

(1) ds = 1

The pattern here (presuming we start at s = 0) is that when we move

along the curve to a point marked by a particular value of the parameter

s, the arc length traveled to get to that point is also s. This is why s is

called the arc length parameter.

The natural question is, then, if we start with a vector curve designed

with a generic parameter t, can we “reparameterize” the function and write

it in terms of the arc length parameter s? And the answer is ... sometimes!

The relation between t and s may or may not be helpful for doing so. But

here’s how we can at least try to do it: We go to the original integral

formula for arc length (17.2) and say, Hey formula, what is the arc length

achieved over any parameter interval [0, t]? The way to do that is prepare

this integral:

s =

∫ t

0

|r ′(τ)| dτ (17.5)

Note, (1) if we install t as the upper endpoint of integration, it cannot also

remain the variable of integration, and so the latter is changed to τ . Also

(2), just as a flashback, this puts us in Fundamental Theorem of Calculus

territory, where we have a function defined as an integral, such that the

“live” variable in the overall function is the upper endpoint of integration

— that is, Eq. (17.5) presents a function s(t).



We’ve Been Framed! 271

For the ongoing example spawned from EX 2, we’d have

s =

∫ t

0

√
5 dτ = t

√
5

which is exactly the relation between s and t that we discovered in a more

informal way already.

In general, to introduce an arc length parameter to a vector function,

we do the following;

(1) Find the relation between the original parameter t and the new arc

length parameter s; that is, find s = s(t) via

s =

∫ t

0

|r ′(τ)| dτ

(2) Having developed a relationship s = s(t), turn it inside-out to find

t written in terms of s; that is, find t = t(s).

(3) Substitute t = t(s) into the vector function to change r(t) into r(s),

and also convert the endpoints of any specific interval given from

bounding values of t to bounding values for s.

EX 3 Revisit the vector valued function from EX 1 and find its arc length

parameterized representation.

EX 1 presented r(t) = 〈2t, 1− 3t, 5 + 4t〉; the arc length on an interval [0, t]

is given by

s =

∫ t

0

√
(2)2 + (−3)2 + (4)2 dτ =

√
29

∫ t

0

dτ = t
√

29

We solve s = t/
√

29 for t as t = s/
√

29, and substitute this back into the

original vector function:

r(s) = 〈2 · s√
29
, 1− 3 · s√

29
, 5 + 4 · s√

29
〉

= 〈 2s√
29
, 1− 3s√

29
, 5 +

4s√
29
〉 �



272 Casual Calculus: A Friendly Student Companion (Volume 3)

EX 4 Find an arc length parameterization of r(t) = 〈cos t, sin t, 2t3/2/3〉
for t ≥ 0, and determine the location at which the curve accumu-

lates a total arc length of s = 14/3.

For this vector function, we have

r ′(t) =
〈
− sin t, cos t,

√
t
〉

|r ′(t)| =
√

sin2 t+ cos2 t+ t =
√

1 + t

On the interval [0, t], then, we find the general relation between s and t via

s =

∫ t

0

|r ′(τ)| dτ =

∫ t

0

√
1 + τ dτ =

2

3
(1 + τ)3/2

∣∣∣∣
t

0

=
2

3

(
(1 + t)3/2 − 1

)

Taking

s =
2

3

(
(1 + t)3/2 − 1

)

and solving for t,

(1 + t)3/2 =
3

2
s+ 1 ⇒ t =

(
3

2
s+ 1

)2/3

− 1

Substituting this expression for t back into the original vector function

r(t) = 〈cos t, sin t, 2t3/2/3〉, we get a very large expression of the form r(s) =

〈x(s), y(s), z(s)〉, where

x(s) = cos

((
3

2
s+ 1

)2/3

− 1

)
(17.6)

y(s) = sin

((
3

2
s+ 1

)2/3

− 1

)
(17.7)

z(s) =
2

3

[(
3

2
s+ 1

)2/3

− 1

]3/2
(17.8)

The appearance of r(s) is terrible! Sadly, the suite of vector functions which

have pleasant arc length parameter forms is quite limited. In fact, the suite

of vector functions for which it’s even possible to extract a closed form arc

length parameterization is relatively small.
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The utility of the arc length parameter version is, again, that in order

to find where we reach an arc length of, say, s = 14/3, we just plug in

s = 14/3 to the component functions of (17.6) to get r(14/3) = 〈x(14/3),

y(14/3), z(14/3)〉, where

x

(
14

3

)
= cos

((
3

2
· 14

3
+ 1

)2/3

− 1

)
= cos

(
(8)

2/3 − 1
)

= cos(3)

y

(
14

3

)
= sin

((
3

2
· 14

3
+ 1

)2/3

− 1

)
= sin

(
(8)

2/3 − 1
)

= sin(3)

z

(
14

3

)
=

2

3

[(
3

2
· 14

3
+ 1

)2/3

− 1

]3/2

=
2

3

[
(8)

2/3 − 1
]3/2

=
2

3
(3)3/2 = 2

√
3

So, assuming we started measuring arc length from s = 0 (i.e. the point

(1,0,0)), the curve achieves an arc length of s = 14/3 at the terminal point

of the vector
〈
cos(3), sin(3), 2

√
3
〉
, i.e. the point (cos(3), sin(3), 2

√
3). �

You Try It

(3) Find an arc length parameterization of the vector function in You

Try It 2, for t ≥ 0, , and determine the location at which the curve

accumulates a total arc length of s = 1.

Here is a messy, but nifty, fact that also makes arc length parameter-

ization special. An evolving story that began in EX 2 has shown us that

the vector function r(t) = 〈2 sin t, 2 cos t, t+ 1〉 can be reparameterized ac-

cording to an arc length parameter as

r(s) =

〈
2 sin

s√
5
, 2 cos

s√
5
,
s√
5

+ 1

〉

Back in Eq. (17.3), we happened to find that for this function,

|r ′(s)| = 1

That was awfully convenient for the subsequent calculation in (17.4). I won-

der if that was just a happy accident, or if there is more to it? Let’s investi-

gate by finding |r ′(s)| for the vector valued function that appeared first in
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EX 1, and was converted to its arc length parameterization in EX 3. That

arc length parameterized version of this function was:

r(s) =

〈
2s√
29
, 1− 3s√

29
t, 5 +

4s√
29

〉
(17.9)

Now, here’s a PRO TIP: if you’re ultimately looking for |r ′(s)|, you should

assemble |r ′(s)|2 first; this way, you’re not dragging around a big messy

square root term. Then, having built |r ′(s)|2, you can then reduce it to

|r ′(s)|. For the function in (17.9), we have:

r ′(s) =

〈
2√
29
,− 3√

29
,

4√
29

〉

so that

|r ′(s)|2 =

(
2√
29

)2

+

( −3√
29

)2

+

(
4√
29

)2

= 1

Then |r ′(s)|2 = 1 means |r ′(s)| = 1. Gosh. Are you ready to put some

money on a wager that vector functions parameterized by arc length al-

ways generate |r ′(s)| = 1? Maybe we should try a few more just to build

confidence.

EX 5 Revisit the vector valued function from EX 4 and find a general

expression for |r ′(s)|.

This arc length parameterized version of this vector function is really nasty.

I debated whether to be mean and give this one to you as a You Try It, but

decided to be nice and do it myself. Here we go. Let’s take the arc length

parameterized vector function in Eq. (17.6) and name each component func-

tion as r1(s), r2(s), r3(s) respectively. Then, with a little simplification done

behind the scenes,

r1(s) = cos

((
3

2
s+ 1

)2/3

− 1

)

r′1(s) = −
(

3

2
s+ 1

)−1/3
sin

((
3

2
s+ 1

)2/3

− 1

)

(r′1(s))2 =

(
3

2
s+ 1

)−2/3
sin2

((
3

2
s+ 1

)2/3

− 1

)
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and

r2(s) = sin

((
3

2
s+ 1

)2/3

− 1

)

r′2(s) =

(
3

2
s+ 1

)−1/3
cos

((
3

2
s+ 1

)2/3

− 1

)

(r′2(s))2 =

(
3

2
s+ 1

)−2/3
cos2

((
3

2
s+ 1

)2/3

− 1

)

and

r3(s) =
2

3

[(
3

2
s+ 1

)2/3

− 1

]3/2

r′1(s) =

(
3

2
s+ 1

)−1/3 [(
3

2
s+ 1

)2/3

− 1

]1/2

(r′1(s))2 =

(
3

2
s+ 1

)−2/3 [(
3

2
s+ 1

)2/3

− 1

]
= 1−

(
3

2
s+ 1

)−2/3

so that |r ′(s)|2 = r21(s) + r22(s) + r23(s) expands as:

(
3

2
s + 1)

−2/3
sin2

((
3

2
s+ 1

)2/3

− 1

)

+

(
3

2
s+ 1

)−2/3
cos2

((
3

2
s+ 1

)2/3

− 1

)
+ 1−

(
3

2
s+ 1

)−2/3

=

(
3

2
s+ 1

)−2/3
+ 1−

(
3

2
s+ 1

)−2/3
= 1

And since |r ′(s)|2 = 1, then of course, |r ′(s)| = 1. Hey, this is fun! Without

formal proof, let’s pose the fact that our evidence has been leading towards:

Useful Fact 17.1. If r(s) is the arc length parameterized representation

of a vector valued function, then it will satisfy |r ′(s)| = 1. Conversely, if

you determine that |r ′(s)| = 1 for a particular representation of a vector

function, then you know the parameter involved is the arc length parameter.

Further, at any location on the curve, the vector r ′′(s) is perpendicular to

the vector r ′(s).
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We have not conclusively proven that |r ′(s)| = 1, but we can use that

relation to develop further information. Since |r ′(s)|2 = r ′(s) · r ′(s), then

|r ′(s)| = 1 means r ′(s) · r ′(s) = 1. Finding the derivative of both sides

with respect to s (using Useful Fact 16.10) gives:

d

ds
(r ′(s) · r ′(s)) =

d

ds
(1)

r ′(s) · r ′′(s) + r ′′(s) · r ′(s) = 0

2r ′(s) · r ′′(s) = 0

r ′(s) · r ′′(s) = 0

But r ′(s) · r ′′(s) = 0 means that r ′′(s) is perpendicular to r ′(s).

You Try It

(4) Revisit the vector function from You Try It 2 and You Try It 3,

and confirm that |r ′(s)| = 1.
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Arc Length and Parameterization — Problem List

Arc Length and Parameterization — You Try It

These appeared above; solutions begin on the next page.

(1) Find the arc length of of r(t) = 〈t2/2, t3/3〉 for 0 ≤ t ≤ 4.

(2) Find the arc length of r(t) = 〈sin(2t), 2t, cos(2t)〉 for 0 ≤ t ≤ π.

(3) Find an arc length parameterization of the vector function in You Try It

2, for t ≥ 0, and determine the location at which the curve accumulates

a total arc length of s = 1.

(4) Revisit the vector function from You Try It 2 and You Try It 3, and

confirm that |r ′(s)| = 1.

Arc Length and Parameterization — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.5.1.

(1) Find the arc length of r(t) = 〈
√

2t, et, e−t〉 for 0 ≤ t ≤ 1. (Hint: When

you create |r ′(t)| =
√
g(t), the function g(t) will be a perfect square!

Really!)

(2) Find the arc length of t r(t) = 〈t2, 2t, ln t〉 for 1 ≤ t ≤ e. (Hint: When

you create |r ′(t)| =
√
g(t), the function g(t) will be a perfect square!

Really!)

(3) Find an arc length parameterization of the vector function in You Try It

1. for t ≥ 0, and determine the location at which the curve accumulates

a total arc length of s = 2.

(4) Revisit the vector function from You Try It 1 and Practice Problem 3,

and confirm that |r ′(s)| = 1.

Arc Length and Parameterization — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.5.1.

(1) Find the arc length of of r(t) = 〈t2, sin t − t cos t, cos t + t sin t〉 for

0 ≤ t ≤ π.

(2) Find the arc length (use computational aid to estimate it, if needed) of

the segment of y = x3 from (−1, 1) to (1, 1). (Hint: Can you parame-

terize this curve?)
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(3) Find an arc length parameterization of r(t) = 〈sin 2t, 2t3/2/3, cos 2t〉
for t ≥ 0, and determine the location at which the curve accumulates

a total arc length of s = 1.

Arc Length Parameterization — You Try It — Solved

(1) Find the arc length of of r(t) = 〈t2/2, t3/3〉 for 0 ≤ t ≤ 4.

� First, build:

r ′(t) = 〈t, t2〉
|r ′(t)| =

√
t2 + t4 = t

√
1 + t2

So that

L =

∫ 4

0

|r ′(t)| dt =

∫ 4

0

t
√

1 + t2 dt =
1

3
(1+ t2)3/2

∣∣∣∣
4

0

=
1

3
(173/2−1) �

(2) Find the arc length of r(t) = 〈sin(2t), 2t, cos(2t)〉 for 0 ≤ t ≤ π.

� First, build:

r ′(t) = < 2 cos 2t, 2,−2 sin 2t >

|r ′(t)| =
√

4 cos2 2t+ 4 + 4 sin2 2t =
√

8 = 2
√

2

So that

L =

∫ π

0

|r ′(t)| dt =

∫ π

0

2
√

2 dt = 2π
√

2 �

(3) Find an arc length parameterization of the vector function in You Try It

2, for t ≥ 0, and determine the location at which the curve accumulates

a total arc length of s = 1.

� Picking up You Try It 2, the arc length of r(t) = 〈sin(2t), 2t, cos(2t)〉
at any t is

s =

∫ t

0

|r ′(τ)| dτ =

∫ t

0

2
√

2 dτ = 2
√

2 t

Then since s = 2
√

2 t, we have t = s/(2
√

2), and so

r(s) =

〈
sin

s√
2
,
s√
2
, cos

s√
2

〉

This is the arc length parameterized version of the vector function. To

now find where we accumulate an arc length of 1, we look for r(1):

r(1) =

〈
sin

1√
2
,

1√
2
, cos

1√
2

〉
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Well, those aren’t attractive coordinates for our location, but what are

you gonna do? �

(4) Revisit the vector function from You Try It 2 and You Try It 3, and

confirm that |r ′(s)| = 1.

� The arc length parameterized version of this vector function is

r(s) =

〈
sin

s√
2
,
s√
2
, cos

s√
2

〉

from which we get

r ′(s) =

〈
1√
2

cos
s√
2
,

1√
2
,− 1√

2
sin

s√
2

〉

and then

|r ′(s)|2 =
1

2
cos2

s√
2

+
1

2
+

1

2
sin2 s√

2
=

1

2
+

1

2
= 1

Since |r ′(s)|2 = 1, then |r ′(s)| = 1. It works! �
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17.2 Contours, Orientation, and Pointers

Introduction

With the ability to draw curves through two and three-dimensional space

comes the need to develop tools to analyze those curves. This involves

some new terminology, development of vectors that give a framework to the

curve (a la tangent lines for functions), and a way to describe positional

orientation. If you have taken a physics class and solved problems that

involved falling objects, you are familiar with the need to assign ahead

of time the direction in which acceleration will be considered positive. We

have to make similar decisions when moving along curves. With assignment

of positive and negative orientation several “navigation” tools that help us

analyze vector curves.

Contours and Orientation

We generally assume that the initial point of a vector function r(t) is held

fixed at the origin while the terminal point is free to move in space as the

parameter t sweeps through the values in some domain, a ≤ t ≤ b. Whether

in two or three dimensions, we can think of that terminal point as a pen

that draws out a curve, or contour, in space. Contours have several de-

scriptors associated with them.

A contour can be open or closed. A closed contour is one that

starts and ends at the same point in space, such as a circle or an ellipse.

A contour is open if it’s not closed.1 For example, the vector function

r(t) = 〈cos t, sin t〉 for 0 ≤ t ≤ π is an open contour (remember, it’s the

upper half of the unit circle).

A contour can be formed with multiple segments, each of which has

its own vector function. Imagine drawing the triangle connecting the three

points (0, 0), (2, 0), and (0, 2). This is a single closed contour, but we would

have to specify three different vector functions to collectively describe the

three sides of the triangle, and the parametric equations that could create

this particular contour are certainly not unique.

1Why make definitions more complicated than they need to be?
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A contour is piecewise smooth if it does not have breaks, jumps, etc.

The triangle just mentioned is piecewise smooth. There are corners at each

junction between sides, but each individual “piece” is smooth. There is

a deeper definition for smoothness that involves derivatives of the vector

functions, but the loose definition will do for now.

A contour is simple if it does not intersect itself. A circle is simple, a

figure-eight is not.

When dealing with vector functions and contours, we must make a dis-

tinction between direction and orientation. From our previous expe-

rience, we already know vector functions have direction associated with

them. The direction of a contour is inherited from its parametric equation

and domain (such as a ≤ t ≤ b) specified for the parameter. The direction

of the contour arises from the order in which we encounter points as we

move from the location marked by t = a to the location marked by t = b.

For example, the vector function r(t) = 〈cos t, sin t〉 with 0 ≤ t ≤ 2π estab-

lishes that we begin at (1, 0) (where t = 0), go counterclockwise around the

circle, and end again back at (1, 0) (where t = 2π).

On the other hand, the orientation of a contour is a property that is

assigned as either positive or negative; this assignment is often only given

for closed contours, or contours that could be closed if followed in a pre-

dictable trajectory. The usual convention is that traversal of the contour

in a counterclockwise direction corresponds to positive orientation.

If we strengthen the description of the triangular contour given above

to be, “a triangle connecting the three points (0, 0), (2, 0), and (0, 2), with

positive orientation” then we now know we are supposed to move around

the triangle in a counterclockwise direction, and this helps us design proper

parametric equations for each segment of the contour.

If the idea of visualizing directions as clockwise or counterclockwise

isn’t appealing, we can define positive orientation in a different way, at

least for simple closed contours. A simple closed contour r(t) will surround

a 2D region; if the captured region is always to the left of a pencil that is

drawing the contour in the direction specified by increasing t, the contour

is positively oriented.
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EX 1 Determine parametric equations and bounds for t (a ≤ t < b) that

will give us the unit circle, starting and ending at (0, 1), oriented

negatively.

Since we’re making a circle, let’s set the domain for t as 0 ≤ t < 2π.

Therefore we must be at (0, 1) when t = 0, go around the circle clockwise,

and be back at (0, 1) when t = 2π (technically we do not mark the point

at t = 2π). The equations

x(t) = sin(t)

y(t) = cos(t)

will put us at (0, 1) for both t = 0 and t = 2π. And, when t = π/2, we

are at the point (sin(π/2), cos(π/2)) = (1, 0). If we continue through other

“easy” markers set by t, we see that we traverse the curve from (0, 1), then

through (1, 0), (0,−1), (−1, 0), and back to (0, 1). This is clockwise. Or

equivalently, if we are looking forward from a pencil drawing this curve,

the interior of the circle is to the right. Either way, we have determined

negative orientation. The vector function that gives the prescribed contour

and direction is indeed r(t) = 〈sin t, cos t〉 for 0 ≤ t ≤ 2π. �

You Try It

(1) Determine parametric equations and bounds for t (a ≤ t < b) that

will give us the unit circle, starting and ending at (−1, 0), oriented

negatively.

(2) Determine parametric equations and bounds for t (a ≤ t < b) that

will give us the unit circle, starting and ending at (1, 0), oriented

negatively.

Note that the domains for t given in YTI 1 and YTI 2 here are requested

as a ≤ t < b; since the contours are closed circles, we are trying not to mark

the same (starting and ending) point twice. However, there is no harm in

marking that point twice, and so specifying these domains as a ≤ t ≤ b.

Pointers: T and N

Contours can represent the path of a moving object, or flowlines of fluid,

heat, or electrostatic charge. It is often useful to have vectors acting as

“navigational aids” along a contour, which point us in directions tangent

to (i.e. forwards along) and perpendicular (i.e. normal) to the contour.
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But what’s better than just any old vectors tangent or normal to a con-

tour? Why, unit vectors tangent or perpendicular to the contour!

If we are lucky enough to have a contour r(s) parameterized by arc

length, then we know from Sec. 17.1 that r ′(s) is always tangent to the

contour at any point, and r ′′(s) is always perpendicular to the contour.

But the gold standard here is to have unit vectors tangent and normal to

the contour We already happen to know that |r ′(s)| = 1, so if we designate

by T(s) a vector function which produces a unit vector tangent to r(s) at

any point, then T(s) = r ′(s).

Here’s the tricky bit: since r ′(s) is already a unit vector, is r ′′(s) also

necessarily a unit vector? The answer is no. The vector function r ′′(s) is

not guaranteed to produce unit vectors; in fact, we use |r ′′(s)| to define a

property of contours called curvature, and we’ll explore that more in the

next section. For now, at least, we can pose the following result:

Definition 17.2. If r(s) is an arc length parameterized vector function

with differentiable components, then unit tangent and unit normal vector

functions, T(s) and N(s), are defined by

T(s) = r ′(s) and N(s) =
r ′′(s)
|r ′′(s)| (17.10)

As we know by now, our vector functions are often parameterized by

t (time?) rather than arc length, and determining the corresponding arc

length version is not always feasible or recommended. So, given a generic

r(t), let’s designate as T(t) and N(t) the corresponding unit tangent and

unit normal vector functions. You might imagine that these are a bit

messier, and you’d be right. At any point on r(t), we know r ′(t) is tan-

gent to the contour, pointing in the direction of motion. Therefore a unit

tangent vector function is given by:

T(t) =
r ′(t)
|r ′(t)| =

r ′(t)
ds

(17.11)

EX 2 Find a unit vector tangent for r(t) = 〈6t5, 4t3, 2t〉 at t = 1.

We have

r ′(t) = 〈30t4, 12t2, 2〉
r ′(1) = 〈30, 12, 2〉
|r ′(1)| =

√
302 + 122 + 4 =

√
1048 = 2

√
262
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so that

T(1) =
r ′(1)

|r ′(1)| =

〈
15√
262

,
6√
262

,
1√
262

〉
�

An alternate way to proceed through this calculation would be to build a

general expression for T(t) and wait until the last step to plug in t = 1.

That calculation goes like this:

r ′(t) = 〈30t4, 12t2, 2〉
|r ′(t)| =

√
900t8 + 144t4 + 4

So that

T(t) =
r ′(t)
|r ′(t)| =

〈30t4, 12t2, 2〉√
900t8 + 144t4 + 4

and specifically,

T(1) =
〈30(1)4, 12(1)2, 2〉√

900(1)8 + 144(1)4 + 4
=

〈
15√
262

,
6√
262

,
1√
262

〉

I think you’ll agree the first method is preferable. The story here is to be

very aware of when you can stop and plug in a specific value for t rather

than carrying on with a general formula. This theme will be repeated in

other examples below. �

You Try It

(3) Find the unit tangent vector T for r(t) = (4t3/2/3)i + t2j + tk at

t = 1.

(4) Find the unit tangent vector T for r(t) = 2 sin ti+2 cos tj+(sin t−
cos t)k at t = 3π/4.

For the unit normal vector, we’ll start with the 2D case, since that can

be handled in a relatively painless way. Given r(t) = 〈x(t), y(t)〉, where

x(t) and y(t) are both differentiable, the vector 〈x′(t), y′(t)〉 is tangent to

the contour at any point. Our job is now to find a vector perpendicular to

〈x′(t), y′(t)〉. That is, we need to find a new vector 〈A,B〉 such that

〈A,B〉 · 〈x′(t), y′(t)〉 = Ax′(t) +By′(t) = 0

Now, we could go through all sorts of geometric and algebraic shenanigans

to find A and B ... or, we can just be clever. What if A = y′(t) and

B = −x′(t)? Then we have

〈A,B〉 · 〈x′(t), y′(t)〉 = 〈y′(t),−x′(t)〉 · 〈x′(t), y′(t)〉
= y′(t)x′(t)− x′(t)y′(t) = 0
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And there we go! At a given point on a 2D contour, 〈x′(t), y′(t)〉 is tangent

to the contour and 〈y′(t),−x′(t)〉 is perpendicular to the contour. (Note

that neither of these are necessarily unit vectors.) While 〈x′(t), y′(t)〉 is

already known as r ′(t), let’s name 〈y′(t),−x′(t)〉 as r ′(t)⊥ — where the

superscript ⊥ is there to remind us that this vector is perpendicular to

r ′(t) (and so is also perpendicular to T(t)). A fun fact about r ′(t)⊥ is that

it can be tied to the arc length parameter as follows:

|r ′(t)⊥| =
√

(y′(t))2 + (−x′(t))2 =
√

(x′(t))2 + (y′(t))2 = ds

Now, let’s ask again: what’s even better than a generic vector perpen-

dicular to a contour? We find this as:

N(t) =
r ′(t)⊥

|r ′(t)⊥| =
r ′(t)⊥

ds
(2D only) (17.12)

EX 3 Find T and N for the contour r(t) = 〈2t2, t〉 at (2, 1).

Note that the point (2, 1) corresponds to t = 1. In general we have r ′(t) =

〈x′(t), y′(t)〉 and r ′(t)⊥ = 〈y′(t),−x′(t)〉, so for this function specifically,

we have r ′(t) = 〈4t, 1〉 and r ′(t)⊥ = 〈1,−4t〉. At t = 1, then,

r ′(1) = 〈x′(1), y′(1)〉 = 〈4, 1〉
r ′(1)⊥ = 〈y′(1),−x′(1)〉 = 〈1,−4〉
ds =

√
x′(1)2 + y′(1)2 =

√
42 + 12 =

√
17

and so, using (17.11) and (17.12),

T(1) =
r ′(t)
ds

=
〈4, 1〉√

17
=

1√
17
〈4, 1〉

N(1) =
r ′(t)⊥

ds
=
〈1,−4〉√

17
=

1√
17
〈1,−4〉

As a sort of “quality assurance” check, we can confirm that |T(1)| = 1,

|N(1)| = 1, and T(1) ·N(1) = 0. �

You Try It

(5) Find T and N for the contour r(t) = 〈cos t, sin t〉 at t = π/4.

To express N(t) in the general case (whether 2D or 3D), consider this:

from the relation between dot product and length, we know that

T(t) ·T(t) = |T(t)|2
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But since T(t) is always a unit vector, then |T(t)| = 1 and so we have

T(t) ·T(t) = 1

If we find the derivative of both sides of this expression with respect to t

using the vector function dot product from the end of Sec. 16.3,

d

dt
T(t) ·T(t) =

d

dt
1

T ′(t) ·T(t) + T(t) ·T ′(t) = 0

T(t) ·T ′(t) = 0

and the result T(t) ·T ′(t) = 0 means that T ′(t) is perpendicular to T(t),

and so normal to r(t). This is the vector we’re after. While T ′(t) itself is

not a unit vector, we know what to do to form the unit normal vector:

N(t) =
T ′(t)
|T ′(t)| (17.13)

It bears mentioning that there is a subtle implication in this expression

for N(t). It’s easy to presume that because T(t) represents a unit vector,

then T ′(t) will be a unit vector too. But that’s not true — T ′(t) is not

necessarily a unit vector, and we have to account for that when finding

N(t).

EX 4 Determine T and N for the helix r(t) = 〈3 cos t, 3 sin t, 4t〉 at the

point (0, 3, 2π).

Note that the point (0, 3, 2π) corresponds to t = π/2. In problems like this,

it pays to be alert to when it’s either helpful or dangerous to plug in the

specific value t = π/2. Because we have to carry this calculation all the

way to a specific value of N(t), we are going to need a general expression

for T ′(t). That hurts. But even so, we can be strategic.

To discover T(π/2), we’ll first need this cascade of items:

r ′(t) = 〈−3 sin t, 3 cos t, 4〉
|r ′(t)| =

√
9 sin2 t+ 9 cos2 t+ 16 =

√
25 = 5

T(t) =
r ′(t)
|r ′(t)| =

1

5
〈−3 sin t, 3 cos t, 4〉
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With this general expression for T(t), we can stop and find specifically that

T
(π

2

)
=

1

5
〈3, 0, 4〉 =

〈
3

5
, 0,

4

5

〉

(As a quick check, we should confirm that this vector is indeed a unit vec-

tor. Is it?)

Allow me to pause for a quick strategy session: had this example asked

us to calculate only T(π/2), we would not have needed the full expression

for T(t); rather, we could get away with finding the full expression for

r ′(t), so that we could compute the specific vector r ′(π/2) and then also

|r ′(π/2)|, which together form T(π/2). But since this example asks us to

continue and find N(π/2), then we have to have a general expression for

T(t) and then also T ′(t).

Carrying on, then, we have the general expression

T(t) =
1

5
〈−3 sin t, 3 cos t, 4〉

from which we determine

T ′(t) =
1

5
〈−3 cos t,−3 sin t, 0〉

Now it’s safe to deal with t = π/2 specifically. We have:

T ′
(π

2

)
=

1

5

〈
−3 cos

π

2
,−3 sin

π

2
, 0
〉

=
1

5
〈0,−3, 0〉 =

〈
0,−3

5
, 0

〉

so that
∣∣∣T ′

(π
2

)∣∣∣ =
3

5

and together,

N
(π

2

)
=

T ′(π/2)

|T ′(π/2)| =
〈0,−3/5, 0〉

3/5
= 〈0,−1, 0〉

In summary, we have:

T
(π

2

)
=

〈
3

5
, 0,

4

5

〉

N
(π

2

)
= 〈0,−1, 0〉

For quality assurance purposes, we can confirm that each is a unit vector,

and they are all mutually perpendicular, as they should be. �
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Now, it just so happens that there is a third vector which, along with

T and N, completes a nice triplet of unit reference vectors which are all

mutually perpendicular in three dimensions ... a lot like the coordinate

axes! This third vector is called the binormal vector, B, and we’ll see it in

the next section.

You Try It

(4) Determine T and N for r(t) = 〈et, et sin t, et cos t〉 at the point

(1,0,1). Can you demonstrate some quality assurance about your

results?

Contours, Orientation, and Pointers — Problem List

Contours, Orientation, and Pointers — You Try It

These appeared above; solutions begin on the next page.

(1) Determine parametric equations and bounds for t (a ≤ t < b) that will

give us the unit circle, starting and ending at (0, 1), oriented negatively.

(2) Determine parametric equations and bounds for t (a ≤ t < b) that

will give us the unit circle, starting and ending at (−1, 0), oriented

negatively.

(3) Find the unit tangent vector T for r(t) =
4

3
t3/2i + t2j + tk at t = 1.

(4) Find the unit tangent vector T for r(t) = 2 sin ti+2 cos tj+(sin t−cos t)k

at t = 3π/4.

(5) Find T and N for the contour r(t) = 〈cos t, sin t〉 at t = π/4.

(6) Determine T and N for r(t) = 〈et, et sin t, et cos t〉 at the point (1,0,1).

Can you demonstrate some quality assurance about your results?

Contours, Orientation, and Pointers — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.5.2.

(1) Determine parametric equations and bounds for t (a ≤ t < b) that will

give us an ellipse containing points (2, 0) and (0, 3), oriented positively.

(2) Determine parametric equations and bounds for t (a ≤ t < b) that will

give us an ellipse containing points (4, 0) and (0, 3), oriented negatively.

(3) Find T and N for the contour r(t) = 〈2t2, t〉 at (2, 1).
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(4) Find the unit tangent vector T and unit normal vector N for r(t) =

〈2e−t, e−2t, t〉 at t = 0. Can you demonstrate some quality assurance

about your results?

(5) Find the unit normal vector N for r(t) = (4t3/2/3)i + t2j + tk at t = 1.

(Hint: Has T been calculated elsewhere?)

(6) Find the unit tangent vector T and unit normal vector N for r(t) =

〈cos t+ t sin t, sin t− t cos t, 1〉 at the point (1, 0, 1).

Contours, Orientation, and Pointers — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.5.2.

(1) The orbital path of a comet follows the vector function r(t) =

〈cosh t, sinh t〉. Two aliens riding on the comet decide to jump off be-

fore the comet gets close to Earth, because right now, Earth is a pretty

dumb place to be. They both leap at t = ln 2; one leaps off in the

direction of T, and one leaps off in the direction of N. If they fly away

in straight lines, find the vector equations of those lines. (This identity

might be useful: sinh2 t+ cosh2 t = cosh(2t).)

(2) Determine T and N for r(t) = 〈t2, 2t3/3, t〉 at the point (1, 2/3, 1). Can

you demonstrate some quality assurance about your results?

(3) A track where horses race is in the shape of the ellipse r(t) =

〈3 cos t, 2 sin t〉 (for 0 ≤ t ≤ 2π). The coordinate system is centered at

the beer tent in the center of the lawn inside the racetrack. One par-

ticularly moody horse decides enough is enough, and when he reaches

the spot on the track marked by t = π/4, he breaks off the track and

runs away in a direction perfectly tangent to his original path on the

track. So:

(a) What are the coordinates at which he crosses the y-axis and es-

capes to freedom?

(b) If a gust of wind adds an acceleration vector of 〈0, 10〉 to aid the

horse, what is the component of that acceleration vector in the

(tangent) direction of escape?
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Contours, Orientation, and Pointers — You Try It —

Solved

(1) Determine parametric equations and bounds for t (a ≤ t < b) that will

give us the unit circle, starting and ending at (0, 1), oriented negatively.

� The component functions will be a combination of sin t and cos t.

For negative orientation, we must go around the circle in a clockwise

direction. So after starting at (0, 1), we need to have x increase from

0 and y decrease from 1. Setting r(t) = 〈sin t, cos t〉 for 0 ≤ t < 2π

accomplishes this, and we go around the unit circle as follows:

(0, 1)t=0 → (1, 0)t=π/2 → (0,−1)t=π → (−1, 0)t=3π2 → (0, 1)t=2π

FFT: This answer is not unique. Can you think of another com-

bination of parametric equations with bounds on t which do the job?

�

(2) Determine parametric equations and bounds for t (a ≤ t < b) that

will give us the unit circle, starting and ending at (−1, 0), oriented

negatively.

� The component functions will be a combination of sin t and cos t.

For negative orientation, we must go around the circle in a clockwise

direction. So after starting at (−1, 0), we need to have x increase from

−1 and y increase from 0. Setting r(t) = 〈sin t, cos t〉 for −π/2 ≤ t ≤
3π/2 accomplishes this, and we go around the unit circle as follows:

(−1, 0)t=−π/2 → (0, 1)t=0 → (1, 0)t=π/2 → (0,−1)t=π →→ (−1, 0)t=3π/2

FFT: This answer is not unique. Can you think of another combi-

nation of parametric equations with bounds on t which works as well?

�

(3) Find T and N for the contour r(t) = 〈cos t, sin t〉 at t = π/4.

� Note that this is just the unit circle at the halfway mark through

the first quadrant; so, we already know that a tangent vector here will

be 〈−1, 1〉 and so the unit tangent vector is

T
(π

4

)
= 〈− 1√

2
,

1√
2
〉

Similarly, a normal vector will be 〈1, 1〉, and the unit normal vector is

N
(π

4

)
= 〈 1√

2
,

1√
2
〉
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But, we should confirm this through the general expressions (17.11)

and (17.12).

Since r ′(t) = 〈x′(t), y′(t)〉 = 〈− sin t, cos t〉 then

ds =
√

(− sin t)2 + (cos t)2 = 1

and so

T(t) =
r ′(t)
ds

=
〈− sin t, cos t〉

1
= 〈− sin t, cos t〉

T
(π

4

)
= 〈− sin

π

4
, cos

π

4
〉 = 〈− 1√

2
,

1√
2
〉

Since r ′(t)⊥ = 〈y′(t),−x′(t)〉 = 〈cos t, sin t〉 and ds = 1, we have

N(t) =
r ′(t)⊥

ds
=
〈cos t, sin t〉

1
= 〈cos t, sin t〉

N
(π

4

)
= 〈cos

π

4
, sin

π

4
〉 = 〈 1√

2
,

1√
2
〉

And our suspicions were confirmed. �

(4) Find the unit tangent vector T(t) for r(t) = (4t3/2/3)i + t2j + tk at

t = 1.

� The building blocks of T(1) are:

r ′(t) = 2
√
ti + 2tj + k

r ′(1) = 2i + 2j + k

|r ′(1)| =
√

4 + 4 + 1 = 3

So that

T(1) =
r ′(1)

|r ′(1)| =
2

3
i +

2

3
j +

1

3
k �

(5) Find the unit tangent vector T for r(t) = 2 sin ti+2 cos tj+(sin t−cos t)k

at t = 3π/4.

� The building blocks of T(3π/4) are:

r ′(t) = 2 cos ti− 2 sin tj + (cos t− sin t)k

r ′
(

3π

4

)
= −
√

2i−
√

2j + 0k

∣∣∣∣r ′
(

3π

4

)∣∣∣∣ =
√

2 + 2 + 0 = 2
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So that

T

(
3π

4

)
=

r ′(3π/4)

|r ′(3π/4)| = −
√

2

2
i−
√

2

2
j + 0k �

(6) Determine T and N for r(t) = 〈et, et sin t, et cos t〉 at the point (1,0,1).

Can you demonstrate some quality assurance about your results?

� Note that the given point corresponds to t = 0. The computation

of T, N, and B proceeds through the following cascade of results. Pay

close attention to when we need a full blown expression and when it’s

OK to stop and plug in constants:

r ′(t) = 〈et, et(cos t+ sin t), et(cos t− sin t)〉
|r ′(t)| =

√
3et (tedious details went on behind the scenes)

T(t) =
r ′(t)
|r ′(t)| =

1√
3
〈1, cos t+ sin t, cos t− sin t〉

→ T(0) =
1√
3
〈1, 1, 1〉

T ′(t) =
1√
3
〈0,− sin t+ cos t,− sin t− cos t〉

T ′(0) =
1√
3
〈0, 1,−1〉

|T ′(0)| =
√

2

3

→ N(0) =
T ′(0)

|T ′(0)| =
1√
2
〈0, 1,−1〉

Collecting our results, we have

T(0) =

〈
1√
3
,

1√
3
,

1√
3

〉
and N(0) =

〈
0,

1√
2
,− 1√

3

〉

As a double-check, we can confirm that |T(0)| = 1, |N(0)| = 1, and

T(0) ·N(0) = 0. �



We’ve Been Framed! 293

17.3 The Fresnet–Serret Frame

The unit vectors i, j, and k are super awesome vectors. They all have length

1, and they are all perpendicular to each other. They are so awesome that

they are the vectors we use to construct every other vector in R3 via

〈a, b, c〉 = a〈1, 0, 0〉+ b〈0, 1, 0〉+ c〈0, 0, 1〉 = ai + bj + ck

(this is called a linear combination of i, j, and k, for those of you en route

to taking Linear Algebra). This triplet of vectors forms our usual 3D co-

ordinate system: the vector i defines the x-axis, and j and k define the y-

and z-axes. Life without i, j, and k would be incredibly dull.

Having said that, well ... these three vectors aren’t so special. There

is an infinite number of sets of three vectors which are (a) all unit vectors,

and (b) perpendicular to each other. And in many applications, the coor-

dinate system specified by i, j, k might not be as useful to us as one of

the other triplets. Imagine you are in a car is going around a curve — like

an exit ramp — at a high (but safe!) rate of speed; you know that you

are acted on by forces as you go around the curve, this is why you end up

leaning to the side. At this instant, you are being “pushed” in a direction

perpendicular to your path of travel. So perhaps being able to examine the

components of your acceleration vector in this direction is more useful than

being able to examine the components of your acceleration vector relative

to some arbitrary coordinate axes which might have their origin who knows

where ... Cleveland?

In Sec. 17.2, we unlocked the method to resolve this. We learned how

to develop unit vectors tangent and normal to a path of motion. If we

can come up with one more vector, then we have a mini coordinate system

(i.e. a set of mutually perpendicular unit vectors) which travels with a

moving object along the path of motion. The missing vector is called the

“binormal” vector, and the resulting set of three mutually orthogonal unit

vectors is called the TNB-frame, or the Fresnet–Serret frame.

The TNB Frame (Fresnet–Serret Frame)

Given a vector function r(t), we would like to find a trio of mutually per-

pendicular unit vectors at any point along the contour. In Sec. 17.2, we

discovered how to form two of these:
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T(t) =
r ′(t)
|r ′(t)| , N(t) =

T ′(t)
|T ′(t)|

where T is a unit tangent vector and N is a unit normal vector. The third

vector which completes the set is simple to find. We need a third vector

which is perpendicular to the first two, and we already know that the cross

product of two vectors is perpendicular to both. And so, we introduce the

“binormal” vector,

B(t) = T(t)×N(t) (17.14)

FFT: You should be a bit skeptical about this ... sure, this vector

is going to be perpendicular to both T(t) and N(t), but are we sure it’s

a unit vector? The answer is yes, it is for sure a unit vector. You should

challenge yourself to figure out why, on your own.

Note that the computation of T(t), N(t) and B(t) must proceed in

order: we need T(t) to get N(t), and we need both T(t) and N(t) to get

B(t). You might also notice that these calculations have the potential to

get very ugly! As when finding just T and N in Sec. 17.2, be alert to when

you can jump out of computation of a general formula for any one of these

quantities, and instead consider only the needed values at a single point.

Here is a general guide:

(1) Calculate r ′(t) and |r ′(t)| in their full glory.

(2) Build the general expression for the unit tangent vector,

T(t) = r ′(t)/|r ′(t)|.
(3) Compute the derivative T ′(t). This will be the worst step by far.

(See the Useful Fact below about a product-rule type of process.)

(4) But at this point, we only need numerical computations. For the

specific value of t you are interested in, say t = a:

(a) From the general formulas, find r ′(a) and |r ′(a)|, and use

them to compute

T(a) =
r ′(a)

|r ′(a)|

(b) From the general formula, find T ′(a).

(c) From the previous step, then calculate |T ′(a)|.
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(d) Use the above two to build

N(a) =
T ′(a)

|T ′(a)|

(e) Having found T(a) and N(a), build

B(a) = T(a)×N(a)

In these first examples, a lot of the vectors we need have been found

already in other examples or problems.

EX 1 Determine the TNB-frame for the helix r(t) = 〈3 cos t, 3 sin t, 4t〉
at the point (0, 3, 2π).

Note that the point (0, 3, 2π) corresponds to t = π/2. We found T and N

at this point in EX 4 of Sec. 17.2:

T
(π

2

)
=

〈
3

5
, 0,

4

5

〉
, N

(π
2

)
= 〈0,−1, 0〉

And so, the only thing left to do is find B with (17.14):

B
(π

2

)
= T

(π
2

)
×N

(π
2

)
=

〈
3

5
, 0,

4

5

〉
× 〈0,−1, 0〉 =

〈
4

5
, 0,−3

5

〉

Quality assurance: we can confirm that T, N, and B are all unit vectors,

and they are all mutually perpendicular. �

EX 2 Determine the TNB-frame for r(t) = 〈t2, 2t3/3, t〉 at the point

(1, 2/3, 1).

Note that the given point corresponds to t = 1. We found T and N at this

point in CP 2 of Sec. 17.2:

T(1) =

〈
2

3
,

2

3
,

1

3

〉
and N(1) =

〈
−1

3
,

2

3
,−2

3

〉

And so, the only thing left to do is find B(1) with (17.14):

B(1) = T(1)×N(1) =

〈
2

3
,

2

3
,

1

3

〉
×
〈−1

3
,

2

3
,−2

3

〉
=

〈
−2

3
,

1

3
,

2

3

〉

Quality assurance: we can confirm that T, N, and B are all unit vectors,

and they are all mutually perpendicular. �



296 Casual Calculus: A Friendly Student Companion (Volume 3)

You Try It

(1) In YTI 3 and PP 5 of Sec. 17.2, we found the unit tangent and

normal vectors T and N for r(t) = (4t3/2/3)i + t2j + tk at t = 1.

Find the associated unit binormal vector, B.

(2) In YTI 5 of Sec. 17.2, we found the unit tangent vector T for

r(t) = 2 sin ti + 2 cos tj + (sin t − cos t)k at t = 3π/4. Only one of

the following vectors could be the unit normal there; choose it, and

then calculate the unit binormal vector B.

(a)

〈
3√
22
,

3√
22
,

2√
22

〉
(b)

〈
− 3√

22
,

3√
22
,− 2√

22

〉

(c)

〈
3√
22
,

3√
22
,− 2√

22

〉
(d)

〈
− 3√

22
,

3√
22
,

2√
22

〉

When finding a Fresnet–Serret frame from scratch, the worst step is

finding the derivative T ′(t), where T(t) = r ′(t)/|r ′(t)|. Since we can write

r(t) = 〈x(t), y(t), z(t)〉 and r ′(t) = 〈x′(t), y′(t), z′(t)〉, then we can think of

T(t) as having either of these forms:

T(t) =
1

|r ′(t)| 〈x
′(t), y′(t), z′(t)〉 or T(t) =

〈
x′(t)
|r ′(t)| ,

y′(t)
|r ′(t)| ,

z′(t)
|r ′(t)|

〉

In the latter form, finding T ′(t) requires three quotient rules, one for each

component. What sane person would want to do that? If we consider the

former version, finding T ′(t) is a bit easier if there is a product-rule type

of operation for the product of a scalar function with a vector function.

Luckily, there is!

Useful Fact 17.2. The derivative of a scalar function multiple of a vector

function can be found using a product rule construction; if β(t) is the scalar

multiple and r(t) = 〈f(t), g(t), h(t)〉 is the vector function, then

d

dt
(β(t)r(t)) = β ′(t)r(t) + β(t)r ′(t) (17.15)

or in more detail,

d

dt
β(t)〈f(t), g(t), h(t)〉 = β ′(t)〈f(t), g(t), h(t)〉+ β(t)〈f ′(t), g′(t), h′(t)〉

So, the derivative of

1

|r ′(t)| 〈x
′(t), y′(t), z′(t)〉

can be found using this Useful Fact by assigning β(t) = 1/|r ′(t)|.
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The relation (17.15) in Useful Fact 17.2 is another example of a familiar

scalar function derivative rule extended to include vector functions — for

comparison, see Useful Fact 16.10 in Sec. 16.3, and also Challenge Problem

4 in that same section. See Challenge Problem 4 in this section for your

chance to test your derivation skills on this new one.

You Try It

(3) Determine the complete TNB-frame for r(t) = 〈e−t, e−2t, 2t〉 at

t = 0.

Simple Velocity and Acceleration Problems

Suppose r(t) represents the position of a particle moving through space,

as a function of time t. Then you can guess that vector functions for the

velocity v(t) and acceleration a(t) of the moving particle are:

v(t) = r ′(t)

a(t) = v ′(t) = r ′′(t)

Thus, given a position function, it is easy to discover the velocity and

acceleration functions.

EX 3 Find the velocity and acceleration functions for the particle moving

according to r(t) = 〈t2 + 1, t3, t2 − 1〉. Does the particle move at a

constant speed?

For the position function r(t) = 〈t2 + 1, t3, t2− 1〉, the velocity function

is

v(t) = r ′(t) = 〈2t, 3t2, 2t〉

and acceleration is

a(t) = v ′(t) = 〈2, 6t, 2〉

Since speed is the magnitude of velocity, we have

s = |v(t)| =
√

9t4 + 8t2 = |t|
√

9t2 + 8

and so this particle does not move at constant speed. �
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You Try It

(4) Find the velocity and acceleration functions for the particle moving

according to r(t) = 〈2 cos t, 3t, 2 sin t〉. Does the particle move at a

constant speed?

We can also take a given acceleration function and determine the as-

sociated velocity and position functions — but only if we are given extra

data about the velocity and position of the particle. To go from accel-

eration to velocity to position requires antiderivatives, which come along

with arbitrary constants of integration; thus, we need data points or initial

conditions to pin down specific velocity and acceleration functions.

EX 4 Find the velocity and positions functions for a particle moving with

acceleration a(t) = 〈0, 0, 1〉, if we know that v(0) = 〈1,−1, 0〉 and

r(0) = 〈0, 0, 0〉.

We have a(t) = k = 〈0, 0, 1〉 with initial conditions v(0) = i− j = 〈1,−1, 0〉
and r(0) = 0 = 〈0, 0, 0〉. The velocity function can be found from the

acceleration function,

v(t) =

∫
a(t)dt =

∫
〈0, 0, 1〉 dt = 〈c1, c2, t+ c3〉

Since we know that v(0) = 〈1,−1, 0〉, we can get

v(0) = 〈c1, c2, c3〉 = 〈1,−1, 0〉
so that c1 = 1, c2 = −1, c3 = 0 and the specific velocity function is then

v(t) = 〈1,−1, t〉. Then, from this velocity function we can get the position

function,

r(t) =

∫
v(t)dt =

〈
t+ c1,−t+ c2,

1

2
t2 + c3

〉

The initial condition for position lets us find these new constants of inte-

gration:

r(0) = 〈c1, c2, c3〉 = 〈0, 0, 0〉
so that c1 = c2 = c3 = 0 and the specific position function is then

r(t) =

〈
t,−t, 1

2
t2
〉

�

You Try It

(5) Find the velocity and positions functions for a particle moving with

acceleration a(t) = −10k, if we know that v(0) = i + j − k and

r(0) = 2i + 3j.
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Tangential and Normal Components of Acceleration

When you take an exit ramp off a highway, the components of acceleration

that you feel as you go around the sharp curve are certainly not oriented

with respect to some arbitrary x- and y-axes set at the universal center

of coordinates. Rather, those forces (which are related to components of

your acceleration) are directed along and perpendicular to your direction

of motion. So, acceleration problems are often better solved by finding the

components of acceleration along directions that are tangential and normal

to the direction of motion. That is, we would like to find the components

of acceleration of a moving object along the vectors T(t) and N(t). These

components are called aT and aN , and the full acceleration function can

then be written

a(t) = aTT(t) + aNN(t)

Let’s find aT first by recognizing that aT is simply the scalar component

(projection) of a(t) onto T(t):

aT = compTa =
a(t) ·T(t)

|T(t)|
But remember that T(t) is a unit vector, and so |T(t)| = 1. Also remember

that a(t) = r ′′(t) and

T(t) =
r ′(t)
|r ′(t)|

so

aT = a(t) ·T(t) = r ′′(t) · r ′(t)
|r ′(t)|

or in another order,

aT =
r ′(t) · r ′′(t)
|r ′(t)|

To find aN , we simply must recognize that aT and aN are components of

a(t) in two perpendicular directions, and so they are the lengths of two legs

of a right triangle in which the vector a(t) itself is the hypotenuse:

The Pythagorean Theorem tells us that

aN =
√
|a(t)|2 − a2T

EX 5 Find the tangential and normal components of acceleration for

r(t) = (3t− t3)i + 3t2j, and interpret the results.
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r(t)

T

a T

N

a
N

a

x

y

Fig. 17.1 Tangential and normal components of an acceleration vector.

To find the tangential component of acceleration for r(t) = (3t− t3)i+3t2j,

we need:

r ′(t) = (3− 3t2)i + 6tj

|r ′(t)| =
√

(9− 18t2 + 9t4) + 36t2

=
√

9t4 + 18t2 + 9 =
√

(3t2 + 3)2 = 3(t2 + 1)

r ′′(t) = −6ti + 6j

r ′(t) · r ′′(t) = −6t(3− 3t2) + 6(6t) = 18t3 + 18t = 18t(t2 + 1)

so then

aT =
r ′(t) · r ′′(t)
|r ′(t)| =

18t(t2 + 1)

3(t2 + 1)
= 6t

To find the normal component of acceleration, we need |a(t)|2. Note that

a(t) = r ′′(t), which is found above; so,

a(t) = −6ti + 6j

|a(t)|2 = 36t2 + 36

so that

aN =
√
|a(t)|2 − a2T =

√
(36t2 + 36)− (6t)2 = 6

Together, then, we can write the acceleration vector as a(t) = 6tT(t) +

6N(t). This means that the component of acceleration normal (perpendic-

ular) to the direction of motion is constant, while the component tangent

to the direction of motion varies. �
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You Try It

(6) Find the tangential and normal components of acceleration for

r(t) = (1 + t)i + (t2 − 2t)j, and interpret the results.

The Straight Story on Curvature

With the TNB-frame (Fresnet–Serret frame) unlocked, we can start to take

a deeper look at characteristics of curves in space. Two of the primary prop-

erties of space curves are curvature and torsion. The curvature of curve at

a point tells us how sharply the curve bends in the plane of motion there.

The curvature at any point on a line is 0, while the curvature of a circle

is constant all around the circle, and is related to the radius. FFT:

Would you like to predict if a larger radius gives a larger or smaller curva-

ture? When you are riding the Tilt-A-Whirl at an amusement park,

you are very aware that your personal T changes a LOT as your absolute

position changes only slightly; you are experiencing a large curvature on

your path of motion. Torsion measures (somewhat) how much a curve is

bending out of the plane of motion; while curvature can be examined in

2D or 3D, torsion has meaning only in 3D.

The good news is that these properties can have relatively straightfor-

ward, although cumbersome, computational formulas. The bad news is that

they are simpler to examine when you have written your space curves with

arc length s as the parameter. (This is “bad news” because as we saw in

Sec. 17.1, we often have curves delivered with a parameter that represents

time t, for which generating an explicit arc length parameterization isn’t

always simple or even possible.)

What we can do, though, is start by assuming we have curves parame-

terized by arc length, develop information about curvature and torsion in

such cases, and then expand that information so that we can apply it to

any curve. The most fundamental definition of curvature is this:

Definition 17.3. Let r(s) be a vector function parameterized by arc length.

The curvature κ of r at any point is given by κ(s) = |r ′′(s)|.

This definition won’t be the one we normally use to compute curvature,

but it’s the one that sets the stage intuitively. As we know, r ′′(s) is the

rate of change of r ′(s). Now r ′(s) is a vector quantity, and so any change
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must be quantified by change in magnitude or direction. But, we know

that the magnitude of r ′(s) is |r ′(s)| = 1, which does not change. So any

“change” measured in r ′(s) must be a change in direction; therefore, |r ′′(s)|
measures how much the direction of tangent lines to r(s) are changing at a

given point. So in effect, we are indeed measuring how much the curve is

bending.

This gets even better: we know from Sec. 17.1 that r ′′(s) is perpendic-

ular to the contour at any point. So since our unit normal vectors N(s) are

perpendicular to the contour at a point, and so give the direction of r ′′(s),
and we have now established that κ(s) measures the magnitude of r ′′(s),
then together,

r ′′(s) = κ(s)N(s) (17.16)

Further, since our unit tangent vectors T(s) are given by T(s) = r ′(s),
then T ′(s) = r ′′(s), and so by (17.16),

T ′(s) = κ(s)N(s) (17.17)

It seems that curvature is tangled up with both our unit tangent and nor-

mal vectors.

Note that Eq. (17.17) emphasizes that T ′(s) is parallel to N(s). Simi-

larly, it’s true that B ′(s) is also parallel to N(s); the proof of this is given

below, in the Pit ! But we can use this fact to define torsion. Since B ′(s)
is parallel to N(s), then there is some function τ(s) for which we can write

B ′(s) = τ(s)N(s) (17.18)

which looks a lot like (17.17) in structure, and in fact, it helps define the

torsion τ(s) of our curve. So we can say that curvature is established via

T ′(s) = κ(s)N(s) and torsion is established via B ′(s) = τ(s)N(s). If

you’re really on your toes, you’ve seen Eqs. (17.17) and (17.18) and are

asking, “Well, if there are tidy expressions involving curvature and torsion

for T ′(s) and B ′(s), what about N ′(s)?” That’s a great question! We can

indeed generate such an expression, but it’s not as nice as the other two.

Because of their orientations relative to each other (as a right-hand-rule

triad), we have B = T ×N, T = N ×B, and N = B × T. Starting with

the latter, we can look for N ′(s):



We’ve Been Framed! 303

d

ds
N =

d

ds
B×T

= B ′ ×T + B×T ′

= (τN)×T + B× (κN)

= τ(N×T) + κ(B×N)

= τ(−B) + κ(−T)

or, finally,

N ′(s) = −κ(s)T(s)− τ(s)B(s) (17.19)

Equations (17.17), (17.18), and (17.19) together are often called the

Fresnet–Serret formulas,

T ′(s) = κ(s)N(s)

N ′(s) = −κ(s)T(s)− τ(s)B(s)

B ′(s) = τ(s)N(s)

If you find all this development intriguing, then once you are done with Mul-

tivariable Calculus and a good proof-based Linear Algebra course, head for

your nearest course in Differential Geometry.

At this point, though, you may be saying, “Come on, man, how are

we going to compute these things?” To get more useful formulas, we have

to switch from using arc length parameter s to the more generic t. The

defining expression κ(s) = r ′′(s) is equivalent to either of

κ(t) =
|T ′(t)|
|r ′(t)| or κ(t) =

|r ′(t)× r ′′(t)|
|r ′(t)|3 (17.20)

If we have already computed T(t) for a particular curve, then the first

formula in (17.20) is probably the one to go with. If we are starting the

curvature computation from scratch, then the second might be the most

efficient. FFT: Can you convert the arc length version κ(s) to either

of the more generic versions κ(t)?

Torsion is defined via

τ(t) =
(r ′(t)× r ′′(t)) · r ′′′(t)
|r ′(t)× r ′′(t)|2 (17.21)

There is not universal agreement on the signage of torsion, so in some

sources, the right side of (17.21) actually defines −τ(t).
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EX 6 Find the full curvature function κ(t) and torsion function τ(t) of

r(t) = 〈t2, 1, t〉.

For the curvature of r(t) = 〈t2, 1, t〉 we need:

r ′(t) = 〈2t, 0, 1〉
|r ′(t)| =

√
4t2 + 1

r ′′(t) = 〈2, 0, 0〉
r ′(t)× r ′′(t) = 〈0,−2, 0〉
|r ′(t)× r ′′(t)| = 2

so that

κ(t) =
|r ′(t)× r ′′(t)|
|r ′(t)|3 =

2

(4t2 + 1)3/2

To use Eq. (17.21) to compute torsion, we need the same functions r ′(t)
and r ′′(t), as well as r ′′′; but since r ′′(s) = 〈2, 0, 0〉, we have r ′′′ = 〈0, 0, 0〉.
The result of (17.21) is τ(t) = 0. This makes sense, since torsion is in-

herently a 3D quantity, and this curve — because of it’s constant second

component y(t) = 1, only has motion in a two-dimensional plane. �

You Try It

(7) Find the curvature function κ(t) of r(t) = 〈t, t, 1 + t2〉, and the

specific torsion τ(2).

Into the Pit! B ′(s) is Parallel to N(s)

Proving that B ′(s) is parallel to N(s) is equivalent to proving that B ′(s) is

perpendicular to T(s). Let’s start at the beginning, where B(s) = T(s)×
N(s). Then using the result of CP 4 in Sec. 16.3 (you did do that problem,

didn’t you?), we get

B ′(s) = T ′(s)×N(s) + T(s)×N ′(s)

We know that T ′(s) is parallel to N(s), as established in (17.17). So,

T ′(s)×N(s) = 0. Therefore, we now have simply,

B ′(s) = T(s)×N ′(s)
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Since B ′(s) is the result of the cross product between T(s) and another

vector, B ′(s) is perpendicular to T(s). But by definition, N(s) is also per-

pendicular to T(s). So B ′(s) is parallel to N(s).

Gosh, that wasn’t so bad, was it?

Fresnet–Serret Frame — Problem List

Fresnet–Serret Frame — You Try It

These appeared above; solutions begin on the next page.

(1) In YTI 4 and PP 5 of Sec. 17.2, we found the unit tangent and normal

vectors T and N for r(t) = (4t3/2/3)i + t2j + tk at t = 1. Find the

associated unit binormal vector, B.

(2) In YTI 5 of Sec. 17.2, we found the unit tangent vector T for r(t) =

2 sin ti+ 2 cos tj+ (sin t− cos t)k at t = 3π/4. Only one of the following

vectors could be the unit normal there; choose it, and then calculate

the unit binormal vector B.

(a)

〈
3√
22
,

3√
22
,

2√
22

〉
(b)

〈
− 3√

22
,

3√
22
,− 2√

22

〉

(c)

〈
3√
22
,

3√
22
,− 2√

22

〉
(d)

〈
− 3√

22
,

3√
22
,

2√
22

〉

(3) Determine the complete TNB-frame for r(t) = 〈e−t, 2et, 2t〉 at t = 0.

(4) Find the velocity and acceleration functions for the particle moving

according to r(t) = 〈2 cos t, 3t, 2 sin t〉. Does the particle move at a

constant speed?

(5) Find the velocity and positions functions for a particle moving with

acceleration a(t) = −10k, if we know that v(0) = i + j− k and r(0) =

2i + 3j.

(6) Find the tangential and normal components of acceleration for r(t) =

(1 + t)i + (t2 − 2t)j, and interpret the results.

(7) Find the curvature function κ(t) of r(t) = 〈t, t, 1 + t2〉, and the specific

torsion τ(2).

Fresnet–Serret Frame — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.5.3.



306 Casual Calculus: A Friendly Student Companion (Volume 3)

(1) Find the unit binormal vector B for r(t) = 〈et, et sin t, et cos t〉 at the

point (1,0,1). (Hint: Have T and N been calculated elsewhere?)

(2) Find the unit binormal vector B for r(t) = 〈cos t+t sin t, sin t−t cos t, 1〉
at the point (1, 0, 1). (Hint: Have T and N been calculated elsewhere?)

(3) Determine the complete TNB-frame for r(t) = 〈et, et sin t, et cos t〉 at

the point (eπ, 0, eπ). (Hint: A previously solved problem will be very

useful.)

(4) Find the velocity and acceleration functions for the particle moving

according to r(t) = 〈t2, ln t, t〉. Does the particle move at a constant

speed?

(5) Find the velocity and positions functions for a particle moving with

acceleration a(t) = ti + t2j + cos 2tk, if we know that v(0) = i + k and

r(0) = j.

(6) Find the tangential and normal components of acceleration for r(t) =

ti + t2j + 3tk.

(7) Find the curvature and torsion of r(t) = 〈et cos t, et sin t, t〉 at the point

(1,0,0).

Fresnet–Serret Frame — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.5.3.

(1) The shuttlecraft Galileo is lifting off from the planet Taurus 2 along the

path given by r(t) = 〈t5/5, 2t3/3, t〉 in the galactic coordinate system.

When at the point marked by t = 1, the shuttle launches a probe

in the direction of the binormal vector B(1). If the probe travels in

a straight line, it will cross through two of three galactic coordinate

planes (xy, xz, or yz). Which two planes will it cross, and at which

galactic coordinates?

(2) Find the tangential and normal components of acceleration for r(t) =

〈e−t cos t, e−t sin t〉 at t = π/4. (Hint: How can you rig up a cross

product involving vectors that are only two-dimensional?)

(3) Show that the curvature of a circle of radius a is κ = 1/a. What is the

torsion anywhere on this circle?

(4) (Bonus Time in the Pit !) Can you derive the relation (17.15) in Useful

Fact 17.2?
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The Fresnet–Serret Frame — You Try It — Solved

(1) In YTI 4 and PP 5 of Sec. 17.2, we found the unit tangent and normal

vectors T and N for r(t) = (4t3/2/3)i + t2j + tk at t = 1. Find the

associated unit binormal vector, B.

� In YTI 4 of the previous section, we found

T(1) =
2

3
i +

2

3
j +

1

3
k

In PP 5, we found:

N(1) = −1

3
i +

2

3
j− 2

3
k

The binormal vector follows immediately as:

B(1) = T(1)×N(1) =

(
2

3
i +

2

3
j +

1

3
k

)
×
(
−1

3
i +

2

3
j− 2

3
k

)

= −2

3
i +

1

3
j +

2

3
k

In summary, the entire TNB-frame for r(t) at t = 1 is

T(1) =
2

3
i +

2

3
j +

1

3
k

N(1) = −1

3
i +

2

3
j− 2

3
k

B(1) = −2

3
i +

1

3
j +

2

3
k �

(2) In YTI 5 of Sec. 17.2, we found the unit tangent vector T for r(t) =

2 sin ti+ 2 cos tj+ (sin t− cos t)k at t = 3π/4. Only one of the following

vectors could be the unit normal there; choose it, and then calculate

the unit binormal vector B.

