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PREFACE

The design of control systems by the mathematical optimisation 

of a specified quantitative performance criterion has a long and well 

established role in the history of control engineering. The most 

widely studied class of optimal control laws are those based upon the 

state-space system model. An alternative approach which has been 

developed more recently is the design of optimal controllers using 

the algebra of polynomials and polynomial matrices. In this 

approach scalar systems are described in transfer-function form using 

ratios of polynomials, while multivariable systems are described 

using left and right matrix factorisations.

A further major branch of control engineering, adaptive control, 

has grown from the need to design control systems subject to the 

practical constraint of plants whose dynamics are uncertain or 

time-varying. Of the various classes of adaptive controllers which 

exist, self-tuning control has emerged as perhaps the most widely 

studied and applied.

This book merges the above two major areas of control : 

original contributions are made in the polynomial approach to 

stochastic optimal control theory (LQG control) and the resulting 

control laws are then manipulated into a form suitable for 

application in the self-tuning control framework. The results of an 

application study in which the LQG self-tuner was tested on the steam 

pressure control loop of a power station are presented.
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Layout

The work is divided into four parts which are made up of a total 

of six chapters. Each part concentrates on a different aspect of the 

overall theme. The parts are organised in such a way that the book 

follows a logical development from theoretical derivation through to 

self-tuning controller application:

Part 1 : Stochastic Optimal Control Theory

Part 2 : Self-tuning Control

Part 3 : Case Study

Part 4 : Conclusions

Part 1, Stochastic Optimal Control Theory, consists of Chapters 1 and 

2 and is mainly theoretical in nature. Chapter 1 is an introduction 

to Part 1 while Chapter 2 develops some original theoretical results 

in optimal control theory and in particular the derivation of 

controllers for the optimal rejection of measurable disturbances 

using feedforward. One major original contribution of Chapter 2 is 

the extension of existing results to the case of unstable reference 

and disturbance generating sub-systems. This extension is of major 

practical importance since it is the unstable generators used to 

model step-like and deterministic signals which arise in most 

applications. A further important original contribution in Chapter 2 

is the derivation of necessary and sufficient conditions for the 

optimality of the various polynomial equations arising in the optimal 

controller designs. Finally, Chapter 2 concludes with the 

derivation of the optimal feedback/feedforward regulator for 

multivariable systems.

Part 2 of the book, Self-tuning Control, consists of Chapters 3 

and 4. Chapter 3 Is an introduction to Part 2 while in Chapter 4 
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the theory derived in Chapter 2 is reduced to a practical self-tuning 

control algorithm. Self-tuning controllers based on polynomial LQG 

control have previously been considered. The self-tuning algorithm 

presented in Chapter 4, however, has several novel features : 

optimal feedforward compensation of measurable disturbances, dynamic 

cost-function weights, and a three-level design algorithm with a 

range of complexity. In addition, the precise role of the various 

polynomial equations arising in the design is clarified using the 

results derived In Chapter 2.

Part 3 of the book, consisting of Chapter 5, Is a case study. 

The results of an experimental application of LQG self-tuning control 

on the steam pressure control loop of the Hunterston 'B' power 

station simulator are presented. The LQG controller Is shown to be 

very simple to commission and to give Improved performance over the 

existing analogue PI controller.

Finally, the book Is concluded In Part 4 (Chapter 6).
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NOTATION

All systems considered are assumed to be linear, time-invariant 

and discrete-time. The systems are described in the time-domain by 

means of real polynomials in the delay operator d, and in the 

frequency-domain by means of real polynomials in the inverse of the 

z-transform complex number z. A polynomial X(d) is stable (or 

strictly Hurwitz) iff it has no zeros with magnitude less than or 

equal to unity. A polynomial X(d) is Hurwitz iff it has no zeros 

with magnitude less than unity. A polynomial X(d) is unstable iff it 

has any zeros with magnitude less than or equal to unity.

For simplicity the arguments of polynomials are often omitted so 

that X(d) is denoted by X. The conjugate of a polynomial X(d) is 
* -1 * 

denoted by X (d) A X(d ), or simply X . The absolute coefficient 

of X is denoted by <X>.

A transfer-function is inverse stable ('minimum phase') iff it 

has no zeros with magnitude less than or equal to unity.

The power spectrum of a signal x(t) is denoted by q>x.

In the multivariable case described in Section 2.11 the system 

is described by means of real polynomial matrices in d. The adjoint

* T -1of a polynomial matrix X(d) is denoted by X (d) A X (d ). <X>

denotes the matrix whose elements are the absolute coefficients of 

the polynomials in X.
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CHAPTER ONE

INTRODUCTION TO STOCHASTIC OPTIMAL CONTROL

Summary

This chapter provides an introduction to Part I of the book. A 

brief historical review of feedback control and control theory are 

first given in Sections 1.1 and 1.2, respectively. The movement away 

from frequency-response methods towards optimisation techniques, 

which occurred during the fifties, is discussed in Section 1.3. The 

factors which then led to the predominance of state-space methods 

during the sixties are described in Section 1.4. A renewed interest 

in the frequency-response (transfer-function) approach to controller 

design occurred during the seventies. This trend included KuSera’s 

pioneering work on the polynomial equation approach to stochastic 

optimal control, and is discussed in Section 1.5. Finally, the 

contributions made in Chapter 2 in the polynomial approach to optimal 

control are outlined in Section 1.6.

1.1 THE ORIGINS OF FEEDBACK CONTROL

Feedback is a fundamental biological mechanism which prevails in 

all interactions between living organisms and their environment. 

Moreover, the conscious employment of feedback control by humans has 

a very well established place in the history of humankind. Perhaps 

the first use of feedback control is recorded in the Encyclopedia 

Britannica and comes from the Babylonian era of around 4000 years ago 

(Gadd, 1929). The agricultural production which helped sustain the 

Babylonians was supported by a sophisticated system of irrigation in 



4

which the moisture content of the soil was regulated to a desired 

level by the manual opening and closing of water ditches.

Although automatic control devices were used earlier (see Usher 

1954) the inception of automatic feedback control as a science is 

widely regarded as occurring during the latter half of the eighteenth 

century with the arrival of the Industrial Revolution (MacFarlane, 

1979). One of the first applications was Meikle's invention of an 

automatic turning gear for windmills in 1750 (see Wolf, 1938). In 

order to turn the main sails into the wind an auxiliary windmill at 

right angles was employed. Any error in the heading of the turret 

was thereby translated into a mechanical motion which turned the main 

sails until they received the full wind.

The most celebrated of the early applications of automatic 

feedback control is Watt's use in 1788 of the flyball governor for 

regulating the speed of the steam engine. This device used the 

principle of the centrifugal governor : a drop in engine - speed 

causes a decrease in the centrifugal force exerted by the flyballs on 

a spring mechanism and the flyball assembly descends. By lever 

action this results in the opening of the steam valve which increases 

the power, and thereby restores the speed, of the engine.

It is clear, therefore, that feedback control systems were used 

to solve important technical problems long before formal analysis and 

design techniques appeared. This general lack of a theoretical 

foundation became apparent in the early nineteenth century as the use 

of Watt's governor became widespread and as demands for improved 

performance grew stronger. The increasing tendency for such systems 

to 'hunt' became apparent; the engine speed displayed a cyclic time 
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variation. The fluctuation of engine speeds remained a major problem 

for some time. The problem was finally solved in the classic paper 

by Maxwell (1868) who related system stability to the engineering 

design parameters. In the steam engine the tendency towards the use 

of smaller flywheels and increased mass of flyball weights were found 

to have a destabilising effect.

The early history of feedback control is described by Mayr 

(1970) and Bennett (1979).

1.2 EARLY DEVELOPMENTS IN CONTROL THEORY

The paper by Maxwell (1868) is regarded as the foundation of the 

theory of automatic feedback control. Following Maxwell's work the 

stability problem was treated in terms of differential equations. 

Routh (1877) and Hurwitz (1895) developed tests to determine the 

stability of the roots of the system characteristic equation. These 

tests, however, could only determine absolute system stability and 

gave no indication of relative stability. The importance of 

differential equations and their related characteristic equations in 

control system analysis and design was nevertheless consolidated in 

the early twentieth century, particularly by the works of Minorsky 

(1922) on the automatic steering of ships, and Hazen (1934) on 

servomechanisms.

The most influential work in the development of frequency 

response methods in control systems was undoubtedly the classic paper 

by Nyquist (1932). Nyquist's work was again motivated by an 

important technical problem, that of feedback amplifier stability in 

long-distance telephony. The implications of Nyquist's Stability 
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Criterion were, however, much broader than this application. The 

frequency response method allowed the gain of feedback control 

systems to be set in accordance with specifications on the degree of 

stability. Nyquist's criterion was quickly adopted as the main 

design tool of control engineers and replaced the earlier time domain 

methods based upon differential equations. The trend towards 

frequency-response methods was further accelerated by the important 

work of Bode (1940) which introduced the concepts of gain and phase 

margin. The urgent requirements imposed by the second world war 

finally led to the widespread application of these methods when an 

immense effort and channelling of resources was directed towards the 

development of high performance control systems. A comprehensive 

account of the design methods developed at this time is given by 

Chestnut and Meyer (1951).

1.3 ANALYTICAL DESIGN METHODS

The design of control systems using the frequency response 

methods required a trial-and-error approach whereby the design 

procedure was Iterated until the performance and stability 

specifications were met. During the second world war, however, the 

demands for high-precision control led to the first developments in 

optimal control theory. The design of servomechanisms by 

minimisation of the mean-square tracking error was considered by Hall 

(1943) and James et al (1947). However, a comprehensive treatment of 

the optimal control problem did not appear until after the work of 

Wiener (1949). Wiener had Investigated the optimisation of radar 
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tracking systems where the disturbances were characterised as 

stochastic processes.

Following the work of Wiener (whose solutions were based upon 

the so-called Wiener-Hopf integral equation) Newton et al (1957) and 

Chang (1961) derived optimal controllers based upon the minimisation 

of integral-type criteria. The term 'analytical design' is defined 

by Newton et al as 'the design of control systems by application of 

the methods of mathematical analysis to idealised models which 

represent physical equipment'. In the analytical designs the system 

performance is measured by a specified performance index 

(cost-function) which Is normally a weighted sum of error and control 

input energies. The optimal controller which minimises the 

performance index is obtained by a systematic procedure of solving 

the design equations which have been obtained by prior analysis. The 

analytical design techniques provide a sharp contrast to the 

trial-and-error methods since they (ideally) proceed from the problem 

specification directly to the final controller design without the 

need for subjective analysis. Newton's solution of the optimal 

control problem using the Wiener-Hopf approach had one major 

drawback. In the orginal design procedure the equivalent cascade 

compensator is first found and is then used to calculate the 

corresponding controller for the feedback loop. This approach, which 

is inherently open-loop, can yield an unstable closed-loop system 

unless the controlled process is stable. This is due to pole-zero 

cancellations within the feedback loop. The general confusion in 

transfer-function methods surrounding the pole-zero cancellation 

problem was not resolved until Kucera (1974,1975) and, independently,
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Youla et al (1976 a,b) derived a parameterisation for the class of 

all controllers resulting In a stable closed-loop system. The first 

full treatment of the Wiener-Hopf optimal controller design for 

possibly unstable plants was subsequently given by Youla et al 

(1976a) and generalised to the multivariable case by Youla et al 

(1976b) .

1.4 STATE SPACE OPTIMAL CONTROL

The long gap between the original work of Newton and the proper 

general solution of the Wiener-Hopf approach to the optimal control 

problem given by Youla can be attributed to the emergence in the late 

fifties of state-space methods. These methods employ the 

mathematical tools of differential equations and vector spaces and 

admit the exact characterisation of the internal properties and 

structure of the system (Zadeh and Desoer 1963, Kalman 1963). The 

maximum principle of Pontryagin (1963) and Bellman's (1957) work on 

dynamic programming laid the foundations for the treatment of the 

linear optimal control problem in the state-space (Kalman, 1960). 

The combination of the new optimal control . result with the 

innovations made by Kalman and Bucy (1961) in filtering theory then 

led to the celebrated LQG (linear-quadratic-gaussian) design method.

The widespread adoption of the LQC method was established 

throughout the sixties by work on another major technical problem. 

In both the USA and USSR a major research and development effort was 

directed towards the control of space vehicles. During this period 

LQG optimal control theory became an established design tool for 

linear systems and several standard texts soon appeared (Athans and 
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Falb 1966, Bryson and Ho 1969, Anderson and Moore 1971, Kwakernaak 

and Sivan 1972). The success of the LQG method in the sixties can be 

attributed to several factors. Firstly, the state-space model 

employed was immediately applicable to the multivariable situation. 

Secondly, the nature of the space vehicles being controlled meant 

that accurate models and measurements were available. Finally, the 

quadratic form of performance index was often closely correlated with 

the 'economic*  nature of the demanded system performance (such as 

fuel minimisation).

1.5 THE POLYNOMIAL EQUATION APPROACH

The success of the LQG design method in the aerospace problems 

of the sixties was not repeated when the techniques were applied to 

industrial process control problems. The above conditions which 

contributed to the earlier successes do not in general hold in such 

situations. Many process control problems are characterised by a 

high degree of uncertainty in the model available. In addition, the 

Implicit assumption that all state-variables are available for 

measurement is no longer valid and the need for state reconstruction 

is hampered by the difficulty of measurement.

These factors led in the seventies to a renewed interest in the 

frequency-domain (transfer-function) approach to controller design. 

Some important works in this respect are those of Rosenbrock 

(1969,1970), Mayne (1973), Wolovich (1974) and Postlethwaite and 

MacFarlane (1979). The growing presence of algebraic and geometric 

concepts in system theory was also apparent through the works of 
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Kalman et al (1969), Wonham (1974) and Bengtsson (1973,1977). As 

mentioned above the frequency-domain approach to optimal control was 

generalised at this time by Youla and co-workers whose solutions, 

however, required rather complicated numerical procedures.

The polynomial equation approach to optimal control design Is a 

transfer-function method which provides an alternative to the 

Wiener-Hopf technique. The first steps In the polynomial equation 

design procedure were taken by Xstrora (1970) and Peterka (1972) with 

the derivation of a minimum output variance regulator. A 

comprehensive treatment of the stochastic optimal multivariable 

control problem using the polynomial equation approach was given In a 

series of papers throughout the seventies by KuSera, whose pioneering 

work on the subject culminated In the publication of a book (KuSera 

1979). In this approach synthesis of the optimal control law reduces 

to the solution of linear polynomial equations whose coefficients are 

obtained by spectral factorisation. Simple computational algorithms 

for these operations are given by KuSera (1979), JeSek (1982) and 

JeSek and KuXera (1985).

1.6 CONTRIBUTIONS OF THE PRESENT WORK

The results presented In Chapter 2 generalise KuSera's 

polynomial equation solution of the stochastic optimal control 

problem. KuSera (1979) addressed the multivariable regulator problem 

using polynomial techniques. A theory was later developed for both 

the deterministic and stochastic tracking problems for scalar 

(single-input, single-output) systems (Sebek 1982, KuSera and Sebek 

1984a,b). &ebek, meanwhile, had derived a solution for the 
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multivariable stochastic tracking problem (§ebek 1983a,b).

Grliable (1986a,b) has made several contributions in this area. 

Shaked (1976), Gupta (1980) and Anderson et al (1983,1985) had 

previously introduced the concept of dynamic (frequency-dependent) 

cost-function weighting elements for the state-space LQG design and 

Grimble incorporated this Idea Into his generalisation of KuSera's 

work. A further Innovation made by Grimble was the introduction of 

a coloured output disturbance signal (measurement noise). A major 

limitation of Grlmble's work, however, was the restriction of all 

disturbance and reference sub-systems to be asymptotically stable 

(the unstable systems which model signals such as steps, ramps, 

sinusoids and deterministic signals are of greatest practical 

importance).

The most significant of Grlmble's contributions was the 

incorporation Into the overall design procedure of a feedforward 

compensator for the rejection of measurable disturbances (Grimble 

1986b). This analysis was again limited to the Case of 

asymptotically stable disturbance and reference generating 

sub-systems. The general solution of the feedforward problem was 

subsequently given by Sebek, Hunt and Grimble (1988) for the case of 

scalar cost-function weights and white measurement noise. A 

polynomial solution to the feedforward problem has been Independently 

obtained by Sternad (1985,1987) using an alternative proof technique. 

Sternad's analysis Is for the case of scalar cost weights, zero 

measurement noise and an asymptotically stable measurable disturbance 

generator■
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The first contribution of the present work Is that the basic 

system model considered extends the results obtained by Grlmble to 

the case of possibly unstable reference and disturbance sub—systems. 

In addition, the optimal control problem Is solved for both the 

sIngle-degree-of-freedom and two-degrees-of-freedom controller 

structures. To summarise, the problem considered Is as follows:

(1) The cost-function Includes dynamic weighting elements.

(11) The system model Includes a coloured output disturbance 

signal (measurement noise).

(til) A feedforward compensator is Incorporated in the overall 

design procedure for the rejection of measurable 

disturbances.

(Iv) All disturbance and generating sub-systems may be 

unstable.

(v) Solutions are obtained for both the single and 

two-degrees-of-freedom controller structures (including, 

tn each case, feedforward).

The extension to the case of unstable disturbance and reference 

sub-systems Is non-trivial since this Involves the derivation of 

appropriate necessary and sufficient problem solvability conditions 

(the restriction to stable sub-systems Is, in fact, sufficient to 

ensure problem solvability).

The optimal controller results presented In Chapter 2 for the 

slngle-degree-of-freedom case are summarised in Hunt (1988a) and for 

the two-degree-of-freedom case in Hunt (1988b).

The general solution of the optimal control problem for both the 

single- and two-degrees-of-freedom control structures requires that a 
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couple of polynomial equations be solved to obtain each part of the 

controller (in the two-degrees-of-freedom structure the controller 

consists of three parts: a reference part, a feedback part and a 

feedforward part). By eliminating the common term between each 

couple of equations a single, related, equation Is obtained (the 

so-called ’Implied’ equations). The second major contribution of 

Chapter 2 is the derivation of the conditions under which the implied 

polynomial equations may be solved to obtain the unique optimal 

controller polynomials. The conditions relating to optimality of 

the implied feedback and reference equations in the case of scalar 

cost-function weights have been known for some time (§ebek and KuSera 

1982, KuSera 1984). The corresponding result for the feedback 

equation In the multivariable case (with dynamic weights) has 

recently been derived by Hunt, %ebek and Grimble (1987). The 

derivation of the conditions relating to optimality of the implied 

feedback and reference equations in the case of dynamic weights 

given in Chapter 2 extends the previous results. The analysis for 

the implied feedforward equation is completely new. Roberts (1986, 

1987 a,b,c,d,e) has Investigated a related problem regarding the 

sufficiency of the first equation in the couple of feedback 

equations■

These results are followed by a summary of the important 

structural properties of the optimal control designs.

Finally, the optimal feedback/feedforward regulator solution of 

Sebek, Hunt and Grimble (1988) is extended to the multivariable case. 

This new multivariable result is also summarised in Hunt and Jjebek 

(1989).
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A final word on the use of the phrase 'Stochastic Optimal 

Control' in place of 'LQG Control' in the title of this work. : in the 

state-space LQG methods the restriction of the noise sources to be 

Gaussian distributed is required in order that the optimal control 

law, which is chosen from the set of all (possibly non-linear) 

controllers, is a linear state feedback. In the polynomial equation 

approach (as in the Wiener-Hopf method) the controller is assumed at 

the outset to be linear. The gaussian restriction, therefore, is no 

longer required (this argument is due to KuXera, 1987). However, it 

has become standard practice in the polynomial equation approach to 

use 'LQG control' synonymously with 'Stochastic Optimal Control' and 

this convention will be adopted throughout the remainder of this 

work..



CHAPTER TWO

STOCHASTIC TRACKING WITH MEASURABLE DISTURBANCE FEEDFORWARD 

Summary

The open-loop model for the single-input single-output plant 

under consideration is described in Section 2.1. The plant output 

which is to be controlled is affected by two disturbance signals, one 

of which is assumed measurable. Associated with the measurable 

disturbance is a white measurement noise. Associated with the 

measurement of Lhe controlled output is a measurement noise, or 

output disturbance, which may be coloured. For tracking purposes a 

reference, or command, signal is introduced. This signal is again 

corrupted by a measurement noise.

Two types of controller structure are Introduced in Section 

2.2:

(1) The single-degree of freedom (SDF) structure where the 

observed tracking error is processed by a single controller 

in cascade with the plant.

(ii) The two-degrees-of-freedom (2DF) structure where Lhe 

measured reference and measured output signals are 

processed independently by a reference and feedback 

controller, respectively.

In both the SDF and 2DF structures a feedforward compensator is 

also employed to counter the effect of the measurable disturbance.

In Section 2.3 the optimal control problem is defined by 

specifying the cost-function which is to be minimised. A feature 

of the cost-function employed is the inclusion of dynamic 

(frequency-dependent) weighting elements. The general problem for 
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the SDF and 2DF control structures Including feedforward is solved 

in Sections 2.4 and 2.5, respectively. Also included is an analysis 

of the problem of Internal stability for the resulting closed-loop 

systems. In Sections 2.6 and 2.7 the general problem for the SDF and 

2DF structures is re-solved for the case when the plant is expressed 

using a least-common-denominator polynomial for each of its 

sub-systems. While the original solution provides insight into the 

role played by each individual sub-system the common denominator 

solution is computationally more efficient. The two solutions are, 

of course, exactly equivalent. The complete general solution of the 

optimal control problem requires that a couple of polynomial equations 

be solved to obtain each part of the controller. By eliminating the 

common term between each couple of equations a single, related, 

equation is obtained (the so called 'implied' equations). The 

conditions under which the implied polynomial equations may be solved 

to obtain the unique optimal controller polynomials are derived for 

the SDF and 2DF structures in Sections 2.8 and 2.9, respectively. A 

summary of the main structural properties of the optimal controller 

solutions is given in Section 2.10.

The chapter concludes in Section 2.11 with the derivation of the 

optimal feedback/feedforward regulator for multivariable plants.
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2.1 PLANT MODEL

The open-loop model for the single-input single-output plant 

under consideration Is shown In Figure 2.1. The plant Is governed by 

the equations:

y(t) = p(t) + x(t) + d(t) (2.1)

= W u(t) + W X(t) + W_,<b (t) (2.2)
p x d d

The controlled output, y(t), consists of the sum of three signals:

(i) The 'undisturbed' output p(t) = W u(t), where u(t) Is the 
P

plant control input.

(11) A disturbance signal x(t) = W^A(t), where £( t) Is a 

measurable disturbance.

(ill) A disturbance signal d(t) = W,<|>.(t), where <b is an d d d

unmeasurable stochastic signal.

The controlled output Is corrupted by a measurement noise n(t).

The measured output, z(t), Is given by the equations:

z(t) = y(t) + n(t) (2.3)

- y(t) + W d, (t) (2.4)n n

where <|) (t) is an unmeasurable stochastic signal, n ----------------------

The measurable disturbance signal £(t) Is corrupted by a 

stochastic measurement noise <|>^n(t) . The disturbance measurement, 

f(t), is given by:

f(t) - A(t) + <kAn(t) (2.5)

The open-loop plant structure shown In Figure 2.1 is representative 

of many Industrial control problems:

(1) The signal Jl(t) typically represents a load disturbance

which can be measured and used to provide feedforward 

control. The signal <|>
An(t) represents noise arising from
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the measurement of X(t), so that the actual signal used 

for feedforward Is f(t).

(11) The measured output available for feedback (z(t)) Is 

usually different from the output to be controlled (y(t)) 

due to measurement noise which the controller should noL 

attempt to regulate. Use of the filter W admits the n 

modelling of many different forms of measurement noise. 

For example, In ship control systems n(t) represents the 

high-frequency effect of waves to which the controller 

should not respond (see Grlmble, 1986a).

Polynomial form 

The transfer-functions of 

model may be represented as 

operator d as follows:

W 
P

Wd =

A-1B 
P P

Ad Cd

W X
= A-1C 

X X

W n
A-1C 

n n

Any common factors of A. and a AX

Ad = A'D , A = A'D, 
d dx x x dx

The least common multiple of Ad

the various sub-systems In Lhe plant 

ratios of polynomials In lhe delay

(2.6)

(2.7)

(2.8)

(2.9)

are denoted by D, such that: dx

(2.10)

and A Is denoted by A, l.e: x J dx

l.c.m(A ,A ) = A, = A'A'D, d x dx d x dx (2.11)

Any common factors of A. and A are denoted by D . such that: dx p z pdx

A = A' D, » A = A'D - (2.12)dx dx pdx p p pdx v '
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Command signal model

In the optimal tracking control problem considered in the 

following the controlled output y(t) will be required to follow as 

closely as possible a reference (or command) signal r(t). The signal 

r(t) may be represented as the output of a generating sub-system W 

which is driven by an external stochastic signal <|>^(t):

r(t) = Wr<|>r(t) (2.13)

The sub-system is represented in polynomial form as:

Wr = A~1Er (2.14)

where A^ and E are polynomials In d.

The reference signal r(t) is corrupted by a stochastic 

measurement noise <|> (t) . The reference measurement, m(t) , is given "" ' -------------------- rn --------------------------------------

by:

(2.15)m(t) = r(t) + <|>rn(t)

The tracking error, e(t), is defined by:

Any

e(t) A r(t) - y(t)

common factors of A and A are denoted

(2.16)

by D such that:

The

e p

A = A’D , A = A' D e e pe p pe pe

least common multiple of A,, A and A d e x

pe

is denoted

(2.17)

by A, i.e.: dex

Any

1 .c .m (A , A , A ) = A. d ex dex

common factors of A, and A are denoted by D, dex p J dex

(2.18)

such that:

A “A’ D , A * A’ D.dex dexp dex p pf dex

Denote by A and A . the lease common mu ex ed Itiples of

(2.19)

A »A and A »A, ex e d

respectively, l.e:

A = X.c.m (A ,A ) ex e x

A = Jl.c.m (A ,A,) ed e d

(2.20)

(2.21)
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Any common factors of A and A, are ex d denoted by D . exd
such that

Any

Any

A ex

common

A, dx

common

A’ D A = A’ D , ex exd d dex exd

factors of A, and A are dx e

A' D , , A = A’ D . xd xde e exd xde

factors of A . and A are 
ed x

denoted

denoted

by

by

(2.22)

D , xde
such that

(2.23)

D , 
edx

such that

A . = A*  D . , A = A' D ed ed edx x xed edx
(2.24)

The reference generator model is shown in Figure 2.2.

Measurable disturbance model

The measurable disturbance signal X(t) may be represented as the

output of a generating sub-system W
JI

driven by an external stochastic

signal <|> (t) :

*(t) - (2.25)

The sub-system is represented in polynomial form as:

JI AAJl hJl (2.26)

where A„
JI

and Ea are polynomials in d.

W

Any common factors of A.A and A are denoted by D . so that: I x p z pJlx

A A = A' D , A = A’ D „JI x Jlx pix p pix pix (2.27)

Assumptions

The following assumptions are made on the various sub-systems 

defined above:

(1) Each of the sub-systems is free of unstable hidden 

modes.

(11) The plant input-output transfer-function W is assumed 
P

strictly causal i.e. <B > = 0.
P
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Figure 2.1 : Open-loop plant

Figure 2.2 : Reference generator
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(ill) The polynomial A may have zeros on the unit circle but 
n

Is assumed, without loss of generality, to have no zeros

within the unit circle of the d-plane.

(iv) The polynomials C , C and C are assumed to have no x d n

common factors on the unit circle of the d-plane.

A summary of the polynomial form of each sub-system is given in

Table 2.1, and a summary of the various common factors is given in

Table 2.2.

2.1.1 Stochastic signal definitions

Each of the stochastic signals <b., <b , <b. and <L are assumed d n Ji. r

mutually uncorrelated and belong to one of the following three 

categories:

(a) Stationary white noise signal, where:

(i) The signal is a sequence of independent, equally 

distributed random variables i.e. it is a white noise 

sequence.

(11) The signal has zero-mean

(ill) The signal is wide-sense stationary.

(b) Non-Stationary signal, where;

(i) The signal is a compound (or generalised) Poisson

process i.e. a sequence consisting of random pulses of

magnitude ai occurlng at random times i

(ii) The random variables a^ form a white noise sequence of

the type defined in (a) above.
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w 
p

- A 
P P

wd - Ad Cd

wX
A-1C

X X

w n = A-1C 
n n

W r
A-1E 

e r

W£ = A£ S

Table 2.1 : Plant Transfer-functions

Polynomial 
pair

Common 
factor

Factorised 
pair

A, , A D , A ,=A',D , , A =A'D ,d x dx d d dx x x dx

A. =lcm(A.,A ) A , A D A =Ar. D , A =A’Ddx d x dx p pdx dx dx pdx ' p p pdx

A , A R A =A'R , A =A' De p pe e e pe p pe pe

A A , A D A A =A' D , A —A*  D „£ x p p£x £ x £x p£x p p£x p£x

A, =lcm(A,,A ,A ) A , A D , A =A’ D , A =A’ 1)dex d e x dex p dex dex dexp dex ' p pt dex

A =lcm(A ,A ) A , A, D , A =A’ D , , A =A*  0 ,ex ex ex d exd ex ex exd d dex exd

A , , A D A, =Ar D , A =A*  Ddx ' e xde dx xd xde ' e exd xde

A , = lcm(A ,A.) A , , A D , A ,=A’ ,0 , A =A' ,R ,ed e d ed x edx ed ed edx x xed edx

Table 2.2 : Common Factors
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(c) Pulse sequence, where

(1 t = 0
4 (t)=|

' (.0 L / 0

The stochastic to

be mutually uncorrelated white noise sequences of the type defined in 

(a) above.

The intensities of the signals <L,, <h > <!> » 4 > <!> and <1> are a * (i) (ii) * * vd n £ r £n rn

The above definitions admit the modelling of many different 

types of reference and disturbance signals r(t), X(t), d(t) and n(t).

Of considerable practical importance are coloured noise signals, 

step-like signals, and deterministic signals such as steps, ramps or 

sinusoids. These types of reference and disturbance signals may be 

model 1ed

and <b , and of the associated filters W , W„ , W, and W , n r £ d n ’

respectively, as follows:

(i) Coloured zero-mean noise is generated when the driving 

source is white noise of the type defined in (a) above, 

and when the filter is asymptotically stable.

(ii) Random walk sequences are generated when the driving

source is white noise of the type defined in (a) above,

and when the filter has a denominator 1-d (an

integrator).

denoted by a,, o , a„, o , a„ and a , respectively. All 
d n £ r £n rn’ 3

intensities are assumed non-zero.

2.1.2 Non-statlonary and deterministic reference and disturbances
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(ill) Step^like sequences consisting of random steps at random 

times are generated when the driving source is a compound 

Poisson process of Lhe type defined in (b) above, and 

when the filter has a denominator 1-d.

(iv) Deterministic sequences such as steps, ramps or sinusoids 

are generated when the driving source is a unit pulse 

sequence, and when the filter has poles on Lhe unit 

circle of the d-plane.
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2.2 CONTROL STRUCTURES

Two types of control structure will be considered : the 

slngle-degree-of-freedom (SDF) structure and the two-degrees-of- 

freedom (2DF) structure. Tn both cases a feedforward compensator 

will also be employed to counter the effect of the measurable 

disturbance Jl(t) .

Tn the slngle-degree-of-freedom structure the observed tracking 

error Is processed by a single cascade compensator, while In the 

two-degrees-of-freedom structure the observed reference and observed 

output signals are processed independently. The extra degree of 

freedom provided by the 2DF structure leads to the following 

advantages:

(1) The command response can be shaped Independently of the 

feedback properties of the system.

(11) A lower optimal cost can be achieved, (Gawthrop, 1978). 

However, In some practical situations It is not possible to realise a 

2DF control structure since It is not always possible to measure the 

reference and output signals separately. For example, in many 

trajectory following problems It is only possible to measure the 

tracking error (i.e. the difference between the desired and actual 

trajectories) and hence a SDF control structure must be used.

2.2.1 Single-degree-of-freedom controller with feedforward

The closed-loop system for the SDF controller including 

feedforward is shown in Figure 2.3. The observed error signal e^(t) 

is defined by:
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Figure 2.3 : SDF Control System 
with Fe e d f o rwa rd
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e (t) A m(t) - z(t) o =
(2.28)

The control law is given by:

u(t) » CceQ(t) - Cfff(t) (2.29)

where the cascade controller C and the feedforward controller Crr ---------------- c ---------------------------------------- f f

may be expressed as ratios of polynomials in the delay operator d

as:

C c = C cd cn

C,, = C,,.C,, ff ffd ffn

(2.30)

(2.31)

The transfer-functions from the external stochastic signals to the

control input and to the tracking error play a crucial role in 

determining the solvability of the optimal control problem. For the

SDF controller structure shown in Figure 2.3 these transfer-functions

are given by:

e(t) = -
C,A C , B C C
dAp cd ^(t) + 

d n VL)

ACT B CVd-r- * (t) - -P-S2 (t)A “ r « rne

(C A - B C,, A )C E x p ffd___p ffn x cd £
A A-C--,« x £ ffd

^(L) +
.CffnCcd 

w

B I 
P

ML)
(2.32)

u(L)
C A C

d p cn . z,.v ~AV- *d (L)
a

ACE
-ErrJLMt) + 

e

(C C C_„. + C-- A C ,)A E cn x ffd ffn x cd p T . ,
A A C “x 1 ffd 

A C , p ffn cd ,

(2.33)
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where the characteristic polynomial « Is defined by:

« A A C - + B C= p cd p cn (2.34)

2.2.2 Two-degrees-of freedom controller with feedforward

The closed-loop system for the 2DF controller Including 

feedforward is shown in Figure 2.4. The control law Is given by:

u(O = - Cfbz(t) + C^m(t) - Cfff(t) (2.35)

where the feedback controller C the reference controller C , and ----------------- ------------------------------------ r>

the feedforward controller may be expressed as ratios of

polynomials in the delay operator d as: 

fb fbd fbn
C = c“ic 
r rd rn 

ff ffd ffn

(2.36)

(2.37)

(2.38)

The transfer-functions from the external stochastic signals to the 

control input and to the tracking error again play a crucial role in 

determining the optimal control problem solvability. For the 2DF 

controller structure shown in Figure 2.4 these transfer-functions are 

given by:

C A C,. . B C_. C
e(t) = _ d£fbd vt) + _jqb2_£ vt) 

d n

(C « - B C Cc..)E 
4- r<* P rn fbd r

(CxApCffd ~ AxCffnBp)E/:fbd 

Wffd“

A -C ,
i BpCrnCfbd . .
*r(t) - V(t)

rd

B

V*-)  + ~
. c cp ffn fbd , .

