
M A N N I N G Martine Dowden ● Michael Gearon

overflow
property

scale
property

inherit
keyword CSS

architecture

Chapter 11

@supports
at-rule

Background
images

Chapter 9
Backface
visibility

Flexbox

CSS
box model

shape-
outside
property

line-
height
property

clip-
path

property

Chapter 7

Pseudo-
classes

Styling
links

transform
property

Transitions

Chapter 5

Layout
using

CSS grids

background-
clip

property
How to
animate

elements in
CSS

Styling
an HTML
progress

bar Vendor
prefixes

Chapter 3

Accessible
animations

Applying
styles to
SVGs

transform-
origin
property

SVG
basics

Ways to
write CSS

Adding
CSS

to HTML

CSS
selectors

Overview
of CSS

The cascade
of Cascading

Style
Sheets

Specificity
in CSS

Chapter 1

Chapter 2

Grid
template

areas

Grid tracks
and lines

grid
property

Media
queries

grid-gap
property

Accessibility

Chapter 4
Importing

fonts font-
weight
property

Styling
images

Text
justification

and
hyphens CSS

Multi-column
Layout
Module

CSS
counters

FlexboxChapter 6

object-
fit

property
Background

size and
positioning

CSS
custom

properties

Box
shadow

Chapter 8
Styling

links and
buttons

Styling
definition

lists

Styling
tables

Typography

:focus and
:f cus-o
visible
pseudo-
classes

:where and
:is pseudo-

classes

Chapter 10

Styling radio
buttons and
check boxes

Styling
input
fields

accent-
color

property

Styling
drop-down

selects

Accessibility
in form
design

Chapter 12

@each
rule

@mixins
and

@include

@extend
at-rules

Color
functions

@if
and

@else

Nesting in
SCSS

Using
pre-

processors

Tiny CSS Projects

Tiny CSS Projects
MARTINE DOWDEN

MICHAEL GEARON

MANN I NG
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2023 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The authors and publisher have made every effort to ensure that the information in this book
was correct at press time. The authors and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Elesha Hyde
20 Baldwin Road Technical Development editor: Arthur Zubarev
PO Box 761 Review editor: Adriana Sabo
Shelter Island, NY 11964 Production editor: Andy Marinkovich

Copy editor: Keir Simpson
Proofreader: Katie Tennant

Technical proofreader: Louis Lazaris
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781633439832
Printed in the United States of America

www.manning.com

v

brief contents
1 ■ CSS introduction 1

2 ■ Designing a layout using CSS Grid 37

3 ■ Creating a responsive animated loading screen 60

4 ■ Creating a responsive web newspaper layout 91

5 ■ Summary cards with hover interactions 121

6 ■ Creating a profile card 146

7 ■ Harnessing the full power of float 176

8 ■ Designing a checkout cart 196

9 ■ Creating a virtual credit card 236

10 ■ Styling forms 271

11 ■ Animated social media share links 308

12 ■ Using preprocessors 330

contents
preface xii
acknowledgments xiii
about this book xv
about the authors xviii
about the cover illustration xix

1 CSS introduction 1
1.1 Overview of CSS 1

Separation of Concerns 2 ■ What is CSS? 3

1.2 Getting started with CSS by creating an article layout 4
1.3 Adding CSS to our HTML 8

Inline CSS 8 ■ Embedded CSS 10 ■ External CSS 12

1.4 The cascade of CSS 13
User-agent stylesheets 13 ■ Author stylesheets 13
User stylesheets 13 ■ CSS reset 14 ■ Normalizer 15
The !important annotation 17

1.5 Specificity in CSS 17
1.6 CSS selectors 19

Basic selectors 19 ■ Combinators 22 ■ Pseudo-class and
pseudo-element selectors 27 ■ Attribute value selectors 31
Universal selector 32
vi

CONTENTS vii
1.7 Different ways to write CSS 32
Shorthand 32 ■ Formatting 34

2 Designing a layout using CSS Grid 37
2.1 CSS Grid 38
2.2 Display grid 42
2.3 Grid tracks and lines 43

Repeating columns 44 ■ The minmax() function 45
The auto keyword 45 ■ The fractions (fr) unit 45

2.4 Grid template areas 48
The grid-area property 51 ■ The gap property 53

2.5 Media queries 54
2.6 Accessibility considerations 57

3 Creating a responsive animated loading screen 60
3.1 Setup 61
3.2 SVG basics 61

Positions of SVG elements 63 ■ Viewport 64
Viewbox 66 ■ Shapes in SVG 67

3.3 Applying styles to SVGs 68
3.4 Animating elements in CSS 71

Keyframe and animation-name 71 ■ The duration property 75
The iteration-count property 76 ■ The animation shorthand
property 77 ■ The animation-delay property 77 ■ The
transform-origin property 79

3.5 Accessibility and the prefers-reduced-motion
media query 81

3.6 Styling an HTML progress bar 83
Styling the progress bar 83 ■ Styling the progress bar for
-webkit- browsers 85 ■ Styling the progress bar for -moz-
browsers 87

4 Creating a responsive web newspaper layout 91
4.1 Setting up our theme 93

Fonts 94 ■ The font-weight property 97 ■ The font shorthand
property 98 ■ Visual hierarchy 98 ■ Inline versus block
elements 99 ■ Quotes 101

CONTENTSviii
4.2 Using CSS counters 102
The symbols descriptor 103 ■ The system descriptor 103
The suffix descriptor 103 ■ Putting everything together 104
@counter versus list-style-image 104

4.3 Styling images 104
Using the filter property 105 ■ Handling broken images 106
Formatting captions 108

4.4 Using the CSS Multi-column Layout Module 110
Creating media queries 110 ■ Defining and styling columns 110
Using the column-rule property 112 ■ Adjusting spacing with the
column-gap property 113 ■ Making content span multiple
columns 114 ■ Controlling content breaks 115

4.5 Adding the finishing touches 115
Justifying and hyphenating text 116 ■ Wrapping the text
around the image 118 ■ Using max-width and a margin
value of auto 119

5 Summary cards with hover interactions 121
5.1 Getting started 123
5.2 Laying out the page using grid 124

Layout using grid 125 ■ Media queries 127

5.3 Styling the header using the background-clip
property 130
Setting the font 130 ■ Using background-clip 131

5.4 Styling the cards 133
Outer card container 133 ■ Inner container and content 135

5.5 Using transitions to animate content on hover
and focus-within 139

6 Creating a profile card 146
6.1 Starting the project 147
6.2 Setting CSS custom properties 149
6.3 Creating full-height backgrounds 150
6.4 Styling and centering the card using Flexbox 151
6.5 Styling and positioning the profile picture 154

The object-fit property 155 ■ Negative margins 156

6.6 Setting the background size and position 160

CONTENTS ix
6.7 Styling the content 163
Name and job title 163 ■ The space-around and gap
properties 165 ■ The flex-basis and flex-shrink properties 167
The flex-direction property 168 ■ Paragraph 169 ■ The flex-
wrap property 170

6.8 Styling the actions 172

7 Harnessing the full power of float 176
7.1 Adding a drop cap 180

Leading 180 ■ Justification 180 ■ First letter 181

7.2 Styling the quote 183
7.3 Curving text around the compass 184

Adding shape-outside: circle 185 ■ Adding a clip-path 187
Creating a shape using border-radius 188

7.4 Wrapping text around the dog 190
Using path() . . . or not yet 190 ■ Floating the image 191
Adding shape-margin 192

8 Designing a checkout cart 196
8.1 Getting started 197
8.2 Theming 200

Typography 200 ■ Links and buttons 202 ■ Input fields 206
Table 207 ■ Description list 212 ■ Cards 213

8.3 Mobile layout 215
Table mobile view 215 ■ Description list 221 ■ Call-to-action
links 223 ■ Padding, margin, and margin collapse 224

8.4 Medium screen layout 225
Right-justified numbers 225 ■ Left-justifying the first two
columns 228 ■ Right-justifying numbers in the input
fields 229 ■ Cell padding and margin 229

8.5 Wide screens 230

9 Creating a virtual credit card 236
9.1 Getting started 237
9.2 Creating the layout 239

Sizing the card 240 ■ Styling the front of the card 241
Laying out the back of the card 245

CONTENTSx
9.3 Working with background images 248
Background property shorthand 248 ■ Text color 250

9.4 Typography 252
@font-face 253 ■ Creating fallbacks using @supports 255
Font sizing and typography improvements 257

9.5 Creating the flipping-over effect 259
Position 259 ■ Transitions and backface-visibility 261
The transition property 263 ■ The cubic-bezier() function 263

9.6 Border radius 266
9.7 Box and text shadows 267

The drop-shadow function versus the box-shadow property 267
Text shadows 268

9.8 Wrapping up 269

10 Styling forms 271
10.1 Setting up 272
10.2 Resetting fieldset styles 275
10.3 Styling input fields 276

Styling text and email inputs 276 ■ Making selects and textareas
match the input styles 278 ■ Styling radio inputs and check
boxes 280 ■ Using the :where() and :is() pseudo-classes 284
Styling selected radio and checkbox inputs 284 ■ Using the
:checked pseudo-class 286 ■ Shaping the selected radio buttons’
inner disk 287 ■ Using CSS shapes to create the check mark 288
Calculating specificity with :is() and :where() 290

10.4 Styling drop-down menus 290
10.5 Styling labels and legends 293
10.6 Styling the placeholder text 294
10.7 Styling the Send button 295
10.8 Error handling 296
10.9 Adding hover and focus styles to form elements 300

Using :focus versus :focus-visible 301 ■ Adding hover styles 303

10.10 Handling forced-colors mode 303

11 Animated social media share links 308
11.1 Working with CSS architecture 309

OOCSS 309 ■ SMACSS 309 ■ BEM 310

CONTENTS xi
11.2 Setting up 310
11.3 Sourcing icons 312

Media icons 312 ■ Icon libraries 313

11.4 Styling the block 313
11.5 Styling the elements 314

Share button 314 ■ Share menu 315 ■ Share links 316
scale() 317 ■ The inherit property value 318

11.6 Animating the component 319
Creating a transition 319 ■ Opening and closing the
component 320 ■ Animating the menu 326

12 Using preprocessors 330
12.1 Running the preprocessor 331

Setup instructions for npm 331 ■ .sass versus .scss 333
Setup instructions for CodePen 334 ■ Starting HTML
and SCSS 334

12.2 Sass variables 338
@extend 341

12.3 @mixin and @include 342
object-fit property 343 ■ Interpolation 344 ■ Using
mixins 344 ■ border-radius shorthand 347

12.4 Nesting 347
12.5 @each 349
12.6 Color functions 353
12.7 @if and @else 355
12.8 Final thoughts 357

appendix 360

index 363

preface
One of the hard parts of learning a new language or skill is extrapolating the individ-
ual skills learned into the thing we’re trying to build. Although we may know the
mechanics of grid or understand how flex works, learning which to choose and when
(or how) to achieve a specific end that we’re envisioning can be challenging. Rather
than start with the theory and then apply it to our projects, in this book we took the
opposite approach. We started with the project and then looked at which skills and
techniques are necessary to achieve our end.

 But why talk about CSS? We can write an entire application using nothing but
browser-provided defaults, but it wouldn’t have much personality, now, would it?
With CSS, we can achieve a lot for both our users and our business needs. For every-
thing from brand recognition to guiding users with consistent styles and design par-
adigms to making the project eye-catching, CSS is an important tool in our toolbox.

 Regardless of libraries, preprocessors, or frameworks, the underlying technology
that drives how our applications and websites look is CSS. With that in mind, so as not
to get sidetracked by the individual quirks and functionality of libraries and frame-
works, we chose to go back to the basics, writing this book in plain old vanilla CSS
because, if we understand CSS, applying it to any other tech stack or environment
becomes much easier down the line.
xii

acknowledgments
We, Martine and Michael, thank Andrew Waldron, acquisitions editor, and Ian
Hough, assistant acquisitions editor, for all their support and enthusiasm about get-
ting the book off the ground and during the development process. We thank Elesha
Hyde, development editor, who was a huge source of support from start to finish, pro-
viding professional guidance, editing, and encouragement. Louis Lazaris, technical
proofreader, and Arthur Zubarev, technical development editor, provided thoughtful,
useful technical feedback and code reviews. Thank you both for all your input. Finally,
we send a huge thank-you to all the early-access readers and reviewers throughout the
process, whose input helped shape and develop this book.

 We thank all the reviewers: Abhijith Nayak, Al Norman, Alain Couniot, Aldo Solis
Zenteno, Andy Robinson, Anil Radhakrishna, Anton Rich, Aryan Maurya, Ashley
Eatly, Beardsley Ruml, Bruno Sonnino, Carla Butler, Charles Lam, Danilo Zeković,
Derick Hitchcock, Francesco Argese, Hiroyuki Musha, Humberto A. Sanchez II, James
Alonso, James Carella, Jereme Allen, Jeremy Chen, Joel Clermont, Joel Holmes, Jon
Riddle, Jonathan Reeves, Jonny Nisbet, Josh Cohen, Kelum Senanayake, Lee Harding,
Lin Zhang, Lucian Enache, Marco Carnini, Marc-Oliver Scheele, Margret “Pax”
Williams, Matt Deimel, Mladen Ðurić, Neil Croll, Nick McGinness, Nitin Ainani, Pavel
Šimon, Ranjit Sahai, Ricardo Marotti, Rodney Weis, Steffen Gläser, Stephan Max,
Steve Grey-Wilson, and Vincent Delcoigne. Your suggestions helped make this book
better.
xiii

ACKNOWLEDGMENTSxiv
MARTINE DOWDEN: I thank my family, friends, and coworkers at Andromeda Galactic
Solutions for their unwavering support and encouragement through my career and
the writing of this book.

 I’d also like to recognize the Mozilla Foundation and the countless individual con-
tributors to the MDN docs for their tireless efforts in providing the developer commu-
nity documentation for web languages such as CSS. Finally, I’d like to thank the
creators, Lennart Schoors and Alexis Deveria, and all the contributors to Caniuse, for
making it easy to know which browsers will support which CSS features.

MICHAEL GEARON: This being my first book, producing it has been a fun and chal-
lenging process. I’d like to thank all my family members for their support, especially
my wife, Amy Smith, who has been there through the whole process. I must also say a
special thank-you to my cats, Puffin and Porg, who tried (and failed) to get the odd
word in the book.

about this book
Tiny CSS Projects enables designers and developers to learn CSS through a series of
12 projects.

Who should read this book?
Tiny CSS Projects is for readers who know the basics of HTML and frontend develop-
ment. No experience in CSS is required. Both beginners and experienced coders will
develop a deeper understanding of CSS through this book. Rather than present a the-
oretical view of CSS, each chapter applies a different part of CSS to a project to
demonstrate in practice how CSS works.

How this book is organized: A roadmap
The book has 12 chapters, each of which is a self-contained project:

 Chapter 1, “CSS introduction”—This chapter’s project walks readers through
the basics of CSS, examining cascade, specificity, and selectors.

 Chapter 2, “Designing a layout using CSS grids”—This chapter explores CSS
grids by designing a layout for an article while, in the process, looking at con-
cepts such as grid tracks, minmax(), repeat functions, and the fractions unit.

 Chapter 3, “Creating a responsive animated loading screen”—This project uses
CSS to create a responsive animated loading screen, using scalable vector graph-
ics and animation to style an HTML progress bar.

 Chapter 4, “Creating a responsive web newspaper layout”—This chapter is
about designing a multicolumn responsive web newspaper layout. It explores
xv

ABOUT THIS BOOKxvi
the CSS Multi-column Layout Module, counter styles, and broken images, as
well as how to adapt the layout by using media queries.

 Chapter 5, “Summary cards with hover interactions”—This project creates a
series of cards using background images, transitions to reveal content on hover,
and media queries to check capabilities and browser window size.

 Chapter 6, “Creating a profile card”—This chapter’s project creates a profile
card and explores custom properties and background gradients, as well as set-
ting image sizes and using Flexbox for layout.

 Chapter 7, “Harnessing the full power of float”—This chapter shows the power
of CSS floats to position images, shape content around CSS shapes, and even
create a drop cap.

 Chapter 8, “Designing a checkout cart”—This chapter is about designing a
checkout cart, which involves styling responsive tables, using a CSS grid for lay-
out, formatting numbers, and setting CSS conditionally based on viewport size
by using media queries.

 Chapter 9, “Creating a virtual credit card”—This chapter focuses on creating a
virtual credit card and achieving a 3D effect by flipping the card over on hover.

 Chapter 10, “Styling forms”—This chapter looks at designing forms, including
radio buttons, inputs, and drop-down menus, as well as promoting accessibility.

 Chapter 11, “Animated social media share links”—This project employs CSS
transitions to animate social media share links and examines CSS architecture
options such as OOCSS, SMACSS, and BEM.

 Chapter 12, “Using preprocessors”—The final chapter demonstrates how we
can use preprocessors when writing CSS and presents the Sass syntax.

About the code
This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light changes from previous steps in the chapter, such as when a new feature adds to
an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In some cases, even this was not enough, and listings include line-continuation
markers (➥). Code annotations accompany many of the listings, highlighting import-
ant concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/tiny-css-projects. The complete code
for the examples in the book is available for download from the Manning website at
https://www.manning.com and from GitHub at https://github.com/michaelgearon/
Tiny-CSS-Projects.

https://livebook.manning.com/book/tiny-css-projects
https://www.manning.com
https://github.com/michaelgearon/Tiny-CSS-Projects
https://github.com/michaelgearon/Tiny-CSS-Projects

ABOUT THIS BOOK xvii
liveBook discussion forum
Purchase of Tiny CSS Projects includes free access to liveBook, Manning’s online read-
ing platform. Using liveBook’s exclusive discussion features, you can attach comments
to the book globally or to specific sections or paragraphs. It’s a snap to make notes for
yourself, ask and answer technical questions, and receive help from the authors and
other users. To access the forum, go to https://livebook.manning.com/book/tiny-css-
projects/discussion. You can also learn more about Manning’s forums and the rules of
conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and authors can take place.
It is not a commitment to any specific amount of participation on the part of the
authors, whose contributions to the forum remain voluntary (and unpaid). We sug-
gest that you try asking them some challenging questions lest their interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website for as long as the book is in print.

Other online resources
Often, we can’t remember how a property works or what values are available to us.
One great resource for looking up how a particular property, function, or value works
is the MDN docs (https://developer.mozilla.org/en-US).

 Although any given aspect of CSS functionality may be defined in the CSS specifica-
tion, that doesn’t mean all browsers support it yet. We often find ourselves needing to
understand which browsers support what and whether we should create a fallback or
use alternative methods to achieve our goal. Caniuse (https://caniuse.com) is a great
resource that allows us to check a particular property or function to see how well sup-
ported it is in browsers by version.

 Finally, to make sure that everyone can access and use our websites and applica-
tions, we can’t forget the importance of accessibility. The documents provided by the
World Wide Web Consortium’s Web Accessibility Initiative are great places to start,
and they link to many other resources, including Web Content Accessibility Guide-
lines (https://www.w3.org/WAI/fundamentals).

https://livebook.manning.com/discussion
https://livebook.manning.com/book/tiny-css-projects/discussion
https://livebook.manning.com/book/tiny-css-projects/discussion
https://developer.mozilla.org/en-US
https://caniuse.com
https://www.w3.org/WAI/fundamentals

about the authors
MARTINE DOWDEN is an author, international speaker, and
award-winning chief technology officer of Andromeda Galactic
Solutions. Her expertise includes psychology, design, art, acces-
sibility, education, consulting, and software development. Tiny
CSS Projects is her fourth book about web technologies and
draws on 15 years of experience in building web interfaces that
are beautiful, functional, and accessible. For her community
contributions, Martine has been named a Microsoft MVP in
Developer Technologies and a Google Developer Expert in
Web Technologies and Angular.

MICHAEL GEARON is a user experience designer and frontend
developer from Wales, UK. He earned a BS in Media Technol-
ogy at the University of South Wales while practicing coding
and design. Since then, Mike has worked with well-known UK
brands, including Go.Compare and Ageas. He now works in the
Civil Service, previously for Companies House and currently at
Government Digital Service.
xviii

about the cover illustration
The figure on the cover of Tiny CSS Projects is captioned “M’de. de bouquets à Vienne,”
or “Flower seller from Vienna,” and is taken from a collection by Jacques Grasset de
Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.
xix

CSS introduction
Cascading Style Sheets (CSS) is used to control the appearance of the elements of a
web page. CSS uses style rules to instruct the browser to select certain elements and
apply styles and effects to them.

 Chapter 1 is a good place to start if you’re new to CSS or in need of a refresher.
We’ll start with a brief history of CSS and swiftly move on to getting started with
CSS, looking at ways to link CSS with HTML.

 When we have our CSS up and running, we’ll look at the structure of CSS by
creating a static, single-column article page with basic media components such as
headings, content, and imagery to see how everything works together.

1.1 Overview of CSS
Håkon Wium Lie proposed the idea of CSS in 1994, a few years after Tim Berners-
Lee created HTML in 1990. CSS was introduced to separate styling from the con-
tent of the web page through the options of colors, layout, and typography.

This chapter covers
 A brief overview of CSS

 Basic CSS styling

 How to select HTML elements effectively
1

2 CHAPTER 1 CSS introduction
1.1.1 Separation of Concerns

This separation of content and presentation is based on the design principle Separa-
tion of Concerns (SoC). The idea behind this principle is that a computer program or
application should be broken into individual, distinct sections segregated by purpose.
The benefits of keeping good SoC include

 Decreased code duplication and, therefore, easier maintainability
 Extendibility, because it requires elements to focus on a single purpose
 Stability, because code is easier to maintain and test

With this principle in mind, HTML serves as the structure and content of a web page,
CSS is the presentation, and JavaScript (JS) provides additional functionality. Together,
they form the web pages. Figure 1.1 displays a diagram of this process.

Since the introduction of smartphones in the mid-2000s, the web has expanded to
mobile websites (often using m. subdomains, such as m.mywebsite.com), which tend
to have fewer features than the desktop versions, and to responsive and adaptive
designs. There are benefits and drawbacks to creating responsive/adaptive or mobile-
specific websites.

In general, responsive and adaptive designs are the way the industry is moving, espe-
cially as CSS expands, giving us more ability to apply CSS based on window sizes and
media types (such as screen or print). Since the announcement of CSS in 1994, there
have been three overall releases:

The difference between responsive and adaptive designs
Responsive design uses a single fluid layout that can change based on factors such
as screen size, orientation, and device preferences. Adaptive design can also change
based on these factors. But instead of having a single fluid layout, we can create mul-
tiple fixed layouts, which gives us greater control of each one—at the cost of taking
more time than a singular responsive layout. In practice, we can use both methods
in conjunction with one another.

Web page

Figure 1.1 A breakdown
of a web page

31.1 Overview of CSS
 1996—First World Wide Web Consortium (W3C) recommendation of CSS
 1997—First working draft of CSS2
 1999—First three CSS3 drafts (color profiles, multicolumn layouts, and paged

media; https://www.w3.org/Style/CSS20)

After 1999, the release strategy was changed to allow for faster, more frequent releases
of new features. Now CSS is divided into modules, with numbered levels starting at 1
and incrementing upward as features and functionality evolve and expand.

 A CSS level-1 module is something that’s brand new to CSS, such as a property that
hasn’t existed as an official standard before. Modules that have gone through a few ver-
sions—such as media queries, color, fonts, and cascading and inheritance modules—
have higher-level numbers.

 The benefit of breaking CSS into modules is that each part can move independently,
without requiring large sweeping changes to the language as a whole. There have
been some discussions about the need for someone to declare the current stage as
CSS4, even if only to acknowledge that CSS has changed a lot since 1999. This idea
hasn’t gained any traction so far, however.

1.1.2 What is CSS?

CSS is a declarative programming language: the code tells the browser what needs to
be done rather than how to do it. Our code says we want a certain heading to be red,
for example, and the browser determines how it’s going to apply the style. This is use-
ful because if we want to increase the line height of a paragraph to improve the read-
ing experience, it’s up to the browser to determine the layout, sizing, and formatting
of that new line height, which reduces effort for the developer.

CSS has come a long way since 1994. Now we have ways to animate and transition ele-
ments, create motion paths to animate Scalable Vector Graphics (SVG) images, and
conditionally apply styles based on viewport size. This type of functionality used to be
possible only through JavaScript or Adobe Flash (now retired). We can look at CSS
Zen Garden (www.csszengarden.com) for a glimpse of the possibilities; by looking at
the first versus last designs, we can observe CSS’s progression over time (https://www
.w3.org/Style/CSS20).

 In the past, design choices such as the use of transparency, rounded corners, mask-
ing, and blending were possible but required unconventional CSS techniques and

Domain-specific language
CSS is a domain-specific language (DSL)—a specialized language created to solve a
specific problem. DSLs are generally less complex than general-purpose languages
(GPLs) such as Java and C#. CSS’s specific purpose is to style web content. Lan-
guages such as SQL, HTML, and XPath are also DSLs.

https://www.w3.org/Style/CSS20
http://www.csszengarden.com/
https://www.w3.org/Style/CSS20
https://www.w3.org/Style/CSS20
https://www.w3.org/Style/CSS20

4 CHAPTER 1 CSS introduction
hacks. As CSS evolved, properties were added to replace these hacks with standard,
documented features.

It could be said that CSS is in a golden age. With the continual development of the
language, opportunities for new and creative experiences are virtually endless.

1.2 Getting started with CSS by creating an article layout
In our first project, we’ll explore a common use case on the web: creating a single-
column article. This chapter focuses on how to link CSS to HTML and explores the
selectors we can use to style our HTML.

 The first thing we need to understand is how to tie our CSS to our HTML and how
to select an element. Then we can worry about what properties and values we want to
apply. Let’s start by going over some basics.

 If you’re new to coding, you can often find free tools to use for these projects. You
have the option of coding online, or you can do the work on your computer, using a
code editor such as Sublime Text (https://www.sublimetext.com), Brackets (https://
brackets.io), or Visual Studio Code (https://code.visualstudio.com). Alternatively,
you can use a basic text editor such as TextEdit for Mac (http://mng.bz/rd9x), Win-
dows Notepad (http://mng.bz/VpAN), or gedit for Linux (https://wiki.gnome.org/
Apps/Gedit).

 The downside to using a basic text editor instead of a code editor or integrated
development environment (IDE) is that it lacks syntax highlighting. This highlighting
displays text in different colors and fonts according to its purpose in the code, which
helps readability.

 You can also use a free online development editor such as CodePen (https://
codepen.io). Online development editors are great ways to test ideas; they provide
quick, easy access for frontend projects. CodePen provides a paid pro option that
allows you to host assets such as images, which you’ll need in later chapters. Another
option is to link to the GitHub location where the images are stored, as all assets that
are uploaded to GitHub are stored in the raw.githubusercontent.com domain.

 When you have a code editor installed on your computer or have chosen an
online editor and created an account, you’ll need to get the starter code for the chap-
ter. We created a code repository in GitHub (https://github.com/michaelgearon/
Tiny-CSS-Projects) containing all the code you’ll need to follow along with each chap-
ter. Figure 1.2 shows a screenshot of the repository.

CSS preprocessors
The evolution of CSS also led to the creation of CSS preprocessors and the introduc-
tion of Syntactically Awesome Style Sheets (Sass), released in 2006. They were cre-
ated to facilitate writing code that’s easier to read and maintain, as well as to provide
added functionality that’s not available in CSS alone. We’ll use a preprocessor to
style a page in chapter 12.

https://www.sublimetext.com
https://brackets.io
https://brackets.io
https://brackets.io
https://code.visualstudio.com
http://mng.bz/rd9x
http://mng.bz/VpAN
https://wiki.gnome.org/Apps/Gedit
https://wiki.gnome.org/Apps/Gedit
https://wiki.gnome.org/Apps/Gedit
https://codepen.io
https://codepen.io
https://codepen.io
https://github.com/michaelgearon/Tiny-CSS-Projects
https://github.com/michaelgearon/Tiny-CSS-Projects
https://github.com/michaelgearon/Tiny-CSS-Projects

51.2 Getting started with CSS by creating an article layout
The code is organized in folders by chapter. Inside each chapter folder are two ver-
sions of the code:

 before—Contains the starter code for the project. You’ll want this version if
you’re coding along with the chapter.

 after—Contains the completed project as it is at the end of the chapter with
the presented CSS applied.

Download (or, if you’re familiar with Git, clone) the project, using the Code drop-
down menu at the top of the screen. If you’re coding along with the chapter, grab the
files from the before folder for chapter 1 and copy them to your project folder or
pen. You should see an HTML file with some starter code and an empty CSS file. If
you open the HTML file in a web browser or copy the contents of the <body> tag into

Figure 1.2 Tiny-CSS-Projects repository in GitHub

6 CHAPTER 1 CSS introduction
CodePen, you’ll see that the content is unstyled except for the defaults provided by
your browser (figure 1.3). Now you’re ready to start styling the content with CSS, as
shown in listing 1.1.

Figure 1.3 Starter HTML for our article

71.2 Getting started with CSS by creating an article layout
NOTE CodePen handles the information in the <head> tag for you automati-
cally. Therefore, if you’re following along in CodePen or a similar online edi-
tor, you need to copy only the code within the <body> tag.

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Chapter 1 - CSS introduction</title>
 <link rel="stylesheet" href="styles.css">
</head>
<body>

 <article>
 <header>
 <h1>Title of our article (heading 1)</h1>
 <p>
 Posted on
 <time datetime="2015-05-16 19:00">May 16</time>
 by Lisa.
 </p>
 </header>
 <p>Lorem ipsum dolor sit amet, …</p>
 <ol class="ordered-list">
 List item 1

 Nested item 1
 Nested item 2

 List item 2
 List item 3
 List item 4

 <p>Curabitur id augue nulla ...</p>
 <blockquote id="quote-by-author">
 Nunc eleifend nulla lobortis ...
 </blockquote>
 <p>Etiam tempor vulputate varius ...</p>
 <h2>Heading 2</h2>
 <p>
 In ac euismod tortor ...
 In eleifend in dolor id aliquet
 ...
 </p>
 <p>In id lobortis leo ...</p>

 <h3>Heading 3</h3>
 <p>
 Mauris sit amet tempor ex ...

Listing 1.1 Starting HTML

8 CHAPTER 1 CSS introduction
 Sed vulputate eget ante vel vehicula.
 Curabitur ac velit sed ...
 </p>
 <p>Quisque vel erat et ...</p>
 <h4 class="small-heading">Heading 4</h4>
 <p>Aliquam porttitor, ex ...
 Cras sed finibus libero
 Duis lobortis, ipsum ut consectetur …
 </p>
 <h2>Heading 2</h2>
 <h3>Heading 3</h3>
 <svg xmlns="http:/ /www.w3.org/2000/svg" width="300" height="150">
 <circle cx="70" cy="70" r="50"></circle>
 <rect y="80" x="200" width="50" height="50" />
 </svg>
 <h4>Heading 4</h4>
 <h5 class="small-heading">Heading 5</h5>
 <p>In finibus ultrices nulla ut rhoncus …</p>
 <h6 class="small-heading">Heading 6</h6>
 <p lang="it">Questo paragrafo è definito in italiano.</p>
 <ul class="list">
 List item 1

 Nested item 1
 Nested item 2

 List item 2
 List item 3
 List item 4

 <footer>
 <p>Footer text</p>
 </footer>
 </article>
 <p>Nam rutrum nunc at lectus …</p>
</body>
</html>

1.3 Adding CSS to our HTML
When we’re styling with CSS, we have three ways to apply CSS to our HTML:

 Inline
 Embedded
 External

1.3.1 Inline CSS

We can inline the CSS by adding a style attribute to an element. This method has us
add the CSS to the element directly in the HTML.

 Attributes are always specified in the opening tag and typically consist of the name
of the attribute—in this case, style. The attribute is sometimes followed by an equal

91.3 Adding CSS to our HTML
sign (=) and its value in quotes. All the CSS goes inside the opening and closing quo-
tation marks.

 As an example, let’s set the color of our heading to crimson: <h1 style="color:
crimson"> Title of our article (heading 1)</h1>. If we save our HTML and view it
in a browser, we’ll see that it’s crimson. If we’re using a code editor rather than a web
client (CodePen), we need to refresh the browser page to view our changes. Figure 1.4
shows the output. Notice that the only element affected is the <h1> to which we
applied the style.

One downside of inline CSS is that it takes the highest specificity in CSS, which we’ll
look at in more detail soon. Another major downside to inline CSS is that it can
become unmanageable quickly. Suppose that we have 20 paragraphs within an HTML
document. We would need to apply the same style attributes with the same CSS prop-
erties 20 times to make sure that all our paragraphs look the same. This case involves
two problems:

Figure 1.4 Crimson header

10 CHAPTER 1 CSS introduction
 Our concerns are no longer separated. Our HTML, which is responsible for the
content, and our CSS, which is responsible for styling, are now in the same
place and tightly coupled.

 We’re repeating the code in many places, which makes it extremely difficult to
maintain and keep our styles consistent.

The benefit of inline CSS is page-load performance. The browser loads the HTML file
first and then loads any other files it needs to render the page. When the CSS is
already in the HTML file, the browser doesn’t need to wait for it to load from a sepa-
rate location. Let’s undo the style we added to the <h1> and look at a different tech-
nique that has the same benefits as inline but fewer drawbacks.

1.3.2 Embedded CSS

To resolve the problem of repeating code, we can add our CSS within an embedded
(sometimes referred to as internal) <style> element. The <style> element must be
placed between the opening and closing <head> tags. To color all our heading ele-
ments crimson, we can use the snippet of code in the following listing.

<!DOCTYPE html>
<html lang="en">
 <head>
 ...
 <style>
 h1, h2, h3, h4, h5, h6 {
 color: crimson;
 }
 </style>
 </head>
 <body>
 ...
 </body>
</html>

The benefit of this approach is that now we’re grouping all our CSS together, and the
CSS will be applied to the whole HTML document. In our example, all headings
(<h1>, <h2>, <h3>, <h4>, <h5>, and <h6>) within that web page will be crimson, as we
can observe in figure 1.5.

 We also see a difference in how the embedded CSS is written compared with inline
CSS. When we’re writing embedded CSS, we create what are known as rulesets, which
are composed of the parts shown in figure 1.6.

 The part of the rule that defines which elements to apply the styles to is called the
selector. The rule in figure 1.6 will be applied to all <h1> elements; its selector is h1.

 To apply multiple selectors, we write them as a comma-delimited list before the
opening curly brace. To select all <h1> and <h2> elements, for example, we would
write h1,h2 { … }.

Listing 1.2 Embedded CSS

111.3 Adding CSS to our HTML
The declaration is made up of the property—in this case, color—followed by a colon
and then the property value (red). The declaration defines how the element selected
will be styled. Both properties and values must be written in American English. Spell-
ing variations such as colour and capitalise aren’t supported and won’t be recognized by
the browser. When a browser comes across invalid CSS, it ignores it. If a rule has an
invalid declaration inside it, valid declarations will still be applied; only those that are
invalid will be ignored.

Figure 1.5 Styles applied to all headings

h1 {

color: red;

Selector

Opening curly brace

Closing curly brace Property Property value

Declaration

Semicolon (optional if

last declaration in the

ruleset)

}
Figure 1.6
An example
of a CSS rule

12 CHAPTER 1 CSS introduction
 Embedded CSS works well for one-off web pages in which the styles are specific to
that page. It groups CSS nicely, allowing us to write rules that are applied across
elements, preventing us from having to copy and paste the same styles in multiple
places. It also has the same performance benefits as inline styles, in that the browser
has immediate access to the CSS; it doesn’t have to wait for the CSS to be fetched from
a different location.

 The downside of having our CSS within our HTML document is that the CSS will
work for only that document. So if our website has multiple pages, which is often the
case, we’d need to copy that CSS into each HTML document. Unless these styles are
being generated by a template of backend language (such as PHP), this task will
become unmaintainable quickly, especially for large applications such as blogs and
e-commerce websites. Next, let’s undo the changes to our project one last time and look
at a third technique.

1.3.3 External CSS

Like embedded CSS, the external CSS approach keeps our styles grouped together,
but it places the CSS in a separate .css file. By separating our HTML and CSS, we can
effectively separate our concerns: content and style.

 We link the stylesheet to the HTML by using the <link> HTML tag. The link ele-
ment needs two attributes for stylesheets: the rel attribute, which describes the rela-
tionship between the HTML document and the thing being linked to, and the href
attribute, which stands for hypertext reference and indicates where to find the document
that we want to include. The following listing shows how we link our stylesheet to our
HTML for our project.

<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" href="styles.css">
 </head>
 <body>
 <h1>Inline CSS</h1>
 </body>
</html>

Most of the time, this approach is the one we see across the web, so it’s the approach
we’ll use throughout this book. The benefit of external stylesheets is that our CSS is in
one single document that can be modified once to apply the changes across all of our
HTML pages. The downside to this approach is that it takes an extra request from the
browser to retrieve that document, losing the performance benefit provided by put-
ting the CSS directly inside the HTML.

Listing 1.3 Applying external CSS to HTML

131.4 The cascade of CSS
1.4 The cascade of CSS
One fundamental feature of CSS that we need to understand is the cascade. When
CSS was created, it was developed around the concept of cascading, which allows styles
to overwrite or inherit from one another. This concept paved the way for multiple
stylesheets that compete over the presentation of the web page.

 For this reason, while inspecting an element with the browser’s developer tools, we
sometimes see multiple CSS values fighting to be the one rendered by the browser.
The browser decides which CSS property values to apply to an element through speci-
ficity. Specificity allows the browser (or the user agent) to determine which declara-
tions are relevant to the HTML and apply the styling to that element.

 One aspect in which specificity is calculated is the order in which stylesheets are
applied. When multiple stylesheets are applied, the styles in a later stylesheet will over-
ride styles provided by the preceding stylesheet. In other words, assuming that the same
selector is used, the last one declared wins. CSS has three different stylesheet origins:

 User-agent stylesheets
 Author stylesheets
 User stylesheets

1.4.1 User-agent stylesheets

The first origin is the browser’s default styles. When we opened the project, before we
added any styles to it, our elements didn’t all look the same. Our headers are bigger
and bolder than our text, for example. This formatting is defined by user-agent (UA)
stylesheets. These stylesheets have the lowest priority of the three types, and we find that
different browsers present HTML properties slightly differently.

 Most of the time, UA stylesheets set the font size, border styles, and some basic lay-
out for form elements such as the text input and progress bar, which can be useful if
the user stylesheet can’t be found or a file-loading error occurs. The UA stylesheet
provides some fallback styling, which makes the page more readable and maintains
visual differentiation between element types.

1.4.2 Author stylesheets

The stylesheets that we developers write are known as author stylesheets, which typically
have the second-highest priority in terms of the styles that the browser displays. When
we create a web page, the CSS we write (embedded, external, or inline) and apply to
our web pages consists of author stylesheets.

1.4.3 User stylesheets

A user who is accessing our web page can use their own stylesheet to override both
author and UA styles. This option can improve their experience, especially for dis-
abled users.

 Users may use their own stylesheets for a variety of reasons, such as to set a mini-
mum font size, choose a custom font, improve contrast, or increase the spacing between

14 CHAPTER 1 CSS introduction
elements. Any user can apply a user stylesheet to a web page. How these stylesheets are
applied to the web page depends on the browser, usually through browser settings or
a plugin.

 The user stylesheet is applied only for the user who added it, and only in the
browser in which they applied it. Whether the change is carried over from one device
to another depends on the browser itself and its ability to sync user settings and
installed plugins across multiple devices.

1.4.4 CSS reset

Default styles provided by the browser aren’t consistent. Each browser has its own
stylesheet. Default styles are different in Google Chrome from the way they are in
Apple’s Safari, for example. This difference can create some challenges if we want our
applications to look the same across all browsers.

 Luckily, two options are available: CSS resets and CSS normalizers (such as Nor-
malize.css; https://github.com/necolas/normalize.css). Although both can be used to
solve cross-browser styling problems, they work in radically different ways.

 By using a CSS reset, we undo the browser’s default styles; we’re telling the browser
we don’t want any defaults at all. Without any author styles applied, all elements,
regardless of what they are, look like plain text (figure 1.7).

Figure 1.7 CSS reset applied

https://github.com/necolas/normalize.css

151.4 The cascade of CSS
To apply a CSS reset to our project, first we create a reset stylesheet to add to our proj-
ect. In our project folder, we create a file called reset.css. Then we copy the reset
CSS into the file. Many reset options exist; one commonly used option is available at
https://meyerweb.com/eric/tools/css/reset.

 Finally, we need to link our stylesheet to our HTML. Because order matters, we
want to make sure to include the reset CSS before our author styles in our <head>. Our
HTML, therefore, will look like listing 1.4.

<head>
 ...
 <link rel="stylesheet" href="reset.css">
 <link rel="stylesheet" href="styles.css">
 </head>

The benefit of the CSS reset is that we have a blank slate to start from. As shown in fig-
ure 1.7, all our elements look like plain text now. The downside is that we need to
define basic styles for all elements, including adding bullets to lists and differentiating
header levels. Furthermore, each version of CSS reset will be slightly different, based
on the version and the developer who authored it.

 Our other option is using a normalizer. Instead of resetting the styles, a normalizer
specifically targets elements that have differences across browsers and applies rules to
standardize them.

1.4.5 Normalizer

Like a CSS reset, a normalizer styles things slightly differently depending on the ver-
sion and author. One commonly used CSS normalizer is available at https://necolas
.github.io/normalize.css. We can apply it to our project in much the same way that we
did the CSS reset code: create a file, copy the code into the file, and link it to our
HTML. Note that the same performance consideration holds true here.

Page-load performance
For readability, having the reset and our styles in separate files is a lot nicer than
having everything in one file. This approach isn’t ideal for page-load performance,
however.

In a production environment, we’d want to do one of the following things:

 Place the reset CSS at the beginning of the same file we have our own styles
in so that we load only one stylesheet. We could do this manually or as part
of a build process.

 Load the reset code from a content delivery network (CDN) before our own
styles. By loading it from a CDN, we increase the likelihood that our users will
have the code already cached on their machines.

Listing 1.4 Adding a CSS reset

Resets
stylesheet

Author
stylesheet

https://meyerweb.com/eric/tools/css/reset
https://necolas.github.io/normalize.css
https://necolas.github.io/normalize.css
https://necolas.github.io/normalize.css

16 CHAPTER 1 CSS introduction
 When the normalizer is applied (figure 1.8), our HTML looks the same as it did
originally, as most of the discrepancies it handles are on elements that aren’t being
used in this particular project. Depending on the browser we’re using, we may notice
a difference in the size of the <h1>s.

Figure 1.8 A normalizer applied to our project

171.5 Specificity in CSS
The good news is that UA stylesheet differences are far less problematic than they
were more than 10 years ago. Today, browsers are more consistent in styling, so using a
CSS reset or a normalizer is more a personal choice than a necessity.

 Some differences still exist, however. Whether or not we use a CSS reset or a nor-
malizer, we should be testing our code across a variety of devices and browsers.

1.4.6 The !important annotation

The !important annotation is one you may have seen in some stylesheets. Often
used as a last resort when all else fails, it’s a way to override the specificity and
declare that a particular value is the most important thing. With great power, how-
ever, comes great responsibility. The !important annotation was originally created
as an accessibility feature.

 Remember that we talked about users being able to apply their own styles to have a
better user experience? This annotation was created to help users define their own
styles without having to worry about specificity. Because it overrides any other styles, it
ensures that a user’s styles always have the highest importance and therefore are the
ones applied.

 Using !important is considered to be bad practice, so we should generally avoid
using it in our author stylesheets. Also, this annotation breaks the natural cascade of
the CSS and can make it harder to manage the stylesheet going forward.

1.5 Specificity in CSS
When multiple property values are being applied to an element, one will win over the
others. We determine the winner through a multistep process. We’ll ignore !important
(section 1.4.6) for the time being, as it breaks the normal flow; we’ll come back to it later.

 First, we look at where the value comes from. Anything explicitly defined in a rule
will override inherited values. In listings 1.5 and 1.6, for example, if we set the font
color to red on the <body> element, the elements inside <body> will have red text.

 The font color is inherited by child elements. If we specifically set a different color
on a paragraph inside the body, the inherited red value would be overridden by the
more specific blue value set on the paragraph. Therefore, that paragraph’s text color
would be blue.

<body>
 <h1>Example</h1>
 <p>My paragraph</p>
</body>

body { color: red }
p { color: blue }

Listing 1.5 Example of inheritance (HTML)

Listing 1.6 Example of inheritance (CSS)

Our header would
inherit the red color.

The paragraph’s color would be
blue, as set by the paragraph rule.

18 CHAPTER 1 CSS introduction
Not all property values will be inherited. Theme-related styles such as color and font
size will generally be inherited; layout considerations generally are not. This guideline
is a loose one, with definite exceptions, but it’s a good place to start. We’ll cover
exceptions on a case-by-case basis throughout the projects.

 If the property value isn’t being inherited, the browser looks at the type of selector
that was used and mathematically calculates the specificity value. We’ll get into more
detail about what each selector type is in section 1.6, but first let’s look at how the
math is applied.

 The browser looks at the selector, categorizes the types of selectors being used by
the rule, and applies the type value. Then it adds all the values and gets a final specific-
ity value. Figure 1.9 diagrams the process. The biggest number wins, so rule 1 in the
diagram would win over rule 2.

Specificity values by selector type are as follows:

 100—ID selectors
 10—Class selectors, attribute selectors, and pseudo-classes
 1—Type selectors and pseudo-elements
 0—Universal selectors

If we still have a tie, the browser looks at which stylesheet the style originated from. If
both values come from the same stylesheet, the one later in the document wins. If the
values come from different stylesheets, the order is as follows:

1 User stylesheet
2 Author stylesheets (in the order in which they’re being imported; the last

one wins)
3 UA stylesheet

We set !important to the side earlier. Now that we understand the normal flow, let’s
add it back into the mix. When a value has the !important annotation, the process is
short-circuited, and the value with the annotation automatically wins.

button[type="submit"]#save span { … }

Type

selector

1

Attribute

selector

10

ID

selector

100

Type

selector

1 = 112+ + +

= 12+ +

button[type="submit"] span { … }

Type

selector

1

Attribute

selector

10

Type

selector

1

Figure 1.9
Calculating
specificity

191.6 CSS selectors
 If both values have the !important annotation, the browser follows the normal
flow. Figure 1.10 shows the flow through the stylesheets, including !important
declarations.

We’ve established that the type of selector will affect specificity. Let’s take a closer look
at the selectors and use them in our project.

1.6 CSS selectors
The selector sets what HTML elements we want to target. In CSS, we have seven ways
to target the HTML elements we want to style, as discussed in the following sections.

1.6.1 Basic selectors

The most common method of applying styles to HTML elements is selecting them
based on name, ID, or class name. These are used most often because of their one-to-
one mapping to the HTML element itself or attributes set on the element.

TYPE SELECTOR

The type selector targets the HTML element by name. The benefit of using the type
selector is that when we read through our CSS, we can quickly work out which HTML
elements would be affected if we made changes in the rule. This selector doesn’t
require us to add any particular markup to the HTML to target the element.

 Let’s use a type selector to target all our headings (<h1> through <h6>) and change
their color to crimson. Our CSS would be h1, h2, h3, h4, h5, h6 { color: crimson; }.
Figure 1.11 shows that our headers have changed colors.

CLASS SELECTORS

We can use class selectors on as many different elements as we want. By applying a
class name to elements, we’re grouping multiple HTML elements so that when we
apply styles, they’ll roll out to any element with that class name.

 To add classes to HTML, we use the class attribute. Within the class attribute, we
can add as many values (or classes) as we want, separating each with a space.

User stylesheet with !important declaration

Author stylesheet with !important declaration

User stylesheet

Author stylesheet

User agent stylesheet
Figure 1.10 CSS order
of precedence

20 CHAPTER 1 CSS introduction
Figure 1.11 Header
color change

211.6 CSS selectors
We have many ways and methods to write our class names, such as Block, Element,
Modifier (BEM) methodology (https://en.bem.info) and Scalable and Modular Archi-
tecture for CSS (SMACSS; http://smacss.com), which are style guides for writing con-
sistent stylesheets.

 The main point is to write class names that make sense to everyone. Adding the
class name text to paragraph elements, for example, would be highly confusing.
Other elements, such as our headings, can also be thought of as text, so it may not be
clear which specific element we’re referring to.

 Applying class names based on a specific style, such as a color, can also be dan-
gerous. Giving an element the class name blue might work immediately, but if the
design changes and the color applied is now red, our class name will no longer
make sense.

 In our HTML, we find that some of our headings have a class of small-heading.
We’re going to create a rule that selects small-heading and changes the text of the
elements to uppercase.

 To select the small-heading class name, in the CSS we first type dot (.) followed
by the class name small-heading. Then our styles go into curly braces as follows:
.small-heading { text-transform: uppercase }. Figure 1.12 shows our uppercased
headings. Notice that the other headings aren’t affected—only those to which the
class was applied.

Does not have a class of small-heading

Has a class of small-heading

Figure 1.12 Class selector applied to elements that have the class name small-heading

https://en.bem.info
http://smacss.com

22 CHAPTER 1 CSS introduction
ID SELECTOR

In HTML, IDs are unique. Any given ID should be used only once on a web page. If an
ID is repeated, our code is considered to be invalid HTML.

 Generally we should avoid using ID selectors; because they need to be unique in
the HTML, rules constructed against the ID aren’t easy to reuse. Furthermore, an ID
selector is one of the most specific selectors available, making the styles applied with
an ID selector difficult to override. Unless the uniqueness of the element is key, avoid
using ID attributes.

 Our example article contains a blockquote with an ID attribute containing the
value quote-by-author. In our CSS, to select the blockquote we use a hash (#), fol-
lowed immediately by the ID we want to target. Then we have curly braces, inside
which we place our declarations, as shown in the following listing.

#quote-by-author {
 background: lightgrey;
 padding: 10px;
 line-height: 1.75;
}

Figure 1.13 shows the code applied to our project.

1.6.2 Combinators

Another way to write CSS is through combinators, which allow for more complex CSS
without overusing class or ID names. There are four combinators:

 Descendant combinator (space)
 Child combinator (>)

Listing 1.7 ID selector

Figure 1.13 Styles applied by #quote-by-author

231.6 CSS selectors
 Adjacent sibling combinator (+)
 General sibling combinator (~)

One important concept to understand is the relationships between elements. In the
next couple of examples, we’ll look at how we can use the relationships between ele-
ments to target different HTML elements to style our article. Figure 1.14 introduces
the types of relationships we’re going to examine.

DESCENDANT COMBINATOR (SPACE)
Selectors that use descendant combinators select all the HTML elements within a par-
ent. A selector that uses a descendant combinator is made up of three parts. The first
part is the parent, which in this case is the article element. The parent is followed by a
space and then by any element we want to select. Figure 1.15 diagrams the syntax.

Article <article>

Header <header>

<h1>Title of our article (heading 1)</h1>

<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit...</p>

<p>Post on May 16 by Lisa</p>

Ordered List

List item 1

List Item 2

Unordered List

Nested Item 1

Nested Item 2

List item 3

Parent of

Child of

Siblings

Ancestor of

Descendants of

Adjacent
siblings

Figure 1.14 The relationships between elements in HTML

article p line-height: 2

Parent

Space

Descendant

p elements

Declaration

{ }
Figure 1.15 An example of a
selector using a descendant
combinator

24 CHAPTER 1 CSS introduction
In this example, the browser would find any <article> element, target all descendant
paragraphs (<p>) in the parent <article> element, and make the text double-spaced.
When this selector is applied, our article looks like figure 1.16.

CHILD COMBINATOR (>)
The child combinator allows us to target the immediate child elements of a particular
selector. This combinator is different from a selector that uses a descendant combinator
because in the case of a child combinator, the targeted element must be an immediate
child. A selector that uses a descendant combinator can select any descendent (child,
grandchild, great-grandchild, and so on).

 In our project, we’ll style the list items in the article. As listing 1.8 shows, we have
an unordered list () with list items (). That first child element has its own
nested items, which would be grandchildren and great-grandchildren.

<ul class="list">
 List item 1

 Nested item 1
 Nested item 2

 List item 2
 List item 3
 List item 4

Listing 1.8 HTML list items

Article

Paragraph sibling of article

Paragraph child of article

Figure 1.16 Child paragraphs are double-spaced

Parent item
(.list)

Children
of .list

Grandchild of .list

Great-
grandchildren
of .list

251.6 CSS selectors
We’re going to style only the first-level list items—or immediate children of the
with a class attribute value containing list—in a crimson color, without affecting
the nested list items (the great-grandchildren). So the browser will find elements con-
taining the list class, target only their immediate children that are list items (),
and change color to crimson. We’ll use the following CSS:

.list > li { color: crimson; }

With this CSS, the entire list becomes crimson, not just the top-level list items. The
color is applied to the element and all of its descendants. Even though we select
the immediate child, because color is inherited, the children also turn crimson.

 To select only the top-level elements, we therefore need to add a second rule

.list > li ul { color: initial }

which returns the nested list items to their initial color, as shown in figure 1.17.

We can perform this operation in reverse and select the parent of the child element,
right? The short answer is no, as the following example wouldn’t work: article < p
{ color: blue; }. If we want to select the parent or ancestor of an element, we need
to use the has() pseudo-class—article:has(p) { color: blue; }—covered in sec-
tion 1.6.3.

ADJACENT SIBLING COMBINATOR (+)
When we need to style an element that’s at the same level as another, the way your
brother or sister is on the same level of the family tree as you, we can use the adjacent
sibling combinator. If we want to target the element that’s directly after another, we
can use a selector that uses an adjacent sibling combinator.

 In listing 1.9, the browser will find any uses of the <header> element, target the
first paragraph (<p>) immediately after (or adjacent to) the <header> element, and
change the font-size to 1.5rem and the font-weight to bold. Figure 1.18 shows the
code applied to our article.

Figure 1.17 Child combinator applied to list items

26 CHAPTER 1 CSS introduction
header + p {
 font-size: 1.25rem;
 font-weight: bold;
}

This approach could be useful if we’re trying to style the first element differently from
the others to make it stand out. We might see this effect in a newspaper. The first para-
graph of an article might be made to look more prominent than the rest to catch our
attention.

 Another use case is for error handling in forms. Adjacent sibling combinators
allow us to display an error message to the user immediately following an invalid value
in a form control.

GENERAL SIBLING COMBINATOR (~)
The general sibling combinator is more open-ended than the other methods, as it allows
us to target all elements that are siblings after the element targeted by the selector.

 In our example, we’ll style all images that come after the element <header>. Notice
that we have three placeholder images. The first image is small (it could be a logo or
an author photo) and resides above the <header>. We don’t want to style it. The other
two images are farther down in the article. We want to apply a border around them to
keep the color theme consistent with the rest of the article.

Listing 1.9 Adjacent sibling combinator

Header

Adjacent

paragraph

Sibling paragraphs

(but adjacent)not

Figure 1.18 Styling the paragraph immediately after the header

271.6 CSS selectors
 Our rule will be as follows: header ~ img { border: 4px solid crimson; }. The
browser will find the <header> element; target all the sibling images () after that
element; and add a border that’s 4px in thickness, that’s a solid line (as opposed to a
dotted, dashed, or double line), and that’s colored crimson. We can see the code
applied to our article in figure 1.19.

1.6.3 Pseudo-class and pseudo-element selectors

CSS has selectors called pseudo-classes and pseudo-elements. You may wonder where the
names come from. Pseudo means “not genuine, false, or pretend.” This definition
makes sense because, technically, we’re targeting a state or parts of an element that
may not exist yet. We’re simply pretending.

Figure 1.19 General sibling combinator targeting sibling images of header

28 CHAPTER 1 CSS introduction
 Not all pseudo-elements and pseudo-classes work on all HTML elements.
Throughout this book, we’ll look at where we can use pseudo-classes and with which
HTML elements.

PSEUDO-CLASS

A pseudo-class is added to a selector to target a specific state of the element. Pseudo-
classes are especially useful for elements that the user will interact with, such as links,
buttons, and form fields. Pseudo-classes use a single colon (:) followed by the state of
the element.

 Our article contains a few links. We haven’t styled the links in any way; therefore,
their styles will come from the UA stylesheet. Most browsers underline links and dis-
play them in a color based on whether the link was previously visited—that is, whether
the URL appears in the browser’s history.

 With links, we have a few states to consider. The most common are

 link—An anchor tag (<a>) contains an href attribute and a URL that doesn’t
appear in the user’s browser history.

 visited—An anchor (<a>) element contains an href attribute and a URL that
does appear in the user’s browser history.

 hover—The user has the cursor over the element but hasn’t clicked it.
 active—The user is clicking and holding the element.
 focus—A focused element is an element that receives keyboard events by default.

When a user clicks a focusable element, it automatically gains focus (unless
some JavaScript alters this behavior). Using the keyboard to navigate among
form fields, links, and buttons also changes the element that is in focus.

 focus-within—When focus-within is applied to a parent element and the
child of the parent has focus, focus-within styles will be applied.

 focus-visible—When elements are selected using focus-visible, styles are
applied only when focus has been gained via keyboard navigation or the user is
interacting with the element via the keyboard.

We mentioned :has() earlier. Also a pseudo-class but not specific to links, :has()
applies when the element has at least one descendent that meets the selector specified
inside the parentheses. When we wrote this book, :has() had not yet been imple-
mented in all major browsers.

 In our current article project, we’ll create an a:link rule to change the color of anchor
tags that contain an href attribute and haven’t been visited to light blue, using the hex
color code #1D70B8. The :visited state should be different from the :link state because
it should indicate to the user that they haven’t visited that page before (that is, the URL
isn’t present in their browser history). Often, websites don’t differentiate between the
two states, but discerning them can provide a better user experience. In our example,
we’ll change the :visited state to a purple color, using the hex code value #4C2C92.

 Then we’ll handle the :hover state. This state doesn’t apply to mobile users, as
there’s no way to recognize a user hovering over a link on a mobile device. In our

291.6 CSS selectors
article, we’ll change the :hover state text color to a dark blue, using the hex code
value #003078.

 Finally, we’ll handle the :focus state. We can use this state on any focusable ele-
ments. Links, buttons, and form fields are focusable by default (unless disabled),
but we can make any element focusable by using a positive-numbered tabindex, in
which case focus-based styles could be applied. The :focus state is shown when the
user clicks or taps an element. When the element is focused, we add a 1-pixel crim-
son outline to the element. All put together, our link rules appear as shown in the
following listing.

a:link {
 color: #1D70B8;
}
a:visited {
 color: #4C2C92;
}
a:hover {
 color: #003078;
}
a:focus {
 outline: solid 1px crimson;
}

Note that the order in which these rulesets are written matters, as they have the same
level of specificity. The condition that’s farthest down in the stylesheet will win if mul-
tiple conditions apply. In our example, if a link has been visited but is being hovered
over, the link will take the color assigned to it by the a:hover {} rule because it comes
after the a:visited {} rule in our stylesheet.

 Although developer tools vary in features and how those features are accessed, in
most browsers, we can view the different element states by going into our browser,
right-clicking, and choosing Inspect from the contextual menu. Typically, we get a
view of the HTML with the CSS on the side. By clicking the :hov button in the Styles
section, we see a panel that may say something like force element state, and then we can
toggle different pseudo-classes on and off. Figure 1.20 shows the Chrome developer
tools with the :hov panel open.

Listing 1.10 Styling links using pseudo-elements

Developer tools in browsers
All major browsers have developer tools that allow developers to modify, debug, and
optimize websites. For this book, we will use developer tools to examine our code.
We will also examine the compiled code in the browser tools to understand how the
browser is processing our CSS. For more information about developer tools and how
to access them, see the appendix.

30 CHAPTER 1 CSS introduction
PSEUDO-ELEMENT

Pseudo-elements use a double colon (::). The purpose of pseudo-elements is to allow us
to style a specific part of an element. Sometimes, pseudo-elements are written with a
single colon, although using two is strongly recommended. The ability to ignore the
second colon is for backward compatibility; the two-colon syntax was introduced as
part of CSS3 to better differentiate between pseudo-classes and pseudo-elements.

 Using the ::first-letter pseudo-element, we can target the first letter of a para-
graph rather than wrap the letter in something like a span element, which would
break the word apart and clutter our HTML. This approach allows us to create com-
plex CSS without complicating the HTML.

 In our article, we used the adjacent sibling combinator to make our first paragraph
bold and in a larger font size than the rest. Now we’re going to change the color of the
first letter of that first paragraph and change the font style to italic.

 First, we target the header element; then, we target the first letter (::first-letter)
of the paragraph (<p>). With our selector created, we add our declarations. Our CSS
will look like the following listing.

header + p::first-letter {
 color: crimson;
 font-style: italic;
}

When this code is applied, the first letter is red and italicized (figure 1.21).

Listing 1.11 Selecting the first letter

Figure 1.20 Viewing different element states by using the browser’s developer tools

311.6 CSS selectors
1.6.4 Attribute value selectors

Commonly used for styling links and form elements, the attribute selector styles
HTML elements that include a specified attribute. The attribute value selector looks
for a specific attribute with the same value.

 In our article, we have some content in Italian. The language of the paragraph is
specified by the lang attribute, as shown in the following listing.

<p lang="it">Questo paragrafo è definito in italiano.</p>

To hint to users that this content is in Italian, we’ll use CSS to add the Italian-flag
emoji. The browser will find the language (lang) attribute with the value of Italian
(it) and then add an Italian-flag emoji before it. Listing 1.13 uses a ::before pseudo-
element as well. We can use multiple types of selectors to target the exact part of the
HTML we want to style.

[lang="it"]::before {
 content: " "
}

When this code is applied, our Italian content has an emoji flag before it (figure 1.22).

Listing 1.12 Specifying Italian content

Listing 1.13 Using multiple types of selectors to add a flag before Italian content

Emoji differences across devices and applications
If you’re coding along with this chapter, your output may differ from figure 1.22. Emo-
jis present differently depending on the device, operating system, and application
being used. Sites such as Emojipedia (https://emojipedia.org) show how a particular
emoji would look across applications and devices. You can find details on the Italian
flag at https://emojipedia.org/flag-italy.