(a)

〈
3√
22
,

3√
22
,

2√
22

〉
(b)

〈
− 3√

22
,

3√
22
,− 2√

22

〉

(c)

〈
3√
22
,

3√
22
,− 2√

22

〉
(d)

〈
− 3√

22
,

3√
22
,

2√
22

〉

� From YTI 5 in Sec. 17.2, we found

T

(
3π

4

)
= −
√

2

2
i−
√

2

2
j + 0k

We know that N(3π/4) must be a unit vector, and must also be per-

pendicular to T(3π/4). All of the candidate vectors in (a)–(d) are unit
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vectors, so that condition is no help at all. However, only the candidate

in (b) satisfies T(3π/4) ·N(3π/4) = 0. Therefore,

N

(
3π

4

)
= − 3√

22
i +

3√
22

j− 2√
22

k

So the completion of the TNB-frame for this function at the given

point is

B

(
3π

4

)
= T

(
3π

4

)
×N

(
3
π

4

)

=

(
−
√

2

2
i−
√

2

2
j + 0k

)
×
(
− 3√

22
i +

3√
22

j− 2√
22

k

)

= − 1√
11

i− 1√
11

j− 3√
11

k

(The details of the cross product took place behind the scenes.) A bit

of quality assurance: B is a unit vector and is perpendicular to both T

and N. �

(3) Determine the complete TNB-frame for r(t) = 〈e−t, 2et, 2t〉 at t = 0.

� Since r ′(t) = 〈−e−t, 2et, 2〉, then

|r ′(t)| =
√
e−2t + 4e2t + 4 =

√
(2et + e−t)2 = 2et + e−t

and our first result at t = 0 is:

r ′(0) = 〈−1, 2, 2〉
|r ′(0)| = 3

→ T(0) =

〈
−1

3
,

2

3
,

2

3

〉

We can also build the general expression

T(t) =
1

2et + e−t
〈−e−t, 2et, 2〉

from which we get

T ′(t) =
−(2et − e−t)
(2et + e−t)2

〈−e−t, 2et, 2〉+
1

2et + e−t
〈e−t, 2et, 0〉
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This is the final general expression we need, and now everything else

can be built specifically for t = 0:

T ′(0) = −1

9
〈−1, 2, 2〉+

1

3
〈1, 2, 0〉

=

〈
4

9
,

4

9
,−2

9

〉

|T ′(0)| =
√

36

81
=

2

3

→ N(0) =
T ′(0)

|T ′(0)| =

〈
2

3
,

2

3
,−1

3

〉

Finally,

B(0) = T(0)×N(0) =

〈
−1

3
,

2

3
,

2

3

〉
×
〈

2

3
,

2

3
,−1

3

〉
=

〈
−2

3
,

1

3
,−2

3

〉

Summarizing, the complete TNB-frame is:

T(0) =

〈
−1

3
,

2

3
,

2

3

〉

N(0) =

〈
2

3
,

2

3
,−1

3

〉

B(0) =

〈
−2

3
,

1

3
,−2

3

〉

Quality assurance: each of T(0),N(0),B(0) is a unit vector, and all

three are mutually perpendicular. �

(4) Find the velocity and acceleration functions for the particle moving

according to r(t) = 〈2 cos t, 3t, 2 sin t〉. Does the particle move at a

constant speed?

� For the position function r(t) = 〈2 cos t, 3t, 2 sin t〉, the velocity func-

tion is

v(t) = r ′(t) = 〈−2 sin t, 3, 2 cos t〉
and acceleration is

a(t) = v ′(t) = 〈−2 cos t, 0,−2 sin t〉
Since speed is the magnitude of velocity,

s = |v(t)| =
√

4 sin2 t+ 9 + 4 cos2 t =
√

13

and this particle does move at a constant speed. �
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(5) Find the velocity and positions functions for a particle moving with

acceleration a(t) = −10k, if we know that v(0) = i + j− k and r(0) =

2i + 3j.

� We have a(t) = −10k = 〈0, 0,−10〉 with initial conditions v(0) =

i + j − k = 〈1, 1,−1〉 and r(0) = 2i + 3j = 〈2, 3, 0〉. The velocity and

acceleration functions then come from antidifferentiation and resolution

of the constants of integration:

v(t) =

∫
a(t)dt = 〈c1, c2,−10t+ c3〉

v(0) = 〈c1, c2, c3〉 = 〈1, 1,−1〉
→ v(t) = 〈1, 1,−10t− 1〉

r(t) =

∫
v(t)dt = 〈t+ c1, t+ c2,−5t2 − t+ c3〉

r(0) = 〈c1, c2, c3〉 = 〈2, 3, 0〉
→ r(t) = 〈t+ 2, t+ 3,−5t2 − t〉

In original notation,

v(t) = i + j− (10t+ 1)k ; r(t) = (t+ 2)i + (t+ 3)j− (5t2 + t)k �

(6) Find the tangential and normal components of acceleration for r(t) =

(1 + t)i + (t2 − 2t)j, and interpret the results.

� To find the tangential component of acceleration for r(t) = (1+ t)i+

(t2 − 2t)j, we need:

r ′(t) = i + 2(t− 1)j

|r ′(t)| =
√

1 + 4(t2 − 2t+ 1) =
√

4t2 − 8t+ 5

r ′′(t) = 2j

r ′(t) · r ′′(t) = 4(t− 1)

so then

aT =
r ′(t) · r ′′(t)
|r ′(t)| =

4(t− 1)√
4t2 − 8t+ 5

To find the normal component of acceleration, we need |a(t)|2. Note

that a(t) = r ′′(t), which is found above; so,

a(t) = 2j

|a(t)|2 = 4
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so that

aN =
√
|a(t)|2 − a2T =

√
4−

(
4(t− 1)√

4t2 − 8t+ 5

)2

=

√
4− 16(t− 1)2

4t2 − 8t+ 5
=

√
16t2 − 32t+ 20

4t2 − 8t+ 5
− 16t2 − 32t+ 16

4t2 − 8t+ 5

=

√
4

4t2 − 8t+ 5
=

2√
4t2 − 8t+ 5

Neither component is constant. So in this case, finding aT and aN may

not have been particularly useful or illuminating. �

(7) Find the curvature function κ(t) of r(t) = 〈t, t, 1 + t2〉, and the specific

torsion τ(2).

� For the curvature of r(t) = 〈t, t, 1 + t2〉 we need:

r ′(t) = 〈1, 1, 2t〉
|r ′(t)| =

√
4t2 + 2 =

√
2
√

2t2 + 1

r ′′(t) = 〈0, 0, 2〉
r ′(t)× r ′′(t) = 〈2, 2, 0〉
|r ′(t)× r ′′(t)| = 2

√
2

so that

κ(t) =
|r ′(t)× r ′′(t)|
|r ′(t)|3 =

2
√

2

(
√

2
√

2t2 + 1)3
=

1

(2t2 + 1)

For the torsion, we also need r ′′′. Since r ′′(t) = 〈0, 0, 2〉, then

r ′′′(t) = 〈0, 0, 0〉. Therefore, By (17.21), we will then have τ(2) = 0.

FFT: Since the computation of torsion requires a dot product in-

volving the third derivative of r(t), if the component functions of r(t)

are polynomials, what degree polynomial do we have to see in at least

one component of r(t) for the torsion to have a chance of not being

zero? �
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17.4 Lagrange Multipliers

In Sec. 5.3 (Volume 1), we learned how to find extreme values of single vari-

able functions f(x). This process was generally straightforward, although

it might not have seemed like it at the time. We computed first and second

derivatives of f(x), applied appropriate tests, and boom, we were done.

In Sec. 14.2, we learned how to find local extremes and absolute extremes

of a function f(x, y). The search for local extremes began by identifying

critical points, where both partial derivatives fx and fy were equal to zero.

Then from those critical points, we selected those which were revealed to

be local maximums or minimums by the (multivariable) second derivative

test. This hunt for local extremes could take place from a given restricted

region, or over the entire domain of the function.

The search for absolute extremes of a function f(x, y) took place on a

defined region, and it was “simply” a matter of determining locations at

which the function attained the maximum and minimum values possible;

sometimes these locations were critical points, and sometimes they were

points on the boundary of the specified region. The examination of the

boundary for potential extremes required that we trace the edges of the

boundary to look for Calculus-I (single variable) type critical points, and

that we check any corners that the boundary might have. In all, the variety

of regions we could examine for absolute extremes were pretty limited; you

may recall, they were quite often rectangular or triangular regions.

Now we are ready to expand our ability to find extreme values of a

given function. As before, this search will require identification of an ob-

jective function and a constraint. Unlike before, our new technique will be

applicable to functions of more than just two independent variables.

Constrained Optimization

As before in Sec. 14.2, we will be seeking the maximum and minimum

values a function takes on according to some rule that must be obeyed

by the independent variables. This is called constrained optimization, and

we apply some terminology: the function we are trying to maximize or

minimize, f(x, y), is called the objective function. The rule that the

variables need to obey is called the constraint, and it usually comes in a
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form such as g(x, y) = c or g(x, y) ≤ c. When we say, “Find the absolute

maximum and minimum values of f(x.y) = x2−y2 over the region x2+y2 ≤
4,” we establish the objective function f(x, y) = x2− y2 and the constraint

x2 + y2 ≤ 4.

EX 1 Identify the objective function and the constraint in the following

problem statements:

• Find the extreme values of the function 2xy subject to the

rule 2x2 + 3y2 = 8.

• The temperature of a metal plate is given by T (x, y) = x2 +

2xy + y2; the plate is elliptical, and the equation describing

the plate is x2 + 4y2 ≤ 24. Find the maximum temperature

on the plate.

In the first problem statement, the objective function is f(x, y) = 2xy and

the constraint is 2x2+3y2 = 8. In the second problem statement, the objec-

tive function is T (x, y) = x2 + 2xy+y2 and the constraint is x2 + 4y2 ≤ 24.

�

You Try It

(1) Identify the objective function and the constraint in the following

problem statements:

• The height of a rocket t seconds after launch is given by

f(t, u) = 1
2 (u − 32)t2 feet, where u is a measure of thrust

in ft2/s. The fuel usage is limited by u2t = 10, 000. Find the

value of u that maximizes the height that the rocket reaches.

• Find the points on the sort-of-sphere x4 + y4 + z4 = 12 that

are closest to the origin.

These examples aside, we are going to constrain our initial conversation

about constrained optimization by using only constraints which are equali-

ties, not inequalities. That is, our constraints will be of the form g(x, y) = c.

Figure 17.2 shows a graphical display of such a constrained optimization

scenario: we are seeking absolute extremes of an objective function f(x, y)

subject to a constraint g(x, y) = c. Some selected level curves of f(x, y)

are shown, as is the level curve of g(x, y) corresponding to the constraint

g(x, y) = c. The constraint function g(x, y) certainly also has level curves

other than the one shown, but for the optimization problem at hand, we are
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f = 1

f = 4

f = 9

f = 16

g(
x,
y)

=
c

P1

P2P3

x

y

Fig. 17.2 Level curves of a function f(x, y) and a constraint g(x, y) = c.

only interested in the one specific level curve that goes with the constraint

g(x, y) = c. Similarly, there are level curves of the objective function f(x, y)

other than the ones shown in the figure. In fact, every point in the plane

is associated with some level curve of f(x, y), we just happen to be seeing

the level curves corresponding to f(x, y) = 1, 4, 9, and 16.

The constrained optimization problem could solved by a smart Calcu-

lus Ant. Imagine the ant walking around the constraint curve g(x, y) = c,

noting the values of f(x, y) generated by each point (x, y) along the way.

When it comes to a point on the curve which gives the largest value of

f(x, y) that will be seen anywhere along the constraint curve, our intrepid

ant starts waving its little forelegs around to get our attention. Where

might this point be in Fig. 17.2? Since it appears that values of f(x, y)

tend to increase as we move farther to the right, it’s likely that the point on

g(x, y) = c that gives the maximum value of f(x, y) is point P2. Similarly,

it’s likely that the point on g(x, y) = c that gives the minimum value of

f(x, y) is point P3.

Since our Calculus Ant is nowhere to be found, though, we have to learn

how the ant would know it has found an extreme of f(x, y); this requires

that you believe a few things about the relation between g(x, y) and f(x, y).

The first is this:
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• At a point on the constraint curve g(x, y) = c which locates an

absolute extreme of f(x, y), the constraint curve will touch some

unknown level curve of f(x, y).

This should be fairly self evident. Every point in the plane belongs to some

level curve of f(x, y), so if we are trapped on the curve g(x, y) = c, when

we do come across an extreme of f(x, y), we will be on the level curve of

f(x, y) corresponding to that extreme value. Let’s say we’re looking for

the absolute maximum of f(x, y), and this value is fmax. In Fig. 17.2, this

extreme won’t be at one of the four level curves of f(x, y) that are shown,

though. Surely fmax > 16. But whatever this value is, the point where we

find it will be on two level curves: g(x, y) = c and f(x, y) = fmax.

A more specific thing I need you to believe, then, is this:

• At the location of the extreme point of f(x, y), the constraint curve

g(x, y) = c will be tangent to the (unknown) level curve of f(x, y) =

fmax.

This seems like it would be awfully complicated to prove, but it’s actually

fairly simple. There are only two ways the level curve g(x, y) = c could

interact with the level curve of the extreme, f(x, y) = fmax: either they

cross, or they are tangent to each other. If the level curve g(x, y) = c crosses

over the level curve f(x, y) = fmax, then the value fmax can’t be the max-

imum value after all — because all we’d have to do is keep moving along

g(x, y) = c in the direction of increasing f . This is what’s happening at

point P1 in Fig. 17.2; we know f(x, y) = 16 cannot represent the maximum

value of f along g(x, y) = c, because we can just move along g(x, y) = c to

the right of f(x, y) = 16 to encounter larger values of f . It’s necessary for

g(x, y) = c and f(x, y) = fmax to be tangent to one another.

Just so we can play with these two ideas again, Fig. 17.3 shows a dif-

ferent optimization scenario involving a constraint curve g(x, y) = c along

with several level curves of a function f(x, y). A couple of things are evi-

dent already — we will not find a maximum of f(x, y) subject to g(x, y) = c

(at least according to the visible trends), and the minimum value fmin of

f(x, y) subject to g(x, y) = c is between 10 and 15, that is, 10 < fmin < 15.

At whatever point we find both g(x, y) = c and f(x, y) = fmin, the level

curve g(x, y) = c will be tangent to the level curve f(x, y) = fmin. Based

on what we see, that absolute minimum is likely located at P1.
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g(
x,
y)

=
c

f = z4f = z3
f = z2f = z1

P1

x

y

Fig. 17.3 Level curves of a function f(x, y) and a constraint g(x, y) = c.

Finally, I need to remind you of the following fact, which has already

been developed in previous sections:

• Gradient vectors of a function f(x, y) are normal to level curves of

f(x, y).

Figure 17.4 shows several level curves of a function f(x, y) along with

some gradient vectors at selected points; note that each gradient vector

is perpendicular to the level curve that goes through the point where the

gradient originates.

So let’s put all these ideas together. Consider the location (x, y) where

we have an extreme point of f(x, y) subject to the constraint g(x, y) = c.

Let’s say the extreme is a maximum. At this magic point (x, y), the gra-

dient of f is normal to the level curve f(x, y) = fmax, and the gradient

of g is normal to the level curve g(x, y) = c. But since this point marks

an extreme of f(x, y) subject to g(x, y) = c, we know that the level curves

f(x, y) = fmax and g(x, y) = c are tangent to each other. And this means,

then, that the gradient vectors ∇f(x, y) and ∇g(x, y) must be parallel to

each other! This sets up our ability to locate the extreme of f(x, y).

In general, if a vector v is parallel to another vector w, then they are

related by a scalar multiple: v = λw. So at a location where ∇f(x, y) and
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x

y

Fig. 17.4 Level curves of a function f(x, y) and gradient vectors.

∇g(x, y) must be parallel to each other, we must have∇f(x, y) = λ∇g(x, y)

for some scalar value λ. And now you have been introduced to the Lagrange

Multiplier λ.

Useful Fact 17.3. At the location of an absolute extreme value of a func-

tion f(x, y) subject to a constraint g(x, y) = c, we must have ∇f(x, y) =

λ∇g(x, y) for some scalar value λ. This vector equation, along with the

constraint g(x, y) = c, presents a system of equations in unknowns x, y, λ

that can be solved for the location (x, y) of the extreme.

This Useful Fact provides an offhand mention of a “system of equations”

which sounds harmless. But note the absence of the word “linear”. The

system of equations provided by the relation ∇f(x, y) = λ∇g(x, y) and

the constraint g(x, y) = c will very possibly not be linear. Also, while the

build-up to this Useful Fact centered on functions of two variables, we can

immediately generalize it to any number of variables. And so, this harmless

“system of equations” can actually become quite intimidating. We should

expect to use tech to solve these systems. The purists among us may be

offended, but if it’s a trade-off between doing fewer Lagrange Multiplier

problems because we spend so much time solving the systems by hand,

versus saving time on solving the systems so that we can do more Lagrange

Multiplier problems, I’ll take the latter. Let’s give it a shot.
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EX 2 Find the absolute extremes of f(x, y) = x2 − y2 subject to the

constraint 16(x− 3)2 + 25y2 = 100. (This is the scenario shown in

Fig. 17.2, although there are no axis labels to prove it.)

The objective function is f(x, y) = x2− y2, and the constraint function

is g(x, y) = 16(x− 3)2 + 25y2. (Remember, the value 100 is not part of the

named constraint function, it is simply the single level curve of the con-

straint function chosen to provide the full constraint itself.) The gradients

of these functions are:

∇f(x, y) = 〈2x, 2y〉
∇g(x, y) = 〈32(x− 3), 50y〉

By matching the components of these gradients by the relation ∇f(x, y) =

λ∇g(x, y), we get two equations:

2x = λ(32(x− 3))

2y = λ(50y)

or, tidied up,

x = 16λ(x− 3)

y = 25λy

Note that this system has two equations but three unknowns (x, y, λ).

There are infinitely many solutions. This just means, so far, that there

are lots of places where we’d find ∇f(x, y) = λ∇g(x, y), and that’s fine.

We are looking, specifically, for the place where that relationship holds

along with the constraint! So when we toss our constraint into this system,

we get the full set of three equations in three unknowns:

x = 16λ(x− 3)

y = 25λy

16(x− 3)2 + 25y2 = 100

We could track down the solutions by hand by weeding through all the

possible cases, such as, “What if y = 0? What if y 6= 0, What if x = 0?”

and so on. Or, we can use tech. I’m not sure what your favorite platform is,

but Wolfram Alpha is pretty convenient; if we go there and type in (using

L for λ):

solve {x = 16*L*(x-3); y = 25*L*y; 16(x-3)^2 + 25 y^2 = 100}
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then we will be provided with four solutions; two of them show imaginary

numbers for y, and we can ignore those. The other two are:

x =
1

2
, y = 0, λ = − 1

80

x =
11

2
, y = 0, λ =

11

80

The values of λ are not needed, as λ has now served its purpose as a scalar

multiple relating gradients. The values of x and y provide two key points,

(x, y) = (1/2, 0) and (x, y) = (11/2, 0). These are locations where we sat-

isfy ∇f(x, y) = λ∇g(x, y) as well as 16(x − 3)2 + 25y2 = 100. That is,

these are the locations of our extremes. To find which one locates the ab-

solute maximum and which one locates the absolute minimum, we have

to calculate f(x, y) at each of these points. Since f(1/2, 0) = 1/4 and

f(11/2, 0) = 121/4, the former is the absolute minimum and the latter is the

absolute maximum. Hey, I’ll bet these locations correspond to the points

P2 and P3 from Fig. 17.2. Figure 17.5 shows a new version of Fig. 17.2, now

with axis labels included and level curves corresponding to f(x, y) = 1/4

and f(x, y) = 121/4 displayed. This figure shows everything coming to-

gether: the level curve f(x, y) = 1/4 goes through point P3 = (1/2, 0) (the

absolute minimum) and level curve f(x, y) = 121/4 goes through point

P2 = (11/2, 0) (the absolute maximum). �

1 2 3 4 5 6

−2

2 f
=

1/
4

f
=

121/4

g(x, y) =
100

P1

P2

P3

x

y

Fig. 17.5 Level curves of a function f(x, y) and a constraint g(x, y) = 100.
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EX 3 Now let’s solve the problem displayed in Fig. 17.4, which flips

around functions from EX 1: Find the absolute extremes of

f(x, y) = 16(x − 3)2 + 25y2 subject to the constraint x2 − y2 = 2

for x ≥ 0.

Using the relation established in Useful Fact 17.3, ∇f(x, y) = λ∇g(x, y),

we have

〈32(x− 3), 50y〉 = λ〈2x, 2y〉
Matching components and cleaning up those relationships, and also bring-

ing in the constraint leads to the system

16(x− 3) = λx

25y = λy

x2 − y2 = 2

(It’s tempting to simplify the middle equation to just λ = 25, but when

doing so, we must set aside the case y = 0 for separate examination.) Now,

remember our prediction from Fig. 17.4 that in this scenario, we’d find no

absolute maximum, and one absolute minimum, at point P1. By entering

the following into Wolfram Alpha,

solve {16*(x-3) = L*x; 25*y = L*y; x^2 - y^2 = 2}

we receive four locations where all three equations hold:(
−16

3
,−
√

238

3

)
,

(
−16

3
,

√
238

3

)
,
(
−
√

2, 0
)

,
(√

2, 0
)

Only one of them also satisfies x ≥ 0, and that is (
√

2, 0), which happens

to be P1 from Fig. 17.3. And so, the absolute minimum of f(x, y) subject

to the given constraint is f(
√

2, 0) = 16(
√

(2)− 3)2 ≈ 40.2. �

FFT: The solution set from Wolfram Alpha in EX 2 contains three

points for which x < 0. Might these points have any particular significance

relative to the objective function and constraint?

You Try It

(2) Find the maximum value of f(x, y) = 4x2y subject to x2 + y2 = 3.

(3) The temperature at a point (x, y) on a metal plate is T (x, y) =

4x2 − 4xy + y2. The Calculus Ant walks around the plate on a

circle of radius 5 centered at the origin. What are the highest and

lowest temperatures encountered by the ant?
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Now that we have the scheme for solving constrained optimization prob-

lems with Lagrange Multipliers, we aren’t restricted to functions of just two

independent variables. Anything that was true about level curves for some

f(x, y) and g(x, y) remains true for level surfaces of f(x, y, z) and g(x, y, z)

and so on.

EX 4 Find the point on the unit sphere (centered at the origin) that

provides the minimum value of f(x, y, z) = x4 − 2y2 + z4.

Our objective is to minimize the function f(x, y, z) = x− 2y2 − 2z subject

to the constraint x2 + y2 + z2 = 1. The relation ∇f(x, y, z) = λ∇g(x, y, z)

sets up the following vector equation:

〈1,−4y,−2〉 = λ〈2x, 2y, 2x〉
Matching components on both sides of this vector equation and tossing in

the constraint gives the system of equations

1 = λ(2x)

−4y = λ(2y)

−2 = λ(2z)

x2 + y2 + z2 = 1

Wolfram Alpha returns four solution sets for this system, (x, y, z) = . . .

. . .

(
−1

4
,−
√

11

4
,

1

2

)
,

(
−1

4
,

√
11

4
,

1

2

)
,

(
− 1√

5
, 0,

2√
5

)
,

(
1√
5
, 0,− 2√

5

)

At these locations, we have the following function values:

f

(
−1

4
,−
√

11

4
,

1

2

)
= −21

8
≈ −2.62

f

(
−1

4
,

√
11

4
,

1

2

)
= −21

8
≈ −2.62

f

(
− 1√

5
, 0,

2√
5

)
= −
√

5 ≈ −2.23

f

(
1√
5
, 0,− 2√

5

)
=
√

5 ≈ 2.23

And so, we find the minimum value of f(x, y, z) occurring at two locations:

f(x, y, z) = −21

8
at (x, y, z) =

(
−1

4
,−
√

11

4
,

1

2

)
,

(
−1

4
,

√
11

4
,

1

2

)
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A reminder! In solving the system of equations, it’s tempting to simplify

the second equation from −4y = λ(2y) to simply −2 = λ. But if you do

that, you lose any solutions with y = 0, and would need to go back and

gather them separately! �

You Try It

(4) Find the absolute extremes of f(x, y, z) = x2 − y + 2z subject to

the constraint x2 + y2 + z2 = 8. (Remember to keep your values

exact. Come on now, you’re going to have a computer solve your

equations, the least you can do is keep your values as accurate as

possible!)

We can also combine Lagrange Multipliers with routine location of crit-

ical points to find extremes over a full region and its boundary. In Sec.

14.2, we were fairly limited in the shapes of regions we could consider, but

now we can broaden that a bit.

EX 5 Find the points in the region 2x2 + 3y2 ≤ 6 which locate the abso-

lute extremes of z = ln(10 + xy) in that region.

In this scenario, the objective function is z = ln(10+xy) and the constraint

is 2x2+3y2 ≤ 6. We can name the constraint function as g(x, y) = 2x2+3y2.

First, let’s just scan for regular critical points of the function z = ln(7+xy)

to see if any lie inside the given region (i.e. if any satisfy the constraint).

We have

∂z

∂x
=

y

7 + xy
and

∂z

∂y
=

x

7 + xy

and so both derivatives are zero at the origin, (x, y) = (0, 0), and that crit-

ical point is inside the given region.

Now we use Lagrange Multipliers to seek possible locations of extremes

of z over the boundary of the given region, i.e., we seek extremes of z(x, y)

subject to the constraint g(x, y) = 6. By setting ∇z = λ∇g, we find

〈 y

7 + xy
,

x

7 + xy
〉 = λ〈4x, 6y〉

Matching the components on each side of this vector equation and tossing
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in the constraint itself gives the system of equations
y

7 + xy
= λ(4x)

x

7 + xy
= λ(6y)

2x2 + 3y2 = 6

Wolfram Alpha reports four solutions to this system:

(x, y) =

(
−
√

3

2
,−1

)
,

(√
3

2
,−1

)
,

(
−
√

3

2
, 1

)
,

(√
3

2
, 1

)

(Notice that these are four corners of a rectangle inscribed into the ellipse

g(x, y) = 6.) Altogether, we now have five candidate points for extremes of

z(x, y) = ln(7 + xy) over the region 2x2 + 3y2 ≤ 6:

z(0, 0) = ln(7) ≈ 1.946

z

(
−
√

3

2
,−1

)
= ln

(
7 +

√
3

2

)
≈ 2.107

z

(√
3

2
,−1

)
= ln

(
7−

√
3

2

)
≈ 1.754

z

(
−
√

3

2
, 1

)
= ln

(
7−

√
3

2

)
≈ 1.754

z

(√
3

2
, 1

)
= ln

(
7 +

√
3

2

)
≈ 2.107

Altogether, we find the absolute extremes on the boundary on the region.

The absolute maximum of z(x, y) over the region is found at two locations:

z

(√
3

2
,−1

)
= z

(
−
√

3

2
, 1

)
= ln

(
7−

√
3

2

)

and the absolute minimum is found at two locations:

z

(
−
√

3

2
,−1

)
= z

(√
3

2
, 1

)
= ln

(
7 +

√
3

2

)
�

You Try It

(5) Find the largest and smallest distances from points in or on the

circle x2 + y2 = 9 in the xy-plane to the paraboloid z = 1 + (x −
1)2 + (y − 2)2. and minimized.
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In EX 5, we came across a rectangle inscribed in an ellipse. Lagrange

Multipliers can help determine fun information about such inscribed shapes.

Give it a try!

You Try It

(6) Find the corners of the rectangle of greatest area that can be in-

scribed in the ellipse 9x2 + 16y2 = 144, and give that maximum

area.

Lagrange Multipliers — Problem List

Lagrange Multipliers — You Try It

These appeared above; solutions begin on the next page.

(1) Identify the objective function and the constraint in the following prob-

lem statements:

• The height of a rocket t seconds after launch is given by f(t, u) =

(u − 32)t2/2 feet, where u is a measure of thrust in ft2/s. The

fuel usage is limited by u2t = 10, 000. Find the value of u that

maximizes the height that the rocket reaches.

• Find the points on the sort-of-sphere x4 + y4 + z4 = 1 that are

closest to the origin.

(2) Find the maximum value of f(x, y) = 4x2y subject to x2 + y2 = 3.

(3) The temperature at a point (x, y) on a metal plate is T (x, y) = 4x2 −
4xy+y2. The Calculus Ant walks around the plate on a circle of radius

5 centered at the origin. What are the highest and lowest temperatures

encountered by the ant?

(4) Find the absolute extremes of f(x, y, z) = x2 − y + 2z subject to the

constraint x2 + y2 + z2 = 8. (Remember to keep your values exact.

Come on now, you’re going to have a computer solve your equations,

the least you can do is keep your values as accurate as possible!)

(5) Find the largest and smallest distances from points in or on the circle

x2+y2 = 9 in the xy-plane to the paraboloid z = 1+(x−1)2+(y−2)2.

(6) Find the corners of the rectangle of greatest area that can be inscribed

in the ellipse 9x2 + 16y2 = 144, and give that maximum area.
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Lagrange Multipliers — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.5.4.

(1) Find the maximum value of f(x, y) = x2+y3/3 that can be achieved by

points on the ellipse 2x2 + y2 = 6, and the point(s) at which it occurs.

(2) Find the maximum value of f(x, y, z) = x + 2y2 + 2z that can be

achieved by points on the sphere x2 + y2 + z2 = 4, and the point(s) at

which it occurs.

(3) To generate Fig. 13.21, I had to find the minimum and maximum values

of z = 1+xy subject to the constraint (x−3)2 +(y−2)2 = 0.25. What

were these values, and at what points did they occur?

(4) Find the point on the ellipse x2 + 2y2 = 4 that is closest to the point

(1, 1).

(5) What is the largest volume of possible of a cylinder which is sized

according to πr2 + h = 20, and what are the dimensions which give

that volume?

(6) Find the maximum value of f(x, y, z, w) = 2x−3y+4z+w determined

by points on the “hypersphere” x2 + y2 + z2 + w2 = 3.3

(7) Find the absolute extremes of f(x, y) = xy(1−x− y) = xy−x2y−xy2
anywhere on and inside the unit circle. (Compare to Practice Problem

2 in Sec. 14.2.)

Lagrange Multipliers — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.5.4.

(1) The galactic company that manufactures phasers (p), pulse rifles (r),

and communicator badges (b) for the United Federation of Planets earns

a profit of 10 quatloos for every phaser sold, 20 quatloos for every

pulse rifle, and 5 quatloos for every communicator badge. The logistics

of their operations require that the combined number of these items

made each day is held strictly to 2p2 + r2 + 4b2 = 10000. How many of

each item should they make each day to maximize profit?

(2) Find the maximum value of f(x, y, z) = xy + 2yz − 3x + 3z that can

be achieved anywhere on the unit sphere.

3Imagine a circle in 2D, then a sphere in 3D. Now imagine this surface in 4D. Easy!
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(3) Find the point on the plane 2x + 3y + 4z = 12 that is closest to the

point (5, 5, 5).

Lagrange Multipliers — You Try It — Solved

(1) Identify the objective function and the constraint in the following prob-

lem statements:

• The height of a rocket t seconds after launch is given by f(t, u) =

(u − 32)t2/2 feet, where u is a measure of thrust in ft2/s. The

fuel usage is limited by u2t = 10, 000. Find the value of u that

maximizes the height that the rocket reaches.

• Find the points on the sort-of-sphere x4 + y4 + z4 = 1 that are

closest to the origin.

� In the first problem statement, we are asked to find the maximum

height of the rocket, so the objective function is

f(t, u) =
1

2
(u− 32)t2

Since the height is limited by fuel usage, the constraint is u2t = 10, 000.

We could say the constraint function is g(t, u) = u2t and the constraint

is the level curve of this function corresponding to g(t, u) = 10, 000.

In the second problem statement, the magic word “closest” tells us

we are hoping to locate a minimum distance. So, the objective func-

tion represents that distance. We could write this objective function

as f(x, y, z) =
√
x2 + y2 + z2, which represents the distance D from

any point (x, y, z) to the origin. But as we have seen before, discover-

ing a minimum of D2 also reveals a minimum of D, and so we might

simplify problem solving by seeking to minimize the objective function

f(x, y, z) = x2 + y2 + z2 instead. The constraint in this problem would

be the equation of the sort-of-sphere x4 + y4 + z4 = 1 , and we’d set

the constraint function as g(x, y, z) = x4 + y4 + z4. �

(2) Find the maximum value of f(x, y) = 4x2y subject to x2 + y2 = 3.

� The constraint is identified as f(x, y) = 4x2y, and we set the con-

straint function as g(x, y) = x2 + y2. The relation ∇f(x, y) = λg(x, y)

gives a vector equation

〈8xy, 4x2〉 = λ〈2x, 2y〉
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which, along with the constraint g(x, y) = 3, leads to the system of

equations

8xy = λ(2x)

4x2 = λ(2y)

x2 + y2 = 3

Wolfram Alpha gives six solution sets to these equations:

(−
√

2,−1) , (−
√

2, 1) , (
√

2,−1) , (
√

2, 1) , (0,−
√

3) , (0,
√

3)

which is our list of candidate points for the actual maximum. At these

points, we can calculate

f(−
√

2,−1) = −8 f(−
√

2, 1) = 8

f(
√

2,−1) = −8 f(
√

2, 1) = 8

f(0,−
√

3) = 0 f(0,
√

3) = 0

And so the maximum value of f(x, y) = 4x2y subject to x2 + y2 = 3 is

attained at two points, where f(−
√

2, 1) = f(
√

2, 1) = 8. �

(3) The temperature at a point (x, y) on a metal plate is T (x, y) = 4x2 −
4xy+y2. The Calculus Ant walks around the plate on a circle of radius

5 centered at the origin. What are the highest and lowest temperatures

encountered by the ant?

� Our objective function is T (x, y) = 4x2−4xy+y2 and our constraint

is g(x, y) = x2 + y2 (because the constraint itself is x2 + y2 = 25, the

circle of radius 5 centered at the origin). The relation ∇T (x, y) =

λ∇g(x, y) gives the vector equation

〈8x− 4y,−4x+ 2y〉 = λ〈2x, 2y〉

which, with the constraint, leads to the system of equations

8x− 4y = λ(2x)

−4x+ 2y = λ(2y)

x2 + y2 = 25

Wolfram Alpha gives four solution sets to these equations:

(−
√

5,−2
√

5) , (
√

5, 2
√

5) , (−2
√

5,
√

5) , (2
√

2,−
√

5)
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which is our list of candidate points for the extremes. The value of the

objective function at each point is:

T (−
√

5,−2
√

5) = 0

T (
√

5, 2
√

5) = 0

T (−2
√

5,
√

5) = 125

T (2
√

5,−
√

5) = 125

And so, our intrepid Calculus Ant experiences the minimum tempera-

ture of T = 0 at two locations and a maximum temperature of T = 125

at two locations. Let’s hope the units are not Celsius. �

(4) Find the absolute extremes of f(x, y, z) = x2 − y + 2z subject to the

constraint x2 + y2 + z2 = 8. (Remember to keep your values exact.

Come on now, you’re going to have a computer solve your equations,

the least you can do is keep your values as accurate as possible!)

� Our objective function is f(x, y, z) = x2− y+ 2z and our constraint

is g(x, y, z) = x2 + y2 + z2. The relation ∇f(x, y, z) = λ∇g(x, y, z)

gives the vector equation

〈2x,−1, 2〉 = λ〈2x, 2y, 2z〉

which, with the constraint, leads to the system of equations

2x = λ(2x)

−1 = λ(2y)

2 = λ(2z)

x2 + y2 + z2 = 8

Wolfram Alpha provides four solution sets for this system (approxi-

mated),

(x, y, z) =

(
−3
√

3

2
,−1

2
, 1

)
,

(
3
√

3

2
,−1

2
, 1

)
,

(
0, 2

√
2

5
,−4

√
2

5

)
,

(
0,−2

√
2

5
, 4

√
2

5

)

which is our list of candidate points for the extremes. The value of the
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objective function at each point is:

f

(
−3
√

3

2
,−1

2
, 1

)
=

37

4

f

(
3
√

3

2
,−1

2
, 1

)
=

37

4

f

(
0, 2

√
2

5
,−4

√
2

5

)
= −2

√
10

f

(
0,−2

√
2

5
, 4

√
2

5

)
= 2
√

10

Since 37/4 > 2
√

10, the absolute maximum is provided by the first two

locations,

f

(
−3
√

3

2
,−1

2
, 1

)
= f

(
3
√

3

2
,−1

2
, 1

)
=

37

4

and the absolute minimum is provided by

f

(
0, 2

√
2

5
,−4

√
2

5

)
= −2

√
10 �

(5) Find the largest and smallest distances from points in or on the circle

x2 + y2 = 9 in the xy-plane to the vertex of the paraboloid z = 1 +

(x− 1)2 + (y − 2)2.

� To make everything match in three dimensions, note that we

can write the equation of the constraint (inside or on the circle) as

g(x, y, z) = x2 + y2 + 02 ≤ 9. The objective function is a function

that measures distance D (or D2 as a surrogate) to the vertex of the

paraboloid.

The vertex of the paraboloid is at (1, 2, 1), because this is where we

find ∂z/∂z = ∂z/∂y = 0. The point (1, 2, 0) satisfies the constraint

x2 + y2 + 02 ≤ 9, and the distance from that point to the vertex of the

paraboloid is D = 1. We need Lagrange Multipliers to trace the bound-

ary of the circle and look for other candidate locations of extremes of

distance to the vertex.

For this more general examination, we must build the constraint func-

tion; we’ll seek to minimize and maximize D2, where D is the distance
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from points (x, y, 0) to the vertex (1, 2, 1). This objective function is

f(x, y) = (x− 1)2 + (y− 2)2 + (0− 1)2, or D2 = (x− 1)2 + (y− 2)2 + 1

and our constraint is x2 + y2 = 9. Using ∇f(x, y) = λ∇g(x, y) and the

constraint, we get the system,

2(x− 1) = λ(2x)

2(y − 2) = λ(2y)

x2 + y2 = 9

which has solutions, per Wolfram Alpha, of (x, y) = (3/
√

5, 6/
√

5),

(−3/
√

5,−6/
√

5). At our three points of interest, then, we compute

the actual distance (squared) to (1, 2, 1) and find:

D2(1, 2, 0) = (1− 1)2 + (2− 2)2 + 1 = 1

D2

(
3√
5
,

6√
5
, 0

)
=

(
3√
5
− 1

)2

+

(
6√
5
− 2

)2

+ 1 = 15− 6
√

5

≈ 1.583

D2

(
− 3√

5
,− 6√

5
, 0

)
=

(
1− 3√

5

)2

+

(
6√
5
− 2

)2

+ 1 = 15 + 6
√

5

≈ 28.4

As it turns out, the point inside the circle was irrelevant and our ex-

tremes come from the boundary. Remember the values we just found

are the squares of the actual distances, and so as far as distances from

inside or on the circle x2 + y2 = 9 to the vertex of the paraboloid

z = 1 + (x− 1)2 + (y − 2)2 go,

• the minimum distance Dmin ≈ 1.26 is found at the point

(3/
√

5, 6/
√

5)

• the minimum distance Dmax ≈ 5.33 is found at the point

(−3/
√

5,−6/
√

5)

Figure 17.6 shows the circle, the paraboloid, and dashed lines connect-

ing these two points to the vertex. �

(6) Find the corners of the rectangle of greatest area that can be inscribed

in the ellipse 9x2 + 16y2 = 144, and give that maximum area.

� Whatever rectangle this is, it will be centered at the origin, and

have opposite corners at some (−x,−y) and (x, y); its width will be 2x,

and its height will be 2y, so its area will be 4xy. So we are trying to
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Fig. 17.6 The circle x2 + y2 = 9 and a nearby paraboloid.

maximize the function f(x, y) = 4xy subject to the constraint 9x2 +

16y2 = 144. With g(x, y) = 9x2 + 16y2, the relation ∇f(x, y)λg(x, y)

and the constraint itself give the system of equations

4y = λ(18x)

4x = λ(32y)

9x2 + 16y2 = 144

and sure enough, Wolfram Alpha reports four solutions which corre-

spond to four corners of a rectangle:
(
−2
√

2,
3√
2

)
,

(
2
√

2,− 3√
2

)
,

(
−2
√

2,− 3√
2

)
,

(
2
√

2,
3√
2

)

The width of this rectangle is w = 2(2
√

2) = 4
√

2 and the height is

h = 2(3/
√

2) = 6/
√

2. The greatest area is

A = wh = 4
√

2 · 6√
2

= 24 �
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17.5 Parametric Surfaces

At many places in this text, we’ve used parametric equations to generate

curves in both 2D and 3D. The usual suspects have been circles — you

know, the whole x(t) = r cos(t) and y(t) = r sin(t) for 0 ≤ t ≤ 2π thing.

We don’t need to go over this stuff again, but let’s note how many different

curves we could make using only one parameter, usually called t.

I wonder what we can do with two parameters? You might be able to

guess. If use of one parameter makes a curve in space, which is a one-

dimensional construction, perhaps use of two parameters will help generate

a two-dimensional construction, which would be ... a surface!

At first, using a set of parametric equations to represent a surface seems

complicated, but you have already won half the battle if you just remember

your old friend sin2 θ + cos2 θ = 1. This identity is what links the pair of

equations x = 4 cos t and y = 4 sin t to the circle x2 +y2 = 16. If we rewrite

the two equations as x/4 = cos t and y/4 = sin t, then we can combine

them via (x
4

)2
+
(y

4

)2
= (cos t)2 + (sin t)2 = 1

so that

x2

16
+
y2

16
= 1

or x2 + y2 = 16. Further, by playing games with the domain of t, we can

select part or all of a curve. In the case of this circle of radius 4, a domain

of 0 ≤ t < 2π gives the full circle, whereas a smaller domain of 0 ≤ t ≤ π

gives only the upper half.

With that in mind, consider the following set of equations with two

parameters, t and s.




x = 3 cos t

y = 3 sin t

z = s

with 0 < s < 6 ; 0 ≤ t < 2π

Would you believe me if I told you this represents a cylinder of radius 3,

centered on the z-axis, from z = 0 to z = 6? You should, because it’s true!

The first two equations together give x2 + y2 = 9; as a set, we see that z

can be any value between 0 and 6, and for all values of z, we see a circle of

radius 3 in the horizontal plane.
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Or, how about the parametric equations




x =
√
s cos t

y =
√
s sin t

z = s

with 0 < s <∞ ; 0 ≤ t < 2π

Can you see why this represents the surface z = x2 + y2, and so is a

paraboloid? (Hint: Compare x2 + y2 to z.)

With parametric equations for curves in 2D and 3D, we saw that we

could list the equations separately, such as x = f(t), y = g(t), or we could

combine them into a single vector equation as r(t) = 〈f(t), g(t)〉. The

same can be done for parametric surfaces. For example, the equations for

the paraboloid shown just above this paragraph could be regrouped into a

vector equation as

r(s, t) = 〈√s cos t,
√
s sin t, s〉 for 0 < s <∞, 0 ≤ t < 2π

Of course, all these parametric equations and the rest in in Appendix

A.2 which are based on trigonometric functions are only needed when we’re

trying to clip out a portion of a surface with circular or elliptical cross

sections. If we want to clip out a portion of a surface that (a) passes

the vertical line test, and (b) is set over a rectangular region, then the

parametric equations don’t need to be different than the rectangular form

of the surface. Just like we can parameterize y = f(x) as r(t) = 〈t, f(t)〉
for a ≤ t ≤ b, we can also parameterize z = f(x, y) as

r(s, t) = 〈s, t, f(s, t)〉 for a ≤ s ≤ b ; c ≤ t ≤ d
For example, the hyperboloid z = 3x2 − 4y2 over the unit square can be

set up as

r(s, t) = 〈s, t, 3s2 − 4t2〉 for − 1 ≤ s ≤ 1 ; −1 ≤ t ≤ 1

Because this book is half supplemental textbook, half solution guide,

half collection of handy references, and half the thing you put on a picnic

table to hold down the tablecloth on a windy day, I have created Appendix

A to contain information related to conic sections and quadric surfaces; the

portion related to quadric surfaces contains descriptions of the parametric

representation of those surfaces. Rather than repeat all that information

in two places, I will just say that if you’re interested in pursuing these con-

cepts, go dive in to Appendix A. There are some problems given below here

for you to practice with.



334 Casual Calculus: A Friendly Student Companion (Volume 3)

There are a couple of good reasons to pursue these ideas. One rea-

son is just sheer curiosity. Some of the calculations to be done in the

next Chapter (especially surface integrals) have other representations for

surfaces posed in parametric form; while we won’t see them in this text,

perhaps you will encounter them in a different resource. Another reason is

to prepare for “What’s Next, Part 3!” As we get towards the end of our

journey through multivariable calculus, you might be wondering, “OK, so

if I like this stuff, where do I go next?” If you’ve been enjoying more recent

topics such as gradients, multivariable optimization, arc length, curvature,

and the Fresnel–Serret frame, then you should “level up” to a study of

differential geometry. This is your gateway to concepts like tensors and

manifolds. And, it is not just for pure math nerds; differential geometry is

needed to gain a foothold in some advanced applied areas, such as the study

of general relativity. This is highly recommended for those of you blending

an interest in mathematics with an interest in physics or astrophysics.

Parametric Surfaces — Problem List

Parametric Surfaces — You Try It

These appeared above; solutions begin on the next page.

The manuscript for this text was prepared using the typsetting pro-

gram LATEX and a supplemental graphical package TikZ. To create a three-

dimensional graph of a surface, TikZ requires the parametric equations for

the surface. These You Try It problems relate to images found in this text.

(1) Figure 14.18 shows the cylinder x2+y2 = 9 for 0 ≤ z ≤ 8 and the plane

y+z = 5 for −3 ≤ x, y ≤ 3. Provide the parametric equations for these

two surfaces and give the appropriate bounds on the parameters.

(2) A figure you have seen in this text displayed the surface with parametric

equations (in vector form),

r(s, t) = 〈s, t, s2 − t2〉 for − 1 ≤ s, t ≤ 1

Identify this surfaces by giving its “regular” expression in rectangular

coordinates.

(3) Figure 15.26 shows the upper hemisphere of radius 4 centered at the

origin. Provide the parametric equations for this surface and give the

appropriate bounds on the parameters.

(4) A quadric surface has parametric equations x(s, t) =
√
s cos t, y(t) =√

s sin t, and z(t) = 5 − s for 0 ≤ s ≤ 5 and 0 ≤ t < 2π. Identify this

surface by giving its “regular” expression in rectangular coordinates.
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(5) Design Fig. 15.30, which shows the region between the cone z2 = x2+y2

and the sphere ρ = 1. Give the parametric equations along with the

bounds on the parameters required to clip the surfaces to the portions

shown. Bonus: give the parametric equations of the curve shown at

the intersection of the two surfaces.

Parametric Surfaces — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.5.5.

(1) Figure 15.29 shows the paraboloid x = 5− y2 − z2 for 0 ≤ x ≤ 5. Pro-

vide the parametric equations for this surface and give the appropriate

bounds on the parameters.

(2) Figure C.9 shows the paraboloid z = 2x2 + y2 for 0 ≤ z ≤ 10. Pro-

vide the parametric equations for this surface and give the appropriate

bounds on the parameters.

(3) A quadric surface has the following parametric (vector) equations.

Identify this surface by giving its “regular” expression in rectangular

coordinates.

r(s, t) = 〈
√

9− s cos t,
√

9− s sin t, s〉 for 0 ≤ s ≤ 9, 0 ≤ t < 2π

(4) A quadric surface has the parametric equations x = 1 + s + t, y =

−s + t, z = 2s, where s and t can be any real numbers. Identify this

surface by giving its “regular” expression in rectangular coordinates.

(5) A quadric surface has the parametric equations x = s cos t, y = s2, z =

s sin t, for 0 ≤ s ≤ π and 0 ≤ t ≤ π. Identify this surface by giving its

“regular” expression in rectangular coordinates and appropriate bounds

on those coordinates.

(6) Figure C.20 shows the hyperboloid x2 + 3y2 − z2 = 1 between z = −1

and z = 4. Provide the parametric equations for this surface and give

the appropriate bounds on the parameters.

Parametric Surfaces — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.5.5.

(1) Identify the parametric surface r(s, t) = 〈3 sin t cos s, 3 sin t sin s, 3 cos t〉
for 0 ≤ s ≤ π/2 and 0 ≤ t ≤ π/2.
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(2) Give parametric equations for the portion of the plane z = 2x+ y that

lies inside the cylinder x2 + y2 = 1.

−1
1

2−4
−2

2
4

−4

−2

2

4

x

y

z

Fig. 17.7 f(x) = x2 revolved around the x-axis on [−1, 2].

(3) Do you remember surfaces of revolution? Those can be drawn paramet-

rically, too! A figure in Chapter 9 (Volume 1), duplicated here as Fig.

17.7, shows the surface generated when the curve f(x) = x2 is revolved

around the x-axis on the interval [−1, 2]. Give parametric equations

for this surface of revolution.

Parametric Surfaces — You Try It — Solved

(1) Figure 14.18 shows the cylinder x2+y2 = 9 for 0 ≤ z ≤ 8 and the plane

y+z = 5 for −3 ≤ x, y ≤ 3. Provide the parametric equations for these

two surfaces and give the appropriate bounds on the parameters.

� The equations for the cylinder need to create a circle of radius 3

parallel to the xy-plane at any z; they can be written as




x = 3 cos t

y = 3 sin t

z = s

with 0 ≤ s ≤ 8 ; 0 ≤ t < 2π

In vector form, we can write this (with the same bounds) as

r(s, t) = 〈3 cos t, 3 sin t, s〉
For the plane y + z = 5, we can just rename x and y then build z

accordingly:

p(s, t) = 〈s, t, 5− t〉 for − 3 ≤ s, t ≤ 3 �
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(2) A figure you have seen in this text displayed the surface with parametric

equations (in vector form),

r(s, t) = 〈s, t, s2 − t2〉 for − 1 ≤ s, t ≤ 1

Identify this surfaces by giving its “regular” expression in rectangular

coordinates.

� This is a set of parametric equations built from direct replacement.

We see that x = s and y = t, so that z = s2 − y2 becomes the surface

z = y2 − x2. The domain of x and y are −1 ≤ x, y ≤ 1. This happens

to be Fig. 14.1. �

(3) Figure 15.26 shows the upper hemisphere of radius 4 centered at the

origin. Provide the parametric equations for this surface and give the

appropriate bounds on the parameters.

� By comparing the equations of a sphere found in Appendix A.2 to

spherical coordinates, we can see that the parameter s plays the role

of the azimuthal angle φ and the parameter t plays the role of the

rotational angle θ. This means that to make a hemisphere, we should

restrict s to [0, π/2], while t can use the full [0, 2π]. To make our

hemisphere have a radius of 4, then, we have:




x = 4 sin s cos t

y = 4 sin s sin t

z = 4 cos s

with 0 ≤ s ≤ π

2
; 0 ≤ t < 2π �

(4) A quadric surface has a (parametric) vector equation r(s, t) =

〈√s cos t,
√
s sin t, 5 − s〉 for 0 ≤ s ≤ 5 and 0 ≤ t < 2π. Identify this

surface by giving its “regular” expression in rectangular coordinates.

� We can break this out as



x =
√
s cos t

y =
√
s sin t

z = 5− s
with 0 ≤ s ≤ 5 ; 0 ≤ t < 2π

Even without reference to Appendix A.2, it’s pretty clear that we can

put the first two equations together as

x2 + y2 = s cos2 t+ s sin2 t = s(cos2 t+ sin2 t) = s

and since z = 5−s, we’ve discovered that z = 5−(x2+y2). These equa-

tions represent the (inverted) paraboloid z = 5−x2− y2 for 0 ≤ z ≤ 5.

�
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(5) Design Fig. 15.30, which shows the region between the cone z2 = x2+y2

and the sphere ρ = 1. Give the parametric equations along with the

bounds on the parameters required to clip the surfaces to the portions

shown. Bonus: give the parametric equations of the curve shown at

the intersection of the two surfaces.

� The cone is just the standard “perfect diagonal” cone φ = π/4 which,

by Appendix A.2, has parametric equations




x = s cos t

y = s sin t

z = s

with 0 ≤ s ≤ H ; 0 ≤ t < 2π

where H is the height of the cone, clipped where it intersects the sphere.

The sphere is the unit sphere,




x = sinu cos v

y = sinu sin v

z = cosu

with 0 ≤ s ≤ π

4
; 0 ≤ v < 2π

To find both the height H of the cone and also the radius of the circle

of intersection of the cone with the sphere, we have to find where these

surfaces intersect. By combining x2 +y2 +z2 = 1 with z2 = x2 +y2, we

find x2+y2 = 1/2, which means that the z-coordinate of the intersection

and the radius of the circle of intersection are both 1/
√

2. The circle

of intersection is

r(t) = 〈 1√
2

cos t,
1√
2

sin t〉 for 0 ≤ t < 2π

We can also go back to the equations for the cone and set H = 1/
√

2.

�



Chapter 18

The Big Bang of Scalar and Vector
Quantities

18.1 Line Integrals

Introduction

The last few topics were examples of how scalar and vector quantities play

nice with each other. In the next few topics, we’ll step up the interaction

between them. For this first new topic, I have bad news. You may have

thought that, having done single, double and triple integrals, you’d have

exhausted all the varieties of integration and were done with it. But no,

there are more! The three types of integrals you know so far, with their

definitions and notation (the single integral notation is adjusted a bit to

match the rest), are:

∫

I

f(x) dx = lim
n→∞

n∑

i=1

f(x?i )∆x

∫∫

R

f(x, y) dA = lim
n,m→∞

n∑

i=1

m∑

j=1

f(x?i , y
?
j )∆A

∫∫∫

E

f(x, y, z) dV = lim
n,m,p→∞

n∑

i=1

m∑

j=1

p∑

k=1

f(x?i , y
?
j , z

?
k)∆V

It may seem like there are no other kinds possible, but there are two more

types of integration that are situated in between these — there’s one type

that’s sort of a single integral but also sort of a double integral, and another

that’s sort of a double integral, but also sort of a triple integral. We’ll take

a look at the former in this section.

339
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Line Integrals

Think back to the good old days in Calc I, when you learned about single

integrals,

∫ b

a

f(x)dx. Here, you integrated along the x-axis, i.e. along a

straight line. There was a function f(x) somewhere above (or below) this

line. You chopped the line into small pieces of size ∆x, selected a represen-

tative point x?i from within each piece, and then found the function’s value

f(x?i ) at each representative point. From this information, you created

small rectangles, got their areas f(x?i )∆x, and added the areas up. Then

you asked the magic question, what happens as the number of rectangles

goes to infinity?

You should also remember that we integrated with respect to y, too. So

there was nothing special about the x-axis, since we did integrals in which

the interval of integration could be either on a horizontal line (the x-axis)

or a vertical line (the y-axis). Fundamentally, in a single integral, we spec-

ify a one-dimensional domain (interval) of integration, and the variable we

assign to it is irrelevant.

Imagine taking this process of doing a single integral and embedding

it in a three-dimensional coordinate system. Suppose we have a function

or surface hovering over the xy-plane. Can’t we select an interval on the

x-axis, say [a, b] (let’s call it I) and do here exactly the same thing we do

for a single integral? (Fig. 18.1 shows a one-dimensional integral process

embedded along the x-axis — the trapezoid rule is being used.) We’d write

the process like this:

∫

I

f(x, 0) dx = lim
n→∞

n∑

i=1

f(x?i , 0)∆x

Or, what if we integrate over an interval from the y-axis:

∫

I

f(0, y) dy = lim
m→∞

n∑

j=1

f(0, y?j )∆y

(Fig. 18.2 shows a one-dimensional integral process embedded along the y-

axis.) Either of these are possible; and since we’ve ported the single integral

into 3-space, why should we restrict our intervals of integration to the x-

or y-axis? In 2D that was necessary, but in 3D, that’s silly! Why can’t our
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Fig. 18.1 A single integral along the x-

axis in R3.
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Fig. 18.2 A single integral along the y-

axis in R3.

interval of integration I be taken from some line that’s neither the x-axis

nor the y-axis? Heck, the interval doesn’t even have to be parallel to either

axis: Figure 18.3 shows a one dimensional integral process embedded along

the line y−x in R3. Heck, the “interval” doesn’t even have to be a straight

line! The end result is that we can take any line or curve (contour) from

the xy-plane and use it as a baseline for a one-dimensional integral process.

Figure 18.4 shows this scenario. These are called line integrals.

Let’s reach back to Sec. 14.3 and grab our list of delineated steps for a

partitioning process, and apply it here for line integrals. We start with some

contour C (continuous, but not necessarily straight) in the xy-plane, and a

function f(x, y) in space. We will have to adapt some of the terminology

in the steps, but the overall ideas are still the same:

(1) Select a region of integration from the domain of the func-

tion. This will be our contour C.

(2) Partition the region of integration into tiny pieces. Each

tiny piece, or partition, will have its own size. Since the

contour C must be generated by parametric equations, using pa-

rameter t, the partitioning will divide t = a to t = b as a ≤ t1 ≤
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Fig. 18.3 A single integral along
the line y = x in R3.
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Fig. 18.4 A line integral along a
contour C in R3.

t2 ≤ . . . ≤ tn = b. The length of each little partitioned piece is

described by its arc length s, or rather, we will upgrade what used

to be ∆x to ∆s. (It is important to understand why we’re not

using ∆t ... do you understand why?)

(3) Within each individual partition, select a representative

point. Within each little ∆s, a representative point must be ref-

erenced by both its x and y coordinates, so we will call this point

(x?i , y
?
i ). Note that we only use one counter, i, not two. This is

because there is only one representative point for each partition

of the contour. Figure 18.5 shows a sample partitioned ∆s in the

xy-plane and its representative point; not shown in the figure is

the function f(x, y) hovering in space above the xy-plane.

(4) Plug the coordinate(s) of that representative point into

the function. Our representative point gives the value f(x?i , y
?
i ).

(5) Multiply the function’s value at the representative point

by the size of the partition. Our “length times width” looks

like Ai = f(x?i , y
?
i ) ∆s.

(6) Sum these resulting contributions from all partitions.

n∑

i=1

f(x?i , y
?
i )∆s
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Fig. 18.5 Partitioning for a line integral.

(7) Find the limit of this sum as the number of partitions goes

to ∞.

lim
n→∞

n∑

i=1

f(x?i , y
?
i )∆s

(8) Give this limit a name and symbol...

Here’s the part that’s fun to think about! Are we building a single inte-

gral or a double integral? Do we want one integral sign or two? To answer

this, we have to take a deliberate look at the integration process to notice

something that may have been subtle before, but is now crucially impor-

tant: the number of integral signs we use does NOT come from the number

of variables in the function. We don’t use two integral signs in a double

integral because there are two variables in f(x, y); similarly, we don’t use

three integral signs in a triple integral because there are three variables in

f(x, y, z). Rather, the number of integral signs reflects the dimensionality

of the domain of integration. In a double integral, we integrate over dA —

which evolved from the measures of ∆A in a two-dimensional domain. In

a triple integral, we integrate over dV — which evolved from the measure

of ∆V in a three-dimensional domain. Here, we’re integrating over ds —

and although this reflects a partition of a curve in the xy-plane, it is still

inherently a one-dimensional construct; ds evolves from ∆s. And so, we

want to use one integral sign.
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Definition 18.1. The line integral (also called a contour integral) of the

function f(x, y) over a contour C is defined by:

∫

C

f(x, y) ds = lim
n→∞

n∑

i=1

f(x?i , y
?
i )∆s

So what do you think a line integral computes? Look at Fig. 18.4 and

be sure you see that each f(x?i , y
?
i )∆s gives an estimate of the area of a

standing rectangle; the total sum, then, gives an estimate of the total area

of the “curtain” that hangs down from f(x, y) over C. And the limit pushes

that estimate into an exact value. (Picture that if we take scissors and cut

along C, then go up and cut along the corresponding path on f(x, y), we’ll

be cutting out a sheet that can be laid flat; it has area.)

Line integrals can compute something else, too. Recall that

•
∫

I

(1) dx computes the length of the interval of integration I

•
∫∫

R

(1) dA computes the area of the region of integration R

•
∫∫∫

E

(1) dV computes the volume of the region of integration E.

So what do you think

∫

C

(1) ds computes?

Useful Fact 18.1. Given a contour C in the xy-plane, the line integral∫

C

(1) ds computes the arc length of C.

Although all this introductory stuff put the contour C in the xy-plane,

that’s not necessary. We could integrate f(x, y) over a contour in the yz-

plane or the xz-plane. Actually, if we stepped up a dimension, we could

integrate some f(x, y, z) over a contour C that roams freely through R3.

Once we see how to lay out and solve line integrals, it will be very obvious

how to change their placement or extend them to higher dimensions.

Evaluating line integrals really isn’t that bad, because the first thing we

do is convert them them into “regular” single integrals that reference the

parameter t used to build the contour C. Line integrals can come in a few

different formats, so let’s look at them one at a time.
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Line Integrals, Format 1: Arc Length Formulation

To solve a line integral of f(x, y) formulated with the arc length element

ds, you need to have the parametric equations that describe the contour C:

Useful Fact 18.2. Given the parametric equations for the contour of in-

tegration, C = (x(t), y(t)) : for a ≤ t ≤ b, we evaluate a line integral by

opening it up into a single integral as follows:
∫

C

f(x, y) ds =

∫ b

a

f(x(t), y(t))
√

(x′(t))2 + (y′(t))2 dt

This formula should make sense; the arc length element ds measures the

arc length of a small partition of the curve. If you go back and look at the

formula for the arc length of a curve in parametric form, it should be no

surprise that ds =
√

(x′(t))2 + (y′(t))2 dt. In all, this formulation means

you need to:

(1) Find the parametric form of the curve C

(2) Compute the arc length differential ds =
√

(x′(t))2 + (y′(t))2 dt
(3) Plug the parametric equations for x and y into the function f(x, y)

(4) Set up the total integral shown, using the first and last values of t

from the parametric equations of C for the limits of integration

EX 1 Evaluate

∫

C

2 +x2y ds where C is the upper half of the unit circle.

Described parametrically, the upper half of the unit circle is x(t) = cos t,

y(t) = sin t for 0 ≤ t ≤ π. Using these parametric equations, we can get

ready for the arc length formulation of the line integral:

x′(t) = − sin t

y′(t) = cos t
√

(x′(t))2 + (y′(t))2 =
√

sin2 t+ cos2 t = 1

f(x(t), y(t)) = 2 + (cos t)2(sin t)

Putting these together,
∫

C

2 + x2y ds =

∫ b

a

f(x(t), y(t))
√

(x′(t))2 + (y′(t))2 dt

=

∫ π

0

(2 + cos2 t sin t)(1) dt =

(
2t− 1

3
cos3 t

) ∣∣∣∣
π

0

=

(
2π +

1

3

)
−
(

0− 1

3

)
= 2π +

2

3
�
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You Try It

(1) Evaluate

∫

C

xy4 ds, where C is the right half of the circle x2 + y2

= 16.