(2.39)
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Figure 2.4 : 2DF Control System 
with Feedforward



31

u(l)
C,. C,A C,. C Afbn dp , x fbn n p . .-----------E M0------- %<*■>  

nAd“

CEA C,VJ rn r p fbd
C ,A “ rd e

C A CFt.J + rn p fbd 
r Crd“

(C,_ C Crr/ A C,, C , )E A fbn x ffd x ffn fbd I p
A A„C « x Z ffd

<V/t)
ApCffnCfbd . . 
----- C-----~ ^J>n(L) 

ffd *

(2.40)

where the characteristic polynomial « is defined by:

A A C£V + B Ccv« p fbd p fbn
(2.41)
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2.3 OPTIMAL CONTROL PROBLEM DEFINITION

The desired optimal SDF and 2DF controllers evolve from 

minimisation of the cost-function:

J = E{(Hqe) (t) + (Hru) (t)} (2.42)

where H and H are dynamic (l.e. frequency-dependent) weighting 
q r

elements which may be realised by rational transfer-functions.

Using Parseval's theorem the cost-function may be transformed to 

the frequency domain and expressed as:

J = £ {Q d> + R <(> } —2nj T 1 11 cve c*u*  z

(1) The weighting elements Q and R . are strictly positive on 

|d|=l.

(11) Aq, Bq, A^ and B are strictly Hurwitz polynomials.

] Z { 1

g error and controlwhere <b and <t> are the trackin e u

(2.43)

input spectral

densities, respectively, and:

Q = H H , R = HH c q q c r r

The weighting elements Q and

(2.44)

R may be expressed as ratios of

polynomials using:

B B
Qc £

A A 
q q

B B
R A (2.45)

A A

Assumptions:
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2.4 SINGLE-DEGREE-OF-FREEDOM SOLUTION WITH FEEDFORWARD

The Hurwitz spectral factors D , Dr and D are defined by: ------ c f id
£ * * * * * *

The polynomials D and Dc, are strictly Hurwitz c f d -----------------------------

Proof:

Any possible zero of D^ which lies on the unit circle of the 

d-plane satisfies d = exp( ja>) • If such a zero exists then, from 

equation (2.46):

BAB (e^B A B (e~jw) + A A B (e^A A B (e~^U) 
p r q p r q Pqr 'pqrv

= |B A B (e3u)|2 + |A A B (e3“)|2 = 0 
p r q pqr

This implies that d = exp( iw) is a zero of both BAB and A A B . p r q p q r

The polynomials BAB and A A B cannot, however, have such a zero p r q pqr

since Ap and B^ have no unstable common factors (Assumption (1) in 

Section 2.1) and since A^, B^, A^ and B^ are strictly Hurwitz 

(Assumption (2) in Section 2.3). By contradiction, therefore, D is 

strictly Hurwitz.

DD =» B A B B A B + AABBAA (2»46)cc prqqrp pqrrqp
A * Jc * *

D-D- * (A A*  CjOjCjA' A + A, C a C A.ff n ex add ex n dex n n n dex
* * * * *

+ A A’ E a E A’ A + A A. a A. A n xd r r r xd n n dex rn dex n
* * * *

+ AnA;dCxaXnCxA;dAn>%f %f <2-47>

DfdD*fd=  VinS + (2’48)

Lemma 1:

aBy similar argument any unstable zero of D fd would from
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equation (2.48), require:

°Xn|AX(eJU)|2 + aX|EX(eJ“)|2 = °

Since the Intensities c and o. are non-zero this condition wouldXn 1

require that d = exp(ju) Is a zero of both A^ and which again Is

not possible (Assumption (1) In Section 2.1). As a consequence Dfd

Is strictly Hurwitz.

This proof is based on the proof of Lemma 12.1 In XsLrom and

Wittenmark (1984).

Lemma 2:

Any zeros of

also zeros of A,, d

A 
P

A x

which lie on the unit circle and which are

or A will be zeros e of the spectral factor

not

If no such zeros exist then 0^ Is strictly Hurwl Lz.

Proof:

Any zero of A which Is noL also a 
P

from equation (2.19), be a zero of A',.
Pt

unit circle will, from equation (2.47), also

zero of A., A or A will, d x e

Any such zero lying on the

be a zero of .

Using a similar argument to that used in the proof of Lemma I

the term Inside the brackets In equation (2.47) can only lead Lo

strictly Hurwitz terms in .

Theorem 1 : Optimal SDF plus feedforward controller

The optimal control problem for the SDF control structure has a 

solution If and only If:

(a) Any unstable factors of A, are also factors of A .d p

V
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(b) Any unstable factors of are also factors of A^.

(c) Any unstable factors of the product A^A^ are also factors of

A . 
P

(d) Any unstable factors of A are not also factors of A . n ------ p

The cascade and feedforward parts of the control law (2.29) which

minimises the cost-function (2.43) are as follows:

(i) Optimal cascade controller

GA
cc = y <2-49>

* * -&1 *D Dfz 6 H - FB A A AJ A = A Ro (2.51)c f p r q dexp n p 2

where:
—al * * A *

R = z s (DcD£ - C a C A’ A’ A A ) (2.52)
1 f f n n n dexp dexp p p

—al AAA AAA A A
Rn » z s (DCD£A ABB + BBAABBCaCA' A\ )2 ffqqrr pprrqqnnn dexp dexp

(2.53)

and g^ > 0 is the smallest integer which makes the equations

(2.5O)-(2.51) polynomial in d.

(ii) Optimal feedforward controller

where G,H (along with F) is the solution having the property:
* * -i

(D^DfZ & ) F strictly proper

of the polynomial equations:

Cff
XA D - C C 11 r f cn x fd

DCJA C . fd x cd
(2.54)

where X (along with Z and Y) is the solution having the

property:

* -b2 -1(Dcz 6 ) Z strictly proper
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of the polynomial equations:

* —22 —&2   * * *

The polynomials G and H in equations (2.50) and (2.51) also 

satisfy the implied cascade diophantine equation:

A H + B A G = D.D (2.58)p p r f c v '

which also defines the closed-loop characteristic equation i.e. :

- = DfDc (2.59)

which, by the definitions of D^ and D^, is a Hurwitz polynomial.

•

Proof:

From equation (2.34) the characteristic equation is given by:

* = A C + B C p cd p cn

From equation (2.49) obtain:

« = AH+BAG 
P Pt

D z 8 X + ZA A A = z 8 B A B B C DCJ c q X x prqqxfd
* -e? -e2   * * *D z 6 Y - ZB A A - z 8 A ABBA’ CD., c p r Xx pqrr pXx x rd

and gj > 0 is the smallest integer which makes the equations

(2.55)

(2.56)

(2.55)—(2.56) polynomial in d.

The associated minimal cost is given by: 

2
Jmin=Kj * J,+ <2-57>

[ Z | 1 1 1

where the terms '1^ , i “ {1,2} and 4^^ are defined in Appendix 1.

Proof:

The proof of Theorem 1 is given in Appendix 1.

Corollary 1
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Multiplying equation (2.50) by B A , equation (2.51) by A and then p r p

adding obtain, using equation (2.46) and cancelling common factors:

A H + B A G = D,D p p r f c

Corollary 2

The polynomials X and Y in equations (2.55) and (2.56) also

satisfy the implied feedforward diophantine equation:

D A 
pJlx q , A X - D C 1 p r ex:Dfd (2.60)

Proof:

Multiplying equation

and adding results, after

(2.55) by B^A^, equation (2.56) by AqDp^x 

some algebraic manipulation, in equation

(2.60).

Corollary 3

The output disturbance denominator polynomial A is a factor of n

the cascade controller numerator C . •cn

Proof:

The diophantine equation (2.50) may be rewritten by substituting

from equation (2.47) as:

* * —ffl A A A —el * *D D_z B G + FAAA' A » B A B B z 6 A’ A*CA A ( c f p q dexp n p r q q pf pf n n
.jig .jig

A1 CjQjCjA1 4- A’ E a E A’ , 4- A, a A, 4* A* C a. C A* ) ex a a a ex xd r r r xd dex rn dex ed x in x edz

Since A divides both the right-hand side of this equation and the 
n

**-21 second term on the left side, it must also divide the term D D_z ® G.c f
A A

The term D D_ is unstable so that A must divide G, and hence C . c r n ’ cn



38

when A is stable, n Condition (d) in Theorem 1 ensures that any

unstable factors of A do not divide A and do not n ” therefore divide
A

Df- As a consequence, must again divide G, and hence C cn

Corollary

The transfer-function Cffn-/A I X is asymptotically stable.

Proof:

From equation (2.54) this transfer-function may be written:

Cffn
A x

XA D - C C D r f cn x fd

A’D x px

where D px denotes any common factors of A and A such that: x p

A’D x :* , A = A' D px p px px

Substituting from equations (2.58) and (2.60) the above transfer-

function may be written, after some algebraic manipulation, as:

Crr c Dr,A' c , - A D' YD ffn _ x fd px cd q pjx f
A “ x A'B 

x P
where D' , pXx » 0 /D • pxx px

A n

P

4

A 
x

Multiplying equation (2.50) by C^D^z , equation (2.55) by R^, and 

comparing obtain, after some algebraic manipulation:
p 
ffn * * * *

* 4 
conclusion can be drawn : since DrD is strictly unstable and since r c

—r  = (D XC a C A’ Al A' A + FA' A A' AC DCJzB A^ c n n n dexp dexp px p px q dexp n x fd

ZA A A'R z(81+g2))A /A'D*D*  
q 8. x 1 'r xcf

Comparing the above three expressions for C , /A the following 
f f n x
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D and B do not have any unstable common factors (A and B cannot px p p p

have unstable common factors) the expression (XA D. - C C D_,)/D r f cn x fd px

Is, In fact, polynomial. By virtue of condition (c) In Theorem 1

A' la stable so that C„ /A Is, as a result, asymptotically stable, x ffn x

Corollary 5

Any Hurwitz zeros of A which are not also zeros of A,, A or A ------ p d x e

will be zeros of D and G (and consequently of C and Cr„ ). Such f cn ffn

zeros of A are therefore cancelled by the controller. •
P

Proof:

Any zero of A which Is not also a zero of A,, A or A will, p d x e

from equation (2.19), be a zero of A'_. From equation (2.47), any 
Pf

Hurwitz zero of A’ will also be a zero of D . Denoting such a zero 
Pf f

2 
by A'then (A'_,) will be a factor of the right-hand-side of pfh pfh °

A
equation (2.50). Since A^^ appears in D^ and A^ equation (2.50)

will be satisfied when A' appears in G (and F) . From equations pfh

(2.49) and (2.54) A’ will also be a factor of C and C . •pfh cn ffn

Remark.

Corollary 5 Includes the important limiting case when A has a 
P

zero on the unit circle and A , A and A do not. Such a zero is ------ p x e

cancelled and, although the optimal control problem may still have a 

solution, the closed-loop system is not internally stable (see the 

following section). In this case the internal instability is 

man!fest since the unstable zero appears as a factor of 0^ (0^ is a
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factor of the closed-loop characteristic equation).

2.4.1 Internal stability

Theorem 2

The closed-loop system for the SDF plus feedforward control law 

is internally stable if and only if the polynomial A does not have
P

any zeros on the unit circle which are not also zeros of A,, A or d x

A . e

•

Proof:

The necessary and sufficient conditions for internal stability 

of a feedback control system derived by KuSera (1979) require that 

the controller can be written in the form:

C - x-1z 
c c 

where X and Z are asymptotically stable transfer-functions which c c

satisfy the Bezout identity:

AX + B Z =1 pc pc

From equation (2.49) the cascade controller may be written in 

the form:

-1 GA
Cc = (d7d“) (d7d-^

f c f c

Define:

GA
, Z = ——’ c DD f c

(2.58) X and Z satisfy the above Bezout identity, c c

The above condition for internal stability therefore reduces to the 

requirement that D^ and D^ are strictly Hurwitz polynomials. From

__
D D f c

X

From equation
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Lemma ID Is strictly Hurwitz. From Lemma 2 D Is strictly Hurwitz c t

only when A does not have any zeros on the unit circle which are noL 
P

also zeros of A,, A or A . d x e 
In addition to the above requirements on that part of Lhe

controller present In the feedback loop, the transfer-function of the

feedforward controller which Is external to the loop must be

asymptotically stable. From equation (2.54) the feedforward

controller Is given by:

C ffn
f f fd x cd

The term 1/C^^ is not necessarily stable and must In practice be

Included In Lhe feedback loop (Lhls point Is discussed In detail In

Section 4.6.1). The requirement therefore reduces Lo Lhe stability

of C /D A . From Lemma 1 D , is strictly HurwlLz and from ffn fd x fd

Corollary 4 the transfer-function /K Is asymptotically stable, ffn x

2.4.2 Equation solvability

To establish Lhe solvability conditions for the cascade and

feedforward diophantine equations consider firstly the general couple

of equations:

DX + ZM = L

DY - ZN = K

(2.61)

(2.62)

where the unknowns are X,Y and Z. Rewrite the above couple of

equations In the matrix form:

[e] lx = [FJ (2.63)

z
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where:

A standard result for the system of equations (2.63) is Frobenius' 

Theorem which states that these equations have a solution Iff: 

rank E = rank[E,F] (2.65)

<=> the matrices E and [e,f] have the same greatest common 

divisors of all 1x1 and 2x2 minors.

The 1x1 and 2x2 minors of E and [E,F] are, from the definition 

(2.64): 

1x1 minors of E : D, M,N

1x1 minors of [E,F] : D.M.N.L.K

-2 - -2x2 minors of E : D ,DN, DM

2x2 minors of [E,f] : D2,DN,DM,DK,DL,MK + NL

Thus, the conditions for solvability reduce to:

(1) (D,M,N)/L,K
-2 - - 

(11) (D ,DN,DM)/MK+NL

where ( , ) denotes the greatest common divisor and / denotes

divisor.
-2 - - - -

Since (D ,DN,DM) = D(D,M,N) the above two conditions reduce to:

(a) (D,M,N)/L,K (2.66)

(b) D/MK+NL (2.67)

The above material relating to the couple of equations (2.61)—(2.62) 

Is taken from Sfebek (1987). Solvability of the particular couples 

(2.5O)-(2.51) and (2.55)-(2.56) may now be Investigated using 

conditions (a) and (b) above:
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Theorem 3

When the optimal control 

satisfied then the cascade 

(2.5O)-(2.51) are solvable.

problem solvability conditions are 

controller diophantine equations

Proof:

Comparing the couples of equations (2.50)-(2.51) and

(2.61)-( 2.62) the polynomials D,M,N,L and K may be identified as:

- * * -glD = D D,z 8 c f

M = A A A' A p q dexp n

N = B A A A' A p r q dexp n 
* * *

L = B A B B R, p r q q 1 
*

K = A R„ 
P 2

By definition, A and B can have no unstable common factors and A 
P P q

and A are strictly Hurwitz. In addition, when the problem is 

solvable the conditions (a)-(c) in Theorem 1 ensure that A' is dexp

strictly Hurwitz. Thus, the greatest common divisor of D, M and N

is: 

- * * -el(D.M.N) = (D D,z 8 ,A ) 
c f n

Since 0 is strictly Hurwitz and A has, by definition, no zeros c n

inside the unit circle in the d-plane the only possible common factor

* * -glof the polynomials D D,z and A is when D. and A both have a zero c f n f n
A

on the unit circle. From Lemma 2 such a zero will appear in only

when A has a zero on the unit circle which is not also a zero of A,, 
P d

A or A . In this case, however*  condition (d) in Theorem 1 ensures x e
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that such a zero cannot also be In A . As a result: -----------  n

(D.M.N) = 1 

and the solvability condition (a) (2.66) is satisfied.

Finally, from the definitions above, and using equation (2.46), 

obtain after some algebraic manipulation: 
* *

MK+NL = (D Dcz B )DCD A A’ A c f f c q dexp n 

and the condition (b) (2.67) is satisfied. •

Theorem 4

When the optimal control problem solvability conditions are 

satisfied then the feedforward controller diophantine, equations 

(2.55)-(2.56) are solvable. •

Proof:

Comparing the couples of equations (2.55)-(2.56) and

(2.61)-( 2.62) the polynomials D,M,N,L and K may be identified as:
★

D z cD -g2

M = A A„A q A x

N

L

K

= B A A!p r lx
_e2 * * *

= z s B A B B C D,, p r q q x fd
_b2 * * *= Z 5 A A B B A' C D_, p q r r pAx x fd

From condition (c) In Theorem 1 any unstable factors of A A 
A x

must also be In A and cannot, therefore, be in B . Condition (c) 
P P

also ensures that A' is strictly Hurwitz, as are A and A . From 
Ax q r

Lemma ID Is strictly Hurwitz and D is therefore strictly c c J
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non-Hurwltz. As a consequence:

(D.M.N) = 1

and condition (a) (2.66) Is satisfied.

From the above definitions, and using equations (2.27) and

(2.46) obtain after some algebraic manipulation:

-e2 *MK + NL = (z ® D )D C D A' ' c7 c x fd lx 

and the condition (b) (2.67) Is seen to be satisfied. •

2.4.3 Zero output-measurement noise

When the measurement noise n(t) acting on the controlled output 

y(t) Is zero the diophantine equations for the cascade controller 

simplify as follows:

Theorem 5

When the measurement noise n(t) = 0 the spectral factor Is

defined by:
* ★ ★ ★ ★

D,D, = (A' C.o.C.A' + A' E a E A’ f f ex d d d ex xd r r r xd
+A a A*  + A' C a C*A'*)A'  A'*  (2.68)

dex rn dex ed x In x ed pf pf

The optimal cascade controller Is given by:

GA
Cc = H^ <2-69>

q
where (along with F1) is the solution having the property:

* -el -1(D^z 6 ) F’ strictly proper

of the polynomial equations:

* —£1 -21   * * *D z 6 G + F'A A A' »z6BABBD£ c p q dexp p r q q f (2.70)
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* -gl . . .D z H' - F B A A' c p r dexp
* *

z °*A  A B B D q r r f (2.71)

where gl > 0 is Lhe smallest inLeger which makes Lhe equations

(2.70)-( 2.71) polynomial in d.

The polynomials G and H' in equations (2.7O)-(2.71) also satisfy 

the diophantine equation:

AAH'+BAG = DD (2.72)
p q p r f c

Proof:

To obtain n(L) = 0 set o = C = 0, A =1. The definition of n n n

Dj in equation (2.68) then follows immediately from equation (2.47).

The diophantine equation (2.50) becomes:
* * -gl

D D,z s G + FA A A' c f p q d
-Bi * * * 6 n a nA = z 6 B A B B DCD dexp p r q q ff f

Since divides the right-hand-side and Lhe first Lerm on the left

side of this equation it must also divide. F. Denoting F by:

F - DfF'

and cancelling Lhe common factor results In equation (2.70).

The diophantine equation (2.51) becomes:

* * "gl I n r, O —pl * * * 
6 A A DD D z 8 H - FB A A A' = z 8 A A B B DA D 

c f P r q dexp p q r r f q f

By a similar reasoning to that used above 0^ must again divide F.

Since A divides the right-hand-side and the 
4

second term on the left

side of this equation, it must also divide H. Denoting H by:

H = A H' 
q

A
and cancelling the common factor A D results in equation (2.71). 

q r
Using equation (2.49) the cascade controller becomes:
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c =
c H’A 

q
* * * -cl -1

Since F = D,F' the conditions (D Drz ) F strictly proper t ci
* -gl -1and (D^z ) F’ strictly proper are clearly equivalent.

Multiplying equation (2.70) by B A , equation (2.71) by A A and 
p r p q

then adding results, using equation (2.46) and cancelling common

factors, in equation (2.72). •
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2.5 TWO-DEGREES-OF-FREEDOM SOLUTION WITH FEEDFORWARD

The Hurwitz spectral factors D D , D c r rd and D are defined by 
m

A
D D = c c

A
DfDf =

BAB B*A*B*  + A A B B*A*A*  
p r q q r p pqrrqp

(A A’C.a.C.A’ A +A , C a C A, +A’A nxdddx n dxnnndx d

(2.73)
A A A A

C an C A A' )A'A’ nxXnxnd ' p p

(2.74)

DfdDfd=
A 

D D = m m

= AJtaJlnAJl + EAaAEl
A A

A a A + E a E e rn e r r r

(2.75)

(2.76)

Lemma I

The polynomials D D and D are strictly Hurwitz, c rd m -----------------------------

Proof:

For D and D the proof is the same as that of Lemma 1 in c f d

Section 2.4.

Any unstable zero of D^ would, from equation (2.76), require:

a |A (ejw)|2 + a |E (ejW)|2 = 0 
rn e r r

Since the intensities a and a are non-zero this condition would rn r

require that d = exp (Im) is a zero of both A and E which is not e r

possible (Assumption (i) in Section 2.1). As a consequence D^ is 

strictly Hurwitz. •

Lemma 2

Any zeros of A which lie on the unit circle and which are not 
P

also zeros of A, or A will be zeros of the spectral factor D„. If d x r f

no such zeros exist then D^ is strictly Hurwitz. •
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Proof:

Any zero of A which is not also a zero of A. or A will, from p d x

equation (2.12), be a zero of A^. Any such zero lying on the unit

circle will, from equation (2.74), also be a zero of .

Since C,, C and C have no common factors on the unit circle d n x

(Assumption (iv) In Section 2.1) the term inside the brackets In

equation (2.74) can only lead to strictly Hurwitz terms In D .

•

Theorem 6 : Optimal 2DF plus feedforward controller

The optimal control problem for the 2DF control structure has a 

solution if and only if:

(a) Any unstable factors of A, are also factors of A . d p

(b) Any unstable factors of A are also factors of A . e p

(c) Any unstable factors of the product A A are also x x

factors of A . 
P

(d) Any unstable factors of A are not also factors of A . n ----- p

The feedback, reference and feedforward parts of the control law 

(2.35) which minimises the cost-function (2.43) are as follows:

(1) Optimal feedback controller

(2.77)Cfb = GA’ 
fb ~H

where G,H (along with F) Is the solution having the property:
* * *

(D D,z ) F strictly proper c t

of the polynomial equations:
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* * —gl
D Dz & G + c f

4c 4c -gl
D D_z S H - 

c r

FA A Al A - p q ax n

FB A A A' A p r q dx n

4c 4c 4c
B A B B R, p r q q 1

*
= A R.

P 2

(2.78)

(2.79)

where:

and

R1

R2

* *
(D_D~ -Co C~A‘ A' A A ) p f n n n dx dx p p

*
' fDf
(D D*A  A*B  B*  

f f q q r r

0 is the smallest

z“el

z’81

(2.80)
4c 4c 4c 4c 4c

+BBAABBCaCA'A' ) (2.81) pprrqqnnndxdx

which makes the equationsinteger

(2.78)-(2.79) polynomial in d.

(ii) Optimal reference controller

MA D„ _ r f

where M (along with N and Q) is

(2.82)

the solution having the

property:
* _g2 -1 

(D^z ° ) N strictly proper

of the polynomial equations:
4c —a? —p2 4c 4c 4c

D 2 B M + NA A =zbBABBD c qe prqqm
4c -p? -e2 4c 4c 4c

D z B Q - NB A A' =z°AABBAD 
c pre pqrrpem

(2.83)

(2.84)

and g2 > 0 is the smallest integer which makes the equations

(2.83)-(2.84) polynomial in d.

(iii) Optimal feedforward controller

fbnCxDfd
ff D A C£V. fd x fbd

(2-85)C
XA Dr r f

*

where X (along with Z and Y) is the solution having the

property: 
* _„3

(D^z ) Z strictly proper 

of the polynomial equations:
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* -e3D z s X 
c
* -e3D z S Y 
c

* * * *
+ ZA A.A = z s B A B B C D_ (2.86)q £ x prqqxrd x '

—©3 * * *- ZB A A' = z 6 A A 8 B A'„ C D,, (2.87)p r ix p q r r pAx x fd '

and g3 > 0 is the smallest integer which makes the equations

The polynomials G and H in equations (2.78) and (2.79) also 

satisfy the Implied feedback diophantine equation:

A H + B A G = D n (2.89)p p r f c 

which also defines the closed-loop characteristic equation i.e.:

« - DD (2.90)t c

which, by the definitions of D and D , is a Hurwitz polynomial, 
f c

•

Proof

From equation (2.41) the characteristic equation is given by:

“ = A 0 + B C,_p fbd p fbn

From equation (2.77) obtain:

« = AH+BAG 
P Pt

(2.86)-(2.87) polynomial in d.

The associated minimal cost is given by:

J . = }mln 2nj 7
■ r . dz> [ E (T T ) + 4, (2.88)
,1^1 <=1 11 OL Zmtn 4.VJ , , - , , XX UL x-J |z|=l i=l

where the terms T^, 1 = {1,2,3} and are defined in Appendix 2

Proof:

The proof of Theorem 6 is given in Appendix 2. •

Corollary I
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Multiplying equation (2.78) by BpAf, equation (2.79) by Ap and then 

adding obtain, using equation (2.73) and cancelling common factors:

A H + B A G = D.D p p r f c

Corollary 2

The polynomials M and Q in equations (2.83) and (2.84) also

satisfy the implied reference diophantine equation:

D A Q 
pe q

+ B A M = D D 
p r cm

(2.91)

Proof:

Multiplying equation (2.83) by BpAr, equation (2.84) by AqDpe 

and adding results, after some algebraic manipulation in equation

(2.91).

Corollary 3

The polynomials X and Y in equations (2.86) and (2.87) also

satisfy the implied feedforward diophantine equation:

D „ AY+BAX=DCD plx q p r ex:fd
(2.92)

Proof:

Multiplying equation

and adding results, after

(2.86) by BpAf, 

some algebraic

equation (2.87) by A^D^^^

manipulation, in equation

(2.92).

Corollary 4

polynomial A^ is a factorThe output disturbance denominator

of the feedback controller numerator C„ . f bn
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Proof;

The diophantine equation (2.78) may be rewritten by

substituting from equation (2.74) as:
* * — ffl * * * — pl * *

D D z B G + FA A A' A = B A B B z B A’A' A A ( 
cf pqdxn prqq ppnn

* * * *
A’ C.o.C.A’ + A’ C a. C A' ) xdddx dxXnxd

Since A divides both the rlght-hand-slde of this equation and the

* * -stl second term on the left side, It must also divide the term D D_z G.c f
A A

The term D D, Is unstable so that A must divide G, and hence Cr, , c f n fbn

when A^ Is stable. Condition (d) In Theorem 6 ensures that any

unstable factors of A do not divide A and do not therefore divide n p
A

D . As a consequence, A must again divide G, and hence C,, . • r n ton

Corollary 5

Proof:

From equation (2.85) this transfer-function may be written:

C Cffn XA - r f fbnCxDfd
Ax A'D X px

where D denotes any common factors of A and A such that: px x p

A = A'D .A = A' D X X px p px px

Substituting from equations (2.89) and (2.92) the above 

transfer-function may be written, after some algebraic manipulation,

as:
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C D A' -AD*  YDc 
f fn _ x fd px fbd q pj?x f
A x A'B 

x P
where D' = D „ /D pxx pXx px

Multiplying equation (2.78) by C^D^^z equation (2.86) by Rx and

comparing obtain, after some algebraic manipulation: 
c ffn * * * * gl7~~ = (D XC <j C A' A' A' A + FA' A A' A C Dc.zsiA* c n n n dx dx px p px q dx n x td

- ZA A A'R z^81+83))A /A'D*D*  
q X x 1 rxfc

Comparing the above three expressions for C^^^/A^ the following
* * 

conclusion may be drawn : since is strictly unstable and since

D and B do not have any unstable common factors (A and B cannot px p ' p p

have any unstable common factors) the expression

(XA Dc - Cc, C D,j)/D is, in fact, polynomial. By virtue of r f fbn x fd px ------ -------------

condition (c) in Theorem 6 A' is stable so that /A is, as a x ffn x

result, asymptotically stable.

Corollary 6

Any Hurwitz zeros of A which are not also zeros । 
P

and G (and consequently of Cr, , C fbn rn
will be zeros of

of A, or A d x

and C ffn

Such zeros of A are 
P

therefore cancelled by the controller.

Proof:

Any

equa t ion

zero of A 
P

(2.12), be a

which is not a zero of A, or A d x will, from

zero of A'. From equation (2.74), 
P

be a zero of . Denoting such a

any Hurwitz

zero of A’ will also 
P 

2
then (A^) will be a factor of the right-hand-side of equation

*
(2.78). Since A^ appears in and A^, equation (2.78) will be

zero by A', ph
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satisfied when A', appears in G (and F). From equations (2.77), 
ph

(2.82) and (2.85) A’, will also be a factor of C,, , C and C . ph fbn rn ffn

Remark

Corollary 6 Includes the Important limiting case when A has 
P

a zero on the unit circle and A and A do not. Such a zero Is ------ p x

cancelled and, although the optimal control problem may still be 

solvable, the closed-loop system is not internally stable (see the 

following section).

2.5.1 Internal stability

Theorem 7

The closed-loop system for the 2DF plus feedforward control law 

is internally stable if and only if the polynomial A^ does not have 

any zeros on the unit circle which are .not also zeros of A, or A .d x

•

Proof:

From equation (2.77) the feedback controller may be written in 

the form:

-1 GA
Cfb “ ^dTd-^ D > 

f c f c

Define:

H GAr
Y — H 7 = r

c D,D ’ c D,Df c f c

From equation (2.89) X and Z satisfy the above Bezout Identity, c c

Following the conditions stated in the proof of Theorem 2 the 

polynomials D<_ and are required to be strictly HurwiLz for the
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system to be internally stable. From Lemma I'D is strictly Hurwitz, c

From Lemma 2 D, is strictly Hurwitz only when A does not have any f p

zeros on the unit circle which are not also zeros of A, or A . d x

In addition to the above requirements on that part of the 

controller present in the feedback loop, the transfer-functions of 

the reference and feedforward controllers which are external to the 

loop must be asymptotically stable.

From equation (2.82) the reference controller is given by: 

MA D 
C = r f 

r DC m fbd

The term 1/C is not necessarily stable and must in practice be tod

included in the feedback, loop (this point is discussed in detail in 

Section 4.6.1). The requirement therefore reduces to the stability

of MA D/D . From Lemma ID is strictly Hurwitz, r f m m

From equation (2.85) the feedforward controller is given by:

C -
ff ’ DfdAxCfbd

The term l/C must again be included in the feedback loop so that 
fbd

only C,, /DA must be asymptotically stable. By Lemma 1 D is rrn rd x rd

strictly HurwiLz. By Corollary 5 Is asymptotically stable.

2.5.2 Equation solvability

The solvability conditions for the feedback, reference and

feedforward diophantine equations are established using the general 

theory outlined in Section 2.4.2:



57

Theorem 8

When the optimal control problem solvability conditions

satisfied then the feedback controller diophantine equations

( 2.7 8 ) — ( 2.7 9 ) are solvable

Proof

ComparIng the couples of equations (2.61)-(2 .62) and

(2.78)-(2.79) the polynomials D,M,N,L and K may be Identified as:

D
-gl * * 

z 6 D Dc 
c f

M = A A A' A p q dx n

N - B A A A' A p r q dx n

L = B A B B R p r q cq 1
K A R_

P 2
By definition A and

P
B can have no unstable 

P
common factors and A 

q
and A are strictly Hurwitz. In addition when the problem is

solvable the conditions (a) and (c) In Theorem 6 ensure that A' dx is

strictly Hurwitz. Thus, the greatest common divisor of D,M and N

is:

* * -gl । n •» B(D.M.N) = (D D z An>

Si nee D Is strictly Hurwitz and A has, by definition, no zeros n '

inside the unit circle in the d-plane the only possible common factor

of the * * -Rl polynomials D^D^z and A is n when D, and A both have a zero f n

on the unit From Lemma 2 such a zero will appear In only

when A 
P

a zero on the unit circle which Is not also a zero of A d
or A x In this case, however, condition (d) in Theorem 6 ensures

that such a zero cannot also be In A . As a -----------  n result

(D.M.N) = 1
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and the solvability condition (a) (2.66) is satisfied. Finally, from 

the above definitions, and using equation (2.73), obtain after some 

algebraic manipulation:
* * -gi

MK + NL = (D D,z B )D,D A A' A c f f c q dx n

and the condition (b) (2.67) is satisfied. •

Theorem 9

When the optimal control problem solvability conditions are 

satisfied the reference controller diophantine equations 

(2.83)-(2.84) are solvable. •

Proof

Comparing the couples of equations (2.61)-(2.62) and

(2.83)-( 2.84) the polynomials D,M,N,L and K may be identified as:

- * -g2D = D z B 
c

M = A A q e
N = B A A*  

pre

L»zbBABBD p r q q m

K = zbAABBA’D 
p q r r pe m

From condition (b) in Theorem 6 any unstable factors of A must also e

be in A and cannot, therefore, be In B . Condition (b) also ensures 
P P

that A’ is strictly Hurwitz, as are A and A . From Lemma ID is e q r c
* 

strictly Hurwitz and Is therefore strictly non-Hurwltz. As a

consequence:

(D,M,N) = 1 

and condition (a) (2.66) is satisfied.
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From the above definitions, and using equations (2.17) and 

(2.73), obtain after some algebraic manipulation:

-e2 *

When the measurement noise n(t) =0 the spectral factor is 

defined by:

D,D* = (A’C .a ,C*A'* + A'C cr C*Al*)A'A'* (2.93)
ff xdddx d x Jin x d p p '

The optimal feedback controller is given by:

MK + NL = (z 6 D )D A'D c c e m 

and the condition (b) (2.67) is seen to be satisfied. •

Theorem 10

When the optimal control problem solvability conditions are 

satisfied then the feedforward controller diophantine equations 

(2.86)-(2.87) are solvable. •

Proof

The couples of equations (2.55)-(2.56) and (2.86)-(2.87) are 

identical. The proof then follows by analogy with the proof of 

Theorem 4. •

2.5.3 Zero output-measurement noise

When the measurement noise n(t) acting on the controlled output 

y(t) is zero the diophantine equations for the feedback controller 

simplify as follows:

Theorem 11
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where C,H' (along with F') Is the solution having the properly:

* -fil -1 .(D^z ° ) F*  strictly proper

of the polynomial equations:
* — pl — pl AAA

D z 6 G + F’A A A' = z 8 B A B B Dc (2.95)c p q dx p r q q f
* —al —pl A A A

D z B H' - F'B A A' = z“AABBD (2.96)c p r dx pqrrf

where gl > 0 is the smallest integer which makes Che equations 

(2.95)~(2.96) polynomial in d.

The polynomials G and H' in equations (2-95)—(2.96) also satisfy 

the diophantine equation:

A A H' + B A G = D D (2.97) .p q p r f c

Proof:

To obtain n(t) = 0 set o = C = 0, A n n n

0^ in equation (2.93) then follows immediately

1. The definition of

from equation (2.74).

