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can AI and healthcare robotics assist in contemporary medicine?

Robotics and AI can offer society unimaginable benefits, such as 
enabling wheelchair users to walk again, performing surgery in a 
highly automated and minimally invasive way, and delivering care 
more efficiently. AI for Healthcare Robotics explains what healthcare 
robots are and how AI empowers them in achieving the goals of 
contemporary medicine.
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The COVID-19 pandemic has brought to light two major challenges 
in healthcare: (1) worldwide, access to high-quality (or any) health-
care is out of reach for a large majority of people; (2) the health-
care workforce, which was already at its breaking point before the 
pandemic, is bursting. Many people in healthcare robotics, the field  
I work in, view these challenges as opportunities to use technology 
to improve the state of things – increase access to care, fill care gaps, 
and relieve healthcare worker burnout. These are admirable goals, and 
while awaiting systemic change at the healthcare delivery systems and 
public health and policy levels, perhaps a reasonable path to pursue.

However, it is important to tread carefully and be mindful of 
the complex ecosystem of healthcare. Technosolutionism has a ten-
dency to place technology before people, and conveys an inherent 
reductionism that suggests technological solutions will solve inor-
dinately complex problems. I liken this framing to ‘AI Snake Oil’ –  
the hype far exceeds the state of the art, and, in some cases, can 
make things worse. Fosch-Villaronga and Drukarch illustrate these 
nuances very clearly, including real-world examples such as opaque 
medical diagnostic systems that yield incorrect and dangerous results 
and the security vulnerabilities in many surgical robotic systems. 
They emphasize the importance of transparency and explainability, 
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and the criticality of extensive testing, auditing, and public scrutiny 
before employing robots in healthcare settings.

Another aspect of understanding complex healthcare ecosystems 
is how the introduction of technology will affect clinical workflow 
(and, therein, patient safety). My clinic-based work is primarily in 
acute care, including in the Emergency Department. Here, health-
care workers are overburdened, overworked, and overstressed. They 
are interrupted every 6 minutes and subjected to constant loud and 
distracting ambient noises (alarms sounding, phones ringing, over-
head pagers blaring, loud talking, and, often, shouting). To introduce 
a robot into this setting, without appreciating its complexity and 
acquiring an understanding of how work is done, is a recipe for dis-
aster. Both technology builders and healthcare leaders need to allow 
time to deeply understand these settings and engage in collaborative 
co-design processes with healthcare workers to ensure systems fit 
within existing work practices.

Healthcare leaders in particular should acknowledge an augmen-
tation rather than automation framing when considering the adop-
tion of healthcare robots to support work. As Fosch-Villaronga and 
Drukarch and others in the field argue, we are not now, nor will 
ever likely be, in a position to automate the majority of high-level, 
patient-facing care tasks, which require complex knowledge, intui-
tion, problem-solving, and empathy. Instead, robots can be used to 
create spaces for healthcare workers to employ their irreplaceable 
skills as compassionate human beings, by perhaps adopting unpleas-
ant or unsafe work. Research that helps deepen our understanding of 
the role of robots and their relationship with healthcare workers will 
help further contextualize how/if/where/when the use of robots is 
appropriate in healthcare.

Another major trend in healthcare is a shift from hospital-deliv-
ered care to home and community-based care. Many chronic health 
conditions can be managed at home, and people are eager to avoid 
hospitals, particularly during an ongoing pandemic. Furthermore, 
home-based care delivery has the potential to improve access to care. 
Robots have a role to play here, though their capabilities, roles, and 
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functionalities require further research and development, particu-
larly with regard to their autonomy, usability, and accessibility. It is 
also critical to consider the cost of these technologies. Worldwide, 
even in developed countries, people make decisions every day about 
buying food or medicine. If a robot-delivered intervention is suc-
cessful, it is imperative to make sure people can afford to have it.

This book provides an excellent starting point for all key stakeholders 
– healthcare workers, patients, caregivers, technologists, researchers, 
policymakers, and leaders – to navigate and understand current direc-
tions in healthcare robotics, including both possibilities and pitfalls. It 
outlines opportunities and challenges, and directions for new avenues 
for research. I admire the authors’ methodological investigation of the 
literature to help define and understand this continually evolving field, 
and I hope you enjoy reading the book as much as I have.

Laurel Riek, PhD
Associate Professor, Computer Science & Engineering

Associate Adj. Professor, Emergency Medicine
Director, Healthcare Robotics Lab

UC San Diego
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INTRODUCTION

THE RISE OF AI-DRIVEN HEALTHCARE ROBOTICS

Robotics have increased productivity and resource efficiency in the 
industrial and retail sectors, and now there is an emerging interest 
in realizing a comparable transformation in healthcare (Cresswell, 
Cunningham-Burley, & Sheikh, 2018). Soon robots will take care 
of you, me, and our beloved ones in hospitals and medical centers. 
A robot will help a gynecologist or urologist perform crucial and 
life-saving surgeries; robots will help people who spent 10 years in 
a wheelchair walk again and climb stairs; and when you grow old, 
your family might bring you a social robot to keep you company 
and monitor you.

Robotics and artificial intelligence (AI) define a new and swiftly 
evolving scenario and are some of the latest promising technologies 
expected to increase the quality and safety of care while simultane-
ously restraining expenditure, especially given their success in the 
industrial sector (Riek, 2017; Cresswell et al., 2018). Moreover, such 
a transformation is encouraged by the urge to increase care quality 
and safety while simultaneously restraining expenditure. As such, 
healthcare robots are likely to be deployed to this end at an unprec-
edented rate (Simshaw et al., 2015). AI-driven healthcare robots 
allow healthcare providers to reduce their costs and are becoming 
particularly popular because of their increased roles and capacities 
(COMEST, 2017) to perform medical interventions (Nouaille et al., 
2017), support impaired patients (Tucker et al., 2015), provide ther-
apy to children (Scassellati, Admoni, & Matarić, 2012), or keep the 
elderly company (Broekens, Heerink, & Rosendal, 2009).

https://doi.org/10.1201/9781003201779-1
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Within this context, AI offers yet another wave of innovation and 
transformation for the delivery of healthcare. AI is a new realm of sci-
ence and technology which already affects many human activities at 
an almost endless range of societal levels, from individuals to social 
groups, corporations, and nations (Gómez-González, 2020). As we 
have experienced over the past decade, AI has expanded on a global 
scale at an unprecedented speed in almost every industrial, eco-
nomic, and societal sector, from information technologies to com-
merce, manufacturing, space, remote sensing, security and defense, 
transport, and vehicles (Gómez-González, 2020). For instance, 
think about introducing AI-driven personalized social media feeds, 
self-driving cars, intelligent virtual assistants, or even autonomous 
weapon systems. More recently, AI has also presented itself in health-
care robotics, and this development has been further triggered by the 
outbreak of the COVID-19 pandemic, throughout which AI-related 
technologies have been considered to play an essential role in the 
fight against the virus as an ongoing international priority. This has 
further sparked international interest in the development and use 
of AI within the domain of healthcare (Aymerich-Franch & Ferrer, 
2020; Khan, Siddique, & Lee, 2020).

AI is increasingly gaining a prominent presence in the domain 
of healthcare robotics. It augments and advances the capabilities of 
healthcare robots and combines the potential of disruptive advances 
with extraordinary benefits in medicine and healthcare. Yet while the 
recent advances in AI systems in medicine and healthcare present 
tremendous opportunities in many areas, they inevitably also raise 
important questions and drawbacks. This will require us to carefully 
consider their implementation and the possible ways in which they 
may affect and change our understanding of healthcare delivery and 
the basic concepts and definitions that have traditionally character-
ized this domain.

Interestingly, however, although the field of healthcare robot-
ics and AI is very rich and extensive, it is currently still very much 
scattered and unclear in terms of definitions, medical and technical 
classifications, product characteristics, purpose, and intended use 
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(Fosch-Villaronga & Drukarch, 2021). As we will further explain 
in this book, having unclear definitions and categories in place 
adversely impacts, among other things, the understanding of how 
the legislation applies to concrete robot applications and how it 
hampers compliance processes and safety. This is essential to prevent 
unnecessary harm from occurring and to ensure public trust in the 
system we rely upon, especially in the challenging times we have 
been presented with recently. Although the use of AI and robotics 
in healthcare may seem distant and of a somewhat science-fiction 
type nature to many, it will not be long before we encounter practi-
cal examples of AI and robotics in healthcare delivery on a personal 
and individual level. This will inevitably change our understanding 
of and interaction as users and patients within the healthcare ecosys-
tem, requiring us to grasp better what the near future will likely hold 
for us as humans in an increasingly tech-based environment.

WHAT IS THIS BOOK ABOUT?

This book introduces the domain of healthcare robotics and the 
application of AI within this context. For this purpose, we limit our 
focus to surgical, assistive, and service robots to rightfully match 
the definition of healthcare as the organized provision of medical 
care to individuals, including efforts to maintain, treat, or restore 
physical, mental, or emotional well-being. To this end, this book pro-
vides a structured overview of and further elaboration on the main 
healthcare robot categories now established, their intended purpose, 
use, and main characteristics. An elaborate insight integrating AI into 
the current state-of-the-art healthcare robots and the impact on the 
healthcare robot ecosystem complements this overview.

STRUCTURE OF THIS BOOK

This book is divided into six main chapters, preceded by an introduc-
tion and followed by a conclusion. The first chapter introduces the 
importance of having definitions intersecting healthcare, robotics, 
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and AI. It thereby provides working definitions that provide a basis 
for understanding this complex interplay and explains how these 
systems are embodied, their autonomy levels, and how users interact 
with these systems. Chapter 2 elaborates on the introduction of AI 
in healthcare – explaining how this has significantly reshaped med-
ical practice and raised questions and concerns regarding transpar-
ency and explainability – and concludes by mapping the healthcare 
robot ecosystem and highlighting the increasingly complex interplay 
between all involved actors. The remaining chapters cover the ecosys-
tem and state of the art of healthcare robotics and the application of 
AI within this context, following the established categories of surgi-
cal robotics, socially assistive robots, physically assistive robots, and 
healthcare service robots. The book concludes with some remarks on 
the impact and implications of developing and deploying AI-driven 
robotics in the healthcare domain.
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1

DEFINING THE DOMAINS OF 
ROBOTICS AND ARTIFICIAL 

INTELLIGENCE

1.1 THE IMPORTANCE OF DEFINITIONS

Precise terminology has always been important. Even if definitions 
are not an outcome in itself but merely a single step in the long pro-
cess of understanding, terms, words, and vocabulary, in general, are 
still the primary reference we acknowledge and to which we turn to 
define and understand concepts, ideas, and notions. In one of his six 
works, Topics, the Greek philosopher Aristotle already identified the 
importance of definitions and adequate terminology, which became 
a central part of his philosophy. Definitions were also an important 
matter for his teacher Plato and the Early Academy. In fact, concerns 
related to the adequacy of definitions and correct terminology are at 
the center of the majority of Plato’s dialogues, some of which put 
forward methods for finding definitions for the understanding of 
this world. For Aristotle, a definition should be defined as ‘an account 
which signifies what it is to be for something.’ This phrase and its 
many variants point out a crucial element in understanding the role 
and importance of definitions in our understanding of the world; 
giving a definition is saying, of some existent thing, what it is, and 
not simply specifying the mere meaning of a word. Put simply: Defi-
nitions formulate their essence.

https://doi.org/10.1201/9781003201779-2
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In general terms, definitions are called into existence to create 
more clarity and avoid misunderstandings when discussing a par-
ticular subject. However, not all concepts are easy to describe. For 
instance, consider the term emotion. Everyone knows what emotions 
are until asked to provide a definition. Likewise, there are also many 
definitions for what we understand as intelligence. Even experts do not 
seem to agree on what intelligence is when they are asked to define 
it. Something similar happens with the word robot or with the phrase 
artificial intelligence. Still, knowing the precise terminology is crucial, 
especially when we try to apply and understand the same concepts 
in different contexts.

This is particularly noticeable in those fields intersecting law 
and new technologies, where the use and meaning of words dif-
fer entirely in different contexts and according to the communities 
by which they are used. For instance, consider both the legal and 
computer science domains. In the legal field, the term transparent is 
generally defined as ‘easy to perceive or detect.’ However, it seems 
that the Oxford Dictionary also highlights that within the context of 
computing, this term means ‘of a process or interface functioning 
without the user being aware of its presence.’ While both fields thus 
extensively make use of the term transparency, they both understand 
and apply this term in completely different ways (Felzmann et al., 
2019). This causes much confusion because the term as used by the 
former community seems to be juxtaposed to the understanding the 
latter has attributed to the very same concept and vice versa. In this 
particular context, this confusion could lead to developers not ful-
filling the legal requirements that the law imposes with respect to 
transparency and explainability in domains such as data protection 
or artificial intelligence (AI) regulation.

Especially in today’s rapidly evolving society, it is not always pos-
sible to anticipate all possible developments and to adequately define 
them once they present themselves. This has especially proved to be 
a huge cause for concern where various domains intersect with one 
another, such as already indicated above for the domains of technol-
ogy, law, and healthcare. For these fields to interact harmoniously, 
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it will be necessary to gain a clear understanding of and clarify the 
components making up the transition towards digital healthcare. 
This, first, calls for a clarification of some of the general termi-
nologies at the center of this complex interaction: robots and AI, 
autonomy levels, and human–robot interaction (HRI). Based on this 
understanding, Chapter 2 continues to delve deeper into the domain 
of healthcare robotics.

1.2 �GUIDING YOUR WAY IN THE WORLD 
OF HEALTHCARE ROBOTICS: GENERAL 
TERMINOLOGY

1.2.1 ROBOTS

Similar to what we identified with emotions, it seems that everyone 
knows what a robot is, until asked to give a definition (Fehr & Rus-
sell, 1984; SPARC, 2015; Simon, 2017). Etymologically speaking, the 
word robot derives from the archaic Czech word robota, and means 
‘forced, serf labor.’ The word robot was introduced into the Eng-
lish vocabulary for the first time after the play ‘Rossumovi Univer-
zální Roboti’ (Rossum’s Universal Robots, R.U.R.), written by Karek 
Čapek in 1920, and staged in New York in 1922 (Čapek, 2004). 
R.U.R. was a play, for which Čapek invented the word robot, and 
involved a scientist named Rossum who discovered the secret of cre-
ating human-like machines which he then produces and distributes 
worldwide through a newly established factory. At the same time, 
another scientist decides to make the robots more human, which 
he does by gradually adding such traits as the capacity to feel pain. 
Roboti were human-like machines that were supposed to serve 
humans and do their tedious work but eventually came to dominate 
them completely. With his play, Čapek wanted to criticize the mech-
anization of human workers as a result of the industrial revolution 
(Horáková & Kelemen, 2003). Today, the Oxford dictionary reads 
‘a machine resembling a human being and able to replicate certain 
human movements and functions automatically.’
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This definition has taken different shapes and forms in differ-
ent communities, especially in the engineering one. For more 
technical definitions, some authors use classical definitions such 
as ‘machines, situated in the world, that sense, think and act.’ 
Others, like the International Standard Organization (ISO), define 
robots as ‘actuated mechanism(s) programmable in two or more 
axes with a degree of autonomy, moving within its environment, 
to perform intended tasks.’ (ISO 8373:2012).

Although naming a thing is to acknowledge its existence as sepa-
rate from everything else that has a name (Popova, 2015), there are 
nonetheless many terms that do not have a legal definition. Some 
legal scholars in the United States (U.S.) have defined a robot as a 
‘constructed system that displays both physical and mental agency 
but is not alive in the biological sense’ (Richards & Smart, 2016). The 
Japanese Electric Machinery Law (1971) defined an industrial robot 
as an ‘all-purpose machine, equipped with a memory device and 
a terminal device (end-effector), capable of rotation and of replac-
ing human labour by the automatic performance of movements’ 
(Mathia, 2010).

In this respect, Bertolini and Palmerini gave a relevant definition 
in the context of the EU Robolaw project in 2014: ‘A machine, which 
(1) may be either provided of a physical body, allowing it to inter-
act with the external world, or rather have an intangible nature –  
such as a software or program – (2) which in its functioning is alter-
natively directly controlled or simply supervised by a human being, 
or may even act autonomously in order to (3) perform tasks, which 
present different degrees of complexity (repetitive or not) and may 
entail the adoption of not predetermined choices among possible 
alternatives, yet aimed at attaining a result or provide information 
for further judgment, as so determined by its user, creator or pro-
grammer, (4) including but not limited to the modification of the 
external environment, and which in so doing may (5) interact and 
cooperate with humans in various forms and degrees’ (Bertolini & 
Palmerini, 2014).
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In 2017, the European Parliament (EP) called on the European 
Commission (EC) to take regulatory action – in the form of a Direc-
tive and on the basis of arts. 225 and 114 TFEU – with respect to 
robots and AI (European Parliament, 2017). In it, the EP acknowl-
edged that, at that time, there was no EU definition for ‘cyber-phys-
ical systems,’ ‘autonomous systems,’ and ‘smart autonomous robots.’ 
Accordingly, the EP recommended the EC establishing a definition for 
such systems taking into consideration the following characteristics:

	 1	 The acquisition of autonomy through sensors and/or by 
exchanging data with its environment (inter-connectivity) and 
the trading and analyzing of those data.

	 2	 Self-learning from experience and by interaction (optional 
criterion).

	 3	 At least a minor physical support.
	 4	 The adaptation of its behavior and actions to the environment.
	 5	 And the absence of life in the biological sense.

The EC defined robots as ‘AI in action in the physical world.’ They 
also called it embodied AI. For them

a robot is a physical machine that has to cope with the dynamics, 
the uncertainties and the complexity of the physical world. Per-
ception, reasoning, action, learning, as well as interaction capa-
bilities with other systems are usually integrated in the control 
architecture of the robotic system.