The contour of integration C can have many kinks and bends. You don’t

need to find a single set of parametric equations to take care of the entire

contour at once, you can describe each segment with its own parametric

equations. That is, if C consists of several individual contours C1, C2, . . .

joined together, then
∫

C

f(x, y) ds =

∫

C1

f(x, y) ds+

∫

C2

f(x, y) ds+ · · ·

This will be important when we get to Sec. 18.4.

Line Integrals, Format 2: Cartesian Formulation

Line integrals aren’t required to use the arc length element ds. Line in-

tegrals can also reference rectangular coordinates directly. This variety of

line integrals appears as, for example,
∫

C

P (x, y) dx+Q(x, y) dy or

∫

C

P (x, y) dx or

∫

C

Q(x, y) dy

Useful Fact 18.3. To evaluate a line integral that references dx and dy

directly, we use the parametric equations for the contour of integration, C =

(x(t), y(t)) : for a ≤ t ≤ b, to prepare dx = x′(t) dt and / or dy = y′(t) dt
directly and construct the corresponding single integral with respect to t.

For example,
∫

C

P (x, y) dx =

∫ b

a

P (x(t), y(t))x′(t) dt

Note that this format of a line integral is nice because it avoids the

square root term in the arc length formulation. We’ll see how to inter-

pret line integrals of this form below, but for now, start looking closely at

the general structure

∫

C

P (x, y) dx + Q(x, y) dy. Does that remind you of

anything?

EX 2 Evaluate

∫

C

(
xy +

1

x

)
dy where C is the arc of y = x2 from (1,1)

to (3,9).
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A good parametric formulation of C is x(t) = t, y(t) = t2 for 1 ≤ t ≤ 3.

From this, we can immediately get that dy = 2t dt. And so following the

suggestion of Useful Fact 18.3,

∫

C

(
xy +

1

x

)
dy =

∫ 3

1

(
(t)(t2) +

1

t

)
(2t dt) = 2

∫ 3

1

(t4 + 1) dt

= 2

(
1

5
t5 + t

) ∣∣∣∣
3

1

= 2

(
1

5
35 + 3

)
− 2

(
1

5
+ 1

)

= 2

(
242

5
+ 1

)
�

You Try It

(2) Evaluate

∫

C

xy dx + (x − y) dy; where C is the line from (0,0) to

(2,0) joined to the line from (2,0) to (3,2).

Okay, have you been thinking about the format of

∫

C

P (x, y) dx +

Q(x, y) dy? If so, you should be getting suspicious. This is the first

section in a Chapter titled for the big bang of scalar and vector quan-

tities, but we’ve seen no vectors ... yet. Did you notice that the form

P (x, y) dx + Q(x, y) dy looks an awful lot like a dot product? Well, it is!

We can write P (x, y) dx+Q(x, y) dy as 〈P (x, y), Q(x, y)〉 · 〈dx, dy〉, and so:
∫

C

P (x, y) dx+Q(x, y) dy =

∫

C

〈P (x, y), Q(x, y)〉 · 〈dx, dy〉

And so, this brings us to the third format of line integrals, which involve

a vector field F(x, y) = 〈P (x, y), Q(x, y)〉.

Line Integrals, Format 3: Vector Formulation

Given a vector field F(x, y) = 〈P (x, y), Q(x, y)〉 and a contour C given by

the vector function r(t) = 〈(x(t), y(t)〉 for a ≤ t ≤ b, we denote the integral

of F along r(t) as:
∫

C

F(x, y) · dr

So, the bad news is that vectors have shown up in a big way. The good

news is that to evaluate this, we’re just going to convert it back to the

previous form of a line integral.
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Useful Fact 18.4. Given a vector field F(x, y) = 〈P (x, y), Q(x, y)〉 and a

contour C given by the vector function r(t) = 〈(x(t), y(t)〉 for a ≤ t ≤ b,

we compute the integral of F along r(t) as follows:
∫

C

F(x, y) · dr =

∫

C

〈P (x, y), Q(x, y)〉 · 〈dx, dy〉 =

∫

C

P (x, y)dx+Q(x, y)dy

EX 3 Evaluate

∫

C

F ·dr for F(x, y) = 〈x2,−xy〉 and C the contour given

by the vector function r(t) = 〈cos t, sin t〉, 0 ≤ t ≤ π

2
.

Since r(t) = 〈x(t), y(t)〉 = 〈cos t, sin t〉, we get dr(t) = 〈− sin t, cos t〉. Plug-

ging in the parametric form of C into the vector field F, we get

F(x, y) = 〈x2,−xy〉 = 〈cos2 t,− cos t sin t〉
So carrying out the dot product we get
∫

C

F · dr =

∫

C

〈cos2 t,− cos t sin t〉 · 〈− sin t, cos t〉 dt

=

∫ π/2

0

− cos2 t sin t− cos2 t sin t dt = −2

∫ π/2

0

cos2 t sin t dt

=
2

3
cos3 t

∣∣∣∣
π/2

0

= −2

3
�

You Try It

(3) Evaluate

∫

C

F · dr where F(x, y) = 〈x2y3,−y√x〉 and r(t) =

〈t2,−t3〉 for 0 ≤ t ≤ 1.

So what do these vectorized line integrals mean, anyway? Well, I’m glad

you asked. A long time ago, you probably learned that the work done by a

constant force F to move an object a distance x is W = Fx. This equation

assumes the direction of force is the same as the direction of motion. But a

constant force in the same direction as motion is boring. How do we make

it more interesting?

What if the direction of the force is NOT the same as the direction of

motion? Then the work done by a constant force F in the direction of the

vector r is W = F · r. But this is still boring. Constant forces are dull,

whether they’re in the direction of motion or not.
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So, now suppose we have a vector field that represents a variable force,

and an object moving through the force field along a path C. If we consider

C to be a vector function r(t), then along each tiny segment dr of the path

C, the work done to move the object that small distance is F(x, y) ·dr. The

total amount of work done moving the object along the whole path is ...

you guessed it ... ∫

C

F(x, y) · dr

EX 4 Find the work done by the vector (force) field ~F (x, y, z) = 〈3 +

2xy, x2−3y2, z5〉 when it moves an object around a complete circle

in the plane z = 3 that has radius 5 and center (0, 0, 3). Once you

construct the integral, you are very likely to want to use tech to

evaluate it.

First, we need the parametric equations for C. It’s a circle of radius 5

centered at the origin, but up at z = 3. So we have

C = r(t) = 〈5 cos t, 5 sin t, 3〉 for 0 ≤ t ≤ 2π

and with that, we also have dr(t) = 〈−5 sin t, 5 cos t, 0〉. Next, we need to

get F expressed in terms of t by using the component functions from C:

F = 〈3 + 2xy, x2 − 3y2, z5〉
= 〈3 + 2(5 cos t)(5 sin t), (5 cos t)2 − 3(5 sin t)2, (3)5〉
= 〈3 + 50 cos t sin t, 25 cos2 t− 75 sin2 t, 35〉

Let’s get F(x, y) · dr ready for the integral:

F(x, y) · dr = 〈3 + 50 cos t sin t, 25 cos2 t− 75 sin2 t, 35〉 · 〈−5 sin t, 5 cos t, 0〉
= (3 + 50 cos t sin t)(−5 sin t) + (25 cos2 t− 75 sin2 t)(5 cos t) + 35(0)

= −15 sin t− 250 cos t sin2 t+ 125 cos3 t− 375 sin2 t cos t

= −15 sin t− 625 sin2 t cos t+ 125 cos3 t

And so the work integral is,∫

C

F(x, y) · dr =

∫ 2π

0

−15 sin t− 625 sin2 t cos t+ 125 cos3 t dt

Now, whether you use tech or just remembering how integrals of trig func-

tions work, the integral of every term in that expression from t = 0 to

t = 2π is zero! And so,

W =

∫

C

F(x, y) · dr = 0

That was a lot of work for nothing! �

You Try It

(4) Repeat EX 4 except with F(x, y) = 〈x+ 1, y + 2, z + 3〉.
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Line Integrals — Problem List

Line Integrals — You Try It

These appeared above; solutions begin on the next page.

(1) Evaluate

∫

C

xy4 ds, where C is the right half of the circle x2 + y2 = 16.

(2) Evaluate

∫

C

xy dx+ (x− y) dy; where C is the line from (0,0) to (2,0)

joined to the line from (2,0) to (3,2).

(3) Evaluate

∫

C

F · dr where F(x, y) = 〈x2y3,−y√x〉 and r(t) = 〈t2,−t3〉
for 0 ≤ t ≤ 1.

(4) Repeat EX 4 except with F(x, y) = 〈x+ 1, y + 2, z + 3〉.

Line Integrals — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.6.1.

(1) Evaluate

∫

C

yex ds, where C is the line from (1,2) to (4,7).

(2) Evaluate

∫

C

sinx dx+cos y dy where C that is the top half of x2+y2 = 1

from (1, 0) to (−1, 0) joined to the line from from (−1, 0) to (−2, 3).

(3) Evaluate

∫

C

F · dr where F(x, y, z) = 〈yz, xz, xy〉 and r(t) = 〈t, t2, t3〉
for 0 ≤ t ≤ 2.

(4) Evaluate

∫

C

x2z ds, where C is the line segment from (0, 6,−1) to

(4, 1, 5).

(5) Evaluate

∫

C

z dx+ x dy + y dz along the contour C that is given by

x = t2 y = t3 z = t2 for 0 ≤ t ≤ 1

(6) Find the work done by F(x, y, z) = 〈z, y,−x〉 around the contour r(t) =

〈t, sin t, cos t〉 for 0 ≤ t ≤ π.

(7) (Bonus! Following up Sec. 15.3 ...) We expect

∫

C

f(x, y) ds = 0 for

which of the following combinations of function f(x, y) and path of

integration C?

I1) f(x, y) = x2y and C is the upper half of 2x2 + 3y2 = 6?

I2) f(x, y) = x2y and C is the right half of 2x2 + 3y2 = 6?

I3) f(x, y) = xy2 and C is on y = x2 − 1 from (−1, 0) to (1, 0)?
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Line Integrals — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.6.1.

(1) Evaluate

∫

C

(x− 4)(z− 5) ds, where C is the line segment from (4, 1, 5)

to (0, 6,−1).

(2) Evaluate

∫

C

y dx+ z dy + x dz along the contour C that is given by

x = t3 y = t2 z = t for 0 ≤ t ≤ 1

(3) Find the work done by F(x, y, z) = 〈−y, z2, x〉 around the contour

r(t) = 〈sin t, t, cos t〉 for 0 ≤ t ≤ 2π.

(4) (Bonus! Following up Sec. 15.3 ...) We expect

∫

C

F(x, y) · d~r = 0 for

which of the following combinations of vector field F(x, y) and oriented

path of integration C?

I4) F(x, y) = 〈y3, x3〉 and C is the circle of radius 2, oriented coun-

terclockwise

I5) F(x, y) = 〈x/y, x+y〉 and C is the cardioid r = 2 + cos θ, oriented

counterclockwise

I6) F(x, y) = 〈(x + y)2, x2y2〉 and C follows y = 1/(x2 + 1) from

x = −2 to x = 2.
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Line Integrals — You Try It — Solved

(1) Evaluate

∫

C

xy4 ds, where C is the right half of the circle x2 + y2 = 16.

� Note that this involves the first type of line integral, i.e. one posed

in terms of arc length. We can describe the contour C as

x = 4 cos t y = 4 sin t for − π

2
≤ t ≤ π

2
so that√

[x′(t)]2 + [y′(t)]2 =
√

(−4 sin t)2 + (4 cos t)2 =
√

16 = 4

and∫

C

xy4 ds =

∫ b

a

f(x(t), y(t))
√

[x′(t)]2 + [y′(t)]2 dt

=

∫ π/2

−π/2
(4 cos t)(4 sin t)4(4) dt =

∫ π/2

−π/2
46 sin4 t cos t dt

=
8192

5
= 1638.4 �

(2) Evaluate

∫

C

xy dx+ (x− y) dy; where C is the line from (0,0) to (2,0)

joined to the line from (2,0) to (3,2).

� Note that this line integral does not involve the arc length param-

eter, so we’ll just convert everything directly to parametric form. The

contour C has two parts: the line from (0,0) to (2,0) (call this C1), and

then from (2,0) to (3,2) (call this C2). The contours are

C1 : x = 2t y = 0 for 0 ≤ t ≤ 1→ dx = 2 dt dy = 0

C2 : x = 2 + t y = 2t for 0 ≤ t ≤ 1→ dx = dt dy = 2 dt

The integrals are:
∫

C1

xy dx+ (x− y) dy =

∫ 1

0

(2t)(0)(2 dt) + (2t− 0)(0) = 0

∫

C2

xy dx+ (x− y) dy =

∫ 1

0

(2 + t)(2t)(dt) + (2 + t− 2t)(2 dt)

=

∫ 1

0

[2t(2 + t) + 2(2− t)] dt =
17

3

Putting them together,∫

C

xy dx+(x−y) dy =

∫

C1

xy dx+(x−y) dy+

∫

C2

xy dx+(x−y) dy =
17

3
�
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(3) Evaluate

∫

C

F · dr where F(x, y) = 〈x2y3,−y√x〉 and r(t) = 〈t2,−t3〉
for 0 ≤ t ≤ 1.

� From r(t) we have

x = t2 → dx = 2t dt

y = −t3 → dy = −3t2 dt

so that ∫

C

F · dr =

∫

C

x2y3 dx− y√x dy

=

∫ 1

0

(t2)2(−t3)3(2t dt)− (−t3)
√
t2(−3t2 dt)

=

∫ 1

0

(−2t14− 3t6) dt = − 59

105
�

(4) Repeat EX 4 except with F(x, y) = 〈x+ 1, y + 2, z + 3〉.
� In EX 4, we used the contour

C = r(t) = 〈5 cos t, 5 sin t, 3〉 for 0 ≤ t ≤ 2π

for which dr(t) = 〈dx, dy, dz〉 = 〈−5 sin t, 5 cos t, 0〉. If we expand F

using the component functions from C, we get

F(x, y) = 〈x+ 1, y + 2, z + 3〉 = 〈5 cos t+ 1, 5 sin t+ 2, 6〉
So,
∫

C

F(x, y) · dr =

∫ 2π

0

〈5 cos t+ 1, 5 sin t+ 2, 6〉 · 〈−5 sin t, 5 cos t, 0〉 dt

=

∫ 2π

0

(5 cos t+ 1)(5 sin t) + (5 sin t+ 2)(5 cos t) + 6(0) dt

=

∫ 2π

0

25 sin t cos t+ 5 sin t+ 25 sin t cos t+ 10 cos t dt

=

∫ 2π

0

50 sin t cos t+ 5 sin t+ 10 cos t dt

= 0

Once again, around a closed contour C, W =

∫

C

F(x, y) · dr = 0. Is

this a pattern? I guess we have something to investigate in the next

section. �
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18.2 Conservative Vector Fields

Introduction

This topic will tie up some threads that have been introduced in previous

sections: line integrals, vector fields, gradients, and curls. Near the end

of Sec. 16.4, there was an open question: We can compute the gradient

of a scalar function f(x, y), ∇f = 〈fx, fy〉, and that gradient is a vector

field. But what about the reverse? If we grab just any old vector field

F = 〈P (x, y), Q(x, y)〉, is it guaranteed to be the gradient of some scalar

function? Well, the answer is no, it’s not always guaranteed, but there are

indicators for when it is guaranteed.

When a vector field is known to be the gradient of a scalar function, it is

called a conservative vector field, and the scalar function that produces the

vector fiend as its gradient is called the potential function for that vector

field. As familiar examples, you may have encountered gravitational poten-

tials and electrostatic potentials in a physics course. They are named such

because their gradients are the vector fields we know as the gravitational

field and electrostatic field.

Identifying Conservative Vector Fields

To formalize some terms given just above,

Definition 18.2. A vector field F is conservative if there is a scalar

function f such that F = ∇f . When ∇f = F, we call f the potential

function for F.

We can test whether or not a given vector field F is conservative:

Useful Fact 18.5. A 2D vector field F(x, y) = 〈P (x, y), Q(x, y)〉 is con-

servative if ∂P/∂y = ∂Q/∂x.

A 3D vector field F(x, y, z) = 〈P (x, y, z), Q(x, y, z), R(x, y, z)〉 is con-

servative if ∇× F = 0.

Both of these are easy tests, and in fact they are the same test. You

might think, “Hey, you can’t do a curl of a two-dimensional vector field!”

But you can indeed do that, you just have to cheat by adding a third com-

ponent of zero. If you upgrade a 2D vector field F(x, y) = 〈P (x, y), Q(x, y)〉
to a 3D vector field F(x, y, z) = 〈P (x, y), Q(x, y), 0〉 and find its curl, you
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will find that the curl is 〈0, 0, Qx − Py〉. So checking if ∇ × F = 0 is the

same as checking if Py = Qx. Go ahead, try it!

So, why does this test work? Well, you’ll sort of have to take it on

faith. Challenge Problem 3 of Sec. 16.4 asked you to show that ∇× (∇f)

is always 0. In other words, you proved the statement “If F is the gradient

of a scalar function f , then ∇×F = 0.” Now consider that statement along

with two others:

A: If F is conservative, then ∇× F = 0.

B: If ∇× F 6= 0, then F is not conservative.

C: If ∇× F = 0, then F is conservative.

The truth of Statement A implies the truth of Statement B. But Statement

C is still just a hunch. Formally moving it from a hunch to a proven state-

ment is not something we’re ready to do. (Maybe we’ll see it later? Maybe

not? I’ll keep you in suspense.) But, we’re still going to use Statement C

as if it’s been proven.

EX 1 Is the vector field F(x, y) = 〈3 + 2xy, x2 − 3y2〉 conservative?

Matching F to the form 〈P,Q〉, we have P (x, y) = 3 + 2xy and Q(x, y) =

x2−3y2, and so also Py = 2x and Qx = 2x. Useful Fact 18.5 then confirms

that since Py = Qx, the vector field is conservative. �

EX 2 Is the vector field F(x, y, z) = 〈3 + 2xy, x2 − 3y2, z5〉 conservative?

Matching F to the form 〈P,Q,R〉, we have P (x, y, z) = 3+2xy, Q(x, y, z) =

x2 − 3y2, and R(x, y, z) = z5. Since this is a 3D vector field, Useful Fact

18.5 directs is to look at its curl:

curl(F) =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

3 + 2xy x2 − 3y2 z5

∣∣∣∣∣∣
= 0i− 0j + (2x− 2x)k = 0

Since ∇× F = 0, this is a conservative vector field. �

Finding the Potential Function for a Conservative Vector

Field

Once we have determined that a vector field is conservative, we can system-

atically search for its potential function. In a sense, searching for a potential
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function is the multivariable analog of finding an antiderivative. The vector

field we have is a gradient (made of derivatives) of some mystery function,

and we’re trying to find its ... “antigradient”? As with antiderivatives,

potential functions are not unique and can differ by an arbitrary constant.

After all, if we know that ∇f = F, then certainly ∇(f + C) = F as well.

Here’s how we can find a potential function, at least in the 2D case. We

take advantage of the fact that if F(x, y) = 〈P (x, y), Q(x, y)〉 is the gradient

of some f(x, y), then fx = P and fy = Q. The overall strategy is to take

one of the two relationships (fx = P or fy = Q) and learn as much as we

can via a regular old antiderivative, and then tailor our result to match the

other relationship. So,

• STEP 1: Pick either component of F, i.e. P (x, y) or Q(x, y). Find

its antiderivative with respect to the appropriate variable; that is,

find the antiderivative of P with respect to x, or the antiderivative

of Q with respect to y. But there’s a catch to this: in these anti-

derivatives, we have to attach an arbitrary function of the other

variable, not just an arbitrary constant. Here’s why: Suppose we

have P (x, y) = fx(x, y) = 3x2. Since f is a function of x AND

y, then the collection of valid antiderivatives of this function with

respect to x include things like x3 + y, x3 + sin(y), x3 + ey
2

, and

so on — the derivatives of every one of these functions with re-

spect to x is just 3x2. So we must write that the antiderivative

of fx(x, y) = x2 with respect to x is x3 + g(y), where g(y) is any

arbitrary function of y alone.

• STEP 2: Knowing that the other component (P or Q) must be

the derivative of the function f with respect to the other variable,

you should determine what the arbitrary function must look like;

it should be pretty obvious on a case-by-case basis, but this step

may take a bit of trial and error.

EX 3 In EX 1, we found that F(x, y) = 〈3+2xy, x2−3y2〉 is conservative.

Find a potential function for this vector field.

The potential function for this vector field will be some scalar function

f(x, y) such that F = 〈P,Q〉 = 〈fx, fy〉. Let’s follow the steps above to find

it.
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STEP 1: Picking the first component of F, i.e. P (x, y) = 3 + 2xy,

we know that whatever our potential function f(x, y) is, it generates the

derivative fx = 3 + 2xy. Therefore, at worst, f(x, y) itself will look

like the antiderivative of this expression with respect to x. That is,

f(x, y) = 3x+x2y+ g(y) (where we’ve installed g(y), an arbitrary function

of y).

STEP 2: We also know that the other component of F, i.e. Q(x, y) =

x2 − 3y2 must be the same as fy. But in the last step, we found most of

f(x, y) already. So we have two hooks into

• From F itself, we know that fy = x2 − 3y2.

• From our half-built potential function we found in STEP 1,

f(x, y) = 3x+ x2y + g(y), we would have fy = x2 + g′(y).

Comparing these two representations of fy gives x2 − 3y2 = x2 + g′(y),

and now we know g′(y) = −3y2. This means that g(y) itself is g(y) =

−y3 + C, and so:

f(x, y) = 3x+ x2y + g(y) = 3x+ x2y − y3 + C

You can verify that the gradient of this function is indeed the vector field

F we started with. �

Note that you may not need to follow this formal procedure. If you

know that F is conservative, then you may be able to get at its potential

function almost through trial and error. Knowing that the first component

of F must be fx, and the second component must be fy, and (if 3D) the

third component must be fz, you might be able to puzzle out f(x, y, z) just

based on that information. I particularly recommend this strategy for 3D

conservative vector fields, although you can extend the formal procedure

described above if you need to.

You Try It

(1) Determine if the vector field F(x, y) = 〈6x+ 5y, 5x+ 4y〉 is conser-

vative. If it is, find a potential function for it.

(2) Determine if the vector field F(x, y) = 〈xey, yex〉 is conservative.

If it is, find a potential function for it.

(3) Determine if the vector field F(x, y, z) = 〈yz, xz, xy〉 is conserva-

tive. If it is, find a potential function for it.
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Line Integrals With Conservative Vector Fields

Here is another analogy between potential functions and antiderivatives.

Everyone remembers The Fundamental Theorem of Calculus, which says

that as long as f obeys certain properties, then we can use its antiderivative

F to compute definite integrals:
∫ b

a

f(x)dx = F (b)− F (a)

Here is an upgrade:

Theorem 18.1. If F(x, y) is a conservative vector field with potential func-

tion f(x, y), and C is a piecewise smooth contour from (x1, y1) to (x2, y2),

then ∫

C

F(x, y) · dr = f(x2, y2)− f(x1, y1)

This is called the Fundamental Theorem for Line Integrals.

There is one important fact inherent in that formula; if F is conser-

vative, then the line integral

∫

C

F · dr is path independent. That is,

the value of the line integral only depends on the first and last points on

the contour C; how the contour gets from the first to last point does not

matter.

A slightly more “vectorized” version of Theorem 18.1 relies on the

fact that we often have the contour C given via its vector equation form:

C = r(t) for a ≤ t ≤ b; in this case, the Theorem might read this way:

If F(x, y) is a conservative vector field with potential function f(x, y),

and C is a piecewise smooth contour r(t) for a ≤ t ≤ b, then∫

C

F(x, y) · dr = f(r(b))− f(r(a))

Be ready to describe the endpoints of the contour in either format.

FFT: You can probably imagine what is means for a contour C to

be closed. It means the contour starts and ends at the same point (think of a

circle, square, triangle, etc). The Fundamental Theorem for Line Integrals

gives us a definitive conclusion about the value of

∫

C

F · dr when C is a

piecewise smooth and closed contour. Do you know what that value is?
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EX 4 Evaluate

∫

C

F · dr if F(x, y) = 〈yex + sin y, ex + x cos y〉 and C is

a contour that starts at (0,0), goes counterclockwise in a quarter

circular arc, slants diagonally at 45o, and then follows a parabola

to the point (π, π).

Wow, what a horrible contour! Luckily, it will turn out that the contour

itself won’t matter, only its endpoints. Looking at F, we see that P =

yex+sin y and Q = ex+x cos y, so that Py = ex+cos y and Qx = ex+cos y.

Since Py = Qx, then F is conservative and the Fundamental Theorem for

Line Integrals will apply. But we need a potential function for F to use that

Theorem. Again looking at F and knowing that it has a potential function

f(x, y), we need

fx = yex + sin y and fy = ex + x cos y

I think we can determine without much ado that f(x, y) = yex+x sin y+C.

Therefore, with the first and last points on the messy contour being (0, 0)

and (π, π), we have by the Fundamental Theorem for Line Integrals,∫

C

F · dr = f(x2, y2)− f(x1, y1) = f(π, π)− f(0, 0)

= (πeπ + π sinπ)− (0e0 + 0 sin 0) = πeπ �

You Try It

(4) Evaluate

∫

C

F · dr where F(x, y) = 〈x3y4, x4y3〉 and C is the curve

given by r(t) = 〈
√
t, 1 + t3〉 for 0 ≤ t ≤ 1.

We’ve been using Useful Fact 18.5 without a solid proof behind it, and

I know you’re not going to let me get away with that twice, so I’ll show

you why Theorem 18.1 works. Surprisingly, it isn’t that bad! Here are two

ingredients to start with:

• First, the conditions of the theorem require that the vector field F

is conservative, meaning it’s the gradient of a scalar function:

F = ∇f =

〈
∂f

∂x
,
∂f

∂y

〉

• Second, the contour C can be given parametrically via r(t) =

〈x(t), y(t)〉 for a ≤ t ≤ b, so

dr =

〈
dx

dt
,
dy

dt

〉
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So when we build the integral and expand the dot product F · r(t), we get
∫

C

F · dr =

∫ b

a

(
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

)
dt

Now take out the integrand and look at it on its own:

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

That should look really familiar! It’s a chain rule expression, built for the

derivative with respect to t of a function f(x(t), y(t)), i.e. the contour

integral itself can be reset as:
∫

C

F · dr =

∫ b

a

d

dt
f(x(t), y(t)) dt

which by the single variable fundamental theorem of calculus is just the

difference between the values of f(x, y) evaluated at t = a and t = b:
∫

C

F · dr = f(x(b), y(b))− f(x(a), y(a))

which is the formula given in Theorem 18.1 except with slightly different

referencing to the endpoints.

Summary

Here is a summary of everything we now know about conservative vector

fields and their line integrals. The following statements are equivalent,

meaning that if one of them is known to be true, then they ALL are true:

(1) F is conservative.

(2) F is the gradient of some scalar potential function f , i.e. F = ∇f .

(3)

∫

C

F · dr is path independent; if p1 and p2 represent the starting

and ending points on the contour C, then

∫

C

F ·dr = f(p2)−f(p1).

(4)

∫

C

F · dr = 0 along ALL piecewise-smooth closed contours C.

(5) For a 2D vector field F(x, y) = 〈P (x, y), Q(x, y)〉, Py(x, y) =

Qx(x, y). For a 3D vector field F(x, y, z), ∇× F = 0
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Conservative Vector Fields — Problem List

Conservative Vector Fields — You Try It

These appeared above; solutions begin on the next page.

(1) Determine if the vector field F(x, y) = 〈6x+5y, 5x+4y〉 is conservative.

If it is, find a potential function for it.

(2) Determine if the vector field F(x, y) = 〈xey, yex〉 is conservative. If it

is, find a potential function for it.

(3) Determine if the vector field F(x, y, z) = 〈yz, xz, xy〉 is conservative. If

it is, find a potential function for it.

(4) Evaluate

∫

C

F · dr where F(x, y) = 〈x3y4, x4y3〉 and C is the curve

given by r(t) = 〈
√
t, 1 + t3〉 for 0 ≤ t ≤ 1.

Conservative Vector Fields — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.6.2.

(1) Determine if the vector field F(x, y) = 〈x3 + 4xy, 4xy − y3〉 is conser-

vative. If it is, find a potential function for it.

(2) Determine if the vector field F(x, y) = 〈ey, xey〉 is conservative. If it is,

find a potential function for it.

(3) Determine if the vector field F(x, y, z) = 〈3z2, cos y, 2xz〉 is conserva-

tive. If it is, find a potential function for it.

(4) Evaluate

∫

C

F ·dr where F(x, y) =

〈
y2

1 + x2
, 2y tan−1(x)

〉
and C is the

curve given by r(t) = 〈t2, 2t〉 for 0 ≤ t ≤ 1.

(5) Determine if the vector field F(x, y) = 〈1+2xy+lnx, x2〉 is conservative.

If it is, find a potential function for it.

(6) Determine if the vector field F(x, y, z) = 〈ez, 1, xez〉 is conservative. If

it is, find a potential function for it.

(7) Use the Fundamental Theorem for Line Integrals to evaluate

∫

C

F · dr
where F(x, y, z) = 〈2xz + y2, 2xy, x2 + 3z2〉, and C is the curve given

by r(t) = 〈t2, t+ 1, 2t− 1〉 for 0 ≤ t ≤ 1.
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Conservative Vector Fields — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.6.2.

(1) Determine if the vector field F(x, y) = 〈y2 + ex + xex, 2xy〉 is conser-

vative. If it is, find a potential function for it.

(2) Determine if the vector field F(x, y, z) = 〈3x2,− cos(y), 2xz〉 is conser-

vative. If it is, find a potential function for it.

(3) Use the Fundamental Theorem for Line Integrals to evaluate

∫

C

F · dr
where F(x, y, z) = 〈10x+ 3y+yz, 3x+ 20y+xz, xy〉 and C is the curve

given by

r(t) =
〈
t5/2 − 1,

√
t+ 3, sin

(π
2
t
)〉

for 0 ≤ t ≤ 1

Conservative Vector Fields — You Try It — Solved

(1) Determine if the vector field F(x, y) = 〈6x+5y, 5x+4y〉 is conservative.

If it is, find a potential function for it.

� Matching this to the form F(x, y) = 〈P (x, y), Q(x, y)〉, we have

P = 6x+ 5y → ∂P

∂y
= 5

Q = 5x+ 4y → ∂Q

∂x
= 5

Since ∂P/∂y = ∂Q/∂x then the vector field is conservative. So there

is a function f(x, y) such that ∇f = F.

We know from F that for this function, fx = 6x+ 5y and fy = 5x+ 4y.

Based on fx, we know that at worst, f(x, y) = 3x2 + 5xy + g(y) where

g(y) is some unknown function of y.

With f(x, y) in this form, fy = 5x + g′(y). But since we know

fy = 5x + 4y we have that g′(y) = 4y and g(y) = 2y2 + C. So,

f(x, y) = 3x2 + 5xy + 2y2 + C. �

(2) Determine if the vector field F(x, y) = 〈xey, yex〉 is conservative. If it

is, find a potential function for it.
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� Matching this to the form F(x, y) = 〈P (x, y), Q(x, y)〉, we have

P = xey → ∂P

∂y
= xey

Q = yex → ∂Q

∂x
= yex

Since ∂P/∂y 6= ∂Q/∂x then the vector field is not conservative, and

there is no function f(x, y) such that ∇f = F. �

(3) Determine if the vector field F(x, y, z) = 〈yz, xz, xy〉 is conservative. If

it is, find a potential function for it.

� Since ∇ × F = 0 then F is conservative, and so there is a scalar

function f such that F = ∇f . Since that’s true, we know fx = yz,

fy = xz, and fz = xy. Without any further ado, it’s pretty easy to

figure out that f(x, y, z) = xyz + C. �

(4) Evaluate

∫

C

F · dr where F(x, y) = 〈x3y4, x4y3〉 and C is the curve

given by r(t) = 〈
√
t, 1 + t3〉 for 0 ≤ t ≤ 1.

� A quick check will show that F is conservative. Therefore, we can

evaluate the integral using the Fundamental Theorem for Line Integrals.

The potential function for this vector field is a function f(x, y) such

that fx = x3y4 and fy = x4y3. Based on fx, we know that at worst,

f(x, y) = x4y4/4 + g(y) where g(y) is some unknown function of y.

With f(x, y) in this form, we get fy = x4y3 + g′(y). But since we know

fy = x4y3 we have that g′(y) = 0 and g(y) = C. Let’s choose C = 0

(do you know why we can??) so that

f(x, y) =
1

4
x4y4

Next we need
∫
C

F · dr where r(t) = 〈
√
t, 1 + t3〉 for 0 ≤ t ≤ 1. The

values of r(t) and f(x, y) at the endpoints of this curve, i.e. at t = 0

and t = 1, are

r(1) = 〈1, 2〉 → f(1, 2) =
1

4
(1)(2)4 = 4

r(0) = 〈0, 1〉 → f(0, 1) =
1

4
(0)(1)4 = 0

So by the Fundamental Theorem for Line Integrals, we have∫

C

F · dr = f(1, 2)− f(0, 1) = 4 �
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18.3 Surface Integrals

Introduction

Let’s insert our newest discovery, line integrals, into the hierarchy of integral

types; line integrals live in a zone between single and double integrals:

∫ b

a

f(x) dx = lim
n→∞

n∑

i=1

f(x?i )∆x

→
∫

C

f(x, y) ds = lim
n→∞

n∑

i=1

f(x?i , y
?
i )∆s

∫∫
Rf(x, y) dA = lim

n,m→∞

n∑

i=1

m∑

j=1

f(x?i , y
?
j )∆A

∫∫∫
Ef(x, y, z) dV = lim

n,m,p→∞

n∑

i=1

m∑

j=1

p∑

k=1

f(x?i , y
?
j , z

?
k)∆V

Are you getting nervous about that spot between double and triple inte-

grals? So far, we’ve used straight lines and curves as domains of integration

(single and line integrals); we’ve used a flat 2D region from the xy-plane

as a domain of integration (double integrals); we’ve used a 3D solid vol-

ume from R3 as a domain of integration (triple integrals). Are there any

options left? You bet! We haven’t used a surface in R3 as a domain of

integration. Just as line integrals fit in between single and double integrals,

surface integrals will fit in between double integrals and triple integrals.

Surface Integrals: Definition

Consider a function f(x, y, z), which — as you remember — can’t be plotted

on our usual sets of axes, and a region of integration E in 3-space. We al-

ready know how to do the triple integral of f over E: it’s

∫∫∫

E

f(x, y, z) dV .

But let S be the part or all of the surface of the solid region E. We can

also integrate f over S — this is a surface integral. To develop it, we’ll just

follow our standard partitioning procedure.

(1) Select a region of integration from the domain of the func-

tion. This is the surface S.

(2) Partition the region of integration into tiny pieces. First, we

have to visualize how the partitioning works. Imagine a grid in the
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xy-plane, just as for a double integral, into i steps along the x-axis

and j steps along the y-axis, so that there are a total of ij individual

grid calls. Each grid cell is a rectangle with size ∆A = ∆x∆y.

Now imagine that grid projected upwards (or downwards) onto the

surface S. Each grid cell ∆A projects onto a small patch on the

surface; this patch will not necessarily be a rectangle, but it will

have area ∆S. Each grid cell down in the xy-plane may very well

have the same size ∆A, but there’s no guarantee that every grid

cell on the surface will have the same size, so we need to specify

the area of each as ∆Sij (where the subscript ij lands us in one

specific patch on the surface). The projection of ∆A onto ∆Sij is

shown in Fig. 18.6.

∆A

∆Sij

x

y

z

Fig. 18.6 Partitioning for a surface integral; dA vs dSij .

(3) Within each partition, select a representative point. Each

grid cell in the xy-plane (and thus also on the surface) is charac-

terized by a point (x?i , y
?
j ). The corresponding patch of S above

each grid cell can be assigned one z-coordinate from that patch.

Therefore we’ll call our representative point (x?i , y
?
j , z

?
ij).

(4) Plug the coordinate(s) of that representative point into

the function. We get f(x?i , y
?
j , z

?
ij).

(5) Multiply the function’s value at the representative point

by the size of the partition. This product will be

f(x?i , y
?
j , z

?
ij)∆Sij .

(6) Sum these resulting contributions from all partitions.

n∑

i=1

m∑

j=1

f(x?i , y
?
j , z

?
ij)∆Sij
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(7) Find the limit of this sum as the number of partitions goes

to ∞.

lim
n,m→∞

n∑

i=1

m∑

j=1

f(x?i , y
?
j , z

?
ij)∆Sij

(8) Give this limit a name and symbol. Remember from our

discussion about line integrals that the number of integral signs

is not due to the number of variables in the function being in-

tegrated (which here is f(x, y, z)), but rather a reflection of how

many dimensions we have in the domain or region of integration.

In a surface integral, the term ∆Sij is the area of a patch of the

surface, and so is two-dimensional. Therefore, we will need two

integral signs on a surface integral:
∫∫

S

f(x, y, z) dS = lim
n,m→∞

n∑

i=1

m∑

j=1

f(x?i , y
?
j , z

?
ij)∆Sij

All in all, you can think of the process of surface integration as like

having an ant walk over a surface in R3 and accumulating values of a

function f(x, y, z) as he walks over the designated portion of the surface.

Now, why an ant would want to do that is left up to your imagination.

Surface Integrals: Computation

When we defined line integrals, we didn’t really learn a new way to com-

pute an integral, we just learned how to convert the new category of integral

into one we already knew how to do. There were two basic versions of line

integrals (the rectangular version and the “vectorized” version), but either

way, we converted the line integral as a regular single integral in terms of

a parameter t.

We’ll do the same kind of thing for surface integrals. Some of the ex-

pressions are going to look pretty nasty, but fundamentally, we don’t need

a new method of determining an integral, we’ll just learn how to convert a

surface integral

∫∫

S

f(x, y, z) dS into a regular double integral,

∫∫

S

(·)dA.

Once we’ve done that, we can use all the tools we have available for evalu-

ating double integrals — including changing to polar coordinates!

You will need to be on your toes when dealing with notation in surface

integrals, because we need to keep track of two different functions:
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(1) The function that’s being integrated is usually designated f(x, y, z)

(2) The surface over which the integration is taking place is usually

designated z = g(x, y). This means, for example, that if the surface

of integration is a portion of the plane 2x + 3y + z = 1, we will

refer to it as z = g(x, y) = 1− 2x− 3y.

The conversion of the dS in the surface integral to the regular dA of a

double integral hinges on an idea whose development involves lots of neat

things like tangent planes and cross products. The end result is that if we

have a grid in the xy-plane where the cells have size ∆x∆y, and a surface

z = g(x, y) is hovering over this grid, then the corresponding partitions of

S have surface area

∆Sij ≈
√

[gx(xi, yj)]2 + [gy(xi, yj)]2 + 1 ∆A

Therefore, we can adapt our definition of the surface integral to:

∫∫

S

f(x, y, z) dS = lim
n,m→∞

n∑

i=1

m∑

j=1

f(x?i , y
?
j , z

?
ij)∆Sij

= lim
n,m→∞

n∑

i=1

m∑

j=1

f(x?i , y
?
j , z

?
ij)
√

[gx(xi, yj)]2 + [gy(xi, yj)]2 + 1 ∆A

=

∫∫

D

f(x, y, z)
√

(gx)2 + (gy)2 + 1 dA

But we can’t do a double integral of a function with z’s still floating around

in it, and so we must restrict the function f(x, y, z) only to points from the

surface z = g(x, y). Ultimately, we design surface integrals for evaluation

as “regular” double integrals as follows:

Useful Fact 18.6. Given a well-behaved function f(x, y, z) and smooth

surface z = g(x, y),
∫∫

S

f(x, y, z) dS =

∫∫

D

f(x, y, g(x, y))
√

(gx)2 + (gy)2 + 1 dA

The procedure is broken down like this:

• If it’s not already given this way, write the equation of the surface

of integration in the form z = g(x, y).

• From the equation of the surface of integration, compute gx, gy,

and create the term
√

(gx)2 + (gy)2 + 1.
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• If f(x, y, z) has z’s in it, replace z with the equation of the surface

z = g(x, y).

• Assemble the integral shown in Useful Fact 18.6. The domain D of

the resulting double integral is just the “shadow” in the xy-plane

of the surface S.

• Decide whether rectangular or polar coordinates are more appro-

priate to solve the integral.

• Solve it.

Isn’t that easy???

EX 1 Evaluate

∫∫

S

x2z2 dS where S is the part of the cone z2 = x2 + y2

that lies between the planes z = 1 and z = 3.

The surface of integration is shown in Fig. 18.7. The dot on the surface is

our ant walking around on the cone, collecting up values of the function

f(x, y, z) = x2z2.

To get started with the calculation, we must rewrite the surface of in-

tegration as z = g(x, y) =
√
x2 + y2. From this, we get:

gx =
x√

x2 + y2
; gy =

y√
x2 + y2

and so

√
(gx)2 + (gy)2 + 1 =

√
x2

x2 + y2
+

y2

x2 + y2
+ 1 =

√
2

The function which is known as f(x, y, z) = x2z2 everywhere in R3 can be

rewritten more specifically for this surface as

f(x, y, g(x, y)) = x2(z)2 = x2(
√
x2 + y2)2 = x2(x2 + y2)

For our double integral, we need a suitable region of integration D; this

is just the portion of the xy-plane which is directly under the surface of

integration. This region is shown in Fig. 18.8. D is the region in the xy-

plane between the circles x2 + y2 = 1 and x2 + y2 = 9. And now we have

all the pieces we need to assemble the surface integral:
∫∫

S

x2z2 dS =

∫∫

D

f(x, y, g(x, y))
√

(gx)2 + (gy)2 + 1 dA

=

∫∫

D

x2(x2 + y2)
√

2 dA
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This is an integral for which polar coordinates is quite appropriate, due to

the circular nature of D and the presence of x2 +y2 in the integrand. Since

D is between two concentric circles of radius 1 and 3,∫∫

S

x2z2 dS =

∫∫

D

x2(x2 + y2)
√

2 dA

=
√

2

∫ 2π

0

∫ 3

1

(r cos θ)2(r2) r drdθ

=
√

2

∫ 2π

0

∫ 3

1

r5 cos2 θ drdθ

Because setting up the correct integral is 90% of the battle in one of these

problems, it’s totally fair to head for tech to get the integral evaluated. In

this case, we can find that
∫∫

S

x2z2 dS =
√

2

∫ 2π

0

∫ 3

1

r5 cos2 θ drdθ =
364
√

2π

3
�

−3 −1
1

3−3
−1

1
3

1

3

x

y

z

Fig. 18.7 The cone z = r, 1 ≤ z ≤ 3,

with EX 1.

−3 −1 1 3

−3

−1

1

3 r =
3

r =
1 x

x

Fig. 18.8 The support region D for the

surface in Fig. 18.7.

EX 2 Evaluate

∫∫

S

z dS where S is the part of the paraboloid z = x2+y2

inside the cylinder x2 + y2 = 1.

From the surface of integration z = g(x, y) = x2 + y2, we get:

gx = 2x ; gy = 2y

and so √
(gx)2 + (gy)2 + 1 =

√
4x2 + 4y2 + 1
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The function f(x, y, z) = z can be rewritten for this surface as

f(x, y, g(x, y)) = x2 + y2

The region D in the xy-plane below our surface comes from the intersection

of the paraboloid and the cylinder; this occurs when x2 +y2 = 1. Therefore

D is the unit circle. The surface and the associated region in the xy-plane

are shown in Figs. 18.9 and 18.10. And now we have all the pieces we need

to assemble the surface integral (polar coordinates seem useful here):∫∫

S

z dS =

∫∫

D

f(x, y, g(x, y))
√

(gx)2 + (gy)2 + 1 dA

=

∫∫

D

(x2 + y2)
√

4x2 + 4y2 + 1 dA =

∫∫

D

r2
√

4r2 + 1 dA

=

∫ 2π

0

∫ 1

0

r2
√

4r2 + 1 r drdθ =

∫ 2π

0

∫ 1

0

r3
√

4r2 + 1 drdθ

=
π

60
(25
√

5 + 1) �

−1

1−1

1

1

x

y

z

Fig. 18.9 The paraboloid z = r2 inside

the cylinder r = 1, with EX 2.

−1 1

−1

1

r
=

1

x

x

Fig. 18.10 The support region D for

the surface in Fig. 18.9.

You Try It

(1) Find

∫∫

S

x2yz dS where the surface S is the portion of the plane

z = 1 + 2x+ 3y above 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2

Computing Surface Areas

We can use surface integrals to compute surface area. The integrals above

are not computations of surface area; rather, they are the result of the pro-

cess where we travel over a surface S and sample / integrate values of some
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function f(x, y, z) from locations on that surface. This isn’t the same as

computing the actual area of the surface S.

However, we’ve laid plenty of clues to how we can compute the area of

S. Recall this growing inventory of calculations:

•
∫

I

(1) dx computes the length of the interval of integration I

•
∫

C

(1) ds computes the length of the contour of integration C

•
∫∫

R(1) dA computes the area of the region of integration R

•
∫∫∫

E(1) dV computes the volume of the region of integration E.

Take a crazy guess as to how we can compute the area of a surface S.

Useful Fact 18.7. The surface area of a smooth surface S can be calculated

by:

AS =

∫∫

S

(1) dS

EX 3 Find the surface area of the part of the paraboloid z = x2 + y2

under the plane z = 9.

From the surface of integration z = g(x, y) = x2 + y2, we get:

gx = 2x ; gy = 2y

and so √
(gx)2 + (gy)2 + 1 =

√
4x2 + 4y2 + 1

The function of integration is just f(x, y, z) = 1, since we want to compute

a surface area. The region of integration comes from the intersection of the

paraboloid with the plane z = 9, which happens when x2 + y2 = 9; so, D

is a circle of radius 3. (If you want an image for this, go look at Figs. 18.9

and 18.10 and imagine the paraboloid there extended up to z = 9.) Using

polar coordinates again,

AS =

∫∫

S

(1) dS =

∫∫

S

(1)
√

(gx)2 + (gy)2 + 1 dA

=

∫∫

S

(1)
√

4x2 + 4y2 + 1 dA =

∫∫

S

√
4x2 + 4y2 + 1 dA

=

∫ 2π

0

∫ 3

0

√
4r2 + 1 r drdθ =

π

6
(37
√

37− 1) �
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You Try It

(2) Find the surface area of the cylinder y2+z2 = 9 above the rectangle

with vertices (0,0), (4,0), (0,2) and (4,2).

Surface Integrals: Vector Version

Remember how line integrals started as something harmless like∫

C

f(x, y)ds but, when we found we could involve vectors, they changed

into something more scary:

∫

C

F · dr? The same thing is about to happen

with surface integrals. Given a 3D vector field F(x, y, z), we can perform

a surface integral that looks like this (which is very similar to the vector

version of a line integral):
∫∫

S

F · dS

This expression should confuse you. After all, we know the scalar quantity

dS evolved from ∆S, a small patch of our surface, with area. But what

does dS mean when it’s a vector? Can you just take a surface element and

turn it into a vector?? Well, yes, it’s just notation. Think of each patch

of our surface S with area ∆S as an itty bitty piece of a plane; thus, each

patch has a unit normal vector n associated with it. (These vectors are the

same as the normal vectors that describe the tangent plane at any point on

the surface). The “vector” form of dS is really just n dS. Therefore, the

vector surface integral might also look like this:
∫∫

S

F · n dS

Before worrying about how to compute it, think for a minute about what

this means. If F is a vector that represents some sort of flow — like fluid

flow or electrostatic current. If n happens to be a unit vector perpendic-

ular to the surface, then F · n is the component of F perpendicular to the

surface. And when we integrate that over an entire surface, then we are

measuring the total outward flux due to F across the surface. This is a

very powerful thing to be able to compute.

Now, to compute this “flux integral”, we must convert it into a regular

double integral. Here’s how.
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Back in Sec. 16.5, we encountered Useful Fact 16.14, which said that a

vector normal to a surface g(x, y) at a point (x0, y0, z0 could be given by

〈−gx(x, y),−gy(x, y), 1〉.1 And so a unit normal to a surface z = g(x, y) at

any point is

n =
〈−gx(x, y),−gy(x, y), 1〉√
[gx(x, y)]2 + [gy(x, y)]2 + 1

With this, we can expand the flux integral. If we name the components

of F to be P,Q,R and borrow the extended version of dS from above,

dS =
√

[gx(x, y)]2 + [gy(x, y)]2 + 1 dA, then

∫∫

S

F · dS =

∫∫

S

F · n dS

=

∫∫

D

(
〈P,Q,R〉 · 〈−gx,−gy, 1〉√

[gx]2 + [gy]2 + 1

)√
[gx]2 + [gy]2 + 1 dA

=

∫∫

D

(〈P,Q,R〉 · 〈−gx,−gy, 1〉) dA

=

∫∫

D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA

It certainly was fortunate that the disgusting term
√

[gx]2 + [gy]2 + 1 has

canceled out!

There is one last detail to pin down: back in Useful Fact 16.14, we noted

two gradient-type vectors which would be perpendicular to a surface — one

pointing inwards, and one pointing outwards. The one we’ve selected is the

one designed to point outwards; when we take a surface and select to use

outward normal vectors, we have assigned the surface to be positively

orientated.

Useful Fact 18.8. Given a vector field F = 〈P (x, y, z), Q(x, y, z), R(x,

y, z)〉 and a surface z = g(x, y) that is positively oriented and smooth, we

have
∫∫

S

F · dS =

∫∫

D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA

1The name of the surface there was f instead of g, but that’s no big deal, right?
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What if the surface is not oriented positively? Do remember back in

Calculus I when you learned single integrals, and we had the formula
∫ a

b

f(x) dx = −
∫ b

a

f(x) dx

If our interval of integration was “backwards”, we would just reverse it at

the cost of introducing a negative sign. Wouldn’t it be great if that was all

we had to do here to account for a surface given with negative orientation

instead of positive?

To summarize, here’s the procedure. Given a vector field F = 〈P,Q,R〉
and positively oriented surface z = g(x, y),

(1) Determine gx and gy from the equation of the surface.

(2) Get the components P,Q, and R from the vector field F.

(3) If there are any instances of z in P,Q, and R, plan to replace them

with the surface equation z = g(x, y).

(4) Determine the region of integration D in the xy-plane that corre-

sponds to the surface of integration.

(5) Assemble and solve the integral as shown in Useful Fact 18.8.

(6) If the surface happened to be negatively oriented, change the sign

of your result.

EX 4 Evaluate

∫∫

S

F·dS where F = 〈xzey,−xzey, z〉 and S is the part of

the plane x+y+z = 1 in the first octant, with positive orientation.

Let’s write the surface as z = g(x, y) = 1−x−y, from which we get gx = −1

and gy = −1. Then using the components of F, P = xzey, Q = −xzey,

and R = z, we can begin to assemble the flux integral.
∫∫

S

F · dS =

∫∫

D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA

=

∫∫

D

(−xzey(−1)− (−xzey)(−1) + z) dA

=

∫∫

D

(xzey − xzey + z) dA =

∫∫

D

(z) dA

Note that an instance of z has survived, so we are going to need to replace

that with the equation of the surface z = 1−x−y. Also, we need to identify

the region of integration D. But this is easy; we need the “shadow” of the

plane x + y + z = 1 in the first quadrant of the xy-plane; this is found
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(by setting z = 0) the be line x + y = 1. The plane z = g(x, y) and the

subsequent domain of integration D are shown in Figs. 18.11 and 18.12.

(The normal vector n in Fig. 18.11 looks ridiculously large, but on the scale

of the figure, that really is a length of 1!) Our region of integration D is

the region in the first quadrant below the line x + y = 1, and so we can

continue with the integral:

∫∫

S

F · n dS =

∫∫

D

(z) dA =

∫ 1

0

∫ 1−x

0

(1− x− y) dydx =
1

6
�

1

1

1

n

x

y

z

Fig. 18.11 The plane x+ y + z = 1 in

the first octant, w/ EX 4.

1

1

x
+
y

=
1

x

x

Fig. 18.12 The support region D for

the surface in Fig. 18.11.

EX 5 Evaluate

∫∫

S

F · dS where F = 〈x,−z, y〉 and S is the part of the

sphere x2 + y2 + z2 = 4 in the first octant, with normal vectors

pointing toward the origin.

First, since the normal vectors on S point to the origin, they are not

pointing outwards from the sphere, so this is a negatively oriented sur-

face. From the equation of the surface (sphere), we can write z = g(x, y) =√
4− x2 − y2, and so

gx =
−x√

4− x2 − y2
; gy =

−y√
4− x2 − y2
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Then with P = x, Q = −z and R = y, we have
∫∫

S

F · dS =

∫∫

D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA

=

∫∫

D

(
−x · −x√

4− x2 − y2
− (−z) −y√

4− x2 − y2
+ y

)
dA

=

∫∫

D

(
x2√

4− x2 − y2
− yz√

4− x2 − y2
+ y

)
dA

Wow, this looks terrible! But look what happens when we replace z with

the equation of the surface, z =
√

4− x2 − y2:

∫∫

S

F · dS =

∫∫

D

(
x2√

4− x2 − y2
− y

√
4− x2 − y2√
4− x2 − y2

+ y

)
dA

=

∫∫

D

x2√
4− x2 − y2

dA

That’s much better. Now all we need is the region of integration D, but

this is just the base of our surface (sphere) in the first quadrant, i.e. a

quarter circle of radius 4. Using polar coordinates, then,
∫∫

S

F · dS =

∫∫

D

x2√
4− x2 − y2

dA =

∫ π/2

0

r2 cos2 θ√
4− r2

r drdθ

=

∫ π/2

0

r3 cos2 θ√
4− r2

drdθ =
4π

3
�

You Try It

(3) Find

∫∫

S

F · dS where F = 〈xy, yz, zx〉 and the surface S is the

paraboloid z = 4− x2 − y2 over 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, oriented

positively.
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Surface Integrals — Problem List

Surface Integrals — You Try It

These appeared above; solutions begin on the next page.

(1) Find

∫∫

S

x2yz dS where the surface S is the portion of the plane z =

1 + 2x+ 3y above 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2.

(2) Find the surface area of the cylinder y2 + z2 = 9 above the rectangle

with vertices (0,0), (4,0), (0,2) and (4,2).

(3) Find

∫∫

S

F · dS where F = 〈xy, yz, zx〉 and the surface S is the

paraboloid z = 4 − x2 − y2 over 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, oriented

positively.

Surface Integrals — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.6.3.

(1) Find

∫∫

S

xy dS where the surface S is the triangular region with ver-

tices P(1,0,0), Q(0,2,0) and R(0,0,2).

(2) Find the surface area of the portion of the paraboloid z = 4− x2 − y2
above the xy-plane.

(3) Find

∫∫

S

F · dS where F = 〈xy, 4x2, yz〉 and the surface S is z = xey

over 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, oriented positively.

(4) Find

∫∫

S

yz dS where the surface S is the part of the plane x+y+z = 1

in the first octant.

(5) Find the surface area of the part of the hyperbolic paraboloid z =

y2 − x2 between the cylinders x2 + y2 = 1 and x2 + y2 = 4.

(6) Find

∫∫

S

F ·dS where F = 〈x, y, z4〉 and the surface S is z =
√
x2 + y2

under z = 1 oriented negatively.

(7) (Bonus! Following up Sec. 15.3 ...) We expect

∫∫
Sf(x, y, z) dS =

0 for which of the following combinations of function f(x, y, z) and

surfaces of integration S?

I1) f(x, y) = ex
2+y2+z2 and S is the upper half of the unit sphere

I2) f(x, y) = zex
2+y2 and S is the right half of the unit sphere?
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I3) f(x, y) = sin(x) cos(yz) and S is the paraboloid z = x2 + y2 from

z = 0 to z = 1?

Surface Integrals — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.6.3.

(1) Find

∫∫

S

y2(3 − z) dS where the surface S is the part of the plane

x+ y + z = 3 in the first octant.

(2) Find the surface area of the portion of the surface z = 4− x2− y2 over

the region between x2 + y2 = 2, x2 + y2 = 9, and y = 0.

(3) Find

∫∫

S

F · dS where F = 〈x, y, z2〉 and the surface S is the inverted

cone z = 4−
√
x2 + y2 above the xy-plane (oriented positively).

(4) (Bonus! Following up Sec. 15.3 ...) We expect

∫∫
SF(x, y, z) ·dS = 0

for which of the following combinations of vector field F(x, y, z) and

oriented surface S?

I4) F(x, y, z) = 〈xy, xyz, 0〉 and S is the inverted paraboloid z =

4− x2 − y2 oriented outwards

I5) F(x, y, z) = 〈x+ y + z, e−xyz, cos(x) sin(y)〉 and S is the upwards

oriented plane z = 6 over {(x, y) : −π ≤ x ≤ π,−π ≤ y ≤ π}
I6) F(x, y, z) = 〈x, y, z〉 and S is the unit sphere oriented outwards



Big Bang 379

Surface Integrals — You Try It — Solved

(1) Find

∫∫

S

x2yz dS where the surface S is the portion of the plane z =

1 + 2x+ 3y above 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2.

� From the equation of the surface z(x, y) we have gx = 2 and gy = 3.

The region D is the rectangle 0 ≤ x ≤ 3, 1 ≤ y ≤ 2. So using the scalar

function version of the surface integral,∫∫

S

x2yz dS =

∫∫

D

x2yz
√
g2x + g2y + 1 dA

=

∫ 3

0

∫ 2

0

x2y(1 + 2x+ 3y)
√

22 + 32 + 1 dydx

=
√

14

∫ 3

0

∫ 2

0

x2y(1 + 2x+ 3y) dydx = 171
√

14 �

(2) Find the surface area of the cylinder y2 + z2 = 9 above the rectangle

with vertices (0,0), (4,0), (0,2) and (4,2).

� We can write the function as z =
√

9− y2. So, with gx = 0 and

gy = −y/
√

9− y2,

√
g2x + g2y + 1 =

√
y2

9− y2 + 1 =

√
9

9− y2 =
3√

9− y2
and then,

AS =

∫∫

S

(1) dS =

∫∫

S

(1)
√
g2x + g2y + 1 dA =

∫ 4

0

∫ 2

0

3√
9− y2

dydx

=

∫ 4

0

3 sin−1
(y

3

) ∣∣∣∣
2

0

dx =

∫ 4

0

3 sin−1
(

2

3

)
dx

= 3x sin−1
(

2

3

) ∣∣∣∣
4

0

= 12 sin−1
(

2

3

)
�

(3) Find

∫∫

S

F · dS where F = 〈xy, yz, zx〉 and the surface S is the

paraboloid z = 4 − x2 − y2 over 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, oriented

positively.

� Matching the surface to the form z = g(x, y) we have g = 4−x2−y2
and

∂g

∂x
= −2x ;

∂g

∂y
= −2y
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Matching to the form F = 〈P,Q,R〉, we have

P = xy ; Q = yz = y(4− x2 − y2) ; R = xz = x(4− x2 − y2)

So using the vector version of the surface integral,
∫∫

S

F · dS =

∫∫

D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA

=

∫∫

D

(−xy(−2x)− (yz)(−2y) + xz) dA

=

∫ 1

0

∫ 1

0

(
2x2y + 2y2(4− x2 − y2) + x(4− x2 − y2)

)
dydx

=
713

180
�
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18.4 Green’s Theorem

Introduction

Given the choice between a double integral and a line integral, which would

you rather compute? To me, double integrals are often a bit more straight-

forward. For example, a line integral around a rectangular region of inte-

gration is annoying, because you have to do it in 4 parts (one per side).

But a double integral over the interior of that same rectangle is actually

pretty easy (since the limits in rectangular coordinates would be constant).

In math, we are sometimes offered the chance to convert something we

don’t want to evaluate into something that might be a bit easier. Integra-

tion by parts is an example of this: we can convert an integral we can’t do

into one we can. In this section and the next two, we explore conversion

equations for higher order integrals. Often, the importance of the conver-

sion equation is not in the use of it, but in terms of what it means physically.

The first conversion equation we’ll see is called Green’s Theorem, and it of-

fers a chance to convert some line integrals (in both scalar and vector form)

into double integrals that may be easier. Green’s Theorem is actually the

direct analog of integration by parts for double integrals, but that won’t be

obvious at all at our level of exploration.

Some Preliminary Terms

Here are some terms that are either new or reminders. A contour C is

• positively oriented if it is traversed in the counterclockwise di-

rection

• piecewise smooth if each segment does not have breaks, jumps,

etc.

• simple if it doesn’t intersect itself

• closed if it starts and ends at the same point

Green’s Theorem, which we’ll see below, is going to require a contour

that is all of the above properties: positively-oriented, piecewise smooth,

simple, and closed. This essentially means the boundary must connect all

the way around, close up, and not contain more than one “blob”. The

direction we traverse the contour should be counterclockwise. A circle is

piecewise smooth, simple, and closed. A figure-eight is not; do you know

which property it fails to have?
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Green’s Theorem: Scalar Version

Theorem 18.2. Let C be a positively oriented, piecewise smooth, simple

closed curve in R2, and let D be the region surrounded by C. If P and Q

have continuous partial derivatives in and around D, then∮

C

Pdx+Qdy =

∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

This is called Green’s Theorem.

In other words, if you don’t feel like doing a line integral around the

contour C, you can convert it to a regular double integral over the region

enclosed by C. Notice that there’s a little hoop in the integral sign:

∮
.

This is added to the integral sign to indicate that C is closed.

Here are a couple of follow-ups to the theorem:

(1) The theorem requires that the contour C be positively oriented.

A negatively oriented contour can still be used, but we have to

change the sign of the result. This is similar changing the sign on

a regular single integral if we reverse the order from

∫ b

a

f(x) dx to
∫ a

b

f(x) dx.

(2) Although a washer / annulus / donut shape is technically not sim-

ple, we can still use Green’s Theorem there.2

OK, let’s try it!

EX 1 Find

∮

C

xy dx+x2y3 dy for C being the triangle with vertices (0, 0),

(1, 0), (1, 2), oriented positively.

If we wanted to do this as a line integral, we’d have to do it in three pieces,

one for each side of the triangle. Ick. Fortunately, this contour is piecewise-

smooth, simple, and closed, so we can use Green’s Theorem. Matching the

integral to the form

∮

C

Pdx+Qdy, we have

P = xy → ∂P

∂y
= x

Q = x2y3 → ∂Q

∂x
= 2xy3

2Because ... reasons. Take Advanced Calculus or Complex Analysis!
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The triangle goes from (0,0) to (1,0), then up to (1,2) — so it’s the region

under the line y = 2x from x = 0 to x = 1 — see Fig. 18.13. So by Green’s

Theorem (Theorem 18.2),∮

C

xy dx+ x2y3 dy =

∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

=

∫ 1

0

∫ 2x

0

(2xy3 − x) dydx =

∫ 1

0

(
xy4

2
− xy

) ∣∣∣∣
2x

0

dx

=

∫ 1

0

(
x(16x4)

2
− x(2x)

)
dx =

∫ 1

0

(
8x5 − 2x2

)
dx

=

(
8x6

6
− 2x3

3

) ∣∣∣∣
1

0

=
2

3
�

You Try It

(1) Find

∮

C

ey dx+2xey dy where C is the boundary of the square with

corners (0,0) and (1,1).

(2) Find

∮

C

1

x2 + y2
dx +

1

x2 + y2
dy where C is the boundary of the

region inside the circles x2 + y2 = 1 and x2 + y2 = 4 (take C to be

positively oriented).