The diophantine equation (2.78) becomes:
—pl AAA A

/ - z 8 B A B B D_D_ dx p r q q f f
* * - el .D D_z 8 G + FA A A c f p q c

Since 0^ divides the right-hand-side and the first terra on the left

side of this equation, it must also divide F Denoting F as:

F = DfF'

and cancelling the common factor D^ results in equation (2.95) .

The diophantine equation (2.79) becomes:
* * —el —el * A * *D D,z 6 H - FB A A A' = z 8 A A B B DCA Dc cf prqdx pqrrfqf

By a similar reasoning to that used above, must again divide F.
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Since A divides the right-hand-side and the 
q

side of this equation, it must also divide H.

second term

Denoting H

on the left

as:

in equation (2.96).

Cfb

H = A H' 
q

A 
and cancelling the common factor A D, results 

q f
Using equation (2.77) the feedback controller equation becomes:

GA ____r 
H'A 

q
* * * -gl -1

D^F' the conditions (D^D^z 6 ) F strictly proper, and
* -gl -1 

(D z ) F' strictly proper, are clearly equivalent.

Since F

Multiplying equation (2.95) by B A , equation (2.96) by A A and p r p q

then adding results, using equation (2.73) and cancelling common 

factors, in equation (2.97).
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2.6 SDF SOLUTION USING A COMMON DENOMINATOR

In the slngle-degree-of-freedom control structure shown In

Figure 2. 3 It is always possible to express the various sub-systems

using a least-common-denominator polynomial. Denoting the

least-common-factor of A , A , A. and A by A l.e:
p x d e

A A l.c.ro. (A , A , A,, A ) (2.98)p x’ d e

then the sub-systems W , W , W and W may be expressed using their p x d r

least-common-denominator A as:

-1w = A B (2.99)
-1

wd - A C (2.100)
-1w = X A D (2.101)

-1w = r A E (2.102)

As before , the sub-systems and W are denoted by:

-1W = A C (2.103)n n n
-1

W =» x Ai EX (2.104)

Theorem 1 2: SDF Solution Using a Common Denominator

The optimal control problem for the SDF control structure using

the common denominator model (2.99)-(2.102) has a solution if and

only If:

(a) A and B have no unstable common factors.

(b) Any unstable factors of A^ are also factors of A and D.

(c) Any unstable factors of A are not also factors of A.n ------
The Hurwitz spectral factors D , D^ and are defined by:
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A * * A it it it
DD 3 BA B B A B + AA B B A A (2.105)cc r q q r qrrq

it it it it it it it
DfDf = (A Ca.C A + AC a C A nd n n n n + A Eg E A nr n

+
ik it

Aka A A + A Da, D n rn n n Xn
it 

V (2.106)
*

D D fd fd
* *

= A„<j. A. + E.cj.E.1 in 1 XXX (2.107)

The ca scade and feedforward parts of the control law (2.29)

(ii) Optimal feedforward controller

which minimises the cost-function (2.43) are as follows:

(1) Optimal cascade controller (ii)

(2.108)

where G,H (along 

* * -el -1(DcDfz gl) 1

with F) is the solution having the property:

F strictly proper

of the
it 

Dc
it 

Dc

polynomial

* -al Dfz B G +

* -al Dfz B H -

equations:

FAA A » B*A*B*B  R.
q n r q q 1

FBA A A = A*R_  
r q n 2

(2.109)

(2.110)

where:

R1 3 Z gl(Df it it it
D - C a C AA ) f n n n (2.Ill)

R2
z“81(Df it it it it it it it

D-A ABB +BBAABBC(jC) fqqrr rrqqnnn (2.112)

and g^ > 0 is the smallest integer which makes the equations

(2.109)-(2.110) polynomial in d.

C ff

XA D - C DO r f cn fd
De□AC - f d cd

(2.113)

where X (along with Z and Y) is the solution having the

property:
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* -22 -1(D^z ) Z strictly proper

of the polynomial equations: 

* — p2 —£>2 * * * *

The polynomials G and H In equations (2.109) and (2.110) also 

satisfy the implied cascade diophantine equation:

AH + BA G = DD (2.117)
r f c

•

Proof:

Multiplying equation (2.109) by BA , equation (2.110) by A and 

then adding results, using equation (2.105) and cancelling common 

factors, in equation (2.117). •

Corollary 2

The polynomials X and Y in equations (2.114) and (2.115) also

D z 8 X + ZAA A = z 8 B A B B DD£J (2.114)
c q A r q q fd
* —p? —p2 * * *D z 8 Y - ZBA A = z 8 A A B B DD,, (2.115)
c r A q r r fd

and g2 > 0 Is the smallest integer which makes the equations 

(2.114)-(2.115) polynomial In d.

The associated minimal cost Is given by: 

1 r idzJ , = i [ E (T.T, ) + <».] — (2.116)
mln 2nj , 1 1 olJ z

I Z I—i 1= 1

where the terms T^, 1 = {1,2} and <t>o£ are defined In Appendices 3 and 

1, respectively. •

Proof:

The proof of Theorem 12 Is given In Appendix 3. •

Corollary 1
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satisfy the implied feedforward diophantine equation:

AA Y + BA X = D DD (2.118)
q r c td

Proof:

Multiplying equation (2.114) by BA , equation (2.115) by AA 
r q

and adding results, after some algebraic manipulation, in equation 

(2.118). •

2.6.1 Zero output-measurement noise

When the measurement noise n(t) acting on the controlled output 

y(t) is zero the diophantine equations for the cascade controller 

simplify as follows: 

Theorem 13

When Che measurement 

defined by:

noise

A
Aa A rn

n( t)

+ Do

= 0 the spectral

A
HnD

factor Dj is

(2.119)DfD*f  = Co .C + a
A

Ea E + r

The optimal cascade controller is given by:

GA rc ,_____ L
c H'A 

q
(2.120)

where G, H' (along with F') is the solution having the 

* -el -1(D^z ° ) F' strictly proper

property:

of the polynomial equations: 
* -pl -pl * * *

D z 8 G + F'AA =* z8BABBD, (2.121)c q r q q f
* —el -el A A A

D z 8 H' - F'BA =z8AABBD, (2.122)c r q r r f '

where gl > 0 is the smallest integer which makes the equations 

(2.121)-(2.122) polynomial in d.
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The polynomials G and H' in equations (2>121)—(2>122) also 

satisfy the diophantine equation:

AA H' + BA G = D D (2.123)
q r f c

Proof:

To obtain n(t) = 0 set <3 = C = 0, A =1. The definition of n n n

D
f in equation (2.119) then follows immediately from equation 

(2.106).

The diophantine equation (2.109) becomes:
*  -pl    * * * * *

D D,z 8 G + FAA = z 8 B ABB D,D, cf q rqqff
A

Since D^ divides the right-hand-side and the first term on the left

side of this equation, it must also divide F. Denoting F by:

F = D*F'

A
and cancelling the common factor D^ results in equation (2.121).

The diophantine equation (2.110) becomes:
*  -pl -pl    * * * * *

D D,z 8 H - FBA A = z 8 A A B B D,A D, cf rq qrrfqf
A

By a similar reasoning to that used above, D^ must again divide F.

Since A divides the right-hand-side and the Second term on the left 
q

side of this equation, it must also divide H. Denoting H by:

H = A H’ 
q

A
and cancelling the common factor A D, results 

q f
in equation (2.122).

Using equation (2.108) the cascade controller equation becomes: 

GA
Cc = h¥ 

q
* * * _Ri

Since F = D F’ the conditions (D D^z ) F strictly proper and
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* -el -1 (D^z ) F' strictly proper are clearly equivalent.

Multiplying equation (2.121) by BA^, equation (2.122) by AA^ and

then adding results, using equation (2.105) and cancelling common

factors, in equation (2.123). •
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2.7 2DF SOLUTION USING A COMMON DENOMINATOR

In the two-degrees-of-freedom control structure shown in Figure

2.4 it is always possible to express the various sub-systems using a 

least-common-denominator polynomial. Denoting the least-common-

factor of A , A,, and A p d x by A i .e :

A A l.c.m. (A , A, 
P d

> A ) (2.124)X

then the sub-systems W , W,, and W may be expressed using their p d x

least-common-denominator A as:

w = p
A-1B (2.125)

wd “ A-1C (2.126)

w = X
A-1D (2.127)

As before., the sub-systems W , W and W are denoted by:

W = n
A 1C 

n n (2.128)

aA
(2.129)

w = r
A-1E 
e r (2.130)

Any common factors of A e and A are denoted by D such that: e

A = e DA' , A = D e ec A’ (2.131)

Theorem 14: 2DF Solution Using a Common Denominator

The optimal control problem for the 2DF control structure using 

the common denominator model (2.125)—(2.127) has a solution if and 

only if:

(a) A and B have no unstable common factors.

(b) Any unstable factors of A are also factors of A. e
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The feedback, reference and feedforward parts of the control law

(c) Any unstable factors of aa are also factors of A and D.

(d) Any unstable factors of A n are not also factors of A.

The Hurwitz
*

D D = BA B c c r q
*

DfDf “ AnCad

DfdDfd = \ 
ft

D D = A a mm e rn

spectral factors
ft ft ft ft

BAB + AA B B q r q r r
ft ft ft ft

C A + AC o C A n n n n

+ EJtCTJtEJt
ft ft

A + E o E e r r r

D c
A

A A 
q

>
ft

L

A n

Df’

Dou

D and D fd m

A A
D A n

are defined by:

(2.132)

(2.133)

(2.134)

(2.135)

(2.35) which minimises the cost-function (2.43) are as follows:

(1) Optimal feedback controller

C - GAr 
fb -J,- (2.136)

where G,H (along with F) is the solution having the
A A -ol -1

(D^Dj-z 5 ) F strictly proper

of the polynomial equations:
ft ft —pl ft ft ft

D Dfz 6 G + FAA A = B A B B R, cr qn rqqi

property:

(2.137)
ft ft -pi ft

D D.z 8 H - FBA A A « A R„
c f r q n 2

where:

(2.138)

—el ft ft ft
R, = z s (D D - C <j C AA )1 f f nnn
R„ = z"gl(D,D*A  A*B  B*  + BB*A  A*B  B*C  a C*)

2 ffqqrr rrqqnnn'

(2.139)

(2.140)

and gj > 0 is the smallest integer which makes the equations

(2.137)-(2.138) polynomial in d.

(ii) Optimal reference controller

MA D r f
D C,, , m fbd

(2.141)
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where M (along with N and Q) is the solution having the 

property:

* -g2 -1(D^z ) N strictly proper

of the polynomial equations:

* —o2 —p?   * * *
D z 6 M + NA A -zeBABBD c q e r q q m

* ——£>2   * * *D z e Q - NBA A' = z 6 A A B B A'D c rec qrrm

(2.142)

(2.143)

and g2 > 0 is the smallest integer which makes the equations

(2.142)-( 2.143) polynomial in d.

(ill) Optimal feedforward controller

XA Dc - C: DD r f fbn fd
Cff D-.AC

fa f ba
(2.144)

where X (along with Z and Y) is Lhe solution having the 

property:

* -e3 -1(D^z ) Z strictly proper

of the polynomial equations:
* * * *

D z ° X + ZAA A=zgBABB DD_< c q t r q q fa
* ~p3 * * *

D z ® Y - ZBA A=zsAABB DD_, 
c r 1 q r r fa

(2.145)

(2.146)

and g3 > 0 is the smallest integer which makes the equations

(2.145)-(2.146) polynomial in d.

The associated minimal cost is given by:
1 3 -*  a

Jmin “ Kj * J,E <TiTi > + *ol  H <2’147>
|z|=l i=l

where the terms , i = {1,2,3} and $ are defined in Appendices 4

and 2, respectively. •
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Proof:

The proof of Theorem 14 is given in Appendix 4.

Corollary 1

The polynomials G and H in equations (2.137) and (2.138) also 

satisfy the implied feedback diophantine equation:

AH + BA^G = DfDc (2.148)

•

Proof:

Multiplying equation (2.137) by BA^, equation (2.138) by A and 

then adding results, using equation (2.132) and cancelling common 

factors, in equation (2.148). •

Corollary 2

The polynomials M and Q in equations (2.142) and (2.143) also

satisfy the implied reference diophantine equation:

DAQ+BAM=DD eq r cm (2.149)

Proof: 

Multiplying equation (2.142) by BA^ equation (2.143) by D Ae q

and adding results, using equation (2.132) and cancelling common 

factors, in equation (2.149).

Corollary 3

The polynomials X and Y in equations (2.145) and (2.146) also 

satisfy the implied feedforward diophantine equation:

AA Y + BA X = D DD, (2.150)
q r c fd
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Proof:

Multiplying equation (2.145) by BA^, equation (2.146) by AA^ and 

adding results, using equation (2.132) and cancelling common factors, 

in equation (2.150). •

2.7.1 Zero output-measurement noise

When the measurement noise n(t) acting on the controlled output 

y(t) is zero the diophantine equations for the feedback controller 

simplify as follows:

Theorem 15

The polynomials G and H'

When the measurement noise n(t) =0 lhe spectral factor is 

defined by:

D.D* * = Ca.C* + Da D* (2.151)
t t a Jtn

The optimal feedback controller is given by: 

GA
Cfb = 7TA~ (2.152)

q 
where G, H' (along with F') is the solution having the property:

* -gl -1(D^z ) F' strictly proper 

of the polynomial equations: 
* —pl — pl ★ * ★

D z 5 G + F'AA =z°BABBD. (2.153)c q rqqf ' '
* -si -al * * *

D z B H* - F'BA =zbAABBD. (2.154)c r qrrf

where gl > 0 is the smallest integer which makes the equations

(2.153)-(2.154) polynomial in d.

in equations (2.153)-(2.154) also
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satisfy the diophantine equation:

AA H' + BA G - DD (2.155)q r f c

Proof:

To obtain n(t) - 0 set o = C = 0. A =1. The definition of n n n

Df in equation (2.151) then follows immediately from equation 

(2.133) .

The diophantine equation (2.137) becomes: 
* * —ol — ol * * * *

D D£z s G + FAA = z 8 B A B B D£D_ cf q rqqff
A

Since Df divides the right-hand-side and the first term on the left 

side of this equation, it must also divide F. Denoting F by:

F = D*F'

A
and cancelling the common factor results in equation (2.153).

The diophantine equation (2.138) becomes: 
A A —al —el AAA A

D Dcz 8 H - FBA A = z 8 A A B B D_A D_ cr rq qrrfqf
A

By a similar reasoning to that used above, 0^ must again divide F. 

Since Aq divides the right-hand-side and the second term on the left 

side of this equation, it must also divide H. Denoting H by:

H = A H’ 
q 

A
and cancelling the common factor A D, results in equation (2.154). 

q t
Using equation (2.136) the feedback controller equation 

becomes:

GA
C = ___ E.

fb H'A 
q 

* * * -i
Since F = D^F' the conditions (D^D^z 6 ) F strictly proper, and
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* -el -1 (Dcz ) F' strictly proper, are clearly equivalent.

Multiplying equation (2.153) by BA^, equation (2.154) by AA^ and

then adding results, using equation (2.132) and cancelling common

factors, In equation (2.155). •
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2.8 OPTIMALITY OF THE IMPLIED DIOPHANTINE EQUATIONS : SDF CASE

In general, calculation of the optimal SDF controller requires 

the solution of two couples of polynomial equations : one couple for 

the cascade part and another couple for the feedforward part of the 

controller. Elimination of the common terms between each of the 

coupled equations results in a single equation for each part of the 

controller, the implied diophantine equations. Solution of the 

original two couples of equations results in the optimal controller, 

which shifts both poles and zeros of the closed-loop system to their 

desired optimal positions. On the other hand, a controller 

calculated using the implied equations ensures only the optimal 

positions of the closed-loop poles. The related zeros will not in 

general be the optimal ones. Solution of the implied equations does 

not, therefore, always yield the optimal controller.

The conditions under which solution of the implied equations 

does yield the unique optimal controller are derived in this section. 

For the cascade part of the controller the analysis is restricted to 

the case when the output measurement noise n(t) is zero (Theorem 13). 

System description

The SDF system with feedforward is shown in Figure 2.3. As in 

Section 2.6 the sub-systems may be represented by use of a least 

common denominator polynomial A = l.c.m(A ,A.,A ,A ) as: p d x e
Wp = A-1B (2.156)

Wd = A-1C (2.157)

Wx = A-lD (2.158)

Wr = A-1E (2.159)
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The sub-system is denoted by:

"j ■ a7e« (2.160)

For the sub-system W It is assumed that a = C = 0, A = 1. 
n n n n

Assumptions

1. Each sub-system Is free of unstable hidden modes.

2. The plant input-output transfer-function W is assumed strictly 
P

causal i.e. <B>= 0.

3. The disturbance A ^C, reference generator A ^E, load disturbance 

A ^D, and disturbance generator A^E^ sub-systems are assumed to 

be proper rational transfer-functions.

4. It is assumed that the plant data is such that the optimal 

control problem is solvable, i.e. that conditions (a)-(b) in 

Theorem 12 hold.

Cost-function

The cost-function which is minimised by the optimal control law

is, from equation (2.43):

J=Kj ^ = 1{Ve + Mu}

The error, Q , and control, R , weighting terms may be expressed as c c

(from equation (2.45)):
* * *

B B B B
% 'Tp , % = (2.162)

A A A A
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Assumptions

1. The weighting elements Q and ft are strictly positive on

Id 1 = 1.

2. A , B , A and B are strictly Hurwitz polynomials, q q r r

3. The rational functions A B and A B are assumed to be 
q q r r

proper.

4. The pairs A , A A ,B and A , A are each assumed to be q r q r

coprime.

2.8.1 Optimal cascade controller

Lemma 1

The optimal cascade controller for the system shown in Figure 2.3 

with n(t) = 0 and the cost-function defined by equation (2.161) is 

given by:

GA
Cc=^ (2.163)

q 
where G,H (along with F) satisfy the polynomial equations: 

★ —al * * *
D z B G + FAA = zsBABBD<; (2.164)c q r q q r
* — al — al * * *

D z s H - FBA = zsAABBO (2.165)c r qrrf

and Df satisfy equations (2.105) and (2.119). The 

diophantine equations must be solved for the minimal solution (G,H,F)

with respect to F i.e. the solution such that: 

* -el -1 (D^z ) F is strictly proper. •

Proof:

Given in Section 2.6.
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Lemma 2

The polynomials G and H In equations (2.164)-(2.165) also 

satisfy the Implied cascade diophantine equation:

AA H + BA G = DO (2.166)q r f c

Proof:

Given In Section 2.6. •

Optimality of the Implied cascade diophantine equation

In general, calculation of the optimal cascade controller 

polynomials G and H requires solution of the couple of equations 

(2.164) and (2.165) such that F has minimal degree (condition 

(D^z 6 ) F strictly proper). The conditions under which the 

implied cascade diophantine equation (2.166) uniquely determines the 

optimal cascade controller are now derived.

Preliminaries

Fact 1 (Division Theorem)

For any polynomials E,F there exist unique polynomials Q,R such 

that:

E = QF + R

and F ^R Is strictly proper •

Lemma 3

Let M,N,P be given polynomials. Then the diophantine equation:

NY + MX = P
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possesses a unique solution such that M Y is strictly proper, for 

coprime M,N. Such a solution is said to be minimal with respect to 

Y. •

Proof: (Sebek 1981) 

The general solution of the above equation has the form (see

Kucera 1979):

X - X' + TN 

Y = Y' - TM 

for a particular solution X’ , Y’ and an arbitrary polynomial T. To 

prove the Lemma apply Fact 1 to the general solution for Y. •

Lemma 4:

Consider the equation: 

NY + MX = P

(where M,N,P are given). If N ^PM * is strictly proper then: 

M ^Y is strictly proper iff N ^X is strictly proper. •

Proof:

Multiplying the above equation by N ^M ' obtain: 

M-1Y + N-1X = N-1PM-1

Whenever the right-hand-side of this equation is strictly proper (the 

assumption) then both the left hand side rational transfer-functions 

are either strictly proper at the same time or neither of them is 

so.
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Corollary 1

The minimal solutions with respect to X and Y of the equation:

NY + MX = P

may differ in general. If, however, N ^PM is strictly proper then 

the minimal solutions with respect to X and Y are the same. •

Main Result

Fact 2

The solution to the optimal SDF control problem is unique and 

the optimal cascade controller polynomials are given by equations 

(2.164)-(2.165) . The optimal solution is characterised by: 

* -el -1(D^z 6 ) F strictly proper. •

Lemma 5

>er by definition => A is proper

i.

f BA B is zero since the absolute 
r q

definition. On the other hand, the 

is non-zero by definition of the 

(2.105). As a consequence, 

s a strictly proper rational

transfer-function

* -el -1 -el * 1 2 3 * * * -1-1(Dzb) z s B A B B A A D is a strictly proper c rqqq f

rational transfer-function. •

Proof:

1. A ^C, A and A are pr 

(from equation (2.119)).

2. BqAgl Is proper by definiti

3. The absolute coefficient o

coefficient of B is zero by 

absolute coefficient of D 
c 

spectral factorisation
it -pl — 1 -pl it it it (Dz8)zgBAB 1 
c r q
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Putting together parts (1), (2) and (3) the Lemma results.

Lemma 6

The optimal solution for the cascade controller (characterised 

* -gl -1by (D^z ° ) F strictly proper) also has:

(AAq) ^G strictly proper •

Proof:

Consider the strict properness of the transfer-function defined
* _oi

in Lemma 5 and of the transfer-function (D^z s ) F (the optimality 

condition) and then apply Lemma 4 to equation (2.164). •

Assumption 1

Let A and B be coprime. •

Lemma 7

Let Assumption 1 be satisfied. Then equation (2.166) possesses 

a unique solution such that:

(AAq) is strictly proper. •

Proof:

By definition, the pairs A ,A A ,B and A ,A are coprime. ’ ’ r q r q r r

Together with Assumption 1 this means that the pair AA , BA is 
q r

coprime. The result then follows immediately by application of

Lemma 3. •
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Theorem 16: Optimality of the implied cascade equation

Let Assumption 1 be satisfied. Then the optimal cascade 

controller polynomials G and H are determined uniquely by the 

minimal solution with respect to G of the implied cascade diophantine 

equation (2.166) l.e. the solution such that:

(AAq) ^G is strictly proper. •

Proof:

By Lemma 6 the optimal solution is characterised by (AA ) ^G 
q 

strictly proper. When Assumption 1 holds then, by Lemma 7, the 

implied equation (2.166) possesses Just one solution such that 

(AAq) ^G is strictly proper. Such a solution must, therefore, be the 

unique optimal one. •

Discussion

The conditions (l)-(3) in Section 2.8 which the plant must 

satisfy are physically realistic. The conditions Imposed on the 

cost-function weights are not restrictive and may always be satisfied 

by suitable selection.

The only further restriction which must be observed for the 

implied cascade diophantine equation to yield the unique optimal 

cascade controller is that the plant A and B polynomials must be 

coprime (Assumption 1). When this condition holds then:

A,B coprime <=> A = A
P

<=> A,, A and A are divisors of A d e x p

Thus, A,B coprime means that all the poles of the disturbance
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sub-systems W and W . and of the reference generator W . are poles d x r

of the plant Input-output transfer-function W . •
P

2.8.2 Optimal feedforward controller

Lemma 8

The optimal feedforward controller for the system shown in

Figure 2.4 and the cost-function defined by equation (2.161) Is given

by:

XA D r f
ff

C DD,, cn fd
DrJAC , f d cd

(2.167)

where X (along with Z and Y) satisfy the
—.o') ★ * ★ 

= z B B A B B r q q
—p? ★ ★ ★

= z e A A B B DD q r r fd

equations (2.105), (2.106) and (2.107)

polynomial equations:

* -22D z 6 X + ZAA A.c q 1 DDfd (2.168)

* -22D z K Y - ZBAA
satisfy

(2.169)

respectively. The diophantine equations must be solved for the

minimal solution (X,Y,Z) with respect to Z l.e. the solution such

C

D , D and D _ , c f f d

that:

* -22 -I(D z 5 ) Z is strictly proper

Proof:

Given in Section 2.6. •

Lemma 9

The polynomials X and Y in equations (2.168) and (2.169) also 

satisfy the implled feedforward diophantine equation:

AA Y + BA X 
q r

D DD 
c fd (2.170)
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Proof:

Given In Section 2.6. •

Optimality of the Implied feedforward diophantine equation 

Fact 3

The optimal feedforward controller defined by equation (2.167) 

is unique and the polynomial X is given by equations (2.168)-(2.169). 

The optimal solution is characterised by: 

* -g2 -1(D^z ) Z strictly proper •

Lemma 10 

* -e2 -1 -e2 * * * * -1-1 -1

The optimal solution for the feedforward controller

* -g2 -1(characterised by (D^z ) Z strictly proper) also has: .

(D z 8 ) z 8 B A B B A A DA D is a strictly proper c rqqq Xfd j r r

rational transfer-function. •

Proof:

1. A^E^ is proper by definition

=> is proper (from equation (2.107)).

2. B A 1 and A are proper by definition, 
q q

3. By a similar reasoning to that used in the proof of Lemma 

* -e2 -1 -e2   * * *5, (D^z 6 ) z 6 B A^B^ is a strictly proper rational 

transfer-function.

Putting together parts (1), (2) and (3) the Lemma results.

Lemma 11
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(AAqA^) ^X strictly proper (2.171)

Proof:

Consider the strict properness of the transfer-function defined 

* ~r2 -1in Lemma 10 and of the transfer-function (D z ) Z (the optimality 

condition) and then apply Lemma 4 to equation (2.168). •

Assumption 2

Let A„ be a divisor of both A and D. •1

Lemma 12

Let Assumption 2 be satisfied. Then the implied feedforward 

diophantine equation (2.170) becomes:

AA Y' + BA X' = D D'D,. (2.172)q r c fd ' '

where:

Y A A^Y' , X A A^X' , D A A^D' •

Proof:

When Assumption 2 holds then, from equations (2.168) and 

(2.169), A^ must divide both X and Y. Using the above definitions 

and substituting in equation (2.170) results, after cancellation of 

Che common factor A^, in equation (2.172). •

Lemma 13

Let Assumption 2 be satisfied. Then the optimality condition 

(2.171) becomes:

(AAq) LX’ strictly proper (2.173)
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Proof:

When Assumption 2 holds then, from the above definitions, 

X = A^X'. Substituting for X in (2.171) results in (2.173). 

■ 

Lemma 14

Let Assumptions 1 and 2 be satisfied. Then the implied 

feedforward equation (2.172) possesses a unique solution such that:

(AA ) LX' is strictly proper •
q

Proof:

By definition, the pairs A ,A A ,B and A ,A are coprime, q r q r

Together with Assumption 1 this means that the pair AA , BA is 
q r

coprime. The result then follows immediately by application of 

Lemma 3. •

Theorem 17: Optimality of the implied feedforward equation

Let Assumptions 1 and 2 be satisfied. Then the optimal 

feedforward controller polynomial X is given by X = A^X' where X' is 

determined uniquely by the minimal solution with respect to X' of the 

implied feedforward diophantine equation (2.172) i.e. the solution 

such that:

(AAq) ^X' is strictly proper •

Proof:

By Lemma 13 the optimal solution is characterised by (AA ) ^X'
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strictly proper when Assumption 2 holds. When Assumptions 1 and 2

hold then the Implied feedforward equation Is given by equation 

(2.172) and possesses just one solution such that (AA ) '’X' Is 
q

strictly proper. Such a solution must, therefore, be the unique

optimal one. • 

Discussion

The extra condition required 

feedforward diophantine equation

for optimality of the Implied

is that A„, the denominator of 
i

the measurable disturbance generator, must divide both A and D. For 

the unstable measurable disturbance generators of greatest practical 

Interest (such as steps, ramps etc.) this condition also corresponds 

to one of the optimal control problem solvability conditions 

(condition (b) In Theorem 12). If, therefore, the measurable 

disturbance generator Is unstable and the optimal control problem Is 

solvable, then the Implied feedforward diophantine equation will 

uniquely determine the optimal feedforward controller whenever A and 

B are coprime, which' Is exactly the condition required for optimality 

of the implied cascade diophantine equation. •



88

2.9 OPTIMALITY OF THE IMPLIED DIOPHANTINE EQUATIONS : 2DF CASE

In general, calculation of Lhe optimal 2DF controller requires 

the solution of three couples of polynomial equations : one couple 

for the feedback part, one couple for Lhe reference part and one 

couple for the feedforward part of the controller. Elimination of 

the common terms between each of the coupled equations results in a 

single equation for each part of Lhe controller, the implied 

diophantine equations. As in the SDF case, solution of the implied 

equations ensures only Lhe optimal positions of Lhe closed-loop 

poles. The related zeros will not in general be the optimal ones.

The conditions under which solution of the implied equations 

does generate the unique optimal controller are derived in this 

section. For the feedback part of the controller the analysis is 

restricted to the case when the output measurement noise n(L) is zero 

(Theorem 15).

System description

The 2DF system with feedforward is shown in Figure 2.4. As in

Section 2.7 the sub-sysLems may be represented by use of a least

common denominator polynomial A = l.c.m(A ,A.,A ) as: 
p d x

W = A-1B (2.174)
P

Wd - A-1C (2.175)

W = A-1D (2.176)
x

The sub-sysLems W and W are denoted by: r 1
W = A-1E (2.177)

r e r

Wt = (2.178)
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For the sub-system W it is assumed that a - C = 0 A =1. n n n n

Assumptions

1. Each sub-system Is free of unstable hidden modes.

2. The plant input-output transfer-function Is assumed strictly 

causal l.e. <B>- 0.

3. The disturbance A and A sub-systems, Lhe reference 

generator A , and the measurable disturbance generator A„^E„ 
° e r A Ji.

are assumed to be proper rational transfer functions.

4. It Is assumed that the plant data Is such that the optimal 

control problem is solvable l.e. that conditions (a)-(c) in

Theorem 14 hold.

Cost-function

The cost-function which Is minimised by the optimal control law

Is again given by equation (2.43). The assumptions (l)-(4) on the

cost-function weights given In Section 2.8 are assumed to hold.

2.9.1 Optimal feedback controller

Lemma 1

The optimal feedback controller for Lhe system shown In Figure 

2.4 with n( t) = 0 and the cost-function defined by equation (2.43) is 

given by:

CA
Cfb-HA1 <2-179)

q
where G,H (along with F) satisfy the polynomial equations:
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A —pl — al AAA
D z 5 G + FAA = z* *BABBD c (2.180)

The polynomials G and H in equations (2.180)-(2.181) also 

satisfy the Implied feedback diophantine equation:

AA H + BA G = D D (2.182)q r f c

Proof:

Given in Section 2.7. •

Optimality of the implied feedback diophantine equation

In general, calculation of the optimal feedback controller 

polynomials G and H requires solution of the couple of equations 

(2.180) and (2.181) such that F has minimal degree (condition

* -el -1(D^z ) F strictly proper). The conditions under which the implied 

feedback diophantine equation (2.182) uniquely determines the optimal 

feedback controller are now derived.

c q r q q r
A — al —pl AAA

D z B H - FBA =zbAABBB, (2.181)c r q r r r

D and B satisfy equations (2.132) and (2.151). The c f

diophantine equations must be solved for the minimal solution (G,H,F)

with respect to F i.e. the solution such that:
* _ei -J

(D^z ) F is strictly proper. •

Proof

Given in Section 2.7.

Lemma 2



91

Assumption 1

Let A and B be coprime.

Theorem 18: Optimality of the implied feedback equation

Let Assumption 1 be satisfied. Then the optimal feedback 

controller polynomials G and H are determined uniquely by the minimal 

solution with respect to G of the Implied feedback diophantine 

equation (2.182) i.e the solution such that:

(AAq) ^G is strictly proper •

Proof

Compare the couples of equations (2.164 )-(2•165) and 

(2.180)-(2.181), and the implied equations (2.166) and (2.182). The 

proof then follows by direct analogy with the derivation of 

Theorem 16. •

Discussion

sub-systems W. and W d x

In the 2DF case the condition that A,B must be coprime for the

Implied feedback diophantine equation to yield the unique optimal 

feedback controller may be Interpreted as follows:

A,B coprime <=> A = A 
P

<=> A. and A are divisors of A d x p

Thus, A,B coprime means that all the poles of the disturbance

are poles of the plant input-output

transfer-function W . 
P



92

2.9.2 Optimal reference controller 

Lemma 3

The optimal reference controller for the system shown in Figure 

2.4 and the cost-function defined by equation (2.43) is given by:

MA_DC
(2.183)

N and Q) satisfy the polynomial equations:
-e2 * * *

The polynomials M and Q in equations (2.184) and (2.185) also 

satisfy the implied reference diophantine equation:

DAQ+BAM=DD (2.186)e q r c m

Proof:

Given in Section 2.7.

NA A = zbBABBD (2.184)qe rqqm '
_e2 * * *

NBA A' = z ° A A B B A'D (2.185)r ec q r r m '

, 0^ and satisfy equations (2 . 132), (2.133) and (2.135), 

respectively. The diophantine equations must be solved for the 

minimal solution (M,N,Q) with respect to N i.e. the solution such 

that:

* -b2 -1(D^z ° ) N is strictly proper •

Proof:

Given in Section 2.7. •

where M (along with

* -22 D z ® M +c
* -g2D z e Q -

Lemma 4
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Optimality of the implied reference diophantine equation

Fact 1

The optimal reference controller for the 2DF control problem is 

unique and the controller polynomial M is given by equations 

(2.184)-(2.185). The optimal solution is characterised by: 

* -g2 -1(D^z ) N strictly proper •

Lemma 5 

* -k2 -1 -k2 * * * -1-1

The optimal solution for the reference controller (characterised
* _g2 -1

by (D^z ) N strictly proper) also has:

(AgAq) 1 M strictly proper •

(D z ° ) z°BABBAA D is a strictly c rqqqem

proper rational transfer-function. •

Proof:

1. -- s ProPer by definition*

=> A is proper (from equation (2.135)). 6 m
2. Bq^ql ProPer by definition.

3. By a similar reasoning to that used in the proof of Lemma 5 in 

Section 2.8.1, (D^z 5 ) z ° B A^B^ is a strictly proper 

rational transfer-function.

Putting together parts (1), (2) and (3) the Lemma results.

Lemma 6
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Proof: 

Consider the strict 

In Lemma 5 and of the 

condition) and then 

(2.184).