To make it simpler, for this book we define a robot as ‘a movable 
machine that performs tasks either automatically or with a degree 
of autonomy’ (ISO 8373:2012; Richards & Smart, 2016; Fosch-
Villaronga & Millard, 2019). Examples of robots include robotic 
manipulators to pick boxes or help build cars, self-driving cars, 
trucks or vans, drones, socially assistive robots, robotic vacuum 
cleaners, or conversational agents.
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1.2.2 ARTIFICIAL INTELLIGENCE

Humans have long imagined other types of lives and intelligence. 
A famous example of this can be traced back to the 1818 novel 
Frankenstein written by English author Mary Shelley. This well-known 
novel tells the story of Victor Frankenstein, a young scientist who 
creates a sapient creature in an unorthodox scientific experiment, 
thereby imagining the creation of new types of life and inspiring 
many generations to come in following similar paths. AI is a con-
cept from computer science, based on statistics, and is tightly related 
to pattern recognition. Although it is difficult to pinpoint, the roots 
of AI can probably be traced back to the second half of the 20th 
century, and although the emergence and further development of AI 
have brought society new hope and massive benefits, increasingly 
we are being faced with their dangers too. To quote Mary Shelly’s 
Frankenstein in this regard,

I had worked hard for nearly two years, for the sole purpose 
of infusing life into an inanimate body. For this I had deprived 
myself of rest and health. I had desired it with an ardor that far 
exceeded moderation; but now that I had finished, the beauty 
of the dream vanished, and breathless horror and disgust filled 
my heart.

Shelley (2018)

It was in 1942 that the famous American Science Fiction writer Isaac 
Asimov responded to these concerns through his short story, Runa-
round, which revolves around the Three Laws of Robotics:

	 1	 A robot may not injure a human being or, through inaction, 
allow a human being to come to harm.

	 2	 A robot must obey the orders given to it by human beings except 
where such orders would conflict with the First Law.

	 3	 A robot must protect its own existence as long as such protec-
tion does not conflict with the First or Second Laws.
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This work has inspired many generations of scientists in robotics, 
AI, and computer science and is still inspiring work to this day. 
At roughly the same time, but over 3,000 miles away, the English 
mathematician Alan Turing told the gathering at the 1947 meeting 
of the London Mathematical Society that he had conceived a com-
puting machine that could exhibit intelligence (Alan Turing, 1947). 
Turing thought nevertheless that whether machines could think or 
not was ‘too meaningless to deserve discussion,’ at the time. How-
ever, he believed that at the end of the 20th-century people could talk 
about machines thinking without being contradicted (Turing, 1950). 
Nowadays, and not far away from this vision, robots are considered 
machines, situated in the world that sense, think, and act (Bekey, 
2012). The phrase Artificial Intelligence was then officially coined in 
1956, after which the field experienced many ups and downs (Hae-
nlein & Kaplan, 2019). Due to the rise of Big Data and improvements 
in computing power, many advancements are often referred to as ‘AI.’ 
These include machine learning, image recognition, smart speakers, 
and self-driving cars – all of which is possible due to advances in AI – 
and without which life as we know it would become unrecognizable.

The EC defined AI in the Communication COM/2018/237 
named ‘Artificial Intelligence for Europe.’ They referred to AI as ‘sys-
tems that display intelligent behavior by analyzing their environment 
and taking actions – with some degree of autonomy – to achieve 
specific goals’ (European Commission, 2018). The term AI con-
tains an explicit reference to the notion of intelligence. However, 
as seen earlier, intelligence remains a vague concept, even though 
it has been investigated minutely by many disciplines, including 
psychology, biology, and neuroscience. AI researchers mostly use 
the concept of rationality, which refers to the ability to choose the 
most optimal action to achieve a specific goal, given particular cri-
teria and the available resources. Although rationality is not the only 
ingredient in intelligence, it is a significant part of it and forms the 
basis of machine learning, of AI based on the idea that systems can 
learn from data, identify patterns, and make decisions with minimal 
human intervention. According to them,
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AI-based systems can be purely software-based, acting in the 
virtual world (e.g. voice assistants, image analysis software, 
search engines, speech and face recognition systems) or AI 
can be embedded in hardware devices (e.g. advanced robots, 
autonomous cars, drones or Internet of Things applications)

European Commission (2018)

1.2.3 �EMBODIMENT, AUTONOMY LEVELS, 
AND HUMAN–ROBOT INTERACTION

The physical embodiment of a robot confines its capabilities and 
distinguishes it from mere virtual agents (Fosch-Villaronga, 2019). 
The embodiment of the robot plays a central role in many contexts. 
For instance, a robot may need to have a highly sophisticated embod-
iment to operate a person. If used for therapies, the robotic platform 
needs to be appealing and entertaining for children so they can really 
take advantage of what robot therapy has to offer (Tapus, Tapus, & 
Mataric, 2009).

Medical robots’ embodiment and capabilities differ vastly 
across surgical, physically/socially assistive, or serviceable contexts 
(Fosch-Villaronga et al., 2021). The involved HRI is also very dis-
tinctive. For example, socially assistive robots interact with users 
socially, performing a task for the user using words and communi-
cation capabilities. However, there is close to zero contact with the 
user at the physical level. Physically assistive robots (like lower-limb 
exoskeletons), on the contrary, work toward a seamless integration 
with the physical user’s movement. They are often attached to the 
user’s body and help them walk or move around. Surgical robots 
are collaborative robots that extend the surgeon’s abilities. For that, 
the robot embodiment needs to be very precise, include cameras to 
replace the doctor’s eyes, and also incorporate mechanical pieces to 
help perform the surgery.

Autonomy comes from the Greek autos (‘self’) and nomos (‘law’), 
constitutes a significant and essential aspect of contemporary robot-
ics and HRI, and refers to ‘the quality or state of being self-governing’ 
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(Merriam-Webster). As such, the term ‘robot autonomy’ refers to a 
robot’s capability to execute specific tasks based on current state and 
sensing without human intervention (ISO 8373:2012), and within 
this a number of levels of autonomy can be distinguished which 
define the robot’s progressive ability to perform particular functions 
independently. Robotic autonomy varies extensively across different 
robot types, and it ranges from teleoperation to fully autonomous 
systems, influencing how humans and robots may interact between 
them. These ascending levels constitute a significant and essential 
aspect of contemporary robotics and HRI, and understanding this 
complex interaction becomes particularly important with sensitive 
domains, such as the domain of healthcare. The autonomy varies 
extensively across different robot types. It ranges from teleoperation 
to fully autonomous systems, influencing how humans and robots 
may interact between them. For the automotive industry, the Society 
of Automotive Engineers established different automation levels to 
clarify the progressive development of automotive technology. How-
ever, no universal standards have been defined for medical robots yet 
(Fosch-Villaronga et al., 2021).

1.2.4 CLOUD ROBOTICS

Ibana was probably the first to anticipate cloud robotics when in 
1997 he wrote:

A remote-brained robot does not bring its own brain with the 
body. It leaves the brain in the mother’s environment, by which 
we mean the environment in which the brain’s software is 
developed, and talks with it by wireless links

Ibana (1997)

A couple of decades later, cloud computing is now mainstream, 
and the boundaries between ‘cyber’ and ‘physical’ are becoming 
increasingly blurred. Cloud computing essentially involves the use of 
computing resources over a network, typically the Internet, scalable 
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according to demand. More particularly, the National Institute of 
Standards and Technology (NIST) has defined cloud computing as 
a ‘model for enabling ubiquitous, convenient, on-demand network 
access to a shared pool of configurable computing resources […] 
that can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction’ (Mell & Grance, 2011).

In 2010, Kuffner (2010) described these advantages of using 
cloud computing services in robotics as a means for providing a 
shared knowledge database, offloading heavy computing tasks, and 
creating a reusable library of skills or behaviors that map to perceived 
complex situations. In the same year, others were also announcing 
cloud-computing frameworks for service robotics (Arumugam et al., 
2010). The concept of cloud robotics has since been extended to cover 
‘any robot or automation system that relies on data or code from a 
network to support its operation, i.e. where not all sensing, com-
putation and memory is integrated into a single standalone system’ 
(Kehoe et al., 2015).

Roboticists with requirements to process large quantities of data 
now have ready access to cloud robotic platforms which can greatly 
facilitate access to relevant resources, information, and communica-
tions (Hu et al., 2012). The RoboEarth project (2010–2014) devel-
oped a ‘Cloud Robotics infrastructure, which includes everything 
needed to close the loop from robot to the cloud and back to the 
robot.’ The catalyst for the project was the assumption that (at that 
time) near future robots would need to ‘reliably perform tasks beyond 
their explicitly pre-programmed behaviours and quickly adapt to the 
unstructured and variable nature of tasks’; something unlikely with-
out a cloud platform.

RoboEarth (2011) demonstrated that the use of a cloud system 
could create an environment where robotics knowledge and infor-
mation can be shared to enhance robot performance and to ena-
ble knowledge sharing independently of robotics architecture. In 
addition, Waibel et al. (2011) argued that cloud may also facilitate 
component reuse across different systems and developers, and the 
leveraging of expertise about the usage, robustness, and efficiency 
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of components (Qureshi & Koubâa, 2014). This approach has since 
been used to make standalone robots outperform their previous 
capabilities, for example by engaging better with children, or assist-
ing the elderly in a much more natural way (Navarro et al., 2013; 
Park & Han, 2016; Rodić et al., 2016).
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2

DEFINING HEALTHCARE 
ROBOTICS

2.1 HEALTHCARE ROBOTICS

It should come as no surprise that robots have not only become rou-
tine in the world of manufacturing and other repetitive labor tasks. 
They have also penetrated other fields, including healthcare, where 
they are used within entirely different environments and for until 
recently unfamiliar tasks, involving direct interaction with human 
users, in the surgical theater, the rehabilitation center, and the fam-
ily room (Mataric, Okamura, & Christensen, 2008). Research has 
pointed out that an estimated 20% of the world’s population expe-
riences difficulties with physical, cognitive, or sensory functioning, 
mental health, or behavioral health either temporary or permanent, 
acute or chronic, and subject to change throughout one’s lifespan 
(Riek, 2016). A significant number of these individuals experience 
severe difficulties with so-called Activities of the Daily Living (ADL) 
(Riek, 2017), which refer to the level of independence of a person 
and include activities and concepts such as washing, toileting, dress-
ing, feeding, mobility, and transferring.

Health is an outcome, a state of being, which has always been 
highly valued and prioritized within society. Being healthy is a 
‘resource of living,’ allowing people to function and participate 
in the wide range of activities that make up our society. However, 
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despite playing such a fundamental role in our everyday functioning 
and participation in society, the term health is often used without a 
clear understanding of what it exactly entails. Similarly, many defini-
tions of care have been established, some very broad and some very 
specific. While an extensive elaboration on the concepts of health 
and care go far beyond the scope of this book, to gain a good under-
standing of the role of robotics and AI in the healthcare domain it is 
important to make a couple of brief remarks in this regard.

The concept of healthcare acts in accordance with some ear-
lier approaches, being ‘the organized provision of medical care to 
individuals, including efforts to maintain, treat, or restore physical, 
mental, or emotional well-being.’ As such, healthcare encompasses 
the maintenance or improvement of health via the prevention, 
diagnosis, treatment, recovery, or cure of disease, illness, injury, 
and other physical and mental impairments in people as delivered 
by health professionals and allied health fields. It generally covers 
primary, secondary, and tertiary care, as well as public health, and 
research has attempted to point out specific aspects which can form 
a basis for evaluating care – structure, process, and outcome – in 
both a qualitative and quantitative sense (Donabedian, 1988; Sætra, 
2020).

Especially in recent decades, an increasing interest in healthcare 
digitalization has been identified. Robotics have increased productiv-
ity and resource efficiency in many areas, including the industrial and 
retail sectors and agriculture and farming. Self-driving cars, autono-
mous vacuums, cow-milking and pepper-planting robots, self-ser-
vice checkouts at grocery stores, autonomous weapon systems, 
drones, and virtual embodied tour guides – all are made possible 
thanks to rapid advancements in robotics. Seeing such profitable gain 
from the employment of robots and the use of artificial intelligence 
(AI), now there is an emerging interest in realizing a comparable 
transformation in the healthcare sector (Poulsen, Fosch-Villaronga, 
& Burmeister, 2020). Robotics and AI are some of the latest promis-
ing technologies expected to increase the quality and safety of care 
while simultaneously restraining expenditure and, recently, reducing 
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human contact too. Healthcare robots are likely to be deployed at an 
unprecedented rate due to their reduced cost and increasing capabil-
ities such as carrying out medical interventions, supporting biomed-
ical research and clinical practice, conducting therapy with children, 
or keeping the elderly company.

Recent developments in healthcare robotics have fundamentally 
changed how the medical and healthcare environment’s function-
ing is perceived within society, and the societal drivers for improved 
healthcare that can be addressed by robotic technology, broadly, lie 
in two categories: the wish to broaden access to healthcare and to 
improve prevention and patient outcomes (Cresswell, Cunningham-
Burley, & Sheikh, 2018). In this sense, advances in robotics have 
shown to have clear potential for stimulating the development of 
new medical treatments for a wide variety of diseases and disor-
ders, for improving both the standard and accessibility of care, for 
enhancing patient health outcomes, and for filling quantitative care 
gaps, supporting caregivers, and aiding healthcare workers (Kim, 
Gu, & Heo, 2016). As such, many children under the autism spec-
trum disorder (ADS) can now do therapy with social robots, such as 
the LuxAI, in which they can practice daily life skills at the cognitive, 
language, social, and emotional level at home.

Even more so, the spectrum of robotic system niches in medi-
cine and healthcare currently spans a wide range of environments, 
including nursing homes, hospitals, and the homes of users; user 
populations, including children, youth, and older adults; and inter-
action modalities, including physical and social human–robot inter-
action. Compare our current healthcare environment to that of 
approximately 20 years ago, and the benefits of robotics and digi-
talization in healthcare thus instantly become evident. Right now, 
it is already possible to provide physical rehabilitation for patients 
recovering from a stroke or with spinal cord injury, and help wheel-
chair patients walk back again; conduct surgeries with the help of 
tele-operated robots; and get blood and organs for transplant deliv-
ered in a very short time thanks to drone technology – something 
unimaginable before.
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In line with the emphasis placed on the importance of defi-
nitions and terminology in the previous chapter, here too it is of 
essential importance to define the concept of healthcare robots in 
order to understand their role and potential in today’s healthcare 
environment. In 2008, the European Foresight Monitoring Network 
(EFMN) defined healthcare robots as ‘systems able to perform coordi-
nated mechatronic actions (force or movement exertions) based on 
processing information acquired through sensor technology, to sup-
port the functioning of impaired individuals, medical interventions, 
care and rehabilitation of patients and also individuals in prevention 
programs.’ Such robots encompass varying degrees of autonomy 
and broadly include affiliated technology, including sensor systems, 
algorithms for processing data, and cloud services (Riek, 2016; 
Fosch-Villaronga, & Millard, 2019).

It is this combination of factors that led the Policy Department 
for Economic, Scientific, and Quality of Life Policies of the Euro-
pean Parliament to identify ‘the most interesting applications of 
healthcare robots,’ which include robotic surgery, care, and socially 
assistive robots, rehabilitation systems, and training for healthcare 
workers (Dolic, Castro, & Moarcas, 2019). Moreover, analysis of past 
and current performance of robotics within the field of healthcare 
have proved that there is an incredible opportunity for robotics tech-
nology within the healthcare domain; they may help fill care gaps, 
aid healthcare workers, and may be used for physical and cogni-
tive rehabilitation, surgery, telemedicine, drug delivery, and patient 
management (Riek, 2017). Contemporarily and over these years, 
fears and reluctance traditionally associated with robots and AI for 
healthcare as seen in previous Eurobarometers seem to have been set 
aside, especially as they have become strong allies in the fight against 
the coronavirus. In this respect, many countries started to explore 
the usefulness of these technologies throughout the COVID-19 pan-
demic regarding support and assistance in socially distant contexts.

In this book, we, therefore, focus on three main categories of 
healthcare robots, namely: surgical robots, assistive robots, and 
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healthcare service robots (Fosch-Villaronga & Drukarch, 2021) (see 
Table 2.1). Moreover, we distinguish between physically assistive 
robots (PAR) and socially assistive robots (SAR) within the context 
of assistive robots. Table 2.1 provides definitions for these different 
healthcare robot categories:

In this book, we will talk in more detail about each of these 
healthcare robots, their capabilities, and their applications to help 
the reader get an idea of what the state of the art of these tech-
nologies is. By doing so, we will distinguish those robots that are 
currently being deployed in practice, those that are currently being 
developed and tested and promise to enter the mass market soon, 
and those robots that are still very much in the realm of fiction. 
For instance, in 2012, there was a movie called Robot and Frank that 
explained the story of an assistant robot with caring and nursing 
capabilities for older adults. The robot pictured in the movie has the 
capacity to clean; help in daily activities such as shaving, cooking, 
and even gardening; and also work as a sort of motivational coach –  
even if such a healthy behavior clashes with the free will of the 
patient. Although many researchers are working toward having per-
sonal assistants that work in such a way, the current state of the art is 
not as advanced as shown in the movie. A more real example would 
be the European project ‘Giraff+,’ which is a tele-operated robotic 

Table 2.1  Healthcare Robot Categories and Definitions (Fosch-Villaronga & 
Drukarch, 2021)

Healthcare Robot Categories Definition

Surgical robots Service robots supporting surgeons 
during surgical procedures.

Service robots assisting users through 
social interaction.

Service robots supporting users 
through physical interaction.

Service robots in a healthcare setting 
performing tasks useful to the 
facility and the medical staff. 

Assistive 
robots

Healthcare 
service 
robots

Socially assistive 
robots

Physically assistive 
robots



26   DEFINING HEALTHCARE ROBOTICS

platform that aims at monitoring the elderly at home continuously. 
Although the robot can move on wheels around the house, doc-
tors can communicate with the patient via a camera, speakers, and 
microphones, and the sensors around the house provide detailed 
information about the daily activities of the user, the robot cannot 
perform nor as many tasks as portrayed in the above movie nor with 
the seamless and perfect integration into the user’s daily life as in 
the movie.

In this book, we also cover the tremendous possibilities that AI has 
to offer for healthcare robotics. Not all healthcare robots incorporate 
AI, though. AI for healthcare robotics is a design choice to afford 
learning and other capabilities for robots but it does not always need 
to be present. AI for healthcare robotics thus falls under a spectrum 
of possibilities that depend much on the task to be performed, the 
outcome to be achieved, and whether AI will enable a more efficient, 
more quickly, and safer robot performance. This is similar to their 
embodiment: some robots may need a simple body (e.g., a speaker 
to provide oral information) or others more complex (e.g., a surgery 
robot to perform surgery) to complete a task (Fosch-Villaronga & 
Millard, 2019). In the next section, we focus on the possibilities that 
AI brings to healthcare.