Green’s Theorem: Vector Version

You should have been a bit worried about the form of the line integral

involved in Theorem 18.2. After all, it’s why we introduced the vector form

of line integrals. That kind of fun can be had here, too. Given a vector

field F = 〈P (x, y), Q(x, y)〉 and a contour C given by the vector function

r(t) = 〈x(t), y(t)〉, remember that these two things are the same:∫

C

P (x, y) dx+Q(x, y) dy =

∫

C

F · dr

And so ...

Useful Fact 18.9. Green’s Theorem can also be posed as follows: Let the

contour C = r(t), for a ≤ t ≤ b, be a positively oriented, piecewise smooth,

simple closed curve in R2, and let D be the region surrounded by C. If

F(x, y) is a vector field whose components P (x, y) and Q(x, y) have contin-

uous partial derivatives, then∮

C

F · dr =

∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA
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1

1

2

→

←

→ x

x

Fig. 18.13 The triangle between

(0, 0), (1, 0), and (1, 2).

0.5 1

0.5

1

x
=
y
2

←

y
=
x
2

→

x

x

Fig. 18.14 The region between

y = x2 and x = y2.

Let’s try this one now.

EX 2 Find

∮

C

F · dr where F(x, y) = 〈y + e
√
x, 2x+ cos y2〉 and C is the

boundary of the region enclosed by y = x2 and x = y2, oriented

positively.

The components of F are nasty enough we might not be able to do this in

standard line integral form. But C is piecewise-smooth, simple, and closed,

and so we can convert the line integral into a double integral that might be

better. From the components of the vector field 〈P,Q〉 we get

P = y + e
√
x → ∂P

∂y
= 1

Q = 2x+ cos(y2)→ ∂Q

∂x
= 2

To describe the region D bounded by C, we need to rewrite the second

curve as y =
√
x, and recognize that for 0 ≤ x ≤ 1, the curve y = x2 is

actually below y =
√
x — see Fig. 18.14. So by Useful Fact 18.9,

∮

C

F · dr =

∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫ 1

0

∫ √x

x2

(2− 1) dydx

=

∫ 1

0

(
√
x− x2) dx

=

(
2

3
x3/2 − 1

3
x3
) ∣∣∣∣

1

0

=
1

3

That was much easier than the line integral version! �
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You Try It

(3) Find

∮

C

F ·dr where F(x, y) = 〈√x+y3, x2 +
√
y〉 and C is the arc

of y = sinx from (0,0) to (π, 0) and then straight back to (0,0).

FFT: If we know that our vector field F is conservative, what does

Green’s Theorem (as posed in Useful Fact 18.9) tell us about the value of∮

C

F · dr over any simple closed contour C?

Green’s Theorem: More Vector Versions and Interpretation

This section does not culminate in any more problems, it’s just a discus-

sion of another two forms of Green’s Theorem that help us understand its

physical importance. The vector version just above is fine for computation,

but remains a bit unsatisfactory. We converted the left side of Green’s

Theorem to vector form, but not the right side; we sort of have apples and

oranges. Is there something we can do to the right side to make it look

more “vectory”? Yes!

Remember that we can fool the curl into acting on a 2D vector field by

writing it as 〈P (x, y), Q(x, y), 0〉. When we do this, we get

∇× F = ∇× 〈P (x, y), Q(x, y), 0〉 = . . . =

(
∂Q

∂x
− ∂P

∂y

)
k

This looks a lot like what we have on the right side of Green’s Theorem,

except this expression has a k stuck to it. But we can get rid of it quickly.

Since we know that k is a unit vector, then we also know that k · k = 1.

Therefore,

∇× F · k =

(
∂Q

∂x
− ∂P

∂y

)
k · k =

(
∂Q

∂x
− ∂P

∂y

)

and this is now precisely what we have on the right side of Green’s Theorem.

So, we can make Green’s Theorem more “vectory” by writing it like this:

• Let C = vbfr(t), be a positively oriented, piecewise smooth, simple

closed curve in the plane, and let D be the region surrounded by C.
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If F(x, y) is a vector field whose components P (x, y) and Q(x, y)

have continuous partial derivatives, then
∮

C

F · dr =

∫∫

D

∇× F · k dA (18.1)

The point of this rewrite of the vector version of Green’s Theorem is to

make it more tidy, more consistent, and to make sure you’re getting good

at interpreting such a soup of scalar and vector concepts.

We can create one more version of the Green’s Theorem formula by

bringing in a few more ideas. This cascade of changes is rather fun, so

while you can certainly take these items on faith, I encourage you to verify

them for yourself.

(1) An identity involving dot and cross products is a·(b×c) = (a×b)·c.

(2) Recall that we can find unit tangent vectors T at any point along a

contour r(t). These unit tangent vectors are related to unit normal

vectors n by T = k × n, where k is the usual unit vector k =

〈0, 0, 1〉.
(3) Along a contour C = r(t), we can write the differential element dr

as Tds, where s is the arc length parameter along C.

(4) Given a vector field F = 〈P,Q〉 embedded in R3 as 〈P,Q, 0〉, we

have

(∇× F) · k = ∇ · (F× k)

All of these together allow us to make two modifications:
∮

C

F · dr =

∮

C

F ·T ds =

∮

C

F · (k× n) ds =

∮

C

(F× k) · n ds

and
∫∫

D

∇× F · k dA =

∫∫

D

∇ · (F× k) dA

Therefore the previous version of Green’s Theorem in (18.1),
∮

C

F · dr =

∫∫

D

∇× F · k dA

can be converted into this:
∮

C

(F× k) · n ds =

∫∫

D

∇ · (F× k) dA
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Now since F × k is itself a vector field, we can just rename it, say as

G = F× k, and so we have this new version of Green’s Theorem:
∮

C

G · n ds =

∫∫

D

∇ ·G dA (18.2)

This version nicely illuminates a physical interpretation of Green’s Theo-

rem. Let’s think in terms of fluid flow, and say G is a vector field containing

flux vectors. At any location on the boundary of C, G · n measures the

amount of fluid flowing across the boundary at that point — we have called

this the flux of G across C at the point. Therefore, the left side of the new

Green’s Theorem formula,

∮

C

G · n ds, is the total flow outward across the

whole (closed) boundary C of the domain D. If everything in the flow sys-

tem is balanced out, then flow entering D must equal flow leaving D, and

the total flux of G across C will be zero — what goes in equals what comes

out. But what if we find that the total flux is not zero? Then something is

out of balance, and flow is being added to or removed from the flow field.

Where is it coming from or going to?

Remember that the divergence of G at any point is the amount of fluid

gained or lost by the flow field at that point. This is not a measure of how

much flow is moving past the point, but rather how much flow is being

added to (or taken from) the flow field itself at the point. So the right side

of Green’s Theorem is a measure of the total divergence of the flow field

over the entire domain D.

Together, this version of Green’s Theorem says that the total amount

of fluid gained or lost over the inside of the domain (divergence) must equal

the imbalance in the total amount of flow in or out across the boundary.

Physically, that makes perfect sense. If you are watching a 2D flow field

across, say, a circle, and you note a larger total of flow leaving the circle

than there was entering the circle, where is that extra flow coming from?

It is a consequence of the divergence of G inside the circle.

If a vector field has no divergence, i.e. if ∇ ·G = 0, then flow is always

balanced in that flow field; whatever flow enters any domain D will be ex-

actly the same amount as flow leaving D.

It’s always very nice when you look at an ugly mathematical expression

and realize it’s nothing more than a very efficient statement of the obvious!
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From Eq. (18.2) onward, we could have recognized that since G was just

a random name assigned to a vector field, we could have reset it to F, but

that may not have been advisable since G evolved from ∇× F. However,

at this point, let’s go ahead and reset it to F as we pose this list of all the

different versions of Green’s Theorem we have seen:

∮

C

Pdx+Qdy =

∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

∮

C

F · dr =

∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

∮

C

F · dr =

∫∫

D

∇× F · k dA
∮

C

F · n ds =

∫∫

D

∇ · F dA

Green’s Theorem — Problem List

Green’s Theorem — You Try It

These appeared above; solutions begin on the next page.

(1) Find

∮

C

ey dx + 2xey dy where C is the boundary of the square with

corners (0,0) and (1,1).

(2) Find

∮

C

1

x2 + y2
dx+

1

x2 + y2
dy where C is the boundary of the region

inside the circles x2 + y2 = 1 and x2 + y2 = 4 (take C to be positively

oriented).

(3) Find

∮

C

F · dr where F(x, y) = 〈√x+ y3, x2 +
√
y〉 and C is the arc of

y = sinx from (0,0) to (π, 0) and then straight back to (0,0).

Green’s Theorem — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.6.4.

(1) Find

∮

C

x2y2 dx+4xy3 dy where C is the boundary of the triangle with

corners traversed in order (0,0) to (1,3) to (0,3) and back to (0,0).
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(2) Find

∮

C

F · dr where F(x, y) = 〈y2 cosx, x2 + 2y sinx〉 and C is the

triangle from (0,0) to (2,6) to (2,0) and back to (0,0).

(3) Find

∮

C

xe−2x dx + (x4 + 2x2y2) dy where C is the boundary of the

region inside the circles x2 + y2 = 4 and x2 + y2 = 9.

(4) Find

∮

C

F·dr where F(x, y) = 〈ex+x2y, ey−xy2〉 and C is the clockwise

perimeter of x2 + y2 = 25.

Green’s Theorem — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.6.4.

(1) Find

∮

C

x2e−3x dx +
2

3
(x2 + y2)3 dy where C is the boundary of the

region inside the circles x2 + y2 = 2 and x2 + y2 = 9 (take C to be

positively oriented).

(2) Find

∮

C

F · dr where

F(x, y) = 〈e−x +
1

2
x3y2, sin(y)− 1

2
x2y3〉

and C is the perimeter of x2 + y2 = 16, oriented clockwise.

(3) The integral

∮

C

F · dr gives the circulation of the vector field F around

the contour C. Use Green’s Theorem to find the circulation of F(x, y) =

〈y,−x〉 around a circle x2 + y2 = a2 (where a is the constant radius of

the circle). Take the boundary as being oriented positively.
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Green’s Theorem — You Try It — Solved

(1) Find

∮

C

ey dx + 2xey dy where C is the boundary of the square with

corners (0,0) and (1,1).

� Matching this integral to the form
∮
C
P dx+Qdy, we have

P = ey → ∂P

∂y
= ey

Q = 2xey → ∂Q

∂x
= 2ey

Since C is closed and positively oriented, Green’s Theorem applies and

∮

C

ey dx− 2xey dy =

∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

=

∫ 1

0

∫ 1

0

(2ey − ey) dydx =

∫ 1

0

∫ 1

0

ey dydx

=

∫ 1

0

(e− 1) dx = e− 1 �

(2) Find

∮

C

1

x2 + y2
dx+

1

x2 + y2
dy where C is the boundary of the region

inside the circles x2 + y2 = 1 and x2 + y2 = 4 (take C to be positively

oriented).

� Matching this integral to the form
∮
C
P dx+Qdy, we have

P =
1

x2 + y2
→ ∂P

∂y
= − 2y

(x2 + y2)2

Q =
1

x2 + y2
→ ∂Q

∂x
= − 2x

(x2 + y2)2

Let’s assemble Qx − Py before building the integral:

∂Q

∂x
− ∂P

∂y
=
−2x+ 2y

(x2 + y2)2

Since our region of integration is between circles r = 1 and r = 2, let’s

convert to polar coordinates:

∂Q

∂x
− ∂P

∂y
=
−2r cos θ + 2r sin θ

(r2)2
=

2r(sin θ − cos θ)

r4
= 2

sin θ − cos θ

r3
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and Green’s Theorem gives

∮

C

1

x2 + y2
dx+

1

x2 + y2
dy =

∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

=

∫ 2π

0

∫ 2

1

(
2

sin θ − cos θ

r3

)
r drdθ

= 2

∫ 2π

0

∫ 2

1

sin θ − cos θ

r2
drdθ = 0

FFT: Can you think of a physical meaning for this result?

�

1 2 3

0.5

1 y
=

sin
x

→

← x

x

Fig. 18.15 Following y = sin(x) from x = 0 to x = π and back to (0, 0).

(3) Find

∮

C

F · dr where F(x, y) = 〈√x+ y3, x2 +
√
y〉 and C is the arc of

y = sinx from (0,0) to (π, 0) and then straight back to (0,0).

� Matching the vector field to the form F(x, y) = 〈P (x, y), Q(x, y)〉,
we have

P =
√
x+ y3 → ∂P

∂y
= 3y2

Q = x2 +
√
y → ∂Q

∂x
= 2x

Note that C is the area under y = sinx from x = 0 to x = π, but as

described it is negatively oriented (clockwise) — see Fig. 18.15. Green’s

Theorem applies, but we have to change the sign to account for the
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orientation:
∮

C

F · dr =

∮

C

P dx+Qdy = −
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

= −
∫ π

0

∫ sin x

0

(2x− 3y2) dydx = −2

3
(3π − 2)

=
4

3
− 2π �
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18.5 The Divergence Theorem

Introduction

Green’s Theorem allowed us to convert some line integrals into easier dou-

ble integrals. Even though we bumped up the number of dimensions in the

integral (from 1 to 2), we actually created problems that are (hopefully)

easier to solve. You might think that if there’s a way to convert a 1D line

integral to a 2D double integral, there might be a way to convert a 2D

surface integral into a 3D triple integral. And there is — the Divergence

Theorem (which is actually an upgrade of Green’s Theorem). Its name tells

you what to expect as one of the ingredients.

This particular subject is like the first flat relaxing portion on a breath-

taking roller coaster: after you’ve gone down the first hill and through the

first set of corkscrew turns and inverted loops, you get to slow down and

take a breath.

The Divergence Theorem

Theorem 18.3. Let E be a simple solid region and let S be the boundary of

E, given with outward (positive) orientation. Let F be a vector field whose

components have continuous partial derivatives in and around E. Then
∫∫

S

F · dS =

∫∫∫

E

∇ · F dV (18.3)

This is called the Divergence Theorem.

In other words, given a surface (flux) integral that’s too gross to com-

pute directly, you can do a triple integral of the divergence of the flux vector

instead (thus the name “Divergence Theorem”). The volume of integration

in the triple integral is simply the volume surrounded by the surface S. The

triple integral can be done in rectangular, spherical, or cylindrical coordi-

nates.

If Eq. (18.3) looks familiar, then you must have read all the way to

the end of Sec. 18.4 ... good job! Equation (18.3) is an upgrade of Eq.

18.2, and the physical interpretation of the Divergence Theorem is almost

identical to that Green’s Theorem as posed in Eq. (18.2). The left side of

(18.3) measures the total amount of flux crossing the entire surface S. In

a balanced system, in which flow into the volume E equals the flow out of
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the volume, the net flux across the surface should be 0. If it’s not zero,

then the added or lost flow must be accounted for by the divergence of the

flow field within the volume. This divergence is measured on the right side.

You might be disappointed, but that’s about all there is to say for now

about the Divergence Theorem!

EX 1 Find the total flux of the vector field F (x, y, z) = 〈z, y, x〉 over the

unit sphere.

This is asking for the value of the surface integral

∫∫

S

F · dS. Well, no

thanks. I’ll take a triple integral, instead. Since the unit sphere is simple

and closed, we can use the Divergence Theorem. The divergence of F is

∇ · F =
∂

∂x
(z) +

∂

∂y
(y) +

∂

∂z
(x) = 1

When we use the divergence theorem, we’re going to want a triple integral

over the unit sphere: so spherical coordinates will be useful.

∫∫

S

F · dS =

∫∫∫

E

∇ · F dV =

∫ 2π

0

∫ π

0

∫ 1

0

(1)ρ2 sinφdρdφdθ =
4π

3
�

EX 2 Evaluate

∫∫

S

F ·dS for F(x, y, z) = 〈x3, y3, z3〉 and S is the surface

of the solid bounded by x2 + y2 = 1, z = 0, z = 2.

Since the solid of integration (a cylinder) is simple and closed, we can use

the Divergence Theorem. The divergence of F is

∇ · F =
∂

∂x
(x3) +

∂

∂y
(y3) +

∂

∂z
(z3) = 3(x2 + y2 + z2)

When we use the divergence theorem, we’re going to want a triple integral

over the cylinder, so cylindrical coordinates will be useful.

∫∫

S

F · dS =

∫∫∫

E

∇ · F dV =

∫∫∫

E

3(x2 + y2 + z2) dV

=

∫ 2π

0

∫ 1

0

∫ 2

0

3(r2 + z2) r dzdrdθ = 11π �
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You Try It

(1) Find

∫∫

S

F·dS for the vector field F = 〈ex sin y, ex cos y, yz2〉 where

S is the surface of the region E that is the rectangular box 0 ≤
x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 2.

(2) Compute

∫∫

S

F · dS for the vector field F = 〈3xy2, xez, z3〉 where

S is the surface of the cylinder y2 + z2 = 1 between x = −1 and

x = 2.

Divergence Theorem — Problem List

Divergence Theorem — You Try It

These appeared above; solutions begin on the next page.

(1) Find

∫∫

S

F · dS for the vector field F = 〈ex sin y, ex cos y, yz2〉 where S

is the surface of the region E that is the rectangular box 0 ≤ x ≤ 1,

0 ≤ y ≤ 1, 0 ≤ z ≤ 2.

(2) Compute

∫∫

S

F · dS for the vector field F = 〈3xy2, xez, z3〉 where S is

the surface of the cylinder y2 + z2 = 1 between x = −1 and x = 2.

Divergence Theorem — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.6.5.

(1) Find

∫∫

S

F · dS for the vector field F = 〈x2z3, 2xyz3, xz4〉 where S is

the surface of the region E that is the rectangular box −1 ≤ x ≤ 1,

−2 ≤ y ≤ 2, −3 ≤ z ≤ 3.

(2) Evaluate

∫∫

S

F · dS for F(x, y, z) = 〈xy, (y2 + exz
2

), sin(xy)〉 and S is

the surface of the region bounded by z = 1− x2, z = 0, y = 0, y = 2.

(3) Find

∫∫

S

F · dS for the vector field F = 〈x3y,−x2y2,−x2yz〉 where S

is the surface of the hyperboloid x2 + y2 − z2 = 1 between z = −2 and

z = 2.

(4) Find

∫∫

S

F ·dS for the vector field F = 〈x2y, xy2, 2xyz〉 where S is the

surface of the tetrahedron formed by the plane x + 2y + z = 2 in the

first octant.
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Divergence Theorem — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.6.5.

(1) Find

∫∫

S

F · dS for the vector field F = 〈−x3y + yz, x2y2 + ex, x2yz〉
where S is the surface of the hyperboloid x2 + 3y2 − z2 = 1 between

z = −1 and z = 4.

(2) Find

∫∫

S

F · dS for the vector field F = 〈x2yz+ ey, xy2z+ sin(xz), π−
xyz2〉 where S is the surface of the tetrahedron formed by the plane

2x+ 2y + z = 4 in the first octant.

(3) As noted, the integral
∫∫
S

F · dS gives the flux of the vector field F

across the surface S. Use the Divergence Theorem to find the flux of a

vector field F(x, y, z) = 〈bz − cy, cx− az, ay − bx〉 across ANY smooth

closed surface S in R3 (where a, b, c are constants).

The Divergence Theorem — You Try It — Solved

(1) Find

∫∫

S

F · dS for the vector field F = 〈ex sin y, ex cos y, yz2〉 where S

is the surface of the region E that is the rectangular box 0 ≤ x ≤ 1,

0 ≤ y ≤ 1, 0 ≤ z ≤ 2.

� The divergence of F is

∇ · F =
∂

∂x
(ex sin y) +

∂

∂y
(ex cos y) +

∂

∂z
(yz2)

= ex sin y − ex sin y + 2yz = 2yz

Then by the divergence theorem,

∫∫

S

F · dS =

∫∫∫

E

∇ · F dV =

∫ 1

0

∫ 1

0

∫ 2

0

(2yz) dzdydx = 2 �

(2) Compute

∫∫

S

F · dS for the vector field F = 〈3xy2, xez, z3〉 where S is

the surface of the cylinder y2 + z2 = 1 between x = −1 and x = 2.

� The divergence of F is

∇ · F =
∂

∂x
(3xy2) +

∂

∂y
(xez) +

∂

∂z
(z3) = 3y2 + 3z2 = 3(y2 + z2)
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Fig. 18.16 The cylinder y2 + z2 = 1 for −1 ≤ x ≤ 2.

Note that the region E is a cylinder opening along the x-axis — see

Fig. 18.16. It will be convenient to use “sideways” cylindrical coordi-

nates — where r and θ are set in the yz-plane, and x is the remaining

rectangular coordinate (like z is normally).
∫∫

S

F · dS =

∫∫∫

E

∇ · F dV =

∫∫∫

E

3(y2 + z2) dV

=

∫ 2π

0

∫ 1

0

∫ 2

−1
3(r2) r dxdrdθ =

9π

2
�
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18.6 Stokes’ Theorem

Introduction

Here are a few new ideas that came up during the discussion of Green’s

Theorem:

• The idea of “positive” orientation for a contour

• The definition of a simple closed curve

• The idea of converting a work or flux integral into a different form

to make it easier to evaluate

Green’s Theorem is fine, I suppose, if you like being restricted to the

xy-plane. But intrepid mathematical souls such as yourself like their inte-

grals in 3D settings, so let’s move there. Here’s an example of where Stokes’

Theorem will be in action. Suppose we passed a slanted plane through a

paraboloid, as shown in Fig. 18.17. Their intersection forms a tilted and

ellipse-ish contour in R3. Suppose we wanted to do a work integral

∫

C

F ·dr
over that contour (do you remember those from Sec. 18.1?). Green’s The-

orem isn’t sufficient any more because we’re not in the xy-plane. This is

where Stokes’ Theorem takes over. Stokes’ Theorem is the worst of the

three conversion formulas (Green’s, Divergence, Stokes’) to visualize, so of

course we’ve saved it for last.3

Oh, and just to be sure you’ve noticed: this theorem is named after

George Stokes (1819–1903), and so it is properly referred to as Stokes’

Theorem. It is not Stoke’s Theorem. Don’t do that.

Preliminaries

First, let’s work on some terms. The main ingredients of Stokes’ Theorem

are a vector field F, an oriented surface S, and a simple closed positively

oriented boundary curve C (alias r(t)) of the surface. Two of these terms

are new: the idea of a boundary curve may be somewhat self explanatory,

but what the heck is an oriented surface?

Imagine taking a regular surface S with a closed end, like a paraboloid,

cone, or ellipsoid, and crossing through it with a plane in such a way that

3Here’s a secret: Green’s Theorem is actually a special case of Stokes’ Theorem.
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Fig. 18.17 Ingredients of a positively oriented surface.

the intersection forms a closed contour. As we assigned positive and neg-

ative orientations to contours, we’ll do the same with the surface — but

sometimes this can be a bit tricky to visualize. The contour at the inter-

section of the plane and surface S is called the boundary contour, ∂S; in

this context, the symbol ∂ means “boundary of ” instead of being a partial

derivative symbol. Here are two pieces of information we need:

• Remember from Sec. 16.5 that if the equation of the surface is

z = g(x, y), then we can find normal vectors on the surface as

〈gx, gy,−1〉.
• We assign positive orientation to ∂S by designing its vector equa-

tion r(t) such that we traverse it counterclockwise.

So now, let’s pretend S and ∂S are really big, so that we can walk around

∂S counterclockwise, with our right hand pointing in the direction of the

normal vectors of S; if the interior of the surface is to our left, then the

surface itself is called positively oriented.

This scenario can be seen in Fig. 18.17, where as we traverse ∂S coun-

terclockwise, with the normal vectors of S pointing outwards, the surface

itself is to the left. So, this surface is positively oriented. Together, the

surface and contour provide a “right” direction and a “wrong” direction,

just like there is a right and wrong direction when you try to screw a cap

onto the top of a bottle.
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Here are some other simple examples of oriented surfaces.

• If we take the sideways paraboloid x = y2 + z2 and slice through it

with the plane x = 4, the surface S is the portion of the paraboloid

between its vertex at x = 0 and the plane x = 4. The bound-

ing contour ∂S is the circle of radius 2 now capping the surface,

where we traverse this contour in the counterclockwise (positive)

direction. FFT: Can you design parametric equations for this

contour?

• If we take the sphere x2 + y2 + z2 = 9 and slice through it with

the plane z = 1 + x, the surface S is the spherical cap above the

plane; this plane is slightly tilted, and so the bounding contour ∂S

(positively oriented) will also be tilted, and is not a perfect circle.

There are other subtle ways of defining an oriented surface. Consider

the cylinder x2 + y2 = 4 and its intersection with the plane z = 3. Neither

end of the cylinder is closed, and in fact the cylinder extends infinitely in

both directions from the plane. So neither the part of the cylinder above

the plane or below the plane generates a surface with one closed end, and

another end bounded by a contour. But, remember that a plane is a surface,

too. The cylinder is a bit of misdirection; it does not have to become part

of the surface. Rather, it just tells us where to truncate the surface that’s

the plane itself. In other words, our oriented surface can be the circular

portion of the plane z = 3 inside the cylinder, with a bounding contour

generated from the intersection of the plane with the cylinder.

As with Green’s Theorem and the Divergence Theorem, Stokes’ Theo-

rem can be thought of as way to take one integral which may be difficult

or impossible to set up or solve, and convert it into another one that works

better. When we used Green’s Theorem and the Divergence Theorem, we

only used them in one direction; that is, for example, we only used Green’s

Theorem to convert a line integral into a double integral ... while it’s cer-

tainly possible to use the Green’s Theorem formula to convert a double

integral to a line integral, it is rarely used that way. Also, we only used

the Divergence Theorem to convert a surface integral to a triple integral,

we never used it to convert a triple integral into a surface integral. Stokes’

Theorem, though, gets used both ways: to convert a surface integral into a

contour integral and vice versa.
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Stokes’ Theorem

Theorem 18.4. Let S be an oriented piecewise-smooth surface that is

bounded by a simple, closed, piecewise smooth boundary curve C with posi-

tive orientation. Let F be a vector field whose components have continuous

partial derivatives in and around S. Then
∫

∂S

F · dr =

∫∫

S

∇× F · dS

As noted above, we can use this in both direction. Given a contour

integral on the left, we can convert it to a surface intergal, and vice versa.

To do the former, we can construct a more streamlined formula for use.

Stokes’ Theorem gets us this far:
∫

C

F · dr =

∫∫

S

∇× F · dS

but then Useful Fact 18.8 in Sec. 18.3 can be adapted for the surface integral

of ∇× F · dr rather than F · dr as follows:
∫∫

S

∇× F · dS =

∫∫

D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA

where we have to be really careful to remember that in this case, P , Q, and

R are the components of the curl of F, not F itself. Altogether:

Useful Fact 18.10. A more utilitarian pathway through Stokes’ Theorem

is that, for all the conditions posed in Theorem 18.4, we have:
∫

C

F · dr =

∫∫

D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA (18.4)

where 〈P,Q,R〉 = ∇×F, C is the boundary of the the surface z = g(x, y),

and the domain D is the planar support of the surface.

Converting Line Integrals to Surface Integrals

Here are examples of conversion of a line integral to a surface integral, i.e.

using Stokes’ Theorem as shown in Theorem 18.4 “from left to right”.

EX 1 Use Stokes’ Theorem to evaluate

∫

C

F · dr where F(x, y, z) = 〈x+

y, y + z, x − z〉 and C is the intersection of the paraboloid z =

2x2 + 2y2 with the plane z = 8, oriented positively. Then, evaluate

the surface integral.
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The overall flow of the problem starts with, “Hey, let’s use Stokes’ Theo-

rem to convert our line integral into a surface integral.” The price of being

able to convert a line integral into a surface integral is that F is replaced

by ∇ × F. Once we have a surface integral of the curl of F, we refer to

Sec. 18.3, where we said, “Hey, if you have a surface integral to do, you’re

going to evaluate it by swapping it with a regular double integral based on

the components of the curl and the derivatives of the surface equation.”

That double jump, line integral to surface integral, and surface integral

to double integral, is encoded into (18.4). When it’s all set up, we never

actually have to see the surface integral itself.
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Fig. 18.18 z = 2x2 + 2y2 and z = 8.

The paraboloid, plane, and resulting contour ∂S are shown in Fig.

18.18. Here are a few ingredients we’re going to need to implement Eq.

(18.4):

• With F = 〈x + y, y + z, x − z〉, we can get ∇ × F = 〈P,Q,R〉 =

〈−1,−1,−1〉 (details omitted, finding a curl should be trivial at

this point).

• Our surface is z = g(x, y) = x2 + y2 and so gx = 2x, gy = 2y.

We can now build the integrand in advance; this helps us decide what

coordinate system to use for D:

−P ∂g
∂x
−Q∂g

∂y
+R = −(−1)2x− (−1)(2y) + (−1) = 2x+ 2y − 1
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The equation 2x + 2y − 1 doesn’t immediately make us think of polar

coordinates, but given the information about S and ∂S in the problem

statement, the domain of integration in the xy-plane is going to be a circle

of radius 2 (the intersection of z = 2x2 + 2y2 with z = 8 is the circle

x2 + y2 = 4). So polar coordinates are going to be best, even though the

integrand will look icky:

∫

C

F · dr =

∫∫

D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA =

∫∫

D

(2x+ 2y − 1) dA

=

∫ 2π

0

∫ 2

0

(2r cos θ + 2r sin θ − 1) r drdθ = 4π �

EX 2 Evaluate

∫

C

F ·dr for F(x, y, z) = 〈xy, yz, xz〉 and C is the triangle

with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1), oriented counterclock-

wise as viewed from above.

Since we’re given a contour C and need to come up with a corresponding

surface S, we must decide on a surface which has C as a boundary curve.

With no other information at hand, we can pick any surface as long as it

has C as its boundary curve. The simplest thing to do is recognize that

the three given points determine the plane x + y + z = 1, which is itself a

surface. So we can say that C is the boundary of the portion of the plane

z = g(x, y) = 1−x−y in the first octant. So to implement Stokes’ Theorem

via Useful Fact 18.10, we need the following items:

• Since we determined our surface to be z = g(x, y) = 1−x−y, then

gx = −1 and gy = −1.

• Since F(x, y, z) = 〈xy, yz, xz〉, then ∇×F = 〈−y,−z,−x〉 (details

omitted). Therefore, matching to the form ∇× F = 〈P,Q,R〉, we

have

P = −y ; Q = −z ; R = −x

Now, we can’t have z’s floating around in our integral, so we have

to use the equation of our surface to write Q = −z = −(1−x−y) =

x+ y − 1.

• Since S is determined to be the plane z = 1 − x − y in the first

octant, the corresponding region of integration D in the xy-plane

is the triangle between the lines x+ y = 1, x = 0, and y = 0.
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Now we have all the information we need to load up (18.4):
∫

C

F · dr =

∫∫

S

∇× F · dS =

∫∫

D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA

=

∫∫

D

(−(−y)(−1)− (x+ y − 1)(−1) + (−x)) dA

=

∫∫

D

(−y + x+ y − 1− x) dA

=

∫ 1

0

∫ −x+1

0

(−1) dydx = −1

2

An interpretation of this is that the total work done by the force field F

around the contour C is −1/2. �

EX 3 Find the work done by F(x, y, z) = 〈−y2, x, z2〉 around the inter-

section of the plane y+z = 2 and the cylinder x2+y2 = 1, oriented

counterclockwise as viewed from above.
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Fig. 18.19 x2 + y2 = 1 and y + z = 2.

The problem statement means that we need to evaluate

∫

C

F ·dr. There

is a “gotcha” in this problem, which is that we can’t use the cylinder as our

surface S, because we don’t know where the bottom of the cylinder would

be. So like in EX 2, we can rely on “hey, a plane is a perfectly good surface,

too!” Our surface can be the portion of the plane y + z = 2 which gets cut
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out by the given cylinder; thus, S will be the portion of y + z = 2 above

the unit circle — see Fig. 18.19. The ingredients we need for (18.4) are:

• Our surface (plane) can be written z = g(x, y) = 2 − y and so

gx = 0 and gy = −1.

• ∇ × F = 〈0, 0, 2y + 1〉 (details omitted). Matching to the form

∇× F = 〈P,Q,R〉, we have

P = 0 ; Q = 0 ; R = 2y + 1

(We don’t need to modify these any further since z hasn’t shown

up in P , Q, or R.)

• Since our region of integration D is the unit circle, then we should

plan on using polar coordinates for our upcoming double integral.

Altogether, we have for (18.4) — in rectangular coordinates —∫

C

F · dr =

∫∫

S

∇× F · dS =

∫∫

D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA

=

∫∫

D

(−(0)(0)− (0)(−1) + (2y + 1)) dA

=

∫∫

D

(2y + 1) dA · · ·

Then converting this integral to polar coordinates, we continue:

· · · =
∫ 2π

0

∫ 1

0

(2(r sin θ) + 1) r drdθ

=

∫ 2π

0

∫ 1

0

(2r2 sin θ + r) drdθ = π �

You Try It

(1) Compute

∫

C

F · dr for the vector field F = 〈x2, y2, x2 + y2〉 where

C is the lower half of the hemisphere x2 + y2 + z2 = 1 capped by

the xy-plane.

(2) Compute

∫

C

F · dr for the vector field F = 〈x+ y2, y + z2, z + x2〉
where C is the triangle with vertices (1,0,0), (0,1,0), and (0,0,1).

Converting Surface Integrals to Line Integrals

If we flip Stokes’ Theorem around, it looks like this:∫∫

S

∇× F · dS =

∫

∂S

F · dr
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So given a nasty surface integral, perhaps we can convert it to a nicer line

integral. Remember that once the line integral is set up, we’ll have to

parameterize the contour C to evaluate it!
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z

Fig. 18.20 Sphere ρ = 2 and cylinder r = 1.

EX 4 Evaluate

∫∫

S

∇ × F · dS for F(x, y, z) = 〈xz, yz, xy〉 and S is the

part of the sphere x2 + y2 + z2 = 4 that is inside the cylinder

x2 + y2 = 1 and above the xy-plane.

To use Stokes’ Theorem we have to come up with a boundary curve C = ∂S

for this surface. But the intersection of the sphere with the cylinder will

be a circle, and that circle is found (by merging the two equations) at

1 + z2 = 4, or z =
√

3. Further, the circle of intersection is cut out

of the sphere by the cylinder, and so the circle of intersection is a unit

circle centered on the z-axis and parallel to the xy-plane — see Fig. 18.20.

Because we are going to evaluate a line integral around C = r(t), we need

to ensure C is positively oriented, regardless of what’s happening with the

sphere and cylinder. We would be evaluating the same line integral for any

intersection of two surfaces which produces C as the bounding contour of

the intersection. All together, the boundary curve ∂S can be expressed

parametrically as

x = cos t → dx = − sin tdt

y = sin t → dy = cos tdt

z =
√

3 → dz = 0
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for 0 ≤ t ≤ 2π. With these equations, we produce dr = 〈− sin t, cos t, 0〉 dt.
By Stokes Theorem we convert the surface integral into a line integral. In

the process of forming the line integral, we plug the parametric forms of x,

y and z into the vector field F:

∫∫

S

(∇× F) · dS =

∫

∂S

F · dr =

∫ 2π

0

〈xz, yz, xy〉 · 〈− sin t, cos t, 0〉 dt

=

∫ 2π

0

〈
√

3 cos t,
√

3 sin t, cos t sin t〉 · 〈− sin t, cos t, 0〉 dt

=

∫ 2π

0

(
−
√

3 sin t cos t+
√

3 sin t cos t+ 0
)
dt = 0 �

EX 5 Evaluate

∫∫

S

∇×F ·dS for F(x, y, z) = 〈x2yz, yz2, z2exy〉 and S is

the part of the sphere x2 + y2 + z2 = 5 that lies above z = 1 (and

S is positively oriented).

I’m glad we have Stokes’ Theorem available, because I really don’t want

to compute the curl of that vector field. To use Stokes’ Theorem we have

to come up with a boundary curve C = ∂S for this surface. But the

intersection of the sphere with the z = 1 is the circle x2+y2 = 4. Therefore,

the boundary curve ∂S can be expressed parametrically as

x = 2 cos t → dx = −2 sin t dt

y = 2 sin t → dy = 2 cos t dt

z = 1 → dz = 0

for 0 ≤ t ≤ 2π. With these equations, we produce dr = 〈−2 sin t, cos t, 0〉 dt.
By Stokes Theorem we convert the surface integral into a line integral. In

the process of forming the line intergal, we plug the parametric forms of x,

y and z into the vector field F:

∫∫

S

(∇× F) · dS =

∫

∂S

F · dr =

∫ 2π

0

〈x2yz, yz2, z2exy〉 · 〈−2 sin t, 2 cos t, 0〉 dt

=

∫ 2π

0

〈8 cos2 t sin t, 2 sin t, e4 cos t sin t〉 · 〈− sin t, cos t, 0〉 dt

=

∫ 2π

0

−8 cos2 t sin2 t+ 2 sin t cos t+ 0 dt = −2π �
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You Try It

(2) Compute

∫∫

S

(∇ × F) · dS for the vector field F = 〈x2eyz, y2exz,

z2exy〉 where S is the hemisphere x2 + y2 + z2 = 4 for z ≥ 0.

(3) Compute

∫∫

S

∇×F · dS for the vector field F = 〈x2, y2, z2〉 where

S is the unit cube with opposite corners at (0, 0, 0) and (1, 1, 1).

Stokes’ Theorem — Problem List

Stokes’ Theorem — You Try It

These appeared above; solutions begin on the next page.

(1) Compute

∫

C

F · dr for the vector field F = 〈x2, y2, x2 + y2〉 where C

is the lower half of the hemisphere x2 + y2 + z2 = 1 capped by the

xy-plane.

(2) Compute

∫

C

F ·dr for the vector field F = 〈x+y2, y+z2, z+x2〉 where

C is the triangle with vertices (2,0,0), (0,1,0), and (0,0,2).

(3) Compute

∫∫

S

(∇×F) · dS for the vector field F = 〈x2eyz, y2exz, z2exy〉
where S is the hemisphere x2 + y2 + z2 = 4 for z ≥ 0.

(4) Compute

∫∫

S

∇ × F · dS for the vector field F = 〈x2, y2, z2〉 where S

is the unit cube with opposite corners at (0, 0, 0) and (1, 1, 1).

Stokes’ Theorem — Practice Problems

Try these as you get the hang of the You Try It problems. Solutions to these

problems are available in Sec. B.6.6.

(1) Compute

∫

C

F ·dr for the vector field F = 〈yz, 2xz, exy〉 where C is the

boundary of the cylinder x2 + y2 = 16 at z = 5.

(2) Compute

∫∫

S

(∇×F) · dS for the vector field F = 〈yz, xz, xy〉 where S

is the paraboloid z = 9− x2 − y2 above z = 5.

(3) Compute
∫
C

F · dr for the vector field F = 〈e−x, ex, ez〉 where C is the

boundary of the plane 2x + y + 2z = 2 in the first octant, traversed

counterclockwise.
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(4) Find the work done by the vector field F = 〈x2y3z, sin(xyz), xyz〉
around the bounding contour of the cone y2 = x2 + z2 between y = 0

and y = 3 with normal vectors oriented outwards.

Stokes’ Theorem — Challenge Problems

Try these problems to test your skills with the ideas in this section. Solutions

to these problems are available in Sec. C.6.6.

(1) Compute

∫

C

F · dr for the vector field F = 〈(1 + y)z, (1 + z)x, (1 +x)y〉
where C is the boundary of the plane 2x+2y+z = 4 in the first octant,

traversed counterclockwise.

(2) Compute

∫∫

S

(∇ × F) · dS for the vector field F = 〈z2,−3xy, x3y3〉
where S is the top part of the inverted paraboloid z = 5 − x2 − y2

above the plane z = 1, oriented positively.

(3) The integral

∮

C

F · dr gives the circulation of the vector field F around

the contour C. Let g be the function g(x, y, z) = xez sin(y) and let

F(x, y, z) = ∇g. Let the contour C be the intersection of the plane

x+ y+ z = 5 and the cylinder x2 + y2 = 11, oriented positively. What

is the total circulation due to F around C? (Hint: There’s an easy way,

and there’s a hard way...)
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Stokes’ Theorem — You Try It — Solved

(1) Compute

∫

C

F · dr for the vector field F = 〈x2, y2, x2 + y2〉 where C

is the lower half of the hemisphere x2 + y2 + z2 = 1 capped by the

xy-plane.

� Our surface is z = −
√

1− x2 − y2, with bounding contour ∂S being

is the unit circle in the xy-plane, oriented clockwise. From the equation

of the surface, we have

∂g

∂x
=

x√
1− x2 − y2

and
∂g

∂y
=

y√
1− x2 − y2

Let’s build the integrand of (18.4) before creating the whole integral;

this may help determine the best coordinate system.

−P ∂g
∂x
−Q∂g

∂y
+R = −(2y) · x√

1− x2 − y2
− (−2x) · y√

1− x2 − y2
+ 0

=
−2xy√

1− x2 − y2
+

2xy√
1− x2 − y2

=
−2xy + 2xy√

1− x2 − y2
= 0

So it turns out we don’t need to choose a coordinate system! For the

given conditions,
∮

C

F · dr =

∫∫
D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA =

∫∫
D (0) dA = 0 �

(2) Compute

∮

C

F ·dr for the vector field F = 〈x+y2, y+z2, z+x2〉 where

C is the triangle with vertices (2,0,0), (0,1,0), and (0,0,2).

� The contour is also known as the boundary of the portion of the

plane x + 2y + z = 2 in the first octant. We’ll use Stokes’ Theo-

rem to convert this to a surface integral involving ∇ × F, which is

∇× F = 〈−2z,−2x,−2y〉 (details omitted).

Matching the surface to the form z = g(x, y) we have g = 2 − x − 2y

and

∂g

∂x
= −1 ;

∂g

∂y
= −2

Matching to the form ∇× F = 〈P,Q,R〉, we have

P = −2z = −2(2−x−2y) = −4+2x+4y ; Q = −2x ; R = −2y
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Using Eq. (18.4) to leapfrog from the line integral to a double inte-

gral, and then apply the information we just collected. Let’s build the

integrand first:

−P ∂g
∂x
−Q∂g

∂y
+R = (4− 2x− 4y)(−1) + 2x(−2)− 2y

= −4 + 2x+ 4y − 4x− 2y = −4− 2x+ 2y

The region of integration D will be the area under the line x+ 2y = 2

in the first quadrant.
∮

C

F · dr =

∫∫
S∇× F · dS =

∫∫
D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA

=

∫∫
D (−4− 2x+ 2y) dA

=

∫ 1

0

∫ 2−2y

0

(2y − 2x− 4) dxdy = −14

3
�

(3) Compute

∫∫

S

∇× F · dS for the vector field F = 〈x2eyz, y2exz, z2exy〉
where S is the hemisphere x2 + y2 + z2 = 4 for z ≥ 0.

� The boundary curve ∂S of this surface is the circle x2 +y2 = 4 (with

z = 0) and can be expressed as

x = 2 cos t → dx = −2 sin t dt

y = 2 sin t → dy = 2 cos t dt

z = 0 → dz = 0

for 0 ≤ t ≤ 2π. By Stokes’ Theorem we convert the surface integral

into a line integral:
∫∫

S

(∇× F) · dS =

∮

∂S

F · dr

=

∮

∂S

(x2eyz) dx+ (y2exz) dy + (z2exy) dz

=

∫ 2π

0

(2 cos t)2e0(−2 sin t dt) + (2 sin t)2e0(2 cos t dt) + 0

=

∫ 2π

0

(8 sin2 t cos t− 8 cos2 t sin t) dt

=

(
8

3
sin3 t+

8

3
cos3 t

) ∣∣∣∣
2π

0

= 0 �
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(4) Compute

∫∫

S

∇ × F · dS for the vector field F = 〈x2, y2, z2〉 where S

is the unit cube with opposite corners at (0, 0, 0) and (1, 1, 1).

� The boundary curve ∂S of this surface is the square at z = 1 with

corners at (0, 0, 1), (1, 0, 1), (1, 1, 1), and (0, 1, 1). To set this up with

parametric equations, we need to do one edge at a time; while this

requires four sets of equations, it’s still better than a surface integral

over a surface with six sides! Fortunately, the edges of ∂S are simple:

L1 (0, 0, 1)→ (1, 0, 1) : x = t, y = 0, z = 1 (0 ≤ t ≤ 1)

dx = dt, dy = 0, dz = 0

L2 (1, 0, 1)→ (1, 1, 1) : x = 1, y = t, z = 1 (0 ≤ t ≤ 1)

dx = 0, dy = dt, dz = 0

L3 (1, 1, 1)→ (0, 1, 1) : x = 1− t, y = 1, z = 1 (0 ≤ t ≤ 1)

dx = −dt, dy = 0, dz = 0

L4 (0, 1, 1)→ (0, 0, 0) : x = 0, y = 1− t, z = 1 (0 ≤ t ≤ 1)

dx = 0, dy = −dt, dz = 0

By Stokes’ Theorem we convert the surface integral into a line integral:∫∫

S

(∇× F) · dS =

∮

∂S

F · dr

which in turn must be split into four parts; in each part, we pull together

information from above into the appropriate dr = 〈dx, dy, dx〉:
∮

∂S

F · dr =

∫

L1

F · dr1 + . . .+

∫

L4

F · dr4

where
∫

L1

F · dr1 =

∫

L1

〈t2, 02, 12〉 · 〈dt, 0, 0〉 =

∫ 1

0

t2 dt =
1

3
∫

L2

F · dr2 =

∫

L2

〈02, t2, 12〉 · 〈0, dt, 0〉 =

∫ 1

0

t2 dt =
1

3
∫

L3

F · dr3 =

∫

L3

〈(1− t)2, 12, 12〉 · 〈−dt, 0, 0〉 = −
∫ 1

0

(1− t)2 dt = −1

3
∫

L4

F · dr4 =

∫

L4

〈0, (1− t)2, 12〉 · 〈0,−dt, 0〉 = −
∫ 1

0

(1− t)2 dt = −1

3

And so ∮

∂S

F · dr =
1

3
+

1

3
− 1

3
− 1

3
= 0

Wow, that was a lot of work for nothing! �



Appendix A

Conics, Quadrics, and Parametrics

A.1 Conic Sections

Conic Sections

Let’s break down the phrase “conic section” by focusing on the first part,

conic. Imagine two sugar cones (you know, the ice cream cones with the

circular top and pointy bottoms that are much yummier than those mealy

cake cones) that are touching pointy end to pointy end, with the circular

tops pointing in opposite directions. This is a full cone that has both halves.

Now imagine this full cone is a bit saggy, so that the cross sections are ac-

tually ellipses rather than perfect circles. When we make flat slices through

this cone, we generate conic sections. A slice through the cone parallel to

one of the open ends makes an ellipse. A diagonal slice that only inter-

sects one half of the cone makes a parabola. A slice that goes up and down

through both halves makes a hyperbola (one half of the hyperbola comes

from each half of the cone).

When we draw these cross sections in the 2D coordinate plane, we get

the familiar conic sections; all conic sections are somehow buried in the

expression

ax2 + by2 + cx+ dy + e = 0 (A.1)

Let’s go through each conic section, see the general form of its equation,

and the parametric equations that can also generate it. The very scattered

details here are not intended to be comprehensive, but just enough to re-

mind you of what’s going on — and, frankly, to be a resource for me as I

generate lots of the figures in this text!
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Lines

Technically, lines are conic sections. We get lines from (A.1) when a = 0

and b = 0, leaving us with the familiar cx+ dy + e = 0.

Line segments can be generated parametrically by
{
x = c1t+ c2
y = c3t+ c4

t1 < t < t2

If we set t1 = −∞ and t2 = ∞, then we get the entire line. Figure A.1

shows the line segment generated by
{
x = 4t− 2

y = t+ 3
− 2 < t < 3

−10 −5 5 10

2

4

6

t = −2

t = 3

=⇒

x

y

Fig. A.1 The (directed) parametric curve x = 4t− 2, y = t+ 3 for −2 ≤ t ≤ 3.

Ellipses

Of course, this category also includes circles. We get ellipses from (A.1)

when a and b have the same sign. Assuming a > 0 and b > 0, we have

ax2 + by2 + cx+ dy + e = 0. (If a < 0 and b < 0 then we can just multiply

both sides of (A.1) by −1.) After completing the square and renaming

constants, we get this into the form A(x− x0)2 +B(y − y0)2 = C, or,

(x− x0)2

D2
+

(y − y0)2

E2
= 1 (A.2)
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In the case that a = b in the original format, we’d get to

(x− x0)2 + (y − y0)2 = R2

which is the familiar equation of a circle with center (x0, y0) and radius R.

Let’s keep it simple and restrict ourselves to the case where x0 = 0 and

y0 = 0. In that case, an ellipse (or circle) in the form (A.2) reduces to

x2

D2
+
y2

E2
= 1 (A.3)

and we can represent this ellipse (or circle, when D = E) parametrically

by:
{
x = D cos θ

y = E sin θ
0 < θ < 2π

(When we use these to eliminate the parameter in (A.3), the expression

reduces to cos2 θ + sin2 θ = 1.) There are other possible parametric forms

as well. Figure A.2 shows the ellipse generated by
{
x = 4 cos θ

y = 3
2 sin θ

0 < θ < 2π

−4 −2 2 4

−2

−1

1

2

t = 0

t = π/2

⇐=

=⇒

Fig. A.2 The (directed) parametric curve x = 4 cos θ, y = 3
2

sin θ.
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Parabolas

We get parabolas from (A.1) when either a = 0 or b = 0. Again, to keep

things simple, we’ll restrict ourselves to parabolas that are either horizontal

or vertical in the xy-plane. The common forms of these are either

(x− h)2 = 4p(y − k) or (y − k)2 = 4p(x− h)

where the vertex is located at (h, k) in both. The left hand case represents

the “usual” case of a parabola opening up or down; the latter case repre-

sents a parabola opening either left or right. The parameter p has to do

with how wide the parabola is, and if you want to follow that trail, go read

about the “directrix” of a parabola.

The best way to represent a parabola parametrically is to solve it for the

variable that’s not squared, and apply parametrics directly. For example,

if we rearrange the equation of a parabola opening upwards or downwards

as y = f(x), then we represent the parabola as
{
x = t

y = f(t)
−∞ < t <∞

(or restrict t for only a portion of the parabola). The “sideways” parabola

x = g(y) would look similar, with y = t and x = g(t). Figure A.3 shows

the parabola generated by
{
x = t

y = −2t2 + 3
2

− 2 < t < 2

Hyperbolas

These are the conic sections we really like to keep simple. We get hyperbolas

from (A.1) when a and b have opposite signs. To keep things simple, let’s

ignore the first order terms in x and y (c = d = 0); that will lead to the

form

Ax2 −By2 + C = 0

or

x2

D2
− y2

E2
= 1 (A.4)

We can represent this hyperbola parametrically by:
{
x = D sec θ

y = E tan θ
θ1 < θ < θ2
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−3 −2 −1 1 2 3

−8

−6

−4

−2

2

t = −2 t = 2

=
⇒ =⇒

Fig. A.3 The (directed) parametric curve x = t, y = −2t3 + 3
2

.

(When we use these to eliminate the parameter in (A.4), the expression

reduces to sec2 θ − tan2 θ = 1.) There are other possible parametric forms

as well. Figure A.4 shows the hyperbola generated by
{
x = 2 sec θ

y = 4 tan θ
− 1 < t < 1

These parametric equations only generate half of the hyperbola (the solid

curve). We have to use symmetry if we want to see the other half (dashed):
{
x = −2 sec θ

y = 4 tan θ
− 1 < t < 1

A.2 Quadric Surfaces

Quadric Surfaces

If you are here because of Sec. 13.3, please just look at the discussions of

rectangular coordinates associated with quadric surfaces. The parts related

to parametric representation won’t make sense until you’ve visited Chap-

ter 15.

In Appendix A.1, we saw how conic sections are all somehow buried in

the expression

Ax2 +By2 + Cx+Dy + E = 0
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−4 −2 2 4

−4

−2

2

4

t = 0

t = π/4

t = −π/4
=
⇒

Fig. A.4 The (directed) parametric curve x = 2 sec θ, y = 4 tan θ.

When we extend that one more dimension by adding the coordinate z, we

get

Ax2 +By2 + Cz2 +Dx+ Ey + Fz +G = 0 (A.5)

Many three-dimensional surfaces can be generated by variations of (A.5);

here, we’ll see the “greatest hits”. There will be some representative images

here, but you are encouraged to go play with the resources you have and

make plots of your own: change the magnitude of a constant, or switch the

sign of a term to see what the effects are. The web site Wolfram Alpha

is a good resource and is fairly intuitive to use. For example, typing in

“plot x^2 - y^2 + z^2 = 1” will get you started on hyperboloids (see

below.)

Try not to giggle as you see that the names of many 3D surfaces end in

“-oid”, making them sound like medical afflictions.

Planes

We get planes from (A.5) when A = 0, B = 0, and C = 0, leaving us with

Dx+ Ey + Fz +G = 0.

To build a parametric representation of a plane, we need two vectors

in the plane. These could come from three points on the plane, P =

(px, py, px), Q = (qx, qy, qz), and R = (rx, ry, rz), with the two vectors
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being PQ and RQ. Then the full plane is traced out by the vector v =

s · PQ + t · RQ, where the parameters s and t are any real numbers. In

this case, we have:

v = [s(px − qx) + t(rx − qx), s(py − qy) + t(ry − qy), s(pz − qz) + t(rz − qz)]

or




x = (px − qx)s+ (rx − qx)t

y = (py − qy)s+ (ry − qy)t

z = (pz − qz)s+ (rz − qz)t
−∞ < s <∞, −∞ < t <∞

Figure A.5 shows the plane containing the points P (1, 2, 3), Q(0,−3, 2),

and R(−2, 4, 3).
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Q(0,−3, 2)
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PQ
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Fig. A.5 Plane with points P (1, 2, 3), Q(0,−3, 2), R(−2, 4, 3).

Ellipsoids / Spheres

From this point forwards, we are going to simplify things by treating only

surfaces that have not been translated — so that the origin remains the
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anchor point. Some simple translations might be noted on a case-by-case

basis.

The category of “ellipsoids” also includes spheres. Equation (A.5) gives

an ellipsoid when it can be rearranged to

x2

a2
+
y2

b2
+
z2

c2
= 1 (A.6)

In the case that a = b = c, that common equal denominator can be renamed

r2, and we get

x2 + y2 + z2 = r2

which is the familiar equation of a sphere with radius r centered at the

origin. This shape has an easy translation, and we can place the center at

some (x0, y0, z0) like so:

(x− x0)2 + (y − y0)2 + (z − z0)2 = r2

Recall that the equation of a graphical object states what all the points

on the object have in common; this equation just collects all points whose

distance from (x0, y0, z0) is the same value, r.

When we have the general ellipsoid in (A.6), the direction in which the

axis of the ellipsoid is longer can be configured by varying a, b, c.

FFT: Given that traces of ellipsoids in both horizontal and vertical cross

sections are ellipses, can you use those traces to locate the longest axis of

an ellipsoid in which c > b > a?

One set of parametric equations which generate an ellipsoid are




x = a cos t sin s

y = b sin t sin s

z = c cos s

with 0 ≤ s < π ; 0 ≤ t < 2π

These should remind you a lot of spherical coordinates; the parameter t is

related to the rotational angle that might otherwise be named θ, and s is

related to the azimuthal angle also known as φ.

Figure A.6 shows the ellipsoid generated by parametric equations




x = cos s sin t

y = 1.25 sin s sin t

z = 1.5 cos s

with 0 ≤ s < π ; 0 ≤ t < 2π
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which, in rectangular form, is

x2 +
y2

1.252
+

z2

1.52
= 1

Is this figure consistent with your digestion of the “Food For Thought”

given above?

−1

1−1

1

−1

1

(1, 0, 0)

(0, 1.25, 0)

(0, 0, 1.5)

x

y

z

Fig. A.6 Sample ellipsoid with a = 1, b = 1.25, c = 1.5.

(Elliptical) Paraboloids

We get paraboloids from (A.5) when one of a, b, or c is zero. In that case,

(A.5) can be reorganized — through completing the square and shifting

constants — into forms like

z = ax2 + by2 or y = ax2 + cz2 or x = by2 + cz2 (A.7)

Each version dictates a different direction in which the paraboloid opens.

The former, where we have z = f(x, y) is a paraboloid opening upwards,

and traces of such a paraboloid would be ellipses in a horizontal cross sec-

tions, or parabolas in vertical cross sections. A paraboloid in which traces

are ellptical are called an elliptic paraboloid (I know, crazy, right?).
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This shape is easy to translate so that the vertex is at any (x0, y0, z0):

z − z0 = a(x− x0)2 + b(y − y0)2

y − y0 = a(x− x0)2 + c(z − z0)2

x− x0 = b(y − y0)2 + c(z − z0)2

In order to form parametric equations of a/an (elliptic) paraboloid, we

need to decide how much of the paraboloid to show; this is fixed by stating

its “height” H. Then, an example set of parametric equations for an upright

elliptic paraboloid would be:




x = a
√
s cos t

y = b
√
s sin t

z = s

with 0 ≤ s ≤ H ; 0 ≤ t < 2π

Note that t is an angular parameter, and s is a linear distance. Reconsti-

tuted, these equations would correspond to the parabola

z =
x2

a2
+
y2

b2

Figure A.7 shows an ellipsoid paraboloid opening sideways around the

y-axis. FFT: How could we shuffle the parametric equations shown

above to allow the paraboloid to open in this direction?

https://mathworld.wolfram.com/EllipticParaboloid.html

Hyperboloid of One Sheet

The name implies that there is a hyperboloid of two sheets, and there is

(that’s next). We get hyperboloids of one sheet from (A.5) when one of a,

b, or c has a different sign than the others, such that we can reduces it to

the form

x2

a2
+
y2

b2
− z2

c2
= 1 (A.8)

This is one of three possible arrangements; the axis of the variable whose

term is negative is the centerline around which the hyperboloid opens. The

hyperboloid represented by (A.8) will be centered on the z-axis. When

a 6= b, we can call this an elliptic hyperboloid of one sheet, since traces

perpendicular to the centerline will be ellipses; if a = b, those traces are

circles. Traces in the other two coordinate directions will be hyperbolas.
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Fig. A.7 An elliptic paraboloid opening around the positive y-axis.

A hyperboloid of one sheet can be represented parametrically by:




x = a
√

1 + s2 cos t

y = b
√

1 + s2 sin t

z = cs

with 0 ≤ s ≤ H ; 0 ≤ t < 2π

These equations would have to be rearranged if the hyperboloid was cen-

tered on the x- or y-axis. Figure A.8 shows a unit (a = b = c = 1) hyper-

boloid of one sheet opening sideways around the z-axis. In the event a 6= b,

we can call this an elliptic hyperboloid, since the traces perpendicular to

the centerline are ellipses.

https://mathworld.wolfram.com/EllipticHyperboloid.html

Hyperboloid of Two Sheets

This shape is what you get if you create a surface of revolution with a

regular 2D hyperbola, by rotating both halves of the hyperbola around its

centerline. Hyperboloids of two sheets come from (A.5) when we allow a,

b, or c to have different signs, such that we can get

x2

a2
+
y2

b2
− z2

c2
= −1 (A.9)
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Fig. A.8 A elliptic hyperboloid of two sheets.

Note the right hand side of −1; the difference between (A.9) and (A.8) is

that when the right side is −1, there will be z values for which the equa-

tion is undefined — thus breaking the “nuclear cooling tower” shape of the

hyperboloid of one sheet into two parts.

Having set this up to compare (A.9) to (A.7), it’s worth noting that we

can also arrange this to have a right side of 1:

z2

c2
− x2

a2
− y2

b2
= 1 (A.10)

When given a quadric equation in general form (A.5), we can simplify

until the right side is a constant of 1 — then, if two quadratic terms on

the left are negative, we have a hyperboloid of two sheets; if only one is

negative, we have a hyperboloid of one sheet.

A hyperboloid of two sheets can be represented parametrically by:




x = a sinh s cos t

y = b sinh s sin t

z = ±c cosh s

with −∞ < s <∞ ; 0 ≤ t < π



Conics, Quadrics, and Parametrics 425

(As usual, these equations would have to be rearranged if the hyperboloid

was centered on the x- or y-axis.) Because cosh(u) is always positive, we

must repeat the generation of the parametric surface twice — once with

+c and once with −c — to get both halves of the hyperboloid. Figure A.9

shows a unit (a = b = c = 1) hyperboloid of two sheets opening around the

z-axis.
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Fig. A.9 A elliptic hyperboloid of one sheet.

https://mathworld.wolfram.com/Two-SheetedHyperboloid.html

(Elliptical) Cone

Cones are generated by (A.5) when we can arrange it to eliminate the free

constant term G, and get

z2 =
x2

a2
+
y2

b2
(A.11)
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As written, this equation generates two symmetric halves of the cone

joined at the vertex because we can solve for both z = +
√
f(x, y) and

z = −
√
f(x, y). As written, (A.11) gives a cone centered on the z-axis,

in which horizontal cross sections would reveal either elliptical (a 6= b) or

circular (a = b) cross sections. FFT: How do we realigning the cone

along the other axes?

One half of an (elliptical) cone can be represented parametrically by:



x = as cos t

y = bs sin t

z = s

with 0 < s <∞ ; 0 ≤ t < π

(As usual, these equations would have to be rearranged if the cone was cen-

tered on the x or y-axis.) We must repeat the generation of the parametric

surface again for z = −u if both halves of the cone are needed. Figure A.10

shows the cone z2 = x2/4+y2/9. Can you design the parametric equations

I had to use to generate that surface graphically?
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Fig. A.10 An elliptic cone opening around the positive z-axis.

https://mathworld.wolfram.com/Cone.html



Appendix B

Solutions to All Practice Problems

B.1 Chapter 13: Practice Problem Solutions

B.1.1 Life in Three-Dimensions — Practice — Solved

(1) What region is described by the expression y ≥ 0 in 2D and 3D?

� In 2D, y ≥ 0 describes the half-plane of Quadrants 1 and 2, ev-

erything on and above the x-axis. In 3D, this region is a half space,

everything on and “above” the xz-plane. �

(2) What region is described by the expression 1 < x2 + y2 + z2 ≤ 25

� This region is between two concentric spheres: outside the unit

sphere, but on and inside a sphere of radius 5 centered at the origin. �

(3) Is the triangle defined by the points P (1, 1, 0), Q(2, 4, 1), and

R(−1,−1, 3) a right triangle?

� Let’s find the squares of the lengths of the sides:

|PQ|2 = (2− 1)2 + (4− 1)2 + (1− 0)2 = 11

|QR|2 = (−1− 2)2 + (−1− 4)2 + (3− 1)2 = 38

|PR|2 = (−1− 1)2 + (−1− 1)2 + (3− 0)2 = 17

Since no arrangement of the lengths of these sides follows c2 = a2 + b2,

the triangle is not a right triangle. �

427
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B.1.2 Multivariable Functions — Practice — Solved

(1) For f(x, y) = ln(x+ y − 1), find f(e, 1) and f(4x, x+ 1), and describe

the domain and range of f(x, y).

� We have f(e, 1) = ln(e + 1 − 1) = ln(e) = 1. Also, f(4x, x + 1) =

ln(4x + (x + 1) − 1) = ln(5x). For the domain of f(x, y), all (x, y)

values are allowed except those that make x + y − 1 ≤ 0. That is, we

must have x+ y > 1, i.e. y > 1− x. This is everything above the line

y = 1−x in the xy-plane. Since all real numbers are possible as output

from the natural log function, the range is all reals, R. �

(2) Describe the domain and range of f(x, y) = 3
√
x+ 4
√
y.