Assumption 2

Let A be a divisor of A. e

Lemma 7

Let Assumption 2 be satisfied, 

diophantine equation (2.186) becomes:

AAQ+BAM=DD eq r cm

Proof:

When A divides A then, from e

Substituting in equation (2.186) for

Lemma 8

Let Assumptions 1 and 2 be 

reference equation possesses a unique 

(AgAq) I'M Is strictly proper

properness of the

* -g2 -1 transfer-function (D z ) c

apply Lemma 4 In Section

transfer-function defined

N (the optimality

2.8.1 to equation

Then the Implied reference 

(2.187).

equation (2.131), D = A . e e 

the Lemma results. •

satisfied. Then the Implied 

solution such that:

D e

Proof:

By assumption, the pairs A ,A and A ,B are coprime. By q’ r q’ H 3

Assumption 2, A^ divides A and since by Assumption 1 A,B Is a coprime 

pair so Is the pair A^,B. The pair Af,A Is coprime and since
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A divides A, so is the pair A ,A . Thus, the pair A A , BA is e r e e q r

coprime. The result then follows immediately by application of

Lemma 3 in Section 2.8.1. •

Theorem 19: Optimality of the implied reference equation

Let Assumptions 1 and 2 be satisfied. Then the optimal 

reference controller polynomial M is determined uniquely by the 

minimal solution with respect to M of the implied reference 

diophantine equation (2.187) i.e. the solution such that:

(AgAq) is strictly proper •

Proof:

By Lemma 6 the optimal solution is characterised by (A A )-1M 
e q

strictly proper. When Assumptions 1 and 2 hold then, by Lemma 8,

the implied equation (2.187) possesses just one solution such that 

(A A )-1M is 
e q strictly proper. Such a solution must, therefore, be

the unique optimal one.

Discussion

The extra condition required for optimality of the implied 

reference diophantine equation is that A , the reference generator 
e

denominator, must divide A (Assumption 2). In the case of the 

unstable reference generators of greatest practical interest (such as 

steps, ramps, etc) this condition also corresponds to one of the 

optimal control problem solvability conditions (condition (b) in
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Theorem 14). If, therefore, the reference generator is unstable and 

the optimal control problem is solvable, then the implied reference 

diophantine equation will uniquely determine the optimal reference 

controller whenever A and B are coprime, which is exactly the 

condition required for optimality of the implied feedback diophantine 

equation. •

2.9.3 Optimal feedforward controller 

Lemma 9

The optimal feedforward controller for the system shown in 

Figure 2.4 and the cost-function defined by equation (2.43) is given 

by.

(2.188)

satisfy the polynomial equations: 
-e3 * * *

z 8 B A B B DDC. (2.189)r q q fd ' '
-»3 * * *

z 8 A A B B DD (2.190)
q r r fd '

, 0^ and satisfy equations (2.132), (2.133) and (2.135), 

respectively. The diophantine equations must be solved for the 

minimal solution (X,Y,Z) with respect to Z i.e. the solution such 

that:
* _„3

(D^z 6 ) Z is strictly proper •

Proof:

Cff
fbn fd 

DfdACfbd

where X (along with 

* -fi3D z 8 X +

D*z  g3Y -

Z and Y)

ZAA A 
q x

ZBA A

r f

Given in Section 2.7.
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Lemma 10

The polynomials X and Y In equations (2.189) and (2.190) also 

satisfy the Implied feedforward diophantine equation:

AA Y + BA X = D DDC, (2.191)q r c fd

Proof:

Given in Section 2.7. •

Optimality of the implied feedforward diophantine equation

Assumption 3

Let A, be a divisor of both A and D. •i.

Lemma 11

Let Assumption 3 be satisfied. Then the Implied feedforward 

diophantine equation (2.191) becomes:

AA Y' + BA X' = 0 D'DC, (2.192)q r c fd

where:

Y A A^Y' , X A A^X' , D A A^D' •

Proof:

The proof follows by analogy with the proof of Lemma 12 in

Section 2.8.2. •

Theorem 20 : Optimality of the Implied feedforward equation

Let Assumptions 1 and 3 be satisfied. Then the optimal

feedforward controller polynomial X Is given by X = A^X' where X' Is

determined uniquely by the minimal solution with respect to X' of the

Implied feedforward diophantine equation (2.192) l.e. the solution
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such that:

(AAq) X' is strictly proper

Proof:

The proof follows by direct analogy with the proof of 

Theorem 17. •

Discussion

Again, for the unstable generators of practical importance the 

condition that A^ must divide A and D corresponds to one of the 

optimal control problem solvability conditions (condition (c) in 

Theorem 14). The additional condition that A and B must be coprime 

is also the condition required for optimality of the implied feedback 

diophantine equation. •
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2.10 PROPERTIES AND STRUCTURE OF THE OPTIMAL SOLUTIONS

Some important structural properties of the optimal controller 

designs may be summarised as follows:

(i) The dynamic weighting elements in the cost-function allow 

frequency selective costing to be applied to the tracking 

error and control input signals. This feature is 

manifest in the fact that the control weighting 

denominator A^ is a factor of the numerators of each part 

of the controller and, when the output disturbance

n(t) = 0, the error weighting denominator A is a factor 
q

of the denominators of each part of the controller. 

Thus, the magnitude of the loop-gain with respect to 

frequency is directly influenced by the choice of cost 

weights.

(ii) The denominator of the output disturbance sub-system (A ) 
n 

appears as a zero in the feedback loop. This fact is 

consistent with the well known transmission-blocking 

property of zeros (MacFarlane and Karcanias, 1976) and 

has a natural interpretation since these disturbance 

modes should not, Intuitively, be allowed to propagate 

through the system.

(ill) Any Hurwitz poles of the plant Input-output transfer 

function (zeros of A ) which are not also poles of the 
P

disturbance sub-systems (and, in the SDF structure, the 

reference generator) are cancelled by the controller.
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(iv) In line with the Internal Model Principle of Control 

(Francis and Wonham, 1976) the solvability conditions for 

the optimal control problem demand that any unstable 

reference and disturbance modes must also be modes of the 

plant input—output transfer-function.

(v) The closed-loop systems for the SDF and 2DF control laws 

are Internally stable except in the particular case when 

the plant input-output transfer-function has a pole on 

the unit circle and when the disturbance sub-systems 

(and, In the SDF case, the reference generator) do not.

(vi) In the SDF controller structure the cascade part of the 

controller is independent of the feedforward part- In 

the 2DF structure the feedback part of the controller is 

independent of both the reference and feedforward parts.

(vii) The feedforward part of the controller is causal and 

stable even when the plant is inverse unstable and when 

the delay associated with the plant is longer than the 

delay associated with the measurable disturbance 

sub-system (W) . These plant conditions may cause 

serious difficulties in conventional feedforward 

controller designs.
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The closed-loop system was simulated over 200 samples, with the load 

disturbance being applied at sample instant 100.

(1) No feedforward, scalar cost weights

When the cost-function weights are chosen as Q = R « c c

0.1 the feedback and reference controllers may be 

calculated from Theorems 14 and 15 as:

r = 0.24__________
1.15+0.64d+0.12d

„ 0.63-0.44d
r 1.15+0.64d+0.12d

The tracking error for Lhls system is plotted In Figure 

2.5(a) from which it is seen that the load disturbance is 

not rejected from the output.

(11) No feedforward, Integral action

To obtain Integral action the error weighting is chosen 

as: 

n 0-1
% *

c (1-d) (1-d)

For this choice of weights the feedback and reference 

controllers may be calculated as: 

_ 1.53 - 1.23d________
fb 1.35+0.42d-1.12d2-0.65d3

2
c _ 2.54 - 3.32d 4- 1.08d
r 1.35+O.42d-1.12d2-O.65d3

The tracking error for this system Is plotted In Figure

2.5(b). In this case the load disturbance firstly
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appears on the output and Is then rejected by the 

integral action.

(ill) Conventional feedforward

Since the delay In D Is less than the delay In B the 

conventional feedforward controller Is calculated 

according to:

The cost weights were chosen as In (1) to be Q = R = c c

0.1. The feedback and reference controllers are 

therefore the same as those In part (1). The tracking 

error for this system is plotted in Figure 2.5(c). Since 

the delay in D Is less than the delay In B the load 

disturbance cannot be eliminated Initially. The 

feedforward action does, however, reject the load 

disturbance In steady state.

(Iv) Optimal feedforward

When Qc = Rc =• 0.1 the optimal feedforward controller may 

be calculated from Theorem 14 as:

„ _ 1.219 - 0.902d
^ff ~ 2

1 1.147+0.64d+O.124d

The tracking error for this system is plotted In Figure 

2.5(d).

To compare the effectiveness of load disturbance rejection in
2

Parts (ll)-(lv) above the tracking error variance ag was approximated 

In each case by:
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2 1 2
% = 2^0 i=\ e (1>

In cases (ll)-(lv) the error variance was found to be: 
2

(11) <j = 6.867 e
2

(ill) a = 6.862 e 
2

(Iv) a = 3.057 e

This shows that the integral action and conventional feedforward 

performance is very similar, while the optimal feedforward results in 

a tracking error variance approximately half of that in cases (11) 

and (ill).
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Figure 2.5(a) : No Feedforward
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Example 2.2

In this example It la demonstrated that when the plant A and B 

polynomials have a common factor then the couple of polynomial 

equations (2.153)-(2.154) must be solved to obtain the unique optimal 

feedback controller. In addition, the earlier statement that the 

controller calculated using the Implied equation (2.155) when 

(A,B) t 1 leads to optimal closed-loop poles but sub-optimal zeros Is 

substantiated.

Consider the following plant:

W = A-1B = 
P

W, =■ A-1C = 
d

___ d(l-0.5d)
(l-0.5d)(l-0.8d)
_________ 1_______
(1-0.5d)(1-0.8d)

The polynomials A,B and C may be Identified as:

A = (l-0.5d)(l-0.8d)

B = d(l-0.5d)

C = 1

In the optimal control problem to be solved assume that all 

measurement noises are zero and that the cost-function weights are 

selected as A • B « A = B = 1. The spectral factors D and D 
q q r r c f

may then be calculated using equations (2.132) and (2.151) as:

D = (1-0.5d)(l.54-0.52d) c

Df =1

The solution to equations (2.153)-(2•154) with F minimal degree is:

G - 1.25-0.43d

H = 1.54-0.53d

F-----0.82+1.65d
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The unique optimal feedback controller is, from equation (2.152): 
„ -1 1.25-0.43d „
Cfb = H G “ 1.54-0.53d ’ 0,81

If, on the other hand, the implied polynomial equation (2.155) is 

solved to obtain G and H (after cancelling the common factor (1-0.5d) 

between A,B and D ) then the following controller is obtained: 
c

cfb - h'1g = = °-46

Since in both of the above cases the pairs G,H satisfy Lhe implied 

polynomial equation (2.155) (which is Lhe closed-loop characteristic 

equation) both controllers give Lhe same (optimal) closed-loop poles 

as given by Lhe spectral factors. However, equations (2.39) and 

(2.40) show LhaL Lhe closed-loop zeros depend upon Lhe controller 

numerator and denominator polynomials G and H. Since in Lhe above 

example Lhe polynomials G and H calculated using Lhe implied equation 

are different from the optimal G and H (calculated using the coupled 

equations) Lhe resulting closed-loop zeros cannoL be optimal.
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2.11 OPTIMAL REGULATION WITH DISTURBANCE MEASUREMENT FEEDFORWARD -

THE MULTIVARIABLE CASE

The design of optimal regulators for multivariable plants 

subject to noise disturbances has been intensively studied in recent 

years. If only the plant output can be measured it is well know that 

the optimal regulator consists of linear output feedback and can be 

designed using either time-domain (Kwakernaak and Sivan, 1972) or 

frequency-domain (Youla et al, 1976b) methods. Alternatively, the 

optimal multivariable regulator may be designed using the polynomial 

equation approach developed by KuSera (1979) and extended to the 

tracking case by Sebek (1983a).

It follows from the preceding sections of this chapter that if, 

in addition to the plant output, some disturbance can be measured 

then a two-input controller, utilising both feedback and disturbance 

measurement feedforward, may be used to Improve the controller 

performance (i.e. to decrease the optimal cost).

The scalar feedback/feed forward regulator solution obtained by 

?ebek et al (1988) was recently extended to multivariable plants by 

Hunt and isebek (1989), and the results of this work are summarised in 

the following.

Problem Formulation

The multi-input multi-output plant under consideration is 

governed by the equation:

Ay = Bu + + C2<fc2 (2.193)

where y is the vector output sequence, u is the vector control input 

sequence and and are two vector noise sequences. A, B, and 

are polynomial matrices in d. The plant is assumed strictly 
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causal, so that <A> is invertible while <B> = 0. The noise component 

c|>2 passes through a filter to produce a measured disturbance signal

<|> i .e . : s

A> = C (2.194)
S S S 4 

where and are polynomial matrices in d, with square. The

filter typically represents measurement dynamics. The general

linear controller which operates on the plant output (corrupted by a

measurement noise ) and on the measured disturbance signal <|>3 is

described by:

Pu = -<Ky + <|>_) + S<|> J S
(2.195)

where P, Q and S are the polynomial matrices to be found, and <P> is 

invertible. The overall system structure is shown in Figure 2.6. 

Note that in practice the controller must be realised as a single 

dynamical system having two vector inputs and one vector output (i.e.

the control signal u).

All the vector random sources <|^ , <l>2 and ‘bj are mutually 

independent stationary white noises with intensities <J^, <j^ and > 

respectively. To avoid the trivial case of a? = 0 (i.e no measurable 

disturbance) we assume here, without loss of generality, that I.

and <Xj are real non-negative definite matrices.

The desired optimal controller evolves from minimisation of the 

cost-function:

J = trace<Q<6 > + trace<£4 > (2.196)
u y

where $ and $ are correlation functions of u and y in steady-state, 
u y 

respectively. <2 and E are real non-negative definite weighting

matrices. Thus, the design problem is to minimise the cost (2.196) 

subject to the constraint that the closed-loop system defined by
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Figure 2.6 : Multivariable regulator with 
disturbance measurement 
feedforward



112

equations (2.193) —(2.195) be asymptotically stable.

Problem Solution

The first stage in the design procedure is to find a pair of 

right-coprime polynomial matrices and B^ such that:

A-1B = l^A”* 1 (ii) (2.197)

The optimal control problem is solvable if and only if:

(i) The greatest common left divisor of A and B is a stable

polynomial matrix.

(ii) Cg is a stable polynomial matrix.

The optimal controller polynomial matrices P, Q and S are

For brevity we assume that the given data make the problem regular

i.e. that there exist stable polynomial matrices D and D„ (the -----------  c t

spectral factors) which satisfy:

A*QA  + B*EB,  = D*D  (2.198)
1 1 1 1 c c

Ao3A*  + C^C*  - DfDf (2.199)

Further, the following right-coprime matrix fractions are defined

by:

D"XA = AdD“^ (2.200)

D“rB = B d"1 (2.201)
I Q LD

A-1C2 = C^a”1 (2.202)

Finally, we define the right-coprime polynomial matrices B , C, by: ,c b

BC - COB (2.203)b Z c

The main result may now be stated as follows:

Theorem:
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obtained from the following left-coprime matrix fraction:

Df^P.Q.s] “ [XD^,YD:^,(YD^C - ZJa'Va ] (2.204)

Here, X and Y (along with V) Is the solution of the equations:
*

D X c
+ V*B,  = A*QD £, 

a 1 id
(2.205a)

* * *
D Y C - V A. - B. ED.a 1 fa (2.205b)

such that <V> - 0.

The polynomial matrix Z (along with U and W) is the solution of

the equations:
* * *

D U c + W B « A, QC, c lb (2.206a)
* * *

D Z c - W A = B, EC c la (2.206b)

such that <W> = 0. •

Proof:

We define six rational matrices p, q, s, t, Pj_ and qx by:
-1

P [q.s P 1[q>s ] (2.207)

and

'a b‘ ‘P1 B1‘

= I (2.208)
q -p 31 ~A1

t = qA C2 - sA 0 s s (2.209)

Using equations (2.193)-(2.195) the vector control Input and output 

sequences may be expressed as:

u = “Aj^qA - A^t^ - A^qcpj (2.210)

y = (I - B1q)A"1C1<|>1 - (Bxt - A-1C2)<|>2 - B^ (2.211)

The corresponding correlation functions are:
&* -l * * * * * *

$ = A.qA C, 0. C, A q A, + A,t0~t A, + A,qcoq A,u 111 1 121 P 3^ 1
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— 1 * —1 * * * *
= A^qA DfDfA q AL + A^ta^t A^ (2.212)

*
$ - (I - B1q)A"1DfD*A “1 (I - q*B*)  + B^ + a3q*B*

-1 *- <J3 + (BLt - A C2)a2(BLt - A XC2) (2.213)

We now substitute (2.212)-(2.213) in (2.196). On employing 

(2.198)-(2.199) and completing the squares the cost may be expressed 

in the form:

* . *J = trace<G G > + trace<H > + trace<G G > + trace<H > 
q q q t t t

- trace<£a3> (2.214)

where,

G 
q - (Dcq ” D 1 

c
* -1B1Z)A XDf (2.215)

H 
q

★
* -1= DfA (Z -

★
-1 -1 * -1£B,D D B, £)A Dt1 c c 1 f (2.21fr)

Gt = (Dct -
A

D’1 
c

* -1 Bl£A XC2) (2.217)

Ht
** -1

= c2a (E "
if

£B,D-1D-1 B*£)A" 1C, 
1 c c 1 2 (2.218)

Now, notice that the first term in (2.214) is related to the feedback

term q and does not depend on the feedforward term s. Conversely,

the third term in (2.214) is related to the feedforward term s and 

does not depend on the feedback term q. The remaining terms in 

(2.214) are not affected by the controller at all. To achieve the 

minimum cost we therefore minimise the first and third terras in 

(2.214) independently by suitable choice of q and s. Minimisation of 

the first term is known (KuXera, 1979) to be accomplished by 

setting:

p =■ D-1XD"}- , q = D~1Yd“1 (2.219)
H c fb ’ c fa ' '

where X and Y are given by (2.205). Consequently, due to the 

definitions of D , D, and D,_, p and q are stable rational 
c fa f b 

matrices.
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To minimise the third terra In (2.214) we proceed analogously : 

using equation (2.206b) G^ Is decomposed as:
*

Gt = (DcC " ^c^ + °C1 W* (2.220)

Since the equation (2.206) is solved subject to <W> = 0, the best 
* 

which can be done to minimise <G G > is to set the term in brackets t t

in (2.220) to zero. This calls for:

t = d“1ZA* 1 (2.221)
c c ' '

or,

s = D-1(YD“1C - Z)A-1C-1A (2.222)
c t a a css

where use has been made of (2.209), (2.202) and (2.219). Equation 

(2.204) then follows from (2.219), (2.222) and (2.207), (2.208).

Now we must show that, similarly to p and q, s defined by

(2.222) is also a stable rational matrix. To this end, post-multiply 

(2.205a) by D and (2.205b) by D?C . By comparing the left-hand 
t b b t a a

sides of the resulting equations, and using the Identities 

(2.200)-(2.203), we obtain:

D*[XD ”^CU - 0, YD^C - Z] = (V*D “lCn - W*)[-B  , A ] (2.223)
cL fb b fa a J f 2 L c cJ

By the definitions (2.202)-(2.203) and by condition (1) all the

Invariant polynomials of [-B , A 1 are stable. It follows that D 
c cJ c

(unstable) divides the rlght-hand-slde of (2.223) and A divides the c

left-hand-side. It follows, therefore, that s defined by (2.222) Is 

s table.

To complete the proof we must still justify the solvability 

conditions (1) and (li). Clearly, the cost Is finite Iff all the 

rational matrices In (2.210) and (2.211) are stable. It follows from 

equations (2.210) and (2.211) that this Is the case iff p, q, and s 
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are stable and both conditions (1) and (11) hold. Moreover, 

condition (1) implies the existence and uniqueness of the solution to 

equations (2.205) and (2.206). See KuSera (1979) for a proof of this 

assertion.

Finally, using the theorem on the stability of multivariable 

feedback systems given by Kucera (1979), stable p, q, and s result tn 

an asymptotically stable closed-loop system.



PART TWO

SELF-TUNING CONTROL





CHAPTER THREE

INTRODUCTION TO SELF-TUNING CONTROL

Summary

This chapter provides an introduction to Part 2 of the thesis. 

The fundamental reasons for the use of feedback, control (as opposed 

to open-loop control) are reviewed in Section 3.1. The ubiquitous 

PI control law is discussed in Section 3.2, and its associated 

problems then lead to the introduction of analytical design, adaptive 

control and identification in Sections 3.3 and 3.4. A brief history 

of adaptive control is given in Section 3.5 and the three most widely 

used approaches to adaptive control (gain scheduling, model reference 

adaptive control and self-tuning control) are discussed in Section 

3.6. Previous approaches to self-tuning control are briefly reviewed 

in Section 3.7. Finally, the contributions made in Chapter 4 in the 

polynomial equation approach to self-tuning control are outlined.

3.1 FEEDBACK CONTROL

The overall purpose of a control system is depicted, in a very 

general sense, in Figure 3.1 : the process responses are required to 

be related in a specified way to the system Inputs. To achieve the 

desired response the process is driven by a set of actuating signals 

which are generated by the system controller. The control synthesis 

task is to design a controller which, from measurements of the system 

inputs, will generate the required actuating signals.

In the simplest problem where the system has only one input and 

one response signal the design of an appropriate controller may, at 

first sight, appear to be very straightforward. Suppose the process
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Is described by a transfer-function W(s) and that the desired overall 

transfer-function from input to output is T(s). Any desired relation 

T(s) between input and response may be realised by an open loop 

configuration as shown in Figure 3.2. The controller 

transfer-function C(s) is

c<s)=iS c3-1’
In the open-loop configuration the overall transfer-function T(s) Is 

obtained by cancellation of the process dynamics since the controller 

contains the Inverse of the process transfer-function. Clearly, 

however, the success of the open-loop solution depends upon accurate 

a priori knowledge of the process characteristics. Such an approach 

fails in the following circumstances:

(1) When W( s) Is not accurately known in advance of 

controller design.

(11) When W(s) varies during normal system operation.

(ill) When the process is subject to unknown disturbances which 

corrupt the responses.

In addition, the cancellation of any unstable poles of W(s) will 

create an unstable hidden mode in the forward path. To circumvent 

the difficulties posed by the above three factors, which characterise 

almost all real design problems, a feedback configuration is normally 

used. A typical feedback control system is shown in Figure 3.3 where 

the disturbances affecting the process have been Included.

The equation relating the command input r and disturbance signal 

n to the process output y may be found by straightforward analysis 

as
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input
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actuating
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Figure 3.1 : The general control 
Problem

J

Figure 3.2 : Open-loop Control

Figure 3.3 : Feedback Control
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W(s)G(s) _________ I________ (3.2)
y 1 + W(s)G(s)H(s) r 1 + W(s)G(s)H(s) " 

The closed-loop sensitivity function S(s) is defined as

S(s) = 1 + W(s)G(s)H(s) (3,3)

If at all frequencies of Interest (i.e all frequencies where the 

desired system response signal contains significant energy) G(s) is 

made sufficiently large so that

I W( jo)G( jto)H( ju) | » 1 (3.4)

then the overall transfer-function from input to response at these 

frequencies is

T(s) = W<3)G<S) 3 _J_ aK ’ 1 + W(s)G(s)H(s) H(s) (

The overall transfer-function T(s) is independent of the process 

dynamics W(s) and is therefore unaffected by uncertainty or 

variations in the process characteristics. In addition, when (3.4) 

holds the sensitivity function, which is equivalent to the 

transfer-function between the disturbance signal and the process 

response, becomes

S(s) 5 o (3.6)

resulting in the elimination of the effect of the disturbance from 

the process response. 

The closed-loop equation of the feedback system is then 

ySHrij-r <3-7>

Thus, the two primary reasons for using feedback control are to 

reduce the effects of

(i) Parameter uncertainty

(li) Unknown disturbances 

where parameter uncertainty is taken to Include both initial
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Ignorance of W(s) and subsequent variations in W(s).

3.2 CONVENTIONAL CONTROL

Probably the most widely used form of feedback control law in 

industry today is the Proportional Integral (PI) controller. The 

basic form of the PI controller is illustrated in Figure 3.4. The 

control law which generates the actuating signal u(t) is described 

by

u(t) = K(e(t) + | Jte(m)dm) (3.8)
i

where the proportional gain K and the integral time-constant T are 

the control design parameters which must be selected by the control 

system designer.

The selection of appropriate values of K and T to achieve a 

desired response is known as the tuning problem. When tuning a 

control loop the engineer typically uses one of two techniques:

(1) The control loop is opened and the process Input u(t) Is

manipulated manually. From the process response the 

appropriate values of K and Ti can be obtained using some

heuristic rule (such as the Ziegler-Nichols (1942) 

method).

(11) A trial-and-error approach can be adopted. The engineer

makes an initial guess of the values of K and T and, 

based on observation of the closed-loop response 

obtained, subsequently changes these values to achieve 

the desired response.

It has been estimated by some sources that around 80% of existing 
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process control loops are based on the PI control law and have been 

tuned by one of the methods outlined above (Deshpande and Ash 1980). 

Typically, after a loop has been Luned Lhe values of Lhe controller 

coefficients remain unchanged over the operational lifetime of the 

controller. This situation is not surprising since modern process 

plants have a very large number of loops, many of which have time 

constants of the order of minutes or even hours. The tuning of loops 

using the trial-and-error or heuristic methods outlined above can 

therefore be a very time consuming procedure and It Is difficult to 

obtain a set of controller coefficients which In some way can be 

regarded as being the 'best'.

Although conventional controllers (such as PI) are widely 

regarded as giving adequate control performance, the tuning 

difficulty means that the accepted performance is almost always 

Inferior Lo that which is ultimately possible. This fact Is becoming 

more Important as tighter control on new and existing loops Is 

demanded to ensure that plants are operated as efficiently as 

possible. Small improvements in control performance can result in 

large economic benefits due, for example, to savings in raw materials 

and energy. A further Important feature of conventional control 

designs Is the simplicity of the control laws employed. While It Is 

true that many control loops In process control applications can be 

reasonably approximated by a well-damped second order transfer

function, more 'advanced' applications and a few critical process 

control loops exhibit dynamics which render a simple control law such 

as PI inadequate and demand a more complex design. Successful 

Implementation of a PI controller Is made particularly difficult In 
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the presence of any of the following conditions:

(i) The process may contain significant dead-time i.e. it may 

contain an appreciable time-delay between a given input 

to the process and the resulting response.

(ii) The process may be of high order.

(iii) The process may be open-loop unstable, poorly damped, or 

non-minimum phase.

A final factor in the consideration of conventional control system 

design is the variation of process dynamics during system operation. 

A controller which is well tuned initially may exhibit unsatisfactory 

performance should the dynamic characteristics of the controlled 

process change. Such dynamic changes may be due to several causes, 

for example:

(i) Changes in environmental conditions.

(11) Ageing of system components.

(iii) Non-linearities, where the process gain varies with the 

operating point.

An overview of conventional process control system design is 

given by Shinskey (1979).

3.3 ANALYTICAL DESIGN AND ADAPTIVE CONTROL

In distinct contrast to the conventional design methods 

described above are the range of analytical design techniques 

discussed in Chapter 1 which have been developed by control theorists 

during the past forty years. By analytical design is meant the 

application of mathematical techniques to idealised models which 

represent the physical process to be controlled : given a process 
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model the design algorithm produces once-and-for-all the controller 

which meets the demanded performance specification.

Clearly, the concept of analytical design is highly idealised 

and, assuming an accurate model of the process is available, depends 

on two factors:

(1) The formulation of a 'sensible' specification of control 

performance.

(11) The mathematical tractability of the design problem as 

defined by the performance specification and process 

model.

The analytical design techniques provide a sharp contrast to the 

trlal-and-error methods since they proceed from the problem 

specification directly to the final controller design without the 

need for subjective analysis. Further, the methods place no 

restriction on the complexity of the controller and most can 

therefore cope with processes which have complex dynamics. For 

these reasons the analytical design techniques overcome the first two 

of the drawbacks of conventional controllers listed above.

Implicit in the discussion of the analytical design techniques 

is the assumption that a model of the process is available. The 

success of any such design in achieving the specified performance 

objectives depends directly upon the accuracy with which the process 

dynamics are known : only if the model did exactly represent the 

actual process dynamics would the performance specification be 

exactly met. The application of any analytical design can only 

follow an evaluation of the process dynamics.

Evaluation of process dynamics is known as the Identification 
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problem. Techniques for Identifying the process dynamics are 

discussed briefly in the following section. For the purposes of 

controller design it is most useful to identify process dynamics 

in transfer-function form.

Assuming that the initial identification of the process leads to 

an accurate model, the problem of initial ignorance of the process 

dynamics can be overcome and a suitable controller can then be 

designed. However, the problem of subsequent variation in process 

dynamics remains. As with conventional control, variations in 

process dynamics can lead to a deterioration in control performance. 

The fact that almost all real physical processes display some kind of 

time variation in their dynamics has led to the phenomenal growth of 

Interest in the concept of adaptive control : control in which the 

automatic and continual identification of process dynamics is used as 

a basis for the automatic and continuing re-design of the 

controller.

The general concept of adaptive control is encapsulated in 

Figure 3.5. Compared to the non-adaptive control scheme in Figure 

3.1 the adaptive controller consists of two additional elements:

(1) Process Identification. The identifier, using 

measurements of various process signals, determines the 

dynamic characteristics of the process.

(11) Controller adjustment. The controller coefficients are 

continually adjusted in sympathy with any measured 

variation in process dynamics.

Thus, the ideal adaptive controller can overcome the problems 

posed by parameter variation and continually meet the demanded
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Figure 3.4 : PI Controller

controller 
parameters

input . _ ,, actuatingr controller ______________ ®
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plant 
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response 

signals

Figure 3.5 : The General Adaptive 
Controller 
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performance specification. In Section 3.1, however, reduction of the 

effect of parameter variation was cited as a principal reason for the 

use of feedback control. Why, then, is adaptation required in 

addition to feedback?

Unfortunately, the high gain which ensures that condition (3.4) 

is satisfied at frequencies of Interest also tends to drive the 

closed-loop system Into instability at other critical frequencies. 

In addition, this high gain will tend to accentuate any measurement 

noise which is present. A limit exists in the allowable closed- 

loop gain, which essentially amounts to a trade-off between 

performance and stability. Although the effect of parameter 

variation is greatly reduced by feedback, the degree to which the 

overall design objectives are achieved still depends critically upon 

the level of available knowledge about the process dynamics.

3.4 SYSTEM IDENTIFICATION

Most areas of engineering and scientific inquiry are concerned 

with the study or manipulation of dynamical systems (systems where 

the present output depends not only on its present input, but on its 

past history l.e. systems having memory). Central to the study of 

dynamical systems is the concept of a system model; a model provides 

a convenient means of summarising knowledge about the system's 

properties and behaviour.

System models

A system model can assume many forms, for example:
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(1) Mental or intuitive models where the knowledge about the 

system Is held in the mind of the person interacting with 

Lhat system. For Instance, a driver will generally build 

up an intuitive feel for the way In which a Vehicle 

responds to Lhe various Inputs (accelerator position or 

steering wheel angle, for example) he or she applies to 

the system.

(11) Graphical models where Lhe system properties are summarised 

In a graph or table; In process control a graph of the 

non-linear characteristics of a valve Is frequently 

used.

(Ill) Mathematical models where the system properties are 

summarised by the mathematical relationship between 

system variables; Newton's second law provides a 

universal model which states that the acceleration of a 

body is directly proportional to the force acting on it.

These few examples Illustrate firstly the general necessity of models 

as an aid to the understanding of dynamical systems and secondly 

their role In facilitating interaction with those systems. By far 

the most important class of models, however, are mathematical models. 

The following list of applications, which is by no means exhaustive, 

helps to clarify the importance of and need for mathematical models:

(1) Throughout science mathematical models are used to quantify 

Lhe gross features of system behaviour. The model Is 

then used to Infer the more general system properties and 

to examine the wider Implications which result.

(11) A model allows Lhe future behaviour of a system Lo be 

predicted. Prediction models find application in such 
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areas as economics and control.

(ill) The analytical control system design techniques outlined 

in a previous section require that a model of the 

controlled process be available.

(iv) Models can be used for fault diagnosis. When the 

measured system behaviour is seen to differ significantly 

from the model behaviour this may indicate a fault 

condition in the system.

(v) Models can be used for system simulation and operator 

training. Examples are simulators for aircraft and 

nuclear power stations. Such simulators also allow 

unusual or potentially hazardous situations to be 

investigated.

There is one class of mathematical models which has received far more 

attention than any other, namely linear, lumped, time-invariant 

models. Briefly, this class of models is characterised as follows:

(1) Linear models: If the response of a system to an input 

u^(t) is y^(t) and its response to u^Ct) is y^Ct), it is 

linear if its response to au^(t) + pu£(t) is ay^(t) + 

Py2(t)> where a and (3 are real constants.

(11) Lumped models: If a system's variables are functions of 

time only and have no spatial dependence, then the system 

is lumped. Otherwise, the system is distributed.

(ill) Time—Invariant models: A dynamical system is time

invariant if its input-output relations do not vary with 

time l.e. if the response of a time-invariant system to 

an input u( t) is y(t), then the response to the delayed 
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input u(t-t) is y(t-t).

The predominant factors in the popularity of linear, lumped, 

time-invariant models are their simplicity and amenability Lo 

analytical manipulation. Within this class of model there are

several further possibilities regarding the precise nature of the 

model. Some of the most Important distinctions are:

(i) Internal or external models. Internal models (such as 

state-space models) of a dynamical system describe all 

the internal couplings between the system variables. 

External models, or Input-ouLpuL models, describe only 

the relationship between the system input and output.

(ii) Time-domain or frequency-domain models. System models 

may be represented in Lhe time-domain using differential 

or difference equations. Alternatively, the system may 

be described by a transfer-function in the frequency 

domain using either Laplace- or z-transform techniques.

(ill) Continuous or discrete models. Most real systems are by 

their very nature continuous-time. In very many cases, 

however, observation of a system is performed using a 

computer, so that the available data is discrete-time. 

In addition, the growing popularity of digital control 

techniques calls for discrete-time models.

(iv) Deterministic or stochastic models. If the response of a 

system to a given input is certain, Lhen the system is 

deterministic. Frequently, however, system responses are 

subject to stochastic, or random variations due, for 

example, to noise disturbances.
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The majority of analytical control design techniques used in 

adaptive control are based on models which are linear, lumped and 

time-invariant. Invariably, the particular form of model used is an 

external transfer-function in discrete-time. In the subsequent 

discussion, therefore, this type of model is assumed.

Although the control design techniques and identification 

methods are based on the assumption that the controlled process is 

time-invariant, the main motivation for the use of adaptive control 

is the requirement to maintain a specified control performance in the 

face of variations in process dynamics. Such systems can still be 

considered time-invariant if the dynamics vary slowly in comparison 

with the response time of the overall system. Satisfactory 

performance is then obtained by continually updating the system model 

upon which the control design is based. Techniques which allow 

variations in process dynamics to be tracked are described in Chapter 

4. These techniques amount to small modifications of the basic 

identification methods.