2.2 ARTIFICIAL INTELLIGENCE FOR HEALTHCARE

Following the introduction of AI in the second half of the 20th cen-
tury, researchers and developers increasingly began to recognize that 
AI systems could significantly benefit the healthcare domain, and 
especially in the 1980s and 1990s, it was argued that in healthcare 
such technology must be designed to accommodate the absence of 
perfect data and build on the expertise of physicians (Randolph & 
Miller, 1994). Over time, it became evident that AI, which involves 
machine learning and natural language processing, serves exception-
ally well in revolutionizing any knowledge-intensive sector, includ-
ing in particular the healthcare sector (Garbuio & Lin, 2019; Lee & 
Yoon, 2021).
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Different medical domains previously reserved for human experts 
are increasingly augmented or transformed completely thanks to 
the integration of AI in clinical practice, including disease diagno-
sis, automated surgery, patient monitoring, translational medical 
research encompassing advances in drug discovery, drug repur-
posing, genetic variant annotation, and the automation of specific 
biomedical research tasks such as data collection, gene function 
annotation, or literature mining (Yu, Beam, & Kohane, 2018; Ahuja, 
2019).

Moreover, AI is –well-suited to handle repetitive work processes, 
manage large amounts of data, and can provide another layer of deci-
sion support to mitigate errors, allowing for the improvement of 
patient outcomes while reducing treatment costs (Frost & Sullivan, 
2016; Accenture, 2017). More specifically, AI promises to find and 
use complex underlying relationships between the way humans 
work and how to care for them to improve care, discover new treat-
ments, and advance scientific hypotheses even if we as humans do 
not understand those underlying relationships (Price & Nicholson, 
2019).

In the context of healthcare, AI is poised to play an increas-
ingly prominent role in medicine and healthcare because human 
biology is tremendously complex, and our tools for understand-
ing it are limited (Price & Nicholson, 2019). Advances in com-
puting power, learning algorithms, and the availability of large 
datasets (big data) sourced from medical records and wearable 
health monitors have proved to be useful in overcoming this 
significant shortcoming, and that is why AI is applied in sev-
eral healthcare areas (Ahuja, 2019; Custers, 2006). Thanks to 
the processing of vast amounts of health data from electronic 
health records, AI could help soon diagnose diseases as accu-
rate as experienced pediatricians (Liang et al., 2019), predict 
women at high risk of postpartum depression (Zhang et al.,  
2021), or give triage advice safer than that of human specialists 
(Razzaki et al., 2018). AI improves diagnostic accuracy and effi-
ciency in provider workflow and clinical operations, facilitates 
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better disease and therapeutic monitoring, and enhances proce-
dure accuracy and overall patient outcomes (Kaul, Enslin & Gross, 
2020). Many companies, including the tech-giant IBM, combine 
advanced technology solutions, including AI, blockchain, and data 
analytics, to support digital healthcare transformations. Great pro-
gress exists in the field of oncology, which is very much image-
based diagnosis systems, an end to which machines are excellent. 
IBM offers medical imaging solutions for clinicians to deliver 
more consistent care and tools for researchers looking to conduct 
efficient clinical trials.1

To this end, AI applications collect and analyze patient data 
and present it to primary care physicians alongside insight into a 
patient’s medical needs and support predictive models that can be 
ulteriorly used to diagnose diseases, predict therapeutic response, 
and potentially develop preventative medicine in the future (Amisha 
et al., 2019). As such, AI is currently already being put to use for 
medical purposes within the fields of chronic disease management 
and clinical decision-making (Bresnick, 2016), radiology (Bakkar 
et al., 2018; Wang et al., 2017), oncology (Houssami et al., 2017; 
Patel et al., 2018), pathology (Cruz-Roa et al., 2017; Yu et al., 2016; 
Wong & Yip, 2018; Capper et al., 2018), dermatology (Haenssle 
et al., 2018), ophthalmology (Gulshan et al., 2016), cardiology 
(Yan et al., 2019; Petrone, 2018), gastroenterology (Wang et al., 
2018), surgery (Hashimoto et al., 2018), and mental health (Topol, 
2019). This all comes to show how recent and expected advances in 
AI technologies may entail incredible and unprecedented progress 
for medicine and healthcare delivery, both in terms of quantity and 
quality, that could eventually help repair diagnoses errors and their 
very high consequences for society soon (Singh, Meyer, & Thomas, 
2014).

Along with improved computer hardware and software pro-
grams, digitized medicine has become more readily available, and 
AI in medicine has started to proliferate (Bakkar et al., 2018; Kaul, 
Enslin & Gross, 2020). In this sense, AI in medicine can be divided 
into two subtypes: virtual and physical (Amisha et al., 2019).  
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The virtual part ranges from electronic health record systems to 
neural network-based guidance in treatment decisions. In contrast, 
the physical part deals with robots assisting in performing surger-
ies, intelligent prostheses for people with physical disabilities, and 
elderly care. As such, AI-enabled computer applications will help 
primary care physicians to identify better patients who require extra 
attention and provide personalized protocols for each individual. 
Examples of such technologies are smartwatches that are capable 
of detecting atrial fibrillation (Buhr, 2017), and smartphone exams 
with AI are being pursued for a variety of medical diagnostic pur-
poses, including skin lesions and rashes, ear infections, migraine 
headaches, and retinal diseases, such as diabetic retinopathy and 
age-related macular degeneration (e.g., AiCure) (Levine & Brown, 
2018). Simultaneously, on the administration side of healthcare, 
AI applications automate non-patient care activities, such as writ-
ing chart notes, prescribing medications, ordering tests, allowing 
healthcare providers to cut documentation time, and improving 
reporting quality (Ahuja, 2019).

Despite all the promises of AI technology, it has shown formi-
dable obstacles and pitfalls in its adoption and implementation in 
the healthcare setting, especially when it pertains to validation and 
readiness for implementation in patient care (Topol, 2019). A recent 
example of this is IBM Watson Health’s cancer AI algorithm. When 
fed with very limited input (actual data) from clinicians, the potential 
for significant harm to patients and medical malpractice by a flawed 
algorithm arises. This highlights already existing concerns about the 
dangers resulting from so-called ‘black-box algorithms’ – compli-
cated algorithms whose internal mechanism is not understandable 
for humans, even those who design them. Indeed, many machine 
learning tools provide detailed information and verdicts without 
always accompanying justification. This information then supports 
ulterior decision-making processes that may affect the life of patients 
tremendously. This opaqueness has led to an increased demand for 
transparency and explainability in AI environments (Felzmann et al., 
2020) (e.g., see the explicit requirements for transparency laid down 
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in the European Union’s General Data Protection Regulation, GDPR) 
before an algorithm can be used for patient care in practice. All in all, 
this stresses the need for systematic debugging, audit, extensive sim-
ulation, and validation, along with prospective scrutiny before the 
relevant AI algorithm is unleashed in clinical practice (Topol, 2019).

2.3 THE HEALTHCARE ROBOT ECOSYSTEM

Ecosystems have the ability to generate powerful forces that can 
reshape and disrupt industries (McKinsey & Company, 2019). As 
noted earlier, in healthcare, they have the potential to deliver a per-
sonalized and integrated experience to consumers, enhance provider 
productivity, engage formal and informal caregivers, and improve 
outcomes and affordability. Here, the global management consulting 
firm McKinsey and Company defines an ecosystem as ‘a set of capabil-
ities and services that integrate value chain participants (customers, 
suppliers, and platform and service providers) through a common 
commercial model and virtual data backbone (enabled by seamless 
data capture, management, and exchange) to create improved and 
efficient consumer and stakeholder experiences, and to solve signif-
icant pain points or inefficiencies’ (McKinsey & Company, 2020).

Today, the primary goal of healthcare provision is preventing 
and effectively managing chronic conditions. However, as we have 
shown, productivity in healthcare is lagging other services industries 
as these goals shift. New technologies promise care that is availa-
ble nearby or at home, supports continuous self and autonomous 
care, and reduces friction costs between supporting stakehold-
ers. It should be no surprise that over the past decades of growth, 
changes, and regulation, our healthcare system has grown to be 
increasingly complicated. This has caused a disconnect among those 
who populate it, and the key players often have conflicting inter-
ests and goals that make it impossible for them to unite to serve 
each of our unique needs, preferences, and values. The introduction, 
further improvement, and rapid deployment of digital technologies 
within the healthcare domain have only increased this complexity 
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and magnified this disconnect. This can be seen in several concrete 
cases. One is the case of introducing robots such as surgery robots, in 
which a traditional surgeon-to-patient procedure is now a surgeon 
to robot-cloud-AI to patients, changing how the roles and responsi-
bilities are distributed among the practitioners, manufacturers, sup-
port staff, and patients (Fosch-Villaronga et al., 2021). Another is the 
use of electronic health records, which is the collection of patient 
and population health information stored in a digital format.

As we can see, the healthcare ecosystem is the network of stake-
holders, processes, and materials necessary for the treatment of 
an ailment by way of medical intervention on a patient (de Vries 
& Rosenberg, 2016). The extensive list of robotics stakeholders in 
general used in society identified in the European project ‘RoboLaw,’ 
which includes producers and employers of robots, insurance com-
panies, trade unions, user associations, professional users, and pol-
icymakers (Palmerini et al., 2014), to a certain extent, can also be 
identified in the field of healthcare robots (Fosch-Villaronga et al., 
2021), although this field calls for a more specific approach because 
of the many parties involved and the healthcare setting’s particular 
nature.

Within the field of healthcare robots, several stakeholders can be 
identified (see Table 2.2), and many different actors use healthcare 
robots within a healthcare setting: doctors, medical professionals, 
patients, family members, caregivers, healthcare providers, or even 
technology providers. All these stakeholders have similar goals, 
although they experience healthcare from different viewpoints. 
These experiences range from providing (medical) care and inde-
pendence and preserving patients’ dignity, to empowering those 
with special needs (Simshaw et al., 2016). A common and practical 
approach in mapping the healthcare robot ecosystem is to divide 
the stakeholders in healthcare robotics into primary, secondary, 
and tertiary stakeholders (Riek, 2017). Here, primary stakeholders 
refer to those stakeholders that use healthcare robots on a regular 
or even daily basis. Within the category of primary stakeholders, 
Riek (2017) identifies direct robot users (DRU), clinicians (CL), and 
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caregivers (CG); secondary stakeholders include those stakeholders 
that are involved in using healthcare robotics without directly using 
them. Within the category of secondary stakeholders, she identifies 
the robot makers (RM), the environmental service workers (ESW), 
and the health administrators (HA); and tertiary stakeholders refer 
to those parties who have an interest in the use and deployment 
of healthcare robots, although it is unlikely that they will use them 
directly. Finally, within the category of tertiary stakeholders, Riek 
(2017) distinguishes between policy makers (PM), insurers (IC), 
and advocacy groups (AG).

With the above information serving as an important basis, in the 
following chapters, we deep-dive into each of the above categories 
of healthcare robots. For each of these categories, we map their eco-
system and state of the art, and explain the use of AI within this 
context – starting with surgery robots.

Table 2.2  Healthcare Robot Categories and Definitions

Main Category 
Stakeholder

Subcategory  
Stakeholder

Description 

Primary 
stakeholders

Direct robot users (DRU) Primary stakeholders use 
healthcare robotics on 
a regular or even daily 
basis. 

Clinicians (CL)

Caregivers (CG)

Secondary 
stakeholders

Robot makers (RM) Secondary stakeholders 
are involved in using 
healthcare robotics, but 
will not directly use 
them themselves. 

Environmental service 
workers (ESW) 

Health administrators (HA)

Tertiary 
stakeholders 

Policy makers (PM) Tertiary stakeholders are 
those parties who have 
an interest in the use 
and deployment of 
healthcare robotics in 
society, although it is 
unlikely that they will 
use them directly. 

Insurers (IC)

Advocacy groups (AG)

Source: Based on Riek (2017).
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NOTE

	 1	 See  https://www.ibm.com/watson-health/solutions/cancer-research- 

treatment.
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AI FOR SURGICAL ROBOTS

3.1 SURGICAL ROBOTS ECOSYSTEM

It is approximately four decades ago that the first robot was used in 
the theater for surgery, and the extent to which the surgical frater-
nity has embraced robotic surgery since then has been unparalleled. 
Since then, many advances have been made in the field, partly due to 
the plethora of benefits afforded by robotics that are simply absent 
in traditional surgical methods – stability, accuracy, integration with 
modern imaging technology, greater range of motion, telesurgery, 
in addition to multiple other benefits inherent to individual surgi-
cal specialties (Shah, Vyas & Vyas, 2014). However, to fully utilize 
the potential of surgical robots, including their potential capabilities 
related to AI, it is essential to understand the past to build toward the 
future, starting once again with definitions and terminology.

Surgical robots are service robots supporting surgeons during sur-
gical procedures. Importantly though, robots used in surgery are 
not always necessarily considered surgical robots (Chinzei, 2019). 
For instance, medical devices within the definition of robots exist 
in current surgeries like robot-shaped actuated operating tables 
or robotized microscopes, which are usually not considered sur-
gical robots. Instead, they fall within the category of robotic sur-
gical instruments. As such, a robotic surgical instrument is ‘an 
invasive device with an applied part, intended to be manipulated by 
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robotically assisted surgical equipment (RASE) to perform surgery 
tasks’ (IEC 80601-2-77:2019).

Since the mid-1980s, when the first robotic-assisted surgical 
procedures took place, surgical robotics has evolved into a highly 
dynamic and rapidly growing field of application and research, enjoy-
ing increasing clinical attention worldwide (Faust, 2007; Bergeles & 
Yang, 2013; Lane, 2018). Initially introduced for a limited type of 
surgical procedures, nowadays, advances in ergonomics, computing 
power, hardware dexterity, safety, and ease of surgery allow for the 
rapid adoption and dissemination of new technologies for robotic-
assisted surgical procedures. Some of the most common procedures 
in this arena are in the field of cardiology or ophthalmology, but an 
increasing amount of minimally invasive surgical operations, mean-
ing operations that involve the insertion of a narrow laparoscopic 
device into the human body instead of having to open up the patient 
to that end, are on the rise (Sridhar et al., 2017).

Over the years, robotic surgery, or robotic-assisted surgery 
(RAS), has gained popularity within surgical practice due to the 
extensive benefits that they hold. Among other things, operating 
with robots increases the accuracy, precision, and dexterity of the 
doctor’s hands. Surgical robots also can prove excellent at tremor 
corrections, scaled motion, and haptic corrective feedback, which 
is very handy for allowing perfect movement and for letting sur-
geons know when they are touching organs. This all allows sur-
geons to conduct surgeries with a lesser chance of damage to the 
patient’s body, more successful surgeries, and less invasive proce-
dures that grant shorter patient recovery time and hospital stays, less 
pain, blood loss, noticeable scars and discomfort, and less risk of 
complications following the procedure (Boyraz et al., 2019; Jaffray, 
2005). Moreover, since robots are devoid of shortcomings such as 
fatigue or momentary lapses of attention, they can perform repeated 
and tedious surgeries, enabling at the same time, the performance 
of surgical procedures that were previously considered impossible 
(Fosch-Villaronga et al., 2021). For instance, RAS could help ‘opti-
mize the production, distribution, and use of the health workforce 
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and infrastructure; allocate system resources more efficiently; 
streamline care pathways and supply chains’ in low- and middle-in-
come countries (Reddy et al., 2019). Still, the rapidly increasing 
demand resulting from the beneficial responses to their use and 
the consequent demonstration of their practical clinical potential 
leaves an extensive amount of room for further development and 
innovation. Consider, for instance, the tremendous benefits that AI 
could offer within this context. Combining AI control algorithms 
with the built-in advantages of surgical robots may serve surgical 
practice extremely well by overcoming technical errors and short-
ening operative times, improving access to body areas that are usu-
ally very hard to reach without necessarily opening up a person’s 
whole body (Panesar et al., 2019). Moreover, AI for surgeons can 
also help reduce and eventually remove human error, which is one 
of the leading causes of surgical complications.

At the same time, we should not become oblivious to the poten-
tial dangers that may simultaneously arise, somewhat resembling a 
future in which science fiction becomes a reality. While RAS bene-
fits abound, introducing a robot to the doctor-to-patient relation-
ship inevitably changes how surgeries are performed. RAS has made 
it possible to extend the abilities and capabilities of surgeons, but 
it also presents new challenges. For instance, a revision of 14 years 
of data from the Food and Drug Administration (FDA) has shown 
that robotic surgeons can cause injury or death if they spontane-
ously power down mid-operation due to system errors or imaging 
problems (Alemzadeh et al., 2016). Broken or burnt robot pieces 
can fall into the patient, electric sparks may burn human tissue, and 
instruments may operate unintendedly, all of which may cause harm, 
including death (Alemzadeh et al., 2016). Moreover, as surgical 
robots’ perception, decision-making power, and capacity to perform 
a task autonomously will increase thanks to AI, the surgeon’s duties 
and oversight over the surgical procedure will inevitably change 
(Fosch-Villaronga et al., 2021). Moreover, other issues relating to 
cybersecurity and privacy will become more significant (Yang et al., 
2017). Security vulnerabilities may allow unauthorized users to 



42   AI FOR SURGICAL ROBOTS

remotely access, control, and issue commands to robots, potentially 
causing harm to patients (FDA, 2020). Many examples highlight the 
genuine risks of exploiting the vulnerabilities of cyber-physical sys-
tems in general (Fosch-Villaronga & Mahler, 2021). For instance, in 
2015, a Jeep Cherokee was switched off remotely by hackers while 
being driven by a journalist. In another example, the Stuxnet virus 
subtly changed the speeds at which the Iranian nuclear centrifuges 
spun, thereby damaging and even destroying the carefully calibrated 
machines (Holloway, 2015). These cybersecurity risks are also rele-
vant within the context of healthcare robots powered by AI because 
systems that exert direct control over the world can cause harm in 
a way that humans cannot necessarily correct or oversee (Amodei 
et al., 2016). Healthcare robots interact with humans and, in the 
healthcare sector, users are often in a vulnerable position, which 
makes these risks more critical. It is easy to picture how cyberat-
tacks could have lethal consequences in the context of surgical robots 
using AI. For example, a malicious attacker could disrupt the behav-
ior of a tele-operated robot during surgery and even take over such a 
robot because of the unrestricted and uncontrollable nature of com-
munication networks. In 2015, some researchers triggered a sort of 
‘denial of service attack’ and succeeded in stopping the robot from 
being adequately reset, impeding the procedure altogether, which 
could be fatal (Emerging Technologies from the Arxiv, 2015).

