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This book details the emerging area of the induction of expert systems in ther-
mal spray technology, replacing traditional parametric optimization methods like 
numerical modeling and simulation. It promotes, enlightens, and hastens the digital 
transformation of the surface engineering industry by discussing the contribution of 
expert systems like Machine Learning (ML) and Artificial Intelligence (AI) toward 
achieving durable Thermal Spray (TS) coatings.

Artificial Intelligence and Machine Learning in the Thermal Spray Industry: 
Practices, Implementation, and Challenges highlights how AI and ML techniques 
are used in the TS industry. It sheds light on AI’s versatility, revealing its applicabil-
ity in solving problems related to conventional simulation and numeric modeling 
techniques. This book combines automated technologies with expert machines to 
show several advantages, including decreased error and greater accuracy in judg-
ment, and prediction, enhanced efficiency, reduced time consumption, and lower 
costs. Specific barriers preventing AI’s successful implementation in the TS indus-
try are also discussed. This book also looks at how training and validating more 
models with microstructural features of deposited coating will be the center point 
to grooming this technology in the future. Lastly, this book thoroughly analyzes the 
digital technologies available for modeling and achieving high-performance coat-
ings, including giving AI-related models like Artificial Neural Networks (ANN) and 
Convolutional Neural Networks (CNN) more attention.

This reference book is directed toward professors, students, practitioners, and 
researchers of higher education institutions working in the fields that deal with the 
application of AI and ML technology.
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Artificial Intelligence in 
Thermal Spray Industry
Introduction and Benefits

ABBREVIATIONS

AI Artificial intelligence
ANN Artificial neural networks
CS Cold spray
HVOF High-velocity oxy-fuel
ML Machine learning
R&D Research and development
SVM Support vector machine
TS Thermal spraying
PS Plasma spray

1.1  INTRODUCTION: ARTIFICIAL INTELLIGENCE IN  
THERMAL SPRAY COATINGS

Artificial intelligence (AI) using well-known machine learning (ML) techniques from 
the computer science field is broadly affecting many aspects of Industrial Revolution 
4.0, including science and technology, the manufacturing industry, and even our day-
to-day lives. The ML methods have been designed to analyze a large amount of data to 
gain insightful information, classify, predict, and make judgments based on evidence in 
unique ways. This will encourage the development of novel applications that support AI’s 
sustained growth in modern-day industries [1,2]. When it comes to physics-based model-
ing, ML provides a new approach to leverageable datasets and data-driven methodolo-
gies. The creation of these new spectacles is a major success for AI and ML methods. ML 
is helpful because it can analyze huge data sets and figure out how they are set up in a 
way that humans can’t [3]. The commonalities between different branches of AI and their 
scope are shown schematically in Figure 1.1 [4].

Data mining (like Convolutional Neural Networks) and Knowledge Discovery 
in Databases techniques are analogous to ML. So are other branches of statistics 
(like regression models) and pattern recognition (like failure analysis). Figure 1.2 
is a simplified illustration of a common ML implementation in the field of TS. To 
use ML methodology, one must first create a dataset through real experimentation, 
simulation, or mining. Each variable, such as composition, density, and hardness, is 
a separate input in the dataset. Therefore, information on the composition of glass, 
its method of manufacture, and other such aspects may be obtained from a database 
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holding attributes (components or substances). ML is used to construct a prediction 
model after correlations have been discovered within the dataset [3]. There are two 
main categories of ML algorithms: supervised and unsupervised. In the following 
sections, we’ll dive further into the specifics of supervised and unsupervised ML 
methods. Unsupervised learning makes use of clustering models for prediction, while 
supervised learning uses regression and classification models. To reliably anticipate 
outcomes using AI and ML methods, it is necessary to adhere to a variety of best 
practices. The functional processes of ML applications include issue formulation, data 
collection, model and loss function tuning, data partitioning, and under-/over-fitting. 
The next sections provide a more in-depth explanation of these procedural stages. As 
can be seen in Figure 1.3, ML methods may be broadly classified into three broad 
categories. The ML algorithm with the lowest percentage of error is chosen as the best 
suited or fitted. Underfitting and overfitting are prevented while the ML algorithms 
are verified. These techniques are well discussed in Chapter 2 with details.

1.2 ARTIFICIAL INTELLIGENCE BASICS AND ITS HISTORY

A 60-year-old field known as AI is an organization of methods and concepts that 
includes mathematical logic, computer science, probability, and computational neu-
roscience. The field of computer science known as AI is constantly developing and 
is focused on creating software that can conduct complex and intelligent calcula-
tions comparable to those performed regularly. The term AI refers to techniques, 
tools, and systems that simulate human techniques for learning and problem-solving 

FIGURE 1.1 Illustration demonstrating the general scope of artificial intelligence.
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using brain activity [5]. The brief history of AI is represented in Figure 1.4. John 
McCarthy, who invented the phrase AI, during a symposium at Dartmouth College 
in 1956, is credited with starting current AI research [6]. This represented the begin-
ning of the AI science discipline, and within this era, the focus was mainly on naive 
algorithms. However, this algorithm is suitable only for small texts. The advance-
ment in the years that followed after 1960 was astounding. Many scientists and 
researchers concentrated on automated reasoning and employed AI for algebraic 
problem-solving and the proof of mathematical theorems. These achievements gave 
many AI pioneers unbridled hope and supported their conviction that fully smart 
machines would be created soon. They quickly learned, though, that a long way 
had to go before machines exhibited intelligence on par with that of humans. The 
logic-based programs were unable to solve many nontrivial tasks. The availability 
of computational resources to solve ever-more complex issues was another difficulty. 
As a result, organizations and investors ceased to support these AI projects that fell 
short of expectations.

FIGURE 1.2 Schematic sketch of machine learning applications [13]. Permissions from 
Elsevier.
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FIGURE 1.4 Schematic illustration of flow chart representing the history of artificial 
intelligence.

FIGURE 1.3 Different types of machine learning techniques [13]. Permissions from Elsevier.
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In the 1980s, various academic and research institutes developed a form of AI 
system that summarizes several fundamental principles from expert knowledge to 
assist nonexperts in making certain decisions, which were known as “Expert sys-
tems.” Examples include the MYCIN created by Stanford University, and the XCON, 
created by Carnegie Mellon University. For the first time, an expert system used 
logic rules generated from expert knowledge to address issues in the real world. 
The understanding that made machines “smarter” served as the foundation of AI 
research throughout this time. The expert system did, however, gradually point out 
many drawbacks, including privacy technologies, a lack of adaptability, low versatil-
ity, and high maintenance costs.

In the meantime, the fifth-generation computer project, which received significant 
funding from the Japanese government, fell short of its initial objectives. The fund-
ing for AI development was cut off once more, and the field was in its second-lowest 
position ever. Geoffrey Hinton and colleagues [7,8] significantly contributed to AI in 
2006 by suggesting a method for developing DNN. Due to this, DL algorithms have 
emerged as one of the most active areas in AI research. DL is a subtype of ML that 
uses representation learning and several layers of neural networks [9]. Conversely, 
ML is a component of AI that enables a computer or program to learn and develop 
intelligence without the need for human interaction. A rising number of innova-
tive neural network architectures and training techniques have been developed to 
enhance the representational learning capability of DL and broaden it into more 
general applications. High-throughput data can be analyzed using ML techniques 
to classify, forecast, and make novel decisions based on evidence. Hence, in every 
sphere of life, AI technologies have had tremendous success. They have also demon-
strated their worth as the foundation of scientific thinking and practical applications. 
Conversely, ML is a component of AI that enables a computer or program to learn 
and develop intelligence without the need for human interaction. To enhance the rep-
resentational learning capability of DL and broaden it into more general applications, 
a rising number of innovative neural network architectures and training techniques 
have been developed. High-throughput data can be analyzed using ML techniques 
to classify, forecast, and make novel decisions based on evidence. Hence in every 
sphere of life, AI technologies have had tremendous success. They have also demon-
strated their worth as the foundation of scientific thinking and practical applications.

Although there are many different aspects of AI like reactive machines AI, self-
aware AI, limited memory AI, and the theory of mind AI. However, perceptual, 
cognitive, and decision-making intelligences are all involved in the development 
phase of AI. There are primarily two types of developments in the field of AI. First, 
we find methods and software like expert systems, which attempt to mimic human 
cognition by deducing results from a predetermined set of rules. The second cat-
egory consists of systems that simulate how the brain functions, such as artificial 
neural networks (ANNs) [5]. ANNs were initially established by two researchers 
named Warren McCulloch and Walter Pitts in 1943, who created a computational 
model mainly for neural networks that was based on threshold logic techniques [10]. 
This paradigm shift cleared the way for research to be divided into two streams, 
one concentrating on biological processes and the other focusing on using neural 
networks in AI.
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Cortes and Vapnik created the support vector machine, a very intelligent sort of 
perceptron, during the second period of inactivity [11]. It continued and eventually 
surpassed neural networks. Since a support vector machine performs better with 
less computational time and training, many researchers have focused on studying it 
rather than neural networks with several adaptive hidden layers. Einerson et al. [12] 
introduced the initial concept of applying neural computing to TS processes in 1993. 
The relationship between specific processing parameters and the in-flight particle 
characteristics using an ANN was explained in that study. The following benefits 
were provided by ANN structures during this study:

• If the responses and parameters are quantified, they represent any input-
output relationship;

• Finding nonlinear and complex correlations that are encoded in the ANN 
structure;

• There is no need to make assumptions beforehand;
• Incorporating the variability and fluctuations associated with the experi-

mental sets;
• Restricting the number of experiments;
• The discovery of new correlations is made possible by adding more experi-

mental sets, called a progressive system (also known as “continuous” learning).

However, there are some negative aspects as well, such as:

• The requirement for a database that can be created by taking process history 
into account;

• A physical interpretation was absent;
• Understanding the system parameters is also crucial before the implementa-

tion of the ANN.

1.3 BASICS OF ANN MODELS

ANN is a model of computational neurons designed to mimic human brain activ-
ity during learning. Edges link neurons to one another. As learning progresses, new 
relative importance is placed on these neurons and edges. In Figure 1.5a, we see a 
basic ANN with only one hidden layer. Input, hidden, and output layers are all present. 
Ultimately, the obtained output is compared to the real production, and weights are 
modified depending on the difference. On the other hand, ANNs with numerous layers 
are used to address a wide variety of issues. The complexity of the challenges arises 
as the number of hidden layers grows. This network structure is employed because it 
simplifies otherwise difficult challenges. A multilayered ANN is shown in Figure 1.5b.

1.4 ML IN THERMAL SPRAY INDUSTRY

The TS technique has undergone substantial development and is currently utilized 
widely across all significant engineering fields. A high-quality and high-performance 
TS coating meets the needs of diverse industrial applications. It mainly depends on 
the states of in-flight particles, which are mostly controlled by process parameters 
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and impact the coating qualities in the TS spray process. Many chemical and ther-
modynamic processes take place throughout the deposition process, and obtaining 
a thorough multiphysical model is difficult for any TS process. The most popular 
approach is to determine the effect of TS process parameters using Taguchi’s design 
of experiments approach, which is a preliminary method to determine the optimal 
process parameters and separate the important and minor factors [14–16]. However, 
since the coating quality is typically impacted by a combined effect of various pro-
cess parameters, it may fail to attain the precise ideal parameters. The spray processes 
have also been extensively simulated and controlled using numerical modeling and 
simulation [17–19], which frequently give greater attention to examining the evolu-
tion of the spray and combustion processes. However, numerical modeling struggles 
to simulate the actual behaviors because of the complex multiphysical phenomena of 
the TS process. The TS coatings must therefore be carefully analyzed, predicted, and 
optimized using a proper approach.

TS has developed as a highly automated spraying process during the last decade 
due to industrial automation, but contemporary TS applications also need to be intel-
ligent. Determining the relationship between operating parameters, in-flight particle 
behavior, and coating characteristics via a central automated system is the need of 
the hour to achieve durable and quality TS coatings. This necessity has inspired 
researchers to create a reliable methodology that uses modern digital techniques like 

FIGURE 1.5 (a) Single and (b) multiple hidden layers in an artificial neural network model 
[13]. Permissions from Elsevier.
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AI to resolve the problems of TS-deposited coatings under various operating condi-
tions. The various TS spray control systems can also be configured to incorporate 
models, creating an intelligent control system. The industry must develop greater 
intelligence, connectivity, and the ability to integrate easily into spray systems and 
current manufacturing environments. New computing-based approaches are required 
to process the enormous amount of quantifiable data and use it to control TS opera-
tions for enhanced reliability and robustness. AI can play a vital role in achieving this 
requirement. The purpose of this chapter is to deeply discuss AI, and its benefits that 
can promote the digital transformation of the modern surface engineering industry 
and help in achieving a durable TS coating system.

1.5  IMPLEMENTATION OF ANN STRUCTURES FOR PLASMA  
SPRAY (PS) COATINGS

Researchers [20–23] examined and forecasted the microstructure and properties of 
coatings, such as porosity percentage, the content of unmelted particles, and various 
components, using the ANNs to model the PS process. Modular analysis was used by 
Choudhury et al. [24,25] to model the PS process using several ANNs, and they then 
used the trained ANN model to predict the condition of in-flight particles based on var-
ious control process factors. To study the relationship between control parameters and 
in-flight particle properties, Kanta et al. [26–28] used an ANN model to analyze the 
PS method used to create the specific coating. ANNs were used by Zhang et al. [29] to 
develop a correlation between the atmospheric plasma spraying process and the features 
of in-flight particles as well as the impact of particle temperature on the microstructure 
of coatings. Through a neural network, Liu et al. [30] investigated the link between 
spray gun power, particle temperature, and particle velocity. The effect of the plasma 
and powder injection parameters on the in-flight particle attributes (average velocity, 
particle temperature, and particle diameter) for an Al2O3 feedstock with 13 wt% TiO2 
was examined in one of the earliest uses of ML in TS. The predicted in-flight char-
acteristics using the ML approach were in agreement with the measured values after 
performing a validation phase, a training step, and a test step [31]. Additionally, coating 
structural properties were incorporated into the ANN in a subsequent investigation. 
Therefore, this model was employed to examine the opposing trends of the deposition 
yield and coating porosity [26], as well as the particle melting status [32].

1.6  IMPLEMENTATION OF ANN STRUCTURES FOR HVOF  
SPRAY COATINGS

The above-mentioned experimental studies were concentrated on the plasma spraying 
method. ANN model was also employed for the high-velocity oxy-fuel (HVOF) pro-
cess. Only a limited number of studies examine the HVOF spray procedure using the 
ANN model. To investigate the magnetic characteristics of an HVOF-sprayed FeNb 
alloy, Cherigui et al. [33] developed two ANN models: Model A was used to link system 
parameters to features of the microstructure, whereas Model B was used to link system 
parameters to the characteristics of magnetism. Zhang et al. [34] used an ANN model 
to predict the structural characteristics (porosity and hardness) of the HVOF-sprayed 
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NiCrAlY coating in terms of the relationship between the system parameters (oxygen/
fuel gas stoichiometric ratio and stand-off distance). Using an ANN model, Kamnis 
et al. [35] conducted an intriguing investigation on airborne acoustic emission during 
the HVOF spray process to highlight the significant impact of the spray distance and 
powder feed rate on the micro-hardness of coatings. In studies conducted by Mojena 
et  al. [36], an ANN model has also been used to forecast the erosive wear rate for 
WC-CoCr coatings that are coated by flame spray and HVOF. The results of this inves-
tigation suggest that porosity, followed by a combination of micro-hardness and frac-
ture toughness, exerts the largest influence over the rate of erosion.

The HVOF spray process has been thoroughly studied using the ANN model by Liu 
et al. [37], which has been used to link the process parameters with the mechanical per-
formance of coatings. The findings indicate that the parameters for micro-hardness and 
porosity should be considered in the following order: spray distance, oxygen flow rate, 
and CH4 flow rate, and for wear rate, the oxygen flow rate, stand-off distance, and CH4 
flow rate should be considered. However, in this study, the velocity and temperature of 
in-flight particles, which are intermediate factors, have not been taken into account.

The impacts on in-flight particle characteristics and microstructural coating 
qualities of spraying Cr3C2–25NiCr HVOF feedstocks were investigated again by Liu 
et al. [38]. In Figure 1.6, the framework is shown. Two models were selected: for 
Model 1, stand-off distance, gas flow rate, and fuel flow rate were chosen as inputs, 
whereas temperature and velocity of particles were selected as targets. In Model 2,  

FIGURE 1.6 High-velocity oxy-fuel process representation using artificial neural networks, 
along with the performance of the resultant coating [38]. Permissions from Springer Nature.



10 Artificial Intelligence and Machine Learning in the Thermal Spray

the temperature and velocity of particles were selected as inputs, while coating 
 properties were targets. Other TS approaches will also be encouraged to use this 
cutting-edge ANN approach, leading to improved coating performance controls in 
the near future.

1.7  IMPLEMENTATION OF ANN STRUCTURES FOR COLD  
SPRAY (CS) SPRAYED COATINGS

Repairing and additive manufacturing are two areas where cold spraying may find 
use. In preparation for additive manufacturing, ANN was to forecast the coating 
thickness profile of CS multilayered Cu coatings on both flat and curved specimens 
[39]. The critical velocity of the CS is a crucial component that determines the adher-
ence of particles during the CS process. ANN was also used to study how basic 
feedstock properties affect the critical velocity in CGS [40]. The ANN method’s 
flowchart for determining the critical velocity is shown in Figure 1.7. The findings 
for the majority of the materials under investigation were more consistent than those 
produced using an empirical method that had already been published. The critical 
velocity was shown to be most affected by mechanical material factors (tensile and 
yield strength) compared to thermal parameters (melting temperature and thermal 
conductivity).

FIGURE 1.7 Artificial neural network method’s flowchart for determining the critical 
velocity [39]. Permissions from Springer Nature.
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1.8 SCOPE AND CONCLUSIONS

The authors have thoroughly analyzed the AI technologies and their scope in TS for 
achieving high-performance coatings. AI-related benefits were also discussed. The 
key outcomes are as follows:

• It is anticipated that with suitable models and ML technologies, it will be 
possible to create coatings with certain target properties using fewer tests.

• Only a small amount of research examines the HVOF and CS spray proce-
dures using the ANN model. Therefore, other TS approaches will also be 
encouraged to use this cutting-edge ANN approach, leading to improved 
coating performance controls.

• A research area that has drawn a lot of interest is the study of DL-based data 
augmentations. When only a few images are available, data augmentation is 
a particularly effective method for TBC microstructure applications.

• In a nutshell, much more work needs to be done in the upcoming years to 
identify the data sets and ML techniques that are necessary for putting into 
practice reliable control strategies for creating the best coatings and manag-
ing TS operations in industrial production.
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2 Unsupervised and 
Supervised Machine 
Learning Techniques 
in Wear Prediction

ABBREVIATIONS

AI Artificial intelligence
ANN Artificial neural networks
CNN Convolutional neural network
HVOF High-velocity oxy-fuel
I/P Input
ML Machine learning
O/P Output
PS Plasma spray
TS Thermal spraying
SML Supervised machine learning
USML Unsupervised machine learning

2.1  INTRODUCTION TO MACHINE LEARNING IN  
WEAR ANALYSIS

Metals are subjected to wear through the plastic deformation of the material and  
particle detachment in the form of wear debris. Wear may be of a mechanical type 
such as adhesion, abrasion, and erosion. It can also be a chemical type, which is com-
monly known as corrosion. Wear is the loss of material from a solid surface caused 
by its interaction with another solid surface [1]. The different wear issues that affect 
different industries are represented in Table 2.1. The theory of tribology includes the 
study of wear. Being present in practically every part of our lives, tribology has been 
and continues to be one of the most pertinent topics in today’s society. The consid-
erable portion of the world’s energy consumption in the present day [2] also illus-
trates the significance of friction, lubrication, and wear. Wear-related problems can 
be solved creatively with the use of tribology knowledge. Numerous precise tests and 
cutting-edge computer simulations conducted at various scales and in a variety of 
physical disciplines form the foundation of all advancements [3]. Advanced data han-
dling, evaluation, and learning models can be created based on this strong and data-
rich basis and used to extend current knowledge in the context of tribology 4.0 [4] or 
tribo-informatics [5]. Additionally, tribology is defined by the fact that the underlying 
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processes/science behind tribology cannot yet be fully described mathematically, such 
as by differential equations. Therefore, artificial intelligence (AI) coupled with well-
known machine learning (ML) techniques from the computer science field is broadly 
affecting many aspects of Industrial Revolution 4.0, including science and technol-
ogy, the manufacturing industry, and even our day-to-day lives. The ML methods 
have been designed to analyze a large amount of data to gain insightful information, 
classify, predict, and make judgments based on evidence in unique ways. Traditional 
domain-specific modeling and simulation skills have been accelerated, improved, and 
completed with the use of ML algorithms in the last decade. The benefits and promise 
of ML and AI techniques may be observed, in particular, in their capacity to handle 
high-dimensional problems with a reasonable amount of work and expense [6].

ML was first considered a branch of computer science but is now a component of 
AI [7]. Logic, algorithm theory, probability theory, and computing form AI and ML 
[8]. Designing computing systems for a particular activity that can gradually learn 
from training data and create and improve knowledge-based models that predict out-
comes is the initial step in ML. Thus, questions in the relevant field can be answered 
using ML [7]. This will encourage the development of novel algorithms that support 
AI’s sustained growth in modern-day industries. A variety of different algorithms 
can be applied to ML, with their applicability being significantly task-dependent. 

TABLE 2.1
Different Wear Problems in Industries [1]

S. No.
Wear Problems Identify in 

Industries Significant Characteristics Examples

1 Surface wear caused by hard 
particles in a fluid stream

Erosion Flow-controlling valves 
for crude oil 

2 Surface wear by abrasive 
particles in a compliant 
material bed

Abrasion, with the abrasive 
supply being continuously 
refreshed by the movement 
of the material bed

Teeth of diggers, 
extrusion dies for tiles

3 Wear of metal surfaces when 
they rub against one another 
in the presence of abrasive 
particles

Three body abrasion Pivot pins used in 
construction machinery, 
seals for shaft containing 
abrasive particles

4 The wear of components 
made from metal via rubbing 
contact with a sequence of 
other solid components

Adhesive and abrasion 
wear, although one part of 
the wear process is 
continuously renewed

Sintering dies, cutter 
blades, punching tools

5 The wear of metal component 
pairs in mutual and repeated 
contact

Adhesive wear Piston rings and liners for 
cylinders

6 Component wear is caused by 
metals and nonmetals 
rubbing against each other

Adhesive wear Brakes and clutches, 
artificial hip joints

Source: Permissions used Creative Commons Attribution 3.0 License.
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Algorithms can generally be divided into two categories: “supervised machine learn-
ing” (SML) and “unsupervised machine learning” (USML) [8]. Classification of vari-
ous ML techniques is represented in Figure 2.1. This chapter summarizes the various 
models, mainly artificial neural network (ANN), and convolutional neural network 
(CNN) under SML and USML approaches which were used for the prediction of 
wear in components/parts. These ML models offer a strong and practical method for 
modeling the wear of industrial components.