� In this function x can be anything, but y must be non-negative. So

the domain is, in fancy set notation, {(x, y) : x ∈ R, y ≥ 0}. This is all

of Quadrants 1 and 2 in the xy-plane, including the x-axis. The range

of this function is all reals (the range of the cube root is all reals). �

(3) Describe the domain and range of f(x, y, z) = ln(16− 4x2− 4y2− z2).

� We must have 16−4x2−4y2−z2 > 0, i.e. 4x2 +4y2 +z2 < 16. This

almost looks like a sphere, but it isn’t (the coefficients of x, y and z are

not all the same). It turns out that this is the interior of an ellipsoid,

which we’ll learn about in the next topic. The range of this function is

(−∞, ln 16]. �

(4) Find the equations of the line segment starting at the point (2, 5,−1)

and ending at (3, 3, 0).

� How about x = 2 + t, y = 5− 2t, z = −1 + t for 0 ≤ t ≤ 1? �

(5) Describe the curve given by the parametric equations x = 3 − t, y =

1 + 2t, z = −t for −1 ≤ t ≤ 1.

� At t = −1, we have the point (4,−1, 1) and at t = 1 we have the

point (2, 3,−1). All functions are linear in t. Therefore, this is the line

segment from the point (4,−1, 1) to the point (2, 3,−1). �

(6) Do the lines x = 1+2t, y = 2−t, z = −t and x = −s, y = 1−2s, z = 1+s

share a point?



Solutions to All Practice Problems 429

� We can make the x and y coordinates match by forcing 1 + 2t = −s
and 2 − t = 1 − 2s. From the first equation, we have s = −1 − 2t.

Plugging into the second, we get 2− t = 1− 2(−1− 2t), or t = −1/5 ...

and so also s = −3/5. Passing these values to the z coordinates we get

(1) z = −1/5 and (2) z = 1− 3/5 = 2/5. The z coordinate can not be

made the same while the x and y coordinates are also the same. The

lines do not share a point. �
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B.1.3 3D Surfaces — Practice — Solved

(1) Find the equation of the plane containing the points (1, 0, 1), (0, 1, 1)

and (1, 1, 0).

� Plugging each point into the general form for a plane and simplifying,

we get:

a(1) + b(0) + c(1) + d = 0 → a+ c+ d = 0

a(0) + b(1) + c(1) + d = 0 → b+ c+ d = 0

a(1) + b(1) + c(0) + d = 0 → a+ b+ d = 0

We have 3 equations, but 4 unknowns. Let’s let d be the “extra”

unknown, and choose it to be a convenient value — such as −1. With

d = −1, we then get the three equations

a+ c = 1

b+ c = 1

a+ b = 1

The solution to this system is a = 1/2, b = 1/2, and c = 1/2, so that

the equation of the plane becomes

1

2
x+

1

2
y +

1

2
z − 1 = 0

or multiplying by 2,

x+ y + z − 2 = 0

This can also be rewritten z = −x− y + 2. �

(2) Identify the surface x2 + y2 + z2 = 4x − 2y. Give at least two pieces

of identifying information that distinguishes this surface from others of

the same type.

� Completing the square on the given equation,

x2 + y2 + z2 = 4x− 2y

(x2 − 4x+ (−2)2) + (y2 + 2y + (1)2) + z2 = 0 + (−2)2 + (1)2

(x2 − 4x+ 4) + (y2 + 2y + 1) + z2 = 4 + 1

(x− 2)2 + (y + 1)2 + (z − 0)2 = 5

So this is a sphere with center (2,−1, 0) and radius
√

5. �



Solutions to All Practice Problems 431

(3) Find the equation of a sphere that has center (3, 8, 1) and passes

through the point (4, 3,−1).

� A sphere with center (3, 8, 1) that passes through (4, 3,−1) has a

radius equal to the distance between those points. In fact, we’ll only

need r2, so:

r2 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

= (4− 3)2 + (3− 8)2 + (−1− 1)2

= 30

So the sphere’s equation is

(x− 3)2 + (y − 8)2 + (z − 1)2 = 30 �

(4) Describe the 3D surface x2− y2 = 1. Give identifying information that

supports your description.

� The surface x2 − y2 = 1 is a hyperbola in the xy-plane. Then z is

unrestricted, so we get an hyperbolic cylinder extending / opening in

the z-direction. �

(5) Identify the surface z = x2−y2 using traces. Provide at least one trace

parallel to each each of the xy-, yz-, and xz-planes.

� In the planes x = 0, y = 0, and z = 0, we get traces z = −y2, z = x2

and x2− y2 = 0, which are two parabolas and the pair of lines y = ±x.

In any plane x = c we get z = −y2 + c2 which is a parabola. In any

plane y = c we get z = x2− c2 which is another parabola. In any plane

z = c we get x2 − y2 = c which is a hyperbola. This combination of

parabolic and hyperbolic traces (cross sections) indicates a hyperbolic

paraboloid. �

(6) Complete the squares on 4x2 +y2 +4z2−4y−24z+36 = 0 and identify

it using traces.

� If we group each variable and complete the squares, we get

4x2 + y2 + 4z2 − 4y − 24z + 36 = 0

4x2 + (y2 − 4y + 4) + 4(z2 − 6z + 9) = −36 + 4 + 36

4x2 + (y − 2)2 + 4(z − 3)2 = 4

x2 +
(y − 2)2

4
+ (z − 3)2 = 1
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Traces in all directions (set x = c, y = c, z = c) are all ellipses, so this

is an ellipsoid. However, the center is (0, 2, 3) rather than (0, 0, 0). �

(7) Identify the surface z2 = 4x2 + 9y2 + 36 using traces. Provide at least

one trace parallel to each each of the xy-, yz-, and xz-planes.

�
• In any plane such that z2 < 36, this surface does not exist.

• In any plane such that z2 > 36, traces are ellipses.

• In the two planes z = 6 and z = −6, this surface is only a point,

(0, 0,±6).

• In any plane x = c or y = c, traces are hyperbolas

With elliptical and hyperbolic cross sections, and with the surface not

existing at all for −6 < z < 6, we must have a hyperboloid of two

sheets; it opens along the z-axis. �

(8) Does the contour plot in Fig. B.1 represent z = sin(x) cos(y) or z =

sin(y) cos(x)? Why?

Fig. B.1 Contours for z = sinx cos y or z = sin y cosx?
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� Contours of the function z = sin(x) cos(y) are of the form

sin(x) cos(y) = c. We would generate the contour corresponding to

c = 0 at every x-coordinate that is a multiple of π and every y-

coordinate that is an odd multiple of
π

2
. Contours of the function

z = sin(y) cos(x) are of the form sin(y) cos(x) = c. We would generate

the contour corresponding to c = 0 at every x-coordinate that is an odd

multiple of π/2 and every y-coordinate that is a multiple of π. In the

figure, we see a contour forming at x = −π, 0, π and y = −π/2, π/2.

This would be the contour c = 0 and we have the first case, the plot

represents z = sin(x) cos(y). �

(9) Present the level curves of z = 3x2− 2y2 for z = −2,−1, 0, 1, 2 as a 2D

contour plot.

Fig. B.2 Some level curves of z = 3x2 − 2y2 (w/ PP 9).

� Each level curve for z = ±1,±2 is of the form 3x2 − 2y2 = c fpr

c 6= 0, and so is a hyperbola. For z = 0, the level curve is a pair of

lines, 3x2 = 2y2 or y = ±
√

3/2x. These level curves are shown in Fig.

B.2. �
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B.1.4 Limits of MV Functions — Practice — Solved

(1) Investigate the limit lim
(x,y)→(0,0)

xy

cos(xy)
.

� This is an “easy one”. As (x, y) → (0, 0), we have xy → 0 and so

the overall limit becomes

lim
(x,y)→(0,0)

xy

cos(xy)
= lim

(x,y)→(0,0)

0

cos(0)
= lim

(x,y)→(0,0)

0

1
= 0 �

(2) Investigate the limit lim
(x,y)→(0,0)

x2 + sin2 y

2x2 + y2
.

� Along the path x = 0,

lim
(x,y)→(0,0)

x2 + sin2 y

2x2 + y2
= lim

(x,y)→(0,0)

sin2 y

y2
= lim

(x,y)→(0,0)

(
sin y

y

)2

= 1

(Hopefully you remember that as y approaches 0, the function sin y/y

approaches 1. Or, you can invoke L-Hopital’s Rule.) Along the path

y = 0,

lim
(x,y)→(0,0)

x2 + sin2 y

2x2 + y2
= lim

(x,y)→(0,0)

x2

2x2
=

1

2

So we get two different limits on two different paths, and the limit does

not exist. �

(3) Investigate the limit lim
(x,y)→(0,0)

xy4

x2 + y8
.

� Along the path x = 0,

lim
(x,y)→(0,0)

xy4

x2 + y8
= lim

(x,y)→(0,0)

0

y8
= 0

Along the path x = y4,

lim
(x,y)→(0,0)

xy4

x2 + y8
= lim

(x,y)→(0,0)

y4y4

(y4)2 + y8
= lim

(x,y)→(0,0)

y8

2y8
=

1

2

So we get two different limits on two different paths, and the limit does

not exist. �

(4) Where is the function f(x, y) =
x− y

1 + x2 + y2
continuous?

� There are no locations where this function “goes bad”. It is contin-

uous everywhere in the xy-plane. �
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B.1.5 Partial Derivatives — Practice — Solved

(1) Find both first order derivatives of z = y lnx.

� ∂z

∂x
=
y

x
and

∂z

∂y
= lnx �

(2) Find both first order derivatives of u = tew/t.

� uw = t

(
1

t

)
ew/t = ew/t

ut = ew/t + t

(−w
t2

)
ew/t = ew/t

(
1− w

t

)
�

(3) Find all first order derivatives of f(x, y, z) = x2eyz.

� fx = 2xeyz ; fy = x2zeyz ; fz = x2yeyz �

(4) Find all first order derivatives of w =
√
r2 + s2 + t2.

� There are three first order derivatives:

∂w

∂r
=

r√
r2 + s2 + t2

∂w

∂s
=

s√
r2 + s2 + t2

∂w

∂t
=

t√
r2 + s2 + t2

�

(5) If f(x, y) = sin(2x+ 3y), what is fy(−6, 4)?

� Finding the derivative fy and plugging in (−6, 4):

fy = 3 cos(2x+ 3y) → fy(−6, 4) = 3 cos(−12 + 12) = 3 �

(6) Find all second order derivatives of f(x, y) = ln(3x+ 5y).

� Starting with first derivatives,

fx =
3

3x+ 5y
and fy =

5

3x+ 5y

so that

fxx =
−9

(3x+ 5y)2
; fxy = fyx =

−15

(3x+ 5y)2
; fyy =

−25

(3x+ 5y)2
�
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(7) If f(r, s, t) = r ln(rs2t3), what are frss and frst?

� It’s easier if we expand the function using properties of the natural

log:

f(r, s, t) = r ln r + 2r ln s+ 3r ln t

fr = ln r + 1 + 2 ln s+ 3 ln t

frs =
2

s

frss = − 2

s2
; frst = 0 �

(8) Does u = x2 − y2 satisfy Laplace’s Equation?

� We have uxx = 2 and uyy = −2, so uxx + uyy = 0, and the function

DOES satisfy Laplace’s equation. �

(9) For z = 3x2 − 2y2, compute zx(1, 0), zy(1, 0), zx(1, 1), zy(1, 1), zx(0, 1)

and zy(0, 1). In PP 9 of Sec. 13.3, you presented some level curves of

this function. On which level curves (specified by associated value of

z) will we find the points (1, 0), (1, 1), and (0, 1)?

� Since zx = 6x, then zx(1, 0) = 6, zx(1, 1) = 6, and zx(0, 1) = 0.

Since zy = −4y, then zy(1, 0) = 0, zy(1, 1) = −4, and zy(0, 1) = −4.

The point (1, 0) falls on the level curve for z = 3; the point (1, 1) falls

on the level curve for z = 1; the point (0, 1) falls on the level curve for

z = −2. The level curve for z = 3 was not originally displayed in PP 9

of Sec. 13.3, but it has been added to Fig. B.3 along with these the

points given here. �
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Fig. B.3 Some level curves of z = 3x2 − 2y2 (w/ PP 9).

B.2 Chapter 14: Practice Problem Solutions

B.2.1 The Chain Rule — Practice — Solved

(1) If z = f(x(t), y(t)) =
√
x2 + y2 with x(t) = e2t and y(t) = e−2t, what

is
∂z

∂t
?

� z depends on x and y, which in turn depend on t. So the proper

chain rule and its completion are:

∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t

=
x√

x2 + y2
(2e2t) +

y√
x2 + y2

(−2e−2t)

=
2√

x2 + y2
(xe2t − ye−2t) �

(2) If z = f(x(s, t), y(s, t)) = exy tan y with x(s, t) = s+2t and y(s, t) =
s

t
,

find both ∂z/∂s and ∂z/∂t.
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� ∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s

= (yexy tan y)(1) + (xexy tan y + exy sec2 y)

(
1

t

)

∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t

= (yexy tan y)(2) + (xexy tan y + exy sec2 y)

(−s
t2

)

This is a great example of why we don’t always want the final answer

written in terms of only s and t, and it’s OK to leave in the intermedi-

ate variables. �

(3) If w = w(x, y, z) with x = x(t, u), y = y(t, u), and z = z(t, u), write

chain rule expressions for all possible first derivatives of w with respect

to the independent variables.

� There will be two first derivatives of w; these derivatives are with

respect to t, u going through the intermediate variables of x, y, z. The

chain rule formulations are:

∂w

∂t
=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
+
∂w

∂z

∂z

∂t

∂w

∂u
=
∂w

∂x

∂x

∂u
+
∂w

∂y

∂y

∂u
+
∂w

∂z

∂z

∂u
�

(4) If u =
√
r2 + s2 where r = y+x cos t and s = x+y sin t, find the values

of all possible first derivatives of u with respect to the independent

variables when x = 1, y = 2, t = 0.

� There are three first partials with respect to x, y, t, going through the

intermediate variables of r and s. We want them for x = 1, y = 2, t = 0.

First, note that for these values we have

r = 2 + 1 cos(0) = 3 and s = 1 + 2 sin(0) = 1

so that
√
r2 + s2 =

√
10, and we get the following derivative values:

∂u

∂r
=

r√
r2 + s2

=
3√
10

and
∂u

∂s
=

s√
r2 + s2

=
1√
10

Further, derivatives of r with respect to x, y, and t are:

∂r

∂x
= cos(t) = 1 ;

∂r

∂y
= 1 ;

∂r

∂t
= −x sin(t) = 0
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and for s,

∂s

∂x
= 1 ;

∂s

∂y
= sin(t) = 0 ;

∂s

∂t
= y cos(t) = 2

By the Chain Rule, then,

∂u

∂x
=
∂u

∂r

∂r

∂x
+
∂u

∂s

∂s

∂x

=
3√
10

(1) +
1√
10

(1) =
4√
10

∂u

∂y
=
∂u

∂r

∂r

∂y
+
∂u

∂s

∂s

∂y

=
3√
10

(1) +
1√
10

(0) =
3√
10

∂u

∂t
=
∂u

∂r

∂r

∂t
+
∂u

∂s

∂s

∂t

=
3√
10

(0) +
1√
10

(2) =
2√
10

�

(5) If z = f(α(s, t), β(s, t)) = sinα tanβ with α(s, t) = 3s+ t and β(s, t) =

s − t, find the first derivatives of z with respect to the independent

variables.

� We have that z is ultimately a function of s and t, going through

the intermediate variables α and β. So,

∂z

∂s
=
∂z

∂α

∂α

∂s
+
∂z

∂β

∂β

∂s

= (cosα tanβ)(3) + (sinα sec2 β)(1) = 3 cosα tanβ + sinα sec2 β

∂z

∂t
=
∂z

∂α

∂α

∂t
+
∂z

∂β

∂β

∂t

= (cosα tanβ)(1) + (sinα sec2 β)(−1) = cosα tanβ − sinα sec2 β �

(6) If u = u(s, t) with s = s(w, x, y, z) and t = t(w, x, y, z), write chain

rule expressions for all possible first derivatives of u with respect to the

independent variables.

� There will be four first derivatives of u; these derivatives are with

respect to w, x, y, z going through the intermediate variables of s, t.
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The chain rule formulations are:

∂u

∂w
=
∂u

∂s

∂s

∂w
+
∂u

∂t

∂t

∂w

∂u

∂x
=
∂u

∂s

∂s

∂x
+
∂u

∂t

∂t

∂x

∂u

∂y
=
∂u

∂s

∂s

∂y
+
∂u

∂t

∂t

∂y

∂u

∂z
=
∂u

∂s

∂s

∂z
+
∂u

∂t

∂t

∂z
�

(7) If R = ln(u2 + v2 + w2) where u = x + 2y, v = 2x − y, and w = 2xy,

find the values of all possible first derivatives of R with respect to x

and y when x = 1, y = 1.

� There are two first partials with respect to x, y, going through the

intermediate variables u, v, w. We want them for x = 1, y = 1. First,

note that for these values we have

u = 1 + 2(1) = 3

v = 2(1)− 1 = 1

w = 2(1)(1) = 2

So with these values,

∂R

∂x
=
∂R

∂u

∂u

∂x
+
∂R

∂v

∂v

∂x
+
∂R

∂w

∂w

∂x

=
2u

u2 + v2 + w2
(1) +

2v

u2 + v2 + w2
(2) +

2w

u2 + v2 + w2
(2y)

=
6

14
(1) +

4

14
(2) +

4

14
(2) =

18

14
=

9

7

∂R

∂y
=
∂R

∂u

∂u

∂y
+
∂R

∂v

∂v

∂y
+
∂R

∂w

∂w

∂y

=
2u

u2 + v2 + w2
(2) +

2v

u2 + v2 + w2
(−1) +

2w

u2 + v2 + w2
(2x)

=
6

14
(2) +

4

14
(−1) +

4

14
(2) =

18

14
=

9

7
�
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B.2.2 Optimization — Practice — Solved

(1) Find and characterize the critical points of f(x, y) = x3y+ 12x2− 8y.

� We have fx = 3x2y + 24x and fy = x3 − 8. The equation fy = 0 is

easier to solve, and we have fy = 0 only at x = 2. Handing that back

to fx = 0 gives us 3(2)2y + 24(2) = 0, or 12y = −48, or y = −4. So,

the point (x, y) = (2,−4) is the only critical point. Getting ready for

the second derivative test via Useful Fact 14.1, we have:

fxx = 6xy + 24 → fxx(2,−4) = −24

fyy = 0→ fyy(2,−4) = 0

fxy = 3x2 → fxy(2,−4) = 12

D(2,−4) = fxx(2,−4)fyy(2,−4)− [fxy(2,−4)]2

(−24)(0)− (12)2 = −144

Since D(2,−4) < 0, the critical point is a saddle point. �

(2) Find and characterize the critical points of f(x, y) = xy(1 − x − y) =

xy − x2y − xy2.

� We have fx = y− 2xy− y2 = y(1− 2x− y) and fy = x−x2− 2xy =

x(1− x− 2y). Let’s start unpacking fx = 0 and fy = 0.

We have fx = 0 when x = 0 and when y = 1 − 2x. We have fy = 0

when y = 0 and x = 1− 2y. There are three combinations here:

• One combination is when x = 0 and y = 0.

• A second combination is when x = 0 and so y = 1− 2(0) = 1.

• A third combination is when y = 0 and so x = 1− 2(0) = 1.

Altogether, fx = 0 and fy = 0 together at the points (0, 0), (0, 1), (1, 0).

And, we also must look for simultaneous solutions to fx = 0 and fy = 0

via

1− 2x− y = 0

1− x− 2y = 0

Twice the first minus the second gives 1 − 3x = 0, or x = 1/3. That

value leads to y = 1/3 as well. So (x, y) = (1/3, 1/3) is another critical

point. There are four critical points altogether. Getting ready for the

second derivative test via Useful Fact 14.1, we have:

fxx = −2y fyy = −2x fxy = 1− 2x− 2y
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and in general,

D(x, y) = fxx(x, y)fyy(x, y)− [fxy(x, y)]2 = 4xy − (1− 2x− 2y)2

• D(0, 0) = −1 < 0 so (0, 0) locates a saddle point.

• D(0, 1) = −1 < 0 so (0, 1) locates a saddle point.

• D(1, 0) = −1 < 0 so (1, 0) locates a saddle point.

• D(1/3, 1/3) = 1/3 > 0; since also fxx < 0 here, (1/3, 1/3) locates

a local max. �

(3) Find the absolute extremes of f(x, y) = 3+xy−x−2y over the domain

D that’s a triangle with vertices P(1,0), Q(5,0) and R(1,4).

� Are there extremes over the interior of D? With fx = y − 1 and

fy = x− 2, we have fx = fy = 0 at (2,1) which is indeed in the interior

of D.

Let edge L1 be the line segment PR. On L1, x = 1 and the function

reduces to f(1, y) = 2 − y. Since this is linear, there are no extremes

along L1 itself.

Let edge L2 be the line segment PQ. On L2, y = 0 and the function

reduces to f(x, 0) = 3 − x. Since this is linear, there are no extremes

along L2 itself.

Let edge L3 be the line segment QR. This is the line y = −x+ 5, and

the function reduces to

fL3(x) = 3 + x(−x+ 5)− x− 2(−x+ 5) = −x2 + 6x− 7

which has a critical point at x = 3 (and so y = 2).

At the two critical points we’ve found so far, we have

f(2, 1) = 1 ; f(3, 2) = 2

Then also at the vertices:

f(1, 0) = 2 ; f(1, 4) = −2 ; f(5, 0) = −2

Comparing the five candidate locations for absolute extremes (two crit-

ical points and three vertices), we see absolute maximums of f(3, 2) =

f(1, 0) = 2 and absolute minimums of f(1, 4) = f(5, 0) = −2. �
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(4) Find the minimum distance d from the point (1,2,3) to the plane x −
y + z = 4 and the point on the plane where this distance occurs.

� To make the calculations easier, we’ll minimize d2 (whatever mini-

mizes d2 also minimizes d). The distance between (1,2,3) and any point

in the universe is our objective function, which is to be minimized:

d2 = (x− 1)2 + (y − 2)2 + (z − 3)2

Our constraint is that we are only interested in points on the plane

x−y+z = 4, i.e. for which z = 4−x+y. This constrains our objective

function down to two independent variables:

d2 = (x− 1)2 + (y − 2)2 + (1− x+ y)2

Treating the right hand side as the function f(x, y) we want to mini-

mize, let’s get some derivatives:

fx = 2(x− 1)− 2(1− x+ y) = 4x− 2y − 4

fy = 2(y − 2) + 2(1− x+ y) = −2x+ 4y − 2

Now fx = 0 gives 4x − 2y − 4 = 0 or y = 2x − 2. Also, fy = 0 gives

−2x+ 4y − 2 = 0, or −x+ 2y − 1 = 0. Merging that with y = 2x− 2

gives

−x+ 2(2x− 2)− 1 = 0

3x− 5 = 0

x =
5

3

Passing that back to y = 2x− 2 gives y = 4/3. So our critical point is

located by (x, y) = (5/3, 4/3). To confirm this is a minimum (although

we don’t really need to, because what would be the maximum?), we

head for the second derivative test:

fxx = 4 ; fyy = 4 ; fxy = −2

and use them to build:

D(x, y) = fxxfyy − [f(x, y)]2 = 12

Since D(x, y) > 0 and fxx > 0 everywhere, any critical point is a local

minimum. (See, I told you the critical point is a minimum.) Finally,

we get that the point on z = 4 − x + y with (x, y) = (5/3, 4/3) gives

z = 11/3 and so the point on the plane x−y+z = 4 closest to the point
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(1,2,3) is (x, y, z) = (5/3, 4/3, 11/3). The actual minimum distance is

dmin =

√(
5

3
− 1

)2

+

(
4

3
− 2

)2

+

(
11

3
− 3

)2

=
2√
3

�

(5) What is the largest volume that can be contained in a rectangular box

(with a lid!) that has a total surface area of 64 cm2.

� Let the dimensions of the box be x, y, z (length, width, height).

Our objecive function, which we want to maximize, is for volume, V :

V = xyz. Our constraint comes from the surface area which must be

a fixed value. Since we have a lid, there are two faces of each possible

size xy, yz, and xz, and the total surface area fixed to 64 is given by

2xy + 2xz + 2yz = 64, or xy + xz + yz = 32. We will use information

about the surface area to constrain V to only two independent variables.

Let’s solve xy + xz + yz = 32 for z,

z =
32− xy
x+ y

hand that to the volume V = xyz, and find derivatives:

V = xyz = xy

(
32− xy
x+ y

)

Vx =
−y2(x2 + 2xy − 32)

(x+ y)2

Vy =
−x2(y2 + 2xy − 32)

(x+ y)2

Now, immediately we can see we’ll have Vx = 0 and Vy = 0 when x = 0

and y = 0, but that would make a pretty silly box. We need to hope

we get better information from the other parts:

Vx = 0→ x2 + 2xy − 32 = 0

Vy = 0→ y2 + 2xy − 32 = 0

Solving systems of non-linear equations is no fun. You can do it by

hand by solving Vx = 0 for y, then plugging that in to Vy = 0, and

then performing some excruciating algebra. Being more judicious in

how we use our time, let’s consult Wolfram Alpha, which reports that

the non-zero and real solution to this system is x = y = 8/
√

6. These



Solutions to All Practice Problems 445

values lead back to z = 8/
√

6 as well. So, the maximum volume occurs

when the box is a cube, with dimensions

x = y = z =
8√
6

The actual maximum volume is,

V =

(
8√
6

)3

≈ 135 cm3 �

(6) Find and characterize the critical points of f(x, y) = x2 + y2 +
1

x2y2
.

� We have

fx = 2x− 2

x3y2
and fy = 2y − 2

x2y3

Solving for where fx = 0 and fy = 0,

2x− 2

x3y2
= 0 and 2y − 2

x2y3
= 0

2x4y2 − 2 = 0 and 2x2y4 − 2 = 0

x4y2 = 1 and x2y4 = 1

x4y2 − x2y4 = 0

x2y2(x2 − y2) = 0

(x, y) = (±1,±1)

So, there are 4 possible critical points. (Remember, (0,0) is not a

critical point since it’s not in the domain of the function.) Let’s build

the second derivative test function D(x, y) in general:

fxx =
6

x4y2
+ 2 ; fyy =

6

x2y4
+ 2 ; fxy =

4

x3y3

D(x, y) = fxx(x, y)fyy(x, y)− [fxy(x, y)]2

=

(
6

x4y2
+ 2

)(
6

x2y4
+ 2

)
−
(

4

x3y3

)2

=
36

x6y6
+

12

x4y2
12

x2y4
+ 4− 16

x6y6

=
20

x6y6
+

12

x4y2
12

x2y4
+ 4
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So, D(x, y) > 0 everywhere. Also fxx(x, y) > 0 everywhere. So all

critical points are local minimums. �

(7) Find the absolute extremes of f(x, y) = 4x + 6y − x2 − y2 over the

domain D with 0 ≤ x ≤ 4, 0 ≤ y ≤ 5.

� Are there extremes over the interior of D? With fx = 4 − 2x and

fy = 6−2y, we have fx = fy = 0 at (2,3) which is indeed in the interior

of D.

Let edge L1 be the left boundary of D, where x = 0. Here, the function

reduces to f(0, y) = 6y − y2. There is a critical point here at y = 3, so

(0, 3) is a candidate extreme of f(x, y).

Let edge L2 be the right boundary of D, where x = 4. Here, the func-

tion again reduces to f(4, y) = 6y − y2. There is a critical point here

at y = 3, so (4, 3) is a candidate extreme of f(x, y).

Let edge L3 be the lower boundary of D, where y = 0. Here, the

function reduces to f(x, 0) = 4x− x2. There is a critical point here at

x = 2, so (2, 0) is a candidate extreme of f(x, y).

Let edge L4 be the upper boundary of D, where y = 5. Here, the

function reduces to f(x, 5) = 4x−x2 + 5. There is a critical point here

at x = 2, so (2, 5) is a candidate extreme of f(x, y).

At the critical point we found on the interior, we have f(2, 3) = 13.

At the candidate extremes we found on the boundaries, we have these

values of the function:

f(0, 3) = 9 , f(4, 3) = 9 , f(2, 0) = 4 , f(2, 5) = 5

At the vertices,

f(0, 0) = 0 , f(4, 0) = 0 , f(0, 5) = 5 and f(4, 5) = 5

Comparing the critical points and vertices, we see an absolute maxi-

mum of 13 at (2,3), and absolute minimums of 0 at two points: (0,0),

and (4,0). �
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(8) What dimensions should we use for a rectangular aquarium of volume

12, 000 cm3 if we want to minimize its cost, given that the base costs

5 times more per unit area than the sides. (There is no lid on the

aquarium.)

� Our objective function (which is to be minimized) will be the cost

function. Let the dimensions of the tank be x, y, z (length, width,

height). Assume there is no top; the base has area xy. Let p be the

cost per unit area of the glass sides, then the cost of the base is 5p(xy);

there are two sides of dimensions yz and xz, so the total cost to be

minimized is

C = 5pxy + 2pyz + 2pxz

Our constraint is that we need to have, specifically, V = 12, 000. Since

V = xyz and V = 12, 000, our constraint is:

12, 000 = xyz or z =
12, 000

xy

We can use this to constrain our objective function down to two inde-

pendent variables:

C = 5pxy + 2pyz + 2pxz

= 5pxy + 2py

(
12, 000

xy

)
+ 2px

(
12, 000

xy

)

= 5pxy +
24, 000p

x
+

24, 000p

y

Now let’s start some derivative action:

Cx = 0 → 5py − 24, 000p

x2
= 0

Cy = 0 → 5px− 24, 000p

y2
= 0

Let’s start solving these two equations by dividing 5p:

Cx = 0→ y − 4800

x2
= 0

Cy = 0→ x− 4800

y2
= 0
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and then merge them by using the common term 4800. From Cx = 0,

we get 4800 = yx2. Passing that to Cy = 0, we have

x− x2

y
= 0

x

(
1− x

y

)
= 0

which holds for x = 0 or x = y. The x = 0 case is not useful. The

other case tells us that BOTH Cx = 0 and Cy = 0 when x = y. For

x = y, the equation Cx = 0 becomes

4800 = y(y)2

y =
3
√

4800

So, the minimum cost occurs when

x = y =
3
√

4800 = 4
3
√

75 ; z =
12000

xy
= 10

3
√

75

Note that the actual value of p never became an issue. �
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B.2.3 Double Integrals — Practice — Solved

(1) Evaluate

∫ 4

1

∫ 2

0

x+
√
y dxdy.

� This integral is ready to be evaluated with no prep work:

∫ 4

1

∫ 2

0

x+
√
y dxdy =

∫ 4

1

[(
1

2
x2 + x

√
y

) ∣∣∣∣
2

0

]
dy

=

∫ 4

1

(2 + 2
√
y) dy =

(
2y +

4

3
y3/2

) ∣∣∣∣
4

1

= 8 +
4

3
(8)− 2− 4

3
=

46

3
�

(2) Evaluate

∫∫

R

xy2

x2 + 1
dA where R is the region {(x, y) : 0 ≤ x ≤ 1,−3 ≤

y ≤ 3}.

� Let’s choose the order of integration as dxdy (rather than dydx) to

get at x first and remove the fraction.

∫∫

R

xy2

x2 + 1
dA =

∫ 3

−3

∫ 1

0

xy2

x2 + 1
dxdy

=

∫ 3

−3

(
1

2
y2 ln(x2 + 1)

) ∣∣∣∣
1

0

dy =

∫ 3

−3

(
1

2
y2(ln 2)

)
dy

=
ln 2

6

(
y3
) ∣∣∣∣

3

−3
=

54 ln 2

6
= 9 ln 2 �

(3) Find the volume under z = 4 + x2 − y2 over the region R = {(x, y) :

−1 ≤ x ≤ 1, 0 ≤ y ≤ 2}.
� We use the bounds on x and y to set the limits of integration:

∫ 1

−1

∫ 2

0

(4 + x2 − y2) dydx =

∫ 1

−1

(
4y + x2y − 1

3
y3
) ∣∣∣∣

2

0

dx

=

∫ 1

−1

(
16

3
+ 2x2

)
dx

=

(
16

3
x+

2

3
x3
) ∣∣∣∣

1

−1
= 12 �



450 Casual Calculus: A Friendly Student Companion (Volume 3)

(4) Evaluate

∫∫

D

ey
2

dA, where D is the region {(x, y) : 0 ≤ x ≤ y, 0 ≤
y ≤ 1}.
� We have to integrate with respect to x first, since the boundaries of

x are not constant:∫∫

D

ey
2

dA =

∫ 1

0

∫ y

0

ey
2

dxdy =

∫ 1

0

(
xey

2
) ∣∣∣∣

y

0

dy =

∫ 1

0

yey
2

dy

=
1

2
ey

2

∣∣∣∣
1

0

=
1

2
(e− 1) �

0.5 1

0.5

1

y =
√ x

y
=
x
2

x

y

Fig. B.4 Region of integration for PP 5.

0.5 1

0.5

1

x
=
y
2

x = y
3

x

y

Fig. B.5 Region of integration for PP 6.

(5) Evaluate

∫∫

D

(x + y) dA where D is the region between y =
√
x and

y = x2.

� Since these curves intersect at (0,0) and (1,1) and y = x2 is below

the other on that interval, the region D bounded by them is the area

under y =
√
x and over y = x2 from x = 0 to x = 1. This region is

shown in Fig. B.4. We have to integrate with respect to y first, since

the boundaries of y are not constant:
∫∫

D

(x+ y) dA =

∫ 1

0

∫ √x

x2

(x+ y) dydx =

∫ 1

0

(
xy +

1

2
y2
) ∣∣∣∣

√
x

x2

dx

=

∫ 1

0

(
x32 +

1

2
x− x3 − 1

2
x4
)
dx

=

(
2

5
x52 +

1

4
x2 − 1

4
x4 − 1

10
x5
) ∣∣∣∣

1

0

=
2

5
− 1

10
=

3

10
�
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(6) Evaluate

∫∫

D

(2x+ y2) dA, where D is the region between x = y2 and

x = y3.

� Since these curves intersect at (0,0) and (1,1) and x = y3 is “below”

(i.e. closer to the y-axis than) the other on that interval, the region D

bounded by them is the area “under” x = y2 and “over” x = y3 from

y = 0 to y = 1. This region is shown in Fig. B.5. To find the volume

under the surface z = 2x+y2, we integrate with respect to x first, since

the boundaries of x are not constant:

∫∫

D

(2x+ y2) dA =

∫ 1

0

∫ y2

y3
(2x+ y2) dxdy

=

∫ 1

0

(
x2 + xy2

) ∣∣∣∣
y2

y3
dy =

∫ 1

0

(
2y4 − (y6 + y5)

)
dy

=

(
2

5
y5 − 1

7
y7 − 1

6
y6
) ∣∣∣∣

1

0

=
2

5
− 1

7
− 1

6
=

19

210
�

0.5 1

0.5

1

x
=
√ x

x = 1

y = 1

x

y

Fig. B.6 Region of integration for PP 7.

−1 −0.5 0.5 1

−1

−0.5

0.5

1
x

=
√ 1
− y

2

x
=

0 x

y

Fig. B.7 Region of integration for PP 8.

(7) Write the equivalent integral in which the order of integration is re-

versed:

∫ 1

0

∫ 1

√
y

√
x3 + 1 dxdy.

� We note that the limits of integration describe the region to the right

of the curve x =
√
y and left of x = 1, from y = 0 to y = 1. This is

the same as the region between above the line y = 0 and below y = x2



452 Casual Calculus: A Friendly Student Companion (Volume 3)

from x = 0 to x = 1. This region is shown in Fig. B.6. So, we have
∫ 1

0

∫ 1

√
y

√
x3 + 1 dxdy =

∫ 1

0

∫ x2

0

√
x3 + 1 dydx

This can now be solved, whereas the original could not. �

(8) Evaluate

∫∫

D

xy2 dA, where D is the region bounded by x = 0 and

x =
√

1− y2.

� The region D is the right half of the unit circle, i.e. D = {(x, y) :

0 ≤ x ≤
√

1− y2,−1 ≤ y ≤ 1} and is shown in Fig. B.7. We have

to integrate with respect to x first, since the boundaries of x are not

constant:
∫∫

D

xy2 dA =

∫ 1

−1

∫ √1−y2

0

(xy2) dxdy

=

∫ 1

−1

(
1

2
x2y2

) ∣∣∣∣

√
1−y2

0

dy =

∫ 1

−1

(
1

2
(1− y2)y2

)
dy

=

(
1

6
y3 − 1

10
y5
) ∣∣∣∣

1

−1
= 2

(
1

6
− 1

10

)
=

2

15
�

(9) Find the volume under the paraboloid z = x2 + 3y2 over the region in

the xy-plane bounded by the the lines y = 1, x = 0, and y = x.

� This region in the xy-plane is the area under y = 1 and over y = x

from x = 0 to x = 1, and is shown in Fig. B.8. To find the volume

under the paraboloid z = x2 + 3y2 over this region, we can integrate

with respect to y first, since the given boundaries of y are not constant:
∫∫

D

(x2 + 3y2)] dA =

∫ 1

0

∫ 1

x

(x2 + 3y2) dydx

=

∫ 1

0

(
x2y + y3

) ∣∣∣∣
1

x

dx =

∫ 1

0

(
(x2 + 1)− 2x3

)
dx

=

(
1

3
x3 + x− 1

2
x4
) ∣∣∣∣

1

0

=
1

3
+ 1− 1

2
=

5

6

The same answer can be obtained by reordering the limits of integra-

tion,
∫∫

D

(x2 + 3y2)dA =

∫ 1

0

∫ y

0

(x2 + 3y2)dydx =
5

6
�
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(10) Evaluate

∫ 1

0

∫ 1

x2

x3 sin(y3) dydx.

� The integral cannot be solved with the current order of integration,

so we have to reverse it. We note that the limits of integration describe

below the line y = 1 and above y = x2 from x = 0 to x = 1. This is the

same as the region to the right of the line x = 0 and right of x =
√
y

from y = 0 to y = 1. The region is shown in Fig. B.9. So, we have
∫ 1

0

∫ 1

x2

x3 sin(y3) dydx =

∫ 1

0

∫ √y

0

x3 sin(y3) dxdy

=

∫ 1

0

(
1

4
x4 sin(y3)

) ∣∣∣∣

√
y

0

dy =

∫ 1

0

(
1

4
y2 sin(y3)

)
dy

=

(
− 1

12
cos(y3)

) ∣∣∣∣
1

0

=
1

12
(1− cos 1) �

0.5 1

0.5

1

y
=
x

y = 1

x

y

Fig. B.8 Region of integration for
PP 9.

0.5 1

0.5

1

y
=
x
3

y = 1

x

y

Fig. B.9 Region of integration for
PP 10.
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B.2.4 Triple Integrals — Practice — Solved

(1) Evaluate

∫ 1

0

∫ 2x

x

∫ y

0

(2xyz) dzdydx by hand.

�
∫ 1

0

∫ 2x

x

∫ y

0

(2xyz) dzdydx =

∫ 1

0

∫ 2x

x

xyz2
∣∣∣∣
y

0

dydx

=

∫ 1

0

∫ 2x

x

xy3 dydx =

∫ 1

0

1

4
xy4
∣∣∣∣
2x

x

dx

=

∫ 1

0

1

4
x(16x4 − x4) dx =

∫ 1

0

15

4
x5 dx =

15

24
=

5

8
�

2
4

−1

1

−1

1

x

y

z

Fig. B.10 Region between x = 4y2 +

4z2, x = 4.

1 2 3

3
6

9

2

4

x

y

z

Fig. B.11 Region between y = x2, y =

9, z = 0, z = 4.

(2) Evaluate

∫∫∫

E

x dV , where E is the region between the paraboloid

x = 4y2 + 4z2 the plane x = 4.

� The region in question is shown in Fig. B.10. The paraboloid x =

4y2 + 4z2 intersects the plane x = 4 in the circle 4y2 + 4z2 = 4, i.e.

y2+z2 = 1. The paraboloid opens sideways, along the x-axis; the region

E between the paraboloid and the plane x = 4 is to the right of the

paraboloid and left of x = 4. This defines limits on x: 4y2+4z2 ≤ x ≤ 4.

The cross section of the intersection of the paraboloid and plane in the

yz-plane is the circle y2 + z2 = 1, which defines limits on y and z.

Let’s call those limits −
√

1− z2 ≤ y ≤
√

1− z2 and −1 ≤ z ≤ 1.

We must set up limits of integration so that variables are progressively



Solutions to All Practice Problems 455

eliminated; the final limits must be constants. So, x must go first, then

y and finally z: So,

∫∫∫

E

x dV =

∫ 1

−1

∫ √1−z2

−
√
1−z2

∫ 4

4y2+4z2
x dxdydz =

16π

3
�

(3) Find the the volume of the solid bounded by the parabolic cylinder

y = x2 and the planes z = 0, z = 4, and y = 9.

� The region in question is shown in Fig. B.11. The parabolic cylinder

y = x2 is the curve y = x2 in the xy-plane, extended both ways along

the z-axis.

We have perfectly good limits on y and z already: 0 ≤ z ≤ 4 and

x2 ≤ y ≤ 9. To get limits on x, we can examine the intersection of the

curves y = x2 and y = 9, which are x = ±3.

There are multiple possible orders of integration, but we do need to en-

sure that we integrate with respect to y before x. Since we’re computing

the volume of a solid region, we integrate the function F (x, y, z) = 1.

So how about this arrangement,

V =

∫∫∫

E

dV =

∫ 4

0

∫ 3

−3

∫ 9

x2

(1) dydzdz = 144 �

(4) Describe and sketch the 3D region whose volume is being computed in

the following integral:

∫ 3

−3

∫ √9−x2

−
√
9−x2

∫ 9−x2−y2

x2+y2−9
(1) dzdydx

� The limits on z indicate a lower limit of z = x2 + y2 − 9, which

is a paraboloid that has a vertex at (0, 0,−9); the upper limit is

z = 9 − x2 − y2, which is an inverted paraboloid with vertex (0, 0, 9).

These two paraboloids intersect in the circle x2 + y2 = 3 in the xy-

plane; this entire circle is consistent with the bounds on the x and y

integrals. So this integral computes the volume of the solid above the

paraboloid z = x2 + y2 − 9 and below the paraboloid z = 9− x2 − y2.

The region in question is shown in Fig. B.12. �
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3

−9

9

x

y

z

Fig. B.12 Region between z = 9− x2 − z2, z = x2 + y2 − 9.

(5) Evaluate (by hand)

∫∫∫

E

yz cos(x5) dV , where E is defined as the re-

gion E = {(x, y, z) : 0 ≤ x ≤ 1; 0 ≤ y ≤ x;x ≤ z ≤ 2x}.
� We must set up limits of integration so that variables are progres-

sively eliminated; the final limits must be constants. Either y or z can

go first, but x must go last. So,

∫∫∫

E

yz cos(x5)dV =

∫ 1

0

∫ x

0

∫ 2x

x

yz cos(x5) dzdydx

=

∫ 1

0

∫ x

0

1

2
yz2 cos(x5)

∣∣∣∣
2x

x

dydx =

∫ 1

0

∫ x

0

3

2
x2y cos(x5) dydx

=

∫ 1

0

3

4
x2y2 cos(x5)

∣∣∣∣
x

0

dx =

∫ 1

0

3

4
x4 cos(x5) dx

=
3

20
sin(x5)

∣∣∣∣
1

0

=
3

20
sin(1)

(6) Find the volume of region between the paraboloid y = x2 + z2 and the

plane y = 16.

� The region in question is shown in Fig. B.13. The paraboloid opens

around the y-axis, so the “floor” of this solid is to the paraboloid,

and the “roof ” is the plane y = 16. This gives limits on y as:

x2 + z2 ≤ y ≤ 16. With y pinned down, we get limits on x and z

by exploring the region of the xz-plane used by this solid.
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yz

Fig. B.13 Region between y = x2 + z2, y = 16.

The intersection of the solid with the plane y = 4 is x2 + z2 = 16. This

is a circle of radius 4 in the xz-plane and defines limits on x and z. We

can set −
√

16− z2 ≤ x ≤
√

16− z2 and −4 ≤ x ≤ 4.

We must order limits of integration so that variables are progressively

eliminated; the final limits must be constants. So, y must go first, then

z and finally x: So,

V =

∫∫∫
EdV =

∫ 4

−4

∫ √16−z2

−
√
16−z2

∫ 16

x2+z2
dydxdz = 128π

If you don’t like sideways paraboloids and regions of integration, then

a different way to tackle this would be to say that the volume of this

region would be the same as that between z = x2+y2 and z = 16. That

would be exactly the same shape and same size, just opening upwards.

If you make such an adjustment in any problems, be sure to note that

up front in your solution, so that your reader does not have to reverse-

engineer your limits of integration, which might look incorrect at first!

�
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B.3 Chapter 15: Practice Problem Solutions

B.3.1 Double Ints in Polar Coords — Practice — Solved

(1) Use polar coordinates to evaluate

∫∫

R

√
4− x2 − y2 dA, where R is the

region {(x, y) : x2 + y2 ≤ 4, x ≥ 0}.

� R is the inner half of the circle x2 + y2 = 4 to the right of the

y-axis, and so corresponds to 0 ≤ r ≤ 2 and −π/2 ≤ θ ≤ π/2. Since

x2 + y2 = r2, and dA = r drdθ in polar coordinates,
∫∫

R

√
4− x2 − y2 dA =

∫ π/2

−π/2

∫ 2

0

√
4− r2r drdθ

=

∫ π/2

−π/2

(
−1

3
(4− r2)3/2

) ∣∣∣∣
2

0

dθ =

∫ π/2

−π/2

8

3
dθ

=

(
8

3
θ

) ∣∣∣∣
π/2

−π/2
=

8π

3
�

(2) Find the area inside the curve r = 4 + 3 cos θ.

−2 2 4 6

−4

−2

2

4

Fig. B.14 The region inside r = 4 + 3 cos θ.

� Since this is an area problem, we need to describe the given region

entirely with the limits of integration. A graph of this region is shown

in Fig. B.14. The r variable is described explicitly by the function;

to go all the way around the curve we use 0 ≤ θ ≤ 2π. So, the area
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enclosed is∫∫

D

dA =

∫ 2π

0

∫ 4+3 cos θ

0

r drdθ =

∫ 2π

0

(
1

2
r2
) ∣∣∣∣

4+3 cos θ

0

dθ

=

∫ 2π

0

1

2
(16 + 24 cos θ + 9 cos2 θ) dθ

= (8θ + 12 sin θ)

∣∣∣∣
2π

0

+
9

2

∫ 2π

0

cos2 θ dθ

= 16π + 0 +
9

2

(
1

2
θ +

1

4
sin 2θ

) ∣∣∣∣
2π

0

= 16π +
9π

2
=

41π

2
�

(3) Find the volume inside the sphere x2 + y2 + z2 = 16 and outside the

cylinder x2 + y2 = 4.

� Note that this 3D region involves a solid both above and below the

xy-plane! Figures B.15 and B.16 show the full 3D region as well as

the corresponding polar region in the 2D plane. The bounds in the

xy-plane of this solid are the intersections of the sphere and cylinder

with the xy-plane, i.e. inside the circle x2 + y2 = 16 and outside the

circle x2 + y2 = 4. The easiest thing to do here is to find the volume

under the hemisphere z =
√

16− x2 − y2 =
√

16− r2 and outside the

cylinder, then multiply by two. Thus, in polar coordinates we want

the volume under z =
√

16− r2 over the region in the xy-plane with

bounds of 2 ≤ r ≤ 4 and 0 ≤ θ ≤ 2π:∫∫

D

√
16− r2 dA =

∫ 2π

0

∫ 4

2

√
16− r2 · r drdθ

=

∫ 2π

0

(
−1

3
(16− r2)3/2

) ∣∣∣∣
4

2

dθ =

∫ 2π

0

1

3
123/2 dθ

=
2π

3
(2
√

3)3 =
2π

3
(24
√

3) = 16π
√

3

The entire volume is then 32π
√

3. �

(4) Convert this integral into polar coordinates:

∫ a

−a

∫ √a2−y2

0

(x2 +

y2)3/2 dxdy.

� The limits of integration describe the right half of a circle of radius a

(since y goes from−a to a) — which is the region 0 ≤ r ≤ a and−π/2 ≤
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z

Fig. B.15 Inside x2 +y2 +z2 = 16 and
outside x2 + y2 = 4.

−4 −2 2 4

−4

−2

2

4

r = 2

r = 4

Fig. B.16 Between x2 + y2 = 4 and
x2 + y2 = 16.

θ ≤ π/2. Also, the function converts as (x2 +y2)3/2 = (r2)3/2 = r3 and

the area element dydx becomes r drdθ:

∫ a

−a

∫ √a2−y2

0

(x2 + y2)3/2 dxdy =

∫ π/2

−π/2

∫ a

0

r3 · r drdθ �

(5) Find the area outside r = 2 and inside r = 4 sin θ.

� This region is shown in Fig. B.17. The curves r = 4 sin θ and r = 2

intersect when 4 sin θ = 2, i.e. when sin θ = 1/2, which is at θ =

π/6, 5π/6. The area outside r = 2 and inside r = 4 sin θ is then

∫∫

R

dA =

∫ 5π/6

π/6

∫ 4 sin θ

2

r drdθ =

∫ 5π/6

π/6

(
1

2
r2
) ∣∣4 sin θ

2
dθ

=

∫ 5π/6

π/6

(8 sin2 θ − 2) dθ = ((4θ − 2 sin 2θ)− 2θ)

∣∣∣∣
5π/6

π/6

= (2θ − 2 sin 2θ)

∣∣∣∣
5π/6

π/6

=
5π

3
− 2 sin

5π

3
− π

3
+ 2 sin

π

3

=
5π

3
+ 2

√
3

2
− π

3
+ 2

√
3

2
=

4π

3
+ 2
√

3 �

(6) Find the volume between the paraboloid z = 10 − 3x2 − 3y2 and the

plane z = 4.

� Figures B.18 and B.19 show the full 3D region as well as the corre-

sponding polar region in the 2D plane. The paraboloid intersects the

plane z = 4 where 10 − 3x2 − 3y2 = 4, i.e. where x2 + y2 = 2. So the
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−4 −2 2 4

−4

−2

2

4

θ = π/6
θ = 5π/6

Fig. B.17 The region outside r = 2 and inside r = 4 sin θ.

volume between the paraboloid and the plane is below the paraboloid

(which in polar coordinates is z = 10−3r2) and above the plane z = 4;

the volume sits over the region 0 ≤ r ≤
√

2 and 0 ≤ θ ≤ 2π. So,

∫∫

R

[(10− 3r2)− 4] dA =

∫ 2π

0

∫ √2

0

(6− 3r2) · r drdθ

=

∫ 2π

0

(
3r2 − 3

4
r4
) ∣∣
√
2

0
dθ

=

∫ 2π

0

(3) dθ = 6π �

(7) Convert this integral into polar coordinates:

∫ 2

0

∫ √4−y2

−
√

4−y2
x2y2 dxdy.

� The limits of integration describe the upper half of a circle of radius

2 (since y goes from 0 to 2) — which is the region 0 ≤ r ≤ 2 and

0 ≤ θ ≤ π. Also, recalling that x = r cos θ and y = r sin θ, we have

∫ 2

0

∫ √4−y2

−
√

4−y2
x2y2 dxdy =

∫ π

0

∫ 2

0

(r cos θ)2(r sin θ)2 · r drdθ

=

∫ π

0

∫ 2

0

r5 cos2 θ sin2 θ drdθ �
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z

Fig. B.18 Under the paraboloid z =

10− 3x2 − 3y2, above the plane z = 4.

−1 1

−1

1

r =
√

2

Fig. B.19 Intersection of z = 10 −
3x2 − 3y2 and z = 4.

B.3.2 Cylindrical and Spherical Coords — Practice —

Solved

(1) Locate the point whose cylindrical coordinates are (1, 3π/2, 2) and give

its rectangular coordinates.

Because θ = 3π/2, the radial angle takes us from the positive x-axis,

three-fourths of the way around to the negative y-axis. The cylindrical

coordinates (r, θ, z) = (1, 3π/2, 2) give rectangular coordinates

x = 1 cos

(
3π

2

)
= 0 ; y = 1 sin

(
3π

2

)

and of course, z = 2. So this is the rectangular point (x, y, z) =

(0,−1, 2). �

(2) What are the cylindrical coordinates of the point whose rectangular

coordinates are (3, 3,−2)?

� With rectangular coordinates (3, 3,−2), we have z = −2 immedi-

ately, and then use Eq. (15.1) to give

r =
√
x2 + y2 =

√
32 + 32 = 3

√
2

θ = tan−1
y

x
= tan−1

3

3
= π/4

so this is the cylindrical point (r, θ, z) = (3
√

2, π/4,−2). �
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(3) What surface is described in cylindrical coordinates by the equation

r2 + z2 = 25?

� Since r2 = x2 + y2, the equation can be written in rectangular co-

ordinates as x2 + y2 + z2 = 25; the surface is is a sphere of radius 5

centered at the origin. �

(4) Convert the cylindrical equation r2 − 2z2 = 4 into rectangular coordi-

nates, and identify the kind of surface it is.

� Let’s convert the r2 term using r2 = x2 + y2:

r2 − 2z2 = 4

x2 + y2 − 2z2 = 4

x2

4
+
y2

4
− z2

2
= 1

This is a hyperboloid of one sheet (see Appendix A.2). �

(5) Locate the point whose spherical coordinates are (ρ, θ, φ) = (5, π, π/2)

and give its rectangular coordinates.

� We convert from spherical to rectangular using Eq. (15.4):

x = ρ sinφ cos θ = 5 sin
(π

2

)
cos(π) = 5(1)(−1) = −5

y = ρ sinφ sin θ = 5 sin
(π

2

)
sin(π) = 5(1)(0) = 0

z = ρ cosφ = 5 cos
(π

2

)
= 0

So this is the rectangular point (x, y, z) = (−5, 0, 0). �

(6) What are the spherical coordinates of the point whose rectangular co-

ordinates are (0,
√

3, 1)?

� Rectangular coords (x, y, z) = (0,
√

3, 1) lead to spherical:

ρ =
√
x2 + y2 + z2 =

√
0 + 3 + 1 = 2

cosφ =
z

ρ
=

1

2
→ φ = π/3

cos θ =
x

ρ sinφ
=

0

2 sin(π/3)
= 0→ θ = π/2

So this is the spherical point (2, π/2, π/3). �
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(7) What surface is described by the spherical equation ρ = 3?

� This is a spherical equation describing all points whose ρ coordinate

(distance from the origin) is 3. This, it is a sphere of radius 3 centered

on the origin. �

(8) Convert the equation x2 + y2 + z2 = 2 into spherical coordinates.

� With the direct application of a conversion equation from (15.3),

we get ρ2 = 2, or ρ =
√

2. This is very simple, but it’s here to help

you avoid the common error of saying this is ρ = 2. It’s not. We are

matching the following two equations,

x2 + y2 + z2 = 2

x2 + y2 + z2 = ρ2

Pay close attention to your right hand sides! �

(9) What are the spherical coordinates of the point whose cylindrical co-

ordinates are (r, θ, z) = (
√

6, π/4,
√

2)?

� We don’t have any direct conversion equations from cylindrical to

spherical coordinates, but we can patch some things together. First,

the θ coordinate is the same in both cylindrical and spherical coordi-

nates, so we don’t have to convert that one.

We can put together r2 = x2 + y2 (rectangular to cylindrical) and

ρ2 = x2 + y2 + z2 (rectangular to spherical) to get ρ2 = r2 + z2, and so

ρ2 = r2 + z2 = 6 + 2 = 8 → ρ = 2
√

2

And also, from the spherical-to-rectangular equations, we know that

z = ρ cosφ, or:0

cosφ =
z

ρ
=

√
2

2
√

2
=

1

2
→ φ =

π

3

So in spherical coordinates, the point is (ρ, θ, φ) = (2
√

2, π/4, π/3). �

(10) What are the cylindrical coordinates of the point whose spherical co-

ordinates are (ρ, θ, φ) = (2
√

2, 3π/2, π/2)?

� Remember that θ is the same in spherical and cylindrical coordi-

nates, so we don’t need to convert that coordinate. Also, both θ and φ
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put us right on (rectangular) coordinate axes, so this shouldn’t be too

bad.

Let’s get the rectangular z-coordinate, since that gets used in cylindri-

cal, too. Directly from Eq. (15.4):

z = ρ cosφ = 2
√

2 cos
(π

2

)
→ z = 0

It’s also easy to piece together an equation for ρ:

ρ2 = x2 + y2 + z2 = r2 + z2 = r2 + 0 → ρ = r = 2
√

2

So in cylindrical coordinates, the point is (r, θ, z) = (2
√

2, 3π/2, 0). �

(11) Convert the rectangular equation y2 + z2 = 1 into both cylindrical and

spherical coordinates.

� Since z is already a cylindrical coordinate, we just need to convert

y. From the basic y = r sin θ, we get: r2 sin2 θ + z2 = 1.

In spherical coordinates, we can really just directly substitute from

(15.3):

y2 + z2 = (ρ sin θ sinφ)2 + (ρ cosφ)2

so the equation becomes

ρ2 sin2 θ sin2 φ+ ρ2 cos2 φ = 1

It’s not very exciting either way. �
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B.3.3 Triple Ints in Cyl. & Spher. Coords — Practice —

Solved

(1) Evaluate

∫∫∫

E

x dV , where E is the region bounded by the planes

z = 0 and z = x + y + 5, and the cylinders x2 + y2 = 4 (i.e. r2 = 4)

and x2 + y2 = 9.

� Call me crazy, but the presence of two cylinders makes me think that

it’ll be best to use cylindrical coordinates. The planes z = 0 and z =

x+y+5 form the bottom and top of the region. We designed the bounds

on this region, which is shown in Fig. B.20, back in Practice Problem

9a of Sec. 15.2. The plane z = x+y+5 becomes z = r cos θ+r sin θ+5,

and doesn’t get any better — but remember, we’re trading some minor

inconveniences like that for a lot more conveniences in other limits of

integration. The cylinders x2 + y2 = 4 (i.e. r2 = 4) and x2 + y2 = 9

(i.e. r2 = 9) are nested cylinders, and form the sides of this region.

This region used in the xy-plane between the cylinders is inside two

concentric circles (an annulus / washer shape). Thus, we have

0 ≤ z ≤ r cos θ + r sin θ + 5 ; 2 ≤ r ≤ 3 ; 0 ≤ θ ≤ 2π

and the integral is (with the volume element dV = rdzdrdθ in cylin-

drical coordinates):

∫∫∫

E

xdV =

∫ 2π

0

∫ 3

2

∫ r cos θ+r sin θ+5

0

(r cos θ)rdzdrdθ =
65π

4
�

(2) Evaluate

∫∫∫

E

e
√
x2+y2+z2 dV , where E is the region inside the sphere

x2 + y2 + z2 = 9 in the first octant.

� The sphere x2+y2+z2 = 9 is known as ρ = 3 in spherical coordinates.

Since we’re in the first octant, we restrict θ to 0 ≤ θ ≤ π/2 and φ to

0 ≤ φ ≤ π/2. The volume element in spherical coordinates is dV =

ρ2 sinφdρdφdθ. So,

∫∫∫

E

e
√
x2+y2+z2 dV =

∫ π/2

0

∫ π/2

0

∫ 3

0

eρρ2 sinφdρdφdθ

=
π

2
(5e3 − 2) �
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(3) Evaluate the following integral by first converting it to the most appro-

priate coordinate system:

∫ 1

0

∫ √1−y2

0

∫ √x2+y2

x2+y2
(xyz) dzdxdy

� From the given limits of integration on x and y, we can recognize

that in the xy-plane, our region of integration is the portion of the

unit circle in the first quadrant. From the limits on z, we go from the

paraboloid z = x2 + y2 to the upper part of the cone z =
√
x2 + y2

(a.k.a. z2 = x2 + y2). This region is shown in Fig. B.21.

Although a cone often suggests spherical coordinates, the equation of

a paraboloid does not convert nicely into spherical coordinates. So

we’ll try cylindrical. In cylindrical coordinates, this solid is bounded

by z = r2 (paraboloid), z = r (cone), 0 ≤ r ≤ 1, and 0 ≤ θ ≤ π/2 (to

stay in the first quadrant). Remember that for cylindrical coordinates,

the volume element is dV = r dzdrdθ. Therefore, we have

∫ 1

0

∫ √1−y2

0

∫ √x2+y2

x2+y2
(xyz) dzdxdy

=

∫ π/2

0

∫ 1

0

∫ r

r2
(r cos θ)(r sin θ)(z) r dzdrdθ

=

∫ π/2

0

∫ 1

0

∫ r

r2
r3z cos θ sin θ dzdrdθ

=
1

96
�

(4) The region above the cone z2 = x2 +y2 and below the sphere x2 +y2 +

z2 = 5 is shaped like an ice cream cone. What is the volume of this

region?

� Recall that to find the volume of any 3D region E, we solve the triple

integral
∫∫∫

E
(1)dV . With both a sphere and a cone involved, we should

use spherical coordinates. We designed a region very much like this in

EX 5c of Sec. 15.2, although with a sphere of radius 1. But updating

for the larger sphere of radius
√

5 is simple. The cone z2 = x2 + y2 is

the perfect-diagonal cone with equation φ = π/4. The sphere is also

known as ρ =
√

5. The region is shown in Fig. B.22, and the variables
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Fig. B.20 x2 + y2 = 9 between z = 0,
z = x+ y + 5.

1

1

1

x

y

z

Fig. B.21 Above z = r2, below z = r,
in the first octant.

are bound as follows:

0 ≤ ρ ≤
√

5 ; 0 ≤ φ ≤ π

4
; 0 ≤ θ ≤ 2π

Since the volume element in spherical coordinates is dV =

ρ2 sinφdρdφdθ, we get:
∫∫∫

E

(1) dV =

∫ 2π

0

∫ π/4

0

∫ √5

0

(1)ρ2 sinφdρdφdθ

=
π

3

(
10
√

5− 5
√

10
)

�

(5) Find the volume of the region common to (inside) both the cylinder

x2 + y2 = 1 and the sphere x2 + y2 + z2 = 4.

� Recall that to find the volume of any 3D region E, we solve the triple

integral
∫∫∫

E
(1)dV . The given region E of integration is inside both

the cylinder x2 + y2 = 1 (i.e. r2 = 1) and the sphere x2 + y2 + z2 = 4

(i.e. r2 + z2 = 4). The sphere encloses the cylinder, and so the bounds

of this region are the upper and lower portions of the sphere within

the cylinder. Figure B.23 shows this region which looks like a tennis

ball can with rounded top and bottom; the spherical caps are from the

sphere. Thus, we have

−
√

4− r2 ≤ z ≤
√

4− r2 ; 0 ≤ r ≤ 1 ; 0 ≤ θ ≤ 2π

and the volume is (with the volume element dV = r dzdrdθ in cylindri-

cal coordinates):

V =

∫∫∫

E

(1)dV =

∫ 2π

0

∫ 1

0

∫ √4−r2

−
√
4−r2

rdzdrdθ =
32π

3
− 4π

√
3 �
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3 4 5
5

3

4

5

x
y

z

Fig. B.22 Above z2 = x2 + y2, inside

ρ = 5.

1 2
1 2

1

2

x
y

z

Fig. B.23 Volume common to both

x2 + y2 = 1 and ρ = 2.