Figure 1.21 Pseudo-element targeting the first letter of the first paragraph
immediately after the header

https://emojipedia.org
https://emojipedia.org/flag-italy

32 CHAPTER 1 CSS introduction
1.6.5 Universal selector

The broadest type of selector is the universal selector, which uses the asterisk symbol
(*). Any declarations made with the universal selector will be applied to all the HTML
elements.

 Sometimes, this selector can be used to reset CSS, but in terms of specificity, it has
a specificity value of 0, which means that it can be overridden easily if necessary. This
is important because it targets every element. The universal selector can also be used
to target any and all descendants of a particular selector, as in .foo * { background:
yellow; }, in which any and all descendants of an element with the class foo would be
given a yellow background.

 In our example project, we’ll use a universal selector (*) to set the font-family to
sans-serif so that the font will be sans-serif consistently throughout the article, as
shown in the following listing.

* { font-family: sans-serif; }

When this code is applied, all the text in our document uses a sans-serif font regard-
less of element type (figure 1.23).

1.7 Different ways to write CSS
CSS allows flexibility in the way we write our rules and formatting. In this section, we’ll
look at shorthand properties (which we will keep coming back to throughout the
book) and ways to format CSS.

1.7.1 Shorthand

Shorthand replaces writing multiple CSS properties with merging all the values into
one property. We can do this with a few properties such as padding, margin, and ani-
mation, all of which are covered at various points throughout this book. The benefit
of writing shorthand is that it reduces the size of our stylesheet, which improves read-
ability, performance, and memory use.

Listing 1.14 Making our font-family consistent

Figure 1.22 Italian flag applied by the attribute selector and a pseudo-element

331.7 Different ways to write CSS
Each shorthand property takes different values. Let’s explore the one we used in our
project. We have a blockquote in our article. When we styled it, we used the padding
property and declared our padding as follows: padding: 10px. In doing so, we used
shorthand. Instead, we could have written the code as shown in the following listing.

 padding-top: 10px;
 padding-right: 10px;
 padding-bottom: 10px;
 padding-left: 10px;

It’s completely fine to write each declaration separately, but doing that is expensive in
terms of computing performance, especially because all the property values are the
same. Instead, we can use the padding property and put all four values on the same
line. The order is top, right, bottom, and left. We can also combine right/left and
top/bottom values if they’re identical, as depicted in figure 1.24.

Listing 1.15 Padding expanded

Figure 1.23 Using the universal selector to change the font type on all elements

34 CHAPTER 1 CSS introduction
As shown in the figure, we can declare all four values to define the top, right, bottom,
and left values. But if we say that right and left are the same and top and bottom
are different, we can specify three values, in the order top, right & left, bottom.

 If two values are declared, we’re saying the first value is what the top and bottom
should be; then the second value sets the right and left. Finally, if only one value is
declared, the value sets all four sides.

1.7.2 Formatting

We can write CSS in a few ways, and often when we view other people’s code, we see
different formats. This section shows a few examples.

 The multiline format shown in listing 1.16 is likely the most popular choice for for-
matting. Each declaration is on its own line and indented by means of tabs or spaces.

padding: 5px;

5px

5px

5px

5px

padding: 5px 10px;

10px

5px

5px

10px

padding: 5px 10px 2px;

10px

2px

5px

10px

padding: 5px 10px 2px 7px;

10px

2px

5px

7px

Top

Right and left

Bottom Top

Left

Bottom

Right

Right and left
Top and bottom

Figure 1.24 Padding shorthand property explained

35Summary
h1 {
 color: red;
 font-size: 16px;
 font-family: sans-serif
}

A variation on the multiline format, shown in listing 1.17, places the opening curly
brace on its own line. This example is something we might see in the PHP language. It
could be considered unnecessary to place the opening brace on its own line.

h1
{
 color: red;
 font-size: 16px;
 font-family: sans-serif
}

The single-line format shown in listing 1.18 makes a lot of sense; it’s compact, and we
can scan a file knowing that the first part is the selector. The downside is that it can be
difficult to read if a rule contains many declarations.

h1 { color: red; font-size: 16px; font-family: sans-serif }

All these options have positives and negatives, but the projects in this book use a com-
bination of options one and three. The main thing to know is that there’s no right or
wrong method; the choice generally comes down to what works best for you and/or
your team. As long as the code is easy to understand, that’s all that matters.

 Those with an eagle eye will notice that in listings 1.16, 1.17, and 1.18, there’s no
semicolon (;) at the end of the last declaration of the rules. This semicolon is
optional. One of the best aspects of CSS is that we can write it in the way that’s most
comfortable for us.

Summary
 CSS is a well-established coding language, and each part of CSS is made up of

modules.
 Modules replaced large releases such as CSS3.
 Inline CSS can take the highest priority and has good performance, but it’s

repetitive and hard to maintain.
 External CSS keeps our CSS separate from our HTML, maintaining SoC.
 Along with our own CSS, the browser applies default styling.

Listing 1.16 Multiline format

Listing 1.17 A variation on multiline format

Listing 1.18 Single-line format

36 CHAPTER 1 CSS introduction
 The user may also apply their own CSS, which can override the author and UA
stylesheets.

 Using !important is considered to be bad practice.
 A CSS rule consists of a selector and one or more declarations.
 We can create rules for many types of selectors, and each rule can have its own

level of specificity.

Designing a layout
using CSS Grid
Now that we have a basic understanding of how CSS works, we can begin explor-
ing our options for laying out HTML content. In this chapter, we’ll focus on lay-
out with grids.

This chapter covers
 Exploring grid tracks and arranging our grids

 Using the minmax and repeat functions in
CSS Grid

 Working with the fraction unit, which is unique
to CSS Grid

 Creating template areas and placing items
in the areas

 Considering accessibility when using grids

 Creating gutters between columns and rows
within grids
37

38 CHAPTER 2 Designing a layout using CSS Grid
2.1 CSS Grid
A grid, in this sense, is a network of lines that cross to form a series of squares or rect-
angles. Now supported by all major browsers, CSS Grid has become a popular layout
technique.

 Essentially, a grid is made up of columns and rows. We’ll create our grid and then
assign positions to our items much as we place boats on a grid when playing the board
game Battleship.

 Although grid layouts are sometimes compared with tables, they have different
uses and fulfill different needs. Grids are for layouts, whereas tables are for tabular
data. If the content being styled is appropriate for a Microsoft Excel sheet, it’s tabular
data and should be placed in a table.

 In the mid-2000s, we used tables for layouts, and sometimes we still need to.
(Emails, for example, sometimes require the use of tables for layout, as they support
only a subset of CSS styles.) On the web, however, this technique is considered to be
bad practice because it leads to poor accessibility and lack of semantics. Now we can
use a grid instead.

 CSS Grid empowers us to be creative, to produce a range of layouts, and to adapt
those layouts for different conditions in conjunction with media queries. We’ll use a
grid to style our project, and by the end of the chapter, our layout will look like fig-
ure 2.1.

Our starting HTML, in the chapter-02 folder of the GitHub repository (https://
github.com/michaelgearon/Tiny-CSS-Projects) or in CodePen (https://codepen.io/
michaelgearon/pen/eYRKXqv), looks like the following listing.

Figure 2.1 Final output

https://github.com/michaelgearon/Tiny-CSS-Projects
https://github.com/michaelgearon/Tiny-CSS-Projects
https://github.com/michaelgearon/Tiny-CSS-Projects
https://codepen.io/michaelgearon/pen/eYRKXqv
https://codepen.io/michaelgearon/pen/eYRKXqv
https://codepen.io/michaelgearon/pen/eYRKXqv

392.1 CSS Grid

w

<body>
 <main>
 <header>

 <h1>Sonnets by William Shakespeare</h1>
 </header>
 <article>
 <h2>
 Sonnet 1

<small>by William Shakespeare</small>
 </h2>
 <p>
 From fairest creatures we desire increase,
 ...
 </p>
 </article>
 <aside>
 <section>

 <h3>Sonnet 2</h3>
 <p>
 When forty winters shall besiege thy brow,

And dig deep trenches in thy beauty's field, ...
 </p>
 Read more of Sonnet 2
 </section>
 <section>

 <h3>Sonnet 3</h3>
 <p>
 Look in thy glass and tell the face thou viewest,

Now is the time that face should form another, ...
 </p>
 Read more of Sonnet 3
 </section>
 </aside>
 <section class="author-details">
 <h3>
 <small>About the Author</small>

William Shakespeare
 </h3>
 <p>English playwright, poet, ...</p>
 </section>
 <section class="plays">

 <h3>Checkout out his plays:</h3>

 All's Well That Ends Well
 ...

 </section>
 <footer>
 <p>Want to read more ...</p>

Listing 2.1 Project HTML

The container for
our project

The child
items

ithin our
container

40 CHAPTER 2 Designing a layout using CSS Grid
 </footer>
 </main>
</body>

We also have some starting CSS (listing 2.2) to guide us as we start to place our HTML
elements in a grid format. We won’t worry about these preset styles (such as margin,
padding, colors, typography, and borders) in this chapter. Those concepts are covered
in other parts of the book because we want to focus on the layout for this project.

body {
 margin: 0;
 padding: 0;
 background: #fff9e8;
 min-height: 100vh;
 font-family: sans-serif;
 color: #151412
}
main { margin: 24px }
img {
 float: left;
 margin: 12px 12px 12px 0
}
main > * {
 border: solid 1px #bfbfbf;
 padding: 12px;
}
main > *, section { display: flow-root }
p, ul { line-height: 1.5 }
article p span { display: block; }
article p span:last-of-type,
article p span:nth-last-child(2) {
 text-indent: 16px
}
.plays ul { margin-left: 162px }

We change the font from serif to sans-serif, and we increase the margin between
the boundary of the browser window and the container by using margin. We also float
images to the left and adjust the line heights, typography, and padding.

 Note that we added a border and some padding to the immediate children of the
main element to help us define our layout. We’ll remove those elements later in the
project. Our starting point looks like figure 2.2.

 CSS grids are a way to place items on a 2D layout: horizontal (x-axis) and vertical
(y-axis). By contrast, the flexbox (covered in chapter 6) is single-axis-oriented. It oper-
ates only on the x- or y-axis, depending on its configuration.

Listing 2.2 Starting CSS

The background covers
the whole page even
when the window is
longer than the content.

Allows text to
wrap around
the image

Asterisk and child combinator
selects any and all immediate
children of main.

border points out sections
to be positioned via a grid.

Prevents images
from bleeding out
of their containers

Indents the
last two lines
of the sonnet

Indents the list; otherwise,
bullets are right up
against the image.

412.1 CSS Grid
We can use both CSS Flexbox and CSS Grid to align and lay out items on a web page.
But as we go through the chapter, we’ll find that one of the benefits of Grid over Flex-
box is that it allows us to divide a page into regions and create complex layouts with
relative ease.

Figure 2.2 Starting point

42 CHAPTER 2 Designing a layout using CSS Grid
 First, we’ll set up our grid. Then we’ll look at ways to alter how our grid behaves
based on window size.

2.2 Display grid
The first part of arranging a grid is setting the display value to grid on the parent
container item. When creating a grid layout, we can use one of two values:

 grid—Used when we want the browser to display the grid in a block-level box.
The grid takes the full width of the container and sets itself on a new line.

 inline-grid—Used when we want the grid to be an inline-level box. The grid
sets itself inline with the previous content, much like a .

We’ll use the value grid for our layout, as shown in listing 2.3.

main {
 display: grid;
}

If we preview this code in the browser, we notice that nothing has changed visually
because the browser by default displays the direct child items in one column. Then
the browser generates enough rows for all of the child elements.

 Using the developer tools in our browser (figure 2.3), we see that, programmati-
cally, the grid has been created even though the layout has not changed visually. To
view the underlying grid in most browsers, we can right-click the web page and choose
Inspect from the contextual menu. In the Inspect window in Mozilla Firefox, when we
select the parent container, we see two things to indicate the layout is now a grid:

 Purple lines around each direct child item.
 In the HTML, an icon called grid in the <main> element. When we click the

grid icon next to <main>, the layout panel shows us our grid structure.

We can follow similar steps in Google Chrome or Apple’s Safari.

Difference between block-level and inline-level box
In HTML, every element is a box. A block-level box says that an element’s box should
use the entire horizontal space of its parent element, therefore preventing any other
element from being on the same horizontal line by default. By contrast, inline ele-
ments can allow other inline elements to be on the same horizontal line, depending
on the remaining space.

Listing 2.3 Setting the display to grid

432.3 Grid tracks and lines
2.3 Grid tracks and lines
When the CSS Grid Layout Module was introduced, it brought in new terminology to
describe laying out items. The first of those terms is grid lines. Lines run horizontally
and vertically, and they’re numbered starting from 1 in the top-left corner. On the
opposite side to the positive numbers are the negative numbers.

The spaces between the grid lines are known as grid tracks, and they’re made up of
columns and rows. Columns go from left to right, and rows go from top to bottom.
A track is the space between any two lines on a grid. In figure 2.4, the highlighted
track is the first row track in our grid. A column track would be the space between
two vertical lines.

Writing mode and script direction
The number assigned to each line depends on the writing mode (whether lines of text
are laid out horizontally or vertically) and the script direction of the component. If the
writing mode is English, for example, the first line on the left is numbered 1. If the
language direction is set to right-to-left because of the language, for example, Arabic
(which is written from right to left), line 1 would be the farthest line to the right.

Grid structure

Row number

Column number

Figure 2.3 Development tools in Firefox

44 CHAPTER 2 Designing a layout using CSS Grid
Within each track are grid cells. A cell is the intersection of a grid row and a grid column.
 We can use the grid-template-columns and grid-template-rows properties to

lay out our grid. These properties specify, as a space-separated track list, the line
names and track sizing functions of the grid. The grid-template-columns property
specifies the track list for the grid’s columns, and grid-template-rows specifies the
track list for the grid’s rows.

 Before we set our columns, we need to understand a few concepts that are specific
to CSS Grid.

2.3.1 Repeating columns

To save repetition in your code, you can use the repeat() function to specify how
many columns or rows you need.

DEFINITION A function is a self-contained, reusable piece of code that has a
specific role. Functions exist in other programming languages, such as Java-
Script. Sometimes, we can pass one or more values to the function; these val-
ues are referred to as parameters. To pass values to a function, we place them
in parentheses. We can’t create our own functions in CSS; instead, we use the
built-in functions that CSS offers.

Cell

Cell

Gap

Grid

1

2

3

4

Line numbers

1 2 3 4 5

-1

-2

-3

-4

-1-2-3-4-5

Track

(column)

Track

(row)

Figure 2.4 Grid structure based on English as the writing mode, with the direction set to
left-to-right

452.3 Grid tracks and lines
The repeat() function needs two values that are comma-separated. The first value
indicates how many columns or rows to create. The second value is the sizing of each
column or row.

 For our project, we’ll specify that we want two columns, and for the sizing of each
column, we’ll use the minmax() function. Our column definition, therefore, will be
grid-template-columns: repeat(2, minmax(auto, 1fr)) 250px;. If we were defin-
ing the height of our rows, we’d use repeat() with grid-template-rows.

 This declaration produces three columns, two of equal width using the fraction
unit and one of 250 pixels. Let’s look at this declaration a bit further. Notice that
inside the repeat() function, we use the minmax() function.

2.3.2 The minmax() function

The minmax(min, max) function is made up of two arguments: the minimum and max-
imum range of the grid track. The World Wide Web Consortium (W3C) specification
states that the minmax function “defines a size range greater than or equal to min and
less than or equal to max” (https://www.w3.org/TR/css-grid-2).

NOTE To make the function valid, the min value (the first argument) needs
to be smaller than the max value. Otherwise, the browser ignores max, and the
function relies only on the min value.

For our project, we set the min value to auto and the max value to 2. Let’s look at what
auto means.

2.3.3 The auto keyword

The auto keyword can be used for either the minimum or maximum value within the
function. When the keyword auto is used for the maximum value, it’s treated the same
as the max-content keyword. The row’s or column’s dimensions will be equal to the
amount of room that the content within the row or column requires.

 Although we don’t use it in our project, a common use case for the auto keyword is
making layouts that include fixed headers and footers. When we assign overflow to
the area for which auto was set, the area shrinks and grows with the window size, as
shown in figure 2.5.

 For our use case, in the statement grid-template-columns: repeat(2, min-
max(auto, 1fr)) 250px;, the auto keyword dictates that for our first two columns, the
column should be, at minimum, as wide as the element it contains. Let’s take a look at
the flexible length unit (fr) used to set our maximum width.

2.3.4 The fractions (fr) unit

The fractions (fr) unit was introduced in the CSS Grid Layout Module. The fr unit,
which is unique to Grid, tells the browser how much room an HTML element should
have compared with other elements by distributing the leftover space after the mini-
mums have been applied. CSS distributes the available space equally among the fr

https://www.w3.org/TR/css-grid-2

46 CHAPTER 2 Designing a layout using CSS Grid
units, so the value of 1fr is equal to the available space divided by the total number of
fr units specified.

 Let’s explore what a fraction is through the tasty cake diagrams shown in figure 2.6.
(Sorry if this figure makes you crave a slice of cake.)

 If you had a whole cake, it would equal 100%. From a CSS perspective, if we
decided to eat all the cake, that would be 1 fraction. In our CSS, that would be the
same as grid-template-columns: 1fr, which would be 100% of the column.

 But we’re friendly, so we decide to give some of our cake to four friends. We need
to determine how many slices of our cake each person is going to have.

 If we’re fair, we can say that our cake can be divided into four equal slices. In our
CSS, this would be the same as grid-template-columns: 1fr 1fr 1fr 1fr. We’re tell-
ing the browser to give each HTML element an equal slice of the whole thing.

 But what if we decided to be sneaky and keep a larger slice for ourselves? After all,
we baked the cake. We decide to take half of the cake for ourselves and divide the

Header

Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Cras auctor dignissim varius.

Curabitur quis egestas diam, eget egestas

eros. Proin dictum, metus sed rutrum

placerat, nibh lorem tincidunt lacus, a cursus

sapien metus eget mi. Aliquam tortor sem,

sodales sed nisi eu, gravida pulvinar odio.

Maecenas malesuada sem a egestas

cursus. Curabitur ornare, lacus eget fringilla

mattis, diam nunc blandit metus, non finibus

lectus dolor nec urna. Proin id ligula sit amet

magna molestie semper. Aliquam tempor

neque ut tempor volutpat. Etiam ac tempor

lorem.

Footer

Header

Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Cras auctor dignissim

varius. Curabitur quis egestas diam, eget

egestas eros. Proin dictum, metus sed

rutrum placerat, nibh lorem tincidunt lacus,

a cursus sapien metus eget mi. Aliquam

tortor sem, sodales sed nisi eu, gravida

pulvinar odio. Maecenas malesuada sem

a egestas cursus. Curabitur ornare, lacus

Footer

Header

Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Cras auctor dignissim varius.

Curabitur quis egestas diam, eget egestas

eros. Proin dictum, metus sed rutrum

placerat, nibh lorem tincidunt lacus, a cursus

sapien metus eget mi. Aliquam tortor sem,

sodales sed nisi eu, gravida pulvinar odio.

Maecenas malesuada sem a egestas

cursus. Curabitur ornare, lacus eget fringilla

mattis, diam nunc blandit metus, non finibus

lectus dolor nec urna. Proin id ligula sit amet

magna molestie semper. Aliquam tempor

neque ut tempor volutpat. Etiam ac tempor

lorem.

Footer

Window

Header

Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Cras auctor dignissim

varius. Curabitur quis egestas diam, eget

egestas eros. Proin dictum, metus sed

rutrum placerat, nibh lorem tincidunt lacus,

a cursus sapien metus eget mi. Aliquam

tortor sem, sodales sed nisi eu, gravida

pulvinar odio. Maecenas malesuada sem

a egestas cursus. Curabitur ornare, lacus

Footer

Header

Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Cras auctor dignissim varius.

Curabitur quis egestas diam, eget egestas

eros. Proin dictum, metus sed rutrum

placerat, nibh lorem tincidunt lacus, a cursus

sapien metus eget mi. Aliquam tortor sem,

sodales sed nisi eu, gravida pulvinar odio.

Maecenas malesuada sem a egestas

cursus. Curabitur ornare, lacus eget fringilla

mattis, diam nunc blandit metus, non finibus

lectus dolor nec urna. Proin id ligula sit amet

magna molestie semper. Aliquam tempor

neque ut tempor volutpat. Etiam ac tempor

lorem.

Footer

div.grid {
display: grid;
grid-template-rows: 250px auto 250px;

}

div.grid {
display: grid;
grid-template-rows: 250px auto 250px;
eight: 100vh;h

}

main {
overflow: auto

}

Main

Header and footer stay fixed to the top and bottom of the window.

Figure 2.5 Examples of using the auto keyword

472.3 Grid tracks and lines
remaining half into three slices. To do this, we need six fractions: three fractions for
our 50% of the cake and then one fraction three times to divide the other 50% of
the cake.

 Our CSS would be grid-template-columns: 3fr 1fr 1fr 1fr. So we’re saying that
there are six fractions total; the first column gets three of them (or 50% of the total),
and then the remaining 50% should be divided equally among the other three col-
umns. We can use the fr unit with the repeat() function to make this value easier to
read, which would be grid-template-columns: 3fr repeat(3, 1fr).

 For our project we’ll create our grid lines for the columns by adding the code in
the following listing to our main rule.

main {
 display: grid;
 grid-template-columns: repeat(2, minmax(auto, 1fr)) 250px;
}

When previewed in the browser (figure 2.7), we see that now our grid has numbers set
across each line. What we can do with this information is explicitly choose where to
place our HTML elements within the grid based on the grid line number.

 We also notice that the browser assumed that we want to place our HTML ele-
ments within each grid cell. Rather than stacking the elements vertically, the browser
filled each column cell until it ran out, created a new row, and filled in those columns.
The automatic creation of extra grid cells is also known as an implicit grid.

 At this juncture, we’ve created a grid containing three columns. Two of those col-
umns use minmax(), and our third column has a fixed value of 250px. These settings
give us a three-column layout. We want to distribute the main content in the first two
columns and use the third one for less important content, which is why we give it less
visual real estate. (On most screens, the third column will be narrower than the first
two columns.)

Listing 2.4 Setting the amount of columns

1fr

1fr = 100%

grid-template-columns: 1fr
1fr = 25%

grid-template-columns:
repeat(4, 1fr)

1fr 1fr

1fr1fr

1fr = 16.67%

grid-template-columns:
3fr repeat(3, 1fr)

1fr

3fr 1fr

1fr

Figure 2.6 Fractions values

48 CHAPTER 2 Designing a layout using CSS Grid
2.4 Grid template areas
If we want to set an element explicitly on a particular row and column of our grid, we
have two options. First, we can use the line numbers and dictate the position of the
child as follows: grid-column: 1 / 4. In this syntax, the first number represents where
the element starts, and the second represents where it ends (figure 2.8). This example
places the element in the first column, spanning the second and third. If only one
number is provided, the element spans only one row or column.

Explicit versus implicit grid
When we use grid-template-columns or grid-template-rows, we’re creating an
explicit grid. We’re clearly stating to the browser the exact amount of columns and
rows this grid should have.

The implicit parts (for both rows and columns) are those that the browser creates
automatically, which can happen when there are more child items than grid cells. In
this case, the browser implicitly adds cells to our grid to make sure that all elements
have a grid cell.

We can control implicit behavior through grid-auto-flow, grid-auto-columns,
and grid-auto-rows.

Figure 2.7 Firefox browser preview showing the grid lines and associated numbers for each line

492.4 Grid template areas
To define the row, we would use the same syntax as for columns with the grid-row prop-
erty. To place an element so that it starts on the third row and spans two rows, we would
write grid-row: 3 / 5. The grid-column and grid-row properties are shorthand for
grid-column-start, grid-column-end, grid-row-start, and grid-row-end.

 Rather than deal with numbers, we can use named areas to be referenced when we
explicitly place elements on the grid. To do this, we use the grid-template-areas
property, which allows us to define how we want the web page to be laid out.

 The grid-template-areas property takes multiple strings, each composed of the
names of the areas they describe. Each string represents a row in the layout, as shown
in figure 2.8. Each name represents a column within the row. If two adjacent cells have
the same name (horizontally or vertically), the two cells are treated as one area. A grid
area can be a single cell, such as the area defined as plays in figure 2.9, but if it’s
more than one cell, the cells must create a rectangular shape with all cells of the same
name being adjacent. You wouldn’t be able to make an L shape, for example.

 The benefit of named areas is in the visualization of the final outcome. We’ll
define our grid-template-areas as shown in listing 2.5. Notice the dot (.) in the
fourth row in figure 2.9. The dot is used to define a cell that we intend to keep empty.
Because that cell doesn’t have a name, content can’t be assigned to it.

main {
 display: grid;
 grid-template-columns: repeat(2, minmax(auto, 1fr)) 250px;
 grid-template-areas:
 "header header header"
 "content content author"
 "content content aside "
 "plays . aside "
 "footer footer footer";
}

Listing 2.5 Creating our template areas

1 2 3 4

1

2

3

4

grid-column: / 4;1
grid-row: ;1

grid-column: 3;
grid-row: 2 / 4;

grid-column: 3;
grid-row: 3;

Figure 2.8 Example grid-column and grid-row syntax

50 CHAPTER 2 Designing a layout using CSS Grid
Although we’ve defined areas, the content still implicitly positions itself in each avail-
able cell, ignoring the areas we defined (figure 2.10). We need to assign our content
to each of these areas.

grid-template-areas:grid-template-areas:
"

grid-template-areas:
header header header"
"content content author"
"content content aside "
"plays . aside "
"
plays
footer footer footer";

header header header

content content author

plays . aside

footer footer footer

content content aside

Figure 2.9 Syntax of the grid-template-areas property

Figure 2.10 Defined grid areas shown in Firefox

512.4 Grid template areas
2.4.1 The grid-area property

To place an element in a defined area, we use the grid-area property. Its value is the
name we assigned in the grid-template-areas property. If we want the <header> ele-
ment to be placed inside the area we defined as header, for example, we would define
header { grid-area: header; }. For our project, we set our elements on our grid as
shown in the following listing.

header { grid-area: header }
article { grid-area: content }
aside { grid-area: aside }
.author-details { grid-area: author }
.plays { grid-area: plays }
footer { grid-area: footer }

Now that we’ve explicitly defined where the content should go, the content falls into
place (figure 2.11).

With the layout setup, let’s remove some of the styles we added for the purpose of
understanding what our layout was doing. As shown in the following listing, we remove
the padding and borders of our content sections.

Listing 2.6 Assigning content to the grid area

Figure 2.11 Content explicitly placed on the grid

52 CHAPTER 2 Designing a layout using CSS Grid
main > * {
 border: solid 1px #bfbfbf;
 padding: 12px;
}

With those styles removed and the screen width narrowed (figure 2.12), the content
in adjacent columns or rows appears to be closer together.

Let’s add space between the areas. To accomplish this task, we will use the gap property.

Listing 2.7 Removing debugging styles

Figure 2.12 Narrow screen width

532.4 Grid template areas
2.4.2 The gap property

The gap property is shorthand for the row-gap and column-gap properties. By setting
the row and column gaps, we’re defining the gutters between rows and columns. Gutters
is a term from print design, defining the gap between columns. By default, the gap
between columns and rows is the keyword normal. This value equates to 0px in all con-
texts except when it’s used with the CSS Multi-Column Module, which equates it to 1em.

 When we use the gap property, the extra space applies only between the tracks of
the grid. No gutters are applied before the first track or after the last track. To set
space around the grid, we use padding and margin properties.

The gap property can have up to two positive values. The first value sets the row-gap,
and the second is for the column-gap. If only one value is declared, it’s applied to both
the row-gap and column-gap properties.

 For our project, we’ll set a 20px gap between our rows and columns by adding gap:
20px to our main rule. Figure 2.13 shows the gaps added to our layout. With the gaps
added, let’s switch our focus to adjusting our layout based on screen size.

gap vs. grid-gap
As CSS Grid was being defined, the specification for this property was called the
grid-gap property, but now gap is recommended. We may see grid-gap in older
projects.

Figure 2.13 Grid layout with added gap

54 CHAPTER 2 Designing a layout using CSS Grid
2.5 Media queries
CSS allows us to apply styles to our layout conditionally. One type of condition is
screen size. Media queries are at-rules: they start with the at (@) symbol and define the
condition under which the styles they contain should be applied. If we look at our cur-
rent layout on a wide screen (figure 2.14), we notice a large amount of space in the
center of the page that could be put to better use.

Let’s create a media query that targets screens wider than 955px. The query is @media
(min-width: 955px) { }. All the rules we place inside the curly braces ({}) will be
applied only if the screen size is greater than or equal to 955px.

 Listing 2.8 shows our media query. We redefine our grid-template-areas to have
a different configuration if the media-query condition is met. We also update the col-
umn sizes so that the columns have equal widths.

@media (min-width: 955px) {
 main {

Listing 2.8 Creating our template areas with media queries

Figure 2.14 Our layout on a wide screen

The at-rule along
with media feature

552.5 Media queries
 grid-template-columns: repeat(3, 1fr);
 grid-template-areas:
 "header header header"
 "content author aside"
 "content plays aside "
 "footer footer footer";
 }
}

Now our layout looks like figure 2.15 and figure 2.16.

Redefines
the column
sizesReconfigures

where the content
should be placed

Figure 2.15 Narrow screen uses the original layout.

56 CHAPTER 2 Designing a layout using CSS Grid
Using grid-template-areas in conjunction with media queries allows us to reconfig-
ure our layout with minimal code. But we must avoid some accessibility pitfalls.

2.6 Accessibility considerations
When we placed our items in the grid area, we mostly kept the elements in the order
in which they appeared in the HTML: the header stayed at the top, footer remained at
the bottom, and the content was in a logical visual order. But what if the HTML order
and the visual display order were different?

 If a user is following along with a screen reader or navigating the page via the
keyboard, and the programmatic order doesn’t match what’s being displayed, the
behavior will seem to be random. This randomness will make it difficult for the
user to navigate the page and to comprehend what’s going on with it. Visually
changing the location of a piece of content by using a grid won’t affect the order in
which assistive technology presents the information to the user. The W3 Grid Lay-
out Module Recommendations states the following about this case (http://mng.bz/
xdD7):

Authors must use order and the grid-placement properties only for visual, not
logical, reordering of content. Style sheets that use these features to perform logical
reordering are non-conforming.

Figure 2.16 Wide screen uses the layout from the media query.

http://mng.bz/xdD7
http://mng.bz/xdD7
http://mng.bz/xdD7

572.6 Accessibility considerations
The solution is to keep the source code and the visual experience the same, or at least
in a sensible order. This approach gives you both the most accessible web document
and a good structure to work from. For English, this means that content and HTML
should follow the same order, from top left to bottom right.

 After assigning our elements to their respective areas of the grid, we should always
test our page to ensure that regardless of how the user accesses the page, the order
will be logical. One way to do this is to visit our page with a screen reader and tab
through the elements to make sure that the tab order still works.

 Some tools and extensions can help with visualizing tab order. In Firefox DevTools,
for example, we can select the Accessibility tab and check the Show Tabbing Order
check box, which outlines and numbers focusable elements as shown in figure 2.17.
We can see that our tab order is logical and unlikely to confuse the user, so we’re
good to go.

Now our project is complete (figure 2.18).

Figure 2.17 Tabbing order of HTML exposed in Firefox DevTools

58 CHAPTER 2 Designing a layout using CSS Grid
Summary
 A grid is a network of lines that cross to form a series of squares or rectangles.
 The display property with a value of grid allows us to place items on a grid

layout.
 The display property is applied to the parent item that contains the child ele-

ments that are to be placed on the grid.
 The grid-template-columns and grid-template-rows properties are used

to explicitly define the quantity and size of the columns and rows the grid
should contain.

 The flexible length (fr) unit is a unit of measurement that was formed as part
of CSS Grid as an alternative way to set the dimension of items.

 We can use the repeat() function to improve code efficiency where one or
more rows or columns are the same size.

 The minmax() function allows us to set two arguments: the minimum width a
column should be and the maximum width a column should be.

Future of Grid
In this chapter, we used the CSS Grid Layout Module to create a layout that’s respon-
sive depending on the browser width. Many aspects of the grid are still being devel-
oped and iterated, most notably subgrids, which would allow for grids within grids.

Although you can set a grid within a grid now, subgrids have the benefit of being more
closely related to their parent grid. To keep an eye on future enhancements and
development, check out the grid specification at https://www.w3.org/TR/css-grid.

Figure 2.18 Final product on wide screen

https://www.w3.org/TR/css-grid

59Summary
 The grid-template-areas property allows us to define what each grid area is
called. Then we can use the grid-area property on the child items to assign
them to those named locations.

 The gap property adds spacing (creates gutters) between grid cells.
 The source code and the visual experience need to stay in the same logical

order. When in doubt, we can use browser developer tools to check the tab-
bing order.

Creating a responsive
animated loading screen
We see loaders in most applications today. These loaders communicate to the user
that something is loading, uploading, or waiting. They give the user confidence
that something is happening.

 Without some sort of indicator to tell the user that something is happening,
they may try reloading, click the link again, or give up and leave. We should be
using some sort of progress indicator when an action takes longer than 1 second,
which is when users tend to lose focus and question whether there’s a problem. As
well as having a graphic showing that something is happening, the loader should

This chapter covers
 Creating basic shapes using Scalable Vector

Graphics (SVGs)

 Finding out the difference between viewboxes
and viewports in SVGs

 Understanding keyframes and animating SVGs

 Using animation properties

 Styling SVGs with CSS

 Styling an HTML progress bar element with
appearance properties
60

613.2 SVG basics
be accompanied by text that tells the user what is happening to improve the accessibil-
ity of the web page for screen readers and other assistive technologies.

 For our animation, we’ll be looking into the CSS Animation Module, understand-
ing the animation property, keyframes, and transitions, as well as accessibility and
respect for user preferences.

3.1 Setup
In this project, we’ll be creating rectangles within an SVG. We’ll see what SVGs
offer and understand the slight differences between styling HTML elements and
SVG elements.

 We’ll also create a progress bar, which shows the user how much of the task has
been completed and how much is left to go. We’ll use the HTML <progress> element
and then look at how we can edit the browser’s default styles and apply our own.
Overall, we want to create a consistent, responsive loader that works across devices.
Figure 3.1 shows the result.

The code for this project is in the GitHub repository (https://github.com/michael
gearon/Tiny-CSS-Projects) in the chapter 3 folder. You can find a demonstration of the
completed project on CodePen at https://codepen.io/michaelgearon/pen/eYvVVre.

3.2 SVG basics
SVG stands for Scalable Vector Graphics. SVGs are written in an XML-based markup lan-
guage and consist of vectors on a Cartesian plane. Vector graphics can be coded from
scratch but often are created in a graphics program such as Adobe Illustrator, Figma,

Figure 3.1 Goal for this chapter

https://github.com/michaelgearon/Tiny-CSS-Projects
https://github.com/michaelgearon/Tiny-CSS-Projects
https://github.com/michaelgearon/Tiny-CSS-Projects
https://codepen.io/michaelgearon/pen/eYvVVre

62 CHAPTER 3 Creating a responsive animated loading screen
or Sketch. Then they’re exported in the SVG file format and can then be opened in a
code text editor.

 A vector is a mathematical formula that defines a geometric primitive. Lines, poly-
gons, curves, circles, and rectangles are all examples of geometric primitives.

 A Cartesian coordinate system in a plane is a grid-based system that defines a point by
using a pair of numerical coordinates based on the point’s distance from two perpen-
dicular axes. The location where these two axes cross is the origin, which has a coordi-
nate value of (0, 0). Think back to math class; when you were asked to plot lines on a
graph, you were using a Cartesian coordinate system. Essentially, SVGs are shapes on a
coordinate plane written in XML.

 By contrast, PNGs, JPEGs, and GIFs are raster images, which are created by using a
grid of pixels. Figure 3.2 illustrates the difference between raster and vector graphics.

SVGs have many advantages over raster images, including being infinitely scalable. We
can shrink or enlarge the image as much as we want without losing quality. We can’t
enlarge raster images without seeing pixelation, which results from enlarging the grid
of pixels that renders the individual squares of the grid visible. By contrast, when we
enlarge an SVG, we’re setting shapes and lines on a coordinate plane programmati-
cally; the paths between points are redrawn, and the quality doesn’t degrade.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

10

9

y-axis

x-axis

Raster Vector

Polygon

Polygon

Rectangle

An image is made of individual pixels.
shapes on a coordinate plane.
An image is made of geometric

Figure 3.2 Raster versus vector graphics

633.2 SVG basics
 Because SVGs are written in XML, we can place SVG code directly in our HTML
and access, manipulate, and edit it in much the same way that we do our other
HTML elements. SVGs are to graphics as HTML is to web pages.

 Rasters, however, are a better choice for dealing with images that are highly com-
plex, such as photos. It’s possible to create a photorealistic image by using an SVG, but
it wouldn’t be practical. The file size and, therefore, load performance are signifi-
cantly larger for vector graphics than for raster images.

 The most common use case for SVGs are logos, icons, and loaders. We use them
for logos because logos are often simple images that need to be crisp regardless of the
size or medium. Furthermore, it’s not uncommon for a company or product to have
several versions of a logo for use on a dark background versus a light background.
Recoloring, simplicity, and scaling are other reasons why we use SVGs for icons.

 We use SVGs for loaders because unlike their raster counterparts, they allow us to
add animations inside the image itself. We can isolate an individual element inside the
graphic and apply CSS or JavaScript to that individual piece—an exercise that isn’t
possible with rasters.

 Earlier, we mentioned that SVGs are based on a Cartesian plane (a 2D coordinate
plane). Let’s look into what that means and how it works.

3.2.1 Positions of SVG elements

When we’re working with SVG elements, the way to think about positioning is to imag-
ine that we’re placing elements on a grid. Everything starts at (0,0) (the origin)
which is the top-left corner of the SVG document. The higher the x or y value is, the
farther it is from the top-left corner. Figure 3.3 expands on the example of the boat in
figure 3.2, adding the origin and the coordinate values for each shape.

(5,0)

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

10

(0,5) (5,5)

(5,6)
(9,6)

(8,9)(1,9)

(0,6)

(4,5)

(4,6)

Origin : (0, 0)
9

y-axis

x-axis

Figure 3.3
Positioning elements
on a coordinate plane

64 CHAPTER 3 Creating a responsive animated loading screen
The loader in our project is composed of a series of 11 rectangles. To place them, we
need to think of their positions on a coordinate plane, taking both their widths and
the gaps between them into consideration.

3.2.2 Viewport

The viewport is the area in which the user can see the SVG. It’s set by two attributes:
width and height. Think of the viewport as being a picture frame: it sets the size of
the frame but doesn’t affect the size of the graphic it contains. If we place an image
inside a picture frame that’s larger than the frame, however, we have overflow. The
same thing happens to our SVG. As in CSS positioning, viewport measurements have
their origin in the top-left corner of the SVG (figure 3.4).

The viewport for our loader will be

<svg width="100%" height="300px"> <!--SVG code --> </svg>

The width is set at 100%, but 100% of what? We’re dictating that the loader will take
100% of the available space it’s given by its parent item.

 The following listing shows our starting HTML. We see that our loader is nested
inside a section; therefore, our loader will be the same width as that section.

<body>
 <section>
 <svg width="100%" height="300px"></svg>
 <h1>Scanning channels</h1>
 <p>This may take a few minutes</p>
 <progress value="32" max="100">32%</progress>
 </section>
</body>

Listing 3.1 Starting HTML

<svg>
<rect width="600" height="200"

x="50" y="50" />
</svg>

<svg width="250px" height="150px">
<rect width="600" height="200"

x="50" y="50" />
</svg>

50 650

x

y

50

250

50 650

x

y

50

250

250

150

Figure 3.4 SVGs with and without a defined viewport

Loader with added
viewport of 100% width
by 300-pixel height

The progress bar,
which we address
later in the chapter

653.2 SVG basics
We have some starting CSS as well (listing 3.2). The background (<body>), <section>,
header (<h1>), and paragraph (<p>) have been prestyled to focus on the loader, prog-
ress bar, and animations.

body { background: rgb(0 28 47); }
section {
 display: flex;
 flex-direction: column;
 justify-content: space-between;
 align-items: center;
 max-width: 800px;
 margin: 40px auto;
 font: 300 100% 'Roboto', sans-serif;
 text-align: center;
 color: rgb(255 255 255);
}
h1 {
 font-size: 4.5vw;
 margin: 40px 0 12px;
}

p {
 font-size: 2.8vw;
 margin-top: 0;
}

We see that our section has its width capped at 800 pixels. <section> is a block-level
element, so by default, it will take up the full width available to it. <body> and <html>
are also block-level elements.

 Because we don’t specify a width, padding, or margin on <body> or <html>, they
will take the full width of the window. <section> will take the full width of the <body>.
But because we assigned a maximum width to the <section>, when the window
reaches 800 pixels wide, the section will stop growing with the <body> and remain 800
pixels wide. Because the section element has a top and bottom margin of 40px, it will
slightly increase the gap between the browser window and the element.

 Our loader is contained within the section. The section will take the full width of
the body until it reaches 800 pixels; therefore, our loader will do the same. Figure 3.5
shows how the width of the loader will be affected by the screen size.

 With the viewport set, let’s set the viewbox so that the contents of the SVG can
scale with its container. Remember that up to now, we’ve dealt only with the frame,
not its innards.

Listing 3.2 Starting CSS

Start of rule
styling the
loader’s
container

Layout using flexbox to set the child items in
the column direction, centering horizontally
and setting equal spaces between elements

Margin written using the shorthand
property: top and bottom, 40px
margin; left and right, auto

Typography setting the
font weight to light, in
the Roboto font, with
a fallback of sans-serif
and centering the text

Sets the color to
white using RGB

End of rule styling
the loader’s
container

66 CHAPTER 3 Creating a responsive animated loading screen
3.2.3 Viewbox

The viewbox sets the position, height, and width of the graphic within the viewport.
Earlier, we likened the viewport to a picture frame. The viewbox allows us to adjust the
image to fit our frame. It can position the image and also scale the graphic so that it
fits inside the frame. We can think of the viewbox as being our pan and zoom tools. To
set the viewbox, we apply the viewBox attribute to the SVG with the following four val-
ues and syntax: viewBox="min-x min-y width height". Listing 3.3 shows viewBox
applied to our loader.

 Dissecting the numbers in order, we start with min-x and min-y, both of which are set
to 0. We want the top-left corner of the graphic to be in the top-left corner of our frame.
min-x and min-y allow us to adjust the position of the graphic in its frame; it’s the pan
tool. Because we want it to be exactly in the top-left corner, we set the values to 0.

 Next, we apply the width, which is set to 710 because our loader has 11 total bars,
each created with a width of 60. 60 × 11 = 660, and we have 10 gaps. The gap width
between each bar is 5 × 10 = 50; therefore, our loader’s width will be 660 + 50 = 710.

 We’ll base the height of the viewBox on the height of the bars in our loader. The
bars have a height value of 300, so we also set the viewport height to 300. Our loader will
fit exactly inside its viewport. The next listing shows the viewBox applied to the SVG.

<svg viewBox="0 0 710 300" width="100%" height="300px">
 <!--SVG code-->
</svg>

Notice that both our viewbox and viewport heights equal 300. This is how we zoom. If
the viewbox figures are less than the viewport figures, we’re effectively zooming out of
the frame, and the graphic will be smaller. If the viewbox figures are more than the
viewport figures, we’re zooming in. Because we have equal viewport and viewbox
heights, however, we’re not zooming.

Listing 3.3 Declaring the viewbox

Scanning channels
This may take a few minutes

Scanning channels
This may take a few minutes

<body>

<html>

<section>

<svg>

800px

Width 1200pxWidth 600px

300px

600px

300px

800px

Figure 3.5 Window-width effect on SVG width when using max-width

673.2 SVG basics
 Now that we’ve defined the space we’ll be working in, we can start adding shapes
to the loader.

3.2.4 Shapes in SVG

There are a few standard SVG shapes and elements:

 rect (rectangle)
 circle
 ellipse
 line
 polyline
 polygon

If we want to create an irregular shape, we can also use path, but we won’t need it for
this loader. Most often, paths are what we see when we look at the XML behind logos,
icons, and complex animation graphics. For our project, we’ll use the basic rectangle
shape to create the wave.

 To define our rectangles, which will create the bars in our loader, we’ll use the
<rect> element and add four properties: height, width, x, and y. The x and y attri-
butes determine the position of the top-left corner of the rectangle relative to the top-
left corner of the SVG.

 We want to create 11 rectangles (listing 3.4) that have a width of 60 and a height of
300, and we’ll use the x attribute to move the rectangles across the graphic. We start at
0 and increase the value by the width of our bar (60) plus an additional gap of 5. Each
rectangle’s x value will be 65 more than the previous one. Our 11th rectangle should
have an x value of 650.

 <svg viewBox="0 0 710 300" width="100%" height="300">
 <rect width="60" height="300" x="0" />
 <rect width="60" height="300" x="65" />
 <rect width="60" height="300" x="130" />
 <rect width="60" height="300" x="195"/>
 <rect width="60" height="300" x="260"/>
 <rect width="60" height="300" x="325"/>
 <rect width="60" height="300" x="390"/>
 <rect width="60" height="300" x="455"/>
 <rect width="60" height="300" x="520"/>
 <rect width="60" height="300" x="585"/>
 <rect width="60" height="300" x="650"/>
 </svg>

Now we have our rectangles positioned inside our viewport, and they’re resized cor-
rectly as we increase and decrease the window size by our viewBox. Figure 3.6 shows
our SVG in different window sizes. (We added a white border to the SVG and bars to
make them more visible in the screenshots.) The contents shrink and grow within

Listing 3.4 Eleven rectangles

68 CHAPTER 3 Creating a responsive animated loading screen
their available space without skewing the rectangles that they contain as the width-to-
height ratio changes with the resizing of the window.

 Notice that our rectangles are black. Our next order of business is to style them.

3.3 Applying styles to SVGs
We can apply styles to SVG elements in much the same way that we do in HTML:
inline, internally in a <style> tag, or in a separate stylesheet. Some minor differences
exist, however. First and foremost, how the SVG is imported into our HTML affects
where the styles need to live to affect the elements.

Figure 3.6 Adding 11 rectangles inside an SVG

693.3 Applying styles to SVGs
 The easiest way to add a vector graphic to a web page is to use an image tag. We
reference the image file the same way that we would any other image: . We can also add it as a background-image inside our
CSS: background-image: url("myImage.svg");.

 In both of these cases, our HTML and styles can affect the SVG but not the ele-
ments within it. We can affect the size of the image, for example, but we can’t change
the color of a particular shape inside the SVG. The image is essentially a black box
that we can’t penetrate to make changes. To manipulate elements within the image,
we’d have to place the styles inside the SVG itself.

 Our third option—the one we’ll use in this chapter—is to place the SVG’s XML
inline, directly in our HTML rather than in an external file, preventing the black-box
issue we’d encounter if the code were in an external file. The drawback is that our con-
cerns aren’t as well separated because now our image code is mixed in with our HTML.

 When our SVG is placed inline in our HTML, the standard ways to apply CSS to
any other HTML element apply. Therefore, we can place the styles we want to apply to
our SVG inside our CSS as though the SVG were any other HTML element.

Although the techniques for applying styles to our SVG elements remain the same as
those for HTML (except for the aforementioned SVG presentation attributes when
applied inline), some of the properties we’ll use to style our elements will be different.
Let’s take a closer look at one we’ll be using for this project.

 To set the background color of the loader bars, instead of using background-
color, we’ll use the fill property, as the background-color property doesn’t work
for SVG elements. The fill property supports the same values as background-color,
such as color name, RGB(a), HSL(a) and hex. So instead of rect { background-
color: blue; }, we’d write rect { fill: blue; }. If no fill value is assigned to a par-
ticular shape, the fill will default to black, which is why our rectangles are black.

 Let’s add a fill color to our rectangles. Because not all the rectangles are the same
color (they have varying colors of blue and green to give the loader a bit of a gradient

SVG presentation attributes
In HTML, when we apply styles inline, we need to include a style attribute, such as
<p style="background: blue">. SVGs, however, have styles that we can add
directly to the element as attributes. These styles are called presentation attributes.

The fill attribute (the SVG equivalent of background-color), for example, can be
applied directly to the element without a style tag: <rect fill="blue">. These prop-
erties don’t have to be applied inline directly on the element. They can be added
inside a style tag or stylesheet the same way that we apply any other CSS style: rect
{ fill: blue: }.

You can find a comprehensive list of SVG presentation attributes at http://mng
.bz/Alee.

http://mng.bz/Alee
http://mng.bz/Alee
http://mng.bz/Alee

70 CHAPTER 3 Creating a responsive animated loading screen
effect), rather than give each element a class, we’ll use the pseudo-class nth-of-
child(n), which matches elements based on their positions within the parent. We’ll
look for the nth rectangle, to which we’ll apply the fill. Therefore, section rect:nth-
of-type(3) would find the third rectangle of the section container. Listing 3.5 shows
the fill color applied to each of our rectangles.

NOTE A pseudo-class targets the state of an element—in this case, its position
relative to the positions of its siblings.

rect:nth-child(1) { fill: #1a9f8c }
rect:nth-child(2) { fill: #1eab8d }
rect:nth-child(3) { fill: #20b38e }
rect:nth-child(4) { fill: #22b78d }
rect:nth-child(5) { fill: #22b88e }
rect:nth-child(6) { fill: #21b48d }
rect:nth-child(7) { fill: #1eaf8e }
rect:nth-child(8) { fill: #1ca48d }
rect:nth-child(9) { fill: #17968b }
rect:nth-child(10) { fill: #128688 }
rect:nth-child(11) { fill: #128688 }

Figure 3.7 shows our output. We can see that the bars in the loader are no longer
black; color has been applied to them.

The downside to our declarations is that if another SVG graphic had rectangles, our
code could style the wrong graphic. To avoid this issue, we can add a class name to our
SVG graphic as an identifier to specify the rectangle we want to style. But because we
have only one SVG in our project, we won’t need to worry about that.

Listing 3.5 Adding a fill color to our rectangles

Figure 3.7 Fill applied to loader rectangles

713.4 Animating elements in CSS
3.4 Animating elements in CSS
The CSS Animation Module allows us to animate properties using keyframes, which
we’ll look at in section 3.4.1. We can control aspects of the animation such as how
long it lasts and how many times it animates. CSS provides several properties we can
use to define our animations’ behavior, including the following:

 animation-delay—How long to wait before the animation starts
 animation-direction—Whether the animation is played forward or backward
 animation-duration—How long it should take for the animation to run once
 animation-fill-mode—How the element being animated should be styled

when the animation is done executing
 animation-iteration-count—How many times the animation should run
 animation-name—Name of the keyframes being applied
 animation-play-state—Whether the animation is running or paused
 animation-timing-function—How the animation progresses through the

styles over time

For our animation, we’ll focus on four of these properties:

 animation-name
 animation-duration
 animation-iteration-count
 animation-delay

The effect we want to create is the rectangles shrinking and growing, but not in sync.
At any given point in time, we want the heights of the elements to be slightly different.
When the rectangles are shrinking and growing, we want the tops and bottoms of the
rectangle to move toward the center and then expand back to full height. Essentially,
we’ll be creating a squeezing effect, going from large to small and back to large.

 Although we’ll apply the same animation to all the rectangles, to stagger their sizes
we’ll apply a slightly different delay to the start of the animation of each rectangle. As
each rectangle starts animating at a different time, each one will be in a different stage
of expanding and shrinking, creating a ripple effect.

 First, we’ll create the animation itself. Then, we’ll apply it to the rectangles. Finally,
we’ll add the individual delays to stagger the size at any given point in time. To create
the animation, we’ll use keyframes. The animation property will reference the key-
frames and dictate the duration, the delay, and how many times we want the anima-
tion to run.

3.4.1 Keyframe and animation-name

When we create a keyframe, we need to give it a name. The animation-name declara-
tion value matches the keyframe name to join the two. With the animation-name
property, we can list multiple animations separated by commas.

72 CHAPTER 3 Creating a responsive animated loading screen
A keyframe represents the most important (key) changes in your animation (the
frame). Then the browser works out the changes over time between defined frames.
This process is known as in-betweening. Allowing the hardware to do the work, the
browser can quickly fill the gaps between the keyframes, creating a smooth transition
between one state and another. The in-betweening process is illustrated in figure 3.8.

In CSS, keyframes are defined using an at-rule called @keyframes, which controls the
steps within an animation sequence. At-rules are CSS statements that dictate how our
styles should behave and/or when they should be applied. They begin with an at (@)
symbol followed by an identifier (in our case, keyframes). We used an at-rule in chap-
ter 2 to create our media query; here, we’ll use one to create our keyframes. The syn-
tax is @keyframes animation-name { … }. The code inside the curly braces defines the
animation’s behavior. Each keyframe inside the @keyframes at-rule block is defined by
a percentage (percentage of time passed in the animation) and the styles applied
when we reach that point in time.

 Before we dive into applying animations to our project, let’s look at a simpler sce-
nario to get a feel for the syntax (listing 3.6). You can also find this example on Code-
Pen at https://codepen.io/michaelgearon/pen/oNyvbWX, where you can see the
animation run (figure 3.9).

Origins of keyframes
Keyframes come to us from the animation and motion-picture industry. When compa-
nies used to do animation by hand, artists composed many individual pictures, with
a change within each picture or frame. Over time, they made changes in each frame
and gradually got to the end frame. A simple example of this technique is flipbook
animation. The more frames you have and the more subtle the tweak is over a short
period, the more fluid the animation is.

Start keyframe End keyframe

50% through the box would be purple.

Browser fills in the missing frames.

Figure 3.8 In-betweening

https://codepen.io/michaelgearon/pen/oNyvbWX

733.4 Animating elements in CSS
@keyframes changeColor {
 0% { background: blue }
 50% { background: yellow }
 100% { background: red }
}
@keyframes changeBorderRadius {
 from { border-radius: 0 }
 50% { border-radius: 50% }
 to { border-radius: 0 }
}
div {
 animation-name: changeColor, changeBorderRadius;
 animation-duration: 3s;
 animation-iteration-count: 10;
}

The example has two sets of keyframes: one named changeColor and one named
changeBorderRadius. We apply both of the animations to a div. Then we define
how long the animation should take to run (3 seconds) and how many times it
should run (10 times). Inside each set of keyframes is code specifying what styles

Listing 3.6 Example animation

First keyframe,
named
changeColor

Second keyframe, named
changeBorderRadius

The animation-name
property referencing
both of the animations

Sets how long the
animation should
take to completeSets how many times the

animation should run

Figure 3.9 Simple animation scenario in CodePen

74 CHAPTER 3 Creating a responsive animated loading screen
should be applied to the elements. So we have two different types of notation, we
have keywords, and we have percentages. Let’s break down what we’re defining in
the first set of keyframes.

 We assert that when the animation begins (0%), we want to set the background
color of the <div> to blue. By the time we reach 50% of our animation (half of 3 sec-
onds, or 1.5 seconds), our background will be yellow. And when the animation ends
(100%, or at 3 seconds), our background will be red. In between the keyframes. the
color changes smoothly from one state to the next.

 In the second set of keyframes, changeBorderRadius, instead of percentages we
use the keywords from and to. from is the equivalent of 0%, and to is equivalent to
100%. We can mix the notation we want to use within the same set of keyframes.

 When we apply the animation to the div ruleset, we also set a duration and itera-
tion count. Notice that these two values are being applied to both of the animations.

 Before we take a closer look at these two properties and how they work, let’s create
the animations for our loader. For our loader, we want to grow and shrink—or scale—
our rectangles over time. Therefore, we’ll call our keyframe doScale. Our at-rule will
be @keyframes doScale { }.

 Inside the at-rule, we define the keyframes for the animation. We’ll start with the
rectangle having its full height. Halfway through the animation, we want the height of
the rectangle to be 20 percent of its original height. When the animation terminates,
we want the rectangle’s height to be back to full size. So we have three steps to define:
from (or 0%), 50%, and to (or 100%).

 To change the size of the rectangle, we’ll use the transform property, which allows
us to change the appearance of an element (rotate, scale, distorted, move, and so on)
without affecting the elements around it. If we were to reduce the height of an ele-
ment by using the height property, the content below it would move up to fill the
newly available space. With transform, the amount of space and the location of the
element in terms of the page flow don’t change—only the visible aspect. Using the
same scenario, if we were to decrease the height of that same element using trans-
form, the content below it wouldn’t move up. We’d have a blank space.

 To affect the element, the transform property takes a transform() function. We’ll
use scaleY(). (You can find a full list of available functions at http://mng.bz/Zo1N.)

 The scaleY() function resizes an element vertically without affecting its width or
squishing or stretching it. To define how much an element should be scrunched or
stretched, we pass the function a percentage or a number value. The number value
maps to the decimal value of its percentage equivalent; therefore, scaleY(.5) and
scaleY(50%) achieve the same result, decreasing the element’s height to 50% of its
original value. Values above 100% increase the size of the element, and values between
0% and 100% shrink it.

 Negative values applied to scaleY() flip the element vertically, so scaleY(-0.5)
would flip the element upside down and shrink its height by 50%. scaleY(-1.5) flips
the element upside down and makes the height 1.5 times the original value.

http://mng.bz/Zo1N

753.4 Animating elements in CSS
 For our loader bars, we want our rectangles to be full height at the beginning
and the end of the animation, and 20% of the original height halfway through the
animation. Our completed keyframe with transforms applied looks like the follow-
ing listing.

@keyframes doScale {
 from { transform: scaleY(1) }
 50% { transform: scaleY(0.2) }
 to { transform: scaleY(1) }
}
rect { animation-name: doScale; }

If we run the code, we notice that nothing has changed; our rectangles aren’t grow-
ing and shrinking yet, even though we applied the keyframe to our rectangles. We
still need to define the duration and iteration count. Let’s dig into those properties
a bit further.

3.4.2 The duration property

The duration property sets how long we want the animation to happen from start to
finish. The duration can be set in seconds (s) or milliseconds (ms). The longer the
duration, the more slowly the animation completes. With accessibility in mind, we
want to consider users who are sensitive to motion (section 3.4) and choose a dura-
tion that is reasonable.

A lot goes into choosing appropriate animation timing. An animation that’s too fast
can create changes that are imperceptible or cause seizures, depending on its nature.
An animation that’s too slow can make our application look laggy. Most microanima-
tions are short and transitional; they animate the change of an element from one state
to another, such as flipping an arrow from pointing up to pointing down. A generally
accepted duration for this type of animation is around 250 milliseconds.

 If the animation is larger or more complex, such as opening and closing a large
panel or menu, we can increase the duration to around 500 milliseconds. A loader is a

Listing 3.7 Completed keyframe

Animations, seizures, and flash rate
The World Wide Web Consortium (W3C) recommends that to prevent inducing sei-
zures in photosensitive users, we need to make sure that our animations don’t con-
tain anything that flashes more than three times in any 1-second period (http://mng
.bz/RldR).

Start of the
doScale at-rule Starts the animation

at full height Halfway through the
animation, the height
should be 20% of the
original value.

By the end of the
animation, the rectangle
returns to full height.

End of the
doScale at-rule

Applies the animation
to the rectangles

http://mng.bz/RldR
http://mng.bz/RldR
http://mng.bz/RldR

76 CHAPTER 3 Creating a responsive animated loading screen
bit different, though. It’s not a quick change in response to a user’s action; it’s a large
visual element that the user will focus on for some time.

 Most often when determining the “correct” timing for a loader, we use trial and
error to find the speed that works best with our graphic. For our project, we want to
set the animation to happen over 2.2 seconds. To apply the amount of time the anima-
tion should take, we add the animation-duration property to our rectangles, as
shown in the following listing.

rect {
 animation-name: doScale;
 animation-duration: 2.2s;
}

When we run the code, our loader animates once and then never animates again
unless we reload the browser window. We also notice that all the bars increase and
decrease in size at the same time. First, let’s make our loader continue to animate over
time; then we’ll stagger the animation across our rectangles so that they appear to be
different heights.

3.4.3 The iteration-count property

To make our animation restart after it has completed, we use the iteration-count
property, which sets the number of times the animation should repeat. By default, its
value is 1. Because we haven’t set a value yet, the browser assumes that we want the ani-
mation to run once and be done. We want our animation to repeat continuously, so
we’ll use the infinite keyword value.

 By applying this value, we’re declaring that the animation should keep playing for-
ever. If we wanted to run a specific number of times, we’d use an integer value. After
we add our iteration count, our code looks like the following listing.

rect {
 animation-name: doScale;
 animation-duration: 2.2s;
 animation-iteration-count: infinite;
}

When we run the code, we see that all the rectangles grow and shrink in sync, starting
from the top, and that the animation restarts after it completes. We still have some
work to do to set the animation to start in the middle of the rectangle rather than at
the top, as well as to stagger the animation between our elements. First, though, let’s
take a quick pause to look at the animation shorthand property.

Listing 3.8 Added animation duration

Listing 3.9 Added animation iteration count

773.4 Animating elements in CSS
3.4.4 The animation shorthand property

We currently have three declarations that define our animation: animation-name,
animation-duration, and animation-iteration-count. We can simplify our code by
combining all three declarations in the animation shorthand property, which allows
us to define our animation’s behavior with a single property. In this property, we can
define the values for any of the properties listed in section 3.3. We don’t need to pro-
vide values for all the properties. If properties aren’t defined as part of the shorthand
property or individually, they use their default values.

 As mentioned earlier, we’re defining three properties: animation-name, anima-
tion-duration, and animation-iteration-count. Refactored to use the animation
shorthand property, our declaration looks like figure 3.10.

This code is functionally identical to the code that currently applies to our rectangle.
Using shorthand properties makes our code more concise and can make it easier to
read. But if you find that writing out each property is easier for you, either method is
perfectly valid. Do what works best for you.

 When we use the animation shorthand property, our updated CSS looks like the
following listing. After making the change to our code, we notice that our animation
hasn’t changed.

rect {
 animation-name: doScale;
 animation-duration: 2.2s;
 animation-iteration-count: infinite;
 animation: doScale 2.2s infinite;
}

Next, let’s address the staggering of heights for each of our rectangles.