2.2  NEED FOR MODELING TECHNIQUES TO PREDICT WEAR  
RATE OF THERMAL SPRAY COATINGS

There are numerous complex physical phenomena connected to the coating proce-
dure in thermal spraying (TS). Complex nonlinear interdependencies between pro-
cess parameters, in-flight particle characteristics, and coating structure are present 
during TS procedures. To quantify these complicated relationships and improve pro-
cess repeatability, computer-aided approaches are used. To comprehend these inter-
actions, conventional modeling techniques are frequently used. This necessity has 
inspired researchers to create a reliable methodology that uses modern digital tech-
niques like AI to resolve the problems of TS-deposited coatings under various oper-
ating conditions. The purpose is to deeply discuss AI, and various models related 
to AI, such as ANN, CNN, and hyperspectral imaging, that can promote the digital 
transformation of the modern surface engineering industry and help in achieving a 
durable TS coating system. To encourage the use of such reliable ML approaches for 
process modeling and TS parameter optimization, a summary of the roles of ANNs 
and CNNs has been discussed in this chapter.

2.3 ANN TECHNIQUE IMPLEMENTED IN WEAR PREDICTION

The networks of biological neurons that form human brains inspire ANN com-
puter models. The dendrites serve as the input (I/P) vector, as shown in Figure 2.2, 

FIGURE 2.1 Classification of various ML techniques [6]. Permissions under the Creative 
Commons Attribution 4.0 License.
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allowing the cell body (or soma) to receive signals from a significant number of 
nearby neurons. From the neuron, axons transmit signals to neighboring cells. The 
cell body processes the dendrites’ signals, which serves as a summing function. The 
neuron pumps sodium or potassium in and out depending on how the environment 
and cell body interact, changing the electrical potential of the neuron. A neuron 
“fires,” producing an action potential that travels down the axons to the synapses and 
other neurons after its electrical potential reaches a specific potential [9].

Similar to a biological neuron, ANN works by mapping an I/P space to an output 
(O/P) space using a set of operating elements called neurons and connections known 
as weights (analogous to synapses in a biological brain). A transfer function that mir-
rors the action potential’s firing rate describes how neurons transmit signals to other 
neurons by sending action potentials down their axons. Different I/Ps to the neuron 
may be more or less relevant, depending on factors like whether the neuron should 
fire, causing them to have a smaller or bigger impact. It is accomplished by changing 
the weight. As a result, the neuron can be thought of as a little computer that receives 
I/P, processes them, and sends out an O/P. An elementary neuron with ‘R’ I/Ps  
(p1 p2…..pR) a corresponding transfer function f, and an O/P a are shown in  
Figure 2.3. Each I/P is given the proper weight (w). The bias and the weighted I/P 
added together make up the transfer function’s I/P.

To find a relationship between I/P and O/P, learning algorithms are needed. 
Several learning algorithms are accessible for processing; however, the feed-forward-
back propagation technique is the most popular approach. In the back-propagation 
learning algorithm, the relationship between I/P and O/P is determined by a nonlin-
ear transfer function.

The most popular nonlinear transfer function when creating an ANN network is 
the sigmoid function, which is represented in the following equation [10]:

 ( ) =
+ −F x

e x

1
1

 (2.1)

FIGURE 2.2 Signal flow between input at dendrites and output at axon terminals [10]. 
Permissions under the Creative Commons Attribution 4.0 license.
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Equation 2.1 defines log sigmoid functions. The log sigmoid and hyperbolic tangent 
sigmoid transfer (sigmoidtransfer) functions are two variants of nonlinear sigmoid 
transfer functions used to determine the relationship between I/P and O/P (tansig). 
Equation 2.2 represents the Tansig function [11]:

 ( ) = −
+

−

−F x
e

e

x

x

1
1

2

2  (2.2)

The model is trained using variables such as momentum factor, rate of learning, hid-
den layers numbers, and the number of neurons in the hidden layers. The root mean 
square error, i.e., RMSE, between the O/P and expected values is determined for per-
formance evaluation. The ANN estimates the error by comparing the predicted val-
ues to the target values after each iteration. If the error exceeds the allowed error, the 
network is run again while the weights are changed to decrease the error. The data is 
separated into test, training, and validation data sets to prevent the overfitting issue. 
Figure 2.4 displays the streamlined ANN procedure for generating the desired result.

2.4  NEURAL COMPUTATION OR BASIC ANN STRUCTURE  
FOR TS COATINGS

An intelligent system that links the processing parameters to the process responses 
(i.e., characteristics of the in-flight particles) is introduced as neural computation. 
Such a system is built on an ANN, which is a network of interconnected neurons 
that are processing units. ANNs, which are fast-evolving technologies with flexible 
topologies and strong learning capabilities, have been used in various engineering 
fields [12–14]. ANN is essentially split into single-layer neural networks and multi-
layer networks. Due to its excellent accuracy, the multilayered feed-forward network 
is the most commonly used ANN model for TS applications. Few articles published 

FIGURE 2.3 An elementary artificial neuron’s structure with R inputs.
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on surface coating applications utilized a multilayered model [15]. Typically, a mul-
tilayered neural network has three layers, as mentioned below:

• The pattern of I/P represents the settings for process parameters. Depending 
on the type of parameter, one or more neurons describe each parameter in 
this way. One neuron is needed to describe a single actual value, such as the 
flow rate of argon gas, while x neurons are needed to explain 2x categories 
connected to the parameter, such as injector type. The size of the I/P pattern 
may vary depending on the I/P parameters selected. In Guessasma et al.’s 
[16] work, the I/P pattern size is 8 (inset Figure 2.5).

• The O/P pattern shows the temperature, diameter, and particle velocity. 
Each neuron describes one of these parameters.

FIGURE 2.5 A typical layout representing a multilayer artificial neural network 
structure [17]. Permissions from Elsevier.

FIGURE 2.4 Streamlined artificial neural network procedure.
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• The hidden layers subtly describe the relationships between the in-flight 
particle properties and the processing parameters. The precise number of 
neurons in the hidden layers cannot be determined by any generic rules. The 
flexibility of having a higher number of parameters to optimize is provided 
by a network with a large number of neurons in the hidden layer. However, 
once the hidden layer size exceeds a specific threshold, the network becomes 
undercharacterized. Underfitting results from the hidden layers having too 
few neurons. To determine the ideal number of hidden layers, the simulation 
is run with just one hidden layer. In the hidden layer, there are somewhere 
between 4 and 20 neurons.

A number termed weight that translates the strength of the connection between two 
neurons is used to define the connection. With the help of a transfer function, each 
neuron in the ANN structure transforms the flux it receives from the other neurons, 
which is a weighted number. This transformation makes sure that the process is non-
linear at the scale of each neuron. The learning process used for the ANN structure 
optimization takes into account experimental sets. The number of neurons and the 
weight of the population can be fixed using this technique. The system response 
is computed and compared with the findings of the experiment using an assumed 
weight population and a predetermined number of neurons. Each layer’s residual 
error is assessed, and the structure weights are adjusted to reduce it.

2.5 ANN APPLICATIONS IN TS COATINGS

Over the past several years, ANN’s role in TS coatings has gradually grown. ANNs 
are widely used in TS coatings for a variety of tasks, including microhardness pre-
diction, porosity prediction, thickness estimation, coating microstructure analysis, 
prediction of tribological properties of coatings, and in-flight particle behavior [16, 
17]. By excluding undesired sounds and making up for the manipulated variables, 
ANN is a key player in the process modeling of surface coatings. These were able to 
more precisely optimize such intricate nonlinear processes and forecast more favor-
able circumstances for coating deposition on the material’s surface. For the selection 
of TS process parameters in the future, notably for the design of ceramic coatings 
with specific functional qualities, the merging of AI methods is crucial. Recently, 
ANN has also been used for modeling track profiles during additive manufacturing 
via cold spray. Future research will include the data-efficient ANN model in the tool-
path planning algorithm to enhance geometric control and produce more complicated 
product designs via cold spray additive manufacturing [18,19]. Table 2.2 summarizes 
the various applications of ANN in TS coatings, and Figure 2.6 shows the distribu-
tion of articles according to how they are used in surface coating techniques.

2.6 CONVOLUTIONAL NEURAL NETWORK

CNN is a particular kind of ANN frequently used for visual images. These networks 
perform well with data that has a grid-like pattern. As the name suggests, CNN uses 
the convolutional mathematical procedure. CNN can automatically mine potential 
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pattern characteristics. It exhibits remarkable performance and has been successfully 
used in image-processing fields like target identification and face recognition. CNN 
uses several filters, and each filter collects data from the image, like edges and vari-
ous forms (vertical, horizontal, and round), before combining all of this information 
to identify the image. It is not possible to achieve similar results using ANNs. This is 
due to various demerits associated with ANN:

• The amount of computing required to train an ANN model on large images 
and various image channels is too much;

• The second drawback is that, in contrast to a CNN model, it is unable to col-
lect all of the information from an image, including its spatial dependencies;

• Another problem is that ANN is sensitive to the object’s placement in the 
image; as a result, it will be unable to correctly classify an object if its loca-
tion changes.

CNN has recently received attention in the realm of materials engineering. For 
instance, the CNN model has been utilized successfully to predict the relationships 
between material microstructure and property [26–28]. To investigate the connec-
tion between processing conditions and microstructure and to comprehend the high-
dimensional microstructure representation, the VGG16 model, which was trained 
on ImageNet, was used [29]. Deep learning can be used to operate on the segmenta-
tion of material images [30], classification of microstructure images [31–33], and 
reconstruction of material microstructures [34,35]. The CNN model exhibits strong 
performance in feature extraction thanks to its impressive learning capacity. To learn 
the potential association between particle distributions and control parameters in 
the plasma spray process, the parameters in filters and fully connected layers were 
trained [36–39].

FIGURE 2.6 Article distribution based on application areas y based on ML [15]. Permissions 
from Elsevier.
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TABLE 2.2
Various Applications of ANN in TS Coatings

Coating 
Methodology

Feedstock 
Material

Application 
Area Targeted Performance Ref.

Plasma spray Ni60CuMo Bonding 
strength, 
porosity, and 
coating 
microhardness

The R-value of the trained network 
model is 0.8828; the characteristics of 
Ni-based coatings can be accurately 
predicted by the ANN model

[20]

Cold spray Copper Microhardness Following the local thermal history, the 
model was able to forecast the part’s 
local hardness reduction

[21]

HVOF & flame 
spray

WC-CoCr Tribological 
properties

Mean squared error – 0.000689 [22]

Plasma spray Flay-ash, quartz, 
and ilmenite

Deposition 
efficiency

The outcomes show that neural 
network analysis can produce results 
that are quite accurate and can be 
utilized as a useful tool in the 
production process for plasma 
deposition

[23]

Plasma spray CoMoCrSi Coating 
porosity

The porosity drops to just 5.6% after 
the ANN/genetic algorithm 
optimization process

[24]

Plasma spray Al2O3 + 13%TiO2 Hardness, 
porosity, and 
cavitation 
erosion 
resistance

An innovative strategy is the 
combination of genetic algorithms 
with ANN. They discovered a set of 
Pareto-optimal solutions by using 
multiobjective optimization

[25]

Cold spray 
additive 
manufacturing

Titanium Modeling of 
track profile

The findings show that a neural 
network model can perform better 
than a popular mathematical model 
using data-efficient modeling 
techniques and be more suitable for 
enhancing geometric control in 
CSAM

[18]

Cold spray 
additive 
manufacturing

Geometric 
modeling

The findings show that when combined 
with the right process planning 
algorithm, a neural network modeling 
approach is well suited for predicting 
cold spray profiles and may be 
utilized to enhance geometric control 
in AM

[19]

ANN, artificial neural network, TS, thermal spraying
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2.6.1 Convolution

The definition of the convolution operation is given by Equation 2.3:

 *s t x w t x w t d∫ τ τ τ( )( ) ( ) ( ) ( )= = −
−∞

∞

 (2.3)

where w is frequently referred to as the feature map or kernel, and function x is 
frequently used as the I/P. We want our kernel K to be 2D if the I/P picture I is 2D. 
Consequently, we can characterize our convolutional operations as:

 ∑∑( ) ( ) ( )( )( )= × = − −S i j K I i j I m n K i m j n
m n

, , , ,  (2.4)

where m and n have varied overall positions in the kernel K.

2.6.2 ConstruCtion of the Cnn Model

Feature extraction and classification are the two main phases of a CNN model’s 
operation. In the feature extraction step, different filters and layers are used to extract 
information and features from the images. After this step is finished, the images 
move onto the classification phase, where they are labeled based on the target vari-
able of the underlying problem (in Figure 2.7).

For thermal spray coatings, it is first important to recognize and recover the image 
features associated with the coating’s service performance to accurately construct a 
quantitative relationship model. CNN recognizes these characteristics, which have 
the following layers: I/P, convolution, pooling, fully connected, and O/P.

• I/P layer: The I/P image, as the name sounds, can be either Red Green Blue 
(RGB) or Grayscale schemes. Each image is composed of pixels. Before 
sending them to the model, we must normalize them in the range from 0 to 1.

FIGURE 2.7 Generalized CNN model [36]. Permissions under the Creative Commons 
Attribution 4.0 license.
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• Convolution layer: The filter is applied to the I/P image during the convolu-
tion layer to extract or detect its features. Multiple filtering operations are 
done on the image.

• Pooling layer: Following the convolutional layer, the pooling layer is used 
to decrease the feature map’s size, aiding in the preservation of the I/P 
image’s key details or features while speeding up computation.

Figure 2.8 represents the outline of the CNN model to recognize the NiCrAlY coat-
ing characteristics phases after oxidation testing. Among these, the I/P layer is an 
RGB-channeled, 64 × 64-pixel image. To train the I/P image, an 8-CNN network 
with 3 convolutional layers and 32 convolution kernels in every convolutional layer 
is chosen [36]. A pooling layer comes after each convolutional layer. A 2 × 2 slid-
ing filter is used in conjunction with the maximum pooling method to increase data 
processing effectiveness. Regularized Dropout random neuron inactivation and the 
SoftMax classifier are employed in the fully connected layer to improve the net-
work’s anti-interference capabilities and lessen over-fitting. Binary image processing 
and flood-filling technologies were utilized to choose the right threshold to extract 
the developed oxide layer from the coating’s scanning electron microscopy (SEM) 
images, and its thickness was calculated. The CNN was implemented using Keras, 
an open-source Python toolkit for ANNs.

2.7  IMPLEMENTATION OF ML MODELS FOR PREDICTION  
OF WEAR RATES IN COATINGS

The main purpose of atmospheric plasma spray is to provide protective coatings for 
metallic and ceramic materials. Powders are introduced into a hot plasma plume dur-
ing this deposition process, where the powder particles melt and are then deposited 
onto a substrate. The Mo coatings have drawn interest for applications involving high 
temperatures [40]. Because of their remarkable wear resistance characteristics, PS 
Mo-based coatings are mostly selected for the aerospace, pulp, automotive, and paper 
industries [41]. Cetinel et al. [42] conducted wear tests on Mo coatings deposited 

FIGURE 2.8 Typical phases of the NiCrAlY coating following oxidation are recognized by 
CNN’s architecture [36]. Permissions under the Creative Commons Attribution 4.0 license.
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by plasma spraying using a universal wear-friction setup. The wear behavior of PS 
Mo coatings has been simulated using a neural network technique (ANN). The I/P 
layer, two hidden layers, and the O/P layer make up the neural network in this study. 
The dry and acidic atmosphere, normal load, and timing were the I/P variables. 
Microhardness and wear loss were considered the two O/P variables. The Levenberg-
Marquardt approach was used to train and implement the ANN using MATLAB 
neural network functions [43].

The authors concluded that only a few milliseconds were required for calcula-
tions performed during the neural network testing phase. As a result, ANN may be 
used to analyze the Mo coatings’ wear process and calculate the amount of wear loss 
without consuming time. Satpathy et al. [44] also report the successful implementa-
tion of ANN to examine the wear behavior of plasma spray coatings. The authors 
recommended that ANN is a suitable method to save time and resources. Pati et al. 
[45] combine the use of experimental design and ANN to examine the erosion and 
wear behavior of plasma-sprayed coatings. The authors found a good agreement was 
established between the experimental and ANN-predicted data, keeping the error to 
within 7%. Table 2.3 summarizes different studies on TS coatings using ML models.

TABLE 2.3
Different Studies on TS Coatings Using ML Models

TS 
Method

Feedstock 
Composition I/P Parameters O/P Parameters Ref.

Plasma 
spray

Al2O3 + 13%TiO2 • Stand-off distance
• Torch velocity

• Microhardness
• Porosity
• Cavitation erosion 

resistance

[25]

Cold 
spray

Cu, Al, Al6061, 
Al7075-T6, Ti, 
Ni, Fe & TC4

• Tensile strength
• Yield strength
• Thermal conductivity
• Sound speed
• Melting point

• Critical velocity [46]

Plasma 
spray

WC-12Co • The intensity of arc current, a 
flow rate of H2, and Ar flow rate 
for model 1

• The intensity of arc current, a 
flow rate of H2, Ar flow rate, the 
temperature of particles, and 
velocity of particles for Model 2

• The temperature of 
particles, and 
velocity of particles 
for for model 1

• Porosity and the 
hardness of coating 
for model 2

[47]

Plasma 
spray

Zirconia • Spraying layers, travel speed, 
voltage, powder feed rate, Arc 
current, stand-off distance, the 
flow rate of carrier gas, and the 
flow rate of primary gas

• Wear loss volume [48]

(Continued)
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TABLE 2.3 (Continued)
Different Studies on TS Coatings Using ML Models

TS 
Method

Feedstock 
Composition I/P Parameters O/P Parameters Ref.

Plasma 
spray

Ni-5 wt%Al • Arc current, stand-off distance, 
powder feed rate, and the flow 
rate of primary gas

• Microhardness, 
thickness & coating 
porosity

[49]

Plasma 
spray

CoMoCrSi • Spray distance, the pressure of the 
chamber, the current, flow rate of 
Ar gas, and flow rate of H2 gas

• Coating porosity [24]

Plasma 
spray

YSZ • I/P power, primary gas flow rate, 
stand-off distance, powder feed 
rate, and the carrier gas flow rate

• Deposition 
efficiency, tensile 
bond strength, 
hardnss, and 
surface roughness

[50]

Plasma 
spray

Al2O3 + 13%TiO2 • The flow rate of carrier gas
• Diameter of the injector
• Injector stand-off distance
• H2 flow rate
• Ar flow rate
• The intensity of the arc current

• The temperature of 
particles

• The velocity of 
particles

• Diameter of 
particles

[17,51]

Plasma 
spray

Al2O3 + 13%TiO2 • The intensity of the arc current
• H2 + Ar
• H2/Ar
• Diameter of the injector
• The flow rate of carrier gas

• Height & flattening 
of the deposited 
coating profile

[52]

Plasma 
spray

Al2O3 + 13%TiO2 • The intensity of arc current
• H2 +  Ar
• H2/Ar
• The flow rate of carrier gas

• The temperature of 
particles

• Velocity of 
particles

[53]

Plasma 
spray

Al2O3 + 13%TiO2 • Temperature of particles
• Velocity of particles

• Porosity [54]

Plasma 
spray

Mo powders • Wear conditions (acidic and dry)
• Normal load
• Wear time

• Wear loss & 
microhardness

[55]

HVOF & 
flame 
spray

WC-Co-Cr
Cr3C2-NiCr

• Method of deposition
• Impingement angle
• Abrasive particles velocity
• Porosity
• Fracture toughness
• Microhardness
• Surface roughness
• Density of coatings

• Erosion rate [22]

HVOF NiCrAlY • Oxygen flow rate
• Stand-off distance

Coating microhardness & 
porosity

[56]

HVOF Cr3C2-NiCr • Oxygen flow rate
• Stand-off distance
• CH4 flow rate

Coating microhardness, 
wear rate & porosity

[57]
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2.8 AI IN WEAR MONITORING OF WIND TURBINE BLADES

The wind energy industry as a whole faces the issue of material erosion in wind turbine 
blades as a result of the effects of weather. Using AI, scientists were able to devise a 
workable answer to the material erosion issue. Material erosion on wind turbine blades 
is an unexpectedly expensive problem that has so far defied solution. Wind turbines have 
a short lifespan because the blade material deteriorates when exposed to bad weather. 
Because of this issue, the value of all wind-generated power can be reduced by as much 
as 2%–4%. It’s a timeless issue that plagues this sector of the economy, increasing prices 
for all forms of wind power by billions of Euros [58]. Many techniques have been used 
in recent years to forecast the functionality and state of wind turbine monitoring sys-
tems. ANNs are being used to assess performance in real-time, which can be tapped 
into for the purpose of enhancing fault detection systems [59]. Many researchers have 
employed ANNs and CNNs to describe the typical behavior of wind turbines. Yang and 
Cheng [60] used CNNs and ANNs in the suggested methodology. While ANNs draw 
attention to surface damage, CNNs categorize images of surface damage as either posi-
tive or negative. Whereas the ANN is highly trained with its data using feature-based 
training, CNN is well trained with its data using image-based training. An ANN model 
has a 70.7% accuracy compared to a CNN model’s 89.4% accuracy.

2.9 IMAGE PROCESSING TECHNIQUES

Drones, according to Moreno-Armendári et al. [61], would improve the effectiveness 
of wind turbine blade maintenance. With a camera built inside the drone, CNN can 
recognize and categorize different sorts of damage in photos captured by the gadget. 
In this work, the accuracy metric was used by the authors to evaluate the effective-
ness of a system for detecting blade damage. Mavic 2 Pro UAVs were used by Xu et al. 
[62] to take pictures of the wind turbine blades. A total of 25,773 photos at a resolu-
tion of 5472 × 3684 of the wind turbine blade have been acquired from UAVs. With 
the aid of their UAV photos, Wang and Zhang [63] presented their groundbreaking 
investigation into spotting blade flaws in the wind turbine. Using photos of wind tur-
bine blades, data-driven algorithms are created to evaluate and pinpoint the charac-
teristics of blade defects. Hence, many applications for predictive maintenance, both 
in wind turbines and elsewhere, can be made use of these methodologies.