(6) Evaluate

∫∫∫

E

xyz dV , where E is the region between between the

spheres ρ = 2 and ρ = 4 and above the cone φ = π/3.

� The given region E of integration is between the spheres ρ = 2

and ρ = 4 and above the cone φ = π/3. Bounds on ρ are given by

the spheres. The region above the cone is 0 ≤ φ ≤ π/3 (remember,

φ is measured from the top down). And, since there are no other

restrictions, 0 ≤ θ ≤ 2π. Also, converting the given function,

xyz = (ρ sinφ cos θ)(ρ sinφ sin θ)(ρ cosφ) = ρ3 sin2 φ cosφ sin θ cos θ

The volume element in spherical coordinates is dV = ρ2 sinφdρdφdθ.

So, the triple integral becomes,

∫ 2π

0

∫ π/3

0

∫ 4

2

(ρ3 sin2 φ cosφ sin θ cos θ) ρ2 sinφdρdφdθ = 0

Note that 0 is a perfectly valid result, since this integral does NOT

compute a volume! �
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(7) Evaluate the following integral by first converting it to an appropriate

coordinate system:

∫ 3

0

∫ √9−y2

0

∫ √18−x2−y2

√
x2+y2

(x2 + y2 + z2) dzdxdy

� From the given limits of integration on x and y, we can recognize

that in the xy-plane, our region of integration is the portion of a circle

of radius 3 in the first quadrant. From the limits on z, we go from

z =
√
x2 + y2 to z =

√
18− x2 − y2, that is from the cone z2 = x2+y2

to the sphere x2 + y2 + z2 = 18. Since bounds of our region are a

sphere and a cone, spherical coordinates are most logical. So, we’re

under the top half of the sphere ρ =
√

18 = 3
√

2 and above a cone;

this cone is the simple 45-degree wide cone, so it goes from φ = 0

to φ = π/4. And, we’re over the first quadrant in the xy-plane, so

0 ≤ θ ≤ π/2. Remember that for spherical coordinates, the volume

element is dV = ρ2 sinφdρdφdθ.

∫ 3

0

∫ √9−y2

0

∫ √18−x2−y2

√
x2+y2

(x2 + y2 + z2) dzdxdy

=

∫ π/2

0

∫ π/4

0

∫ 3
√
2

0

(ρ2)ρ2 sinφdρdφdθ

=

∫ π/2

0

∫ π/4

0

∫ 3
√
2

0

ρ4 sinφdρdφdθ

=
486π

5
(
√

2− 1)
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B.4 Chapter 16: Practice Problem Solutions

B.4.1 Vector Basics — Practice — Solved

(1) If a = 2i− 3j and b = i + 5j, what are |a|, a + b, a− b, 2a, 3a + 4b?

� |a| =
√

4 + 9 =
√

13

a + b = 3i + 2j

a− b = i− 8j

2a = 4i− 6j

3a + 4b = (6 + 4)i + (−9 + 20)j = 10i + 11j �

(2) Find a unit vector in the same direction as 8i− j + 4k.

� The length of 8i − j + 4k is
√

64 + 1 + 16 = 9, so a unit vector in

the same direction is

8

9
i− 1

9
j +

4

9
k �

(3) Find a vector of length 6 in the same direction as v = 〈−2, 4, 2〉.

� The vector v = 〈−2, 4, 2〉 has length |v| =
√

4 + 16 + 4 = 2
√

6, so a

unit vector in the same direction is

v

|v| =

〈
− 2

2
√

6
,

4

2
√

6
,

2

2
√

6

〉
=

〈
− 1√

6
,

2√
6
,

1√
6

〉

and therefore a vector in the same direction having length 6 is

6
v

|v| =

〈
− 6√

6
,

6 · 2√
6
,

6√
6

〉
= 〈−

√
6, 2
√

6,
√

6〉 �

(4) If v = 〈v1, v2〉 and c > 0, prove that |cv| = c|v|, i.e. prove that the

length of the vector cv is c times the length of v. (You can use specific

examples to test out the process, but in the end, you should prove the

general rule for any vector v = 〈v1, v2〉.)

� Since cv = 〈cv1, cv2〉, its length is

|cv| =
√

(cv1)2 + (cv2)2 =
√
c2(v21 + v22) = c

√
v21 + v22

But the square root on the right is known as
√
v21 + v22 = |v|, and so

|cv| = c|v|. �
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(5) If v = 〈v1, v2〉, prove that

∣∣∣∣
v

|v|

∣∣∣∣ = 1. (You can use specific examples to

test out the process, but in the end, you should prove the general rule

for any vector v = 〈v1, v2〉.)

� Since |v| =
√
v21 + v22 , then

v

|v| =
1

|v|v =
1√

v21 + v22
〈v1, v2〉 =

〈
v1√
v21 + v22

,
v1√
v21 + v22

〉

and so

∣∣∣∣
v

|v|

∣∣∣∣ =

√√√√
(

v1√
v21 + v22

)2

+

(
v2√
v21 + v22

)2

=

√
v21

v21 + v22
+

v2
v21 + v22

=

√
v21 + v22
v21 + v22

= 1 �

B.4.2 Dot and Cross Products — Practice — Solved

(1) What is the angle between a = 〈6,−3, 2〉 and b = 〈2, 1,−2〉?

� We have a · b = 5, |a| = 7 and |b| = 3 so that

a · b = |a||b| cos θ

5 = (7)(3) cos θ

cos θ =
5

21
⇒ θ ≈ 76◦ �

(2) Are the vectors a = 〈−1, 2, 5〉 and b = 〈3, 4,−1〉 parallel, perpendicu-

lar, or neither?

� We have a · b = 0, so that the vectors are perpendicular. �

(3) Are the vectors a = 〈2, 6,−4〉 and b = 〈−3,−9, 6〉 parallel, perpendic-

ular, or neither?

� We have a · b = −84, |a| =
√

56 = 2
√

14, and |b| =
√

126 = 3
√

14.
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So,

a · b = |a||b| cos θ

−84 = (2
√

14(3
√

14) cos θ

cos θ = − 84

6(14)
= −1 → θ = π

Since the angle between them is π, the vectors are parallel (although

pointing in the opposite direction). �

(4) If v = 〈−1,−2, 2〉 and w = 〈3, 3, 4〉, what are compvw and projvw?

� We want the component and projection of w along v. We need

v ·w = −1 and |v| = 3 so that

compvw =
v ·w
|v| =

−1

3

which gets used in:

projvw = compvw

(
v

|v|

)
=

(−1

3

)(
1

3

)
〈−1,−2, 2〉

=
−1

9
〈−1,−2, 2〉 =

〈
1

9
,

2

9
,−2

9

〉
�

(5) If a = 〈1,−1, 1〉 and b = 〈1, 1, 1〉, demonstrate that a×b is perpendic-

ular to both a and b.

� We have

c = a× b =

∣∣∣∣∣∣

i j k

1 −1 1

1 1 1

∣∣∣∣∣∣
=

∣∣∣∣
−1 1

1 1

∣∣∣∣ i−
∣∣∣∣
1 1

1 1

∣∣∣∣ j +

∣∣∣∣
1 −1

1 1

∣∣∣∣ k

= (−1− 1)i− (1− 1)j + (1− (−1))k = −2i + 2k

And then we have

c · a = (−2)(1) + (0)(−1) + (2)(1) = 0

c · b = (−2)(1) + (0)(1) + (2)(1) = 0

so that a× b is orthogonal to both a and b. �

(6) Which of the following are legitimate expressions? (a) a · (b · c), (b)

a× (b · c), and (c) (a× b) · (c× d).

� (a) is not valid, the cross product of a vector a and a scalar b · c is

not defined.
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(b) is not valid, the cross product of a vector a and a scalar b · c is not

defined.

(c) is fine, a × b and c × d are both vectors, so their dot product is

defined. �

(7) If a = 〈2,−3, 1〉 and b = 〈1, 6,−2〉, what are compab and projab?

� We have a · b = −18 and |a| =
√

14 so that

compab =
a · b
|a| =

−18√
14

and with that,

projab =

(
a · b
|a|

)(
a

|a|

)
=

(−18√
14

)(
1√
14

)
〈2,−3, 1〉

=
−9

7
〈2,−3, 1〉 =

〈
−18

7
,

27

7
,−9

7

〉
= −18

7
i +

27

7
j− 9

7
k �

(8) Find a unit vector orthogonal to both i + j and i + k.

� Let’s find just any vector orthogonal to both, then scale it to a unit

vector. A vector orthogonal to both of these vectors will come from

their cross product. We can find that 〈1, 1, 0〉 × 〈1, 0, 1〉 = 〈1,−1,−1〉;
the length of this vector is

√
3. Therefore a unit vector orthogonal to

the two given vectors is
〈

1√
3
,− 1√

3
,− 1√

3

〉
�

(9) We know that the dot product of a vector with itself is related to the

length of the vector. What is special about the cross product of a vector

with itself? Test this out for the general case v = 〈v1, v2, v3〉 and show

all the details to support your conclusion.

� We have

v × v =

∣∣∣∣∣∣

i j k

v1 v2 v3
v1 v2 v3

∣∣∣∣∣∣
=

∣∣∣∣
v2 v3
v2 v3

∣∣∣∣ i−
∣∣∣∣
v1 v3
v1 v3

∣∣∣∣ j +

∣∣∣∣
v1 v1
v2 v2

∣∣∣∣ k

= (v2v3 − v2v3) i− (v1v3 − v1v3) j + (v1v2 − v1v2) k

= 0i + 0j + 0k

The cross product of a vector with itself always gives the zero vector

0! �
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B.4.3 Vector Functions — Practice — Solved

(1) Find the vector and parametric equations of the line segment joining

the points P (1, 0, 1) and Q(2, 3, 1).

� This vector function has initial vector r0 = 〈1, 0, 1〉 and parallel

vector r1 = PQ = 〈1, 3, 0〉 so that its equation is

r0 + tr1 = 〈1, 0, 1〉+ t 〈1, 3, 0〉 = 〈1 + t, 3t, 1〉

To restrict this to the line segment that starts at P and ends at Q, we

need 0 ≤ t ≤ 1. We can then write the equation of this line segment as

the vector function

r(t) = 〈1 + t, 3t, 1〉 for 0 ≤ t ≤ 1

or using the parametric equations

x = 1 + t ; y = 3t ; z = 1 for 0 ≤ t ≤ 1 �

(2) Evaluate lim
t→1

(√
t+ 3 i +

t− 1

t2 − 1
j +

tan t

t
k

)
.

� Notice that the middle component simplifies to 1/(t+ 1), so that

lim
t→1

(√
t+ 3 i +

t− 1

t2 − 1
j +

tan t

t
k

)

= lim
t→1

(√
t+ 3 i +

1

t+ 1
j +

tan t

t
k

)

= 2 i +
1

2
j + tan(1) k �

(3) If r(t) = (at cos 3t) i + (b sin3 t) j + (c cos3 t) k, what is r ′(t)?

� By direct evaluation (with a product rule and a couple of chain

rules),

r ′(t) = (a cos 3t− 3at sin 3t)i + (3b sin2 t cos t)j− (3c cos2 t sin t)k �

(4) Identify the curve given by r(t) = et i + e−t j and find a vector tangent

to the curve at t = 0.

� By eliminating t from x(t) = et, y(t) = e−t, we find that this is the

hyperbola y = 1/x. Since r ′(t) = eti − e−tj, then a vector tangent to

the curve at t = 0 is r ′(0) = i− j. �
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(5) Find the vector equation of the line tangent to r(t) = 〈t2−1, t2+1, t+1〉
at 〈−1, 1, 1〉.

� Note that the vector 〈−1, 1, 1〉 is given by t = 0. We need:

r ′(t) = 〈2t, 2t, 1〉
r ′(0) = 〈0, 0, 1〉

So we have an initial vector r0 = 〈−1, 1, 1〉 and a parallel vector r ′(0),

so the vector equation of the tangent line is

r0 + tr ′(0) = 〈−1, 1, 1〉+ t 〈0, 0, 1〉 = 〈−1, 1, 1 + t〉 �

(6) Find the vector equation of the line tangent to r(t) = 〈ln t, 2
√
t, t2〉 at

〈0, 2, 1〉.

� Note that 〈0, 2, 1〉 is given by t = 1. We need:

r ′(t) =

〈
1

t
,

1√
t
, 2t

〉

r ′(1) = 〈1, 1, 2〉

So we have an initial vector r0 = 〈0, 2, 1〉 and a parallel vector r ′(1),

and so the vector equation of the line is

r(t) = r0 + t r ′(1) = 〈0, 2, 1〉+ t 〈1, 1, 2〉 = 〈t, 2 + t, 1 + 2t〉 �

(7) Based on Useful Fact 16.10, you may be suspicious that there could be

an expression like this, under the right circumstances:

d

dt
p(t)× r(t) = p ′(t)× r(t) + p(t)× r ′(t)

Test this relation on the vector functions p(t) = 〈1, t, t2〉 and r(t) =

〈t2, t, 1〉 by constructing both sides separately and comparing the re-

sults.

� Let’s work on the left side first. Since

p(t)× r(t) = 〈t− t3, t4 − 1, t− t3〉
(details omitted, you can do it!), we have

d

dt
p(t)× r(t) = 〈1− 3t2, 4t3, 1− 3t2〉
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To build the right side, we build p ′(t) = 〈0, 1, 2t〉 and r ′(t) = 〈2t, 1, 0〉,
so that

p ′(t)× r(t) = 〈0, 1, 2t〉 × 〈t2, t, 1〉 = 〈1− 2t2, 2t3,−t2〉
p(t)× r ′(t) = 〈1, t, t2〉 × 〈2t, 1, 0〉 = 〈−t2, 2t3, 1− 2t2〉

and

p ′(()t)× r(t) + p(t)× r ′(t) = 〈1− 2t2, 2t3,−t2〉+ 〈−t2, 2t3, 1− 2t2〉
= 〈1− 3t2, 4t3, 1− 3t2〉

By direct computation of each, we’ve confirmed that — at least in this

case —

d

dt
p(t)× r(t) = p ′(t)× r(t) + p(t)× r ′(t)

This is by no means definitive proof that this relation is always true,

but we’ve also failed to disprove it. �

(8) Evaluate

∫ 1

0

(
4

1 + t2
j +

2t

1 + t2
k

)
dt.

� It doesn’t really matter to the evaluation of the integral, but this

vector function exists only in the yz-plane. The integral is:

∫ 1

0

(
4

1 + t2
j +

2t

1 + t2
k

)
dt =

(
4 tan−1(t) j + ln(1 + t2) k

) ∣∣∣∣
1

0

= 4 tan−1(1) j + ln(2) k = π j + ln(2) k �

(9) Write the integral that gives the arc length of the vector function from

Practice Problem 5 from the point (0, 2, 2) to the point (15, 17, 5).

� The vector function in question is r(t) = 〈t2 − 1, t2 + 1, t+ 1〉. Note

that the points (0, 2, 2) and (15, 17, 5) correspond to t = 1 and t = 4,

respectively. The integrand of the arc length integral will come from

components of r ′(t) = 〈2t, 2t, 1〉 as follows:

√
(2t)2 + (2t)2 + (1)2 =

√
4t2 + 4t2 + 1 =

√
8t2 + 1

and the arc length integral is

L =

∫ 4

1

√
8t2 + 1 dt �
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B.4.4 Vector Fields and the Gradient — Practice — Solved

(1) Find the curl and divergence of F(x, y, z) = 〈0, cos(xz),− sin(xy)〉. Is

this vector field irrotational or incompressible?

� The curl is:

∇× F =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

0 cos(xz) − sin(xy)

∣∣∣∣∣∣

= 〈−x cos(xy) + x sin(xz), y cos(xy),−z sin(xz)〉
The divergence is

∇ · F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· F

=
∂

∂x
(0) +

∂

∂y
(cos(xz)) +

∂

∂z
(− sin(xy)) = 0

Since ∇ × F 6= 0, the vector field is not irrotational. But ∇ × F = 0,

so it is incompressible. �

(2) Is this vector field irrotational or incompressible?

F(x, y, z) =

〈
x

x2 + y2 + z2
,

y

x2 + y2 + z2
,

z

x2 + y2 + z2

〉

� The curl is:

∇× F =

∣∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

x
x2+y2+z2

y
x2+y2+z2

z
x2+y2+z2

∣∣∣∣∣∣∣
= 〈0, 0, 0〉

Since the curl is 0, the vector field is irrotational. The divergence is

∇ · F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· F

=
∂

∂x

x

x2 + y2 + z2
+

∂

∂y

y

x2 + y2 + z2
+

∂

∂z

z

x2 + y2 + z2

=
y2 + z2 − x2

(x2 + y2 + z2)2
+

x2 + z2 − y2
(x2 + y2 + z2)2

+
x2 + y2 − z2

(x2 + y2 + z2)2

=
x2 + y2 + z2

(x2 + y2 + z2)2
=

1

x2 + y2 + z2

The vector field is not incompressible. �
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(3) Find the gradient of f(x, y) = y lnx, and determine |∇f(1,−3)|.
� First, let’s just get the gradient,

∇f(x, y) = 〈fx, fy〉 = 〈y/x, lnx〉

Now note that |∇f(1,−3)| is asking for the magnitude of the gradient

at (1,−3). So,

∇f(1,−3) = 〈−3, 0〉
|∇f(1,−3)| =

√
(−3)2 + 02 = 3 �

(4) Assuming s and t are still rectangular coordinates, find the gradient of

g(s, t) = e−s sin t.

� The lettering doesn’t matter; if we’re in rectangular coordinates, the

gradient will be the vector field composed of the first derivatives with

respect to the two variables:

∇g(s, t) = 〈gs, gt〉 = 〈−e−s sin t, e−s cos t〉 �

(5) Let f be a scalar function and F a vector field. Describe why each

operation is defined or undefined: (a) ∇× (∇×F); (b) ∇ · (∇ ·F); (c)

∇f ×∇ · F; (d) ∇ · (∇× (∇f)).

� (a) ∇× (∇×F) is OK since ∇×F is a vector function and we find

the curl of vector functions.

(b) ∇ · (∇ ·F) is undefined since ∇ ·F is a scalar function and we find

the divergence of vector functions.

(c) ∇f ×∇ ·F is undefined since ∇ ·F is a scalar function and we find

the cross product of two vector functions.

(d) ∇ · (∇ × (∇f)) is OK since each operation produces the type of

expression needed by the next one (∇f is a vector function, etc.) �

(6) Use the partial derivatives found in PP 9 of Sec. 13.5 to construct

gradient vectors for the function z = 3x2 − 2y2 at the points (1, 0),

(1, 1), and (0, 1). Create a new version of Fig. B.3 and draw unit vectors

in the direction of each gradient vector at the three given points. (The

gradient vectors themselves will be too large to fit in the figure.) Do you

notice anything interesting about the relationship between the gradient

vectors (scaled to unit vectors) and the level curves they start on?
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Fig. B.24 Gradients at level curves of z = 3x2 − 2y2 (w/ PP 6).

� Since zx(1, 0) = 6 and zy(1, 0) = 0, then ∇(1, 0) = 〈6, 0〉. A unit

vector in this direction is 〈1, 0〉.
Since zx(1, 1) = 6 and zy(1, 1) = −4, then ∇(1, 1) = 〈6,−4〉. A unit

vector in this direction is 〈6/
√

52,−4/
√

52〉.

Since zx(0, 1) = 0 and zy(0, 1) = −4, then ∇(0, 1) = 〈0,−4〉. A unit

vector in this direction is 〈0,−1〉.

These three unit vectors showing the direction of the gradient vectors

are displayed in Fig. B.24; it looks like each gradient vector is perpen-

dicular to the level curve at which it originates! �
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B.4.5 Planes and Tangent Planes — Practice — Solved

(1) Find the equation of the plane containing the point (4, 0, 3) and with

normal vector 〈0, 1, 2〉.

� We have all the information we need: a point (x0, y0, z0) = (4, 0, 3)

and a normal vector n = 〈a, b, c〉 = 〈0, 1, 2〉 so using the standard form

of a plane,

a(x− x0) + b(y − y0) + c(z − z0) = 0

0(x− 4) + 1(y − 0) + 2(z − 3) = 0

y + 2z = 6 �

(2) Find the equation of the plane containing the points P (0, 0, 0),

Q(2,−4, 6) and R(5, 1, 3).

� We have our choice of three points on the plane, but we still need a

vector perpendicular to this plane. But PQ×PR is such a vector:

PQ = 〈2,−4, 6〉
PR = 〈5, 1, 3〉

PQ×PR = 〈−18, 24, 22〉

So the equation of the plane is (using P as the point),

−18(x− 0) + (24)(y − 0) + (22)(z − 0) = 0

−18x+ 24y + 22z = 0

−9x+ 12y + 11z = 0 �

(3) Are the planes 2z = 4y−x and 3x−12y+6z = 1 parallel, perpendicular,

or neither?

� From the equation of the plane 2z = 4y − x, we know its perpen-

dicular vector is n1 = 〈−1, 4,−2〉. From the equation of the plane

3x−12y+6z = 1, we know its perpendicular vector is n2 = 〈3,−12, 6〉.
Since n2 = −3n1, these vectors, and so also the planes, are parallel. �

(4) Find the equation of the plane tangent to z = y lnx at (1, 4, 0).

� We need:

fx =
y

x
→ fx(1, 4) = 4

fy = lnx → fy(1, 4) = 0
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so the plane is:

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

z − 0 = 4(x− 1) + 0(y − 4)

−4x+ z = −4 �

(5) If z = 5x2 + y2 and (x, y) changes from (1, 2) to (1.05, 2.1), then what

is the resulting dz?

� We have dx = 0.05 and dy = 0.1, so

dz = fx(x, y)dx+ fy(x, y)dy = 10x dx+ 2y dy

= 10(1)(0.05) + 2(2)(0.1) = 0.9 �

(6) Find the equation of the plane containing the point (−2, 8, 10) and

perpendicular to the line x = 1 + t, y = 2t, z = 4− 3t.

� From the equation of the line, a vector parallel to that line is

〈1, 2,−3〉. If the plane is perpendicular to the line, it is perpendic-

ular to this vector, so we can use it as the plane’s perpendicular vector:

1(x+ 2) + 2(y − 8) + (−3)(z − 10) = 0

x+ 2y − 3z = −16 �

(7) Find the equation of the plane tangent to z = ex
2−y2 where (x, y) =

(1,−1).

� We need:

z0 = f(x0, y0) = e0 = 1

fx = 2xex
2−y2 → fx(1,−1) = 2e1−1 = 2

fy = −2yex
2−y2 → fy(1,−1) = 2e1−1 = 2

so the plane is:

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

z − 1 = 2(x− 1) + 2(y + 1)

2x+ 2y − z = −1 �

(8) The length and width of a rectangle are measured as 30cm and 24cm

respectively. There is a possible error in measurement of 0.1cm in each

direction. Estimate the maximum possible error in the calculated area

of the rectangle. (Hint: This is a total differential problem.)



Solutions to All Practice Problems 483

� Since A = LW , we have AL = W and AW = L. We are given

L = 30 and W = 24, with dW = dL = 0.1. Therefore the total possible

error in A is dA, given by

dA = AL(L,W )dL+AW (L,W )dW = (W ) dL+ (L) dW

= 24(0.1) + (30)(0.1) = 5.4

There is a possible error of 5.4 cm2 in the total area measured. �

B.4.6 Directional Derivatives — Practice — Solved

(1) Find the directional derivative of f(x, y) = y lnx at (1,-3) in the direc-

tion of u = 〈−4/5, 3/5〉.
� The direction vector u is already a unit vector, so

∇f(x, y) = 〈fx, fy〉 = 〈y/x, lnx〉
∇f(1,−3) = 〈−3, 0〉

Duf(1,−3) = ∇f(1,−3) · u = 〈−3, 0〉 ·
〈
−4

5
,

3

5

〉
=

12

5
�

(2) Find the directional derivative of g(x, y) = e−x sin y at (0, π/3) in the

direction of v = 〈3,−2〉.
� The given direction vector is not a unit vector, so we need a unit

vector u in the direction of v; then, we can proceed as usual:

u =
v

|v| =

〈
3√
13
,− 2√

13

〉

∇g(x, y) = 〈gx, gy〉 = 〈−e−x sin y, e−x cos y〉

∇g
(

0,
π

3

)
=

〈
−
√

3

2
,

1

2

〉

Dug(0, π/3) = ∇g(0, π, 3) · u =

〈
−
√

3

2
,

1

2

〉
·
〈

3√
13
,− 2√

13

〉

=
−3
√

3− 2

2
√

13
�

(3) Find the the directional derivative of f(x, y) = x2y3−y4 at (2,1) in the

direction given by θ = π/4.
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� We need a unit vector in the given direction; this is

u =
〈

cos
π

4
, sin

π

4

〉
= 〈 1√

2
,

1√
2
〉

So, with fx = 2xy3 and fy = 3x2y2 − 4y3, we have

∇f(x, y) = 〈2xy3, 3x2y2 − 4y3〉
∇f(2, 1) = 〈4, 8〉

Duf(2, 1) = ∇f(2, 1) · u = 〈4, 8〉 ·
〈

1√
2
,

1√
2

〉
= 6
√

2 �

(4) Find the maximum rate of change of f(p, q) = qe−p + pe−q at (0,0),

and the direction in which this rate of change occurs. (Assume p, q are

renamed rectangular coordinates.)

� We have

∇f(p, q) = 〈fp, fq〉 = 〈−qe−p + e−q, e−p − pe−q〉
∇f(0, 0) = 〈1, 1〉
|∇f(0, 0)| =

√
2

So, the maximum rate of change of f at (0,0) is then |∇f(0, 0)| =√
2 and this maximum rate occurs in the direction of the gradient,

〈1, 1〉. �

(5) Find the directional derivative of f(x, y, z) =
√
x+ yz at (1,3,1) in the

direction of u = 〈2/7, 3/7, 6/7〉.
� The direction vector u is already a unit vector, so

∇f(x, y, z) = 〈fx, fy, fz〉 =

〈
1

2
√
x+ yz

,
z

2
√
x+ yz

,
y

2
√
x+ yz

〉

∇f(1, 3, 1) =

〈
1

4
,

1

4
,

3

4

〉

Duf(1, 3, 1) = ∇f(1, 3, 1) · u =

〈
1

4
,

1

4
,

3

4

〉
·
〈

2

7
,

3

7
,

6

7

〉
=

23

28
�

(6) Find the directional derivative of f(x, y, z) =
x

y + z
at (4,1,1) in the

direction of v = 〈1, 2, 3〉.
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� We need a unit vector u in the direction of v:

u =
v

|v| =

〈
1√
14
,

2√
14
,

3√
14

〉

∇f(x, y, z) = 〈fx, fy, fz〉 =

〈
1

y + z
,
−x

(y + z)2
,
−x

(y + z)2

〉

∇f(4, 1, 1) =

〈
1

2
,−1,−1

〉

Duf(4, 1, 1) = ∇f(4, 1, 1) · u =

〈
1

2
,−1,−1

〉
·
〈

1√
14
,

2√
14
,

3√
14

〉

= − 9

2
√

14
�

(7) Given the 3D temperature function T (x, y, z) = 20e−x
2−y2−2z2 , what is

the maximum rate of change of the temperature at the point (2,−1, 2),

and in what direction does this rate of change occur?

� We’re going to need the gradient of T at (2,−1, 2),

Tx = −40xe−x
2−y2−2z2

Ty = −40ye−x
2−y2−2z2

Tz = −80ze−x
2−y2−2z2

∇T (x, y, z) = 〈Tx, Ty, Tz〉
= 40e−x

2−y2−2z2〈−x,−y,−2z〉
∇T (2,−1, 2) = 40e−13〈−2, 1,−4〉

The temperature increases the fastest in the direction of the gradient,

so at the point P (2,−1, 2) the temperature increases fastest in the di-

rection of ∇T (2,−1, 2), which is in the direction of (removing the icky

constant in front since all we need is direction) 〈−2, 1,−4〉.

The maximum rate of increase at P (2,−1, 2) is the magnitude of the

gradient there, which is 40e−13
√

21. �
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B.5 Chapter 17: Practice Problem Solutions

B.5.1 Arc Length Parameterization — Practice — Solved

(1) Find the arc length of r(t) = 〈
√

2t, et, e−t〉 for 0 ≤ t ≤ 1. (Hint: When

you create |r ′(t)| =
√
g(t), the function g(t) will be a perfect square!

Really!)

� First, build:

r ′(t) = 〈
√

2, et,−e−t〉
|r ′(t)| =

√
2 + e2t + e−2t =

√
(et + e−t)2 = et + e−t

So that

L =

∫ 1

0

|r ′(t)| dt =

∫ 1

0

(et + e−t) dt = e− 1

e
�

(2) Find the arc length of r(t) = 〈t2, 2t, ln t〉 for 1 ≤ t ≤ e. (Hint: When

you create |r ′(t)| =
√
g(t), the function g(t) will be a perfect square!

Really!)

� First, build:

r ′(t) =

〈
2t, 2,

1

t

〉

|r ′(t)| =
√

4t2 + 4 +
1

t2
=

√(
2t+

1

t

)2

= 2t+
1

t

So that

L =

∫ e

1

|r ′(t)| dt =

∫ e

1

(
2t+

1

t

)
dt =

(
t2 + ln t

) ∣∣∣∣
e

1

= e2 �

(3) Find an arc length parameterization of the vector function in You Try It

1. for t ≥ 0, and determine the location at which the curve accumulates

a total arc length of s = 2.

� Picking up You Try It 1, the arc length of r(t) = 〈t2/2, t3/3〉 at any

t is

s =

∫ t

0

|r ′(τ)| dτ =

∫ t

0

τ
√

1 + τ2 dτ

=
1

3
(1 + τ2)3/2

∣∣∣∣
t

0

=
1

3

[
(1 + t2)3/2 − 1

]
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Then we turn this inside out to find t in terms of s:

s =
1

3

[
(1 + t2)3/2 − 1

]

3s+ 1 = (1 + t2)3/2

(3s+ 1)2/3 = 1 + t2√
(3s+ 1)2/3 − 1 = t

Substituting this into the original form of the vector function, we get:

r(s) =

〈
1

2
(
√

(3s+ 1)2/3 − 1)2,
1

3
(
√

(3s+ 1)2/3 − 1)3
〉

=

〈
1

2
((3s+ 1)2/3 − 1),

1

3
((3s+ 1)2/3 − 1)3/2

〉

This is the arc length parameterized version of the vector function. To

now find where we accumulate an arc length of 2, we look for r(2),

which is:

r(2) =

〈
1

2
((3(2) + 1)2/3 − 1),

1

3
((3(2) + 1)2/3 − 1)3/2

〉

=

〈
1

2
(72/3 − 1),

1

3
(72/3 − 1)3/2

〉
�

(4) Revisit the vector function from You Try It 1 and Practice Problem 3,

and confirm that |r ′(s)| = 1.

� The arc length parameterized version of this vector function is

r(s) = 〈1
2

((3s+ 1)2/3 − 1),
1

3
((3s+ 1)2/3 − 1)3/2〉

from which we get (with simplification behind the scenes),

r ′(s) =

〈
(3s+ 1)−1/3, (3s+ 1)−1/3

√
(3s+ 1)2/3 − 1

〉

Then,

|r ′(s)|2 =
(

(3s+ 1)−1/3
)2

+

(
(3s+ 1)−1/3

√
(3s+ 1)2/3 − 1

)2

= (3s+ 1)−2/3 + (3s+ 1)−2/3
(

(3s+ 1)2/3 − 1
)

= (3s+ 1)−2/3 + 1− (3s+ 1)−2/3

= 1

and since |r ′(s)|2 = 1, we have |r ′(s)| = 1. �
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B.5.2 Contours, Orientation, Pointers — Practice —

Solved

(1) Determine parametric equations and bounds for t (a ≤ t < b) that will

give us an ellipse containing points (2, 0) and (0, 3), oriented positively.

� By symmetry of the ellipse, two other notable points on the ellipse

will be (−2, 0) and (0,−3). The component functions will be a com-

bination of sin t and cos t with coefficients of 2 and 3. For positive

orientation, we must go around the circle in a counterclockwise direc-

tion. If we set r(t) = 〈2 cos t, 3 sin t〉, then at t = 0, we are at (2, 0). At

t = π/2, we are at (0, 3). At t = π, we are at (−2, 0). At t = 3π/2, we

are at (0,−3). And at t = 2π, we are back at (2, 0). We have traversed

the circle via

(2, 0)→ (0, 3)→ (−2, 0)→ (0,−3)→ (2, 0)

which is counterclockwise (positively oriented). Altogether, it looks like

r(t) = 〈2 cos t, 3 sin t〉 for 0 ≤ t < 2π does the job. �

(2) Determine parametric equations and bounds for t (a ≤ t < b) that will

give an ellipse containing points (4, 0) and (0, 3), oriented negatively.

� By symmetry of the ellipse, two other notable points on the ellipse

will be (−4, 0) and (0,−3). The two given points do not have to be

traversed in the order given, we just have to use them both. The com-

ponent functions will be a combination of sin t and cos t with coefficients

of 3 and 4. For negative orientation, we must go around the circle in a

clockwise direction. If we set r(t) = 〈4 sin t, 3 cos t〉, then at t = 0, we

are at (0, 3). At t = π/2, we are at (4, 0). At t = π, we are at (0,−3).

At t = 3π/2, we are at (−4, 0). And at t = 2π, we are back at (0, 3).

We have traversed the circle via

(0, 3)→ (4, 0)→ (0,−3)→ (−4, 0)→ (0, 3)

which is clockwise (negatively oriented). Altogether, it looks like

r(t) = 〈4 sin t, 3 cos t〉 for 0 ≤ t < 2π does the job. �

(3) Find T and N for the contour r(t) = 〈2t2, t〉 at (2, 1).

� Although the full 3D version of N(t) in (17.13) would apply, we can

can use the (simpler) 2D equation (17.12) for this 2D problem.
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The ingredients for these equations include:

r ′(t) = 〈x′(t), y′(t)〉 = 〈4t, 1〉
r ′(t)⊥ = 〈y′(t),−x′(t)〉 = 〈1,−4t〉

ds =
√

(x′(t))2 + (y′(t))2 =
√

(4t)2 + (1)2 =
√

16t2 + 1

Note that the point of interest (2, 1) is found by the vector 〈2, 1〉, which

is generated by t = 1. And so,

r ′(1) = 〈4, 1〉
r ′(1)⊥ = 〈1,−4〉

ds(1) =
√

17

Then,

T(1) =
r ′(1)

ds(1)
=

1√
17
〈4, 1〉

N(1) =
r ′(1)⊥

ds(1)
=

1√
17
〈1,−4〉

For some quality assurance, we can confirm that |T(1)| = 1, |N(1)| = 1,

and T(1) ·N(1) = 0. �

(4) Find the unit tangent vector T and unit normal vector N for r(t) =

〈2e−t, e−2t, t〉 at t = 0. Can you demonstrate some quality assurance

about your results?

� The ingredients for finding T(0) and N(0) via (17.11) and (17.13)

include:

r ′(t) = 〈−2e−t,−2e−2t, 1〉

ds = |r ′(t)| =
√

4e−2t + 4e−4t + 1 =
√

(2e−2t + 1)2 = 2e−2t + 1

T(t) =
r ′(t)
ds

=
1

2e−2t + 1
〈−2e−t,−2e−2t, 1〉

Now we dive into the worst derivative,

T ′(t) = 4e−2t(2e−2t + 1)−2〈−2e−t,−2e−2t, 1〉
+ (2e−2t + 1)−1〈2e−t, 4e−2t, 0〉
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Fortunately, we don’t need to simplify it until after plugging in t = 0.

But reeling in all the necessary results so far,

T(0) =
1

3
〈−2,−2, 1〉

T ′(0) = 4(3)−2〈−2,−2, 1〉+
1

3
〈2, 4, 0〉

=

〈
−8

9
,−8

9
,

4

9

〉
+

〈
6

9
,

12

9
, 0

〉

=

〈
−2

9
,

4

9
,

4

9

〉

|T ′(()0)| =
√

4

81
+

16

81
+

16

81
=

√
36

81
=

2

3

and so,

N(0) =
T ′(()0)

|T ′(()0)| =
3

2

〈
−2

9
,

4

9
,

4

9

〉
=

〈
−1

3
,

2

3
,

2

3

〉

Altogether, we have

T(0) =

〈
−2

3
,−2

3
,

1

3

〉
and N(0) =

〈
−1

3
,

2

3
,

2

3

〉

As quality assurance, we can confirm that |T(0)| = 1, |N(0)| = 1, and

T(0) ·N(0) = 0. �

(5) Find the unit normal vector N for r(t) = (4t3/2/3)i + t2j + tk at t = 1.

(Hint: Has T been calculated elsewhere?)

� We found T(1) in YTI 4. We used r ′(t) = 2
√
ti+2tj+1k, and from

this, we can get

|r ′(t)| =
√

4t+ 4t2 + 1 =
√

(2t+ 1)2 = |2t+ 1| = 2t+ 1

So a general expression for T(t) (which wasn’t needed in YTI 4 but is

required now for N(t)) is

T(t) =
r ′(t)
|r ′(t)| =

1

2t+ 1
(2
√
ti + 2tj + 1k)

Then

T ′(t) =

(
d

dt

1

2t+ 1

)
(2
√
ti + 2tj + 1k) +

1

2t+ 1

d

dt
(2
√
ti + 2tj + 1k)

=

( −2

(2t+ 1)2

)
(2
√
ti + 2tj + 1k) +

1

2t+ 1

(
1√
t
i + 2j + 0k

)
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so

T ′(1) = −2

9
(2i + 2j + 1k) +

1

3
(i + 2j + 0k)

= −4

9
i +

4

9
j− 2

9
k +

1

3
i +

2

3
j

= −1

9
i +

2

9
j− 2

9
k

and

|T ′(1)| =
√

1

81
+

4

81
+

4

81
=

√
9

81
=

1

3
Finally, we get

N(1) =
T ′(1)

|T ′(1)| =
3

1

(
−1

9
i +

2

9
j− 2

9
k

)

or cleanly,

N(1) = −1

3
i +

2

3
j− 2

3
k �

(6) Find the unit tangent vector T and unit normal vector N for r(t) =

〈cos t+ t sin t, sin t− t cos t, 1〉 at the point (1, 0, 1).

� Note that the given point corresponds to t = 0. Let’s pull out the

first two components of r(t) for derivatives:

d

dt
(cos t+ t sin t) = − sin t+ sin t+ t cos t = t cos t

d

dt
(sin t− t cos t) = cos t− cos t+ t sin t = t sin t

Nice! Then putting these back together,

r ′(t) = 〈t cos t, t sin t, 0〉
ds = |r ′(t)| =

√
t2 cos2 t+ t2 sin2 t = t

T(t) =
r ′(t)
ds

= 〈cos t, sin t, 0〉
That’s not so bad! Carrying on, then,

T ′(t) = 〈− sin t, cos t, 0〉
|T ′(t)| =

√
sin2 t+ cos2 t+ 0 = 1

N(t) =
T ′(t)
|T ′(t)| = 〈− sin t, cos t, 0〉

Then at t = 0 specifically,

T(0) = 〈1, 0, 0〉 and N(0) = 〈0, 1, 0〉 �
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B.5.3 The Fresnet–Serret Frame — Practice — Solved

(1) Find the unit binormal vector B for r(t) = 〈et, et sin t, et cos t〉 at the

point (1,0,1). (Hint: Have T and N been calculated elsewhere?)

� In YTI 6 of Sec. 17.2, we found T(t) and N for this function and

point, as:

T(0) =
1√
3
〈1, 1, 1〉 and N(0) =

1√
2
〈0, 1,−1〉

Therefore by (17.14),

B(0) = T(0)×N(0) = 〈−
√

6

3
,

√
6

6
,

√
6

6
〉 �

(2) Find the unit binormal vector B for r(t) = 〈cos t+t sin t, sin t−t cos t, 1〉
at the point (1, 0, 1). (Hint: Have T and N been calculated elsewhere?)

In PP 6 of Sec. 17.2, we found T(t) and N for this function and point,

as:

T(0) = 〈1, 0, 0〉 and N(0) = 〈0, 1, 0〉
Given those, we can probably take a crazy guess that B(0) = 〈0, 0, 1〉,
and when we double check using (17.14),

B(0) = T(0)×N(0) = 〈0, 0, 1〉 �

(3) Determine the complete TNB-frame for r(t) = 〈et, et sin t, et cos t〉 at

the point (eπ, 0, eπ). (Hint: A previously solved problem will be very

useful.)

� This same vector function appeared in YTI 6 of Sec. 17.2, with the

point t = 0. The point given here corresponds to t = π. However, we

can still use a lot of the work. From that YTI 6, we learned

T(t) =
1√
3
〈1, cos t+ sin t, cos t− sin t〉

and so here,

T(π) =
1√
3
〈1, (−1) + 0, (−1)− 0〉 =

1√
3
〈1,−1,−1〉

Also from that YTI 6, we had

T ′(t) =
1√
3
〈0,− sin t+ cos t,− sin t− cos t〉
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and so here,

T ′(π) =
1√
3
〈0, 0 + (−1), 0− (−1)〉 =

1√
3
〈0,−1, 1〉

from which we find |T ′(π)| =
√

2/
√

3. Therefore,

N(π) =
T ′(π)

|T ′(π)| =
1√
2
〈0,−1, 1〉

From (17.14),

B(π) = T(π)×N(π) =
1√
3
〈1,−1,−1〉 × 1√

2
〈0,−1, 1〉

=

〈
−
√

2√
3
,− 1√

6
,− 1√

6

〉

Summarizing, the complete TNB-frame is:

T(π) =

〈
1√
3
,− 1√

3
,− 1√

3

〉

N(π) =

〈
0,− 1√

2
,

1√
2

〉

B(π) =

〈
−
√

2√
3
,− 1√

6
,− 1√

6

〉

Quality assurance: each of T(π),N(π),B(π) is a unit vector, and all

three are mutually perpendicular. �

(4) Find the velocity and acceleration functions for the particle moving

according to r(t) = 〈t2, ln t, t〉. Does the particle move at a constant

speed?

� For the position function r(t) = 〈t2, ln t, t〉, the velocity function is

v(t) = r ′(t) =

〈
2t,

1

t
, 1

〉

and acceleration is

a(t) = v ′(t) =

〈
2,− 1

t2
, 0

〉

Since speed is the magnitude of velocity,

s = |v(t)| =
√

4t2 +
1

t2
+ 1

which, regardless of simplification, remains a function of t — and so

this particle does not move at constant speed. �
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(5) Find the velocity and positions functions for a particle moving with

acceleration a(t) = ti + t2j + cos 2tk, if we know that v(0) = i + k and

r(0) = j.

� We have a(t) = ti+t2j+cos 2tk = 〈t, t2, cos 2t〉 with initial conditions

v(0) = i + k = 〈1, 0, 1〉 and r(0) = j = 〈0, 1, 0〉. The velocity and

acceleration functions are then:

v(t) =

∫
a(t) dt =

〈
1

2
t2 + c1,

1

3
t3 + c2,

1

2
sin 2t+ c3

〉

v(0) = 〈c1, c2, c3〉 = 〈1, 0, 1〉

→ v(t) =

〈
1

2
t2 + 1,

1

3
t3,

1

2
sin 2t+ 1

〉

r(t) =

∫
v(t) dt =

〈
1

6
t3 + t+ c1,

1

12
t4 + c2,−

1

4
cos 2t+ t+ c3

〉

r(0) = 〈c1, c2,−
1

4
+ c3〉 = 〈0, 1, 0〉

→ c1 = 0, c2 = 1, and c3 =
1

4

→ r(t) =

〈
1

6
t3 + t,

1

12
t4 + 1,−1

4
cos 2t+ t+

1

4

〉

In original notation,

v(t) =

(
1

2
t2 + 1

)
i +

(
1

3
t3
)

j +

(
1

2
sin 2t+ 1

)
k

r(t) =

(
1

6
t3 + t

)
i +

(
1

12
t4 + 1

)
j +

(
−1

4
cos 2t+ t+

1

4

)
k �

(6) Find the tangential and normal components of acceleration for r(t) =

ti + t2j + 3tk.

� To find the tangential component of acceleration for the given r(t),

we need:

r ′(t) = i + 2tj + 3k

|r ′(t)| =
√

1 + 4t2 + 9 =
√

4t2 + 10

r ′′(t) = 2j

r ′(t) · r ′′(t) = 4t

so then

aT =
r ′(t) · r ′′(t)
|r ′(t)| =

4t√
4t2 + 10
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To find the normal component of acceleration, we need |a(t)|2. Note

that a(t) = r ′′(t), which is found above; so,

a(t) = 2j

|a(t)|2 = 4

so that

aN =
√
|a(t)|2 − a2T =

√
4−

(
4t√

4t2 + 10

)2

=

√
4− 16t2

4t2 + 10

=

√
16t2 + 40

4t2 + 10
− 16t2

4t2 + 10
=

√
40

4t2 + 10
=

2
√

5√
2t2 + 5

�

(7) Find the curvature and torsion of r(t) = 〈et cos t, et sin t, t〉 at the point

(1,0,0).

� For the curvature of r(t) = 〈et cos t, et sin t, t〉 at (1,0,0), i.e. at t = 0,

we need:

r ′(t) = 〈et(cos t− sin t), et(cos t+ sin t), 1〉
r ′′(t) = 〈−2et sin t, 2et cos t, 0〉
r ′(0) = 〈1, 1, 1〉
|r ′(0)| =

√
3

r ′′(0) = 〈0, 2, 0〉
r ′(0)× r ′′(0) = 〈−2, 0, 2〉
|r ′(0)× r ′′(0)| = 2

√
2

so that

κ =
|r ′(0)× r ′′(0)|
|r ′(0)|3 =

2
√

2

(
√

3)3
=

2
√

6

9

For torsion, in addition to r ′(()0) and r ′′(()0), we need r ′′′(0). The

full third derivative is

r ′′′(t) = 〈−2et(sin t+ cos t), 2et(cos t− sin t), 0〉
so that r ′′′(0) = 〈−2, 2, 0〉. So, using information computed for the

curvature,

(r ′(0)× r ′′(0)) · r ′′′(0) = 〈−2, 0, 2〉 · 〈−2, 2, 0〉 = 4

Also,

|r ′(0)× r ′′(0)|2 = (2
√

2)2 = 8

Together, by (17.21),

τ(0) =
(r ′(0)× r ′′(0)) · r ′′′(0)

|r ′(0)× r ′′(0)|2 =
4

8
=

1

2
�
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B.5.4 Lagrange Multipliers — Practice — Solved

(1) Find the maximum value of f(x, y) = x2+y3/3 that can be achieved by

points on the ellipse 2x2 + y2 = 6, and the point(s) at which it occurs.

� The objective function is f(x, y) = x2 + y3/3, and its gradient is

∇f(x, y) = 〈2x, y2〉.

The constraint function is g(x, y) = 2x2 + y2, and its gradient is

∇g(x, y) = 〈4x, 2y〉.

The equation of proportionality of these gradients is ∇f(x, y) =

λ∇g(x, y); this equation, along with the constraint itself, leads to the

system of equations,

2x = λ(4x)

y2 = λ(2y)

2x2 + y2 = 6

Simplified, we get

1

2
= λ

y = 2λ

2x2 + y2 = 6

and now we already know λ = 1/2. With that value, the second equa-

tion gives y = 1. Then the third equation gives x = ±
√

5/2. The

original simplification of the first equation required that x = 0 was no

longer under consideration; if x = 0, another solution to this system

comes with y = ±
√

6. Similarly, the original simplification of the sec-

ond equation required that y = 0 was no longer under consideration;

if y = 0, then another solution is x = ±
√

3. The solutions for λ in

the latter two cases are irrelevant. Altogether, we have the following

(parts of) solutions to the system of equations, which provide locations

of extremes of f(x, y) subject to g(x, y) = 6:

(
−
√

5

2
, 1

)
,

(√
5

2
, 1

)
, (0,
√

6) , (0,−
√

6) , (
√

3, 0) , (−
√

3, 0)

The absolute max is located by finding f(x, y) at each candidate point:
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f

(
−
√

5

2
, 1

)
=

17

6

f(0,
√

6) = 2
√

6

f(
√

3, 0) = 3

f

(
−
√

5

2
, 1

)
=

17

6

f(0,−
√

6) = −2
√

6

f(−
√

3, 0) = 3

The maximum value found is f(0,
√

6) = 2
√

6. �

(2) Find the maximum value of f(x, y, z) = x + 2y2 + 2z that can be

achieved by points on the sphere x2 + y2 + z2 = 4, and the point(s) at

which it occurs.

� The objective function is f(x, y, z) = x+ 2y2 + 2z, and its gradient

is ∇f(x, y, z) = 〈1, 4y, 2〉.

The constraint function is g(x, y, z) = x2 +y2 +z2 = 4, and its gradient

is ∇g(x, y, z) = 〈2x, 2y, 2z〉.

The equation of proportionality of these gradients is ∇f(x, y, z) =

λ∇g(x, y, z); this equation, along with the constraint itself, leads to

the system of equations,

1 = λ(2x)

4y = λ(2y)

2 = λ(2z)

x2 + y2 + z2 = 4

or

1 = 2λx

2y = λy

1 = λz

x2 + y2 + z2 = 4

Tracking down these solutions would be simple but tedious, so let’s

have technology do it. From Wolfram Alpha, the solutions are:

(
1

4
,−
√

59

4
,

1

2

) (
1

4
,

√
59

4
,

1

2

) (
− 2√

5
, 0,− 4√

5

) (
2√
5
, 0,

4√
5

)



498 Casual Calculus: A Friendly Student Companion (Volume 3)

The absolute max is located by finding f(x, y, z) at each candidate

point:

f

(
1

4
,−
√

59

4
,

1

2

)
=

69

8
f

(
1

4
,

√
59

4
,

1

2

)
=

69

8

f

(
− 2√

5
, 0,− 4√

5

)
= −2

√
5 f

(
2√
5
, 0,

4√
5

)
= 2
√

5

The maximum value of 69/8 is found at two points, (1/4,−
√

59/4, 1/2)

and (1/4,
√

59/4, 1/2). �

(3) To generate Fig. 13.21, I had to find the minimum and maximum values

of z = 1+xy subject to the constraint (x−3)2 +(y−2)2 = 0.25. What

were these values, and at what points did they occur?

� With f(x, y) = 1 + xy and g(x, y) = (x − 3)2 + (y − 2)2, the rela-

tion ∇f(x, y) = λ∇g(x, y) and the constraint leads to the system of

equations

y = 2λ(x− 3)

x = 2λ(y − 2)

(x− 3)2 + (y − 2)2 = 0.25

By Wolfram Alpha, we get the solutions (x, y) ≈ (2.753, 1.565), for

which f(x, y) = 5.31, and (x, y) ≈ (3.295, 2.404), for which f(x, y) =

8.92. These provide the minimum and maximum values of f(x, y) sub-

ject to the given constraint, and the locations at which they occur. �

(4) Find the point on the ellipse x2 + 2y2 = 4 that is closest to the point

(1, 1).

� We want to minimize the distance to (x, y) = (1, 1) for points satis-

fying x2 + 2y2 = 4. As in earlier optimization problems, it suffices to

minimize the square of the distance, D2 = (x − 1)2 + (y − 1)2. This

expression for D2 is our objective function, and the constraint is the

left side of the equation of the ellipse. The gradients of each are:

∇D2(x, y) = 〈2(x− 1), 2(y − 1)〉
∇g(x, y) = 〈2x, 4y〉

Setting the proportion ∇D2(x, y) = λ∇g(x, y) and introducing the
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constraint, we get the system:

2(x− 1) = λ(2x)

2(y − 1) = λ(4y)

x2 + 2y2 = 4

or

x− 1 = λx

y − 1 = 2λy

x2 + 2y2 = 4

The solutions are, using Wolfram Alpha, (x, y) ≈ (1.086, 1.188) and

(x, y) ≈ (−1.879,−0.484). (The exact versions are too nasty for hu-

man consumption.) Intuition suggests that the point with the positive

coordinates is the one closest to (1, 1), but let’s compute D2 for each

point just to be sure:

D2 (1.086, 1.188) ≈ (1.806− 1)2 + (1.188− 1)2 ≈ 0.685

D2 (−1.879,−0.484) ≈ (−1.879− 1)2 + (−0.484− 1)2 ≈ 10.5

Therefore, (x, y) ≈ (1.086, 1.188) is the point on the ellipse x2+2y2 = 4

that is closest to the point (1, 1). �

(5) What is the largest volume of possible of a cylinder which is sized

according to πr2 + h = 20, and what are the dimensions which give

that volume?

� The volume of a cylinder is V = πr2h, and this is our objective

function to be maximized. The constraint is πr2 + h = 20. The gra-

dients are ∇V (r, h) = 〈2πrh, πr2〉 and ∇g(r, h) = 〈2πr, 1〉. Setting the

proportion ∇V (r, h) = λ∇g(r, h) and introducing the constraint, we

get the system:

2πrh = λ(2πr)

πr2 = λ(1)

πr2 + h = 20

or

rh = λr

πr2 = λ

πr2 + h = 20
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The solutions are, using Wolfram Alpha,

(r, h) =

(
−
√

10

π
, 10

)
(r, h) =

(√
10

π
, 10

)
(r, h) = (0, 20)

The first solution is irrelevant as a negative r is not appropriate. The

third solution clearly gives the minimum volume (V = 0). So the max-

imum volume occurs at (r, h) = (
√

10/π, 10), and that volume is

Vmax = π

(√
10

π

)2

(10) = 100 �

(6) Find the maximum value of f(x, y, z, w) = 2x−3y+4z+w determined

by points on the “hypersphere” x2 + y2 + z2 + w2 = 3.

� The gradient of the objective function is ∇f = 〈2,−3, 4, 1〉, and the

gradient of the objective function is ∇g = 〈2x, 2y, 2z, 2w〉. The relation

∇f = λ∇g along with the constraint then give this system of equations:

2 = λ(2x)

−3 = λ(2y)

4 = λ(2z)

1 = λ(2w)

x2 + y2 + z2 + w2 = 3

This system would be simple to solve by hand, but why spoil a good

thing? Wolfram Alpha gives two solution sets,

(x, y, z, w) =

(
−
√

2

5
,

3√
10
,−2

√
2

5
,− 1√

10

)
,

(√
2

5
,− 3√

10
, 2

√
2

5
,

1√
10

)

and at these points we have

f

(
−
√

2

5
,

3√
10
,−2

√
2

5
,− 1√

10

)
= −3

√
10

f

(√
2

5
,− 3√

10
, 2

√
2

5
,

1√
10

)
= 3
√

10

and so the maximum value of f(x, y, z, w) subject to x2+y2+z2+w2 = 3

is 3
√

10. �
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(7) Find the absolute extremes of f(x, y) = xy(1−x− y) = xy−x2y−xy2
anywhere on and inside the unit circle. (Compare to Practice Problem

2 in Sec. 14.2.)

� First, note that our constraint here is x2 + y2 ≤ 1.

In Practice Problem 2 of Sec. 14.2, we found that this function has

a local maximum at (1/3, 1/3), which does satisfy the constraint

x2 + y2 ≤ 1. (There were saddle points as well, but those won’t be

absolute extremes.)

We’ll use Lagrange Multipliers to examine the boundary of the unit cir-

cle for other possible extremes. Since ∇f(x, y) = 〈y−2xy−y2, x−x2−
2xy〉 and ∇g(x, y) = 〈2x, 2y〉, then the relation ∇f(x, y) = λ∇g(x, y)

and the constraint itself gives this system of equations:

y − 2xy − y2 = λ(2x)

x− x2 − 2xy = λ(2y)

x2 + y2 = 1

Wolfram Alpha reports six solutions (x, y) to this system:

(
−1

6
(1 +

√
17),

1

6
(
√

17− 1)

)
,

(
1

6
(
√

17− 1),−1

6
(1 +

√
17)

)
,

(0, 1) , (1, 0) ,

(
− 1√

2
,− 1√

2

)
,

(
1√
2
,

1√
2

)

To locate extremes, we now have seven points to compare (the critical

point from the interior of the unit circle and these six points from

the boundary of the unit circle). The function values are (with some

approximation):

f

(
1

3
,

1

3

)
=

1

27

f

(
−1

6
(1 +

√
17),

1

6
(
√

17− 1)

)
= −16

27
≈ −0.59

f

(
1

6
(
√

17− 1),−1

6
(1 +

√
17)

)
= −16

27
≈ −0.59
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f(0, 1) = 0

f(1, 0) = 0

f

(
− 1√

2
,− 1√

2

)
=

1 +
√

2

2
≈ 1.21

f

(
1√
2
,

1√
2

)
=

1−
√

2

2
≈ −0.21

The absolute maximum of f(x, y) subject to the given constraint occurs

at one point, and is

f

(
− 1√

2
,− 1√

2

)
=

1 +
√

2

2

The absolute minimum of f(x, y) subject to the given constraint occurs

at two points, and is

f

(
−1

6
(1 +

√
17),

1

6
(
√

17− 1)

)

= f

(
1

6
(
√

17− 1),−1

6
(1 +

√
17)

)
− 16

27
≈ −0.59 �

B.5.5 Parametric Surfaces — Practice — Solved

(1) Figure 15.29 shows the paraboloid x = 5− y2 − z2 for 0 ≤ x ≤ 5. Pro-

vide the parametric equations for this surface and give the appropriate

bounds on the parameters.

� This is basically YTI 4 flipped on its side. The parametric equations

are 



x = 5− s
y =
√
s cos t

z =
√
s sin t

with 0 ≤ s ≤ 5 ; 0 ≤ t < 2π

Or in vector form (with the same bounds),

r(s, t) = 〈5− s,√s sin t,
√
s sin t〉

Note that these expressions aren’t unique; for example, we could swap

the equations for y and z. �

(2) Figure C.9 shows the paraboloid z = 2x2 + y2 for 0 ≤ z ≤ 10. Pro-

vide the parametric equations for this surface and give the appropriate

bounds on the parameters.
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� The cross sections of this surface are ellipses, not circles. I’ll show

you the parametric equations first, then explain two ways to get to

them. They are



x = 1√
2

√
s cos t

y =
√
s cos t

z = s

with 0 ≤ s ≤ 10 ; 0 ≤ t < 2π

One way to get there is in a reverse-engineering sort of way, where we

recognize that with these equations, we have x2 = (s/2) cos2 t and so

we’d have to multiply x2 by 2 in order to combine it with y2 = s sin2 t

and then build 2x2 + y2 = z. The second way to do it is more “by the

book”; we rewrite the surface as z = x2/(1/
√

2)2 + y2, and then when

we consult Appendix A.2, we have a match to z = x2/a2 + y2/b2 with

a = 1/
√

2 and b = 1. Those values can be plugged in to the templates

for the parametric equations to yield our result. So either way, we get

there! �

(3) A quadric surface has the following parametric (vector) equations.

Identify this surface by giving its “regular” expression in rectangular

coordinates.

r(s, t) = 〈
√

9− s cos t,
√

9− s sin t, s〉 for 0 ≤ s ≤ 9, 0 ≤ t < 2π

� With x =
√

9− s cos t and y =
√

9− s sin t, we have x2 +y2 = 9− s;
since z = s, then, this becomes x2 + y2 = 9 − z or z = 9 − x2 − y2.

This is consistent with given bounds as being an inverted paraboloid

z = 9− x2 − y2 above the xy-plane. �

(4) A quadric surface has the parametric equations x = 1 + s + t, y =

−s + t, z = 2s, where s and t can be any real numbers. Identify this

surface by giving its “regular” expression in rectangular coordinates.

� Since all three equations are linear, this is going to be a plane! If

we bundle the equations as r(s, t) = 〈s + t, 1 − s + t, 2s〉 then we can

expand to isolate s and t:

r(s, t) = 〈1, 0, 0〉+ s〈1,−1, 2〉+ t〈1, 1, 0〉
From this, we see a point on the plane is located by r0 = 〈1, 0, 0〉, and

two vectors in the plane are 〈1,−1, 2〉 and 〈1, 1, 0〉. A vector perpen-

dicular to the plane is then

〈1,−1, 2〉 × 〈1, 1, 0〉 = 〈−2, 2, 2〉
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We can now form the rectangular version of this plane as

a(x− x0) + b(y − y0) + c(z − z0) = 0

−2(x− 1) + 2(y − 0) + 2(z − 0) = 0

z = x− y − 1

or any other alternate but equivalent form. �

(5) A quadric surface has the parametric equations x = s cos t, y = s2, z =

s sin t, for 0 ≤ s ≤ π and 0 ≤ t ≤ π. Identify this surface by giving its

“regular” expression in rectangular coordinates and appropriate bounds

on those coordinates.

� If we assign x = s cos t, y = s, z = s sin t, then x and z together are

related by x2 + z2 = s2. But since y = s2, we have y = x2 + z2. So

this is a portion of paraboloid opening around the y-axis, from y = 0

to y = π2. �

(6) Figure C.20 shows the hyperboloid x2 + 3y2 − z2 = 1 between z = −1

and z = 4. Provide the parametric equations for this surface and give

the appropriate bounds on the parameters.

� Appendix A.2 gives a recipe for the parametric equations of a hy-

perboloid of one sheet if the equation looks like:

x2

a2
+
y2

b2
− z2

c2
= 1

We can rewrite the hyperboloid x2 + 3y2 − z2 = 1 as:

x2

12
+

y2

(1/
√

3)2
− z2

12
= 1

to get a match to a = 1, b = 1/
√

3, and c = 1. Then by the template

given in the Appendix, the parametric equations for this surface will

be




x =
√

1 + s2 cos t

y = 1√
3

√
1 + s2 sin t

z = s

with − 1 ≤ s ≤ 4 ; 0 ≤ t < 2π �
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B.6 Chapter 18: Practice Problem Solutions

B.6.1 Line Integrals — Practice — Solved

(1) Evaluate

∫

C

yex ds, where C is the line from (1, 2) to (4, 7).

� This is a line integral with respect to arc length ds, so we’ll need the

arc length version of the line integral. We can describe the contour C

as

x = 1 + 3t y = 2 + 5t for 0 ≤ t ≤ 1

so that
√

[x′(t)]2 + [y′(t)]2 =
√

(3)2 + (5)2 =
√

34

and
∫

C

yex ds =

∫ b

a

f(x(t), y(t))
√

[x′(t)]2 + [y′(t)]2 dt

=

∫ 1

0

(2 + 5t)e1+3t(
√

34) dt =

√
34e

9
(16e3 − 1) �

(2) Evaluate

∫

C

sinx dx + cos y dy where C is the top half of x2 + y2 = 1

from (1, 0) to (−1, 0) joined to the line from from (−1, 0) to (−2, 3).

� Note that this line integral does not involve the arc length param-

eter, so we’ll just convert everything directly to parametric form. The

contour C has two parts: the top half of x2 + y2 = 1 from (1, 0) to

(−1, 0) (call this C1) and then the line from (−1, 0) to (−2, 3) (call this

C2). The contours are

C1 : x = cos t y = sin t for 0 ≤ t ≤ π
dx = − sin t dt dy = cos t dt

C2 : x = −1− t y = 3t for 0 ≤ t ≤ 1

dx = −dt dy = 3 dt

The integrals are:
∫

C1

sinx dx+ cos y dy =

∫ π

0

sin(cos t)(− sin t dt) + cos(sin t)(cos t dt) = 0

∫

C2

sinx dx+ cos y dy =

∫ 1

0

sin(−1− t)(−dt) + cos(3t)(3 dt)

= sin 3− cos 2 + cos 1
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Putting these together,
∫

C

sinx dx+ cos y dy =

∫

C1

sinx dx+ cos y dy +

∫

C2

sinx dx+ cos y dy

= sin 3− cos 2 + cos 1 �

(3) Evaluate

∫

C

F · dr where F(x, y, z) = 〈yz, xz, xy〉 and r(t) = 〈t, t2, t3〉
for 0 ≤ t ≤ 2.