3.4.5 The animation-delay property

The animation-delay property does what its name implies: it allows us to delay an
animation on an element. The delay applies to the start of the animation. When the
animation starts, it loops normally. As with the duration property, we can use seconds
(s) or milliseconds (ms) to set the delay’s duration value. The default value is 0. By
default, an animation doesn’t have a delay.

Listing 3.10 Refactoring to use the shorthand property

animation: doScale 2.2s infinite

animation-name

animation-duration

animation-iteration-count

Figure 3.10 Breakdown of
the animation shorthand
property

78 CHAPTER 3 Creating a responsive animated loading screen
 To create the staggered effect in our animation, we’ll assign different delay values to
each of our rectangles, as shown in listing 3.11. The first rectangle’s animation will start
immediately. We give it a delay of 0. We could omit this declaration, because 0 is the
default value for animation-delay; we added it here for clarity in explaining the code.

 The second rectangle gets a 200ms delay, and we continue to increment the delay
by 200ms for every rectangle thereafter. Notice that on the sixth rectangle, we switch to
using seconds instead of milliseconds. We do this to make the code more readable
because either second or millisecond values are acceptable.

rect:nth-child(1) {
 fill: #1a9f8c;
 animation-delay: 0;
}
rect:nth-child(2) {
 fill: #1eab8d;
 animation-delay: 200ms;
}
rect:nth-child(3) {
 fill: #20b38e;
 animation-delay: 400ms;
}

rect:nth-child(4) {
 fill: #22b78d;
 animation-delay: 600ms;
}
rect:nth-child(5) {
 fill: #22b88e;
 animation-delay: 800ms;
}
rect:nth-child(6) {
 fill: #21b48d;
 animation-delay: 1s;
}
rect:nth-child(7) {
 fill: #1eaf8e;
 animation-delay: 1.2s;
}
rect:nth-child(8) {
 fill: #1ca48d;
 animation-delay: 1.4s;
}
rect:nth-child(9) {
 fill: #17968b;
 animation-delay: 1.6s;
}
rect:nth-child(10) {
 fill: #128688;
 animation-delay: 1.8s;
}

Listing 3.11 Added animation iteration count

793.4 Animating elements in CSS
rect:nth-child(11) {
 fill: #128688;
 animation-delay: 2s;
}

After adding the delay, we see that we achieved our staggered effect (figure 3.11). But
the elements are growing and shrinking from the top rather than from the center.

To say where we want the element to grow and shrink from, we need to tell the
browser where on the rectangle the animation should originate. To address this prob-
lem, we’ll use the transform-origin property.

3.4.6 The transform-origin property

The transform-origin property sets the origin, or point, for an element’s transfor-
mations. If we were to rotate the object, the transform-origin property would set
where on the element we want to rotate from. In our case, we’ll use this property to set
the position the animation should start from (the point of origin).

 If the transform is happening in three dimensions (3D), the value can be up to
three values (x, y, and z); if the transform is in two dimensions (2D), we can have up
to two values (x and y). The first value is the horizontal position, or the x-axis; the sec-
ond value is the vertical position, or the y-axis. When we’re working in 3D, the third
value would be forward and backward, or the z-axis.

 We can declare the value of the transform-origin property in three ways:

 Length
 Percentage
 Keywords

– top

– right

Figure 3.11 Animated rectangles with height change emanating from the top

80 CHAPTER 3 Creating a responsive animated loading screen
– bottom

– left

– center

In HTML, the initial value for this property is 50% 50% 0, which is center, center,
flat. For SVG elements, however, the initial value is 0 0 0, which places it in the top-
left corner.

 For our animation, we want the rectangle’s transform origin to be at the center. We
want the top and bottom of the rectangles to shrink rather than having the top fixed
and the rectangles expanding and contracting from that point. To do this, we can either
apply the keyword value center or assign a value of 50% to the transform-origin prop-
erty for our rectangles. Either way, we’re saying that we want the point of origin to be
the center of the rectangle. For our project, we’ll use the keyword value center. List-
ing 3.12 shows our updated rect rule.

 We mentioned earlier that when working with 2D animations, the property takes
two values, but we passed only one. When only one value is passed, it is applied to both
the vertical and horizontal positions; therefore, transform-origin: center; is equiv-
alent to transform-origin: center center;.

rect {
 animation: doScale 2.2s infinite;
 transform-origin: center;
}

We’ve finished our loader animation (figure 3.12). But we still need to consider how
accessible our design is. Section 3.4 dives into some ways we can provide a positive
experience for all our users.

Listing 3.12 Updated rect rule with transform-origin property

Figure 3.12 Finished loader animation

813.5 Accessibility and the prefers-reduced-motion media query
3.5 Accessibility and the prefers-reduced-motion
media query
The use of motion, parallax (an effect in which the background moves slower than
the foreground), and animations on the web has increased as these effects have
become easier to implement and browser support has improved. By using these tech-
niques, we can create richer user interfaces that are interactive and provide richer
user experiences.

 The use of these techniques comes at a cost, however. For some users, especially
those who have vestibular disorders, movement on the screen can cause headaches,
dizziness, and nausea. As we mentioned earlier, animations can also cause seizures,
especially if they contain elements that flash.

 In many operating systems, users can disable animations on their devices. In our
applications, we need to make sure that we respect those preferences. To check user
settings the level-5 Media Queries Module has introduced the prefers-reduced-
motion media query. This query is an at-rule, which checks the user’s preferences
regarding motion on the screen and allows us to apply conditional styles based on
those preferences. The query has two values:

 no-preference
 reduce

We can choose to disable or reduce an animation when a user prefers reduced motion
or enable it when they don’t specify a preference. A user’s preference for reduced
motion doesn’t mean that we can’t use any animation, but we should be selective
about which animations we keep. Aspects that may determine which animations to
keep enabled include

 How fast it is
 How long it is
 How much of the viewport it uses
 What the flash rate is
 How essential it is to the functioning of the site or understanding of the content

TIP It’s worth mentioning that a user may prefer reduced or no animation
but may not be aware of the system-preferences settings for opting out of ani-
mations. Providing an onsite opt-out button may be useful, depending on
how much animation our website has.

Accessibility guidelines for animations
A user should be able to pause, stop, or hide animation that lasts more than 3 sec-
onds and isn’t considered to be essential (http://mng.bz/RldR). Loaders are a bit
tricky in this respect, as they convey important information to the user (the applica-
tion is doing something and isn’t frozen) but can be large and have a lot of motion.

http://mng.bz/RldR

82 CHAPTER 3 Creating a responsive animated loading screen
Our loader could be considered to be essential content, but we also provide a progress
bar below it to give the user an indication of what the application is doing. Because
the information is conveyed in a different medium, and because the animation is
large, has a lot of movement, and could last more than 3 seconds, we’re going to dis-
able it for users who prefer reduced motion, using the code in the following listing.

@media (prefers-reduced-motion: reduce) {
 rect { animation: none; }
}

To check that we successfully disabled the animation, instead of editing our machine’s
settings, in most browsers we can do the following:

1 Go into our browser’s developer tools.
2 In the console tab display, select the rendering tab.

(In Google’s Chrome browser, if this tab isn’t already displayed, click the verti-
cal ellipsis button and choose More Tools > Rendering from the drop-down
menu.)

3 Enable the reduced-motion emulation.

Figure 3.13 shows the disabled animation and developer tools in the latest version of
Chrome (http://mng.bz/51rZ) at this writing.

Listing 3.13 Disabling the animation for users who prefer reduced motion

Conditionally applies styles within the at-rule
when the user enables prefer-reduced-motion Disables the animation

previously applied to
the rectangles

Figure 3.13 Emulating reduced-motion preference using Chrome DevTools

http://mng.bz/51rZ

833.6 Styling an HTML progress bar
With our loader animation finished and accessibility needs handled, let’s turn our
attention to the progress bar at the bottom of the screen.

3.6 Styling an HTML progress bar
The <progress> HTML element can be used to show that something is loading or
uploading, or that data has been transferred. It’s often used to show the user how
much of a task has been completed.

 The default styles of the <progress> element vary among browsers and operating
systems. Much of the functionality of the progress bar is handled at operating-system
level; as a result, we have few properties available to restyle the control, especially
when it comes to the colored progress indicator inside the bar itself. In this section,
we’ll look at some workarounds and their pitfalls. Let’s start with an easy one.

 Figure 3.14 shows our starting point generated by the HTML in listing 3.14. At this
point, no styles have been applied to the control. The figure shows the defaults gener-
ated by Martine’s machine.

<body>
 <section>
 ...
 <progress value="32" max="100">32%</progress>
 </section>

3.6.1 Styling the progress bar

Let’s start with changing the height and the width. To increase the width of the prog-
ress bar to match the width of the section, we’ll give its width property a value of 100%.
We also want to increase the height to 24px.

 To change the color of the progress indicator (the colored portion of the control),
we can use a fairly new property: accent-color. This property allows us to change the
color of form controls such as check marks, radio inputs, and the progress element.
We’ll set it to #128688, matching the color of the last bar of our loader. The following
listing shows our progress rule thus far.

progress {
 height: 24px;
 width: 100%;
 accent-color: #128688;
}

Listing 3.14 Progress bar HTML

Listing 3.15 Progress rule

Figure 3.14 Progress bar starting
point in Chrome

The progress bar

84 CHAPTER 3 Creating a responsive animated loading screen
Figure 3.15 shows the styles in listing 3.15 applied to our control.

If we try to add a background color to our element (background: pink), we’ll notice
that the addition doesn’t work. As a matter of fact, it fails spectacularly (figure 3.16). It
radically changes the appearance of the element and alters the accent-color we pre-
viously set. Furthermore, the background color changes to gray rather than pink.

How do we get around this problem? To restyle the control, we need to ignore the
default and re-create the styles from scratch. To do that, though, we need to use vendor-
prefixed properties.

VENDOR PREFIXES

Historically, when browsers introduced new properties, they were added with a vendor
prefix before the property name. Each browser’s prefix is based on the rendering
engine that it uses. Table 3.1 displays major browsers and their prefixes.

Vendor prefixes are often incomplete or nonstandard implementations that browsers
may choose to remove or refactor at any time. Although this fact has been clearly doc-
umented for years, developers who were eager to use the latest properties regularly
used them in production nonetheless.

 To prevent this continued behavior, most major browsers moved to shipping
experimental features behind a feature flag. To enable the feature and play with it,
the user must go into their browser settings and enable that specific flag.

Table 3.1 Vendor prefixes and their browsers

Prefix Browsers

-webkit- Chrome, Safari, Opera, most iOS browsers (including Firefox for iOS), Edge

-moz- Firefox

Figure 3.15 Width,
height, and accent color
applied to the progress
element

Figure 3.16 background-
color failure

853.6 Styling an HTML progress bar
 By moving to a flag-based method, the browsers are able to let developers play with
experimental, cutting-edge features without fear that a nonstandard implementation
might be used in a piece of production code. But many vendor-prefixed properties
are still available in the wild. For more information about vendor prefixing and fea-
ture flags, see the appendix.

 The first thing we’ll do to fix our background-color issue is to remove the default
appearance of the control.

THE APPEARANCE PROPERTY

To reset the appearance of the <progress> element, we use the appearance property.
By setting its value to none, we cancel the default styles provided by the user agent.
Because we’ll be creating all the styles from scratch, we can remove the accent-color
property, as it will no longer have any effect.

 We’ll keep our height and width, and also add a border-radius because we’re
going to have a curved finish. The appearance property is supported by all new ver-
sions of major browsers, but we still need to include the vendor-prefixed versions, as
some of the experimental properties we’ll be using require them. The following list-
ing shows our updated rule.

progress {
 height: 24px;
 width: 100%;
 border-radius: 20px;
 -webkit-appearance: none;
 -moz-appearance: none;
 appearance: none;
}

At this point, our progress bar looks the same as when we broke it by adding the back-
ground color. This result is to be expected. With appearance:none added, we can start
altering the control in ways we previously couldn’t. First, we’ll focus on browsers with a
-webkit- prefix.

3.6.2 Styling the progress bar for -webkit- browsers

We can use three vendor-prefixed pseudo-elements to edit the styles of our prog-
ress bar:

 ::-webkit-progress-inner-element—The outermost part of the progress
element

 ::-webkit-progress-bar—The entire bar of the progress element, the portion
below the progress indicator, and the child of the ::-webkit-progress-inner-
element

 ::-webkit-progress-value—The progress indicator and the child of ::-web-
kit-progress-bar

Listing 3.16 Updated progress rule

86 CHAPTER 3 Creating a responsive animated loading screen
We’ll use all three pseudo-elements to style our element. Let’s start from the inside
and work our way out. The first part we want to style is the progress indicator, for
which we’ll need to use ::-webkit-progress-value. We curve the edges and change
the color of the bar to a light blue, as shown in the following listing.

::-webkit-progress-value {
 border-radius: 20px;
 background-color: #7be6e8;
}

Figure 3.17 shows our output in a WebKit browser.

Next, we’ll edit the background behind the progress indicator by using ::-webkit-
progress-bar. We’ll also add rounded corners to the background and change the
color to a linear gradient, going from a dark green to a light blue in keeping with the
theme of the whole piece.

 The linear-gradient() function takes a direction followed by a series of color and
percentage pairs. The direction dictates the angle of the gradient; the color-percentage
pairs dictate the points within the gradient at which we want to shift from one color to
another. We’ll use the keyword value to right as our direction. Then we’ll set a start-
ing color of #128688 and an ending color of #4db3ff. Our gradient, therefore, will go
from left to right, fading from our start color to our end color.

Finally, we add a border radius to the outermost container. The CSS for our progress
bar is shown in the following listing.

::-webkit-progress-bar {
 border-radius: 20px;

Listing 3.17 Styling the progress indicator in Chrome

CSS gradient generators and vendor prefixes
As gradients can be tedious to write by hand, many CSS gradient generators have
been created and are freely available on the web. Many still include vendor prefixes
in their generated code. These prefixes are no longer necessary, as gradients are now
supported by all major browsers, and browsers that required them are almost com-
pletely nonexistent now.

Listing 3.18 Styling the progress indicator container in Chrome

Figure 3.17 Progress value
styled in Chrome

873.6 Styling an HTML progress bar
 background: #4db3ff;
 background: linear-gradient(to right, #128688 0%,#4db3ff 100%);
}
::-webkit-progress-inner-element {
 border-radius: 20px;
}

Our progress indicator looks great in Chrome (figure 3.18). Next, let’s take a look at
what it looks like in Firefox.

In Firefox (figure 3.19), we see that our control remains fairly unstyled because
instead of the -webkit- vendor prefix, it requires the -moz- prefix. Having written
code for the -webkit- vendor prefix, we need to do the same for browsers that use the -
moz- vendor prefix.

3.6.3 Styling the progress bar for -moz- browsers

We’ll approach the styles a bit differently for Firefox because we don’t have as many
properties to play with. The only -moz- prefixed property at our disposal is ::-moz-
progress-bar. Also a pseudo-element, it targets the progress indicator itself. There-
fore, we’ll style it the same way that we styled ::-webkit-progress-value for Chrome
because we want to achieve the same look in both browsers.

 Because we’re using the same styles, it’s logical to add the -moz- selector to the
existing rule: ::-moz-progress-bar, ::-webkit-progress-value { … }. It works well
in Firefox (figure 3.20), but it will break Chrome (figure 3.21).

 Having multiple selectors in the same rule shouldn’t cause this side effect, but
we’re dealing with experimental properties, which sometimes have nonstandard

Fallback color for
the gradient

Figure 3.18 Styled
progress indicator
in Chrome

Figure 3.19 Unstyled
progress bar in Firefox

88 CHAPTER 3 Creating a responsive animated loading screen
behaviors. To prevent this unfortunate side effect, we’ll write two identical rules, one
for each selector, as shown in the following listing.

::-webkit-progress-value {
 border-radius: 20px;
 background-color: #7be6e8;
}
::-moz-progress-bar {
 border-radius: 20px;
 background-color: #7be6e8;
}

To change the background color for Firefox, we add a background property value to
the progress element itself. We use the same gradient we used in the ::-webkit-
progress-bar rule. Figure 3.22 shows our progress in Firefox.

The last thing we need to do is remove the border, which we’ll apply to the progress
rule. To achieve this effect, we set the border property value to none. The following
listing shows our final progress rule.

Listing 3.19 Styling the progress indicator container in Chrome

Figure 3.20 Firefox
progress bar styled

Figure 3.21 Adding both
selectors in the same rule
breaks Chrome.

Rule for
Chrome

Rule for
Firefox

Figure 3.22 Firefox with
background applied to the
progress element

89Summary
progress {
 height: 24px;
 width: 100%;
 -webkit-appearance: none;
 -moz-appearance: none;
 appearance: none;
 border-radius: 20px;
 background: linear-gradient(to right, #128688 0%,#4db3ff 100%);
 border: none;
}

As we can see in figure 3.23, we’ve achieved the same result in Chrome and Firefox.

We must stress that the styles were achieved by using experimental features that are
nonstandard and could change in the future. The value here is being able to experi-
ment with new features before they become readily available. It’s also an opportunity
to get involved in the community; it’s not uncommon for the working groups that
develop browser features and specifications to request feedback before new standards
are accepted and rolled out for general use.

Summary
 The animation property is a way to animate the values of the position, color, or

some other visual element with CSS.
 The @keyframes at-rule is a way to define keyframes for your animations.
 We can delay the start of an animation by using the animation-delay property.
 The animation-duration sets how long a single iteration of the animation

should take to complete.
 SVGs can be styled with CSS.
 The prefers-reduced-motion media query allows us to style animations condi-

tionally per the user’s settings.
 The HTML progress bar is a way to show how much of something has loaded.

Listing 3.20 Final progress rule

Gradient
background

Removes the
border

Figure 3.23 Progress bar
styles finished in Firefox

90 CHAPTER 3 Creating a responsive animated loading screen
 By default, the browser applies its own styling to the progress bar, but it can be
reset by using the appearance property with a value of none.

 Our ability to style the progress element is fairly restricted unless we use exper-
imental properties.

 Some nonstandard properties are available to style the progress element, but
they require the use of vendor prefixes. Vendor-prefixed properties are experi-
mental, which means that they sometimes have nonstandard implementations
and could change at any time.

Creating a responsive
web newspaper layout
In chapter 1, we looked at creating a single-column article, which taught us the
basic principles of CSS. The design, however, was simple. Let’s revisit the concept of
formatting articles but make it much more visually interesting. In this chapter, we’ll
style our content to look like a page out of a newspaper, as shown in figure 4.1.

 To create the content columns, we’ll use the CSS Multi-column Layout Module.
Along the way, we’ll also look at how we can manage the space between the columns,

This chapter covers
 Using the CSS Multi-column Layout Module to

create a newspaper layout

 Using the counter-style CSS at-rule to create
custom list styles

 Styling images using the filter property

 Handling broken images

 Formatting captions

 Using the quotes property to add quotation
marks to HTML elements

 Using media queries to change the layout based
on screen size
91

92 CHAPTER 4 Creating a responsive web newspaper layout
how to span elements across columns, and how to control where the content breaks to
a new column.

 Part of the newspaper page uses a list of items, which has some default styles pro-
vided to us by the user agent (UA) stylesheet. We’ll look at how to use the CSS Lists
and Counters Module, which allows us to customize how our list-items counters
(the numbers and bullets) are styled.

 Another concept we’ll cover in this chapter is how to style images, including the
use of the filter property in conjunction with functions to alter the image’s appear-
ance. We’ll also look at solutions for broken images and ways to make them fail grace-
fully. When we say “fail gracefully” (sometimes known as graceful degradation), we’re
putting in place fallbacks to employ if the thing we’re trying to load is having an prob-
lem or a feature we’re trying to use isn’t compatible with the user’s browser.

 You can find the code for our project in the chapter-04 folder of the GitHub
repository (http://mng.bz/OpOa) or on CodePen at https://codepen.io/michael-
gearon/pen/yLxzbr. Our starting HTML consists of the elements in listing 4.1.
Within the <body> element are the title of the newspaper and print date followed by

Figure 4.1 The result we want to achieve

http://mng.bz/OpOa
https://codepen.io/michaelgearon/pen/yLxzbr
https://codepen.io/michaelgearon/pen/yLxzbr

934.1 Setting up our theme

su

su
an article. The article has a heading, author name, a quote, two subheadings, a list,
some paragraphs, and an image.

<body>
 <h1>Newspaper Title</h1>
 <time datetime="2021-09-07">
 Tuesday, 5th September 2021
 </time>
 <article>
 <h2>Article heading</h2>
 <div class="author">John Doe</div>
 <p>Maecenas faucibus mollis interdum. Cum sociis nato...</p>
 <p>Integer posuere erat a ante venenatis dapibus posu...</p>
 <blockquote>
 Fusce dapibus, tellus ac cursus commodo, tortor ma...
 </blockquote>
 <p>Aenean lacinia bibendum nulla sed consectetur. Dui...</p>
 <h3>Subheading</h3>

 List item 1
 ...

 <p>Cras justo odio, dapibus ac facilisis in, egestas ...</p>
 <p>Donec ullamcorper nulla non metus auctor fringilla...</p>
 <h3>Subheading</h3>

 <p>Praesent commodo cursus magna, vel scelerisque nisl...</p>
 <p>Morbi leo risus, porta ac consectetur ac, vestibulu...</p>
 </article>
</body>
</html>

Figure 4.2 shows our starting point. The styles applied to the HTML are the defaults
provided by the browser. No author styles have been applied to the page yet.

 Before we worry about layout, let’s define our theme.

4.1 Setting up our theme
The theme sets the tone for the page; it generally consists of colors, fonts, borders,
and sometimes padding. Our theme will stay the same regardless of screen size or lay-
out. Often, the theme of a website is tightly coupled to its logo and brand colors.

 We’ll set some defaults on the <body> element that can be inherited by its descen-
dants. As a general rule, styles that revolve around typography (color, font-family,
and so on) can be inherited by most elements. Exceptions are some form elements,
which we cover in chapter 10. When we set inheritable properties on the parent, the
styles trickle down to the descendents, relieving us of the need to apply them to
every element.

Listing 4.1 Starting HTML

Newspaper title
(main heading)

Print dateStart
of the
article

Article
heading

Article author

Quote

First
bheading

List

Second
bheading

Image

End of the
article

94 CHAPTER 4 Creating a responsive web newspaper layout
4.1.1 Fonts

We apply a background color, font, and text color (listing 4.2). Notice that before the
body rule, we import our chosen font-family from Google Fonts. Google Fonts
(https://fonts.google.com) is a popular option with developers, as it’s freely available,
and users don’t need to create an account or worry about licensing.

WARNING When loading libraries or assets, including fonts, from a content
delivery network (CDN), always check the privacy and data terms, and make
sure that they’re compliant with local laws such as General Data Protection

Figure 4.2 Starting point

https://fonts.google.com

954.1 Setting up our theme
Regulation (GDPR) and European Union laws. When in doubt, ask your legal
team. If CDNs aren’t an option for you, check out chapter 9 for details on
loading fonts locally.

PT Serif, for example, isn’t a font we can expect a user to have already loaded on their
computer; therefore, we have to import it for the browser to tell it what the glyphs (let-
ters, numbers, and symbols) should look like. We also provide a default of serif as a
fallback should the import fail.

Although we’ll do the bulk of the layout later in the chapter, we’ll add some left and
right padding on our body now to move our text away from the edge.

@import url('https:/ /fonts.googleapis.com/css2?family=PT+Serif&display=swap');

body {
 background-color: #f9f7f1;
 font-family: 'PT Serif', serif;
 color: #404040;
 padding: 0 24px;
}

Figure 4.3 shows our updated page. Notice that all the elements in the <body> have
inherited the color and font-family.

 Next, we’ll style the main heading and subheadings. Let’s start with the newspaper
title, which is the <h1> in the HTML. We want to change the font-family to use a
typeface called Oswald, increase the text size, make it bold, transform the font to use
all capital letters, set the line height, and center the text. Like PT Serif, Oswald isn’t a
font that we can expect most users’ devices to know about, so we’ll import it much as
we did PT Serif.

 Notice that for the text size, we use unit rem, which stands for “root em.” An em is a
relative unit based on the font size of the element’s parent. If a container div has a
font size of 12px, and we set a child element’s size to .5em, the child element’s size
would equal to 12 x .5 or 6px. The rem unit works similarly, but instead of being relative

Web-safe fonts
Only a few web-safe fonts (fonts we can assume that most devices will have access
to) are available. According to W3Schools (http://mng.bz/Y6Ea), some safe options
are Arial, Verdana, Helvetica, Tahoma, Trebuchet MS, Times New Roman, Georgia,
Garamond, Courier New, and Brush Script MT. But no official standard specifies what
constitutes a web-safe font or which ones would truly be available on all browsers and
devices. Therefore, regardless of the font family we choose, it’s good practice always
to provide a fallback value (serif, sans-serif, monospace, cursive, or fantasy).

Listing 4.2 Defining some theme styles

Imports PT
Serif from

Google Fonts
Applies PT Serif
to our content and
provides a fallback

http://mng.bz/Y6Ea

96 CHAPTER 4 Creating a responsive web newspaper layout

h
to the parent’s font size, its base value is that of the root element—in our case, <html>.
We didn’t set a font size on the HTML element; therefore, our base will be the
browser’s default, which in most cases is 16px. With that in mind, a font size of 4rem—
the size we set on our main heading—would be equivalent to 4 x 16 or 64px.

 To import Oswald from Google Fonts, we can add a second @import at the top of
our file, or for better performance, we can combine the two imports into one @import
statement. The ability to combine the two imports is specific to Google Fonts; not all
CDNs have this ability.

 Notice in listing 4.3 that in our @import, after the name of the font, we see
:wght@400;700. This code indicates which Oswald font weights we want to import.

@import url('https:/ /fonts.googleapis.com/css2?

➥ family=Oswald:wght@400;700&family=PT+Serif&display=swap');

h1 {
 font-weight: 700;

Listing 4.3 Styling the newspaper title

Figure 4.3 Theme styles applied to the body being inherited by descendants

Updated
import that
includes bot
Oswald and
PT Serif

Equivalent to using
a value of bold

974.1 Setting up our theme
 font-size: 4rem;
 font-family:'Oswald', sans-serif;
 line-height: 1;
 text-transform: uppercase;
 text-align: center;
}

Figure 4.4 shows our updated title.

4.1.2 The font-weight property

The font-weight property can take either a number value between 100 and 900 or a
keyword value (normal, bold, lighter, or bolder). normal is equivalent to 400, and
bold to 700. lighter and bolder change the element’s font weight based on the font
weight of the parent element. Table 4.1 shows the relationships between numeric
font-weight values and their common name equivalents.

Table 4.1 font-weight values and their common weight names

Value Common weight name

100 Thin (Hairline)

200 Extra Light (Ultra Light)

300 Light

400 Normal (Regular)

500 Medium

600 Semi Bold (Demi Bold)

700 Bold

800 Extra Bold (Ultra Bold)

900 Black (Heavy)

950 Extra Black (Ultra Black)

Figure 4.4 Styled title

98 CHAPTER 4 Creating a responsive web newspaper layout
If we don’t import the weight that matches the one we set in the rule, the browser will
apply the closest weight it has access to. Therefore, had we imported Oswald only with
a weight of 400 and applied a font-weight value of bold to our element, the browser
would have displayed our text with a weight of 400 because that value would be the
only one it had to work with.

4.1.3 The font shorthand property

Using the font shorthand property, we can combine most of the styles in our rule.
The font property requires us to provide a font-family and size, optionally followed
by style, variant, weight, stretch, and line-height, using the following syntax:
font: font-style font-variant font-weight font-stretch font-size/line-height
font-family. The next listing shows our updated rule using font.

h1 {
 font: 700 4rem/1 'Oswald', sans-serif;
 text-transform: uppercase;
 text-align: center;
}

Let’s apply the concepts we’ve covered regarding importing fonts, font-weight, and
the font shorthand property to style the article’s main heading and subheadings.

4.1.4 Visual hierarchy

To create a visual hierarchy on the page, we’ll set the article heading <h2> to be
smaller than our newspaper’s main heading <h1> but larger than the subheadings
within the article <h3>. Generally speaking, the larger an element is, the more import-
ant it’s perceived to be, so we use size to make our headers stand out. By using a differ-
ent font-family from the one we use for the main body text and making all the
heading letters uppercase, we further the distinction.

 Creating a visual hierarchy is important, as it allows the user to glance at the screen
and immediately recognize elements of interest. It also segments information into
groups, making the information easier to process and understand.

 Listing 4.5 shows our header rules. We’ll keep the same font family, uppercase the
lettering, and adjust the sizing. We’ll also remove the browser-provided bottom mar-
gins of both article headers to keep them closer to the text they precede.

h2 {
 font: 3rem/.95 'Oswald', sans-serif;
 text-transform: uppercase;
 margin-bottom: 16px;
}

Listing 4.4 Title styles using the font shorthand property

Listing 4.5 Article header rules

Article
heading

994.1 Setting up our theme
h3 {
 font: 2rem/.95 'Oswald', sans-serif;
 text-transform: uppercase;
 margin-bottom: 12px;
}

Now our article’s headers look like figure 4.5.

4.1.5 Inline versus block elements

Let’s continue to make important elements stand out from the rest of the content,
starting with the publication date, which is inside a <time> element in our HTML.
The <time> element semantically denotes a specific period in time; it takes an
optional datetime attribute that provides the date as a machine-readable format for
search engines. Our <time> element looks like this: <time datetime="2021-09-
07">Tuesday, 5th September 2021</time>. Figure 4.6 shows the look we
want to achieve.

Article
subheadings

h2

h3

Figure 4.5 Styled article headings

Figure 4.6 Styled publication date

100 CHAPTER 4 Creating a responsive web newspaper layout
Starting with the typography, we center the text and use the Oswald font family, set the
font-size to 1.5rem, and make the text uppercase and bold. Then we change the
text size of the th found in the superscript element (<sup>) to a slightly smaller font
size and normal weight to decrease its prominence.

 Next, we add the top and bottom borders to be 3-pixel-thick, solid, dark gray lines.
After adding the borders, we add some top and bottom padding so that we have some
breathing room between the text and the borders.

 The <time> element is an inline-level element, meaning that it takes up only the
exact amount of space it needs for its content, the same way that a or <a> ele-
ment does.

 By contrast, block-level elements (such as <div>, <p>, and) place themselves
on a new line and take the full width of their available space unless given a set width.
To achieve the design in figure 4.6, we want our <time> element to behave as though
it were a block-level element so that the text will place itself in the middle of the
screen, and the borders will take the full width of the page.

 To change the element’s default behavior, we’ll use the display property and give
it a value of block. Figures 4.7 and 4.8 show the <time> element before and after we
add the display property. In figure 4.7 (before adding the display property), the
element is exhibiting its default behavior as an inline-level element. In figure 4.8
(after adding the display property), the element behaves like a block-level element,
taking the full width of the screen.

Figure 4.7 The <time> element exhibiting inline behavior

Figure 4.8 The <time> element exhibiting block behavior

1014.1 Setting up our theme

St
the
Styling the publication date in this manner serves two purposes: the styling makes it
stand out, and it creates a visual divide between the newspaper information (the date
and newspaper’s main heading) and the article itself (everything below the date). The
following listing contains the rules we wrote to achieve our design.

time {
 font: 700 1.5rem 'Oswald', sans-serif;
 text-align: center;
 text-transform: uppercase;

 border-top: 3px solid #333333;
 border-bottom: 3px solid #333333;
 padding: 12px 0;

 display: block;
}
time sup {
 font-size: .875rem;
 font-weight: normal;
}

4.1.6 Quotes

The last bit of text we want to feature is the <blockquote> after the second paragraph
in the article. Sticking with our theme, as with all the other elements we want to make
stand out, we’ll make the font bigger and bolder. We’ll also adjust the line height and
add a margin to the element. Isolating an element from the content around it makes
it easier to spot. By adding a top and bottom margin, we add space between the quote
and the paragraphs above and below it, creating whitespace around the element. By
adding left and right margins, we change its alignment, effectively indenting it. The
added whitespace creates isolation.

 Let’s also add quotation marks to our <blockquote>. To add the quotation marks
at the beginning and end of our quote, we could simply go into the HTML and add
them manually, or we can do the job programmatically with CSS.

 The quotes property allows us to define custom quotation marks. We can pass to
this property the symbols we want to use as our double- and single-quote glyphs. Not
all languages use the same symbols. American English, for example, uses “...” and ‘...’,
but French uses «…» and ‹…›. Using the quotes property, we can customize the sym-
bols we want to use. If we don’t provide a value for quotes, the browser’s default
behavior is to use what is customary for the language set on the document.

 The quotes property, however, only defines the symbols; it doesn’t add them. To
add them, we use the content property values open-quote and close-quote in con-
junction with the ::before and ::after pseudo-elements, as shown in listing 4.7. The
pseudo-elements allow us to insert content via the content property before and after
the element to which they’re applied, respectively.

Listing 4.6 Styling the publication date

Typography

Handles the borders
and padding

Makes the element
behave like a block-
level element

yles
“th”

102 CHAPTER 4 Creating a responsive web newspaper layout
blockquote {
 font: 1.8rem/1.25 'Oswald', sans-serif;
 margin: 1.5rem 2rem;
}
blockquote::before { content: open-quote; }
blockquote::after { content: close-quote; }

The open-quote and close-quote keywords represent opening and closing quotation
marks as defined by the quotes property. Because we didn’t add a quotes declaration
to our blockquote rule, the browser will use what is conventional for the document’s
language, which we set to en-US in the language (lang) attribute of the <html> tag.
The value of en-US specifies that our document is written in American English; there-
fore, the symbols that the browser renders are “ and ”, as we see in figure 4.9.

With our quote styled, let’s turn our attention to the bulleted list in the middle of the
article.

4.2 Using CSS counters
Our article contains an unordered (bulleted) list. Currently, each list item has the
default bullet before it. We can alter what our bullet looks like by using the list-
style-type property. By default, we can choose disc (•), circle (○), square (▪), and
numbers or letters in several languages, alphabets, and number formats. But let’s say
we want our bullet to be an emoji—specifically, the hot-beverage emoji (☕). We’ll
have to create a custom list style.

 To create our custom list style, we’ll use the @counter-style at-rule. We used at-
rules in chapter 3 when we created keyframes. In this case, instead of defining how an
animation will behave, we’ll define how a list looks and behaves. The at-rule is called
counter-style because it specifically addresses the built-in counting mechanism for
list items in CSS. Under the covers, regardless of whether the list is ordered or unor-
dered, the browser keeps track of the position of the item in the list—that is, it counts
the items.

Listing 4.7 Styling the blockquote

Figure 4.9 Styled title, heading, subheadings, and quote

1034.2 Using CSS counters
 As with keyframes (which we named so we could reference them inside our anima-
tion property), we’ll name our @counter-style so we can reference it with the list-
style property and apply it to our list. Let’s name our list-style emoji. Our at-rule,
therefore, will be @counter-style emoji { }.

 Next, we’ll define the behavior our list-style needs to have inside of our at-rule.
We’ll use three properties: symbols, system, and suffix.

4.2.1 The symbols descriptor

The symbols descriptor defines what will be used to create the bullet style. To define
our emoji as the symbol to use, we can use the emoji directly or use its Unicode value.

Unicode is a character-encoding standard that specifies how a 16-bit binary value is
represented as a string. In other words, it’s the code representation of our emoji. The
actual emoji image is determined by the operating system and browser, which is why
we see variations in how emojis look between iOS and Android, for example. The Uni-
code value tells the machine what to render.

 We use lookup tables such as the one at http://mng.bz/GRQJ to find this value for
our emoji. ☕ is listed as having the following code: U+2615. To tell our CSS that we’re
using a Unicode value, we’ll replace the U+ with a backslash (\). Using the Unicode
value, our declaration value will be symbols: "\2615". If we use the emoji, our decla-
ration value will be symbols: ☕;.

 Next, we need to define our system descriptor.

4.2.2 The system descriptor

Regardless of type of list (ordered or unordered), under the covers the browser
keeps track of the list item it’s styling based on its position inside the list. The first
item’s integer value is 1, the second is 2, and so on. The system descriptor value
defines the algorithm used to convert that integer value to the visual representation
we see on the screen.

 We’re going to use the cyclic value. Earlier, we provided only one emoji in our
symbols declaration, but we could have included multiple different emojis using a
space-delimited list. A cyclic value tells the browser to loop through these values
and, when it runs out, to start back at the beginning. Because we have only one
value, the browser will apply the ☕ to the first list item and then run out of symbols.
Having run out before the second list item, the browser starts back at the beginning
of the list, applying the ☕ once again but to the second list item this time. Then the
browser will run again, moving on to the third list item, and the cycle continues.
Finally, we’ll set a suffix.

4.2.3 The suffix descriptor

The suffix descriptor defines what comes between the bullet (our emoji) and the
contents of the list item—by default, a period. We want to replace the period with

http://mng.bz/GRQJ

104 CHAPTER 4 Creating a responsive web newspaper layout
plain whitespace between our emoji and list-item content. Therefore, we’ll set our
suffix descriptor value to " " (a blank space).

4.2.4 Putting everything together

With our counter-style defined, we can apply it to our list. Remember that we
named the counter-style rule emoji. We’ll apply the name as the list-style prop-
erty value for our list, as shown in the following listing.

@counter-style emoji {
 symbols: "\2615";
 system: cyclic;
 suffix: " ";
}

article ul {
 list-style: emoji;
}

Figure 4.10 shows our newly styled list.

4.2.5 @counter versus list-style-image

Another way to change the list item marker being used is to use the list-style-
image property and assign an image to it, similarly to the way we can set a background
image by using the background-image property. We didn’t use that approach in this
project because we used an emoji, which is a Unicode character and not an image.
The counter also provides us much more control, such as assigning a suffix or specify-
ing how the counter cycles through the item markers being displayed.

 If we’re looking only to change the marker to a specific image, list-style-image
is perfect. But if we want to have more granular control or, as in our case, to use text,
we need to use @counter. Let’s continue going down the page, styling the image next.

4.3 Styling images
Historically, newspapers were printed in black and white. Colored ink in newsprint
is a fairly new thing when we consider the history of print. To give our design a bit of
a retro vibe, therefore, we’ll make our image grayscale. First, we’ll look at how to

Listing 4.8 Styling the list

The at-rule defining
the custom list-style’s
behavior

☕

Applies the custom
list-style to the
article’s lists

Figure 4.10 List styled
using ☕ as counters

1054.3 Styling images
alter our image using filters. Unlike in print, on the web we need to worry about
resources not loading or links being broken, so we’ll also look at how to make the
image fail gracefully should it fail to load. Finally, we’ll add a caption to accompany
the image.

4.3.1 Using the filter property

As in photo editors or on social-media websites like Instagram, we can apply filters to
images with CSS. We can alter colors, blur, and add drop shadows, for example. Fig-
ure 4.11 shows examples of some of the things we can do to our images by using filters
in CSS. Check out this code sample in CodePen to see it in action: https://codepen
.io/michaelgearon/pen/porovxJ.

If we think about pre-digital-era photography, when we used film and had to go to a
shop to have it developed, we applied filters by adding a translucent disk over our
lens, which altered the light coming into the camera box and onto the film. By alter-
ing the nature of the light, we altered the image being produced. If we used a red fil-
ter while taking a picture, for example, only the red-colored wavelength was allowed
through; our picture was tinted red. Polarized sunglasses are another example of a fil-
ter that alters the light coming through a lens.

 We can still use physical filters with digital cameras. In many cases, however, filters
are applied digitally after the picture has been taken.

 In CSS, we use the filter property to apply a filter to the image; then we use a
function that defines the behavior we want the filter to have. You can find a list of the

Figure 4.11 Examples of images altered with the filter property

https://codepen.io/michaelgearon/pen/porovxJ
https://codepen.io/michaelgearon/pen/porovxJ
https://codepen.io/michaelgearon/pen/porovxJ

106 CHAPTER 4 Creating a responsive web newspaper layout
available functions at http://mng.bz/zmYA. We’ll use the grayscale() function to
make our picture appear to be a black-and-white photo.

 The grayscale() function takes a percentage, which represents how much we
want to reduce the amount of color in the image. We want to remove all the color, so
we’ll pass in a value of 100%. Our rule, then, will be img { filter: grayscale(100%) }.
Figure 4.12 shows the filter applied to our image.

One consideration to make before using filters is their impact on website perfor-
mance. Some of the filter functions, such as grayscale(), are relatively simple for the
browser to process, but functions such as drop-shadow() and blur() can be resource-
intensive. If we find that we’re applying many filters to a large number of images, we
should consider the impact of the filters on overall page performance and whether we
should be preprocessing the image rather than applying the change with CSS.

4.3.2 Handling broken images

Even with the most thorough diligence and best testing practices, broken image links
can happen. Let’s add some fallbacks to ensure that if our image fails to load (regard-
less of the reason), we’ll maintain a positive experience for our users.

 First, let’s deliberately break our link. In the HTML, we’ll replace the path to the
image with an image file that doesn’t exist in our project, like so: <img src="./my-
broken-image.jpg" alt="my broken link" />. The image will display as broken, as
shown in figure 4.13.

Figure 4.12 Grayscale Image

Figure 4.13 Broken link with alt text

http://mng.bz/zmYA

1074.3 Styling images
Notice that the text provided in the alt attribute is displayed. The alt attribute allows
assistive technologies to inform users about the image being displayed. A common use
case is a blind user accessing content via a screen reader. In this particular case,
because the image is broken, the text replaces the image. Although the situation isn’t
ideal, in the event of an image failure, users can still be informed of the content that
the image was supposed to provide.

 In our case, the image is purely decorative and doesn’t provide any content value, so
if the link is broken, we’ll hide the image. Nothing will be there, but “nothing” is less
unsightly than a broken-image icon. Because there’s no way to detect that an image is
broken in CSS, we need to use a little bit of JavaScript to know when to hide the image.
We’ll use the onerror JavaScript event handler to trigger a change in styles as follows:
. The bit of
code that is of interest to us here is the onerror attribute. When an error occurs, the
JavaScript inside the onerror attribute triggers and sets the image’s display property to
none, hiding the image. We can see that, in figure 4.14, our broken image is missing.

The onerror code triggers only when the image fails to load, so let’s fix our resource
path to our image but keep the error handling: <img src="./image.jpg" alt=""
onerror="this.style.display='none'" >. Now our image is restored (figure 4.15),
but we have a safeguard in case it fails.

Broken image is gone.

Figure 4.14 The broken image is missing.

Figure 4.15 Restored image with fallback

108 CHAPTER 4 Creating a responsive web newspaper layout
Next, let’s add a caption to the image.

4.3.3 Formatting captions

The image doesn’t have a caption, so we’re going to add one by using the <figure>
and <figcaption> HTML elements. Then we’ll style it.

 These two elements go hand in hand. <figure> contains the image and then the
optional <figcaption>. Often in books and other publishing material, a diagram, chart,
or image has text below it that describes it or relates it to the text. Semantically, the ben-
efit of grouping the image and the caption is that grouping programmatically links the
image with its caption. From a styling perspective, having the elements together in a par-
ent element allows us to position the element and its caption as a unit. The following
listing shows how to change the HTML to add the figure and caption.

<figure>

 <figcaption>Golden Gate Bridge</figcaption>
</figure>

Let’s style the figure and the caption, starting by removing the browser-provided mar-
gins (figure 4.16) that are currently being applied to the figure.

Next, we’ll reinstate a bottom margin so that our caption is kept separate from the para-
graph below it. Finally, we’ll center the image and caption. We’ll style the caption’s text
to use the Oswald font family (the one we used for all the headers) to differentiate it
visually from the article text. The following listing shows the CSS used to style the fig-
ure and caption.

Listing 4.9 Adding a <figure> and <figcaption> to the HTML

Start of the figure Our image

Our image
captionEnd of the figure

Figure 4.16 <figure> with browser-provided styles

1094.3 Styling images
figure {
 margin: 0 0 12px 0;
 text-align: center;
}
figcaption {
 font-family: 'Oswald', sans-serif;
}

Figure 4.17 shows the progress we’ve made on our project thus far. At this point, the
page looks good on narrow screens, but we still need to display our columns on wide
screens. Next, we’ll look at how to create a multicolumn layout using the CSS Multi-
column Layout Module.

Listing 4.10 figure and figcaption styles

Padding shorthand property:
top, left, and right padding set
to 0 and bottom set to 12px

Figure 4.17 Progress thus far, including styled figure and image caption

110 CHAPTER 4 Creating a responsive web newspaper layout
4.4 Using the CSS Multi-column Layout Module
The CSS Multi-column Layout Module is perhaps less known than Grid and Flexbox
as a way to present content, but it’s no less useful. The purpose of this module is to
allow content to flow naturally between multiple columns. It works similarly to the way
we create multiple column layouts in a Microsoft Word or Google Docs document. We
assign columns to a section of content, and the content naturally flows from one col-
umn to another. Because we want our content to be placed in columns only on wider
screens, we’ll use a media query to apply our columns conditionally only after the win-
dow reaches a particular size.

4.4.1 Creating media queries

A media query is a type of at-rule; we looked at it briefly in chapter 2 when we changed
our grid layout to depend on the width of the screen. Like @counter-style, which we
used earlier in this chapter, it starts with an at (@) symbol followed by the identifier
media. Then we set the instruction about what to do when the rules inside the media
query apply. We want to place the content in columns when our window width is
greater than or equal to 955 pixels. Therefore, our media query will be @media(min-
width: 955px) {}. Figure 4.18 breaks down the individual pieces of the query. Inside
the media query, we’ll define our columns.

4.4.2 Defining and styling columns

There are two ways we can define how the columns are created:

 Dictate a column width. The browser will create as many columns of that width as
it can in the available space.

 Dictate how many columns we want. The browser will fit that number of equal-size
columns in the available space.

We’ll go with the second option because we already know that we want to create three
columns. We specifically target the article, and using the column-count property, we
set our quantity to 3, as shown in the following listing.

@media(min-width: 955px) {

Identifier

/* Rules go here and are applied when
query conditions are met */

Query

when the rules within should apply.

} Figure 4.18 Media-query breakdown

1114.4 Using the CSS Multi-column Layout Module
@media(min-width: 955px) {
 article {
 column-count: 3;
 }
}

Figure 4.19 shows our article laid out in three columns using the CSS from listing 4.11.

Next, we’ll adjust the spacing between columns and add vertical lines between them.
Let’s start with the vertical lines.

Listing 4.11 Conditionally breaking an article into three columns based on screen width

Media query

Sets how many
columns we want

Figure 4.19 Three-column layout

112 CHAPTER 4 Creating a responsive web newspaper layout
4.4.3 Using the column-rule property

To create a clear separation between our columns, we’ll add a vertical line between
them, using the column-rule property. As with borders and outlines, we need to set a
line type, width, and color. To keep our line work consistent, we’ll use the same color
and style of line that we set for the borders above and below the date at the top of the
page. We’ll make the lines slightly narrower, however.

 The lines at the top of the screen separate content types (title, date, and article).
Here, we’re within the same content type. We add the lines to make visual separation
of the columns easier; we don’t want to break up the content. We want the lines to be
less prominent, so we’ll make them thinner.

 To create the lines, we add column-rule: 2px solid #333333; to the existing arti-
cle rule inside the media query. Now our article looks like figure 4.20.

With our lines in place, we see that we have some crowding between the article itself
and the date and that we could use a bit more space between our lines and our text.

Figure 4.20 Columns with added vertical lines

1134.4 Using the CSS Multi-column Layout Module
4.4.4 Adjusting spacing with the column-gap property

Now we need to do two things: increase the container spacing between the date of
the article and the body of the article, and increase the gap between columns
within the article. To adjust the spacing between the article and the date, we’ll add
36px of margin to the top of the article. Because working out a value to use isn’t an
absolute science, sometimes we need a bit of trial and error to determine what will
look right on the page. We want to create enough room that each item has its own
space and is clear, but not so much room that the items are too far apart and look
separated.

With the space between the article and the date handled, let’s turn our attention to
the space between the columns. To add a gap between our vertical lines and our text,
we’ll use the column-gap property, which defines the amount of whitespace we want to
have between our columns. We will set ours to 42px;.

 We continue to add these styles inside the media query as shown in listing 4.12
because we want them to apply only when our layout is columned. We don’t want
these style changes to apply to narrower screens.

@media (min-width: 955px) {
 article {
 column-count: 3;
 column-rule: 2px solid #333333;
 column-gap: 42px;
 margin-top: 36px;
 }
}

With these adjustments made (figure 4.21), let’s turn our attention to the quote.
 Earlier in this chapter, we styled the block quote so that it would stand out. But

now that we have a multicolumn format, it gets a little lost in the other visual elements
on the page. Let’s make it span multiple columns to make it pop.

Gestalt design principles
The Gestalt principles of design are a collection of principles of human perception that
describe how humans group similar elements. One of the seven principles is proxim-
ity, which talks about how things that are close together appear to be more related
than things that are spaced farther apart. For more information about the Gestalt prin-
ciples, see http://mng.bz/0yNv.

Listing 4.12 Updated media query and article rule

http://mng.bz/0yNv

114 CHAPTER 4 Creating a responsive web newspaper layout
4.4.5 Making content span multiple columns

We can make elements span multiple columns by using the column-span property.
Our choices of values are all and none. Because we want the quote to go across the
entire page, we’ll choose all. Inside our media query, we’ll add the following rule:
blockquote { column-span: all }. This rule results in the layout shown in figure 4.22.

 Notice that the flow of the content has changed. We added arrows to show the new
flow introduced by making the quote span the screen. Instead of flowing the entire
article from top left to bottom right, evenly distributed across the columns, we
added column-span: all to the quote, so content that’s before the quote now flows
from top left to top right across the page above the quote. The content after the quote
does the same. As a result of spanning content, we changed the flow of the text through
our columns.

 When we look at the content flow, we notice that the caption and the image have
been split across two columns, which isn’t ideal. Let’s prevent that from happening.

Figure 4.21 Layout with adjusted spacing

1154.5 Adding the finishing touches
4.4.6 Controlling content breaks

To prevent the image and its caption from ending up in different columns, we can use
the break-inside property with the keyword value avoid, which we set on the <fig-
ure> element. With this declaration, we inform the browser that when it’s generating
the columns, the contents of the element should stay together as a unit, not be split
across multiple columns. In other words, the image and figure caption should remain
together. The rule we add to the media query is figure { break-inside: avoid }. Fig-
ure 4.23 shows the resulting output.

4.5 Adding the finishing touches
With our content flowing the way we want it across the columns, let’s polish some final
details. One of the hallmarks of newspaper layouts is that the text is often justified.

Figure 4.22 Content reflow due to spanning the blockquote across the columns

116 CHAPTER 4 Creating a responsive web newspaper layout
4.5.1 Justifying and hyphenating text

Justification refers to the alignment of the lines inside a body of text, as illustrated in
figure 4.24. When text is justified, the lines of text start and end at the same spot, form-
ing a box. By contrast, text that is left-aligned has ragged ends.

Let’s justify our paragraph text. To do this, we’ll use the text-align property and give
it a value of justify. To make the lines equal in length, we’ll distribute extra space
across the line. We can tune how the space is redistributed by using the text-justify
property. If we don’t set a text-justify value, the browser will choose what it thinks
is best for the situation. We have a fluid design; it grows and shrinks with the window
size. What is best may be different based on the window size, so we’ll let the browser
decide what will work best.

 We’ll add some hyphens, however. By default, browsers don’t hyphenate a word at
the end of a line; they simply continue to the next line. We can alter this behavior by

Figure 4.23 Keeping the image and caption together

Aenean lacinia bibendum nulla

sed consectetur. Duis mollis, est

non commodo luctus, nisi erat

porttitor ligula, eget lacinia odio

sem nec elit. Donec id elit non mi

porta gravida at eget metus. Cras

justo odio, dapibus ac facilisis in,

egestas eget quam. Cras mattis

consectetur purus sit amet

fermentum. Nullam id dolor id

nibh ultricies vehicula ut id elit.

Cras mattis consectetur purus sit

amet fermentum.

Left

Aenean lacinia bibendum nulla

sed consectetur. Duis mollis, est

non commodo luctus, nisi erat

porttitor ligula, eget lacinia odio

sem nec elit. Donec id elit non mi

porta gravida at eget metus. Cras

justo odio, dapibus ac facilisis in,

egestas eget quam. Cras mattis

consectetur purus sit amet

fermentum. Nullam id dolor id

nibh ultricies vehicula ut id elit.

Cras mattis consectetur purus sit

amet fermentum.

lacinia bibendum nulla

. Duis mollis, est

non commodo luctus, nisi erat

porttitor ligula, eget lacinia odio

sem nec elit. Donec id elit non mi

porta gravida at eget metus. Cras

to odio, dapibus ac facilisis in,

egestas eget quam. Cras mattis

consectetur purus sit amet

fermentum. Nullam id dolor id

ultricies vehicula ut id elit.

mattis consectetur purus sit

t fermentum.

Center

Aenean lacinia bibendum nulla

sed consectetur. Duis mollis, est

non commodo luctus, nisi erat

porttitor ligula, eget lacinia odio

sem nec elit. Donec id elit non mi

porta gravida at eget metus. Cras

justo odio, dapibus ac facilisis in,

egestas eget quam. Cras mattis

consectetur purus sit amet

fermentum. Nullam id dolor id

nibh ultricies vehicula ut id elit.

Cras mattis consectetur purus sit

amet fermentum.

Right

Aenean lacinia bibendum nulla

sed consectetur. Duis mollis, est

non commodo luctus, nisi erat

porttitor ligula, eget lacinia odio

sem nec elit. Donec id elit non mi

porta gravida at eget metus. Cras

justo odio, dapibus ac facilisis in,

egestas eget quam. Cras mattis

consectetur purus sit amet

fermentum. Nullam id dolor id

nibh ultricies vehicula ut id elit.

Cras mattis consectetur purus sit

amet fermentum.

Justified

Figure 4.24 Text justification

1174.5 Adding the finishing touches
setting the hyphens property to auto. Allowing the browser to hyphenate words at the
end of lines will help diminish the amount of whitespace that’s needed between our
words to justify the text.

 Listing 4.13 shows our paragraph rule. We continue to include our updates inside
our media query, as these changes are relevant only when we switch to the columns
layout.

@media (min-width: 955px) {
 ...
 p {
 text-align: justify;
 hyphens: auto;
 }
}

Now our paragraphs look like those in figure 4.25.

Listing 4.13 Justifying paragraph text

Figure 4.25 Justified and hyphenated paragraph text

118 CHAPTER 4 Creating a responsive web newspaper layout
As we look at our layout, we notice that the image at the bottom of the second column
looks a little odd and out of place. Let’s fix that.

4.5.2 Wrapping the text around the image

To reconnect the image with the subsequent text, we’ll push the image and its caption
to the left and have the text wrap around the image. To create this effect, we’ll use the
float property. Applying the float property to an element pushes it to the left or the
right, allowing text and inline elements to wrap around it.

 In this situation, having the image and caption as a unit inside a <figure> ele-
ment comes in handy for styling. Because both items are contained in the <figure>,
we’ll apply float to the figure, neatly wrapping the text around both the image and
the caption.

 Listing 4.14 shows how we float the figure. Notice that we added a right margin to
the figure. Because we are floating the figure to the left, it places itself on the left side
of the column, allowing the text to wrap around it in the leftover space to the right, as
shown in figure 4.26. The right margin creates a space between the image and the text
so that the text doesn’t come right up against the edge of the image.

@media (min-width: 955px) {
 ...
 figure {
 float: left;
 margin-right: 24px;
 }
}

Listing 4.14 Floating the figure

Figure 4.26 Floated image

1194.5 Adding the finishing touches
As you’ll see in chapter 7, we can do a lot more cool things with floating images. For
now, though, let’s focus on our newspaper page. The last thing we’ll address is han-
dling how the page behaves in an extremely wide window.

4.5.3 Using max-width and a margin value of auto

Figure 4.26 shows that our layout starts to degrade as the window gets extremely wide.
The wider the window, the worse the problem gets. More and more users have extra-
wide screens, so we need to consider what would happen if they have the window max-
imized, taking up the entire screen. To handle this use case, we’ll use the same trick
that we used for the loader in chapter 2. We’ll set a maximum width for our layout and
then set its left and right margins to auto, which will center the container horizontally
when the window is larger than our maximum width.

 For our page, our container is the body, so we’ll give our body a max-width of
1200px and set our left and right margins to auto. We also need to move the back-
ground-color from being set on the body to being set on the html element rule; oth-
erwise, when our screen is wider than 1,200 pixels, we’ll end up with a white band to
the left and right sides of our page.

 These changes won’t go inside the media query. We’ll edit the styles we set on the
body at the beginning of this chapter and add an html rule to set the background
color. The following listing shows our changes.

html { background-color: #f9f7f1 }

body {
 background-color: #f9f7f1;
 font-family: 'PT Serif', serif;
 color: #404040;
 padding: 0 24px;
 max-width: 1200px;
 margin: 0 auto;
}

With these final changes, we have a page that works for both mobile and desktop
users. Figure 4.27 shows our finished layout.

Listing 4.15 Changes to the body and html elements

Moves the background
color from the body
rule to the html rule

Sets the maximum width
our page can become

Centers the
page

120 CHAPTER 4 Creating a responsive web newspaper layout
Summary
 A theme is the general look and feel that we maintain throughout an application.
 We may need to import our fonts, as few fonts are universally available. Because

no officially defined list of web-safe fonts exists, we should always use a keyword
fallback.

 Creating a visual hierarchy will help our users orient themselves to the page and
identify important information.

 We can control which symbols the browser uses when it’s instructed to display
quotation marks.

 We can customize the way our lists display their bullets by using the counter-
style at-rule.

 Filters allow us to alter the appearance of an image.
 We can create multicolumn layouts by using the CSS Multi-column Layout

Module.
 We can make content span all the columns when creating multicolumn layouts.
 We can make the browser use hyphens to break words at the end of lines.
 Floating allows us to wrap text around an element.

Figure 4.27 Finished layout

Summary cards
with hover interactions
Summary cards are used for a range of purposes, whether that be showing a preview
for a film, buying a property, previewing a news article, or (in this chapter) showing
a list of hotels. Usually, a summary card contains a title, description, and a call to
action; sometimes, it also contains an image. Figure 5.1 shows the cards we’ll create
in this project.

 The cards will be placed in a single line, using the CSS Grid Layout Module for
layout. Each card will have its own background image, with the content placed on
top. If the user is viewing the card on a device that supports hover and has a screen
at least 700 pixels wide, they’ll be able to see the title and then hover over the card,
which will reveal the short description and an orange call-to-action button for con-
trast with the black background (figure 5.2).

This chapter covers
 Clipping static background images using the

background-clip property

 Using transitions to reveal content on hover

 Using media queries to choose styles based on
device capabilities and window size
121

122 CHAPTER 5 Summary cards with hover interactions
For users whose devices don’t support hover or have a screen less than 700 pixels
wide, we’ll show all the information without hover so that the user experience isn’t
affected (figure 5.3).

Figure 5.1 Finished product

Figure 5.2 Hover effect on finished product

1235.1 Getting started
The other piece of this project is the header, which we want to make stand out and
have some visual interest. To do this, we’ll explore the background-clip property and
see how we can clip an image around the text.

5.1 Getting started
Listing 5.1 and listing 5.2 include our starting CSS and HTML for the page that we’ll
build on in this chapter. To follow along as we style the page, you can download the
starting HTML and CSS from the GitHub repository at http://mng.bz/KlaO or from
CodePen at https://codepen.io/michaelgearon/pen/vYpaQPO.

 The mobile and desktop experiences will use the same HTML and stylesheet. Sim-
ilarly to what we did in chapter 4, we’ll use media queries to alter the styles based on
browser size and capabilities.

 Listing 5.1 shows our starting HTML. Each card is wrapped in a <section> ele-
ment and includes its title (<h2>), description (<p>), and call to action (<a>).

Figure 5.3 Finished product
on small or touch devices that
can’t handle the hover state

http://mng.bz/KlaO
https://codepen.io/michaelgearon/pen/vYpaQPO

124 CHAPTER 5 Summary cards with hover interactions
 <header>
 <h1>Hotels</h1>
 </header>
 <main>
 <section class="flamingo-beech">
 <div>
 <h2>Meeru Island Resort & Spa</h2>
 <p>The stylish Meeru Island ...</p>
 Learn more
 </div>
 </section>
 ...

 </main>

Our starting CSS (listing 5.2) includes some base styles to set up our page. For the
body, we’re increasing the margin by 40 pixels and adding padding of 20 pixels to all
four sides. We’re using Google Fonts—this time the font family Cardo, regular weight,
italicized version—for the description of each card. For the headers, we’ll use Rubik
in both regular and bold weights. This font is a good choice because it combines good
readability with rounded edges, providing a sense of informality that works well with
the Cardo font. Notice that when we’re loading multiple Google Fonts, we can com-
bine the imports into one request.

@import url("https:/ /fonts.googleapis.com/css?

➥ family=Cardo:400i|Rubik:400,700&display=swap");

body {
 margin-top: 40px;
 padding: 20px;
}

As we begin styling our project, our page looks like figure 5.4.

5.2 Laying out the page using grid
A good starting point is reviewing the layout of our cards and the web page as a whole.
We need to consider three aspects of our layout:

 The header and main content
 The container for the cards
 The content within the cards

We’ll use the CSS Grid Layout Module for layout in all three use cases.

Listing 5.1 Starting HTML

Listing 5.2 Starting CSS

Page title
Start of the
first summary
card

Card title

Card description
(shown only on hover
when browser allows)

Card
call to
action

End of first
summary
card

One request to load
both the Cardo and
Rubik fonts

1255.2 Laying out the page using grid
NOTE The CSS Grid Layout Module allows us to place and align elements
across both the vertical and horizontal axes in a system of columns and rows.
Check out chapter 2 to find out how this module works.

To lay out the elements on our page, we’ll start by creating the styles for narrow screens
and edit the layout as we build up to larger screen sizes by using media queries.