Despite the high-tech world we are currently living in, a scene 
like this is not as far from reality as you might initially be think-
ing. Despite the widespread adoption for minimally invasive sur-
gery (MIS), a non-negligible number of technical difficulties and 
complications are still experienced during surgical procedures per-
formed by surgical robots. To prevent or, at least, reduce such pre-
ventable incidents in the future, advanced techniques in the design 
and operation of robotic surgical systems and enhanced mechanisms 
for adverse event reporting ought to be adopted (Alemzadeh et al., 
2016). Here too, AI might very well offer unprecedented potential if 
applied with careful consideration and toward the direction of cor-
recting common humanly made errors.
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To fully understand the role of surgical robots within the complex 
surgical environment, and pinpoint the areas for improvement, it is 
necessary to get a good grip and understanding of the ecosystem in 
which these robots are situated. The robotic surgery ecosystem is a 
smaller ecosystem within the complex healthcare robots’ ecosystem, 
comprising the surgeon, the nurses, and other staff members, who 
help the doctor during the surgical procedure, and the patients as 
the direct robot users (Fosch-Villaronga et al., 2021). Also, the hos-
pital administration plays an important role within this ecosystem, 
researching and procuring reliable measurements of processes costs, 
quality, and efficiency. Importantly, within this context, while the use 
and role of robots affect and influence other stakeholders, some of 
them – among which are the surgeon and support staff – will remain 
integral to the surgical environments for many functions, such as 
selecting the process parameters or positioning the patient, which 
further stresses the essential role humans still have in robot-mediated 
surgeries (Fosch-Villaronga et al., 2021).

3.2 SURGICAL ROBOTS’ STATE OF THE ART

Contemporary literature is rich in providing examples and applica-
tions of surgical robots and the current and predicted developments 
within surgical robotics (Bergeles & Yang, 2013). Still, the field is 
very much scattered, and a clear, concise definition of surgical robots 
and an understanding of their precise applications are still lacking. 
To fill in the gaps and lack of clarity currently experienced in the 
field of surgical robotics, in the following we provide a structured 
overview of and further elaboration on the main categories currently 
established within the field of surgical robots, their purpose, context 
of use, and main characteristics. For this purpose, we define surgi-
cal robots as ‘service robots that support surgeons during surgical 
procedures allowing for more accurate and minimally invasive inter-
ventions’ (Boyraz et al., 2019; Fosch-Villaronga & Drukarch, 2021).

We distinguish between the traditional types of surgical proce-
dures in categorizing surgical robots, namely open surgery and closed 
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surgery. Open surgery is the traditional form of surgery, which pri-
marily refers to the highly invasive procedure of making an – often 
large – incision and cutting the skin and human tissue so that the 
surgeon has a full view of the structures and organs involved. Based 
on his medical assessment, the surgeon then can determine and per-
form the necessary surgical procedures. While open surgery is gen-
erally considered a safe and effective type of surgery, it causes longer 
hospital stays, longer recovery periods, larger scars, more pain, and 
higher risks of complications (e.g., bleeding and infections). On the 
contrary, closed surgery refers to the minimally invasive technique 
involved in surgery that allows surgeons to perform surgical proce-
dures by providing them access to the patient’s body either through 
the body’s natural openings or through small incisions in the body, 
and is only suitable under particular conditions (e.g., when there is 
no particular urgency or when the human capabilities lack the nec-
essary precision). During the last three decades, MIS has influenced 
the techniques used in almost the entire field of surgical medicine, 
mainly due to the fact that this form of surgery allows surgeons to 
use various techniques to operate with less damage to the patient’s 
body than would be the case with open surgery. As a result, MIS is 
generally associated with less pain and discomfort, shorter hospital 
stays, quicker recovery times, smaller scars, and less risk of compli-
cations following the procedure (Jaffray, 2005). In the future, and 
given these advantages, it is likely that the technology will get better 
and more procedures will be performed through robot technology.

Even more so, the continuing developments in MIS have led to the 
replacement of conventional surgery with minimally invasive surgi-
cal procedures, and they have also prompted surgeons to reevaluate 
conventional approaches to surgery. Nowadays, many surgical tech-
niques fall within the scope of MIS. RAS typically falls within the 
scope of MIS (Boyraz et al., 2019), the difference here being that 
instead of the surgeon manually operating instruments, they – as pri-
mary users of the robotic surgical systems – are supported or replaced 
by the power and precision of high-tech robotic systems. However, 
here too we should not be blinded by the promises MIS offers as 
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the introduction of these new approaches has, in some respects, led 
to significant drawbacks. For instance, the introduction and rapid 
adoption of MIS have largely prolonged learning curves for surgeons, 
increased costs due to the (high) investments needed to acquire the 
necessary equipment and instruments and led to longer operating 
times (Fuchs, 2002). It is also not clear how these advancements 
will affect the education of future medical doctors: Should medical 
schools start offering tech-based training to equip future generations 
with these skills?

As we are heading toward the future, robotic systems are increas-
ingly beginning to equal human specialists at precision surgical tasks. 
They may even outperform human surgeons in precision, control, 
efficiency, and accuracy in the near future, although it is still some 
time away before this applies to all surgical procedures. Increasingly 
autonomous robotic assistance levels allow intricate surgical feats to 
be performed without the surgeon worrying that their hands might 
slip or their grip falter (Svoboda, 2019). However, in surgeries that 
are very high volume, for the time being human surgeons are still 
much better than robots at weighing their experience to make com-
plex surgical judgments and develop contextual understanding, 
especially when faced with unexpected situations and circumstances 
(Svoboda, 2019). It is precisely this power and accuracy that increas-
ingly allows robotic systems to perform MIS, a type of surgery that, 
by its very nature, requires a high level of precision.

To illustrate the wide presence of robots in current surgical pro-
cedures, Table 3.1 provides some examples of surgical procedures 
currently performed with the help of a robot.

When compared to the surgical environment prior to the intro-
duction of robotics and in the early days of its operation, this all 
indicates that the field of RAS is rich in development and innovation. 
Surgical robots are used in different medical areas, usually on a spec-
trum that ranges from surgical robots that are more generic in nature 
to highly specific surgical robots (see Figure 3.1). One of the grow-
ing areas of application is pediatric and aging population cardiac 
surgeries. Although entirely autonomous robotic-assisted cardiac 
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surgeries are far from reality because these types of procedures are 
very long and complex, AI shows incredible promise in this arena. 
AI is a particularly relevant technology for cardiology, for instance, 
because the field is very much image-intensive (Chang, 2019). The 
techniques that involve AI, such as image processing and real-time 

Figure 3.1  Intuitive Da Vinci robots used for RAS procedures.

Table 3.1  Surgical Procedures Performed with a Robot (Fosch-Villaronga & 
Drukarch, 2021)

Cardiac surgery Ocular surgery

Cosmetic surgery Orthopedic surgery

Dental surgery Otorhinolaryngology

Endocrine surgery Plastic and reconstructive surgery

Endoscopic surgery Thoracic surgery

Gastrointestinal surgery Urology

Gynecology Vascular surgery
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automated decision-making processes, would help combat one of 
the largest and continuously climbing diseases among aging and 
pediatric populations.

3.3 �THE APPLICATION OF AI 
IN SURGICAL ROBOTS

Owing to recent advances in medicine, AI has played an increasingly 
important role in supporting clinical decision-making and is now 
increasingly used for risk stratification, genomics, imaging and diag-
nosis, precision medicine, and drug discovery. AI was introduced 
into surgery more recently, gradually changing surgery practice 
with technological advancements in imaging, navigation, robotic 
intervention, and surgical instrumentation (Zhou et al., 2019). For 
instance, consider pre- and intra-operative imaging techniques such 
as ultrasound, computed tomography (CT), and magnetic resonance 
imaging (MRI). Moreover, advances in surgery have significantly 
impacted the management of both acute and chronic diseases, pro-
longing life and continuously extending the boundary of survival.

AI has the power to completely revolutionize contemporary sur-
gery thanks to its combination with the processing of vast amounts 
of information and unlimited data storage, coupled with robotics, 
visualization, advanced instrumentation, data analytics, and connec-
tivity (Aruni, Amit, & Dasgupta, 2018). In this sense, what AI adds to 
surgery robots is the potential use of decision-making algorithms to 
understand and react to specific data, making surgery performance 
more effective and reliable. In simple words: the more the data, the 
better the outcome. For example, a prostate recognition algorithm 
could make the machine learn whether a given image has prostate 
cancer or not, thus reducing the variability in radiologists’ readings 
of magnetic resonance imaging. In another example, IBM’s Watson 
created an intelligent surgical assistant that uses unlimited med-
ical information, using natural language processing to clarify sur-
geons’ doubts about surgery performance. Such a great outcome is 
because IBM Watson currently processes and analyzes an infinite total 
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number of electronic medical records and sequence tumor genes to 
formulate more personalized and effective treatment plans. Moreo-
ver, with the increasing use of robotics in the surgical context, AI is 
set to transform the future of surgery through the development of 
more sophisticated sensorimotor functions with different levels of 
autonomy that can give the system the ability to adapt to constantly 
changing and patient-specific in vivo environments, leveraging the 
parallel advances in medicine in early detection and targeted ther-
apy (Yang et al., 2017). The next-generation robots are associated 
with faster digital communication, better decision-making abilities, 
enhanced visual displays and guidance, and haptic feedback. With 
the development of increasingly sophisticated AI techniques, surgi-
cal robots can now achieve superhuman performance during MIS. 
Here, the objective of AI is to boost the capability of robotic surgical 
systems in perceiving the complex in vivo environment, conducting 
decision-making, and performing desired tasks with increased pre-
cision, safety, and efficiency. As a result, it is reasonable to expect that 
future surgical robots would perceive and understand complicated 
surroundings, conduct real-time decision-making, and perform 
desired tasks with increased precision, safety, and efficiency (Zhou 
et al., 2019). Because of this, it is hard to imagine that in the future, 
there will not be but more RAS procedures.

As established by Zhou et al. (2019), common AI techniques 
used for RAS can be summarized in the following four aspects: (1) 
perception, (2) localization and mapping, (3) system modeling 
and control, and (4) human–robot interaction. Depending on the 
AI capabilities and level of autonomy, surgical robots may be used 
for surgical procedures, ranging from less complicated surgeries on 
rigid body parts – think of the human bone complex – to more 
complex surgeries on soft human tissue – think of skin and organs 
(Prabu, Narmadha & Jeyaprakash, 2014). In this respect, the technol-
ogy incorporated, including AI, and the surgical robot’s embodiment 
play an essential role in the performance of surgical procedures. In 
this regard, extensive research on the current state of the art of sur-
gical robots shows that surgical robots’ main characteristics include 



AI FOR SURGICAL ROBOTS   49

robotic arm(s) used to mimic and extend human movement, cutting 
instruments, cameras, and X-ray systems. In addition, they comprise 
surgeon consoles and probes, and mobile compartments and tools, 
and lately AI. In practice, robotic platforms for surgical procedures 
involve an interplay between the sophisticated automated platform, 
on the one hand, and the surgeon, along with his/her team, on the 
other (Alemzadeh et al., 2016). The outcome of such shared task 
performance essentially depends on how they can be attuned to one 
another (Fosch-Villaronga et al., 2021).

3.4 SURGICAL ROBOTS’ AUTONOMY LEVELS

Generally, robotic surgical systems operate within three different func-
tions areas of medical practice, namely: (1) acquisition and analysis of 
information, (2) division of surgical trajectories or plan of actions, and 
(3) execution of the surgery (Manzey et al., 2009). As such, current 
surgical robots used to assist a surgeon performing (specific functions 
of) surgical procedures have different degrees of autonomy, ranging 
from no autonomy to full autonomy, and passing by being under 
the control of or in cooperation with a trained practitioner (Fosch-
Villaronga et al., 2021). Remarkably, unlike the automation levels for 
automobiles by the standard SAE J3016 established by the Society of 
Automotive Engineers (SAE), currently, there are no universal stand-
ards that define the levels of autonomy in surgical robots. Nonetheless, 
Yang et al. (2017) have proposed a five-layered model for medi-
cal robotics autonomy levels, which has been further extended and 
refined in the literature (Varma & Eldridge, 2006; Yang et al., 2017; 
Ficuciello et al., 2019), and which has recently been further concre-
tized by Fosch-Villaronga et al. (2021) as depicted in Figure 3.2.

Recent developments in RAS have suggested a strong affinity 
toward increased autonomy levels amongst stakeholders, with level 
4 autonomy surgical robots currently being in the development 
stage. Based on the robots’ capability and the surgeon’s role in per-
forming the desired task, surgical robots can, generally, be classified 
into three categories: (1) shared-controlled, (2) tele-controlled, and 
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(3) supervisory-controlled (Boyraz et al., 2019). The difference in 
these approaches held by surgical robots assisting in RAS primarily 
revolves around the robot’s autonomy level, the degree of assistance 
provided by robotic systems during the execution of surgical proce-
dures, and the human surgeon’s control exercised (Fosch-Villaronga 
& Drukarch, 2021). To gain grip over each of these concepts of 
autonomy within the field of surgical robotics, we delve deeper into 
each of these below.

The shared-controlled approach refers to a surgical environ-
ment in which one or more robotic devices work together with 
the surgeon, meaning that the surgeon carries out the procedure 
with the use of a robot that offers steady-hand manipulations of 
the instrument, enabling the surgeon and the robotic system to 
perform the surgical procedure in question together (Mohammad, 
2013; Fosch-Villaronga & Drukarch, 2021). The shared-controlled 
approach follows the method by which the workspace is divided 
into several segments and relates to the 0–1 levels of autonomy (see 

Figure 3.2  Autonomy levels and the role of humans in robot surgeries 
(Fosch-Villaronga et al., 2021).
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Figure 3.2). Here, the robotic device behaves differently based on 
different localization – it responds to classifications such as safe, 
close, boundary, or forbidden – and is driven by haptic feedback 
(Boyraz et al., 2019) that will grow stronger as the surgeon’s cutting 
tool comes closer to fragile human tissue, alerting the surgeon con-
trolling the robot that extra caution should be taken.

The tele-controlled approach (also dubbed master-slave, 
remote-controlled, or telesurgical approach) allows a human sur-
geon to operate the robotic surgical device from a (close) distance 
with no pre-programmed or autonomous elements. This approach 
relates to the 2–3 levels of autonomy (see Figure 3.2). Already in 
1996, the first FDA-approved robotic surgical system, ZEUS, was 
introduced. ZEUS is a complete robotic surgical system with seven 
degrees of freedom, tremor elimination and motion scaling (Ranev & 
Teixeira, 2020; Zemmar, Lozano, & Nelson, 2020), and was used for 
the first long-distance telesurgical procedure. Another breakthrough 
within this context was the da Vinci robotic system by intuitive sur-
gery briefly introduced above, which is used across different surgical 
specialties for a variety of surgical procedures and is capable of per-
forming technically challenging procedures (Marescaux et al., 2001; 
Troccaz, Dagnino & Yang, 2019; Zemmar et al., 2020). Generally, 
a tele-controlled surgical robotic platform consists of one or more 
robotic arms (slave element), to which the surgical instruments are 
attached using a console (dubbed a master controller), and which 
are generally configured with an optical system and computer-aided 
motion stabilization with a plurality of sensors for providing haptic 
feedback to the surgeon. As such, the telesurgical approach requires 
the surgeon to manipulate the robotic arms during the procedure 
rather than allowing the robotic arms to work according to a pre-
determined program (Mohammad, 2013) or directly and physically 
in tandem with the surgeon. Using real-time image feedback, the 
surgeon performing the surgical procedure can operate remotely 
using sensor data derived from the robot (Mohammad, 2013; Fosch-
Villaronga & Drukarch, 2021). As such, the robotic arms form an 
extension of the surgeon’s actual hands which is in line with the 
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original intention of robotic surgery to permit the performance of 
a surgical procedure from a remote distance without touching the 
patient (Satava, 2002). Not surprisingly, since the outbreak of the 
COVID-19 pandemic, and the resulting unprecedented demands 
for hospitals, the tele-controlled approach has gained popular-
ity (Fosch-Villaronga & Drukarch, 2021). To effectively reduce the 
spread of the virus in the hospital setting, robots and AI have increas-
ingly been integrated into several sections of the surgical sequence, 
which each surgical patient traverses during a hospital stay to min-
imize contact between the patient and healthcare provider at each 
step (Zemmar et al., 2020). Digitization and machine intelligence 
have thus been called to action in the healthcare environment to 
combat the virus, and it is widely believed that their legacy may 
well outlast the pandemic and revolutionize surgical performance 
and management altogether (Zemmar et al., 2020).

The supervisory-controlled approach is the most automated of 
the three methods and relates to the 4–5 levels of automation (see 
Figure 3.2), and the robotic platforms following this approach gen-
erally comprise multiple robotic arms equipped with different surgi-
cal tools which are often powered by AI. The supervisory-controlled 
approach entails robotic systems configured to perform certain 
functions of the surgical procedure for a large part – although not 
yet fully – autonomously, with the surgeon being in a supervisory 
role throughout the procedure. The robotic devices are thus not yet 
capable of performing the concerning surgery without human guid-
ance, as surgeons are often required to complete extensive prepara-
tions prior to the execution of the surgery and supervise during the 
execution thereof. As illustrated in Figure 3.2, the human surgeon’s 
role changes from active performance to supervision. Likewise, the 
surgical robot’s role transitions from supervision to active perfor-
mance as the surgical robot’s autonomy increases. However, while 
the surgeon thus remains indispensable in preparing and planning 
the surgical procedure and overseeing the execution thereof, he no 
longer partakes in the surgery’s execution directly (Mohammad, 
2013; Fosch-Villaronga et al., 2021).
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In practice, this thus all means that surgical robots can perform 
certain functions of the surgical procedure independently. However, 
while Yang et al. (2017) state that the more autonomous medical 
robots become, the less human oversight exists, the phrasing of over-
sight may give the impression that RAS is gearing towards humanless 
surgeries, while this is not the case yet (see Figure 3.2) (Fosch-
Villaronga et al., 2021). Research has pointed out that while the 
majority of RAS deploys surgical robots that follow the tele-controlled 
and shared-controlled approach, supervisory-controlled and fully 
autonomous surgical robotic devices have not yet found their way 
into RAS. Only performed on pigs so far, robot surgeons cannot per-
form an entire surgery completely independently from the beginning 
until the end on humans yet (Shademan et al., 2016; Greenemeier, 
2020). Nevertheless, this does not withhold some researchers from 
conceptualizing them, and the efforts to move from the presently 
available level 3 robots toward level 4 robots indeed suggest that, in 
principle, the deployment of surgical robots with fully autonomous 
capabilities equivalent to level 5 is the ulterior motive of researchers 
and engineers working in this field (Yip & Das, 2017).

