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PREFACE

The design of control systems by the mathematical optimisation
of a specified quantitative performance criterion has a long and well
established role in the history of control engineering. The most
widely studied class of optimal control laws are those based upon the
state-space system model. An alternative approach which has been
develqped more recently is the design of optimal controllers using
the algebra of polynomials and polynomial matrices. In this
approach scalar systems are described in transfer~function form using
ratios of polynomials, while multivariable systems are described
using left and right matrix factorisations.

A further major branch of control engineering, adaptive control,
has grown from the need to design control systems subject to the
practical constraint of plants whose dynamics are wuncertain or
time-varying. Of the various classes of adaptive controllers which
exist, self-tuning control has emerged as perhaps the wost widely
studied and applied.

This book merges the above two major areas of control :
original contributions are made in the polynomial approach to
stochastic optimal control theory (LQG control) and the resulting
control laws are then manipulated into a form suitable for
application in the self-tuning control framework. The results of an
application study in which the LQG self-tuner was tested on the steam

pressure control loop of a power station are presented.



Layout

The work is divided into four parts which are made up of a total
of six chapters. Each part concentrates on a different aspect of the
overall theme. The parts are organised in such a way that the book
follows a loglcal development from theoretical derivation through to
self-tuning controller application:

Part 1 : Stochastic Optimal Control Theory

Part 2 : Self-tuning Control

Part 3 : Case Study

Part 4 : Conclusions
Part 1, Stochastic Optimal Control Theory, consists of Chapters 1 and
2 and is mainly theoretical in nature. Chapter 1 is an latroduction
to Part 1 while Chapter 2 develops some original theoretical results
in optimal control theory and in particular the derivation of
controllers for the optimal rejection of measurable disturbances
using feedforward. One major original contribution of Chapter 2 is
the extension of existing results to the case of unstable reference
and disturbance generating sub-systems. This extension is of major
practical importance since it 1is the unstable generators used to
model step-like and deterministic signals which arise 1in most
applications. A further important original contribution in Chapter 2
is the derivation of necessary and sufficlent conditions for the
optimality of the various polynomial equations arising in the optimal
controller designs. Finally, Chapter 2 concludes with the
derivation of the optimal feedback/feedforward regulator for
multivariable systems.

Part 2 of the book, Self~-tuning Control, consists of Chapters 3

and 4. Chapter 3 is an introduction to Part 2 while in Chapter 4
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the theory derived in Chapter 2 is reduced to a practical self-tuning
control algorithm. Self-tuning controllers based on polynomial LQG
control have previously been considered. The self-tuning algorithm
presented 1in Chapter &, however, has several novel features :
optimal feedforward compensation of measurable disturbances, dynamic
cost-function welghts, and a three-level design algorithm with a
range of complexity. In addition, the precise role of the various
polynomial equations arising in the design 1s clarified using the
results derived in Chapter 2.

Part 3 of the book, consisting of Chapter 5, 1is a case study.
The results of an experimental application of LQG self-tuning control
on the steam pressure control loop of the Hunterston 'B' power
station simulator are presented. The LQG controller 1is shown to be
very simple to commission and to give improved performance over the
existing analogue PI controller.

Finally, the book is concluded in Part 4 (Chapter 6).
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NOTATION

All systems considered are assumed to be linear, time-invariant
and discrete~time. The systems are described in the time-domain by
means of real polynomials in the delay operator d, and in the
frequency-domain by means of real polynomials in the inverse of the
z—transform complex number =z. A polynomial X{(d) is stable (or

strictly Hurwitz) iff it has no zeros with magnitude less than or

equal to unity. A polynomial X(d) is Hurwitz 1ff- it has no zeros
with magnitude less than unity. A polynomial X(d) is unstable iff it
has any zeros with magnitude less than or equal to unity.

For simplicity the arguments of polynomials are often omitted so
that X(d) is denoted by X. The conjugate of a polynomial X(d) tis
denoted by X*(d) A X(d-l), or simply X*. The absolute coefficient
of X is denoted by <X>.

A transfer—function is inverse stable ('minimum phase') iff it
has no zeros with magnitude less than or equal to unity.

The power spectrum of a signal x(t) is denoted by L

In the multivariable case described in Section 2.1l the system
is described by means of real polynomial matrices in d. The adjoint
of a polynomial matrix X(d) is denoted by X (d) A Xo(d 1). <X>
denotes the matrix whose elements are the absolute coefficlents of

the polynomials in X.
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CHAPTER ONE
INTRODUCTION TO STOCHASTIC OPTIMAL CONTROL
Summary

This chapter provides an introduction to Part 1 of the book. A
brief historical review of feedback control and control theory are
first given in Sections 1.1 and 1.2, respectively. The movement away
from frequency-response wmethods towards optimisation techniques,
which occurred during the fifties, is discussed in Section 1.3. The
factors which then led to the predominance of state-space methods
during the sixties are described in Section l.4. A renewed interest
in the frequency-response (transfer-function) approach to controller
design occurred during the seventies. This trend included Ku¥era's
pioneering work on the polynomial equation approach to stochastic
optimal control, and is discussed in Section 1.5. Finally, the
contributions made in Chapter 2 in the polynowial approach to optimal

control are outlined in Section l.6.

1.1 THE ORIGINS OF FEEDBACK CONTROL

Feedback is a fundamental biological mechanism which prevails in
all 1interactions between 1living organisms and their environment.
Moreover, the conscious employment of feedback control by humans has
a very well established place in the history of humankind. Perhaps
the first use of feedback control is recorded in the Encyclopedia
Britannica and comes from the Babylonian era of around 4000 years ago
(Gadd, 1929). The agricultural production which helped sustain the

Babylonians was supported by a sophisticated system of irrigation in



1

which the moisture content of the soll was regulated to & desired
level by the manual opening and closing of water ditches.

Although automatic control devices were used earlier (see Usher
1954) the inception of automatic feedback control as a science is
widely regarded as occurring during the latter half of the eighteenth
century with' the arrival of the Industrial Revolution (MacFarlane,
1979). One of the first applications was Meikle's invention of an
automatic turning gear for windmills in 1750 (see Wolf, 1938). 1In
order to turn the main sails into the wind an auxiliary windmill at
right angles was employed. Any error in the heading of the turret
was thereby translated into a mechanical motion which turned the main
sails until they received the full wind.

The most celebrated of the early applications of automatic
feedback control is Watt's use in 1788 of the flyball governor for
regulating the speed of the steam engine. This device used the
principle of the centrifugal governor : a drop in engiﬁe- speed
causes a decrease in the centrifugal force exerted by the flyballs on
a spring mechanism and the £flyball assembly descends. By lever
action this results ian the opening of the steam valve which Increases
the power, and thereby restores the speed, of the engine.

It is clear, therefore, that feedback control systems were used
to solve important technical problems long before formal analysis and
design techniques appeared. This general lack of a Ctheoretical
foundation became apparent in the early nineteenth century as the use
of Watt's governor became widespread and as demands for improved
performance grew stronger. The increasing tendency for such systems

to ‘'hunt' became apparent; the englne speed displayed a cyclic time
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variation. The fluctuation of engine speeds remained a major problem
for some time. The problem was finally solved in the classic paper
by Maxwell (1868) who related system stability to the engineering
design parameters. In the steam engine the tendency towards the use
of smaller flywheels and increased mass of flyball weights were found
to have a destabilising effect.

The early history of feedback control is described by Mayr

(1970) and Bennett (1979).

1.2 EARLY DEVELOPMENTS IN CONTROL THEORY

The paper by Maxwell (1868) is regarded as the foundation of the
theory of automatic feedback control. Following Maxwell's work the
stability problem was treated in terms of differential equations.
Routh (1877) and Hurwitz (1895) developed tests to determine the
stability of the roots of the system characteristic equation. These
tests, however, could only determine absolute system stability and
gave no 1indication of relative stability. The 1importance of
differential equations and their related characteristic equations in
control system analysis and design was nevertheless consolidated in
the early twentieth century, particularly by the works of Minorsky
(1922) on the automatic steering of ships, and Hazen (1934) on
servomechanisms.

The most influential work in the development of frequency
response methods in control systems was undoubtedly the classic paper
by Nyquist (1932). Nyquist's work was agaln motivated by an
important technical problem, that of feedback amplifier stability in

long-distance telephony. The implications of Nyquist's Stability
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Criterion were, however, much broader than this application. The
frequency response method allowed the gain of feedback control
systems to be set in accordance with specifications on the degree of
stabilicy. Nygquist's criterion was quickly adopted as the main
design tool of control engineers and replaced the earlier time domain
methods based upon differential equations. The trend towards
frequency-response methods was further accelerated by the important
work of Bode (1940) which introduced the concepts of gain and phase
margin. The urgent requirements imposed by the second world war
finally led to the widespread application of these methods when an
immense effort and channelling of resources was directed towards the
development of high performance control Ssystems. A comprehensivé
account of the design methods developed at this time is given by

Chestnut and Meyer (1951).

1.3 ANALYTICAL DESIGN METHODS

The design of control systems using the frequency response
methods required a trial-and-error approach whereby the design
procedure was iterated wuntil the performance and stability
specifications were met. During the second world war, however, the
demands for high-precision control led to the first developments in
optimal control theory. The design of servomechanisms by
minimisation of the mean-square tracking error was considered by Hall
(1943) and James et al (1947). However, a comprehensive treatment of
the optimal control problem did not appear until after the work of

Wiener (1949). Wiener had investigated the optimisation of radar
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tracking systems where the disturbances were characterised as
stochastic processes.

Following the work of Wiener {whose solutions were based upon
the so-called Wiener-Hopf integral equation) Newton et al (1957) and
Chang (1961) derived optimal controllers based upon the minimisation
of integral-type criteria. The term 'analytical design' is defined
by Newton et al as 'the design of control systems by application of
the methods of mathematical analysis to idealised models which
represent physical equipment'. In the analytical designs the system
performance 1is measured by a specified performance index
(cost-function) which is normally a weighted sum of error and control
input energies. The optimal controller which minimises the
performance index is obtained by a systematic procedure of solving
the design equations which have been obtained by prior analysis. The
analytical design techniques provide a sharp contrast to the
trial-and-error methods since they (ideally) proceed from the problem
specification directly to the final controller design without the
need for subjective analysis. Newton's solution of the optimal
control problem wusing the Wiener-Hopf approach had one major
drawback. In the orginal design procedure the equivalent cascade
compensator {is first found and 1is then used to calculate the
corresponding controller for the feedback loop. This approach, which
is inherently open-loop, can yield an unstable closed—looé system
unless the controlled process is stable. This is due to pole-zero
cancellations within the feedback loop. The general confusion in
transfer-function methods surrounding the pole-zero cancellation

problem was not resolved until Ku¥era (1974,1975) and, independently,
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Youla et al (1976 a,b) derived a parameterisation for the class of
all controllers resulting in a stable closed-loop system. The first
full treatment of the Wiener-Hopf optimal controller design for
possibly unstable plants was subsequently given by Youla et al

(1976a) and generalised to the multivariable case by Youla et al

(1976b).

1.4 STATE SPACE OPTIMAL CONTROL

The long gap between the original work of Newton and the proper
general solution of the Wiener-Hopf approach to the optimal control
problem given by Youla can be attributed to the emergence in the late
fifties of state-space methods. These methods employ the
mathematical tools of differential equations and vector spaces and
admit the exact characterisation of the internal properties and
structure of the system (Zadeh and Desoer 1963, Kalman 1963). The
maximum principle of Pontryagin (1963) and Bellman's (1957) work on
dynamic programming laid the foundations for the treatment of the
linear optimal control problem in the state~space (Kalman, 1960).
The combination of the new optimal control. result with the
innovations made by Kalman and Bucy (1961) in filtering theory then
led to the celebrated LQG (linear-quadratic-gaussian) design method.

The widespread adoption of the LQG method was established
throughout the sixties by work on another major technical problem.
In both the USA and USSR a major research and development effort was
directed towards the control of space vehicles. During this period
LQG optimal control theory became an established design tool for

linear systems and several standard texts soon appeared (Athans and
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Falb 1966, Bryson and Ho 1969, Anderson and Moore 1971, Kwakernaak
and Sivan 1972). The success of the LQG method in the sixties can be
attributed to several factors. Firstly, the state-space model
employed was immediately applicable to the multivariable situation.
Secondly, the nature of the space vehicles being controlled meant
that accurate models and measurements were available. Finally, the
quadratic form of performance index was often closely correlated with
the ‘economic' nature of the demanded system performance (such as

fuel minimisation).

1.5 THE POLYNOMIAL EQUATION APPROACH

The success of the LQG design method in the aerospace problems
of the sixties was not repeated when the techniques were applied to
industrial process control problems. The above conditions which
contributed to the earlier successes do not in general hold in such
situations. Many process control problems are characterised by a
high degree of uncertainty in the model available. 1In addition, the
implicit assumptién that all state-variables are available for
measurement is no longer valid and the need for state reconstruction
is hampered by the difficulty of measurement.

These factors led in the seventies to a renewed interest in the
frequency-domain (transfer—function) approach to controller design.
Some {important works in this respect are those of Rosenbrock
(1969,1970), Mayne (1973), Wolovich (1974) and Postlethwaite and
MacFarlane (1979). The growing presence of algebraic and geometric

concepts in system theory was also apparent through the works of
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Kalman et al (1969), Wonham (1974) and Bengtsson (1973,1977). As
mentioned above the frequency-domain approach to optimal control was
generalised at this time by Youla and co-workers whose solutions,
however, required rather complicated numerical procedures.

The polynomial equation approach to optimal control design is a
transfer-function method which provides an alternative to the
Wiener-Hopf technique. The first steps iIn the polynomial equation
design procedure were taken by Rstrdm (1970) and Peterka (1972) with
the derivation of a wminimum output variance regulator. A
comprehensive treatment of the stochastic optimal multivariable
control problem using the polynomial equation approach was given in a
serles of papers throughout the seventies by Kufera, whose pioneering
work on the subject culminated in the publication of a book (Kulera
1979). 1In this approach synthesis of the optimal control law reduces
to the solution of linear polynomial equations whose coefficients are
obtained by spectral factorisation. Simple computational algorithms
for these operations are given by Kufera (1979), Jefek (1982) and

Je¥ek and Ku¥era (1985).