How to construct a system model

There are two basic ways in which a mathematical model of a 

system can be constructed: from prior knowledge about the system or 

by analysis of experimental data obtained from the system. These 

approaches are known, respectively, as modelling and identification:

(i) Modelling: The internal mechanisms which shape the

behaviour of a system can be investigated. By direct 

analysis of the physical laws governing the system, a 

mathematical model can be constructed.
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(il) Identification: A mathematical model can be constructed 

by performing experiments to obtain data from the system. 

Various techniques can then be used to determine the 

model which best fits the measured data.

Tn practice the distinction between modelling and Identification 

Is not quite so clear-cut and most models are built using a mixture 

of the two techniques. In the modelling approach It is frequently 

Impossible to build a complete model of the system due to a lack of 

total knowledge about the physical laws governing the system's 

behaviour. Thus, mathematical modelling Is usually combined with 

experimentation. A further feature of the modelling approach Is 

that it may be difficult and time-consuming.

In identification, on the other hand, It Is clearly desirable to 

plan experimental trials using as much prior knowledge about the 

system as possible. Identification provides the foundation upon 

which the majority of adaptive control techniques are built.

Identification

The techniques of constructing a mathematical model using 

measured data consist of the following steps:

(1) Experiment design: It Is necessary to ensure that the

Input to a system during an identification experiment Is 

sufficiently 'rich*.  This ensures that all modes of the 

system are excited so that the measurements contain 

relevant Information about the system dynamics. This 

issue Is of particular Importance when a process is 

identified while under closed-loop control since the 
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process input cannot then be freely chosen.

(ii) Choice of model structure: The exact parameterisation of 

the model to be identified must be chosen before 

experimentation begins. Often, the model is simply 

chosen to be linear and of finite order.

(iii) Parameter estimation: Having decided upon the model 

structure, the parameters, or coefficients, of that model 

are obtained by processing the measured data. The most 

common form of parameter estimation methods are 

formulated as optimisation problems where the best model 

is selected as the one that best fits the measured data 

as judged by a specified criterion.

(iv) Model validation: After a model has been obtained from 

an identification experiment, it must be checked to 

ensure that it is a credible representation of the actual 

system. Any inadequacies which become apparent may 

require alterations to the model structure or 

experimental conditions. In practice, therefore, system 

identification is an iterative procedure.

The many identification techniques which are available can be split 

into two broad classes:

(1) Off-line (batch) methods. In off-line identification a 

batch of data is collected by taking measurements during 

an experimental run. After the experiment is complete 

the data is processed to produce a model.

(11) On-line methods. In on-line identification a recursive 

algorithm is used to update a model at each time instant 
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as new data becomes available. Such recursive 

Identification methods are used In adaptive control and 

In other real-time applications where the process 

dynamics must continually be monitored.

In applications where the possibility of performing off-line 

Identification exists the estimates obtained are usually of higher 

precision and are more reliable. The storage requirements for 

off-line algorithms are, however, far greater than those for on-line 

methods. In the recursive on-line methods only the most recent data 

must be retained and old data can be discarded. The methods of 

recursive system Identification are the subject of the recent books 

by Ljung and Soderstrbm (1983) and Norton (1986), and the survey 

paper by Hunt (1986).

Methods of Identification

Some of the classic methods of Identification are based upon 

non-parametrlc system models. An example of such a model is a 

system's Impulse response which Is specified directly by each value 

of It's argument. Other classic methods obtain the system 

transfer-function by frequency-response or transient-response 

analysis- In the presence of noise, correlation techniques have 

frequently been used.

An alternative to the classic methods are the 'best-fit' methods 

In which a criterion function Is Introduced to give a measure of how 

well a model fits the experimental data. The most common of such 

methods Is the least-squares technique. In this technique the model 

parameters are selected In such a way that the sum of the squared 
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errors between Che model output and Che measured system output Is 

minimised; if Che model parameters are denoted by Che vector 0 and 

y(0) represents Che model output, which Ideally should equal the 

actual output y, then Che least-squares method attempts to find the 

model parameters such Chat Che criterion

1 N 2
J(9) =4 E (y - y(0))Z (3.9)

1=1

is minimised, where 1 = 1, 2...N represents the discrete Instants of 

time over which the identification experiment is performed. The 

Identification methods described in Chapter 4 are based on the 

principle of least-squares.

3.5 ADAPTIVE CONTROL - A BRIEF HISTORY

Although the idea of a control system which has the ability to 

continuously adapt to changing process conditions has a strong 

intuitive appeal, the initial Interest in adaptive control arose, 

like many other major developments in control theory, from the need 

to solve an Important engineering problem. Research in adaptive 

control first became very active In the early 1950's in connection 

with the design of control systems for high performance aircraft 

(Gregory 1959, Mishkin and Braun 1961). The performance 

characteristics of these aircraft varied significantly in flight due 

to the wide operational range of speed and altitude. It was found 

that a normal fixed parameter controller could only be matched to a 

single flight condition and that at other conditions within the 

flight envelope the fixed controller would give unsatisfactory 

performance. The need to develop a more sophisticated controller 
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which could adapt Lo changing dynamic characteristics generated a 

great deal of enthusiasm and effort throughout the fifties. Early 

surveys in this area are given by Aseltlne eL al (1958), Stromer 

(1959), Jacobs (1961) and Truxal (1964). Applications at this time 

were, however, largely unsuccessful. The adaptive concept seemed lo 

be a natural way to deal with the parameter variation problem but the 

lack of initial success was the result of two major factors:

(1) Existing hardware was not sufficiently advanced to deal 

with Lhe additional complexity of the adaptive 

controllers.

(11) A comprehensive theory of the main aspects of adaptive 

control was not available.

Enthusiasm in adaptive control was lessened to some extent in the 

sixties. In addition to the above problems, this situation was 

brought about by the emergence of a major new technological 

challenge: in the USA and USSR enormous resources were channelled 

into the research and development of control systems for Lhe guidance 

and tracking of space vehicles. Included in the rapid progress made 

during this time were many contributions which proved Lo be of great 

importance for the development of adaptive control : major advances 

were made in the theory of stochastic control, tn system 

identification, and in estimation theory.

These developments led in the early seventies to a renewed 

interest in adaptive control and three factors were to play a key 

role in its success:

(i) The epoch-making progress in microelectronics made 1L 

possible to implement the new generation of adaptive 
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control algorithms easily and cheaply.

(11) Some of the basic theoretical Issues In adaptive control 

were addressed and solutions began to appear.

(Ill) A catalogue of successful Industrial applications began 

to emerge as understanding of the fundamental 

Implementation problems Increased.

With these developments came the widespread belief amongst 

control researchers that the early promise of adaptive control could 

eventually be realised. The success of practical trials also 

indicated that adaptive control was valuable in applications other 

than the advanced flight control systems which prompted the initial 

interest in the area. Most of the successful applications were in 

fact in industrial process control problems. The eighties have seen 

a continuation of the vigorous development of adaptive control. A 

measure of the Importance of the techniques is the emergence in 

recent years of commercially available adaptive controllers, a trend 

which continues to grow rapidly. Tills trend has been accompanied by 

the awakening of a strong interest in adaptive control amongst 

practicing industrial control engineers. The feedback received from 

industry will hopefully be a major contribution to the continued 

maturing of the basic techniques. Surveys of the theory and 

application of the various adaptive control techniques are given by 

Unbehauen (1980), Narendra and Monopoll (1980), Harris and Billings 

(1981), Xstrom (1983a) and Warwick (1988).

3.6 THE METHODS OF ADAPTIVE CONTROL

There have been many attempts to derive techniques which change 
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the controller parameters in response to changes in process dynamics. 

The three most widely studied classes of adaptive control algorithms 

are gain scheduling controllers, model-reference adaptive controllers 

and self-tuning controllers.

The generic single-input single-output adaptive feedback control 

system is shown in Figure 3.6. The scheme consists of a normal 

feedback control loop with process and controller. The controller, 

however, has parameters which are adjusted by an outer loop 

consisting of process identifier and adjustment mechanism. The three 

classes of adaptive algorithm differ only in the way in which the 

controller parameters are adjusted.

Gain scheduling

In some applications where Lhe dynamics of the controlled 

process are known to exhibit time variation it is possible to find a 

process variable which changes in sympathy with changing dynamics. 

If such a variable can be measured, then changes in process dynamics 

can be inferred. It is then possible to derive a schedule of 

controller settings appropriate to selected points on the operating 

range of the process. By this means the effect of variations in 

process dynamics can be reduced. Although lhe method can deal with 

general changes in process dynamics it is known as gain scheduling 

since the scheme was devised originally to accommodate changes in 

process gain only. The gain scheduling control system is illustrated 

in Figure 3.7.

The gain scheduling technique was originally used in aircraft 

flight control systems and is still widely and successfully applied
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in Chis area: the dynamic characteristics of the aircraft are 

inferred from measurements of the dynamic pressure and air density 

(Parks et al 1980). Gain scheduling can also be used in process 

control problems where the key problem is to find suitable scheduling 

variables which can be conveniently measured. Having decided upon 

suitable scheduling variables the controller parameters are obtained 

for a number of points on the operational range of the process using 

some design technique. The particular controller setting used at 

any given time Is then selected according to continual measurement of 

the physical scheduling variable.

A drawback of gain scheduling is that suitable controller 

parameters for a range of operating conditions must be obtained in 

advance of process operation. Depending on the number of operating 

conditions for which the controller must be designed, this can be a 

time-consuming procedure as the performance and stability features of 

each design must be satisfactory. An advantage of gain scheduling is 

that the controller parameters can be changed quickly in response to 

changes in process dynamics, assuming that the appropriate scheduling 

variables can be measured accurately and quickly.

Model reference adaptive control

The aerospace problems of the 1950's prompted another technique 

for automatic adjustment of the controller parameters. The design of 

model reference adaptive controllers consists of the specification of 

a reference model which determines the desired ideal response of the 

process output to the command signal. The model-reference adaptive 

control method is illustrated in Figure 3.8. The system consists of 
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a normal feedback control loop together with an outer loop which 

continually adjusts the controller parameters In an aLLempL to make 

the process output y(t) the same as the reference-model output y (t).m

The adjustment mechanism is driven by Lhe error e (t) between Lhe 

ideal model output y (t) and the actual process output y(t). The ra

adjustment mechanism is designed in such a way that the controller 

parameters are altered so as to make this error as close as possible 

to zero.

The original mechanism proposed for the adjustment of controller 

parameters was developed in the late 1950's by workers at

MassachussetLs Institute of Technology in Lhe USA in connection with 

the design of aircraft flight control systems (Whitaker et al, 1958).

The adjustment rule, which subsequently became known as Lhe 'MIT 

rule', is given by Lhe heuristic law

dT = -kemgrad0eni (3.10)

In this equation e is again Lhe error beLween Lhe model ouLpuL and 
m

the actual process output. The components of the vector 0 are the

adjustable controller parameters and the components of the vector

grad e are the sensitivity derivatives of the error with 0 m respect to

the adjustable parameters. k is a design parameter which determines 

the adaptation rate.

The adjustment rule was originally motivated using the following 

heuristic argument; assume that the controller parameters 6 change 

much more slowly than the other system variables. To drive the 

error e as close to zero as possible the controller parameters are m 
2 

then changed in the direction of the negative gradient of e^.
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The MIT-rule can be rewritten in the form

9(t) = - kfe (s)grad e (s)ds (3.11) m Um

it can be seen that the adjustment mechanism consists of three 

parts: a linear filter for computing sensitivity derivatives, a 

multiplier and an integrator.

The critical aspect of model-reference adaptive control is the 

stability of the overall system. Subsequent developments of the MIT 

rule have been obtained using stability theory (Landau, 1979). 

Several applications of the theory have been reported, most notably 

in power system control (Irving, 1979) and in ship steering control 

problems (Van Amerongen, 1981).

Self-tuning control

Although many successful applications of gain scheduling and 

model-reference adaptive control have been reported, the total of 

such designs is far outnumbered by the third major class of adaptive 

algorithms: self-tuning controllers.

Application of the analytical design techniques discussed in a 

previous section consists of two mains steps: Identification of a 

model of the process and controller design. The success of these 

designs depends upon the accuracy with which the process dynamics are 

known. Initial ignorance of, or subsequent variation in, the process 

dynamics can result in poor control quality.

Self-tuning control is a discrete-time method which attempts to 

overcome these problems by automating the overall design procedure 

and repeating the steps of identification and controller design 

during each sample interval. The self-tuning controller therefore 
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has the ability to tune itself initially and to re-tune should the 

process dynamics subsequently change. The self-tuning controller is 

shown in Figure 3.9. The system consists of a normal feedback loop 

with process and controller, and an outer loop which continually 

adjusts the controller parameters. The outer loop is composed of 

two main parts:

(1) A recursive parameter estimation routine which uses 

measurements of the process input and output to 

continually update a model of Lhe process. The model is 

normally a simple transfer-function.

(il) A controller design algorithm which calculates the 

controller parameters using the latest estimate of the 

process model.

This approach to self-tuning control is known as an explicit 

method since the process model itself is explicitly estimated. In 

some self-tuning algorithms it is possible to re-parameterise the 

process model such that it is expressed in terms of the controller 

parameters. In this type of algorithm, known as an implicit method, 

the controller design step is eliminated since the controller 

parameters themselves are estimated by the recursive identification 

routine•

The explicit self-tuning method is very flexible since there is 

freedom both in the choice of recursive estimation algorithm and 

controller design method.

Although the self-tuning control concept was first proposed in 

the late 1950’s (Kalman, 1958), the early hardware limitations meant 

that the first successful applications did not appear until the early
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1970's. Since that time the self-tuning control method has proved to 

be the most successful in applications and commercial products using 

the technique have appeared. The adaptive algorithm presented in 

Chapter 4 belongs to the class of self-tuning controllers.

3.7 PREVIOUS APPROACHES TO SELF-TUNING CONTROL

The earliest practical self-tuning control algorithms were based 

upon stochastic control methods derived using polynomial techniques. 

Peterka (1970) combined Xstrom's (1970) minimum-variance control law 

with a recursive least-squares based parameter estimation algorithm 

to produce the first version of the celebrated Self-Tuning Regulator 

(STR). The STR was later studied In depth by Xstrom and Wlttenmark 

(1973, 1985). A possible source of difficulty in the STR arises when 

the controlled plant is inverse unstable ('non-minimum phase'). 

Since the poles of the minimum-variance controller cancel the plant 

zeros the resulting closed-loop system is unstable whenever the plant 

is Inverse unstable, although this problem may be alleviated In 

certain cases by careful selection of the sampling period (Xstrom and 

Wlttenmark, 1985). Peterka (1972) subsequently derived the stable 

minimum-variance control law for inverse unstable plant and this was 

studied in the self-tuning control context by Xstrom and Wlttenmark 

(1974). The stability properties of the minimum-variance control law 

are a direct result of the fact that no penalty is placed on the 

magnitude of the control signal generated by the controller.

The Generalised Minimum-Variance (GMV) control law (Clarke and 

Gawthrop 1975, 1979) evolves from minimisation of a single-stage 

cost-function which includes control costing. The GMV method was 
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introduced in an attempt to overcome the stability problems 

encountered with the minimum-variance regulator. For Inverse 

unstable plant, however, closed-loop stability is conditional upon 

proper selection of the cost-function weights. The choice of 

cost-function weights is particularly difficult when the controlled 

plant is also unstable.

The GMV self-tuner has nevertheless been applied in several 

industrial problems (Hodgson 1982, Tuffs 1984). Gawthrop (1977) had 

earlier given the method added flexibility by showing that, 

depending on the choice of cost weights, the method could be 

interpreted as providing model-following, detuned model-following or 

Smith predictive control.

The Weighted Minimum-Variance (WMV) control law derived by 

Grimble (1981) extends the GMV method to plants which may be both 

open-loop unstable and inverse unstable. Grimble shows that a stable 

closed-loop system may always be achieved if the cost-function 

weights are suitably chosen.

The use of KuKera's (1979) polynomial equation approach to LQG 

control was first applied in the self-tuning control context by 

Zhao-Ying and Xstrom (1981) and Xstrom (1983b). Grimble (1984) 

derived an implicit LQG self-tuning algorithm. The explicit method 

was extended to include dynamic cost-function weights and feedforward 

control of measurable disturbances by Hunt et al (1986, 1987) and 

Hunt and Grimble (1988) and is fully treated in the following 

chapter. The LQG controllers have a guarantee of closed-loop 

stability regardless of the plant pole/zero locations.

Self-tuning LQG controllers based upon the standard state-space 
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formulation have been considered by Lam (1980) and Clarke et al 

(1985). Peterka (1986) has derived an LQG self-tuner which is 

applicable to both the ARMA and difference operator (Goodwin, 1985) 

model forms. In Peterka's approach algorithmic and numerical aspects 

are emphasised and the final controller design is obtained using 

state-space transformations. Peterka's method has been permanently 

installed in several industrial applications (see, for example, 

Ettler 1986 and Lizr 1986).

A further class of self-tuning control methods which has 

received growing attention in recent years is the family of 

long-range predictive controllers. The first attempts to use 

long-range prediction concepts in controller design were proposed in 

the IDCOM method of Richalet et al (1978) and the DMC algorithm of 

Cutler and Ramaker (1980) . A unifying idea in the long-range 

predictive methods is to extend the prediction horizon beyond 

non-minimum phase effects and time delays. Self-tuning controllers 

based on this idea have been proposed by Ydstie (1984) , Peterka 

(1984), Mosca et al (1984) and De Keyser and Van Cauwenberghe (1985). 

The Generalised Predictive Control (GPC) method of Clarke et al 

(1987) effectively extends the GMV method by use of long-range 

prediction over a multi-stage cost-function, and can overcome the 

problem of stabilising non-minimum phase plant if the prediction 

horizon is chosen to be long enough. The GPC method can also be 

given the same design polynomials and interpretations discussed by 

Gawthrop (1977) for the GMV algorithm.

One final class of self-tuning controllers is the continuous

time approach studied by Egardt (1979b) and extensively developed by
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Gawthrop (1986). The method proposed by Gawthrop is based upon the 

premise that robust adaptive controllers will arise by basing 

the design upon established control engineering principles and 

practice. In this spirit, the design is performed in the 

continuous-time domain although the implementation is still digital. 

Egardt and Gawthrop also demonstrate that a number of different 

algorithms can be unified in the continuous-time framework.

3.8 CONTRIBUTIONS OF THE PRESENT WORK

As mentioned above, there are several approaches to the design 

of self-tuning control systems using stochastic optimal control 

theory ('LQG' control). The method followed in Chapter 4 uses the 

theory developed in Chapter 2 which is based upon KuSera's (1979) 

polynomial equation approach. In this approach the design procedure 

reduces to the solution of polynomial equations whose coefficients 

are obtained by spectral factorisation. These equations can be 

solved using fast and efficient numerical algorithms.

The polynomial approach to LQG control offers a flexible design 

method which can be readily used as the basis of a self-tuning 

control algorithm. The new algorithm presented in Chapter 4 contains 

some refinements and important extensions of the earlier work by 

Grimble (1984) and Hunt et al (1986). In particular, the optimal 

tracking problem in the presence of a measurable disturbance was 

solved in Chapter 2. The solution naturally involves the use of a 

feedforward compensator and is described in Chapter 4 in the 

self-tuning control framework.

Use of the polynomial equation solution to the optimal 
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feedforward control problem in a self-tuning control algorithm was 

first given by Hunt, Grimble and Jones (1986, 1987) and is also 

studied in Hunt and Grimble (1988). Sternad (1987) has made a very 

detailed and Independent study of the optimal feedforward technique 

applied to both fixed-parameter and self-tuning systems. Sternad 

also compares the optimal technique using polynomial methods with 

previous approaches to the feedforward compensation of measurable 

disturbances.

A further feature of the design method presented is the use of 

frequency-dependent weighting elements in the cost-function. The 

dynamic weights allow the frequency-response of the closed-loop 

system to be shaped in a straightforward manner.

The optimal control law which is presented in Chapter 4 Is a 

simplified version of the theory derived in Chapter 2. In

particular, all measurement noises are assumed to be zero in Order to 

reduce the plant model to the basic ARMAX form which is sufficient 

for general-purpose self-tuning algorithms (the full complexity of 

the model used in Chapter 2 is required in some specialised 

applications such as ship steering (Grimble, 1986a) where, for 

identification purposes, a priori knowledge about the coloured 

measurement noise sub-system is available in the form of standard 

wave spectra).

The two-degrees-of—freedom (2DF) plus feedforward optimal 

controller which was derived in Section 2.7 is employed for the LQG 

self-tuner. The optimal controller consists of three parts 

(feedback, reference and feedforward) which process the system 

output, reference and measurable disturbance signals separately.
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Three possible design strategies are proposed:

(1) The complete general solution of the optimal control 

problem which Involves three couples of polynomial 

equations, one couple being associated with each part of 

the controller.

(11) Each couple of polynomial equations can be reduced to a 

single ’Implied' equation. Under certain stated 

conditions the three Implied polynomial equations can be 

solved to obtain the unique optimal controller. Solution 

of the Implied equations Is computationally simpler than 

solution of the original couples.

(Ill) In the optimal control design the feedback part of the 

controller Is Independent of the reference and 

feedforward parts. A third design strategy is proposed 

In which the optimal feedback controller Is calculated In 

the normal way and then the reference and feedforward 

parts are calculated non-optlmally using steady-state 

considerations. The method Is useful In situations where 

the available computation time Is short as the reference 

and feedforward polynomial equations no longer need to be 

solved.

The robustness properties of the LQG self-tuner are discussed by 

summarising the Important features of the control design and various 

techniques which have been used to achieve robust parameter 

estimation. The main results of a recent convergence analysis 

(Grimble, 1986c) are also presented In Chapter 4.
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Chapter 4 concludes with a discussion of practical issues 

relating to control law implementation, cost-function weight 

selection and computational issues. Proofs of all the results stated 

in Chapter 4 can be found in Chapter 2 (with the exception of the 

convergence proof which is due to Grimble, 1986c).



CHAPTER FOUR

OPTIMAL SELF-TUNING ALGORITHM

Summary

The open-loop, model for the single-input single-output plant 

under consideration is described in Section 4.1. The plant output 

which is to be controlled is affected by two disturbance signals, one 

of which is assumed measurable.

In Section 4.2 the two-degrees-of freedom (2DF) controller 

structure employed is introduced. In addition, a feedforward 

compensator is used to reject the measurable disturbance signal. 

The optimal controller consists of three parts (feedback, reference 

and feedforward) which process the system output, reference and 

measurable disturbance signals separately. Three possible design 

strategies are proposed in Section 4.2:

(i) The complete general solution of the optimal control

problem (Section 4.2.1).

(ii) The optimal solution using the 'implied' polynomial

equations. The conditions under which the implied 

equations yield the unique optimal controller are stated 

(Section 4.2.2) .

(ii) A computationally simpler design where the feedback part 

is calculated optimally, and the reference and 

feedforward parts of the controller are calculated to 

give correct steady state performance (Section 4.2.3).

The robustness properties of the LQG self-tuner are discussed in 

Section 4.4 by summarising the important features of the control 



155

design and various techniques which have been used to achieve robust 

parameter estimation. The main results of a recent convergence 

analysis are presented in Section 4.5.

The chapter concludes in Section 4.6 with a discussion of 

practical Issues relating to control law implementation, cost

function weight selection and computational Issues.
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4.1 MODEL STRUCTURE

The open-loop model for the single-input single-output plant

under consideration Is shown in Figure 4.1. The plant is governed 

by the equation:

y(t) = p(t) + x(t) + d(t) (4.1)

= W u(t) + W JL(t> + W.b (t) (4.2)
p x d d

where y(t) is the output to be controlled, u(t) is the plant control

input, (t) Is an unmeasurable disturbance and l(t) is a

disturbance which Is available for measurement. Denoting the

1east-coramon-denomlnator of W , 
P

may be expressed as:

W = A-1B 
P

W. = A~lC 
□

W = A-1D 
X

where A,B,C and D are polynomials

W and W, as A, these sub-systems x d

(4.3)

(4.4)

(4.5)

in the delay operator d.

Reference generator

The system output y(t) is required to follow as closely as 

possible a reference signal r(t). The signal r(t) Is represented 

as the output of a generating sub-system W which Is driven by an 
r 

external stochastic signal <|i (t):

r(t) = W <|> (t) (4.6)

The sub-system W is represented in polynomial form as:

Wr = A~1Er (4.7)

where A^ and Er are polynomials in d.
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The tracking error e(t) is defined as:

e(t) A r(t) - y(t) (4.8)

Any common factors of A and A are denoted by D such that: 
e e

A = D A' , A = D A' (4.9)
e e ec e

Measurable disturbance generator

The measurable disturbance signal A(t) may be represented as the 

output of a generating sub-system driven by an external stochastic 

signal <|>^(t);

A(t) = W^t)

The sub-system is represented in polynomial form as:

W„ = A~1 2 3 4 5E„ 
I A A

1. Each sub-system is free of unstable hidden modes.

2. The plant input-output transfer-function W is assumed strictly 
P

causal i.e. <B> = 0.

3. The polynomials A and B must have no unstable common factors.

4. Any unstable factors of A must also be factors of A.e

5. Any unstable factors of A^ must also be factors of both A and

D.

(4.10)

(4.11)

where A^ and are polynomials in d.

Assumptions

6. The polynomials C, and E^ may, without loss of generality, beE r

assumed stable.

These assumptions, together with the assumptions on the 

cost-function weighting elements given in the following section, 

amount to the solvability conditions for the optimal control problem
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(see Theorem 14). By making these assumptions, therefore, we ensure 

that a solution to any given problem exists. The question of 

artificially ensuring problem solvability Is discussed in Section 

4.6.3.

Different types of reference and disturbance signals (r(t), A(t)

and d(t) in Figure 4.1) may be admitted by appropriate definition of

the external stochastic signals, (t), and <p^(t) , namely:

Coloured zero-mean signals are generated when the driving

(11)

source (<p^, <|j^ or <p^) is

and the filter (W , W or 
r A

Random walk sequences

zero-mean white noise sequence

I ) is asymptotically stable, 
d

are generated when the driving

a

W

source Is a zero-mean white noise sequence and the filter 

has a denominator 1-d.

(ill) Step-like sequences consisting of random steps at random 

times are generated when the driving source is a Poisson 

process and the filter has a denominator 1-d.

(Iv) Deterministic sequences (such as steps, ramps or 

sinusoids) are generated when the driving source Is a unit 

pulse sequence and the filter has poles on the unit circle 

of the d-plane.
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4.2 CONTROLLER DESIGN

In the closed-loop system a two-degrees-of-freedom (2DF) control 

structure Is used. In addition, a feedforward compensator Is 

employed to counter the effect of the measurable disturbance Jt(t) .

Controller structure

The closed-loop system is shown in Figure 4.2. The control law

is given by:

u(t) = -C y(t) + C r(t) - 
t b r

cffl(t) (4.12)

where the feedback controller Cfb the reference controller C r and

the feedforward controller Cff may be expressed as ratios of

polynomials in the delay operator d as:

C.v = C~J.C-V 
rb rbd rbn

C = c"jC 
r rd rn

C,, - C~1 C,, 
rf rrd ffn

(4.13)

(4.14)

(4.15)

Cost function

The desired optimal controller evolves from minimisation of the 

cost-function:

J - E{(Hqe/(t) + (Hru)Z(t)} (4.16)

where and are dynamic (i.e. frequency dependent) weighting 

elements which may be realised by rational transfer-functions.

Using Parseval's Theorem the cost-function may be transformed to 

the frequency domain and expressed as:

J = £ {Q <|> + R 4> } — (4.17)
2nj .r. ,1 cTe c uJ z '

I z 1=1
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Figure 4.1 : Plant model

Figure 4.2 : Closed-loop System
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where <f> and 4> are the tracking error and control input spectral 
e u

densities, respectively, and:

R = H H c rQ = H H , 
c q q

The weighting elements Q and c

(4.18)

R may be expressed as ratios 
c

o f

polynomials in the delay operator d as:

B B
Qc s-H 

A A 
q q

Ft c

B B 
. r rA —x—3S X

A A r r

(4.19)

Assumptions

1. The weighting elements Q and R are strictly positive on 
c c ------------------ ---------------

|d|=l.

2. A ,B , B and A are stable polynomials, q q r r - r

4.2.1 Optimal Control Law

The stable spectral factor D is defined by: 
* * * * * * * *

DD =BABBAB+AABBAA (4.20)cc rqqr qrrq

The feedback, reference and feedforward parts of the control law 

(4.12) which minimises the cost-function (4.17) are as follows:

(1) Optimal feedback controller 

GA
cfb“HF- <4-21>

q
where G, H (along with F) is the solution having the property:

* -g -1 (D^z ) F strictly proper

of the polynomial equations:

D*z"8G + FAA = B*A*B*B Cz“8 (4.22)
c q r q q
* -a it it * -o

D z - FBA a A A B B Cz 8 (4.23)
c r q r r '
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where g > 0 Is the smallest Integer which makes the equations 

(4.22)-(4.23) polynomial In d.

(11) Optimal reference controller

MA C
C = —— r E HA 

r q
(4.24)

where M (along with N and Q) Is the solution having the

property:

* -g -1(D^z “) N strictly proper

of the polynomial equations:

* 'gD z SM + NA A c q e

assumptions:

* "g .D z °Q - NBA A' c r ec

*   —p* *
-BABBEz6 r q q r

*  * *
= AABBA'Ez q r r r

(4.25)

(4.26)

(111) Optimal feedforward controller

A (XC - GE D)
Cff = HA E A (4.27)

q 7
where X (along with Z and Y) Is the solution having the 

property:

* “2 ~ 1(D^z ) Z strictly proper

of the polynomial equations:

D z “X + ZAA A = B A B B DE„z 6 (4.28)C q JI r q q JI '
* —p    —o* * *

D z Y - ZBA A = A A B B DE„z 6 (4.29)c r JI q r r Ji.

4.2.2 Implied Diophantine Equations

The general solution of the optimal control problem Involves 

three couples of polynomial equations, one couple for each part of 

the control law. However, under certain conditions each couple can 

be replaced by a single, related, equation. Optimality of the 

implied diophantine equations requires the following additional
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Assumptions

1. The disturbance sub-systems A ^C, A ^D, A^E^ and A 4 are 

assumed to be proper rational transfer-functions.

2. The cost-function terms A ^B and A ^B are assumed to be proper 
q q r r

rational transfer-functions.

3. The polynomial pairs A ,A , A ,B and A ,A are each assumed to q r q r

be coprime.

We can easily ensure that Assumptions 2 and 3 are satisfied by 

appropriate choice of the cost-function weights.

(i) Implied feedback equation

The polynomials G and H in equations (4.22)—(4.23) also satisfy 

the polynomial equation:

AA H + BA G = D C (4.30)
q r c 

The optimal feedback controller polynomials G and H are

determined uniquely by the solution of equation (4.30) having 

the property:

(AAq) ^G strictly proper 

iff the polynomials A and B are coprime.

(ii) Implied reference equation

The polynomials M and Q in equations (4.25)-(4.26) also satisfy 

the polynomial equation:

D A Q + BA M = D E (4.31)e q r c r

The optimal reference controller polynomial M is determined
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uniquely by the solution of equation (4.31) having the

property:

(A A )-1M 
e q strictly proper

iff the polynomials A and B are coprime and A is a divisor of

A . When this condition holds then, from equation (4.9), D -A e e

and the implied equation (4.31) becomes:

AAQ+BAM=DE 
eq r c r

(4.32)

(i1i)Implied feedforward equation

The polynomials X and Y in equations (4.28)—(4.29) also satisfy 

the polynomial equation:

AA Y + BA X = D DE (4.33)
q r ci

Assume now that A^ is a divisor of both A and D. From equations 

(4.2 8 ) - ( 4 . 29 ) A^ must then also divide both X and Y. The 

implied feedforward diophantine equation (4.33) becomes:

AA Y' + BA X' = D D'E (4.34)
q r ci

where:

Y A A^Y', X A A^X' , D A A^D' (4.35)

The conditions for optimality of the implied feedforward 

diophantine equation may now be stated as follows: the optimal

feedforward controller polynomial X is given by X = A^X' where 

X' is determined uniquely by the solution of equation (4.34)

having the property:

(AAq) LX’ strictly proper

iff the polynomials A and B are coprime and the polynomial A^ is

a divisor of both A and D.
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Discussion

The condition that the A and B polynomials must be coprime is 

required in order that the Implied feedback, reference and 

feedforward diophantine equations uniquely determine the optimal 

feedback, reference and feedforward parts of the controller. This 

condition means that all the poles of the disturbance sub-systems 

and W must also be poles of the plant input-output transfer-function 

W . 
P

The extra condition required for optimality of the implied 

reference equation is that A , the reference generator denominator, 
e

must divide A. In the case of the unstable reference generators of 

greatest practical interest (such as steps, ramps etc) this condition 

corresponds to one of the optimal control problem solvability 

conditions (see Assumption 4 in Section 4.1). If, therefore, the 

reference generator is unstable and the optimal control problem is 

solvable (by satisfying assumptions 1-6 in Section 4.1 and 

Assumptions 1-2 in Section 4.2 we can ensure that the problem is 

solvable) then the condition for optimality of the Implied reference 

diophantine equation reduces to the condition that A and B must be 

coprime.

The conditions required for optimality of the feedforward 

diophantine equation are that A and B must be coprime and that A^, 

the measurable disturbance generator denominator, must divide both A 

and D. For the unstable disturbance generators of practical 

importance the condition that A must divide A and 0 again 
X 

corresponds to one of the optimal control problem solvability 

conditions (see Assumption 5 in Section 4.1). If, therefore, the 
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measurable disturbance generator Is unstable and the optimal control 

problem Is solvable then the condition for Optimality of the Implied 

feedforward diophantine equation reduces to the condition that A and 

B must be coprime (this is the same condition required for Optimality 

of the implied feedback diophantine equation).

The question of ensuring problem solvability is discussed In 

Section 4.6.3.

4.2.3 Simplified Design

The control structure used allows flexibility in the design of 

the reference and feedforward parts of the controller. Having 

designed the optimal feedback controller the reference and 

feedforward parts can then, if desired, be designed Independently of 

the feedback properties of the system. This option may be Important 

in cases where the full LQG design cannot be implemented due to 

computational constraints. In such cases the reference and 

feedforward parts of the controller can be designed to ensure proper 

steady-state performance as follows:

(1) Reference controller

The reference controller may be defined as:

yA C 
Cr=^iF 

q
where the scalar y replaces the polynomial M In equation (4.24).