Still, surgery is not only about enhanced dexterity but also about 
context understanding. Until now, human surgeons have been shown 
to be considerably better than robots at weighing their experience 
to understand a particular context and make complex surgical judg-
ments. In this sense, like cruise control and park assistance have made 
their way into cars progressively before realizing fully autonomous 
driving, fully autonomous surgical devices (level 5 of autonomy) 
will gradually enter clinical practice (Svoboda, 2019). Even though 
surgery robots operate increasingly autonomously, this thus does 
not mean that humans are completely out of the loop during sur-
gical procedures. Humans will still perform many tasks and play an 
essential role in determining the robot’s course of operation (Fosch-
Villaronga et al., 2021). For instance, the medical support staff’s role 
will remain integral and crucial to the surgical environments (e.g., 
for selecting the process parameters or for the positioning of the 
patient). Thus, even in the most autonomously performed surgeries, 
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the medical staff will maintain an integral and crucial role within the 
surgical environment determining the robot’s course of operation. 
Understanding who is responsible for what in this increasingly com-
plex robotic ecosystem will especially prove to be of fundamental 
importance as surgical robots continue to be exposed to ever more 
sophisticated AI, allowing surgical robots to acquire new capabilities 
and achieve unprecedented levels of autonomy (Fosch-Villaronga 
et al., 2021).
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4

AI FOR SOCIALLY 
ASSISTIVE ROBOTS

4.1 SOCIALLY ASSISTIVE ROBOTS ECOSYSTEM

Social robots represent a shift toward highly interactive robots (also 
called socially interactive robots) that entail deeper human–robot inter-
action (HRI) than other types of robots thanks to the capacity to 
interact with users socially (Breazeal, Dautenhahn, & Kanda, 2016). 
Socially assistive robots (SAR) intensify such HRI process and com-
munication by providing direct support to users through social cues.

Due to the broad definition of assistance – which is generally 
defined as ‘the act of helping or assisting someone or the help sup-
plied’ (Merriam-Webster, 2021) – and the almost infinite scope of 
social interaction, unlike surgical robots, the development of SARs 
cannot be aligned with or limited to a single purpose (Hegel et al., 
2009; Li, Cabibihan, & Tan, 2011; Aymerich-Franch & Ferrer, 2020). 
The industry and promising research in the field of healthcare robot-
ics are not oriented toward the optimization of a single task. Instead, 
SARs navigate the numerous entanglements between the needs of 
patients, the translation of those needs into concrete assistance, 
and how robots can modulate such assistance via social interaction 
(Fosch-Villaronga & Drukarch, 2021). The introduction of new and 
more advanced technologies, such as AI, to the SAR environment, is 
likely to lead to an even more confusing yet fruitful development of 

https://doi.org/10.1201/9781003201779-5
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devices that flirt with the boundary between medical devices, toys, 
and products (Fosch-Villaronga, 2019). SARs are a representation of 
the intersection between assistive robotics and socially interactive 
robotics. Here, assistive robots are service robots capable of assist-
ing users (Tanaka et al., 2015), and Fosch-Villaronga and Drukarch 
(2021) define these as ‘service robots assisting a user through phys-
ical or social interaction.’ As such, SARs assist through social interac-
tion (Feil-Seifer & Mataric, 2005).

4.2 �SOCIALLY ASSISTIVE ROBOTS’ 
STATE OF THE ART

The field of SARs is primarily oriented toward developing robots 
capable of close and effective social interactions to provide optimal 
assistance (Scassellati, Admoni, & Matarić, 2012), thereby acting in 
line with the concept of traditional caregiving. Unlike chatbots or 
other AI-driven assistive technologies, SARs specifically use their 
embodiment (arms, sensors, or touchscreens) to generate, modulate, 
and provide assistance through social interaction. This has resulted in 
a gradient spectrum of robot types that span from robots in which 
physical interaction has not a primary role, i.e., assistance is provided 
through social cues like the robot NAO; to a more complex mix of 
social/physical HRI, where robots use social cues and invite the user 
to have physical contact with them. The seal robot Paro is an exam-
ple of a robot designed to interact with users socially (in a sort of 
human-animal relationship) and allow for physical contact with the 
patient, which has been proved to have enormous benefits for the 
patient (Fosch-Villaronga & Drukarch, 2021).

Typical embodiments for SARs include anthropomorphic, zoo-
morphic, caricatured, and functional (Fong, Nourbakhsh & Daut-
enhahn, 2003), and they play a significant and crucial role in many 
applications. For instance, children feel stronger friendship ties with 
a physically embodied robot compared to a virtual avatar, a physically 
present robot tutor produces better learning results, and individuals 
that suffer from cognitive impairments find the interaction with a 
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physical robot more ‘efficient, natural, and preferred’ than with a 
simulated one (Tapus, Tapus & Mataric, 2009; Leyzberg et al., 2012; 
Sinoo et al., 2018). Moreover, robot embodiment increases presence, 
helps allocate social-interactional intelligence, typically via gaze and 
facial expressions, and makes robot task capabilities understandable 
from the user perspective (Tanaka, Nakanishi, & Ishiguro, 2015).

Due to the range of functions and applications falling under the 
umbrella of assistance, the various nomenclatures used to identify 
and point out these robots, and the fact that this subfield is still in 
the early stages of development, SAR categories blur, especially when 
compared to surgical robot categories. More so with the advance-
ments in AI that empower these robots’ capabilities incredibly.

To create more clarity around existing SAR categories, Libin and 
Libin (2005) have differentiated between social, educational, recrea-
tional, rehabilitation, and therapy robots, while other authors group 
the first three categories under the categories of ‘care robots’ (Vallor, 
2011; van Wynsberghe, 2013). This indicates that the field clearly 
distinguishes between therapy, rehabilitation, and other care-related 
functions. To clarify the field, we distinguish SARs, building upon 
previous classifications, based on the type of assistance provided 
(Fosch-Villaronga & Drukarch, 2021), as depicted in Table 4.1.

We categorize SARs into therapy and care robots to provide a 
more explicit framework that accentuates the need for manufacturers 

Table 4.1  Classification of Socially Assistive Robots (Fosch-Villaronga & 
Drukarch, 2021)

Category Subcategory

Therapy •  Dementia
•  Autism
•  Neuro-developmental disorders

Care •  Companion1
•  Basic assistance
•  Robot pet therapy2
•  Aging-in-place in EU also called Active-Assisted Living3

•  Sex care robots
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to state such robots’ intended use to avoid misclassification and lack of 
the necessary safeguards to ensure safe use. Care robots primarily 
provide social interaction and support in any environment, includ-
ing but not limited to a healthcare setting; for instance, think of a 
robot that keeps an elderly person company in their home. Therapy 
robots assist users with a specific form of therapy, which are con-
dition and environment-specific, and thus used within controlled 
environments. The latter context of use implies that monitoring the 
interaction between the robot user and the robot is taking place. 
Although certain care robots are also used within a monitored 
environment, this distinction is unclear from the robot providers’ 
perspective (Fosch-Villaronga & Drukarch, 2021). Therefore, it is 
necessary to obtain a clear understanding of the categories that make 
up SARs, what functions the different categories of SARs have, and 
how they are deployed in practice.

4.2.1 THERAPY ROBOTS

Therapy or therapeutic robots commonly cover robots used for roboth-
erapy, a framework of HRI through which a series of coping skills are 
developed and mediated through robots (Libin & Libin, 2003). Here, 
the notion of robotherapy, like that of assistive robots, is, in practice, 
more oriented toward the physical (and more specifically, rehabilita-
tion) than cognitive or psychological (Krebs & Hogan, 2006). Nev-
ertheless, therapy robots also exist in socially assistive forms (Lorenz, 
Weiss & Hirche, 2016). They are used for existing therapies that 
serve a well-defined purpose (Rabbitt, Kazdin, & Scassellati, 2015) 
like socially assistive robotherapy, i.e., any form of psychological or 
cognitive therapy mediated through robots and, more specifically, 
through social robotic interaction (Libin & Libin, 2005).

4.2.2 CARE ROBOTS

The notion of care is vague and multiple, as is the case with the 
idea of assistance. While assistance may be a form of care, care can 
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also be seen as a form of assistance. Care robots represent a pro-
lific research domain in social robotics. Yet, care robots, assistive 
robots, and socially assistive robots are treated in the literature as 
distinct, independent categories without any relations of interde-
pendence or entailment. An example of this separated treatment is 
in ISO 13482:2014, which goes even further by establishing the 
class of ‘personal care robots’ without clearly defining the meaning 
of personal care and excluding medical applications from its scope 
of application.

From the above categorization, it is clear that SARs state of the art 
illustrating the definitional opposition between the robot categories 
of care and therapy. Where one-on-one correspondences between the 
intended purpose and context of use are only visible for the robots 
falling under the therapy category, the very existence of care as a 
domain of application of healthcare technologies instead allows for 
the blurriness in the robots’ application, notably revealing an unclear 
boundary between robots for serviceable contexts and healthcare 
robots (Fosch-Villaronga & Drukarch, 2021). This is notably seen 
with the robots NAO and Pepper, where healthcare is just another 
domain of application or vertical and not a field in its own right.

The application of AI within the subfield of SARs may further blur 
the understanding we have of the application and functions of SARs. 
It may simultaneously bring new and unimaginable areas of appli-
cations within the context of social assistance that have not been 
identified before and may entail significant progress for the field 
such as benefit SAR users. For instance, consider sex robots (Fosch-
Villaronga & Poulsen, 2020). Sex robots are service robots that perform 
actions contributing directly toward improvement in the satisfaction of the sexual needs 
of a user (Fosch-Villaronga & Poulsen, 2020). Many authors believe 
that given their assistive capabilities, they could use sex robots within 
the context of SARs for disability care purposes. Generally, sex robots 
have different embodiments. These may include full or partial bod-
ied humanoids, body parts such as arms, heads, or genitals used for 
sex-related tasks, or non-biomimetic robotic devices used for sexual 
pleasure.
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Moreover, these robots usually display realistic sex-related body 
movements, have sensors to react in real time to user interaction, 
and include human cues such as voice, gaze, and lipsync to support 
human-like HRI. Interestingly, depending on their embodiment, sex 
care robots could also be classified as physically assistive robots. That 
is because besides satisfying sexual pleasures, these robots may help 
address first-time sex-related anxiety, treat sexual dysfunctions, or 
promote safer sex in educational settings. As such, sex robots could 
create a safe, non-judgmental environment for people who feel inse-
cure about their sexual orientation (Levy, 2009; Royakkers & van 
Est, 2015). They may even be applied in more controversial con-
texts to treat pedophiles and potential sex offenders (Danaher, 2017) 
while also offering a means to meet the sexual needs of disabled and 
elderly individuals or as part of therapy for concerns such as erec-
tile dysfunction, premature ejaculation, and anxiety surrounding sex 
(Sharkey et al., 2017).

4.3 �THE APPLICATION OF AI IN SOCIALLY 
ASSISTIVE ROBOTS

SARs provide users with continuous support and personalized assis-
tance through appropriate social interactions. Robots working in 
environments with people have to adapt to a constantly changing 
environment, which requires these robots to become more flexible 
by understanding human behavior and supporting users in hetero-
geneous tasks. This raises several challenges, including the need to 
realize intelligent and continuous behaviors, robustness and flexi-
bility of services, and the ability to adapt to different contexts and 
needs (Umbrico et al., 2020). Here, AI plays a key role as it can 
realize cognitive capabilities like, for instance, learning, context rea-
soning, or planning that are highly needed in supporting real-time 
interaction, which is typical for socially assistive robots (Umbrico 
et  al., 2020). More specifically, AI-powered cognitive technologies 
are designed to combine human intelligence with a range of AI capa-
bilities such as machine learning, natural language processing, image  
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analysis, and reasoning systems – creating an augmented intelligence 
that amplifies the impact of what humans and machines can do sep-
arately. When applied in the context of social assistance, such tech-
nologies can enable individuals in need to manage their well-being 
better and help strengthen and extend the social safety nets’ reach 
to at-risk groups by addressing some of the critical challenges that 
typically impede provision and delivery, such as data inaccessibility, 
complexity, and the rate of caseworker churn (IBM, 2021).

Regarding therapeutic applications, research in embodied AI 
has indicated increasing clinical relevance, especially in mental 
health services – psychiatry, psychology, and psychotherapy (Fiske, 
Henningsen & Buyx, 2019). Within this field, technological applica-
tions range from ‘virtual psychotherapists’ to social robots in demen-
tia care and autism disorder for elderly and children (see Figure 4.1) 
to robots for sexual disorders and mental disabilities.

Figure 4.1  LuxAI QTrobot used for therapy with children under autism 
spectrum disorder (ADS).
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Moreover, increasingly, AI virtual and robotic agents are not mere 
deployed for low-level mental health support – think of comfort or 
social interaction –, but also for high-level therapeutic interventions 
that used to be offered exclusively by highly trained, skilled health 
professionals such as psychotherapists (Inkster, Sarda & Subramanian, 
2018). In terms of AI-driven SARs used for therapeutic purposes, cli-
nicians and scientists are increasingly exploring how innovations at 
the intersection of AI and robotics are translating into clinical practice 
(Fiske, Henningsen & Buyx, 2019). For instance, consider animal-like 
AI-driven companion robots such as Paro. Paro is a fuzzy haired seal, 
which is increasingly used for therapeutic purposes within the con-
text of dementia because of its capability to engage individuals as 
at-home healthcare assistants, responding to speech and movement 
with dynamic dialog, or seeking to help elderly, isolated, or depressed 
patients through companionship and interaction. Research has already 
examined the role of such robots in reducing stress, loneliness, and 
agitation and improving mood and social connections with promis-
ing outcomes (Griffiths, 2014; Bemelmans et al., 2012).

Moreover, AI-driven SARs used for therapy have also shown great 
potential in engaging with children who have autism spectrum dis-
order (ASDs) (Scassellati, Admoni & Matarić, 2012). For instance, 
consider the Kaspar robot, which has demonstrated potential for 
integration in current education and therapy interventions (Huijnen 
et al., 2017) and is investigated to improve social skills among chil-
dren with autism (Mengoni et al., 2017). Or consider the robot NAO, 
which has been designed to enhance facial recognition and appropri-
ate gaze response, thereby teaching children who have trouble inter-
acting with other people relevant social skills and the necessary means 
to apply these skills in practice in their relationship with human peers.

Finally, AI-driven SARs are also tested within other areas of men-
tal health treatment such as mood and anxiety disorders, disruptive 
behavior (e.g., among children), and general assistance with mental 
health concerns (Rabbitt, Kazdin, & Scassellati, 2015).

A recent controversial example of such an application relates 
to the introduction of sex robots, whose raison d’être is simple: 
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Although every human should enjoy physical touch, intimacy, and 
sexual pleasure, persons with disabilities are often not in the position 
to fully experience the joys of life in the same manner as abled peo-
ple (Fosch-Villaronga & Poulsen, 2020). Since the last decade, com-
panies across the globe are increasingly offering adult sex robots, 
among which the famous Roxxxy, which are capable of speaking, 
learning their human partners’ preferences, registering touch, and 
providing a form of intimate companionship thanks to the use of 
AI. AI-powered sex robots usually display realistic sex-related body 
movements, have sensors to support real time to user interaction, 
and include human cues such as voice, gaze, and lipsync to support 
human-like human–robot interactions.

All these advances reveal that the more AI technology advances, 
the more investigation will be needed around the benefits and 
opportunities AI has to offer in the areas of care and therapy. For 
example, would we be OK with having robots taking care of our 
grandparents or our children when ill? Are these tasks truly del-
egatable to machines? Since AI-powered SAR supports social HRI 
that happens more at the cognitive level than at the physical, spe-
cial attention will have to be drawn to diversity and inclusion, tai-
lor-made HRI responding to different personalities, special needs, 
and cultural backgrounds. Indeed, interacting socially with humans 
entails many aspects not apparent in other types of interaction. 
Think about sarcasm, sassy humor, or body language. Will robots 
be ready to handle human interaction thanks to AI? As automation 
also grows in care and therapy, society will be confronted with the 
question of whether these new avenues are desirable or not.

NOTES

	 1	 Companion robots are also promoted as mental health robots as they lessen 

loneliness through the provision of robotic companionship.

	 2	 Robot pet therapy is like robotherapy in the sense that it is defined simply 

as therapy with the medium of an animal. Most animal therapies are not 

diagnosis-specific but focus on alleviating side effects like loneliness.
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	 3	 Category coined by Lorenz, Weiss, and Hirche (2016). Comprise robots 

that facilitate care of the elderly (assist with tasks, remind when to take 

medicine etc.) and fall within the scope of healthcare services.

		  Also see http://www.aal-europe.eu/.
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AI FOR PHYSICALLY 
ASSISTIVE ROBOTS

5.1 PHYSICALLY ASSISTIVE ROBOTS ECOSYSTEM

Over the past years, an increase in the demand for physical therapy 
services has been identified worldwide, and one of the reasons for 
this is the aging population. This resulted in the increased popular-
ity of assistive technologies and rehabilitation robotics, especially 
as they promise to ease the stress on medical and physiotherapy 
staff and control expenses while simultaneously improving the lives 
of the physically, cognitively, or neurologically impaired (PCN-im-
paired) individuals (Fosch-Villaronga & Drukarch, 2021). Globally, 
many people suffer from various chronic physical, neurological, 
and cognitive disabilities (WHO, 2011). Seeing the significant 
advances in technology improve persons’ independence and quality 
of life with these disabilities in many domains (Brose et al., 2010), 
it is for some years now that physically assistive robots (PAR) are 
increasingly deployed within the healthcare domain. Among their 
advantages include helping users walk back again, faster and more 
efficient rehabilitation with fewer resources. Moreover, they could 
eventually allow users to enter the workforce, lessen the burden 
on their caregivers, and live at home instead of in long-term care 
facilities, as medical complications are prevented, and self-image 
and life satisfaction are improved (Brose et al., 2010). As such, 

https://doi.org/10.1201/9781003201779-6
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physical assistance is one of the most direct ways that robots can 
help PCN-impaired persons (re)gain independence and function in 
physical tasks.