1.6 CONTRIBUTIONS OF THE PRESENT WORK

The results presented iIn Chapter 2 generalise Kufera's
polynomial equation solution of the stochastic optimal control
problem. Ku¥era (1979) addressed the multivariable regulator problem
using polynomial techniques. A theory was later develgped for both
the deterministic and stochastic tracking problems for scalar
(single—-input, single-output) systems (Bebek 1982, Kufera and Sebek

1984a,b). §ebek, meanwhile, had derived a solution for the
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multivariable stochastic tracking problem (Sebek 1983a,b).

Grimble (1986a,b) has made several contributions 1in this area.
Shaked (1976), Gupta (1980) and Anderson et al (1983,1985) had
previously introduced the concept of dynamic (frequency—-dependent)
cost-function weighting elements for the state-space LQG design and
Grimble incorporated this idea into his generalisation of Kulera's
work. A further ilnnovation made by Grimble was the introduction of
a coloured output disturbance signal (measurement noise). A ma jor
limitation of Grimble's work, however, was the restriction of all
disturbance and reference sub-systems to be asymptotically stable
(the unstable systems which model signals such as sateps, ramps,
sinusoids and deterministic signals are of greatest practical
importance).,

The most significant of Grimble's contributions was the
incorporation 1into the overall design procedure of a feedforward
compensator for the rejection of measurable disturbances (Grimble
1986b). This analysis was again 1limited to the c¢ase of
asymptotically stable disturbance and reference generating
sub-systems. The general solution of the feedforward problem was
subsequently given by §ebek, Hunt and Grimble (1988) for the case of
scalar cost-function weights and white measurement noise. A
polynomial solution to the feedforward problem has been independently
obtained by Sternad (1985,1987) using an alternative proof technique.
Sternad's analysis 1s for the case of scalar cost weights, zero
measurement noise and an asymptotically stable measurable disturbance

generator.
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The first contribution of the present work 1s that the basic
system model considered extends the results obtained by Grimble to
the case of possibly unstable reference and disturbance sub-systems.
In addition, the optimal control problem 1s solved for both the
single-degree—of—-freedom and two—degrees~of-freedom controller
structures. To summarise, the problem considered is as follows:

(1) The cost-function includes dynamic weighting elements.

(ii) The system model includes a coloured output disturbance

signal (measurement noise).

(i11) A feedforward compensator s incorporated in the. overall

design procedure for the rejection of measurable

disturbances.

(1v) All disturbance and generating sub—-systems may be
unstable.
(v) Solutions are obtained for both the single and

two~degrees—of-freedom controller structures (including,
in each case, feedforward).

The extension to the case of unstable disturbance and reference
sub~gystems 1s non~trivial since this 1involves the derivation of
appropriate necessary and sufficient problem solvability conditions
(the restriction to stable sub-systems 1s, 1in fact, sufficlent to
ensure problem solvability).

The optimal controller results presented in Chapter 2 for the
slngle-degree—of-freedom case are summarised in Hunt (1988a) and for
the two-degree—of-freedom case in Hunt (1988b).

The general solution of the optimal control problem for both the

single~ and two-degrees—of-freedom control structures requires that a
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couple of polynomial equations be solved to obtain each part of the
controller (in the two-degrees-of-freedom structure the controller
consists of three parts: a reference part, a feedback part and a
feedforward part). By eliminating the common term between each
couple of equations a single, related, equation is obtained (the
so~called 'implied’ equations). The second major contribution of
Chapter 2 is the derivation of the conditions under which the implied
polynomial equations may be solved to obtain the unique optimal
controller polynomials. The conditions relating to optimality of
the implied feedback and reference equations in the case of scalar
cost—-function weights have been known for some time (§ebek and Ku¥era
1982, Kuera 1984). The corresponding result for the feedback
equation in the multivariable case (with dynamic weights) has
recently been derived by Hunt, ¥ebek and Grimble (1987). The
derivation of the conditions relating to optimality of the implied
feedback and reference equations in the case of dynamic weights
given in Chapter 2 extends the previous results. The analysis for
the implied feedforward equation is completely new. Roberts (1986,
1987 a,b,c,d,e) has investigated a related problem regarding the
sufficiency of the first equation 1in the couple of feedback
equations.

These results are followed by a summary of the important
structural properties of the optimal control designs.

Finally, the optimal feedback/feedforward regulator solution of
§ebek, Bunt and Grimble (1988) is extended to the multivariable case.
This new multivariable result is also summarised in Hunt and Sebek

(1989).
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A final word on the use of the phrase 'Stochastic Optimal
Control' in place of 'LQG Control' in the title of this work : in the
state-space LQG methods the restriction of the noise sources to be
Gaussian distributed is required in order that the optimal control
law, which 1is chosen from the set of all (possibly non-linear)
controllers, is a linear state feedback. In the polynomial equation
approach (as in the Wiener-Hopf method) the controller is assumed at
the outset to be linear. The gaussian restriction, therefore, is no
longer required (this argument is due to Ku¥era, 1987). However, it
has become standard practice in the polynomial equation approach to
use 'LQG control' synonymously with 'Stochastic Optimal Control' and
this convention will be adopted throughout the remainder of this

work.



CHAPTER TWO
STOCHASTIC TRACKING WITH MEASURABLE DISTURBANCE FEEDFORWARD
Summary

The open-loop model for the single—-input single-output plant
under consideration is described in Section 2.1. The plant output
which 1s to be controlled is affected by two disturbance signals, one
of which 1s assumed measurable. Associated with the measurable
disturbance 1s a white measurement noise. Assoclated with the
measurement of the controlled output is a measurement noise, or
output disturbance, which may be coloured. For tracking purposes a
reference, or command, signal 1is introduced. This signal is again
corrupted by a measurement noise.

Two types of controller structure are introduced 1in Section

2.2:

(1) The single-degree of freedom (SDF) sLructure where the
observed tracking error is processed by a single controller
in cascade with the plant.

(11) The two-degrees~of-freedom (2DF) structure where Lhe
measured reference and measured output signals are
processed 1independently by a reference and feedback
controller, respectively.

In both the SDF énd 2DF structures a feedforward compensator 1s

also employed to counter the effect of the measurable disturbance.

In Section 2.3 the optimal control problem 1is defined by

specifying the cost—function which is to be minimised. A feature
of the cost—function employed 1is the 1inclusion of dynamic

(frequency-dependent) weighting elements. The general problem for
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the SDF and 2DF control structures including feedforward 1is solved
in Sections 2.4 and 2.5, respectively. Also included is an analysis
of the problem of internal stability for the resulting closed-loop
systems. 1In Sections 2.6 and 2.7 the general problem for the SDF and
2DF structures 1s re-solved for the case when the plant is expressed
using a least-common-denominator polynomial for each of its
sub~systems. While the original solution provides insight into the
role played by each individual sub-system the common denominator
solution is computationally more efficient. The two solutions are,
of course, exactly equivalent. The complete general solution of the
optimal control problem requires that a couple of polynomial equations
be solved to obtain each part of the controller. By eliminating the
common term between each couple of equations a single, related,
equation 1s obtained (the so called 'implied' equations). The
conditions under which the implied polynomial equations may be solved
to obtain the unique optimal controller polynomials are derived for
the SDF and 2DF structures in Sections 2.8 and 2.9, respectively. A
summary of the main structural properties of the optimal controller
solutions is given in Section 2.10.

The chapter concludes in Section 2.11 with the derivation of the

optimal feedback/feedforward regulator for multivariable plants.
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2.1 PLANT MODEL
The open—loop model for the single~input single-output plant
under consideration is shown in Figure 2.1l. The plant is governed by

the equations:

p(t) + x(t) + d(¢) (2.1)

y(t)

Wpu(t) + wxz(:) + wd¢d(t) (2.2)

The controlled output, y(t), consists of the sum of three signals:

i}

(1) The 'undisturbed' output p(t) Wpu(t), where u(t) 1s the

plant control input.
(11) A disturbance signal x(t) = le(t), where 2(t) 1is a

measurable disturbance.

i}

(111) A disturbance signal d(t) wd¢d(t), where ¢d is an
unmeasurable stochastic signal.

The controlled output 1Is corrupted by a measurement noise n(t).

- The measured output, z(t), is given by the equations:
z(t) = y(t) + n(t) (2.3)
= y(t) +¥W ¢ (t) (2.4)
where ¢n(t) is an unmeasurable stochastic signal.

The measurable disturbance signal 2(t) 1s corrupted by a

stochastic measurement noise ¢2n(t)' The disturbance measurement,

f(t), 1s given by:
£(E) = 2(0) + ¢ (0) (2.5)
The open-loop plant structure shown Iin Figure 2.1 is representative
of many industrial control problems:
(1) The signal 2(t) typically represents a load disturbance
which can be measured and used to provide feedforward

control. The signal ¢2n(t) represents nolse arising from
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the measurement of R{t), so that the actual signal used
for feedforward is f(t).

(i1) The measured output available for feedback (z(t)) 1is
usually different from Lhe oulpul Lo be controlled (y(L))
due to measurement noise which the controller should not
attempt to regulate. Use of the filter Wn admits the
modelling of many different forms of measurement noise.
For example, in ship control systems n(t) represents the
high-frequency effect of waves Lo which the controller

should not respond (see Grimble, 1986a).

Polynomial form

The transfer-functions of the various sub—systems in the plant

model may be represented as ratios of polynomials in the delay

operator d as follows:

Wy = als (2.6)

Wy = A;lcd 2.7)

W= A;lcx (2.8)

wn = ;1 n -9
Any common factors of Ad and Ax are denoted by Ddx such that:

Ad = Aéndx s Ax = A;Ddx (2.10)

The least common multiple of A, and Ax is denoted by Adx i.e:

d

lcom(A,A) = A, = AJA'D, (2.11)

Any common factors of A, and A are denoted by D such that:
X p pdx

d

A, = A LA = A

1
dx depdx p prdx (2.12)
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Command signal model

In the optimal tracking control problem considered 1in the
following the controlled output y(t) will be required to follow as

closely as possible a reference (or command) signal r(t). The signal

r(t) may be represented as the output of a generating sub-system Wr

which is driven by an external stochastic signal ¢r(t):

= 2.13
£(£) = W ¢ (t) (2.13)
The sub-system Wr 18 represented in polynomial form as:
-1
= Ae Er (2.14)

where Ae and Er are polynomials in d.
The reference signal r(t) {8 corrupted by a stochastic

measurement noise ¢rn(t). The reference measurement, m(t), i{s given

by:

m(t) = r(t) +¢_ (t) (2.15)
The tracking error, e(t), is defined by:

e(t) A r(t) - y(r) (2.16)
Any common factors of Ae and Ap are denoted by Dpe such that:

A =A'D »y A =A'D (2.17)

e e pe p pe pe
The least common multiple of A,, Ae and Ax ts denoted by A t.e.:

dex
L.c.m (Ad, Ae’ Ax) = Adex (2.18)
Any common factors of A and A are denoted by D such that:
dex p dex
= A' = AV
Adex Adexdeex : Ap Aprdex (2.19)

Denote by A and A the least common multiples of A ,A and A ,A
ex e e’ 'x e

d d

respectively, i.e:

Aex = R.c.m (Ae,Ax) (2.20)

A = A-com (A ,A) (2.21)
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Any common factors of Aex and A, are denoted by De such that:

d xd

A =A'"D A

= A' .22
ex ex exd’ 'd AdexDexd 2 )

Any common factors of A, and A are denoted by D such that:
dx e xde

' = A' .
dx Adexde’ Ae Aedexde (2.23)

Any common factors of A . and A are denoted by D such that:
e X edx

d

= A

t = A? 2.24
Aed AedDedx’ x AxedDedx ( )

The reference generator model is shown in Figure 2.2.

Measurable disturbance model

The measurable disturbance signal 2(t) may be represented as the

output of a generating sub-system Wk driven by an external stochastic

signal ¢1(t):

W) = W t 2.2
(e) 4 (6 (2.25)
The sub-systenm w2 is represented in polynomial form as:
-1

wk = Al El (2.26)
where A2 and E2 are polynomials in d.
Any common factors of A /A and A are denoted by D so that:

1 x p pAix
= A' = A? .
ARAx AkxDplx > Ap AplxDplx (2.27)

Assumptions
The following assumptions are made on the various sub-systems
defined above:
(1) Each of the sub-systems 1is free of unstable hidden
modes.
(i1) The plant input-output transfer-function Wp is assumed

strictly causal {i.e. <Bp> = 0.
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Figure 2.1 : Open-loop plant

Figure 2.2 : Reference generator
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(111) The polynomial An may have zeros on the unit circle but
is assumed, without loss of generality, to have no zeros
within the unit circle of the d-plane.

(iv) The polynomials Cx’ C, and Cn are assumed to have no

d
common factors on the unit circle of the d-plane.
A summary of the polynomial form of each sub-system is given in

Table 2.1, and a summary of the various common factors is given in

Table 2.2.

2.1.1 Stochastic signal definitions

Each of the stochastic signals ¢d’ ¢n’ ¢, and ¢r are assumed

L
mutually uncorrelated and belong to one of the following three

categories:

(a) Stationary white noise signal, where:

(1) The signal 1is a sequence of 1independent, equally
distributed random variables 1i.e. it 1is a white noise
sequence.

(11) The signal has zero—mean

(111) The signal is wide-sense stationary.