2.10  HYPERSPECTRAL IMAGING (HSI) FOR WEAR  
DETECTION OF BLADES

Although image processing methods eliminate the need for human contact with the 
blades for fault detection, imaging is still done remotely and does not always produce 
high-quality images using typical HD cameras. As a result, imaging methods based on 
other parts of the electromagnetic spectrum are becoming more popular. To fully evalu-
ate this potential and comprehend which frequencies can be used with imaging blades, 
laboratory and field studies are necessary. A portion of a wind turbine blade with surface 
flaws is imaged using the HSI technique [64]. This method for remote in-field inspec-
tions offers great accuracy in a shortened inspection period. Surface and subsurface 
imperfections may be quantified and localized at an early stage of formation [65].
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2.11 CONCLUSION AND FUTURE PERSPECTIVE

The authors have thoroughly analyzed the digital technologies available for model-
ing to achieve high-performance coatings. AI-related models like ANN and CNN are 
given more attention. The key outcomes are as follows:

• It is anticipated that with suitable models and ML technologies, it will be 
possible to create coatings with certain target properties using fewer tests.

• An I/P–O/P relationship is mapped using an ANN, a feed-forward network 
model for SML, depending on relevant training data.

• Several pre-processing aspects, such as choosing relevant I/P variables, 
data quality, and network architecture, affect the formation of an ANN with 
acceptable prediction accuracy.

• CNNs can also be used to classify real-time video and images of spray 
processes, where less calibration is needed due to the presence of enormous 
datasets. The approach is simple to implement, but larger research efforts 
are required to produce huge datasets and kernels.

• ANN is also used for modeling track profiles during additive manufacturing 
via cold spray. Future research will include the data-efficient ANN model in 
the tool-path planning algorithm to enhance geometric control and produce 
more complicated product designs via cold spray additive manufacturing.

• Further research utilizing AI methods based on deep learning or ML algo-
rithms has to be done.

• The next method of inspecting wind turbine blades, known as HSI, will 
result in a shorter inspection shutdown time, lower maintenance costs, and a 
lower frequency of unexpected failures by offering a simple, routine inspec-
tion of the blade.

• In terms of future work, HSI will be put to the test on various blade material 
types to research the impact of manufacturing material on the detection process.
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Artificial Intelligence-
Based Image-Processing 
Techniques for 
Assessment of Patterns 
and Mechanisms 
in Thermal Spray

ABBREVIATIONS

AI Artificial intelligence
CNN Convolutional neural network
COV Coefficient of variance 
GAN Generative adversarial network
IP Image processing 
I/P Input
O/P Output
SEM Scanning electron microscopy
TCL Top coat layer

3.1 INTRODUCTION TO IMAGE-PROCESSING TECHNIQUES

Image processing (IP) has been one of the fields that have greatly benefited from the 
advent of artificial intelligence (AI) [1–4]. The evaluation of wear patterns and wear 
processes in real time is a crucial application of AI in IP. Manufacturing, automotive, 
aviation, and healthcare are just a few of the fields where an understanding of wear 
patterns and wear processes is vital. Improving performance and decreasing main-
tenance costs may result from an accurate study of wear patterns and wear mecha-
nisms, which can help detect possible concerns and minimize expensive downtime. 
AI-based IP systems can quickly and accurately analyze and detect wear patterns and 
wear processes, allowing for immediate input (I/P) on the condition of machinery and 
tools [5–9]. To analyze enormous volumes of data from pictures and uncover patterns 
that are typically difficult for people to perceive, AI systems employ deep learning, 
machine learning, and computer vision. There are several benefits of using AI in IP 
over more conventional methods. These methods can process massive volumes of 
data and provide instantaneous responses, making it simpler to spot problems before 
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they escalate. They are more precise than older techniques and can pick up on subtle 
changes in wear patterns that human analyzers would overlook. In addition, AI-based 
IP systems may be educated to recognize certain wear mechanisms, which can lead to 
the discovery of the underlying cause of the wear and the implementation of more pre-
cise maintenance. Several AI-based IP approaches are utilized to evaluate wear pat-
terns and wear processes in real time. In this context, convolutional neural networks 
(CNNs) are a popular tool. To analyze wear, CNNs, a form of deep learning system, 
can learn characteristics from photos and spot patterns. When compared to more con-
ventional techniques, they are superior at picking up on even the most imperceptible 
changes in wear patterns. Unsupervised machine learning is an additional method in 
which the algorithm discovers patterns in the data without being given any guidance 
on what to search for. When the wear mechanisms are unknown and the algorithm 
must automatically detect them, this method is invaluable. Generative adversarial net-
works (GANs) are another method being investigated for wear analysis [10]. GAN is 
an AI algorithm class that can create synthetic pictures from raw data. This method 
may be used to model wear processes and predict their future development.

3.2 VARIOUS IP TECHNIQUES

The term “image-processing techniques” describes a group of procedures and algo-
rithms used for this purpose. There are three primary categories into which these 
methods fall:

Point processing methods are those that allow for the independent modification 
of picture pixels with no noticeable effect on their neighbors. Modifying the image’s 
brightness, contrast, color, and gamma are all part of this process.

• One category of IP methods is called “neighborhood processing tech-
niques,” and it entails changing a cluster of pixels located in a certain area 
of the picture. Processes like noise cancellation, smoothing, and sharpening 
fall under this heading.

• Geometric processing techniques: These include operations on images that 
change their shape (e.g., rotation, scaling, and skewing). Image registration, 
fusion, and segmentation are three applications that often use geometric 
processing methods.

Other than these general methods, there are other application-specific methods, such as:

• Image form and structure may be analyzed and manipulated via morpho-
logical processing methods. Erosion, expansion, contraction, opening, and 
closure are all part of this process.

• Frequency domain processing approaches entail re-presenting a picture as a col-
lection of frequency components, a transformation into the frequency domain. 
Transforms like the Fourier and wavelet transforms are part of this category.

As a result, there are primarily three classes of IP methods: point processing, neigh-
borhood processing, and geometric processing. Applications like morphological 
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processing, frequency domain processing, and compression need highly specialized 
methods. Each method has its own set of benefits and drawbacks, and it is chosen 
according to the needs of the given task.

3.3 IMAGING PROCESSING TECHNIQUES AND TOOLS

3.3.1 Convolutional neural network

ANNs, which have progressed from Multilayer Perceptrons (MLP) [11] to the more 
recent deep CNN [12], are based on a hidden structure with a single output (O/P) and 
a multiple-layer configuration at the I/P. When I/P visual data is used, a CNN devel-
ops meaningful connections. It contains several interconnected levels, much like the 
human brain, which is reminiscent of the nervous system. Through activation func-
tions like the sigmoid function, a signal from one layer of neurons may be translated 
into a response signal for the neurons of the next layer. There is a dynamic, nonlinear 
functional mapping between I/P and O/P [13]. If the filters are used effectively, CNN 
may learn spatial and temporal relationships. To apply a convolution operator [14], just 
place the appropriate filter on an image and multiply the resulting values from the filter 
and the picture. Images may be modified immediately by applying the filters. CNN can 
study and label photos [15]. Figure 3.1 depicts the use of CNN for glass-crack detection.

3.3.2 Generative adversarial networks (Gans)

GANs are a kind of deep learning model that relies on generative modeling. The goal 
of this modeling technique is to deduce the underlying structure of the given data and 
reproduce it unsupervised [17]. These days, GANs are a supervised strategy that speeds 
up the training process. A generator used to transfer the random vectors into the pro-
duced samples and a discriminator are shown in Figure 3.2a, illustrating the architec-
ture of MatGAN for inorganic materials [18]. To trick the discriminator, the generator 
fabricates training instances that are very similar to the I/P data. The discriminator’s 
job is to determine whether or not the provided data are authentic. When the dataset size 

FIGURE 3.1 Crack analysis model of the convolutional neural network model [16]. 
Permissions under the CC-BY-NC-ND 4.0 license.
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is limited, it may be helpful. It’s a common tool for making 3D models, adding effects 
to old photos, and enhancing the quality of existing ones. The goal of the discrimina-
tor is to tell the difference between natural and artificial materials. Convolutional and 
deconvolutional layers make up the encoder (Figure 3.2b). Encoders are the answer to 
the difficulty of determining the composition of materials from small samples [18].

3.4  IMPLEMENTATION OF A CONVOLUTIONAL NEURAL  
NETWORK (CNN) IN THERMAL SPRAY

To overcome the limitations of ANN models, a basic CNN model used by Zhu 
et al. [19] to predict control parameters during the plasma spray process is shown 
in Figure 3.3. The pooling layer’s filter size is 4 × 4, while the convolutional layer’s 
filter size is 6 × 6. The outcomes show the CNN models’ capacity for generaliza-
tion, which is useful for preparing target coatings’ control parameters. CNN models 

FIGURE 3.2 Structures of (a) a materials-specific MatGAN and (b) a generative adversarial 
networks auto-encoder [18]. Permissions under CC Attribution 4.0.
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are also significantly faster at predicting the outcome than traditional methods like 
numerical simulation. The simulation program took roughly 10 hours to generate the 
3D distribution of the plasma jet after the control parameters were established. After 
training the CNN model, it took only 0.01 seconds to forecast the necessary control 
parameters from a set of in-flight particle characteristic distributions. As a result, 
using a neural network model to determine control parameters during the plasma 
spraying process saves time and computer resources. The back-propagation tech-
nique was used to learn and update the model’s parameters (weight coefficients and 
biases) [20]. The CNN model includes several parameters that have been trained 
to reduce error or loss functions. The difference between CNN models’ predicted 
values and the actual data is referred to as the loss function. The loss function, also 
known as the cost function, aims to inform us of how well the model is working, and 
the derivative of the loss function instructs us on how to adjust our parameters to 
improve the model’s performance. There are numerous accessible loss functions, and 
the selection of a loss function depends on the problem being addressed. The mean 
square error is a frequently employed loss function for many optimization problems.
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where L is the loss, n is the number of samples, ŷi is the prediction, and yi is the true 
value.

The Adam algorithm [21] or stochastic gradient descent approach was frequently 
employed in the training of models to identify the best solution or minimal loss. The 
partial derivative of a group of parameters is the outcome of the common optimi-
zation technique known as gradient descent. The steeper the slope, the higher the 
gradient. Instead of using the complete data set, stochastic gradient descent derives 
the gradient from a randomly chosen subset. This lowers the computing cost for large 
optimization problems and speeds up iterations.

Additionally, some research has demonstrated that when used for microstructure 
quantification in thermal spraying coatings, CNNs can produce findings with sat-
isfactory accuracy. To train CNN with different architectures, Chen et al. [22] ran-
domly picked pixels from the top coat layer (TCL) to create sub-images that were 

FIGURE 3.3 A basic convolutional neural network model [19]. Permissions from Elsevier.
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centered at the pixel and had a range of sizes. On a dataset of 150 shots of size 100 
by 100 randomly chosen from a batch of 30 high-resolution thermal barrier coating 
images, their suggested methodology was assessed. According to their findings, the 
CNN-based models had a reduced average relative error (ARE) of 0.113 and a higher 
average classification accuracy of 100% at the confidence level of 90% for a VGG16-
based model.

Lu et al. [23] improved on the work of Chen et al. [22]. By including some new 
processes, such as data augmentation and transfer learning, an enhanced CNN 
approach was developed. The photos gathered for their investigation correspond to 
coatings made from three different types of powders: Type A: Metco 601NS, Type 
B: Metco 995C, and Type C: Metco 204BNS. The dataset consists of 159 raw shots, 
with 50, 49, and 60 Type A, Type B, and Type C images, respectively. The following 
seven phases can be used to summarize the complete training procedure suggested 
by Lu et al. [23]:

• By manually classifying each pixel in a raw image as one of the four 
classes—amount material, TCL—microstructure, TCL—coating material, 
or TCL—substrate, actual coating layer can be designed.

• Using the ground truth mask, extract the topcoat layer from the raw image.
• After selecting a sub-image size, randomly pick a pixel from the TCL, and 

use that pixel as the center to crop sub-images into that size.
• To create a training dataset, mirror and rotate the sub-images that were 

cropped.
• To train CNN models, resize the sub-images and feed them into CNNs with 

trained parameters.
• Choose the ideal CNN model.
• Applying the CNN model to sub-images taken from the TCL area will 

allow you to identify microstructure and coating material in the TCL area 
in a pixel-by-pixel manner, allowing you to gauge how well the CNN model 
performs in classifying microstructure and coating materials.

CNN was also employed in the modeling of the reverse process to explore the 
relationship between in-flight particle characteristics and control parameters, tak-
ing into account the 2-D feature of in-flight particle characteristics at a specific 
spraying distance [19]. Furthermore, a transfer learning method was suggested by 
Pan and Yang [25] to apply the knowledge acquired in the source task to the target 
task to solve the issues in scenarios with a small amount of data. In the study by 
Zhu et al. [24] a pretrained CNN model was used using a deep transfer learning 
technique, and the CNN model was transferred via various methods of fine-tuning 
to model the plasma spray reversal process with NiCrAlY. As shown in Figure 3.4, 
this study is divided into three main sections: preparation of data, deep transfer 
learning model, and validation of the model. According to the results, the tech-
nique that fine-tuned the entire pretrained CNN model while also slowing down 
the learning rate demonstrated the lowest loss in the training dataset and the maxi-
mum testing accuracy.
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3.5 CNNS IN PYTHON WITH KERAS

Deep learning is a field in which Keras is well-known. It is a pretty straight-
forward open-source Python library. It is simple to use. It is highly readable 
and has a very simple syntax. The importance of CNN increases when using 
deep learning to categorize images. The best Python library for handling CNN 
is Keras. Building a CNN is made simpler by this. The steps are briefly outlined 
below. CNNs are developed using Python (Version 3.7, with Navigator; Spyder/
Anocoda):

• Gathering data is the first step. The adopted dataset might be the Fashion-
MNIST dataset;

• The second stage entails importing libraries such as CNN, Keras, and 
Tensorflow;

• The dataset is split in the third phase using specific codes;
• Convolution, polling, and flattening are the final three sub-steps in the con-

struction of the CNN model;
• The projected results can then be printed, exported, and examined after the 

CNN model has been trained and evaluated using image data.

FIGURE 3.4 Outline of deep transfer learning implementation in the reverse atomized 
plasma spray process [24]. Permissions from Elsevier.
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3.6  CASE STUDY: IP FOR COATING-DEGRADING ERODENT  
CHARACTERIZATION

To characterize the coatings and eroding particles, researchers have utilized a wide 
range of interface instruments. Based on research. The physical parameters of the 
particles were measured with the use of an image-processing approach by Singh 
et al. [26]. They used an IP approach to evaluate the sphericity, solidity, circular-
ity factor, and variance of particles. During scanning electron microscopy (SEM), 
experts advised using a magnification range of 500–2000 for the micrographs pro-
duced [27]. The particles in the SEM picture were highlighted using a threshold 
function and many other tools. The SEM pictures’ threshold was modified using the 
Huang tool. The process of digital IP is shown in Figure 3.5. ImageJ was used to do 
the particle size analysis [28].

FIGURE 3.5 Schematic chart of the steps involved in the image processing of scanning 
electron microscopy micrographs.
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3.6.1 surfaCe sMoothness analysis

Figure 3.6 shows the scanning electron micrograph images that were analyzed to 
determine the form. The surface profiles of fly and bottom ash were created using 
the original SEM images as a basis. Fly ash particles have a smooth surface, which is 
reflected in the low waviness of the gray pattern curve formed for them. Bottom ash 
has an uneven surface, as seen by the waviness in its curvature.

3.6.2 CirCularity (Cf) analysis

Table 3.1 is a summary of the attributes of the particles in the multisized slurry that 
was produced via the IP approach. Fly ash was found to have a CF of 0.908, which 
is very near 1. Walker and Humbe [27] state that spheres have a greater form factor 

FIGURE 3.6 Threshold image processing and surface profiles of (a) fly ash and (b) bottom 
ash [30]. Permissions from Jashanpreet Singh.

TABLE 3.1
CF Values of Multisized Erodent Particles

S. No. Particles

Average Value

CF κ COV (%)

1 Fly ash 0.908 0.917 5.68

2 Bottom ash 0.712 0.714 8.36

3 Sand 0.637 0.952 10.1
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than angles do. Since this sand has sharp edges and triangular-shaped particles, the 
current experimental CF value of the sand is quite low (0.637) [29]. The ash pond’s 
bottom ash was employed in the investigation [30]; it includes trace amounts of both 
unburned coal and fly ash. The bottom ash from these experiments had an average 
CF value of 0.712.

The varying CF values of the various solid particle forms are shown in Figure 3.7. 
Fly ash had a CF in the 0.75–0.95 range, bottom ash in the 0.55–0.80 range, and sand 
in the 0.5–0.75 range. The bulk of the SEM micrographs showed fly ash with CF values 
larger than 0.75, while a handful showed values less than 0.75, indicating aggregation of 
particles owing to a charge or moisture. The CF value for particles of equal size distri-
bution was also investigated. Separating the particle size ranges of fly ash, bottom ash, 
and sand slurries allowed for the creation of particle size distribution of uniform size. 
Particle size distribution analyses on erodents were performed using British standard 
sieves. The CF value of uniform sludge, as determined by IP, is shown in Table 3.2.

FIGURE 3.7 Various types of particle shapes with CF values [30]. Permissions from 
Jashanpreet Singh.
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3.6.3 spheriCity (𝝍) analysis

During the study of the particles’ images, the sphericity of various particle kinds was 
also evaluated. The IP software employed a ratio of sphere area to particle area to 
determine the size of random particles and calculate their perimeters [31]. The fol-
lowing correlation [32,33] was used to predict the sphericity of particles:

 ψ = A

A
s

p

 (3.2)

As in the preceding equation, Ap is the particle area and As is the sphere area. A 
random distribution of fly ash, bottom ash, and sand yielded sphericity values of 
0.90–9.98, 0.78–0.89, and 0.64–0.76, respectively.

3.6.4 solidity (κ) analysis

IP was also used to evaluate the solidity of particles in this investigation. Particles’ 
roughness and solidity were quantified using the image analysis tool’s gray value mea-
surements in a given SEM picture. The correlation that Liu et al. [34] analyzed suc-
cessfully predicted particle solidity. Measurements of the solidity factors (κ) for evenly 
dispersed samples of fly ash, bottom ash, and sand yielded values between 0.90 and 
9.98, 0.78 and 0.89, and 0.64 and 0.76. Fly ash, bottom ash, and sand were all randomly 
distributed, and their solidity factors were found to be between 0.89 and 0.94, 0.71 and 
0.93, and 0.94 and 0.96, respectively. Sand seems to have a narrow range, but bottom ash 
particles have a much wider one. Fly ash continues to have a near-to 0.9 value. Solidity 
could not be completely considered in erosion wear experiments because the physically 
solid-surface material could be hollow inside, contain soft elements, be ductile, etc.

3.6.5 effeCt of iMaGe environMent

During simulations, image parameters might affect shape parameters. As can be seen 
in Figure 3.8, the CF value of the sand sample was determined using two distinct 
threshold procedures. Both parameters were found to provide distinct summaries of 
form parameters. The average CF was expected to be 0.733 and 0.837 in Figure 3.8a 
and b, respectively. This is because of the high circularity particles (shown by the 

TABLE 3.2
CF of Equi-sized Erodent Media

S. No. Particles

Particle Size Ranges

<53 µm 53–75 µm 75–106 µm 106–150 µm >150 µm

1 Bottom ash 0.78 0.61 0.56 0.54

2 Sand 0.76 0.65 0.63 0.53

3 Fly ash 0.94 0.87 0.80 0.75 0.73
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dots in Figure 3.8) that are present. IP, it seems, provides the most accurate circular-
ity measurement when the constraint factor is set to less than 0.99.

3.7  VARIOUS CHARACTERIZATION RESULTS OF THERMAL 
SPRAY COATINGS USING IMAGE PROCESSING

IP techniques are very effective in the characterization of erodent. Various characteriza-
tions like 3D topography, porosity assessment, 2D profilometry, roughness, cracks, etc. 
can be performed using the IP tools. Singh et al. [36] used DigitalSurf Mountains 8.0 [37] 
to test the 3D topography, porosity assessment, and 2D profilometry of WC-10Co4Cr 
coating, as shown in Figure 3.9. Imaging can be effective in testing erosion on the surface 
of coatings. Wear signatures can be easily tested using imaging tools. In a study, Singh 
et al. [38] performed IP to test the wear mechanisms on the surface of the Stellite 6 high-
velocity oxy-fuel coating. They have found some underlying mechanisms like cracks, 
smear, and plowing to understand the phenomenon of wear, as shown in Figure 3.10.

FIGURE 3.8 Application of threshold frequency [35]. Permissions from Elsevier.
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FIGURE 3.9 (a) Scanning electron microscopy micrographs, (b) 3D topography, (c)  porosity 
assessment, and (d) 2D profilometry of WC–10Co4Cr high-velocity oxy-fuel coatings [36]. 
Permissions from Elsevier.

FIGURE 3.10 (a) Scanning electron microscopy micrographs and (b) 3D topography of 
erosion mechanisms on Stellite 6 high-velocity oxy-fuel coatings [38]. Permissions from 
Elsevier.



45Artificial Intelligence-Based Image Processing Techniques

3.8 CONCLUSIONS AND FUTURE PERSPECTIVE

AI-based IP algorithms have completely changed wear analysis by providing 
instantaneous data. These approaches are more precise than the ones that have 
been used in the past, and they can pick up on minute variations in wear patterns. 
As AI develops further, these methods will probably become even more refined 
and play a larger role in avoiding breakdowns, maximizing output, and decreasing 
upkeep expenses. IP methods that are based on AI help analyze the characteristics 
of solid particles, such as their size, shape, and symmetry, as well as their den-
sity. Image-processing techniques are helpful when attempting to draw 3D surface 
plots as well as 2D plots for roughness tests, patterns, wear processes, and poros-
ity, among other things. Through the use of hyperspectral imaging technology, 
it is possible to quantify the material surfaces and wear rates of both coated and 
uncoated wind turbine blades.
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4 Artificial Intelligence 
and Automation in 
Sustainable Development

ABBREVIATIONS

AI Artificial intelligence
APS Atmospheric plasma spray
BC Bond coat
CIC Chemical index of change
CNN Convolutional neural network
I/P Input
ML Machine learning
O/P Output
TBC Thermal barrier coating
TGO Thermally grown oxides
TS Thermal spraying
YSZ Yttria-stabilized zirconia

4.1 INTRODUCTION TO SUSTAINABILITY

It is well known that the oil and gas and aerospace sectors account for the vast major-
ity of the thermal spraying market. Thermal spray coatings are frequently used to 
boost a component’s efficiency by increasing its resistance to wear, corrosion, and 
high temperatures. Using a variety of coatings, we can make parts last longer and 
make them more resistant to the environment they face. In addition to their use in the 
manufacturing of new parts, thermal spray coatings see widespread use in the refur-
bishment of older parts. Over a century has passed since thermal spray coatings were 
first used. Plasma spray (PS), detonation guns, high-velocity oxy-fuel, cold spray, and 
suspension plasma spray coating technologies are all examples of how this method 
has progressed over the years [1,2]. Thermal spray robots first appeared in manu-
facturing just before the turn of the century. Digital transformation and artificial 
intelligence (AI) represent the next step in technology development in this area [3].