PAR can be defined as a ‘personal care robot that physically assists 
a user to perform required tasks by providing supplementation or 
augmentation of personal capabilities’ (ISO 13482:2014). In other 
words, PARs, or exoskeletons, are wearable robotic suits that support 
users in moving their arms and legs. In this sense, PARs may assist the 
robot operator, the person using the robot, or both, through phys-
ical interaction to perform specific tasks such as picking up a glass, 
opening a door, or walking around the house (Canal et al., 2017). As 
such, PARs interact with humans and can be directly worn by them 
as a sort of external skeleton (hence the word exoskeleton) that is on the 
user’s body. Important to note within this context, however, is that 
this interaction is not limited to specific contexts. Thus, we can see 
exoskeletons being deployed in the industry (to help people bring 
heavy boxes from A to B) but also in the medical and rehabilitation 
context (to help them walk back again after a stroke). In this sense, 
the physical assistance provided by the PAR may be either partial, 
meaning that the robot acts as a supportive presence; or it may be 
total, meaning that the robot fully performs an action for the user 
(Fosch-Villaronga, 2019).

5.2 �PHYSICALLY ASSISTIVE ROBOTS’  
STATE OF THE ART

PARs have a broad scope of use, and as a result, many differ-
ent types of PARs can be identified, ranging from feeding robots 
to smart-powered wheelchairs and independent mobile robots to 
human–robot collaborative units (see Table 5.1). Generally, PARs 
can be divided into two specific categories: restraint and restraint-
free PARs (ISO 13482:2014). While restraint PARs are fastened to the 
human body during use and directly assist PCN-impaired persons by 
being attached to them (usually for the lower or the upper limbs), 
restraint-free PARs are not fastened to the human body during use 
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and, therefore, indirectly assist physically impaired persons (Fosch-
Villaronga & Drukarch, 2021).

More specifically, a specific distinction can be made between supple-
mentation and augmentation (ISO 13482:2014). Here, supplementation 
should be understood as the assistance that restores an average level of 
human capability to persons who may otherwise have difficulty doing 
so due to their disability, and augmentation refers to the physical aid in 
the performance of physical tasks that exceeds what can be gener-
ally expected without assistance (ISO 13482:2014; Fosch-Villaronga, 
2019). When combined and in interaction with the user, these cat-
egorizations entail varying degrees of assistance, modulating the 
depth of the HRI and the user’s capabilities that result from it (Fosch-
Villaronga & Drukarch, 2021). These degrees reveal the increasing 
need to establish the different autonomy levels also for PAR. Although 
some efforts have been made in providing some specific-sector guid-
ance on the autonomy levels for medical robotics (Fosch-Villaronga  
et al., 2021), more research is needed to understand such a complex 
intertwinement between the user and the device.

Table 5.1  Classification of Physically Assistive Robots (Fosch-Villaronga & 
Drukarch, 2021)

Category Subcategory

User support •  Exoskeletons and exosuits
•  Prosthetics
•  Robotic arms1

•  Walking aid (walkers, rollators)
•  Sensory-assistive robots (Hersh, 2015)

Task performance •  Feeding robots
•  Robotic manipulators
•  Smart wheelchairs
•  Robotic nursing assistants

User rehabilitation •  Orthoses2

•  End-effector robots
•  Exoskeletons3

Body part replacement •  Robotic prostheses
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Fosch-Villaronga and Drukarch (2021) have established an over-
arching categorization for PARs based on the depth and complexity 
of the assistance provided by the PARs. More specifically, they distin-
guish between PARs that support the user(s) in the performance of 
specific tasks and within that, the distinction between upper or lower 
limb assistive, PARs that perform the physical task for its user(s), 
PARs used for rehabilitation, and PARs that function as body part 
replacements.

Before entering into detail within the different categories and 
what role artificial intelligence (AI) plays within the context of PAR, 
we want to highlight that Table 5.1 indicates that different assistive 
robots are developed and marketed to solve a specific issue and 
target a particular market. Still, it remains challenging to establish 
overarching categories that unify the different needs and problems 
solved by each sector’s robot applications, in any case. While these 
categories may seem strictly separate from one another and other 
healthcare robot categories from the outset, in practice, they never-
theless appear to be of a more gradient nature, thereby often over-
lapping one another in their purpose and function (Fosch-Villaronga 
& Drukarch, 2021). For instance, consider robotic nurses. This 
mechanical system causes definitional blurriness in the healthcare 
domain, with some scholars seeing such robots as merely physical 
assistants and others indicating a strong desire for multipurpose and 
multifunctional robots, possibly leading to the existence of a mixed 
assistance category/trend heading in the direction of hybrid assis-
tance (Hersh, 2015). This is because robotic nurses typically encom-
pass a complex set of purposes and usages which are held by both 
PARs (e.g., if they can lift patients), socially assistive robots (e.g., if 
they have a social interface), and healthcare service robots (e.g., if 
they only bring medicines). Or consider exoskeletons, which can be 
deployed for both support and rehabilitation.

This illustrates that, contrary to the categorization of SARs, health-
care service robots (see Chapter 6), or surgical robots, PARs do not 
have robot applications that can be neatly distinguished between 
products and medical device categories. Instead, the same devices or 



AI FOR PHYSICALLY ASSISTIVE ROBOTS   77

types of devices are differentiated solely based on use, and then they 
can fall into these different categories at the same time. For instance, 
consider the robot ReeWalk used as a personal care robot and a 
stroke rehabilitation robot. This wearable robot would have a hard 
time finding the appropriate categorization within existing norms.

5.2.1 USER SUPPORT

Some exoskeletons support users in performing certain activities, for 
instance, in a warehouse. These exoskeletons focus on providing a 
supplementary physical force to the user’s movement, so their work 
is easier, faster, and less heavy and in no case replaces the user in 
performing a task. To this end, these robots have been implemented 
in hospitals, for instance, in cases where nurses need to lift patients 
for activities of daily living. Instead of having a robot that lifts the 
patients for the nurses, the nurses are empowered with new robotic 
solutions that increase and augment their strength beyond what 
normal human capacity would be required. At the same time, such 
robots are used to support PCN-impaired individuals in the perfor-
mance of specific tasks, which allows individuals who suffer from a 
severe physical or neurological disability that seriously limits their 
upper or lower limb mobility to perform ADL and vocational sup-
port tasks that would otherwise require a human attendant (Brose  
et al., 2010). For instance, consider robotic devices that control 
tremor correction and allow PCN-impaired individuals to feed 
themselves or grab objects in their surroundings. As such, the sup-
port offered by PARs can be considered more on the augmentation side 
of it or on the lower end of supplementation.

5.2.2 TASK PERFORMANCE

PARs used to support PCN-impaired individuals in the performance 
of specific tasks generally focus on applications that allow a person 
with a severe disability to perform ADL and vocational support tasks 
that would otherwise require a human attendant (Brose et al., 2010).  
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As such, the primary user of such PARs typically cover individu-
als who suffer from a severe physical or neurological disability that 
seriously limits their upper or lower limb mobility but can com-
municate clearly and have an average cognitive ability. Such disabil-
ities are generally called into existence for people who suffer from 
high-level spinal cord injury (SCI), cerebral palsy, muscular dystro-
phy, and, more generally, for anyone who cannot manipulate house-
hold objects (Siciliano & Khatib, 2016). As such, PARs used for this 
purpose are usually under the control of a human operator, and 
their functionalities typically include handling books, medication, 
paper, computer media, food and drink, controlling communica-
tion devices, and activating electrical appliances. Examples of such 
robots that have been developed across the globe include feeding 
and drinking robots, bodyweight and body movement supportive 
robots, robotic arms, exoskeletons, prosthetics, and rehabilitation 
robots (see Figure 5.1).

PARs used for ADL task performance does not merely assist 
PCN-impaired individuals in a supportive sense but also fully per-
form the relevant task for the user. For instance, consider feeding 
robots (see Figure 5.2). These robots can promote independence and 
more intimacy during mealtimes (Herlant, 2018) and represent an 
end of the spectrum of robotic assistance where human control over 
the devices is indirect or, in the case of fully autonomous/automatic 
robots, non-existent (Fosch-Villaronga & Drukarch, 2021). Here, the 
degree of human–robot collaboration creates a range of autonomy in 
an action’s performance, and within the context of PARs, this deter-
mines the degree of dependence the user has on the robot.

Moreover, it is important to stress that task performance robots 
assist all primary stakeholders, not just receivers of care. Due to the 
aging populations across the globe, there is a rising trend in robot 
nurses and the growing incorporation of robotic assistance into the 
healthcare ecosystem as part of the effort to optimize care systems by 
alleviating the routine tasks done by nurses. Such robots are a physical 
representation of human nurses and, as such, are capable of assisting 
doctors in the hospital context in the same way. We are already seeing 



AI FOR PHYSICALLY ASSISTIVE ROBOTS   79

Figure 5.1  Rehabilitation robotics LokomatNanos, ErigoPro, Andago, and 
Armeo®Power (from top left to bottom right). (Pictures: Hocoma, Switzerland.)

Figure 5.2  The Obi feeding robot. Obi is a robotic feeding device for 
those with upper extremity limitations. Obi allows its users to choose what 
they eat and control the pace of their meal. Obi increases independence, 
social inclusion, and enjoyment at mealtime (www.MeetObi.com).

http://www.MeetObi.com
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such robots being deployed in Japanese hospitals, allowing the Jap-
anese healthcare sector to adequately and efficiently treat their rap-
idly aging population. The deployment of such robots has proved to 
relieve the nursing and other healthcare staff that generally undergo 
high stress and exhaustion due to patient load, a challenge that has 
primarily been highlighted since the outbreak of the COVID-19 pan-
demic. For instance, consider the robots Paro by AIST, Pepper by Soft-
bank Robotics, and Dinsow by CT Asia Robotics, which are examples 
of nursing robots used to assist elderly patients in providing lifting 
and therapeutic assistance. Not surprisingly, however, the develop-
ment of such humanoid nursing robots (HNR) may soon replace 
human nurses in Japanese healthcare facilities (Khan, Siddique & Lee, 
2020), and this is likely not to remain limited to Japan.

5.2.3 USER REHABILITATION

PARs used within the context of rehabilitation are often seen as dis-
tinct from assistive robotics as a whole. Despite the growing body 
of blended applications, there still exists a definitional opposition, 
if not exclusion, of therapeutic physical robots within the industry 
(Fosch-Villaronga & Drukarch, 2021). Nevertheless, rehabilitation 
robots can still be considered PARs, which are applied in therapeu-
tic settings, but like SAR, they are used in specific medical contexts 
under caregiver supervision and guidance. The assistance provided 
by PARs is generally limited in time and is determined based on 
the particular goal for which it is being deployed – think of the 
development of neuroplasticity required to regain lost motor func-
tions (Gassert & Dietz, 2018). Moreover, rehabilitation robots can 
be further classified based on the different physical target areas they 
address (e.g., upper or lower limb), which again depends on the 
various degrees of cognitive and psychological engagement they 
require: grounded exoskeletons, grounded end-effectors, and wear-
able exoskeletons (Gassert & Dietz, 2018).

Generally, rehabilitation robots help patients recover from an 
accident or stroke throughout the rehabilitation process and assist 
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and treat the disabled, elderly, and inconvenient people’s conditions 
(Khan, Siddique & Lee, 2020). Moreover, rehabilitation robots pro-
mote functional reorganization compensation and regeneration of 
the nervous system, thereby effectively alleviating muscle atrophy 
(Zhao et al., 2020). At the same time, and as also established within 
the context of task performance PARs, rehabilitation robots permit 
rehabilitation physicians and staff room to relax from their over-
whelming physical labor, thereby simultaneously optimizing the 
available healthcare resources. In practice, such robots include the 
Kinova assistive robot by Kinova Robotics, EksoNR by Eksobionics, 
and the wide range of robotics developed by Hocoma.

5.2.4 BODY PART REPLACEMENT

Body part replacement PARs typically cover medical implants, 
devices, or tissues placed inside or on the body’s surface usually 
intended to replace missing body parts, such as a limb, a heart, or a 
breast implant, which may be lost due to physical injury, disease, or 
congenital conditions (FDA, 2021). Generally, the adjective robotic 
distinguishes passive adjustable devices from usually electrically 
powered mechatronic systems and stresses the presence of actua-
tors, sensors, and microcontrollers and an intelligent control system 
implementing the desired behavior in these devices (Palmerini et al., 
2014). Such medical implants can range from prostheses to devices 
that aid in delivering medication, monitoring body functions, or 
supporting organs and tissues, and while some of these implants 
are made from skin, bone, or other body tissues, others from metal, 
plastic, ceramic, or other materials. More specifically, these devices 
consist of three distinctive elements, namely (1) a biological (i.e., 
human or animal) part linked to (2) an artificial part (i.e., prosthe-
sis, orthosis, or exoskeleton) using (3) a control interface (Micera 
et al., 2006). Significantly, prostheses differ from orthoses, as pros-
theses entail replacing a missing body part or an organ, while active 
orthoses improve the functionality of an existing body part (Palm-
erini et al., 2014). Moreover, these systems cover different levels of 
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hybridness, augmentation, invasiveness, and temporality (Palmerini 
et al., 2014; FDA, 2021).

Here, hybridness refers to how close the artificial device and the 
human body are. These could be detached from the human body 
(i.e., tele-operated) or connected anatomically and functionally to 
the body, like a prosthesis. The augmentation concerns the number, 
type, and degree of human capabilities empowered, restored, or sup-
ported. Invasiveness refers to how invasive the biological and artifi-
cial elements connect, ranging from non-invasive (e.g., a joystick, 
or direct interfaces coupled with the central or peripheral nervous 
systems, such as brain–computer interfaces (BCI) (Micera et al., 
2006)). In turn, these can be non-invasive, such as EEG, or invasive, 
such as implanted electrodes, which reveal another temporal dimen-
sion; that is, these systems can be placed permanently or removed 
once they are no longer needed.

PARs are typically characterized by various user interfaces and 
control systems that they incorporate and user perspectives that they 
generate. Here, user interfaces and control systems comprise the 
range of software and hardware components that allow a person 
with a disability to interact with their physically assistive robotic 
device (Brose et al., 2010). The operational modes of PARs can gen-
erally be classified as either shared-controlled (i.e., the user con-
trols the system by continuously generating high-frequency motion 
commands and translating those from the control software into low-
level functions) or supervisory-controlled (i.e., the user provides 
high-level low-frequency commands while the system operates 
entirely autonomously). From the user perspective, the operation 
of such devices may depend on the level of autonomy it requires 
(Arrichiello et al., 2017). These robotic devices’ operation modes 
are strictly connected to the human-machine interface (HMI) used 
to generate and communicate commands (Arrichiello et al., 2017), 
and their ease of use depends on the level of workability of the user 
interface.

Importantly, these robotic devices are becoming more sophisti-
cated thanks to the integration of AI. The advent of three-dimensional 
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joysticks has made control of devices with more degrees of freedom 
possible (Gieschke et al., 2008). These mechanisms have already 
been extended to include chin and head interfaces, sip-and-puff 
(Fehr et al., 2000), voice control (Cagigas & Abascal, 2004), eye 
gaze direction (Yanco, 1998), EMG (Han et al., 2003), gesture- 
and intention-based human–robot interfaces, muscle-based robot 
interfaces, and BCIs. Notably, among the different HMIs, BCIs rep-
resent a relatively new technology that has recently been proposed 
to drive wheelchairs (Bi, Fan, & Liu, 2013; Carlson & Millan, 2013), 
guide robots for telepresence (Leeb et al., 2015; Escolano, Antelis, &  
Minguez, 2012), and control exoskeletons (Frisoli et al., 2012)  
and mobile robots (Gandhi et al., 2014; Riechmann, Finke, &  
Ritter, 2016). As control systems (continue to) become increasingly 
sophisticated and allow for larger ‘bandwidths’ of information to be 
transferred from human to machine, it is very likely that increasingly 
sophisticated devices will be developed.

5.3 THE APPLICATION OF AI IN PARs

The application of AI in medicine also promises significant pro-
gress for PARs. For instance, the increased capabilities with respect 
to advanced data acquisition, processing, and control techniques 
based on AI enable the construction of robust control strategies that 
outperform classic approaches in biomechatronic systems, including 
PAR (Vélez-Guerrero, Callejas-Cuervo, & Mazzoleni, 2021). AI can  
enable the development of increasingly sophisticated robots that can 
then take part in delivering care in a more efficient way by using 
some of the most popular techniques are based on different artificial 
neural networks (ANNs) and adaptive algorithms configurations, 
fuzzy logic, or other techniques to perform pattern detection or 
motion intention analysis (Cornet, 2013). These advances in AI and 
robotics can revolutionize the methods and capabilities of rehabili-
tation research and practice, enabling real-time interactions (Luxton 
& Riek, 2019), which are very much needed in PAR. Achieving 
real-time responses in PAR, especially lower-limb exoskeletons, is 
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fundamental to achieve seamless integration with the user’s (in this  
case, walking) movement.

Moreover, processing and control systems based on AI have pro-
gressively improved mobile robotic exoskeletons used in upper-limb 
motor rehabilitation (Cesta et al., 2018). More specifically, recent 
advancements in AI and its integration with robotics foster the dif-
fusion of robotic agents with the personalized capabilities needed to 
support older adults and their caregivers in various situations and 
within a wide range of environments. AI-driven PARs can moni-
tor and understand information coming from the environment in 
which they are placed, interacting with humans in a flexible and 
human-compliant way, autonomously performing tasks inside that 
environment, and personalizing interactions and services according 
to the specific needs of the user. In this sense, Cesta et al. (2018) 
stress that ‘the ability to represent and reason diverse kinds of knowl-
edge constitutes a key feature for allowing intelligent robotic assis-
tants to understand the actual (and possibly time changing) needs 
of older persons as well as the status of the environment in which 
they are acting and inferring new knowledge to adapt their behaviors 
and better assist humans.’ Consequently, many AI techniques must be 
integrated into a human–robot interaction loop to realize a needed 
set of advanced capabilities that completely match the needs of each 
individual user.