(b) Non-Stationary signal, where:

(1) The signal 1s a compound (or generalised) Poisson

process l.e. a sequence consisting of random pulses of

magnitude a, occuring at random times t

i 1°

(11) The random variables a; form a white noise sequence of

the type defined in (a) above.



x=lcm(Ad,Ax)

ex=lcm(Ad,Ae,Ax)

Aex=lcm(Ae,AX)

=lcm(Ae,Ad)

= A
p P P
-1
a =t Gy
- ate
X X
- ale
n a
= alE
r
_ =1
g T A By
Table 2.1 : Plant Transfer—-functions
Polynomial Common Factorised
pair factor pair
—al ="'
Ad v Ay Ddx Ad AdDdx » Ay Adex
At —Al
Ad ? Ap Dpdx Adx Adepdx ? Ap Ap])pdx
A, A D A=A'"D A=A
e P pe e e’ pe p pe pe
=A0 A
Aghy » A Dpzx Aphx AZxDplx ? Ap ApﬁxDpr
A oAl
Adex Ap Ddex Adex Adexdeex ’ Ap Aprdex
Al At
Aex ’ Ad Dexd Aex AuxDexd ’ Ad AdexDexd
At At
Adx ’ Ae Dxde Adx Adexde ’ Ae Aedexde
—_-'. =A"
Aed » Ay edx Aed AedDedx ’ Ax AxedDedx
Table 2.2 : Common Factors
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(c) Pulse sequence, where

1 t=20
¢ (t)={
' ] [

The stochastic measurement noise signals ¢1n and ¢rn are assumed to
be mutually uncorrelated white noise sequences of the type deflned in
(a) above.

The intensitles of the signals ¢d, ¢n, ¢1, ¢r, ¢1n and ¢rn are

denoted by Oq» O Ypr O g and On? respectively. All

intensities are assumed non—zero.

2.1.2 Non—-stationary and deterministic reference and disturbances

The above definitions admit the modelling of wany different
types of reference and disturbance signals r(t), 2(t), d{(t) and n(r).
Of conslderable practical importance are coloured noise signals,
step~-like signals, and deterministic signals such as steps, ramps or
sinusoids. These types of reference and disturbance signals may be

modelled by appropriate definition of the driving sources ¢r, ¢x, b

d
and ¢n, and of the associated filters Wr, Wx, Wd and Wn,
respectively, as follows:

(1) Coloured zero~mean noise Is generated when the driving

source is white noise of the type defined in (a) above,
and when the filter is asymptotically stable.

(i) Random walk sequences are generated when the driving
source is white noise of the type defined in (a) above,
and when the filter has a denominator 1-d (an

integrator).
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(iv)
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Step~-like sequences consisting of random steps at random

times are generated when the driving source is a compound
Poisson process of tLhe type defined in (b) above, and

when the filter has a denominator 1-d.

Deterministic sequences such as steps, ramps or sinusolds

are generated when the driving source 1s a unit pulse
sequence, and when the filter has poles on the unlt

circle of the d-plane.
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2.2 CONTROL STRUCTURES

Two types of control structure will be considered : the
single-degree-of-freedom (SDF) structure and the two~degrees-of=
freedom (2D0F) structure. In both cases a feedforward compensator
will also be employed to counter the effect of the measurable
disturbance 2(t).

In the single-degree-of-freedom structure the observed tracking
error 1s processed by a single cascade compensator, while in the
two-degrees—of-freedom structure the observed reference and observed
output sfgnals are processed independently. The extra degree of
freedom provided by the 2DF scructure leads to the followling
advantages:

(1) The command response can be shaped fndependently of the

feedback properties of the system.

(i1) A lower optimal cost can be achieved, (Gawthrop, 1978),
However, in some practical situations it is not possible to realise a
2DF control structure since it is not always possible to measure the
reference and output signals separately. For example, in many
trajectory following problems it 1s only possible to measure the
tracking error (i.e. the difference between the desired and actual

trajectories) and hence a SDF control structure must be used.

2.2.1 Single-degree-of-freedom controller with feedforward

The closed-loop system for the SDF controller including
feedforward is shown in Figure 2.3. The observed error signal eo(t)

is defined by:
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eo(t) 4 m(t) - z(t) (2.28)
The control law is given by:
u(t) = Cceo(t;) - Cfff(t) {(2.29)

where the cascade controller C and the feedforward controller C
c

ff

may be expressed as ratios of polynomials in the delay operator d
as:

Cc = Ccdccn (2-30)

-1

Cee = CeeaCeen (2.31)

The transfer-functions from the external stochastic signals to the
control input and to the tracking error play a crucial role in
determining the solvability of the optimal control problem. For the
SDF controller structure shown in Figure 2.3 these transfer-functions
are given by:

C,AC

d cd B C(_nCn
e(t) = ~ —~KB;-—’ da(t) + ‘EK—;—* b, (L)
d

-+

A Cchr chcn
—Eng—”’¢r(t) - —_— ¢rn(t)

(CxApCffd - chfanx)Cchz BoCeenCed
- AALC Gpl) + = b (V)
x LfEdT ££d
(2.32)
CdA Ccn A Cchn
u(t) = ~ —-ZE;—— $q(e) - —EK—;—* b, (O
d n
A Canr Can
+—"———-— o (0 + =Py (1)
(Ccncxcffd + Cfanchd)ApEi Apcffnccd
- AAC bt = = by (O
x g f£d” ££d
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where the characteristic polynomial « is defined by:

« AAC , +BC
d p

= 'pc cn

2.2.2 Two-degrees—of freedom controller with feedforw

ard

The closed-loop system for the 2DF controller including

(2.34)

feedforward is shown in Figure 2.4. The control law i{s given by:

u(t) = - Csz(c) + Crm(c) - Cfff(c)

(2.35)

where the feedback controller C the reference controller Cr, and

fb’

the feedforward controller Cff

polynomials in the delay operator d as:

-1

Ceb = CebaCbn
-1

cr - crdcrn

c. =ct

ff ffdcffn

The transfer-functions from the external stochastic

may be expregsed as ratlos of

(2.36)
(2.37)

(2.38)

signals to the

control input and to the tracking ervor again play a crucial role in

determining the optimal control problem solvability.

For the 2DF

controller structure shown in Figure 2.4 these transfer-functions are

glven by:
C,AC B C C
N oo d p fbd p fba n
e(t) il ARG IR R )
d n
(C_«==-BC C )E BC C
rd rn fbd' r rn fbd
+ . 4 (0 - B2 (o)
e rd rd
(CAC ~-AC B )E C B C
. Xp

C
ffd x ffn p” 2 fbd ffn fbd y
be(0) + B2 g (0

AheCeea”

ffd

x

(2.39)
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CfbncdA thncnA
w(t) = -~ —2EP 4 (0) - —2—L ¢ (1)
A« d A« n
d n
4 CrnrpCena o () + Cen®pCeba . 0
C A= r C = rn
rd e rd
CCepnCeea® ACeenleba’Ba®p . o ACeenCeba ,
- AAC, = bolt) = =2 4 (V)
x L ffd ffd
(2.40)
where the characteristic polynomial =« is defined by:
« + .
il Apcfbd chfbn (2.41)
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2.3 OPTIMAL CONTROL PROBLEM DEFINITION

The desired optimal SDF and 2DF controllers evolve from
minimisation of the cost-function:

3= E{(qu)z(t) + @’} (2.42)
where Hq and Hr are dynamic (i.e. frequency-dependent) weighting
elements which may be realised by rational transfer—functions.

Using Parseval's theorem the cost~function may be transformed to
the frequency domain and expressed as:

1 dz
J = ™ é {ao + ch;u} = (2.43)

1z1=1 c'e
where ¢e and ¢u are the tracking error and control input spectral

densities, respectively, and:

* *
Q = HH, R, = HH (2.44)

The welghting elements Qc and Rc may be expressed as ratios of

polynomials using:

* *
B B BrBr
Qs S R4 (2.45)
A A A A
q q rr
Assumptions:
(1) The weighting elements QC and Rc,are strictly positive on

[di=1.

(11) Aq, Bq, Ar and Br are strictly Hurwitz polynomials.
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2.4 SINGLE~DEGREE~OF-FREEDOM SOLUTION WITH FEEDFORWARD

The Hurwitz spectral factors Dc’ Df and Dfd are defined by:
* * % * Kk K
BAB +AABBAA (2.46)
qqrep pPpqrraqp
= ' C C*A'*A* + A C *A*
Dfo - (AnAex d%4“d"ex"n dex ncncn dex
*

*
DD =B AB
cc PIr
*
*

R *
rAdin + AnAdexdrnAdexAn

* %k *
A DAY A (2.47)

+ AA'F gE
n xd'rr

*
+ A A' C o, CA'

ned’'x in"x"ed pf pf
DD * £ 2.48
£aPga™ Ap%eate * BgOiEy (2.48)
Lemma 1:
The polynomials D and Dfd are strictly Hurwitz 3
Cc

Any possible zero of Dc which lies on the unit circle of the
d-plane satisfies d = exp(jw). If such a zero exists then, from
equation (2.46):

BpAqu(ejw)BpAqu(e-jw) + ApAqBr(ejw)ApA
Jw

~jw
qBr(e )

2 jw, ,2
= {BAB (e 4+ |A AB (e =0
18,8871 + 144 B (¥

This implies that d exp(jw) 1is a zero of both B A B and A A B .
prgq pqr

The polynomials B A B and A A B cannot, however, have such a zero
prgq pqr
since Ap and Bp have no unstable common factors (Assumption (1) in

Section 2.1) and since Ar’ B , Aq and Br are strictly Hurwitz

q
(Assumption (2) in Section 2.3). By contradiction, therefore, DC is

strictly Hurwitz.

By a similar argument any unstable zero of Dfd would, from
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equation (2.48), require:
oy 1Ae? 0% + o e (37 = 0
Since the intensities an and 01 are non—-zero this condition would
require that d = exp(jw) Is a zero of botLh Al and El which again is
not possible (Assumption (1) in Section 2.1). As a consequence Dfd
is strictly Hurwitz.

This proof is based on the proof of Lemma 12.1 in Zstrom and

Wittenmark (1984). .

Lemma 2:
Any zeros of Ap which lie on the unit circle and which are nol

also zeros of A

y A_ or A will be zeros of the spectral factor D_.
d X e £
If no such zeros exlist then Df is strictly Hurwitz. .
Proof:

Any zero of Ap which 1s notL also a zero of Ad’ Ax or Ae will,

from equation (2.19), be a zero of A' Any such zero lying on the

pf’
unit circle will, from equation (2.47), also be a zero of Df.
Using a similar argument to that used iIn the proof of Lemma 1
the term Inside the brackets 1in equatfon (2.47) can only lead Lo
strictly HurwitLz terms in D_. .

£

Theorem 1 : Optimal SDF plus feedforward controller

The optimal control problem for the SDF control structure has a

solution 1f and only 1if:

{a) Any unstable factors of Ad are also factors of Ap.
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(b) Any unstable factors of Ae are also factors of Ap.
{(c) Any unstable factors of the product Ale are also factors of
A .
p
(d) Any unstable factors of An are not also factors of Ap.
The cascade and feedforward parts of the coantrol law (2.22) which

minimises the cost—function (2.43) are as follows:

(1) oOptimal cascade controller

CAr
Cc == (2.49)
where G,H (along with F) is the solution having the property:
* Kk - -
gl -1
(Dchz ) F
of the polynomial equations:

strictly proper

* * —gl . * Kk X
Dchz G + FApAqueprn = BpAquBqu (2.50)
* ok gl . *
Dchz H - FBpArAqueprn = APRZ (2.51)
where:
R = -gl * L J* *
1 =2 (Dfo - CnGnCnAdeprdeprpAp) (2.52)

R -gl * A*B B* * * * L *
2 5 2 (DfoAq qrr + BpBpArArBqucncnandeprdexp)

(2.53)
and gl > 0 fs the smallest integer which makes the equations
(2.50)-(2.51) polynomial in d.

(i1) Optimal feedforward controller

- Cc
o 2 A% T Cen%Pra
ff DfdAxCCd

(2.54)

where X {(along with Z and Y) 1is the solution having the

property:

* o9 —
(Dcz g2) 1Z strictly proper
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of the polynomial equations:

* —p2 ~02 k k %
g = , 8 B
Dcz X + ZAquAx z BpAqu quDfd (2.55)
0 2782y —zpaa =280 A cop (2.56)
pr ix pqrrpix x fd

and 8, > 0 is the smallest integer which makes the equations
(2.55)-(2.56) polynomial in d.

The assoclated minimal cost is given by:

2
1 = dz
Joo=o= ¢ [ (T, )+ |F (2.57)
min 2n ) lz1=1 i=1 i1 ol
where the terms TI, i= {1,2} and ¢°1 are defined in Appendix 1.
°
Proof:

The proof of Theorem 1 1Is given in Appendix 1.

Corollary 1

The polynomials G and H In equations (2.50) and (2.51) also

satisfy the implied cascade diophantine equation:

AH+BAG=D_D
p pr fe

(2.58)
which also defines the closed-loop characteristic equation i.e. :

« = Dch (2.59)
which,

by the definitions of Df and Dc’ is a Hurwitz polynomial.

.
Proof:

From equation (2.34) the characteristic equation is given by:

«=AC +BC
p cd p cn

From equation (2.49) obtain:

«=AH+BAG
P pr
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Multiplying equation (2.50) by BpAr’ equation (2.51) by Ap and then
adding obtain, using equation (2.46) and cancelling common factors:
APH + BpArG = Dch 3
Corollary 2
The polynomials X and Y in equations (2.55) and (2.56) also

satisfy the implied feedforward diophantine equation:

D AY+BAX=DCD
x q pr c X

o1 (2.60)

fd
Proof:

Multiplying equation (2.55) by BpAr’ equatton (2.56) by Aqulx
and adding results, after some algebralc manipulation, in equatfion

(2.60). .

Corollary 3
The output disturbance denominator polynomtal An is a factor of

the cascade controller numerator Ccn. .