From the closed-loop system structure shown In Figure 4.2 the 

transfer-function between the reference signal r(t) and the 

controlled output y(t) may be calculated as:

Ty/r=^ <4-37>
c
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properties of the feedforward controller in favour of a static 

feedforward design which is calculated to ensure the elimination of 

the measurable disturbance in steady-state:

Cff B(l)

The two problems of the non-optimal design outlined above demonstrate 

a clear advantage of the optimal feedforward design since a causal 

and stable feedforward controller will always result in the optimal 

design regardless of the relative delays in the B and D polynomials, 

and regardless of the positions of the zeros of B.
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4.3 LQG SELF-TUNING CONTROL ALGORITHM

An explicit LQG self-tuning controller may be constructed using 

the certainty equivalence argument, where the A,B,C and D polynomials 

in the LQG design of Section 4.2 are replaced by their estimated 

values A,B,C and D.

The explicit LQG self-tuning control algorithm may be summarised 

as follows:

Step 1 : Choose cost-function weights.

Step 2 : Update estimates of A,B,C and D polynomials.

Step 3 : Solve spectral factorisation (4.20) for D . 
c

Step 4 : Solve equations (4.22)-(4 .23) for G and H, and form 

feedback controller according to equation (4.21).

Step 5 : Solve equations (4.25)-(4.26) for M, and form reference 

controller according to equation (4.24).

Step 6 : Solve equations (4.28)-(4.29) for X, and form

feedforward controller according to equation (4.27).

Step 7 : Calculate and implement new control signal.

Step 8 : Goto Step 1 at next sample instant.

In steps 4-6 it may be possible to solve the implied diophantine 

equations to obtain the optimal controller polynomials, as discussed 

in Section 4.2.2. Similarly, in steps 5-6 it may be desirable to use 

the steady-state designs outlined in Section 4.2.3.
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4.4 ROBUSTNESS OF THE LQG SELF-TUNER

The subject of robustness of self-tuning Controllers is one 

which has generated a great deal of discussion and controversy in 

recent years. This discussion has largely been stimulated by the 

paper of Rohrs et al (1982) which analysed the robustness properties 

of the self-tuning regulator (STR) and of model reference adaptive 

controllers (MRAC) in the presence of unmodelled dynamics and 

disturbances. These authors concluded that adaptive controllers are 

inherently non-robust and this stimulated a very active debate 

leading to some useful insights into the robustness question.

Xstrom (1983c) directly challenged the allegations of Rohrs, 

while Goodwin et al (1985) pointed out that the approach of analysing 

existing high performance adaptive controllers would almost certainly 

reveal poor robustness properties.

Xstrom (1983b) and Goodwin et al (1985) take a more pragmatic 

approach to the robustness issue by attempting to obtain a robust 

adaptive controller by combining a robust control law with a robust 

identification algorithm.

In the following discussion the robustness properties of the LQG 

design are examined and methods of achieving robust parameter 

estimation are discussed.

4.4.1 Robustness of the LQG Design

The performance and properties of feedback control systems have 

long been understood by control engineers in terms of the frequency 

responses of the various system transfer-functions (Truxal 1955, 

Horowitz, 1963). The main ideas of conventional frequency—response 

design methods have recently been supported by theoretical analysis 
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(Doyle and Stein, 1981).

These ideas can be summarised with reference to a typical Bode 

plot of the loop gain as shown in Figure 4.3. It is well understood 

that there are three important frequency regions:

(1) The low-frequency region where the loop gain should be high 

to achieve good command response, disturbance rejection 

and robust performance properties.

(11) The crossover region where the stability margins should be 

adequate■

(ill) The high-frequency region where the loop gain should fail 

off rapidly to achieve robust stability (l.e. 

insensitivity to unmodelled high-frequency dynamics) and 

insensitivity to measurement noise.

Any competent design of a digital control system should include 

anti-aliasing filters to eliminate signal transmission above the 

Nyquist frequency (Ostrom and Wlttenmark, 1984) . The high-frequency 

properties of the controller will therefore depend critically upon 

the sampling period.

The relevant features of the LQG controller may be investigated 

by summarising the properties of the design presented in Section 

4.2:

(i) The feedback, reference and feedforward parts of the 

controller each have poles due to the A weighting term, 
q

and zeros due to the A weighting term (see equations 

(4.21), (4.24) and (4.27)). Thus, loop-shaping may easily 

be achieved by manipulation of the cost function weights. 

In particular, the desired high gain at low-frequency can 
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be achieved by introducing integral action when the A 
q 

term is chosen as A = l-Vd, V -» 1. 
q

A particularly simple formulation of the weighting terms

0 and R which requires the selection of only two 
c c

parameters is presented in Section 4.6.2.

(li ) The stability margins for the closed-loop system can be 

examined using the implied feedback diophantine equation 

(4.30):

AA H + BA G = 0 C AT (4.43)
q r c =

From the feedback controller equation (4.21) and the 

closed-loop system model in Figure 4.2 it may easily be 

verified that equation (4.43) is the characteristic 

equation of the closed-loop system, where T is defined as 

the characteristic polynomial. This shows that the 

nominal closed-loop system is guaranteed to be stable, 

since the polynomials D and C are by definition stable, 
c

This result should be contrasted with the stability 

properties of the Self-Tuning Regulator (Xstrom and 

Wittentnark, 1973) and the Self-Tuning Controller (Clarke 

and Gawthrop, 1975, 1979). It is possible that the

closed-loop system for these control laws will be 

nominally unstable, particularly when the controlled 

process has zeros Inside the unit circle in the d-plane.

Equation (4.43) also shows that standard pole-assignment may be 

obtained as a by-product of the LQG algorithm by solving the 

equation:

AA H + BA G = T C (4.44)q r c 
where T Is chosen as the desired closed-loop pole polynomial.
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Notice that in this formulation of the pole-assignment algorithm the 

loop-shaping properties of the LQG design are retained since the A 
q

and A polynomials remain in equation (4.44). Use of the pole

assignment algorithm introduces computational savings since the 

spectral factorisation (4.20) is no longer required, and in 

subsequent calculations the polynomial D is replaced by T ■

4.4.2 Robust Parameter Estimation

In this section the recursive Extended-Least-Squares (ELS) 

estimation algorithm is described and the methods which can be used 

to achieve robust parameter tracking are briefly reviewed. The 

plant model (4.2) is re-written in the approximate form:

y(t) = $T(t)O(t) + (pd(t) (4.45)

where the parameter vector 9(t) and regression vector <(>( t) are 

defined by:

eT(t) - [a,...a ; b .. .b d .. .d .;c,...c 1 (4.46)

^T(t) = [-y( t-1) . . .-y( t-na) ;u( t-k^) . . .u( t-k^-nb) ;

1(t-k^)...£(t-k^-nd);v(t-1)...v(t-nc)] (4.47)

The parameters, a.,b.,c. and d. are the coefficients of the

polynomials A,B,C and D.

sub-systems W and W as integer multiples of the sample period

the

The

signal v(t) is a proxy to the unmeasurable signal <b (t), defined by: d
T v(t) = y(t) - £ (t)o(t) (4.48)

where 0(t) is the vector of estimated parameters.

The recursive ELS algorithm may be summarised as follows:

. P(t-l)£(t)^T(t)P(t-l)

P(t) = T77T ------------------t---------------------  )X(t) X(t) + lT(t)P(t-l)<t>(t)
(4.49)
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k(t) = P(t)*(t) ------------------- --------------------- (4.50)
\(t) + /(t)P(t-l)^(t)

v(t) = y(t) - ^T(t)|(t) (4.51)

0(t) = |(t-l) +k(t)v(t) (4.52)

In the above algorithm the 'forgetting factor' X(t) (where 

0 < X(t) < 1) weights the measurements, such that a measurement 

received n samples ago will have a weighting proportional to x" 

(assuming a constant forgetting factor X(t) = X).

The constant forgetting factor technique for parameter tracking 

has frequently been used in self-tuning control algorithms. The 

method, however, has some potential implementation difficulties:

(1) If the algorithm is to remain capable of tracking sudden 

parameter changes the updating gain k must be prevented 

from becoming too small as the parameter estimates 

improve. Moreover, if good data is arriving and k becomes 

small, equation (4.49) implies that P is near singular and 

roundoff error over many updating steps may cause the 

computed P to become indefinite and the algorithm to break 

down (the UD factorisation technique (Bierman, 1977) is 

normally used to alleviate this problem). Thus, X must 

not stay too close to unity.

(ii) On the other hand, when X is less than 1 and little new 

information on 9 is being brought in by the observations, 

equation (4.49) shows that P may increase as X (the well 

known 'burst phenomenon', sometimes also known as 

'estimator wind-up'). If P becomes large in this way then 

observation noise, or a sudden increase in information, 

may Induce large spurious variations in 0.
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When using the constant forgetting factor method, therefore, 

choice of X is a difficult and often unsatisfactory compromise. Many 

methods of adjusting X(t) automatically in the recursion have been 

devised (Xstrom 1980, Fortescue et al 1981, Wellstead and Sanoff, 

1981). Alternatively, P may be adjusted directly. For Instance, a 

constant matrix, which can be interpreted as the covariance of random 

increments in the parameters, may be added at each step then some 

upper bound applied to P, or the new P may be formed as a weighted 

sum of the old P and the identity matrix I, the weights being chosen 

to keep trace P constant (Goodwin et al, 1985). Other methods are 

described by Egardt (1979), Hagglund (1983), Kulhavy and Karny (1984) 

and Andersson (1985).

Chen and Norton (1987) have recently described a new parameter 

tracking method which enables the recursive ELS algorithm to track 

both abrupt and smooth parameter changes. The method differs from 

methods based on a scalar forgetting factor by its use of vectors to 

detect parameter variation, which then results in the relevant 

element in the updating gain vector being Incremented. It also 

incorporates a test to determine when parameter updating should be 

suspended so as to avoid divergence when little new information about 

the parameters is arriving.

The algorithm does not, therefore, have the drawbacks associated 

with the constant forgetting factor method. The algorithm also 

embodies one of the key ideas behind robust estimation, namely that 

estimation should only be performed when 'good' data is arriving.

The method has been described in the context of LQG self-tuning 

control by Hunt et al (1986).
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4.5 CONVERGENCE PROPERTIES

One of the key theoretical problems in self-tuning control which 

has received growing attention in recent years is convergence 

analysis. Chen and Caines (1984) and Moore (1984) have tackled the 

problem for state-equation based LQG algorithms.

A global convergence result for explicit polynomial based LQG 

self-tuning control algorithms of the type under discussion in this 

chapter has recently been derived and will be summarised in the 

following. The result relates to the regulator case (i.e. 

r(t) = X(t) = 0) and to a stochastic approximation type 

identification algorithm. The result is due to Grimble (1986c).

To guarantee the convergence properties of the algorithm the 

following assumptions must be made:

Assumptions

1. Upper bounds n^ =• n, n^ = m and n = q on the polynomials A,B 

and C are known.

2. The polynomial C - k' /2 is input strictly passive (strictly 

positive real) for some real positive constant k'.

3. There exists a finite T^ such that C(t;d) remains stable for all 

t < t2>

4. Any common roots of A(t;d) and B(t;d) are strictly and uniformly 

outside the unit circle of the d-plane as t -» <», with 

probability one.

Remarks

(a) Assumption 1 is generally valid and has the useful 

property that the transport delay need not be known 

exactly.
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(b) A positive real condition such as Assumption 2 often 

arises as a sufficient condition for the convergence of 

recursive parameter estimation schemes.

The global convergence theorem for the explicit LQG self-tuner 

may now be stated:

Theorem

Subject to Assumptions 1—A the explicit LQG self-tuning 

regulator, using a stochastic approximation identification algorithm,

is globally convergent in the following sense:

(i) Lim 1 
sup Y

T 
£

2
y (t) < <» a.s. (4.53)

t=l

(ii) Lim 1 sup Y
T 
£ 2, x , u (t) < " a.s. (4.54)

T*°° t=l

(Hi) Lim | £ E[ (y( t)-y( t/1-1) )2/F . ] = 1 a.s. (4.55) 
T-»» t=l

(iv) The closed-loop characteristic polynomial T(t;d) converges 

in the sense:

T
Lira | £ E[T(t;d)y(t)-H(t;d)C(t-1;d)e(t)]2 = 0 a.s. 
T+» t=l

(4.56)

Proof: Grimble (1986c)

Remarks

(a) Parts (i) and (ii) of the theorem ensure that the output and 

control signals are bounded.

(b) If the system parameters and past values of e(t) are known the 

prediction error is obtained as 1. Part (ill) of the theorem 

shows that this is obtained asymptotically.
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(c) From the system model shown in Figure 4.2, and from equations 

(4.21) and (4.43), the transfer-function between the disturbance

<b,(t) and the output y(t) may be written: d
y(t) = ^4>d(t) (4.57)

which may be re-written in the form:

Ty(t) - City (t) = 0 (4.58)a

This equation allows the convergence result in part (iv) of the 

theorem (equation (4.56)) to be more easily interpreted.

(d) The theorem remains substantially unchanged if Assumption 4 is 

replaced by a weaker assumption and the identification algorithm 

is replaced by extended least-squares (see Grimble, 1986c).
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4.6 PRACTICAL ISSUES

4.6.1 Control Law Implementation

When implementing the control law (4.12) it is necessary to

Include in the forward path

common to each part of the

A /HA 
r 9 

controller (see

the term since this term, which is

equations (4.21), (4.24)

and (4.27)), is not necessarily stable. Thus, the control law

should be Implemented using the equivalent structure shown in Figure

4.4 where:

A r
HA 

q
A

C A C' -=£- 
r = r HA 

q 
A 

r
HA

q
(4.21),

Cfb & Cfb (4.59)

(4.60)

Cff Cff (4.61)

From equations (4.24) and (4.27):

Cfb G (4.62)

C' r

Cff

MC
E r

XC - GE D 
l

(4.63)

(4.64)

It is also necessary to show that C^ in equation (4.64) is stable.

To this end, multiply equations (4.22)-(4.23) by DEJt and equations

(4.28)-(4.29) by C. When the resulting equations are compared the

following equations, after some algebraic manipulation, are obtained:

CX - GE D
________ A

A

A (FDE 
q___

D* Z-g 
c

ZA^C) A (HDE - YC)
_3____ *______

BA r
(4.65)

By assumption the pairs A,B and A,Af can have no unstable common

factors. Since D c is unstable (due to equation (4.20)) all the

fractions in (4.65) are, in fact, polynomials. Thus C^ in equation

(4.64) is stable (E^ is stable by definition).
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4.6.2 Cost-function Weight Selection

In the LQG optimal controller design the cost-function weighting 

elements, Q and R , are the major design parameters which must be 
c c 

selected by the system user. Perhaps one of the key practical 

objectives in any self-tuning control algorithm is to reduce the 

number of design parameters (the 'on-line tuning knobs') to a 

minimum, and to give these parameters a clear physical

interpretation.

In the cost-function of equation (4.17) there are many ways to 

choose the weighting elements, allowing various performance 

characteristics and loop-shaping properties to be achieved. However, 

a straightforward technique appropriate for self-tuning systems which 

Involves only two design parameters, each with a simple 

interpretation is described in the following.

As previously mentioned, the controller 

action when the error weighting denominator has 

Since in the majority of practical problems 

Include Integral action in the controller the 

for the cost-function weights is appropriate: 
* 

B B *= q q (1-pd) (1-pd) 
^c * 2 *C kk (l-p/(l-d) (1-d)q q r

These definitions correspond to the following:

Bq = (l-pd)/(l-p)

A = 1 - d 
q

B = 1 r

will have integral

the form A = 1 - d. 
q

it is desirable to

following definition

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)
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In this formulation the scalars p and p effectively become the 

on-line tuning parameters. The interpretation of their effect is 

straightforward : the control weighting 1/p varies the relative 

magnitude of error and control penalty while p determines the amount 

of integral action. As p is increased (i.e. the control weight is 

decreased) the error signal will be decreased at the expense of 

increased control effort, an effect analogous to increasing the 

1/2 proportional gain of a PI controller, since the. term =• p 

appears in the controller numerator (see equations (4.21), (4.24) and 

(4.27)). As p + 1 the integral action is removed since the term 

(1-d) becomes cancelled in (4.66) (in practice p is never allowed to 

come too close to 1). Conversely, decreasing the value of p 

increases the effect of the integral action, which is analogous to 

decreasing the integral time constant in a PI controller.

Although a strict application of the theory requires that A is 
q 

stable the use of unstable A , such as A = 1 - d, can be Justified 
q q

using the argument in the following section.

4.6.3 Solvability Conditions and Unstable Weighting Terms 

Solvability of the optimal control problem is dependent upon the

conditions (see Section 4.1):

1. The polynomials A and B must have no unstable common factors. 

This condition is equivalent to the requirement that any 

unstable terms In A, and A (where A and A are the 
d x d x

denominators of W^ and W , respectively) must also be factors 

of the denominator of the plant input-output transfer-function 

W . 
P

2. Any unstable factors of A must also be factors of A. 
e
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3. Any unstable factors of A must also be factors of A and D. A

This condition is equivalent to the requirement that any

unstable terms in A A must also be factors of the denominator 
x A

of the plant input-output transfer-function W . 
P

To summarise, any unstable terms in A , A, or A A must also be e d x A

factors of the denominator of the plant input-output

transfer-function W . 
P 

In any practical situation where an unstable term in A , A, or 
e d

A^A^ does not appear in the denominator of then this term must be 

artificially introduced into the forward path using A . Similarly, 
q 

in other situations it may be desirable to use an unstable A 
r

weighting term. In some situations, therefore, the plant conditions 

may dictate that the use of unstable weighting terms is desirable, 

A strict application of the theory, however, requires that A 
q 

and A should be stable. The use of unstable A and A in practice r ----------- q r r

can be justified using the following argument: let us formally define 

the plant as that part of the system which Is known a priori in 

advance of controller design. Assume now that the given data is such

that we know unstable weighting terms are desirable. Denote A and 
q

A as follows: r

Aq ’ AqAq <4-72)

Ar = aV (4.73)

where + indicates a stable polynomial and - indicates an unstable 

polynomial. The forward path is then as shown in Figure 4.5. Since

the given problem data tells us a priori that the terms A- and A- are 
—--------- q r

necessary let us consider the transfer-function A /A as part of 
r q

the

plant, as shown in Figure 4.6. The controller is then designed for
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L

Figure 4.5 : Forward Path

new plant

Figure 4.6 : Artificial Plant
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the new plant in Figure 4.6 where the solvability conditions have now

been satisfied by appropriate choice of A^ . This approach is 

equivalent to minimising the cost-function: 
* * 

, B B B B ,

q q r r 

Finally, the control signal u is implemented as follows:

A” 
u = — u' (4.75)

a" 
q 

This argument allows us to ensure that the problem solvability

conditions are always satisfied without violating the theoretical 

conditions on the cost-function weights. The original approach of 

directly using unstable weights will, nevertheless, result in 

precisely the same closed-loop system. To Illustrate the point, 

consider a system which has a drifting disturbance due to a factor

1 d in the denominator of the disturbance transfer-function W

Assume that this terra is not present in the denominator of the plant 

input-output transfer-function W . It is immediately apparent that 
P 

integral action is needed to counter the effect of the drifting

disturbance. A is then defined as A = 1 - d and the controller is 
q q

calculated. However, that this problem violates the theoretical 

solvability conditions is apparent for three reasons:

(i) The polynomials A and B have an unstable common factor 

1-d.

(ii) A is unstable, 
q

(ill) A drifting control signal u will result in order to 

counteract the drifting disturbance. The cost-function 

will, therefore, be infinite.
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The above argument can, however, be used to justify the design: 

let us assume that the term 1/A is included in the plant and then 
q 

calculate a controller based on this newly defined plant to minimise 

the cost-function (4.74). This design will result in the same 

closed-loop system as the original design. The new design will,

however, have the following properties.

(1) The newly defined A and B polynomials will not have any 

unstable common factors.

(11) The effective weighting terms A^ and A^ are stable.

(ill) The pseudo control signal u' will be stable.

From equation (4.75) u' = A u. In this example A = 1 - d which 
q q

means that changes in the control signal are, effectively, being 

weighted.

4.6.4 Computational Algorithms

Efficient computational routines for diophantine equation 

solution have been derived by KuEera (1979) and JeEek (1982). The 

spectral factorisation can be performed using the Iterative 

algorithms proposed by KuEera (1979) or JeSek and KuEera (1985) . 

Iteration of the spectral factorisation routine is terminated either 

when a specified tolerance is reached or when a specified maximum 

number of iterations have been performed. These algorithms have the 

necessary property that the solution obtained after each iteration is 

guaranteed to be stable.

4.6.5 Common Factors in A and B

The implied feedback diophantine equation (4.30) uniquely 
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determines Lhe optimal feedback controller when Lhe plant A and B 

polynomials are coprime. If A and B have a stable common factor Lhen 

the couple of equations (4.22)-(4.23) must be solved to obtain Lhe 

optimal feedback controller.

If, however, it is deemed necessary In a particular application 

to always solve Lhe implied equation (since this is computationally 

simpler than solving Lhe original couple) regardless of any possible 

stable common factors in A and B then this equation will still be 

solvable since any stable common factors of A and B will also divide 

D (see equation (4.20)). Such a solution will lead to a closed-loop c 

system with optimal pole positions but sub-opLimal zero positions.

In this situation the common factor should be cancelled from 

both sides of Lhe equation before it is solved. The algorithm 

derived by Jezek (1982) is based upon Lhe Euclidean algorithm which 

can inherently cope with such common factors.

This property of Lhe optimal design should be contrasted with 

standard pole-assignment algorithms (WellsLead et al, 1979) where Lhe 

diophantine equation (4.44) must be solved. Since Lhe arbitrary 

polynomial T^ appears on Lhe righL-hand-side of this equation (in 

place of D^) any common factors in A and B will render this equation 

unsolvable (unless, coincidentally, this factor also divides T C).
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Example 4. 1

In this example the technique outlined In Section 4.6.3 for 

dealing with unstable reference generator poles which are not also 

poles of the plant is illustrated. Consider a sinusoidal reference 

of the form r(t) = sin wkT, where k is the sample instant and T the 

sample period. When w = n and T = 0.1, this reference signal may be 

modelled as:

W = A-1E 
r er

0.31

Consider a plant defined by: 
2= d\l + 0.5d) 

p 1-0.95d

To formulate a meaningful optimisation problem the technique outlined

in Section 4.6.3 is used : A is defined as A = A^A , where A+ = 1 
q q q q q

- 2 -and A = 1-1.9d + d , the unstable poles of W . The term 1/A is
q ’ r q

now considered part of the plant, so that the effective plant 

becomes:
2w' = A"iB = —

p (1-0.95d)(1-1,9d+dZ)

The remaining cost function weights are defined simply as = A*_  =

2 
l-1.9d+d

= 1. From equations (4.20)-(4.26) the optimal feedback and

reference controllers may be calculated (replacing A^ by A^) as:
2

c = 7.44 - 10.93d + 4.46d
fb 3.02 + 5.87d + 2.35d2

„ 2.98 - 2.46d
r ” 2r 3.02 + 5.87d + 2.35d

The resulting closed-loop system was then simulated and a sinusoidal 

set-point applied. The plant output and set-point are shown in

Figure 4.7(a). The control signals u(t) and u*(t)  are shown in 



189

Figure 4.7(b). It Is seen that perfect tracking is achieved, that 

u(t) Is oscillatory, and that the steady-state value of u'(t) is 

zero.
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Example 4. 2

This example Is a self-tuning version of example 4.1. The plant 

parameters were estimated during each sample interval using Recursive 

Least-squares (RLS). For simplicity a constant forgetting factor of 

unity was used. The plant output and set-point are shown in Figure 

4.8(a). The control signals u(t) and u'(t) are shown in Figure 

4.8(b). After an initial tunlng-in transient the plant output again 

follows the set-point.

Estimates of the plant A and B polynomials are plotted in Figure 

4.9. Evolution of the resulting controller parameters is shown in 

Figure 4.10. It is seen from Figure 4.10 that the controller 

parameters converge to the values calculated in Example 4.1 using the 

true plant polynomials.
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Example 4. 3

This example Investigates the tracking and feedforward control

performance in the self-tuning context. Consider the following

plant:

W 
P

2-1 dZ(l+ 0.5d)
1-0.95d

Wd A-1!
l-0.95d

W x

2A-ln = dZ(l-0.75d) 
1-0.95d

The plant output was required to track step-llke changes In set-point

while the plant was subjected to step changes In the measurable load

disturbance 1(t). The reference and load disturbance generators were

therefore modelled as:

= A-1E 
e r

1 
1-d

“ AJl EX
1 

1-d

Integral action was Included In the controller by defining 1-d.

The control weighting R was set to R = 0.1, and B was c c q

= 1. Using the above data the true controller transfer

A 
q

chosen as

functions

may be calculated as:

W r

W1

B 
q

= 3.01 - 2.Old________
fb (1.35+2.71d+l.06d2)(1-d)

2 31.04+0.20d - 2.82d +1.59d 
2

(1.35+2.71d+l.O6d)(1-d)

the simulation results which follow the load disturbance l(t) 

changed as follows:

C r
1

2
(1.35+2.71d+1.06d)(1-d)

Cff

In
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t < 60 X(t) = 0

60 < t < 90 Jl(t) = 10

90 < t < 120 Jt(t) = 0

120 < t < 150 Jl(t) - 10

t > 150 X(t) = 0

Performance of the fixed controller with C_. and C as above but with fb r

no feedforward action (C^ « 0) is shown in Figure 4.11. The effect 

of the changes in load disturbance is clearly seen, with the 

disturbance eventually being rejected after each change by the 

Integral action only.

Performance of the fixed controller including optimal 

feedforward control is shown in Figure 4.12. The effect of Lhe load

disturbance is greatly reduced in this case. Note that a further

reduction in the effect of Jt(t) could be achieved by reducing the 

control weighting (in fact, since Lhe delay in D = delay in B 

complete cancellation is possible for R « 0). c

The performance for the self-tuning simulation is shown in 

Figure 4.13. Again, RLS with unity forgetting factor was used to 

estimate the A,B and D polynomials. The first change in load 

disturbance is clearly seen on the output. However, after Lhe 

feedforward controller has tuned-in the performance matches Lhat of 

Lhe fixed controller shown in Figure 4.12. The control signal for 

the self-tuning simulation is also shown in Figure 4.13.

Estimates of the plant polynomials A,B and D are shown in Figure

4.14.
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Evolution of the feedback controller G and H polynomials is

shown in Figure 4.15, and the feedforward controller numerator C-, f fn

in Figure 4.16. Comparison with the fixed controllers calculated

above shows that the parameters converge to their true values.
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CHAPTER FIVE

A POWER SYSTEMS APPLICATION

Summary

The self-tuning LQG controller described in the previous chapter 

has been evaluated in experimental trials at the Hunterston 'B' 

Advanced Gas-cooled Reactor (AGR) power station simulator. The 

results of these trials are reported in this chapter.

The principles of the AGR power system design are briefly 

outlined in Section 5.1. The control strategy currently implemented 

at Hunterston is described in Section 5.2. The Hunterston 'B' 

simulator consists of a full-scale replica of the station central 

control room and the plant models run In real-time on a distributed 

network, of 52 processors. The simulator is described in Section 

5.3.

The control loop on which the LQG self-tuner was Implemented is 

the turbine stop-valve (TSV) steam pressure loop. The existing 

controller on this loop is of analogue Proportional-Integral (PI) 

form. Performance of the PI controller is evaluated in Section 5.4. 

The results of the self-tuning LQG trials and details of the 

hardware/software implementation of the algorithms are presented in 

Section 5.5.

The chapter concludes in Section 5.6 with an evaluation of the 

LQG controller performance, and a comparison with the performance of 

the existing PI controller.
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5.1 THE ADVANCED GAS-COOLED REACTOR

The Hunterston 'B' nuclear power station is based upon the 

Advanced Gas-cooled Reactor (AGR) design (see Figure 5.1). The fuel 

elements used in the AGR consist of uranium oxide encased in 

stainless steel cladding to form fuel rods. The fuel rods are loaded 

into vertical channels in the reactor core, which is made up of 

graphite bricks (the moderator). The core has further vertical 

channels which contain control rods. The control rods are made of 

strong neutron absorbing material and can be inserted or withdrawn 

from the core to adjust the rate of the fission process and hence the 

reactor heat output.

The graphite moderator and fuel elements are cooled by 

circulating pressurised carbon dioxide gas. The gas temperature is 

thereby raised and the hot gas is then passed to the boilers to 

produce steam which subsequently drives the turbines.

The whole assembly is encased in a pre-stressed concrete 

pressure vessel which performs the dual purpose of gas containment 

and radiation shielding.

For reliability reasons the boiler/reactor assembly is divided 

into four distinct quadrants. Each quadrant consists of three 

boilers and two gas circulators, and the boilers are further divided 

into half-units which means that each reactor consists of a total of 

twenty-four water-steam circuits.

5.2 THE HUNTERSTON 1B*  OVERALL CONTROL STRATEGY

The overall reactor/turbine generation system consists of two 

closed circuits. In the primary circuit pressurised carbon dioxide 

gas is pumped up through the reactor core and over onto the boiler
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heat exchangers by the gas circulators which are located beneath the 

boilers.

Having generated steam in this way the rest of the generation 

plant is similar in nature to a conventional power station ; the 

secondary circuit is comprised of the boilers and turbine. In the 

secondary circuit feed pumps supply feedwater to the boilers and as 

It is passed up through the heat exchangers it Is converted to steam. 

The steam is then passed to the high pressure stages of the turbine, 

back to the reheater banks of the boilers, and finally to the turbine 

low pressure stages. The low pressure steam is then condensed and 

passed back into the feed section of the circuit.

A schematic of the overall plant structure and control strategy 

Is shown in Figure 5.2. In addition to the turbine governor the 

system consists of seven control loops:

(1) Loop 1: The reactor gas outlet temperature (T2) is 

controlled by manipulation of the control rods. 

The control rods are divided into five sectors, 

each consisting of 37 rods.

(2) Loop 2: The boiler outlet steam temperature Is 

controlled by generating a trim signal to the 

Loop 1 reference level.

(3) Loop 3 (main) :

The turbine stop valve (TSV) steam pressure Is 

controlled by manipulation of the boiler feed 

regulating valves (FRV's).

(4) Loop 3 (auxiliary):

The differential pressure across the feed 

regulating valves is controlled by manipulation 

of the feed pump speed.
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(5) Loop 4: The circulator outlet gas temperature (Tl) is 

controlled by manipulation of the gas circulator 

inlet guide vanes.

(6) Loop 5: Changes in demanded turbine load are used to 

provide feedforward control for Loop 3 (main) 

and Loop 4. The load signal is also used to 

provide a trim for the Loop 1 reference level.

(7) Loop 7 : The individual half-unit outlet steam 

temperatures are controlled by manipulation of 

each half-unit valve.

The controllers which perform each of the above tasks are of 

analogue PI form, with the exception of Loop 1 controller which is of 

double lead-lag form.

5.3 HUNTERSTON ’B’ SIMULATOR

The South of Scotland Electricity Board have built at Hunterston 

a total plant simulation facility for the Hunterston 'B' AGR. The 

simulator consists of an exact full-scale replica of the station's 

central control room and provides full simulation of all major plant 

items including all reactor plant protection and safety systems 

(Figure 5.3).

The whole simulation facility is run in real-time by utilising a 

distributed parallel processing network which uses arrays of 

microprocessors. The actual plant response is duplicated by the 

real-time solution of thousands of differential equations which have 

been obtained over a long period of time in an extensive programme of 

plant modelling studies. By duplicating all instruments, controls
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Figure 5.3 : Simulator Control Room
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and displays in the control room and connecting these to the 

real-time simulation an environment is created which is 

indistinguishable from the real thing.

The main purpose of the simulator is to provide a full training 

facility for all control room personnel. As well as providing the 

opportunity for the rehearsal of routine plant operations such as 

start-up and shutdown the simulator is also used to investigate a 

wide variety of fault conditions. The simulator is monitored from 

an instructors console which allows the plant to be initialised at 

any given state and subsequently to be subjected to any desired 

sequence of operating conditions.

In addition, the simulator provides the ideal environment for 

the testing and evaluation of new control methods and techniques 

which aim to modify and - improve the efficiency of the existing 

strategy.

The Hunterston 'B' models are mounted on a total of 52 Marconi 

computers. These 52 processors are split into several clusters 

which each simulate various areas of the plant. Each cluster is 

connected in parallel to the central control cluster. The computers 

are distributed throughout the control room and drive the display 

panels via interface equipment.

The adaptive LQG controller which was tested at the simulator 

was mounted in an IBM PC in which an I/O card was installed (see 

Section 5.5.1 for more details). Connection of the IBM to the 

simulator involved small modifications to the simulator software in 

order to remove the existing PI controller from the loop under 

investigation. The IBM controller was then introduced into the loop 

by directly connecting via its I/O card to the simulator interface 
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equipment behind the display panels (see Figures 5.4 and 5.5).

5.4 TSVP CONTROL (LOOP 3 (MAIN))

The control loop under investigation in this particular study is 

the turbine stop valve steam pressure (TSVP) control, which is 

achieved by manipulation of the feed regulating valves (Loop 3 

(main)). This loop is of particular importance Ln the overall 

system since the maintenance of a steady TSV pressure has a direct 

influence on the power output of the generator. In addition, since 

Loop 3 (main) regulates the secondary water-steam circuit it has a 

direct influence on the other controlled variables in the system. 

Thus, the study investigates the following factors:

(i) The transient response of Loop 3 (main).

(ii) The tightness of control in steady-state.

(ill) The transients Induced into the rest of the system due to 

perturbations in the Loop 3 (main) reference level.

A primary objective of the study is to investigate the 

performance of the LQG self-tuner with respect to the above factors. 

To evaluate the LQG controller the performance of the existing 

analogue PI controller is first studied.

5.4.1 PI Performance

The TSV steam pressure reference level was subjected to two step 

changes : a step from 85% to 65% followed by a step from 65% back to 

85% (the pressure scaling was chosen such that 0-100% corresponds to 

120-170 bar). The interaction between Loop 3 (main) and the rest of 

the system was investigated by monitoring three other controlled
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Figure 5.5 : IBM Adaptive Controller
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variables : the circulator outlet gas temperature (Tl), the reactor 

gas outlet temperature (T2), and the feed regulating valve 

differential pressure (FRVDP).

The responses for the downward step are shown in Figure 5.6 and 

for the upward step in Figure 5.7. Each figure has three graphs:

(i) TSV pressure and set-point.

(ii) FRV position.

(iii) A plot of the other monitored variables Tl, T2 and FRVDP 

(along with TSVP and FRV position).

From Figures 5.6 and 5.7 the following observations regarding the 

performance of the PI controller may be made:

(i) Each change in the TSV steam pressure reference level is 

followed by a sudden and large movement of the FRV 

actuator. This initial valve movement is followed by a 

slow oscillatory transition to the steady-state region.

(ii) As a result of (i) the TSV steam pressure response is 

initially quite fast but displays a significant overshoot 

and oscillation around the reference level when moving 

into the steady-state region.