� From r(t) we have

x = t → dx = dt

y = t2 → dy = 2t dt

z = t3 → dz = 3t2 dt

so that∫

C

F · dr =

∫

C

yz dx+ xz dy + xy dz

=

∫ 2

0

(t2)(t3)(dt) + (t)(t3)(2t dt) + t(t2)(3t2 dt)

=

∫ 2

0

(6t5) dt = 64 �

(4) Evaluate

∫

C

x2z ds, where C is the line segment from (0, 6,−1) to

(4, 1, 5).

� Since this is a line integral with respect to arc length ds, we ’ll use

the arc length version of the line integral. We can describe the contour

C as

x = 4t y = 6− 5t z = −1 + 6t for 0 ≤ t ≤ 1

so that
√

[x′(t)]2 + [y′(t)]2 + [z′(t)]2 =
√

(4)2 + (−5)2 + (6)2 =
√

77

and
∫

C

x2z ds =

∫ b

a

f(x(t), y(t), z(t))
√

[x′(t)]2 + [y′(t)]2 + [z′(t)]2 dt

=

∫ 1

0

(4t)2(−1 + 6t)(
√

77) dt =
56
√

77

3
�
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(5) Evaluate

∫

C

z dx+ x dy + y dz along the contour C that is given by

x = t2 y = t3 z = t2 for 0 ≤ t ≤ 1

� Since this is a line integral with respect to dx, dy and dz we can

construct the parametric version of the line integral directly. From the

parametric description of the line integral, we get dx = 2t dt, dy = 3t2 dt

and dz = 2t dt, and so
∫

C

z dx+ x dy + y dz =

∫ 1

0

t2(2t dt) + (t2)(3t2dt) + (t3)(2t dt)

=

∫ 1

0

(2t3 + 5t4) dt =
3

2
�

(6) Find the work done by F(x, y, z) = 〈z, y,−x〉 around the contour r(t) =

〈t, sin t, cos t〉 for 0 ≤ t ≤ π.

� We want to evaluate

∫

C

F · dr. From r(t) we have

x = t→ dx = dt

y = sin t→ dy = cos t dt

z = cos t→ dz = − sin t dt

so that ∫

C

F · dr =

∫

C

z dx+ y dy − x dz

=

∫ π

0

(cos t dt) + (sin t)(cos t dt)− t(− sin t dt)

=

∫ π

0

(cos t+ sin t cos +t sin t) dt = π

(7) (Bonus! Following up Sec. 15.3 ...) We expect

∫

C

f(x, y) ds = 0 for

which of the following combinations of function f(x, y) and path of

integration C?

I1) f(x, y) = x2y and C is the upper half of 2x2 + 3y2 = 6?

I2) f(x, y) = x2y and C is the right half of 2x2 + 3y2 = 6?

I3) f(x, y) = xy2 and C is the on y = x2 − 1 from (−1, 0) to (1, 0)?

� (I1) is not zero, but (I2) and (I3) are. In (I1), y is positive every-

where on the contour C, and so we are integrating an expression (x2y)
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which is always positive. In (I2), the positive contributions from y are

balanced by equal negative contributions; similarly, contributions from

x in xy2 are balanced due to the symmetry of the parabolic contour C

around the y-axis. �

B.6.2 Conservative Vector Fields — Practice — Solved

(1) Determine if the vector field F(x, y) = 〈x3 + 4xy, 4xy − y3〉 is conser-

vative. If it is, find a potential function for it.

� Matching to the form F(x, y) = 〈P (x, y), Q(x, y)〉, we have

P = x3 + 4xy → ∂P

∂y
= 4x

Q = 4xy − y3 → ∂Q

∂x
= 4y

Since ∂P/∂y 6= ∂Q/∂x then the vector field is not conservative, and

there is no function f(x, y) such that ∇f = F. �

(2) Determine if the vector field F(x, y) = 〈ey, xey〉 is conservative. If it is,

find a potential function for it.

� Matching to the form F(x, y) = 〈P (x, y), Q(x, y)〉, we have

P = ey → ∂P

∂y
= ey

Q = xey → ∂Q

∂x
= ey

Since ∂P/∂y = ∂Q/∂x then the vector field is conservative. So there

is a function f(x, y) such that ∇f = F.

We know from F that for this function, fx = ey and fy = xey. Based

on fx, we know that at worst, f(x, y) = xey + g(y) where g(y) is some

unknown function of y.

With f(x, y) in this form, fy = xey+g′(y). But since we know fy = xey

we have that g′(y) = 0 and g(y) = C. So, f(x, y) = xey + C. �

(3) Determine if the vector field F(x, y, z) = 〈3z2, cos y, 2xz〉 is conserva-

tive. If it is, find a potential function for it.
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� Since ∇× F = 〈0, 4z, 0〉 which is not 0, then F is not conservative,

and so there is no scalar function f such that F = ∇f . �

(4) Evaluate

∫

C

F · dr where

F(x, y) =

〈
y2

1 + x2
, 2y tan−1(x)

〉

and C is the curve given by r(t) = 〈t2, 2t〉 for 0 ≤ t ≤ 1.

� A quick check will show that F is conservative. Therefore, we can

find a potential function for it and evaluate the integral using the

Fundamental Theorem for Line Integrals. The potential function for

this vector field is a function f(x, y) such that fx = y2/(1 + x2) and

fy = 2y tan−1(x). Based on fx, we know that at worst, f(x, y) =

y2 tan−1(x) + g(y) where g(y) is some unknown function of y.

With f(x, y) in this form, fy = 2y tan−1(x) + g′(y). But since we know

fy = 2y tan−1(x) we have that g′(y) = 0 and g(y) = C. Let’s choose

C = 0 so that

f(x, y) = y2 tan−1(x)

Next we need
∫
C

F ·dr where r(t) = 〈t2, 2t〉 for 0 ≤ t ≤ 1. The values of

r(t) and f(x, y) at the endpoints of this curve, i.e. at t = 0 and t = 1,

are

r(1) = 〈1, 2〉 → f(1, 2) = 22 tan−1(1) = π

r(0) = 〈0, 0〉 → f(0, 0) = 0

Then by the Fundamental Theorem for Line Integrals, we have
∫

C

F · dr = f(1, 2)− f(0, 0) = π �

(5) Determine if the vector field F(x, y) = 〈1+2xy+lnx, x2〉 is conservative.

If it is, find a potential function for it.

� Matching to the form F(x, y) = 〈P (x, y), Q(x, y)〉, we have

P = 1 + 2xy + lnx → ∂P

∂y
= 2x

Q = x2 → ∂Q

∂x
= 2x
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Since ∂P/∂y = ∂Q/∂x then the vector field is conservative. So there

is a function f(x, y) such that ∇f = F.

We know from F that for this function, fx = 1+2xy+lnx and fy = x2.

Based on fx, we know that at worst,

f(x, y) = x+ x2y + x(lnx− 1) + g(y) = x2y + x lnx+ g(y)

where g(y) is some unknown function of y. With f(x, y) in this form,

fy = x2 + g′(y). But since we know fy = x2 we have that g′(y) = 0

and g(y) = C. So,

f(x, y) = x2y + x lnx+ C �

(6) Determine if the vector field F(x, y, z) = 〈ez, 1, xez〉 is conservative. If

it is, find a potential function for it.

� Since ∇ × F = 0 then F is conservative, and so there is a scalar

function f such that F = ∇f . Since that’s true, we know fx = ez,

fy = 1, and fz = xez. Without any further ado, it’s pretty easy to

figure out that f(x, y, z) = xez + y + C. �

(7) Use the Fundamental Theorem for Line Integrals to evaluate

∫

C

F · dr
where F(x, y, z) = 〈2xz + y2, 2xy, x2 + 3z2〉, and C is the curve given

by r(t) = 〈t2, t+ 1, z〉 for 0 ≤ t ≤ 1.

� The potential function for this vector field is a function f(x, y, z)

such that fx = 2xz + y2, fy = 2xy and fz = x2 + 3z2. We could go

through the routine of finding f(x, y, z) based on these derivatives, but

I think this one’s straightforward enough to deduce that

f(x, y, z) = x2z + xy2 + z3

Next we need
∫
C

F·dr where C is the contour given by x = t2, y = t+1,

and z = 2t− 1 for 0 ≤ t ≤ 1. The endpoints of this curve and values of

f(x, y, z) there are

(x(0), y(0), z(0)) = (0, 1,−1)→ f(0, 1,−1) = 0 + 0 + (−1)3 = −1

(x(1), y(1), z(1)) = (1, 2, 1)→ f(1, 2, 1) = 1 + 4 + 1 = 6

Then by the Fundamental Theorem for Line Integrals, we have
∫

C

F · dr = f(1, 2, 1)− f(0, , 1,−1) = 7 �
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B.6.3 Surface Integrals — Practice — Solved

(1) Find

∫∫

S

xy dS where the surface S is the triangular region with ver-

tices P(1,0,0), Q(0,2,0) and R(0,0,2).

� This surface is part of a plane. Which one? Well, you can construct

PQ ×PR to get a normal vector and build the equation of the plane

that way. Or you can examine the points to see they satisfy 2x+y+z =

2. Either way, we have the plane z = 2 − 2x − y so that gx = −2 and

gy = −1. The region D is the intersection of this plane with the xy-

plane, which is 2x+y = 2 (found by setting z = 0). So using the scalar

function version of the surface integral,
∫∫

S

xy dS =

∫∫

D

xy
√
g2x + g2y + 1 dA

=

∫ 1

0

∫ −2x+2

0

xy
√

(−2)2 + (−1)2 + 1 dydx

=
√

6

∫ 1

0

∫ −2x+2

0

xy dydx =

√
6

6
�

(2) Find the surface area of the portion of the paraboloid z = 4− x2 − y2
above the xy-plane.

� The paraboloid intersects the xy-plane in the circle x2 + y2 = 4.

So the surface area of the paraboloid above the xy-plane is the surface

area of the paraboloid above the region D that is the circle x2 +y2 = 4.

So, with z = 4− x2 − y2, we have gx = −2x and gy = −2y, and
√
g2x + g2y + 1 =

√
4x2 + 4y2 + 1

But note that the region and expression to be integrated are suitable

for polar coordinates; D is described 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π, and√
4x2 + 4y2 + 1 =

√
4r2 + 1. So the surface area is given by

AS =

∫∫

S

(1) dS =

∫∫

D

(1)
√
g2x + g2y + 1 dA

=

∫ 2π

0

∫ 2

0

√
4r2 + 1 · rdrdθ =

∫ 2π

0

(
1

12
(4r2 + 1)3/2

∣∣∣∣
2

0

)
dθ

=

∫ 2π

0

1

12
(173/2 − 1)dθ =

π

6
(173/2 − 1) �
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(3) Find

∫∫

S

F · dS where F = 〈xy, 4x2, yz〉 and the surface S is z = xey

over 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, oriented positively.

� Matching the surface to the form z = g(x, y) we have g = xey, so

∂g

∂x
= ey ;

∂g

∂y
= xey

Matching to the form F = 〈P,Q,R〉, we have

P = xy ; Q = 4x2 ; R = yz = y(xey)

So by the vector version of the surface integral,
∫∫

S

F · dS =

∫∫

D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA

=

∫∫

D

(
−xy(ey)− (4x2)(xey) + y(xey)

)
dA

=

∫ 1

0

∫ 1

0

(
−4x3ey

)
dydx = 1− e �

(4) Find
∫∫
S
yz dS where the surface S is the part of the plane x+y+z = 1

in the first octant.

� Since z = 1 − x − y we have gx = −1 and gy = −1. The region D

is the intersection of this plane with the xy-plane, which is x + y = 1

(found by setting z = 0). So using the scalar function version of the

surface integral,
∫∫

S

yz dS =

∫∫

D

yz
√
g2x + g2y + 1 dA

=

∫ 1

0

∫ −x+1

0

y(1− x− y)
√

(−1)2 + (−1)2 + 1 dydx

=
√

3

∫ 1

0

∫ −x+1

0

y(1− x− y) dydx =

√
3

24
�

(5) Find the surface area of the part of the hyperbolic paraboloid z =

y2 − x2 between the cylinders x2 + y2 = 1 and x2 + y2 = 4.

� This piece of the surface is over the region in the xy-plane between

the circles x2 + y2 = 1 and x2 + y2 = 4. With z = y2 − x2, we get

gx(x, y) = −2x and gy(x, y) = 2y, so
√
gx(x, y)2 + gy(x, y)2 + 1 =

√
4x2 + 4y2 + 1
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The region and expression to be integrated are suitable for polar

coordinates; D is described 1 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π, and√
4x2 + 4y2 + 1 =

√
4r2 + 1. So the surface area is given by

AS =

∫∫

S

(1) dS =

∫∫

D

(1)
√
g2x + g2y + 1 dA

=

∫ 2π

0

∫ 2

1

√
4r2 + 1 · rdrdθ =

∫ 2π

0

(
1

12
(4r2 + 1)3/2

∣∣∣∣
2

1

)
dθ

=

∫ 2π

0

1

12
(173/2 − 53/2)dθ =

π

6
(173/2 − 53/2) �

(6) Find
∫∫
S

F · dS where F = 〈x, y, z4〉 and the surface S is z =
√
x2 + y2

under z = 1 oriented negatively.

� Matching the surface to the form z = g(x, y) we have g =
√
x2 + y2

and

∂g

∂x
=

x√
x2 + y2

;
∂g

∂y
=

x√
x2 + y2

Matching to the form F = 〈P,Q,R〉, we have

P = x ; Q = y ; R = z4 = (x2 + y2)2

Since the surface is oriented negatively we will change the sign on our

integral to account for the orientation. Polar coordinates will be useful;

the boundary of the domain is 1 =
√
x2 + y2 or x2 + y2 = 1:

∫∫

S

F · dS = −
∫∫

D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA

= −
∫∫

D

(
−x · x√

x2 + y2
− y · y√

x2 + y2
+ (x2 + y2)2

)
dA

=

∫∫
D
(√

x2 + y2 − (x2 + y2)2
)
dA

=

∫ 2π

0

∫ 1

0

(
r − r4

)
rdrdθ =

π

3
�

(7) (Bonus! Following up Sec. 15.3 ...) We expect

∫∫
Sf(x, y, z) dS =

0 for which of the following combinations of function f(x, y, z) and

surfaces of integration S?
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I1) f(x, y) = ex
2+y2+z2 and S is the upper half of the unit sphere

I2) f(x, y) = zex
2+y2 and S is the right half of the unit sphere?

I3) f(x, y) = sin(x) cos(yz) and S is the paraboloid z = x2 + y2 from

z = 0 to z = 1?

� (I1) is not zero, but (I2) and (I3) are. The integrand of (I1) is al-

ways positive, whereas the integrands in (I2) and (I3) cooperate with

the symmetric regions of integration to cause every positive value of the

integrand function to have an equal but opposite partner. Also note

that this is about the only intuition we can have about (I2) and (I3),

since they would be near impossible to evaluate by hand. �

B.6.4 Green’s Theorem — Practice Problems — Solutions

(1) Find

∮

C

x2y2 dx+4xy3 dy where C is the boundary of the triangle with

corners traversed in order (0,0) to (1,3) to (0,3) and back to (0,0).

� Matching the integral to the form

∮

C

Pdx+Qdy, we have

P = x2y2 → ∂P

∂y
= 2x2y

Q = 4xy3 → ∂Q

∂x
= 4y3

Note that C is the area between the lines y = 3x and y = 3 from x = 0

to x = 1; this is closed and positively oriented, so Green’s Theorem

applies and (you don’t need to see all the trivial steps of evaluation,

right?)...
∮

C

x2y2 dx+ 4xy3 dy =

∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

=

∫ 1

0

∫ 3

3x

(4y3 − 2x2y) dydx =
318

5
�

(2) Find

∮

C

F · dr where F(x, y) = 〈y2 cosx, x2 + 2y sinx〉 and C is the

triangle from (0,0) to (2,6) to (2,0) and back to (0,0).

� Matching the vector field to the form F(x, y) = 〈P (x, y), Q(x, y)〉,
we have
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P = y2 cosx→ ∂P

∂y
= 2y cosx

Q = x2 + 2y sinx→ ∂Q

∂x
= 2x+ 2y cosx

Note that C bounds the region under y = 3x from x = 0 to x = 2. C

is closed but negatively oriented (clockwise) — see Fig. B.25. Green’s

Theorem applies, but we have to change the sign to account for the

orientation:
∮

C

F · dr =

∮

C

P dx+Qdy = −
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

= −
∫∫

D

(2x) dA = −
∫ 2

0

∫ 3x

0

(2x) dydx = −16 �

1 2

3

6

→

←→ x

x

Fig. B.25 The triangle from (0, 0) to

(2, 6) to (2, 0) and back.

−3 −2 2 3

−3

−2

2

3

r
=

2

→

r
=

3

←

x

x

Fig. B.26 Region between r = 2 and

r = 3.

(3) Find

∮

C

xe−2x dx + (x4 + 2x2y2) dy where C is the boundary of the

region inside the circles x2 + y2 = 4 and x2 + y2 = 9.

� Matching the integral to the form

∫

C

P dx+Qdy, we have

P = xe−2x → ∂P

∂y
= 0

Q = x4 + 2x2y2 → ∂Q

∂x
= 4x3 + 4xy2

Note that C not simple, but Green’s Theorem still applies; we can

easily describe the region D inside C using polar coordinates — see
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Fig. B.26 — so

∮

C

xe−2x dx+(x4 + 2x2y2) dy =

∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

=

∫∫

D

4x(x2 + y2) dA =

∫ 2π

0

∫ 3

2

4r cos θ(r2) rdrdθ

=

∫ 2π

0

∫ 3

2

4r3 cos θ rdrdθ = 0 �

(4) Find

∮

C

F·dr where F(x, y) = 〈ex+x2y, ey−xy2〉 and C is the clockwise

perimeter of x2 + y2 = 25.

� Matching the vector field to the form F(x, y) = 〈P (x, y), Q(x, y)〉,
we have

P = ex + x2y → ∂P

∂y
= x2

Q = ey − xy2 → ∂Q

∂x
= −y2

Since C is clockwise it is negatively oriented. Green’s Theorem applies,

but we have to change the sign to account for the orientation. Also,

polar coordinates will be useful:

∮

C

F · dr =

∮

C

P dx+Qdy = −
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

= −
∫∫

D

(
−y2 − x2

)
dA =

∫∫

D

(
x2 + y2

)
dA

=

∫ 2π

0

∫ 5

0

(r2) r drdθ =
625π

2
�

B.6.5 The Divergence Theorem — Practice — Solved

(1) Find

∫∫

S

F · dS for the vector field F = 〈x2z3, 2xyz3, xz4〉 where S is

the surface of the region E that is the rectangular box −1 ≤ x ≤ 1,

−2 ≤ y ≤ 2, −3 ≤ z ≤ 3.

� The divergence of F is:

∇·F =
∂

∂x
(x2z3)+

∂

∂y
(2xyz3)+

∂

∂z
(xz4) = 2xz3 +2xz3 +4xz3 = 8xz3
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Then by the Divergence Theorem,∫∫

S

F · dS =

∫∫∫

E

∇ · F(x, y, z) dV

=

∫ 1

−1

∫ 2

−2

∫ 3

−3
(8xz3) dzdydx = 0 �

(2) Evaluate

∫∫

S

F · dS for F(x, y, z) = 〈xy, (y2 + exz
2

), sin(xy)〉 and S is

the surface of the region bounded by z = 1− x2, z = 0, y = 0, y = 2.

−1

1

1

2

1

x

y

z

Fig. B.27 The parabolic cylinder z = 1− x2 for 0 ≤ y ≤ 2, z ≥ 0.

� The divergence of F is:

∇ · F =
∂

∂x
(xy) +

∂

∂y
(y2 + exz

2

) +
∂

∂z
(sin(xy)) = y + 2y + 0 = 3y

The region of integration is under the upper half of the parabolic cylin-

der z = 1− x2. It looks like a quonset hut — see Fig. B.27. Since we

want the region above z = 0, our x values are restricted between −1

and 1. Bounds on y are given explicitly. By the Divergence Theorem,

then,
∫∫

S

F · dS =

∫∫∫

E

∇ · F dV =

∫ 1

−1

∫ 2

0

∫ 1−x2

0

(3y) dzdydx = 8 �

(3) Find

∫∫

S

F · dS for the vector field F = 〈x3y,−x2y2,−x2yz〉 where S

is the surface of the hyperboloid x2 + y2 − z2 = 1 between z = −2 and

z = 2.

� The surface S is shown in Fig. B.28. The divergence of F is:

∇ ·F =
∂

∂x
(x3y) +

∂

∂y
(−x2y2) +

∂

∂z
(−x2yz) = 3x2y − 2x2y − x2y = 0
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Then by the Divergence Theorem,∫∫

S

F · dS =

∫∫∫

E

∇ · F dV =

∫∫∫

E

(0)dzdydx = 0 �

1 2 3

1
2

3

−2

−1

1

2

x

y

z

Fig. B.28 The hyperboloid x2 + y2 − z2 = 1 between z = −2 and z = 2.

(4) Find

∫∫

S

F ·dS for the vector field F = 〈x2y, xy2, 2xyz〉 where S is the

surface of the tetrahedron formed by the plane x + 2y + z = 2 in the

first octant.

� The divergence of F is:

∇ · F =
∂

∂x
(x2y) +

∂

∂y
(xy2) +

∂

∂z
(2xyz) = 2xy + 2xy + 2xy = 6xy

For the Divergence Theorem, note that the domain underlying the

tetrahedron in the xy-plane is between the line x + 2y = 2 and the

axes, so∫∫

S

F · dS =

∫∫∫

E

∇ · F dV

=

∫ 2

0

∫ −x/2+1

0

∫ 2−x−2y

0

(6xy) dzdydx =
2

5
�

B.6.6 Stokes’ Theorem — Practice — Solved

(1) Compute

∮

C

F ·dr for the vector field F = 〈yz, 2xz, exy〉 where C is the

boundary of the cylinder x2 + y2 = 16 at z = 5.

� Note that the surface itself is simply the portion of z = 5 inside the

cylinder, so that the cylinder only defined the perimeter of the surface,
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which is a circle of radius 4. We’ll use Stokes’ Theorem to convert this

to a surface integral involving ∇× F, which is

∇× F = 〈xexy − 2x,−yexy + y, z〉

which in turn is converted to a double integral in the xy-plane. Equa-

tion (18.4) wraps that all up.

Matching the surface to the form z = g(x, y) = 5 we have gx = gy = 0.

Matching the curl, ∇× F = 〈P,Q,R〉, we have

P = xexy − 2x ; Q = −yexy + y ; R = z = 5

So by (18.4), we have

∮

C

F · dr =

∫∫

S

∇× F · dS =

∫∫

D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA

=

∫∫

D

(0 + 0 + 5) dA =

∫ 2π

0

∫ 4

0

5rdrdθ = 80π �

(2) Compute

∫∫

S

(∇×F) · dS for the vector field F = 〈yz, xz, xy〉 where S

is the paraboloid z = 9− x2 − y2 above z = 5.

� The boundary curve ∂S of this surface is the circle x2 +y2 = 4 (with

z = 5) and can be expressed as

x = 2 cos t → dx = −2 sin t dt

y = 2 sin t → dy = 2 cos t dt

z = 5 → dz = 0

for 0 ≤ t ≤ 2π. By Stokes’ Theorem we convert the surface integral

into a line integral:

∫∫

S

(∇× F) · dS =

∮

∂S

F · dr =

∮

∂S

(yz)dx+ (xz)dy + (xy)dz

=

∫ 2π

0

(2 sin t)(5)(−2 sin tdt) + (2 cos t)(5)(2 cos tdt) + 0

=

∫ 2π

0

(20 cos2 t− 20 sin2 t)dt = 0 �
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(3) Compute
∫
C

F · dr for the vector field F = 〈e−x, ex, ez〉 where C is the

boundary of the plane 2x + y + 2z = 2 in the first octant, traversed

counterclockwise.

� Remember that this is asking us to evaluate

∮

C

F · dr. We’ll use

Stokes’ Theorem via (18.4) to convert this to a double integral involv-

ing the ∇× F, which is ∇× F = 〈0, 0, ex〉 (details omitted).

Matching the surface to the form z = g(x, y) we have g(x, y) = 1− x−
y/2, so that gx = −1 and gy = −1/2. Matching the curl to the form

∇× F = 〈P,Q,R〉, we have

P = 0 ; Q = 0 ; R = ex

So by (18.4),

∮

C

F · dr =

∫∫

S

∇× F · dS =

∫∫

D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA

=

∫∫

D

(0 + 0 + ex) dA

=

∫ 1

0

∫ −2x+2

0

(ex) dydx = 2e− 4 �

(4) Find the work done by the vector field F = 〈x2y3z, sin(xyz), xyz〉
around the bounding contour of the cone y2 = x2 + z2 between y = 0

and y = 3 with normal vectors oriented outwards.

� The boundary curve ∂S of this surface is the circle x2 + z2 = 9 and,

to be positively oriented, can be expressed as

x = 3 cos t → dx = −3 sin t dt

z = 3 sin t → dz = 3 cos t dt

y = 3 → dy = 0

for 0 ≤ t ≤ 2π. By Stokes’ Theorem,

∫∫

S

(∇× F) · dS =

∮

∂S

F · dr

=

∮

∂S

(x2y3z) dx+ sin(xyz) dy + (xyz) dz
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Preparing all terms with their parametric forms,

(x2y3z) dx = (3 cos t)2(3)3(3 sin t)(−3 sin t dt)

= (−37) cos2 t sin2 t

sin(xyz) dy = 0

(xyz) dz = (3 cos t)(3 sin t)(3)(3 cos t dt)

= 34 cos2 t sin t

Together,
∫∫

S

(∇× F) · dS =

∫ 2π

0

((−37) cos2 t sin2 t+ 34 cos2 t sin t) dt

= −37π

4
�
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Appendix C

Solutions to All Challenge Problems

C.1 Chapter 13: Challenge Problem Solutions

C.1.1 Life in Three Dimensions — Challenge — Solved

(1) What is described by the expression x = y in 2D and 3D?

� In 2D, this is a line. In 3D, it’s an infinite plane; start with the line

x = y in the xy-plane, then allow all z-coordinates, since z-coordinates

are unrestricted by the expression. The line x = y stretches into a

vertical plane, bisecting the octants it passes through. �

(2) What is described by the expression x2 + y2 = 1 in 2D and 3D?

� In 2D, the expression x2 + y2 = 1 describes the unit circle. In 3D, it

describes a vertical cylinder. The z-coordinate is unrestricted, so take

the circle x2 + y2 = 1 in the xy-plane and let it expand infinitely in the

z-directions. Voila, a cylinder. �

(3) Is the triangle defined by the points A(1, 2,−3), B(3, 4,−2), and

C(3,−2, 1) an isoceles triangle?

� The triangle connecting these points has sides:

|AB| =
√

4 + 4 + 1 = 3

|BC| =
√

0 + 36 + 9 =
√

45

|AC| =
√

4 + 16 + 16 =
√

36

The triangle is not isoceles since no two lengths are the same. But,

note that |BC|2 = |AB|2 + |AC|2, so this is actually a right triangle!

�

523
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C.1.2 Multivariable Functions — Challenge — Solved

(1) Describe the domain and range of f(x, y) =
√
y − x ln(y + x); include

a sketch of the domain.

� From the square root part, we must have y−x ≥ 0. From the natu-

ral log part, we need y + x > 0. Together, we need y ≥ x and y > −x.

This is the V-shaped region above the two lines y = x and y = −x in

the xy-plane, including the line y = x but not y = −x. Figure C.1

shows this region in R2. �

−3 −2 −1 1 2 3

−1

1

2

3

y
=
x

y
=
−
x

x

y

Fig. C.1 The domain of f(x, y) =
√
y − x ln(y + x).

(2) Give TWO different sets of parametric equations that produce the line

segment starting at (1, 1, 2) and ending at (−2, 0, 2).

� Let’s start with x = 1 − 3t, y = 1 − t, z = 2 for 0 ≤ t ≤ 1. Next,

how about we set the range of t to 0 ≤ t ≤ 3, and then we can have

x = 1− t, y = 1− t

3
, z = 2. �

(3) Do the lines x = t, y = t, z = t and x = 2−s, y = −1+2s, z = (s+1)/2

share a point?

� We can make the x and y coordinates match by forcing t = 2 − s
and t = −1 + 2s, i.e. 2 − s = −1 + 2s, i.e. s = 1 and so also t = 1.

Passing these values to the z-coordinates we get (1) z = 1 and (2)
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z = (1 + 1)/2 = 1. So the z-coordinate matches, too! The values t = 1

and s = 1 both give the point (1, 1, 1), and this is the point the lines

share. �

C.1.3 3D Surfaces — Challenge — Solved

(1) A plane shares x and y intercepts with the plane 2x + y − 3z − 4 = 0

but has its own z intercept of (0, 0,−2). What is the equation of this

plane?

� The plane 2x + y − 3z − 4 = 0 has an x intercept of (2, 0, 0) and a

y intercept of (0, 4, 0), so we’re looking for the plane going through the

points (2, 0, 0), (0, 4, 0), and (0, 0,−2). Plugging each point into the

standard form for a plane, we get

2a+ d = 0

4b+ d = 0

−2c+ d = 0

Choosing the free parameter d = −4, we get a = 2, b = 1 and c = −2,

so the equation of this plane is 2x + y − 2z − 4 = 0, which can be

rewritten as z = x+ y/2− 2. �

(2) Identify the surface 4x2 + 4y2 + 4z2 − 8x+ 16y = 1. Give at least two

pieces of identifying information that distinguishes this surface from

others of the same type.

� Completing the square on the given equation (factor first!),

4x2 + 4y2 + 4z2 − 8x+ 16y = 1

4(x2 − 2x+ (−1)2) + 4(y2 + 4y + (2)2) + 4z2 = 1 + 4(−1)2 + 4(2)2

4(x2 − 2x+ 1) + 4(y2 + 4y + 4) + 4z2 = 1 + 4 + 16

4(x− 1)2 + 4(y + 2)2 + 4z2 = 21

(x− 1)2 + (y + 2)2 + z2 =
21

4

So this is a sphere with center (1,−2, 0) and radius
√

21/2. �

(3) Identify the surface 25y2+z2 = 100+4x2 using traces. Provide at least

one trace parallel to each each of the xy-, yz-, and xz-planes.
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� In the coordinate planes x = 0, y = 0, and z = 0, we get the traces

25y2 + z2 = 100, z2 − 4x2 = 100, and 25y2 − 4x2 = 100, which are an

ellipse, and two hyperbolas respectively. The trace in any plane x = c

looks like 25y2 + z2 = 100 + 4c2 which is an ellipse. The trace in any

plane y = c is z2 − 4x2 = 100 − 25c2 which is a hyperbola. The trace

in any plane z = c looks like 25y2 − 4x2 = 100 − c2 which is also a

hyperbola. This is a hyperboloid of one sheet. �

(4) (Bonus! This problem will connect to others in later sections.) Find the

level surface of w = 2x2 + y2 + z corresponding to w = 4, and present

that level surface as a contour plot showing the values z = 0, 1, 2, 3.

(Thus, from a 4D hypersurface, we generate a 3D level surface, and for

that we show several 2D level curves!)

� The level surface of w = 2x2 + y2 + z corresponding to w = 4 is

the collection of points (x, y, z) in R3 that yield 2x2 + y2 + z = 4. We

can rewrite this relation as z = 4 − 2x2 − y2, which is an inverted

paraboloid with vertex (0, 0, 4). To display this surface as a contour

plot as specified, using the values z = 0, 1, 2, 3, we collect the following

four contours (level curves):

Fig. C.2 Some level curves for z = 4− 2x2 − y2 (w/ CP 4).



Solutions to All Challenge Problems 527

• 0 = 4− 2x2 − y2, i.e. 2x2 + y2 = 4

• 1 = 4− 2x2 − y2, i.e. 2x2 + y2 = 3

• 2 = 4− 2x2 − y2, i.e. 2x2 + y2 = 2

• 3 = 4− 2x2 − y2, i.e. 2x2 + y2 = 1

Each contour (level curve) is an ellipse, as shown in Fig. C.2. �

C.1.4 Limits of Multivariable Functions — Challenge —

Solved

(1) Investigate the limit lim
(x,y)→(0,0)

6x3y

2x4 + y4
.

� Along the path x = 0,

lim
(x,y)→(0,0)

6x3y

2x4 + y4
= lim

(x,y)→(0,0)

0

y4
= 0

Along the path y = x,

lim
(x,y)→(0,0)

6x3y

2x4 + y4
= lim

(x,y)→(0,0)

6x4

3x4
= 2

So we get two different limits on two different paths, and the limit does

not exist. �

(2) Investigate the limit lim
(x,y)→(0,0)

x4 − y4
x2 + y2

.

� With some factoring, we get:

lim
(x,y)→(0,0)

x4 − y4
x2 + y2

= lim
(x,y)→(0,0)

(x2 − y2)(x2 + y2)

x2 + y2

= lim
(x,y)→(0,0)

(x2 − y2) = 0 �

(3) Where is the function f(x, y, z) =
√

1− x2 − y2 − z2 continuous?

� The domain of this function is all points such that 1−x2−y2−z2 ≥ 0,

i.e. everywhere x2 + y2 + z2 ≤ 1. This is everywhere inside and on the

unit sphere. Within this domain, all points (x, y, z) are points of con-

tinuity. �
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C.1.5 Partial Derivatives — Challenge — Solved

(1) Find both first order derivatives of f(s, t) =
st

s2 + t2
.

� Using the quotient rule, we get

∂f

∂s
=
t(s2 + t2)− st(2s)

(s2 + t2)2
=

t3 − ts2
(s2 + t2)2

=
t(t2 − s2)

(s2 + t2)2

∂f

∂t
=
s(s2 + t2)− st(2t)

(s2 + t2)2
=

s3 − st2
(s2 + t2)2

=
s(s2 − t2)

(s2 + t2)2
�

(2) Find all second order derivatives of u = e−s sin t.

� Starting with first derivatives,

∂u

∂s
= −e−s sin t and

∂u

∂t
= e−s cos t

so that

∂2u

∂s2
= e−s sin t ;

∂2u

∂t∂s
=

∂2u

∂s∂t
= −e−s cos t ;

∂2u

∂t2
= −e−s sin t �

(3) Does u = ln
√
x2 + y2 satisfy Laplace’s Equation?

� We have

ux =
x

x2 + y2
→ uxx =

y2 − x2
(x2 + y2)2

uy =
y

x2 + y2
→ uxx =

x2 − y2
(x2 + y2)2

so

uxx + uyy =
y2 − x2

(x2 + y2)2
+

x2 − y2
(x2 + y2)2

= 0

and the function DOES satisfy Laplace’s equation. �

(4) (Bonus! This problem connects to CP 4 in Sec. 13.3 and will be used

later, too.) For w = 2x2 + y2 + z, compute wx(1, 1, 1), wy(1, 1, 1),

and wz(1, 1, 1). In CP 4 of Sec. 13.3, you presented some level curves

associated with this level surface.4 Can you find where the point (1, 1, 1)

is indicated on the plot of those level curves?

4You can also see those level curves in the solutions for that section.
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� Since wx = 4x, then wx(1, 1, 1) = 4. Since wy = 2y, then

wy(1, 1, 1) = 2. Since wz = 1, then wz(1, 1, 1) = 1.

The point (1, 1, 1) falls on the level surface for w = 4, since w(1, 1, 1) =

4. In the 2D diagram of level curves representing this surface, we should

see the point (1, 1, 1) represented on the level curve for z = 1, simply

because the z-coordinate of this point is 1. But also, the level surface

for w = 4 is the surface 2x2 + y2 + z = 4, i.e. z = 4− 2x2 − y2 — and

when x = 1 and y = 1, we find z = 1. It’s all consistent. The point

representing (1, 1, 1) has been added to the diagram from CP 4 of Sec.

13.3, as new Fig. C.3. �

Fig. C.3 Some level curves for z = 4− 2x2 − y2 (w/ CP 4).
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C.2 Chapter 14: Challenge Problem Solutions

C.2.1 The Chain Rule — Challenge — Solved

(1) If z = f(α(s, t), β(s, t)) = lnα cosβ with α(s, t) = 2s+ t and β(s, t) =

s − 2t, find the first derivatives of z with respect to the independent

variables s and t. Write your final expressions in terms of s and t.

� We have that z is ultimately a function of s and t, going through

the intermediate variables α and β. So,

∂z

∂s
=
∂z

∂α

∂α

∂s
+
∂z

∂β

∂β

∂s

=
cosβ

α
· (2)− lnα sinβ · (1)

=
2 cosβ

α
− lnα sinβ =

2 cos(s− 2t)

2s+ t
− ln(2s+ t) sin(s− 2t)

∂z

∂t
=
∂z

∂α

∂α

∂t
+
∂z

∂β

∂β

∂t

=
cosβ

α
· (1)− lnα sinβ · (−2)

=
cosβ

α
+ 2 lnα sinβ =

cos(s− 2t)

2s+ t
+ 2 ln(2s+ t) sin(s− 2t) �

(2) If w = w(s, t) with s = s(x, y, z, p), and t = t(x, y, z, p), write chain

rule expressions for all possible first derivatives of w with respect to the

four independent variables.

� There will be four first derivatives of w; these derivatives are with

respect to x, y, z, p going through the intermediate variables of s, t. The

chain rule formulations are:

∂w

∂x
=
∂w

∂s

∂s

∂x
+
∂w

∂t

∂t

∂x

∂w

∂y
=
∂w

∂s

∂s

∂y
+
∂w

∂t

∂t

∂y

∂w

∂z
=
∂w

∂s

∂s

∂z
+
∂w

∂t

∂t

∂z

∂w

∂p
=
∂w

∂s

∂s

∂p
+
∂w

∂t

∂t

∂p
�
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(3) If T = cos(x2 +y2 +z2) where x = u+v, y = 2u−v and z = 3uv2, find

the values of all possible first derivatives of T with respect to u and v

when u = 1, v = 2.

� There are two first partials with respect to u, v, going through the

intermediate variables x, y, z. We want them for u = 1, v = 2. First,

note that for these values we have

x = u+ v = 3

y = 2u− v = 0

z = 3uv2 = 12

Then with the growing list of values u = 1, v = 2, x = 3, y = 0, z = 12,

we have

∂T

∂x
= −2x sin(x2 + y2 + z2) = −6 sin 153

∂T

∂y
= −2y sin(x2 + y2 + z2) = 0

∂T

∂z
= −2z sin(x2 + y2 + z2) = −24 sin 153

and also

∂x

∂u
= 1

∂y

∂u
= 2

∂z

∂u
= 3v2 = 12

∂x

∂v
= 1

∂y

∂v
= −1

∂z

∂v
= 6uv = 12

So finally with the chain rule,

∂T

∂u
=
∂T

∂x

∂x

∂u
+
∂T

∂y

∂y

∂u
+
∂T

∂z

∂z

∂u

= (−6 sin 153)(1) + 0 + (−24 sin 153)(12) = −294 sin 153

∂T

∂v
=
∂T

∂x

∂x

∂v
+
∂T

∂y

∂y

∂v
+
∂T

∂z

∂z

∂v

= (−6 sin 153)(1) + 0 + (−24 sin 153)(12) = −294 sin 153 �
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C.2.2 Optimization — Challenge — Solved

(1) Find and characterize the critical points of f(x, y) = 8xy(x+y) +
√

17.

� Writing out f(x, y) = 8x2y + 8xy2 +
√

17, we have that

fx = 16xy + 8y2 = 8y(2x+ y)

fy = 8x2 + 16xy = 8x(x+ 2y)

Remember we are looking for when fx = fy = 0. Starting with fx, we

see fx = 0 only at y = 0 or when y = −2x.

• When y = 0 then fy = 8x2, and so fy will also be zero only when

x = 0. So we’ve found that both fx = 0 AND fy = 0 when y = 0

AND x = 0, so (0, 0) is a critical point.

• When y = −2x then fy = 8x(x − 4x) = −24x2, and so again fy
will also be zero only when x = 0. Given that y = −2x here, we’ve

again found that both fx = 0 AND fy = 0 when y = 0. Looks

like (0, 0) is our only critical point!

Note that if you started looking at when fy = 0 (at x = 0 or x = −2y)

you’d come to the same conclusion.

Now let’s get ready for the second derivative test, via Useful Fact 14.1,

to categorize this critical point of (x, y) = (0, 0).

fxx = 16y → fxx(0, 0) = 0

fyy = 16x → fyy(0, 0) = 0

fxy = 16(x+ y)→ fxy(0, 0) = 0

D(0, 0) = fxx(0, 0)fyy(0, 0)− [fxy(0, 0)]2 = 0

Since D(0, 0) = 0 the second derivative test is inconclusive. Uh oh!

Hey, maybe that’s why this is a challenge problem — not to see if you

can handle really complicated derivative calculations, but to see if you

remember the fundamental meaning of a saddle point. Note that f(0, 0)

itself is
√

17. The value of f(x, y) is also
√

17 along either of the x- or

y-axes, and also along the line y = −x. Will f(x, y) wobble above and

below
√

17 otherwise? Of course. Note that, for example,

f(0.1, 0.1) >
√

17

f(0.1, 0.05) <
√

17

Our critical point is a saddle point. �
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(2) Find the absolute extremes of f(x, y) = 3x2 +2xy+y2 over the domain

D with −2 ≤ x ≤ 2, 0 ≤ y ≤ 3.

� Are there extremes over the interior of D? With fx = 6x + 2y and

fy = 2x + 2y, we have fx = fy = 0 at (0,0) which is indeed in the

interior of D.

Let edge L1 be the left boundary of D, where x = −2. Here, the func-

tion reduces to f(−2, y) = 12− 4y+ y2. There is a Calc I style critical

point here at y = 2, which leads us to the possible extreme of f(x, y)

at (−2, 2).

Let edge L2 be the right boundary of D, where x = 2. Here, the func-

tion reduces to f(2, y) = 12 + 4y + y2. Now f ′(2, y) = 4 + 2y, which is

zero where y = −2. This might lead to a possible extreme of f(x, y) at

(x, y) = (2,−2), but that’s outside D, so we don’t care about it.

Let edge L3 be the lower boundary of D, where y = 0. Here, the func-

tion reduces to f(x, 0) = 3x2. There is a Calc I style critical point here

at x = 0, which leads us to a possible extreme of f(x, y) at (0, 0), but

we already know about that one.

Let edge L4 be the upper boundary of D, where y = 3. Here, the func-

tion reduces to f(x, 3) = 3x2 + 6x + 9. There is a Calc I style critical

point here at x = −1, which leads us to the possible extreme of f(x, y)

at (−1, 3).

At the critical points we’ve identified on the interior, we get

f(0, 0) = 0 ; f(−2, 2) = 8 ; f(−1, 3) = 6

At the vertices of our region,

f(−2, 0) = 12 ; f(−2, 3) = 9 ; f(2, 0) = 12 ; f(2, 3) = 33

Comparing the critical points and vertices, we see an absolute maxi-

mum of 33 at (2,3), and absolute minimum of 0 at (0,0). �
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(3) Identify the coordinates of the point on the plane 2x− y+ z = 16 that

is closest to the origin.

� Translated, we are asking for the point on the plane at which the

distance to (0, 0, 0) is minimized. As in other examples, we’ll make life

easier by minimizing d2 (since whatever minimizes d2 also minimizes

d). The distance between (0,0,0) and any point in the universe at all is

given by:

d2 = (x− 0)2 + (y − 0)2 + (z − 0)2 = x2 + y2 + z2

This is our objective function. Our constraint is that we’re only inter-

ested in points on the plane 2x−y+z = 16, i.e. z = 16−2x+y, which

reduces our objective function to:

d2 = x2 + y2 + (16− 2x+ y)2

We can now treat the right hand side as the function f(x, y) we want

to minimize, and start our search for a critical point with fx = 0. Note

that

fx = 2x+ 2(16− 2x+ y)(−2) = 10x− 4y − 64

Then 10x− 4y − 64 = 0 gives that fx = 0 when 4y = 10x− 64.

Now seeing that fx = 0 when 4y = 10x− 64, we look for where fy = 0,

too:

−4x+ 4y + 32 = 0

−4x+ (10x− 64) + 32 = 0

6x− 32 = 0

x =
16

3

Passing that back to 4y = 10x− 64,

4y = 10

(
16

3

)
− 64

y =
40

3
− 16 = −8

3

And so putting our values together, we see that the distance from the

plane to the origin is minimized at the point with (x, y) = (16/3,−8/3).
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For the full set of coordinates, we need the z-coordinate, too, and that

comes from the equation of the plane:

z = 16− 2x+ y = 16− 2

(
16

3

)
− 8

3
=

8

3

and so the full coordinates of the point closest to the origin are

(x, y, z) =

(
16

3
,−8

3
,

8

3

)

One technical detail should be addressed, and that is: how do we know

we MINIMIZED the distance? One argument would be that there is

no max distance between the given plane and the origin. Or, we could

dive into the second derivative test:

fx = 2x+ 2(16− 2x+ y)(−2) = 10x− 4y − 64

fy = 2y + 2(16− 2x+ y) = −4x+ 4y + 32

fxx = 10

fyy = 4

fxy = −4

D(x, y) = fxxfyy − [f(x, y)]2 = 24

Since D(x, y) > 0 and fxx > 0 everywhere, any critical point is a local

minimum. �
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C.2.3 Double Integrals — Challenge — Solved

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x
=
√ 1
− y

2x
=
y 2−

1

x

y

Fig. C.4 Region of integration for CP 1.

(1) Evaluate

∫∫

D

(1) dA where D is the region to the right of the parabola

x = y2 − 1 and to the left of the semicircle x =
√

1− y2. Once you

find the value of the integral, state what geometric measure you just

calculated.

� Note that x = y2 − 1 is a parabola opening sideways to the right

from the vertext of (−1, 0). The semicircle opens to the left from (1, 0).

This region is shown in Fig. C.4. Since the boundaries of D are given

in terms of x, we can set the inner limits of integration to be these

two bounds, that is we’ll have y2 − 1 ≤ x ≤
√

1− y2. For the outer

(constant) bounds on y, we have to find where the two curves intersect:

y2 − 1 =
√

1− y2
y4 − 2y2 + 1 = 1− y2

y4 − y2 = 0

y2(y2 − 1) = 0

This happens where y = −1, 0, 1. These correspond to x = 0,−1, 0

respectively. The intersection (−1, 0) is where the FULL circle on the

right might intersect the vertex of the parabola, but that is outside of

D. We’re interested in the min and max values of y, where the two

curves criss-cross as they intersect the y-axis at y = −1, 1. And so the
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full integration is:

∫∫

D

(1) dA =

∫ 1

−1

∫ √1−y2

y2−1
(1) dxdy

The inner integral would not be hard, but the outer integral would

require trigonometric substitution because of the
√

1− y2 term. So

let’s hand this off to a CAS to get:

∫∫

D

(1) dA =

∫ 1

−1

∫ √1−y2

y2−1
(1) dxdy =

π

2
+

4

3

We’ve computed the area in between the paraboloid and the semicircle.

�

0.5 1

0.5

1

y
=
x

y
=
x
5

x

y

Fig. C.5 Region of integration for CP 2.

(2) Find the volume under the surface z = 2x + y2 over the region in the

first quadrant bounded by y = x5 and y = x.

� Note that y = x5 and y = x will intersect at (0, 0) and (1, 1) in the

first quadrant. This region is shown in Fig. C.5. The line y = x is the

“higher” curve and therefore provides the upper limit of integration:
∫∫

D

(x2 + 3y2) dA =

∫ 1

0

∫ x

x5

(2x+ y2) dydx =
149

336
�

(3) Reverse the order of integration of, and then evaluate, the following

integral
∫ 0

−1

∫ √y+1

−√y+1

y2 dxdy
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−1 −0.5 0.5 1

−1

−0.5

0.5

1

x
= − √

1−
y x

=
√ 1
− y

x

y

Fig. C.6 x = ±√1− y aka y = x2 − 1, for CP 3.

� Note that the limits, along with the current ordering, tell us we’re

looking at a domain from x = −√y + 1 to x =
√
y + 1 for −1 ≤ y ≤ 0.

This means we’re looking at the region between the two halves of the

paraboloid y = x2 − 1, below the x-axis. This region is shown in

Fig. C.6. We can redesign the region as being between y = x2 − 1 and

y = 0 between x = −1 and x = 1, so we have an alternate version of

the integral:
∫ 1

−1

∫ 0

x2−1
y2 dydx =

32

105
�
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C.2.4 Triple Integrals — Challenge — Solved

1
3

5

1

3

5
1

3

5

x

y

z

Fig. C.7 Region in the first octant
bounded by x+ y + z = 5 (w/ CP 1).

1 3 5

1

3

5

x
+
y

=
5

x

y

Fig. C.8 2D region under x+y+z = 5

(w/ CP 1).

(1) Given a 3D region of integration E and a function f(x, y, z) defined in

that region, the average value of f over E is given by

favg =
1

V (E)

∫∫∫

E

f(x, y, z) dV

where V (E) is the volume of E. Find the average value of f(x, y, z) =

xz + 5z + 10 over the region in the first octant between the plane

x+ y + z = 5 and the coordinate planes.

� The 3D solid described here is shown in Fig. C.7, and the resulting

2D region in the xy-plane is in Fig. C.8. The bounds of E can be given

as 0 ≤ x ≤ 5, 0 ≤ y ≤ 5− x, and 0 ≤ z ≤ 5− x− y. So the volume of

E is
∫ 5

0

∫ 5−x

0

∫ 5−x−y

0

(1) dzdydz =
125

6

Then the integration of f over E results in:
∫ 5

0

∫ 5−x

0

∫ 5−x−y

0

(xz + 5z + 10) dzdydz =
4375

12

Then the average of f over E is

favg =
1

V (E)

∫∫∫

E

f(x, y, z) dV =
6

125
· 4375

12
=

35

2
�
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(2) Evaluate

∫∫∫

E

y ln(x) + z dV where E is defined as the region E =

{(x, y, z) : 1 ≤ x ≤ e; 0 ≤ y ≤ ln(x); 0 ≤ z ≤ 1} using TWO equivalent

orderings of integration. Obviously, you should get the same value from

the integral with each ordering.

� One ordering of the integral comes directly from the description:

∫∫∫

E

y ln(x) + z dV =

∫ e

1

∫ ln(x)

0

∫ 1

0

y ln(x) + z dzdydx =
7

2
− e

A second ordering can come from reordering the bounds of x and y: The

region 1 ≤ x ≤ e; 0 ≤ y ≤ ln(x) is also known as 0 ≤ y ≤ 1, ey ≤ x ≤ e,
so that we have

∫∫∫

E

y ln(x) + z dV =

∫ 1

0

∫ e

ey

∫ 1

0

y ln(x) + z dzdxdy =
7

2
− e

There are other arrangements, but these are the most direct. �
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Fig. C.9 Region between z = 2x2+y2,
z = 10 (w/ CP 3).

1 2 3

1

2

3 2x2 + y2 = 10

x

y

Fig. C.10 2D region from z = 2x2 +y2

vs z = 10 (w/ CP 3).

(3) Find the volume of region between the elliptic paraboloid z = 2x2 + y2

and the plane z = 10. (Use of tech for evaluation is highly recom-

mended!)

� The 3D solid described here is shown in Fig. C.9, and the result-

ing 2D region in the xy-plane is in Fig. C.10. The paraboloid opens

upward around the z-axis, so the “floor” of this solid is the paraboloid
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itself and the “roof ” is the plane z = 10. This gives limits on z:

2x2 + y2 ≤ z ≤ 10. With z pinned down, we get limits on y and z by

exploring the region of the xy-plane used by this solid.

The intersection of the paraboloid with the plane z = 10 is 2x2 + y2

= 10. This is an ellipse whose long axis is in the y direction. We can

solve for y as −
√

10− 2x2 ≤ y ≤
√

10− 2x2. The limits on x come

from the intersection of the ellipse with the x-axis: 2x2 + (0)2 = 10

gives x = ±
√

5.

We must order limits of integration so that variables are progressively

eliminated; the final limits must be constants. So, z must go first

(inner), then y (middle), and finally x (outer): So,

V =

∫∫∫

E

dV =

∫ √5

−
√
5

∫ √10−2x2

−
√
10−2x2

∫ 10

2x2+y2
dzdydx = 25π

√
(2) �
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C.3 Chapter 15: Challenge Problem Solutions

C.3.1 Double Ints in Polar Coords — Challenge — Solved

(1) Given a 2D region R and a function f defined in that region, the average

value of f over R is given by

favg =
1

A(R)

∫∫

R

f dA

where A(R) is the area of R. Find the average value of f(x, y) =√
x2 + y2 over the region bounded by r = 3 sin 2θ between θ = 0 and

θ = π/2.

� The area of the region R is given in polar coordinates by

A(R) =

∫∫

R

(1) dA =

∫ π/2

0

∫ 3 sin 2θ

0

(1) r drdθ =
9π

8

Converted to polar coordinates, the function f is f = r, and so the

integral of the function over the region is

∫∫

R

f dA =

∫ π/2

0

∫ 3 sin 2θ

0

(r) r drdθ = 6

And so

favg =
1

A(R)

∫∫

R

f dA =
8

9π
· 6 =

16

3π
�

(2) Use a double integral in polar coordinates to find the volume between

the paraboloid z = 16− 2x2 − 2y2 and the plane z = 2.

� Figures C.11 and C.12 show the full 3D region as well as the corre-

sponding polar region in the 2D plane. The paraboloid intersects the

plane z = 2 where 16 − 2x2 − 2y2 = 2, i.e. where x2 + y2 = 7. So the

volume between the paraboloid and the plane is below the paraboloid

(which in polar coordinates is z = 16−2r2) and above the plane z = 2;

the volume sits over the region 0 ≤ r ≤
√

7 and 0 ≤ θ ≤ 2π. So,

∫∫

R

[(16− 2r2)− 2] dA =

∫ 2π

0

∫ √7

0

(14− 2r2) · r drdθ = 49π �
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Fig. C.11 Under the paraboloid z =

16− 2x2 − 2y2, above the plane z = 2.
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√

7

Fig. C.12 Intersection of z = 16 −
2x2 − 2y2 and z = 2.

(3) Convert the following integral into polar coordinates and then evaluate:

∫ 3

0

∫ √9−y2

−
√

9−y2
(x2 + y2)2 dxdy

� The limits of integration describe the upper half of a circle of radius

3 (since y goes from 0 to 3) — which is the region 0 ≤ r ≤ 3 and

0 ≤ θ ≤ π. The function being integrated is, in polar form, (r2)2 or r4.

And so, we have

∫ 3

0

∫ √9−y2

−
√

9−y2
(x2 + y2)2 dxdy =

∫ π

0

∫ 3

0

(r4) · rdrdθ =
243π

2
�
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C.3.2 Cylindrical and Spherical Coords — Challenge —

Solved

(1) What are the cylindrical coordinates of the point whose spherical co-

ordinates are (ρ, θ, φ) = (2, 3π/4, π/6)?

� The θ coordinate is the same in both cylindrical and spherical coor-

dinates, so we don’t have to convert that one. For the other two, there

are complicated formulas that directly convert between spherical and

cylindrical, but it’s just as well to go through rectangular. With ρ = 2,

θ = 3π/4, and φ = π/6, we have

x = ρ cos θ sinφ = 2 cos
3π

4
sin

π

6
= − 1√

2

y = ρ sin θ sinφ = 2 sin
3π

4
sin

π

6
= +

1√
2

z = ρ cosφ = 2 cos
π

6
=
√

3

Now note that the cylindrical z is also the rectangular z, so z =
√

3.

And r =
√
x2 + y2 = 1. So the cylindrical coordinates of the given

point are

(r, θ, z) = (1,
3π

4
,
√

3)

A bit of double checking can be done by noting the original spherical

coordinates put the point over the second quadrant, where x < 0, y >

0, z > 0 and everything that follows is consistent with that. �

(2) Suppose a three-dimensional region is described with the following

bounds in rectangular coordinates:

• The full 3D region is bounded below by the paraboloid z = x2+y2

and above by the cone z =
√
x2 + y2

• In the xy-plane, the region covers the right half of the unit circle,

thus we have 0 ≤ x ≤
√

1− y2 and −1 ≤ y ≤ 1.

Describe the bounds of this same region in cylindrical coordinates by

giving the bounds of r, θ, and z.

� The two surfaces around this region are shown in Fig. C.13. We

convert the equations of the surfaces to polar coordinates,

z = x2 + y2 → z = r2 (lower surface)

z =
√
x2 + y2 → z =

√
r2 = r (upper surface)
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Since we’re restricted to the right half of the unit circle in the xy-plane,

we select the ranges −π/2 ≤ θ ≤ π/2 and 0 ≤ r ≤ 1. �

1
1

1

x
y

z

Fig. C.13 Above z = r2, below z = r, −π/2 ≤ θ ≤ π/2.

(3) Suppose a three-dimensional region is described with the following

bounds in rectangular coordinates:

• The full 3D region is underneath the hemisphere z =
√

4− x2 − y2
and above the xy-plane

• In the xy-plane, the region covers the upper half of a circle of

radius 2 centered at the origin, thus we have −2 ≤ x ≤ 2 and

0 ≤ y ≤
√

4− x2.

Describe the bounds of this same region in spherical coordinates by

giving the bounds of ρ, θ, and φ.

� Note that the given hemisphere has a radius of 2. (The portion of

this hemisphere as described is shown in Fig. C.14. So, in spherical

coordinates, the full region under the hemisphere z =
√

4− x2 − y2
and above the xy-plane is given by

0 ≤ ρ ≤ 2 0 ≤ θ ≤ 2π 0 ≤ φ ≤ π

2

Again, that’s the entire region under the hemisphere. The second re-

striction above, though, says we only want half of that whole zone (the
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half extending along the positive y-axis). This cuts our range of θ in

half. And so altogether, we have

0 ≤ ρ ≤ 2 0 ≤ θ ≤ π 0 ≤ φ ≤ π

2
�

1
2

1
2

1

2

x

y

z

Fig. C.14 Inside ρ = 2, above xy-plane, forward of xz-plane.
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C.3.3 Triple Ints in Cyl. & Spher. Coords — Challenge

— Solved

(1) Let’s pretend the corn silo pictured in Fig. C.15 is bounded on its sides

by the cylinder x2 + y2 = 225 and above by the (inverted) cone z =

50−
√
x2 + y2/9. Construct a triple integral in cylindrical coordinates

that would give the volume of this silo, and compute it.

Fig. C.15 Corn silo with cylinder and cone (with CP 1).

� We can describe the region of integration as being inside the cylinder

x2 + y2 = 225 and below the (inverted) cone z = 50 −
√
x2 + y2/9.

Because of the cylindrical body of the region, cylindrical coordinates

is the way to go. Note that in cylindrical coordinates, the “roof ” of

the silo is z = 50 − r/9, and so the entire region is bounded in the z

direction with 0 ≤ z ≤ 50−r/9. The equation of the bounding cylinder,

in cylindrical coordinates, is r = 15. So in the horizontal directions, we

have 0 ≤ r ≤ 15 and 0 ≤ θ ≤ 2π. In all, the volume is

V =

∫∫∫

E

(1) dV =

∫ 2π

0

∫ 15

0

∫ 50−r/9

0

(1) r dzdrdθ = 11, 000π

and that volume is in 11, 000π cubic units, where units are whatever is

built into the original equations! �
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(2) Evaluate

∫∫∫

E

xyz, dV , where E is the region between the spheres

ρ = 1 and ρ = 3 and above the cone φ = 2π/3.

1 3
1 3

−3

−1

1

3

x
y

z

Fig. C.16 Above φ = 2π/3, between ρ = 1, ρ = 3.

� The given region E of integration is between the spheres ρ = 1 and

ρ = 3 and above the cone φ = 2π/3. Bounds on ρ are given by the

spheres. The region above the cone is 0 ≤ φ ≤ 2π/3 (remember, φ is

measures from the top down). And, since there are no other restrictions,

we allow 0 ≤ θ ≤ 2π. The region E is shown in Fig. C.16. Also,

converting the given function,

xyz = (ρ sinφ cos θ)(ρ sinφ sin θ)(ρ cosφ) = ρ3 sin2 φ cosφ sin θ cos θ

The volume element in spherical coordinates is dV = ρ2 sinφdρdφdθ.

So, the triple integral becomes
∫ 2π

0

∫ 2π/3

0

∫ 3

1

(ρ3 sin2 φ cosφ sin θ cos θ)ρ2 sinφdρdφdθ = 0

Note that 0 is a perfectly valid result, since this integral does NOT

compute a volume! �

(3) Evaluate the following integral by first converting to an appropriate

coordinate system; explain the geometric meaning of your final value:

∫ 4

−4

∫ √16−y2

0

∫ 5

−
√

16−x2−y2
(1) dzdxdy
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� From the given limits of integration on z, we can see that the “floor”

of this region is the lower half of the sphere x2 + y2 + z2 = 16, and the

“roof ” is the plane z = 5. From the limits on x and y, we see we are

using up the upper half of a circle of radius 4. So imagine an invisible

cylinder of radius 4 going from the rim of the lower hemisphere up to

the plane z = 5; that cylinder forms the outer “walls” of this region.

The region is shown in Fig. C.17. Clearly (I hope it’s clear!), cylindrical

coordinates look the most appropriate, and we have

0 ≤ r ≤ 4 0 ≤ θ ≤ π −
√

16− r2 ≤ z ≤ 5

and then the requested integral is

∫ 4

−4

∫ √16−y2

0

∫ 5

−
√

16−x2−y2
(1) dzdxdy =

∫ π

0

∫ 4

0

∫ 5

−
√
16−r2

(1) r dzdrdθ

=
184π

3

Because we integrated the function f = 1 over the region of integration,

we just computed the volume of this hemisphere / cylinder thingy. �

−4

4−4

4

−4

5

x

y

z

Fig. C.17 Region between z = −
√

16− r2 and z = 5, for y ≥ 0.
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C.4 Chapter 16: Challenge Problem Solutions

C.4.1 Vector Basics — Challenge — Solved

(1) Find a vector of length 3 in the opposite direction of v = 〈1,−1, 2〉.

� The vector v = 〈1,−1, 2〉 has length |v| =
√

1 + 1 + 4 =
√

6, so a

unit vector in the same direction is

v

|v| =

〈
1√
6
,− 1√

6
,

2√
6

〉

A vector of length 3 in the SAME direction as 〈1,−1, 2〉 is then

3
v

|v| =

〈
3√
6
,− 3√

6
,

6√
6

〉

so a vector of length 3 in the OPPOSITE direction is:
〈
− 3√

6
,

3√
6
,− 6√

6

〉

If you like your radicals simplified, this vector is also known as
〈
−
√

6

2
,

√
6

2
,−
√

6

〉
�

(2) Find a unit vector that points in the direction of a minute hand on an

analog 12-hour clock when it is exactly 10 minutes past the hour.

� The center of the clock will be the origin; the positive x-axis points

towards 3 o-clock. If the time is 10 minutes past the hour, the minute

hand is pointing at the 2, which corresponds to an angle of π/6 above

the positive x-axis. (Do you see why each 5 minute interval on the

clock corresponds to an angle of π/6?).