AI techniques constitute a fundamental enabler in realizing adap-
tive assistive services, such as those provided by PARs, to imple-
ment continuous monitoring and support in ADL, especially for the 
elderly. Such assistance is often offered in heterogeneous contexts 
and environments, which require such robotic systems to properly 
deal with to effectively support a person, and therefore, many fea-
tures and capabilities must be taken into account (Cesta et al., 2018). 
In this sense, a set of critical requirements characterizing the capa-
bilities of intelligent assistive robotic systems can be distinguished 
according to four correlated perspectives, namely: (1) environment 
perspective; (2) autonomy perspective; (3) interaction perspective; 
and (4) adaptation perspective.
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•	 Environment. Several types of sensors can help gather informa-
tion about a specific environment, including the internal con-
text (the user’s health status, the temperature of a room, the 
particular conditions of a room) but also the external context  
(if it is raining today if the hospital has an appointment with the 
person) (Fosch-Villaronga, 2019). The sensors are also divided 
between environmental or physiological sensors within the 
internal context (Cesta et al., 2018). For sure, the amount and 
kind of sensors in a specific context depend mainly on the par-
ticular purposes and objectives to be achieved by the project and 
what is legally permissible. Thanks to AI capabilities, the robots 
can deal with a constant flow of heterogeneous data coming 
from all of these sensors to monitor the state of the environment 
and autonomously recognize particular situations that require 
specific attention.

•	 Autonomy. Thanks to AI and the analysis of the information gath-
ered from the environment, PARs can recognize particular situ-
ations that may require proactively executing supporting tasks. 
Think, for instance, if the robot detects that there is uneven terrain 
or there are stairs ahead and needs to adjust directly. This means 
that thanks to AI, robots will be able to have a safe and correct 
interaction of the system with the environment, understanding 
when they can autonomously decide the most optimized task 
sequence to achieve a particular objective. As Cesta and colleagues 
(2018) put it, a decision-making process is needed to achieve the 
level of autonomy needed to synthesize and carry out supportive 
actions automatically.

•	 Interaction. PARs usually interact with users in an active, phys-
ical manner (Fosch-Villaronga, 2019). To achieve seamless inte-
gration with the user’s movement, PAR must correctly understand 
users’ movement intentions (Tucker et al., 2015). Also, PAR must 
comply with social norms and what is socially expected from a 
specific movement. For instance, a feeding robot should not make 
abrupt movements in any case, at risk of embarrassing the user 
during mealtime.
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•	 Adaptation. Everyone is different and has diverse habits and 
needs that can for sure change over time. In the specific context 
of PAR, a user may slowly recover the lost function or regain mus-
cle strength after some robot usage. PARs should, after interact-
ing with persons during their daily-home living or rehabilitation 
closely, adapt to the new situation after some time. In other words, 
learn over time. Thanks to AI, this is possible and more manage-
able than it was before. Eventually, AI-powered PAR can build 
distinct user profiles over time according to its experience and 
interaction with the user and personalize its behaviors to differ-
ent persons accordingly using cloud services (aka cloud robotics, 
Fosch-Villaronga & Millard, 2019). This would reduce the cost of 
these devices over time and allow for high-speed integration of 
these personal movements to a shared knowledge database and 
the other way round (Fosch-Villaronga, 2019).

To sum up, AI has provided the basis for developing more reliable, 
flexible, and adaptable systems that can be truly wearable (Vélez-Guer-
rero, Callejas-Cuervo, & Mazzoleni, 2021). Having lightweight struc-
tures that adapt in real time to user needs allows for more usability, 
trust, and success in the implementation of PAR.

NOTES

	 1	 Not to be confused with exoskeletons as these are robotic arms that attach 

to wheelchairs or tabletops and support the user’s movements. Some mod-

els include slings within which patients can place their wrists or elbows. 

Other models offering performance-type assistance have been collected in 

the category robotic manipulators. See, for example, iFLOAT Arm.

	 2	 Though robotic orthoses are often grouped under the label of exoskeletons, 

orthoses are medical devices to which Article 1.3 of the Medical Device 

Regulation (MDR) is applied as well as being defined in ISO 22523:2006.

	 3	 Exoskeletons are included twice in this table as their use for medical appli-

cations is more regulated and context-specific than that of personal care 

(support).
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6

AI FOR HEALTHCARE 
SERVICE ROBOTS

6.1 HEALTHCARE SERVICE ROBOTS ECOSYSTEM

Beyond the use of robots for direct assistance during medical pro-
cedures and other therapeutic applications, within the healthcare 
domain, robots are also used to facilitate the delivery and support 
of doctors and other medical staff’s work in another way. Gener-
ally, these robots assist in the delivery of medication and sup-
plies, enhance patient-doctor contact, and clean hospital facilities  
(Cepolina & Muscolo, 2014). While these robots may not fit into the 
typical picture of a healthcare robot, as is the case with the robots 
presented throughout the previous chapters, these robots perform 
vital tasks within this sector and have distinct characteristics from 
mere industrial robots. We call these robots healthcare service robots 
(HSR).

It is essential to note from the outset that while there is no com-
monly accepted definition for service robots, they are distinctive from 
industrial robots. Interestingly, as the task of defining service robots 
has continued to evolve, its meaning has become more and more 
blurred, primarily due to the crossover between the industry and 
service sectors. The Fraunhofer Institute for Manufacturing Engineer-
ing and Automation (Fraunhofer IPA) (1993) defined service robots 
as ‘freely programmable kinematic devices that perform services 

https://doi.org/10.1201/9781003201779-7
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semi-or fully automatically.’ As such, services were defined as ‘tasks that 
do not contribute to the industrial manufacturing of goods but are 
the execution of useful work for humans and equipment’ (Schraft, 
1993). On its side, ISO defined service robots as ‘a robot that performs 
useful tasks for humans or equipment, excluding industrial automa-
tion applications’ (ISO 8373:2012). The International Federation of 
Robotics (IFR), on the other hand, emphasized the robot’s autonomy 
in their definition by defining the term as ‘technical devices that per-
form tasks useful to humans’ well-being in a semi or fully autono-
mous way’ (IFR, 2015a). While industrial robots often operate in 
controlled domains or domains that are hostile to humans, service 
robots commonly function alongside humans and in a reasonably 
uncontrolled environment (Mettler, Sprenger & Winter, 2017). To 
illustrate this, consider mobile robots and automated-guided vehi-
cles (AGV) used in automation applications and new environments 
such as hospitals (Holland et al., 2021).

From a healthcare perspective, a service robot is viewed as ‘any 
machinery in a clinical setting that can perform tasks, either par-
tially or fully autonomously, to provide a useful service for health-
care delivery, including internal management,’ e.g., delivering and 
transporting goods or cleaning floors (Garmann-Johnsen, Mettler &  
Sprenger, 2014; IFR, 2014; Mettler, Sprenger, & Winter, 2017). 
While HSRs have gained immense popularity over the past decade, 
the story of HSRs has nevertheless not always been successful (Stone 
et al., 2016). More than 30 years ago, the first service robot – Help-
Mate – was introduced into the healthcare domain to function as a 
courier robot in hospitals carrying around deliveries such as meals 
and medical records (Evans et al., 1989). Although the development 
of this type of robot was relatively simple and similar to other robots 
developed in the healthcare sector, their use has for long not been 
mainstream. With the high and rising costs in the healthcare sector, 
social pressure for lower prices, labor shortages, and an increasingly 
sick and aging population, however, the market for healthcare robots 
has proved to be a very promising avenue for investment (Simshaw 
et al., 2015). In fact, in 2018, it was predicted that the demand for 
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professional service robots to support healthcare staff would reach 
38 billion USD by 2022 (Müller, 2018) to lower the workload of 
healthcare staff and aid in complex tasks that need to be carried out 
(Taylor et al., 2016), indicating the revived potential for increased 
productivity and resource efficiency that HSRs can offer to the 
healthcare sector.

Thanks to their high levels of autonomy, HSRs are generally 
believed to make the delivery of care and hospital management more 
effective and quick, reduce labor costs for repetitive and often tedious 
tasks, and improve healthcare practitioners’ work (Fosch-Villaronga, 
2019). More specifically, HSRs can streamline routine tasks, reduce 
the physical demands on human workers, and ensure more consist-
ent processes (Mettler, Sprenger, & Winter, 2017). Moreover, HSRs 
can keep track of inventory and place timely orders; help make sure 
supplies, equipment, and medication are where they are needed at 
the appropriate time; ensure that hospital rooms are sanitized and 
readied for incoming patients quickly; and offer excellent sanitary 
tools which are vital in care settings. While this means that HSRs 
can replace jobs or assist in the performance of tasks traditionally 
performed by human healthcare workers, many tasks performed by 
HSRs will likely still require some degree of human intervention. 
For instance, consider vehicles that assist in delivering food from the 
hospital kitchen to a specific hospital room. While such an HSR may 
relieve human healthcare workers from the tasks of food transport, 
nurses will still be required to give the delivered food to the patient. 
In this way, hospitals can ensure that nurses spend more time with 
their patients rather than pushing very heavy trolleys around the hos-
pital’s corridors.

Moreover, as is the case with SARs, developments in HSRs cannot 
be aligned or limited to a single purpose. The field of HSRs covers 
a wide range of applications, which is not merely limited to the 
medical field or the hospital setting. For instance, consider the deliv-
ery robot Relay used in hotels, hospitals, and public spaces or the 
VGo telepresence robots used in healthcare, education, and busi-
ness. These service robots offer immense opportunities to streamline 
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the logistics of any particular industry that requires 24/7 trans-
port, cleaning, and disinfecting. In this respect, since healthcare is a 
remarkably sensitive domain of application, inserting robots in such 
contexts is not straightforward and still differs from any other field 
(Fosch-Villaronga, 2019).

Although advances in robotic technology have traditionally 
been found in manufacturing, mainly due to the need for strong-
er-than-human machines that could help build cars, ships, and other 
dangerous activities, in the service sector, especially in the healthcare 
sector, these robots perform different types of tasks in interaction 
with humans. Sometimes new opportunities arise in developing ser-
vice robots that aid patients with illnesses, cognition challenges, and 
disabilities, but other times, these robots can help healthcare organ-
izations and settings deliver care in a more efficient way (Fosch-
Villaronga & Drukarch, 2021). In our contemporary context, the 
COVID-19 pandemic has further triggered the development of ser-
vice robots in the healthcare sector to overcome the difficulties and 
hardships caused by this virus (Aymerich-Franch & Ferrer, 2020). 
More specifically, clinical care was the second most extensive set of 
uses for robotic devices throughout the pandemic, all with ground 
robots (Murphy, Gandudi & Adams, 2020), allowing for quick diag-
nosis of and acute healthcare provision to patients with the coronavi-
rus while simultaneously protecting healthcare workers by enabling 
them to work remotely and cope with surges in demand.

6.2 �HEALTHCARE SERVICE ROBOTS’ 
STATE OF THE ART

The literature related to HSRs lacks specific categories, with most 
HSRs merely described based on their characteristics. A remarka-
ble similarity between all HSRs can be identified, which relates to 
the fact that they have all been developed to make the hospital’s 
daily processes more manageable and efficient (Fosch-Villaronga &  
Drukarch, 2021). In an attempt to further clarify the domain of 
HSRs, Fosch-Villaronga and Drukarch (2021) differentiate between 
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those HSRs that completely take over medical staff tasks (such as 
cleaning the floors of the hospital), HSRs that support routine 
(non-medical) tasks (such as bringing the medicines from the phar-
macy to the patients’ rooms), and those that facilitate specific tasks 
(for instance robots that support tele-remote care). Moreover, they 
indicate that another critical characteristic of HSRs relates to their 
level of autonomy; while some HSRs function fully autonomously 
(e.g., the delivery robot TUG), others still require a certain degree 
of human intervention to operate, and again others function auton-
omously to a certain extent and assist, rather than replace, medical 
staff. Especially concerning the latter HSR type, several stakeholders 
(e.g., medical professionals and patients) are involved in the robot’s 
use and functioning to realize its purpose. For instance, consider the 
InTouch Health telepresence robots. While these robots provide vir-
tual care and make it possible for a medical professional to contact 
patients from a distance, the robot cannot fulfill its envisioned func-
tion without the stakeholders’ involvement.

Building upon existing literature, Fosch-Villaronga and Drukarch 
(2021) provide a general categorization for HSRs, namely rou-
tine task robots, telepresence robots, disinfectant robots (and types 
within these categories), delivery robots, automated dispensing 
robots, remote inpatient care robots, remote outpatient care robots, 
infection prevention robots, and general cleaning robots (see 
Table 6.1). At the heart of this distinction lies the specificity of assist-
ing or replacing medical staff, the robot’s autonomy level, and their 
primary function are:

6.2.1 ROUTINE TASK ROBOTS

Routine task robots can generally be defined as ‘autonomous and mobile 
robots that assist medical staff with daily routine tasks such as deliv-
ering food and medicine, carrying linens, pushing beds, or trans-
ferring lab specimens’ (Fosch-Villaronga & Drukarch, 2021). These 
robots are typically designed to perform everyday tasks to relieve the 
pressure on the medical staff. However, although these robots are 
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fully autonomous and mobile and, in some cases, can replace the 
medical staff as a whole, they are not necessarily anthropomorphic 
or social (Simshaw et al., 2015). Within the context of routine task 
robots, three subtypes can generally be distinguished, namely:

	 1	 Routine task robots designed to deliver medical goods and to 
move around appliances in hospitals or other medical environ-
ments (delivery robots);

	 2	 Routine task robots used in automated processes, such as medi-
cine dispensing in (hospital) pharmacies (automated dispensing 
robots); and

	 3	 Administrative robots used in healthcare management.

6.2.1.1 DELIVERY ROBOTS

An important and often underestimated aspect of healthcare is its 
underlying logistics. As many materials are transported in hospi-
tals each day, such as medicine, medical supplies, laboratory sam-
ples, food, and linen, the healthcare sector is the ideal space for 
the deployment of delivery robots. Due to the need to reduce these 

Table 6.1  Classification of Healthcare Service Robots (Fosch-Villaronga & 
Drukarch, 2021)

Category Subcategory

Routine task robots •  Delivery
•  Automated-guided vehicles
•  Serving robots
•  Mobile robots or platform
•  Drones
•  Automated dispensing
•  Healthcare administration

Telepresence robots •  Remote Inpatient Care (RIC)
•  Remote Outpatient Care (ROC)

Disinfectant robots •  Infection prevention
•  General cleaning
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logistic processes’ operational costs and deal more efficiently with 
the increasing pressure on the supporting logistic functions and the 
rising demand for materials and equipment, a growing interest in 
logistics automation in hospitals has been identified. Consequently, 
an emerging application for autonomous navigating robots is hos-
pital delivery.

Another type of delivery robot currently used in the medical 
sphere is serving robots. Serving robots carry out heavy-duty tasks 
in hospitals where pushing and pulling of material are required and 
are also deployed to supply food and beverages, dispense drugs, 
remove unclean laundry, deliver fresh bed linen, and transport reg-
ular and contaminated waste to/from various patients residing in 
hospital (Ozkil et al., 2009; Mettler, Sprenger & Winter, 2017). Since 
the 1950s, AGVs have optimized logistics in factories, hospitals, and 
homes (Hassan, 2006). AGV’s are capable of transporting materials 
through wire guidance, inertial guidance, or laser guidance, which 
means that they depend to a certain extent on a predefined route 
and system. An example of this is the TransCar© robot, a self-guided 
delivery robot that can deliver medication, linens, and meals in 
the hospital environment. More recently, mobile robots are rising 
(Acosta Calderon, Mohan & Ng, 2015). For instance, consider Help-
Mate, the first mobile robot designed and developed to deliver phar-
macy supplies and patient records between hospital departments and 
nursing stations (Evans, 1994). The main difference between these 
two types of serving robots is their dependence on an established 
infrastructure and level of autonomy.

Finally, another type of delivery robot currently used in the med-
ical sphere is drones, traditionally used outside the healthcare envi-
ronment. Nevertheless, (autonomous) drones are increasingly used 
as innovative tools for medical equipment delivery (e.g., medicine, 
defibrillators, blood samples, and vaccines), and they often use global 
positioning systems (GPS) and other sensors to navigate automated 
ground stations to deliver medications in remote locations that lack 
adequate roads. The use of healthcare delivery drones makes it possi-
ble to quickly and efficiently, which is vitally important in healthcare 
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settings and deliver medical care to places where this would not 
usually be the case. For instance, consider Matternet drones used to 
deliver medicines after Haiti’s earthquake in 2010, or the German 
Parcelcopter by DHL Parcel, which provides medications, materials, 
and blood samples (Scott & Scott, 2017).

6.2.1.2 AUTOMATED DISPENSING ROBOTS

For nearly everyone, taking the right medicine and the right amount 
is vital. However, due to the complexities within the medica-
tion-use process, errors are inevitable. At the end of the 20th cen-
tury, automated medication dispensing systems were introduced to 
the healthcare domain and implemented in (hospital) pharmacies 
(see Figure 6.1). Their purpose is typically to minimize medication 
dispensing errors, save time, and secure the drug and administra-
tion process (Boyd & Chaffee, 2019), and since their introduction, 

Figure 6.1  A robot hand arranging and storing drugs in a pharmacy storage 
room. (Pictures: Shutterstock. https://www.shutterstock.com/image-
photo/germany-dortmund-2512-pharmacy-storage-room-1597763938.)

https://www.shutterstock.com
https://www.shutterstock.com
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a moderate decrease in medication dispensing errors has been iden-
tified (Jones, Crane & Trussel, 1989). Besides preventing medication 
errors, robots and automated processes within the medication-use 
process also reduce costs. Moreover, following the outbreak of the 
COVID-19 pandemic, automated dispensing robots have gained sig-
nificant interest within the healthcare sector, being the third-largest 
use of robots throughout this pandemic within the field of prescrip-
tion and meal dispensing, whereby carts are navigated autonomously 
through a hospital (Murphy, Gandudi, & Adams, 2020).

6.2.1.3 HEALTHCARE ADMINISTRATION

Within the context of healthcare administration, robots are increas-
ingly being deployed to streamline better routine administrative 
processes in hospitals and other clinical environments. Healthcare 
administrative robots are typically used at a hospital’s reception to 
disseminate information about various units/sections of the hospital 
and guide patients and visitors. For instance, consider the robot Pep-
per and Dinsow 4 robot, which can handle several visitors without 
becoming tired and direct them to the physician of their choice. 
Moreover, they are exceptionally well received by children coming 
to the hospital, who experience their visit to the hospital as more 
pleasurable due to the interaction with the robot (Khan, Siddique & 
Lee, 2020). Interestingly, however, this field within healthcare cur-
rently seems to be directed toward using AI systems to boost health-
care administration rather than fully embodied robot technology 
(Fosch-Villaronga & Drukarch, 2021).