5.2.1 Layout using grid

Our layout consists of two landmarks: <header> and <main>, which are immediate
children of <body> (listing 5.3). By giving the <body> a display property with a value
of grid, we’ll be affecting the position of the <header> and <main> elements.

<body>
 <header> <!-- title -->
 </header>
 <main> <!-- cards -->
 </main>
</body>

Listing 5.3 Starting HTML

Figure 5.4 Starting point

126 CHAPTER 5 Summary cards with hover interactions
Next, we use the place-items property to center the elements on the page. This prop-
erty is a shorthand way to combine declaring values for the align-items and justify-
items properties. We’ll set its value to center, aligning all the items in the middle of
their respective rows and columns. The following listing shows our updated body rule.

body {
 display: grid;
 place-items: center;
 margin-top: 40px;
 padding: 20px;
}

Notice that we haven’t defined any grid-template-rows, grid-template-columns, or
grid-template-areas. By default, when none of these areas is declared, the browser
creates a one-column grid with as many rows as there are elements to position. In our
case, we have two elements: <main> and <body>. Therefore, our grid has one column
and two rows (figure 5.5).

Listing 5.4 Positioning the <header> and <main> elements

Figure 5.5 One-by-two grid

1275.2 Laying out the page using grid
The widths of the <header> and <main> are altered by being within the grid to take
only as much horizontal space as their content requires. Because the <header> has
narrow content (the <h1> containing the word hotel), the page title centers itself on
the page. The <main> element takes the full width available to it because the descrip-
tion of Flamingo Beach (in the second card) needs the full width and even wraps. If
we extend the width of the screen further, we see that the <main> element also centers
itself (figure 5.6).

We’ll also rely on the default functionality of the grid and omit defining rows and col-
umns because we want to keep the cards stacked on narrow screens. To add space
between cards, we include a gap of 1rem. We also restrict the width of the <main> ele-
ment to a maximum 1024 pixels to prevent our cards being too spaced out on wide
screens after we align them horizontally on wide screens (section 5.2.2). Our updated
CSS, shown in the following listing, keeps the cards stacked but adds a 1-rem gap
between cards (figure 5.7).

main {
 display: grid;
 max-width: 1024px;
 grid-gap: 1rem;
}

5.2.2 Media queries

At the moment, our cards are stacked vertically—the default behavior in most cases
with HTML elements. This layout makes sense on mobile devices, which have rather

Listing 5.5 Positioning the cards on narrow screens

Figure 5.6 Centered main on a wide screen

128 CHAPTER 5 Summary cards with hover interactions
narrow screens. For desktop screens, however, because the browser window can be
much wider, we can take advantage of the horizontal space by using media queries. We
can define some media queries to adjust the layout:

 If the window width is greater than or equal to 700 pixels, we adjust the grid to
have two equal-size columns and set the height of each section to exactly 350
pixels.

 At 950 pixels, we adjust the layout again to have four equal-size columns over-
riding the grid-template-columns value set in the preceding media query.
The height property value remains 350 pixels because the condition for the
preceding media query (min-width: 700px) is still being met.

If neither of the requirements for these media queries is met (when the browser win-
dow is less than 700 pixels wide), the cards will be stacked vertically in a single col-
umn. The following listing shows the two media queries being created.

Figure 5.7 Grid applied to <main>

1295.2 Laying out the page using grid
@media (min-width: 700px) {
 main {
 grid-template-columns: repeat(2, 1fr);
 }
 main > section {
 height: 350px;
 }
}
@media (min-width: 950px) {
 main {
 grid-template-columns: repeat(4, 1fr);
 }
}

Figure 5.8 and figure 5.9 show the output in browser windows that are 800 and 1000
pixels wide, respectively.

 With our layout in hand, let’s focus on styling our content, starting with the header.
We’re going to change the font for our <h1> element and look at how to use an image
to color our text.

Listing 5.6 Layout for the cards

Media query to determine whether
the browser window is at least 700
pixels wide. If so, the styles within
the query are used.

Second media query to determine whether the
browser window is at least 950 pixels wide. If so,
this query overrides the preceding query and sets
the grid to four columns wide.

Figure 5.8 Layout on a screen 800 pixels wide

130 CHAPTER 5 Summary cards with hover interactions
5.3 Styling the header using the background-clip property
The title of this page—Hotels—could be more interesting visually. One way to liven it
up could be to set a nice vibrant color and update the font family to something mod-
ern. Another way is to apply a background image to the text. These changes are possi-
ble through two experimental properties: background-clip and text-fill-color.

We can reduce the risks from background-clip: text being an experimental prop-
erty by setting a fallback color value so that if these two properties don’t work, the user
will see the text without the background image.

5.3.1 Setting the font

The first step is to update the font-family, weight, and size, as well as transform the
text to uppercase. The following listing shows these changes.

h1 {
 font: 900 120px "Rubik", sans-serif;
 text-transform: uppercase;
}

Experimental properties
Some properties’ browser support may be value-specific. The background-clip
property is one of those. This property is supported in all major browsers without a
vendor prefix for all its possible values except text, which still required a vendor
prefix in Microsoft Edge and Google Chrome when this book was written (https://
caniuse.com/?search=background-clip).

Experimental properties should be used with care because they often have nonstan-
dard implementations. For more details about experimental properties, please refer
to chapter 3.

Listing 5.7 Header typography

Figure 5.9 Layout on a screen 1000 pixels wide

Shorthand
font property

https://caniuse.com/?search=background-clip
https://caniuse.com/?search=background-clip
https://caniuse.com/?search=background-clip

1315.3 Styling the header using the background-clip property
We used the shorthand font property. The first value sets the weight, which in this
case is heavy. The second value is the font size (120px), followed by the font-family
we want to use. If this font can’t be loaded, we fall back to a sans-serif font.

 We transformed the text to uppercase through styling rather than by writing it all
in uppercase letters within the HTML. Using all uppercase characters can affect acces-
sibility, as some screen readers may interpret all caps as an acronym and read the let-
ters individually. If we set the text to uppercase through CSS, we’re styling the text
only visually; the characters can be mixed-case.

 Moreover, we’re in a unique position with only one page to style. In a traditional
project, our styles would most likely be applied to multiple pages. By adjusting our cas-
ing in our styles, we help ensure consistency throughout our website or application.

 It’s also worth noting that we should use all capitals sparingly, as that format can
affect the readability of the content. Now our header looks like figure 5.10.

5.3.2 Using background-clip

Now we’ll use an image to color the letters, essentially applying a background image
to the letters themselves. The first thing we need to do is set a background image on
the <h1> element. To ensure that the image covers the entirety of the <h1> element,
we assign the background-size property a value of cover. This value automatically cal-
culates the width and height the image needs to make sure that the image covers the
entire element.

 Next, we manipulate the image to apply only to the letters, rather than the entire
<h1> element. This step is where the background-clip property comes into play. This
property defines, based on the box model, which part of the element the background
should cover. In our case, we’ll give it a value of text because we want the image to
show behind the letters. This property with the value of text still requires a browser
prefix for WebKit-based browsers (Chrome, Edge, and Opera), so we also include the
prefixed property for compatibility with those browsers.

Figure 5.10 Applied typography styles to headers

132 CHAPTER 5 Summary cards with hover interactions
 Currently, our text is black, preventing the image from showing through. We must
make the letters transparent so as not to obscure the image we set as our text back-
ground. The text-fill-color property allows us to set the color of the text. This
property is similar to color, but if both properties are set, text-fill-color super-
sedes color. Because text-fill-color also requires a vendor prefix (for both Web-
Kit- and Mozilla-based browsers), we can use the color property as a fallback in case
the image doesn’t load or any of the experimental properties fails.

 We’re using text-fill-color instead of using the color property with a value of
transparent because we’ll use the color to create a fallback in case background-clip
doesn’t work in a user’s browser. We set its value to white because we’ll add a black
background to our page later in this chapter. That way, if background-clip fails or
isn’t supported, our text will still be visible to the user; it will be white instead of hav-
ing the image coloring it. The following listing shows our updated header class.

h1 {
 text-transform: uppercase;
 font: 900 120px "Rubik", sans-serif;
 background: url(background: url("bg-img.jpg");
 background-size: cover;
 -webkit-background-clip: text;
 background-clip: text;
 -moz-text-fill-color: transparent;
 -webkit-text-fill-color: transparent;
 color: white;
}

When using prefixes, we add the -moz- and -webkit- properties before the non-
prefixed version if an nonprefixed version is available. This allows the browser to
make sure it’s using the nonexperimental version when it becomes available.

 With our header styled (figure 5.11), the next task is styling the cards. We’ll focus
on styling the cards without the hover effect first and then create our media query for
handling cards on wide screens that support hover.

Listing 5.8 background-clip text code

Adds the
background
image

Clips the background to be
applied only behind the text

Makes the text transparent
to allow the image to show
throughFallback

color

Figure 5.11 Background image clipped to the heading

1335.4 Styling the cards
5.4 Styling the cards
Each card is created with an outer <section> element that has a background image
and an inner <div>, which we’ll give a background color to keep our text legible over
the image. Within that <div> is the actual content. The following listing shows our
card structure in isolation from the rest of the HTML.

<section class="meeru-island">
 <div>
 <h2>Meeru Island Resort & Spa</h2>
 <p>The stylish Meeru Island Resort…</p>
 Learn more
 </div>
</section>

To style each part of the card, we’ll work from the outside in, styling the container for
each card, followed by the container for the content, and finally the content itself.

5.4.1 Outer card container

The outer container is the element that gets the background image. Each section
gets an image for its hotel or resort. We’ll select each section individually by its class
name. Then we’ll assign each of the sections a background image, as shown in the
following listing.

.meeru-island {
 background-image: url("1.jpg");
}
.flamingo-beech {
 background-image: url("2.jpg");
}
.protur-safari {
 background-image: url("3.jpg");
}
.mountain-view {
 background-image: url("4.jpg");
}

With the background images added (figure 5.12), let’s configure some general styles
that apply to all the sections.

 We can see that the images aren’t properly centered and don’t showcase the hotels
and resorts well. We can adjust the size of the images by using the background-size
property. We set this property to cover to maximize the amount of the picture being
shown without leaving any whitespace visible if the aspect ratio of the image differs
from that of our card. We also add a background-color of #3a8491 (turquoise) as a
fallback. Finally, we add a border-radius to the card to curve our corners and soften
our edges. Listing 5.11 shows our container styles.

Listing 5.9 Card HTML in isolation

Listing 5.10 Adding background images

Outer card container. Each section has a
class name based on the hotel it describes.

Content
container

Content

134 CHAPTER 5 Summary cards with hover interactions
main > section {
 background-size: cover;
 background-color: #3a8491;
 border-radius: 4px;
}

With our outer container addressed (figure 5.13), let’s move on to the content container.

Listing 5.11 Card container styles

Figure 5.12 Card background pictures

Figure 5.13 Styled outer card container

1355.4 Styling the cards
5.4.2 Inner container and content

Currently, our text isn’t readable; the dark text is hard to read against the image back-
ground and also close to the edge of the outer container. To improve readability, we’ll
give our inner container a background-color of rgba(0, 0, 0, .75), which is black
with some transparency. We’ll also change the text color to whitesmoke and center it.
By not using pure black or pure white in our design, we achieve a softer feel for our
overall composition.

 With the added background color, we add 1rem of padding with our content con-
tainer to keep the text away from the edge of our dark background and 1rem of mar-
gin to leave a gap between the edge of the picture and the beginning of the
background. Finally, we adjust the font-size, font-weight, line-height, and font-
family of our text inside our card. The following listing shows the CSS.

main > section > div {
 background-color: rgba(0, 0, 0, .75);
 margin: 1rem;
 padding: 1rem;
 color: whitesmoke;
 text-align: center;
 font: 14px "Rubik", sans-serif;
}

section h2 {
 font-size: 1.3rem;
 font-weight: bold;
 line-height: 1.2;
}

section p {
 font: italic 1.125rem "Cardo", cursive;
 line-height: 1.35;
}

With our styles applied (figure 5.14), the last piece of content that needs styling is
our link.

 Because our link serves as a call to action, getting users to look at more informa-
tion about the hotel or resort, we want to make it bold and flashy (listing 5.13). To
achieve this end, because the majority of our elements inside our cards are rather
dark, we’ll give the link a bright yellowish-orange (#ffa600) background and change
its text color to almost black. We’ll also add padding. But because a link is an inline
element by default, we’ll want to change its display property’s value to inline-block
so that the padding will affect the height of the element.

Listing 5.12 Card content styles

Card
content
container

Card
header

Card
content

136 CHAPTER 5 Summary cards with hover interactions
a {
 background-color: #ffa600;
 color: rgba(0, 0, 0, .75);
 padding: 0.75rem 1.5rem;
 display: inline-block;
 border-radius: 4px;
 text-decoration: none;
}

a:hover {
 background-color: #e69500;
}

a:focus {
 outline: 1px dashed #e69500;
 outline-offset: 3px;
}

To match our cards, we’ll give the links a border-radius of 4px and finally handle
hover and focus. Instead of underlining, which we’ll remove, on hover we’ll darken
the background color slightly, and on focus we’ll add a dashed outline offset from the
link by 3 pixels. Figure 5.15 shows our styled links.

 Not having all of the links aligned horizontally is a bit odd and doesn’t seem to be
organized. To have all the links aligned, we’ll use grid once again. We’ll give our
inner container a display value of grid and set our grid-template-rows value to
min-content auto min-content, at the same time setting the height of the inner con-
tainer to 100% minus the padding and margin we allotted to it (figure 5.16).

 Earlier in this chapter, we gave the inner container a margin of 1rem and padding
of 1rem, meaning that the height it needs to take up the full height of the space pro-
vided is equal to 100% minus 4rem (1 rem of padding and 1 rem of margin at the top
and the same at the bottom, equaling 4 rems total). To achieve this effect in CSS, we

Listing 5.13 Link styles

Figure 5.14 Card inner container and typography

1375.4 Styling the cards
use the calc() function to do the math for us, assigning calc(100% - 4rem) to the
height property. The combination of defined rows (grid-template-rows: min-
content auto min-content) and set height creates a layout in which the header and
link take only as much room as they need and the middle section (the paragraph ele-
ment) gets what is left.

 Finally, to center the paragraph content vertically in the middle of the card, we use
the align-items property with a value of center and remove the bottom margin auto-
matically added by the browser to the <h2>. If we left the margin at the bottom of the

Figure 5.15 Styled links

Header

Learn more

min-content

min-content

1rem

1rem

1rem

1rem

Description

2 rem

2 rem

calc(100% - 4rem)

auto
The content is centered
in the available space.

Figure 5.16 Aligning card elements horizontally

138 CHAPTER 5 Summary cards with hover interactions
header, we’d have more room at the top of the paragraph than at the bottom because
min-content takes the margin included on an element into account. Because the link
at the bottom of the card has no margin, there would be a disproportionate amount
of whitespace above the paragraph compared with below it. The following listing
shows our layout adjustments.

main > section > div {
 background-color: rgba(0, 0, 0, .75);
 margin: 1rem;
 padding: 1rem;
 color: whitesmoke;
 text-align: center;
 height: calc(100% - 4rem);
 display: grid;
 grid-template-rows: min-content auto min-content;
 align-items: center;
}

section h2 {
 font-size: 1.3rem;
 font-weight: bold;
 line-height: 1.2;
 margin-bottom: 0;
}

This last adjustment finishes our card layout (figure 5.17). Next, we’ll focus on show-
ing and hiding parts of the content for devices that are wide enough (width greater
than or equal to 700 pixels) and have hover capabilities.

Listing 5.14 Inner container layout adjustments

Figure 5.17 Styled cards

1395.5 Using transitions to animate content on hover and focus-within
5.5 Using transitions to animate content on hover
and focus-within
To start, we need to create a media query that checks whether the device supports the
hover interaction, whether the browser window is at least 700 pixels wide, and
whether our user has prefers-reduced-motion enabled on their machine.

Our media query is @media (hover: hover) and (min-width: 700px) and (prefers-
reduced-motion: no-preference) { }. Notice that we can chain multiple parameters
that need to be met for the CSS in the query to be applied.

 To hide everything but the header, we’ll shift the content down to the bottom of
the card by using the transform property with a value of translateY(). The trans-
lateY() value allows us to move content vertically outside the flow of the page; the
content around the element being moved is unaffected by the movement and won’t
reposition itself or get out of the way.

 To calculate the distance that the element needs to move, we’ll use the calc()
function again. We’ll move the header down by the height of the card (350px) minus
8rem (the top margin of the container + top padding of the container + size of the
header), as shown in the following listing.

@media (hover: hover) and (min-width: 700px) and

➥ (prefers-reduced-motion: no-preference) {
 main > section > div {
 transform: translateY(calc(350px - 8rem));
 }
}

The inner portion of the card is moved down, as shown in figure 5.18.
 Because we’re going to animate showing the content when the user stops hovering

over the section, we don’t want the trailing content at the bottom to remain: if the
user hovers on the content bleeding out of the picture, the content will move upward
into the picture, lose the hover, and then move back down. This behavior will repeat,
creating a flicker. Therefore, we’ll set a height of 5rem for our inner container and
hide the overflow when the paragraph and link are hidden.

Reduced-motion preference
Some users want to opt out of motion-heavy animations. They can do this by enabling
a setting on their devices that is conveyed to the browser via the prefers-reduced-
motion property. We want to make sure that we respect our users’ settings. There-
fore, we’ll state that the setting isn’t set (has a value of no-preference) as part of
our query determining whether to animate our content. For more information about
prefers-reduced-motion, refer to chapter 3.

Listing 5.15 Hiding the nonheader content

140 CHAPTER 5 Summary cards with hover interactions
Notice that in the second card, a little bit of the paragraph content will still be visible
when the content should be hidden, so we’ll also hide the nonheader content by
using opacity when it shouldn’t be seen. Additionally, we’ll move that content down
1rem by using translateY(), which will give it a bit of motion when we animate it back
in on hover.

 All together, the CSS used to hide the content and shorten the inner container
appears in the following listing. To select all the content that isn’t the header, we can
use the :not() pseudo-class.

@media (hover: hover) and (min-width: 700px) and (prefers-reduced-motion:

➥ no-preference) {
 main > section > div {
 transform: translateY(calc(350px - 8rem));
 height: 5rem;
 overflow: hidden;
 }
 main > section > div > *:not(h2) {
 opacity: 0;
 transform: translateY(1rem);
 }
}

The not() pseudo-class allows us to filter selectors. In this case, we want to target any-
thing that isn’t an <h2>. Figure 5.19 diagrams the process.

Listing 5.16 Hiding the nonheader content

Figure 5.18 Moving the content down

Media
query

Moves and
shortens the inner
content container

Hiding all the
non-<h2>
content

1415.5 Using transitions to animate content on hover and focus-within
Now that the content is hidden (figure 5.20), we can focus on showing it again.

To show the content again, we need to undo everything we did to hide it on both
hover and focus. Because we’re not removing the links from the Document Object
Model (DOM), they’re hidden only visually; programmatically, they still exist, and a
user can tab to a link via the keyboard. As a result, we need to show the content both
when the user hovers over the card and when a link gains focus. Because we want to
act on an ancestor (the content container) when a child (the link) is in focus, we can
use the :focus-within pseudo-class. This pseudo-class allows us to apply styles condi-
tionally based on whether a descendant of the element is currently in focus.

 So when either the link is in focus or the section is being hovered over, we move
the container back into place by setting the translateY() parameter to 0 (no vertical
displacement) and setting the height of the inner container to 350px (height of the
outer container) minus 4rem (total of the vertical padding and margin of the con-
tainer). We also need to reinstate the paragraph and link, the opacity of which was set
to 0 and which had been moved down by 1rem.

 We’ll finish our hover and focus-within effect by adding a transition to elements
being shown and hidden. Because we have predefined states that we’re changing
between and want the animation to run only once, when the change occurs, we don’t

main > section > div > * :not(h2)

Child combinator Pseudo-class

Targets all elements that are not an h2
that are immediate children of a div
that is an immediate child of section
that is an immediate child of main

Universal

selector

Figure 5.19 Selecting anything
that isn’t an <h2> inside the inner
container

Figure 5.20 Hiding content

142 CHAPTER 5 Summary cards with hover interactions
need to use keyframes. We can simply instruct the CSS to animate all the changes
when they happen, using the transition property with a value of all 700ms ease-in-
out. All the changes will be animated; the animation will take 700 milliseconds to
complete; and the animation will start slow, accelerate, and then slow again before
completing. The following listing shows our hover and focus-within CSS.

@media (hover: hover) and (min-width: 700px) and

➥ (prefers-reduced-motion: no-preference) {
 main > section > div {
 transform: translateY(calc(350px - 8rem));
 height: 5rem;
 overflow: hidden;
 transition: all 700ms ease-in-out;
 }
 div > *:not(h2) {
 opacity: 0;
 transform: translateY(1rem);
 transition: all 700ms ease-in-out;
 }
 section:hover div,
 section:focus-within div {
 transform: translateY(0);
 height: calc(350px - 4rem);
 }

 section:hover div > *:not(h2),
 section:focus-within div > *:not(h2){
 opacity: 1;
 transform: translateY(0);
 }
}

With these changes applied (figure 5.21), all that’s left to do to complete the project is
set the background on our page.

 To make the pictures pop, we’ll add a dark gray, almost black background to the
entire page. To apply the background color, we’ll add the background property with a
value of #010101 to our existing body rule, as shown in the following listing.

body {
 display: grid;
 place-items: center;
 margin-top: 40px;
 padding: 20px;
 background: #010101;
}

Figures 5.22, 5.23, and 5.24 show our finished project at various screen sizes.

Listing 5.17 Showing content on hover and focus-within

Listing 5.18 Adding the background

Animates
the changes

On section hover, moves
container back into place

On section focus-within, moves
container back into place

On hover, moves all
non-<h2> elements
inside the container
back into place with
full opacityOn section focus-within, moves all non-

<h2> elements inside the container
back into place with full opacity

1435.5 Using transitions to animate content on hover and focus-within
Figure 5.21 The hover and focus-within effect

Figure 5.22 Project in window
600 pixels wide

144 CHAPTER 5 Summary cards with hover interactions
Figure 5.23 Project in window 850 pixels wide

145Summary
Summary
 Grid can be used for entire layouts or individual elements within the layout.
 The text-transform property can change text to uppercase without affecting

the accessibility of the content.
 Use text-transform: uppercase sparingly, not on large areas of content.
 The background-clip property with a value of text can clip a background image

around the text.
 The background-clip property with a value of text still needs to be prefixed,

and this property can change while it’s being implemented.
 We can use a media query to check whether a device supports hover and adjust

our layout so that it prevents the user from seeing the content if their device
doesn’t support hover.

 We can chain multiple conditions in the same media query by using and.
 We can use prefers-reduced-motion in our media query to respect user pref-

erences regarding animations and motion.
 The :not() pseudo-class represents elements that don’t match a list of selectors.
 translateY() will move content vertically without affecting reflow.
 We can use the transition property to animate style changes between states.
 To apply styles conditionally based on an element’s descendant being in focus,

we use the focus-within pseudo-class.

Figure 5.24 Project in window 1310 pixels wide with prefers-reduced-motion enabled

Creating a profile card
In this chapter, we’ll create a profile card. In web design, a card is a visual element
that contains information on a single topic. We’re going to apply this concept to
someone’s profile information, essentially creating a digital business card. This type
of layout is often used on social media and blog sites to give readers an overview of
who wrote the content. It sometimes has links to a detailed profile page or opportu-
nities to interact with the person to whom the profile belongs.

 To create the layout, we’ll do a lot of work revolving around positioning, specifi-
cally, using the CSS Flexbox Layout Module to align and center elements. We’ll also
look at how to make a rectangular image fit into a circle without distorting the
image. By the end of the chapter, our profile card will look like figure 6.1.

This chapter covers
 Using CSS custom properties

 Creating a background using radial-gradient

 Setting image size

 Positioning elements using a flexbox
146

1476.1 Starting the project
6.1 Starting the project
Let’s dive right in and take a look at our starting HTML (listing 6.1), which you can find
in the GitHub repository at http://mng.bz/5197 or on CodePen at https://codepen
.io/michaelgearon/pen/NWyByWN. We have a <div> with a class of card that con-
tains all the elements being presented in the profile card. To set our blog post infor-
mation, we’ll use a description list. Our technologies (CSS, HTML, and so on) are
presented in a list.

<body>
 <div class="card">

 <h1>Annabelle Erickson</h1>
 <div class="title">Software Developer</div>
 <dl>
 <div>
 <dt>Posts</dt>
 <dd>856</dd>
 </div>
 <div>
 <dt>Likes</dt>
 <dd>1358</dd>

Description list
A description list contains groups of terms, including a description term (dt) and any
number of descriptions (dd). Description lists are often used to create glossaries or
to display metadata. Because we’re pairing terms (posts, likes, and followers) with
their counts (the number), this project is a great use case for a description list.

Listing 6.1 Project HTML

Figure 6.1 Final output

Start of
the card Profile

Image

Profile
holder’s

name

Profile holder’s
job title

Post
information

http://mng.bz/5197
https://codepen.io/michaelgearon/pen/NWyByWN
https://codepen.io/michaelgearon/pen/NWyByWN
https://codepen.io/michaelgearon/pen/NWyByWN

148 CHAPTER 6 Creating a profile card

th
 </div>
 <div>
 <dt>Followers</dt>
 <dd>1257</dd>
 </div>
 </dl>
 <p class="summary">I specialize in UX / UI...</p>
 <ul class="technologies">
 CSS
 HTML
 JavaScript
 Accessibility

 <div class="actions">
 <button type="button" class="follow">Follow</button>
 Message
 </div>
 </div>
</body>

As we begin styling our card, our page looks like figure 6.2.

Post
information

Personal
summary/about

Technologies

Actions
End of
e card

Figure 6.2 Starting point

1496.2 Setting CSS custom properties
6.2 Setting CSS custom properties
In our layout, specifically, when we style the profile image and colored portion at the
top of the card below the image, we’re going to need the image-size value for several
calculations. In languages such as JavaScript, when we have a value that we’re going to
be referencing multiple times, we use custom properties, sometimes referred to as CSS
variables.

 To create a custom property, we prefix the variable name with two hyphens (--)
immediately followed by the variable name. We assign the value to a custom property
the same way that we do any other property: with a colon (:) followed by the value. A
CSS variable declaration, therefore, looks like this: --myVariableName: myValue;.

 As with any other declaration, we need to define our variables inside a rule. For
our project, we’re going to define our colors and image size and then declare them
inside a body rule, as shown in listing 6.2. Because we define our variables on the body,
the <body> element and any of its descendants will have access to the variables.

body {
 --primary: #de3c4b;
 --primary-contrast: white;
 --secondary: #717777;
 --font: Helvetica, Arial, sans-serif;
 --text-color: #2D3142;
 --card-background: #ffffff;
 --technologies-background: #ffdadd;
 --page-background: linear-gradient(#4F5D75, #2D3142);
 --imageSize: 200px;

 background: var(--page-background);
 font-family: var(--font);
 color: var(--text-color);
}

NOTE Our linear gradient will go from top to bottom, fading from dark blue
to darker blue. For an in-depth explanation of linear gradients, check out
chapter 3.

Notice that we can assign different types of values to our variables. We assign colors,
such as in our --primary variable (probably one of the most common uses for CSS
custom properties), but we also define a size (--imageSize), a font family (--font),
and a gradient (--page-background).

 To reference the variable and use it as part of a declaration, we use the syntax
var(--variableName). Therefore, to assign our text color, we declare color: var
(--text-color);. With our background and the font color and family applied (fig-
ure 6.3), we notice that our background repeats at the bottom of the page.

Listing 6.2 Defining CSS custom properties

Red

Gray

Dark blue-gray

150 CHAPTER 6 Creating a profile card
6.3 Creating full-height backgrounds
A linear gradient is a type of image. When we apply an image as a background to an
element in CSS, if the image is smaller than the element, the image will repeat, or
tile. In this particular case, we don’t want the image to repeat. We have two ways to
fix this situation:

 We can tell the background that we don’t want it to repeat by using back-
ground-repeat: no-repeat;. Because our <body> element is only as tall as its
contents, however, if the window is taller than the content, we’ll be left with an
unsightly white bar at the bottom of the page—which is not ideal.

 Our second option (the one we’ll use) is to make the <html> and <body> ele-
ments take the full height of the screen rather than size to their contents.

We’ll add the rule in listing 6.3 to our stylesheet. We reset the margin and padding to
0 because we want to ensure that we go edge to edge inside the window.

html, body {
 margin: 0;
 padding: 0;
 min-height: 100vh;
}

To set the height, we use min-height because should the content length be greater
than the height of the window, we want the user to have access to the content, and

Listing 6.3 Making the background full height

Figure 6.3 Adding the background to the <body>

1516.4 Styling and centering the card using Flexbox
we want the background to be behind that content. By using min-height, we instruct
the browser to make the <body> and <html> elements at least the height of the win-
dow. If the content forces the elements to be taller, the browser will use the height
of the content.

 The value we set for min-height is 100vh. Viewport height (vh), a unit based on
the height of the viewport itself, is percentage-based. So assigning a value of 100vh to
min-height means that we want the element to have, at minimum, a height equal to
100% of the viewport height. Now that we have our background set (figure 6.4), let’s
style the card.

6.4 Styling and centering the card using Flexbox
Let’s start with styling the card itself. We’ll give it a white background and shadow to
give our layout some depth. Notice that instead of using the color value for the back-
ground, we use our background variable.

 We’re also going to set the width of the card to 75vw. Viewport width (vw) is the
horizontal counterpart to the viewport height (vh) unit we used earlier. It’s also per-
centage based, so by setting our width to 75vw, we’re setting the width of the card to be
75% of the total width of the browser window.

 Next, we’ll further constrain the width of the card to a maximum 500 pixels wide.
By using both the width and max-width properties, we allow the card to shrink when
the screen size is narrow but constrain it from becoming too wide and unruly on

Figure 6.4 Full-screen gradient background

152 CHAPTER 6 Creating a profile card
larger screens. Last, we curve the corners of the card by using border-radius to
soften the design. The following listing shows our card rule.

.card {
 background-color: var(--card-background);
 box-shadow: 0 0 55px rgba(38, 40, 45, .75);
 width: 75vw;
 max-width: 500px;
 border-radius: 4px;
}

Figure 6.5 shows the styles applied to our project. With some basic styles added to
the card (we’ll continue adding to them later in the chapter), let’s place the card
in the middle of the screen both vertically and horizontally.

To center the card in the exact middle of the screen, we’re going to use a flex layout
(sometimes referred to as flexbox), which allows us to place elements across a single
axis either vertically or horizontally. Although we could position the card by using
grid (and whether we should is a matter of personal preference), in this instance,
we’re concerned only with centering the item, not with its position in terms of col-
umns and rows, so Flexbox seems to be a better choice.

Listing 6.4 Styling the card

Figure 6.5 Starting to style the card

1536.4 Styling and centering the card using Flexbox
 The display property with a value of flex is used on the parent item of the child
elements that should be placed on the screen with Flexbox. In our project, the ele-
ment being positioned is the card, and its parent is the <body> element, so we’ll add
the display: flex declaration to our body rule.

 Next, we define how we want the elements within the <body> to behave. In our
case, we have one child (the card), and we want it to be centered. To center the card
horizontally, we add a justify-content: center declaration to the body rule. This
property allows us to dictate how elements are distributed across our axis. Figure 6.6
breaks down the options.

We also want to center the card vertically. For the vertical positioning, we’ll use align-
items: center. The align-items property enables us to dictate how elements should
be positioned relative to one another and to the container, as shown in figure 6.7.

 The following listing shows our updated body rule. Remember that the parent of the
element being positioned is the one to which we apply flexbox-related declarations.

body {
 ...
 display: flex;
 justify-content: center;
 align-items: center;
}

Listing 6.5 Centering the card

flex-start (default)

space-between

flex-end

space-around

center

Container

Children

justify-content

Figure 6.6 Values for the justify-content property

Centers the card
horizontally

Centers the
card vertically

154 CHAPTER 6 Creating a profile card
Now that our card is centered (figure 6.8), let’s focus on the content of the card, start-
ing with the profile picture.

6.5 Styling and positioning the profile picture
We currently have a rectangular image. We want to make the image circular. We also
want to center it on the card and have it stick out the top a little bit. Let’s start by con-
verting the image to a circle.

normal (default), stretch

Lorem ipsum

dolor sit amet,

consectetur

adipiscing elit.

Etiam non

enim non nisl

fermentum

varius sit amet

ut enim.

Pellentesque

ultricies

aliquam

congue.

BUTTON Lorem ipsum

dolor sit amet,

consectetur

adipiscing elit.

flex-start

Lorem ipsum

dolor sit amet,

consectetur

adipiscing elit.

Etiam non

enim non nisl

fermentum

varius sit amet

ut enim.

Pellentesque

ultricies

aliquam

congue.

BUTTON Lorem ipsum

dolor sit amet,

consectetur

adipiscing elit.

flex-end

Lorem ipsum

dolor sit amet,

consectetur

adipiscing elit.

Etiam non

enim non nisl

fermentum

varius sit amet

ut enim.

Pellentesque

ultricies

aliquam

congue. BUTTON

Lorem ipsum

dolor sit amet,

consectetur

adipiscing elit.

baseline

Lorem ipsum

dolor sit amet,

consectetur

adipiscing elit.

Etiam non

enim non nisl

fermentum

varius sit amet

ut enim.

Pellentesque

ultricies

aliquam

congue.

BUTTON Lorem ipsum

dolor sit amet,

consectetur

adipiscing elit.

center

Lorem ipsum

dolor sit amet,

consectetur

adipiscing elit.

Etiam non

enim non nisl

fermentum

varius sit amet

ut enim.

Pellentesque

ultricies

aliquam

congue.

BUTTON

Lorem ipsum

dolor sit amet,

consectetur

adipiscing elit.

Container

Children

align-items

Figure 6.7 Values for the align-items property

1556.5 Styling and positioning the profile picture
6.5.1 The object-fit property

A circle’s height is equal to its width, so as we can see in figure 6.9, if we set the height
and width of the picture to equal our image-size variable, the picture will distort.

To prevent the image from distorting, we must also dictate how the image behaves in
relation to the size it’s given. To do this, we’ll use the object-fit property. By setting
object-fit’s value to cover, we instruct the image to maintain its initial aspect ratio
but fit itself to fill the space available. In this case, we’ll lose a little of the top and bot-
tom of the image due to the image being taller than it is wide.

Figure 6.8 Centered card

Figure 6.9 Distorted
profile picture

156 CHAPTER 6 Creating a profile card
 When we use object-fit, the image is centered by default, and if parts of the image
are clipped, those parts are the edges, which works well for our current use case and pic-
ture. But if we wanted to adjust the position of the image within its allotted size and clip
only from the bottom, we would add an object-position declaration.

 To make our image a circle 200 pixels wide, we use the CSS in listing 6.6. Remem-
ber that we set the image size as a CSS custom property in the body, so we set the width
and height of the image equal to the --imageSize variable. We add the object-fit dec-
laration to prevent the image from distorting. Finally, we give the image a 50% border-
radius to make it a circle.

body {
 ...
 --imageSize: 200px;
}

img.portrait {
 width: var(--imageSize);
 height: var(--imageSize);
 object-fit: cover;
 border-radius: 50%;
}

Now our image looks like figure 6.10.

Next, we need to position our picture.

6.5.2 Negative margins

To position our image to stick out above the card, we’re going to use a negative mar-
gin. To move an element down and away from the content above it, we can add a pos-
itive margin-top value to the element. But if we add a negative margin, instead of
being pushed down, the element will be pulled up. We’re going to use margin in con-
junction with text centering to position the image. Looking at the final design in fig-
ure 6.11, we notice that all the text is also centered.

Listing 6.6 Centering the card

Prevents
distortion

Makes the
image a circle

Figure 6.10 Circle
profile picture

1576.5 Styling and positioning the profile picture
Because all the text is centered, let’s add a text-align: center declaration to the
card rule. Images are inline elements by default, so we notice that by centering the
text, the image also gets centered (figure 6.12).

Now all that’s left to do is add the negative top margin to move the image upward. We
want one third of the image to stick out from the top, and we’ll use the calc() function

Figure 6.11 Final design

Figure 6.12 Centered text

158 CHAPTER 6 Creating a profile card
to do the math for us. Our function is calc(-1 * var(--imageSize) / 3);. We divide
the image size by 3 to get a third of the height of the image and then multiply by –1 to
make it negative. Our margin will make a third of the image stick out from the top of
the card, as shown in figure 6.13.

Next, we need to give our card some margin. Due to the negative margin we added to
the image, if we have a short screen (figure 6.14), the top of the image disappears
offscreen.

To prevent cutting off part of the picture when the window isn’t especially tall, we
want to add some vertical margin to the card itself—a margin that’s greater than or

Figure 6.13 Positioned image

Figure 6.14 Clipping the top of the image when the window height is small

1596.5 Styling and positioning the profile picture
equal to the amount of the picture that’s sticking out of the card. To calculate the
amount sticking out, we used calc(-1 * var(--imageSize) / 3);. For our card mar-
gin, we’re going to use a similar concept, taking one third of the image height and
then adding 24 pixels to move the card and image away from the edge. Our final func-
tion will be calc(var(--imageSize) / 3 + 24px). The following listing shows the CSS
we added to position the image.

.card {
 ...
 text-align: center;
 margin: calc(var(--imageSize) / 3 + 24px) 24px;
}

img {
 width: var(--imageSize);
 height: var(--imageSize);
 object-fit: cover;
 border-radius: 50%;
 margin-top: calc(-1 * var(--imageSize) / 3);
}

With our image positioned and margins added so that the top of the image doesn’t
get cut off on small screens (figure 6.15), let’s turn our attention to the curved red
background below the picture.

Listing 6.7 Positioning the image

Vertical margin of one
third the image size
+ 24px and horizontal
of 24px

Negative top margin to
make the image stick
out of the card

Figure 6.15 Added card margin

160 CHAPTER 6 Creating a profile card
6.6 Setting the background size and position
To add the red curved background behind the picture, we’re going to add the decla-
ration in the following listing to our card rule.

.card {
 background-color: var(--card-background);
 ...
 background-image: radial-gradient(
 circle at top,
 var(--primary) 50%,
 transparent 50%,
 transparent
);
 background-size: 1500px 500px;
 background-position: center -300px;
 background-repeat: no-repeat;
}

Let’s break down what this code does. First, we add a background-image consisting of
a radial-gradient, as shown in figure 6.16.

The radial-gradient takes an ending shape (circle or ellipse) and then defines where
we want each color to start and stop to form the gradient. We define ours as radial-
gradient(circle, var(--primary) 50%, transparent 50%, transparent);.

Listing 6.8 Positioning the image

Combining background color and image
We can add both a background color and a background image to the same element.
We assign the color to the background-color property and the image to the back-
ground-image property. Or we can apply both in the background shorthand property
as follows: background: white url(path-to-image);.

background-image:

radial-gradient (

circle,

var (--primary) 50%,

transparent 50%,

transparent

);
Background

25%

50%

75%

Profile picture

Figure 6.16 Adding background with radial-gradient

1616.6 Setting the background size and position
 Our primary color is red, so our gradient will create a circle that’s red until it
reaches 50% of its container. At 50% of the container size, the color immediately
shifts to transparent. Because the shift in color is immediate, no fade occurs, so we get
a nice clean circle.

 By default, radial gradients emanate from the center of their container, so next
we add circle at top to the beginning of our radial-gradient function to shift
the origin of the circle from the center of the background to the top. Our updated
radial-gradient function is radial-gradient(circle at top, var(--primary)
50%, transparent 50%, transparent); (figure 6.17).

Now we want to move the circle up so that the bottom of the circle is directly below
the image. Figure 6.18 shows that if we move the background up -150 pixels and our
card is rather short (our profile doesn’t have a lot of content), we’ll end up with gaps
in the top corners between our circle and the edge of the card, which we don’t want.

To prevent this from happening, we’re going to make the background image three times
wider than the maximum card size: (3×500 =1500). When we create a background-image

background-image:
radial-gradient(
circle at top,
var(--primary) 50%,
transparent 50%,
transparent

);

25%

50%

75%

Figure 6.17 Making the
gradient emanate from the
top center of the container

background-image:
radial-gradient(

circle at top,
var(--primary) 50%,
transparent 50%,
transparent

);

background-position:
center -150px;

–150px

Gap in the
corners

Second background
due to background
repeat

Figure 6.18 Altering the background position

162 CHAPTER 6 Creating a profile card
using gradients, the background image produced will grow and shrink with the con-
tainer, so we’re also going to give the background a set height. That way, no matter
how much content is in the card, the shape of our background will be predictable (fig-
ure 6.19).

After changing the dimensions of the background, we also increase the amount by
which we move the background up so that it ends directly below the profile image.
Finally, as mentioned earlier in the chapter, background images repeat by default. By
moving the image up, we leave room for the background to tile. We want to have only
one semicircle, so we add a background-repeat declaration with a value of no-repeat.
Now our card background is defined as shown in the following listing.

.card {
 background-color: var(--card-background);
 ...
 background-image: radial-gradient(
 circle at top,
 var(--primary) 50%,
 transparent 50%,
 transparent
);
 background-size: 1500px 500px;
 background-position: center -300px;
 background-repeat: no-repeat;
}

Figure 6.20 shows the background added to the card. With the top of our card starting
to look good, let’s focus on the rest of the content.

Listing 6.9 Positioning the image

-300px

5
0
0
p
x

50%

25% 50% 25%

background-image: radial-gradient(...);
background-position: center -300px;
background-size: 1500px 500px;
background-repeat: no-repeat;

Figure 6.19 Editing the background-size and handling the background-repeat

Creates a semicircle
whose flat side is the
top of the card

Sets the dimensions of the
background image to 1500px
wide and 500px tall

Positions the background
to be horizontally centered

and starting 300px
above the card

Prevents the
background
from tiling

1636.7 Styling the content
6.7 Styling the content
Our card currently doesn’t have any padding, which means that if the name were lon-
ger, it could potentially go edge to edge on our card. In most cases, we would create a
card as a component or template to reuse for multiple clients, so let’s add some left
and right padding to ensure that our text doesn’t run to the edge of the card. We’ll
also add some bottom padding to move the links and bottom away from the bottom
edge of the card.

 Listing 6.10 shows our updated card rule, and figure 6.21 shows the new output.
We use the padding shorthand property, which defines three values: it states that the
top padding is 0, that the left and right are 24px, and that the bottom padding is 24px.
We specifically don’t add padding to the top because it would push the image down,
forcing us to readjust our image positioning.

.card {
 ...
 padding: 0 24px 24px;
}

6.7.1 Name and job title

Going down the card, we see that the first piece of content is the name. As an <h1>, it
has some default styles provided by the browser, including some margin. We’re going
to edit the margin to increase the amount of room between the header and the
image, and remove the bottom margin so that the job title appears directly below the
name. We’ll also change the color to red and set the font size to 2rem.

Listing 6.10 Adding padding to the card

Figure 6.20 Finished background image

164 CHAPTER 6 Creating a profile card
For the job title, we’ll increase the size and weight of the font, and we’ll change the
font color to our secondary color, which is gray. The following listing shows our new
rules, and figure 6.22 shows the output.

h1 {
 font-size: 2rem;
 margin: 36px 0 0;
 color: var(--primary);
}

.title {
 font-size: 1.25rem;
 font-weight: bold;
 color: var(--secondary);
}

Next, we’re going to style the post, like, and follower information.

The rem unit
A rem is a relative unit based on the font size of the root element—in our case, HTML.
For most browsers, the default is 16px. We didn’t set a font size on the html element
in our project; therefore, when we set the <h1> font-size to 2rem, the output size
is 32px, assuming a 16px default.

The benefit of using relative font sizes such as rem and em is accessibility. These
sizes help ensure that the text scales gracefully regardless of the user’s settings
or device.

Listing 6.11 Styling the name

Figure 6.21 Added card padding

Styles for
the name

Styles for
the job title

1656.7 Styling the content
6.7.2 The space-around and gap properties

In our HTML, the description list (dl) contains the post, like, and follower counts
(listing 6.12). Each grouping is contained within a <div>, so we’ll apply a display
value of flex to the definition list to align all three groups horizontally. Then we’ll set
the justify-content property to space-around to spread them out across the card.

<dl>
 <div>
 <dt>Posts</dt>
 <dd>856</dd>
 </div>
 <div>
 <dt>Likes</dt>
 <dd>1358</dd>
 </div>
 <div>
 <dt>Followers</dt>
 <dd>1257</dd>
 </div>
</dl>

The space-around value distributes the elements evenly across our axis by providing
an equal amount of space between each element and half as much on each edge. Fig-
ure 6.23 shows how the spacing is applied.

 Listing 6.13 shows our styles for the description list. Notice that we included a gap:
12px declaration, which ensures that the minimum amount of space between our ele-
ments will be 12 pixels. We could have given our <div>s inside the description list a
margin, but a margin would have affected the outer edges. The gap property affects
only the space between elements.

NOTE The gap property is supported in iOS version 14.5 and later. At this
writing, many people still use earlier versions. To check global use of this
property, see https://caniuse.com/flexbox-gap.

Listing 6.12 Description-list HTML

Figure 6.22 Styled name and job title

https://caniuse.com/flexbox-gap

166 CHAPTER 6 Creating a profile card
dl {
 display: flex;
 justify-content: space-around;
 gap: 12px;
}

As shown in figure 6.24, now our profile stats are in a row and evenly spaced across the
card.

The numbers are offset, however. This offset comes from the description, which has
some margins that come from the browser defaults. Let’s get rid of those settings and
style the text to be bold, bigger, and red, using the CSS in the following listing.

dd {
 margin: 0;
 font-size: 1.25rem;
 font-weight: bold;
 color: var(--primary);
}

Listing 6.13 Styling the name

Listing 6.14 Description details rule

50px100px 100px50px

space-around

Figure 6.23 The space-around property

Figure 6.24 Aligned profile stats

1676.7 Styling the content
With the margin removed (figure 6.25), we notice that the likes still aren’t centered
on our card.

The reason that the likes aren’t centered is that three elements don’t have exactly the
same width. When the elements are distributed, the browser calculates the total
amount of space each element needs and redistributes the leftovers equally. There-
fore, because the <div> containing followers is larger than the <div> containing posts,
the likes <div> doesn’t land in the middle.

6.7.3 The flex-basis and flex-shrink properties

To center the likes, we’ll assign the same width to all three <div>s. Instead of using the
width property, however, we’ll use flex-basis and set its value to 33%. flex-basis
sets the initial size the browser should use when calculating the amount of space the
element needs. We’ll also set flex-shrink to 1.

flex-shrink dictates whether an element is allowed to shrink smaller than the size
assigned by the flex-basis value if there’s not enough room for the element in the
container. If the flex-shrink value is 0, the size isn’t adjusted. Any positive value
allows for resizing.

 We set our flex-basis to 33%. But remember that we also set a gap of 12 pixels
between each of our elements. Therefore, the flex-basis size we set is too wide for
the container when the gap setting is taken into consideration. By allowing the ele-
ments to shrink, we tell the browser to start its positioning calculations with each
<div> taking up 33% of the width of the container and to shrink the <div>s evenly to
fit the available space. This situation prevents us from having to do math, figuring out
exactly how wide the <div>s should be and still be of equal sizes.

 To write our rule (listing 6.15), we target the <div>s that are immediate children
of the description list (dl) by using a child combinator (>), and we apply the flex-
basis and flex-shrink declarations.

Figure 6.25 Description list alignment

168 CHAPTER 6 Creating a profile card
dl > div {
 flex-basis: 33%;
 flex-shrink: 1;
}

With our likes centered (figure 6.26), let’s turn our attention to the definition terms
(dt).

6.7.4 The flex-direction property

In our original design, we have the description details (the numbers) above the
description terms. To flip them visually, we’re going to use the flex-direction prop-
erty. We asserted that Flexbox can place elements across a single axis. So far, we’ve
done our work across the horizontal axis, or x-axis.

 To move the details above the terms, we’re going to use Flexbox on the vertical
(y-axis), sometimes called the block or cross axis. To change which axis we want Flexbox
to operate on, we use the flex-direction property. By default, that property has a
value of row, which makes Flexbox operate on the x-axis. By changing the value to
column, we make it operate on the y-axis.

 Furthermore, the flex-direction property allows us to dictate how the elements
should be ordered. Setting the value to column-reverse tells the browser that we want
to operate on the y-axis and that we want the elements to be placed in reverse HTML
order, making the description details (<dd>) appear first and the description term
(<dt>) second.

 As before, we want to set the behavior on the parent—in this case, the <div>. We’ll
add to our previous <div> rule to reorder the elements (listing 6.16). We also decrease
the size of the description term (<dt>) to emphasize the number over its term.

dl > div {
 flex-basis: 33%;

Listing 6.15 Centering the likes

Listing 6.16 Reversing content order

Figure 6.26 Centered likes

1696.7 Styling the content
 flex-shrink: 1;
 display: flex;
 flex-direction: column-reverse;
}
dt { font-size: .75rem; }

Figure 6.27 shows our styled description list (<dl>).

Continuing down the card, let’s turn our attention to the summary paragraph below
the profile stats.

6.7.5 Paragraph

The paragraph already looks good. The only thing we’re going to do to it is add some
vertical margin for breathing room and increase the line height for better legibility, as
shown in listing 6.17.

 Notice that the line height doesn’t take a unit. By not setting a unit, we allow the
line height to scale with the font size. This unitless value is specific to the line-height
property. If we’d set it to a 12px value, for example, the line height would remain
12 pixels regardless of the font size. So if the font size were increased radically, our let-
ters would overlap vertically. It’s always safest not to declare a unit.

Accessibility concerns and content display order
For accessibility reasons, we want to make sure that the order in which our HTML is
written follows the order in which it’s displayed onscreen. A user who has their com-
puter read the contents of the page to them as they follow along visually would be
easily disoriented or confused if the content that’s being read to them doesn’t match
what they’re seeing. Use caution when using properties such as flex-direction to
reorder content.

Figure 6.27 Styled description list

170 CHAPTER 6 Creating a profile card
p.summary {
 margin: 24px 0;
 line-height: 1.5;
}

With our paragraph taken care of (figure 6.28), let’s style the list of technologies.

6.7.6 The flex-wrap property

First, we’re going to style the list elements themselves. We’ll use a design pattern
sometimes referred to as a pill, chip, or tags, in which the element has a background
color and rounded edges. Our CSS will look like listing 6.18. We also include some
padding so that the text doesn’t come right up against the edge of the tag.

ul.technologies li {
 padding: 12px 24px;
 border-radius: 24px;
 background: var(--technologies-background);
}

With the individual elements styled (figure 6.29), we can focus on the list’s layout.

Listing 6.17 Paragraph rule

Listing 6.18 Styling the list elements

Figure 6.28 Styled summary paragraph

Figure 6.29 Styled list items

1716.7 Styling the content
First, we’ll remove the bullets by using list-style: none. Then we’ll remove all pad-
ding, and set the margins to 24px vertically and 0 horizontally.

 To position the items, we’ll use Flexbox, adding a gap of 12px and setting the
justify-content property value to space-between. space-between works similarly to
space-around except that it doesn’t add space to the beginning and end of the con-
tainer, as shown in figure 6.30.

Our rule to lay out our chips will look like the next listing.

ul.technologies {
 list-style: none;
 padding: 0;
 margin: 24px 0;
 display: flex;
 justify-content: space-between;
 gap: 12px;
}

We notice that when we reduce the screen width (figure 6.31), however, our last tag
extends beyond our card.

On narrow screens, our list is wider than our card. To prevent the content from over-
flowing the card, we can use the flex-wrap property.

Listing 6.19 Styling the list of technologies

150px

space-between

50px100px50px

space-around

100px 150px

Figure 6.30 Comparing space-around and space-between

Figure 6.31 Tag extending
beyond card width

172 CHAPTER 6 Creating a profile card
 By default, flex items display in a straight line even if the container is too small, as
we’re experiencing with our list of technologies. To force the last element onto a new
line when we run out of room, we can set the flex-wrap property to wrap. This setting
tells the browser to start a new line of items below when it runs out of room.

 Like flex-direction, flex-wrap can change the order in which the elements are
displayed, but we won’t need to change it here. The following listing contains our
updated rule.

ul.technologies {
 list-style: none;
 padding: 0;
 margin: 24px 0;
 display: flex;
 justify-content: space-between;
 gap: 12px;
 flex-wrap: wrap;
}

Notice the gap between the CSS and Accessibility tags in figure 6.32, even though our
list element doesn’t have any margin. Our list has a gap property value of 12px, which
means not only that we’ll have a minimum 12 pixels horizontally between our items,
but also that when we wrap, we’ll add a 12-pixel gap between the items vertically.

6.8 Styling the actions
The last things we need to style in our profile card are the two actions the user can
take at the bottom of the card: message or follow the profile owner. Even though these
actions are semantically different—one is a link, and the other is a button—we’re
going to style both of them to look like buttons. Let’s start with some basics that will
apply to both elements. We create one rule with selectors for both elements to ensure
that both element types are visually consistent. Then we create individual rules for use
where they diverge.

 We also create a focus-visible rule that will be applied to all elements by means
of the universal selector (*) and the pseudo-class :focus-visible so that when a user

Listing 6.20 Adding flex-wrap

Figure 6.32 Wrapping the
chips on narrow screens

1736.8 Styling the actions
navigates to our links and buttons via the keyboard, a dotted outline appears around
the element, and they can clearly see what they’re about to select. The following list-
ing shows our styles.

.actions a, .actions button {
 padding: 12px 24px;
 border-radius: 4px;
 text-decoration: none;
 border: solid 1px var(--primary);
 font-size: 1rem;
 cursor: pointer;
}

.follow {
 background: var(--primary);
 color: var(--primary-contrast);
}

.message {
 background: var(--primary-contrast);
 color: var(--primary);
}

*:focus-visible {
 outline: dotted 1px var(--primary);
 outline-offset: 3px;
}

Notice that in our base styles, we changed the cursor to pointer for both links and
buttons. In most browsers, links will use the pointer by default but not the button.
Because we want both elements to have a similar experience, we’ll define the cursor
to ensure consistency. Figure 6.33 shows our styled link and button.

As these two buttons are quite close together, however, we’re going to want to add
some space between them. Let’s use flex and gap one last time to position our action
elements.

Listing 6.21 Adding flex-wrap

Applies to both the
link and the button

Removes the
underline

cursor: pointer :focus-visible outline

Figure 6.33 Styled actions

174 CHAPTER 6 Creating a profile card
 We’re going to give the list a display property value of flex and add a gap of 16px.
To keep the two elements centered, we’ll use the justify-content property with a
value of center. Finally, we’ll add some space between the list of technologies and our
actions by giving the list a margin-top value of 36px, as shown in the following listing.

.actions {
 display: flex;
 gap: 16px;
 justify-content: center;
 margin-top: 36px;
}

With this last rule, we’ve finished styling our profile card. The final product is shown
in figure 6.34.

Summary
 CSS custom properties allow us to set variables that can be reused throughout

our CSS.
 The CSS Flexbox Layout Module allows us to position elements on a single axis

either horizontally or vertically.
 flex-direction sets which axis Flexbox will operate on.
 Both flex-direction and flex-wrap can alter the order in which the elements

are displayed.

Listing 6.22 Positioning the link and button

Figure 6.34 Finished profile card

175Summary
 The align-items property sets how the elements are aligned on the axis rela-
tive to one another.

 The justify-content property dictates how the elements are positioned; left-
over space will be distributed within the element to which it’s applied.

 flex-basis sets a starting element size for the browser to use when laying out
flexed content.

 flex-shrink dictates whether and how content can shrink when an element is
being flexed.

 We can prevent images from distorting when we use fixed heights and widths
that don’t match the image’s aspect ratio by using the object-fit property.

Harnessing the full
power of float
Grid and Flexbox have given us the ability to create layouts that once were incredi-
bly difficult to realize, if not impossible. One of the most common examples is a
three-column layout with all three columns the same height regardless of the con-
tents. Another layout technique, which unlike its grid and flexbox counterparts has
been around for quite some time, is float. Part of the CSS Logical Properties and
Values Module, float is purpose-built to allow other content to wrap around the ele-
ment being floated; as a result, it shines at manipulating images inside text and cre-
ating drop caps.

Drop caps are a way to style and add emphasis to text. They consist of creating a
larger (sometimes more ornate) capital letter, usually at the beginning of a page or
paragraph. Drop caps were often used in the illuminated manuscripts of the Mid-
dle Ages. The F at the beginning of the paragraph in figure 7.1 is an example of a
drop cap in the Carmina Burana manuscript. Later, with the advent of the printing

This chapter covers
 Creating a drop cap using float

 Using float to wrap text around the image

 Using CSS shapes to make the text follow the
floated image’s shape
176

177
press, the concept carried over into print; printers created specialized glyphs and
plates or simply used a larger font size. Drop caps are much rarer on the web, but
they’re by no means impossible to create, and they’re a great way to make our online
typography more interesting.

Another way to make content more visually striking is to style our images to fit nicely
in the text. When we add images to content, we often add our image element and
maybe some margin, and don’t think about the process much more. Using CSS shapes
in conjunction with float, however, we can make our text wrap in the actual shape of
the image to create a much more striking effect. We can flow text around virtually any
shapes we create, even curves.

 In this chapter, we’ll take a close look at our typography and images to make our
content more visually interesting while making sure to keep it accessible. We’ll start

Figure 7.1 Drop cap at the
beginning of the paragraph in
the Carmina Burana manuscript

178 CHAPTER 7 Harnessing the full power of float
with an unstyled excerpt from The Call of the Wild, by Jack London (http://mng
.bz/61WR). We’ll use float to add a drop cap to our first paragraph. Then we’ll wrap
our text around our images (both raster and vector), following the content of those
images. Figure 7.2 shows the starting point and the finished product.

NOTE A raster image is created by using a grid of pixels, whereas a vector image
is drawn with the help of mathematical formulas. For in-depth information
about the difference between rasters and vectors, check out chapter 3.

Figure 7.2 The starting point (left) and finished product (right)

http://mng.bz/61WR
http://mng.bz/61WR
http://mng.bz/61WR

179

C
the c
Listing 7.1 and listing 7.2 contain the starting HTML and CSS, respectively, for the
page we’ll build on in this chapter. To follow along as we style the page, you can down-
load the starting code from the GitHub repository at http://mng.bz/oJXD or from Code-
Pen at https://codepen.io/michaelgearon/pen/MWodXxM. Our HTML consists of a
<main> element inside which we have a header (<h1>), block quote (<blockquote>),
three paragraphs (<p>), two images (), and the source citation (<cite>).

<main>
 <h1>Chapter I: Into the Primitive</h1>
 <blockquote>"Old longings nomadic…</blockquote>
 <p>Buck did not read the newspapers, or he…</p>
 <img class="compass" src="./img/compass.png"
 width="175" height="175" alt="a black and gray compass">
 <p>Buck lived at a big house in the…</p>
 <img class="dog" src="./img/dog.svg"
 width="126" alt="line drawing of a dog">
 <p>And over this great demesne Buck ruled…</p>
 <cite>London, Jack…</cite>
 </main>

Our CSS includes some base styles to set up our page, including margin, padding, and
background-color. The body’s width is restricted to 78ch, and margins center the con-
tent when the screen width exceeds our maximum value. We also set up the default
font for the page, which is Times New Roman. Last, to ensure that the images don’t
overflow on small screens, we give them a maximum width, which is set to 100%. In
other words, the images can’t be wider than their container.

NOTE Notice that we use ch for our max-width. ch is a relative unit based on
the font family being used. 1ch is equal to the width of—or, more precisely,
the horizontal amount of space occupied by—the glyph 0 (zero).

html {
 padding: 0;
 margin: 0;
}

body {
 background-color: rgba(206, 194, 174, 0.24);
 padding: 4rem;
 font-size: 16px;
 max-width: 78ch;
 margin: 0 auto;
 font-family: 'Times New Roman', Times, serif;
 border-left: double 5px rgba(0,0,0,.16);
 min-height: 100vh;
 box-sizing: border-box;
}

Listing 7.1 Starting HTML

Listing 7.2 Starting CSS

Compass
image

Dog
image

Prevents our content from
becoming excessively wide

enters
ontent

Regardless of window size, the
background covers the whole window.

http://mng.bz/oJXD
https://codepen.io/michaelgearon/pen/MWodXxM

180 CHAPTER 7 Harnessing the full power of float
img {
 max-width: 100%;
}

7.1 Adding a drop cap
We have some base CSS to style the page, so now we’re going to turn our attention to
the text. By virtue of the fact that the width of our body is capped at a width that works
well for our text, we don’t need to worry about line length. But we do need to address
the leading.

7.1.1 Leading

Leading (pronounced ’le-diŋ) is the amount of space between lines. The term comes
from the days of the printing press when compositors used lead bars of various widths
to adjust the spacing between lines of text. The CSS property we’re going to use to
accomplish the same outcome is line-height. This property can take a number value
(line-height: 2) or a number with a unit (line-height: 5px). The unit can be rela-
tive, such as ems, or fixed, such as pixels. Unless the unit is relative to the font size
when we provide a unit (such as em), if the font is scaled or a child element has a dif-
ferent font size, the line height may not look correct and can negatively affect legi-
bility. When we use a unitless number, the line height is automatically calculated
relative to the font size of the element, eliminating this concern. Therefore, we’ll
use a unitless line-height. We’ll set a line-height of 1.5 on all paragraphs by cre-
ating a rule specifically for the paragraph element and then applying the height as
follows: p { line-height: 1.5; }.

TIP Research shows that text with a line-height between 1.5 and 2 makes
line tracking easier for people with cognitive disabilities (https://www.w3.org/
TR/WCAG20-TECHS/C21.html).

7.1.2 Justification

For optimum effect when we have the text follow the image, we’re going to justify our
text. Justifying the text means we’re going to make all our lines the same width—a
technique often used in newspapers to make the right edge of a column on text
straight rather than ragged.

WARNING The Web Content Accessibility Guideline (WCAG) includes three
levels of conformance that build on one another: A, AA, and AAA. A is the
least restrictive, and AAA is the most stringent. Most often, websites aim for
an AA level of conformance. But if we’re required to conform to AAA, it’s
worth mentioning that justifying text goes against accessibility guideline 1.4.5,
which is a requirement for AAA (http://mng.bz/v1ja).