Proof:
The diophantine equation (2.50) may be rewritten by substituting
from equation (2.47) as:
* %k o] * k % -l * *
D D_z G + FA A A\ A =BABB =z A' A' A A
c f p q dexp n prqgq pf pfnn
A' C C A'* + A' E E*A'* + A A* + A' C C*A'*
ex - d%d"d"ex xd't%c rxd dex%rndex ed xdln X ed)
Since A divides both the right-hand side of this equation and the
n

x k
second term on the left side, it must also divide the term Dchz glG.

i{s unstable so that An must divide G, and hence Ccn

*

*
The term D D
c f

»
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when An is stable. Condition (d) in Theorem 1 ensures that any
unstable factors of An do not divide Ap and do not therefore divide

*
D

X As a consegquence, An must again divide G, and hence Ccn'

Corollary 4

The transfer-function Cff /Ax is asymptotically stable. e
n

Proof:

From equation (2.54) this transfer-function may be written:

Ctfn - XA Dp = €GP
Ax A'D
XpX

fd

where Dpx denotes any common factors of Ax and Ap such that:
A =A'D , A =A'"D
X X DX p PX pX
Substituting from equations (2.58) and (2.60) the above transfer-

function may be written, after some algebraic manipulation, as:

C CD_A' - AD D
ffn _ x fd pxccd q ple £
A A'B
b3 X p
where D' =D

pLx pix/Dpx'

Multiplying equation (2.50) by CxD 2, equation (2.55) by Rl’ and

-g
£d>

comparing obtain, after some algebraic manipulation:

Cegn (0°xC o C'A _ At At aA* + Fa’ A Al A c.p, o8
Ax ¢*“n%n"n dexp dexp px p px q dexp n'x fd
(8l+g2) * K
- L )
ZAquAlez )Ar/AchDf

Comparing the above three expressions for Cffn/Ax the following

* %
conclusion can be drawn : since Dch ig strictly unstable and since
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Dpx and Bp do not have any unstable common factors (Ap and BP cannot

a . ] XA D -C CbD I
have unstable common factors) the expression ( nr en’x fd)/)px

is, in fact, polynomial. By virtue of condition (c) in Theorem 1
A; is stable so that Cffn/Ax is, as a result, asymptotically slable.
[ ]

Corollary 5

Any Hurwitz zeros of Ap which are not also zeros of A, Ax or Ae

will be zeros of Df and G (and consequently of Ccn and C )+ Such

ffn

zeros of Ap are therefore cancelled by the controller. .

Proof:

Any zero of Ap which is not also a zero of Ad’

from equation (2.19), be a zero of A;f. From equation (2.47), any

A or A will,
X e

Hurwitz zero of A;f will also be a zero of D_. Denoting such a zero

f
2
1 L -— -
by Apfh then (Apfh) will be a factor of the right—-hand-side of
*
equation (2.50). Since Aéfh appears in Df and Ap equatfon (2.50)

will be satisfied when A;fh appears in G (and F). From equations

will also be a factor of Ccn and C . .

'
(2.49) and (2.54) Apf ffn

h
Remark

Corollary 5 includes the important limiting case when Ap has a
zero on Lhe unit circle and Ap’ Ax and Ae do not. Such a zero is
cancelled and, although the optimal control problem may still have a
solution, the closed-loop system 1s notl internally stable (see the
following section). In this case Lhe 1internal 1Instability is

manifest since the unstable zero appears as a factor of Df (Df is a
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factor of the closed-loop characteristic equation).

2.4.1 1Internal stability

Theorem 2

The closed-loop system for the SDF plus feedforward control law
is internally stable 1f and only if the polynomial Ap does not have
any zeros on the unit circle which are not also zeros of 4 , Ax or
A .

e
Proof:

The necessary and sufficlent conditions for internal stability
of a feedback control system derived by Kulera (1979) require that
the controller can be written in the form:

c=x1z

c c
where XC and ZC are asymptotically stable transfer-functions which
satisfy the Bezout identity:

AX +BZ =1

P c pc

From egquation (2.489) the cascade controller may be written in

the form:
-1 GA
H r
c = ) ( )
[ Dch Dch
Define:
< - H s - GAr
»
[ Dch [ Dch

From equatiou (2.58) Xc and Zc satisfy the above Bezout ideantity.

The above condition for internal stability therefore reduces to the

requirement that Df and DC are strictly Hurwitz polynomials. From
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Lemma 1 D {is strictly Hurwitz. From Lemma 2 Df is strictly Hurwitz
c

only when AP does not have any zeros on the unit circle which are not
also zeros of A, A or A .
X e
In addition to the above requirements on that part of the
controller present in the feedback loop, the transfer—function of the
feedforward controller which 1is external to the 1loop must be
asymptotically stable. From equation (2.54) the feedforward
controller is given by:

c - Cffn
£t DfdAxccd

The term I/Ccd 1s not necessarily stable and must 1in practice be
included In the feedback loop (this peint is discussed in detail in

Section 4.6.1). The requirement therefore reduces to the stability

of /

c D_.A . - .
ffn’  fd o x From Lemma 1 Dfd is strictly Hurwitz and from
Corollary 4 the transfer—function Cffn/Ax is asymptotically stable.

2.4.2 Equation solvability

To establish the solvability conditlions for the cascade and
feedforward diophantine equations consider firstly the general couple

of equations:

DX + ZM = L (2.61)
DY - ZN = K (2.62)
where the unknowns are X,Y and Z. Rewrite the above couple of

equations in the matrix form:

3] ;c = [¥] (2.63)
Z
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where:

EA|lD O M|, Fp |L (2.64)
0 D -N K

A standard result for the system of equations (2.63) 1is Frobenius’
Theorem which states that these equations have a solution 1iff:
rank E = rank[E,F] (2.65)
{=> the matrices E and [E,F] have the same greatest common
divisors of all 1xl and 2x2 minors.

The 1x1 and 2x2 minors of E and {E,F] are, from the definition

(2.64):

1x1 minors of E : B, M,N

1x1 winors of [E,F] : D,M,N,L,K

2%x2 minors of E : BZ,EN, DM

2x2 minors of [E,F| . B%,DN,BM,DK,BL,MK + NL

Thus, the conditions for solvability reduce to:
(1) (D,M,N)/L,K
(11) (D ,DN,DM)/MKHNL
where ( s ) denotes the greatest common divisor and / denotes
divisor.
Since (BZ,BN,BM) = B(S,M,N) the above two conditions reduce to:
(a) (D,M,N)/L,K (2.66)
(b) D/MK+NL (2.67)
The above material relating to the couple of equations (2.61)-(2.62)
is taken from Zebek (1987). Solvability of the particular couples
(2.50)-(2.51) and (2.55)-(2.56) mway now be investigated wusing

conditions (a) and (b) above:
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Theorem 3
When the optimal control problem solvabiliiy conditions are
satisfied then the cascade controller diophantine equations

(2.50)-(2.51) are solvable. [

Proof:
Comparing the couples of equations (2.50)-(2.51) and

(2.61)-(2.62) the polynomials D,M,N,L and K may be fdentified as:

- k k -
D z 8l

= Dch

M= A A" A
P q dexp n

N =3B A A A" A
pr qdexp n
* Kk &

L =BABBR
prqql
*

K = ApR2

By definition, Ap and Bp can have no unstable common factors and A
and Ar are strictly Hurwitz. 1In addition, when the problem is
solvable the conditfons (a)-(c) in Theorem 1 ensure Lhat A&exp is
strictly Hurwitz. Thus, the greatest common divisor of 5, M and N
is:
(D,M,N) = (D:D:z-gl,An)

Since DC 1s strictly Hurwitz and An has, by definition, no zeros
inside the unit circle in the d-plane the only possible common factor

* —gl
£z

on the unit circle. From Lemma 2 such a zero will appear in D

and An is when D_ and An both have a zero

*
of the polynomials DCD ¢

*

£ only

when Ap has a zero on the unit circle which is not also a zero of Ad’

Ax or Ae. In this case, however, condition (d) in Theorem 1 ensures
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that such a zero cannot also be In An. As a result:
(D,M,N) =1
and the solvability condition (a) (2.66) Is satisfied.
Finally, from the definitions above, and using equation (2.46),
obtain after some algebralic manipulation:
MKHNL = (D' Dz 8 )D.D A A" A
c f fcqdexp n
and the condition (b) (2.67) 1is satisfled. °

Theorem 4
When the optimal control problem solvability conditions are
satisfied then the feedforward controller diophantine. equations

(2.55)-(2.56) are solvable. .

Proof:
Comparing the couples of equations (2.55)-(2.56) and

(2.61)~(2.62) the polynomials 5,M,N,L and K may be identified as:

_ * —p2
D=Dz 8
M=AAA
q 2 x
= v
N BpArAix

—g2 K K K
L=z 5BABBCD,
K = 2 82A"A"8 8 A" ¢
=z Pqrr pix fod

From condition (c¢) in Theorem 1 any unstable factors of AxAx

must also be Iin A and cannot, therefore, be in B . Condition (c)
P P

also ensures that Aix Is strictly Hurwitz, as are A and Ar' From

*
Lemma 1 Dc Is strictly Hurwitz and Dc is therefore strictly
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non-Hurwitz. As a consequence:

(D,M,N) =1
and condition (a) (2.66) 1s satisfied.

From the above definitions, and using equations (2.27) and
(2.46) obtaln after some algebralc manipulation:

MK+NL=(z D)DCD

fd 2
and the condition (b) (2.67) is seen to be satisfied. .

2.4.3 Zero output—measurement nolse

When the measurement nolse n(t) acting on the controlled output
y(t) 1s zero the diophantine equations for the cascade controller

simplify as follows:

Theorem 5

When the measurement nolse n(t) = O the spectral factor Df is

defined by:

*
DgDe = (Aol dCdA + AxdErU,E,Axd
* dexornAdex edcxoxn X ed) f (2.68)
The optimal cascade controller is given by:
GAr
€ = G (2.69)

where G,H' (along with F') 1is the solution having the property:

* —o]. =
(Dcz gl) 1F' strictly proper

of the polynomial equations:

- x %
“Blo + paa - 2 8lg*A*s"s p (2.70)

*
Dc p q dexp
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*x - —pl * % %
Dz 8y~ prgaar = 2 BA%ATE B D (2.71)
c p r dexp pqrrf
where gl > 0 1is the smallest 1integer which makes Lhe equations

(2.70)-(2.71) polynomial in d.
The polynomials G and H' in equations (2.70)-(2.71) also satisfy

the diophantine equation:

AAH +BAG=DD (2.72)
P g pr fc

Proof:

To obtain n(L) = 0 set o, = Cn = 0, An = 1. The definition of

Df in equation (2.68) then follows immediately from equation (2.47).

The diophantine equation (2.50) becomes:
* *x - —p] % x X *
DDz Blc + rA A A = . BLp* "R D D
c f p q dexp prqqff
*
Since Df divides the right-hand-side and Lhe firsL Lerm on the leflL

side of this equation, it must also divide F. Denoting F by:

* A
F = D.F
*

and cancelling the common factor Df

results in equation (2.70).

The diophantine equation (2.51) becomes:

x k - ol * % % *

D D%z 8 - FB A A A" = 2 B1A%A"5"8 p A D

c f p r q dexp pqrrfaqf
*

By a similar reasoning to that used above, D_. must again divide F.

f
Since Aq divides the right-hand-side and the second term on the left
side of this equation, it must also divide H. Denoting H by:
H=AH
4 *
and cancelling the common factor Aqu results in equation (2.71).

Using equation (2.49) the cascade controller becomes:
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GAr
Cc T WA
q
* * & —g] -]
Since F = DfF' the conditions (Dchz ) F strictly proper
k- -
and (Dcz gl) 1F' strictly proper are clearly equivalent.

Multiplying equation (2.70) by BpAr’ equation (2.71) by ApAq and
then adding results, using equation (2.46) and cancelling common

factors, in equation (2.72). .
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2.5 TWO-DEGREES—-OF-FREEDOM SOLUTION WITH FEEDFORWARD

The Hurwitz spectral factors D , D.y D_, and Dm are defined by:

f’ £d
D D = B A B B A B + A A B B A A (2.73)
ee” Tpraqrp P
*
' 1]
Df £ (A A’ CdodCdAx A +Ad C 9, C A +A A CxclanAnA JA! Ap
(2.74)
D Dfd 2 1 Al + EX 1 l (2.7%)
*
DD =Aa A + E 0 E (2.76)
m m e rn e
Lemma 1
The polynomials Dc’ Dfd and Dm are strictly Hurwitz. .

For Dc and Dfd the proof is the same as that of Lemma 1 in
Section 2.4.
Any unstable zero of Dm would, from equation (2.76), require:

2
crnlAe(ejw)l + crlEr(ejw)|2

Since the intensities %n and o_ are non-zero this condition would
require that d = exp {jw) is a zero of both Ae and Er which is not

possible (Assumption (i} in Section 2.1). As a consequence Dm is

strictly Hurwitz. °

Lemma 2
Any zeros of Ap which lie on the unit circle and which are not

also zeros of A, or Ax will be zeros of the spectral factor D

4 . If

f

no such zeros exist then Df is strictly Hurwitz. .
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Proof:
Any zero of Ap which is not also a zero of Ad or Ax will, from
equation (2.12), be a zero of Aé. Any such zero lying on the unit

circle will, from equation (2.74), also be a zero of Df.

Since C Cn and Cx have no common factors on the unit circle

dl
(Assumption (iv) in Section 2.1) the term inside the brackets in

equation (2.74) can only lead to strictly Hurwitz terms in Df.

Theorem 6 : Optimal 2DF plus feedforward controller

The optimal control problem for the 2DF control structure has a

solution if and only if:

(a) Any unstable factors of Ad are also factors of Ap.
{(b) Any unstable factors of Ae are also factors of AP.
(c) Any unstable factors of the product Ale are also

factors of Ap.
(d) Any unstable factors of An are not also factors of AP.
The feedback, reference and feedforward parts of the control law

(2.35) which minimises the cost-function (2.43) are as follows:

(i) Optimal feedback controller

c.. = %A (2.77)
fb  —
H
where G,H (along with F) is the solution having the property:
X k —g] -
(DCsz gl) 1F strictly proper

of the polynomial equations:
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*p"2 781G + FA A A! B A8 B R (2.78)
Dchz + P q dxPn prqaql ‘
* k —p] *
g _ [ = R 2.79
D Dz °H FBpArAquxAn Ap ) ( )
where:
= hd ' - 0
R, (D f c o c AL dxA N ) (2.80)
- o8l . 2.8
R, =z (DfoAqA B B + BPBPA A BquC o C, AdxAdx) (2.81)

and 8, > 0 is the smallest integer which makes the equations

(2.78)-(2.79) polynomial in d.