4.2  AI AND SUSTAINABLE DEVELOPMENT (THERMAL  
SPRAY DIGITALIZATION)

The ecological effects of every manufacturing operation will take priority over its 
economic components. This is because climate change is having an overall effect on 
the economy. When it comes to the effects of climate change on national economies, 
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governments will shift their focus from individual sectors to the economy as a whole. 
Thermal spray requires raw ingredients and produces waste products much like any 
other manufacturing process. Since the current trend is toward a more circular economy, 
maximizing sustainability in terms of the triple bottom line (environment, economy, 
and society) necessitates quantifying and tracking resources and waste through a life 
cycle sustainability assessment [4]. Typically, the efficiency of powder deposition is 
between 50% and 60%, meaning that 40% of the material is sent to the dump or recy-
cling units. Some high-temperature gas turbines require segmented thermal barrier 
coatings (TBCs), which can be achieved via the solution precursor method or suspension 
precursor approach [5]. While powder techniques can increase output, they require a 
high-energy procedure, whereas spraying a solution or suspension decreases output but 
uses much less energy. Masks made of polymer or resin are considered solid waste and 
must be disposed of in a landfill. Therefore, innovations in ecologically friendly masks 
are needed to sustain the thermal spray sector. The top five industries that use thermal 
spray are depicted in Figure 4.1 as the largest emitters of greenhouse gases (GHGs) such 
as CH4, CO2, and NiO2. Emissions from aircraft and power plants primarily come from 
the plasma spray process. Emissions come from the combustion of hydrocarbons used 
to coat drilling equipment in the oil and gas industry. Hence OEMs and service provid-
ers in the thermal spray industry should adopt a “culture of durability” that prioritizes 
reusing and recycling materials whenever possible to reduce waste.

The proliferation of AI is having an impact on a wide variety of industries. For exam-
ple, it is anticipated that AI will have both immediate and long-term implications for the 

FIGURE 4.1 Process and contribution of different industries to greenhouse gas  
emissions [5]. Permissions under the CC BY 4.0 license.
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overall productivity of the world’s workforce [6], equality and inclusion [7], environ-
mental outcomes [8], and many other domains [9]. Thermal spray can be a part of the 
shift toward using AI and machine learning (ML) [10] to decrease emissions and waste. 
The potential for closed-loop feedback, in-situ stress measurement, and robot interfac-
ing to be incorporated by original equipment manufacturers into intelligent thermal 
spray machines is yet to be determined. Governments may soon require thermal spray 
firms to provide emissions and waste data for analysis, making data analytics a crucial 
component of the process. The collection and analysis of data may be an integrated 
aspect of the thermal spray plant. Common in both industry and academia, the thermal 
spray arrangement depicted in Figure 4.2 includes several sensors and a waste collec-
tor. Data gathering is the first step in reducing waste and making the switch to more 
energy-efficient coating deposition procedures. Figure 4.2 suggests that sensors could 
be installed at key points inside the booth to gather this information. (i) Process data, 
like particle velocity and temperature, can be collected to optimize the gun parameters, 
robot speed, and process gas flows in real time, and (ii) resource use and waste can be 
tracked and reported to regulatory agencies. To better monitor industry compliance with 
climate change targets, we can classify them as “green,” “yellow,” or “red” according 
to the percentage of waste produced in each category. Through cloud computing, the 
accumulated data can be connected to servers and retrieved in real time. It is possible to 
construct mathematical models for optimizing the fuel/oxygen ratio in any combustion 
spray process to identify the optimal mix to melt the particles, lower fuel consump-
tion, and increase deposition efficiency [11]. With the help of ML, robot coating path-
ways might be smoothly learned and modified to optimize efficiency [12]. This unit will 
potentially impact thermal spray on digitization in the future.

4.3  CONCERNS ABOUT THE IMPACT OF EMISSIONS ON  
THE ENVIRONMENT

Less than 5% annual growth is forecast for the global aviation industry over the next 
two decades. Current market trends were used to create this outlook. Population 
growth affects the environment by causing climate change, increased noise, and 
lower air quality. These shifts are inevitable because of the greater demand for 

FIGURE 4.2 Schematic diagram of a sustainable thermal spraying unit (data gathering sites 
for digital I/P that lead to digital O/P and then on to the spraying robot and guns are shown 
by red dots) [5]. Permissions under the CC BY 4.0 license.
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goods and services that will emerge from the population boom. Possible mitigation 
strategies include setting laws and standards, improving aircraft and engine perfor-
mance and/or developing alternative fuels, enhancing operations, and implementing 
market-based policies [13]. Flight frequency reduction, fuel efficiency enhancement, 
and the creation of substitute fuels are a few more potential mitigating strategies. 
Transportation demand may be affected in a variety of ways on a global and regional 
scale as a result of climate change. Anytime now, these alterations could be imple-
mented. As temperatures rise, especially with the predicted increases in temperature, 
it is possible that the performance of airplanes and, consequently, the travel patterns 
of passengers will be greatly altered [14]. The Intergovernmental Panel on Climate 
Change concluded in its most recent assessment that most of the observed increases 
in global temperature can be attributed to human activities with a high degree of 
certainty. The Intergovernmental Panel on Climate Change presented this finding as 
part of its Fifth Assessment Report. The aviation sector is blamed for approximately 
2% of global CO2 emissions. The aviation industry has publicly committed to achiev-
ing these three ambitious climate goals. One of the goals is to maintain 2020 levels 
of net aviation CO2 emissions, and to do this, a global market-based measure [15] has 
been established. Not only does aviation contribute to GHG emissions, but soot and 
sulfate particles released during combustion may also have an impact on the climate. 
All three of these factors affect the amount of GHGs in the air, which could have a 
knock-on effect on the weather.

It is widely agreed upon that effects that are not caused by CO2 contribute to the 
warming of the globe as a whole, even though some additional effects assist in warm-
ing while others contribute to cooling. This is still the case even when certain supple-
mentary consequences help speed up warming and others speed up cooling. When 
describing the climate impacts of aviation from non-CO2-producing sources, a multi-
plier is sometimes utilized. This metric calculates the fractional influence of aviation 
on the environment by dividing the total effect of CO2 on the environment [16]. To 
get this metric, you divide aviation’s total climate impact by CO2’s climate impact. 
Power output, thermal efficiency, and fuel economy are all areas in which internal 
combustion engines excel, yet the combustion process within these engines produces 
pollutants that are bad for the environment. Carbon monoxide, nitrogen oxides, and 
hydrocarbons are only a few examples of these noxious emissions. Today’s inter-
nal combustion engines are well recognized as a major source of pollution. This is 
because these engines emit a potentially lethal cocktail of gases and particles into the 
air when they are running. As a result, many people face a wide range of challenges. 
Because of this, researchers and engineers have been hard at work on a new ver-
sion of the engine that generates fewer harmful emissions. TBCs can help the inter-
nal combustion engines in cars by increasing the intake air temperature [17]. The 
ride will be more relaxing as a result of this. This aids in achieving high efficiency, 
extending the life of the engine’s components, and reducing the emission of harmful 
compounds. Studies looking into various methods for reducing the aforementioned 
pollutants. Refractory metal oxides are applied to a substrate, and then a ceramic 
coating is applied on top. This type of ceramic coating is then put on components to 
prevent heat from escaping as the components operate at high temperatures. TBCs 
are composite overlays used on superalloy surfaces. Both a bond coat and a ceramic 



52 Artificial Intelligence and Machine Learning in the Thermal Spray

coat make up these layers of protection. This type of coating is commonly used in 
internal combustion engines. Tolerances must be applied appropriately to structural 
compliance to account for the thermal and mechanical strains executed by the expo-
sure of services [18]. Adding brittle components to ductile substrates in the layer-
ing order mentioned above simplifies the process. Intergranular coating networks 
become twisted when methods like plasma spray and electron beam physical vapor 
deposition are performed side-by-side. Using this connected system, the aforemen-
tioned objective is realizable.

In contrast to cementation or continuous section thickness, porous deposition 
is typically used. There is no way around applying a TBC to the parts of an air-
craft engine that are subjected to stress-limiting conditions [19]. This is because 
the weather has been getting colder and windier recently. The subsequent advan-
tages include keeping high-temperature components safe so they may function at 
their best within their allowed temperature ranges and making the most efficient 
use of available energy. The solution’s execution led directly to these two advan-
tages. In-situ alumina production from substrate/bond coat aluminum and the 
transformation of metastable tetragonal zirconia into stable tetragonal zirconia, 
respectively, occur at the temperature of service, enhancing the thermo-mechanical 
behavior of TBC [20]. There is no difference in temperature between the two 
operations. In contrast to the latter, which leads to a reduction in volume, the for-
mer causes an expansion of volume. With today’s composite technology, it’s pos-
sible to give one’s inventions a self-toughening effect. The unusual mechanical 
behavior of TBC has been linked to the presence of a tortuous network between 
the grains [21]. The metastable tetragonal phase transforms into the cubic allo-
tropic state during the second stage of fracture tip blunting. This change is now 
underway. This relates to the stress that can be observed in the cracks. As a 
result, the Chemical Index of Change (CIC) has decreased. The CIC quotient will 
lead to an improvement in the material’s toughness. Volumetric expansion pres-
sures caused by extended exposure, however, will lead to nickel enhancement 
of thermally produced oxides (TBC) at the bonding coat/ceramic coat interface, 
which will lead to localized spallation zones. Pressures are accumulating at the 
bond coat/ceramic coat interface due to nickel enrichment at the interface. When 
TBC comes into contact with the substrate, it significantly alters the ductility of 
the material. Applying a bond coat has several benefits, including stress reduc-
tion and improved mechanical adherence. When it comes to bond coating, the 
M-CrAIY family of alloys is by far the most common choice for a wide variety 
of applications. Contacts that are heated to operating test temperatures result 
in the formation of thermally grown oxides (TGO). The TGO generation tem-
perature refers to this heat level. As a direct outcome of interactions between 
the qualities, this occupies a middle ground. The basic components of TGO [22] 
are alumina that has been coupled to yttria and chromia and that has been cata-
lyzed by chromia. To alleviate the adverse consequences of thermal expansion 
mismatch stresses, more study into the rivalry among auto-sintering and auto-
toughening mechanisms is required, as is the use of composite coatings crafted 
from functionally graded materials that are microlaminated and multilayered in 
ceramic/ceramic [23]. Microlaminated, multilayered ceramics/ceramics with the 
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appropriate functional gradations can achieve this goal. Microlaminated, func-
tionally graded materials, in addition to multilayered ceramics, will be used to 
achieve these goals.

4.4 ECONOMIC AND ECOLOGICAL ASPECTS OF THERMAL SPRAY

Both the physical world and the abundance of available information are undergo-
ing dramatic changes in the twenty-first century. Increased consumer demand and 
stricter regulations concerning the environment are placing increased pressure on 
businesses to improve the global quality of their products while simultaneously min-
imizing the damage to the natural world and the climate [24]. This is because strict 
environmental rules and higher expectations from consumers have contributed to 
this trend. Increasing production while decreasing costs and minimizing damage 
to the environment is of paramount importance. In addition to acting as an insula-
tor, the yttria-stabilized zirconia (YSZ) coating serves to decrease the transfer of 
heat into the turbine’s metal parts, which is particularly useful in high-temperature 
environments [25]. The metallic bond coat (BC) is a layer that protects the BC from 
the elements by covering it with oxidation- and corrosion-resistant metal. This is 
achieved by enhancing the bond between the component and the ceramic topcoat, 
which in turn protects the underlying component. Atmospheric plasma spray (APS) 
helps treat the engine components with YSZ. Due to the use of old torches, deposi-
tion efficiency levels remain low [26]. Thus, at least half of the YSZ sprayed did not 
settle on the components. It is crucial to stress that the YSZ powder that is used in the 
thermal spray process cannot be reused in any other way. It’s hard to overstate how 
important it is to stress this. It is critical to study the problem and develop strategies 
for either decreasing the consumption of masking materials or finding new uses for 
them. This is because masks and other polymeric substances may be harmful to the 
ecosystem if used improperly. Furthermore, thermal spray recycling initiatives have 
been attempted multiple times [27]. It has been shown that the other uses for ceramic 
powders recovered from dust collectors are, at best, “timid.” Because of this factor, 
many in the business believe that rates of deposition efficiency lower than 50% may 
soon be disregarded. For the company, this represents a huge opportunity for growth.

Modern processing methods allow even the oldest APS torches to be controlled by 
computers. Mass-flow meters are used as a crucial instrument in the process of estab-
lishing and maintaining stable plasma gas levels. Furthermore, the pace at which the 
torch is losing heat is monitored. Previous APS torches used copper nozzles lined 
with tungsten, and they were renowned for their outstanding efficiency. Tungsten-
lined nozzles reduce TBC contamination during spraying [28–30] and last longer 
than ordinary nozzles. This innovation directly enables processing adjustments to be 
rapidly addressed before the completion of spraying. Figure 4.3 is a diagram of the 
thermal spray process’s inputs and outputs.

Many diverse materials are used in today’s world for a wide range of purposes, 
from those that require biomaterials or high temperatures. The main goal of feed-
stock materials is to boost functionality in extreme conditions. Al2O3 is the chemi-
cal formula for aluminum oxide; however, alumina is the more popular term. Many 
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boilers, gas turbine blades [31], and other high-temperature components used in med-
ical devices and prostheses are made from alumina. It has shown excellent corrosion 
resistance in laboratory tests with living organisms. There are a growing number of 
situations where a certain type of material is used to survive challenging circum-
stances, similar to the application of YSZ in TBC [32]. The advancement of TBCs has 
made it possible for future gas turbines to run at significantly higher temperatures. 
This has led to a considerable amount of research being done to find novel materi-
als that can outperform YSZ, the current industry standard. This is because YSZ is 
the material with the highest reputation in its sector [33]. It is suggested to use an 
integrated method of experiments and rational explanations after looking at previous 
advances and offering an explanation based on them. After reviewing the most recent 
developments, we propose the following. Since gas turbine engines are subjected to 
such a wide variety of operating circumstances, it has been challenging to design and 
develop the most efficient components for these engines during the past few decades 
[34]. Superalloys, including nickel, chromium, cobalt, titanium, and silver, were once 
often used in the manufacturing of gas turbine parts. Niobium, chromium, cobalt, 
and titanium alloys are also superalloys. Superalloys based on nickel are the most 
effective materials to work with for turbine part production [35–37]. Gas turbines are 
used in environments that are both hot and abrasive, and in recent years, research has 
been conducted across a wide range of disciplines to improve their performance in 
these conditions. The findings of this study will be used to make gas turbines more 
effective. A better-performing gas turbine will last longer, be more efficient while 
running, and release fewer pollutants. The most effective method of meeting these 
criteria is to increase the maximum operating temperature of the turbine, which will 
increase the device’s thermodynamic efficiency [38].

To improve the turbine’s performance and extend its service life, it’s crucial 
to employ the right material. Several types of stainless steel were used in the 

FIGURE 4.3 Inputs and outputs in thermal spray.
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early development of gas turbine engines; however, this did not improve their 
heat resistance. Nickel-based superalloys, such as Inconel, have largely sup-
planted stainless steels as the material of choice. The exceptional resistance to 
heat exhibited by nickel-based superalloys [39–41] is largely responsible for this. 
Single-crystal (SC) coating is a unique coating technology developed as a substi-
tute for conventional coating practices for the production of single-crystal blades. 
When compared to directed solidification blades, single-crystal blades can func-
tion at higher temperatures. Crucial parts, however, can be damaged by direct 
exposure to extremely high temperatures without any thermal shielding [42–44]. 
The components will be harmed as a result of this. The TBC is used to cover 
the gas turbine components exposed to high-temperature conditions. The blades 
of a gas turbine can be cooled by encasing them in a material with low thermal 
conductivity. This will ensure the components can be used without risk. The gas 
turbine benefits from this since it can operate more effectively [45–47]. Because 
TBCs reduce the operating temperature of metal parts, they can be used for longer 
without degrading performance.

4.5 AVIATION EMISSIONS

The impact of jet aircraft emissions on the environment is shown in the diagram to 
the right (Figure 4.4). When jet fuel containing kerosene is burned, a cloud of fumes 
and particles is produced that follows the plane. All of these atoms, molecules, and 
gases are contained within this cloud. Below, in a rectangle with different colors for 
each exhaust product, you can see how they all stack up against one another. An 
effect that warms the environment is depicted in red, whereas a cooling effect is 
shown in blue. The effect these gases have on either warming or cooling the atmo-
sphere is highlighted underneath the cloud.

FIGURE 4.4 A quick look at aviation emissions.
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4.6 TBC CONTRIBUTING TO REDUCING CO2 EMISSIONS

TBCs may minimize aviation’s environmental effects. TBCs based on germinate 
can meet the requirement for coatings that meet tomorrow’s GT engine standards 
for commercial aircraft. Germinated TBCs can meet market needs due to their 
decreased thermal conductivity and improved temperature phase stability. The 
age of the automobiles that will be driven on these engines makes this a neces-
sity. The innovative ceramic material Martin, which is built on germinates, has 
shown significant advances in its temperature phase stability. When the tempera-
ture increases, less power is needed to actively cool GT engines. The engine’s CO2 
emissions will go down, and its overall performance and efficiency will go up as 
a result of this change. The new germinate-based TBC was also in line with the 
CO2 reduction aims of the NASA organization that oversaw the project. Over time, 
thermionics will be able to mesh with NASA’s various emission-free initiatives. 
More resources are required when more people are living in a given location. The 
local environment will be altered as a result of changes in the surrounding air and 
noise quality, as well as the local climate. When calculating the impact of planes 
that don’t spew CO2 into the air, a multiplier technique is sometimes used. Total 
climate impact caused by airplanes, divided by the aircraft’s per-mile CO2 emis-
sions. Pollutants include substances like CO, NiO2 oxides, and C-H. It protects 
high-temperature-operating components so that they can function at their peak 
while staying within their operating range.

4.7  AI-ML APPROACH FOR SUSTAINABLE GROWTH OF  
GLOBAL COATING MARKET

In technical sectors like the coatings industry, AI and ML accelerate product 
development. Design-of-experiment techniques and sophisticated statistical ana-
lytics help coating formulators optimize product qualities while satisfying reg-
ulatory and sustainability standards. Formulation science uses AI and ML to 
incorporate more data into decision-making. Polaris Market Research provided the 
“Artificial Intelligence Market Trend, Growth Drivers, and Challenges” report. By 
2026, the worldwide AI market will be worth $54 billion. Robotics advancements 
and increased use, especially in emerging nations, have boosted the worldwide 
AI industry. The global AI market is driven by customer experience, application 
areas, productivity, and big data integration. Governments are now supporting 
national AI efforts and engaging in a technical and ideological arms race to con-
trol the machine learning sector. To lead AI research, the UK government will 
spend £300 million. The Chinese government is now building a $150 billion AI 
sector by 2030. However, a scarcity of competent workers and threats to human 
eminence may affect industry development. Due to sophisticated technology, these 
issues should have little influence on the market. A PMR analysis predicts the 
global paint and coatings industry will reach $ 286.54 billion by 2026. Because of 
numerous advances driven by a strong rebound in global construction and manu-
facturing, especially in Western Europe, Japan, and North America, architectural 
paints and coatings are expected to increase in demand in the forecast period of 
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2018–2026. Chemical, automotive, industrial production, etc. will grow faster than 
their counterparts, which are going to benefit from an improved chance of growing 
vehicle production each year and industrial activities, including paints and coatings 
(Figure 4.5) [48,49].

4.8 MARKET SIZE AND 2026 FORECAST

Between 2018 and 2026, the worldwide paint and coatings market will rise by 6.0%. 
North American and Western European building construction advancements will 
influence the evaluation. The rising global manufacturing base drives demand for 
coatings used in automotive, durable goods, and industrial maintenance applications. 
Paints and coatings make other items better, safer, more appealing, durable, and sell-
able. These items enable manufacturing and add value to goods. Coatings sales are 
rising as home construction resumes worldwide. However, most advancements occur 
in the automotive industry, which is crucial for market development throughout the 
predicted period [49,51].

4.8.1 seGMentation

Resin, technology, and end-use separate worldwide coatings. Acrylic, epoxy, poly-
urethane, alkyd, polyester, and other resins are subdivided [52,53]. Water-based, solvent-
based, powder coating, high solids, and other technologies follow. Architectural and 
nonarchitectural paint and coating end-users exist. Acrylic items dominated con-
sumption and prices. Global solvent growth is predicted to be mild. VOC rules are 
tightening [54,55].

FIGURE 4.5 Market scenario representing sustainability of thermal spray and coatings in 
the future [50]. Permissions under the CC BY 4.0 license.
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4.8.2 reGional analysis

Asia Pacific spent the most on coatings in 2017. India and China will drive regional 
demand. Europe is the second-largest market and accounted for almost 27% of 
worldwide sales in 2019. Germany, the UK, Poland, the Netherlands, Sweden, 
Hungary, and Ireland are likely to expand their building sectors, generating product 
demand [51,54].

4.9 GREEN COATING MARKET WORLDWIDE

Green coatings, ecologically friendly paint materials, were created since consumers 
are demanding them. VOC reduction in decorative paints necessitates green coatings. 
Green coating demand is rising due to regional and worldwide VOC legislation and 
voluntary green building programs like Leadership in Energy and Environmental 
Design (LEED), launched by the US Green Building Council. Most paint and coating 
firms provide eco-friendly coatings to prevent toxic negative effects. 2020 US green 
coatings market was $27.1 billion. It has 29.44% of the worldwide market. China, 
the world’s second-largest economy, is predicted to reach $22 billion by 2027 with a 
4.1% compound annual growth rate (CAGR). Japan and Canada have 4.3% and 3.4% 
growth forecasts for 2020–2027, respectively. Germany will gain 3.6% CAGR, and 
Europe will reach $22 billion by 2027 [56–58].

4.10 SUSTAINABILITY IN COATING INDUSTRY AND AI

According to the researchers, AI models successfully identified such irregularities, 
allowing the naval, hydropower, wind power, and marine industries to use AI to ana-
lyze images over time to better understand corrosion and coating breakage trends. 
This “digital innovation” in artificial intelligence will remotely examine, identify, 
and quantify shell cracking and other structural flaws, boosting safety and depend-
ability. AI can aid in maritime rescue, relief, and disaster relief [59,60]. Table 4.1 
includes the most promising coating industry strategies.