6.2.2 TELEPRESENCE ROBOTS

As we have already seen in Chapter 3, telepresence refers to a set 
of technologies used to create the impression that you are physi-
cally present in a remote place. As such, telepresence robots allow 
human operators to be virtually present and interact remotely 
through robot mobility and bidirectional live audio and video feeds 
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(Koceski & Koceska, 2016) (see Figure 6.2). Within the healthcare 
context, a growing interest has recently been expressed in develop-
ing telepresence robot systems for older adults’ well-being (Koceski 
& Koceska, 2016), mainly as assistive technologies for telementoring 
in homes constitute a very promising avenue to decrease the load on 
the healthcare system, reduce hospitalization periods, and improve 
quality of life (Michaud et al., 2007).

Like other HSRs, telepresence robots’ functions are not limited 
to healthcare but widely cover business and educational environ-
ments for videoconferencing or other commercial activities. In the 
healthcare context, telepresence robots proactively socially engage 
with users, creating an interaction with the person to give assistance 
and support in certain ADL and care (Broekens, Heerink & Rosendal, 
2009; Feil-Seifer & Mataric, 2005). These robots can also help collect 

Figure 6.2  Doctor in the hospital talks with the patient in the patient 
room by telepresence robot and caretakers can interact with their patient 
to check on their living conditions and the need for further appointments. 
(Pictures: Shutterstock. https://www.shutterstock.com/image-photo/
doctor-hospital-talk-patient-room-by-721490455.)

https://www.shutterstock.com
https://www.shutterstock.com
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medical data about the vital signs of important patients for doc-
tors and caregivers and are used for social interaction with other 
people (e.g., family members, friends, doctors, or caregivers). They 
can also help the elderly overcome a sense of social isolation and 
loneliness, affecting older people’s physical, mental, and emotional 
health (Moren-Cross & Lin, 2006; Søraa et al., 2021). Generally, two 
types of telepresence robots can be distinguished within the con-
text of the HSR category, based on the user, the remote environ-
ment where they function, and the stakeholders that interact with 
the robot, namely Remote Inpatient Care (RIC) and Remote Out-
patient Care (ROC), with some telepresence robots covering both 
RIC and ROC. For telepresence robots used for RIC, the doctor is the 
primary user, using the robot within the hospital environment and 
in the interaction with nurses and patients. Here, the robot is mainly 
used for consultations and check-ups during hospitalizations. For 
instance, consider the physician-robot system, developed as a result 
of the InTouch Health Company and Johns Hopkins University’s 
cooperation, which was one of the first telepresence robot systems 
allowing care assistance for the elderly and which enabled physi-
cians to visit their hospitalized patients more frequently (Koceski & 
Koceska, 2016). Or consider the more recently developed RP-VITA 
by InTouch Health, which combines autonomous navigation and 
mobility, allowing doctors to monitor patients remotely (InTouch, 
2011). For telepresence robots used for ROC, on the other hand, 
doctors remain the primary user but the remote environment in 
which the robot functions is the non-clinical environment (e.g., the 
patient’s home and the robot now also interacts with the caregivers 
that surround the patients). Examples of such robots are the VGo 
robots by VGo Communications (Tsui & Yanco, 2013). While these 
robots are not different in terms of function and construction, they 
differ from RIC telepresence robots in the way they are implemented 
within the healthcare sector.

The ultimate goal of telepresence robots in healthcare is to pro-
vide specialized healthcare services over long distances. In this 
way, these robots can bridge the physical gap between the medical 
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professional and the patient and make it possible to bring special-
ists and experts to remote areas where these services are currently 
unavailable (Kritzler, Murr, & Michahelles, 2016), such as third-
world countries and war zones (Avgousti et al., 2016). Telepresence 
robots ensure a better quality of life in underdeveloped, isolated, or 
remote areas. Moreover, telepresence robots also significantly reduce 
the risks of transmitting infectious diseases among humans, which 
has become particularly important since the COVID-19 pandemic 
outbreak (Aymerich-Franch & Ferrer, 2020). The most prominent 
reported use of robotics within clinical care during the COVID-19 
pandemic was for healthcare telepresence, including teleoperation 
by doctors and nurses to interact with patients for diagnosis and 
treatment (Murphy, Gandudi & Adams, 2020).

6.2.3 DISINFECTANT ROBOTS

Finally, while certainly not a new development within the health-
care environment, the COVID-19 pandemic has led to a surge in the 
development and adoption of disinfectant robots in the healthcare 
domain. Following the severe influx of patients and shortage of med-
ical staff caused by the outbreak of the COVID-19 pandemic, and to 
reduce the exposure of medical staff to patients while simultane-
ously maintaining the social distancing guidelines, robots were rap-
idly deployed in hospitals and field hospitals to assist in cleaning and 
sterilizing (disinfecting) (Gupta et al., 2021). These robots typically 
allow healthcare workers on different levels to remotely monitor and 
manage their daily operations with robotic and autonomous solu-
tions. The risk of exposure should remain low and restrict human 
interference to fewer subject areas to keep the risk of exposure low 
(Gupta et al., 2021). Generally, disinfectant robots can be divided 
into two subcategories, namely: (1) disinfectant robots used for gen-
eral cleaning of hospital environments and other indoor and outdoor 
spaces; and (2) disinfectant robots used to sterilize work surfaces 
and medical equipment to prevent healthcare-associated infections 
(HAI) from infected patients (Khan, Siddique & Lee, 2020).
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6.2.3.1 INFECTION PREVENTION

It is a long and well-known fact that the danger of new bacteria and 
infection by pathogens in healthcare environments, especially hospi-
tals, is serious (Begić, 2017), and the consequences of HAIs include 
considerable pain, suffering, and even death (Begić, 2017), thereby 
constituting significant problems and high costs for the modern 
health sector. Advancements in robotic technology have triggered the 
usability of robotics in the next-generation healthcare system (Kaiser 
et al., 2021), which disinfect hospitals and other healthcare environ-
ments where they are believed to be of significant value in reducing 
the risk of hospital infections. Consequently, many new disinfection 
robots have been developed to help clean and disinfect these high-
risk areas, including human support robots to sanitize high contact 
points and automated solutions for cleaning walls and floors. These 
robots are typically designed to emit a specific wavelength of ultravi-
olet light to the exposed surface to kill viruses and bacteria without 
exposing human personnel to infection (Guridi et al., 2019) and are 
generally remotely controlled from a safe distance. With steriliza-
tion methods not always being readily available and accessible, these 
robots offer a cost-effective solution to the manual disinfection of 
surfaces and objects, both in terms of time and minimization of the 
risk of exposure, to meet the remaining need for surfaces and things 
to be disinfected.

Moreover, within the context of disinfection in the healthcare envi-
ronment, autonomous bots are often being transformed or adjusted to 
reassign tasks in the fight against novel coronavirus. For instance, the 
COVID-19 pandemic has accelerated the testing of robots and drones 
in public use, as officials seek out the most expedient and safe way 
to grapple with the outbreak and limit contamination and spread of 
the virus (Gupta et al., 2021). As such, for instance, drones designed 
initially to spray pesticides for agricultural applications have been 
quickly repurposed to spray disinfectants to fight against COVID-19 
(Kaiser et al., 2021). An example of this is the multipurpose robot by 
the Chinese robot company, Youibot, which can monitor customers’ 
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temperatures using infrared cameras during the daytime and disinfect 
surfaces with the help of ultraviolet (UV) light in high-traffic areas, 
including hospitals, at night. Or consider, for instance, the Connor 
UVC Disinfection Robot, DJI, which is one of the companies that 
shared the responsibility to disinfect millions of square meters in 
China, and HAI by Xenex, which is widely adopted worldwide.

6.2.3.2 GENERAL CLEANING

Robots used for general cleaning within the healthcare environment 
are on the rise, especially since the outbreak of the COVID-19 pan-
demic. For instance, in China, robots have been assigned multiple 
tasks to minimize the spread of COVID-19 by utilizing them for 
cleaning and food preparation jobs in infected areas generally con-
sidered hazardous for humans (Khan, Siddique & Lee, 2020). These 
robots are typically used in hospital cleaning for dry vacuum and 
mopping (Prassler et al., 2000) and form an integral part of disin-
fecting hospitals to remove germs and pesticides. Examples include 
the Roomba cleaning robot by iRobot, an intelligent navigating vac-
uum pump for dry/wet mopping, UVD robot by UVD Robots ApS, 
a UV radiation-based device used to disinfect hospital premises from 
microbes, the Peanut robot used to clean washrooms of hospitals 
by using a highly dynamic robotic gripper and sensing system, and 
Swingobot 2000 by TASKI, a heavy-duty cleaning robot for cleaning 
hospital floors autonomously (Khan, Siddique & Lee, 2020).

The deployment of robots within the healthcare domain due to 
the outbreak of the COVID-19 pandemic is happening quicker than 
expected (Gupta et al., 2021). While technologies like telemedicine, 
telepresence, autonomous delivery robots, and sterilization robots 
have shown significant pragmatic promise well before the COVID-
19 pandemic, they did not manage to achieve the success everyone 
hoped for various reasons (Gupta et al., 2021) until now. Due to the 
outbreak of COVID-19 world, many of these technologies have been 
fast-tracked to provide a near-to-normal lifestyle and protect citizens 
while simultaneously protecting healthcare workers from exposure to 
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a contaminated environment and patients and alleviating the pressure 
on the healthcare sector worldwide. Moreover, beyond the clinical 
context, HSRs – especially telepresence technologies – are increas-
ingly being deployed in another effort to reduce human contact and 
curb the spread of the virus through wearable devices and digital 
contact tracing apps used in various countries to identify individuals 
who have been in contact with an infected individual. These apps use 
Bluetooth and the user’s geographical location, which is obtained via 
either the cellular network or an app installed on a smartphone to 
properly function, and are likely to include AI elements in the future.

6.3 �THE APPLICATION OF AI FOR HEALTHCARE 
SERVICE ROBOTS

With the technology-based service encounter receiving significant 
attention following the advance of technology, especially AI-driven 
robots, HSRs are believed to be subjected to a wide range of inno-
vations that are likely to dramatically change the healthcare service 
industry (Yoon & Lee, 2018; Wirtz et al., 2018). In more recent 
years, advancements in AI (e.g., development of deep neural net-
works, natural language processing, computer vision, and robotics) 
have brought into existence predictions that this new technology 
will take over health service activities currently being delivered by 
clinicians and administrators soon (Reddy, Fox, & Purohit, 2019). 
Even more so, it is precisely the likely impact of the infusion of 
robots in conjunction with AI and machine learning on frontline 
employees across the healthcare domain that has been attracting sig-
nificant attention in recent years. While the abilities of service robots 
have gradually exceeded the performance capabilities of human ser-
vice providers in areas related to memory, computing power, phys-
ical strength, and handling unpleasant or dangerous tasks, however, 
existing service robots are still characterized by a minimal level of 
AI integrated into their applications as part of their service provi-
sion capabilities (Chiang & Trimi, 2020). As such, the exceptional 
hype about the advanced abilities of AI within the healthcare service 
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industry is inaccurate, especially the notion that AI will be able to 
replace human healthcare providers fully, but instead allows for 
the creation of a healthcare service system that could be termed an 
AI-enabled or AI-augmented (Reddy, Fox, & Purohit, 2019).

Generally, AI can be categorized as either mechanical, analytical, 
intuitive, or empathetic (Huang and Rust, 2018; Laowattana, 2020). 
Although the applications of service robots in use today have been 
subjected to a significant increase in demand due to the outbreak of 
the COVID-19 pandemic, they are typically used for the first two lev-
els of AI as they still lack proficiency to reach the last two degrees of 
intelligence (Chiang & Trimi, 2020). As such, AI’s intuitiveness and 
empathy intelligence have yet to be fully integrated into the capabil-
ities of service robots to match or surpass that of humans (Huang &  
Rust, 2018). Consequently, it currently remains tough for service 
robots to independently perform complicated services in situations 
that require intuition, judgment, and empathy (Huang & Rust, 2018), 
features typically required within the healthcare domain. For pre-
cisely this reason, we can identify a gap between the level of service 
provided by AI-driven HSRs and their human counterparts, possibly 
even rendering HSRs useless within the context of specific service 
assignments (Chiang & Trimi, 2020). As a result, the HSR subfield 
is currently characterized by an augmentative relationship between 
robots and humans, as stressed above, where robots cannot replace 
human servers completely while simultaneously not being able to 
function without human assistance in providing quality service to 
patients (Baldwin, 2019). For instance, HSRs can clean and prep 
patient rooms independently, helping limit person-to-person contact 
in infectious disease wards, but are not yet capable of emotionally 
comforting patients throughout their hospital stay. At the same time, 
robots with AI-enabled medicine identifier software reduce the time 
it takes to identify, match, and distribute medicine to patients in hos-
pitals, but they cannot motivate a patient to act per the doctor’s pre-
scription by convincing the patient of the necessity to do so.

Nevertheless, the potential roles of AI techniques in healthcare 
service delivery are becoming increasingly apparent, and studies 
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have already highlighted the efficacy and potential of AI-enabled 
health applications (Agah, 2017; Ramesh, Kambhampati, & Drew, 
2004). Especially within the context of healthcare administration, 
information technology tools have been demonstrated to allevi-
ate the existing burden on health services, and AI and data min-
ing techniques have been identified as among the most promising 
approaches to support healthcare administration as they are capable 
of augmenting clinical care and lessening administrative demands 
on clinicians (Snyder et al., 2011). For instance, AI-enabled HSRs 
can undertake repetitive and routine tasks like patient data entry and 
automated review of laboratory data and imaging results, and free 
time for clinicians to provide direct care. Moreover, HSRs can also 
use optimized machine learning algorithms to support clinic sched-
uling and patient prioritization, thus reducing waiting times and 
more efficient use of services. And to help hospitals in predicting the 
length of stay of patients at the pre-admission stage, thereby enabling 
more appropriate and efficient use of stretched hospital resources.

What we do not know yet is whether healthcare automation can 
also be reigned by the principles of resource efficiency and increased 
productivity as in other domains. The introduction of highly sophisti-
cated machines in the healthcare domain may entail several changes, 
but the nature of these changes may not be immediately apparent 
if our focus is purely focused on the numbers. This is because cur-
rent analyses of the changes caused by the insertion of a particular 
technology often fail to consider the broader consequences this may 
have at multiple levels, including the individual, the organizational, 
and the social. For instance, AI-powered HSR may have implications 
for new roles and responsibilities of medical practitioners and staff 
(individual changes), the allocation of responsibility and insurance 
(organizational change), or even the education of future health pro-
fessionals (societal). Still, we cannot avoid the reality in which we 
live in, that is, that there is a continuous decline of human power 
willing to do the jobs that machines can do in a faster and more effi-
cient way. At the end of the day, maybe AI will help us deliver better 
care although in ways we could not have imagined before.
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Due to the demographic regression in developed countries, the num-
ber of persons who may potentially take care of older adults has 
dramatically decreased. For every person over 65 years of age, there 
are four people under that age capable of caring for that person. An 
aging population is condemned, however, to an inevitable and massive 
cost of healthcare which will be adversely impacted by the decline of 
welfare-state contributors if the birth rate continues to decline.

As such, technology can on many occasions be seen as a solution 
to the associated problems caused by aging, and there has been an 
increased number of technology applications in the field of care, 
including the delivery of certain services through the Internet 
(e-health), medical devices, mobile apps, and wearables.

Robotics and the application of AI within this context are trans-
forming the healthcare domain. AI is becoming increasingly more 
sophisticated, and robots fueled by this new technology are becom-
ing more capable of performing tasks that previously have typically 
been performed by humans, as they are capable of doing so more 
efficiently, quickly, and at a significantly lower cost. In the healthcare 
domain, AI is poised to play an essential role in helping prolong 
human life and allowing for more accessible care. While the bene-
fits of the introduction of these new technologies to the healthcare 
domain are evident, questions may also be raised as to how and in 
what ways they could improve or hurt the quantity and quality of 
care (e.g., through more effective healthcare in which the process is 
arguably problematic) (Fosch-Villaronga & Drukarch, 2021).

This book is a stepping stone toward gaining a better understand-
ing of AI in the context of healthcare robotics. Although usually put 
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together within the rubric of ‘healthcare robotics’ or ‘medical robot-
ics,’ robot surgeons, physical/socially assistive, and healthcare ser-
vice robots largely differ in embodiment and context of use. Assistive 
technologies are meant to help patients, elderly, and disabled people 
in their daily needs, either in the hospital or at home. They may 
enhance a person’s physical capabilities and may help nurses take 
care of patients better. In the context of surgery, surgical robots help 
perform minimally invasive, which is basically more beneficial for 
patients than traditional surgeries. Physically assistive robots also 
help users walk again or pick up a glass even if their condition may 
not allow them to do so.

As one can imagine, the use and development of robot technol-
ogy that takes care of this particular part of the population raise 
many questions: Will robots be able to take care of humans in 
the future? Is healthcare automation a good thing? What are the 
activities that humans can (or should) delegate to machines? Will 
robotized healthcare become more personalized or on the contrary 
more alienating? Will robots deliver good care? This is even more 
certain with respect to the increased levels of autonomy of health-
care robots, in which their complex interaction with humans will 
inevitably blur practitioners’ and developers’ roles and responsibili-
ties and affect society.

AI for healthcare robotics promises an unparalleled potential 
for healthcare providers, patients, and society. However, healthcare 
robots’ full deployment will soon require more clarity on the divi-
sion of responsibilities channeling robot autonomy and human 
performance, support, and oversight. Having a clear framework 
determining the role of humans within the increasing robot auton-
omy levels is particularly important because it is unlikely that given 
the progress in AI for healthcare (Yu, Beam, & Kohane, 2018) ‘most 
of the role of the medical specialists will shift toward diagnosis and 
decision-making’ (Yang et al., 2017). For now, in this book, we laid 
down the basis for a rich understanding of what healthcare robots 
are and how AI empowers them in the hope that the conversation 
gets started among society.
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