Optimal reference controller

MA Df
¢ =T (2.82)

r DCepq
where M (along with N and Q) 1is the solution having the

property:
k - -
(Dcz g2) 1N strictly proper

of the polynomial equations:

* - - * k %

p*2 8% + naa = 2 8% A"E B D (2.83)
c q e prqqnm
*k - - * k %

0 2782 - nB A A" = 2 B2A"A"R*B A" D (2.84)
c pre pqrropenm

and g2 > 0 is the smallest integer which makes the equations

(2.83)-(2.84) polynomial in d.

(1i11) Optimal feedforward controller

XA Dg - cfb CyPea :
Cee= 5% (2.85)
£a®%Cebd

where X (along with Z and Y) 1is the solution having the
property:
* - -
(Dcz g3) lZ strictly proper

of the polynomial equations:
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*2 8%+ zaa A = 288" 85 cp (2.86)
Dcz qQx z praggqx fd *
p 28 - zp aar - B A% B Ar Cp (2.87)
c? pirlax T F pgrrpix’x fd :

and g3 > 0 is the smallest integer which makes the equations
(2.86)~(2.87) polynomial in d.

The associated minimal cost Is given by:

3

1 ok
Jan = 7;3- ﬁ [ z (TiTi )+ ¢ol]

dz
1z1=1 i=1 z

(2.88)

where the terms Ti’ i = {1,2,3} and ¢°1 are defined in Appendix 2.
.

Proof:

The proof of Theorem 6 is given in Appendix 2. ]

Corollary 1
The polynomials G and H in equations (2.78) and (2.79) also

satisfy the implied feedback diophantine equation:

(Do (2.89)

which also defines the closed~loop characteristic equation f.e.:

AH+BAG=D
P pr

= = D.D_ (2.90)

which, by the definitions of D_ and Dc' is a Hurwitz polynomial.

f
*
Proof
From equation (2.41) the characteristic equation is given by:
= o} + B C
Ap fbd p fbn
From equation (2.77) obtain:

« = AH+ BAG
P pr
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Multiplying equation (2.78) by BpAr, equation (2.79) by Ap and then
adding obtain, using equation (2.73) and cancelling common factors:
ApH + BpArG = Dch ]
Corollary 2
The polynomials M and Q in equations (2.83) and (2.84) also

satisfy the implied reference diophantine equation:

D AQ+BAM=DD (2.91)
pe q pPr cm
Proof:
Multiplying equation (2.83) by BpAr’ equation (2.84) by Aque
and adding results, after some algebraic manipulation, in equation

(2.91). .

Corollary 3
The polynomials X and Y in equations (2.86) and (2.87) also

satisfy the implied feedforward diophantine equation:

(2.92)

D AY+BAX=DCD
X q pr c x fd

pR
Proof:
Multiplyin ti 2.86) by B A, ti 2.87) b D

plying equation ( )yprequaon( )yqu“

and adding results, after some algebraic manipulation, in equation

(2.92). °

Corollary 4
The output disturbance denominator polynomial An is a factor

of the feedback controller numerator Cfbn
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Proof:
The diophantine equation (2.78) may be rewritten by
substituting from equation (2.74) as:
x % g} * k k  p] * %
D D_z G+FAAA'"A =BABBGZz A'A' A A (
c f pqdx n praqgq pp nn
A Co.CAY +4a Cca Caty
x ~d%d~d"% d “x%n"x"d
Since An divides both the right-hand-side of this equation and the

* k-
second term on the left side, it must also divide the term Dchz glG.
*

*
The term D D
c f

is unstable so that An must divide G, and hence Cfbn’

when An is stable. Condition (d) in Theorem 6 ensures that any
unstable factors of An do not divide Ap and do not therefore divide
*

Df. As a consequence, An must again divide G, and hence Cfbn' .
Corollary 5

The transfer-function Cffn/Ax is asymptotically stable. e

Proof:

From equation (2.85) this transfer-function may be written:
Ctin - XA D = CepnCyPa

A A'D

x X px

where Dpx denotes any common factors of Ax and Ap such that:

A =A'D , A = A
X x px’ p px px

Substituting from equarions (2.89) and (2.92) the above

trangfer-function may be written, after some algebraic manipulation,

as:
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' - AD
Cffn _ CfodApfobd q pkaDf
A A'B
X X' p
where D! =D

D .
pix plx/ px

Multiplying equation (2.78) by CxD 3, equation (2.86) by R1 and

-8
£d”
comparing obtain, after some algebraic manipulation:

Cffn

A

X

gl

* * * *
= ' t 4 * v
(DcxcndnCnAdxAdxAprp + FAprquxAanDfdz

(81+g3) *
- 1 1]
ZA AXA Rlz )At/A Df

Comparing the above three expressions for Cffn/Ax the following

*
D
[

*

*
conclusion may be drawn : since Dch is strictly unstable and since

Dpx and Bp do not have any unstable common factors (AP and Bp cannot

have any unstable common factors) the expression

(XAer -~ Cfanfod)/Dpx is, in fact, polynomial. By virtue of

condition {(c¢) in Theorem 6 A' is stable so that C /A 1is, as a
X ffn' "x

result, asymptotically stable. .

Corollary 6
Any Hurwitz zeros of Ap which are not also zeros of Ad or Ax

i1l b fC .
w e zeros of Df and G (and consequently o Crn and Cffn)

fbn’

Such zeros of A are therefore cancelled by the controller.
P

Proof:

Any zero of Ap which 1Is not a zero of A, or Ax will, from

d
equation (2.12), be a zero of A;. From equation (2.74), any Hurwitz

zero of A; will also be a zero of Df. Denoting such a zero by A;h'
then (AL')h)2 will be a factor of the right-hand-side of equation
*

appears in D

h

1
(2.78). Since Ap £

and Ap, equation (2.78) will be
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satisfied when A;h appears in G (and F). Froumw equations (2.77),

(2.82) and (2.85) A;h will also be a factor of Cfbn’ Crn and Cffn'
°
Remark
Corollary 6 includes the important limiting case when Ap has
a zero on the unit circle and Ap and Ax do not. Such a zero is
cancelled and, although the optimal control problem may still be

solvable, the closed-loop system 1s not internally stable (see the

following section).

2.5.1 Internal stability

Theorem 7

The closed-loop system for the 2DF plus feedforward control law
is internally stable if and only if the polynomial Ap does not have
any zeros on the unit circle which are.not also zeros of Ad or Ax'

Proof:

From equation (2.77) the feedback controller may be written in

the form:
-1 GA
H r
Cep = B3 G52
fc fc
Define:
< = u 7 - GAr
]
[ Dch [ Dch

From equation (2.89) XC and Zc satisfy the above Bezoutr identity.
Following the conditions stated in the proof of Theorem 2 the

polynomials Dc and Df are required to be strictly Hurwitz for the
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system to be internally stable. From Lemma l'Dc is strictly Hurwitz.
From Lemma 2 Df is strictly Hurwitz only when Ap does not have any
zeros on the unit circle which are not also zeros of Ad or Ax.

In addition to the above requirements on that part of the
controller present in the feedback loop, the transfer—functions of
the reference and feedforward controllers which are external to the

loop must be asymptotically stable.

From equation (2.82) the reference controller is given by:
MA D
C = —

£
r  Diltpa

The term 1./Cf is not necessarily stable and must in practice be

bd
included in the feedback loop (this point is discussed in detail in

Section 4.6.1). The requirement therefore reduces to the stability
of MA D /D . From Lemma 1 D is strictly Hurwicz.
r f wm m

From equation (2.85) the feedforward controller is given by:
c - Cffn
£f DfdAfobd

The term 1/Cf must again be included in the feedback loop so that

bd
only Cffn/DfdAx must be asymptotically stable. By Lemma 1 Dfd is
strictly Hurwitz. By Corollary 5 Cffn/Ax is asymptotically stable.

.

2.5.2 Equation solvabiliry

The solvability conditions for the feedback, reference and
feedforward diophantine equations are established using the general

theory outlined in Section 2.4.2:
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Theorem 8
When the optimal control problem solvability conditions are
satisfied then the feedback controller diophantine equations

(2.78)-(2.79) are solvable.

Proof
Comparing the couples of equations (2.61)-(2.62) and

(2.78)-(2.79) the polynomials B,M,N,L and K may be identified as:

— —pl k%
b =25
c f
M=AAA A
p qdx n
N=35BAAA"A
prqgdxn
* k %
L =BABBR
pragql
K = Ap 2

By definition Ap and Bp can have no unstable common factors and A
and Ar are strictly Hurwitz. 1In addition, when the problem is

solvable the conditions (a) and (c¢) in Theorem 6 ensure that A&x is

strictly Hurwitz. Thus, the greatest common divisor of ﬁ,M and N

is:
- * k —pl
(D,M,N) = (D Dz & WA
Since Dc 1s strictly Hurwitz and An has, by definition, no zerocs

inside the unit circle in the d-plane the only possible common factor

* —
z gl

*
of the polynomials Dch

and An 1s when Df and An both have a zero

on the unit circle. From Lemma 2 such a zero will appear in D_. only

f
when Ap has a zero on the unit circle which i3 not also a zero of Ad
or Ax' In this case, however, condition (d) in Theorem 6 ensures

that such a zero cannot also be in An. As ua resulti:

(D,M,N) =1
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and the solvability condition (a) (2.66) is satisfied. Finally, from
the above definitions, and using equation (2.73), obtain after some
algebraic manipulation:
MK + NL = (D' Doz 1)D.D A A' A
= WUV f'c’qdx ' n
and the condition (b) (2.67) {s satisfled. .

Theorem 9
When the optimal control problem solvability conditions are
satisfied the reference controller diophantine equations

(2.83)-(2.84) are solvable. '

Proof
Comparing the couples of equations (2.61)-(2.62) and

(2.83)-(2.84) the polynomials D,M,N,L and K may be identified as:

- X -
D =p g8

C
M=AA

qe
N=BAA'

pre

- * % %
L =2 85" s s p

pPrqqm

—-g2 k k&
K=2 AABBA'D
PQrropemn
From condition (b) in Theorem 6 any unstable factors of Ae must also
be in Ap and cannot, therefore, be in Bp. Condition (b) also ensures
that Aé is strictly Hurwitz, as are Aq and Ar. From Lemma 1 Dc is
*

strictly Hurwitz and DC 1s therefore strictly non-Hurwitz. As a
consequence:

(D,¥,N) =1

and condition (a) (2.66) is satisfied.
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From the above definitions, and wusing equations (2.17) and
(2.73), obtain after some algebraic manipulation:
—p72 *
MK + NL = (z %D )p A'D
c’c’em

and the condition (b) (2.67) 1s seen to be satisfied. °

Theorem 10
When the optimal control problem solvability conditions are
satisfied then the feedforward controller diophantine equations

(2.86)-(2.87) are solvable. .

Proof
The couples of equations (2.55)-(2.56) and (2.86)-(2.87) are
identical. The proof then follows by analogy with the proof of

Theorem 4. .

2.5.3 Zero output-measurement nolse

When the measurement noise n(t) acting on the controlled output
y(t) 1s zero the diophantine equations for the feedback controller

simplify as follows:

Theorem 11
When the measurement noise n{t) = 0 the spectral factor Df is
defined by:
D D* = (A'C C*A'* + A'C C*A'*)A'A‘* 2.93
28 = (AxCq94C%aAx aCx2aCxha M4pp (293
The optimal feedback controller 1s given by:
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c,, = (2.94)

where G,H' (along with F') is the solution having the properiy:
* —p) ~1
(Bcz gl) F' stricily proper

of the polynomial equations:

* -gl ] [ -gl * * *

D z G+ F'A A A = 2z BABBD (2.95)
c p q dx prqq f

* —gl -gl * % %

D 2z H' - F'B A A" =2z AABBD (2.96)
c p r dx pqrurr f

where gl > 0 1is the smallest integer which makes the equations
(2.95)-(2.96) polynomial in d.

The polynomials G and H' in equations (2.95)-(2.96) also satisfy
the diophantine equation:

ApAqH' + BpArG = Dch (2.97).

Proof:

To obtain n(t) = 0 set Un = Crl =0, Arl = 1. The definition of

Df in equation (2.93) then follows immediately from equation (2.74).

The diophantine equation (2.78) becomes:

* Kk ~p] —gl * * & *
D D.z G+ FAAA =2z B ABBD.D
c f p q dx prqgqff
*
Since Df divides the right-hand-side and the first term on the left

side of this equation, it must also divide F. Denoting F as:

F g

D.F
*
f

The diophantine equation (2.79) becomes:

and cancelling the common factor D, results in equation (2.95).

k % -~g] -gl % * % *
D D_z H-~FBAAA" =z AABBDAD
c f prqdx pqrrfqf

*

By a similar reasoning to that used above, Df must again divide F.
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Since Aq divides the right—hand-side and the second term on the left

side of this equation, it must also divide H. Denoting H as:
H=AH'
d *
and cancelling the common factor A D

o f results in equation (2.96).

Using equation (2.77) the feedback controller equation becomes:
GAr
Cev = WA

q
* * k% -g] -
Since F = DfF' the conditions (Dchz ) "F strictly proper, and
* -p] =1
(Dcz & ) "F' strictly proper, are clearly equivalent.

Multiplying equation (2.95) by BpAr’ equation (2.96) by & A and

then adding results,

using equation (2.73) and cancelling common
factors, in equation (2.97).
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2.6 SDF SOLUTION USING A COMMON DENOMINATOR

In the single-degree-of-freedom control structure shown In
Figure 2.3 it is always possible to express the varlous sub-systems
uslng a 1least-common-denominator polynomfal. Denoting the
least—common—~factor of A , A, A and A by A i.e:

p X d e

AA l.c.m. (Ap, Ax’ Ad’ Ae) (2.98)

then the sub-systems Wp, Wx, Wd and Wr may be expressed using thelir

least—common—~denominator A as:

W= A" ls (2.99)
W - 2 le (2.100)
W= Al (2.101)
W= 2 lE (2.102)
As before, the sub-systems Wn and wi are denoted by:
w = ale (2.103)
n n n
W, = ALlE
2 S} (2.104)

Theorem 12: SDF Solution Using a Common Denominator

The optimal control problem for the SDF control structure using

the common denominator model (2.99)-(2.102) has a solution 1f and

only 1f:
(a) A and B have no unstable common factors.
(b) Any unstable factors of Al are also factors of A and D.
(c) Any unstable factors of An are not also factors of A.