This chapter highlighted AI and ML’s importance in surface coating. The 
coating industry’s technological shift comes from AI and ML adoption. AI’s key 
advancement is its widespread use in numerous industries, and service sectors. 
Organizations may improve resource utilization, inventory costs, and projections 
by using AI technology. Researchers are using evolutionary algorithms to auto-
matically identify novel polymers and coating formulas based on a set of material 
attributes. In flow polymerization, autonomous synthesis, and formulation, scien-
tists are developing integration tools to pair novel models with new experimental 
methods. These technologies will accelerate high-performance material design and 
discovery. Convolutional neural networks can classify spray process photos and 
real-time videos with minimum calibration on enormous datasets in future studies. 
The approach is simple, but huge datasets, kernels, and feature vectors need addi-
tional investigation. The literature study provides a structural similarity measure 
for coating microstructure comparisons. Automating the laborious microstruc-
tural coating characterization procedure may expand standardization. Training 
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additional models with coating microstructural characteristics will help improve 
this technique and completely automate coating fault identification using CNNs. 
Thus, AI and ML constitute the fourth industrial revolution, allowing us to tackle 
intractable challenges and build a more inventive environment. ML has shown that 
it can manage macroscopic to microscopic aims, including those in this review, as 
it is better understood and studied. Thus, ML may be turned into a fast and reliable 
materials science tool due to its great applicability. ML advances material science 
research and theory-building. Thus, this study may guide future researchers to 
optimize surface coating parameters using AI and ML.

4.11 CONCLUSIONS AND FUTURE PERSPECTIVE

When it comes to adding or restoring functionality to a solid surface, surface engi-
neering techniques like thermal spraying are the answer. Thermal spraying stands 
in sharp contrast to energy-intensive processes like melting, casting, extruding, and 
welding in terms of their contribution to the cause of global warming. As a result 
of their inclusion on the supply risk register, a small number of metals and alloys 
used in the thermal spraying process—among them hydrogen—are now considered 
important raw materials. To maintain the benefits of thermal spraying as a relatively 
green approach, efforts to address recycling and reuse and discover alternatives to 
these are very timely. Incorporating digital technology (ML and AI) and thermal 
spray coatings would further improve the sustainability of the production process by 
decreasing the use of gas, powder, and electricity. For governments to reward busi-
nesses that function with low GHG emissions, they need more information on raw 
material utilization and waste, which can be gathered through the digitalization of 
the thermal spray industry.

TABLE 4.1
Sustainable AI Approaches Used in Coating Industry Challenges [61]

S. No. References Description Approach

1 [62,63] Coating optimization Semi-analytical experimental based 
approaches

2 [64,65] Robot path optimization Self-organizing maps and geodesic-
based model

3 [66–68] Process monitoring & control Artificial neural networks coupled 
with sensors

4 [69,70] Microstructural characterization &  
defect detection

Convolution & deep neural networks

5 [71,72] Conformance Computer vision structural similarity

6 [73] High fidelity Image analysis image 
super-resolution

Source: Permissions from Elsevier.
AI, artificial intelligence.
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5 Role of Machine 
Learning Techniques 
in Coating Process 
Monitoring, Controlling, 
and Optimization

ABBREVIATIONS

AI Artificial intelligence
ATI Aircraft Tooling Inc.
Cobots Collaborative robots
HRC Human–robot collaboration
HVOF High-velocity oxy-fuel
LfD Learning from demonstration
ML Machine learning
PS Plasma spray
SOD Stand-off distance

5.1 INTRODUCTION TO ROBOTS

Nowadays, automation is used in almost every industry to improve the efficiency, 
effectiveness, and precision of products and services [1]. Since cyber-physical sys-
tems and the Internet of Things have been used in manufacturing and automation 
systems, the industrial sector has been on the rise [2]. Self-contained flows is a 
model for physically autonomous processes with stringent network capabilities and 
user-friendly interfaces. When characterized according to natural human–machine 
interfaces, i.e., those that lessen the technical barriers necessary for engagement, the 
interactive component of self-contained flows achieves its zenith.

Cobots, or collaborative robots, are industrial systems built for use in robot-human 
contexts [3]. ISO/TC 299 describes cobot as a robot built to collaborate with people 
[4]. Cobots are universally adapted to replace humans in various processes in which 
high precision is required. Cobots and robots are extensively used in harsh environ-
ments in the industry [5]. Thermal spraying, cutting, machining, and welding are 
examples where the risk of an accident is high. Robots are being frequently adopted 
in industry after the commencement of the twenty-first century. However, robots are 
extensively used in thermal spraying for the uniformity and durability of coating 
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layers. In this environment, the robot works with human operators, whose efforts 
are augmented by the cobot’s unique capabilities. Cobots have found their use in 
several fields, including the car industries, surgery, educational tools, the coating and 
welding industry, assembling in many industries, and rehabilitation [6]. Cobots are 
designed to adapt to the shifting requirements of mass customization, a trend that the 
business world is eager to capitalize on but that is beyond the purview of industrial 
robots designed for mass production. Companies are adopting them because they can 
replace humans in repetitive or poorly ergonomic tasks, they can share assembly lines 
with humans in confined spaces, they require fewer safety precautions than simple 
robots, they can quickly adapt to changing workloads, and they can be programmed 
with minimal human input. The Internet of Things, smart manufacturing, and cloud-
based manufacturing are all examples of the real-world advancements that make up 
the theoretical notion of Industry 4.0. To achieve continuous improvement, prioritize 
value-added operations, and minimize waste, the term “Industry 4.0” describes the 
practice of tightly integrating humans into the production process [7]. In the context 
of fast industrial growth, collaborative robots in industrial automation have evolved. 
Industry 4.0 presents the innovative idea of people and robots working side-by-side 
in the same physical environment. Due to the intimate partnership between people 
and machines, research in the area of industrial robotics often focuses on the devel-
opment of safe human–machine interaction systems. When considering solutions to 
difficulties in industrial robotics, it’s important to consider both technological and 
societal factors. The introduction of robotic solutions, such as those for production 
optimization and automation, is also on the list, and it is anticipated that cobots will 
form the backbone of a significant commercial expansion shortly [8].

As mass bespoke production becomes the norm, small- and medium-sized enter-
prises have embraced agile manufacturing practices, leading to the rise in the popu-
larity of collaborative robots in the workplace. However, there is an absence of highly 
qualified staff to program the robot, do the complicated tasks, and establish the con-
nection of robotic systems to other smart devices in the factory. These are the key 
hurdles in the industrial adoption of cobots. Since many collaborative robot systems 
are meant to be programmed by professionals rather than regular employees, teach-
ing and simulating them by non-robotics experts is a significant difficulty [9]. The 
primary objective of human–robot collaboration (HRC) is to facilitate human–robot 
interaction in a risk-free setting [10]. The manufacturing process does not go from 
being entirely human-driven to being entirely automated without any human interac-
tion whatsoever. Because of safety regulations, this process comes with a few draw-
backs. For instance, when the operating team is not present, the machine may run 
automatically. In collaborative robotics, people and machines work side-by-side in 
the same environment so that the robot may assist with tasks that are not ergonomi-
cally optimal, tedious, unpleasant, or even hazardous. Through the use of cutting-
edge sensors, the robot keeps track of its motions to ensure that it poses no limitation 
to, and most importantly, no risk to, the human worker [11].

In the manufacturing industry, cobots are highly sought after because of their 
lower cost, built-in safety features, and user-friendly interfaces. Even more so for 
small- and medium-sized enterprises, who often struggle to automate their produc-
tion using conventional robots [12]. Companies in the mass production sector and the 
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automobile industry in particular are keen to adopt HRC as a means of increasing 
their competitiveness and ushering in the next phase of automation and industrial 
development, known as Industry 4.0. When it comes to installing sound and mois-
ture insulation on the interior of automobile doors, for example, the BMW Group’s 
Spartanburg factory used cobots to enhance ergonomics [13]. At the Audi Brussels 
factory, MRK-Systeme KR SI cobot is used to glue the different reinforcement plates 
[14]. Typical MRK-Systeme KR SI cobots have been shown in Figure 5.1a. The Fanuc 
CR-35iA cobot is commonly used in many industries for handling duties to resolve 
ergonomic challenges. In the automotive industry, the Fanuc CR-35iA cobot is used 
in the assembly line for lifting spare tires into vehicles [15]. Typical Fanuc CR-35iA 
cobots have been shown in Figure 5.1b. At the Volkswagen factory in Wolfsburg, 
Germany, a KUKA cobot is used to conduct screwing on a drive train in hard-to-
reach places [16]. In addition, Skoda has used the KUKA cobot to assist human 
workers in the assembly of direct-shift gears [17], as shown in Figure 5.1c. ABB 
YuMi is used for complex assembly applications in the industry [18]. A typical ABB 
YuMi cobot is shown in Figure 5.1d. Audi’s UR3 cobot, designed to spread glue on 
vehicle roofs, eliminates all kinds of physical barriers [19]. The human works close 
to the cobot, while the latter screws in more inconvenient places. The UR10 cobots 
were installed at Nissan’s massive Yokohama facility to loosen bolts and transport 
heavy components, freeing up workers to focus on other, more productive duties [20]. 
A typical UR series cobot is shown in Figure 5.1e. Safety when working alongside 

FIGURE 5.1 Different types of cobots used in various industries [24]. Permissions from 
MM Science.
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people is an essential need for the aforementioned applications of cobots [21]. They 
may not necessarily need high levels of intelligence, human-like awareness, or the 
ability to make sound decisions, however. Since the pieces to be handled are main-
tained at known locations, the human and cobot may perform their duties indepen-
dently, and the cobot can stick to a pretty set action/motion plan [22]. Thus, it is 
evident that “Independent” or “Simultaneous” implementations of HRC situations 
are more common in industry [23]. However, most such implementations fall short of 
showcasing the usefulness and adaptability of cobots in a largely unstructured work 
environment since they impose extra limits on the cobots’ surroundings (in terms of 
fixed pieces or equipment placements).

5.2  ROBOTICS IN CONTROLLING THE COATING  
PARAMETERS

When applying thermal or cold spray coatings to the surfaces of complicated objects, 
it is vital to make use of offline path planning and industrial robots to achieve a uni-
form thickness throughout the coating. When this occurs, the kinematic and dynamic 
performance of industrial robots might be adversely affected to a large degree. For 
example, it results in a large number of unintended reorientations of the robot’s axis, 
which modifies important handling parameters and may affect the quality of the 
coating [25]. Figure 5.2 is a schematic representation of the primary handling char-
acteristics that have the potential to alter the coatings.

5.2.1 spray anGle

The spray angle is the angle in degrees that exists between the axis of the spraying 
cannon and the substrate surface, as seen in Figure 5.2. When spray particles hit the 
component surface and transmit their momentum and heat energy to the component 
surface, the angle should measure 90° in an ideal situation. Because of the restricted 
mobility of a robot system and the impossibility of maintaining a spray angle of 90° 

FIGURE 5.2 Schematic diagram of major handling parameters in thermal spraying.
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consistently, the coating of complexly shaped geometries requires that the spray angle 
be decreased. This shift in impact angle has the potential to bring about unwelcome 
differences in the deposition rate or the characteristics of the final coating. It had previ-
ously been shown via the work of a variety of researchers [26–28] that decreasing the 
spray angle results in an increase in coating porosity. This happens because the impact-
ing particles lack the necessary energy and the normal velocity component becomes 
lower, making them unable to adequately cover the whole surface of the substrate, 
which results in the spraying of coatings with a higher porosity [27]. It is possible to 
assume that decreased spray angles in TS will affect the efficiency of deposition as well 
as the microstructure of the coating [29]. Binder et al. [30] observed that deviations 
from normal impact conditions could significantly alter the deformation behavior of the 
particle, which resulted in increased porosity levels, and reduced tensile and adhesive 
strength of cold spray deposits. This was because the particle’s deformation behavior 
was significantly altered (Figure 5.3). Additionally, they reported that when deviations 
from normal impacts were less than 20° (Figure 5.3c and d), spray particles showed the 
same deformation behavior as the normal incidence. There were no significant altera-
tions in the levels of porosity, which are required for the majority of the applications. 
Figure 5.3f illustrates that a tangential component of particle momentum during oblique 
hits may cause tensile force at the substrate interface. This force is sufficient to dislodge 
the particles from the surface of the substrate when the impact occurs at an angle of 
45°. According to Tillmann et al. [31] and Mostaghimi and Chandra [32], changes in 
deposition efficiency and coating mechanical properties like micro-hardness, surface 
roughness, or porosity levels, which can be vital for the final coating quality, occur 
at spraying angles of 50°. Tillmann et al. [33] concluded that HVOF spraying of fine 
WC-12Co powders (size 2–10 µm) is less likely to experience variations in the spraying 
angles as compared to other techniques like plasma or arc spraying. It has been found 
that there is no substantial loss in coating qualities up to 30°, even though lower spray-
ing angles lead to a fall in deposition rates. On the other hand, the formation of pores 
and fractures has a detrimental impact on the strength of the coating when the spraying 
angle is reduced by more than 30°.

From the above literature, it can be concluded that the spraying angle ought to be 
adjusted in a manner that is normal to the surface of the substrate while the operation 
is being carried out to produce excellent coatings. On the other hand, carrying this 
out successfully in the context of intricate geometries is a challenging task. Under 
these circumstances, there may be some points in the robot’s trajectory where the 
spraying angle can be provided with a slight reduction to obtain a smoother trajectory 
that is easily reachable by the robot while it is spraying. This would allow the robot 
to perform spraying operations with greater ease. It enhances not just the spraying 
process as a whole but also the overall quality of the coating.

5.2.2 stand-off distanCe

During the spraying process, optimizing the stand-off distance (SOD) is one method 
that may be used to enhance the quality of the coating after it has been sprayed. As 
shown in Figure 5.2, the SOD refers to the physical distance that separates the spray 
gun from the substrate that is going to be coated. The SOD has a major impact on the 
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functionality and characteristics of the coatings after they have been sprayed [34]. 
When SODs are shortened, the resulting temperatures are greater, which in turn 
leads to the creation of coatings that are more thick and hard [35]. Computational 
fluid dynamics was used to create models of the as-sprayed HVOF WC-12Co coat-
ing, and the results showed that SOD had a major impact on the deposition process 
[36]. When spraying WC-Co powder, having a large SOD between the gun and the 
powder leads to reduced velocities, which in turn leads to increased porosity levels. 
As the SOD increases and the particles in flight grow hotter as they approach the 
target, the critical velocity that is required for coating buildup and particle deforma-
tion gets lower and lower. This results in less particle compaction and decreased 
contact between splats, which leads to increased levels of porosity. On the other 
hand, longer stand-off lengths lead to the re-solidification of partly melted par-
ticles along the route and create poor deposition efficiencies; hence, they should 
be avoided if at all possible. Porosity levels are increased when there is insufficient 

FIGURE 5.3 Microstructures of cold spray Ti on AlMg3 specimens for various spray angles; 
(a and b) normal angle, (c and d) 70°, and (e and f) 45° [30]. Permissions from Springer Nature.
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efficiency in the deposition of material [37]. Due to the nature of these interactions, 
it is clear that one of the most important parameters during the deposition process 
is an optimal SOD.

To get an understanding of the optimal stand-off lengths that may be exploited 
to improve the performance of coatings, research was carried out on WC-Co alloys 
and alloys based on nickel. The producers of the Sulzer Met. Co. equipment sug-
gest keeping an SOD of between 9 and 12 in. while spraying Alloy-625. If the SOD 
is significantly shorter, then there is a greater chance that the substrate will be 
overheated. On the other hand, if the SOD is too great, then the temperature of the 
in-flight particles will decrease before they come into contact with the substrate 
surface. The bonding strength of the coating will be impacted as a result of this 
decrease in particle temperature [38]. SOD has been shown to have a considerable 
impact on the deposition temperature, and as a result, it plays a role in determining 
the coating quality that is deposited. These findings were discovered via experi-
mental research that was published by Stokes [39]. At the predetermined range of 
SODs (125–260 mm), WC-Co powder was deposited using TS. The temperature 
of the deposition was continually monitored and regulated while the spraying was 
in progress. The findings demonstrated that the SOD affects the temperature of 
the deposition. If the temperature of the flame were measured, it would be easy 
to see that the temperature reduces as the distance from the gun’s head increases. 
As a direct result of this, the temperature of the particles will decrease after they 
have passed through the spray nozzle. According to Stokes and Looney, a greater 
SOD enables the in-fight sprayed particles to quickly cool down, which leads to 
a decline in deposition temperature [40,41]. This is the outcome of the reduction 
in deposition temperature. Yilbas et al. [42] investigated the effects of SOD on a 
nickel-based alloy. The difference in SOD affected the stress distribution of the 
coatings, and the results were comparable to those obtained by Stokes [39], who 
demonstrated that the level of residual stress drops when the SOD ranges from 180 
to 200 mm. Therefore, the optimal spraying distance should be maintained during 
the deposition to provide coatings of higher quality.

5.2.3 sprayinG route

As can be seen in Figure 5.4, the spraying route for the coating process is often con-
figured in the form of a meander. It is accomplished by making a series of parallel 
horizontal passes with the spray torch over the surface of the substrate. The time that 
elapses between each of the two successive passes is referred to as the scanning step. 
In addition to this, the scanning step that is performed has an effect not only on the 
porosity but also on the thickness of the coating [43]. The effective management of 
residual stresses in the coatings after they have been sprayed is an essential compo-
nent in the production of high-quality coatings. The adhesive strength of final coat-
ings, as well as their resilience to thermal shock, fatigue, and wear, are all severely 
impacted by residual stresses, along with several kinds of failures, such as buckling 
deformation, splat de-bonding, and even cracking [44–46]. Regarding the developed 
residual stresses, several research publications have brought attention to the role that 
the spray path plays. Tian et al. [47] looked into the effect of the spray path on the 
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distribution of residual stress in an electric arc sprayed coating on the surface of 
the crankshaft journal. Because of the intricate geometry of the crankshaft, offline 
programming was chosen rather than its online counterpart [48]. A path in the shape 
of a Z and a path in the form of a circle were chosen to be the spray paths, as shown 
in Figure 5.5.

The authors concluded that the deposition temperature was relatively lower 
when the spray route during the spraying process was curved like a “Z,” which 

FIGURE 5.5 Diagrammatic set-up of the spray paths: (a) Circular, and (b) Z-shaped [47]. 
Permissions from Elsevier.

FIGURE 5.4 Spraying route for the coating process is often configured in the form of a 
meander.
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resulted in the creation of small residual stresses in the coating that was coated. 
The effect of the spray path employed for the deposition of the coating process 
depends on both the temperature gradient and temperature level in the coating, 
as well as the relationship between these factors and the generation of residual 
stresses in the coating [48]. These investigations shed light on the need for careful 
design of the spray route in TS and the role that it plays in determining the quality 
of the coating produced.

5.3  ROBOT AND COBOT PROGRAMMING FOR INDUSTRIAL  
APPLICATIONS

Programming a cobot includes giving it the intelligence to perceive its surround-
ings and take actions that get the system closer to its intended collaborative pur-
pose. In the past, industrial robot programs have only required the participation 
of a human (the programmer) in the offline phase. Unless a mistake arises and 
debugging is required, these programs cannot be modified, while they are being 
executed, making them rigid and lacking in human awareness. Consequently, a 
robot operates in a deterministic setting where a human operator does not play a 
role. The environment is perfectly predictable and stable except in HRC, where an 
operator introduces randomness and uncertainty. When it comes to programming 
robots, humans aren’t only playing the offline role they usually do with other robots. 
At runtime or online, the operator may modify the cobot’s code. The programming 
of the cobot is vulnerable to both direct and indirect interference by an operator. 
The human’s direct connection with the cobot, in the form of either information or 
commands, constitutes this kind of overt participation. A cobot’s implicit partici-
pation happens when it monitors the human’s emotional and physical conditions 
and adjusts its behavior appropriately. The policy may be programmed by hand 
or learned from historical data. This study presents three distinct programming 
elements that allow the cobot to function flexibly and/or be programmed logically 
based on this varying degree of human engagement. For sequential and support-
ive HRC situations, these coding capabilities are crucial. Cobots are programmed 
to recognize their surroundings and take actions that get the system closer to its 
intended collaborative end state. The following elements of code have been singled 
out: Examples of cobot programs that feature the aforementioned three character-
istics are shown in Table 5.1.

5.3.1 CoMMuniCation

The cobot is managed by a human user through some kind of communication chan-
nel, either verbal (speaking) or nonverbal (gestures, eye contact, etc.). Gestures, eye 
contact, body language, head orientation, tactile interfaces, and virtual reality are 
all examples of nonverbal communication. The programmer works offline to design 
probable cobot behaviors and fundamental motion control. When operating online, 
the operator often takes an active role by explicitly commanding the cobot to carry 
out certain tasks. The programmer’s offline job is to specify the actions available to 
cobot and the motion control it will use.
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5.3.2 optiMization

A cobot’s environment, including barriers and the location of its tools, is mathemati-
cally modeled as a result of the cobot’s motions. Those come together to make up 
the cost functions that are optimized to provide the desired results. The cobot’s code 
may be adjusted to lessen the toll on the human operator in terms of effort, energy, 
and time spent, or to increase the worker’s sense of safety and confidence in the 
system, the quality of output, etc. The developer creates cost functions and optimiza-
tion algorithms during the offline phase of the project. An operator’s presence in a 
cost function during operation has a significant, though often unnoticed, effect on a 
cobot’s efficiency. The approach has the potential benefit of being more efficient than 
a human operator.

5.3.3 learninG

A cobot learns a new task in the same ways a person would, such as through observa-
tion, practice, mistakes, correction, and inquiry. A programmer’s offline responsi-
bilities include formulating the learning algorithm and supplying the seed data from 
which the cobot will learn. For example, you may provide examples, go through 
some trial and error to arrive at a policy, provide some training data, etc. By giving 
extra information, such as feedback, responses to inquiries, individualized demon-
strations, etc., an operator may be able to overtly change the cobot’s policy during 
execution. In addition, the operator may play a role as a prior in the probabilistic 
learning process of the cobot, influencing it in a roundabout way just by being there 
in the observable environment.