To justify our text, we’re going to use the text-align property, which can take a value
of left, right, center, or justify. We’ll add text-align: justify; to our para-
graph rule. Now that rule has two properties, text-align and line-height, that take

https://www.w3.org/TR/WCAG20-TECHS/C21.html
https://www.w3.org/TR/WCAG20-TECHS/C21.html
https://www.w3.org/TR/WCAG20-TECHS/C21.html
http://mng.bz/v1ja

1817.1 Adding a drop cap
care of styling the paragraph. The following listing shows the completed paragraph
rule, and figure 7.3 shows the result.

p {
 line-height: 1.5;
 text-align: justify;
}

With the paragraph taken care of, we can hone in on the first letter of the first para-
graph to create our drop cap.

7.1.3 First letter

We don’t need to add any elements to the HTML to select the first letter of our first
paragraph. We can use the pseudo-class :first-of-type to select the first paragraph
and then the pseudo-element ::first-letter to get to the letter, in this case a B,
both of which can be chained. In code, these selections translate to p:first-of-
type::first-letter {}.

NOTE A pseudo-class is added to a selector to target a specific state; a pseudo-
element allows us to select part of the element.

With the letter selected, we can start styling it to make it look like a drop cap. To make
it stand out from the rest of the text, we’re going to pick a more ornate typeface. In
this case, we’ll import Passions Conflict (http://mng.bz/X5vE; figure 7.4) from Goo-
gle Fonts.

 Because this typeface has particularly ornate capital letters, it’s well suited for use
as our drop cap. We’ll also use it later in this chapter to style the quote at the begin-
ning of the text. Using a beautiful typeface such as this one is a wonderful way to
embellish a page—but only for short bits of content. Handwriting and display fonts

Listing 7.3 Completed paragraph rule

Figure 7.3 Styled paragraphs

http://mng.bz/X5vE

182 CHAPTER 7 Harnessing the full power of float
can be quite difficult to read, so they’re not well suited for large blocks of text. For a
drop cap, large header, or short quote, however, these fonts differentiate the element
from the rest of the content and give the page some personality.

 This particular font has glyphs that are quite a bit smaller than those of Times New
Roman (the font we’re using for the rest of our content). Because we’re creating a
drop cap, which by definition is larger than the rest of the text, we’re going to have to
adjust the font size. We’re also going to adjust the line height of the letter to make it
fit nicely with the text. Finally, we’re going to float our first letter to the left so that the
text flows around the letter, accomplishing our desired effect.

 The float property places an element to the right or left of its container based on
the value passed to it. According to the Mozilla Developer Network, “The element is
removed from the normal flow of the page, though still remaining a part of the flow”
(http://mng.bz/ydle). Inline elements around it (our text) use the leftover space to
wrap around the floated element.

 The float property can take one of three values: left, right, and none (element
isn’t floated). Because our text is in English, which flows from left to right, we want to
keep the letter B to the left, so we’re going to float the first letter of the first paragraph
(B) to the left by adding float: left; to our rule. The following listing shows the
completed CSS rule we create to style our drop cap, as well as the import of the Pas-
sions Conflict typeface.

@import url(
 'https:/ /fonts.googleapis.com/css2?

➥ family=Passions+Conflict&display=swap'
);

p:first-of-type::first-letter {
 font-size: 6em;
 float: left;

Listing 7.4 Styling and positioning the first letter of the first paragraph

Figure 7.4 Passions Conflict glyphs

Import of the
Passions Conflict
typeface

Rule that styles the letter B
at the beginning of our
first paragraph

http://mng.bz/ydle

1837.2 Styling the quote
 line-height: .5;
 font-family: 'Passions Conflict', cursive;
}

Notice that we altered the line height of the first letter to adjust the space below the B.
By default, line height is proportional to font size. Because our letter is large, the line
height it requires is tall, so we decrease it to make the text flow more naturally below
the drop cap. Figure 7.5 shows the output generated.

We use ems and a unitless line-height so that if we ever change the font size of the
paragraph, the drop cap will scale accordingly. The value of 6em is set based on the
font-size of the parent element, which in this case is our paragraph tag.

 To reposition our B to fit well with the text, we edited the line-height of the let-
ter. But we could have used another technique. We could have set the position of the
B to relative and then used top, bottom, left, and right to alter its position relative
to the rest of the text. With our drop cap created, we’re going to turn our attention to
the quote at the start of the page.

7.2 Styling the quote
The quote at the top of the page is rather drab at the moment and gets a little lost in
the rest of the text. To make it stand out, we’re going to use the same font we used for
our drop cap. Because of the previously mentioned differences in size and line height,
we’re going to adjust those parameters so that the paragraphs and the quote are uni-
formly sized and spaced. Listing 7.5 shows the CSS we’ll add to accomplish this task,
and figure 7.6 shows the output.

blockquote {
 font-family: 'Passions Conflict', cursive;
 font-size: 2em;
 line-height: 1;
}

Listing 7.5 <blockquote> formatting

Rule that styles the letter B
at the beginning of our
first paragraph

Figure 7.5 Drop cap

184 CHAPTER 7 Harnessing the full power of float
Again, we use relative units so that if the rest of the content’s font size changes, so will
the quote. You may have noticed that we used a line-height of 1 even though we
stated earlier (section 7.1.1) that for optimal legibility, a line height of 1.5 to 2 is
ideal. We make an exception here because by default the font already has a large line
height; we don’t need to increase the size. Occasionally, we’ll encounter fonts that
have naturally tall line heights by default, especially when we’re dealing with cursive
or display fonts. When this happens, sometimes we have to make an exception to the
line-height-legibility guidance due to the design of the font.

 Now, with our text taken care of, we can focus on the images.

7.3 Curving text around the compass
The first thing we need to do to make the text wrap around our compass image is float
the compass to the right. Our compass is a PNG image, and because it’s a rectangular
image, the text follows a rectangular path in wrapping around the image. Figure 7.7
shows the floated compass. A border has been applied to the image to expose its
bounding box.

Figure 7.6 Styled <blockquote>

Figure 7.7
Square compass

1857.3 Curving text around the compass
7.3.1 Adding shape-outside: circle

To make the text follow the curve of the compass, we need to add a curve to the image
for the text to wrap around. The property we’ll use is shape-outside. This property
allows us to define a shape around which the adjacent text will flow. The shape doesn’t
have to be rectangular; instead, it can be any of the following:

 Circle or ellipse
 Polygon
 Derived from an image (uses the alpha channel [transparency] of the image to

determine what the shape should be)
 Path (in the specification but not implemented in any browser at this writing;

see http://mng.bz/aMWX)
 Box model values (margin-box, content-box, border-box, and padding-box)
 Linear gradient

Because we have a circular graphic, the shape we’re going to aim for is a circle. This
decision gives us a couple of options:

 Use CSS shapes (http://mng.bz/aMWX).
 Use border-radius.

Let’s first take a look at using shapes. To define our circle, we’re going to use the cir-
cle() function, which takes an optional radius property and an optional position
property to define where the center of the circle starts. If no radius is provided, the
value defaults to closest-side. If the position property is omitted, the origin of the
circle defaults to the center of the image:

circle(<shape-radius>, at <position>)

In our case, we want the center of the circle to be the middle of the image, so we won’t
pass a position property. We have to define a radius, however, and we’re going to set
it to 50%.

How the math works
We want the radius to equal half the width of our image, which under the covers will
resolve to the square root of our width squared plus our height squared divided by
the square root of 2:

Because our image is square and has a width of 175, when we pass a radius of
50%, it’s logical that our radius would be 87.5. But if the image were rectangular,
understanding how a percentage-based radius is calculated is important for under-
standing what the resulting output will look like.

http://mng.bz/aMWX
http://mng.bz/aMWX

186 CHAPTER 7 Harnessing the full power of float
Figure 7.8 shows how the radius would be applied to our square image versus a rectan-
gular image when we use a value of 50% in the circle() function.

Our image is square, so we use a shape-outside property with a value of circle(50%)
for our image. Listing 7.6 shows the CSS rule. Our image is square, so it has an aspect
ratio of 1 (width / height = 175 ÷ 175 = 1).

DEFINITION The aspect ratio of an image is the proportional relationship of
the image’s height and width calculated by dividing the width by the height.

Adding the aspect ratio isn’t strictly necessary to create our shape but helps reduce
layout shifts on load.

DEFINITION When an element is added to the page or its size is changed,
everything after the element moves to make room for the element or fill the
void left behind. The movement of elements on the page is referred to as a
layout shift.

(continued)

If we had a landscape image of height 100px and width 300px, the radius needed to
inscribe the circle when choosing a percentage-based value is much less obvious. We
can use the following formula to calculate what the radius would be:

r = 87.5

175

1
7
5

r = 111.8

300

1
0
0

r = 111.8

3
0
0

100

Square

shape-outside: circle(50%)

Landscape Portrait

Figure 7.8 Radius applied to a square versus a rectangular image

1877.3 Curving text around the compass
When the image has a set height and width or has a defined aspect ratio, the browser
can save room for the image while it’s being loaded, therefore reducing the layout
shift. Accordingly, it’s good practice to define aspect ratios and/or height and width
for our images.

img.compass {
 aspect-ratio: 1;
 float: right;
 shape-outside: circle(50%);
}

Figure 7.9 displays our output. The text wraps around the image and follows the
curve, but the image isn’t clipped in any way. This effect works because our image has
a transparent background.

7.3.2 Adding a clip-path

We’ve curved the text, but the image is still square. If we add a background to the
image, this fact becomes obvious. To make the image appear to be truly circular, we
need to add a clip-path. The clip-path property also takes a shape, so we’re going
to pass it the same value we passed to shape-outside. We’re also going to add some
margin to our image to add a little breathing room between it and the text. Listing 7.7
shows the complete CSS for our image.

img.compass {
 aspect-ratio: 1;
 float: right;
 shape-outside: circle(50%);
 clip-path: circle(50%);
 margin-left: 1rem;
}

Listing 7.6 shape-outside

Listing 7.7 clip-path

Aspect
ratio

Floats the image
to the right

Adds our circle
with a value of 50%

Figure 7.9 Floated compass with curved text

188 CHAPTER 7 Harnessing the full power of float
We added a clip-path that matches our shape-outside and some margin to the left
of the image to prevent the text from getting too close to the image, especially because
the compass has arrows protruding from the circular outline that our circle() doesn’t
create. Figure 7.10 shows the finished output.

When we add the clip-path, we observe that now the image itself, including the back-
ground, appears to be round. The corners have been clipped, and the previously
square background is circular. Also, the added margin moves the text around our
compass arrow, making it look less crowded.

 We’ve demonstrated that we can create a circle by using CSS shapes. Now let’s look
at how to make the circle by using border-radius.

7.3.3 Creating a shape using border-radius

We can create a CSS shape from an element’s contours when we use border-radius to
shape the element. We still use shape-outside, but instead of passing in a shape, we
specify the level of the box model at which we want the shape to form. Our options are

 margin-box—Shape follows the margins.
 border-box—Shape follows the borders.
 padding-box—Shape follows the padding.
 content-box—Shape follows the content.

Let’s start with a clean slate, with our image floated to the right and some margin
added to keep the text from crowding the image. Listing 7.8 contains our starting
CSS, and figure 7.11 shows the current display.

img.compass {
 aspect-ratio: 1;
 float: right;
 margin-left: 1rem;
}

Listing 7.8 Starting point

Figure 7.10 Round floated compass

1897.3 Curving text around the compass
Now let’s add a border-radius of 50%, which will make our image a circle. At this
point, though, the text doesn’t follow the curve. We still need to add the shape-out-
side property.

 Our image has a margin that (ideally) we want the shape to respect, so we’re going
to use the margin-box value. The next listing shows this concept applied in code.

img.compass {
 aspect-ratio: 1;
 float: right;
 margin-left: 1rem;
 border-radius: 50%;
 shape-outside: margin-box;
}

Figure 7.12 shows the output with a white background and border added to empha-
size the shape of the image.

Unlike when we used shape-outside with the circle() function, our image is already
cropped into a circular shape, eliminating the need to use clip-path. This outcome
is a direct result of using border-radius, which is doing the clipping for us.

Listing 7.9 Adding border-radius and shape-outside

Figure 7.11 Resetting
to float and adding a
margin

Figure 7.12 Compass shape with border-radius of 50% and a shape-
outside value of margin-box

190 CHAPTER 7 Harnessing the full power of float
 We’ve seen two different ways to accomplish the same result. CSS offers more than
one way to approach many problems, including this one. Neither option is particu-
larly superior to the other. border-radius requires slightly less code, which gives it a
slight edge, but in this case the choice is a matter of preference.

 Now that we’ve handled the compass image, we’re going to move on to wrap the
text around the dog.

7.4 Wrapping text around the dog
Unlike the compass, which is a standard shape, the dog has an irregular outline. This
image is line art composed of a single path, so we might be tempted to grab the path
from the SVG file and use the path() function to create our shape. As we’re about to
see, however, although it’s defined in the CSS specification (https://www.w3.org/
TR/css-shapes), this technique won’t work.

7.4.1 Using path() . . . or not yet

Let’s open the image file in an editor to inspect the code. The following listing shows
the image code redacted for brevity to highlight the important information.

<svg xmlns="http:/ /www.w3.org/2000/svg" viewBox="0 0 152 193">
 <defs>
 <style>
 .cls-1{
 fill:none;
 stroke:#000;
 stroke-miterlimit:10;
 stroke-width:2px;
 }
 </style>
 </defs>
 <path class="cls-1" d="M21.9135,115.62c-17.2115,4.7607-37.3354,..."/>
</svg>

We have the <defs> element, which includes the styles for the image. This part
defines what the individual elements in the SVG will look like. Then we have a <path>,
which is the element displaying the dog. This element is 1,988 characters long and
quite complex, and when shape-outside: path('M21.913…'); is pasted into the
path() function, it doesn’t seem to do anything. The reason is that when this book
was written, no browser fully implemented path().

 When this feature is implemented, creating our paths with a graphics editor and
copying them to create our shapes will be a valuable technique. But this method will
have a drawback: the paths can get quite long, making maintainability dubious. In the
meantime, we have a couple of alternatives:

 Creating a polygon shape that roughly matches our image, similar to the tech-
nique we used for the circle

Listing 7.10 dog.svg

https://www.w3.org/TR/css-shapes
https://www.w3.org/TR/css-shapes
https://www.w3.org/TR/css-shapes

1917.4 Wrapping text around the dog
 Using the url() function, which pulls in the image and bases the shape on the
alpha channel

We’re going to go with the second option: the url() function.

7.4.2 Floating the image

As we did when we handled the compass image (section 7.3), we’re going to start by
floating the image, but this time we’ll float it to the left to break up the visual monot-
ony of our page. Then, to create the shape, we’ll use the url() function and pass the
path to the image to it. Listing 7.11 shows the CSS applied to the dog image.

img.dog {
 aspect-ratio: 126 / 161;
 float: left;
 shape-outside: url("https:/ /raw.githubusercontent.com/michaelgearon/Tiny-

CSS-Projects/main/chapter-07/before/img/dog.svg");
}

We float the image left and then add our shape-outside, passing in a reference to the
image itself. The browser will look at the transparency of the image and determine
where to create the shape based on where the transparency ends. Figure 7.13 shows
our output.

 Because our image has an opaque line with a transparent background, the cutoff is
straightforward. If our image had a gradient that went from opaque to transparent, we
could tailor the cutoff by using the shape-image-threshold property. This property
takes a value between 0 (fully transparent) and 1 (fully opaque).

Serving the image file
When using URLs with shape-outside, we need to make sure we’re running our
code through a server so that the image is getting fetched by the browser, not read
directly from the file system. This approach is related to Cross-Origin Resource Shar-
ing (CORS) and security policies set by the browser. You can find a detailed explana-
tion in the CSS specification at http://mng.bz/pdMw.

To mitigate this problem, the sample code in the GitHub repository uses http-
server, serving the files on localhost:8080 to accomplish this task. Another option
would be to reference the hosted file in GitHub by using shape-outside:
url("https://raw.githubusercontent.com/michaelgearon/Tiny-CSS-Projects/
main/chapter-07/before/img/dog.svg").

Listing 7.11 Dog floated left

http://mng.bz/pdMw

192 CHAPTER 7 Harnessing the full power of float
7.4.3 Adding shape-margin

The next step is adding some margin to move the text away from the image because it
looks rather crowded. We can’t simply add a margin to the image, as we did when we
floated to the right; if we try, we’ll notice that the margin is ignored. Instead, we need
to use shape-margin. The shape-margin property allows us to adjust the amount of
space between our shape and the rest of the content. We’re going to add 1em worth of
space, as shown in the following listing and figure 7.14.

img.dog {
 aspect-ratio: 126 / 161;
 float: left;
 shape-outside: url("https:/ /raw.githubusercontent.com/michaelgearon/Tiny-

CSS-Projects/main/chapter-07/before/img/dog.svg");
 shape-margin: 1em;
}

The text at the bottom of the image is still quite close. At this point, we can add some
margin to increase the space as long as the margin added is less than or equal to
the shape-margin amount. If the value is greater than the shape-margin amount, the

Listing 7.12 Adding shape-margin to our rule

Figure 7.13 Floated dog

Figure 7.14 shape-margin applied to the image

1937.4 Wrapping text around the dog
margin will still take effect, but only as much as the shape-margin amount. Keeping
this caveat in mind, we’ll add 1em of margin to the right of the image. The next listing
shows the completed CSS for the dog image.

img.dog {
 aspect-ratio: 126 / 161;
 float: left;
 shape-outside: url('img/dog.svg');
 shape-margin: 1em;
 margin-right: 1em;
}

The combination of shape-margin and margin-right pushes the text away from our
image, creating the polished result we see in figure 7.15.

With this last piece completed, we’ve finished styling our page (figure 7.16). We
have a layout that’s visually appealing and much more interesting than the one we
started with.

 We’ve created a layout made possible by the use of float. We couldn’t have
achieved the same result by using Flex or Grid easily. Whether we use it on its own, as
in our drop-cap example, or in conjunction with shapes (which, granted, are rather
new as well), float continues to be a valuable asset for us to keep in our toolbox.

Listing 7.13 Completed dog image

Figure 7.15 Finished floated dog

194 CHAPTER 7 Harnessing the full power of float
Figure 7.16
Finished layout

195Summary
Summary
 Leading, the amount of space between lines, is important for legibility.
 Float can be used in conjunction with ::first-letter to create drop caps.
 Not all typefaces have the same size and line heights when given the same size

value.
 The shape-outside property uses CSS shapes to alter the shape of an element.
 Circular shapes can be created with border-radius.
 Inline content adjacent to a floated CSS shape will follow the shape.
 When we use url() with shape-outside, the image file must be fetched by the

browser (hosted or via http-server or the equivalent).
 The shape-margin property sets the margin of a shape.
 Some layouts can’t be created without the use of float.

Designing a checkout cart
Many of us regularly go online to buy items ranging from food to books to enter-
tainment and everything in between. Common to this experience is the checkout
cart. We make our selections by adding them to a virtual cart or basket in which we
can review our chosen items before making our final purchase. In this chapter,
we’ll look at how to style a checkout cart so that it works on both narrow and wide
screens. We’ll also look at how to handle tables for narrow and wide screens. Tables
are incredibly useful for displaying data, but they can be a bit difficult to style for
mobile devices, so we’ll look at a CSS solution for narrow screens.

 First, though, we’ll handle some theming. Regardless of the width of our screen,
elements such as our input fields, links, and buttons will look the same, so we’ll
style them first. Defining a theme early in the process of putting together a user

This chapter covers
 Using responsive tables

 Autopositioning using Grid

 Formatting numbers

 Conditionally setting CSS based on viewport size
via media queries

 Using the nth-of-type() pseudo-class
196

1978.1 Getting started
interface can significantly reduce redundant code. It also increases our ability to keep
our styles consistent, so that whether we’re creating a checkout cart or any other page
or application, we can apply this process to any number of designs.

 Next, we’ll focus on the layout, moving from narrow to wide. On devices with narrow
screens, such as phones, we tend to stack things. As screens grow larger, we add rules to
make use of the full width available to us. Often, it’s easier to start with the mobile layout
and add to our styles as the screen gets wider than to start with wide-screen layout and
have to override previously set layout elements as screens become smaller.

8.1 Getting started
We’ll create styles to accommodate three sizes of screens:

 Narrow (most phones)—Maximum width of 549 pixels
 Medium (tablets and small screens)—Between 500 and 955 pixels
 Wide (desktop computers and high-resolution tablets)—Wider than 955 pixels

Figure 8.1 shows our starting point and the final output for each screen size.

Regardless of the screen size, we’re going to use the same HTML. We’ll have one
stylesheet and use media queries to adjust how our elements look depending on

Start

549px 550px

955px

Figure 8.1 Start and end outputs for small, medium, and large screens

198 CHAPTER 8 Designing a checkout cart
screen size. Our starting HTML is on GitHub at http://mng.bz/GRpJ and on Code-
Pen at https://codepen.io/michaelgearon/pen/ExmLNxL. The code consists of two
sections, one for the cart and one for the summary, which are wrapped in a container
that we’ll use on wide screens to place the sections side by side. The cart section
includes a heading and a table that contains each of the items in the cart. The sum-
mary section contains a heading, a description list, and two links. Figure 8.2 diagrams
the HTML elements.

The following listing is an abridged version of the HTML we’re starting with.

<body>
 <main>
 <h1>Checkout</h1>
 <div class="section-container">
 <section class="my-cart">
 <h2>My Cart</h2>
 <table>
 <thead>
 <tr>
 <th>Image</th>
 <th>Item</th>
 <th>Unit Price</th>
 <th>Quantity</th>
 <th>Total</th>
 <th>Actions</th>
 </tr>

Listing 8.1 Starting HTML

<section>

<
m
a
i
n
>

<
d
i
v

c
l
a
s
s
=
"
s
e
c
t
i
o
n
-
c
o
n
t
a
i
n
e
r
"
>

<section>

<
t
a
b
l
e
>

<tfoot> <input> <button>

<thead> <tbody><h1> <h2> <dl><h2>

Figure 8.2 Diagram of HTML elements

https://codepen.io/michaelgearon/pen/ExmLNxL
http://mng.bz/GRpJ

1998.1 Getting started
 </thead>
 <tbody>
 <tr>
 <td>
 <img src="./img/grapes.jpg" width="75" height="105"
 loading="lazy" alt="Red grapes">
 </td>
 <td data-name="Item">Red Grapes, 1lb</td>
 <td data-name="Unit Price">$ 3.23</td>
 <td data-name="Quantity">
 <input name="grapes" type="number"
 aria-label="Pounds of grape baskets"
 min="0" max="99"
 value="1">

 </td>
 <td data-name="Total">
 <!-- value calculated & inserted by JS -->
 </td>
 <td>
 <button type="button" class="destructive">
 <img width="24" height="24"
src="./img/icons/remove.svg" alt="remove grapes">
 </button>
 </td>
 </tr>
 ...
 <tfoot>
 <tr>
 <th colspan="4" scope="row">Total:</th>
 <td id="total">
 <!-- value calculated & inserted by JS -->
 </td>
 </tr>
 </tfoot>
 </table>
 </section>

 <section class="summary">
 <h2>Summary</h2>
 <dl>
 <dt>Number of Items</dt>
 <dd id="itemQty">
 <!-- value calculated & inserted by JS -->
 </dd>
 ...

 </dl>
 <div class="actions">

 Proceed to Checkout

 Continue Shopping

200 CHAPTER 8 Designing a checkout cart
 </div>
 </section>
 </div>
 </main>
 <script src="./script.js"></script>
</body>

In addition to the starting HTML, we’ll use a JavaScript file (script.js). We won’t be
editing or interacting with the file; it’s there simply to update the totals for the sum-
mary sections.

8.2 Theming
Although our layout has two clearly defined sections (the cart and the summary) and
needs to work across screen sizes, some styles aren’t going to change regardless of
where they are or what size the screen is. These styles include

 Fonts
 Buttons and link styles
 Input and error-message styles
 Header size and color

These styles can be referred to as our theme, and to keep them consistent across our
page, we generally want to write them once and apply them everywhere. Let’s start
with our fonts.

8.2.1 Typography

Currently, our font-family is our browser’s default. For this project, we’re going to
import Raleway from Google Fonts and apply it to the body. We’ll import both regular
and bold, as we’ll need both throughout this project. We’ll also set a default text color
of #171717, which looks almost black, for our text. We aren’t using black with this
design because it’s a soft design, and pure black can be quite harsh.

 Next, we’re going to handle our numbers. A font family by default has either old-
style or modern numbers. The difference is how the numbers are aligned compared
with the meanline and baseline, as shown in figure 8.3.

Numbers in old style have portions that peek above and below the baseline; modern
ones don’t. Because we’re creating a shopping cart, and we want to stack numbers to
show them being added to create a total, we want to use modern figures so that they

Modern figuresOld-style figures

Meanline
Baseline

Figure 8.3 Old-style versus modern figures

2018.2 Theming
line up nicely. However, Raleway (the font family we’ve chosen for the page) uses old-
style figures by default. To make our typeface use modern figures, we can use the
font-variant-numeric property, which lets us set how we want our numbers to dis-
play. This lesser-known property is handy for handling numbers because it allows us to
control multiple facets of their display, including

 Whether zeros are displayed with a slash in them
 How the numbers are aligned
 How fractions are displayed

We’re going to use a font-variant-numeric: lining-nums property that will change
our numbers from old-style to modern. Figure 8.4 shows the summary section before
and after we apply font-variant-numeric to our body rule. In the before version, the
numerals are different sizes; in the after version, they’re aligned and uniformly sized.

Last, we’ll change the color of our headers to teal. After that change, we’ll have set the
base typography for our page. We applied it directly in the <body> element so that
other child elements within our page will inherit the values. Listing 8.2 shows the rules
we’ve constructed up to this point.

@import url('https:/ /fonts.googleapis.com/css2?

➥ family=Raleway:wght@400;700&display=swap');

body {
 font-family: 'Raleway', sans-serif;
 color: #171717;
 font-variant-numeric: lining-nums;
}

h1, h2 {
 color: #2c6c69;
}

Listing 8.2 Typography-related styles applied to the <body> element

Before (old-style figures) After (modern figures)

Meanline
Baseline

Figure 8.4 Before
and after applying the
font-variant-
numeric property

202 CHAPTER 8 Designing a checkout cart
Figure 8.5 shows our updated output.

Let’s turn our attention to links and buttons.

8.2.2 Links and buttons

Our page has several links and buttons, but stylistically, all these elements look like
buttons. They can be categorized by purpose:

 Primary call to action—Proceed to Checkout link
 Secondary call to action—Continue Shopping link
 Destructive—Button with an X to remove items from the cart

We’re going to use these categories to name our classes so that our rules will be easy to
reuse.

 In this chapter, we’re dealing with a single page, but this situation is an anomaly. In
a full application, we have multiple pages or components that will reuse the same
styles, so instead of naming a class something like proceed-to-checkout, we’re going
to use primary so that the class can easily be reused in a different context.

Figure 8.5 Applied typography

2038.2 Theming
Before we address the differences among button types, let’s consider the similarities
and write a baseline for all of our links that look like buttons (which were given a class
of button) and for buttons. After we’ve written a baseline, we’ll make rules for each of
the button types.

 To create our baseline, we’ll start by removing the default gray background set by
the browser, which we’ll do by using background: none. We’ll also update the pad-
ding, border, and border-radius values.

 Finally, because we’re applying this rule to the links and buttons and because links
are underlined by default, we’re going to remove the underline from the links by set-
ting the text-decoration property to none. The following listing shows our base rule
for our buttons and links with a class of button.

button, .button {
 background: none;
 border-radius: 4px;
 padding: 10px;
 border: solid 1px #ddd;
 text-decoration: none;
}

With the default state of the buttons taken care of, we’ll add style changes to apply
when a user hovers over a button with their mouse or focuses on it via their keyboard.
To achieve this goal, we’ll use the :hover and :focus pseudo-classes.

NOTE A pseudo-class is added to a selector to target a specific state. Adding
style changes on hover and focus is important for accessibility, as it provides
visual feedback, letting the user know that they can interact with the item. For
keyboard navigation, style changes on focus let the user know which element

Links versus buttons
We have both links and buttons in our project. The decision to use one or the other
isn’t a matter of preference; it’s based on the intended functionality or purpose. For
navigating, we should use a link. For performing an action, such as removing an item
from our cart, we should use a button. We can style these elements however we
please, but the underlying element should match the intended use case.

The reason for the distinction is that links and buttons have information and behav-
iors tied to them automatically by the browser. These behaviors include their capabil-
ity to focus and, more important, their roles. The role of the element is used by
assistive technologies to help users interact with the page.

A specific example of a difference in the behavior of a link and a button is the user’s
ability to right-click it to open the link in a new tab or window. If the link is created
with a button and JavaScript, this functionality isn’t available to the user.

Listing 8.3 Base styles for buttons

This rule will be applied
to all button elements
and to all elements
with a class of button.

204 CHAPTER 8 Designing a checkout cart
they’re about to interact with. Without these visual cues, it’s difficult to know
what we can click and where we’re focused (http://mng.bz/zmdA).

On hover, we’re going to add a dotted teal outline around our buttons, and to give
the outline some breathing room, we’re going to offset it by 2 pixels. We’ll use two
properties: outline and outline-offset. outline works similarly to border, taking
the same three properties, which are style, width, and color. outline-offset takes
a length value (which can be negative) that dictates the amount of space we want
between the outline and the edge of the element.

 For focus, we have the same styles as those for hover, but instead of having a dotted-
line outline, we’ll make the line solid. The following listing shows our final CSS for the
hover and focus states.

button:hover,
.button:hover {
 outline: dotted 1px #2c6c69;
 outline-offset: 2px;
}

button:focus,
.button:focus {
 outline: solid 1px #2c6c69;
 outline-offset: 2px;
}

Figure 8.6 shows the styled links and buttons for the hover and focus states.
 Now that we have a baseline, we can start focusing on each individual use case.

We’ll start with our calls to action (the Proceed to Checkout and Continue Shopping
links). Because we already have a baseline set, all we need to do is edit the colors for
these use cases, as shown in listing 8.5. We differentiate between the two actions based
on which we prefer (or expect) the user to select to highlight the primary choice.
Being consistent about styling action types throughout the application helps us guide
our users through the choices they’ll have to make.

button.primary,
.button.primary {
 border-color: #2c6c69;
 background: #2c6c69;
 color: #ffffff;
}

button.secondary,
.button.secondary {
 border-color: #2c6c69;
 color: #2c6c69;
}

Listing 8.4 Button hover and focus states

Listing 8.5 Call-to-action styles

Applies to
the Proceed to
Checkout link

Applies to
the Continue
Shopping link

http://mng.bz/zmdA

2058.2 Theming
Left to style is the Remove button in the table for the items in the cart. This button has
been given a class of destructive. As for the previous two button types, we’ll want to
change the border, text, and outline colors, this time to red instead of teal to empha-
size that this action is destructive. We make the button look circular by giving it a
border-radius of 50%. We also decrease the padding value; otherwise, the Remove
button becomes the most prominent element in our table, which is undesirable.
Finally, we center the image in the middle of the button via the vertical-align prop-
erty. This property, which can be applied to both inline- and inline-block-level ele-
ments, dictates how the element is aligned vertically based on the inline and inline-
block elements around it. We want to center the image vertically inside the button, so
we’ll use a property value of middle.

 Listing 8.6 shows the CSS for the Remove button. Figure 8.7 shows the output for
each state.

button.destructive {
 border-color: #9d1616;

Listing 8.6 Remove button

Buttons

Links

Hover

Focus

Hover
Figure 8.6 Button base styles,
including hover and focus

206 CHAPTER 8 Designing a checkout cart
 color: #9d1616;
 border-radius: 50%;
 padding: 5px;
}

button.destructive img {
 vertical-align: middle;
}

button.destructive:hover,
button.destructive:focus {
 outline-color: #9d1616;
}

8.2.3 Input fields

We’re going to do some minimal styling of the input fields. We won’t handle styles
for invalid inputs or error messages here because the focus of this chapter is creat-
ing a responsive layout that contains a table. For a detailed look at styling forms, see
chapter 10.

Centers the
image inside
the button

Hover

Focus

Figure 8.7 Link and button styles

2078.2 Theming
 For this layout, we’re going to give our input fields the same base styles we gave the
buttons and links. Instead of writing a new rule, however, we’ll add the input selector
to the existing ruleset, as shown in the following listing.

button,
.button,
input {
 background: none;
 border-radius: 4px;
 padding: 10px;
 border: solid 1px #ddd;
 text-decoration: none;
}

Figure 8.8 shows the styled input fields.

8.2.4 Table

Next, we’re going to style the table. We’re going to concern ourselves only with styles
that relate to the theme, such as colors and borders. We’ll handle layout and respon-
siveness in sections 8.3 through 8.5.

 Our table is divided into three sections, which we’ll address in order:

 Header—<thead>

 Body—<tbody>

 Footer—<tfoot>

STYLING THE TABLE HEADERS

We’re going to start by styling our table headers. Because the headers aren’t as import-
ant as the content of the table itself, we’ll give them a slightly smaller font size and
lighter color than the rest of the text. We’ll also decrease their default font-weight of

Listing 8.7 Adding input to base button styles

Figure 8.8 Formatted fields

208 CHAPTER 8 Designing a checkout cart
bold to normal. By subduing the headers a bit, we’re creating a visual hierarchy in the
table and emphasizing what the user cares most about (the items in their shopping
cart). The rule is shown in the following listing.

th {
 color: #3a3a3a;
 font-weight: normal;
 font-size: .875em;
}

At this point, our table headers look like figure 8.9.

BOLDFACING ITEMS IN THE SECOND CELL

In the table body (<tbody>), we’re going to emphasize the item name (in the second
column) by making the text bold. To add the font-weight property with a value of
bold to the item, we’re going to use the pseudo class :nth-of-type(), which allows us
to select an element based on its position among its siblings of the same tag. To target
the second cell—the second <td> element—of each row in the table’s body, we use
tbody td:nth-of-type(2). Listing 8.9 shows our rule.

tbody td:nth-of-type(2) {
 font-weight: bold;
}

Figure 8.10 shows our updated table with the item names in bold.

STRIPING THE ROWS

Next, we’ll stripe the table rows. We’ll use :nth-of-type() again, but instead of pass-
ing in a number, we’ll use the keyword even. The rule in the following listing selects
the even-numbered rows in the table body (<tbody>), to which we give a light-teal
background color.

Listing 8.8 Styling the cells’ contents

Listing 8.9 Boldfacing the second cell of each row in the table’s body

Figure 8.9 Styled header cells

2098.2 Theming
tbody tr:nth-of-type(even) {
 background: #f2fcfc;
}

Figure 8.11 shows our updated rows.

Listing 8.10 Striping the table body’s rows

Figure 8.10 Item name in bold

Figure 8.11 Striped rows

210 CHAPTER 8 Designing a checkout cart
BOLDFACING THE GRAND TOTAL IN THE FOOTER

We want to bold the grand total, which appears in the table’s footer cell. Because
we already have a rule that boldfaces text—the one we created to boldface item
names—we can add the tfoot td selector to that existing rule, as shown in the fol-
lowing listing.

tbody td:nth-of-type(2),
tfoot td {
 font-weight: bold;
}

Our updated footer looks like figure 8.12.

HANDLING BORDERS

We’ll add a top border to all the rows, regardless of where they are in the table. We
also want to remove the protruding white lines that appear between cells. If we darken
the background color of the row, it becomes particularly visible (figure 8.13).

Let’s start by removing the gaps between our cells. But first, why are these white lines
present? If we decided to give each cell in our table a border, our table would look like
figure 8.14.

Listing 8.11 Boldfacing the footer

Figure 8.12 Grand total in bold

Figure 8.13 White lines between cells

2118.2 Theming
Notice that each cell has a square around it. The gap we see in our row is the gap
between the individual cells. If we collapse the borders so that only one line appears
between the cells, the gap disappears (figure 8.15).

The CSS property we use to remove the gap and combine the borders is border-
collapse with a value of collapse. With this property added, we can also give our
rows a border. Before we collapsed the borders, only the individual cells could take a

Figure 8.14 Borders
on individual cells

Figure 8.15 Table with
collapsed borders

212 CHAPTER 8 Designing a checkout cart
border. In our project, therefore, we collapse the borders on the table and apply a
border to the top of each row, as shown in the following listing.

table { border-collapse: collapse; }
tr { border-top: solid 1px #aeb7b7; }

Figure 8.16 shows our updated table.

Next, let’s move on to the description list inside the summary section of the project.

8.2.5 Description list

Still to be themed is the description list (<dl>) in the summary section. Commonly
used for creating glossaries or displaying metadata, a description list is perfect for our
summary, which contains items and their values. We’re going to style the description
term (<dt>) the same way we did our table headers. We want to deemphasize them
from the descriptions themselves (<dd>), which contains the dollar value of each ele-
ment. Because we want to style them the same way as the table headers, we’ll add dt as
a selector to the existing rule, similar to what we did to add input to the button rule in
section 8.2.3.

 After that, we’ll add two colons after each <dt> by using the pseudo-element
::after with a property of content to insert the character. The CSS and output are
shown in listing 8.13 and figure 8.17.

Listing 8.12 Handling the table’s borders

Figure 8.16 Styled
table borders

2138.2 Theming
th, dt {
 color: #3a3a3a;
 font-weight: normal;
 font-size: .875em;
}

dt::after {
 content: ": ";
}

8.2.6 Cards

To give the layout some depth and achieve separation between sections, we’re going
to style our sections’ containers as cards. Cards are a design pattern commonly used to
separate content by encapsulating it in a box or container reminiscent of a playing
card. This concept is the same as the one we used to create a profile card in chapter 6.

 To pull off our card design, we’ll add a pale teal background to the <body> and
outline the sections with a shadow that looks like it’s hovering slightly above the
<body>. To create the shadow, we’ll use the box-shadow property, which allows us to
control the amount of shadow to add on the x- and y-axes, as well as the amount of
blur (fuzziness), the distance it should spread, and the color the shadow should be.
Figure 8.18 details how the property values are applied.

Optionally, we can also set a value of inset to indicate that the shadow should be
turned inward within the element rather than around the outside. To finish the
appearance of our card, we’ll curve the corners with a border-radius value of

Listing 8.13 Styling the description list

Adds a description
term to our existing
header styles

Adds a colon after
each description
term

Figure 8.17 Description list theme

box-shadow: 2px 9px 7px 0 #aeb7b7;

offset-x

offset-y

blur-radius

spread-radius

Color

Figure 8.18 box-shadow
property values

214 CHAPTER 8 Designing a checkout cart
4px—the same value we used for our links, buttons, and inputs. The following listing
shows our section rule.

body {
 font-family: 'Raleway', sans-serif;
 color: #171717;
 font-variant-numeric: lining-nums;
 background: #fbffff;
}

section {
 background: #ffffff;
 border-radius: 4px;
 box-shadow: 2px 2px 7px #aeb7b7;
}

Figure 8.19 shows our styled sections. Notice, however, that at the bottom of the sum-
mary card, the links extend out beyond the card. This effect happens because links
have a display value of inline by default.

When vertical padding is added to an inline element—the links, in this case—the
height of the element doesn’t increase inside the flow of the page. Thus, it takes up
only as much room as its content (the text), which is why it isn’t increasing the height
of the card. To fix this problem, we’ll change their display value from inline to
inline-block. The following listing shows the updated rule.

button, .button, input {
 background: none;
 border-radius: 4px;
 padding: 10px;

Listing 8.14 Styling the sections

Listing 8.15 Section styles

Adds a background
color to the page

Makes our
sections look
like cards

Figure 8.19 Themed sections with overflowing links

2158.3 Mobile layout
 border: solid 1px #ddd;
 text-decoration: none;
 display: inline-block;
}

With the fix in place, our layout looks like figure 8.20.

With our theme taken care of, we can start focusing on the layout.

8.3 Mobile layout
We’ll start with the mobile layout. The first thing we’re going to do is make our table
responsive.

8.3.1 Table mobile view

A traditional table layout doesn’t work well on mobile devices because tables need a
lot of width, which phone screens don’t offer. To accommodate mobile phones, we’ll
make the table rows and cells act more like cards on narrow screens.

USING A MEDIA QUERY

We’ll start by using a media query to apply a set of rules to the table when the viewport
is less than or equal to 549px. The query will be @media(max-width: 549px) { }.
Notice that we use max-width here. In previous chapters, we used min-width because
we wanted the styles to be applied only when the screen reached a certain size. In this
case, we’re doing the opposite: we want the styles to be applied until the screen reaches
a certain width.

 Inside this media query, we’ll define what we want the table to look like on narrow
screens. Figure 8.21 shows what our table currently looks like and what we’re trying to
achieve.

 To view the narrow-screen or mobile version, most browsers’ developer tools allow
us to make the browser simulate the screen of a particular device. In Google Chrome,
to select a particular device, we toggle the device toolbar by clicking the icon with the
phone on it at the top of the DevTools bar and then choosing the device we want to
use, as shown in figure 8.22. It’s worth noting, however, that this simulation is limited
and shouldn’t replace testing on the physical device itself.

Figure 8.20 Styled cards

216 CHAPTER 8 Designing a checkout cart
CHANGING THE TABLE’S DISPLAY STRUCTURE

First, we’ll stack everything vertically rather than have the elements of each row repre-
sented horizontally. We accomplish this task by giving our rows and cells a display
value of block. By default, table cells have a display value of table-cell, whereas
rows have a display value of table-row.

 Next, we float the image to the left (chapter 7) so that the rest of the contents of
the row wrap around it. We also include some margin around the image to create
some whitespace between the image and the rest of the row content. The following
listing shows the start of our media query and our updated cell styles.

@media(max-width: 549px) {
 td, tr { display: block; }
 table td > img {
 float: left;

Listing 8.16 Mobile cell and row layout

Now Goal

Figure 8.21 Before and after
tables for a mobile device

Toggle device toolbarSelect device

Figure 8.22 Device simulation in Chrome DevTools

Specifically targets images that are
immediate children of the cell to
avoid floating the image in the
button (the red X)

2178.3 Mobile layout
 margin-right: 10px;
 }
}

We’re getting closer to our goal, but our header information isn’t where we need it to
be. As we see in figure 8.23, header information is at the top of the table rather than
before each piece of information in the table-body rows.

DISPLAYING CONTENT FROM A DATA ATTRIBUTE

To place the header information before each piece of content, we aren’t going to use
the header. Instead, we’ll add some data attributes to the cells in our HTML: <td
data-name="Item">Red Grapes, 1lb</td>. This data will drive labeling each row
rather than the header contents in the table head.

 We move the table header offscreen by using absolute positioning, as shown in list-
ing 8.17. We don’t want to use display:none, as the information available in the
header is still needed by assistive technologies. By absolutely positioning it offscreen
(using a large negative value), we hide it visually but not programmatically.

Figure 8.23 The table header is
at the top of the mobile table.

218 CHAPTER 8 Designing a checkout cart
@media(max-width: 549px) {
 ...
 thead {
 position: absolute;
 left: -9999rem;
 }
}

With our table head out of the way (figure 8.24), we can focus on extracting the data
from the data-name attribute and displaying it to the user. We notice that our content
shifted a bit after we removed the header because our table currently isn’t taking up
the full width of the screen. We’ll remedy that problem later in this section. For now,
let’s finish handling our header information.

To display the attribute value, we use the attr() function, which takes an attribute name
and returns a value. For our use case, our content property will be td[data-name]:
before { content: attr(data-name) ":"; }. Figure 8.25 breaks it down in detail.

To align our labels and content, we use a combination of text-align and float. We
use text-align: right in the cell to right-justify the cell contents—the item name,
unit price, input field, total, and button—and then float the label (the content we get

Listing 8.17 Hiding the table headers

Figure 8.24 Removing the
table head from view

td[data-name]::before { content: attr(data-name) ":"; }

Selects cells that have

a data attribute. Rule

is not applied to those

that do not.

Content value

will be placed

before the

cell’s content.

Defines content

to be displayed
Returns the value

of the data-name

attribute

Adds a

colon after

the content

Figure 8.25 Adding the header information before the cell

2198.3 Mobile layout
from the data-name attribute) to the left to create a gap between the two elements, as
shown in figure 8.26. We also give the cell some padding for added whitespace
between the lines of content. Listing 8.18 shows the CSS used to align the contents of
the table cells.

@media(max-width: 549px) {
 ...
 td {
 text-align: right;
 padding: 5px;
 }
 td[data-name]::before {
 content: attr(data-name) ":";
 float: left;
 }
}

Now that the data in the data-name attribute is being displayed, let’s style it to match
the definition titles. Rather than copy the styles, we can append the selector to the
existing rule as shown in the following listing.

@media(max-width: 549px) {
 ...
 th, dt, td[data-name]::before {
 color: #3a3a3a;
 font-weight: normal;
 font-size: .875em;
 }
}

Listing 8.18 Displaying the contents of the data-name attribute

Listing 8.19 Finishing touches

Figure 8.26 Aligning the labels
and the content

220 CHAPTER 8 Designing a checkout cart
FULL WIDTH

With the labels styled, let’s turn our attention back to the fact that our table isn’t tak-
ing up the full width that’s available to it. We can fix this problem by giving it a width
of 100% by using the rule table { width: 100%; }. Because we’ll want the table to take
up the full width available to it regardless of screen size, we add this rule outside the
media query.

 We’re almost done with the mobile styles of the table (figure 8.27). The only thing
left to do is handle the table foot.

TABLE FOOTER

In the table footer (<tfoot>), we want to align the text on a single line. For this task,
we’ll use Flexbox with a justify-content property value of space-between and an
align-items value of baseline to align the label and total at opposite ends of the
row on the same line. (To see how the CSS Flexbox Layout Module works, check out
chapter 6.)

 Looking at our table-footer HTML (listing 8.20), we notice that our first cell is a
table header (<th>), not a table data cell (<td>), which makes sense because it
describes the contents of that row.

@media(max-width: 549px) {
 <tfoot>
 <tr>
 <th colspan="4" scope="row">Total:</th>
 <td id="total">
 <!-- value calculated & inserted by JS -->
 </td>
 </tr>
 </tfoot>
}

If we look closely at figure 8.27, we notice that the footer content doesn’t have any
padding; it goes right up against the edge of the card and row border. Earlier, we

Listing 8.20 Table-footer HTML

Figure 8.27 Full-width table

2218.3 Mobile layout
added padding to all the table data cells, not the headers, so now we’ll add padding
to the footer. The following listing shows a recap of the styles we edited and created to
create our mobile table layout along with our changes for the table footer.

th, td, td[data-name]::before {
 color: #3a3a3a;
 font-weight: normal;
 font-size: .875em;
}
@media(max-width: 549px) {
 td, tr { display: block }
 table td > img {
 float: left;
 margin-right: 10px;
 }
 thead {
 position: absolute;
 left: -9999rem;
 }
 td {
 text-align: right;
 padding: 5px;
 vertical-align: baseline;
 }
 td[data-name]::before {
 content: attr(data-name) ":";
 float: left;
 }

 tfoot tr {
 display: flex;
 justify-content: space-between;
 align-items: baseline;
 }
 tfoot th { padding: 5px }
}
 table { width: 100% }

Figure 8.28 shows the finished table.
 Now that the table looks good on mobile devices, we’ll turn our attention to the

description list and the overall layout. Unlike the rules that created styles specific to
small screens, this next set of rules will apply regardless of the width of the screen, so
they won’t be inside a media query. We’ll start by addressing the description list (<dl>).

8.3.2 Description list

Unlike the table, which looks completely different on mobile and desktop screens, the
description list will look the same regardless of screen width. Its position will change
on wider screens, but the list itself will not. Because the description list is the same
regardless of screen size, we won’t put the layout styles inside a media query.

Listing 8.21 Mobile table CSS

222 CHAPTER 8 Designing a checkout cart
To display the description list, we’ll use grid (chapter 2). We’ll define two columns
and let items autoposition themselves within the two columns. When not given spe-
cific placement instructions, child elements of a grid container place themselves in
the first available space, which is exactly the behavior we’re going to exploit. We’ll also
define a gap and add some padding to the container to space the elements within
the grid and card. Finally, we’ll left-justify numbers. Listing 8.22 shows the CSS, and
figure 8.29 shows the before and after versions of the description list.

Finished mobile table

Table footer after

Table footer before

Figure 8.28 Table displayed as cards for narrow screens

Before After

Figure 8.29 Before and after layouts for the description list

2238.3 Mobile layout
dl {
 display: grid;
 gap: .5rem;
 grid-template-columns: auto max-content;
 padding: 0 1rem;
}
dd { text-align: right; }

8.3.3 Call-to-action links

Our description list looks a lot better, but the call-to-action links still need some help.
As we did for the description list in section 8.3.2, we want our call-to-action links to be
laid out the same regardless of screen size, so styles will go outside our media query.

 First, we’ll give the links’ containers some padding and use the text-align prop-
erty to center them. When there isn’t enough room for links to be side by side and
they end up stacked, we’ll give them some margin to prevent them from running right
up against one another. Listing 8.23 displays the code. Figure 8.30 shows before and
after versions of the output.

.actions {
 padding: 1rem;
 text-align: center;
}
.actions a {
 margin: 0 .25rem .5rem;
}

Listing 8.22 Description list styles

Listing 8.23 Action links

We use max-content for our
second column because we
don’t want the numbers to
wrap, which would make
them difficult to read.

Before After

Viewport width: 360px

Figure 8.30 Before and after layout of call-to-action links

224 CHAPTER 8 Designing a checkout cart
8.3.4 Padding, margin, and margin collapse

All the content within our sections except the headers is laid out for mobile devices.
The browser gives headers a margin by default, but that setting isn’t accomplishing
what we want it to; instead of creating vertical space between the edge of the card and
the header, it’s pushing the card down. A margin pushes content but doesn’t affect
how much room an element or its content occupies, which is why the top margin
(header) is bleeding out of the card.

 If we remove the header’s margin and give it padding instead, the card will
expand, but the gap between the two cards will disappear. Therefore, we need to give
the section itself some margin to add space between the two cards. If we give the sec-
tions a margin with a value of 1rem 0 (1-rem top and bottom, but not left and right),
we’ll still have a 1-rem gap between the two cards—a direct result of margin collapse.
Unless the positioning of the elements has been altered via float or flex, two margins
that run up against each other will collapse to equal the greater of the two margins.
Figure 8.31 diagrams this effect.

To add space between the edges of the card and the header, we’ll replace the card
header’s margin with padding. Then we’ll add section margins to the card to regain
the lost vertical space. Finally, we’ll add padding to the body so that the cards aren’t
stuck against the left and right edges of the screen. The following listing shows how.

body {
 font-family: 'Raleway', sans-serif;
 color: #171717;
 font-variant-numeric: lining-nums;
 background: #fbffff;
 padding: 1rem;
}

section { margin: 1rem 0 }

Listing 8.24 Section margin and header padding

<section>

<h2>

<section>

<h2>

<h2> margin Section margin

<h2> padding
<section>

Margin collapse

<section>

Figure 8.31 Effects of margins and margin collapse

2258.4 Medium screen layout
section h2 {
 padding: 1rem;
 margin: 0;
}

With the mobile layout finished (figure 8.32), let’s increase the width of the screen for
tablets and laptops.

8.4 Medium screen layout
Most of what we did for mobile devices will look great on medium-size screens.
Because we used a media query to restrict table-layout changes to screens less than or
equal to 549 pixels wide, the styles we wrote to edit the table won’t apply to any screen
that’s 550 pixels wide or wider. Figure 8.33 shows the table when the viewport is 549
pixels wide and when it’s 550 pixels wide. At 550 pixels of width, we’re back to a stan-
dard table layout.

8.4.1 Right-justified numbers

Next, we’re going to update the alignments of the values in the table. Because it makes
computation at a glance easier, it’s customary to right-justify numbers, especially if

Before

After

Section header changes Mobile layout

Figure 8.32 Before and after card headers

226 CHAPTER 8 Designing a checkout cart
they’re being totaled in a column. We’ll update both the header and the cells of the
unit price, quantity, and total to be right-justified.

 To select the headers and cells, we could use the :nth-of-type(n) selector. To
select the header and cells of the Unit Price column (third column), we’d use
th:nth-of-type(3), td:nth-of-type(3) { … } and repeat the same process for all
the other columns (Quantity, Total, and Actions).

 We could also think about the process a little differently. We want to right-align all
columns after the first two. Inside :nth-of-type(), we can pass not only numbers, but
also patterns. In section 8.2.4, we used this trick when we set our background colors
on our rows by passing a parameter of even. In this case, we’re going to pass a custom
pattern, using the parameter n+3. This pattern indicates that we want to select all
matching elements starting with the third instance where n is the iterator and 3 is the
starting point. Figure 8.34 illustrates the pattern.

Viewport width: 549px 550px

Figure 8.33 Break point for table

n n n n n

+3

:nth-of-type(n+3)

Elements affected

…

Figure 8.34 nth-of-type(n+3) explained

2278.4 Medium screen layout
Using this technique, we can select the third, fourth, fifth, and sixth cells for each row
and right-align their contents, as shown in listing 8.25. Notice that we put our rule
inside a media query with a min-width of 550px. We don’t want to apply these changes
to smaller screens (defined by our previous media query as any screen smaller than or
equal to 549 pixels), so we use a second media query to apply these styles only to
screens that are 550 pixels wide or wider.

@media (min-width: 550px) {
 th:nth-of-type(n+3),
 td:nth-of-type(n+3) {
 text-align: right;
 }
}

After our styles are applied (figure 8.35), we notice a few things:

 Our first two columns need their titles to be left-justified to match their content.
 The numbers inside the fields didn’t right-justify themselves.
 The Remove button is up against the edge of the card.

Let’s address these problems in order.

Listing 8.25 Right-aligning contents

Figure 8.35 Right-aligned number and action columns

228 CHAPTER 8 Designing a checkout cart
8.4.2 Left-justifying the first two columns

We’ll use specificity to our advantage to handle the headers. Because, as a selector, th
is less specific than th:nth-of-type(n+3), we can make a th rule that aligns the text
to the left and keeps our previous rule for the other columns. The th rule will left-
justify the header content for all columns. Then we’ll override the text-align prop-
erty value for our number and button columns in our th:nth-of-type(n+3) rule.
The following listing shows the changes.

@media (min-width: 550px) {

 th { text-align: left }

 th:nth-of-type(n+3),
 td:nth-of-type(n+3) {
 text-align: right;
 }
}

Now our first two table headers are left-justified instead of centered (the browser’s
default setting), and our other columns kept their right justification (figure 8.36).

Listing 8.26 Updating the table header rules

Figure 8.36 Styled headers

2298.4 Medium screen layout
8.4.3 Right-justifying numbers in the input fields

We can choose to right-justify the text inside the input field only in this table view or
all the time regardless of screen size, and we do that outside the media queries.
Because we right-aligned our numbers and totals in the mobile view as well, it seems
logical to update the input-field style for all display sizes and include the update in
our theme.

 To select inputs of a type number, we can use an attribute selector: input[type=
"number"] { … }. We’ll add input[type="number"] { text-align: right } to our
stylesheet outside our media queries, as we want to apply it regardless of screen size.

 With the text inside the input fields aligned (figure 8.37), the last piece we need to
address is padding in all our table data cells and table headers.

8.4.4 Cell padding and margin

To complete our table (medium-size screen) view, we’ll add padding and margin to
our cells in the table header, body, and footer. To achieve this effect, we add td, th
{ padding: 10px } to our medium-size screen (min-width: 550px) media query. The
following listing shows the full set of changes we make to achieve the table layout.

input[type="number"] { text-align: right }

@media (min-width: 550px) {

 th { text-align: left }

 th:nth-of-type(n+3),
 td:nth-of-type(n+3) {
 text-align: right;
 }

 td, th { padding: 10px }
}

Now that we have both small and medium-size screens styled (figure 8.38), let’s go a
bit further and handle wide screens.

Listing 8.27 Medium-size screens

Viewport width: 549px 550px

Figure 8.37 Right-aligned text in input field

230 CHAPTER 8 Designing a checkout cart
8.5 Wide screens
As we continue to increase the width of the screen, the summary section becomes
harder to read because of the increasing distance between the definition titles and
descriptions (figure 8.39).

Viewport width: 549px 550px

Figure 8.38 Finished mobile
and tablet layouts

Figure 8.39 Desktop view of summary (viewport width 955 pixels)

2318.5 Wide screens
Because we have more horizontal real estate to play with as the screen gets wider, we’ll
bring the summary section up beside the cart section when the viewport reaches 995
pixels wide or larger, as shown in the wireframe in figure 8.40.

To change our layout conditionally based on the screen being 955 pixels wide or
larger, we’ll create the media query @media (min-width: 995px) { }. In the HTML
shown in the following listing, we have a container <div> around our two sections with
a class of section-container.

 <main>
 <h1>Checkout</h1>

 <div class="section-container">

 <section class="my-cart">
 <h2>My Cart</h2>
 <table> ... </table>
 </section>

 <section class="summary">
 <h2>Summary</h2>
 <dl> ... </dl>
 <div class="actions"> ... </div>
 </section>

 </div>

 </main>

Inside our new media query, we’ll give the container a display property value of flex.
This value allows the two items to come side by side and align themselves on the x-axis.
Then we’ll add a gap of 20px between the two sections.

Listing 8.28 Page HTML

HEADER

Cart

Summary

Header

Cart

Summary

Header

Cart Summary

Summary

Mobile and tablet layout Desktop layout

Figure 8.40 Layout wireframes

Container for the
two cards (My Cart
and Summary)

My Cart
card

Summary
card

End of
container

232 CHAPTER 8 Designing a checkout cart
 Flexbox will autocalculate the amount of space to give each section. We can influ-
ence how the browser assigns dimensions via the properties flex-grow, flex-shrink,
and flex-basis. We’re going to give the summary section a flex-basis value of
250px and the cart section a flex-grow value of 1.

 Applied to the summary card, flex-basis will set the initial size of the section
when the browser starts calculating how much room to assign each section. If the con-
tent to which flex is being applied can accommodate the section’s being 250 pixels
wide, the browser won’t alter the section’s dimensions; otherwise, the browser will
adjust the section as necessary. The flex-grow property tells the browser that if space
is left over after flex has been applied to the content, this element should be made
wider to use the extra space. Figure 8.41 shows our sections with and without these
two properties influencing how the elements are sized.

With flex-grow and flex-basis, we can control the width of the table relative to
the summary card. Therefore, we use the media query in the following listing for
our project.

@media (min-width: 955px) {
 .section-container {
 display: flex;
 gap: 20px;
 }
 section.my-cart { flex-grow: 1; }
 section.summary { flex-basis: 250px }
}

Listing 8.29 Placing the two cards side by side on wide screens

Viewport width: 955px
514px 373px

637px 528px

Before After

Figure 8.41 Influencing the size of elements to which flex has been applied

2338.5 Wide screens
Figure 8.41 shows our layout when the screen is 955 pixels wide. But if we make the
screen even wider, such as for the extra-wide curved displays, we eventually get to a
point where the content once again becomes unreadable (figure 8.42). Because we set
a flex-basis value on the summary card, it stays readable, but because the table is
made to keep growing (via the flex-grow property), it becomes unwieldy.

To prevent this growth, we can limit the width of the <main> element (inside which
our main header and cards are contained). This change ensures that no matter how
wide the user’s display is or how the user chooses to extend the window, the content
remains usable. We can center the body by giving the left and right margins a value of
auto, as shown in the following listing.

main {
 max-width: 1280px;
 margin: 0 auto;
}

If we look at our layout again on an extremely wide screen with these last styles
applied (figure 8.43), we see that we’ve constrained and centered our content.

 With these final edits, our project is complete. From one HTML file, we created
three distinct layouts based on the width of the screen (figure 8.44).

Listing 8.30 Maximum width of the main element

Figure 8.42 Layout on a screen 2,000 pixels wide

234 CHAPTER 8 Designing a checkout cart
Summary
 Numeral styles can be controlled via the font-variant-numeric property.
 Media queries allow us to apply styles conditionally based on screen size.
 Naming CSS classes based on the content they’re styling or the content they

represent can be helpful for creating names that are easy to understand and
maintain.

 HTML attribute values can be used to select elements.
 HTML attributes can be displayed via CSS using pseudo-elements, the content

property, and the attr() function.
 Margins can collapse.

Figure 8.43 Constrained-width layout

549px 550px

995px

Figure 8.44 Final output for three screen sizes

235Summary
 Elements set to display:flex can be controlled via flex-grow, flex-shrink,
and flex-basis.

 :nth-of-type can take numbers, keywords, or custom patterns to target ele-
ments based on their position relative to others of the same type of elements
inside a container.

Creating
a virtual credit card
As we saw in chapter 3, animation in CSS opens lots of opportunities to create inter-
active web experiences. In chapter 3, we used animations to give users the sense
that something was happening in the background as they waited for a task to com-
plete. Now we’ll use animation to respond to users’ interactions and create a flip
effect for a credit card image. On one side, the animation will show the front of a
credit card; on hover or on click for mobile devices, it will flip to show the back of
the credit card.

 This effect is useful to users, as we’re re-creating what their credit cards may
look like, showing which information from the cards they need to enter when buy-
ing something online, such as the expiration date or the security code. Animation

This chapter covers
 Using Flexbox and position in layout

 Working with background images and sizing

 Loading and applying local fonts

 Using transitions and the backface-visibility
property to create a 3D effect

 Working with additional styles such as the text-
shadow and border-radius properties
236

2379.1 Getting started

The se
the

of
is a way to represent something in real life by re-creating it for the web. This project
goes hand in hand with the one in chapter 8, in which we designed a checkout cart.

 We’ll also explore styling images to set the background of the credit card and icons
on the card. We’ll use the CSS Flexbox Layout Module for the layout, as well as styling
properties such as shadows, colors, and border radius. By the end of the chapter, our
layout will look like figure 9.1.

As we go through the project, feel free to try customizing it to match your style. Try a
different background image or typeface, for example. This project is a great opportu-
nity to tweak the styling to suit your style. Let’s get started.