The Hurwitz spectral factors DC, Df and Dfd are defined by:
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* * k % * k &
DD =BABBAB + AABBAA (2.105)
cc rqqr qgrragq
* * * c *A* E* *
Dfo = (AnCch An + A nchn + AnEor An
* k * %
+ AAoc AA + ADg, DA) (2.106)
nrn n n An n

* * *
defd = AlolnAl + ElclEl (2.107)

The cascade and feedforward parts of the control law (2.29)

D

which minimises the cost—function (2.43) are as follows:

(1)

(i1)

Optimal cascade controller

c = CA (2.108)
c  —
H
where G,H (along with F) is the solution having the property:
* k —pl -
(Dchz gl) 1F strictly proper

of the polynomial equations:

* k —g] * Kk
DD,z5G+FAAA =BABBR (2.109)
c f qn rqgql
D prz 8! A A N 2.110
Dez O H - FBAAA R, (2.110)
where:
R “8lep bt - c o clan® 2
1 z ( £ff an"n ) (2.111)
~gl x k% X k x *
Ry =z~ (D;DAABB + BB AABSBCGC) (2.112)

and gl > 0 is the smallest integer which makes the equations

(2.109)-(2.110) polynomial in d.

Optimal feedforward controller

XA D_-C DD
r f cn  fd
C = (2.113)
ff DfdACcd

where X (along with Z and Y) 1s the solution having the

property:
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% ~pD -
(Dcz g2) 1Z strictly proper

of the polynomial equations:

_82

* ~g2 ¥ k X
D°278%x + zaA A = z 828"A"s"B DD (2.114)
c q L rqgq fd
* - - x % %
Dz 8%y - zBa A =z B2a%A"8 B DD (2.115)
c r qrr fd

and g2 > 0 1is the smallest integer which makes the equations
(2.114)-(2.115) polynomial in d.

The assoclated minimal cost is given by:

1 2 - =% dz
Jatn = 7x3 |£|=1[1§1(T1T1 Y+ o 1= (2.116)
where the terms TI, i= {1,2} and ¢°1 are defined in Appendices 3 and
1, respectively. .
The proof of Theorem 12 is given in Appendix 3. .
Corollary 1

The polynomials G and H in equations (2.109) and (2.110) also

satisfy the implied cascade diophantine equation:

AH + BA G = D_D (2.117)
r fc
.
Proof:
Multiplying equation (2.109) by BAr’ equation (2.110) by A and

then adding results, using equation (2.105) and cancelling common

factors, in equation (2.117). .

Corollary 2

The polynomials X and Y in equations (2.114) and (2.115) also
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satisfy the implied feedforward diophantine equation:

(2.118)

+ BA X = D DD
AAY + BA Py

®
Multiplying equation (2.114) by BAr’ equation (2.115) by AAq
and adding results, after some algebraic manipulation, in equation

(2.118). .

2.6.1 Zero output-measurement noise

When the measurement noise n(t) acting on the controlled output
y(t) 1s zero the -diophantine equations for the cascade controller
simplify as follows:
Theorem 13

When the measurement noise n(t) = 0 the spectral factor Df is

defined by:
* * * * *
DD, =Cs,C + Ec E + Aoc_ A + Do, D (2.119)
£ f r rn

d 2n

The optimal cascade controller is given by:

GAr
CC = -}-{—'A— (2.120)
q
where G, H' (along with F') i{s the solution having the property:

. . -
(Dcz gl) 1F' strictly proper
of the polynomial equations:

* —ol gl * k %

Dz58G+FAA =zBBARBBD (2.121)
c q rqaqf
X - - * %k %

p 28 - pea = 27 BA"A"s s D (2.122)
c r qrrf

where gl > 0 1is the smallest integer which makes the equations

(2.121)-(2.122) polynomial 1in d.
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The polynomials G and H' in equations (2.121)-(2.122) also
satisfy the diophantine equation:
AAqH' + BArG = Dch (2.123)
'
To obtain n{t) = 0 set o, = Cn =0, An = 1. The definition of
Df in equation (2.119) then follows immedlately from equation
(2.106).

The diophantine equation (2.109) becomes:

* X - -]l Xk Kk K *
DDez 8 + Faa = 27818"AY8"B DD
c f q rqqf f
*
Since Df divides the right—-hand-side and the first term on the left

side of this equation, it must also divide F. Denoting F by:

* 9
F = D.F
*

f
The diophantine equatfon (2.110) becomes:
x X —ol * % X *
DDz 8 - FBA A = 2 8'A"A"8 B D A D
cf rgq qrrfqf

By a similar reasoning to that used above, D

and cancelling the common factor D_ results in equation (2.121).

*
f

Since Aq divides the right-hand-side and the second term on the left

must again divide F.

side of this equation, it must also divide H. Denoting H by:
H=AR
q

*
and cancelling the common factor Aqu results in equation (2.122).

Using equation (2.108) the cascade controller equation becomes:

Since F = D

[ A
=t

. * % -p] -1
F' the conditions (Dchz ) F strictly proper and
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* -p]l -
(Dcz gl) 1F’ strictly proper are clearly equivalent.
Multiplying equation {2.121) by BAr’ equation (2.122) by AAq and

then adding results, using equation (2.105) and cancelling common

factors, in equation (2.123). .



68

2.7 2DF SOLUTION USING A COMMON DENOMINATOR

In the two—degrees—of-freedom control structure shown in Figure
2.4 1t is always possible to express the various sub-systems using a
least-common-denominator polynomfal. Denoting the least-common—

factor of Ap’ Ad, and Ax by A i.e:

AA l.c.m. (Ap, A A) (2.124)

d’

then the sub-systems wp, W and wx may be expressed using their

di

least-common-denominator A as:

W =A B (2.125)
P
Wy = A te (2.126)
_ 1
W= A D (2.127)
As before, the sub-systems Wn, wl and wr are denoted by:
w = alc (2.128)
n n n
W, = AtE
2 L L (2.129)
-1
wt = Ae Er (2.130)
Any common factors of Ae and A are denoted by De such that:
A =DA' ,A=0DA (2.131)
e e ec e

Theorem 14: 2DF Solution Using a Common Denominator

The optimal control problem for the 2DF control structure using
the common denominator model (2.125)-(2.127) has a solution 1if and
only if:

(a) A and B have no unstable common factors.

(b) Any unstable factors of Ae are also factors of A.
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(c) Any unstable factors of AR are also factors of A and D.
(d) Any unstable factors of An are not also factors of A.

The Hurwitz spectral factors Dc’ D D and Dm are defined by:

£ fd

* x k % x k %
DD =BABBAB + AABBAA (2.132)
cc rqqr qrrq
D *AY 4 AC o CAY + A p*a 133
Df £ AnCch An + A nchnA + nDOXn An (2. )
o * A* *
defd Akcln ] + ElciEl (2.134)
* * *
DD =Ag A +EoE (2.135)
m m e rn e rrr

The feedback, reference and feedforward parts of the control law

(2.35) which minimises the cost~function (2.43) are as follows:

1)

Optimal feedback controller

c.. =G4 (2.136)
o 5

where G,H (along with F) is the solution having the property:
X X —gl —
(Dchz gl) 1F strictly proper

of the polynomial equations:

k * —g] * k%
Dchz G + FAAqAn =B AquBqRL (2.137)
k * ~g} *
Dchz H - FBArAqAn = A R2 (2.138)
where:
_ -gl * k x
Rl =2z (Dfo - CnchnAA ) (2.139)
_ -gl * * * * * * *
R2 =z (DfoAquBrBr + BB ArAquBanchn) (2.140)

and 9 > 0 {s the smallest integer which makes the equations

(2.137)-(2.138) polynomial in d.

{11) Optimal reference controller

MAer
C_ = =— (2.141)

T DCepq
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where M (along with N and Q) 1s the solution having the
properly:
(D:z—gz)—lN strictly proper

of the polynomial equations:

% — - x % %
0’28+ Naa =288 A8 8 D (2.142)
c qe rqqm
% — — k %k %k
D"z 820 - NBA A' = 2 82A%A"B"B a'p (2.143)
c r ec qrr ‘m

and g2 > 0 is the smallest integer which makes the equations
(2.142)-(2.143) polynomial in d.

(11i) Optimal feedforward controller

XA D_ - C DD
Cppm —E £ “fbn fd (2.144)

DegACEpa

where X (along with Z and Y) 1is the solution having the
property:
* ~g3 -
(Dcz g3) 1Z strictly proper

of the polynomial equations:

Dz 8% +zaa A, = 2 B38*A"8"B DD 2.145
e q % z r qq fd 2. )
* —p3 ~p3 k Kk

g3, _ . .8
Dz °°Y - ZBA A, =2 ° A'AB B DD (2.146)

and g3 > 0 i{s the smallest integer which makes the equations
(2.145)-(2.146) polynomial in d.

The assoclated minimal cost is given by:

1 p—
Totn =73 $ LI (T + 0] (2.147)

where the terms Ti’ 1= {1,2,3} and ¢01 are defined in Appendices 4

and 2, respectively. .



71

Proof:

The proof of Theorem 14 is given in Appendix 4. .

Corollary 1
The polynomials G and H In equations (2.137) and (2.138) also

satisfy the implied feedback diophantine equation:

AH + BA G = D_D (2.148)
r fc
.
Proof:
Multiplying equation (2.137) by BAr, equation (2.138) by A and

then adding results, using equation (2.132) and cancelling common

factors, in equation (2.148). .

Corollary 2
The polynomials M and Q@ in equations (2.142) and (2.143) also

satisfy the implied reference diophantine equation:

DeAqQ + BArM = DcDm (2.149)
.
Multiplying equation (2.142) by BAr’ equation {2.143) by DeAq
and adding results, using equation (2.132) and cancelling common

factors, in equation (2.149). .

Corollary 3
The polynomials X and Y in equations (2.145) and (2.146) also

satisfy the {mplied feedforward diophantine equation:

AA Y+ BAX =D DD (2.150)
q r [

fd
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Multiplying equation (2.145) by BAr’ equation (2.146) by AAq and
adding results, using equation (2.132) and cancelling common factors,

in equation (2.150). .

2.7.1 Zero output—measurement nolse

When the measurement noise n{t) acting on the controlled output
y(t) 1s zero the diophantine equations for the feedback controller

simplify as follows:

Theorem 15

When the measurement noise n(t) = 0 the spectral factor D_ is

f
defined by:
b D* c * *
¢D¢ = Co4C + Doy D (2.151)
The optimal feedback controller is given by:
GAr
q
where G, H' (along with F') is the solution having the property:
% —o] -
(Dcz gl) IF’ strictly proper
of the polynomlal equations:
* —o] —p] * % %
Dz 8¢+ rar =2 B8 A8 8 D (2.153)
c q rqqf
* ~ol ol * % %
Dz B - rrea_ = 2 8lAAYB"8 D (2.154)
c r qrref

where gl > 0 is the smallest 1integer which makes the equations
(2.153)-(2.154) polynomial in 4.

The polynomials G and H' 1n equations (2.153)-(2.154) also
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satisfy the diophantine equation:
AA H' + BAG =D_D (2.155)
q r fec
®

Proof:

To obtain n{t) = 0 set on = Cn =0, An = 1. The definition of

Df in equation (2.151) then follows immediately from equation

(2.133).

The diophantine equation (2.137) becomes:

* %

DDz 8l + Faa = 2 81%A" A B ByD DY
et q £¢

*
Since Df divides the right-hand-side and the first term on the left

side of this equation, it must also divide F. Denoting F by:

F D*F'
= DF
*
and cancelling the common factor D_. results in equation (2.153).

f
The diophantine equation (2.138) becomes:
* * .
D'Drz 8'n - FBA A = 2 BlA"A B B_DA Dy
c f rgq q fq f
*
By a similar reasoning to that used above, Df must again divide F.
Since Aq divides the right-hand-side and the second term on the left
side of this equation, 1t must also divide H. Denoting H by:
H=AH
d *
and cancelling the common factor Aqu
Using equation (2.136) the feedback controller equation

results in equation (2.154).

becomes:
GA
c., = L

fb H'A
q

* x %
Since F = DfF‘ the conditions (Dchz

—gl)—lF strictly proper, and
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* —pl -
(Dcz gl) lF' strictly proper, are clearly equivalent.

Multiplying equation (2.153) by BAr’ equation {2.154) by AAq and
then adding results, using equation (2.132) and cancelling common

factors, in equation (2.155). .
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2.8 OPTIMALITY OF THE IMPLIED DIOPHANTINE EQUATIONS : SDF CASE

In general, calculation of the optimal SDF controller requires
the solution of two couples of polynumial equations : one couple for
the cascade part and another couple for the feedforward part of the
controller. Elimination of the common terms between each of the
coupled equations results in a single equation for each part of the
controller, the implied diophantine equations. Solution of the
original two couples of equations results in the optimal controller,
which shifts both poles and zeros of the closed-loop system to their
desired optimal positions. On the other hand, a controller
calculated using the implied equations ensures only the optimal
positions of the closed-loop poles. The related zeros will not in
general be the optimal ones. Solution of the implied equations does
not, therefore, always yleld the optimal controller.

The conditions under which solution of the implied equations
does yield the unique optimal controller are derived in this section.
For the cascade part of the controller the analysis is restricted to
the case when the output measurement noise n{t) is zero (Theorem 13).

System description

The SDF system with feedforward is shown in Figure 2.3. As in

Section 2.6 the sub-systems may be represented by use of a least

common denominator polynomfal A = l.c.m(Ap,Ad,Ax,Ae) as:
W - Als (2.156)
Wy = Ak (2.157)
-1
W, =4 D (2.158)
W o=alg (2.159)
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The sub-system Wk is denoted by:

W - A;lER (2.160)

For the sub-system Wn it is assumed that o, = Cn =0, An = 1.