TABLE 5.1
Some Types of Cobot Programs

S. No. Feature Offline Programmer’s Role On-Lin Operator’s Role

1 Communication 
[49]

Develop an algorithm for 
voice recognition and an 
action plan

Execute the job plan via the use of vocal 
orders (explicit participation)

2 Optimization 
[50] 

To have the cobot choose the 
best item to grab, you must 
create a cost function and 
an optimization algorithm

By picking up things, you may indirectly 
influence the cobot’s choice of what to 
pick up by changing its cost function

3 Learning [51] Develop a proof-of-concept 
for Learning from 
Demonstration (LfD), and 
show how it works

Give the cobot instructions that it may use 
to change the order of its actions during 
construction (direct participation)

4 Learning [52] Develop a proof-of-concept 
for LfD, and show how it 
works

Do what demonstrators 
would have you do

Cobots are designed to work alongside 
humans by watching their actions and 
mimicking them (implicit participation). 
The cobot chooses the optimal object to 
grasp
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5.4 OFFLINE PROGRAMMING FOR COATING PROCESS

In general, the spraying parameters used during the spraying process for the devel-
opment of high-quality coatings are selected by the method of “trials and errors” 
involving the numerous process control methods. This is done to ensure that the coat-
ings produced are of the highest possible quality. Nevertheless, these tests are often 
carried out in production booths with the assistance of an industrial robot. This strat-
egy is not only incredibly expensive but also very time-consuming in the majority of 
situations. Therefore, to ease the manufacture of the coating, a variety of models and 
software tools are employed to simulate the whole process of deposition and forecast 
the exact coating attributes that are needed. Offline programming is one of these 
sophisticated methods, and it is the one that will provide a comprehensive solution 
for the TS process. This solution will cover everything from the production of the 
spray route to the parameters for simulation to the optimization of the trajectory. It is 
always possible to build the robot’s trajectory for the deposition of coating with the 
assistance of the actual geometrical model of the component [1], which ensures both 
the correctness and precision of the route. In Figure 5.6, a diagrammatic representa-
tion of this full procedure may be found in the form of an illustration.

5.4.1 CoMputer aided desiGn (Cad) file aCquisition

To design the trajectories for robots, graphical programming has to have access to the 
CAD geometry of the substrate. Consequently, the first step is to get the geometric model 
in 3D. If the original CAD model cannot be located, a simplified version will need to be 
crafted using CAD software such as Catia, SolidWorks, and Pro-E, among others. If the 
component cannot be developed using CAD software due to its level of complexity, an 
alternative method known as reverse engineering will be used. Either a coordinate mea-
suring machine or a laser scanning system may be used to gather the necessary geomet-
rical information about the component [53]. Both of these systems have their advantages. 
These measured locations may be used to construct the three-dimensional geometric 
model, which is a more effective way of dealing with complicated components.

5.4.2 seleCtion of operatinG paraMeters for therMal sprayinG

According to what is stated in the relevant literature, the parameters for the TS pro-
cess may be broken down into a few distinct categories: energy parameters, injection 
parameters for feedstock powder, and other kinematic parameters. The parameters 
that were discussed earlier can be controlled in one of two ways: either (a) directly, 
such as the speed of the torch, the spraying distance, and the scanning step, or (b) 
indirectly, such as the speed and temperature of the particles in flight, among other 
things. The performance of the procedure as well as the qualities of the coating may 
be impacted by all of these handling aspects. An optimization approach was suggested 
by Kout and Müller [54] as a means of calculating and approximately estimating the 
necessary coating thicknesses for the respective operational parameters. The authors 
researched the methods of designing path-spray orientation coatings. In a different 
investigation, Trifa et al. [55] studied an interaction between the operating parameters 
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and the characteristics of the deposit. This enables them to select the appropriate set-
tings for the apparatus. Guessasma et al. [56] presented their work, in which they 
developed an intelligent system based on fuzzy logic to assist in the selection of oper-
ating parameters based on the required features and the desired deposition [57]. This 
system was created to help choose the appropriate values for the parameters.

FIGURE 5.6 Method for the generation of an offline trajectory.
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5.4.3  traditional Mode of robot trajeCtory in a virtual  
environMent or siMulation

The simulation or implementation of a robot’s trajectory in a digital environment 
consisted of two distinct components: (a) a simulation of robot kinematics, and (b) a 
simulation of heat transport. During the TS process, the design of robot trajectories 
plays an important role. Once the trajectory has been developed offline, its execu-
tion is carried out in a real environment, as mentioned in the previous section. To 
begin, the dimensions of a physical cell are transferred into a digital format and used 
to construct a virtual cell. The working settings under which the robots are placed 
are recreated in this cell’s virtual counterpart. It offers versatility, and, in addition, 
by maximizing the mobility of the robots, it prevents the robots from colliding with 
the components that make up the working cell. The ROBOGUIDE (Fanuc M710iC, 
installed in IFKB) and RobotStudio simulation software were used to construct the 
virtual models. These models were used to design the real spray booths (ABB Ltd.). 
However, if any of the axes approach the maximum value of the robotic arm joint, 
the robot will not carry out any actions along the trajectory beyond that point. If 
this is the case, then the orientations of some points or the location of the substrate 
need to be readjusted for that robot to be able to reach all spots [58–60]. The mod-
eling of heat transfer in TS involves analyzing the temperature distribution over 
the surface of the component as well as the different stresses that are imposed on 
the component during the coating process. The creation of splats, heat transport, 
and stress analysis across the interface for TS are the subjects of many kinds of 
research that are connected to the development of simulation in TS. During the 
plasma spraying (PS) process, for example, the component is subjected to a heat 
load for a variety of reasons, including the effect of the flame when the tempera-
ture is raised to an increased level and the projection of the hot particles. It brings 
about structural changes, component deformation, and an unequal distribution of 
the residual stresses in the component as a consequence. For this reason, simulat-
ing and controlling the rate of heat transfer while the coating is being applied is an 
absolute necessity. Commercial applications of TS make use of a variety of thermal 
simulation tools, such as ANSYS, Abaqus, etc. Many research articles have been 
published in this area [61–65].

• Calibration
If the results of the simulations are satisfactory, then the software for 

the robot will be placed on it at the spraying location. The software can-
not be run on the actual robot until offline calibration has been completed 
first. It is a necessary step that must be completed before the exam and the 
application.

• Procedures for Inspection and Application
Following the tool center point calibration and the component location, the 

testing of the robot program at a slow speed begins, and once completed, the 
robot is ultimately prepared for the real spraying operation. However, if 
the results of the simulation are not satisfactory, it is necessary to return to 
the phases that came before it to alter and check the robot program.
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5.5 IMPORTANCE OF PROGRAMMING FOR ROBOTS

This section addresses the research that has been conducted about the significance of 
offline programming in the field of TS technology. The necessity for robot trajectory 
optimization to obtain a uniform coating thickness and the following investigation 
are connected to the development of trajectories in irregularly rotating components 
via the use of offline programming. In recent years, there has been significant growth 
in the use of high-accuracy robots in TS applications. When a robot system is uti-
lized for TS, one of the most important parts of the process is the development of 
the trajectory that the robot will follow. The torch speed, spraying distance, and 
spraying angle, as well as a few other factors, are among the most important opera-
tional parameters involved. The speed at which the torch is moving is the most criti-
cal operational parameter to consider while carrying out the TS procedure. When 
applying excellent coatings, the movement of the torch should be constant, and the 
direction in which the spraying is done should be as close to normal as possible to 
the surface of the coating. On the other hand, when the spraying torch is used on a 
curved component and follows a trajectory, there is a significant amount of change in 
the orientation of the torch, which results in an apparent reduction in the torch speed. 
This is seen in Figure 5.7. Because of this, optimizing the movement of the robot is 
very necessary to get a uniform thickness of the coating [58]. The cobot path can be 
controlled by using the TP-learning from demonstration optimization algorithm [66]. 
To improve the computing efficiency of the cobot’s route creation, this reinforcement 
learning is aimed at eliminating extraneous task characteristics found in demos.

5.6 SCOPE OF COBOTS IN THE COATING INDUSTRY

Coating and painting cobots are most often used to apply coatings and/or paints to 
different types of machinery and components. Painting cobots are widely used in the 
automobile and aircraft industries. Polymeric coatings are applied to automobiles 
for heavy-duty applications such as finishing look, corrosion protection, and water 

FIGURE 5.7 (a) The real component with the bigger angle, and (b) the trajectory with the 
greater angle [58]. Permissions from Springer Nature.
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resistance. Aircraft coatings, however, serve several functions, including protec-
tion from corrosion and erosion, camouflage, radar attenuation, and even corporate 
branding. Since an Airbus 380, for instance, has a painted area of around 4400 m2, 
and a typical aircraft is stripped and repainted every 5 or 6 years, applying and 
removing paint are both significant activities in the aerospace industry [67]. There 
are a lot of metal coatings, ceramics, sealants, and paints used in the final stages 
of airplane manufacturing. When the airplane structure is completed, it becomes 
extremely difficult for workers to reach 40 ft high and apply these paints and seal-
ants in hard-to-reach areas. Although they can also be used to put on a variety of 
other coatings such as anti-fingerprint, anti-fog (for glass), water-resistant, sound-
absorbing, vibration damping, anti-bacterial, thermal barrier, wear-resistant, etc. 
Boeing has installed a robot painting system from ABB as part of its attempts to 
speed up the manufacturing of the 777X. Coating an airplane is an extremely time-
consuming procedure that requires numerous coats, up to six times. Two small, light-
weight ABB IRB 5500 robots were used to apply Boeing’s automated spray system 
for painting the 32.3-m-long 777X wings in a single position, which resulted in a 
75% decrease in floor area and a 100% improvement in throughput [67]. The initial 
coat application by hand takes 4.5 hours, whereas the robots only need 24 minutes. 
The robotic system washes the wings, applies a solvent, rinses them, and then paints 
them twice. However, certain manual preparations, like masking, are still required. 
Encore Automation, a systems integrator, has also created a commercial aircraft 
painting robot. The first system was deployed at Boeing’s Salt Lake facility and has 
two FANUC P-250iB robots on 40-m rails with a 3-m lift.

Aircraft Tooling Inc., an aircraft maintenance facility in Dallas, was startled 
to discover that Universal Robots could handle the high temperatures and harsh 
atmosphere required for metal powder and PS procedures. After three years of use, 
the UR “cobots” haven’t needed repairs or maintenance. It was just too spotless to 
be real. When Juan Puente first learned about the Universal Robots robot arms, it 
was his first reaction. Puente works at Aircraft Tooling Inc. (ATI) in Dallas as the 
supervisor of the TS department [68]. Figure 5.8a shows the TS process at Aircraft 
Tooling Inc. is supervised by Juan Puente, who after turning on the HVOF flame, 
exits the booth to let the UR10 robot do the spraying. New HVOF (high-velocity 
oxygen fuel) and PS on components were being considered for automation by the 
firm to meet aviation industry standards for repair [68]. A picture of HVOF and 
PS using the UR10 cobot is illustrated in Figure 5.8b and c. The ones we looked at 
made of cast iron were too expensive, too cumbersome to carry from cell to cell, 
too difficult to program, and too safety-guarded to function in our rather compact 
spray cells. The UR10 cobot was half the price of the competition and had the nec-
essary reach for the spray distance. It was light and convenient to carry along. The 
UR robots fall under the category of “collaborative” because of the safety feature 
that causes the robot arm to cease functioning if it comes into contact with an item 
or person. ATI was first skeptical about whether or not it would function success-
fully in the spray booth’s severe heat and dust [68]. The robot seemed like it would 
break under the pressure. Tungsten carbide, a very hard metal, is used in several 
of these powder coatings. It might leak into the robot’s bearings and ruin them. 
ATI removed the UR10’s seals and discovered the bearings to be in good working 
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order. Adding the recoil from the spray cannon was another issue of worry. It was 
concerned that the robot’s servos may malfunction due to the recoil.

5.7 BENEFITS OF AI IN COBOTS

In recent years, the use of AI has surged in various industries, including the manufac-
turing sector. As a result, the technology is now being implemented in collaborative 
robots (cobots) to help businesses increase productivity and reduce costs. The follow-
ing topics can be considered as benefits of implementing AI in cobots:

• Greater precision and accuracy are the primary advantages of incorporat-
ing AI into cobots. AI allows cobots to monitor their surroundings for any 
changes and then react with pinpoint accuracy. This makes the robot more 
accurate and precise than conventional robots, which reduces the likelihood 
of mistakes and boosts productivity.

• Enhanced security is another perk of using AI in cobots. Cobots’ AI enables 
them to recognize threats and respond appropriately. This safeguards both 
human employees and the machinery it operates on by preventing the cobot 
from causing harm.

• Better scalability is the third advantage of incorporating AI into cobots. 
Cobots may be developed with AI to do increasingly sophisticated tasks 
and take on additional labor. In this way, firms may expand their operations 
without spending more money on machinery or personnel.

FIGURE 5.8 (a) TS process at Aircraft Tooling Inc., (b) HVOF spray using cobot, and  
(c) PS using UR10 cobot. Open Access Domain by CTE MAG.
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• Lastly, enhanced decision-making is the fourth advantage of incorporating 
AI into cobots. Cobots’ decision-making capabilities are greatly enhanced 
by their access to artificial intelligence. The improved speed and precision 
with which organizations can now make choices have a direct impact on 
productivity and quality of output.

The incorporation of AI into industrial cobots has several practical applications. 
Businesses may get an advantage over their rivals thanks to AI-enabled cobots, 
which are more accurate, safer, scalable, and intelligent. Therefore, it’s expected that 
artificial intelligence will be widely used in cobots in the near future.

5.8  IMPACT OF AI ON THE DESIGN AND  
FUNCTION OF COBOTS

AI is having an ever-increasing effect on the design and functionality of cobots as 
organizations across the globe increasingly embrace them in their operations. Cobots 
are already being employed in industries as diverse as manufacturing, healthcare, 
agriculture, and retail because of advancements in AI. Until recently, cobots were 
strictly designed to carry out single tasks, with no leeway for responding to unex-
pected events. As AI has progressed, cobots have gained the ability to learn from 
their experiences and make judgments based on the information available to them. 
This is especially helpful in dynamic settings, where conditions might rapidly change 
and it would be impracticable to manually retrain the robot to deal with the new cir-
cumstances. Cobot security is another area where AI is being used. Cobots can now 
identify and avoid possible dangers because of AI’s capacity to teach robots to recog-
nize their surroundings. As a result, cobots and humans may collaborate with fewer 
hurdles and more ease. Cobots are also improving in their ability to do difficult jobs 
thanks to AI. Cobots may be taught to do activities more correctly and effectively with 
the help of AI-driven machine learning. This is especially helpful in healthcare, where 
a cobot’s precision and swiftness may have a significant impact on the quality of treat-
ment provided to patients. Cobots’ form and function will be heavily influenced by AI 
as they get toward human levels of sophistication. By enabling cobots to respond to 
changing conditions and complete complex tasks, AI is making cobots more capable 
and versatile than ever before. This is revolutionizing the way businesses operate and 
has the potential to drastically improve productivity and efficiency.

5.9 STANDARDS AND SAFETY FOR COBOTS AND ROBOTS

The international standard ISO 10218 and the Technical Specification ISO/TS 15066: 
2016, the American ANSI/RIA R15.06, the European EN 775 that is adapted from 
ISO 10218, and standards like the Spanish UNE-EN 755 that is adapted from EN 775 
by the Spanish Association of Standardization and Certification all account for the 
risks associated with the use of collaborative robots by workers. The examination of 
these hazards should inform the choice of a safety system to reduce the likelihood 
of accidents. In the past, it was common practice for security systems to install bar-
riers between human and robotic workers. The UNE-EN 755: 1996 standard is one 
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example of a document that reflects this split. It recommended installing sensors to 
alert personnel to danger in an area where the robotic system’s current status might 
pose a threat to their safety. Conventional wisdom holds that only when a robot is not 
operating autonomously may authorized persons enter its workplace. The most recent 
versions of ISO 10218-1 and ISO 10218-2 outline the necessary conditions for collab-
orative work and classify different kinds of cooperative endeavors. As an example of 
the former, we can think of manual guiding, an interface window, and a collaborative 
workspace; as an example of the latter, we can think of start-up controls, operation 
of the safety control system, motion braking, and speed control. The terminology for 
robots and robotic equipment is defined in ISO: 8373-2012, an international stan-
dard. New words, such as human–robot interaction and the service robot, and more 
established terms, such as robot and control system, are developed to help with the 
creation of new collaborative activities in industrial and nonindustrial situations. ISO/
TS 15066:2016 is an updated technical definition that aims to establish human–robot 
cooperation by expanding on the criteria and recommendations made in ISO 10218.

5.10  POTENTIAL FOR AI TO ENHANCE THE SAFETY  
OF COBOTS

The robotics industry is fast becoming interested in the potential of AI to increase 
the security of collaborative robots. There is a pressing need to guarantee the safe 
and effective operation of robots due to their widespread use in manufacturing and 
other sectors. By giving these robots more command over their surroundings and 
allowing for more precise risk assessment, AI has the potential to radically improve 
the security of collaborative robots. Artificial intelligence may be used to spot dan-
gers in the environment and warn humans so they can intervene. AI can be used 
to keep the robot’s operator apprised of any potential threats in the area, monitor 
the robot’s actions for any signs of abnormality, and notify the user as needed. The 
cobot’s operating environment may also be managed more precisely with the help 
of AI. The presence of hazardous compounds, adjacent moving objects, and other 
situations are only some of the aspects that may be taken into consideration by AI 
to determine the level of danger present in the surrounding area. Because of this, 
the robot will be able to function in a risk-free and productive environment. AI may 
also be used to accurately foresee the dangers that the robot’s actions will expose it 
to. The robot can keep tabs on its environment and respond appropriately. AI can 
almost certainly make collaborative robots safer to use. AI has the potential to give 
robots more control over their environments, enable them to make more accurate 
risk assessments, and allow humans to keep a closer eye on their whereabouts and 
activities. In terms of both security and productivity, this might revolutionize the 
employment of collaborative robots.

5.11  ROLE OF AI IN COMMUNICATION BETWEEN  
HUMANS AND COBOTS

AI is an essential part of the human–cobot dynamic. It improves the robot’s ability 
to comprehend and act on human requests. Cobots can recognize things and carry 
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out activities like sorting with the assistance of artificial intelligence. Artificial intel-
ligence also contributes to job safety. Cobots may be set up to monitor their sur-
roundings and cease operating if they see a human. As a result, fewer injuries and 
accidents will occur. Artificial intelligence may also be used to spot programming 
mistakes in a cobot, warning humans of potential dangers ahead of time. Finally, 
AI allows cobots to pick up new skills from their human handlers. The efficiency 
and accuracy of cobots may be improved by training them to recognize patterns and 
predict human movements. This increases cobots’ productivity and efficiency in the 
workplace, which in turn may save costs and boost the quality of service provided 
to customers. AI plays a pivotal role in the seamless collaboration between humans 
and cobots. AI aids the efficiency and effectiveness of cobots in the workplace by 
allowing them to comprehend and react to human directions, identify possible faults, 
and learn from experience.

5.12 SCOPE AND CONCLUSIONS

Cobots, which facilitate human–robot cooperation, are another promising technol-
ogy for accommodating the rising complexity and adaptability of the industrial 
sector. Some of the most important facilitators of cobots’ intelligent and adaptable 
collaboration with human operators are tools for programming that are both intui-
tive and human aware. Recent years have seen a flurry of studies in this area. In 
this work, we compile the most recent findings on cobot programming. First, the 
programming needs and situations for cobot implementations in the industrial set-
ting are outlined. Then, the cobot programming technologies are broken down into 
three categories: communication, optimization, and learning. Finally, the literature 
sourrounding these three subcategories is thoroughly examined. To facilitate coop-
eration, cobots are equipped with communication tools that allow a human operator 
to convey their intentions or directions to the robot. Online developers create algo-
rithms called optimization features, which allow a cobot to learn from interactions 
with a collaborative operator and adjust its behavior accordingly, all following an 
optimal policy model. A cobot with learning capabilities can figure out its policy 
with a little help from its human collaborator. The article discusses how aspects like 
communication, optimization, and learning take into account human intuition and 
consciousness. Additionally, research needs for cobot programming are compared to 
the current state of the art. Finally, suggestions for further study and implementation 
of cobot programming are made to further facilitate collaborative situations in the 
industrial setting.

Collaborative robots that use artificial intelligence are becoming more vital to 
today’s manufacturing sector. The increasing intelligence of robots means that they 
will soon be able to do a wide variety of human jobs, from manufacturing to health-
care. Robots powered by artificial intelligence have enormous promise, but there 
are still several obstacles in the way of their widespread adoption in the workplace. 
Robots powered by artificial intelligence must, first and foremost, properly perceive 
and react to their surroundings. For this purpose, sophisticated algorithms that can 
process and synthesize information from a variety of sources at high speeds are 
needed. In addition, these algorithms need to be flexible enough to respond to new 
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circumstances. Since human behavior is notoriously unpredictable and prone to sud-
den shifts, this is an extremely challenging challenge when dealing with human–
robot interactions. Second, robots powered by AI need to be able to work in tandem 
with people. To achieve this goal, it is necessary to create machines that can com-
prehend and respond to the requirements of their human counterparts. In addition, 
robots need the capability to reflect on their actions and make corrections. These 
robots can interact with people in a way that prevents harm to either party. Before 
AI-driven robots can be completely incorporated into the workplace, these problems 
provide a daunting set of barriers to overcome. These obstacles must be surmounted 
before the revolutionary promise of AI-driven robots in the contemporary workplace 
can be realized, but this is entirely possible with the appropriate mix of research and 
development.
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6 Challenges of Using 
Artificial Intelligence in 
Thermal Spray Industry
Implementation, 
Optimization, and Control

ABBREVIATIONS

AI Artificial intelligence
CMM Coordinate measuring machine
Cobots Collaborative robots
CV Cross-validation
HEA High-entropy alloys
HVOF High-velocity oxy-fuel
LDA Linear discriminant analysis
ML Machine learning
MSE Mean square error
NMF Non-negative factorization
PCA Principal component analysis
RF Random forest
RMSE Mean absolute error root mean square error
R2 Coefficient of determination
SME Small and medium-sized business
SOD Stand-off distance
TS Thermal spraying

6.1  BARRIERS TO ARTIFICIAL INTELLIGENCE (AI)  
IMPLEMENTATION

The coatings industry is undergoing digitalization, much like the rest of the manufac-
turing industries. Every aspect of a company, from brainstorming to manufacturing 
to customer service, stands to benefit from the exponential growth in the availability 
of useful information. The challenge is finding out where and how to use techniques 
like artificial intelligence (AI) and natural language processing to make the available 
data related to the problem or topic of interest. Although the future of AI has not yet 
been well-defined, there are many challenges to overcome. Machine learning (ML) 
techniques are renowned for their capacity to learn features from data representations 
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using complicated neural network designs to approximate nonlinearity. But certain 
barriers come in the way of adopting AI by the coating industry. In Figure 6.1, a 
schematic illustration of barriers and challenges to AI’s use in the thermal spray (TS) 
industry is given. In the following sections of this chapter, various barriers to the 
implementation of AI in TS are addressed.