9.1 Getting started
Our HTML is made up of two main parts. Within the overall section representing the
virtual card are a front side and a back side. You can find the starting HTML in the
chapter-09 folder of the GitHub repository (http://mng.bz/Bm5g), on CodePen
(https://codepen.io/michaelgearon/pen/YzZKMKN), and in the following listing.

<section class="card-item">
 <section class="card-item__side front">
 <div class="card-item__wrapper">
 <div class="card-item__top">

 <div class="card-item__type">
 <img src="logo.svg" alt="Card Type" class="card-item__typeImg"

➥ height="37" width="152">
 </div>
 </div>
 <div class="card-item__number">
 <div>1111</div>
 <div>2222</div>
 <div>3333</div>

Listing 9.1 Project HTML

Figure 9.1 Final output of the front and back of the credit card

The container for the
whole credit card

The container for the
front of the card

ction for
top front
 the card

The section for the middle
front of the card, showing
the card number

http://mng.bz/Bm5g
https://codepen.io/michaelgearon/pen/YzZKMKN

238 CHAPTER 9 Creating a virtual credit card
 <div>4444</div>
 </div>
 <div class="card-item__content">
 <div class="card-item__info">
 <div class="card-item__holder">Card Holder</div>
 <div class="card-item__name">John Smith</div>
 </div>
 <div class="card-item__date">
 <div class="card-item__dateTitle">Expires</div>
 <div class="card-item__dateItem">02/22</div>
 </div>
 </div>
 </div>
 </section>
 <section class="card-item__side back">
 <div class="card-item__band"></div>
 <div class="card-item__cvv">
 <div class="card-item__cvvTitle">CVV</div>
 <div class="card-item__cvvBand">999</div>
 <div class="card-item__type">
 <img src="card-type.svg" class="card-item__typeImg"

➥ height="30" width="50">
 </div>
 </div>
 </section>
</section>

We also have some starting CSS to change the background color to a light blue and
increase the margin at the top of the page, as shown in the following listing.

* {
 box-sizing: border-box;
}
body {
 background: rgb(221 238 252);
 margin-top: 80px;
}

We’re using the universal selector that we looked at in chapter 1 to set the box-sizing
value for all HTML elements to border-box. This selector has two values:

 content-box—This setting is the default value for calculating the width and
height of an element. If the content-box height and width are 250px, any bor-
ders or padding will be added to the final rendered width. Given a border of
2px all around, for example, the final rendered width would be 254px.

 border-box—The difference between this value and border-box is that if we set
the element height to 250px, any borders and padding will be included in this
specified value. The content-box will reduce as the padding and border increase.

Figure 9.2 shows an example. Our starting point looks like figure 9.3.

Listing 9.2 Starting CSS

The section
for the

bottom front
of the card,
showing the

expiration
date and

cardholder
name

2399.2 Creating the layout
9.2 Creating the layout
Both the front and the back have a class name of card-item__side. The front also has
a second class assignment of front, and the back has a second class of back. Having
two class names—one that’s identical on both sides and a second, different one—
allows us to assign styles that are common to both sides using the .card-item__side
selector (the class they have in common) and styles that are unique to a side in their
individual rules of .front {} or .back {}.

 Let’s start by centering the card on the screen. The first step is setting the height
and width of the card to a maximum width of 430px and a fixed height of 270px.

2px 2px

254px

250px

2
5

4
p

x

box-sizing: content-box;
width: 250px;
height: 250px;

content-box

2px 2px

250px

246px

2
5

0
p

x

box-sizing: border-box;
width: 250px;
height: 250px;

border-box

Figure 9.2 The effect of box-sizing on element size

Figure 9.3 Starting point

240 CHAPTER 9 Creating a virtual credit card
We’re also setting its position to relative, which will be useful when we place the
back of the card on top of the front to create the flip effect later in this chapter (sec-
tion 9.5).

 The final piece is setting the left and right margins of the card to auto to center
the card horizontally in the browser window. To do this, we use the .card-item selec-
tor to create the rule shown in the following listing.

.card-item {
 max-width: 430px;
 height: 270px;
 margin: auto;
 position: relative;
}

Figure 9.4 shows the updated positioning.

9.2.1 Sizing the card

Now that we’ve set a maximum width and height for the card, we want to ensure that
the front and back faces fill the entire space available to them within their parent
container (the card). Therefore, we’ll assign a height and width of 100% to both
sides of the cards by using the class selector .card-item__side, as shown in the fol-
lowing listing.

.card-item__side {
 height: 100%;
 width: 100%;
}

Listing 9.3 Container styling

Listing 9.4 Container shared between the front and back

Figure 9.4 Centered credit card

2419.2 Creating the layout
With this piece of code added, our card faces (front and back) expand to match the
size of its parent container, as figure 9.5 shows.

9.2.2 Styling the front of the card

For the front of the card, we have three main sections (figure 9.6):

 The top of the card has two images, one showing the chip and the other show-
ing the type of credit card (such as Visa or MasterCard).

 In the middle is the card number, which is spread evenly across the width of
the card.

 At the bottom are the cardholder’s name and the card’s expiration date. These
elements are on opposite ends.

section.card-item |430x270

Figure 9.5 The card faces (front and back) match the parent’s container size.

1111 2222 3333 4444

Card Holder
John Smith

Top of the card

Middle of the card

Bottom of the card Expires
02/22

Figure 9.6 A wireframe of the front of the card

242 CHAPTER 9 Creating a virtual credit card
Before we start styling the individual parts of the front of the card, let’s give the card
face some padding so that the contents aren’t positioned right up against the edge.
We’ll give them some breathing room. The following listing shows the code.

.front {
 padding: 25px 15px;
}

Remember that in the styles originally provided with the project, we set the box-siz-
ing of all elements to border-box. With the added padding, we see that changing the
box-sizing didn’t increase the dimensions of the card face <section>; rather, it
decreased the space available to the content (figure 9.7).

TOP OF THE CARD

We’re using Flexbox for the layout of the card. As we’ve learned, Flexbox is likely to
be the best choice for placing items in a single-axis layout. Also, we need to take
advantage of the extra functionality Flexbox gives us with spacing and alignment—
functionality that float doesn’t give us.

NOTE For details on the CSS Flexbox Layout Module and its associated prop-
erties, check out chapter 6. Chapter 7 covers float.

With these facts in mind, we’ll set the top of the card to have a display property value
of flex and set the alignment so that the tops of the elements align. The default prop-
erty of align-items is stretch, which increases the heights of the flex items so that
their heights match that of the tallest element in the set.

 We don’t want this distortion, though; we want the elements to be aligned verti-
cally to the tops of the items. So we’ll set the align-items property to flex-start.
Then we’ll set the justify-content property to space-between, which distributes the

Listing 9.5 Container styling for the front of the card

Figure 9.7 Card with added padding and box model diagram

2439.2 Creating the layout
elements evenly along the axis, creating a gap between the two elements and placing
them at the extreme edges of the card.

 We’ll give the top some margin and padding to position them further relative to
the edge of the card. Then we’ll increase the width of the chip to 60px. As this image
is an SVG, we can increase its size without affecting its quality. Because we’re manipu-
lating only the width and haven’t altered the default height, the image’s height will
scale proportionally by default. The following listing shows the rules used to style the
top portion of the card.

.card-item__top {
 display: flex;
 align-items: flex-start;
 justify-content: space-between;
 margin-bottom: 40px;
 padding: 0 10px;
}
.card-item__chip {
 width: 60px;
}

Our updated card looks like figure 9.8.

MIDDLE OF THE CARD

In the middle front of the card, we find the card number. Again, we use a display
property value of flex, with justify-content: space-between distributing the
number groups evenly across the card’s width. We also add padding and margin to
add space between the numbers and the elements around them, as shown in the fol-
lowing listing.

Listing 9.6 Layout for the top front of the card

Before After

Figure 9.8 Styled top portion of the card

244 CHAPTER 9 Creating a virtual credit card
.card-item__number {
 display: flex;
 justify-content: space-between;
 padding: 10px 15px;
 margin-bottom: 35px;
}

Figure 9.9 shows our number groups distributed evenly across the width of the card.

BOTTOM OF THE CARD

In the bottom front of the card, we have two elements: cardholder name and card
expiration date. As we did in the top and middle of the card, we want to separate the
bits of information and place them at opposite edges of the card.

 We’ll follow the same pattern of using Flexbox, justify-content, and padding to
place the elements. We don’t need any margin this time, however. The following list-
ing shows the rule we’ll use.

.card-item__content {
 display: flex;
 justify-content: space-between;
 padding: 0 15px;
}

Figure 9.10 shows the updated layout. Next, we’ll position the elements on the back of
the card.

Listing 9.7 Layout for the middle of the front of the card

Listing 9.8 Layout for the bottom front of the card

Before After

Figure 9.9 Evenly distributed numbers

2459.2 Creating the layout
9.2.3 Laying out the back of the card

The layout for the back includes the security code number and a semitransparent
band (the magnetic strip), as shown in figure 9.11. Let’s start with the semitransparent
back strip.

SEMITRANSPARENT STRIP

The strip has a class of card-item__band. We want to make it 50px in height and posi-
tion it 30px from the top of the card. We’ll use the height property to indicate how
tall it should be. Even though the <div> is empty, it automatically takes the full width
available to it because <div>s are block-level elements.

 To move the strip down rather than keep it at the top of the back of the card, we’ll
add some padding to the back of the card itself. We can’t give it margin, because it
would push against the previously existing content (in the top card) rather than the
top edge of the back.

Before After

Figure 9.10 Layout for the front of the card

CVV

999
Security CVV code

Card type

Semitransparent
back strip of the
card

Figure 9.11 A wireframe of the back of the card

246 CHAPTER 9 Creating a virtual credit card
 Although we’ll manage most of the theming later in this chapter, let’s add the
background color now so that we can see what we’re doing (listing 9.9). The back-
ground is dark blue at 80% opacity, which will allow some of the background image
we place on the card to show through.

.back { padding-top: 30px }

.card-item__band {
 height: 50px;
 background: rgb(0 0 19 / 0.8);
}

Now our strip looks like figure 9.12.

SECURITY CODE

The security code has the letters CVV above it and a white band (usually intended for
the user’s signature) that includes the security code. Both the letters and the numbers
are right-justified and nested inside a <div> with a class name of card-item__cvv.

 For the letters CVV, because we don’t need to distribute elements across the width
of the card, we don’t need to use Flexbox. Aligning the text to the right by using the
text-align property is sufficient to accomplish the task. But we’ll use Flexbox on the
white band that contains the security numbers, not because it’s needed to right-justify
the text but because it makes vertically aligning the content inside the band much eas-
ier. Let’s start by giving the card-item__CVV container some basic styles: padding to
space elements and the text-align property so that our text will place itself on the
right of the card, as shown in the following listing.

Listing 9.9 Positioning the strip

Before After

Figure 9.12 Styled strip on back of card

2479.2 Creating the layout
.card-item__cvv {
 text-align: right;
 padding: 15px;
}

With the container taken care of (figure 9.13), we can style the letters and security
code individually.

For the CVV letters, all we need to do is give this text some margin and padding to off-
set it from the right edge and away from the number below. Because we want the num-
ber to be inside a white band of a specific height, we’ll use the height property with a
value of 45px. To align the text vertically in the middle of the box, instead of trying to
calculate the amount of vertical padding necessary based on the text size, we’ll use
Flexbox with an align-items property value of center. We’ll still use padding to sepa-
rate the text from the right edge of the box, however.

 Because Flexbox’s default property value for justify-content is flex-start
(which would reposition our text to the right of the box), we need to assign it a value
of flex-end explicitly so that the elements within (the text) stay to the right. The fol-
lowing listing shows the CSS we use to style CVV and the security code.

.card-item__cvvTitle {
 padding-right: 10px;
 margin-bottom: 5px;
}
.card-item__cvvBand {
 height: 45px;
 margin-bottom: 30px;
 padding-right: 10px;

Listing 9.10 Positioning the text

Listing 9.11 Layout for the back of the card

Before After

Figure 9.13 Aligning the text

248 CHAPTER 9 Creating a virtual credit card
 display: flex;
 align-items: center;
 justify-content: flex-end;
 Background: rgb(255, 255, 255);
}

At this point, our card looks like figure 9.14.

The card is starting to take shape. Now we need to apply the background image to
both the front and back, as well as the colors and typography. These steps will make a
huge difference and get us one step closer to the final look.

9.3 Working with background images
Our credit card needs to have some sort of background image. To add one, we’ll use
the background-image property. The image could be in any format that’s valid for
the web.

9.3.1 Background property shorthand

When setting the background for an element, we can set each related property inde-
pendently (background-image, background-size, and so on) or can use the short-
hand background property. We’re going to use the following properties and values:

 background-image: url("bg.jpeg")
 background-size: cover
 background-color: blue
 background-position: left top

If we use the shorthand background property, our declaration ends up being back-
ground: url("bg.jpeg") left top / cover blue;. The URL to the image is truncated
here to make the code easier to read and discuss, but it’ll be required in its entirety in

Before After

Figure 9.14 Elements positioned on the card

2499.3 Working with background images
our code to retrieve the image, as we’ll do several times in this chapter. Figure 9.15
breaks down the property value.

Notice that we’re using a background-size property value of cover. We’re using this
setting so that the browser will calculate the optimal size the image should be to cover
the entire element while still showing as much of the image as possible without distor-
tion. If the image and our element don’t have the same aspect ratio, the excess image
will be clipped. If we don’t want any part of the image to be clipped, we can use contain
instead. Figure 9.16 shows examples of using cover and contain.

Although we use a background-size of cover, we still include a background color.
When both an image and background color are provided, the image always appears
on top of the color. We may want to do this for multiple reasons. If the image were
smaller than the element or transparent, for example, including a background color
would provide a uniformly colored background behind the image. It would also pro-
vide something for the browser to display while the image is loading or if the image fails
to load. We don’t have to provide this value in our project, but having a color that differs
from the page’s background helps distinguish the card from the page itself, making it a

background: left top / cover blueurl('https://images...')

background-image

background-position

background-size

background-color

Figure 9.15 Shorthand background property

background-position: center;

background-size: cover;

background-color: blue;

background-position: center;

background-size: contain;

background-color: blue;

background-position: center;

background-size: contain;

background-color: blue;

background-repeat: no-repeat;

Figure 9.16 Examples of background-cover

250 CHAPTER 9 Creating a virtual credit card
good fallback position if the image fails to load. Because we want the front and back of
the card to have the background image, we’ll update our .card-item__side rule,
which affects both the front and back of the card, as shown in the following listing.

.card-item__side{
 height: 100%;
 width: 100%;
 background: url("bg.jpeg") left top / cover blue;
}

With the background image applied (figure 9.17), we can focus on styling the text.

9.3.2 Text color

Now that we have the background image in place, we notice that the text is difficult to
read, so we’ll change it from black to white by updating our .card-item selector. List-
ing 9.13 shows our updated .card-item rule.

Listing 9.12 Background image for the front and back of the card

Color contrast and background images
Verifying that color contrast is accessible when text overlaps an image is notoriously
difficult and requires manual testing. In many cases as the window is resized, the
content reflows, and where the text overlaps, the image changes. One technique to
ensure that contrast is always sufficient is to test the text color against both the light-
est and darkest points of the image.

Also worth mentioning, and as clearly demonstrated in this project, the busier the
image is, the more difficult achieving good readability becomes.

Before After

Figure 9.17 Background image added to both the front and back of the card

2519.3 Working with background images
.card-item {
 max-width: 430px;
 height: 270px;
 margin: auto;
 position: relative;
 color: white;
}

By updating this rule, we’ve made all text on the card white (figure 9.18). Our security
code is on a white background, however, so we need to update its rule to change its
text color to something darker.

To change the color of the text, we’ll update the .card-item__cvvBand rule (list-
ing 9.14), which currently gives us the white band and positions the security code
within. We’ll change the text color to a dark blue-gray.

.card-item__cvvBand {
 background: white;
 height: 45px;
 margin-bottom: 30px;
 padding-right: 10px;
 display: flex;
 align-items: center;
 justify-content: flex-end;
 color: rgb(26, 59, 93);
}

With the visibility of our security code restored (figure 9.19), let’s turn our attention
to the two text elements on the front of the card: Card Holder and Expires.

 In terms of information, these two pieces of text are there only to label the ele-
ments with which they’re paired, so they’re less important than the actual name and

Listing 9.13 Setting the container color

Listing 9.14 Back-of-card white background

Before After

Figure 9.18 Text color
changed to white

252 CHAPTER 9 Creating a virtual credit card
date. To diminish their importance visually, we’ll decrease their opacity (listing 9.15)
to render them mildly translucent and decrease their brightness. In section 9.4, when
we handle the typography, we’ll diminish their size for the same reason.

.card-item__holder, .card-item__dateTitle {
 opacity: 0.7;
}

At this point, the final appearance of the card is coming through (figure 9.20). We’ve
styled the layout, format, images, and colors. But we still need to adjust the typography
and create the main effect: the flip on hover. The next step is looking at the fonts.

9.4 Typography
For other projects, we used the free online resource Google Fonts to load the fonts we
needed. We did this by linking to the Google Fonts application programming inter-
face (API), requesting the fonts we needed, and then setting the property value to the
font family we’re using. But in some cases, we may want to load our font files ourselves
rather than depend on an API or a content distribution network (CDN).

WARNING Like images and other forms of media, fonts are subject to licens-
ing. Always make sure that you have the appropriate licenses, regardless of
how a font is being imported (API, CDN, or locally hosted) before using it on
a website or in an application. When in doubt, ask your legal team!

Listing 9.15 Styling the labeling text

Before After

Figure 9.19 Restored security code

Before After

Figure 9.20 Diminished text opacity

2539.4 Typography
Both approaches have benefits and drawbacks. Neither is overwhelmingly better than
the other, so the choice comes down to the needs of the project we’re working on.

 The benefits of using local or self-hosted fonts include

 We don’t have to depend on a third party.
 We have more control in terms of cross-browser support and performance

optimization, which can make the font load time faster than that of a third-
party font.

Drawbacks include

 We have to do our own performance optimization.
 The user won’t already have the font cached.

The advantages of using fonts hosted by a third party include

 The user may already have the font cached on their device.
 Importing is easier.

Drawbacks include

 We need to make an extra call to fetch the font file.
 There are privacy concerns about what the third party is tracking.
 The service can discontinue the font at any time.

To load our own fonts from our local project folder, we need to create @font {} at-
rules to define and import the fonts we want to use. To understand this at-rule, let’s
start by looking at font formats.

9.4.1 @font-face

Fonts can come in a few file types. Some well-known ones are

 TrueType (TTF)—Supported by all modern browsers; not compressed
 Open Type (OTF)—Evolution of TTF; allows for more characters such as small

caps and old-style figures
 Embedded Open Type (EOT)—Developed by Microsoft for the web; supported

only by Internet Explorer (obsolete because Internet Explorer has been end-of-
lifed)

 Web Open Font Format (WOFF)—Created for the web; is compressed; includes
metadata within the font file for copyright information; and is recommended
by the World Wide Web Consortium (https://www.w3.org/TR/WOFF2)

 Web Open Font Format 2 (WOFF2)—Continuation of WOFF; 30% more com-
pressed than WOFF

 Scalable Vector Graphic (SVG)—Created to allow embedding glyph information in
SVGs before web fonts became widespread

When you select a font type to use, we generally recommend using WOFF or WOFF2.

https://www.w3.org/TR/WOFF2

254 CHAPTER 9 Creating a virtual credit card
NOTE Only recently have we been able to rely on WOFF2 files without having
to upload multiple font formats. You can still find a lot of outdated informa-
tion about fonts on the web. A trick that helps is looking at when the informa-
tion was published—the more recently, the better.

When dealing with fonts, we know from previous chapters that we need to import
each weight we want to use. The same is true for dealing with fonts locally: each varia-
tion (weight and style) needs to be included in the project individually unless we use a
variable font.

 Variable fonts are fairly new. Rather than having each style in a separate file, all the
permutations are included inside a single file. So if we wanted regular, bold, and semi-
bold, we could import only one file instead of three, and we’d have access not only to
those three font weights, but also to everything from thin to extra-bold. Italics may not
be in the same file; in some typefaces, the italic glyphs are different from those of the
non-italic versions.

 For our project, we want to load three fonts: Open Sans normal, Open Sans bold,
and Open Sans Italic. These fonts are variations within the same family. Open Sans
has both static and variable font versions. The variable version separates italic and reg-
ular styles into two separate files. For our non-italic needs, because we’re loading mul-
tiple weights, we’ll use the variable version.

 For italic, however, we’re going to use only one weight: regular. It doesn’t make
sense to load the variable font version for that weight. Because the variable font
includes all the information necessary to cross the full gamut of weights, it’s signifi-
cantly larger (314.8 KB) than the file that holds only one weight (17.8 KB). For per-
formance reasons, it makes sense to stick with the static version.

 For each font, we need to create a separate @font-face rule. This at-rule defines
the font and includes where the font is being loaded from, what its weight is, and how
we want it to load.

 First, we declare the @font-face { } rule. Inside the curly braces, we’ll define its
characteristics and behavior, including four descriptors:

 font-family—The name we use to refer to our font when we apply it to an ele-
ment via the font-family property.

 src—Where the font is being loaded from. This descriptor takes a comma-
delimited list of locations to fetch the font from and what format to expect from
each source. The browser will go down the list, starting with the first one, until
it fetches the font successfully.

 font-weight—What weight this particular font file represents. In the case of
variable fonts, we’ll include a range.

 font-display—Dictates how the font is loaded. We’ll use the descriptor value
swap. Fonts are load-blocking, in that the browser will wait until they’re loaded
before moving on to load other resources. swap limits the amount of time the
font is allowed to be load-blocking. If the font isn’t done loading when that

2559.4 Typography

The
we

to r
th

l

period is over, the browser will move on to load other resources and finish
applying the font whenever the font is done loading. This setting allows content
to be shown and the user to interact with the interface even if the font is not
available yet.

Listing 9.16 shows both of our rules, which must be added at the top of the stylesheet.
Also, with a few exceptions, a rule can’t be declared inside an existing rule. .myClass
{ @font-face { … } } wouldn’t work, for example. One exception is the @supports at-
rule, which we expand on in the next section.

@font-face {
 font-family: "Open Sans";
 src: url("./fonts/open-sans-variable.woff2")
 format("woff2-variations");
 font-style: normal;
 font-weight: 100 800;
 font-display: swap;
}

@font-face {
 font-family: "Open Sans";
 src: local("Open Sans Italic"),
 url("./fonts/open-sans-regular.woff2") format("woff2"),
 url("./fonts/open-sans-regular.woff") format("woff");
 font-style: italic;
 font-weight: normal;
 font-display: swap;
}

After this code is applied, there’s no change in the user interface; the font-family
being used is still the browser’s default because we haven’t applied the fonts to any of
our elements yet. We also want to create a fallback in case the browser doesn’t support
variable fonts. Before we apply the font to our elements, let’s look at browser support.

9.4.2 Creating fallbacks using @supports

Because variable fonts are fairly new, and because not everyone is good at running
updates on their devices, we’ll include a fallback in case variable fonts aren’t sup-
ported by a user’s browser. For this purpose, we’ll use the @supports at-rule. This rule
allows us to check whether the browser supports a particular property and value, and
allows us to write CSS that gets applied only if the provided condition is met.

 Our feature query will be @supports not (font-variation-settings: normal) { … }.
Because our query has the keyword not before the condition, the styles it contains will
be applied when the condition is not being met. In other words, if the browser doesn’t
support variable font behaviors, we want to load the static version.

 Inside the @supports at-rule, which we place at the top of our file, we include the
@font-face rules for both weights of the normal style version we want to include

Listing 9.16 Declaring our fonts

 name
’ll use

efer to
e font

If the browser can load the variable
font, where to get the font from

The font will support
any font size from
100 to 800.

Checks the device to see
whether it has the font
loaded locally

Tries to
oad woff2

format
If woff2 isn’t
supported,
loads woffDeclaring that the font

weight for this file is
normal (same as 400)

256 CHAPTER 9 Creating a virtual credit card

R
n

styl

r

(listing 9.17). We also create an @supports (font-variation-settings: normal) { }
rule, this time without the not. In this second at-rule for browsers that do support vari-
able fonts, we move the two rules we created in section 9.4.1. This way, we load the
variable fonts only if they’re supported by the browser and prevent the file from being
loaded if the browser doesn’t support variable fonts.

@supports (font-variation-settings: normal) {
 @font-face {
 font-family: "Open Sans";
 src: url("./fonts/open-sans-variable.woff2")

➥ format("woff2-variations");
 font-weight: 100 800;
 font-style: normal;
 font-display: swap;
 }
}

@supports not (font-variation-settings: normal) {
 @font-face {
 font-family: "Open Sans";
 src: local("Open Sans Regular"),
 local("OpenSans-Regular"),
 url("./fonts/open-sans-regular.woff2") format("woff2"),
 url("./fonts/open-sans-regular.woff") format("woff");
 font-weight: normal;
 font-display: swap;
 }

 @font-face {
 font-family: "Open Sans";
 src: local("Open SansBold"),
 local("OpenSans-Bold"),
 url("./fonts/open-sans-regular.woff2") format("woff2"),
 url("./fonts/open-sans-regular.woff") format("woff");
 font-weight: bold;
 font-display: swap;
 }
}

With our fallback added, let’s update our body rule to apply Open Sans to our project
(listing 9.18). Although we added fallbacks for loading the font, we’ll still include
sans-serif in the font-family property value in the body rule in case our font files
fail to load.

body {
 background: rgb(221, 238, 252);

Listing 9.17 Fallback for browsers that don’t support variable fonts

Listing 9.18 Applying the fonts to our project

Applies styles when variable
fonts are supported

Our previously
created rule for
the variable font,
moved into the
at-rule

Applies styles when
variable fonts aren’t
supported

ule for
ormal
e, font
weight
egular
(400)

Rule for normal style,
font weight bold (700)

2579.4 Typography
 margin-top: 80px;
 font-family: "Open Sans", sans-serif;
}

When the font is applied, we see that our text has been updated to use Open Sans
rather than the browser default (figure 9.21). Now we can edit our individual ele-
ments for font weight and style.

9.4.3 Font sizing and typography improvements

Starting with the front of the card, we’ll increase the font size of the numbers and
make them bold. We’ll add to our existing rule, as shown in the following listing.

.card-item__number {
 display: flex;
 justify-content: space-between;
 padding: 10px 15px;
 margin-bottom: 35px;
 font-size: 27px;
 font-weight: 700;
}

Figure 9.22 shows our styled numbers.
 Moving on to the text below the numbers, we want to decrease the size of Card

Holder and Expires. We’ll set their font-size to 15px and increase the size and font-
weight of the name and date, as shown in the following listing.

Listing 9.19 Boldfacing and increasing the size of the numbers

Before After

Figure 9.21 Open Sans applied to the project

258 CHAPTER 9 Creating a virtual credit card
.card-item__holder, .card-item__dateTitle {
 opacity: 0.7;
 font-size: 15px;
}

.card-item__name, .card-item__dateItem {
 font-size: 18px;
 font-weight: 600;
}

With the text elements on the front of the card taken care of (figure 9.23), let’s turn
our attention to the back.

On the back, we need to update the security code to be in italics. We’ll update our
existing rule with font-style: italic, as shown in the following listing.

.card-item__cvvBand {
 background: white;
 height: 45px;
 margin-bottom: 30px;

Listing 9.20 Cardholder information and expiration-date typography

Listing 9.21 Italicizing the card security number

Before After

Figure 9.22 Styled numbers

Card Holder
and Expires

Name and
expiration
date

Before After

Figure 9.23 Typography of the front of the card

2599.5 Creating the flipping-over effect
 padding-right: 10px;
 display: flex;
 align-items: center;
 justify-content: flex-end;
 color: #1a3b5d;
 font-style: italic;
}

Now that our card is styled (figure 9.24), we’re ready to apply the flip effect.

9.5 Creating the flipping-over effect
Next, we’ll create the flipping-over effect for devices that support the hover interac-
tion. We’ll start by adjusting the position to overlay the back of the card on top of the
front. Then we’ll use the backface-visibility and transform properties to place
the card. To animate the change, we’ll use a transition.

9.5.1 Position

To achieve the flip effect, we stack the card faces on top of one another via the back-
face-visibility property. Then we’ll toggle which side is shown. When we use the
backface-visibility property and expose the back side, we perform a rotation on
the horizontal axis; therefore, we need to invert the back so that its contents are mir-
rored. Imagine taking a piece of tracing paper and drawing an image on the back.
When we look at the front, the image that appears through it from the back is mir-
rored. That effect is what we’re building here. The CSS we use to stack front and back
and then flip the back is in listing 9.22. We place our code inside a media query that
checks whether the browser has hover functionality. We want to have the flip effect
only on devices that support hover. For devices that don’t (such as mobile phones),
we’ll show the front and the back at the same time.

@media (hover: hover) {
 .back {
 position: absolute;

Listing 9.22 Positioning the back over the front

Before After

Figure 9.24 Completed typography styles

260 CHAPTER 9 Creating a virtual credit card
 top: 0;
 left: 0;
 transform: rotateY(-180deg);
 }
}

Earlier in this chapter, we set the position property value to relative in our .card-
item rule. Using relative positioning on a parent or ancestor element goes hand in
hand with the fact that we’re setting the position property value of the back of our
card to absolute. The top and left positions of 0 will be the top-left section with the
card-item class (the container that holds the two card faces).

 Whenever we use position: absolute, we take the element out of the regular flow
of the page and can set a specific position on the page on which to place the element.
The position is calculated based on the closest ancestor with a position value of rel-
ative. If none is found, the top left will be the top-left corner of the page.

 What gets a bit confusing here is that if no values are set to position the element
(top, left, right, bottom, or inset), the element is placed wherever it normally
would lie but takes up no space in the flow. The height and width of the element are
also affected. If a value is provided in the CSS, the element maintains that value; oth-
erwise, it takes up only as much room as it needs. Even if it’s a block-level element, it
no longer takes up the full width available to it. Furthermore, if the width is set using a
relative unit such as percentage, it will be calculated against the element to which it’s
relative. Figure 9.25 shows some scenarios for using position: absolute.

With our CSS applied (figure 9.26) and the back of the card flipped and on top of the
front, we can apply the backface-visibility property.

Flips the
card

Aenean non felis risus.

Lorem Ipsum Am Met Lorem Ipsum Am Met

Lorem Ipsum Am Met Lorem Ipsum Am Met

position: static

position: absolute

position: static

position: relative

Aenean non felis risus.

Aenean non felis risus.

Aenean non felis risus.

position: absolute;
top: 0;
left: 0;
width: 100%;

position: absolute;
top: 0;
left: 0;
width: 100%;

position: static
(default)

Figure 9.25 Absolute positioning

2619.5 Creating the flipping-over effect
9.5.2 Transitions and backface-visibility

Up to now, we’ve looked at objects in 2D space—in other words, a flat perspective. We’ve
looked at width and height but not depth. Now we’ll consider that third dimension.

 With the back flipped, we need it to be hidden unless the user is hovering over the
card. We have two sides, the second of which has a transform: rotateY(-180deg)
declaration (the back). In a 3D space, therefore, that side is facing away from us. If we
set the backface-visibility property value to be hidden on both sides, whichever
side is facing away from us is hidden.

 Our back, which currently faces away from us, is hidden. If we rotate the entire
card, the back faces us, and the front is hidden. Figure 9.27 diagrams how our CSS
and HTML interact to create the flip effect.

 In our CSS, we add the following rules and properties to our media query (listing
9.23). They instruct the card to hide the side if it’s facing away from us and to rotate
the entire card 180-degrees on the y-axis on hover. Notice a property that we haven’t
talked about yet: transform-style, to which we’ve given a value of preserve-3d.
Without this property, the flip won’t work. It tells the browser that we’re operating in
3D space rather than 2D space, establishing the concept of a front and a back.

@media (hover: hover) {
 ...
 .card-item {
 transform-style: preserve-3d;
 }
 .card-item__side {
 backface-visibility: hidden;
 }
 .card-item:hover {
 transform: rotateY(180deg);
 }
}

Listing 9.23 Hiding the back and exposing it on hover

Figure 9.26 Back of the card positioned on top of front and flipped

Instructs the browser
to operate as though
we were in 3D space

Hides the side facing
away from us

On hover, flips the
entire card around to
expose the back side

262 CHAPTER 9 Creating a virtual credit card
With our hover functionality exposing the back of our card (figure 9.28), we need to
add the animation to make it look more like a card flip. Notice that the back is no lon-
ger mirrored.

<section class="card-item">

<section class="card-item__side front">
…

</section>

<section class="card-item__side back">
…

</section>

</section>

<section class="card-item__side front"><section class="card-item__side front">
…

</section></section>

.card-item {
position: relative;
transform-style: preserve-3d;

}

.-back {
position: absolute;
top: 0;
left: 0;
transform: rotateY(-180deg);

}

<section class="card-item">

<section class="card-item__side front">
…

</section>

<section class="card-item__side back">
…

</section>

</section>

<section class="card-item__side front"><section class="card-item__side front">
…

</section></section>

<section class="card-item__side back"><section class="card-item__side back">
…

</section></section>

.card-item {
Transform: rotateY(180deg);

}

Front

Back

Front

Back

180deg

.card-item__side {
backface-visibility: hidden;

}

Figure 9.27 The backface-visibility property applied to our use case

Default Hover

Figure 9.28 Card default state and on hover

2639.5 Creating the flipping-over effect
Currently, when we hover over the card, the back is shown instantaneously. We want to
make it look as though the card is actually being flipped.

9.5.3 The transition property

To animate the card flip, we’ll use a transition. You may recall from chapter 5 that
transitions are used to animate the change of CSS. In this case, we’ll animate the
change in the rotation of the card by adding a transition declaration to the card-item
(container that holds the two faces). We’ll also add a condition to our media query.

 Because this animation is motion-heavy, we want to make sure to respect our users’
settings. Therefore, we’ll add a prefers-reduced-motion: no-preference condition
to our media query, as shown in the following listing.

@media (hover: hover) and (prefers-reduced-motion: no-preference) {
 ...
 .card-item {
 transform-style: preserve-3d;
 transition: transform 350ms cubic-bezier(0.71, 0.03, 0.56, 0.85);
 }
 ...
}

Our animation, which takes 350 milliseconds, affects the transform property (the
rotation) and is present only for users who don’t have prefers-reduced-motion set to
reduce on their devices. Figure 9.29 shows the progression of the animation, and fig-
ure 9.30 shows the user interface when the user has prefers-reduced-motion enabled.

For our timing function, we used a cubic-bezier() function. Next, let’s take a closer
look at what this function represents.

9.5.4 The cubic-bezier() function

The Bézier curve is named after French engineer Pierre Bézier, who used these curves
on the bodywork of Renault cars (http://mng.bz/d1NX). A Bézier curve is composed
of four points: P0, P1, P2, and P3. P0 and P3 represent the starting and ending points,

Listing 9.24 Transitions and transform

Figure 9.29 Animation over time

http://mng.bz/d1NX

264 CHAPTER 9 Creating a virtual credit card
and P1 and P2 are the handles on the points. Point and handle values are set with x
and y coordinates (figure 9.31).

In CSS, we need to worry about only the handles because the P0 and P3 values are set
for us to (0, 0) and (1, 1), respectively. By manipulating the curve, we change the
acceleration of the animation. In CSS, our function takes four parameters that repre-
sent the x and y values of P1 and P2: cubic-bezier(x1, y1, x2, y2), where the x val-
ues must remain between 0 and 1, inclusive.

 The premade timing functions we used in previous chapters for both our transi-
tions and our animations have cubic-bezier() values by which they can be repre-
sented (figure 9.32).1

1 Architecting CSS: The Programmer’s Guide to Effective Style Sheets, by Martine Dowden and Michael Dowden (2020,
Apress).

Figure 9.30 prefers-reduced-motion: reduce emulation in Chrome DevTools

00
0

1.0

1.0

P1

P2

P0

P3

Figure 9.31 Points and handles
on the Bézier curve

2659.5 Creating the flipping-over effect
Writing our own cubic-bezier() functions to animate our designs can be tedious.
Luckily, online tools such as https://cubic-bezier.com allow us to see the curve and
determine the values (figure 9.33).

We can also see the cubic-bezier() in some browser developer tools, such as those of
Mozilla Firefox (figure 9.34).

1.0

1.0
0

0

1.0

1.0
0

0 P1

1.0

1.0
0

0

P2

P1

1.0

1.0
0

0

P2

1.0

1.0
0

0

P2

P1

linear
cubic-bezier(0.0, 0.0, 1.0, 1.0)

ease
cubic-bezier(0.25, 0.1, 0.25, 1.0)

ease-in
cubic-bezier(0.42, 0.0, 1.0, 1.0)

ease-in-out
cubic-bezier(0.42, 0.0, 0.58, 1.0)

ease-out
cubic-bezier(0.0, 0.0, 0.58, 1.0)

Figure 9.32 Predefined curves

Figure 9.33 An example cubic-bezier() function from cubic-bezier.com

https://cubic-bezier.com

266 CHAPTER 9 Creating a virtual credit card
With our animation completed, let’s add some finishing touches to our project.

9.6 Border radius
Most credit cards have rounded corners, so we’re going to round ours as well. We’ll
also round the corners of the white CVV box on the back of the card.

 Adding rounded corners to a user interface can be a balancing act. We’ll add
rounded corners to the card to make it look more natural and realistic. Sharp cor-
ners can come across as aggressive, but overuse of rounded corners can make an
interface look too soft and playful, which may not work in all cases. The “correct”
amount of curve is design-specific. To make our card look more realistic, we’ll add
the following CSS.

.card-item__side {
 height: 100%;
 width: 100%;
 background: url("bg.jpeg") left top / cover blue;
 border-radius: 15px;
 }
.card-item__cvvBand {
 background: white;
 height: 45px;
 margin-bottom: 30px;
 padding-right: 10px;
 display: flex;
 align-items: center;
 justify-content: flex-end;
 color: #1a3b5d;
 font-style: italic;
 border-radius: 4px;
}

Listing 9.25 Adding border-radius

Figure 9.34 Firefox DevTools curve details

The card

White
CVV band

2679.7 Box and text shadows
With the rounded corners, our card looks like figure 9.35.

9.7 Box and text shadows
In chapter 4, we looked briefly at the drop-shadow value, which can be applied to the
filter property for image filters. Another way to apply a shadow to an element is via
the box-shadow property, which applies a shadow to the element box.

9.7.1 The drop-shadow function versus the box-shadow property

We may be wondering about the difference between the drop-shadow filter property
and the box-shadow property. Both have the same base set of values, but the box-
shadow property has an additional two nonmandatory values: spread-radius and
inset.

 The benefit of using a filter with the drop-shadow property on images is that when
we’re using a filter, the shadow is applied to the alpha mask rather than the bounding
box. So if we have a PNG or SVG image, and that image has transparent areas, the
shadow is applied around that transparency. If we add a box-shadow to the same
image rather than the filter, the shadow is applied only to the outer image container
(figure 9.36).

To reinforce the 3D effect on the card and make the card appear to be floating, we’re
going to give our card a shadow. Because we’re concerned only about giving the

Default Hover

Figure 9.35 Rounded corners on the card and CVV band

Figure 9.36 Comparing
box-shadow (left) and
drop-shadow (right)

268 CHAPTER 9 Creating a virtual credit card
bounding area of the card a shadow, we can use the box-shadow property, which will
give the project a sense of depth and further emphasize that something is on the back.
The shadow will be large, soft, and fairly transparent. To achieve that effect, we’ll add
box-shadow: 0 20px 60px 0 rgb(14 42 90 / 0.55); to our .card-item__side rule. Our
updated rule looks like the following listing.

.card-item__side {
 height: 100%;
 width: 100%;
 background: url("bg.jpeg") left top / cover blue;
 border-radius: 15px;
 box-shadow: 0 20px 60px 0 rgb(14 42 90 / 0.55);
}

Figure 9.37 shows our updated card.

9.7.2 Text shadows

We can also add shadows to text. If we applied a box-shadow to text, the shadow would
be applied to the box containing the text, not to the individual letters. To add a
shadow to the letters, we use the text-shadow property, which has the same syntax as
the box-shadow property. We’ll use this property on the front of the card to lift the
text from the background. We need to add this property to our .front rule, as shown
in the following listing.

.front{
 padding: 25px 15px;
 text-shadow: 7px 6px 10px rgb(14 42 90 / 0.8);
}

Figure 9.38 shows the card before and after.
 Although the effect is subtle, the added shadow makes the numbers pop out a bit.

It’s worth noting that this effect is best used with finesse and sparingly, as it can easily
impede readability rather than help it.

Listing 9.26 Using box-shadow on our card

Listing 9.27 Text shadow for all the text elements on the front of the card

Figure 9.37 Added shadow
to make the card appear to be
floating

2699.8 Wrapping up
9.8 Wrapping up
The last detail we need to handle deals with users who aren’t interacting with the flip
effect but are viewing both sides of the card at the same time (devices that don’t have
hover capabilities, such as phones and tablets, and users with a prefers-reduced-
motion setting). Currently when both sides are displayed, there’s no space between
the card faces. So let’s add some margin to the bottom of the faces to separate them,
as shown in the following listing.

.card-item__side {
 height: 100%;
 width: 100%;
 background: url("bg.jpeg") left top / cover blue;
 border-radius: 15px;
 box-shadow: 0 20px 60px 0 rgb(14 42 90 / 0.55);
 margin-bottom: 2rem;
 }

On a Moto G4 device, our card looks like figure 9.39.
 With this last addition, our project is complete.

Using a combination of media queries, shadows, posi-
tioning, and transitions, we created a realistic-looking
card (figure 9.40).

Figure 9.39 Our project
on a mobile device

Listing 9.28 Separating the card faces

Before After

Figure 9.38 Before and after adding the text-shadow

URL truncated
for legibility

270 CHAPTER 9 Creating a virtual credit card
Summary
 We can alter the box model’s behavior through the box-sizing property.
 The background property value cover allows us to show as much of a back-

ground image as possible while still covering the full element.
 Although fonts come in a range of formats, for the web we need only the WOFF

and WOFF2 formats.
 Fonts can be static or variable.
 We use the @font-face at-rule to define where and how fonts are imported and

how they should behave.
 The @font-face at-rule needs to be at the top of the stylesheet.
 The @supports at-rule allows us to create styles specific to a browser’s functionality.
 The backface-visibility property used in conjunction with transform-style:

preserve-3d creates a flip effect.
 The cubic-bezier()function defines how our elements will animate over time.
 The box-shadow property allows us to add a shadow to an element’s box.
 text-shadow rather than box-shadow is the property we use to add a shadow to

individual letters of text.

Figure 9.40 Finished project

Styling forms
Forms are everywhere in our applications. Whether they’re contact forms or login
screens, whether or not they’re core to an application’s functionality, they’re truly
omnipresent. The design of a form, however, can easily make or break the user’s
experience. In this chapter, we’ll style a form and look at some of the accessibility
considerations we need to make sure to address. We’ll look at some of the chal-
lenges that come with styling some radio and check-box inputs and drop-down
menus, and we’ll cover some options for styling error messaging.

 A form in this context is a section of code in an HTML <form> element contain-
ing controls (form fields) that the user interacts with to submit data to a website or

This chapter covers
 Styling input fields

 Styling radio buttons and check boxes

 Styling drop-down menus

 Considering accessibility

 Comparing :focus and :focus-visible

 Using the :where and :is pseudo-classes

 Working with the accent-color property
271

272 CHAPTER 10 Styling forms
application. Because contact forms are so prevalent across applications and websites,
we’ll use a contact form as the basis for our project.

10.1 Setting up
Our form contains two input fields, a drop-down menu, radio buttons, a check box,
and a text area. We also have a header at the top and a Send button at the end of the
form. Figure 10.1 shows our starting point—the raw HTML without any styles applied—
and what we aim to accomplish.

Our starting HTML is fairly simple; it contains our form, inside which our labels,
fields, error messages, and buttons are placed. The starting and final code are on
GitHub (http://mng.bz/rWYZ), on CodePen (https://codepen.io/michaelgearon/
pen/poeoNbj), and in the following listing.

<body>
 <main>
 <section class="image"></section>
 <section class="contact-form">
 <h1>Contact</h1>
 <form>
 <p>Your opinion is important to us…</p>
 <label for="name">

 Your Name
 </label>
 <input type="text"
 id="name"
 name="name"
 maxlength="250"
 required

Listing 10.1 Starting HTML

Start Finished

Figure 10.1 Starting point and finished product

Left
image

Name
input with
associated
label and
error
message

http://mng.bz/rWYZ
https://codepen.io/michaelgearon/pen/poeoNbj
https://codepen.io/michaelgearon/pen/poeoNbj
https://codepen.io/michaelgearon/pen/poeoNbj

27310.1 Setting up

g
ion
tons
 aria-describedby="nameError"
 placeholder="e.g. Alex Smith"
 >
 <div class="error" id="nameError">
 Please let us know who you are
 </div>

 <label for="email">

 Your Email Address
 </label>
 <input type="email"
 id="email"
 name="email"
 maxlength="250"
 required
 aria-describedby="emailError"
 placeholder="e.g. asmith@email.com"
 >
 <div class="error" id="emailError">
 Please provide a...
 </div>

 <label for="reasonForContact">

 Reason For Contact
 </label>
 <select id="reasonForContact"
 required
 aria-describedby="reasonError"
 >
 <option value="">-- Pick One --</option>
 <option value="sales"> Sales inquiry</option>
 ...
 </select>
 <div class="error" id="reasonError">
 Please provide the...
 </div>

 <fieldset>
 <legend>
 <img src="./img/subscriber.svg" alt=""
 width="24" height="24">
 Are you currently a subscriber?
 </legend>
 <label>
<input type="radio" value="1" name="subscriber"
 checked required>
Yes
 </label>
 <label>
 <input type="radio" value="0" name="subscriber" required>
 No
 </label>
 </fieldset>

Name
input with
associated
label and
error
message

Email
input with
associated
label and

error
message

Reason for
Contact drop-

down menu and
associated label

Fieldset
containin
subscript
radio but

274 CHAPTER 10 Styling forms
 <label for="message">

 Message
 </label>
 <textarea id="message"
 name="message"
 rows="5"
 required
 maxlength="500"
 aria-describedby="messageError"
 placeholder="How can we help?"
 ></textarea>
 <div class="error" id="messageError">
 Please let us know how we can help
 </div>

 <label>
 <input type="checkbox" name="subscribe">
 Subscribe to our newsletter
 </label>

 <div class="actions">
 <button type="submit" onclick="send(event)">Send</button>
 </div>
 </form>
 </section>

 </main>

 <script src="./script.js"></script>
</body>

You may have noticed that a JavaScript file is included. We’ll use this file to show and
hide errors later in the chapter (section 10.8).

 So that we can focus specifically on styling form elements, the CSS to lay out the
page is provided in the starting project. We use grid to place the image and form side
by side. We also use a gradient to create the dots in the background. Our theme colors
have been set up with CSS custom properties and some basic typography settings,
including using a sans-serif font and changing the default text size for our project to
12pt. The following listing shows our starting CSS.

html {
 --color: #333333;
 --label-color: #6d6d6d;
 --placeholder-color: #ababab;
 --font-family: sans-serif;
 --background: #fafafa;
 --background-card: #ffffff;
 --primary: #e48b17;
 --accent: #086788;

Listing 10.2 Starting CSS

Message
textarea

Subscription
check mark

JavaScript that
handles errors

Sets up our
theme colors
using custom
properties

27510.2 Resetting fieldset styles
 --accent-contrast: #ffffff;
 --error: #dd1c1aff;
 --border: #ddd;
 --hover: #bee0eb;

 color: var(--color);
 font-family: var(--font-family);
 font-size: 12pt;
 margin: 0;
 padding: 0;
}

body {
 background-color: var(--background);
 background-image: radial-gradient(var(--accent) .75px,
 transparent .75px);
 background-size: 15px 15px;
 margin: 0;
 padding: 2rem;
}

main {
 display: grid;
 grid-template-columns: 1fr 1fr;
 margin: 1rem auto;
 max-width: 1200px;
 box-shadow: -2px 2px 15px 0 var(--border);
}

.image {
 background-image: url("/img/illustration.jpeg");
 background-size: cover;
 background-position: bottom center;
 object-fit: contain;
}

.contact-form {
 background-color: var(--background-card);
 padding: 2rem;
}

h1 { color: var(--accent); }

10.2 Resetting fieldset styles
Fieldsets are purpose-built to group controls and labels. Radio groups are a perfect
use case for fieldsets, as they allow us to identify the controls effectively and explicitly
as belonging together. They also give us a ready-built way of labeling the group of con-
trols via the <legend>. Stylistically, however, we can agree that they’re rather unsightly.

 Let’s reset the styles on the group to make it disappear visually. Programmatically,
we want to keep the group, as it’s helpful for users of assistive technology, but we’re
going to make it blend in a little more. To make the <fieldset> styles disappear, we

Sets up our theme
colors using custom
properties

Adds the
polka-dotted
background

Grid to place the
two sections side
by side

Prevents our design from
getting too wide and centers
it horizontally on the page

Adds the
image to the
left side

276 CHAPTER 10 Styling forms
need to reset three properties: border, margin, and padding. The following listing
shows our rule.

fieldset {
 border: 0;
 padding: 0;
 margin: 0;
}

With browser default styles on the <fieldset> removed (figure 10.2), let’s turn our
attention to our input fields.

10.3 Styling input fields
We have four types of input fields in our form, broken down as follows:

 Your Name—text

 Your Email Address—email

 Yes/No—radio

 Subscribe to our newsletter—checkbox

HTML has many more types of fields, including date, time, number, and color, each
with its own semantic meaning and styling considerations. We chose the preceding
four types because they’re commonly used on the web today.

 The unstyled appearance of these fields dictates what we’ll do to style them. We’ll
treat the radio buttons and check box differently from the text input, for example,
but we can reuse code across multiple types. We’ll group them by how the unstyled
controls look, so we’ll handle the text and email together and then handle the radio
buttons and check box together. Let’s start with the text and email inputs.

10.3.1 Styling text and email inputs

The first thing we want to figure out is how to select only the text and email input
fields—rather, all input fields that aren’t a radio button or check box. One solution
would be to add a class to each input we want to handle. This approach is hard to

Listing 10.3 Resetting fieldset styles

Before After

Figure 10.2 Reset fieldset

27710.3 Styling input fields
maintain and will get quite noisy, however, especially in a form-heavy application or
complex form. Therefore, we’ll use the pseudo-class :not() in conjunction with the
type selector selector[type="value"].

 The :not() pseudo-class allows us to select elements that don’t meet a particular
criterion. In our case, we want to select all input fields that don’t have a type of
radio or checkbox. Our selector, therefore, will be input:not([type="radio"],
[type="checkbox"]). Now we can start styling the input fields, which currently look
like figure 10.3.

We see in figure 10.3 that the font is smaller than the 12pt size we set on the body.
Small font sizes are difficult to read on mobile devices; they’re also hard to read for
many users, especially young children and the elderly. If we want our form to be easily
usable across a wide population and across devices, we’ll need to increase it, so we’ll
set it to 1rem to match the rest of our application. Inputs don’t inherit font styles by
default, so we’ll also explicitly set color and font-family to inherit.

NOTE inherit is a handy property value. It allows an element to inherit a prop-
erty value from the parent forcibly when inheritance doesn’t happen by default.

Next, we’re going to give the inputs some padding and custom borders, as well as
curve their corners. In this case, we’ll make these changes for stylistic purposes. Most
applications have a general style (look and feel). The styles we choose to apply to our
fields should be in the same vein as the rest of our application’s general theme to help
the form blend with the page and look as though it belongs. From a marketing per-
spective, sticking with our theme also helps reinforce brand recognition.

 To create the bottom border gradient effect, we’ll use a linear gradient that goes
from our primary color to our accent color. Because a gradient is an image we can’t
assign to the border-bottom property, we need to use border-image, which allows us
to style our borders with images. We’ll still provide a color in the border-bottom prop-
erty as a fallback. Our code looks like the following listing.

input:not([type="radio"], [type="checkbox"]) {

 font-size: 1rem;
 font-family: inherit;

Listing 10.4 Styling input fields that aren’t of type radio or checkbox

Input of type with atext

value of "Jane Doe"

Input of type showingemail

the placeholder text

Figure 10.3 Input type text and type email

278 CHAPTER 10 Styling forms
 color: inherit;
 border: none;
 border-bottom: solid 1px var(--primary);
 border-image: linear-gradient(to right, var(--primary), var(--accent)) 1;
 padding: 0 0 .25rem;
 width: 100%;
}

We have some basic styles set for our text and email inputs, as shown in figure 10.4.
We’ve started to develop a theme for our form controls.

10.3.2 Making selects and textareas match the input styles

To make sure that the look and feel are consistent across our controls, let’s apply the
same styles we applied to the input field to the <textarea> and <select> elements.
We’re not going to create new rules or copy and paste the code. To keep our styles
consistent and maintainable, we’ll add select and textarea as selectors to our exist-
ing rules, as shown in the following listing.

Pixels and rems
Notice that our border uses pixels whereas the rest of our declarations use rems. In
some instances, we want some elements of our design to be relative to the text size.
In other words, if the text size increased or decreased, we’d want those elements to
scale accordingly. Our padding and margin in this case use rems because if the text
size increases, we don’t want the design to start looking cramped; on the flip side, if
the text size decreases, we want to shrink that space accordingly. For these cases,
we want to use a relative unit such as rems.

We want to keep the border at 1 pixel, however, regardless of the text size. Therefore,
we use a fixed unit.

Removes all borders
from the field

Adds the border back in, but only
on the bottom, with our primary
color as a fallback color

Adds the gradient
for our border

Before

After

Figure 10.4 Text and email input styles

27910.3 Styling input fields
input:not([type="radio"], [type="checkbox"]),
textarea,
select {
 font-size: 1rem;
 font-family: inherit;
 color: inherit;
 border: none;
 border-bottom: solid 1px var(--primary);
 border-image: linear-gradient(to right, var(--primary), var(--accent)) 1;
 padding: 0 0 .25rem;
 width: 100%;
}

When the rule is applied, we notice that both fields still need a little bit of extra styl-
ing. Let’s focus on the <textarea> first. Figure 10.5 shows our updated <textarea>.

By default on the web, users can resize the width and height of <textarea>s by click-
ing and dragging the bottom-right corner. In our layout, increasing or decreasing the
height doesn’t cause any layout issues. Changing the width, however, hides our image
and eventually makes our form uncentered, as we can observe in figure 10.6.

 The <textarea> extends outside the container in an unsightly fashion. When we
resize vertically, the container resizes appropriately, but this isn’t the case horizontally.
By changing the value of the <textarea>’s resize property from its default setting
(both) to vertical, we limit users’ ability to resize the element. Users will continue to
be able to change its height but not the width, as shown in the following listing.

textarea { resize: vertical }

Listing 10.5 Adding textarea and select to existing rule

Listing 10.6 Updated styles for textarea

Adds textarea
and select to
our rule

Adds the border back
in, but only on the
bottom, with our
primary color as a
fallback color

Adds the gradient
for our border

Before After

Figure 10.5 Updated <textarea> styles

280 CHAPTER 10 Styling forms
Visually, the text box looks the same and still has the resize control in the bottom-right
corner (figure 10.7). When the user interacts with the resize control, however, they’ll
be constrained to resizing vertically.

We still need to address the <select>, but this process will be a bit more complicated
than editing the <textarea>. So let’s finish styling the input fields first and then circle
back to finish styling the <select> control.

10.3.3 Styling radio inputs and check boxes

Some form controls are notoriously difficult to style because the number of styles that
can be applied to them are incredibly limited. Radio buttons and check boxes fall
squarely into that category. Until recently, no properties whatsoever affected the
radio-button circle or the check-box square. Our only option was to replace the native
control styles with our own.

Figure 10.6 <textarea> resize issue

Figure 10.7 <textarea> vertical resize only

28110.3 Styling input fields
Now we have the ability to change the native control’s color. The accent-color prop-
erty allows us to replace the user agent’s chosen color with the color we specify. Apply-
ing accent-color: var(--accent); to our check box and radio buttons (listing 10.7)
yields the results shown in figure 10.8.

input[type="radio"],
input[type="checkbox"] {
 accent-color: var(--accent);
}

The elements have taken our set accent color instead of the light blue default color
they used before. If we increase the font-size in the application, however, the con-
trols don’t increase in size (figure 10.9).

Although we can change the color of the element (which is an effective way to style
the control quickly and efficiently to fit our styles better), if we want to allow a control
to scale with our font size or make any further customizations, we’ll need to replace

Why are some form fields so hard to style?
Some form fields, radio buttons and check boxes included, have a reputation for
being hard to style. This reputation stems from the limited number of CSS properties
we have to alter how they look. The reason we have only limited properties is that the
bulk of their appearance is driven by the operating system, not the browser.

Listing 10.7 Updated styles for textarea

Styles are being applied
only to inputs that have a
type of radio or checkbox.

Before After

Figure 10.8 Accent color applied to radio buttons and check boxes

Figure 10.9 Increasing font size on
radio buttons and check boxes

282 CHAPTER 10 Styling forms
the control’s styles with our own. Because we want to keep the functionality of the con-
trol and replace only its visual aspect, our HTML stays the same. We’re going to hide
the native control provided by the browser and replace the visual portion with our
own custom styles. To hide the native control, we’ll use the appearance property and
give it a value of none. This property allows us to control the native appearance of the
control. By setting its property to none, we’re saying that we don’t want it to display
the styles provided by the operating system. We’ll also set the background-color to
our own background color (because some operating systems include a background
for the controls) and then reset our margins.

 We can remove the accent-color declaration we created earlier; we’re re-creating
the visual aspect of the control from scratch, so the declaration will have no effect.
The following listing shows the completed reset.

input[type="radio"],
input[type="checkbox"] {
 accent-color: var(--accent);
 appearance: none;
 background-color: var(--background);
 margin: 0;
}

Figure 10.10 shows that the radio buttons have disappeared. We can start creating our
own styles for those controls.

To start, we want to create a box. For radio-button inputs, we’ll give that box a border-
radius to make it round. At the core, whether an input element is a check box or
group of radio buttons, an input needs a box. We’ll create one by giving the input a
height and a width of 1.75em. We use em units because they’re a percentage of the
parent’s font size. By setting our height and width to 1.75em, we’re setting them to
equal 1 3/4 times the value of the parent’s font size. If our label—the container and

Listing 10.8 Reset of radio and checkbox inputs

Before After

Figure 10.10 Reset radio and check box styles

28310.3 Styling input fields
therefore the parent of our input—has a font-size of 16px, our box will be 28 pixels
wide by 28 pixels tall (16 x 1.75 = 28).

 Next, we’ll add a border that inherits our label’s font color. This step may sound a
little weird: how are we going to make border-color inherit from font-color? We’re
going to use the keyword value currentcolor, which allows properties to inherit font
color when they otherwise could not. We’re going to set the border color to current-
color to make the border color match the font color. To set our border width, we’ll
use em to allow the width of our border to scale with the size of our radio buttons.

 Because inputs are inline elements by default, to apply our height and width, we’ll
also need to change the display property. We’ll set it to inline-grid because when
we handle the checked state for our inputs, we need to center the inner disk or check
mark. Grid allows us to do so easily by means of the place-content property.

inline-grid is to grid as inline-block is to block. inline-block has all the
same characteristics as block but places itself inline in the page flow. inline-grid
works the same way. We have access to all the features of grid, but the element places
itself inline in the page flow rather than below the previous content. For our pur-
poses, this fact means that the input will place itself with the text label without our
having to create special rules for labels containing radio-button inputs or check boxes.

 Finally, we need to handle border-radius. This step is where the check box and
the radio buttons diverge, because the check box is square and the radio buttons are
circular. Because our fields have rounded edges, we’re going to add a small border-
radius (4px) to the check box. To make the radio buttons circular, we’ll add a
border-radius of 50%. Our updated rule is shown in the following listing.

input[type="radio"],
input[type="checkbox"] {
 appearance: none;
 background-color: var(--background);
 margin: 0;
 width: 1.75em;
 height: 1.75em;
 border: 1px solid currentcolor;
 display: inline-grid;
 place-content: center;
}

input[type="radio"] { border-radius: 50% }

input[type="checkbox"] { border-radius: 4px }

Our unchecked inputs are styled. Now we need to address the styles to use when those
inputs are selected. In figure 10.11, selected (checked) and unselected elements look
identical.

Listing 10.9 Styled radio and checkbox inputs

Sets the border to the
same color as the parent
element’s text color

Sets up to center the inner
disk or check mark when
the element is checked

284 CHAPTER 10 Styling forms
10.3.4 Using the :where() and :is() pseudo-classes

At this junction, we’re going to look at two pseudo-classes that will help us keep our
code clean and concise: :is() and :where(). Both pseudo-classes work similarly in that
they take a list of selectors and apply the rule if any of the selectors within the list
matches. Both are incredibly helpful for writing long lists of selectors. Instead of writing

input:focus, textarea:focus, select:focus, button:focus { ... }

we can use :where or :is and write an equivalent like so:

:where(input, textarea, select, button):focus { ... }

The :is() pseudo-class would be applied in the same manner. The difference between
:is() and :where() is in their level of specificity. :where() is less specific and there-
fore easy to override. :is(), on the other hand, takes the specificity value of the most
specific selector in the list.

NOTE To see how specificity is calculated, check out chapter 1. We’ll go into
a bit more depth on calculating specificity with :where() and :is() in sec-
tion 10.3.9.

WARNING Use caution in using :is(), because if we have an id selector in
our list of selectors (id selectors are most specific), we can create rules that
are difficult to override.

We’ll use :where() and :is() in conjunction with pseudo-classes such as :checked,
:hover, and :focus, and with the ::before pseudo-element to finish styling our
checkbox and radio inputs.

10.3.5 Styling selected radio and checkbox inputs

To add the inner disk of the selected radio button and the check mark for the check
box, we’ll apply a method similar to the one we used for unselected inputs. We cre-
ated some base styles that applied to both types of inputs and then added the finishing

Before After

Figure 10.11 Unselected radio and checkbox styles

28510.3 Styling input fields
touches to each element individually when the styles diverged. As before, we’ll start by
creating a box. Next, we’ll place that box in the center of the existing styles, and then
we’ll shape it to be a disk or check mark.