Assumptions

1. Each sub-system is free of unstable hidden modes.

2. The plant input-output transfer-function wp is assumed strictly
causal i.e. <{B>= 0.

3. The disturbance A-lc, reference generator A-IE, load disturbance
A—1D, and disturbance generator A;lEl sub-~systems are assumed to
be proper rational transfer-functions.

4, It is assumed that the plant data is such that the optimal

control problem is solvable, i.e., that conditions (a)-(b) in

Theorem 12 hold.

Cost-function

The cost-function which is minimised by the optimal control law

is, from equation (2.43):

=1 dz
v = 5;3-I£'=1{Qc¢e * Rc¢u}'—; (2.161)

The error, Qc’ and control, Rc’ welghting terms may be expressed as

(from equation (2.45)):

_ 44
Q = R, = = (2.162)
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Assumptions

1. The weighting elements Qc and Rc are strictly positive on
1di=1.

2. Aq, B, Ar and Br are strictly Hurwitz polynomials.

3. The rational functions A;IBq and A;lBr are assumed to be
proper.

4, The palirs Aq’ Ar Aq,B and Ar’ A are each assumed to be

coprime.

2.8.1 oOptimal cascade controller

Lemma 1
The optimal cascade controller for the system shown 1in Figure 2.3

with n(t) = 0 and the cost—function defined by equation (2.161) is

given by:
c = EE (2.163)
c HAq

where G,H (along with F) satisfy the polynomial equations:
D:z-gIG + FAA = z-ng*A:B:Bqu (2.164)
D:z'glﬂ - FBA_ = “8l, A:B:B D, (2.165)
DC and Df satisfy equations (2.105) and (2.119). The

diophantine equations must be solved for the minimal solution (G,H,F)
with respect to F {.e. the soluttfon such that:

* —gl, -1
(Dcz ) 'F 1s strictly proper. .

Proof:

Given in Section 2.6. .
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Lemma 2
The polynomials G and H 1in equations (2.164)~(2.165) also

sactisfy the Implied cascade diophantine equation:

AA H+ BAG=D_D (2.166)
q r fc
[ ]
Proof:
Given In Section 2.6. .

Optimality of the implied cascade diophantine equation

In general, calculation of the optimal cascade controller
polynomials G and H requires solution of the couple of equations
(2.164) and (2.163) such that F has minimal degree (condition
(D:z-gl)_lF strictly proper). The conditions under which the
implied cascade diophantine equation (2.166) uniquely determines the

optimal cascade controller are now derived.

Preliminaries
Fact 1 (Division Theorem)

For any polynomials E,F there exist unique polynomials Q,R such
that:

E=QF + R

and F-lR is strictly proper .

Lemma 3
Let M,N,P be given polynomials. Then the diophantine equation:

NY + MX = P
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-1
possesses a unigue solutlon such that M 'Y is strictly proper, for

coprime M,N. Such a solution is said to be minimal with respect to

Y. .

Proof: (%ebek 1981)
The general solution of the abové equation has the form (see
Ku¥era 1979):

X

X' + TN

Y Y' - T™
for a particular solution X', Y' and an arbitrary polynomial T. To

prove the Lemma apply Fact 1 to the general solution for Y. e

Lemma 4:
Consider the equation:
NY + MX = P
(where M,N,P are given). If N-‘IPM-‘1 is strictly proper then:

-1 -
M 'Y is strictly proper iff N lx ts strictly proper. .

Proof:
-1 -1
Multiplying the above equation by N "M = obtain:

1 IPM—l

Wl + Nk = N
Whenevef the right—hand-side of this equation is strictly proper (the
assunption) then both the left hand side rational transfer-functions
are either strictly proper at the same time or neither of them is

80. L]
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Corollary 1

The minimal solutions with respect to X and Y of the equation:

NY + MX = P

may differ in general. If, however, N—IPM_l is strictly proper then

the minimal solutions with respect to X and Y are the same. e

Main Result

Fact 2

The solution to the optimal SDF control problem 1is unique and

the optimal cascade controller polynomials are given by equations

(2.164)-(2.165). The optimal solution 1is characterised by:

% =gl -
(Dcz gl) 1F strictly proper. .
Lemma 5
* -gl ~1 —gl * * % -1,-1
8 g p
(Dcz ) ‘2z B AquBqu A Df is a strictly proper
rational transfer—function. L]
Proof:
-1 -1 -1 -1
1. A "C, A D and A "E are proper by definition => A Df is proper
(from equation (2.119)).
2. BqA;1 is proper by definition.
3.

The absolute coefficlent of BAqu is zero since the absolute
coefficlient of B is zero by definition. On the other hand, the
absolute coefficlent of Dc is non—zero by defianltion of the
spectral factorisation (2.105). As a consequence,
(D:z_gl)_lz—ng*A:B* is a strictly proper rational

transfer—function.
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Putting together parts (1), (2) and (3) the Lemma results.

Lemma 6

The optimal solution for the cascade controller (characterised

* —gl,~1
by (Dcz ) 'F strictly proper) also has:
-1
(AAq) G strictly proper .
Proof:

Consider the strict properness of the transfer-function defined

* —p]l. -
in Lemma 5 and of the transfer—function (Dcz gl) 1F (the optimality

condition) and then apply Lemma 4 to equation (2.164). .

Assumption 1

Let A and B be coprime. .

Lemma 7
Let Assumption 1 be satisfied. Then equation (2.166) possesses
a unique solution such that:

(AAq)-lc is strictly proper. .

By definition, the pairs Aq’Ar Aq,B and Ar,A are coprime.
Together with Assumption 1 thls means that the palir AAq, BAr is
coprime. The result then follows Immediately by application of

Lemma 3. .
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Theorem 16: Optimality of the implied cascade equation

Let Assumption 1 be satisfied. Then the optimal cascade
controller polynomials G and H are determined uniquely by the
minimal solution with respect to G of the implied cascade dlophantine
equation (2,166) 1.e. the solution such that:

(AAq)—IG ig strictly proper. .

By Lemma 6 the optimal solution is characterised by (AAq)-lc
strictly proper. When Assumption 1 holds then, by Lemma 7, the
implied equation (2.166) possesses just one soclution such that
(AAq)—lc is strictly proper. Such a solution must, therefore, be the

unique optimal one. .

Discussion

The conditions (1)-(3) in Section 2.8 which the plant must
satisfy are physically realistic. The conditions 1imposed on the
cost-function weights are not restrictive and may always be satisfied
by suitable selection.

The only further restriction which must be observed for the
implied cascade diophantine equation to yield the unique optimal
cascade controller is that the plant A and B polynomials must be
coprime (Assumption 1). When this condition holds then:

A,B coprime <{=> A = Ap

{=> Ad’ Ae and Ax are divisors of Ap

Thus, A,B coprime means that all the poles of the disturbance



83

sub—-systens Wd and Wx, and of the reference generator wr, are poles

of the plant Iinput-output transfer-function Wp. .

2.8.2 Optimal feedforward controller

Lemma 8
The optimal feedforward controller for the system shown 1in

Figure 2.4 and the cost—function defined by equation (2.161) is given

by:
XA D, - C_ DD
Cpp = g <0 fd (2.167)
fd cd
where X (along with Z and Y) satisfy the polynomial equations:
* — -2 k * *
g2 g2
X + = .
Dcz ZAAqu z B AthBqDDEd (2.168)
* —g2 -2,k k%
Dcz Y ZBArAx =z A AqBrBrDDfd (2.169)

Dc’ Df and Dfd satisfy equations (2.105), (2.106) and (2.107)

respectively. The diophantine equations must be solved for the

ninimal solution (X,Y¥,Z) with respect to Z i.e. the solution such

that:
* - -
(Dcz 82) 1Z is strictly proper .
Proof:
Given in Section 2.6. .
Lemma 9

The polynomials X and Y in equations (2.168) and (2.169) also
satisfy the Iimplied feedforward diophantine equation:

(2.170)

AA Y+ BAX =D DD
q r c fd
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Proof:

Given in Section 2.6. .

Optimality of the implied feedforward diophantine equation

Fact 3
The optimal feedforward controller defined by equation (2.167)
is unique and the polynomial X is given by equations (2.168)-(2.169).

The optimal solution is characterised by:

* —p) —
(Dcz 82) 1Z striccly proper .

Lemma 10

-1, -g2 1,-1.,-1

(0*278% 8°4%8°8 A7'A™I0ATID_ . 1s a striccly proper
c rqqgq R T fd
rational transfer-function. °

1. A;lEl is proper by definitlon
=> A;lDfd is proper (from equation (2.107)).

2, BqA;1 and A!D are proper by definition.

3. By a similar reasoning to that used in the proof of Lemma
5, (D:z~gz)_1z_ng*A:B: i{s a strictly proper rational
transfer-function.

Putting together parts (1), (2) and (3) the Lemma results.

Lemma 11

The optimal solution for the feedforward controller

* —p? —
(characterised by (Dcz g2) 1Z gtrictly proper) also has: .
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(AAqAx)-IX strictly proper (2.171)
.
Proof:

Consider the strict properness of the transfer—function defined

* —g2 -1
in Lemma 10 and of the transfer—function (Dcz 2 Y Z (the optimality
condition) and then apply Lemma 4 to equation (2.168). [
Assumption 2-
Let A be a divisor of both A and D. .

2

Lemma 12
Let Assumption 2 be satisfied. Then the implied feedforward

diophantine equation (2.170) becomes:

t " ]
AAqY + BArX DCD Dfd (2.172)
where:
Yl L] 1]
Y A Al » X 4 AlX » DA AlD .
Proof:

When Assumption 2 holds then, from equations (2.168) and
(2.169), Ak must divide both X and Y. Using the above definitions
and substituting in equation (2.170) results, after cancellation of

the common factor A in equation (2.172). .

l)
Lemma 13

Let Assumption 2 be satisfied. Then the optimality condition
(2.171) becomes:

(AAq)_IX' strictly proper (2.173)
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When Assumption 2 holds then, from the above definftions,
X = Alx‘. Substituting for X in (2.171) results in (2.173).
Lemma 14
Let Assumptions 1 and 2 be satisfied. Then the implied
feedforward equation (2.172) possesses a unique solution such that:

1X’ is strictly proper .

AA YT
( q
Proof:

By definition, the pairs Aq’Ar Aq,B and Ar’A are coprime.
Together with Assumption 1 this means that the pair AAq’ BAr is
coprime. The result then follows fmmedfately by application of

Lemma 3. .

Theorem 17: Optimality of the implied feedforward equation

Let Assumptions 1 and 2 be satlsfied. Then the optimal
feedforward controller polynomial X {s given by X = AQX' where X' is
determined uniquely by the minimal solution with respect to X' of the
implied feedforward diophantine equation (2.172) i.e. the solution
such that:

(AAq)—1X' is strictly proper .

Proof:

By Lemma 13 the optimal solution is characterised by (AAq)_1X’
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strictly proper when Assumption 2 holds. When Assumptions 1 and 2

hold then the implied feedforward equation 1is given by equation

(2.172) and possesses just one solution such that (AAq)_LX' is

stricrly proper. Such a solution must, therefore, be the unique
optimal one. .
Discussion

The extra condition required for optimality of the implied
feedforward dlophantine equation 1s that Al’ the denominator of
the measurable disturbance generator, must divide both A and D. For
the unstable measurable disturbance generators of greatest practical
interest (such as steps, ramps etc.) this condition also corresponds
to one of the optimal control problem solvability conditions
(condition (b) 1in Theorem 12). If, iherefore, the measufable
disturbance generator 1is unstable and the optimal control problem is
solvable, then the implied feedforward diophantine equation will
uniquely determlne the optimal feedforward controller whenever A and
B are coprime, which is exactly the condition required for optimality

of the lmplied cascade dlophantine equation. .
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2.9 OPTIMALITY OF THE IMPLIED DIOPHANTINE EQUATIONS : 2DF CASE

In general, calculation of the optimal 2DF controller vequires
the solution of three couples of polynomial equations : one couple
for the feedback part, one couple for the reference part and one
couple for the feedforward part of the controller. Elimination of
the common terms between each of the coupled equations results in a
single equation for each part of the controller, the implied
diophantine equations. As in the SDF case, solutioﬁ of the implied
equalions ensures only the optimal positions of the closed-loop
poles. The related zeros will not in general be the optimal ones.

The conditions under which solution of the implied equations
does generate the unique optimal controller are derived 1in this
section. For the feedback part of the controller the analysis is
restricted Lo .the case when the output measurement noise n{t) is zero
(Theorem 15).

System description

The 2DF system with feedforward is shown in Figure 2.4. As in
Section 2.7 the sub~systems may be represented by use of a least

common denominator polynomial A = l.c.m(Ap,A ’Ax) as:

d
v = A5 (2.174)
Wy = A le (2.175)

w =alp (2.176)
X

w o= ale (2.177)

W o= Al E (2.178)
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For the sub-system Wn it is assumed that o, = Cn =0, A =1.

Assumptions

1. Each sub-system is free of unstable hidden modes.

2. The plant input—output transfer-function Wp 1s assumed strictly
causal {.e. <B>= 0.

3. The disturbance A_IC and A‘ID sub-systems, the reference
generatot A;lEr, and the measurable disturbance generator A;lﬁl
are assumed to be proper rational transfer functions.

4, It {is assumed tLhat the plant data 1s such that the optimal

control problem 1is solvable 1i.e. that conditions (a)-(c) 1n

Theorem 14 hold.

Cost-function
The cost-function which is minimised by the optimal control law
is again given by equation (2.43). The assumptions (1)-(4) on the

cost-function weights given In Section 2.8 are assumed to hold.