6.2 DATA PREDICTION

The use of high-entropy alloys (HEA) in creating surfaces specifically suited to the 
unique requirements of a given application is a game-changing opportunity in the 
realm of surface engineering and modern coatings. HEAs give producers new possi-
bilities for producing substitutes for expensive, rare, and toxic materials that are sub-
ject to international regulations. They are also built to work around the constraints 
of existing materials that are part of a thirty-year-old legacy. Several studies have 
demonstrated encouraging results for calculating phases of such complicated sys-
tems with the latest HEA data build-up [1–5]. But pure regularization and overfitting 
in the field of high-entropy TS alloy coatings are two current drawbacks faced by 

FIGURE 6.1  Barriers or challenges in artificial intelligence’s use in thermal spray.
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ML techniques. Another issue is that the results of neural networks are sometimes 
difficult to comprehend. Another significant issue that reduces the efficacy of ML 
algorithms when constructing the TS feedstock HEA materials is the absence of 
information in the utmost datasets detailing their development and the needed cool-
ing rates. In addition, it is of the most importance to have a strong understanding of 
the fact that phase formation from the state of liquid is dependent on the pace of cool-
ing that occurs throughout the solidification process. Rarely do researchers resort to 
methods that include the phase change of alloys and depend on the pace of cooling 
in their investigations [6].

To circumvent this obstacle, researchers have devised a model that can determine 
which solid solution phase will crystallize when a specific elemental combination 
is cooled during the solidification process of liquid in water atomizers or gas and 
then chilled once again when the powder is deposited to generate a TS coating. This 
model can also determine which solid solution phase will crystallize when a given 
elemental mixture is cooled during the solidification process of liquid in gas. To do 
this, a new design feature was developed by Kamnis et al. [7] to forecast the phase 
development of HEAs under continuous solidification circumstances using a random 
forest (RF) ML model. In an RF, there is a collection of decision trees. For non-linear 
relationships or noisy data sets, single decision trees frequently have poor prediction 
abilities. These flaws are addressed in RF by the ensemble decision trees, each of 
which is fitted to a distinct random trail through the replacement of the training data 
set. Since it can successfully handle unbalanced data and is robust when dealing with 
high-dimensional data, the RF model has been chosen. The larger class will experi-
ence a low error rate in the presence of an unbalanced data set, while the smaller 
class will experience a higher error percentage since RF seeks to reduce the overall 
error rate. Previous research has shown its improved performance in various mate-
rials science disciplines, where data are frequently scarce [8]. The model properly 
predicted the phase development in almost all of the coated alloys and the material 
that was atomized to make them.

6.3 SHORTAGE OF SKILLED PERSONS

Misuse of these cutting-edge instruments by inexperienced users is a different 
problem. Many individuals still lack the necessary expertise to make effective use 
of these technologies. An incorrect application usually yields incorrect outcomes, 
which calls into question the usefulness of such programs [9]. TS Companies in 
every industry are realizing that it is difficult to locate and employ talented data 
scientists and AI professionals. For AI projects, an interdisciplinary team con-
sisting of data scientists, ML developers, and software architects is required to 
collaborate. Many businesses either do not have access to these resources or do 
not have the financial means to make use of them for even a single data science 
project. It must be remembered that well-trained personnel’s practical expertise is 
a crucial resource for process control and diagnostics both today and in the future. 
Therefore, efficient means of knowledge collection, systematization, representa-
tion, and transfer will be crucial.
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6.4 DATA QUALITY AND QUANTITY

It is essential to the success of AI projects to have access to data that is uncontami-
nated, relevant, and of high quality; yet, this might be difficult to achieve on the shop 
floor during coating deposition. The collection of data almost always involves some 
degree of error, the origin of which might lie in any one of several different factors. 
One example is sensor data that was obtained under challenging circumstances, such 
as when there was an excessive amount of noise or vibration that might have con-
tributed to inaccurate readings. Another challenge in AI is that AI predictions are 
much better suited for the big dataset than the smaller dataset [9]. The amount and 
quality of available data are likely to pose significant difficulties. One hundred to 
two hundred data points for experimental formulations may exist in many firms’ data 
sets. That’s hardly big data, and it certainly isn’t enough to make good use of ML 
and AI, which generally transmit hundreds or millions of data points. To make the 
most of limited information, it is necessary to create intermediate solutions. Another 
distinct problem arises when untrained individuals misuse such sophisticated equip-
ment. The widespread lack of proficiency in the use of such technology is a problem 
in the present day. An incorrect application usually yields incorrect outcomes, which 
in turn casts doubt on the success of the project.

6.5  LIMITED MODELS AND THEIR VALIDATION 
FOR PROCESS DIAGNOSTICS

Models are crucial tools for understanding how complex the various TS techniques 
are in terms of fluid flow properties, phase changes, heat, momentum transfer, etc. To 
do so would need more precise and improved stochastic models. Future spray pro-
cess control improvements will be made possible in part by feeding numerical mod-
els into ML techniques. To automate the process of creating robot trajectories, Cai 
et al. [10] suggest developing a new software package for the offline programming 
tool RobotStudioTM that takes into consideration a very simple coating model that 
considers the kinematic characteristics of the torch. A mathematical model for the 
heat transfer experienced by plasma-coated cylinders is proposed by Ding et al. [11]. 
Numerous numerical methods are given for simulating splat creation in TS [12–19]. 
Although these methods are essential for understanding the physics at play, they are 
not well suited for full-scale simulations of coating deposition. The ML-driven Self-
Organizing-Map technique seems to be highly successful in application optimization 
via automated robot planning and generates fantastic outcomes when compared to 
those produced by a human expert. The primary challenge with this method is how 
efficiently it performs when applied to non-axisymmetric 3D objects. Hence, more 
study is necessary to create a full multidimensional model.

The methods for particle diagnostics in standard TS methods are unsuitable since 
they can only be utilized for long spray distances and detect only a particle portion, 
if any at all [20,21]. In a study, Akbarnozari et al. [22] used laser scattering and Mie’s 
scattering theories to study the Gaussian-distributed approach to study suspension 
particle size in the plasma jet. The smallest size of the suspension particles is around 
5 µm, as this is the size at which traditional particle analysis techniques reach their 
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imaging and resolution limits. Key parameters for plasma generation, suspensions, 
solutions, and injectors could rarely be specifically optimized due to the limited 
application of these diagnostic procedures and have instead mostly been developed 
on the basis of empirical research.

In novel spray processes like cold spray, warm spraying, and high-velocity air 
fuel spraying, low particle temperatures provide further special difficulty for process 
diagnostics. In this case, the thermal radiation power is too weak to be detected and 
valued using Planck’s law based on two-color pyrometry. Consequently, it is difficult 
to measure the particle’s thermal condition both during flight and at impact. To deter-
mine and evaluate the proper plastic deformation model for collisions of particles at 
low temperatures or close to their melting points, more research is required. Once 
more, since these striking particles are the foundation of the coatings, their attributes 
directly affect those of the coatings.

Forecasting the characteristics and microstructure of a TS coating based on 
understanding the in-flight properties of the flow of particles, torch movements, 
form, and the substrate’s roughness and temperature throughout spraying is still a 
difficult task. It is difficult to get a complete understanding of the “simple” effect that 
a molten plasma spray droplet has on a smoother substrate when the temperature is 
at room temperature. When the substrate is heated to temperatures between 300°C 
and 400°C, droplet impact numerical models can provide accurate predictions about 
the uniform smoothing, and solidification processes of the impacting particle drop-
let, which is in better thermo-mechanical interaction with the underlying substrate. 
The droplet’s spreading behavior drastically transforms when vapor of water or other 
gases is absorbed on the substrate at normal temperature. Liquid makes complete 
contact with the substrate just at the moment of impact, but as it expands, it pulls 
away and produces a thin, growing molten film that cracks when it’s too thin. Droplet 
dispersion and solidification at room temperature have been surprisingly poorly rep-
resented by models. Since plasma spray coatings are composed of individual droplets 
that have flattened and hardened, often known as splats or lamellae, this is a crucial 
area of study.

The above-discussed models’ validation provides a significant challenge that 
demands additional consideration. For instance, the difficulty of measuring particle 
temperature and size under suspension plasma spray circumstances makes it chal-
lenging to estimate in-flight particle characteristics. Furthermore, ML models are 
only as reliable as the information and assumptions upon which they are based. If 
the assumptions used to train a model are flawed, then the model will likely provide 
inaccurate results and exhibit unpredictable behavior, regardless of how much data 
was utilized in the training process.

6.6 TRAINING AND VALIDATION OF MODELS

There are a few challenges in the training and validation of the models, as illustrated 
in Figure 6.2. The disadvantage of a data-driven modeling method is the necessity of 
a large quantity of process training data to obtain a high degree of prediction accu-
racy, which was also highlighted in the research that was carried out. This is some-
thing that has been recently noted in relevant studies about manufacturing [23,24]. 
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High experimental expenses and the absence of an automated measuring method in 
high production rate additive manufacturing are related to this data scarcity problem. 
To solve the problem, For the first time, Liu et al. [23] combined numerical and data-
driven modeling techniques to use a gray modeling method in a TS process. Despite 
the fair forecast accuracy attained in this study, the scientists concluded that more 
complicated and non-linear events occurred. They recommended additional investi-
gation of data-efficient modeling techniques to increase prediction accuracy.

6.7  POSSIBLE SOLUTIONS TO TACKLE CHALLENGES IN 
AI IMPLEMENTATION IN THE TS INDUSTRY

A possible solution to tackle challenges in AI implementation in the TS industry 
is the use of the basics during the processing of data, algorithms, validation, train-
ing, tuning, fitting, and testing. The following steps can be accurately carried out to 
resolve such challenges in the TS industry.

6.7.1 probleM forMulation

To put it simply, AI applications cannot work without prediction models, where 
a model is a specified set of different rules used by the AI algorithm to help in 
learning autonomously [25]. The computer program improves its performance on 
certain tasks as a result of its learning, while it remains rather static on others. 
Many types of interactions and activities fall under its remit, and it may accom-
modate different measures of success. This essay, however, focuses on super-
vised learning via concrete examples and complicated tasks of varied degrees. 
Finally, we considered how both assignments and results might have an impact. 
Point characteristics, denoted by x, are located in the n-dimensional space Rn 
(where n is the number of dimensions) [26,27]. In linear regression, these fac-
tors are known as independent variables. These characteristics are categorized 
as objectives. Different AI algorithms are fed the stated features to discover the 

FIGURE 6.2 Challenges in model training and validation.
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relationships between the features and the targets. Training the neural network is 
used to construct the prediction models. The effectiveness of the prediction model 
may be improved by hyperparameter adjustment. The development of a reliable 
AI prediction model may also be aided by the use of other methods, such as L2 
regularization [28].

6.7.2 proCessinG a dataset

Preprocessing approaches, such as normalization and standardization, may help 
make the dataset more manageable before processing [25–27,29–32]. Variety, 
value, volume, pace, and authenticity are some of the characteristics of a dataset 
that have been identified by research [25,32]. The 3-V qualities, i.e., variety, vol-
ume, and velocity, apply to the data production, capture, and storage processes, 
and they characterize the “veracity” and “value” elements that are necessary 
to acquire useful and relevant information from the input. For this article, the 
phrase “big data” has some significance if and only if it meets an expanded ver-
sion of each of the five specified definitions. Large, complex amounts of infor-
mation that need “intelligent methods” for analysis are what “big data” refers 
to in the technical sense. The location of each data component and substance is 
precisely known in structured data, which is knowledge with a predetermined 
data model [25,32,33]. Semi-structured data, also known as unstructured data, 
is a kind of data that does not follow the organizational framework of tables or 
data but divides structural parts into recognizable parts and characteristics into 
hierarchies [25,33]. In other cases, the data lacks structure or does not conform 
to predetermined models [25,33].

In this context, information may be categorized as either structured, semi- 
structured, or unstructured. A dataset based on data points is structured data, and a 
dataset based on images or videos is known as unstructured data. Quantitative data 
from unstructured data in the form of photographs is used to verify continuity and 
quality, as will be described in the next section. To aid in quality control, trends and 
model parameters may be distinguished using the structured data gleaned through 
mechanical studies and simulations. An effective solution may be achieved by appro-
priately blending data and structure [25–27,29,30]. A choice must be made about the 
nature of the issue, the nature of the task, the diversity, truthfulness, and amount of 
data needed on a case, and the functional implementation of ML.

6.7.3 findinG the Most iMportant faCtors and siMplifyinG the data set

Although feature creation for structured data is relatively easy [31], feature engineer-
ing [34] is an essential step when working with unstructured data. Current, extremely 
effective methods may be used to deal with the dimensionality of data; however, 
having too many characteristics can lead to complexity, earning it the nickname “the 
curse of dimensionality” [25–27]. Dimensional reduction and feature selection meth-
ods may be used to address the issue. Additional details may be found in the afore-
mentioned papers [31,35]. Feature engineering is an important technique in both 
supervised and unsupervised learning for determining which data points are most 



95Challenges of Using Artificial Intelligence in Thermal Spray Industry

important (microstructure, temperature, etc.) [34]. The user is responsible for deter-
mining which of the system’s many possible variables has the greatest impact on per-
formance. Function engineering refers to this process, which may be expanded upon 
by analyzing the statistical connection between input and output [36]. A correlation 
matrix computation is one such assessment approach that may be used to find impor-
tant inputs and quantify their attributes [36]. Even if numerous input variables were 
employed for each data point, the computational efficiency of ML models would 
suffer in such high-dimensional input spaces [37]. Model training may benefit from 
dimensionality reduction strategies like Non-negative factorization (NMF) [38], 
Linear discriminant analysis (LDA) [37], and Principal component analysis (PCA) 
[39]. In a nutshell, the idea behind these techniques is to replace or supplement the 
original inputs with information derived from a variety of current sources [34,37]. 
These methods may enhance the computational capacity or efficiency of a ML model 
by making use of the fact that it is feasible to incorporate many inputs into a single 
model’s dimensional metrics. To train a ML model, input has to have more than 
five points. The dimensionality, or number of data points, in the training set grows 
proportionally with the size of the dataset. The nature of the ML algorithm and the 
desired outcome both contribute to its growth.

6.7.4 Model and loss funCtion

When discussing the predicted data processing of an AI, we use the letter ‘T’ as an 
assignment. Labeling research specimens so that their completeness or destruction 
may be determined is one function of assignment T. A useful predictor of how well 
an AI system will perform on the job at hand is success in the task evaluation mea-
sure P. Improvements in classification accuracy, as indicated above, might be seen as 
“a potential measure” [29–31]. It’s not as simple as plugging numbers into a formula 
to get the best metrics for success. Given the data-centric nature of this research, the 
T-assignment can only be used for model-based problems. The AI applies a novel 
mathematical approach to the problem of improving performance on the measure P. 
The symbol P computes a gain that may be optimized for, making it the objective, 
cost, or loss function in many ML and DL scenarios. The term “objective function” 
is used throughout this piece to refer to the function we’re trying to minimize or 
maximize from a statistical standpoint [29,30]. This is expressed as a minimum cost 
function M in the context of a mathematical model of an AI system that includes fac-
tors and learns from the training of a dataset, K:

 α θ( )= M Kargmin  (6.1)

where the minimum value of arguments is denoted by arg min. Model validation 
often makes use of the loss functions detailed in Table 6.1. There is a strong cor-
relation between the loss function and model performance [25,29,30]. Several loss 
functions always offer several optimal values for different tasks, but choosing 
which loss function to utilize before commencing a simulation exercise may be 
challenging.
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6.7.5 data splittinG

After the data has been cleaned and visualized, many AI models are compared to one 
another. Glass designer’s ultimate objective is to acquire a fully functional ML model 
with an extensive domain-independent understanding of the gathered data [29,30]. 
The final model must be able to predict future outcomes while maintaining a high 
degree of similarity to known outcomes. If the model is overfitted to the training 
data, it will not generalize well to new data [25–27,29,30]. Bias and variance are two 
separate but linked issues [25–27]. Methods such as leave-one-out cross-validation 
[35], k-cross-validation [43], holdout [44], and stratified k-fold cross-validation [40] 
are used to evaluate models in various ways [28].

6.7.6 underfittinG and overfittinG

Reduced model complexity leads to underfitting. The link between the inputs and 
the model’s performance is not well explained by the model. In contrast, “noise” in 
the dataset is remembered to prevent overfitting [45]. When it comes to models, it is 
generally accepted that the greater the non-zero inputs, the greater the complexity 

TABLE 6.1
Loss Functions that are often used in the Model Validation Process

S. No. Model Name Equation Equation No. Ref.

1 Log loss 
 = −

=
∑ 
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N
pjj

N1 log
1

6.2 [40]

2 Mean square error (MSE) 

 = −
=
∑ 



N

O j pjj

N
MSE 1

1

2 6.3 [40]

3 Mean absolute error (MAE) 
 = −

=
∑ O j pjj

N

N
MAE 1

1

6.4 [41]

4 Mean absolute error root 
mean square error (RMSE) 

 = −
=
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N

O j pj
j

N
RMSE

1

1

2 6.5 [41]

5 Coefficient of v(R2) 
 = − ( )

( )
R

E S

T S
2 1

6.6 [42]

6 Mean absolute percent error 
(MAPE) 

 

=
−

=
∑N

O j pj
pjj

N
MAE 1

1

6.7 [40]

The no. of observations (N), the predicted values (pj), the actual values (Oj), the sum of squared errors 
(E(S)), and the total sum of squared errors (T(S)) are all shown here.
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of the built model [34]. Figure 6.3 depicts overfitting and underfitting as a function 
of training set size. Therefore, a p = 1 linear model cannot describe the relationship 
between input and output in this scenario. A model with p = 15 can adequately rep-
resent random data points within the training set, but it can’t make many inferences 
about points outside the testing set (the validation set). Although eliminating noise 
from the dataset might not give adequate statistical power, the basic pattern of the 
findings may be represented by a polynomial regression model with p = 3.

6.7.7 traininG, validation, and test sets

To prevent overfitting and evaluate the performance of a model, datasets are often 
split into training, validation, and testing sets [40]. Training the model using exam-
ples is how modeling is accomplished. The model is still insufficient to differentiate 
between training and test data and outcomes. Then the retraining of the model on 
the validation set is done, which allows for more refinement. Figure 6.4 shows that 
providing the model can withstand more complex input data, increasing the level of 
detail (a higher p) often results in better interpolation, at the expense of a reduction in 

FIGURE 6.4 Model complexity with respect to error [47]. Permissions from Elsevier.

FIGURE 6.3 Schematic representation of underfitting, optimum, and overfitting [46]. 
Permitted by authors to cite as permission.
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its ability to forecast the training set. The optimal distribution of difficulty is found 
when the validation set contains as few solutions as possible [45]. Finally, the test set 
employs a subset of data points that are new to the model with the aim of maximiz-
ing sophistication.

6.7.8 Cross-validation

Leaving so much data unobserved during model training is problematic in real-world 
circumstances when dataset sizes are small. Validation procedures are one solu-
tion to this problem. Cross-validation (CV) is useful for adjusting hyperparameters 
and choosing the right model. CV is a mathematical technique for estimating the 
findings’ applicability [28]. The holdout between the training and test sets may be 
used as a one-way validation approach for any dataset [25,29,30]. As can be seen in 
Figure 6.5a, the holdout approach [28] works well when dealing with such massive 
data. Despite this, there are still benefits to using three-way validation. More practice 
data may be obtained with the three-way holdout approach [26,27,48]. A uniform 
frequency distribution throughout the data ensures that it was all collected from the 
same population. Quantifications of data quantities are quite usual [25–27].

The k-fold cross-validation approach (k-CV) (data partitioning into k subsets and 
testing each against each other, where we rely on k-CV) may help with this issue, 
despite its seeming difficulty [43]. Similarly, k-fold cross-validation employs a single 
criterion, k, to assess each sample set. The term “k-fold validation” is used to describe 
this procedure. Leave-one-out cross-validation with a total of k samples and k-fold 
forward cross-validation (k-CV) are two examples of common k-fold cross-validation 
procedures, as shown in Figure 6.5b and c. It divides the total number of training 
iterations into k chunks, each of which carries out training on k−1 of the folds and 
validation on the remaining folds. Until the end of the k validation sets, it is repeated. 
To determine the overall accuracy of the model, we simply average its performance 
over all k validation folds.

6.7.9 Methods of reGularization

Regularization techniques [45] like least absolute shrinkage and selection operator 
[50], Ridge [51], and Elastic Net [45,52] may also be used to reduce the complexity 
of a model by filtering out irrelevant modeling terms. The basic idea of regulariza-
tion is a costing characteristic, which consists of (a) the model’s capacity to predict 
known data and (b) a supplemental notion that imposes a penalty on complex mod-
els. Because of this decrease in feature cost, unimportant words (those that do not 
significantly improve the model’s accuracy) are eliminated. Changing the punitive 
weight allows one to fine-tune the model’s complexity and provide the most accurate 
prediction possible within the validity range [53].

6.7.10 upskillinG the Manpower

Large and quick improvements in data utilization can be achieved by better equip-
ping our employees. We have a lot of smart people in our field, both technically 
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and in terms of running successful businesses. Making data useful requires train-
ing our current workforce and using these data approaches and technologies to 
supplement or aid our current leaders and specialists. Due in part to the novelty of 
these talents and in part to the quick hiring of experienced practitioners in these 
skills at high pay by tech giants, our sector is experiencing a shortage of fresh tal-
ent in AI, ML, and big data. In time, the scarcity of fresh talent will be addressed 
by the boom in new university courses as well as digital and data apprenticeships. 
Tools that clean, analyze, and model data without the requirement for familiarity 

FIGURE 6.5 Measurement strategies for ML (a) holdout method, (b) leave-one-out cross-
validation for total k samples, and (c) k-fold FCV [49]. Permissions from Elsevier.
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with code or data have proliferated in recent years. This development and democ-
ratization of data tools are comparable to the introduction of Windows in the early 
’90s. Windows made it so that even those who didn’t know anything about com-
puters could use them effectively. The new breed of data tools performs the same 
function. Alteryx, RapidMiner, and Microsoft Azure ML are just a few examples 
of data technologies that aim to make data science and AI/ML more accessible 
to everyone.