 To create this second box to be placed inside our current element, we’ll use the
::before pseudo-element. At this point, the :where() pseudo class (introduced in sec-
tion 10.3.4) comes into play; we’ll use it to select both of our input types and then add
the ::before pseudo-elements. Our selector will look like this: :where(input[type=
"radio"], input[type="checkbox"])::before { }.

 Our content will be empty, so we’ll use a content property value of "" (empty
quotes), and we’ll give it a display value of block so that we can assign a width and
a height.

 When we created the outer box earlier, we gave it a height and width of 1.75em. We
used an em unit so that control would scale relative to the text size. We’ll do the same
thing here. We want the inner disks and check mark to be smaller than their contain-
ers, so we’ll set the height and width to 1em. Assuming that the font-size applied to
the input is 16px, our box will be 16px by 16px (16 x 1 = 16) .

 We don’t need to do anything to position our inner box. Remember that earlier,
we set the input display to inline-grid and then added the place-content property
with a value of center in listing 10.8. The grid layout automatically places the inner
box in the center of the input. The CSS for our inner disk and check mark looks like
the following listing.

:where(input[type="radio"], input[type="checkbox"])::before {
 display: block;
 content: '';
 width: 1em;
 height: 1em;
}

When we apply this code, we see no changes, as demonstrated in figure 10.12. Our
inner box does exist but isn’t visible yet.

Listing 10.10 Centering the inner box

Figure 10.12 Invisible inner box

286 CHAPTER 10 Styling forms
The box isn’t visible because it doesn’t have any content or background color. We’ll
add a background color next.

10.3.6 Using the :checked pseudo-class

We’re not going to apply the same background color to our element all the time.
We’re going to use our accent color when the element is selected and our hover color
when the element is being hovered over.

 The :checked pseudo-class selector can be used on an input of type radio or
checkbox, or on the option element (<option>) in a drop-down menu (<select>) to
apply styles when the element is selected. The ability to use it on <option> is browser-
dependent.

 When we apply the background-color for the checked and hover states, if the
selectors have the same level of specificity (as our example will), the order in which we
write these rules matters. If we write the checked state rule first and the hover state
rule second, the hover color will be applied to a selected input on hover; the hover
state rule will override the checked state rule because it appears later in the CSS file.
Therefore, we want to make sure that the hover state rule is placed before the
checked state rule in the CSS file. Figure 10.13 illustrates these two scenarios.

Let’s see how we’d go about applying our background colors in our CSS file. The fol-
lowing listing shows our hover and checked code so far.

:where(input[type="radio"], input[type="checkbox"]):hover::before {
 background: var(--hover);
}

Listing 10.11 Inner element background color

Unchecked

Default Hover

Checked

Default Hover

Checked first

Hover second

Hover first

Checked second

Rule order

Figure 10.13 Rule order regarding the background for a selected check box on hover

Adds a background color
to the inner box on hover

28710.3 Styling input fields
:where(input[type="radio"], input[type="checkbox"]):checked::before {
 background: var(--accent);
}

Figure 10.14 shows that we have a box we can shape inside our elements. The box is
displayed in our accent color when the element is selected, and when a user hovers
over unselected radio-button or check-box inputs, we see a gray box.

Next, we need to shape the inner box, where our code will diverge to create disks and
a check mark for the radio buttons and check box, respectively.

10.3.7 Shaping the selected radio buttons’ inner disk

Starting with the radio-button inputs, we turn our inner box into a circle by adding a
border-radius of 50%, as shown in listing 10.12. We don’t differentiate between the
hover and checked states because we want the shape to be a disk regardless of the
state of the element.

input[type="radio"]::before {
 border-radius: 50%;
}

Now we have traditional-looking radio buttons that scale nicely regardless of text size
(figure 10.15). With our radio buttons styled, we’ll turn our attention to shaping the
check mark inside our check box.

Listing 10.12 Radio-button inner disk

Adds a background color to the
inner box when input is selected

Before After

Figure 10.14 Setting up for the selected state

288 CHAPTER 10 Styling forms
10.3.8 Using CSS shapes to create the check mark

Shaping our radio inputs was simple: we used border-radius to achieve a disk shape.
Creating a check mark isn’t quite as simple. To do that, we’ll use clip-path.

NOTE clip-path allows us to create shapes by creating a clipping region that
defines which parts of the element should be displayed and which parts
should be hidden. We used clip-path in chapter 7.

The shape we’ll apply to the clip-path to create our check mark is a polygon. Poly-
gons are created by setting a series of X and Y percentage-based coordinates between
which a line is created. The (0,0) coordinate is the top-left corner of the shape. If the
shape isn’t explicitly closed, it automatically joins the first and last points. Our poly-
gon() function will be polygon(14% 44%, 0% 65%, 50% 100%, 100% 16%, 80% 0%, 43%
62%). Figure 10.16 explains the point-by-point construction of the shape.

Before After

Figure 10.15 Styled radio inputs

(80%, 0%)

(43%, 62%)

(14%, 44%)

(0%, 65%)

(50%, 100%)

(100%, 16%)

Figure 10.16 Polygon check-
mark shape coordinates

28910.3 Styling input fields
NOTE The coordinates for simple shapes are easy enough to figure out. But
as shapes get more complex, determining the coordinates manually can be
cumbersome. In those situations, we can turn to vector-graphic drawing
programs such as Inkscape and Illustrator, or to one of the many CSS shape-
generator websites, including https://bennettfeely.com/clippy.

With our shape created, we can create our clip-path and apply it to the inner por-
tion of our check box, as shown in the following listing.

input[type="checkbox"]::before {
 clip-path: polygon(14% 44%, 0% 65%, 50% 100%, 100% 16%, 80% 0%, 43% 62%);
}

With the clip-path added, we have a fully functional check box. Next, let’s add some
finishing touches. Notice in figure 10.17 that the outlines of the selected radio but-
tons and check box are still in our font color rather than the accent color.

To add the outline color to both the radio buttons and the check box when they’re
selected, we’re going to use the :checked pseudo-class again to change the border
color to our accent color only when the control is selected. This procedure translates
to the code shown in listing 10.14. We use :is() instead of :where() for reasons of
specificity.

:is(input[type="radio"], input[type="checkbox"]):checked {
 border-color: var(--accent);
}

Listing 10.13 Check mark in our check box

Listing 10.14 Accent-color outline for selected inputs

Before After

Figure 10.17 Styled check mark in the check box

https://bennettfeely.com/clippy/

290 CHAPTER 10 Styling forms
10.3.9 Calculating specificity with :is() and :where()

We mentioned earlier that :where() has a specificity of 0, meaning that it’s the least
specific selector available to us. We set our default border color in the selector
input[type="radio"], input[type="checkbox"] { … }, which has a specificity of 11,
calculated according to table 10.1. In each column, we count the number of each type
of selector, with columns A, B, and C forming the specificity value.1

Because :is() bases its specificity value on the value of the most specific selector
within it, in this case the specificity will be 11 plus another 10 for the :checked state,
giving us a specificity of 21. Because 21 is greater than 0, we override the styles, and
our border becomes our accent color.

 Now our radio buttons and check box are styled both when they’re selected and
unselected, and on hover for both states. Figure 10.18 shows our progress so far.

 Let’s turn our attention to the drop-down menu next.

10.4 Styling drop-down menus
Although we applied the same default styles to <select> elements as we did for the
text-based <input>s and <textarea>s (listing 10.5), we see in figure 10.19 that the
drop-down menu (<select>) is still rough. We also see in the expanded view that our
options list doesn’t match our theme.

 Let’s start by fixing the background color. Although it’s not obvious because the
background behind our form is white, the input fields have a white background by
default. We’re going to add a rule to the existing declaration that affects the <input>s,

Table 10.1 Calculating specificity

Selector
A

ID selectors
(×100)

B
Class selectors,

attribute selectors,
& pseudo-classes

(×10)

C
Type selectors,

pseudo-
elements

(×1)

Specificity

:where(input[type="radio"],
input[type="checkbox"])

Ignores specificity rules and always equals 0 000

:where(input[type="radio"],
input[type="checkbox"]):checked

Ignores specificity rules and always equals 0 000

input[type="radio"] 0 1 1 011

input[type="radio"]:checked 0 2 1 021

:is(input[type="radio"],
input[type="checkbox"]):checked

0 2 1 021

1 Architecting CSS: The Programmer’s Guide to Effective Style Sheets, by Martine Dowden and Michael Dowden (2020,
Apress).

29110.4 Styling drop-down menus
<textarea>, and <select> elements to set the background color to the card back-
ground (listing 10.15). That way, should the card background change, our form con-
trols will have the appropriate background color.

input:not([type="radio"], [type="checkbox"]),
textarea,
select {
 font-size: 1rem;

Listing 10.15 Default styles applied to select

Figure 10.18 Styled check box and radio-button inputs

Closed

Expanded

Figure 10.19 Drop-down menu closed and expanded

292 CHAPTER 10 Styling forms
 font-family: inherit;
 color: inherit;
 border: none;
 border-bottom: solid 1px var(--primary);
 border-image: linear-gradient(to right, var(--primary), var(--accent)) 1;
 padding: 0 0 .25rem;
 margin-bottom: 2rem;
 width: 100%;
 background-color: var(--background-card);
}

With the background color added, we see that the input and options have a white
background (figure 10.20).

Although it would be nice to update the drop-down menu options to match our
theme better, these menus, like the radio inputs and check boxes, get a lot of their
styles and functionality from the operating system itself. Therefore, we’re limited in
what we can style with CSS alone, and for this design, these changes are about as far as
we can go. We can use JavaScript and ARIA to replace the entire control, but because
this book is about CSS, we’re going to style as much as we can with CSS alone.

NOTE When creating a custom control, it’s important to be mindful of the
underlying accessibility information and functionality that the browser provides
automatically and to make sure we’re re-creating that functionality along with
the visual aspects of the control. Libraries or frameworks can be helpful when a
custom control is needed, assuming that the library or framework was built with
accessibility in mind. Usually, the best place to find out is the documentation.

What is ARIA?
ARIA (which stands for Accessible Rich Internet Applications) is a set of roles and
attributes that can be added to HTML elements to supplement missing information
about the use, state, and functionality of an element that otherwise isn’t available
to the user. For more information, check out https://www.w3.org/WAI/standards
-guidelines/aria.

Adds background-
color declaration

Closed

Expanded

Before After

Figure 10.20 select element styled

https://www.w3.org/WAI/standards-guidelines/aria/
https://www.w3.org/WAI/standards-guidelines/aria/
https://www.w3.org/WAI/standards-guidelines/aria/

29310.5 Styling labels and legends
10.5 Styling labels and legends
To style our labels and the legend, we’re going to start by giving them a vertical mar-
gin for breathing room between the label and the control. We’ll also use Flexbox to
align the text and the icons, radio inputs, and check box. Finally, we’ll decrease their
font size and change their color. Most important here are the values entered by the
user, not the labels. By decreasing their size, we diminish their importance in the
visual hierarchy. We end up with the code displayed in the following listing.

label, legend {
 display: flex;
 align-items: center;
 gap: .25rem;
 margin: 0 0 .5rem 0;
 font-size: .875rem;
 color: var(--label-color);
}

With our labels and legend styled (figure 10.21), let’s turn our attention to the
placeholders.

Listing 10.16 Added margin and updated font size

Aligns the label
text and the icon

Before After

Figure 10.21 Styled labels and legend

294 CHAPTER 10 Styling forms
10.6 Styling the placeholder text
In our form, it’s difficult to distinguish what fields are user filled from what is place-
holder text. As we did for our labels, we’re going to deemphasize the placeholder text
to make it easier to distinguish from user responses.

To style our placeholder text, we’re going to use the ::placeholder pseudo-element.
Because we want the placeholder to be styled the same way regardless of the type, we’ll
write one rule that targets all placeholder text regardless of element type. In this new
rule, we’ll decrease the size of the placeholder text and lighten its color, as shown in
the following listing.

::placeholder {
 color: var(--placeholder-color);
 font-size: .75em;
}

Figure 10.22 shows our updated fields.
 Next, let’s style the button at the bottom of the form.

Labels and placeholder text
Our project has both labels and placeholder text. Although placeholder text can be
helpful to guide the user, it doesn’t replace labels. In fact, the Web Content Accessi-
bility Guidelines (WCAG) accessibility standards specifically require form fields to
have a label (http://mng.bz/mVzW).

Placeholder text disappears after the user enters a value in the field. This arrange-
ment is problematic because the user doesn’t have a way to reference the instruc-
tions after they enter a value.

Furthermore, labels are required for assistive technologies such as screen readers,
which rely on this information to indicate to the user what is expected in the field.

Listing 10.17 Styling the placeholder text

Targets any placeholder
text regardless of
element type

http://mng.bz/mVzW

29510.7 Styling the Send button
10.7 Styling the Send button
We have a Send button at the bottom of our form. Let’s make it a bit more prominent
and make it match the rest of our form. We’ll create a rule that targets this button.

 Next, we’ll remove the border, curve the corners, and edit the text and back-
ground colors. In the “before” part of figure 10.23, the button text is smaller than
our default font size, so we also change font-size to 1rem. Finally, we set our button
padding.

To make our button stand out even more, we’ll separate it a little bit from the rest of
our fields. The button is located inside a <div> with a class of actions. We’ll give this

Before After

Figure 10.22 Styled placeholder text

Before

After

Figure 10.23 Styled Send button

296 CHAPTER 10 Styling forms
<div> a top margin of 2rem, which will move the button down a little farther from the
Subscribe check box. The following listing shows our new rules, and figure 10.23
shows our progress.

button[type="submit"] {
 border: none;
 border-radius: 36px;
 background: var(--accent);
 color: var(--accent-contrast);
 font-size: 1rem;
 cursor: pointer;
 padding: .5rem 2rem;
}

.actions { margin-top: 2rem }

Next, let’s style the error messages.

10.8 Error handling
Below the Name, Email, and Message controls are error messages. Currently, they’re
un-styled, so they aren’t easy to identify as error messages or to match them with the
fields that the errors describe. Furthermore, we don’t want to show this error message
until the user has interacted with the control. Nobody wants an error message yelling
at them before they’ve even started.

 We’re going to style the error messages to look like error messages; then we’ll hide
them by default and show them only when appropriate. This task is where our Java-
Script file comes into play.

 We’re going to make our text red, like most error messages on the web, by setting
that color in our --error custom property. We’ll also make the text bold and preface
our error with an error icon to present it clearly as such; we don’t want to use color
alone to convey meaning or intent.

NOTE Color is a great way to differentiate content types. But we should
always use something else with it—such as an icon; text; or a change in size,
weight, or shape—because people who are color-blind may not be able to dif-
ferentiate between colors. Furthermore, some colors don’t have the same
meaning across cultures. For reasons of accessibility and clarity, it’s best prac-
tice to use more than color alone to convey a message.

So that we can keep our error icon consistent instead of adding it before each error,
we’ll add it programmatically via CSS, using the ::before pseudo-element. To size
and position the icon, we’ll use two relative units: the character unit (ch), which we
used in chapter 7 and which is based on the font’s width; and ex, which is relative to
the font’s X-height, which is the distance between the baseline and meanline of a font

Listing 10.18 Resetting button styles

29710.8 Error handling
(figure 10.24). We use these particular units because they’re relative to not only the
font size, but also the characteristics of the typeface being used. Using ch and ex units
helps make the size and spacing between the icon and the text seem like an extension
of the font that’s being used.

We’ll also add some margin to our error <div> to give our input fields some breathing
room. Our rules to style errors look like the following listing.

.error {
 color: var(--error);
 margin: .25rem 0 2rem;
}
.error span::before {
 content: url('./img/error.svg');
 display: inline-block;
 width: 1.25ex;
 height: 1.25ex;
 vertical-align: baseline;
 margin-right: .5ch;
}

Notice that when we added the icon before the text, we added it to the span, not the
error <div> itself, because we’re going to be showing and hiding the span inside the
error and the entire error <div>. Let’s take a closer look at the HTML to understand
why.

 Listing 10.20 shows the complete control for the Name field, including its label
and error message. Notice that the error <div> has an id of nameError, which is refer-
enced by the aria-describedby attribute on the input field. The aria-describedby
attribute tells screen readers and assistive technologies that the element whose id it
references contains extra information pertaining to the input field.

 If we hide the error <div> in its entirety by using display:none, the element to
which the aria-describedby is pointing won’t exist. Therefore, we hide only the con-
tents (the span) so as not to break the programmatic connection between the ele-
ment and its error. Because we’ll be hiding only the span, we need to apply the icon to
the span so that it can be hidden when we hide the error message.

Listing 10.19 Error styles

X-height

Uppercase

LowercaseDescender

CounterAscender
Serif

Serif Sans-serif

Meanline

Baseline
Zero

1ch

X-height

Figure 10.24 A visual representation of typography terms

Makes the
text red

Makes the icon
1.25ex by 1.25ex

Aligns the icon to
the text’s baseline

298 CHAPTER 10 Styling forms
<label for="name">Your Name</label>
<input type="text" id="name" name="name" maxlength="250" required
 aria-describedby="nameError">
<div class="error" id="nameError">

 Please let us know who you are

</div>

Figure 10.25 shows our styled error messages.

With our error messages styled, we can handle showing them only when appropriate.
In figure 10.25, we see that the inputs have valid values, yet the error messages still
appear. To show the error message only when the field is invalid, we’ll start by hiding
the error message by default. We apply a display property value of none to the span
contained in the error <div>; then we use the :invalid pseudo-class to show it condi-
tionally (only when the field is invalid).

 The validity of the field in this case is determined by the properties we set on the
field itself. Let’s look at the Name input HTML again: <input type="text" id="name"
name="name" maxlength="250" required aria-describedby="nameError">. We

Listing 10.20 Name-field HTML

Indicates which <div>
provides extra information
about the input (referenced
by id)

The ID referenced by the
aria-describedby attribute

Before After

Figure 10.25 Styled error messages

29910.8 Error handling
included required and maxlength attributes; therefore, if there’s no value in the field
or if the value’s length is greater than 250 characters, the field value will be invalid,
and styles in the :invalid pseudo-class will be applied.

 The Email element (<input type="email" id="email" name="email" max-
length="250" required aria-describedby="emailError">) also has a maxlength
and a required attribute, so it would be invalid under the same conditions as the
Name field. It also has a type of email. In HTML, some field types have validation built
in, and email is one of them. If we were to enter an email address value of "myEmail",
it would be invalid.

 Using the :invalid pseudo-class helps us prevent errors from being displayed
when the field is valid, but it doesn’t prevent errors from showing up if the user hasn’t
interacted with the field yet. We could use the :user-invalid pseudo-class instead of
:invalid, which would trigger one time and only after the user interacted with the
field, but at this writing, Mozilla Firefox is the only browser that supports this prop-
erty. So we turn to JavaScript due to the current lack of cross-browser support. In the
future, when the :user-invalid property is better supported, we’ll no longer need to
use JavaScript to show/hide our error messages based on user interaction. The script
included in the project listens for blur events, which happen when an element loses
focus. When we click or tab away from a field, a blur event occurs. Our script listens
for these events and adds a class of dirty to the field that we’ve navigated away from,
letting us know which fields have been interacted with and which haven’t. Those with
a class of dirty have; without a class of dirty have not.

 Because we have this dirty class, in conjunction with the :invalid pseudo-class,
we’ll show the error message only below controls that are invalid and that the user has
touched, preventing us from showing error messages before the user has had a
chance to fill out the form. We use the selector .dirty:invalid + .error span. We
select the span contained in an element that has a class of error located immediately
after an element that is both invalid and has a class of dirty.

 Last, we’ll change the border color of the field to our error color when it’s both
invalid and dirty. Because we used a border image to create the gradient effect, we
need to remove it. The following listing shows the full rules for showing and hiding
the error messages.

.error span { display: none; }

.dirty:invalid + .error span {
 display: inline;
}

:is(input, textarea).dirty:invalid {
 border-color: var(--error);
 border-image: none;
}

Listing 10.21 Error-handling CSS

Hides the error message
by default

Shows the error message when the
field immediately before it in the
HTML is dirty and invalid

Changes input and textarea
border color to red when
invalid and dirty

300 CHAPTER 10 Styling forms
Figure 10.26 shows fields in their three possible states: invalid and dirty, valid, and
invalid but not yet touched.

On the surface, our form seems to be finished, but we still have some finishing touches
to add.

10.9 Adding hover and focus styles to form elements
Because we want our form to be accessible, we need to make sure to include hover
styles and to update the default focus styles to match our theme for our controls and
buttons. We’ve already handled the hover styles for radio buttons and check boxes
but not the focus. For the other elements, we haven’t considered the hover and
focus states.

 Let’s start with focus because we still need to apply it to everything on our form.
Focus is important for users who navigate the web via the keyboard rather than click-
ing elements with a mouse. It gives the user a visual indicator of which element cur-
rently has focus. Therefore, if we don’t like the default focus styles, it’s fine to restyle
them but not remove them.

Before After

Invalid

and dirty

Valid

Valid

Invalid

Figure 10.26 Error-handling and field states

30110.9 Adding hover and focus styles to form elements

10.9.1 Using :focus versus :focus-visible

Because showing the focus styles all the time regardless of how the user is navigating
the web can be overwhelming depending on the design, a new property was recently
added to the CSS specification to apply focus styles based on the user’s modality:
keyboard or mouse. The pseudo-class :focus-visible allows us to add styles when
the user is interacting with the keyboard but won’t apply it when the user is using a
mouse. By contrast, :focus always applies regardless of the user’s method of inter-
acting with the element.

 For our text and email input fields, drop-down menu, and text area, we’ll remove
the default outline and change the border’s color from the gradient to a solid color.
Because (as we mentioned earlier in this chapter) we don’t want to rely on color alone
for differentiation, we’ll also change the border style from solid to dashed, as shown in
listing 10.22. We also need to consider what to do with our fields when they’re dirty
and invalid (show the error message and have a red border). We want to keep the
color differentiation between the fields in an error state, so we write a second rule to
maintain the red border color.

:is(
 input:not([type="radio"], [type="checkbox"]),
 textarea,
 select
):focus-visible {
 outline: none;
 border-bottom: dashed 1px var(--primary);
 border-image: none;
}

:is(

 input:not([type="radio"], [type="checkbox"]).dirty:invalid,
 textarea.dirty:invalid,
 select.dirty:invalid
):focus-visible {
 border-color: var(--error);
}

Figure 10.27 shows our updated fields when in focus.
 Next, we need to handle the focus state for our radio buttons and check boxes.

For those elements, we’ll keep the outline but edit its appearance. As we did for our
other fields, we’ll use a dashed line and the primary color. We also offset the outline
to create separation between the border and the outline, as shown in listing 10.23.

Listing 10.22 Styling text fields and drop-down menu when focused

Removes the
default outline

Removes the
gradient image

Maintains the
border color when
the field has been
interacted with and
its value is invalid

302 CHAPTER 10 Styling forms
:where(input[type="radio"], [type="checkbox"]):focus-visible {
 outline: dashed 1px var(--primary);
 outline-offset: 2px;
}

Figure 10.28 shows our radio buttons and check box when focused.

With focus handled, let’s turn our attention to hover.

Listing 10.23 Styling radio buttons and check boxes when focused

Focused, invalid

Focused, invalid and dirty

Focused, valid

Figure 10.27 Text fields and drop-down menu when focused

Moves the outline out 2 pixels so that
it isn’t right up against the border

Without focus With focus

Focus

Figure 10.28 Focus styles for radio buttons and check box

30310.10 Handling forced-colors mode
10.9.2 Adding hover styles

Fields in which the user inputs text, such as inputs with a type
of text and email or <textarea>s, already change the cursor
type from the default to text on hover. Figure 10.29 shows
what each cursor type looks like. Note that cursors may look
slightly different depending on the operating system, browser,
and user settings.

 Although our text and email inputs and text area already
have some differentiation on hover, our drop-down menu
doesn’t. Let’s change its cursor to a pointer to emphasize that
the field is clickable, as shown in the following listing.

select:hover { cursor: pointer }

With focus and hover handled, the last thing we need to worry about is making sure
that our styles work for users who have forced-colors: active enabled.

10.10 Handling forced-colors mode
The forced-colors mode is a high-contrast setting that allows a user to limit the color
palette to a series of colors that they set on their device. Windows’ High Contrast
mode is an example of this use case. When this mode is enabled, it affects many CSS
properties, including some that we’ve used in this project, most notably background-
color. We used background-color to determine whether the inner portion of the
radio and checkbox inputs were visible for selected versus unselected elements. We
also used it to restyle the arrow for the select control.

 In Chrome, we can use DevTools to emulate enabling forced-colors mode on
our machine without having to edit our computer settings. In the console of our
DevTools, choose the rendering tab. If it isn’t already displayed, we can click the
ellipsis button to display the possible tabs and choose it from the drop-down menu.
On the tab, we look for the forced-colors emulation drop-down menu and set it to
forced-colors: active. This setting updates the page’s styles to act as though we
had forced-colors set to active on our machine. Figure 10.30 shows the Chrome
DevTools settings that enable the emulation. (Note: Browsers other than Chrome may
not have this functionality, or the technique for enabling it may be different.)

 When the emulation is applied, our page styles change (figure 10.31). We can’t tell
which radio button is selected or whether the check box is checked. This example
demonstrates the importance of using more than color to differentiate meaning,
because our error message is no longer red.

 We won’t try to reinstate our colors in this mode, because we want to respect the
user’s settings. But we need to make sure that selected inputs are distinguishable from
those that aren’t selected.

Listing 10.24 Selecting hover styles

default

pointer

text

Figure 10.29 Cursors
in Chrome

304 CHAPTER 10 Styling forms
To create rules that apply only when users have forced-colors set to active, we’ll use
the media query @media (forced-colors: active) { }. Rules created inside the
media query will take effect only when users have forced-colors enabled.

 The reason why our check box and radio buttons are no longer visible is that the
system-defined background color (in this case, white) is being applied to them. So

Figure 10.30 A forced-colors:active emulation setup in Chrome DevTools

Error message

Selected radio input

Selected check box

Figure 10.31 Emulated forced-colors: active

30510.10 Handling forced-colors mode
we’ll change our background to use a system color rather than our accent color. The
CSS Color Module Level 4 specification (http://mng.bz/o1Vy) lists the colors avail-
able to us. We’re going to use CanvasText, meaning that the color we’ll apply will
be the same as the color being used for the text. The following listing shows our
full media query.

@media (forced-colors: active) {
 :where(input[type="radio"], input[type="checkbox"]):checked::before {
 background-color: CanvasText;
 }
}

Figure 10.32 shows our page in forced-colors mode with our media query applied,
fixing the styles that were creating problems for our users.

When we turn the emulation off, our previously set styles remain as they were; they’re
not affected by those set inside the media query (figure 10.33).

 With this last task complete, we’ve finished styling our form.

Listing 10.25 forced-colors: active media query

Before After

Figure 10.32 forced-colors: active styles fixed

http://mng.bz/o1Vy

306 CHAPTER 10 Styling forms
Summary
 Form controls whose functionality is tightly coupled with the operating system,

such as drop-down menus, are harder to style than those that lack this coupling.
 We can create shapes by using gradients.
 By using em, we can size elements to scale with text size.
 To inherit font-color when doing so isn’t possible otherwise, we can use the

keyword value currentcolor.
 The :where() and :is() pseudo-classes work similarly but have different levels

of specificity.
 The :checked pseudo-class allows us to target form elements when they’re

selected.
 The :invalid pseudo-class can be used to format fields conditionally when

they’re invalid.
 The validity of a field’s value is determined by the attributes set on the field in

the HTML.
 :focus styles are necessary to make our designs accessible.
 We can use :focus-visible to make focus style show only for keyboard users.
 In some browsers, we can forcibly make the browser apply hover and focus styles.

Figure 10.33 Finished product

307Summary
 It’s important to use more than color alone to convey meaning, as demon-
strated by the error messages in this project.

 forced-colors mode changes how some properties behave and the colors we
can apply to the user interface.

 Media queries can be used to apply styles conditionally when forced-colors is
set to active.

 In some browsers, we can emulate forced-colors mode to check our designs.

Animated social
media share links
One of the core reasons why the internet was created was to share and distribute
information. One way we do this today is through social media. In this chapter,
we’ll style and animate some links that can be used to share a web page via email or
social media.

 As in the previous chapters, we’ll be using HTML and CSS for this project with-
out any frameworks. We chose this approach to focus on the CSS itself without the
complexity and intricacies of using external packages. But many applications in the
wild do use frameworks, some of which include the concept of the component.

 A common reason to turn a piece of functionality into a component is to reuse
the piece of code or element in multiple places in applications. With reusability
comes the possibility of naming collisions. Some systems automatically restrict the

This chapter covers
 Using the OOCSS, SMACSS, and BEM

architecture patterns

 Scoping CSS when working with components

 Working with social media icons

 Creating CSS transitions

 Using JavaScript to overcome CSS limitations
308

30911.1 Working with CSS architecture
scope of the CSS of the component to itself, preventing any possible collision between
component styles. But many systems don’t restrict the scope, leaving it up to the devel-
oper to organize the code to prevent changing the styles in another component when
styling a new one.

 Regardless of the framework and how it does (or doesn’t) handle CSS scoping, we
have a variety of architecture options to help us organize and standardize our styles.
Before we dive into this chapter’s project, let’s take a quick look at some CSS architec-
ture options.

11.1 Working with CSS architecture
Some of the most popular CSS architecture methodologies are OOCSS, SMACSS, and
BEM. We’ll be using BEM in this chapter, but we’ll take a look at all three options so
that we’ll understand the high-level differences among them.

11.1.1 OOCSS

Introduced at Web Directions North in Denver by Nicolle Sullivan, OOCSS (Object-
Oriented CSS; https://github.com/stubbornella/oocss/wiki) aims to help developers
create CSS that’s fast, maintainable, and standards-based. Sullivan describes the Object
part of OOCSS as “a repeating visual pattern, that can be abstracted into an indepen-
dent snippet of HTML, CSS, and possibly JavaScript. That object can then be reused
throughout a site”—in other words, what we might think of today as a component or
widget. To achieve this reusability, OOCSS follows two main principles:

 Separate structure and skin—Keeps visual features (background, borders, and so
on, sometimes referred to as the theme) in their own classes, which can be
mixed and matched with objects to create a variety of elements.

 Separate container and content—By refraining from using location-dependent
styles, we can ensure that the objects look the same no matter where they’re
placed in the application or on the website.

11.1.2 SMACSS

Developed by Jonathan Snook, SMACSS (Scalable and Modular Architecture for CSS;
http://smacss.com), organizes CSS rules into five categories:

 Base—The defaults applied by using element, descendent, or child selectors
and pseudo-classes

 Layout—Used to lay elements out on the page, such as headers, articles, and
footers

 Module—More discrete parts of the layout, such as carousels, cards, and naviga-
tion bars

 State—Something that augments or overrides other styles, such as an error state
or the state of a menu (open or closed)

 Theme—Defines the look and feel; doesn’t have to be separated in its own
classes if it’s the only theme for the page or project

https://github.com/stubbornella/oocss/wiki
http://smacss.com

310 CHAPTER 11 Animated social media share links
11.1.3 BEM

Developed by a company named Yandex, BEM (Block Element Modifier; https://en
.bem.info/methodology) is a component-based architecture that aims to break the
user interface into independent, reusable blocks:

 Block
– Describes the block’s purpose.
– An example would be a class name for an element, such as header.

 Element
– Describes the element’s purpose.
– The class name is the block name followed by two underscores and the ele-

ment, such as header__text.
 Modifier

– Describes the appearance, state, and behavior.
– The class pattern is block-name_modifier-name (example: header_mobile)

or block-name__element-name_modifier-name (example: header__menu_open).

Choosing an architectural approach for CSS is a team-dependent task. The needs of
the project, the size and experience of the team, and the libraries and frameworks
being used are factors to consider. No one-size-fits-all approach exists, so the decision
needs to be made by the team. Because of BEM’s component-based nature, we’ll use it
in this chapter to scope and style our social media share links.

11.2 Setting up
Now that we’ve chosen our methodology, which dictates the naming convention we’ll
use for the project, let’s take a look at what we’ll be building. We’ll style a Share but-
ton that, when clicked, opens a set of links that let the user share the page via email or
to Facebook, LinkedIn, or Twitter. Then we’ll use transitions to animate opening and
closing the share options and the hover/focus effects of the individual links. Figure 11.1
shows our goal.

Our starting HTML (listing 11.1) consists of a container for our component, a Share
button, and a menu that lets users choose how to share the page. The code includes a
linked JavaScript file, which makes our component usable via keyboard navigation
and triggers showing/hiding the links inside the component when the Share button is

Closed Open

Figure 11.1 Goal

https://en.bem.info/methodology
https://en.bem.info/methodology
https://en.bem.info/methodology

31111.2 Setting up
clicked. As we’ll see in section 11.6, a few limitations apply to animating elements with
CSS alone, so we’ll rely on a couple of lines of JavaScript to support our CSS. We’ll
look at JavaScript in more detail later in the chapter (also in section 11.6); first, we’ll
focus on our HTML and CSS.

 <main>
 <div class="share" id="share">

 <button id="shareButton"
 class="share__button"
 type="button"
 aria-controls="mediaList"
 aria-expanded="false"
 aria-haspopup="listbox">

 Share
 </button>

 <menu aria-labelledby="share"
 role="menu"
 id="mediaList"
 class="share__menu">

 <li role="menuitem" class="share__menu-item">
 <a href="mailto:?subject=Tiny%20..."
 target="_blank"
 rel="nofollow noopener"
 tabindex="-1"
 class="share__link"
 >
 <img src="./icons/email.svg"
 alt="Email" width="24" height="24">

 <li role="menuitem" class="share__menu-item">
 <a href="https:/ /www.facebook.com/sh..."
 target="_blank"
 rel="nofollow noopener"
 tabindex="-1"
 class="share__link"
 >
 <img src="./icons/facebook.svg"
 alt="Facebook" width="24" height="24">

 ...
 </menu>
 </div>
 </main>

 <script src="./scripts.js"></script>

Listing 11.1 Starting HTML

Component
container

Share button
to open and
close the list

of social
media links

Media
menu

Menu
item

First link is a
mailto to share
via email rather

than social
media.

Media
icon

Link to share
via social
media

Script used for
keyboard interactions
and supplementing CSS

312 CHAPTER 11 Animated social media share links
We also have some basic starter CSS applied to the main element
to move the component away from the edge of the screen: main
{ margin: 48px; }.

 You can find all the starter code (HTML, CSS, and JavaScript) on
GitHub at http://mng.bz/KeR4 or CodePen at https://codepen.io/
michaelgearon/pen/YzZzpWj. Our starting point looks like figure 11.2.

 As you can see, the icons have been provided, but let’s discuss
where and how we got them.

11.3 Sourcing icons
Any time we use iconography from someone else’s brand, we need to answer the fol-
lowing questions:

 Are we authorized to use the icon?
 Are there any restrictions on how the icon can be used?

When we use social media icons, those brands are being represented in our work, so
we must follow their guidelines on when, how, and in what context we can use the
brand. When we use icons that don’t represent a brand (such as the icons we used for
the mailto link and Share button), unless we created the icon ourselves, we’re subject
to copyright laws, just as we would be for any other piece of media (image, sound,
video, and so on) that we use in our projects.

NOTE We’re not lawyers, and we don’t intend to offer legal advice in this
chapter. When in doubt, contact a legal professional.

11.3.1 Media icons

An effective way to find how a branded icon can be used is to look for that brand’s
guide by doing a web search for terms such as style guide and brand guide. Many social
media outlets have specific instructions on how the brand can be represented, includ-
ing icon and logo downloads. Table 11.1 lists the social media platforms we included
in our component and the links to their brand information. For this project, we
sourced our social media icons directly from the respective brand guides.

Table 11.1 Social media brand resources

Brand Icon Link to assets

Facebook http://mng.bz/9Dza

LinkedIn https://brand.linkedin.com/downloads

Twitter http://mng.bz/jPry

Figure 11.2
Starting point

http://mng.bz/9Dza
https://brand.linkedin.com/downloads
http://mng.bz/jPry
http://mng.bz/KeR4
https://codepen.io/michaelgearon/pen/YzZzpWj
https://codepen.io/michaelgearon/pen/YzZzpWj
https://codepen.io/michaelgearon/pen/YzZzpWj

31311.4 Styling the block
11.3.2 Icon libraries

Looking for icons can be a bit tedious, especially in large projects, so it’s common
practice to use icon fonts and libraries, which also are subject to terms of use. Each
library and icon font has its own rules about where and how icons can be used. Some
also require attribution. Therefore, we must be aware of any rules we need to follow
while sourcing our icons.

 For this project, we sourced our non-brand-related icons from Material Symbols
(https://fonts.google.com/icons). Because we needed only two—share and email

—we downloaded the individual SVGs and included them in our icon folder rather
than importing the entire library into the project. The icons have been provided in
the starter code, so we’re ready to start styling.

11.4 Styling the block
Because we’re using BEM for our naming convention, our block name will be "share".
Therefore, the container <div> that wraps the entire component will have a class of
share. This block name will be included in all future classes that use the BEM naming
convention (section 11.1.3), which scopes our CSS to that component and helps pre-
vent any styling collisions between our component and any other parts of the applica-
tion it may be used in.

 As shown in listing 11.2, we define the font-family, background, and border-
radius for the block. We also give the component a display value of inline-flex.
inline-flex works the same way as flex but makes the element an inline-level ele-
ment rather than a block-level element. By making our component behave like an
inline element (the same as links, spans, buttons, and so on), we give it the greatest
versatility in terms of placement in an application. Furthermore, buttons are inline
elements by default, and when closed, what’s presented is essentially a button, so we’ll
give our component the same flow behavior as a button.

NOTE To find out how Flexbox works and discover its associated properties,
check out chapter 6.

.share {
 font-family: Verdana, Geneva, Tahoma, sans-serif;
 background: #ffe46a;
 border-radius: 36px;
 display: inline-flex;
}

With the block styled (figure 11.3), let’s address the individual elements inside the
block.

Listing 11.2 Styling the container

Yellow

314 CHAPTER 11 Animated social media share links
11.5 Styling the elements
Our block has three descendent elements, all of which we want to style:

 The Share button
 The menu containing the list of links
 The individual links inside the menu

Let’s start with the Share button and work our way down the list.

11.5.1 Share button

The class name given to the button will include the block name followed by two
underscores and then the element. In our case, we’ll call this element button, so our
class name will be share__button. By prefixing our class name with share__, we
ensure that the only button we’ll be styling is the one within our block.

 We want to override the defaults provided by the browser and align the icon and
text within the button (listing 11.3). We remove the background and border, adjust
the font size and padding, and curve our corners.

 To align the icon and text, we give the button a display value of flex and then use
align-items to align the icon and text vertically. To add whitespace between the icon
and text, we use the gap property.

.share__button {
 background: none;
 border: none;
 font-size: 1rem;
 padding: 0 2rem 0 1.5rem;
 border-radius: 36px;
 display: flex;
 align-items: center;
 gap: 1ch;
}

Figure 11.4 shows our output.
 Next, let’s handle the hover and focus styles. We use the :hover and :focus-visible

pseudo-classes to change the cursor style conditionally and add a black outline to the

Listing 11.3 Styling the Share button

Figure 11.3 Styled container block

31511.5 Styling the elements
button. Then we offset the outline by -5px so that the outline places itself 5-pixels
inside the button rather than on the outer edge.

 The outline-offset property allows us to control where the outline is placed.
Positive numbers move the outline farther out or away from the element; negative
numbers inset the outline. The following listing shows our hover and focus CSS.

.share__button:hover,

.share__button:focus-visible {
 cursor: pointer;
 outline: solid 1px black;
 outline-offset: -5px;
}

Figure 11.5 shows our button being hovered over with a mouse.

11.5.2 Share menu

To style the menu and its items, we want to remove the bullets and then place the ele-
ments in a row beside the Share button. To remove the bullets, we give the list items a
list-style value of none. Then we give the menu a display property value of flex.
Finally, we remove the default margin and padding that the browser applies to the
menu item automatically. The following listing shows our CSS.

.share__menu-item { list-style: none; }

.share__menu {
 display: flex;

Listing 11.4 Share button hover and focus CSS

Listing 11.5 Share menu and menu items

Figure 11.4 Styled Share button

Figure 11.5 Share-button hover

316 CHAPTER 11 Animated social media share links
 margin: 0;
 padding: 0;
}

When we look at our output (figure 11.6), we notice that we need some space between
the edge of our container and our elements. We’ll handle this task while styling the
individual links.

11.5.3 Share links

To make sure that the links have a circle border on hover (rather than an ellipse), we
set both their height and width to 48 pixels. Next, we curve their corners. This step
also resolves our spacing problem because, as we see in listing 11.6, we’ve set the icon
height and width to 24. Because we’re making the links 48 pixels in both height and
width, when the links are centered, we’ll have 12 pixels of whitespace between each
icon and the edge of its link.

<li role="menuitem" class="share__menu-item">
 <a href="https:/ /www.facebook.com/sha..."
 target="_blank"
 rel="nofollow noopener"
 tabindex="-1"
 class="share__link"
 >

We also give the links a transparent border. Borders take up space, so to prevent the
content from shifting on hover or focus when we expose the border, we add a trans-
parent border by default and then color it when we want to show it. This approach
ensures that the space needed for the border is allotted and prevents the content suc-
ceeding the element from shifting when the border is exposed.

 To center the icon in the middle of the circle, we use flex, justifying the content
and aligning the items to the center. Our CSS looks like the following listing.

.share__link:link,

.share__link:visited {
 height: 48px;
 width: 48px;
 border-radius: 50%;
 display: flex;

Listing 11.6 List Item HTML

Listing 11.7 Styling the links

Figure 11.6 Styled menu

31711.5 Styling the elements
 align-items: center;
 justify-content: center;
 border: solid 1px transparent;
}

With our links styled (figure 11.7), we can style the links for the hover and focus states.

11.5.4 scale()

On hover and focus, we’re going to expose the border by changing its color from
transparent to black. When we set the border on the links, we used the border short-
hand property, which allows us to define the style, border width, and border color in
one declaration. Because we’re changing only the color, we’ll use border-color
rather than the border shorthand. By using border-color, we can edit the border’s
color without worrying about the rest of the already defined properties.

 Next, we’ll use the scale() function to increase the size of the icon to make it look as
though it’s magnified. In chapter 2, while expanding the loader bars, we used scaleY()
to grow and shrink the bar vertically. In this project, we want our links to grow propor-
tionally, so we’ll use scale(). When passed a single parameter, this function grows the
element (both horizontally and vertically) proportionally by the same amount.

 The scale() function is the shorthand for combining scaleX() and scaleY(). If
only one value is passed, the scale() amount is applied both vertically and horizon-
tally. If two parameters are passed, the first parameter defines horizontal scale, and
the second defines vertical scale.

 On hover or focus, we want the links to be 25% larger than when they’re not being
interacted with, so we’ll give our function a single parameter of 1.25 and apply it to
the transform property. Our CSS looks like the following listing.

.share__link:hover,

.share__link:focus-visible {
 border-color: black;
 outline: none;
 transform: scale(1.25);
}

With the styles applied, our links grow on hover (figure 11.8), but because now the
link is taller than the container, gaps at the top and bottom of the link don’t have the
yellow background.

Listing 11.8 Styling the links on hover and focus

Figure 11.7 Styled share links

Figure 11.8 Link on hover

318 CHAPTER 11 Animated social media share links
To create our magnification effect, we want the entire link to remain yellow. We could
add a yellow background to the link, which would accomplish that task, but the back-
ground needs to be yellow because the block’s background color is yellow. If we
changed the background color of the container, we’d want the link’s background
color to change as well. To make sure that the colors stay in sync, we could use a cus-
tom property (CSS variable) or make the element inherit the color from its parent.

11.5.5 The inherit property value

The background-color property isn’t inherited by default. We want to explicitly
instruct the link to inherit the background color. To this inheritance from its parent,
we can set the background-color property value for the link to inherit. Inheritance,
however, goes up only to the parent. In our case, the element that controls the back-
ground color is the link’s great-grandparent, as shown in figure 11.9.

We need to make the link, menu, and menu-item rules inherit the background-color
to make it trickle down to the link. After we give all three elements a background-
color value of inherit (figure 11.10), we notice that although we’ve fixed the gaps in
the link being hovered over, we’ve lost the curve on the right side of the component.

We lost our curve because, like background-color, border-radius isn’t inherited. To
fix the problem, we apply the same logic that we used for background-color. List-
ing 11.9 shows our edited CSS. Notice that the border-radius of the link wasn’t
edited. We want to keep the link’s shape as a circle, so we keep the border-radius:
50% declaration on the link.

.share__menu-item {
 list-style: none;

Listing 11.9 Inheriting property values

div.share

menu.share__menu

li.share__menu-item

a.share__link

Parent

Grandparent

Great-grandparentbackground:
#ffe46a;

Figure 11.9 Ancestors of the media links

Figure 11.10 Inherited
background-color

31911.6 Animating the component
 background: inherit;
 border-radius: inherit;
}

.share__menu {
 display: flex;
 margin: 0;
 padding: 0;
 background: inherit;
 border-radius: inherit;
}

.share__link:hover,

.share__link:focus-visible {
 border-color: black;
 outline: none;
 transform: scale(1.25);
 background: inherit;
}

Although inheriting values in this manner can be a bit cumbersome, it allows us to
make sure that the color is controlled from one place. This approach benefits main-
tainability in case we decide to change the background’s color, and it sets us up to
expand our component to support multiple themes. Another option would be to use
a custom property for our color.

 With the border-radius and background-color inherited, our hover and focus
styles are complete (figure 11.11), but the change when we hover over the link is
abrupt. Let’s animate the size change.

11.6 Animating the component
In chapter 2, we used keyframes to create animation, which allowed us to define steps
for our animation. For our hover state, we already have our start and end states
defined. We’re transitioning from one state (not hovered or focused) to another (hov-
ered or focused), whose styles are already defined in rules. So instead of using an ani-
mation, we’re going to use a transition.

11.6.1 Creating a transition

A transition doesn’t require a keyframe but still allows us to animate the change of
styles from one state to another. The transition property allows us to define which
property changes should be animated, as well as the duration and timing function. By

Makes the
link a circle

T
im

e

Figure 11.11 Share-link hover effect

320 CHAPTER 11 Animated social media share links
adding transition: transform ease-in-out 250ms; to our .share__link rules, we
tell the browser to animate the size change of our link (listing 11.10).

 To choose the amount of time the transition needs to take, we choose something
relatively fast: 250 milliseconds. We want to keep the animation slow enough to be vis-
ible but fast enough to be snappy. If we make the transition too slow, our project will
look laggy and distract users from performing the task they’re trying to accomplish
(sharing the content).

.share__link:link,

.share__link:visited {
 text-decoration: none;
 display: flex;
 flex-direction: column;
 align-items: center;
 justify-content: center;
 height: 48px;
 width: 48px;
 border-radius: 50%;
 border: solid 1px transparent;
 transition: transform ease-in-out 250ms;
}

NOTE You may notice that after adding the transition, the outline gets chopped
off on hover. The reason is that JavaScript drives the opening and closing of
the component and toggles overflow and visibility. We go into detail on
what the JavaScript is doing in section 11.6.2. Clicking the Share button tog-
gles this behavior.

In our transition, we specifically tell the browser to animate the changes that occur on
the transform property, but we don’t have a transform property in our .share__
link:link, .share__link:visited rule. When we run the code, however, we notice
that our size change is animated and that the code works. This behavior occurs
because, when not defined, scale() equals scale(1) by default. Therefore, we’re ani-
mating going from scale(1) to scale(1.25) when we hover or focus the link and
then animating the scale back to scale(1) when we move away from the link.

 Next, we’re going to animate hiding and exposing the links when the button is
clicked.

11.6.2 Opening and closing the component

Remember that our goal is for the component to hide our menu of links by default
and expose it only when the Share button is clicked (figure 11.12).

 The first thing we need to do is hide the menu items by default. To achieve this
task, we’ll give the menu a width of 0 and hide the overflow, as shown in listing 11.11.

Listing 11.10 Transitioning the link size change

32111.6 Animating the component
.share__menu {
 display: flex;
 margin: 0;
 padding: 0;
 background: inherit;
 border-radius: inherit;
 width: 0;
 overflow: hidden;
}

With our menu hidden (figure 11.13), we need to toggle exposing and hiding the
menu when the Share button is clicked.

Our JavaScript handles part of the behavior for us. At the beginning of this chapter,
we mentioned that we’ll need some JavaScript for this project. When we open the
JavaScript file, we notice that it contains a lot of code (listing 11.12).

(() => {
 'use strict';

 let expanded = false;
 const container = document.getElementById('share');
 const shareButton = document.getElementById('shareButton');
 const menuItems = Array.from(container.querySelectorAll('li'));
 const menu = container.querySelector('menu');

 addButtonListeners();
 addListListeners();
 addTransitionListeners();

 function addButtonListeners() {
 shareButton.addEventListener('click', toggleMenu);
 shareButton.addEventListener('keyup', handleToggleButtonKeypress);
 }

Listing 11.11 Hiding the menu

Listing 11.12 JavaScript file

Closed Open

Figure 11.12 Closed and expanded states

Makes the width
of the menu
equal to 0

Hides the overflow so
that the links within
are also hidden

Figure 11.13 Hidden menu

Adds event listeners to the Share button for
clicks and keypresses to open and close the

menu via both keyboard and mouse

322 CHAPTER 11 Animated social media share links

 to
s
o

Ad
lis

the
kn
tr

start
 function addListListeners() {
 menuItems.forEach(li => {
 const link = li.querySelector('a');
 link.addEventListener('keyup', handleMenuItemKeypress);
 link.addEventListener('keydown', handleTab);
 link.addEventListener('click', toggleMenu);
 })
 }

 function addTransitionListeners() {
 menu.addEventListener('transitionstart', handleAnimationStart);
 menu.addEventListener('transitionend', handleAnimationEnd);
 }

 function handleToggleButtonKeypress(event) {
 switch(event.key) {
 case 'ArrowDown':
 case 'ArrowRight':
 if (!expanded) { toggleMenu(); }
 moveToNext();
 break;
 case 'ArrowUp':
 case 'ArrowLeft':
 if (expanded) { toggleMenu(); }
 break;
 }
 }

 function handleMenuItemKeypress(event) {
 switch(event.key) {
 case 'ArrowDown':
 case 'ArrowRight':
 moveToNext();
 break;
 case 'ArrowUp':
 case 'ArrowLeft':
 if (event.altKey === true) {
 navigate(event);
 toggleMenu();
 } else {
 moveToPrevious();
 }
 break;
 case 'Enter':
 toggleMenu();
 break;
 case ' ':
 navigate(event);
 toggleMenu();
 break;
 case 'Tab':
 event.preventDefault();
 toggleMenu();
 break;
 case 'Escape':

Adds event listens
the links for click
and keypresses t
handle keyboard
navigation within
the menu

ds event
teners to
 menu to
ow when
ansitions
 and end

Handles keyboard
up- and down-arrow
functionality or the
Share button

Handles keypress on
links for keyboard
navigation within
the menu, including
exiting the menu

32311.6 Animating the component

W
is
m

foc
spe

o

retu
the t

rea
las

t

 toggleMenu();
 break;
 case 'Home':
 moveToNext(0);
 break;
 case 'End':
 moveToNext(menuItems.length - 1);
 break;
 }
 }

 function handleTab(event) {
 if (event.key !== 'Tab') { return; }
 event.preventDefault();
 }

 function toggleMenu(event) {
 expanded = !expanded;
 shareButton.ariaExpanded = expanded;
 container.classList.toggle('share_expanded');
 if (expanded) {
 menuItems.forEach(li => li.removeAttribute('tabindex'));
 }
 if (!expanded) {
 menuItems.forEach(li => {
 li.removeAttribute('data-current');
 li.tabIndex = -1;
 })
 shareButton.focus();
 }
 }

 function moveToNext(next = undefined) {
 const selectedIndex = menuItems.findIndex(
 li => li.dataset.current === 'true'
);
 let newIndex
 if (next) {
 newIndex = next;
 } else if (
 selectedIndex === -1 || selectedIndex === menuItems.length - 1) {
 newIndex = 0;
 } else {
 newIndex = selectedIndex + 1;
 }

 if (selectedIndex !== -1) {
 menuItems[selectedIndex].removeAttribute('data-current');
 }
 menuItems[newIndex].setAttribute('data-current', 'true');
 menuItems[newIndex].querySelector('a').focus();
 }

Handles keypress on
links for keyboard
navigation within
the menu, including
exiting the menu

Prevents tab from navigating between
the links because on tab, we want to
return focus to the Share button rather
than go to the next link

Opens and
closes the
menu

hen next
 defined,
oves the
us to the
cific item
by index;
therwise,

cycles
through

the links,
rning to
op when
the user
ches the
t item in
he menu

324 CHAPTER 11 Animated social media share links

fo
pr
a
t
t

fi
 function moveToPrevious() {
 const selectedIndex = menuItems.findIndex(li => li.dataset.current);
 const newIndex = selectedIndex < 1
 ? menuItems.length – 1
 : selectedIndex - 1;
 if (selectedIndex !== -1) {
 menuItems[selectedIndex].removeAttribute('data-current');
 }
 menuItems[newIndex].setAttribute('data-current', 'true');
 menuItems[newIndex].querySelector('a').focus();
 }

 function navigate(event) {
 const url = event.target.href;
 window.open(url);
 }

 function handleAnimationStart() {
 if (!expanded) { menu.style.overflow = 'hidden' };
 }

 function handleAnimationEnd() {
 if (expanded) { menu.style.overflow = 'visible' }
 }
})()

Most of the code handles keyboard accessibility for the component, and listing 11.13
shows the parts that are relevant to the button click. When the page loads, we default
the component to being closed and find the element’s container, which we assign to
the container variable. Then we add event listeners to the button so that when the
button is clicked, the toggleMenu() function is triggered. When the button is clicked,
we change the expanded variable to its inverse. If the setting was true, it becomes
false, and vice versa. Finally, we add or remove the share_expanded class.
classList.toggle() adds the class if it’s not present and removes it if it is.

(() => {
 ...
 let expanded = false;
 const container = document.getElementById('share');
 ...
 function addButtonListeners() {
 shareButton.addEventListener('click', toggleMenu);
 ...
 }

 function toggleMenu(event) {
 expanded = !expanded;
 ...
 container.classList.toggle('share_expanded');
 ...

Listing 11.13 Opening and closing the menu (JavaScript)

Moves
cus to the

evious link
nd returns
he user to
he bottom
of the list

when they
reach the

rst item in
the menu

Navigates the user when the action is
keyboard-triggered and not the default
click or keypress; used when the user
presses the spacebar on a menu item

Hides overflow when
the menu is closing

If open, shows overflow to
allow the magnified icon to
expand outside the container

Defines a variable
to hold our
current state

Defines a variable
for our HTML
container element

Defines what
happens when the
button is clicked

Toggles the expanded
variable value

Handles adding and
removing share_expanded

32511.6 Animating the component
 ...
 }

NOTE Because this book is about CSS, the JavaScript is included in the starter
code. If you’re following along, you don’t need to make any edits to the Java-
Script to make it work.

All put together, this code adds the share_expanded class to the container when the
Share button is clicked. If share_expanded is already open, the code removes it. We
had hidden our menu items, but now we’ll show them when the share_expanded class
is present.

NOTE Remember that we decided to use BEM for our class-name convention.
Our class name has only one underscore because expanded is our modifier.
We use a modifier because we’re changing (modifying) the style based on the
state (open/closed). We have the block (share) and the modifier (expanded);
therefore, our class name is block_modifier or share_expanded.

To show the links when the component is marked as expanded, we must increase the
width of the menu, as shown in listing 11.14. We also add a little horizontal padding to
create some room around the menu.

 To calculate the width of the menu, we multiply the number of links by their width.
The link’s width is 48 pixels (which we hard-set) plus the border (1 pixel on each
side). Therefore, the menu’s width is width = 4 ×(48 + 2) = 200px.

.share_expanded .share__menu {
 width: 200px;
 padding: 0 2rem 0 1rem;
}

After clicking the button and hovering over the first link, we see that our link no lon-
ger expands outside the menu (figure 11.14). We also see that after we hover over the
links and close the menu, our menu items continue to display until we hover over
them again.

Listing 11.14 Showing the menu

Click Share.

Hover over first link.

Will cut off before

expanding correctly.

Click Share.

Won’t hide the menu items

until we hover over the links.

1

2

3

Figure 11.14 Expanded component on click

326 CHAPTER 11 Animated social media share links
Remember that our JavaScript triggers when transitions start and end and is respon-
sible for controlling our overflow. Although we’ve already animated the style
changes for hovering over the individual menu items, we haven’t added the transi-
tion for opening and closing the menu yet. When we add that transition, overflow
will be set correctly when the transition activates and finishes, making these prob-
lems go away.

 The next task we need to accomplish is to maintain the button outline that’s usually
present on hover when the component is open. Because we already have a rule to add
the border on hover and focus, we’re going to edit the rule to trigger when the compo-
nent is open. By reusing the rule, we ensure that the styles will be consistent in the hover
and focus states and when the list is visible. To add the condition, we add the .share_
expanded .share__button selector to the rule, as shown in the following listing.

.share__button:hover,

.share__button:focus-visible,

.share_expanded .share__button {
 cursor: pointer;
 outline: solid 1px black;
 outline-offset: -5px;
}

With the selector added, our button keeps its border after the component is expanded
(figure 11.15); and when the component is closed and not focused or hovered, the
border stays absent.

11.6.3 Animating the menu

Now that we’ve set our styles for both the open and closed states, let’s animate the
showing and hiding of the menu. We want the link list to expand from the left, as
depicted in figure 11.16.

Listing 11.15 Adding button border to Share button when list is displayed

Figure 11.15 Maintaining the Share-
button border when list is displayed

T
im

e

Figure 11.16 Breakdown
of opening animation

32711.6 Animating the component
When the menu closes, we’ll want to perform the inverse of the opening animation,
retracting the menu and hiding the link. We’ll do the same for the magnification
effect on the links, using a transition. We don’t need to use keyframes because the ani-
mation is going to be performed only once (when the button is clicked) and we
already have the two states defined.

 We’ll add the transition declaration to the menu as follows: transition: width
250ms ease-in-out. Again, we want to keep the transition snappy, so we give it a dura-
tion of 250 milliseconds.

 After we add the transition, we realize that icons are becoming visible before they
should. Figure 11.17 breaks down the effect.

Even if we change the transition to transition all properties instead of only width, the
same problem occurs. The cause is overflow. When the menu is closed, we want the
menu’s overflow to be hidden; when it’s open, we want it to be visible. But overflow
can’t be changed gradually, like width. It’s either visible or it’s not. There’s no in-
between state.

 When opening the menu, we want to wait until the transition is done before we
change overflow to visible. When we close, we want the overflow to be hidden
immediately. This task is where we turn to JavaScript to support our CSS. We’ll remove
overflow: visible from our .share_expanded .share__menu class and handle add-
ing it via JavaScript.

 Listing 11.16 singles out the relevant JavaScript for handling the overflow. The
magic lies in the transitionstart and transitionend event listeners. Attached to
the menu, they listen for when the transition is triggered and when it’s done perform-
ing the change. When the event happens, they trigger their functions to handle the
overflow for the menu.

(() => {
 'use strict';

 let expanded = false;
 const container = document.getElementById('share');

Listing 11.16 JavaScript for handling overflow

T
im

e

Figure 11.17 Icons
displaying too soon

328 CHAPTER 11 Animated social media share links

pr
closin

the
 const menu = container.querySelector('menu');
...
 addTransitionListeners();
...
 function addTransitionListeners() {
 menu.addEventListener('transitionstart', handleAnimationStart);
 menu.addEventListener('transitionend', handleAnimationEnd);
 }
...
 function handleAnimationStart() {
 if (!expanded) { menu.style.overflow = 'hidden'; }
 }
...
 function handleAnimationEnd() {
 if (expanded) { menu.style.overflow = 'visible'; }
 }
})()

NOTE As we mention earlier in the chapter, the JavaScript is included in the
starter code. If you’re following along, you don’t need to edit the JavaScript; it
should work.

The next listing shows the CSS that makes the animation work.

.share__menu {
 display: flex;
 margin: 0;
 padding: 0;
 background: inherit;
 border-radius: inherit;
 width: 0;
 overflow: hidden;
 transition: width 250ms ease-in-out;
}

With these last edits made to make the animation smooth, we’ve finished our ani-
mated social media share component. The final product is shown in figure 11.18.

Listing 11.17 Updated CSS for open and close animation

Triggers when the
transition startsIf in the

ocess of
g, hides
 menu’s
overflow Triggers when the

transition ends

If just opened,
shows the
overflow

Adds the
animation

Closed Open

Figure 11.18 Final product

329Summary
Summary
 We have several ways to organize CSS. Three common patterns are OOCSS,

SMACSS, and BEM.
 Icons are subject to copyright, so follow brand guidelines when using social

media icons.
 We can make elements displayed via Flexbox behave like inline-level elements

by using inline-flex. inline-flex uses the same properties as flex.
 The position of an outline can be controlled via outline-offset.
 The scale() function allows us to grow or shrink an element proportionally.
 The inherit property value allows us to inherit values from the parent element

that generally wouldn’t be inherited.
 Transitions don’t require keyframes but still allow us to animate CSS changes

from one state to another.
 The overflow property allows us to control whether elements that extend

beyond their container are displayed or hidden.
 When using JavaScript to extend our transitions’ functionality, we can use the

ontransitionstart and ontransitionend event listeners to trigger JavaScript
change in response to the transition’s life cycle.