(iii) The initial rapid movement of the FRV actuator induces 

very strong transients in the other controlled variables 

Tl, T2 and FRVDP. The FRVDP transient is particularly 

severe. Following the initial period the transients 

decay with a slow oscillation.
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Figure 5.6 : PI Control
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Figure 5.7 : PI Control
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5.5 SELF-TUNING LQG CONTROL

5.5.1 Hardware and software

The LQG self-tuner was implemented on an IBM PC Ln which an IBM 

Data Acquisition and Control Adapter (DACA) card was installed. 

Interface to the card was via an external terminal board (see 

Figure 5.5).

The real-time LQG self-tuning algorithm was programmed mainly In 

IBM Professional FORTRAN (FORTRAN 77). All graphics were drawn using 

the IBM Plotting System and data I/O was performed by calls to the 

DACA subroutine library. A keyscan routine for real-time operator 

Interface was programmed in 8087 assembly language.

A fuller technical summary of the PC-based self-tuning system Is 

given In Hunt and Jones (1988).

5.5.2 Control law and model parameterisation

For this particular study the plant model used was given by: 
B C

y(t) - x u(t) + X ‘•'d^^ (5.1)

The control law used Is given by:

u(t) = -Cfby(t) + Crr(t) (5.2)

This controller structure and plant model corresponds to the design 

presented In Chapter 4, but without the feedforward part of the 

controller.

For the cost-function (4.17) the weighting functions Q^ and R^ 

were chosen according to the formulation given in Section 4.6.2 i.e:

q - (Wd)*(i-pd) ------- , R . 1 . g
c (l-p)2(l-d) (1-d) c p

In the following trials the scalar p was fixed at p = 0.1 so that the 

only on-line tuning parameter was the control weighting p.

In the controller design stage the feedback part of the 

controller was calculated using the implied feedback diophantine 
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equation (4.30) and the reference part was calculated using the 

steady-state strategy defined by equations (4.36) and (4.38). The 

control design steps may be summarised as follows:

(i) Calculate D from the spectral factorisation (4.20) c

i .e. :

D*D  = B*(l.  11-0. lld)*(l.  11-0. Ud)B + A*(l-d)*n(l-d)A  
c c

(ii) The feedback controller is given by: 

r = , G
ufb H(l-d)

where G,H are calculated from the diophantine equation 

(4.30):

A(l-d)H + BG = D C c 

such that: 

deg G = deg A

(iii) The reference controller is given by equation (4.36):

C - -*£-  
r H(l-d) 

where y is calculated according to equation (4.38) as:

Dc(l) 
T" BfTr 

The control law is then implemented according to the strategy

given in Section 4.6.1.

Based on the results of an open-loop step test performed on Loop 

3 (main) a sample interval of 20 seconds was chosen. For the 

parameterisation of the estimation routine a second order model with 

a two-step delay was selected such that the estimated A and B 

polynomials were given by:
2A = 1 + a^d + a^d 

2
B = d (b + bxd)

The C polynomial was simply set to C = 1 so that a total of four 
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parameters were estimated. The estimation routine used was 

recursive least-squares with an ordinary exponential forgetting 

factor which could be altered on-line from the keyboard.

The parameter estimates were initialised according to the 

following stable second order model: 
2B _ d^(0.15 + 0.05d)

A 2
1- 1.5d + 0.7d 

and the forgetting factor was initially set to X. = 0.95.

5.5.3 Self-tuning LQG control results

The performance of the LQG self-tuner was investigated by 

performing two main trials. In the first trial the main objective 

was simply to obtain accurate estimates of the plant parameters, and 

subsequently to investigate the effect of varying the control 

weighting while the estimation routine was frozen. In the second 

trial the estimation routine was frozen for the whole run and the 

loop subjected to a series of step changes in the set-point while the 

control weighting was varied. The step changes were of the same 

magnitude as those applied during the PI test described In Section 

5.4.1. During each step change the responses of the other controlled 

variables in the system (Tl, T2 and FRVDP) were recorded in order 

that the LQG controller could be compared with the existing analogue 

PI:

(1) Run 1

The first test had a duration of 260 samples (1 1/2 

hours). The TSV steam pressure and set-point, and the 

FRV position are shown in Figure 5.8. The parameter 
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estimation was frozen at t = 120. During the tuning 

phase (t < 120) the loop was subjected to a sequence of 

step-changes in set-point. The loop responses for the 

tuning phase are shown in Figure 5.9. Evolution of the 

parameter estimates and prediction error during this time 

Is shown In Figure 5.10.

The step response at t - 100 indicated that the 

parameter estimates were of reasonable accuracy and this 

led to the decision to freeze estimation at t = 120. At 

this time the estimated plant model was:

2
B = d (0,001 + 0.08d)
A = 2

1 - 1.158d + 0.2548d

The low relative value of the first B coefficient 

indicates that the plant time-delay may have been 

underestimated by one step.

A relatively low value of control weighting, 

p = 0.8, was used during the tuning phase. After the 

parameter estimation routine was frozen the control 

weighting was successively increased during the fixed 

phase (t > 120). The loop responses for the fixed phase 

are shown in Figure 5.11. Changes in control weighting 

occurred as follows: 

t = 145 , p = 2.0

t = 160 , p = 10.0

t =■ 170 , p = 30.0

t = 180 , p = 40.0

As would be expected, the graph of FRV position shows 
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that the effect of Increasing the control weighting Is to 

significantly damp out the actuator movements.

Comparison of the step response occurring at t ■ 100 

(p = 0.8) with those at t - 190 and t » 230 (p « 40.0) 

also shows, however, that Increasing p also leads to a 

slower step response with significant overshoot.

The results clearly demonstrate that the particular 

formulation of the control weights used allows the 

actuator activity to be traded against closeness of 

set-point following In a straightforward way using only 

one on-line tuning parameter.
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Figure 5.8 : LQG Run 1 - Overall
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Figure 5.9 LQG Run 1 - Tuning Phase
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Figure 5.10 : Parameter Estimation
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Figure 5.11 : LQG Run 1 - Fixed Phase
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(11) Run 2

The second test had a duration of 315 samples (1 3/4 

hours). The purpose of this test was to subject the loop 

to a series of step changes in set-point for different 

values of control weighting while monitoring the 

responses of the other controlled variables In the system 

(Tl, T2 and FRVDP).

The TSV steam pressure and set-point, and the FRV 

position for the whole test are shown in Figure 5.12. 

The value of control weighting was changed after each of 

the down/up changes in set-point as follows: 

t = 0 , p = 0.8

t = 110 , p = 20.0

t = 168 , p = 50.0

In the steady-state phase following the set-point changes 

(t > 200) the control weighting was changed as follows: 

t » 243 , p = 20.0 

t = 270 , p = 0.5 

The system responses for each downward and upward step 

are plotted as follows: 

Figure 5.13 : downstep at t = 50 with p = 0.8

Figure 5.1 4 : upstep at t = 80 with p = 0.8

Figure 5.1 5 : downstep at t = 116 with p - 20.0

Figure 5.1 6 : upstep at t « 140 with p = 20.0

Figure 5.1 7 : downstep at t = 170 with p = 50.0

Figure 5.18 : upstep at t = 180 with p = 50.0
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Figure 5.13 : y = 0.8
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Figure 5.15 : p = 20.0
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Figure 5.17 : p “ 50.0
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Figure 5.18 : u = 50.0
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The responses for the steady-state period 225 < t < 255 during 

which the control weighting was changed from 50 to 20 (t * 243) are 

shown In Figure 5.19. The responses for the period 255 < t < 285 

during which the control weighting was changed from 20 to 0.5 

(t = 270) are shown In Figure 5.20.

From the results the following observations may be made 

regarding the performance of the LQG controller:

(1) When the control weighting Is low the loop has a very 

fast step response with no overshoot. However, this 

tight command following performance Is at the cost of a 

relatively active actuator movement. This actuator 

movement also causes a severe Interaction effect with the 

other controlled variables In the system. This 

Interaction Is perhaps only slightly worse than that 

observed during the PI test in Section 5.4.1.

(11) When the control weighting Is high the step-response Is 

slower with a significant overshoot. This Is 

accompanied by a very smooth actuator movement. This 

smooth actuator movement leads to a dramatic reduction In 

the transients Induced In the other control loops.

When the LQG performance Is compared to the performance of the 

existing analogue PI controller shown In Figures 5.6 and 5.7 the 

following observations can be made:

(1) For a low value of control weighting the step-response of 

the loop Is greatly Improved under LQG control : the 

rise-time Is short and there Is no overshoot. The 

actuator movements when p is low are greater under LQG
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Figure 5.19 : p = 50 + 20 (t = 243)
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control. This may or may not be a bad thing depending 

on whether it is the magnitude of actuator movements or 

the number of actuator start/stops which is important 

(under LQG control the actuator only moves once every 20 

seconds).

When p is low the interaction with other loops is 

slightly worse under LQG control due to the magnitude of 

actuator movements.

(ii) For a high value of control weighting the step-responses 

are similar for LQG and PI in terms of rise-time and 

overshoot. Under LQG control, however, the interaction 

transients in the other loops are dramatically reduced.

This is due to the very smooth actuator movement under 

LQG with a large p.

5.6 CONCLUSIONS

Although it is not usual during normal plant operation to move 

the TSV steam pressure set-point very frequently the tests performed 

still give an accurate illustration of the general interaction 

between loops due to various perturbation and disturbance effects. 

Probably the most important design factor in this particular system 

is to reduce these interaction effects to a minimum while still 

retaining an adequate level of control accuracy in each loop. In 

this respect the LQG controller, with a high value of control 

weighting, can be adjudged to give a very significant improvement in 

control performance when compared with the existing analogue PI 

controller.
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The changes in the command response of the loop as the control weight 

p is varied from 0.8 * 50 may be explained by plotting the locus of 

the closed-loop poles with respect to p. From equation (4.37) the 

closed-loop poles of the transfer-function between r(t) and y(t) are 

determined by the zeros of the spectral factor D . To determine the c 

root-locus the estimated plant was used, as follows: 
2

B _ d (0.001 + 0.08d)
A = 2

l-1.158d + O.2548d

The closed-loop root-locus with respect to p is plotted in Figure 

5.21. Note that the open-loop poles of the plant are 0.295 and

0.863. From Figure 5.21 It Is seen that for very high p the 

closed-loop poles migrate towards the open-loop poles. In the range 

0.8 C p < 50 the complex-conjugate pair of poles are seen to move 

significantly to the right and towards the real axis which 

corresponds, respectively, to reduced natural frequency of 

oscillation and Increased damping. This corroborates the responses 

observed during the experiment as p was increased.

Figure 5.21 : Closed-loop Root-locus
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CHAPTER SIX

CONCLUSIONS

6.1 Stochastic optimal control theory

In application of the optimal control theory presented In 

Chapter 2 the design procedure consists of choosing the cost

function weights to achieve satisfactory performance from the 

closed-loop system. In practice this is necessarily an Iterative 

procedure : given a plant model and a performance specification the 

cost-function weights are selected, the control law Is calculated and 

the resulting closed-loop system Is analysed with respect to 

transient response, steady-state error, frequency response, stability 

margins, and so on. If the performance is found not to satisfy the 

specification then the cost-function weights must be altered and the 

design/analysls procedure repeated. This process continues until a 

satisfactory closed-loop performance is achieved.

One major area in this respect having considerable scope for 

further work is the selection of the dynamic cost-function weights. 

It was shown In Chapter 2 that the dynamic weights have a direct 

Influence on the frequency-response properties of the closed-loop 

system. It was also demonstrated that fundamental design 

requirements such as low gain at high frequency could be easily 

Introduced by this means. What is needed, however, Is a 

comprehensive and systematic design procedure for selection of the 

dynamic weights to meet a range of performance specifications.
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A criticism of the stochastic optimal control theory is that 

there is no direct way in which to incorporate desirable sensitivity 

and robustness properties into the optimisation procedure. As 

mentioned above, these considerations can only be partially addressed 

using the iterative cost-function selection procedure. Grimble 

(1983) and Youla and Bqngiorno (1985) have augmented the standard LQG 

problem in an attempt to address the robustness question by 

incorporating sensitivity terras in the quadratic cost-function.

The H optimisation technique (Zames, 1981), on the other hand, 

concentrates purely on robustness properties by posing a cost

function which directly includes various system sensitivity measures. 

Kwakernaak (1986) and Grimble (1986d) have tackled the H design CO 

problem using polynomial optimisation techniques. The key area of 

research in these methods at the present time is the development of 

efficient and robust numerical procedures for execution of the H CO 

controller design which involves non-linear diophantine equations. 

If these issues can be satisfactorily resolved then the H method 03 

will become a powerful design tool for linear systems.

6.2 LQG self-tuning control

In cases where the iterative design procedure outlined above 

cannot be used (due to ignorance of the plant parameters, for 

example) a natural way to use the stochastic optimal control theory 

is in self-tuning control. This idea is pursued in Chapter 4 where, 

for identification purposes, the plant model considered is simpler 

than the general model of Chapter 2.
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Clarke et al (1987) assert that a self-tuning control algorithm 

must be applicable In the following situations In order to be 

considered as a 'general purpose' algorithm for the stable control of 

the majority of real processes:

(i) non-minimum phase plant

(ii) open-loop unstable plant or plant with badly damped 

poles

(iii) a plant with variable or unknown dead-time

(iv) a plant with unknown order

The LQG self-tuner presented in Chapter 4 overcomes all these 

problems.

The LQG controller has a guarantee of closed-loop stability 

regardless of the plant pole/zero locations. Thus, conditions (i) 

and (ii) above are satisfied. Since the LQG algorithm presented in 

Chapter 4 was based upon explicit plant identification the method can 

deal with variable dead-time by overparameterisation of the numerator 

polynomials B and D. This technique is also employed in the 

pole-placement self-tuners. In the pole-placement algorithms, 

however, overparameterisation of the plant numerator polynomials 

means that the order of the estimated denominator polynomial must be 

chosen with great care to avoid singularities in the solution of the 

diophantine equation caused by common factors in the estimated plant 

A and B polynomials. This problem does not arise in the LQG 

self-tuner of Chapter 4 since the couple of polynomial equations 

(4.22) - (4.23) can be solved (with only a small increase in 

computation relative to the implied equation (4.30)) to obtain the 

unique optimal controller regardless of any possible stable common 
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factors in the plant A and B polynomials.

The LQG self-tuner can therefore cope with variable or unknown 

dead-time without suffering from overparameterisation problems and 

thereby satisfies conditions (ill) and (iv) above.

A further attractive feature of the LQG self-tuner Is the 

relatively low number of on-line tuning parameters. The simple 

formulation of the cost-function weights given in Chapter 4 leads to 

the necessary inclusion In the controller of Integral action, and 

requires the selection of only two scalar parameters (in the 

experimental trials presented in Chapter 5 only one parameter was 

actually tuned on-line).

The polynomial solution of the H control problem is another 

area which may be of considerable use in self-tuning systems. At the 

present time only a simplified version of the theory has been 

proposed for use in self-tuning control (Brown et al 1986, Grimble 

1986e) . However, developments in algorithmic aspects should give 

the method considerable potential as the basis for a robust 

self-tuning controller.
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APPENDICES

APPENDIX 1 : Proof of Theorem 1

The closed loop transfer function M and the sens!tiv1ty

function

M A 

thus:

S for the

C c

SDF control structure are defined as:

, S A 1 (Al.l)1 + W C 
P c

1 + w c 
P c

M = C S , S = 1-W M (Al.2)
c P

From the SDF system structure shown in Figure 2.3 the control input 

and tracking error signals may be written as: 

u = -M(d + n- m- W(b ) - SC ,f xin cf 
e = - (1-W M)(d-m-W <L ) + W Mn p xln p

- <P - (W -W SC ,)f rn x p cf 

where: 

C A C + C W cf = ff ex

From equations (Al.3) and (Al.4) the control input and 

spectral densities may be written as:

*u = M<*d  + *n  + *m  + Wx°JlnWx>M* + SCcf*f CcfS* 

A A A A
<b = (1-W M)(<f> ,+<t> +W a„ W )(1-W M) + W M<b M W Te p Td Tm x in x ' p P n p

+ a + (W -W SC C)L(« -w sc _)*  
rn x p ef f x p cf

Denoting the integrand of the cost-function (2.43) as I, the

integrand may be written:

I = Q <t> + R <)> (Al .8)c e c u
Substituting the expressions for d> and <f> given in equations (Al.6) u e

and (Al.7) into equation (Al.8) the cost-function integrand may be

written, after some algebraic manipulation, as:

I - (W 0 W*+R  )SS*(C  ,$fC 
' p'C pc7 ' cfvf cf 

A A 
+ c (4>.+<b +$ +w 0. w )c ) cvyd Yn Ym x Jin x cy

(Al.3)

(Al.4)

(Al.5) 

tracking error

(Al.6)

(Al.7)
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+ Q (W (j)+4>.+4> +W an W +cj ) xc x*f  x yd ym x Jin x rn'
- Q <MW c\s*w*+w  SC .W*)  

xcyf x cf p p ct x'
& * *

- Q (4>J+<t> +W a. W )(M W +W M) (Al.9)c d m x An x p p ' '

To further simplify the cost expression the control and filter

spectral factors (Y
* *

Y Y A W Q W + c c = pc p
YfY* Md + 4>n •

and Y

R c

i * + m

j, respectively) are defined by:

W a. W*
x An x

(Al.10)

(Al.11)

Similarly, the measurable disturbance spectral factor Y„, f d

by:

YfdY*fd  £ *f

The following auxiliary spectra are defined by:

$ A Q (W <t>CW + $, + d> + W <J W + o )0 = c xyf x d vm x in x rn'
*

<t>, , A Q Whl = cf p x

4>. 3 A Q (<t>j + <l> + W c W )Wh2 = 'c d Tm x An x p

is defined

(Al.12)

(Al.13)

(Al. 14)

(Al.15)

Substituting from equations (Al.10) - (Al.15) into equation 

(Al.9), the cost-function integrand may be written as: 
* * * * * *

1 = YcYcSS (CcfYfdYfdCcf + CcYfYfCc>

+ *o  - *hl CcfS* - 4SCcf - *h2 M* - *h2 M

The integrand may now be split into terras which depend on each part 

of the controller, and terms which do not depend on the controller at 

all. Completing the squares in equation (Al.16) the integrand may be 

expressed as: 

't’hl ^hl *
I = (Y SC Y_. - -z* ) (Y SC _Y_. - . ■ * )

c cf fd y*y* c cf fd y Y 
c fd c fd

<l>hO ’w *
+ <VCcYf - IF5*-*  <YcSGcYf - -TTF- > 

Vf YcYf

(Al.17)



269

where:

*oi ’ % - 77 < 
c c

*hl*hl , Wh2 , 
+ * ' (Al.18)

The term d> , in equation (Al.17) does not depend on the controller ol

and does not, therefore, enter into the following cost minimisation

procedure. The first two terms in equation (Al.17) depend, 

respectively, on the feedforward and cascade parts of the 

controller.

Before proceeding it is necessary to express the spectral

factors of equations (Al.1O)-(A1.12) in polynomial form as follows:

*
Y Y A c c =

YfY*f  a

D D c c 
w

A A c c 
DfD*f

AfAf

DfdDfd

AfdAfd

(Al.19)

(Al.20)

(Al.21)

Using the polynomial equation form of the system model given in Table

2.1, and using the polynomial equation form of the cost-function 

weights given by equation (2.45), the spectral factors may be written 

as:

* * A A A A A A A
Y-Y- -(AAA C,0,C,A A A + A,A A C 0 C A A A, ff nexdddxen dexnnnxed

* * * * * w * *
+ A,A A E 0 E A A A, + A, A A A 0 A A A A, dnxrrrxnd dnexrnxend

+ A.A A C 0 C A A A,)/(A,A A A A A A A.) dnexlnxend dnxeexnd

Y * AlqinAl +
fd fd “ . *

(Al.22)

(Al .23)

(Al.24)
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Comparison of equations (Al.19) - (Al.21) with equations (Al.22)

- (Al.24) then yields:
* w w w * * w w

D D = B A B B A B + AABBAA (Al.25)
c c prqqrp pqrrqp

* WWW w w
DfDf = (A A’ C.a.C.A1 A + A. C C A. n ex d d d ex n dex nnn dex

WWW w w
4- A A’ .E a E A1 ,A + A A. a A. A n xd r r r xd n n dex rn dex n

WWW w
+ A A' C <jrt C A’ A )A' A' n ed x In x ed n pf pf (Al.26)

k w w
DfdD fd = AXaXnAZ + EJlaZEl (Al.27)

and:

A = AAA (Al.28)c p q r

Af = A. A A1 dex n pf (Al.29)

Afd = s (Al.30)

From the plant model equations and spectral factor definitions 

obtain:

_ B*A*B*B (D,D* -Co C*A' A'* A A*) 
h2 prqq'ff nnn dexp dexp p p ,,,
**“ * * IAL.JI)

Y Y, A A A' A 0 D,cr p q dexp n c f

The diophantine equation (2.50) allows the strictly unstable 

part of equation (Al.31) to be separated as follows:

*h2 G Fzgl
* * AAA' A * * 

YcYf P q deXp n DcDf

From the system equations and spectral factor definitions obtain:

D D,C
y qc Y » -____________ c * cn __________

c c f AAA’ A A (A C ,+8 C ) p q dexp n r p cd p cn

From equations (Al.32) and (Al.33) obtain:

Each of the controller dependent terms in equation (Al.17) may now be

simplified separately:

(i) C dependent term c

(Al.32)

(Al.33)
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Y SC Y c c
*h2 

* *

From the system equations and spectral factor definitions obtain:

y cr y____________________________
c cf fd C ,,A„A A (A C ,+B C ) cfd X q r p cd p cn

From equations (Al.38) and (Al.39) obtain:

From the plant model equations and spectral factor definitions 

obtain: 
* * * 

d», , B A B B C Dc, *hl p r q q x fd
* * = -------------- *------- ( Al. 3 7 )

Y Y. , AA.ADc fd q Z x c

The diophantine equation (2.55) allows the strictly unstable part of 

equation (Al.37) to be separated as follows:

* hl = X Zzg2
* * A A.A *

Y Y, c f
f

D D,C - GA (A C , + B C ) „ glc f cn r p cd p cn Fz
* *

AAA' A A (A C ,+B C ) D Dp q dexp n r p cd p cn' c f

Substituting from the Implied cascade diophantine equation (2.58), 

equation (Al.34) may be expressed as:

<fr, _ c H “ GA C , _ gl
Y SC Y - - -----------—-----------(Al.35)c C f " " * * x 'Y Yt AA' AA (AC ,+B C ) D n c f q dexp n r p cd p cn c f

Finally, equation (Al.35) may be expressed as:

^h2 + -
YcSCcYf " = Ti + Tr (Al-36)

1 Y Y_ 1 1
c f

where T*  denotes the first term in equation (Al.35) and denotes 

the second, strictly unstable, term.

(Al.38)

D C ,C c D c cd cfn fd (Al.39)

(11) Ccj dependent term
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Y SC c cfYfd
*hl

A A
Y c fd

D C ,C _ D A -XA C £J(A C + B C ) c cd cfn fd x r cfd p cd____p cn
C C,AA A A (A C ,+B C ) cfd JI x q r p cd p cn

-zg2
(Al.40)

D c

Substituting from equation (2.59) this may now be written:

K.
y sc c cf fd * *

Substituting from equations (Al.36) and (Al.42) Into equation 

(Al.17) the cost-function Integrand may be written:

I = (T++T")(T++T~)* + (T^+T^)(T^+T^)* + 0ol (Al.43)

In equation (Al.43) the terms are stable and the Tj terras strictly

unstable for 1 = {1,2}. In the expansion of equation (Al.43) the
— +* 

terras are therefore analytic in |z| < 1. In addition, the
— +* — 

terras /z are also analytic in |z| < 1 since the terms are

strictly proper In z (the optimality conditions). Thus, using the 

Identity:

$ T’t+* ^7 = ’ t+t'* ^7 (Al.44)
c c

and Invoking Cauchy’s Theorem, the contour integrals of the cross

c fd

C ,C „ DA - XA cd cfn fd x i C 0________________  cfd f
C AA A A D cfd Ji x q r f

g2 
Zz°

A
Dc

(Al.41)

Finally, equation (Al.41) may be expressed as: 

Y SC c cfYfd

where denotes the first terra In equation (Al.41) 

(Al.42)

and denotes

the second, strictly unstable, term.

Minimisation
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terms in equation (Al.43) are zero. The cost function

therefore simplifies to:

2
J “ zTi /, ///Vi + Vi > + (A1'45>

J |z| = l i=l

Since the terms T. and <h , are independent of the controller the l ol

cost-function J is minimised by setting:

/ = 0, i = {1.2} (Al.46)

(1) Cascade controller

From equations (Al.35) and (Al.36), setting T = 0 involves:

C H cn GA C = 0 r cd (Al.47)

or:

C c

GA __ r
H (Al.48)

(ii) Feedforward controller

From equations (Al.41) and (Al.42), setting = 0 involves:

or:

C C c DA - XA C = 0 cd cfn fd x r cfd f (Al.49)

Ccf
XA Dc r f

C ,D,,A cd fd x
(Al.50)

Using.the definition of C in equation (Al.5) c t the feedforward

controller becomes:

Cff
XA D, - C C D,. r f cn x fd

D. ,A C . fd x cd
(Al.51)
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Minimum Cost

Setting Tj = 0, 1 =• {1,2} in equation (Al.45), the minimum cost 

Is found to be;

i 2 * a
J.ln "2^ E,<T?I >*  *«11  4 <«-52>

| Z | 1 1 L

Stability of T^ Terms

Implicit in the above proof is the requirement that the T*  terras 

are asymptotically stable for i = [1,2J. Stability of the terms 

may be demonstrated as follows;

(1) terra

From equations (Al.35) and (Al.36) obtain:

L C H - GA C ._+ _ cn_______ r cd
1 ~ A A' A A D,D 

q dexp n r f c

By definition, A and A^ are strictly Hurwitz polynomials.

(Al.53)

By virtue

of conditions (a) (b) and (c) In Theorem I A', Is strictly dexp
Hurwitz. From Corollary 3 in Section 2.4 A divides both G and C . 

n cn

By definition, is Hurwitz, but in the limiting case when has a

zero on the unit circle this zero will also be in G and C (by virtue cn

of Corollary 5). From Lemma ID is strictly Hurwitz. T, is c 1
therefore asymptotically stable.

(11) T^ terra

From equations (Al.41) and (Al.42) obtain:

T2
C ,C c DC,A - XA C C,DC cd cfn fd x____ r cfd f

C ,,AA A A D cfd H x q r f
(Al. 54)
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Substituting from the implied feedforward diophantine equation (2.60)

and using equation (Al.50), the expression for may, after some 

algebraic manipulation, be written as:

. XA' (H - C ,)
T+ _ PXx cdz

2 “ A’ A D D lx q f c
(Al.55)

By definition A^ Is strictly Hurwitz. By virtue of condition (c) In 

Theorem 1 A' Is strictly Hurwitz. By definition, Is Hurwitz but 

in the limiting case when has a zero on the unit circle this zero 

will also be In A^^ (by virtue of Corollary 5 and equation (2.27)). 

From Lemma 1 Is strictly Hurwitz. is therefore asymptotically 

stable.

Solvability conditions

It only remains to relate the conditions (a)-(d) in Theorem 1 to 

solvability of the optimal control problem. Problem solvability in 

this context is taken to mean that the given data generate a 

controller which renders the cost-function finite.

Clearly, the cost will be finite If and only If the twelve 

transfer-functions In equations (2.32) and (2.33) are asymptotically 

stable.

Consider the case when a has a zero on the unit circle as 

discussed In Corollary 5. Such a zero arises when A has a zero onP
the unit circle and when A,, A and A do not. Using Corollary 5 D„ ------ d x e f

and C^n will also have this zero. From equation (Al.51) C^^ will 

also have this zero. As a consequence, this unstable zero will ■ 

cancel In all the transfer-functions In equations (2.32) and (2.33) 
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and the problem remains solvable.

By Corollary 3 (which results from condition (d)) the transfer 

functions B C C /A and AC C /A are asymptotically stable. From pcnnn pcnnn

equation (Al.51), and by Corollary 4 and Lemma 1, the transfer

functions B C__ C ,/C„, and A C__ C ,/C__, are asymptotically p ffn cd ffd p ffn cd ffd 1 1

stable. Finally, conditions (a) - (c) ensure asymptotic stability of

the remaining transfer-functions as follows:

(1) Condition (a)

Clearly, condltlon(a) ensures asymptotic stability of the 

transfer functions C,A C ,/A, and C,A C /A,, d p cd d d p cn d

(11) Condition (b)

Clearly, condition (b) ensures asymptotic stability of the 

transfer-functions AC ,E /A and AC E /A . p cd r e p cn r e

(ill)Condition (c)

The fifth transfer-function in equation (2.32) is:

Wffd"

Substituting from the implied feedforward equation (2.60) and using

equation (Al.51) this may be rewritten, after some algebraic

manipulation, as:

A YE„DC 
q 1 f

AixDfd“

By condition (c) A' is strictly Hurwitz and by Lemma 1 so is D .*x rd

This transfer-function is therefore asymptotically stable.
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The fifth transfer-function in equation (2.33) is:

(C C C„,+ C„ A C ,)A E v cn x ffd ffn x cd p A
A A C...a x JI ffd

Substituting from equation (Al.51) this may be written:

<CcnCxDfd + Cffn^A;XxEl

AlxDfd“

Again, condition (c) and Lemma 1 ensure asymptotic stability of this 

transfer-function. •
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APPENDIX 2 : Proof of Theorem 6

The closed-loop- transfer-function M and the sensitivity

function for the 2DF control structure are defined as:

Cfb

■ CfbWp fb p
(A2.1)

thus:

CfbS I-W M 
P

(A2.2)

From the 2DF system structure shown in Figure 2.4 the control input

M A

M =

S

S

. S A

and tracking error signals may now be written as:

u = -Md-Mn + SC ra - SC f + MW <1 (A2.3)r if xin k '

e = —(1-W M)d + W Mn + (1-SW C )m - d, p p p r rn

- (W -SW C ,)f + (1-W M)W <1. (A2.4)x p If p x.£n '

where:

W Cff+CfbWx <A2-5>

From equations (A2.3) and (A2.4) the control input and tracking error 

spectral densities may be written as: 

* * * *
6 = M(d>, + A + W o. W )M +SC6CS yu yd yn x in x' rym r

+ SClf$fC* fS*  (A2.6)

A = (1-W M)(*,+W  a. W*)(l-W  M)*  + W M<t> M*W*
ye ' p zxyd x An x/K p p yn p

+ (1-SW C )*  (1-SW C )*  + a 
p r'ym p r rn

+ (W -SW C1<:)d>c(W -SW C,,)*  (A2.7)
x p If yfk x p If

Denoting the Integrand of the cost-function (2.43) as I, the 

integrand may be written:

I - Q <t> + R <t> (A2.8)c e c u

Substituting the expressions for and <f>e given in equations (A2.6) 
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and (A2.7) Into equation (A2.8) the cost-function Integrand may be

written, after some algebraic manipulation, as: 
* * * *

I = (W Q W + R ) SS (C,,<h C + C d> C p c p c If f If rTm r
★ ★

+ C-, (4>. + 0 + W a0 W )Cf. ) fb d Yn x Xn x fb'
* *

+ Q (w 4> w +4>, + Wo W + 4> + o ) c xYf x d x An x m rn'
* * * *

- Q <t>,(W C, ,W S + SW C, ,W )(cTfx x If p p If x

- QI (CWS  + SW C ) 
cm r p p r

***

- QCi, + W a W)(MW  + W M) (A2.9)***
V. U ** ,\L1 A L> L>

To further simplify the cost expression the control and filter

spectral factors (Y^ and , respectively) are defined by: 
* *

YcYU WpVp+Rc <A2-10>
Y Xf + + Wx°lnWx <A2’n)

Similarly, the measurable disturbance spectral factor Y and the .....  “ ■ ■ rd

reference spectral factor Y are defined by: 1 ■■■ 1 " m
Y fdYfd  a Of (A2.12)*

Y mYm  m  <A2’13)* *

The following auxiliary spectra are defined by:

♦ o A W/x + d  + Vxn Wx  + % + ’n? <A2’14>* *

♦ hi £ VfVx <A2-15>

♦ h2 £ VmWp <A2-16>

♦ h3 & Vd  + WxalnWX <A2-17>*

Substituting from equations (A2.l0)-(A2.17) Into equation (A2.9), the 

cost-function Integrand may be expressed as:
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* A AA A A * *
X = YcYcSS (ClfYfdYfdClf + CrYmYmCr + Cf]}YfYfCfb)

+ *0  " ^h^lf3 “ <t'hlSClf

- *h2C*S*  - $h2SCr - W1* “ <t’h3M (A2.18)

The integrand may now be split into terms which depend on each part 

of the controller, and terms which do not depend on the controller at 

all. Completing the squares in equation (A2.18) the Integrand may be 

expressed as:

*hl ^hl *
1 ’ (YcscifYfd “ 77-xWfd - 77-) 

c fd c fd
*h7 I’h? *

+ (Y SC Y - A 1- )(Y SC Y -
r ® Y Y C m Y Y

cm cm

+ (Y MY, c f

+ *ol  

where:

♦ol = *0  ’

The term <j> in 
ol

and does not, therefore, enter into the following cost minimisation

*113 *h3
f )

c f c f

(A2.19)

1
*

c c

e

/hl'f’hl
( *

Y Y fd fd

*
<t‘h2<t‘h2

* 
Y Y m m

* 
^hl^ha

* ) 
YfYf

(A2.20)

A2 does not on the controller

procedure. The first three terms in equation (A2.19) depend, 

respectively, on the feedforward, reference and feedback parts of the

controller.