6.8 CONCLUSIONS AND FUTURE PERSPECTIVE

The authors have thoroughly analyzed the challenges encountered during the imple-
mentation of AI in the TS industry. It may be difficult to get started with AI, but 
eventually, it will be able to dominate every industry. AI research should focus not 
only on technological potential but also on how such technologies may be used and 
improved in the TS sector. The coating industry will greatly benefit from the large 
knowledge base that AI will provide, and the whole coating deposition process will 
be infused with a high degree of intelligence. Over time, and without a lot of human 
interaction, AI will become an essential element of the TS business. Regulations and 
standards must be established by the appropriate authorities, and the user base must 
be well-trained and informed so that they understand their duties and the functions 
of AI systems before they can be widely used. Most importantly, AI systems need to 
be regularly updated and integrated into the day-to-day developments in the thermal 
spray industry.
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7 Neural Network Model 
for Wear Prediction 
of Coatings
Case Study

ABBREVIATIONS

AI Artificial intelligence
ANN Artificial neural network
CV Cross validation
ML Machine learning
MSE Mean square error
PS Plasma spray
R2 Coefficient of determination
RMSE Mean absolute error root mean square error
TS Thermal spraying

7.1  BRIEF INTRODUCTION TO WEAR AND ARTIFICIAL 
NEURAL NETWORK TECHNIQUE

Slurry erosion is a distinct form of wear of the hydro-mechanical component sur-
face caused by the continuous impact of the slurry particles [1–3]. Kinetic energy 
is transferred from moving slurry particles to the solid surface, resulting in erosion. 
Failure of a material’s surface might result from a directed impact or random col-
lisions with solid particles [4]. Factors such as flow rate, duration, slurry concen-
tration, impingement angle, material characteristics, and coating parameters are all 
key factors in erosion phenomena [5–7]. In this chapter, an artificial neural network 
(ANN) was used to predict the slurry erosion for Ni-20Cr2O3, i.e., a coating produced 
using the high-velocity oxy-fuel technique on stainless steel 316L. When traditional 
statistical and analytical approaches no longer work, a neural network might be a 
useful alternative. For ANN to make a forecast, it must first be trained or taught. 
Instead of using knowledge-based information, ANN employs a prediction approach 
[8]. Optimization of weights via an adaptive function that is knowledge-dependent is 
how ANN learns [9]. In this regard, feed-forward neural networks have become more 
popular in recent years [10]. However, the ANN model can be trusted to provide 
the lowest possible error rate in output [11,12]. Successful predictions of material 
wear behavior using ANN models have been presented by some researchers [13,14]. 
The methods of Neural Networks are discussed in detail in the first two chapters. 
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In this section, the construction of an ANN model in the programming language 
MATLAB® will be learned through a case study. MATLAB’s NNTOOL may be 
used to implement the ANN.

7.2 SAMPLE DATA

Data used for the ANN model is divided into input and output files. The input files 
contain different parameters in a matrix. For example, the 7 × 36 matrix was used 
as input data in the present case study. Table 7.1 shows the dataset used in the pres-
ent study. This data set is converted row-wise for an accurate reading. However, the 
output file should contain the same rows as the input file for an accurate reading of 
the data. Against the 7 × 36 Matrix data, the output file used in the present study was 
1 × 36 matrix. The output was the actual experimental data from erosion experiments.

7.3 SELECTION OF NNTOOL

There are different types of neural network tools used for different purposes, such 
as classification learning, clustering, curve fitting, pattern recognition, time series 
analysis, and regression learning. Figure 7.1 shows the various NN techniques avail-
able in the MATLAB tool. In the present case study, the NN fitting tool was selected 
for the prediction of coating and stainless steel 316L.

TABLE 7.1
Sample Data Used for ANN Modeling 

Materials

Inputs Output

Revolutions/
min (RPM)

Concentration Time Particle 
Diameter

Impact 
Angle

Porosity Hardness Wear (g/
m2 min)

SS 316L 600 30 180 196.5 0 0 212 0.31251

900 30 180 196.5 0 0 212 0.41357

1200 30 180 196.5 0 0 212 0.53394

1500 30 180 196.5 0 0 212 0.67406

1500 30 180 196.5 0 0 212 0.67406

1500 40 180 196.5 0 0 212 0.88132

1500 50 180 196.5 0 0 212 0.99503

1500 60 180 196.5 0 0 212 1.16118

1500 60 90 196.5 0 0 212 1.46321

1500 60 120 196.5 0 0 212 1.27321

1500 60 150 196.5 0 0 212 1.19901

1500 60 180 45.6 0 0 212 0.22362

1500 60 180 93.4 0 0 212 0.30353

1500 60 180 121.7 0 0 212 0.34065

1500 60 180 257.8 0 0 212 0.51076

1500 30 180 196.5 30 0 212 0.91736

1500 30 180 196.5 45 0 212 0.89052

1500 30 180 196.5 60 0 212 0.71529

(Continued)
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7.4 DEVELOPMENT OF ANN ARCHITECTURE

After selecting the NN fitting tool, a window will display, as shown in Figure 7.2. 
This window displays the basic structure of the NN model. After clicking next, the 
next window shows the option to select the input and output datasets, as shown in 
Figure 7.3. The next step in the development of the NN model is the selection of train-
ing, validation, and testing data in percentages, as shown in Figure 7.4. Afterward, 
suitable hidden neurons and training algorithms are selected (Figures 7.5 and 7.6). 
These are the basics of how the NN fitting app is used to develop the NN model for 
wear prediction.

TABLE 7.1 (Continued)
Sample Data Used for ANN Modeling 

Materials

Inputs Output

Revolutions/
min (RPM)

Concentration Time Particle 
Diameter

Impact 
Angle

Porosity Hardness Wear (g/
m2 min)

Ni-Cr2O3 
coating

600 30 180 196.5 0 1.13 316 0.19686

900 30 180 196.5 0 1.13 316 0.31006

1200 30 180 196.5 0 1.13 316 0.3979

1500 30 180 196.5 0 1.13 316 0.45498

1500 30 180 196.5 0 1.13 316 0.45498

1500 40 180 196.5 0 1.13 316 0.67574

1500 50 180 196.5 0 1.13 316 0.84035

1500 60 180 196.5 0 1.13 316 1.05892

1500 60 90 196.5 0 1.13 316 1.22021

1500 60 120 196.5 0 1.13 316 1.11174

1500 60 150 196.5 0 1.13 316 1.06466

1500 60 180 45.6 0 1.13 316 0.00604

1500 60 180 93.4 0 1.13 316 0.00795

1500 60 180 121.7 0 1.13 316 0.01071

1500 60 180 257.8 0 1.13 316 0.01495

1500 30 180 196.5 30 1.13 316 0.64828

1500 30 180 196.5 45 1.13 316 0.65412

1500 30 180 196.5 60 1.13 316 0.66001

Source: PhD Thesis; Singh [15].
ANN, artificial neural network.

FIGURE 7.1 Various artificial neural network techniques.
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FIGURE 7.3 Input and output selection windows of the NN tool.

FIGURE 7.2 Main window of the NN tool.
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FIGURE 7.4 Selection of training, validation, and testing data in the NN tool.

FIGURE 7.5 Selection of hidden neurons in the NN tool.
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7.5 ANN ARCHITECTURE

In this particular research endeavor, the adaptive learning function known as 
Gradient Descent with Momentum (abbreviated as learngdm) was utilized [16]. An 
ANN model was trained using the MATLAB NNtool with input parameters and an 
output parameter, i.e., erosion rate. For this analysis, the numerous hidden neurons 
were numbered as 9, 10, 11, 12, 15, 18, 20, 21, 24, 30, and 35. The 12 hidden neurons 
predicted the best results in erosion rate in the present study. The present NN model’s 
architecture is illustrated in Figure 7.7. The Levenberg-Marquardt algorithms were 
utilized for the learning of the ANN, which provides the fastest convergence of the 
model [17,18]. The training and testing functions were standardized in the range of 
0.1–0.9 with the help of the equation written below:

 = + −
−







y
x x

x x
0.1 0.8 min

max min

 (7.1)

7.6 TRAINING AND VALIDATION OF THE ANN MODEL

In this study, the training, validation, and testing data were selected at 75%, 15%, and 
15%, respectively. The network was trained after 17 epochs. The NN model showed 
the best performance at the first epoch after running the epochs several times, as 
shown in Figure 7.8.

FIGURE 7.6 Selection of training algorithms in the NN tool.
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FIGURE 7.7 NN architecture.

FIGURE 7.8 Best performance of the NN model.
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7.7 WEAR RESULTS FROM THE ANN MODEL

The values that are predicted by the model have a high degree of correspondence 
with the values that are discovered in real experiments. The error histogram that was 
generated by the ANN when it was being trained can be found in Figure 7.9. The 
performance of the ANN model is evaluated based on an error percentage that falls 
between 0% and 6%. Figure 7.10 displays the Pearson coefficient (R) for the train-
ing, validation, and testing phases. The Pearson correlation coefficient (R) [19–22] 
is given by:
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where A is the pair scores. ∑ pq is the product of paired scores. Symbols ∑ p and 

∑ p are the SS (sum of scores). The values of the Pearson coefficient calculated by 

ANN were 9.92003 × 10−1, 9.63304 × 10−1, and 9.87754 × 10−1 for training, validation, 

and testing, respectively.
Root Mean Square Error (RMSE) [22] was also calculated as a performance 

measure:

FIGURE 7.9 Error histogram of the NN model.
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where x is the measure of the total observations. The rn and rn are the predicted and 
observed values, respectively. The root mean square error (MSE) was found to be 
3.34533 × 10−3, 1.76224 × 10−2, and 2.65858 × 10−3 for training, validation, and test-
ing, respectively.

7.8 CONCLUSIONS AND FUTURE PERSPECTIVE

Neural network prediction of erosion rate in stainless steel 316L and Ni-based high-
velocity oxy-fuel coating, i.e., Ni-20Cr2O3 was carried out in this chapter. The results 
of this case study indicate that the newly developed ANN model has improved 

FIGURE 7.10 R-value of the NN model during different phases.
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prediction ability. This error range of 0–6% demonstrates the effectiveness of the 
ANN model. The Pearson coefficient and MSE readings show that the ANN model 
prediction error was very low. The ANN tools are very immersive in terms of predic-
tion of erosion wear. In the future, the training data can be supplied less frequently 
than the data supplied in this case study, and more data can be predicted by supplying 
the less frequently supplied data.
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8 Implementation of 
Regression Models for 
Wear Analysis of Coating
Case Study

ABBREVIATIONS

AI Artificial intelligence
ANN Artificial neural network
C88 Colmonoy 88
CA Classification accuracy
EnBoost Ensemble Boost
GPR Gaussian process regression
LR Linear regression
PS Plasma spray
RMSE Root mean square error
SVM Support vector machine

8.1 BRIEF INTRODUCTION TO REGRESSION TECHNIQUES

Regression analysis [1] can assess the impact of inputs on outcomes. Figure 8.1 pro-
vides a visual representation of how regression models, e.g., linear [2], polynomial 
[3], or nonlinear functions [4]. Parametric regression uses the input variables to 
determine an output value, whereas nonparametric regression uses a kernel function 
to estimate values at neighboring sites [5]. The k-nearest neighbors method [6,7] is an 
additional way of representing a nonparametric regression. The key idea behind the 
k-nearest neighbor method is to estimate the output at a given input position by using 
the k value, which is determined by averaging the outputs at neighboring positions. 
A common Gaussian process regression (GPR) method [8] calculates, for each input 
location, a probability distribution of the Gaussian type based on the multi-variant 
normal connection between the input and all other established points [9]—where 
the degree of correlation decreases with increasing distance. Significant advantages 
in terms of projected performance value volatility may be gained by using the GPR 
method, which is crucial for establishing the accuracy of the forecasts [10].

Parametric regression, in contrast to nonparametric regression, focuses on 
describing and minimizing an objective function (cost) utilizing an explicit analyti-
cal formulation involving inputs and outputs of a concerned problem [1]. The com-
ponents of this formulation have been modified according to familiar points. The use 
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of advanced ML algorithms for classification and regression should not be forgotten. 
Except for kernel-dependent functionality [11], many popular ML methods—such as 
artificial neural networks [12], support vector machines (SVMs) [13], random forests 
[14], and gradient boosting [15]—are based on convoluted nonlinear parametric for-
mulae. Although these models have been shown to be useful for interpolating data 
[15], their interpretation is often poor due to their convoluted parametric formula 
organization [12] and limited hypothesizing ability [16]. Researching models and 
developing forecasts often entails two stages: (i) setup (which includes configuration 
and validation) and (ii) analysis. To make reliable predictions throughout the fitting 
or learning process, it is necessary to adjust the model’s complexity (e.g., the maxi-
mum degree of polynomial regression) [17,18]. Below is a detailed description of the 
steps to minimize the complexity of the model.

8.2 CLASSIFICATION TECHNIQUES

Classification is an example of regression [20]. Classification issues differ from 
regression in that the output value is not fixed; instead, the model is trained using 
both the input characteristics and the target classes. There are just two groups in 
a binary categorization system. Either Class 1 or Class 2 output is possible. The 
constructed model after training can categorize characteristics into the classes in 
which it was taught. For optimal group separation in the input space, we may define 
it as the hyperground [20,21]. Figure 8.2 depicts a classifier for the linear and linear 

FIGURE 8.1 Polynomial regression model (eps vs. h) example, where the degree (p) of the 
polynomial model is represented by the thickness of the lines shown as dots (green line, p = 1, 
blue line, p = 2, and red line, p = 1) [19]. Permssions under CC-BY-NC-ND 4.0.
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non-separable cases. Figure 8.2a depicts a linear hyperplane for a given set of train-
ing data (xi), which is represented by straight lines.

 + =w bT 0  (8.1)

In the given equation, the value of symbol i may be 1, 2, 3, …, n. The symbols w and 
b above stand for the n-dimensional vector and bias term, respectively, in the afore-
mentioned equation. For the linearly separable situation, the hyperplane takes into 
consideration two requirements: (a) the amount of error in the separation data should 
be as low as possible, and (b) the distances between the clustered (class) data should 
be as large as possible [21]. In this example, we distinguish between two groups 
based on their location relative to the hyperplane’s border, the left (y = 1) and right 
(y = 1) sides. This is why the separation is managed as follows:

 { }
{ }+

≤ − = −
≥ =




 1 1

1 1
wT b

yi

yi
 (8.2)

However, as shown in Figure 8.2b, the optimum classification is dependent on a penalty 
function that minimizes the distance (ξi) between the poor classifier and the good one.

 ∑ξ ξ( ) =
−

F i

i

N

1

 (8.3)

Classification accuracy (CA) is a metric used to measure how well a model performs 
in solving classification issues [22], and it is given by:

 = S

N
CA  (8.4)

FIGURE 8.2 Maximum margins from each class of linearly separable data are shown (a) as 
support vectors (bold points), and (b) slack variables are established to minimize the error of 
misclassification for data that is not linearly separable [21]. Permissions from Elsevier.
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The number of properly labeled samples, denoted by S, is equal to the total number 
of samples, denoted by N.

8.3 SUPPORT VECTOR MACHINE (SVM) MODEL

Figure 8.3a depicts a simplified graphical model (SVM) of its internal structure. As can 
be shown in Figure 8.3b, the linear SVM [13] divides issues into classes by mapping 
features to hyperplane groups, and the kernel hyperplane [23–25] divides features by 
transferring details to a subclass. Like the linear SVM models, it employs straight lines 
to divide the input space into smaller, more manageable pieces. Finding the coefficients 
that maximize the margin on each hyperplane’s side yields the linear functions [13]. 
The used kernel characterizes the relationship between training data and test data (i.e., 
the known class). Here, the equation generates nonlinear hyperplanes for categoriza-
tion so that we may make the most efficient use of available space [23–25].

8.4 DECISION TREE MODELS

Decision trees are often implemented as a collection of smaller trees working as an 
ensemble using random forests [14]. Each constructed tree represents a choice (predic-
tion), and the one with the most support is chosen as the model’s forecast. The strength 
of a decision tree comes from its ensemble, a collection of prediction models that can 
outperform a single model operating alone. The larger the data collection, the taller 
the tree (or nodes) will be. By minimizing the prediction error on the validation set, 
underfitting and overfitting may be avoided if the appropriate requirements are used.

8.5 DATASET FOR REGRESSION MODELING

Data used for the regression modeling is divided into input and output files. The input 
files contain different parameters in a matrix. For example, the 9 × 30 matrix was 
used as input data in the present case study. Table 8.1 shows the dataset used in the 

FIGURE 8.3 (a) Basic structure of a support vector machine (SVM), and (b, c) SVM clas-
sifications [27]. Permissions from Elsevier.
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TABLE 8.1
Sample Data Used for Regression Modeling

S. No.

Inputs

Materials

Output

V C k CF i. T ii. dp iii. A iv. H v. P vi. E

1 4.59 60 2.667 0.64 180 195.6 0 196 0 SS 316L 7.55E-05

2 4.59 60 2.667 0.64 180 195.6 30 196 0 SS 316L 5.65E-05

3 4.59 60 2.667 0.64 180 195.6 45 196 0 SS 316L 5.38E-05

4 4.59 60 2.667 0.64 180 195.6 60 196 0 SS 316L 3.72E-05

5 4.59 60 2.667 0.64 180 195.6 0 601 1.29 C88 2.11E-05

6 4.59 60 2.667 0.64 180 195.6 30 601 1.29 C88 2.15E-05

7 4.59 60 2.667 0.64 180 195.6 45 601 1.29 C88 2.24E-05

8 4.59 60 2.667 0.64 180 195.6 60 601 1.29 C88 2.36E-05

9 1.81 60 2.667 0.64 90 195.6 0 196 0 SS 316L 7.02E-06

10 2.71 60 2.667 0.64 90 195.6 0 196 0 SS 316L 1.05E-05

11 3.61 60 2.667 0.64 90 195.6 0 196 0 SS 316L 1.40E-05

12 4.59 60 2.667 0.64 90 195.6 0 196 0 SS 316L 1.78E-05

13 1.81 60 2.667 0.64 90 195.6 0 601 1.29 C88 3.99E-06

14 2.71 60 2.667 0.64 90 195.6 0 601 1.29 C88 5.99E-06

15 3.61 60 2.667 0.64 90 195.6 0 601 1.29 C88 7.97E-06

16 4.59 60 2.667 0.64 90 195.6 0 601 1.29 C88 1.01E-05

17 4.59 60 2.667 0.76 180 45.6 0 196 0 SS 316L 1.38E-05

18 4.59 60 2.667 0.65 180 93.4 0 196 0 SS 316L 2.45E-05

19 4.59 60 2.667 0.63 180 121.7 0 196 0 SS 316L 2.57E-05

20 4.59 60 2.667 0.53 180 257.8 0 196 0 SS 316L 3.76E-05

(Continued)
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TABLE 8.1 (Continued)
Sample Data Used for Regression Modeling

S. No.

Inputs

Materials

Output

V C k CF i. T ii. dp iii. A iv. H v. P vi. E

21 4.59 60 2.667 0.76 180 45.6 0 601 1.29 C88 6.68E-06

22 4.59 60 2.667 0.65 180 93.4 0 601 1.29 C88 8.79E-06

23 4.59 60 2.667 0.63 180 121.7 0 601 1.29 C88 1.18E-05

24 4.59 60 2.667 0.53 180 257.8 0 601 1.29 C88 2.15E-05

25 4.59 30 2.667 0.64 180 195.6 0 196 0 SS 316L 4.55E-05

26 4.59 40 2.667 0.64 180 195.6 0 196 0 SS 316L 5.31E-05

27 4.59 50 2.667 0.64 180 195.6 0 196 0 SS 316L 6.34E-05

28 4.59 30 2.667 0.64 180 195.6 0 601 1.29 C88 1.36E-05

29 4.59 40 2.667 0.64 180 195.6 0 601 1.29 C88 1.69E-05

30 4.59 50 2.667 0.64 180 195.6 0 601 1.29 C88 1.83E-05

Source: PhD Thesis; Singh [26].
V, velocity (m/s); C, concentration (% weight); k, bulk density; CF, circularity factor of erodent; T, time (min); 
dp, particle size (µm); A, impact angle (°); H, microhardness (HV); P, porosity; C88, Colmonoy 88 HVOF 
coating, high-velocity oxy-fuel coating.
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present study. This dataset is converted row-wise for an accurate reading. However, 
the output file should contain the same rows as the input file for an accurate read-
ing of the data. Against the 9 × 30 matrix data, the output file used in the present 
study was 1 × 30 matrix. The output was the actual experimental data from erosion 
experiments. Regression models were trained using the MATLAB tool with the input 
parameters and an output parameter, i.e., erosion rate. In this study, the training, vali-
dation, and testing data were selected at 75%, 15%, and 15%, respectively.

8.6 RESULTS FROM REGRESSION MODELS

In the present study, the evaluation of the prepared SVM model was done on the 
basis of the root mean square error (RMSE) and Pearson correlation coefficient (R). 
The designed SVM model was compared with other popular regression models such 
as GPR, Linear Regression (LR), Ensemble Boost (EnBoost), and Coarse Tree, as 
shown in Figure 8.4.

The values that are predicted by the model have a high degree of correspondence 
with the values that are discovered in real experiments. The error histogram that 
was generated by the SVM when it was being trained can be found in Figure 8.5. 
The performance of the ANN model is evaluated based on an error percentage that 
falls between 0% and 6%. Figure 8.6 displays the Pearson coefficient (R) [28–30] for 
the training, validation, and testing phases. The Pearson correlation coefficient (R) 
[31–34] is given by:

 
∑ ∑ ∑

∑ ∑ ∑ ∑
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− 





√ − 
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A p p A q q2
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2
2

 (8.5)

FIGURE 8.4 (a) Linear regression, (b) Gaussian process regression, (c) TreeCoarse,  
(d) ensemble Boost, and (e) support vector machine model.
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where A is the pair scores. ∑ pq is the product of paired scores. Symbols ∑ p 

and ∑ p are the SS (sum of scores). The R-value of regression models is shown in 

Figure 8.5. The values of the Pearson coefficient (R) were calculated as 0.924, 0.21, 
0.11, 0.732, and 0.377 for SVM, EnBoost, TreeCoarse, LR, and GPR, respectively.

RMSE [35] was also calculated as a performance measure:

 ∑( )= −
=

x
r r

n

k

n nRMSE
1 

1

2  (8.6)

where x is the measure of the total observations. The rn and rn are the predicted and 
observed values, respectively. The RMSE value of regression models is shown in 
Figure 8.6. The RMSE was found to be 5.03 × 10−6, 1.69 × 10−5, 1.38 × 10−5, 1.64 × 10−5, 
and 1.38 × 10−5 for SVM, EnBoost, TreeCoarse, LR, and GPR, respectively.

8.7 CONCLUSIONS AND FUTURE PERSPECTIVE

In this chapter, a neural network prediction of erosion rate in stainless steel 316L 
and Colmonoy 88 high-velocity oxy-fuel coatings was carried out. The results of this 
case study indicate that the newly developed SVM model has improved prediction 
ability. This error range of 0–8% demonstrates the effectiveness of the SVM model. 

FIGURE 8.5 R-value of the regression models.
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Pearson coefficient and RMSE readings show that the SVM model prediction error 
was very low as compared to EnBoost, TreeCoarse, LR, and GPR. The machine 
learning regression tools are very immersive in terms of predicting erosion wear. In 
the future, the hyper-tuning of parameters can be performed to improve the predic-
tion results from regression tools.
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