Using preprocessors
So far in this book, we’ve been writing all our styles using plain CSS. We can also
use preprocessors, however. Each processor has its own syntax, and most preproces-
sors extend the existing CSS functionality. The most commonly used are

 Sass (https://sass-lang.com)
 Less (https://lesscss.org)
 Stylus (https://stylus-lang.com)

They were created to facilitate writing code that’s easier to read and maintain as
well as to add functionality that’s not available in CSS. Styles written for use with
preprocessors have their own syntax and must be built or compiled into CSS.
Although some preprocessors provide browser-side compilation, the most common
implementation is to preprocess the styles and serve the output CSS to the browser
(http://mng.bz/Wzex).

 The benefit of using a preprocessor is the added functionality it provides,
examples of which we cover in this chapter. The drawback is that now we need a
build step for our code. The choice of preprocessor is based on what functionality

This chapter covers
 CSS preprocessors

 Examples of how Sass extends CSS functionality
330

https://sass-lang.com
https://lesscss.org
https://stylus-lang.com
http://mng.bz/Wzex

33112.1 Running the preprocessor
is needed for the project, the team’s knowledge, and (if the project uses a frame-
work) which frameworks are supported. For our project, we’re going to choose
based on popularity. When developers were surveyed about their sentiments regard-
ing CSS preprocessors, the majority favored Sass (figure 12.1), so that’s what we’re
going to use.

12.1 Running the preprocessor
Our project consists of styling a how-to article—something we might see in a wiki or
documentation (figure 12.2).

 As in earlier chapters, the starting code is available at GitHub (http://mng.bz/EQnl)
and CodePen (https://codepen.io/michaelgearon/pen/WNpNoGN). But running
the project is going to be a little bit different. Because we’re going to write our styles
with Sass, which outputs the CSS rather than writing it directly, we’ll need a build step.
To run this project and code along with this chapter, you have two options:

 npm
 CodePen

NOTE npm (Node.js package manager) is a software library, manager, and
installer. If you aren’t familiar with npm, that’s OK. You can run this project
in CodePen, following the instructions in section 12.1.3.

12.1.1 Setup instructions for npm

Via the command line from the chapter-12 directory, install the dependencies using
npm install; then start the processor using npm start. This command starts a
watcher that will monitor changes in styles.scss (in the before and after directo-
ries) and output the styles.css and styles.map.css files.

 The second file—styles.map.css—is a source map. Because the CSS was gener-
ated from another language, the source map allows the browser’s developer tools to

Positive/negative split

Figure 12.1 Preprocessor sentiment (data source http://mng.bz/8ry2)

http://mng.bz/EQnl
https://codepen.io/michaelgearon/pen/WNpNoGN
http://mng.bz/8ry2

332 CHAPTER 12 Using preprocessors
Figure 12.2 Finished project

33312.1 Running the preprocessor
tell us where the piece of code originated in the preprocessed file (for this project,
styles.scss).

12.1.2 .sass versus .scss

Although we’re using Sass, our file extension is .scss. Sass has two syntaxes we can
choose—indented and SCSS—and the file extension reflects the syntax.

INDENTED SYNTAX

Sometimes referred to as Sass syntax, indented syntax uses the .sass file extension.
When writing rulesets using this syntax, we omit curly braces and semicolons, using
tabs to describe the format of the document. The following listing shows two rules
using indented syntax, the first handling margin and padding on the body text and
the second changing the line height of the paragraphs.

body
 margin: 0
 padding: 20px

p
 line-height: 1.5

SCSS SYNTAX

The second syntax is SCSS, which uses the file extension .scss. We’ll use that syntax
in this project. SCSS syntax is a superset of CSS that allows us to use any valid CSS in
addition to Sass features. The following listing shows the rules from listing 12.1 in
SCSS syntax.

body {
 margin: 0;
 padding: 20px;
}

p {
 line-height: 1.5;
}

The code looks like CSS, which is exactly the point. In SCSS, we can write CSS the way
we’re used to writing it and have access to all the functionality Sass provides as well.
Because of its similarity to CSS, and because it doesn’t require developers to learn a
new syntax, SCSS is the more popular of the two syntax options.

Listing 12.1 Sass using indented syntax

Listing 12.2 Sass using SCSS syntax

334 CHAPTER 12 Using preprocessors
12.1.3 Setup instructions for CodePen

To set up the project for CodePen, follow these steps:

1 Go to https://codepen.io.
2 In a new pen, using the code in the chapter-12/before folder, copy the HTML

inside the body element to the HTML panel.
3 Copy the starting styles in the .scss file to the CSS panel.
4 To make the panel use Sass with SCSS syntax instead of CSS, click the gear in

the top-right corner of the CSS panel (figure 12.3).

5 Choose SCSS from the CSS Preprocessor drop-down menu (figure 12.4).

6 Click the green Save & Close button at the bottom of the Pen Settings dialog box.

12.1.4 Starting HTML and SCSS

Our project is composed of headers, paragraphs, links, and images (listing 12.3).
Notice that in our head, we reference the CSS stylesheet, not the SCSS. The browser
uses the compiled version.

Figure 12.3 Settings button

Figure 12.4 CodePen CSS preprocessor settings

https://codepen.io

33512.1 Running the preprocessor
<!DOCTYPE html>
<html lang="en">

<head>
 <title>Chapter 12: Pre-processors | Tiny CSS Projects</title>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="styles.css">
</head>

<body>
 <h1>Keeping it Sassy</h1>
 <h2>Step 1</h2>

 <p>
 Lorem ipsum dolor sit amet...
 tincidunt purus
 eu, gravida enim. Vestibulum...
 </p>
 <p class="success">You did it!</p>
 <p>Ut maximus id erat et mollis...</p>
 <h2>Step 2</h2>

 <p>Aenean non lorem tincidunt...</p>
 <p class="warning">Don't press the big red button</p>
 <p>
 Proin pharetra, urna et sagittis lacinia...
 orci luctus
 et ultrices posuere cubilia curae…
 </p>
 <h2>Step 3</h2>

 <p>Nullam ut auctor nisi...</p>
 <p class="error">Mistakes have been made</p>
 <p>Vestibulum interdum eleifend...</p>
</body>

</html>

Our starting styles set up our typography and constrain the content’s width when the
page gets wide, as shown in the following listing.

@import url('https:/ /fonts.googleapis.com/css2?

➥ family=Nunito:wght@300;400;500;800&display=swap');

body {
 font-family: 'Nunito', sans-serif;
 font-weight: 300;

Listing 12.3 Starting HTML

Listing 12.4 Starting SCSS

Links to the
processed
CSS file

Green success
callout

Orange
warning
callout

Red error
callout

336 CHAPTER 12 Using preprocessors
 max-width: 72ch;
 margin: 2rem auto;
}

p { line-height: 1.5 }

So far, we’re not using any of the extended functionality that Sass provides. As a
matter of fact, if we look at the CSS output (listing 12.5), we notice that the file
contents are the same except for the map reference at the bottom of the file. This
comment tells the browser where to find the source map. Figure 12.5 shows our
starting point.

NOTE If you’re using CodePen, you can view the compiled CSS by clicking
the down arrow next to the gear in the top-right corner of the CSS panel
(refer to figure 12.3) and choosing View Compiled CSS from the drop-down
menu.

@import url("https:/ /fonts.googleapis.com/css2?

➥ family=Nunito:wght@300;400;500;800&display=swap");
body {
 font-family: "Nunito", sans-serif;
 font-weight: 300;
 max-width: 72ch;
 margin: 2rem auto;
}

p {
 line-height: 1.5;
}

/*# sourceMappingURL=styles.css.map */

NOTE If you aren’t seeing the CSS file being created and styles being applied,
make sure that you’re running the Sass watcher (npm start). When the
watcher starts, let it run in the background; it updates the CSS file automati-
cally when you save your changes in the SCSS file. You’ll still need to refresh
the browser manually.

Listing 12.5 Starting CSS output

Source map
reference

33712.1 Running the preprocessor
Figure 12.5 Starting point

338 CHAPTER 12 Using preprocessors
12.2 Sass variables
One reason why preprocessors became popular early on is that they had variables
before browsers supported custom properties. Sass variables are quite distinct from
CSS custom properties in that they have different syntax and function differently.
Let’s first look at the syntax. To create a variable, we start with a dollar sign ($) fol-
lowed by the variable name, a colon (:), and then a value (figure 12.6).

In terms of functionality, Sass variables aren’t aware of the Document Object Model
(DOM) and don’t understand cascading or inheritance. They’re block-scoped: only
properties within the curly braces they’re defined in know about their existence.
Therefore, the scenario presented in the following listing would throw an undefined
variable error at compile time because the variable is defined and used in two differ-
ent rules or blocks.

body {
 $myColor: blue;
}

body p {
 /* $myColor is undefined */
 color: $myColor
}

To prevent this problem, we can place our variables outside a rule, which would make
them available to the entire document, as shown in the following listing.

$myColor: blue;

body p {
 color: $myColor;
}

Unlike custom properties, which are dynamic, Sass variables are static. If we define a
variable, use it, change its value, and then use it again, any property it was assigned to
before the change will retain the original value, and those assigned after the change

Listing 12.6 $myColor variable undefined in second rule

Listing 12.7 Defining variables

$primary: #063373;

$ makes it

a variable.

Value

Variable name

(includes the $)

Figure 12.6 Sass variable syntax

Defines the $myColor
variable inside the
body rule

$myColor is undefined
because it was created
inside a different rule.

Defines the $myColor
variable outside any ruleset

$myColor is now defined
and has a value of blue.

33912.2 Sass variables
will have the new value. The examples shown in listings 12.8 and 12.9 make this situa-
tion a bit clearer. Note that the examples aren’t part of our project; we present them
here only to illustrate the concept. You can find the code on CodePen at https://code-
pen.io/martine-dowden/pen/QWxLjWy.

<p class="first">My first paragraph</p>
<p class="second">My second paragraph</p>

body { --myBorder: solid 1px gray; }
$primary: red;

.first {
 color: $primary;
 border: var(--myBorder);
}

body { --myBorder: dashed 1px purple; }
$primary: blue;

.second {
 color: $primary;
 border: var(--myBorder);
}

The first big difference between the custom properties and the variables is that we
aren’t required to have our variables inside a rule. Also, the border styles of both
paragraphs are the same, but the color of the text is not (figure 12.7), even though
both the custom property and the variable were reassigned between the first and
second rule.

When we reassign the value of the custom property (the border), it’s applied every-
where, whereas the color doesn’t change retroactively; only the rule after the change
is affected. The reason is that custom properties are dynamic and variables are static.

Listing 12.8 Custom properties versus variables (HTML)

Listing 12.9 Custom properties versus variables (SCSS)

Assigns the --myBorder
custom property a solid
gray border

Assigns the color red to
our $primary variable

Applies the --myBorder custom
property and $primary variable to
the color and border properties

Changes the --myBorder
custom property value to
a dashed purple border

Changes the $primary value
to the color blue

Applies the --myBorder
and $primary to the
second paragraph

Figure 12.7 Example output

https://codepen.io/martine-dowden/pen/QWxLjWy
https://codepen.io/martine-dowden/pen/QWxLjWy

340 CHAPTER 12 Using preprocessors
 With this understanding, let’s get back to our project and define some variables for
the colors we’ll use. At the top of the file, we’ll define four color variables. Then we’ll
apply the primary color to all our headers, as shown in the following listing.

@import url('https:/ /fonts.googleapis.com/css2

➥ ?family=Nunito:wght@300;400;500;800&display=swap');

$primary: #063373;
$success: #747d10;
$warning: #fc9d03;
$error: #940a0a;

p { line-height: 1.5 }

h1, h2 { color: $primary; }

We place our variables at the beginning of our file and outside any rule, so that from
that point on and inside any rule, we can have access to them. We notice in our CSS
output (listing 12.11) that our variables aren’t visible in the compiled CSS. But in the
rule defining our header color, the place where we used one of our variables has been
replaced by its value.

@import url("https:/ /fonts.googleapis.com/css2

➥ ?family=Nunito:wght@300;400;500;800&display=swap");
body {
 font-family: "Nunito", sans-serif;
 font-weight: 300;
 max-width: 72ch;
 margin: 2rem auto;
}

p {
 line-height: 1.5;
}

h1, h2 {
 color: #063373;
}

/*# sourceMappingURL=styles.css.map */

Now our project headers look like figure 12.8. Let’s style our images next.

Listing 12.10 Color variables (SCSS)

Listing 12.11 Heading-color CSS output

Blue
Green

Orange
Red

Makes our
headers blue

Figure 12.8 Updated header color

34112.2 Sass variables
12.2.1 @extend

Sass gives us several new at-rules, two of which are @extend and @include. These rules
allow us to build generic classes that we can reuse throughout our code. One way we
can reuse classes in CSS is to have multiple selectors for a single rule, as we did when
we styled our headers. Instead of creating two identical rules for each header (<h1>
and <h2>), we created one rule and gave it two selectors: h1, h2 { }.

@extend allows us to create a base rule that we can point to from a different rule
later. Then the selector will be added to the base rule’s list of selectors. Let’s use this
technique to style our images and see it at work.

 First, we create the base rule that will define the height, width, object-fit, and
margin for our image. Because we have three images, and because we want to give
each image a slightly different border radius and positioning, we point each image
individually back to our base-image rule. The following listing shows how.

.image-base {
 width: 300px;
 height: 300px;
 object-fit: cover;
 margin: 0 2rem;
}

img:first-of-type { @extend .image-base; }
img:nth-of-type(2) { @extend .image-base; }
img:last-of-type { @extend .image-base; }

The following listing shows the CSS output.

.image-base, img:last-of-type, img:nth-of-type(2), img:first-of-type {
 width: 300px;
 height: 300px;
 object-fit: cover;
 margin: 0 2rem;
}

By creating a base rule and then using @extend, we can create some defaults and
apply them to any other selector without duplicating our CSS code. We can also keep
all our code related to a selector in one rule. With our default image styles applied
(figure 12.9), let’s customize them individually.

Listing 12.12 Extending image styles (SCSS)

Listing 12.13 Extending image styles (CSS output)

Base
rule

Images extending
the base rule

342 CHAPTER 12 Using preprocessors
12.3 @mixin and @include
We want to customize each image’s border-radius, position, and object-position.
To do this, we’re going to use a mixin. Mixins allow us to generate declarations and
rules. Like functions, they take parameters (although they’re not mandatory) and
return styles. Let’s write one that will return our three declarations for each image. A
mixin is an at-rule, so it starts with @mixin followed by the name we want to give it.
Next, we add parentheses with any parameters we want to pass in. Finally, we add a

Figure 12.9 Base image styles

34312.3 @mixin and @include
set of curly braces, inside which we define the styles we want the mixin to return. Fig-
ure 12.10 shows the syntax.

Notice that each parameter starts with a dollar sign. In Sass, the name of the parame-
ter is defined the same way as a variable starting with $.

 Inside the mixin, we assign these parameter values to properties, as shown in list-
ing 12.14. We alter the border radius, float the image, and remove the margin on the
side it is being floated to. Note that the mixin needs to be defined before it can be
used, so it’s common to place mixins at the beginning of the file.

@mixin handle-img($border-radius, $position, $side) {
 border-radius: $border-radius;
 object-position: $position;
 float: $side;
 margin-#{$side}: 0;
}

At this point, we don’t see a change in the project. We’ve defined the mixin but
haven’t used it yet. Before we apply it, let’s take a closer look at some of its properties.

12.3.1 object-fit property

In our base rule, we set our object-fit property value to cover. The object-posi-
tion property, which we also use in our mixin, works hand in hand with object-fit
and determines the alignment of the image within its bounding box. Remember that
cover makes the browser calculate the optimum size of the image based on the
dimensions provided so that as much of the image that can be shown without distor-
tion appears.

 If the dimensions provided to the image don’t have the same aspect ratio as the
image, the excess is clipped. object-position changes where the image is positioned
inside the container, allowing us to manipulate which part of the image is clipped
when the ratios don’t match (figure 12.11).

Listing 12.14 Building the mixin (SCSS)

@mixin handle-img($border-radius, $position, $side) { }

Defines it

as a mixin

Name

Parameters

Figure 12.10 Mixin syntax

Interpolation
(section 12.3.2)

344 CHAPTER 12 Using preprocessors
12.3.2 Interpolation

Notice the syntax for the margin: margin-#{$side}: 0;. We added a hash (#) and
curly braces around the variable. This syntax, called interpolation, allows us to insert a
value into our parameter. It embeds the result of the expression inside the curly
braces in our CSS, replacing the hash. If the value of $side is equal to "left", for
example, our declaration will compile to margin-left: 0;.

 You may have encountered interpolation in JavaScript in the context of string
interpolation in template literals: `margin-${side}`. In our project, we’re trying to
concatenate margin- and the value of the $side variable. Because 'margin-' + $side
isn’t a valid property declaration, we use interpolation to insert the value.

12.3.3 Using mixins

Next, we’re going to use our mixin in each image rule. To do that, we use @include
followed by the mixin’s name and, in parentheses, the parameters it requires (fig-
ure 12.12).

 In all three image rules, we use @include handle-img() and pass in the border-
radius, object-position, and float property values we want to use (listing 12.15).

object-position: center

object-position: center

object-position: left

object-position: bottom

object-position: right

object-position: top

Figure 12.11 Visible vs. clipped portions of the image when using object-position in conjunction
with object-fit: cover

@mixin handle-img($border-radius, $position, $side) { … }

img:first-of-type {

@include handle-img(20px 100px 10px 20px, center, left)

} border-radius object-position Float

Figure 12.12
@mixin syntax

34512.3 @mixin and @include

@

All three images have rounded corners (the first parameter of our mixin). Our first
and second image use the border-radius shorthand property, which we’ll talk about
in section 12.3.4.

@mixin handle-img($border-radius, $position, $side) {
 border-radius: $border-radius;
 object-position: $position;
 float: $side;
 margin-#{$side}: 0;
}

img:first-of-type {
 @extend .image-base;
 @include handle-img(20px 100px 10px 20px, center, left);
}

img:nth-of-type(2) {
 @extend .image-base;
 @include handle-img(100px 20px 10px 20px, left top, right);
}

img:last-of-type {
 @extend .image-base;
 @include handle-img(50px, center, left);
}

In our output CSS, the mixin itself isn’t there, but we have three new rules, one for
each image, as shown in the following listing.

.image-base, img:last-of-type, img:nth-of-type(2), img:first-of-type {
 width: 300px;
 height: 300px;
 object-fit: cover;
 margin: 0 2rem;
}

img:first-of-type {
 border-radius: 20px 100px 10px 20px;
 object-position: center;
 float: left;
 margin-left: 0;
}

img:nth-of-type(2) {
 border-radius: 100px 20px 10px 20px;
 object-position: left top;
 float: right;
 margin-right: 0;
}

Listing 12.15 Using the mixin (SCSS)

Listing 12.16 Using the mixin output (CSS)

Selectors
added to
the base
class by

using
extend

Generated by
using the mixin
(@include)

346 CHAPTER 12 Using preprocessors
img:last-of-type {
 border-radius: 50px;
 object-position: center;
 float: left;
 margin-left: 0;
}

This output exposes the difference between using @extend and using a mixin
(@include). When we extend a rule, Sass doesn’t copy or generate code; it only adds
the selector to the base. When we use a mixin, Sass generates code. If we’re setting
properties dynamically, we want to use a mixin. But if the property values are static, we
want to extend; otherwise, we’d be copying those values every time we used the mixin,
bloating our stylesheet. At this point, our project looks like figure 12.13.

Generated by
using the mixin
(@include)

Figure 12.13 Styled images

34712.4 Nesting
12.3.4 border-radius shorthand

For our first and second images, we’re using the border-radius shorthand. The first
image’s generated CSS has a border-radius property value of 20px 100px 10px 20px.
Just as we set different padding values for all four sides of an element in one declara-
tion, border-radius allows us to use a similar syntax (figure 12.14). Each value
defines the radius of the corner starting at top left and rotating clockwise.

Now that our images are styled, let’s take a closer look at our text. In some paragraphs,
we have links to style.

12.4 Nesting
One cool thing that Sass lets us do is nest rules. When we style links, we often write sev-
eral rules so that we can handle the various states (link, visited, hover, focus, and so
on). We can nest them together as shown in listing 12.17. Nesting our rules clearly
shows the ancestor–descendant relationships in our code and keeps our rules grouped
and organized.

 To select the parent selector, we use an ampersand (&). In our rule, the parent
rule is for the anchor element. Inside this rule, we need to reference the parent (a)

border-radius:

50px 0 10px 30px

Top leftTop
left

Top right Bottom right

Bottom
right

Bottom left

border-radius:

50px 0 10px

border-radius:

50px 0

border-radius:

All four sides
50px

Top left and
bottom right

Top right and
bottom left

Top right and
bottom left

Figure 12.14 The border-
radius property

348 CHAPTER 12 Using preprocessors

O

to use with the :link, :visited, :hover, and :focus pseudo-classes, so we precede
them with &.

 We make all our anchor elements bold, make them blue by using our $primary
variable, and edit the underline of our links from solid to dotted. On hover, we make
the underline a dashed line. Finally, we make the focus underline a solid line. On
focus, we also remove the default outline that exists in some browsers.

a {
 font-weight: 800;
 &:link, &:visited {
 color: $primary;
 text-decoration-style: dotted;
 }
 &:hover { text-decoration-style: dashed;}
 &:focus {
 text-decoration-style: solid;
 outline: none;
 }
}

In our CSS output, shown in the following listing, our nested rule has been flattened,
creating individual rules for the anchor element and each of its states. Now our links
look like figure 12.15.

a {
 font-weight: 800;
}
a:link, a:visited {
 color: #063373;
 text-decoration-style: dotted;
}
a:hover {
 text-decoration-style: dashed;
}
a:focus {
 text-decoration-style: solid;
 outline: none;
}

NOTE Nesting is a great way to keep our rules grouped and organized. But
for every level of nesting, there is another level of specificity. In listing 12.17,
we nest the hover and focus inside the anchor (a) rule. The selector in the
output (listing 12.18) for the inner rules are more specific than the outer rule:
a:hover is more specific than a. By nesting rules, we can easily end up creating

Listing 12.17 Nesting rules (SCSS)

Listing 12.18 Nesting rules (CSS output)

All anchor elements:
the parent Anchor elements that

contain an href, both
visited and not

Changes the underline
style to a dotted line

On link hover, changes
the underline style to
a dashed line

n link
focus

Changes the underline
style to a solid line

34912.5 @each
overly specific rules, which decrease performance. We need to be on the look-
out for excessive nesting in our code. If we notice that nesting becomes more
than three levels deep, we should examine how our rules are nested and see
whether some of the rules could be unnested.

With links styled, the next pieces of text we want to turn our attention to are the call-
out paragraphs.

12.5 @each
In our text, we have three callout paragraphs that have classes of success, warning,
and error. As we did when we styled our images (section 12.4), we’ll create a base rule
and then extend it (listing 12.19). The rule defines the border, border-radius, and
padding we want our callouts to have, and it includes the styles all three types have
in common.

.callout {
 border: solid 1px;
 border-radius: 4px;
 padding: .5rem 1rem;
}

Next, instead of writing individual rules for each callout type, we’re going to create a
map, a list of key-value pairs that we can iterate over to generate the rulesets. Because
the differentiating factor of our callouts is the color, our key will be the type, and our
value will be the color variable we defined at the beginning of this chapter. Our map,

Listing 12.19 Callout base rule

Default

Hover

Focus

Figure 12.15 Styled links: (top to bottom) default, hover, and focus

350 CHAPTER 12 Using preprocessors
therefore, will be $callouts: (success: $success, warning: $warning, error:
$error);. Figure 12.16 breaks down the syntax.

With the map created, we can loop over each key-value pair to generate our classes.
For looping, we’ll use @each. This at-rule iterates over all the items in a list or map in
order, which is perfect for our use case. We’ll add the following rule to our SCSS:
@each $type, $color in $callouts {}. The first variable ($type) gives us access to the
key, the second ($color) is the value of the key pair, and the last ($callouts) is the
map we want to iterate over. We’ll put the code to generate our rules inside the curly
braces. To test our loop, we can add an @debug declaration inside the curly braces to
check that our variable values are what we expect (listing 12.20).

NOTE @debug is the Sass equivalent of JavaScript’s console.log(). It allows us
to print values to the terminal. Unfortunately, CodePen doesn’t seem to have
a way to expose Sass debug statements in its console. These statements won’t
show up in the browser’s console, either. You’ll be able to see the debug out-
put only if you’re running the project locally.

$callouts: (success: $success, warning: $warning, error: $error);
@each $type, $color in $callouts {
 @debug $type, $color;
}

In the terminal where we have our Sass watcher running, the @debug statement out-
puts the file name, line number, the word Debug, and the values for our two variables
(listing 12.21). Note that your line numbers may differ slightly from those displayed in
the listing.

Listing 12.20 @debug statement inside our loop (SCSS)

Keys

Values

$callouts: (success: $success, warning: $warning, error: $error);

Parentheses

required when

creating a map

Variable name

for the map

Figure 12.16 Sass map syntax

The map
Sets up
the loop

The debug statement that will
print our $type and $color

values to the terminal

35112.5 @each
before/styles.scss:70 Debug: success, #747d10
before/styles.scss:70 Debug: warning, #fc9d03
before/styles.scss:70 Debug: error, #940a0a
Compiled before/styles.scss to before/styles.css.

Now that we know our loop is working correctly, we can create rules for our callout
types. In each ruleset, we extend our .callout base rule and add the correct border
color for each type by using border-color. The value of the border-color property is
the $color variable that comes from our @each loop. We mentioned earlier that Sass
variables are static (section 12.2). As a result, the $color variable’s value is reassigned
for each key-value pair in the map, assigning the border-color correctly for each call-
out type.

 Next, we add the type name before the paragraph by using the ::before pseudo
element so that we have a visual indicator other than color telling the user what type
of callout it is. Because the type value is lowercase in our map, we also use text-
transform to capitalize it. Listing 12.22 shows our updated loop.

NOTE Never use color alone to convey meaning. Some users, such as those
who are color-blind, may have difficulty perceiving colors or may not be able
to see them at all. In our case, the color conveys the type of callout, so we
should include some other indicator (the text).

.callout {
 border: solid 1px;
 border-radius: 4px;
 padding: .5rem 1rem;
}

$callouts: (success: $success, warning: $warning, error: $error);
@each $type, $color in $callouts {
 @debug $type, $color;
 .#{$type} {
 @extend .callout;
 border-color: $color;
 &::before {
 content: "#{$type}: ";
 text-transform: capitalize;
 }
 }
}

Listing 12.21 Output in terminal

Listing 12.22 Adding to the loop (SCSS)

First key-value pair

Second key-
value pair

Third key-value pair

Interpolation to create
the class name

Interpolation to get
the type name in the
content

352 CHAPTER 12 Using preprocessors
As we did when we used interpolation to create a margin declaration in section 12.3.2,
we use it here to create the class name and add the type to the content. By looping
over the map, our @each rule creates three rules, one for each type. Each selector also
gets added to the .callout rule via the @extend, as shown in the following listing.

.callout, .error, .warning, .success {
 border: solid 1px;
 border-radius: 4px;
 padding: 0.5rem 1rem;
}

.success {
 border-color: #747d10;
}
.success::before {
 content: "success: ";
 text-transform: capitalize;
}

.warning {
 border-color: #fc9d03;
}
.warning::before {
 content: "warning: ";
 text-transform: capitalize;
}

.error {
 border-color: #940a0a;
}
.error::before {
 content: "error: ";
 text-transform: capitalize;
}

Now our three callouts have colored borders (figure 12.17). But we still need to bold-
face Error: in the error callout and add the background colors.

Listing 12.23 Loop CSS output

All three class selectors
(.error, .warning, .success)
are added to the .callout
base class.

35312.6 Color functions
12.6 Color functions
We want the background colors for each callout to be significantly lighter than the
colors we currently have stored in our variables. To make working with colors easier,
Sass provides functions for manipulating colors. We’re going to use scale-color().
The scale-color() function is incredibly versatile and can be used to change the

Figure 12.17 Callout styles including colored borders

354 CHAPTER 12 Using preprocessors
amount of red, blue, and green in a color; change the saturation or opacity; and make
a color lighter or darker (figure 12.18).

Worth noting is the fact that scale-color() operates with either HSL (hue, satura-
tion, and lightness) or RGB (red, green, and blue) parameters; they can’t be mixed.
The alpha (transparency) parameter, however, can be used with either set of parame-
ters. Also, parameters can be omitted. So if we want to change only the opacity, we
need to pass only the initial color and the parameter(s) with which we want to manip-
ulate the color.

 For our backgrounds, we need to increase the lightness of the color, so we use HSL
parameters. We don’t need to change the saturation, so we’ll omit the saturation
parameter and pass in only the color and the amount by which we want to increase
the lightness (86%), as shown in the following listing.

$callouts: (success: $success, warning: $warning, error: $error);
@each $type, $color in $callouts {
 @debug $type, $color;
 .#{$type} {
 @extend .callout;
 background-color: scale-color($color, $lightness: +86%);
 border-color: $color;

Listing 12.24 Adding the background color (SCSS)

scale-color($color: #4287f5, , ,

,

, ,

$red: 10% $green: -80% $blue: -30%)

scale-color($color: #4287f5 $saturation: -10% $lightness: +50%)

HSL parameters

scale-color($color: #4287f5 $alpha: -80%)

RGB parameters

Output

#a5c4f6

#551bac

#4287f533

Output

Output

Color to be

manipulated

Decreases the

saturation by 10%

Increases the

lightness by 50%

Color to be

manipulated

Increases

red by 10%

Decreases

green by 80%

Decreases

blue by 30%

Decreases

opacity by 80%

Note: HSL and RGB parameters cannot be mixed in the same function.

Figure 12.18 The scale-color() function

Increases the lightness
of the color provided

in the map by 86%

35512.7 @if and @else
 &::before {
 content: "#{$type}: ";
 text-transform: capitalize;
 }
 }
}

The following listing shows the color generated by the scale-color() function in our
CSS output.

.callout, .error, .warning, .success {
 border: solid 1px;
 border-radius: 4px;
 padding: 0.5rem 1rem;
}

.success {
 background-color: #f6f9d1;
 border-color: #747d10;
}
.success::before {
 content: "success: ";
 text-transform: capitalize;
}

.warning {
 background-color: #fff1dc;
 border-color: #fc9d03;
}
.warning::before {
 content: "warning: ";
 text-transform: capitalize;
}

.error {
 background-color: #fcd1d1;
 border-color: #940a0a;
}
.error::before {
 content: "error: ";
 text-transform: capitalize;
}

Now that we’ve added the background colors (figure 12.19), all we have left to do is
boldface Error: as part of the ::before content for the error callout.

12.7 @if and @else
Another set of at-rules that are available thanks to Sass are @if and @else, which con-
trol whether a block of code is evaluated and provide a fallback condition if the condi-
tion isn’t met. We’re going to use them inside our loop to boldface only the contents

Listing 12.25 scale-color() function output (CSS)

356 CHAPTER 12 Using preprocessors
of the ::before pseudo-element if the type of callout is error and increase the font
weight to medium (500) for the others.

 If you’re used to JavaScript, a couple of gotchas can trip you up when evaluating
equality in Sass, because Saas doesn’t have truthy/falsy behaviors. Values are consid-
ered to be equal only if they have the same value and type. Also, Sass doesn’t use the
double pipe (||) or double ampersand (&&) but or and and for considering multiple
conditions. The following listing shows examples of some of Sass’s equality operators
and what they resolve to.

@debug '' == false; // false
@debug 'true' == true; // false
@debug null == false; // false
@debug Verdana == 'Verdana'; // true
@debug 1cm == 10mm; // true
@debug 4 > 5 or 8 > 5; // true
@debug 4 > 5 and 8 > 5; // false

To check that our $type variable is equal to 'error', our condition will be $type ==
'error' coupled with @if and @else. Our rule looks like the following listing.

$callouts: (success: $success, warning: $warning, error: $error);
@each $type, $color in $callouts {
 @debug $type, $color;
 .#{$type} {
 @extend .callout;
 background-color: scale-color($color, $lightness: +86%);
 border-color: $color;
 &::before {
 content: "#{$type}: ";
 text-transform: capitalize;
 @if $type == 'error' {
 font-weight: 800;
 } @else {
 font-weight: 500;
 }
 }
 }
}

The following listing shows that font weights have been added to each type in the
CSS output.

Listing 12.26 Equalities (SCSS)

Listing 12.27 Conditionally boldfacing the callout type (SCSS)

true, false, and null
are equal only to
themselves.

Both values are
considered to
be strings.

Converted to the same
unit, they’re equal in
size; therefore,
they’re equal.

The type is error;
therefore, we add a
font width of 800.

The type isn’t error (it’s either
success or warning), so font-
weight is set to 500.

35712.8 Final thoughts
.callout, .error, .warning, .success {
 border: solid 1px;
 border-radius: 4px;
 padding: 0.5rem 1rem;
}

.success {
 background-color: #f6f9d1;
 border-color: #747d10;
}
.success::before {
 content: "success: ";
 text-transform: capitalize;
 font-weight: 500;
}

.warning {
 background-color: #fff1dc;
 border-color: #fc9d03;
}
.warning::before {
 content: "warning: ";
 text-transform: capitalize;
 font-weight: 500;
}

.error {
 background-color: #fcd1d1;
 border-color: #940a0a;
}
.error::before {
 content: "error: ";
 text-transform: capitalize;
 font-weight: 800;
}

The text added as part of the ::before pseudo-element has a font-weight of 500 for
both .success and .warning. The .error::before rule, on the other hand, has a
font-weight of 800.

 With this last detail added, our project is complete. Figure 12.19 shows the final
output.

12.8 Final thoughts
This chapter illustrates several things Saas lets us do that we can’t do with CSS alone,
but it covers only a small percentage of Saas’s features and delves into only one pre-
processor. Preprocessors can do much more; this chapter only scratches the surface.
The takeaway is that preprocessors provide cool functionality that can make code
more efficient to write and also more complex. They also require a build step and
slightly more complicated setup.

Listing 12.28 Conditionally boldfacing the callout type (CSS output)

358 CHAPTER 12 Using preprocessors
Figure 12.19 Finished project

359Summary
Although we didn’t dive into Less or Stylus, here are some questions that may help
when you’re choosing a preprocessor:

 Do I need a preprocessor?
 What functionality does the preprocessor need?
 How is using a preprocessor going to help the development of my project?
 If the project uses a user-interface framework or library, does it support one or

more preprocessors? If so, which ones?
 What will having a preprocessor change about my build-and-deploy process

because now the CSS needs to be built?
 What skills do my team members have, and which preprocessors are they famil-

iar with?

Whether or not preprocessors are for you, the important thing to remember is that
every project is different. Keep learning, exploring, and trying new things, and have
some fun. Happy coding!

Summary
 Sass has two syntaxes: indented and SCSS.
 Variables and CSS custom properties work differently.
 Sass variables are block-scoped.
 @extend extends existing rules, whereas mixins generate new code.
 Mixins can take parameters.
 When used in conjunction with object-fit: cover, object-position helps

position an image within its bound box when the image doesn’t have the same
aspect ratio as the dimensions it’s given.

 Interpolation is used to embed the result of an expression, such as when creat-
ing rule names from variables.

 The border-radius property can take multiple values to assign different curva-
ture to each corner of an element, starting from top left and rotating clockwise.

 Sass allows us to nest rules.
 We can use @each to loop over lists and maps.
 @debug allows us to print values in the terminal output.
 Sass provides functions such as scale-color() to manipulate and alter colors.
 @if and @else can be used to determine conditionally whether a block of code

should be evaluated.

appendix

Working with vendor prefixes and feature flags
Probably one of the most frustrating aspects of CSS, especially when using new CSS
syntax, is vendor prefixing. Each browser has a type of engine, which is referred to
as the vendor. The purpose of the engine is to convert the code (HTML, CSS, and
JavaScript) into what the end user sees and interacts with, such as a web page or
application. There are three main browser engines:

 Gecko (also known as Quantum)—Used by the Firefox browser and main-
tained by Mozilla

 WebKit—Used by Safari and iOS Safari, and developed by Apple
 Blink—Used by Chrome, Microsoft Edge, and Opera, and maintained by

Google

As a writer of CSS, you may find that some properties still require vendor prefixes,
especially if you or the organization you work for supports old browser engines.
The prefix comes before the CSS property. In total, there are four prefixes, listed
in table A.1.

Table A.1 Vendor prefixes by browser

Prefix Browser

-webkit- Android, Chrome, iOS, Edge and Opera (newer versions), and Safari

-ms- Internet Explorer and Edge (older versions)

-o- Opera (older versions)

-moz- Firefox
360

361APPENDIX
Although Chrome uses the Blink engine, it still uses the -webkit- prefix, as Chrome
was built on WebKit. When Chrome moved to the Blink engine, it decided to stick
with the -webkit- prefix rather than create a new one, to reduce confusion. As you’ll
see in this appendix, there’s a move away from prefixes anyway.

 When using prefixes, you should put the prefixed versions before the nonprefixed
versions. The reason to include the nonprefixed version is that when the browser sup-
ports that property fully, it will use the nonprefixed version; then you can remove the
prefix. An example of a CSS property that needs prefixing is user-select, if you use
none as the value:

.prevent-selecting{
 -moz-user-select: none;
 -webkit-user-select: none;
 -ms-user-select: none;
 user-select: none;
}

The idea behind vendor prefixes is that you can try new CSS without breaking the
experience while the new CSS is being standardized across browsers. We don’t recom-
mend putting out prefixed code live to users, however, as the way that browsers inter-
pret that code can change.

 There’s a shift away from browser prefixes because they’ve led to partial implementa-
tions and bugs and have long confused developers. We often see stylesheets with pre-
fixes that haven’t been required for several years because the stylesheets haven’t been
updated or the developers aren’t sure whether it’s safe to remove the prefixes. Instead,
there’s a move toward feature flags, which users can control. When writing CSS, you’ll
find that some CSS properties still in use need browser prefixes. In this case, the prefix
versions of the CSS property should come before the nonprefixed version.

Using browser developer tools
Chrome, Safari, Firefox, and other mainstream browsers have developer tools, which
are perfect for editing and diagnosing problems, particularly if you’re doing frontend
development. You can edit your CSS within the browser and then copy and paste the
styles to your project.

 The tools and the way they’re presented vary among browsers. Following are some
useful features that are universal in the main browsers:

 Elements panel, where you can view and change the document object model
(DOM) and CSS.

 Console panel, which highlights any errors loading assets such as the CSS, images,
and other media items.

 Network and performance panels, which can vary among browsers. In Chrome, you
use these panels to see how the web page is loading and find opportunities to
improve the performance and efficiency of the page.

362 APPENDIX
Each browser has its own documentation for developer tools, and this material is
worth exploring as you develop your knowledge of CSS (table A.2).

Table A.2 Browser developer tools documentation

Browser URL

Chrome http://mng.bz/N2d2

Firefox http://mng.bz/D489

Safari https://developer.apple.com/safari/tools

Edge http://mng.bz/lWEM

http://mng.bz/N2d2
http://mng.bz/D489
https://developer.apple.com/safari/tools
http://mng.bz/lWEM

index
Symbols

!important annotation 17
@font 253
* (universal selector) 22, 32
+ (adjacent sibling combinator) 25–26
~ (general sibling combinator) 23

Numerics

2D (two-dimensional) transformations 79
3D (three-dimensional) transformations 79

A

@counter-style 54, 72, 102–104
suffix descriptor 103–104
symbols descriptor 103
system descriptor 103

@debug 54, 72, 350
@each 54, 72, 349–352
@else 54, 72, 355–357
@extend 54, 72, 341
@font 54, 72, 253
@font-face 54, 72, 253–255
@if 355–357
@include 54, 72, 341
@keyframes 54, 72, 74
@mixin 54, 72, 342–347
@supports 54, 72, 255–257
accent-color 83, 282
accessibility

animation 81–83
grids 56–57
prefers-reduced-motion 139

Accessible Rich Internet Applications (ARIA) 292

Adaptive design 2
adjacent sibling combinator (+) 25–26
::after pseudo-element 101
align-items property 126, 137, 153, 242
alpha (transparency) parameter 354
alt attribute 107
animation-delay property 77–79
animation-duration property 76–77
animation-iteration-count property 77
animation-name declaration 71–75
animation property 71
animations 60–90, 308–329
animation shorthand property 77
appearance 85
applying to HTML 8–12

embedded CSS approach 10–12
external CSS approach 12
inline CSS approach 8–10

architecture methodologies 309–310
BEM 310
OOCSS 309
SMACSS 309

ARIA (Accessible Rich Internet Applications)
292

aria-describedby attribute 297
aspect ratio 186
at-rules. See individual at-rule entries
attr() function 218
attribute value selectors 31
author stylesheets 13
auto keyword 45

B

backface-visibility property 259–263
background-clip property 131–132
363

INDEX364
background-color property 160, 318
background-image property 104, 160, 248
background property 142, 248
background-repeat property 162
background shorthand property 160
background-size property 131, 133
::before pseudo-element 31, 101, 284–285, 296,

351, 356–357
BEM (Block, Element, Modifier) 21, 310
block elements 99–101
blockquote rule 102
blur() function 106
body rule 94, 126, 149, 153
bold 208, 210
borders

border-bottom property 277
border-color property 351
border property 276
border-radius property 188–190, 266–267, 318,

347
border-radius shorthand property 345, 347
border shorthand property 317
tables 210–212

box-shadow property 213, 267
brand guide 312
break-inside property 115
browser developer tools 361–362
browser engine 360

C

calc() function 137, 139, 157
Cartesian coordinate system 62
cascade concept 13–17

!important annotation 17
author stylesheets 13
CSS resets 14–15
normalizers 15–17
user-agent stylesheets 13
user stylesheets 13–14

CDN (content delivery network) 15, 94, 252
check boxes

styling 280–283
styling selected inputs 284–286

:checked pseudo-class 284, 286–287, 289–290
child combinator (>) 24–25
chip design pattern 170
Chrome browser developer tools 362
circle() function 185–186, 189
class attribute 19
class name 22
class selectors 19–21
clip-path property 187–188
close-quote keyword 102
CodePen 334

color functions 353–355
color property 132, 204
column-count property 110
column-gap property 53, 113
column-rule property 112
column-span property 114
combinators 22–27

adjacent sibling combinator (+) 25–26
child combinator (>) 24–25
descendant combinator (space) 23–24
general sibling combinator (~) 26–27

content property 101, 218
CORS (Cross-Origin Resource Sharing) 191
CSS resets 14–15
CSS variables 149
cubic-bezier() function 263–266
custom properties 149

D

data attribute 217–219
datetime attribute 99
<dd> (descriptions) 147
debug (Sass watcher) 350
descendant combinator (space) 23–24
description lists. See <dl>
description term (<dt>) 147
display property 100, 107, 125, 153, 283
<dl> description lists

defined 147
mobile layouts for 221–223
styling 212–213

flex-basis and flex-shrink properties
167–168

flex-direction property 168–169
space-around and gap properties 165–167

DOM (Document Object Model) 141, 338, 361
drop caps 180–183
drop-down menus 290–292
drop-shadow() function 106
drop-shadow filter 267–268
DSL (domain-specific language) 3
<dt> (description term) 147
duration property 75–76

E

Edge browser developer tools 362
embedded CSS approach 10–12
em unit 95, 164, 285
EOT (Embedded Open Type) fonts 253
error handling 296–300
even keyword 208
external CSS approach 12
ex (x-height) unit 296

INDEX 365
F

Facebook 312
feature flags 360–362
<fieldset> styles 275–276
fill attribute 69
fill property 69
filter property 92, 105–106, 267
Firefox browser developer tools 362
::first-letter pseudo-element 30, 181
:first-of-type pseudo-class 182
Flexbox

flex-basis property 167–168, 232
flexbox 151–154
flex-direction property 168–169
flex-grow property 232
flex-shrink property 167–168, 232
flex-wrap property 170–172

float 176–195
float property 118, 182
:focus pseudo-class 29, 203–204, 284, 301–302,

348
:focus-visible pseudo-class 172, 301–302, 314
:focus-within pseudo-class 141–142
font-family property 254
font shorthand property 98, 131
font-variant-numeric property 201
font-weight property 97–98, 208
forced-colors mode 303–305
forms 271–307
fr (fractions unit) 45
from keyword 74
function definition 44

G

gap property 53, 165–167, 314
GDPR (General Data Protection Regulation)

95
general sibling combinator (~) 26–27
Gestalt principles 113
glyphs 95
grayscale() function 106
grid 37–59

accessibility considerations 56–57
display value 42
grid-template-areas property 48–53

gap property 53
grid-area property 51–52

grid tracks and lines 43–47
auto keyword 45
fractions unit 45–47
minmax() function 45
repeating columns repeat() function 44–45

media queries 54–56

grid-area property 51–52
grid-gap property 53
grid-placement properties 56
grid-row property 49
grids 37–59
grid-template-areas property 48–53

gap property 53
grid-area property 51–52

grid-template-columns property 44
grid-template-rows property 44
grid tracks and lines 43–47

auto keyword 45
fractions unit 45–47
minmax() function 45
repeat() function 44–45

gutters 53

H

:has() pseudo-class 25
:hover pseudo-class 28–29, 139–142, 203–204,

284, 286–287, 303, 314, 348
:hov panel open 29
href (hypertext reference) attribute 12, 28
HSL (hue, saturation, and lightness)

parameter 354
hypertext reference (href) attribute 12, 28
hyphenating text 116–118

I

icons 312–313
ID selectors 22, 284
implicit grid 47
in-betweening 72
indented syntax (Sass syntax) 333
inherit property value 318–319
inline CSS approach 8–10
inline elements 99–101
interpolation 344
:invalid pseudo-class 298
:is() pseudo-class 284, 290
iteration-count property 76

J

JS (JavaScript) 2
justify-content property 153, 165, 174,

242
justifying text 116–118
justify-items property 126

K

keyframes 71–75

INDEX366
L

labels 293
lang attribute 31
layout shift 186
leading 180
legends 293
linear-gradient() function 86, 150
line-height property 169, 180
LinkedIn 312
:link pseudo-class 28
list-items counters 92
list-style-image property 104
list-style property 103
list-style-type property 102

M

margin
margin collapse 224–225
negative 156–159
setting margin values to auto 119

margin property 276
max-content keyword 45
maxlength attribute 299
max-width property 151
media queries 54–56, 119

creating 110
mobile layout 215
prefers-reduced-motion media query 81–83

minmax() function 45
mobile layout 215–225
-moz- browsers 87–89
-moz- property 132
-moz- selector 87
multi-column layout 91–120

N

negative margins 156–159
nesting rules 347–349
newspaper layout 91–120
normalizers 15–17
:not() pseudo-class 140, 277
npm (node package manager) 333
:nth-of-type(n) 208, 226

O

object-fit 155–156, 343
object-position property 156, 343
onerror JavaScript event handler 107
OOCSS (Object-Oriented CSS) 309
open-quote keyword 102
OTF (Open Type Fonts) 253

outline-offset property 204, 315
outline property 204

P

padding 33, 224–225, 229, 246, 276
parameters 44
path() function 190–191
pixelation 62
place-content property 283, 285
::placeholder pseudo-element 294
placeholder text 294
place-items property 126
polygon() function 288
position property 185
prefers-reduced-motion 81–83, 139, 263
preprocessors 330–359
presentation attributes 69
profile cards 146–175

backgrounds 150–151, 160–162
progress element <progress> 83–89
pseudo-class 28–29
pseudo-class and pseudo-element selectors 27
pseudo-element 30

Q

quote property 101–102
quotes 183–184

R

radial-gradient function 161
radio inputs 280–287
raster images 62, 178
<rect> SVG element 67
rel attribute 12
rem font size 164
rem unit 95, 164
repeat() function 44–45
required attribute 299
Responsive design 2
RGB (red, green, and blue) value 354
row-gap property 53
rulesets 10

S

Safari browser developer tools 362
Sass (Syntactically Awesome Style Sheets) 4
Sass variables 338–341
Scalable and Modular Architecture for CSS

(SMACSS) 21, 309
Scalable Vector Graphics. See SVGs
scale() function 317–318

INDEX 367
scale-color() function 353, 355
scaleY() function 74
SCSS syntax 333–336
<select> elements 278–280
select control 303
selectors 19–32

attribute value selectors 31
basic selectors 19–22

class selectors 19–21
ID selectors 22
type selector 19

combinators 22–27
adjacent sibling combinator 25–26
child combinator 24–25
descendant combinator 23–24
general sibling combinator 26–27

pseudo-classes 28–29
pseudo-elements 30
universal selector 32

Separation of Concerns (SoC) 2–3
shadows 267–268

drop-shadow filter value vs. box-shadow
property 267–268

text shadows 268
shape-image-threshold property 191
shape-margin property 192–193
shape-outside property 185–187
shapes

creating check mark with 288–289
in Scalable Vector Graphics 67–68

shorthand properties 32–34
SMACSS (Scalable and Modular Architecture

for CSS) 21, 309
Snook, Jonathan 309
social media icons 312
social media share links 308–329
SoC (Separation of Concerns) principle 2–3
space-around property 165–167
spacing 113
specificity 17–19
style guide 312
style inline CSS attribute 8
style property 204
suffix descriptor 103–104
Sullivan, Nicole 309
summary cards 121, 123–124, 133–145
SVGs (Scalable Vector Graphics) 3, 61–68,

253
applying styles to 68–70
positions of elements 63–64
viewbox 66–67
viewport 64–65

symbols descriptor 103

T

tables 207–212, 215–221
text-align property 116, 157, 180, 223, 246
<textarea> element 278–280
text-decoration property 203
text-fill-color property 132
text-justify property 116
text-shadow property 268
theming

checkout carts 200–215
newspaper layout 93–102

three-dimensional (3D) transformations 79
to keyword 74
transform() function 74
transform-origin property 79–80
transform property 74, 139, 259, 263, 317, 320
transform-style property 261
transitionend event listener 327
transition property 142, 263–266, 319
transitions

animating content on hover 139–142
flipping-over effect 261–263
social media share links 319–320

transitionstart event listener 327
translateY() function 141
TTF (TrueType Fonts) 253
Twitter 312
two-dimensional (2D) transformations 79
type selector 19

U

UA (user-agent) stylesheets 13, 92
Unicode 103
universal selector (*) 32
url() function 191
user-agent stylesheets 13
:user-invalid pseudo-class 299
user stylesheets 13–14

V

vector image 178
vectors 62
vendor prefixes 84–85, 360–362
vertical-align property 205
vh (viewport height) 151
viewBox attribute 66
virtual credit cards 236–238, 240–270
:visited pseudo-class 28, 348
visual hierarchy 98–99
vw (viewport width) 151

INDEX368
W

W3C (World Wide Web Consortium) 3, 45, 75
WCAG (Web Content Accessibility

Guidelines) 180, 294
-webkit- browsers 85–87
::-webkit-progress-bar rule 88
-webkit- property 132
:where() pseudo-class 284–285, 290
wide screen layout 230–233
width property 83, 151, 167, 204
WOFF2 (Web Open Font Format 2) 253
WOFF (Web Open Font Format) 253

wrapping text 190–193
around images 118–119
floating images 191
path() 190–191
shape-margin property 192–193

X

x-height (ex) font-size 296

Y

Yandex Company 310

For ordering information, go to www.manning.com

RELATED MANNING TITLES

Web Design Playground, Second Edition
by Paul McFedries

ISBN 9781633438323
400 pages (estimated), $39.99
Fall 2023 (estimated)

React Quickly, Second Edition
by Morten Barklund and Azat Mardan

ISBN 9781633439290
575 pages (estimated), $59.99
Fall 2023 (estimated)

Testing Web APIs
by Mark Winteringham
Foreword by Janet Gregory and Lisa Crispin

ISBN 9781617299537
264 pages, $59.99
October 2022

Learn AI-Assisted Python Programming
by Daniel Zingaro and Leo Porter

ISBN 9781633437784
300 pages (estimated), $49.99
Spring 2024 (estimated)

Dowden ● Gearon

ISBN-13: 978-1-63343-983-2

D
on’t settle for boring web pages! With Cascading Style
Sheets you can control color, layout, and typography to
make your sites both functional and beautiful. CSS is a

essential skill for web developers and designers. Th is book will
help you get started the right way.

Tiny CSS Projects builds your CSS skills by guiding you through
12 creative mini-projects. Each interesting challenge starts
with a downloadable HTML skeleton. As you fl esh it out with
your own design ideas, you’ll master CSS concepts like transi-
tions, layout, and styling forms, and explore powerful features
including Flexbox and Grid. All the skills you’ll learn are easy
to transfer to full-size applications. When you fi nish, you’ll
have an exciting portfolio of designs ready to go for your
next project.

What’s Inside
● Transitions and animations using keyframes
● Layout techniques including Grid and Flexbox
● Styling form elements including radio buttons
● Embedding fonts and typography-related styles
● Conditional styling using pseudo-elements and media
 queries

For readers who know the basics of HTML and frontend
development. No previous experience with CSS is required.

Martine Dowden is an author, speaker, and award-winning
CTO. Michael Gearon is a user experience designer and
frontend developer who has worked with many well-known
brands.

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

Tiny CSS Projects

WEB DEVELOPMENT / CSS

M A N N I N G

“A great project-based ap-
proach to learning CSS with

something for all skill levels.”—Joe Attardi
author of Modern CSS

“An excellent resource!
Written in simple language
with plenty of applicable

examples. Th is book proves
that it is never too late to
learn, even after decades

of experience.
 I highly recommend it!”—Joseph Del Vecchio
Heritage Environmental Services

“Clear and concise so it’s
easy to understand…makes
learning engaging and fun.
Th e instructions and code
are well-organized and easy

 to follow.”—Md. Zahid Hossain
Webapp Solutions

See first page

	Tiny CSS Projects
	brief contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum
	Other online resources

	about the authors
	about the cover illustration
	1 CSS introduction
	1.1 Overview of CSS
	1.1.1 Separation of Concerns
	1.1.2 What is CSS?

	1.2 Getting started with CSS by creating an article layout
	1.3 Adding CSS to our HTML
	1.3.1 Inline CSS
	1.3.2 Embedded CSS
	1.3.3 External CSS

	1.4 The cascade of CSS
	1.4.1 User-agent stylesheets
	1.4.2 Author stylesheets
	1.4.3 User stylesheets
	1.4.4 CSS reset
	1.4.5 Normalizer
	1.4.6 The !important annotation

	1.5 Specificity in CSS
	1.6 CSS selectors
	1.6.1 Basic selectors
	1.6.2 Combinators
	1.6.3 Pseudo-class and pseudo-element selectors
	1.6.4 Attribute value selectors
	1.6.5 Universal selector

	1.7 Different ways to write CSS
	1.7.1 Shorthand
	1.7.2 Formatting

	Summary

	2 Designing a layout using CSS Grid
	2.1 CSS Grid
	2.2 Display grid
	2.3 Grid tracks and lines
	2.3.1 Repeating columns
	2.3.2 The minmax() function
	2.3.3 The auto keyword
	2.3.4 The fractions (fr) unit

	2.4 Grid template areas
	2.4.1 The grid-area property
	2.4.2 The gap property

	2.5 Media queries
	2.6 Accessibility considerations
	Summary

	3 Creating a responsive animated loading screen
	3.1 Setup
	3.2 SVG basics
	3.2.1 Positions of SVG elements
	3.2.2 Viewport
	3.2.3 Viewbox
	3.2.4 Shapes in SVG

	3.3 Applying styles to SVGs
	3.4 Animating elements in CSS
	3.4.1 Keyframe and animation-name
	3.4.2 The duration property
	3.4.3 The iteration-count property
	3.4.4 The animation shorthand property
	3.4.5 The animation-delay property
	3.4.6 The transform-origin property

	3.5 Accessibility and the prefers-reduced-motion media query
	3.6 Styling an HTML progress bar
	3.6.1 Styling the progress bar
	3.6.2 Styling the progress bar for -webkit- browsers
	3.6.3 Styling the progress bar for -moz- browsers

	Summary

	4 Creating a responsive web newspaper layout
	4.1 Setting up our theme
	4.1.1 Fonts
	4.1.2 The font-weight property
	4.1.3 The font shorthand property
	4.1.4 Visual hierarchy
	4.1.5 Inline versus block elements
	4.1.6 Quotes

	4.2 Using CSS counters
	4.2.1 The symbols descriptor
	4.2.2 The system descriptor
	4.2.3 The suffix descriptor
	4.2.4 Putting everything together
	4.2.5 @counter versus list-style-image

	4.3 Styling images
	4.3.1 Using the filter property
	4.3.2 Handling broken images
	4.3.3 Formatting captions

	4.4 Using the CSS Multi-column Layout Module
	4.4.1 Creating media queries
	4.4.2 Defining and styling columns
	4.4.3 Using the column-rule property
	4.4.4 Adjusting spacing with the column-gap property
	4.4.5 Making content span multiple columns
	4.4.6 Controlling content breaks

	4.5 Adding the finishing touches
	4.5.1 Justifying and hyphenating text
	4.5.2 Wrapping the text around the image
	4.5.3 Using max-width and a margin value of auto

	Summary

	5 Summary cards with hover interactions
	5.1 Getting started
	5.2 Laying out the page using grid
	5.2.1 Layout using grid
	5.2.2 Media queries

	5.3 Styling the header using the background-clip property
	5.3.1 Setting the font
	5.3.2 Using background-clip

	5.4 Styling the cards
	5.4.1 Outer card container
	5.4.2 Inner container and content

	5.5 Using transitions to animate content on hover and focus-within
	Summary

	6 Creating a profile card
	6.1 Starting the project
	6.2 Setting CSS custom properties
	6.3 Creating full-height backgrounds
	6.4 Styling and centering the card using Flexbox
	6.5 Styling and positioning the profile picture
	6.5.1 The object-fit property
	6.5.2 Negative margins

	6.6 Setting the background size and position
	6.7 Styling the content
	6.7.1 Name and job title
	6.7.2 The space-around and gap properties
	6.7.3 The flex-basis and flex-shrink properties
	6.7.4 The flex-direction property
	6.7.5 Paragraph
	6.7.6 The flex-wrap property

	6.8 Styling the actions
	Summary

	7 Harnessing the full power of float
	7.1 Adding a drop cap
	7.1.1 Leading
	7.1.2 Justification
	7.1.3 First letter

	7.2 Styling the quote
	7.3 Curving text around the compass
	7.3.1 Adding shape-outside: circle
	7.3.2 Adding a clip-path
	7.3.3 Creating a shape using border-radius

	7.4 Wrapping text around the dog
	7.4.1 Using path() . . . or not yet
	7.4.2 Floating the image
	7.4.3 Adding shape-margin

	Summary

	8 Designing a checkout cart
	8.1 Getting started
	8.2 Theming
	8.2.1 Typography
	8.2.2 Links and buttons
	8.2.3 Input fields
	8.2.4 Table
	8.2.5 Description list
	8.2.6 Cards

	8.3 Mobile layout
	8.3.1 Table mobile view
	8.3.2 Description list
	8.3.3 Call-to-action links
	8.3.4 Padding, margin, and margin collapse

	8.4 Medium screen layout
	8.4.1 Right-justified numbers
	8.4.2 Left-justifying the first two columns
	8.4.3 Right-justifying numbers in the input fields
	8.4.4 Cell padding and margin

	8.5 Wide screens
	Summary

	9 Creating a virtual credit card
	9.1 Getting started
	9.2 Creating the layout
	9.2.1 Sizing the card
	9.2.2 Styling the front of the card
	9.2.3 Laying out the back of the card

	9.3 Working with background images
	9.3.1 Background property shorthand
	9.3.2 Text color

	9.4 Typography
	9.4.1 @font-face
	9.4.2 Creating fallbacks using @supports
	9.4.3 Font sizing and typography improvements

	9.5 Creating the flipping-over effect
	9.5.1 Position
	9.5.2 Transitions and backface-visibility
	9.5.3 The transition property
	9.5.4 The cubic-bezier() function

	9.6 Border radius
	9.7 Box and text shadows
	9.7.1 The drop-shadow function versus the box-shadow property
	9.7.2 Text shadows

	9.8 Wrapping up
	Summary

	10 Styling forms
	10.1 Setting up
	10.2 Resetting fieldset styles
	10.3 Styling input fields
	10.3.1 Styling text and email inputs
	10.3.2 Making selects and textareas match the input styles
	10.3.3 Styling radio inputs and check boxes
	10.3.4 Using the :where() and :is() pseudo-classes
	10.3.5 Styling selected radio and checkbox inputs
	10.3.6 Using the :checked pseudo-class
	10.3.7 Shaping the selected radio buttons’ inner disk
	10.3.8 Using CSS shapes to create the check mark
	10.3.9 Calculating specificity with :is() and :where()

	10.4 Styling drop-down menus
	10.5 Styling labels and legends
	10.6 Styling the placeholder text
	10.7 Styling the Send button
	10.8 Error handling
	10.9 Adding hover and focus styles to form elements
	10.9.1 Using :focus versus :focus-visible
	10.9.2 Adding hover styles

	10.10 Handling forced-colors mode
	Summary

	11 Animated social media share links
	11.1 Working with CSS architecture
	11.1.1 OOCSS
	11.1.2 SMACSS
	11.1.3 BEM

	11.2 Setting up
	11.3 Sourcing icons
	11.3.1 Media icons
	11.3.2 Icon libraries

	11.4 Styling the block
	11.5 Styling the elements
	11.5.1 Share button
	11.5.2 Share menu
	11.5.3 Share links
	11.5.4 scale()
	11.5.5 The inherit property value

	11.6 Animating the component
	11.6.1 Creating a transition
	11.6.2 Opening and closing the component
	11.6.3 Animating the menu

	Summary

	12 Using preprocessors
	12.1 Running the preprocessor
	12.1.1 Setup instructions for npm
	12.1.2 .sass versus .scss
	12.1.3 Setup instructions for CodePen
	12.1.4 Starting HTML and SCSS

	12.2 Sass variables
	12.2.1 @extend

	12.3 @mixin and @include
	12.3.1 object-fit property
	12.3.2 Interpolation
	12.3.3 Using mixins
	12.3.4 border-radius shorthand

	12.4 Nesting
	12.5 @each
	12.6 Color functions
	12.7 @if and @else
	12.8 Final thoughts
	Summary

	appendix
	Working with vendor prefixes and feature flags
	Using browser developer tools

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