Before proceeding it is necessary to express the spectral 

factors of equations (A2.10) - (A2.13) in polynomial form as 

follows: 
*

* D D
YcYc & -^4 (A2.21)
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Y Y*  A -H- (A2.22)

AfAf

fd fd = A * (A2.23)
AfdAfd

*
* D D

Y Y A -S-S- (A2.24)
mm — *A A m m

Using the polynomial equation form of the system model given in Table 

2.1, and using the polynomial equation form of the cost-function 

weights given by equation (2.45), the spectral factors may be written

as:

+ A A B B A A P 3 r r q pB A B B A B P r q q r pY Y A A 3f"
A A A A A A p q r r q p

(A2.25)

Y Y f f

A A C.a.C.A A + A.A C a C A A nxdddxn dxnnnxd A,A C a. C A A, d n x An x n d

A,A A A A A, d n x x n dt .rt n n i d n x x

(A2.26)

Y Y fd fd
AA°AnAA + EAaAEA

A„A.
i. H

(A2.27)

A
Y Y m m

> <7 A e rn e (A2.28)
A A e e

Comparison of equations (A2.21)-(A2.24) with equations 

(A2.25)-(A2.28) then yields:

D D = B A B B A B p r q q r p + A A B B A A P q r r q p (A2.29)

DfDf (A A'C <j C A' A + A C o C A + A'A C a. C A A' )A'A' nxaaax n dxnnndx dnxxnxnd pp

(A2.30)
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and:

DfdDfd kZaZnkZ (A2.31)

D D iu m . a A e rn e (A2.32)

A A p q r
A A A' 
dx n p

Afd = kZ

(A2.33)

Af (A2.34)

(A2.35)

A E a E

A 
c

A

A = A 
m e

(A2.36)

Each of the controller dependent terms in equation (A2.19) may now be 

simplified separately:

(i) C dependent term t b

From the plant model equations and spectral factor definitions

obtain:

*h3

Y Y, c f

* * * A
BABB (D,D,-C a C Al A' A A ) p r q qx f f n n n dx dx p p

A A Al A D*D*  
p q ax n c f

The diophantine equation (2.78) allows the strictly unstable part of

(A2.37)

equation (A2.37) to be separated as follows:

*h3

Y Yt c f

G
A A A' A p q dx n

Fzgl
(A2.38)

D D_ c f

From the system equations and spectral factor definitions obtain:

Y MY_______________ c_f_fbn_____
c f A A Al A A (A C, ,+B C p q dx n r p fbd p :

From equations (A2.38) and (A2.39) ।

fbn

obtain:

(A2.39)

Y MY, c f

D DrCrL - GAYh3 c f fbn r

Y Y, c f

(A C,, ,+B C„ p fbd p fbn
“ AAA' A A (A C +B C ) p q dx n r p fbd p fbn

Fzgl

D D, c f

(A2.40)

Substituting from the implied feedback diophantine equation (2.89),
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equation (A2.40) may be expressed as:

h3 fbn fbd r Fz“ (A2.41)
cf „*„*  = A A’ A A (A C.. ,+B C_. ) * *

Y Y„ q dx n r p fbd p fbn D D, c f c f

Finally, equation (A2.41) may be expressed as:

yh3 +
- -51T-= T! + T]. (*2.42)

Y Y, c f

where denotes the first term in equation (A2.41) and denotes 

the second, strictly unstable, term.

(li) Cr dependent term

From the plant model equations and spectral factor definitions

obtain:

♦h2 
* * (A2.43)

The diophantine equation (2.83) allows the strictly unstable part of

equation (A2.43) to be separated as follows:

*h2
* * 

Y Yc m

M Nz®2
=aa + * 

q e D C

From the system equations and spectral factor definitions obtain: 

D Crt,D C
Y SC Y c r

= ______ c_fbd_m_rn____________
m C A A A (A Ccu,+B C: ) iaz.soj

rd e q r p fbd p fbn

From equatlons (A2.44) and (A2.45) obtain:

4>._ D C D C_. , - C .MA (A C., ,+B C_. ) h2 c rn m fbd rd r p fbd p fbn
,**  “ C A A A (A C.. ,+B C_. ) 

Y rd e q r p fbd p fbncm -i r r
M,g2 Nz

- (A2.46)
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Substituting from equation (2.90) this may be written as:

c D C„ J - C .MA D „ g2h2 rn m fbd_____rd r f _ Nz (A2.47)
erm ~ ** ” C ,A A A D *

Y Y rdeqrf Dcm c

Finally, equation (A2.47) may be expressed as:

। _
YcSCrYm ' 77" - T2 + T2 (A2’48>

c m 
+ — 

where T2 denotes the first term in equation (A2.47) and T2 denotes 

the second, strictly unstable, term.

(ill) C dependent term

From the plant model equations and spectral factor definitions

obtain:
A A

K. B A B B C Dc.hl _ p r q q x rd
A A A (A2.49)

The diophantine equation (2.86) allows the strictly unstable part of

equation (A2.49) to be separated as follows:

/hl = X
** AAA.Y Y . q x i. c fd

2zg3
A

D c

(A2.5O)

From the system equations and spectral factor definitions

obtain:

D C ,C, c D. „„ „ _______ c fbd Ifn fd________
c If fd = C...AA A (A C +B C,. ) 

Ifd Z q r p fbd p fbn
(A2.51)

From equations' (A2.50) and (A2.51) obtain:
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4>. , D Cc>.jCi( DcjA “ XA Cirj(A Cc. ,+B Cru ) hl c fbd Ifn fd x____ r Ifd p fbd p fbn
* * C1CJA A A A (A C,. ,+B C_. )Y_. Ifd 1 x q r p fbd p fbnc f a

Zzg3
- (A2.52)

Dc

Substituting from equation (2.90) this may be written as:

♦hl
Y SCifY<mC If fd Y- 

c fd

Ccu ,C, c DA - XA C, ..D_ fbd Ifn fd x_____r Ifd f
C,,,A„A A A D, ifd 1 x q r f

Zzg3
- (A2.53)

D

Finally, equation (A2.53) may be expressed as:

Y SC c
Y 

If fd (A2.54)

where denotes the first term in equation (A2.53) and denotes 

the second, strictly unstable, term.

Minimisation

Substituting from equations (A2.42), (A2.48) and (A2.54) into

equation (A2.19), the cost-function integrand may be written: 

i = (t| + t7)(t| + t“)*+( t+ + t“)(t* + t7)*+( t+ + t7)(t+ + <)% ,

(A2.55)

In equation (A2.55) the terms are stable and the terms strictly 

unstable for 1 = {1,2,3} . In the expansion of equation (A2.55) the 
— -J- it

terms T^T are therefore analytic In |z| < 1. In addition, the 
- +* _

terms T^T^ /z are also analytic In |z| < 1 since the T*  terms are 

strictly proper in z 3. Thus, using the identity:

f T"T+* £ T+T“* (A2.56)
c c
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and invoking Cauchy's Theorem, the contour Integrals of the cross 
4- — -L*

terms in equation (A2.55) are zero. The cost-function

therefore simplifies to:
31 f r + 4-jfe — —dr .. da

J = KJ * [//Vi +TiTi) + *oi]-  <A2-57>
|Z1-1 1=1

Since the terms T^ and <t>o^ are independent of the controller the 

cost-function J is minimised by setting:

T*  = 0, 1 = {1,2,3} 

(1) Feedback controller

From equations (A2.41) and (A2.42)

C

(A2.58)

setting T^ = 0 Involves:

H f bn C GA fbd i (A2.59)

or:

GA
Q _ __ LCfb H (A2.60)

(11) Reference controller

From equations (A2.47) and (A2.48), setting T2 0 Involves:

or

C I rnD C£LJ - C .MAD = 0 1 m fbd rd r f (A2.61)

MA D r f
0 C,. , m fbd

(A2.62)

(111) Feedforward controller

From equations (A2.53) and (A2.54) setting Tj = 0 Involves:

or:

C . DA - 
fbd Ifn fd x ^Ifd^ (A2.63)

If
XA D, r f
DC.A C,, , fd x fbd

(A2.64)

C r

C
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Using the definition of C In equation (A2.5), the feedforward

controller becomes:

XA D - C C Drj r f fbn x fd
DCJA C,, .

(A2.65)

Minimum cost

Setting « 0, 1 = {1,2,3} in equation (A2.57), the minimum 

cost is found to be:

3 *
\ln=«/ t E<VI> + *o1H <A2’66>

|z|=l 1=1

Stability of terms

Implicit in the above proof is the requirement that the terms 

are asymptotically stable for 1 => {1,2,3}. Stability of the 

terms may be demonstrated as follows:

(1) term

From equations (A2.41) and (A2.42) obtain:

T1
C,, H - C,, GA fbn____ fbd r

A A' A A D,D q dx n r f c
(A2.67)

By definition, A^ and Af are strictly Hurwitz polynomials. By virtue 

of conditions (a) and (c) in Theorem 6 A^ Is strictly Hurwitz. From 

Corollary 4 A divides both and G. By definition, D. Is n fbn f

Hurwitz, but in the limiting case when has a zero on the unit

circle, this zero will also be in C, and G (by virtue oft bn
Corollary 6). From Lemma ID is strictly Hurwitz. T^ is therefore 

c 1
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asymptotically stable.

(li) Tj term

From equations (A2.47) and (A2.48) obtain:

, C D C,.,~ C MA D, + rn m fbd rd r f 
z - C ,A A A D. rd e q r f

Substituting from the Implied reference diophantine equation (2.91),

(A2.68)

and using equation (A2.62), the expression for may, after some

algebraic

T 2 (A2.69)

manipulation be written as:

MA' (D H - C .) pe m___ rd
A'A DCD D e q f c m

By definition, A Is strictly Hurwitz. By virtue of condition (b)

in Theorem 6 A' Is strictly Hurwitz. By definition, D Is Hurwitz, 
e f

but in the limiting case when has a zero on the unit circle, this

zero will also be In A^ (by virtue of Corollary 6 and equation

(2.17)). From Lemma 1 D and D are strictly Hurwitz. Is cm 2

therefore asymptotically stable.

(Ill) term

From equations (A2.53) and (A2.54) obtain:

T+ = CfbdClfnDfdAx ~ XArClfd°f

3 ClfdAJlAxArDfAq
(A2.70)

Substituting from the Implied feedforward diophantine equation

(2.92), and using equation (A2.64), the expression for may, after 

some algebraic manipulation, be written as:
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, XA' „ (H - C£. J + = pAxk fbd
3 A! A D D Ax q f C

(A2.71)

By definition, A is strictly Hurwitz. By virtue of condition (c) in 
q

Theorem 6 A^ is strictly Hurwitz. By definition, is Hurwitz, but

in the limiting case when Dj has a zero on the unit circle, this zero

will also be

From Lemma 1

in ^ptx (by virtue of Corollary 6 and equation (2.27)).

Dc is strictly Hurwitz. is therefore asymptotically

stable.

Solvability conditions

It only remains to relate the conditions (a)-(d) in Theorem 6 

to solvability of the optimal control problem. Problem solvability 

in this context is understood to mean that the given data generate a 

controller which renders the cost-function finite.

Clearly, the cost will be finite if and only if the twelve 

transfer-functIons in equations (2.39) and (2.40) are asymptotically 

stable.

Consider the case when a has a zero on the unit circle as 

discussed tn Corollary 6. Such a zero arises when A has a zero on 
P

the unit circle and when A^ and A^ do not. Using Corollary 6 and 

Cfbn will also have this zero. From equations (A2.62) and (A2.65) 

C and C,, will also have this zero. As a consequence, this rn f f n

unstable zero will cancel in all transfer-functions in equations 

(2.39) and (2.40) and the problem remains solvable.

By Corollary 4 (which results from condition (d)) the 

transfer-functions B C C /A and C C A /A are asymptotically p fbn n n fbn n p n

stable. By equation (A2.62) and Lemma 1 the transfer-functions 
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B C Cc. ,/C , and C A C^, ,/C , are asymptotically stable. By p rn fbd rd rn p fbd rd

equation (A2.65), Corollary 5, and Lemma 1 the transfer-functions

B C,, and A C,, are asymptotically stable,p ffn fbd ffd p ffn fbd ffd

Finally, conditions (a) - (c) ensure asymptotic stability of the

remaining transfer-functions as follows:

(1) Condition (a)

Clearly, condition (a) ensures asymptotic stability of the

transfer-functions C.A Ccv,/A, and C_. C,A /A . d p fbd d fbn dp d

(ii) Condition (b)

The third transfer-function in equation (2.39) is:

(C,a - B C C,. ,)E rd___ p rn fbd' r
A aC e rd

Substituting from the Implied reference diophantine equation 

(2.91) and using equation (A2.62) this may be rewritten, after some 

algebraic manipulation, as:

A QE D, 
q t f

A' D a e m

By condition (b) A' is strictly Hurwitz and by Lemina 1 so is D . e m

This transfer-function is therefore asymptotically stable.

The third transfer-function in equation (2.40) is:

C E A C J rn r p fbd
C A ard e

This may be rewritten, using equation (A2.62), as:
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CEA rn r p 
D A a ra e

Condition (b) and Lemma 1 ensure asymptotic stability of this 

transfer-function.

(Ill)Condition (c)

The fifth transfer-function In equation (2.39) Is:

(C A C„. - A C B )E Cx p ffd____ x ffn p I fbd
A A C.. ,a x X ffd

Substituting from the implied feedforward equation (2.92) and using

equation (A2.65) this may be rewritten, after some algebraic 

manipulation, as:

A YE„D, q I f
A' Dcja lx fd

By condition (c) A^ is strictly Hurwitz and by Lemma 1 so Is D^.

This transfer-function Is therefore asymptotically stable.

The fifth transfer-function In equation (2.40) Is:

(C , c + A c,, ,)E Afbn x ffd____ x ffn fbd7 X p
AxAXCffd“

Substituting from equation (A2.65) this may be written:

(C,_ C + )E„A'„fbn x fd ffn X pXx
A» lx fd

Again, condition (c) and Lemma 1 ensure asymptotic stability of this 

trans fer-function.
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APPENDIX 3 : Proof of Theorem 12

The proof of Theorem 12 follows that of Theorem 1 In Appendix 1 

up to equation (Al.21).

Using the common denominator form of the system model given In 

equations (2.99)-(2.102) and using the polynomial equation form of

the cost-function weights given by equation (2.45), the spectral

Comparison of equations (Al.19)-(A1.21) with equations (A3.1)-(A3.3)

factors (Al ■10)-(A1.12) may be written as:
* * * * * *

*
Y Y - c c

BABBAB + AABBAA 
r q (A3.1)

AA A A A A q r r q
*

¥f =
/p /p /p /p

(A Co.C A + AC o C A + A Ea E A nd n nnn n r n
* * * * * *

+ AAo AA + A Do DA )/AA A A (A3.2)n rn n n in n n n ' '
* *

*
Y Y 

fd fd

AX°XnAX + EX°XEX
= * (A3.3)

A„A. X X

then yields:
* * * * * * *

D D = BA B B A B + AA B B A A (A3.4)c c
DfD*  =

+

r q q r qrrq
h h k k k k

A Ca.C A + AC a C A + A Eo E An d n nnn nrn
* * * *

AA a A A + A Daft D A n rn n n Jen n (A3.5)

DfdDfd ’ AXaXnA*X  +
ExaxEx (A3.6)

and:

A = AA Ac q r
Ac = AAf n

A. := Afd X

(A3.7)

(A3.8)

(A3.9)

Each of the controller dependent terms in equation (Al.17) may now be 

simplified separately:
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(i) C dependent term 
c

From the plant model equations and spectral factor definitions 

obtain: 
* * * A A A

<t>, _ BABB (D-D- - AC a C A )h2 _ r q q^ f f______ n n n
A A ~~ A A

Y Yc AA A D Dfct q n c t

(A3.10)

The diophantine equation (2.109) allows the strictly unstable part of

equation (A3.10) to be separated as follows:

From the system equations and spectral factor definitions obtain:

'^2 _ G Fz81
* * AA A * *Y Y- q n D D-c f c f

(A3.11)

From equations (A3.11) and (A3.12) obtain:

D D_C
Y SC Y = c c f AA A A (AC ,+BC ) q n r ca cn'

(A3.12)

equation (A3.13) may be expressed as

<t>,_ D D-C - GA (AC ,+BC ) _ glY h2 c f cn r cd cn Fz6
c c f T’T* ’ AA A A (AC ,+BC )Y Y- q n r' cd cn' D D-Ct n c f

(A3.13)

Substituting from the implied cascade diophantine equation (2.117),

Finally, equation (A3.14) may be expressed as

<t>, _ C H - GA C , _ gl
Y sc v h2 - cn_______ r cd _ Fz

c c f * * A A A (AC +BC ) * *YcYf q n r' cd cn' DcDf
(A3.14)

^h2 + -
Y SC Y - = tT + T,c c f y*y* 1 1

c f

(A3.15)

where denotes the first term in equation (A3.14) and ?£ denotes 

the second, strictly unstable, term.
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(11) C c dependent term cf

From the plant model equations and spectral factor definitions

obtain:

♦hl
* it it

A A

BABB DDC, r q q fd (A3.16)
Y Yc fd AA A D q A c

The diophantine equation (2.114) allows the strictly unstable part of

equation (A3.16) to be separated as follows:

*hl

Y c fd

X
AA A„

9 A

Zzg2
* 

D
(A3.17)

From the system equations and spectral factor definitions obtain:

Y SC c cf fd

D C C D , 
______c cd cfn fd 
C cjA.A cfd I i

From equations (A3.17)

. A (AC ,+BC ) q r cd cn'

and (A3.18) obtain:

(A3.18)

Y SC CY_, c cf fd
♦hl
* A

Y Yc. c fd

D C C D A - XA C c,(AC ,,+BC c cd cfn fd______ r cfd cd cn
CcfdVqArA(ACcd+BCcn)

Zzg2

D
(A3.19)

Substituting from equations (2.108) and (2.117) this may be written:

Y sc CYC, c cf fd
♦hl

Y c fd

C ,C , D A - XA C C.DC cd cfn fd______ r cfd f
C ,,AA A AD 
cfd £ q r f

Zzg2
A 

D
(A3.20)

Finally, equation (A3.20) may be expressed as:

Y SC CYCJ c cf fd
= t+ + t-

Y*Y*  2 2
c fd

(A3.21)

where denotes the first term In equation (A3.20) and denotes

the second, strictly unstable, term.
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Minimisation

Using a similar argument to the one used in Appendix 1 the cost 

function may be minimised by setting T*  = 0, i = {1,2} .

(i) Cascade controller

From equations (A3.14) and (A3.15), setting = 0 involves:

C H - GA C ,= 0 (A3.22)
cn r cd

or:

GA%=V (A3-23)
(ii) Feedforward controller

From equations (A3.20) and (A3.21), setting = 0 Involves:

C C , D A - XA C ,,D = 0 (A3.24)cd cfn fd r cfd f 

or:

Ccf =

Using the

XA Dc r f (A3.25)

the feedforward

c AjA cd rd
definition of C in equation (Al.5), 

cf

becomes:

XA D - C DD_, r f cn fd

controller

Cff = (A3.26)D,,AC . fd cd

Solvability conditions

To verify the solvability conditions (a)-(c) in Theorem 12 for 

the optimal control problem using a common denominator model it is 

sufficient to show that:

(i) The conditions (a)-(c) in Theorem 12 are equivalent to 

conditions (a)-(d) in Theorem 1.
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(11) The controllers generated by the equations In Theorem 12

and In Theorem 1 are the same.

(1) Equivalence of solvability conditions

Any factors of A., A or A which are not also factors of A 1 d e x p

will result In common factors In A and B. Condition (a) In Theorem

12 therefore subsumes conditions (a) and (b), and the A part of 

condition (c), In Theorem 1.

Condition (b) In Theorem 12, that any unstable factor of A^ must 

be a factor of A and D means firstly that any unstable factors of A^ 

must be in A^, and secondly that the product of such factors with any 

which are also In A*  must appear in A^ (i.e. this Is just condition 

(c) in Theorem 1). Condition (c) In Theorem 12 Is clearly equivalent 

to condition (d) In Theorem 1.

* * —el *0 D z s H - FBA A A =* A R c f r q n p 2

(11) Equivalence of controllers

From the definitions In Table 2.2:

Using equations (A3.27) - (A3.31) equations (2.50) and (2.51)

A = A A' » A A' dex pf p dexp (A3.27)

B = B A' p dexp (A3.28)

C = A*  C A' ex d pf (A3.29)

0 - A' C k' ed x pf (A3.30)

E = A' E A' xd r pf (A3.31)

become:

* * -el * A *
D D z ® G + FAA A = B A B B R cr q n prqql (A3.32)

(A3.33)
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where:
—pl * * *

R = z 6 (D-D. -C<JC AA)1 'if n n n
R, = z"gl(D D*A  A*B  B*  + BB*A  A*B  B*C  <j C*)

2 'ffqqrr rrqqnnn
A

Multiplying equations (A3.32) and (A3.33) by Aje obtain:

(A3.34)

(A3.35)

* * — pl * * *
D' D,z B G + F'AA A = B A B B R, cf qn rqql

D' Dz B H - F'BA A A = A R c f r q n L

(A3.36)

(A3.37)

where:

D' = D A' 
c c dexp

*
F' - FA1 dexp

(A3.38)

(A3.39)

From (A3.38) and (2.46) obtain:

D'D‘* = BA B B*A*B*  + AA B B*A*A*  (A3.40)
cc r q q r qrrq

Using equations (A3.27)-(A3.31) it Is clear that the definitions of 

Df tn equations (2.47) and (2.106) are equivalent.

Comparison of equations (A3.36), (A3.37) and (A3.40) with 

equations (2.109), (2.110) and (2.105) shows the solution G,H of 

equations (A3.36) and (A3.37) with: 

* -si -1(D^ z 8 ) F' strictly proper (A3.41)

to be equivalent to the solution G,H of equations (2.109) and (2.110) 

with (D^z 6 ) F strictly proper. •

From the definitions in Table 2.2:

A = A A' ,A' , x ed pr (A3.42)

Multiplying equations (2.55) and (2.56) by A^A^ and 

(A3.30) and (A3.42) obtain:

using equations

D z 6 X1 + ZAA A = z 6 B ABB DDCJ c q I p r q q fd
* —q? ”c2 * * *

D z 5 Yr - ZB A A! A*  .A' =zsAABBAfn DDrj c p r lx ed pr p q r r p£x fd

(A3.43)

(A3.44)
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where:

X’ = XA'.A’, , Y' - YA’ A’ ed pf ed pf

Using the definitions in Table 2.2 obtain:

(A3.45)

B A„A A' A’
B A< A. A' = P * * e<LP£ 

p Ax ed pf D rtH r pXx

' BPA*exp A*

BA'„ A„ plx i

Substituting in equation (A3.44) obtain:

* -g2D z s Y” - ZB/ 
c

_c>2 * * * 
kA=zeAABB DD r i. p q r r fd (A3.46)

where Y' A Y”A'. . = pix Multiplying equations (A3.43) and (A3.46) by

Al obtain:dexp
* -e2O' z 8 X' + Z' c

-e2 * * *AA A = z 6 B A B B DD, , q 1 r q q fd (A3.47)

* -h2D' z 8 Y" - Z' c
-o? * * *BA A = z 6 A A B B DD, .r X q r r fd (A3.48)

where:
A 

Zr = ZA’ dexp (A3.49)

Comparison of equations (A3.47) and (A3.48) with equations (2.114)

and (2.115) shows the solution X', Y" of equations (A3.47) and

(A3.48) with:
* _„2 -1

(D^ z ) Z' strictly proper

to be equivalent to the solution X,Y of equations (2.114) and (2.115) 

* _g2 -1with (Dcz ) Z strictly proper. The controllers obtained from 

equations (2.54) and (2.113) are therefore equivalent. •
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APPENDIX 4 : Proof of Theorem 14

The proof of Theorem 14 follows that of Theorem 6 in Appendix 2 

up to equation (A2.24).

Using the common denominator form of the system model given in 

equations (2.125)—(2.127), and using the polynomial equation form of 

the cost-function weights given by equation (2.45), the spectral 

factors (A2.10)-(A2.13) may be written as:
* * * * * * 

BABBAB + AABBAA , r q q r________ q r r q
WWW

AA A A A A q r r q 
w w w w w w

A Ca.C A + AC a C A + A Da0 D A nd n nnn n An n 
w w 

AA A A n n 

_ AAaAnAA + EAaAEA 
* 

A. A.A A
* ★

A a A + E o E e rn e r r r

(A4.1)

(A4.2)

(A4.3)

(A4.4)

Comparison of equations (A2.21)—(A2.24) with equations (A4.l)-(A4.4) 

yields:
w

D D =» c c
WWW

BA B B A B r q q r
WWW

+ AA B B A A q r r q (A4.5)
w w w w w w w

DfDf = A Ca.C A + nd n ACaCA + ADo„ D A nnn n xn n (A4.6)
w w w

DfdDfd ’ AAaAnAA + Wa (A4.7)
w w w

D D - m m A a A + E e rn e ] -arEr (A4.8)

and:

A = AA A c q r

A = AA 
f n

A

(A4.9)

(A4.10)

fd aa (A4.ll)
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A = A m e
(A4.12)

Each of the controller dependent terms In equation (A2.19) may now be 

simplified separately:

(1) C dependent term to

From the plant model equations and spectral factor definitions

obtain:
AAA 

BABB 
___ L-i-S-

AA A D D, 
q n C f

The diophantine equation (2.137) allows the strictly unstable

*h3
lii a a

(D,D, - AC a C A ) ' f f n n n ' (A4.13)
Y Y c f

part of equation (A4.13) to be separated as follows:

From

From

*h3

Vf

G FzgI
AA A * * q n DcDf

(A4.14)

the system equations and spectral factor definitions obtain:

D DcCcky my _ _______ c f fbn________
c f AA A A (AC,, ,+BC,, )'q r n fbd fbn7

equations (A4.14) and (A4.15) obtain:

(A4.15)

Y MYC c f
*h3

Y Yc c f

c f fbn r fbd fbn
AAqArAn<ACfbd+BCfbn>

Fzgl

D Dc c f
(A4.16)

Substituting from the implied feedback diophantine equation (2.148),

equation (A4.16) may be expressed as:

*h3
Y MY,-----c f * *

Y Y, c f

Ccv H - GA C„.fbn_______ r fbd
AqArAn<ACfbd+BCfbn)

Fzgl
* *

D D, c f
(A4.17)
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Finally, equation (A4.17) may be expressed as:

^h3 + -
Y MY, - A = T, + T (A4.18)

C £ Y*Y*  1 1
c f

where denotes the first term in equation (A4.17) and denotes 

the second, strictly unstable, term.

(11) C dependent terra

From the plant model equations and spectral factor definitions 

obtain:

<t>h2
A A

Y Y c ta

(A4.19)

The diophantine equation (2.142) allows the strictly unstable

part of equation (A4.19) to be separated as follows:

= -A- + -^nr- (A4.2O)
Y Y q e Dc ra c

From the system equations and spectral factor definitions obtain: 

D C,..D C

Wm ’ CTFA’A (AC~d-EC:h ) <A4’21>rd e q r fbd fbn'
From equations (A4.2O) and (A4.21) obtain:

<(>._ D C D C... - C MA (AC +BC )„ _ _ h2 c rn m fbd rd r fbd fbn
c r ra ** C .A A A (ACc. _,+BCc. )Y Y rd e q r fbd fbncm

NzgZ
~ (A4.22)

D c

Substituting from equations (2.136) and (2.148) this may now be
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written:

Y SC Y c rm
♦h2 C D C,, , - C ,MA D „ g2 rn m fbd rd r f Nz

C ,A A A D rd e q r f
(A4.23)

Y Y c m D c

Finally, equation (A4.23) may be expressed as:

Y SC Y c r i
♦h2

(A4.24)

where T£ denotes the first term in equation (A4.23) and denotes

the second, strictly unstable, term.

(iii) dependent term

From the plant model equations and spectral factor definitions

obtain:

BABB DD,, r q q fd 
AA A.D*  

q I c

The diophantine equation (2.145) allows the strictly unstable

*hl
(A4.25)

part of equation (A4.25) to be separated as follows:

♦hl

Y c fd

X
AA A q A

Zzg3
(A4.26)

Y Y c m

T + T2 2

c1 fd

D c

From the system equations and spectral factor definitions obtain:

From

Y SC, ,Y, . c If fd

equations

Y SC, „Y,. c If fd

D C...C, , D______c fbd Ifn fd_______
C, ,.A.A A (AC +BC )Ifd I q r fbd fbn'

(A4.26)

♦hl

YcYfd

(A4.27)

and (A4.27) obtain:

D CCkjC1c M - XA C, CJ(ACc +BC c fbd Ifn fd r Ifd fbd fbn
c, ,.AA A „A (AC+BC ) Ifd q A r' fbd fbn'

Zzg3
(A4.28)

D c
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Substituting from equations (2.136) and (2.148) this may now be 

written:

♦hl CfbdClfnDfdA ~ XArClfdDf
cS ’ Y*Y* = ‘ifd^qWf 

c fd 
2z®3

- (A4.29)
D

Finally, equation (A4.29) may be expressed as:

Y SC Y c If id
♦hl 

* *
Y Y,. c rd

(A4.30)T + T 3 3

where denotes the first term in equation (A4.29) and denotes 

the second, strictly unstable, term.

Minimisation

Using a similar argument to the one used in Appendix 2 the 

cost-function may be minimised by setting T*  = 0, i ■» {1,2,3}.

(1) Feedback controller

From equations (A4.17) and (A4.18), setting T*  = 0 Involves:

C.u H - GA C_. . = 0 (A4.31)fbn r fbd ' '

or:

GA
Cfb=Y (A4.32)

(11) Reference controller

From equations (A4.23) and (A4.24), setting ” 0 involves:

C D C-. . - C .MA D rn m fbd rd r f 0 (A4.33)
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or:

MA Dr
C = r < 
r D C,. , m fbd

(A4.34)

(ill) Feedforward controller

From equations (A4.29) and (A4.3O), setting = 0 involves:

C ,, ,C , D A - XA C, £JD, fbd ifn fd r Ifd f - 0 (A4.35)

or:

^f

DfdACfbd
C (A4.36)If

Using the definition of in equation (A2.5), the feedforward

controller becomes:

C - XArDf ~ CfbnDDfd 

ff DfdACfbd
(A4.37)

Solvability conditions

To verify the solvability conditions (a) - (d) in Theorem 14 it 

is sufficient to show that:

(i) The conditions (a) - (d) in Theorem 14 are equivalent to 

conditions (a) - (d) in Theorem 6.

(11) The controllers generated by the equations in Theorem 14

and in Theorem 6 are the same.

(i) Equivalence of solvability conditions

Any factors of A, or A which are not also factors of A will 
d x p

appear as common factors in A and B. Condition (a) in Theorem 14 

therefore subsumes condition (a), and the A part of condition (c),
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in Theorem 6.

Condition (c) in Theorem 14 means that any unstable factors of

must be in A^, and that the product of such factors with any which

are also in A must appear in A (i.e. this is just condition (c) in x p

Theorem 6).

Conditions (b) and (d) in Theorem 14 are clearly equivalent to

conditions (b) and (d), respectively, in Theorem 6.

(11) Equivalence of controllers

From the definitions in Table 2.2:

Using equations (A4.38) - (A4.41) equations (2.78) and (2.79)

A - A. A’ = A A*,  dx p p dx (A4.38)

B = B A*
p dx (A4.39)

C = A’C.A’ x d p (A4.40)

D = A*C  A*  
d x p (A4.41)

become:
* * —py

D D,z 6 G + c f FAA A = q n
AAA

B A B B R. p r q q 1 (A4.42)
* *

D D z 6 H - c f FBA A A r q n
*

-AR, 
P 2

(A4.43)

where:

„ -gl * A A
RL = z s (DfDf “ Cn“ C AA ) n n 7 (A4.44)

-gl A A A AAA A
R2 = z s (D fDfAqAqBr B + BB A A B B C a C ) r r r q q n n ir (A4.45)

Multiplying equations (A4.42) and (A4.43) by Ajx obtain:

.*  * -gl AAA
D D,z 5 G + c f F'AA A = B A B B R, q n r q q 1 (A4.46)

* *
D' D z 5 II - c f F'BA A A = A R, r q n 2 (A4.47)

where:
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D' = D A’ (A4.48)
c c dx

F' = FA^*  (A4.49)

From (A4.48) and (2.73) obtain:

. .*  * * * . * * * , . VD D = BABBAB + AABBAA (A4.50)cc rqqr qrrq

Using equations (A4.38) - (A4.41) it is clear that the definitions of

Df in equations (2.74) and (2.133) are equivalent.

Comparison of equations (A4.46), (A4.47) and (A4.50) with

equations (2.137), (2.138) and (2.132) shows the solution G,H of

equations (A4.46) and (A4.47) with: 

* -el -1(D^ z 6 ) F' strictly proper

to be equivalent to the solution G,H of equations (2.137) and (2.138)

with (D^z 5 ) F strictly proper.

Denote by A” that part of A’ which does not have any common dx dx
factors with A . Then: 

e 
A" A' = A' A' 

dx e dx ec 
A" A' = A' dx pe

Multiplying equation (2.84) by A“ obtain: 

* -g2 -e2 * * *D z s Q' - NBA A' = z 6 A A B A'D 
c r ec p q r m

where:

Q' ‘ QAdx 
A

Multiplying equations (2.83) and (A4.53) by A^x obtain: 
* -g2 -e2 * * *D' z ° M + N'A A = z°BABBD (A4.55)c qe rqqm '
* -fi2 -r2 * * *D' z Q' - N'BA A' = z 5 A A B A'D (A4.56)c r ec q r m 

(A4.51)

(A4.52)

(A4.53)

(A4.54)

where:
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N' = NA^*  (A4.57)

Comparison of.equations (A4.55) and (A4.56) with equations (2.142) 

and (2.143) shows the solution M,Q' of equations (A4.55) and (A4.56) 

with: 

* -r2 -1 (D^ z ) N' strictly proper

to be equivalent to the solution M,Q of equations (2.142) and (2.143)

* -e2 -1with (Dcz ° ) N strictly proper.

From the definitions in Table 2.2:

A = A A'A' x d p

Multiplying equations (2.86) and (2.87) by A^A^ and using

(A4.41) and (A4.58) obtain:

(A4.58)

equations

* * * *
D z 6 X' + ZAA A = z 8 B A B B DD_, c q 1 prqqfd
D z 8 Y' - ZB A Al A1A' = z 8°A ABBA'. DD c p r Ax d p pqrr pAx fd

where:

(A4.59)

(A4.60)

X' = XA'A' , Y' - YA'A' (A4.61)d p ’ d p
Using the definitions in Table 2.2 obtain:

n .i B A„A A1A'
BPAixAdS ~ p p--—p 

pAx
A

= B A' -=-2- A.
P dX DpAx 1

Substituting in equation (A4.60) obtain:
* —o3 —p3 * * *

D z 8 Y" - ZBA A = z 8 A A B B DD., (A4.62)
c r i pqrrfd ' ’

*
where Y' = Y”A' . Multiplying equations (A4.59) and (A4.62) by Al Pa. K QX
obtain:
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A — —»3 A A *
D' z 8 X' + Z'AA A=z8BABB DD (A4.63)
c q JI r q q fd

* -p3 -p3 * * *
2 Y" - Z'BA^A^ = z s A AqBrBrDDfd (A4.64)

where:

Z' = ZA'*  (A4.65)
dx

Comparison of equations (A4.63) and (A4.64) with equations (2.145)

and (2.146) shows the solution X', Y” of equations (A4.63) and

(A4.64) with:

* -z3 -1(D^ z ) Z’ strictly proper (A4.66)

to be equivalent to the solution X,Y of equations (2.145) and (2.146) 
* _~3 -i

with (Dcz ) Z strictly proper. The controllers obtained from 

equations (2.85) and (2.144) are therefore equivalent. •
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