If we represent the minute hand itself as a vector M with length r, its

components are

M = 〈x, y〉 =
〈
r cos

π

6
, r sin

π

6

〉
=

〈√
3r

2
,
r

2

〉

Now we don’t know what r is, but since we’re after a unit vector in the

direction of the minute hand, why not just set r = 1? Then our minute

hand is itself the unit vector, and its components are 〈
√

3/2, 1/2〉. �
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(3) If v is any vector 〈v1, v2, v3〉 and w = 5v, use the definition of magni-

tude (length) to prove that the length of w is always 5 times the length

of v. (Sure, we can say “Well, duh, of course it is!”, but can you prove

it in the mathematical court of law?)

� Note that since v = 〈v1, v2, v3〉, then w = 〈5v1, 5v2, 5v3〉. Then

since, generically, |w| =
√
w2

1 + w2
2 + w2

3, we have

|w| =
√

25v21 + 25v22 + 25v23 =
√

25(v21 + v22 + v23) = 5
√
v21 + v22 + v23

But, the right most square root expression is just |v| itself, and so

|w| = 5|v| �

C.4.2 Dot and Cross Products — Challenge — Solved

(1) If a = 〈1, 6,−2〉 and b = 〈2,−3, 1〉, what are compab and projab?

� We have a · b = −18 and |a| =
√

41 so that

compab =
a · b
|a| =

−18√
41

with which we get:

projab =

(
a · b
|a|

)(
a

|a|

)
=

(−18√
41

)(
1√
41

)
〈1, 6,−2〉

= −18

41
〈1, 6,−2〉

If you like to distribute constants, this is 〈−18/41,−108/41, 36/41〉.
�

(2) Find a unit vector orthogonal to both i− 2j and i + k.

� Let’s find just any vector orthogonal to both, then scale it to a unit

vector. A vector orthogonal to both of these vectors will come from

their cross product. We can find that 〈1,−2, 0〉×〈1, 0, 1〉 = 〈−2,−1, 2〉;
the length of this vector is 3. Therefore a unit vector orthogonal to the

two given vectors is 〈−2/3,−1/3, 2/3〉. �

(3) Let v = 〈p, q, r〉 be any vector in R3 and let w be any scalar multiple

of v, i.e. w = cv. The cross product v ×w will always have the same

result; find that result, and show how you know what it is.
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� The value of v × (cv) will always be 0. Here’s how we know: We

have

v × (cv) =

∣∣∣∣∣∣

i j k

p q r

cp cq cr

∣∣∣∣∣∣
=

∣∣∣∣
q r

cq cr

∣∣∣∣ i−
∣∣∣∣
p r

cp cr

∣∣∣∣ j +

∣∣∣∣
p q

cp cq

∣∣∣∣ k

= (cqr − cqr)i− (cpr − cpr)j + (cpq − cpq)k
= 0i + 0j + 0k �

C.4.3 Vector Functions — Challenge — Solved

(1) Suppose object A is moving along the path r1(t) = 〈t, t2, t3〉 and object

B is moving along the path r2(s) = 〈1 + 2s, 1 + 6s, 1 + 14s〉.

(a) Find a vector that points from object A to object B at t = s = 2.

(b) How far apart are the objects at that instant?

(c) Are there any points that the two paths share? If so, find them.

If not, say how you know.

� (a) When t = s = 2, object A is at r1(2) = 〈2, 4, 8〉 and object

B is at r2(2) = 〈5, 13, 29〉. So, a vector that points from A to B is

r2(2)− r1(2) = 〈3, 9, 21〉.

(b) The distance between the two objects at this instant is |〈3, 9, 21〉| =√
531 = 3

√
59.

(c) There are two points the paths share. One shared point is some-

what “obvious”. Note that 〈1, 1, 1〉 is a vector / point on both paths,

and it happens at t = 1 and s = 0. By observation, you might also

notice that t = 2 and s = 1/2 yield the same location of 〈2, 4, 8〉. But

there’s a systematic way to search, too:

We can take the coordinates one at a time and see what it takes to make

them equal. To make the x-coordinates the same, we’d need t = 1+2s.

To make the y-coordinates the same, we’d need t2 = 1 + 6s. To make

these two things happen simultaneously, we need (1 + 2s)2 = 1 + 6s.
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This works when

1 + 4s+ 4s2 = 1 + 6s

−2s+ 4s2 = 0

−2s(1− 2s) = 0

s = 0 ; s =
1

2

When s = 0, we have t = 1 + 2s = 1; at these values, (as we already

knew) the curves both hit 〈1, 1, 1〉. But then also when s = 1/2 we

have t = 1 + 2s = 2, and with these values, both curves hit 〈2, 4, 8〉. So

there are two points where the curves intersect, 〈1, 1, 1〉 and 〈2, 4, 8〉.
�

(2) Consider the vector curve r(t) = 〈2 cos t, 2t/π, 2 sin t〉.
(a) Find the vector equation of the line tangent to the vector curve

at the location given by 〈0, 1, 2〉.
(b) Write the integral that would give the total arc length of the curve

from 〈2, 0, 0〉 to 〈0, 1, 2〉.

� (a) Note that the location 〈0, 1, 2〉 happens when t = π/2. For the

tangent line here, we need:

r ′(t) = 〈−2 sin t,
2

π
, 2 cos t〉

r ′
(π

2

)
= 〈−2,

2

π
, 0〉

So we have an initial vector r0 = 〈0, 1, 2〉 and a parallel vector r ′(π/2),

and the tangent line is formed as:

r0 + t r ′
(π

2

)
= 〈0, 1, 2〉+ t〈−2,

2

π
, 0〉 = 〈−2t, 1 +

2t

π
, 2〉

(b) For the arc length from 〈2, 0, 0〉 to 〈0, 1, 2〉, note that 〈2, 0, 0〉 cor-

responds to t = 0, and 〈0, 1, 2〉 corresponds to t = π/2. Then to set up

the arc length integral, we identify

f(t) = 2 cos t , g(t) =
2

π
t , h(t) = 2 sin t

from which we then get

f ′(t) = −2 sin t , g′(t) =
2

π
, h′(t) = 2 cos t
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so that
√

[f ′(t)]2 + [g′(t)]2 + [h′(t)]2 =

√
4 sin2 t+

4

π2
+ 4 cos2 t

= 2

√
1 +

1

π2
= 2

√
π2 + 1

π2
=

2

π

√
π2 + 1

and so the arc length integral is

L =

∫ b

a

√
[f ′(t)]2 + [g′(t)]2 + [h′(t)]2 dt =

2

π

∫ π/2

0

√
π2 + 1 dt �

(3) If tangent lines to a vector function r(t) can be found as
〈

1

1 + t2
,

1

2
√
t
, e−t

〉

and the vector function passes through the point (pi/4, 1, 1−1/e), what

is the vector function r(t)?

� The vector equation giving the tangent lines is the derivative of the

actual vector function. So, we know that

r ′(t) =

〈
1

1 + t2
,

1

2
√
t
, e−t

〉

and then

r(t) =

∫
r ′(t) dt =

〈
tan−1(t),

√
t,−e−t

〉
+ C

Now note that the first two coordinates of the point (π/4, 1, 1 − 1/e)

occur for t = 1. However, at t = 1, the final component would only

be −1/e, so we need the extra 1 to come from the arbitrary vector C.

With C = 〈0, 0, 1〉, we have

r(t) =
〈

tan−1(t),
√
t, 1− e−t

〉

If that loose argument about C doesn’t work for you, try this: we can

say that we recognize

r(1) =

(
π

4
, 1, 1− 1

e

)

That is,

r(1) =
〈

tan−1(1),
√

1,−e−1
〉

+ C =

(
π

4
, 1, 1− 1

e

)

〈
π

4
, 1,−1

e

〉
+ C =

(
π

4
, 1, 1− 1

e

)

C = 〈0, 0, 1〉 �
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(4) (Bonus Time in the Pit !) Can you apply the technique used to prove

Useful Fact 16.10 (in the Pit !) to prove the expression which Practice

Problem 8 suggests might be true?

� All cross products shown here are done “behind the scenes.” You

should recreate any you don’t trust! Given two vector functions

p(t) = 〈p1(t), p2(t), p3(t)〉 and r(t) = 〈r1(t), r2(t), r3(t)〉 in R3, their

cross product is (hiding the (t) dependence for brevity),

p(t)× r(t) = 〈p2r3 − p3r2, p3r1 − p1r3, p1r2 − p2r1〉
so that

d

dt
p× r = 〈p ′2r3 + p2r

′
3 − p ′3r ′2 − p3r ′2, p ′3r1 + p3r

′
1 − p ′1r ′3 − p1r ′3,

(C.1)

p ′1r2 + p1r
′
2 − p ′2r ′1 − p2r ′1〉 (C.2)

For comparison, we’ll compute p ′(t)× r(t) and p(t)× r ′(t) separately,

find their derivatives, and add them up.

p ′ × r = 〈p ′1, p ′2, p ′3〉 × 〈r1, r2, r3〉
= 〈p ′2r3 − p ′3r ′2, p ′3r1 − p ′1r ′3, p ′1r2 − p ′2r ′1〉

p× r ′ = 〈p1, p2, p3〉 × 〈r ′1, r ′2, r ′3〉
= 〈p2r ′3 − p3r ′2, p3r ′1 − p1r ′3, p1r ′2 − p2r ′1〉

Adding,

p ′ × r + p× r ′ = 〈p ′2r3 + p2r
′
3 − p ′3r ′2 − p3r ′2, p ′3r1 + p3r

′
1 − p ′1r ′3 − p1r ′3,

(C.3)

p ′1r2 + p1r
′
2 − p ′2r ′1 − p2r ′1〉 (C.4)

Comparison of (C.1) and (C.3) confirms the identity

d

dt
p(t)× r(t) = p ′(t)× r(t) + p(t)× r ′(t) �
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C.4.4 Vector Fields and the Gradient — Challenge —

Solved

(1) Find the curl and divergence of F(x, y, z) = 〈xyz, x2y2z2, y2z3〉. (Sim-

plify each as much as possible.)

� The curl is:

∇× F =

∣∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

xyz x2y2z2 y2z3

∣∣∣∣∣∣∣
= (2yz3 − 2x2y2z)i− (0− xy)j + (2xy2z2 − xz)k
= 2yz(z2 − x2y)i + xyj + xz(2y2z − 1)k

The divergence is

∇ · F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· 〈xyz, x2y2z2, y2z3〉

=
∂

∂x
(xyz) +

∂

∂y
(x2y2z2) +

∂

∂z
(y2z3)

= yz + 2x2yz2 + 3y2z2 = yz(1 + 2x2z + 3yz) �

(2) Some of you may be familiar with the idea that the gravitational force

due to an object is inversely proportional to the square of the distance

between the object and the point of interest,

F =
c

r2
=

c

x2 + y2

where c is a constant containing several other constants mushed to-

gether, and r is the distance from the large body (presuming the ob-

ject is at the coordinate origin. Find the gradient of this function.

(Optional: In your expression for the gradient, try to introduce r any-

where you see an equivalent expression in x and y.)

�

∇f =

〈
∂

∂x

c

x2 + y2
,
∂

∂y

c

x2 + y2

〉
=

〈
− 2cx

(x2 + y2)2
,
−2cy

x2 + y2

〉

= −2c

〈
x

(x2 + y2)2
,

y

(x2 + y2)2

〉

We could then reintroduce r:

∇f = −2c
〈 x
r4
,
y

r4

〉
�



Solutions to All Challenge Problems 557

(3) This is a problem for those of you who like puzzlers. Make up a couple

of simple scalar functions f(x, y, z). Find the gradient of each function,

then find the curl of each gradient. What do you get? Make a conjecture

as to what you’ll always get for ∇ × (∇f), the curl of a gradient.

Demonstrate why your conjecture will be true no matter what scalar

function f(x, y, z) you start with.

� The conjecture should be that ∇× (∇f) = 0. Let’s see why. ∇f =

〈fx, fy, fz〉, so that ∇× (∇f) is given by
∣∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

fx fy fz

∣∣∣∣∣∣∣
= 〈fzy − fyz,−(fzx − fxz), fyx − fxy〉

But since the components of f have continuous derivatives, we know

the mixed second order partials are all the same: fzy = fyz, fzx = fxz
and fyx−fxy. Therefore each component of the cross product is 0, and

∇× (∇f) = 0. Hooray! �

Fig. C.18 A gradient vector and level curves for z = 4− 2x2 − y2 (w/ CP 4).
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(4) (Bonus! This problem has been developing in CP 4 of Secs. 13.3 and

13.5.) Use the partial derivatives found in CP 4 of Sec. 13.5 to con-

struct gradient vectors for the function w = 2x2 + y2 + z at the point

(1, 1, 1). Draw the projection of this gradient vector into a new version

of Fig. C.3. Do you notice anything interesting?

� Since wx(1, 1, 1) = 4, wy(1, 1, 1) = 2, wz(1, 1, 1) = 1, then

∇(1, 1, 1) = 〈4, 2, 1〉. A unit vector in this direction is 〈4/
√

21, 2/
√

21,

1/
√

21〉. Projected into the xy-plane, this vector is 〈4/
√

21, 2/
√

21,

1/
√

21〉; Fig. C.18 shows this vector originating from the point (1, 1);

it looks like this gradient vector is perpendicular to the level curve at

which it originates. FFT: We can’t tell directly from the plot,

but what do you think the odds are that this gradient vector is actually

perpendicular to the level surface depicted in Fig. C.18? �

C.4.5 Planes and Tangent Planes — Challenge — Solved

(1) Find the equation of the plane containing the point (3,−5, 4) and per-

pendicular to the line x = 1 + 2t, y = 1− t, z = 4− 3t.

� From the equation of the line, a vector parallel to that line is

〈2,−1,−3〉. If the plane is perpendicular to the line, it is perpen-

dicular to this vector, so we can use it as the plane’s perpendicular

vector. Using (x0, y0, z0) = (3,−5, 4) and n = 〈a, b, c〉 = 〈2,−1,−3〉 in

the general equation for a plane:

a(x− x0) + b(y − y0) + c(z − z0) = 0

2(x− 3) + (−1)(y + 5) + (−3)(z − 4) = 0

2x− y − 3z = −1 �

(2) Find the equation of the plane tangent to z =
√
x2 − y2 where (x, y) =

(2,−1).

� We need:

z0 = f(x0, y0) =
√

(2)2 − (−1)2 =
√

3

fx =
x√

x2 − y2
→ fx(2,−1) =

2√
3

fy = − y√
x2 − y2

→ fy(2,−1) =
1√
3
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so the plane is:

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

z −
√

3 =
2√
3

(x− 2) +
1√
3

(y + 1)

√
3z − 3 = 2(x− 2) + 1(y + 1)√

3z = 2x+ y

z =
2√
3
x+

1√
3
y �

(3) The radius and height of a cylinder are measured as 30cm and 24cm

respectively. There is a possible error in measurement of 0.1cm in

each direction. Estimate the maximum possible error in the calculated

volume of the cylinder.

� Since V (r, h) = πr2h, we have Vh = πr2 and Vr = 2πrh. We are

given r = 30 and h = 24, with dr = dh = 0.1. Therefore the total

possible error in V is dV , given by

dV = Vr(r, h)dr + Vh(r, h)dh = (2πrh) dr + (πr2) dh

= (2π · 30 · 24)(0.1) + (π302)(0.1) = 234π

There is a possible error of 234π cm3 in the total volume measured.

That’s a lot! �
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C.4.6 Directional Derivatives — Challenge — Solved

(1) Find the directional derivative of f(x, y, z) =
√
xy + z at (1,3,1) in the

direction of w = 〈3, 2, 6〉.

� We need a unit vector u in the direction of w. Since |w| = 7, that

unit vector would be

u =

〈
3

7
,

2

7
,

6

7

〉

Then we have

∇f(x, y, z) = 〈fx, fy, fz〉 =

〈
y

2
√
xy + z

,
x

2
√
xy + z

,
1

2
√
xy + z

〉

∇f(1, 3, 1) =

〈
3

2(2)
,

1

2(2)
,

1

2(2)

〉
=

〈
3

4
,

1

4
,

1

4

〉

Duf(1, 3, 1) = ∇f(1, 3, 1) · u =

〈
3

4
,

1

4
,

1

4

〉
·
〈

3

7
,

2

7
,

6

7

〉
=

17

28
�

(2) Find the directional derivative of f(x, y, z) = y/(x+z) at the point P =

(1, 4, 1) in the direction of v = 〈1, 2, 1〉. If S is the surface represented

by the graph of f , and a bug standing at P started walking on S in the

direction of v, would the bug be walking uphill or downhill?

� We need a unit vector u in the direction of v. Since |v| =
√

6, that

unit vector would be

u =

〈
1√
6
,

2√
6
,

1√
6

〉

Then we have

∇f(x, y, z) = 〈fx, fy, fz〉 =

〈
− y

(x+ z)2
,

1

x+ z
,− y

(x+ z)2

〉

∇f(1, 4, 1) =

〈
−1,

1

2
,−1

〉

and so

Duf(1, 4, 1) = ∇f(1, 4, 1) · u

=

〈
−1,

1

2
,−1

〉
·
〈

1√
6
,

2√
6
,

1√
6

〉
= − 1√

6

Since this directional derivative is negative, then the ant at P walking

the the direction of v would be going downhill. �
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(3) Given the 3D temperature function T (x, y, z) = 5e−x
2−y2−2z2 , what

is the (simplified) maximum rate of change of the temperature at the

point (1/
√

2, 0, 1/
√

2), and in what direction does this rate of change

occur?

� We’re going to need the gradient of T at P :

Tx = −10xe−x
2−y2−2z2

Ty = −10ye−x
2−y2−2z2

Tz = −20ze−x
2−y2−2z2

∇T (x, y, z) = 〈Tx, Ty, Tz〉
= 10e−x

2−y2−2z2〈−x,−y,−2z〉

∇T
(

1√
2
, 0,

1√
2

)
= 10e−3/2

〈
− 1√

2
, 0,− 2√

2

〉

The temperature increases the fastest in the direction of the gradi-

ent, so at the point P the temperature increases fastest in the direc-

tion of ∇T (P ). Since all we want is a direction, we could report this

as the messy ∇T (P ), or the slightly tidier 〈−1/
√

2, 0,−
√

2〉, or even

〈−1, 0,−2〉. (Make sure you know why the latter gives the same direc-

tion as the others!)

The maximum rate of increase at P is the magnitude of the gradient

there, which is

10e−3/2
((
− 1√

2

)2

+ 0 + (
√

2)2

)1/2

= 10e−3/2
(

1

2
+ 2

)1/2

= 10e−3/2 ·
√

5

2
= 10

√
5

2e3
�
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C.5 Chapter 17: Challenge Problem Solutions

C.5.1 Arc Length Parameterization — Challenge — Solved

(1) Find the arc length of of r(t) = 〈t2, sin t − t cos t, cos t + t sin t〉 for

0 ≤ t ≤ π.

� First, build:

r ′(t) = 〈2t, t sin t, t cos t〉
|r ′(t)| =

√
4t2 + t2 sin2 t+ t2 cos2 t =

√
5t2 =

√
5t

So that

L =

∫ π

0

|r ′(t)| dt =

∫ π

0

√
5t dt =

√
5π2

2
�

(2) Find the arc length (use computational aid to estimate it, if needed)

of the segment of y = x3 from (−1,−1) to (1, 1). (Hint: Can you

parameterize this curve?)

� To put this curve in the context of a vector function, let’s think of

y = x3 from (−1,−1) to (1, 1) as r(t) = 〈t, t3〉 for −1 ≤ t ≤ 1. Then

we can form the following expressions:

r ′(t) = 〈1, 3t2〉
|r ′(t)| =

√
1 + 9t4

So that

L =

∫ 1

−1
|r ′(t)| dt =

∫ 1

−1

√
1 + 9t4 dt ≈ 3.096

That integral cannot be done by hand, so I got a bit of help from a

CAS. �

(3) Find an arc length parameterization of r(t) = 〈sin 2t, 2t3/2/3, cos 2t〉
for t ≥ 0, and determine the location at which the curve accumulates

a total arc length of s = 1.

� For this vector function,

r ′(t) = 〈2 cos 2t,
√
t,−2 sin 2t〉

|r ′(t)| =
√

4 cos2 2t+ t+ 4 sin2 2t =
√

4 + t
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so that the arc length parameter is:

s =

∫ t

0

|r ′(τ)| dτ =

∫ t

0

√
4 + τ dτ =

2

3
(4 + τ)3/2

∣∣∣∣
t

0

=
2

3

[
(4 + t)3/2 − 43/2

]
=

2

3

[
(4 + t)3/2 − 8

]

Then we turn this inside-out to find t in terms of s:

3

2
s+ 8 = (4 + t)3/2

(
3

2
s+ 8

)2/3

= 4 + t

(
3

2
s+ 8

)2/3

− 4 = t

We need to substitute this into the original form of the vector function.

So take a deep breath, and accept the fact that what was once simply

r(t) = 〈sin 2t, 2t3/2/3, cos 2t〉 is now r(s) = 〈x(s), y(s), z(s)〉, where

x(s) = sin 2

[(
3

2
s+ 8

)2/3

− 4

]

y(s) = 2

[(
3

2
s+ 8

)2/3

− 4

]3/2

z(s) = cos 2

[(
3

2
s+ 8

)2/3

− 4

]

Well, that’s something, isn’t it? To find where we accumulate an arc

length of s = 1, we can

(a) Find the value of t that corresponds to s = 1, and plug that into

r(t), or ...

(b) Plug s = 1 into r(s)

Either way, it’s a mess, and we get:

r(1) =

〈
sin

[
2

(
19

2

)2/3

− 8

]
, 2

[(
19

2

)2/3

− 4

]3/2
,

cos

[
2

(
19

2

)2/3

− 8

]〉
�
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C.5.2 Contours, Orientation, Pointers — Challenge —

Solved

(1) The orbital path of a comet follows the vector function r(t) =

〈cosh t, sinh t〉. Two aliens riding on the comet decide to jump off be-

fore the comet gets close to Earth, because right now Earth is a pretty

dumb place to be. The both leap at t = ln 2; one leaps off in the di-

rection of T, and one leaps off in the direction of N. If they fly away

in straight lines, find the vector equations of those lines. (This identity

might be useful: sinh2 t+ cosh2 t = cosh(2t).)

� Let’s start calculating with (17.11) and (17.12), to build up to

T(ln 2):

r ′(t) = 〈sinh t, cosh t〉
ds = |r ′(t)| =

√
sinh2 t+ cosh2 t =

√
cosh(2t)

T(t) =
r ′(t)
ds

=
1√

cosh(2t)
〈sinh t, cosh t〉

T(ln 2) =
1√

cosh(2 ln 2)
〈sinh ln 2, cosh ln 2〉

=
1√
17/8

〈
3

4
,

5

4

〉
=

√
8

17

〈
3

4
,

5

4

〉

Going further, all the way to N(ln 2),

r ′(t)⊥ = 〈y′(t),−x′(t)〉 = 〈cosh t,− sinh t〉

N(t) =
r ′(t)⊥

ds
=

1√
cosh(2t)

〈cosh t,− sinh t〉

N(ln 2) =
1√

cosh(2 ln 2)
〈cosh ln 2,− sinh ln 2〉

=
1√
17/8

〈
5

4
,−3

4

〉
=

√
8

17

〈
5

4
,−3

4

〉

Since the point marked by t = ln 2 is r(ln 2) = 〈5/4, 3/4〉, then the

vector equations of the lines along T and N at t = ln 2 are:

r(t)T =

〈
5

4
,

3

4

〉
+ p ·

√
8

17

〈
3

4
,

5

4

〉

=

〈
5

4
,

3

4

〉
+

2
√

2p√
17

〈
3

4
,

5

4

〉
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r(t)N =

〈
5

4
,

3

4

〉
+ p ·

√
8

17

〈
5

4
,−3

4

〉

=

〈
5

4
,

3

4

〉
+

2
√

2p√
17

〈
5

4
,−3

4

〉

(note that p is chosen arbitrarily as the parameter). �

(2) Determine T and N for r(t) = 〈t2, 2t3/3, t〉 at the point (1, 2/3, 1). Can

you demonstrate some quality assurance about your results?

� Note that the given point corresponds to t = 1. Here we go into a

long string of calculations; as always, be alert to where we can jump out

of general formulas into numerical computations at the specific point.

Some derivatives will have been found behind the scenes. To start with,

we have

r ′(t) = 〈2t, 2t2, 1〉
ds = |r ′(t)| =

√
4t2 + 4t4 + 1 =

√
(2t2 + 1)2 = 2t2 + 1

T(t) =
r ′(t)
ds

=

〈
2t

2t2 + 1
,

2t2

2t2 + 1
,

1

2t2 + 1

〉

At t = 1 specifically,

T(1) =

〈
2

3
,

2

3
,

1

3

〉

Now back to the general form,

T ′(t) =

〈
2(1− 2t2

(2t2 + 1)2
,

4t

(2t2 + 1)2
,
−4t

(2t2 + 1)2

〉

and again at t = 1 specifically,

T ′(1) =

〈
−2

9
,

4

9
,−4

9

〉
and |T ′(1)| = 2

3

So finally,

N(1) =
T ′(1)

|T ′(1)| =

〈
−1

3
,

2

3
,−2

3

〉

Collecting our results, we have

T(1) =

〈
2

3
,

2

3
,

1

3

〉
and N(1) =

〈
−1

3
,

2

3
,−2

3

〉

As a double-check, we can confirm that |T(1)| = 1, |N(1)| = 1, and

T(1) ·N(0) = 0. �
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(3) A track where horses race is in the shape of the ellipse r(t) =

〈3 cos t, 2 sin t〉 (for 0 ≤ t ≤ 2π). The coordinate system is centered

at the beer tent in the center of the lawn inside the racetrack, and

the axes split the ellipse into four quadrants, as this equation suggests.

One particularly moody horse decides enough is enough, and when he

reaches the spot on the track marked by t = π/4, he breaks off the track

and runs away in a direction perfectly tangent to his original path on

the track. So:

(a) What are the coordinates at which he crosses the y-axis and es-

capes to freedom?

(b) If a gust of wind adds an acceleration vector of 〈0, 10〉 to aid the

horse, what is the component of that acceleration vector in this

tangent direction of escape?

� From the original vector function, we have

r
(π

4

)
=

〈
3√
2
,

2√
2

〉

Then, more generally,

r ′(t) = 〈−3 sin t, 2 cos t〉
ds = |r ′(t)| =

√
9 sin2 t+ 4 cos2 t

T(t) =
r ′(t)
ds

=
1√

9 sin2 t+ 4 cos2 t
〈−3 sin t, 2 cos t〉

At t = π/4 specifically,

T
(π

4

)
=

√
2√
13

〈
− 3√

2
,

2√
2

〉
=

〈
− 3√

13
,

2√
13

〉

(a) To answer the first question, we need the equation of the tangent

line at the point r(π/4). This point along with the tangent vector T
(
π
4

)

are the information we need to form the (vector) equation of this line.

Because the parameter t is already in use for the curve, and s represents

arc length parameter specifically, let’s use p as the parameter for the

line

L(p) = r0 + pr1 =

〈
3√
2
,

2√
2

〉
+ p ·

〈
− 3√

13
,

2√
13

〉
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We can untangle the specific equations for the x and y coordinates of

this line as:

x =
3√
2
− p · 3√

2

y =
2√
2

+ p · 2√
2

The horse running on this line crosses the y-axis when x = 0; the

parameter p which makes this happen is p = 1. And so at p = 1, the

y-coordinate is y = 4/
√

2. Altogether, the horse crosses the y-axis at

(x, y) =

(
0,

4√
2

)

(b) If an acceleration vector is ~a = 〈0, 10〉, then the component of that

vector along T is (remember that |T| = 1):

aT =
a ·T
|T| = 〈0, 10〉 ·

〈
− 3√

13
,

2√
13

〉
=

20√
13

�

C.5.3 The Fresnet–Serret Frame — Challenge — Solved

(1) The shuttlecraft Galileo is lifting off from the planet Taurus 2 along

the path given by r(t) = 〈t5/5,
√

2t3/3, t〉 in the galactic coordinate

system. When at the point marked by t = 1, the shuttle launches a

probe in the direction of the binormal vector B(1). If the probe travels

in a straight line, it will cross through two of three galactic coordinate

planes (xy, xz, or yz). Which two planes will it cross, and at which

galactic coordinates?

� We need to generate the Fresnet–Serret frame for r(t), which starts

with:

r ′(t) =
〈
t4,
√

2t2, 1
〉

|r ′(t)| =
√

(t4)2 + (
√

2t2)2 + 12 =
√

(t4)2 + 2t4 + 1

=
√

(t4 + 1)2 = t4 + 1

T(t) =
r ′(t)
|r ′(t)| =

1

t4 + 1
〈t4,
√

2t2, 1〉

T′t = − 4t3

(t4 + 1)2
〈t4,
√

2t2, 1〉+
1

t4 + 1
〈4t3, 2

√
2t, 0〉
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Then at t = 1,

T(1) =
1

2
〈1,
√

2, 1〉 =

〈
1

2
,

1√
2
,

1

2

〉

T′(1) =
4

4
〈1,
√

2, 1〉+
1

2
〈4, 2
√

2, 0〉 = 〈1, 0,−1〉

|T′(1)| =
√

2

N(1) =
T′1
|T′1| =

〈
1√
2
, 0,− 1√

2

〉

Then

B(1) = T(1)×N(1) =

〈
1

2
,

√
2

2
,

1

2

〉
×
〈

1√
2
, 0,− 1√

2

〉

=

〈
−1

2
,

1√
2
,−1

2

〉

Summarizing,

T(1) =

〈
1

2
,

1√
2
,

1

2

〉

N(1) =

〈
1√
2
, 0,− 1√

2

〉

B(1) =

〈
−1

2
,

1√
2
,−1

2

〉

The point of departure is r(1) = 〈1/5,
√

2/3, 1〉, and so the vector equa-

tion of the line directed by B(1) is (with parameter p):

rB(p) =

〈
1

5
,

√
2

3
, 1

〉
+ p ·

〈
−1

2
,

1√
2
,−1

2

〉

The line rB(p) hits a coordinate plane whenever x = 0, y = 0, or z = 0,

and these happen at:

x = 0 :→ 1

5
+ p ·

(
−1

2

)
→ p =

2

5

y = 0 :→
√

2

3
+ p · 1√

2
= 0→ p < 0 so nevermind

z = 0 :→ 1 + p ·
(
−1

2

)
= 0→ p = 2
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And so, the probe launched in the direction of B crosses the galactic

yz-plane at a parameter value p = 2/5; this corresponds to the point

rB

(
2

5

)
=

〈
1

5
,

√
2

3
, 1

〉
+

2

5
·
〈
−1

2
,

1√
2
,−1

2

〉

=

〈
1

5
,

√
2

3
, 1

〉
+

〈
−1

5
,

√
2

5
,−1

5

〉
=

〈
0,

8
√

2

15
,

4

5

〉

It then crosses the galactic xy-plane at a parameter value p = 2; this

corresponds to the point

rB(2) =

〈
1

5
,

√
2

3
, 1

〉
+ 2 ·

〈
−1

2
,

1√
2
,−1

2

〉
=

〈
−4

5
,

4
√

2

3
, 0

〉
�

(2) Find the tangential and normal components of acceleration for r(t) =

〈e−t cos t, e−t sin t〉 at t = π/4. (Hint: How can you rig up a cross

product involving vectors that are only two-dimensional?)

� To find the tangential component of acceleration we need:

r ′(t) = 〈−e−t(cos t+ sin t), e−t(cos t− sin t)〉
|r ′(t)| = . . . =

√
2e−t

r ′′(t) = 〈2e−t sin t,−2e−t cos t〉
r ′(t) · r ′′(t) = −2e−2t

so then

aT =
r ′(t) · r ′′(t)
|r ′(t)| =

−2e−2t√
2e−t

= −
√

2e−t

and at t = π/4, we get

aT

(π
4

)
= −
√

2e−π/4

To find the normal component of acceleration, we need |a(t)|2. Note

that a(t) = r ′′(t), which is found above; so,

a(t) = 〈2e−t sin t,−2e−t cos t〉
|a(t)|2 = 4e−2t

so that

aN =
√
|a(t)|2 − a2T =

√
4e−2t − (−

√
2e−t)2

=
√

4e−2t − 2e−2t =
√

2e−2t =
√

2e−t

so at t = π/4, we get

aN

(π
4

)
=
√

2e−π/4 �
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(3) Show that the curvature of a circle of radius a is κ = 1/a. What is the

torsion anywhere on this circle?

� A circle of radius a can described by the vector function r(t) =

〈a cos t, a sin t, 0〉. We want to show that the curvature at any point is

κ = 1/a. To compute the curvature at any point, we need to find

κ =
|r ′(t)× r ′′(t)|
|r ′(t)|3

So we need several items:

r ′(t) = 〈−a sin t, a cos t, 0〉
|r ′(t)| =

√
a2 sin2 t+ a2 cos2 t+ 0 = a

r ′′(t) = 〈−a cos t,−a sin t, 0〉
r ′(t)× r ′′(t) = 〈0, 0, a2 sin2 t+ a2 cos2 t〉 details begind the scenes

|r ′(0)× r ′′(0)| = a2

so that

κ =
|r ′(t)× r ′′(t)|
|r ′(t)|3 =

a2

(a)3
=

1

a
The torsion function for this curve is τ(t) = 0, because this is a two-

dimensional curve. �

(4) (Bonus Time in the Pit !) Can you derive the relation (17.15) in Useful

Fact 17.2?

� Suppose we have a scalar multiple of a vector function, i.e.

v(t) = β(t)〈f(t), g(t), h(t)〉
We are going to prove that

d

dt
β(t)v(t) = β ′(t)v(t) + β(t)v ′(t)

Starting with v(t) = β(t)〈f(t), g(t), h(t)〉, we can multiply the scalar

function β(t) into each component:

v(t) = 〈β(t)f(t), β(t)g(t), β(t)h(t)〉
When finding v ′(t), then, the regular old scalar function product rule

applies to each component function:

v ′(t) = 〈β ′(t)f(t)+β(t)f ′(t), β ′(t)g(t)+β(t)g′(t), β ′(t)h(t)+β(t)h′(t)〉
Let’s separate the terms involving β(t) and β ′(t):

v ′(t) = 〈β ′(t)f(t), β ′(t)g(t), β ′(t)h(t)〉+ 〈β(t)f ′(t), β(t)g′(t), β(t)h′(t)〉
= β ′(t)〈f(t), g(t), h(t)〉+ β(t)〈f ′(t), g′(t), h′(t)〉

and this can be tidied up as:

v ′(t) = β ′(t)v(t) + β(t)v ′(t) �
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C.5.4 Lagrange Multipliers — Challenge — Solved

(1) The galactic company that manufactures phasers (p), pulse rifles (r),

and communicator badges (b) for the United Federation of Planets earns

a profit of 10 quatloos for every phaser sold, 20 quatloos for every

pulse rifle, and 5 quatloos for every communicator badge. The logistics

of their operations require that the combined number of these items

made each day is held strictly to 2p2 + r2 + 4b2 = 10000. How many of

each item should they make each day to maximize profit?

� The objective function is f(p, r, b) = 10p+ 20r+ 5b, and its gradient

is ∇f(p, r, b) = 〈10, 20, 5〉.

The constraint function is g(p, r, b) = 2p2 + r2 + 4b2, and its gradient

is ∇g(p, r, b) = 〈4p, 2q, 8r〉.

The equation of proportionality of these gradients is ∇f(p, r, b) =

λ∇g(p, r, b); this equation, along with the constraint itself, leads to

the system of equations,

10 = 4pλ

20 = 2rλ

5 = 8bλ

2p2 + r2 + 4b2 = 10000

Wolfram Alpha reports two solution sets for these equations, but one

has negative values for one or more variables, which is irrelevant in the

context of the problem. The only suitable solution is, in exact form,

p =
200√

73
, r =

80√
73

, b =
50√
73

This is one of those times when the exact forms of the solution values

aren’t as useful as the approximations (rounded to the nearest integer):

p ≈ 23 , r ≈ 94 , b ≈ 6

So they should make 23 phasers, 94 pulse rifles, and 6 communicator

badges per day to maximize profit. �

(2) Find the maximum value of f(x, y, z) = xy + 2yz − 3x + 3z that can

be achieved anywhere on the unit sphere.
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� The objective function is f(x, y, z) = xy + 2yz − 3x + 3z, and its

gradient is ∇f(x, y, z) = 〈y − 3, x+ 2z, 2y + 3〉.

The constraint function is g(x, y, z) = x2 + y2 + z2 (from the equation

of the unit circle), and its gradient is ∇g(x, y, z) = 〈2x, 2y, 2z〉.

The equation of proportionality of these gradients is ∇f(x, y, z) =

λ∇g(x, y, z); this equation, along with the constraint itself (x2 + y2 +

z2 = 1, the unit circle), leads to the system of equations,

y − 3 = λ(2x)

x+ 2z = λ(2y)

2y + 3 = λ(2z)

x2 + y2 + z2 = 1

Wolfram Alpha reports two sets of real solutions to this system in ap-

proximate form, because the exact forms are nasty. These approximate

solutions are:

(x, y, z) = (0.624, 0.198,−0.756) ; (x, y, z) = (−0.624, 0.198, 0.756)

The values of the objective function at these points will provide the

min and max of the objective function.

f (0.624, 0.198,−0.756) ≈ −4.316

f (−0.624, 0.198, 0.756) ≈ 4.316

So, the maximum value of f(x, y, z) that can be achieved on the unit

sphere is about 4.316. �

(3) Find the point on the plane 2x + 3y + 4z = 12 that is closest to the

point (5, 5, 5).

� We want to minimize the distance to (x, y, z) = (5, 5, 5) for points

satisfying 2x + 3y + 4z = 12. It suffices to minimize the square of the

distance, D2 = (x− 5)2 + (y− 5)2 + (z− 5)2. This expression for D2 is

our objective function, and the constraint is the left side of the equation

of the plane. The gradients of each are:

∇D2(x, y, z) = 〈2(x− 5), 2(y − 5), 2(z − 5)〉
∇g(x, y, z) = 〈2, 3, 4〉
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Setting the proportion ∇D2(x, y, z) = λ∇g(x, y, z) and introducing the

constraint, we get the system:

2(x− 5) = 2λ

2(y − 5) = 3λ

2(z − 5) = 4λ

2x+ 3y + 4z = 12

The solution is, using Wolfram Alpha, (x, y, z) = (79/29, 46/29, 13/29).

This is the point on the given plane closest to the point (5, 5, 5). �

C.5.5 Parametric Surfaces — Challenge — Solved

(1) Identify the parametric surface r(s, t) = 〈3 sin t cos s, 3 sin t sin s, 3 cos t〉
for 0 ≤ s ≤ π/2 and 0 ≤ t ≤ π/2.

� If we break out the individual equations, we have

x = 3 sin t cos s

y = 3 sin t sin s

z = 3 cos t

The first two form x2 + y2 = 9 sin2 t. Then with the third, we get

x2 + y2 + z2 = 9. This is a sphere of radius 3. But, the parameters

s and t were restricted. The parameter s acts as the polar angle in

spherical coordinates, and t acts as the azimuthal angle (you can tell

by comparing z = 3 cos t to z = 3 cosφ, where the latter is the direct

conversion equation between spherical and rectangular coordinates).

Together, the restrictions 0 ≤ s ≤ π/2 and 0 ≤ t ≤ π/2 keep us in the

first octant. So, this is a sphere of radius 3, centered at the origin, in

the first octant. �

(2) Give parametric equations for the portion of the plane z = 2x+ y that

lies inside the cylinder x2 + y2 = 1.

� We have to decide: do we focus on the plane first, or the cylinder?

The cylinder is just the lateral boundary; the cross section is a circle of

radius 1. It seems easiest set up parametric equations so that we are

filling x and y coordinates from within the given circle, and then set z
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according to the equation of the plane. Since the unit circle itself can

be presented as x = cos t and y = sin t for 0 ≤ t ≤ 2π, then we can also

fill the interior of the circle (in the horizontal plane) with x = s cos t

and y = s sin t for 0 ≤ s ≤ 1 and 0 ≤ t ≤ 2π. Then we can just directly

build z = 2x+ y as z = 2s cos t+ s sin t. Together,





x = s cos t

y = s sin t

z = 2s cos t+ s sin t

with 0 ≤ s ≤ 1 ; 0 ≤ t < 2π

Note this is not unique; another perfectly good set of parametric equa-

tions is:





x = s sin t

y = t cos t

z = 2s sin t+ s cos t

with 0 ≤ s ≤ 1 ; 0 ≤ t < 2π �

−1
1

2−4
−2

2
4

−4

−2

2

4

x

y

z

Fig. C.19 f(x) = x2 revolved around the x-axis on [−1, 2].

(3) Do you remember surfaces of revolution? Those can be drawn para-

metrically, too! A figure in Chapter 9 (Volume 1), duplicated here as

Fig. C.19, shows the surface generated when the curve f(x) = x2 is

revolved around the x-axis on the interval [−1, 2]. Give parametric

equations for this surface of revolution.

� In this trip down memory lane, you should recall that the solid of

revolution will have circular cross sections for each x in [−1, 2]. The

radius of each circle is f(x). And so, we must form parametric equations
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that sweep along the x-axis from x = −1 to x = 2 and form a circle of

radius x2 in the yz-direction at each x. Our parametric equations can

be:




x = s

y = s2 cos t

z = s2 sin t

with − 1 ≤ s ≤ 2 ; 0 ≤ t < 2π �
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C.6 Chapter 18: Challenge Problem Solutions

C.6.1 Line Integrals — Challenge — Solved

(1) Evaluate

∫

C

(x− 4)(z− 5) ds, where C is the line segment from (4, 1, 5)

to (0, 6,−1).

� Since this is a line integral with respect to arc length ds, we ’ll use

the arc length version of the line integral. We need ANY parametric

description of the line segment, and the most basic one using 0 ≤ t ≤ 1

is:

x = 4− 4t y = 1 + 5t z = 5− 6t for 0 ≤ t ≤ 1

so that
√

[x′(t)]2 + [y′(t)]2 + [z′(t)]2 =
√

(−4)2 + (5)2 + (−6)2 =
√

77

and∫

C

(x− 4)(z − 5) ds

=

∫ b

a

f(x(t), y(t), z(t))
√

[x′(t)]2 + [y′(t)]2 + [z′(t)]2 dt

=

∫ 1

0

(−4t)(−6t)(
√

77) dt = 24
√

77

∫ 1

0

t2 dt = 8
√

77 �

(2) Evaluate

∫

C

y dx+ z dy + x dz along the contour C that is given by

x = t3 y = t2 z = t for 0 ≤ t ≤ 1

� Since this is a line integral with respect to dx, dy and dz we can

construct the parametric version of the line integral directly. From the

parametric description of the line integral, we get dx = 3t2 dt, dy = 2t dt

and dz = dt, and so
∫

C

y dx+ z dy + x dz =

∫ 1

0

t2(3t2 dt) + (t)(2t dt) + (t3)(dt)

=

∫ 1

0

(3t4 + 2t2 + t3) dt =
91

60
�
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(3) Find the work done by F(x, y, z) = 〈−y, z2, x〉 around the contour

r(t) = 〈sin t, t, cos t〉 for 0 ≤ t ≤ 2π.

� We want to evaluate
∫
C

F · dr. From r(t) we have

x = sin t→ dx = cos t dt

y = t→ dy = dt

z = cos t→ dz = − sin t dt

so that
∫

C

F · dr =

∫

C

−y dx+ z2 dy + x dz

=

∫ 2π

0

(−t)(cos t dt) + (cos t)2(dt) + (sin t)(− sin t dt)

=

∫ 2π

0

(−t cos t+ cos2 t− sin2 t) dt = 0 �

(4) (Bonus! Following up Sec. 15.3 ...) We expect

∫

C

F(x, y) · dr = 0 for

which of the following combinations of vector field F(x, y) and oriented

path of integration C?

I4) F(x, y) = 〈y3, x3〉 and C is the circle of radius 2, oriented coun-

terclockwise

I5) F(x, y) = 〈x/y, x+y〉 and C is the cardioid r = 2 + cos θ, oriented

counterclockwise

I6) F(x, y) = 〈(x + y)2, x2y2〉 and C follows y = 1/(x2 + 1) from

x = −2 to x = 2.

� Integrals (I4) and (I5) are zero, but (I6) is not. In (I6), the com-

ponents of dr are non-negative. The components of F are also non-

negative. So we are integrating a dot product which is always non-

negative. The result cannot be zero. In (I5) and (I6) the symmetry of

the contour C cooperates with the positive and negative contributions

of x and y for perfect balance. Draw some pictures! Sketch C, then

draw several representatives of dr along C. Also draw some represen-

tative samples of F. While this does not offer conclusive proof of the

integrals’ values being zero, we are only making predictions about the

behavior of the integrals.
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Note that in (I4), C is a simple closed contour and the integral is zero,

yet F(x, y) is not conservative. This gives a chance to reinforce what

you can and can’t conclude from statements such as, “If F is conserva-

tive and has continuous first derivatives, then
∫
C

F(x, y) · dr = 0 along

any piecewise-smooth closed contour C.” We cannot say the reverse,

that if the same integral is zero, then F must have been conservative.

�

C.6.2 Conservative Vector Fields — Challenge — Solved

(1) Determine if the vector field F(x, y) = 〈y2 + ex + xex, 2xy〉 is conser-

vative. If it is, find a potential function for it.

� Matching to the form F(x, y) = 〈P (x, y), Q(x, y)〉, we have

P = y2 + xex + ex → ∂P

∂y
= 2y

Q = 2xy → ∂Q

∂x
= 2y

Since ∂P/∂y = ∂Q/∂x then the vector field is conservative. So there

is a function f(x, y) such that ∇f = F.

We know from F that for this function, fx = y2+ex+xex and fy = 2xy.

Based on fy, we know that at worst,

f(x, y) = xy2 + g(x)

where g(x) is some unknown function of x. With f(x, y) in this form,

we see that fx = y2 + g′(x). But from the gradient vector field, we

also know fx = y2 + ex + xex So the mystery function must satisfy

g′(x) = ex + xex. Through integration, this gives that g(x) = xex +C.

So altogether,

f(x, y) = xy2 + xex + C �

(2) Determine if the vector field F(x, y, z) = 〈3x2,− cos(y), 2xz〉 is conser-

vative. If it is, find a potential function for it.

� Investigating ∇× F, we have

∇× F =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

3x2 − cos(y) 2xz

∣∣∣∣∣∣
= (0)i− (2z)j + (0)k 6= 0
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Since ∇×F 6= 0, then F is NOT conservative, and so there will not be

a scalar function f such that F = ∇f . �

(3) Use the Fundamental Theorem for Line Integrals to evaluate

∫

C

F · dr
where F(x, y, z) = 〈10x+ 3y+yz, 3x+ 20y+xz, xy〉 and C is the curve

given by

r(t) =
〈
t5/2 − 1,

√
t+ 3, sin

(π
2
t
)〉

for 0 ≤ t ≤ 1

� The potential function for this vector field is a function f(x, y, z)

such that

fx = 10x+ 3y + yz , fy = 3x+ 20y + xz , fz = xy

We could go through a systematic routine of finding f(x, y, z) based

on these derivatives, but I think this one’s straightforward enough to

deduce directly that

f(x, y, z) = 5x2 + 3xy + 10y2 + xyz

In preparation for the Fundamental Theorem of Line Integrals, note

that the starting and ending points of the contour C are indicated by

the vectors:

r(0) = 〈−1,
√

3, 0〉
r(1) = 〈0, 2, 1〉

The values of f(x, y, z) at these endpoints are:

f(−1,
√

3, 0) = 5(−1)2 + 3(−1)(
√

3) + 10(
√

3)2 + (−1)(
√

3)(0)

= 35− 3
√

3

f(0, 2, 1) = 5(0)2 + 3(0)(2) + 10(2)2 + (0)(2)(1) = 40

Then by the Fundamental Theorem for Line Integrals, we have
∫

C

F · dr = f(0, 2, 1)− f(−1,
√

3, 0) = 40− (35− 3
√

3) = 5 + 3
√

3 �
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C.6.3 Surface Integrals — Challenge — Solved

(1) Find

∫∫

S

y2(3 − z) dS where the surface S is the part of the plane

x+ y + z = 3 in the first octant.

� The upper bound of our eventual region of integration D is the

intersection of the plane z = 3 − x − y with the xy-plane, which is

x+y = 3 (found by setting z = 0). In the first octant, then, the bounds

of D are 0 ≤ x ≤ 3 and 0 ≤ y ≤ 3− x. Remember that to evaluate the

scalar function version of the surface integral, we will need to eliminate

any z from the integrand; here, the integrand is y2(3−z), which on the

surface z = 3 − x − y becomes y2(3 − (3 − x − y)) or y2(x + y). Also

note that the equation of the surface identifies z = g(x, y) = 3− x− y,

so that gx = −1 and gy = −1. And so altogether:∫∫

S

y2(3− z) dS =

∫∫

D

y2(3− z)
√
g2x + g2y + 1 dA

=

∫ 3

0

∫ 3−x

0

y2(x+ y)
√

(−1)2 + (−1)2 + 1 dydx

=
√

3

∫ 3

0

∫ 3−x

0

y2(x+ y) dydx =
81
√

3

5
�

(2) Find the surface area of the portion of the surface z = 4− x2− y2 over

the region between x2 + y2 = 2, x2 + y2 = 9, and y = 0.

� The portion of the surface as described is over the region in the

xy-plane between the upper half circles x2 + y2 = 2 and x2 + y2 = 9,

so when we set up our integral, polar coordinates may be useful. With

z = g(x, y) = 4 − x2 − y2, we get gx(x, y) = −2x and gy(x, y) = −2y,

so √
gx(x, y)2 + gy(x, y)2 + 1 =

√
4x2 + 4y2 + 1

When we start setting up our integral as

AS =

∫∫

S

(1) dS =

∫∫

D

(1)
√
g2x + g2y + 1 dA =

∫∫

D

√
4x2 + 4y2 + 1 dA

we see that, yep, polar coordinates are going to be best because our

region of integration involves upper semicircles (0 ≤ θ ≤ π) of radius√
2 and 3, and the integrand converts to

√
4r2 + 1. Altogether, then

AS =

∫∫

S

(1) dS =

∫∫

D

(1)
√
g2x + g2y + 1 dA

=

∫ π

0

∫ 3

√
2

√
4r2 + 1 · r drdθ =

(
37
√

37

12
− 9

4

)
π �
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(3) Find

∫∫

S

F · dS where F = 〈x, y, z2〉 and the surface S is the inverted

cone z = 4−
√
x2 + y2 above the xy-plane (oriented positively).

� The surface is identified as z = g(x, y) = 4−
√
x2 + y2, so

∂g

∂x
= − x√

x2 + y2
;

∂g

∂y
= − y√

x2 + y2

Matching the vector field to the form F = 〈P,Q,R〉 and incorporating

the equation of the surface for z, we have

P = x ; Q = y ; R = z2 = (4−
√
x2 + y2)2

Let’s start putting together our integral:
∫∫

S

F · dS =

∫∫

D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA

=

∫∫

D

(
−x · −x√

x2 + y2
− y · −y√

x2 + y2
+ (4−

√
x2 + y2)2

)
dA

=

∫∫

D

(
x2√
x2 + y2

+
y2√
x2 + y2

+ (4−
√
x2 + y2)2

)
dA

=

∫∫

D

(
x2 + y2√
x2 + y2

+ (4−
√
x2 + y2)2

)
dA

=

∫∫

D

(√
x2 + y2 + (4−

√
x2 + y2)2

)
dA

OK, it looks like we’re ready for polar coordinates; our region of

integration D is the intersection of the surface with the xy-plane:

4 −
√
x2 + y2 = 0 becomes x2 + y2 = 16, and that’s a full circle of

radius 4, with bounds 0 ≤ r ≤ 4, 0 ≤ θ ≤ 2π. Altogether,
∫∫

S

F · dS =

∫ 2π

0

∫ 4

0

(
r + (4− r)2

)
r drdθ =

256π

3
�

(4) (Bonus! Following up Sec. 15.3 ...) We expect

∫∫
SF(x, y, z) ·dS = 0

for which of the following combinations of vector field F(x, y, z) and

oriented surface S?

I4) F(x, y, z) = 〈xy, xyz, 0〉 and S is the inverted paraboloid z =

4− x2 − y2 oriented outwards
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I5) F(x, y, z) = 〈x+ y + z, e−xyz, cos(x) sin(y)〉 and S is the upwards

oriented plane z = 6 over {(x, y) : −π ≤ x ≤ π,−π ≤ y ≤ π}
I6) F(x, y, z) = 〈x, y, z〉 and S is the unit sphere oriented outwards

� All three integrals (I4)–(I6) yield zero. (I5) is deceptive — it looks

awful, but helps stress the importance of the relationship dS = ndS,

where n is normal to the surface, and here we can use n = 〈1, 0, 0〉 —

so F · n is actually very simple. �

C.6.4 Green’s Theorem — Challenge — Solved

(1) Find

∮

C

x2e−3x dx +
2

3
(x2 + y2)3 dy where C is the boundary of the

region inside the circles x2 + y2 = 2 and x2 + y2 = 9.

� Matching the integral to the form
∫
C
P dx+Qdy, we have

P = x2e−3x → ∂P

∂y
= 0

Q =
2

3
(x2 + y2)3 → ∂Q

∂x
= 4x(x2 + y2)2

Anticipating use of Green’s Theorem, we can easily describe the region

D inside C using polar coordinates, so

∮

C

x2e−3x dx+
2

3
(x2 + y2)3 dy =

∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

=

∫∫

D

4x(x2 + y2)2 dA =

∫ 2π

0

∫ 3

√
2

4(r cos θ)(r2)2r drdθ

=

∫ 2π

0

∫ 3

√
2

4r6 cos θ drdθ = 0 �

(2) Find

∮

C

F · dr where

F(x, y) = 〈e−x +
1

2
x3y2, sin(y)− 1

2
x2y3〉

and C is the perimeter of x2 + y2 = 16, oriented clockwise.
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� Matching the vector field to the form F(x, y) = 〈P (x, y), Q(x, y)〉,
we have

P = e−x + +
1

2
x3y2 → ∂P

∂y
= x3y

Q = sin(y)− 1

2
x2y3 → ∂Q

∂x
= −xy3

Since C is clockwise it is negatively oriented. Green’s Theorem applies,

but we have to change the sign to account for the orientation. Also,

polar coordinates will be useful:
∮

C

F · dr =

∮

C

P dx+Qdy = −
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

= −
∫∫

D

(
−xy3 − x3y

)
dA =

∫∫

D

xy
(
x2 + y2

)
dA

=

∫ 2π

0

∫ 4

0

(r cos θ)(r sin θ)(r2)r drdθ

=

∫ 2π

0

∫ 4

0

r5 cos θ sin θ drdθ = 0 �

(3) The integral

∮

C

F · dr gives the circulation of the vector field F around

the contour C. Use Green’s Theorem to find the circulation of F(x, y) =

〈y,−x〉 around a circle x2 + y2 = a2 (where a is the constant radius of

the circle). Take the boundary as being oriented positively.

� Matching the integral to the form
∫
C
P dx+Qdy, we have

P = y → ∂P

∂y
= 1

Q = −x → ∂Q

∂x
= −1

Anticipating use of Green’s Theorem, we can easily describe the region

D inside the circle using polar coordinates, so
∮

C

F · dr =

∮

C

y dx− x dy =

∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

=

∫∫

D

(−1− 1) dA =

∫ 2π

0

∫ a

0

(−2)r drdθ = −2πa2 �
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C.6.5 The Divergence Theorem — Challenge — Solved

(1) Find

∫∫

S

F · dS for the vector field F = 〈−x3y + yz, x2y2 + ex, x2yz〉
where S is the surface of the hyperboloid x2 + 3y2 − z2 = 1 between

z = −1 and z = 4 — see Fig. C.20.

2
4

2
4

−1

2

4

x

y

z

Fig. C.20 The hyperboloid x2 + 3y2 − z2 = 1 between z = −1 and z = 4.

� The divergence of F is:

∇ · F =
∂

∂x
(−x3y + yz) +

∂

∂y
(x2y2 + ex) +

∂

∂z
(x2yz)

= −3x2y + 2x2y + x2y = 0

So by the divergence theorem,
∫∫

S

F · dS =

∫∫∫

E

∇ · F dV =

∫∫∫

E

(0) dzdydx = 0 �

(2) Find

∫∫

S

F · dS for the vector field F = 〈x2yz+ ey, xy2z+ sin(xz), π−
xyz2〉 where S is the surface of the tetrahedron formed by the plane

2x+ 2y + z = 4 in the first octant — see Fig. C.21.

� The divergence of F is:

∇ · F =
∂

∂x
(x2yz + ey) +

∂

∂y
(xy2z + sin(xz)) +

∂

∂z
(π − xyz2)

= 2xyz + 2xyz − 2xyz = 2xyz

For the divergence theorem, note that the domain underlying the tetra-

hedron in the xy-plane is between the line 2x+2y = 4 (a.k.a. y = 2−x)
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1

2

1

2

2

4

x

y

z

Fig. C.21 The plane 2x+ 2y + z = 4 in the first octant.

and the axes, so bounds are 0 ≤ y ≤ 2− x and 0 ≤ x ≤ 2.
∫∫

S

F ·dS =

∫∫∫

E

∇·F dV =

∫ 2

0

∫ 2−x

0

∫ 4−2x−2y

0

(2xyz) dzdydx =
32

45

�

(3) As noted, the integral

∫∫

S

F · dS gives the flux of the vector field F

across the surface S. Use the Divergence Theorem to find the flux of a

vector field F(x, y, z) = 〈bz − cy, cx− az, ay − bx〉 across ANY smooth

closed surface S in R3 (where a, b, c are constants).

� Since

∇ · F =
∂

∂x
(bz − cy) +

∂

∂y
(cx− az) +

∂

∂z
(ay − bx) = 0

then ∫∫

S

F · dS =

∫∫∫

E

(0) dV = 0

for any smooth closed surface S and its interior E. �
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C.6.6 Stokes’ Theorem — Challenge — Solved

(1) Compute

∫

C

F · dr for the vector field F = 〈(1 + y)z, (1 + z)x, (1 +x)y〉
where C is the boundary of the plane 2x+2y+z = 4 in the first octant,

traversed counterclockwise.

� We’ll use Stokes’ Theorem via Eq. (18.4) to convert this to a double

integral involving ∇× F, which is ∇× F = 〈1, 1, 1〉 (details omitted).

The equation of the surface is z = g(x, y) = 4 − 2x − 2y, so we have

gx = −2 and gy = −2. Matching the curl to the form ∇ × F =

〈P,Q,R〉 = 〈1, 1, 1〉, we have

P = 1 ; Q = 1 ; R = 1

The domain D in the xy-plane underneath C is bounded by x = 0,

y = 0, and the line 2x+ 2y = 4 (a.k.a. y = 2− x). So by (18.4),
∮

C

F · dr =

∫∫

S

∇× F · dS =

∫∫

D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA

=

∫∫

D

(−(1)(−2)− (1)(−2) + 1) dA

=

∫ 2

0

∫ 2−x

0

(5) dydx = 10 �

(2) Compute

∫∫

S

(∇ × F) · dS for the vector field F = 〈z2,−3xy, x3y3〉
where S is the top part of the inverted paraboloid z = 5 − x2 − y2

above the plane z = 1, oriented positively.

� The boundary curve ∂S of this surface is the circle x2 + y2 = 4 (at

z = 1) and would usually be expressed (with positive orientation) as

x = 2 cos t → dx = −2 sin t dt

y = 2 sin t → dy = 2 cos t dt

z = 1 → dz = 0

for 0 ≤ t ≤ 2π. By Stokes’ Theorem, then,∫∫

S

(∇× F) · dS =

∮

∂S

F · dr =

∮

∂S

(z2) dx+ (−3xy) dy + (x3y3) dz

Because dz = 0, we can drop the third term in the integrand, and have:

· · · =
∫ 2π

0

(1)2(−2 sin t dt) + (−3)(2 cos t)(2 sin t)(2 cos t dt) + 0
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And this cleans up pretty nicely:

· · · =
∫ 2π

0

(−2 sin t− 24 cos2 t sin t) dt = 0 �

(3) The integral

∮

C

F · dr gives the circulation of the vector field F around

the contour C. Let g be the function g(x, y, z) = xez sin(y) and let

F(x, y, z) = ∇g. What is the total circulation due to F around the

contour C, which is the intersection of the plane x+ y+ z = 5 and the

cylinder x2 + y2 = 11, oriented positively? (Hint: There’s an easy way,

and there’s a hard way...)

� According to Stokes’ Theorem, we want to set up the conversion
∮

C

F · dr =

∫∫

S

∇× F · dS

for the given vector field F and contour C. But since the vector field F

is explicitly defined as the gradient of a scalar function, then we know

that F is a conservative vector field — and therefore its curl is zero.

With ∇ × F = 0, then, the right hand integral is zero, meaning that

the left hand integral — the circulation — is also zero. �
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Index

acceleration
normal component, 299
tangential component, 299

arc length parameter, 270

chain rule
multivariable, 68

Clairaut’s Theorem, 61
contour

3D
unit binormal vector, 294

open, closed, 280
Fresnet–Serret Frame, 295
orientation, 281
piecewise smooth, 281
simple, 281
TNB-frame, 295
unit normal vector, 283, 286
unit normal vector (2D), 285
unit tangent vector, 283

contour integral
definition, 344

coordinate system
three-dimensional, 3

coordinate systems
cylindrical, 144

bounds, 152
polar

bounds, 129
spherical, 147

bounds, 153

determinant
2x2, 195
3x3, expanded, 196
3x3, using minors, 197

distance formula, 6
divergence theorem, 393
double integral

definition, 98
general region, 100
polar regions, 132
rectangular region, 99
reversal of order, 103

Fubini’s Theorem, 99
function

multivariable
absolute extremes, 83
average, 122, 138
continuity, 49
critical points, 79
domain, 11
range, 11

Fundamental Theorem of line
integrals, 358

Green’s Theorem
and flux, 387
three dimensions, 386
two dimensions

with scalar functions, 382
with vector fields, 383
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Laplace’s Equation, 63
limit

multivariable, 43
path independence, 45

line integral
arc length differential, 345
cartesian differential, 346
definition, 344
finding arc length, 344
vector formulation, 348

optimization
constraint, 85
objective function, 85

parametric curve
arc length, 267

parametric curves, 12
helix, 18
lines, 13

partial derivative
definition, 58
first order, 59
high order, 61

plane
scalar equation, 246

potential function, 356

Stokes’ Theorem
definitive version, 401
useful version, 401

surface
contour plot, 28
level surface, 32
plane

equation, 21
quadric, 25
sphere

equation, 24
tangent plane, 250
trace, 26

surface integral

and surface area, 371

definition, 366

rectangular, 367

vector formulation, 373

total differential, 252

triple integral

cylindrical coordinates, 164

definition, 114

spherical coordinates, 167

vector field, 229

and potential function, 356

circulation, 587

conservative, 354

curl, 234

divergence, 234

gradient, 236

irrotational, 235

sink, source, 232

vector function, 213

arc length, 222, 267

arc length parameterization, 271

definite integral, 221

derivative, 217

limit, 216

linear, 215

vectors, 185

addition, 188

angle between, 201

components, 185, 203

cross product, 205

dot product, 199

length, 187

magnitude, 187

orthogonal, 202

perpendicular, 201

projection, 204

scalar component, 204

scalar multiplication, 189

unit vector, 191
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