2.9.1 Optimal feedback controller

Lemma 1
The optimal feedback controller for the system showa in Figure

2.4 with n(t) = 0 and the cost—-function defined by equation (2.43) is

given by:
GAr
Cfb = EK; (2.179)

where G,H (along with F) satisfy the polynomial equations:
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x — - k k% %

D'z 8 + Fan = 2B A58 D (2.180)
c q rqqf
x - - x % %

Dz 8 - FeA = 27 B'A"A"8"B D (2.181)
c r qrr f

Dc and Df satisfy equations (2.132) and (2.151). The

diophantine equations must be solved for the minimallsolution (G,H,F)

with respect to F i.e. the solution such that:

* —p] ~
(Dcz gl) 1F is strictly proper. .
Proof
Given in Section 2.7. .
Lemma 2

The polynomials G and H in equations (2.180)-(2.181) also

satisfy the implied feedback diophantine equation:

AA H+ BAG=D,D (2.182)
q r fc
.
Proof:
Given in Section 2.7. °

Optimality of the implied feedback diophantine equation

In general, calculation of the optimal feedback controller
polynomials G and H requires solution of the couple of equagions
(2.180) and (2.181) such that F has minimal degree (condition
(DZz-gl)—lF strictly proper). The conditions under which the implied
feedback diophantine equation (2.182) uniquely determines the optimal

feedback controller are now derived.
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Assumption 1

Let A and B be coprime. .

Theorem 18: Optimality of the implied feedback equation

Let Assumption 1 be satisfied. Then the optimal feedback
controller polynomials G and H are determined uniquely by the minimal
solution with respect to G of the implied feedback diophantine

equation (2.182) i.e the solution such that:

(AAq)—IG is strictly proper .

Compare the couples of equations (2.164)-(2.165) and
(2.180)-(2.181), and the implied equations (2.166) and (2.182). The
proof then follows by direct analogy with the derivation of

Theorem 16. .

Discussion

In the 2DF case the condition that A,B must be coprime for Lhe
implied feedback dlophantine equation to yield the unique optimal
feedback controller may be interpreted as follows:

A,B coprime <=> A = Ap

{=> A, and A_ are divisors of A
d X p

Thus, A,B coprime means that all the poles of the disturbance

sub-systems W, and Wx are poles of the plant Input—~output

d

trangfer—function wp. .
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2.9.2 Optimal reference controller

Lemma 3
The optimal reference controller for the system shown in Figure

2.4 and the cost-function defined by equation (2.43) is given by:
MA D

C_ = ot £ (2.183)
m fbd
where M (along with N and Q) satisfy the polynomial equations:

*x - *x % %k
D 2%M+ A A =2 828 A"E'B D (2.184)
c q e rqqanm

* —g? ~p2 Xk Kk %

84 v -, B '
D,z °Q - NBAAL =z " AABBAD, (2.185)

Dc’ Df and Dm satisfy equations (2.132), (2.133) and (2.135),

respectively. The diophantine equations must be solved for the

minimal solution (M,N,Q) with respect to N i.e. the solution such

that:
x - -
(Dcz gz) 1N is strictly proper .
Proof:
Given in Section 2.7. 'y
Lemma 4

The polynomials M and Q in equations (2.184) and (2.185) also
satisfy the implied reference diophantine equation:
+ =
DeAqQ BArM DcDm (2.186)
.

Proof:

Given in Section 2.7. .
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Optimality of the implied reference diophantine equation

Fact 1

The optimal reference controller for the 2DF control problem is

unique and the controller polynomial M is given by equations

(2.184)-(2.185). The optimal solution is characterised by:

X g2 —
(Dcz g2) 1N strictly proper .
Lemma 5
X —p2 -] —-p2 * * x -] -~
(0" 27827 1,7828% A" 8" alalp 15 a strictly
c rqqq e m
proper rational transfer-function. .
Proof:
1. A;IEr is proper by definition

=> A;le is proper (from equation (2.135)).

2. BqA;l is proper by definition.

3. By a similar reasoning to that used in the proof of Lemma 5 in
Section 2.8.1, (D:z~g2)—lz-82B*A:B: is a strictly proper
rational transfer-function.

Putting together parts (1), (2) and (3) the Lemma results.
.

Lemma 6
The optimal solution for the reference controller (characterised

by (D:z-gz)—lN gtrictly proper) also has:

(AeAq)—l M  strictly propet ]
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Proof:
Consider the strict properness of the transfer-function defined
* —p2 -1
in Lemma 5 and of the transfer-function (Dcz ) "N (the optimality
condition) and then apply Lemma 4 1In Section 2.8.1 to equation

(2.184). o

Assumption 2

Let Ae be a divisor of A. .

Lemna 7
Let Assumption 2 be satisfied. Then the 1implied reference
diophantine equation (2.186) becomes:
AeAqQ +BAM=DD (2.187).
.
When Ae divides A then, from equation (2.131), De = A .

Substituting Iin equation (2.186) for De the Lemma results. .

Lemma 8
Let Assumptions 1 and 2 be satisfied. Then the 1implied
reference equation possesses a unique solution such that:

(AeAq)—lM is strictly proper .

Proof:
By assumption, the palirs Aq,Ar and Aq,B are coprime. By
Assumption 2, Ae divides A and since by Assumption 1 A,B is a coprime

palr so 1Is the palir Ae,B. The palr Ar’A is coprime and since
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A divides A, so is the pair A ;A . Thus, the pair A A, BA {is
@ r’e e q r
coprime. The result then follows immediately by application of

Lemma 3 in Section 2.8.1. .

Theorem 19: Optimality of the implied reference equation

Let Assumptions 1 and 2 be satisfied. Then the optimal
reference controller polynomfal M is determined uniquely by the
minimal solution with respect to M of the implied reference
diophantine equation (2.187) 1.e. the solution such that:

(AeAq)—lM {s strictly proper L]

By Lemma 6 the optimal solution is characterised by (AeAq)—lM
strictly proper. When Assumptions 1 and 2 hold then, by Lemma 8,
the implied equation (2.187) possesses just one solution such that
(AeAq)_lM is strictly proper. Such a solution must, therefore, be

the unique optimal one. L]

Discussion

The extra condition required for optimality of the {implied
reference diophantine egquation is that Ae, the reference generator
denominator, must divide A (Assumption 2). In the case of the
unstable reference generators of greatest practical interest (such as
steps, ramps, etc) this condition also corresponds to one of the

optimal control problem solvability conditions (condition (b) in
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Theorem 14). If, therefore, the reference generator is unstable and
the optimal control problem is solvable, then the implied reference
diophantine>equation will uniquely determine the optimal reference
controller whenever A and B are coprime, which 1is exactly the
condition required for optimality of the implied feedback diophantine

equation. .

2.9.3 Optimal feedforward controller

Lemma 9
The optimal feedforward controller for the system shown in
Figure 2.4 and the cost-function defined by equation (2.43) is given

by:

e =% 7 Cepn®ra 88
7; B, AC (2.188)
£4ACeba

where X (along with Z and Y) satisfy the polynomial equations: -

p*2783% + zaa A ENYYY 2.189
Cz o™ =z rBquDDfd (2. )
* —p3 —o3 * k %

83, _ _ "8
D2 ®7Y - zBA A = 2 B ATA B B DD (2.190)

Dc’ Df and Dfd satisfy equations (2.132), (2.133) and (2.135),
respectively. The diophantine equations must be solved for the
minimal solution (X,Y,2) with respect to Z {.e. the solution such

that:

* —p3 —
(Dcz g3) 1Z is strictly proper .

Proof:

Given iIn Section 2.7. ™
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Lemma 10
The polynomials X and Y in equations (2.189) and (2.190) also

satisfy the implied feedforward diophantine equation:

AAqY + BArX = DcDDfd (2.191)
L ]

Given in Section 2.7. .
Optimality of the implied feedforward diophantine equation
Assumption 3

Let A be a divisor of both A and D. .

2

Lemma 11
Let Assumption 3 be satisfled. Then the implied feedforward

dfophantine equation (2.191) becomes:

Yl+ L - ¥ .
AAq BArX DCD Dfd (2.192)
where:
1 t 1]
Y4 AY , XA AX , DA AD .
Proof:

The proof follows by analogy with the proof of Lemma 12 in

Section 2.8.2. .

Theorem 20 : Optimality of the implied feedforward equation

Let Assumptions 1 and 3 be satisfied. Then the optimal
feedforward controller polynomial X is given by X = ARX' where X' is
determined uniquely by the minimal solution with respect to X' of the

implied feedforward diophantine equation (2.192) i.e. the solution
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such that:

(AAq)_1X' is strictly proper. .

Proof:
The proof follows by direct analogy with the proof of

Theorem 17. .

Discussion

Again, for the unstable generators of practical importance the
condition that Al must divide A and D corresponds to one of the
optimal control problem solvability conditfons {(condition (c) in
Theorem 14). The additional condition that A and B must be coprime

{s also the condition required for optimality of the implied feedback

diophantine equation. .
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2.10 PROPERTIES AND STRUCTURE OF THE OPTIMAL SOLUTIONS

Some 1important structural properties of the optimal controller

designs may be summarised as follows:

(1)

(i1)

(1i1)

The dynamic weighting elements in the cost-function allow
frequency selective costing to be applied to the tracking
error and control input signals. This feature 1is
manifest in the fact that the control welghting
denominator Af is a factor of the numerators of each part
of the controller and, when the output disturbance

n{t) = 0, the error weighting denominator Aq is a factor
of the denominators of each part of the controller.
Thus, the magnitude of the loop~gain with respect to
frequency is directly influenced by the choice of cost
weights.

The denominator of the output disturbance sub~system (An)
appears as a zero in the feedback loop. This fact is
consistent with the well knowq transmission-blocking
property of zeros (MacFarlane and Karcanlas, 1976) and
has a natural interpretation since these disturbance
modes should not, intuitively, be allowed to propagate
through the system.

Any Hurwitz poles of the plant {nput-output transfer
function (zeros of Ap) which are not also poles of the
disturbance sub-systems (and, in the SDF structure, the

reference generator) are cancelled by the controller.



(1iv)

(v)

(vi)

(vit)
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In line with the Internal Model Principle of Control
(Francis and Wonham, 1976) the solvability conditions for
the optimal control problem demand that any unstable
reference and disturbance modes must also be modes of the
plant input-output transfer~function.

The closed-loop systems for the SDF and 2DF control laws
are 1internally stable except in the particular case when
the plant {input-output transfer-function has a pole on
the unit circle and when the disturbance sub-systems
(and, In the SDF case, the reference generator) do not.
In the SDF controller structure the cascade part of the
controller 1s independent of the feedforward part. In
the 2DF structure the feedback part of the controller is
independent of both the reference and feedforward parts.
The feedforward part of the controller 1s causal and
stable even when the plant 1s {inverse unstable and when
the delay associated with the plant is longer than the
delay associated with the measurable disturbance
sub—-system (wx). These plant conditions may cause
serious difficulties 1n <conventional feedforward

controller designs.
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-1 - 1
r ‘e r 1-0.8d

The closed-loop system was simulated over 200 samples, with the load

disturbance belng applied at sample instant 100.

(1) No feedforward, scalar cost weights

When the cost—-function weights are chosen as Qc = Rc =
0.1 the feedback and reference controllers may be

calculated from Theorems 14 and 15 as:

0.24
Cep = 3
1.1540.64d+0.12d
0.63-0.44d
¢ 3
T 1.1540.64d40.12d

The tracking error for Lhis system is plotted in Figure
2.5(a) from which it Is seen that the load disturbance is

not rejected from the oulput.

(i1) No feedforward, integral action

To obtain integral action the error weighting {s chosen

as.
_ 0.1
- -

For this choice of weights the feedback and reference

controllers may be calculated as:

1.53 - 1.23d
Cep = — 3 3
1.3540.42d-1.12d%~0.65d
2.54 - 3.32d + 1.08d>
C =
r 2

1.35+0.42d-1.124 «0.65d3

The tracking error for this system is plotted in Figure

2.5(b). In this case the 1load disturbance firstly
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appears on the output and 1s then rejected by the

integral action.

(111) Conventional feedforward

Since the delay in D is less than the delay in B the
conventional feedforward controller 1s calculated

according to:

D(1)

£E = 'iz'l—)— = 0.167

The cost weights were chosen as in (1) to be Qc = Rc =
0.1. The feedback and reference controllers are
therefore the same as those in part (1). The tracking

error for this system is plotted in Figure 2.5(c). Since
the delay in D 1is less than the delay in B the load
disturbance cannot be eliminated initially. The
feedforward action does, however, reject the load

disturbance in steady state.

(iv) Optimal feedforward

When Qc = Rc = 0.1 the optimal feedforward controller may

be calculated from Theorem 14 as:
1.219 - 0.902d
1.14740.64d+0.124d 2
The tracking error for this system {s plotted in Figure

Ceg =

2.5(d).
To compare the effectiveness of load disturbance rejection in
Parts (11)-(iv) above the tracking error variance oz was approximated

in each case by:
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200 2

2 1
o =x— I e (1)
e 200 =1

In cases (11)-(iv) the error variance was found to be:

(11) cz - 6.867
(111) GZ - 6.862
(iv) GZ = 3.057

This shows that the integral action and conventional feedforward
performance is very similar, while the optimal feedforward results in
a tracking error variance approximately half of that in cases (i1)

and (iii).
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Example 2.2

In this example it is demonstrated that when the plant A and B
polynomials have a common factor then the couple of polynomial
equations (2.153)-(2.154) must be solved to obtain the unique optimal
feedback controller. In addition, the earlier slLatemenl tLhat the
controller calculated using'the implied equation (2.155) when
(A,B) # 1 leads to optimal closed-loop poles but sub-optimal zeros is
substantiated.

Congider the following plant:

-1, d(1-0.5d)
Wo = A B = 05,50 (1-0.84)
-1 1
Wg = A& C = A5.30)(1-0.80)

The polynomials A,B and C may be identified as:

A = (1-0.5d)(1-0.8d)
B8 = d(1-0.5d)
c=1

In the optimal control problem to be solved assume that all
measuremeni noises are zero and that the cost-function weights are
selected as A = B = A =B =1, The spectral factors D and D
q q r r c f

may then be calculated using equations (2.132) and (2.151) as:

Dc = (1-0.5d)(1.54-0.52d)

Df =1
The solution to equations (2.153)—-(2.154) with F minimal degree is:

G = 1,25-0,43d

H = 1.54-0.53d

F = -0.82+1.65d
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The unique optimal feedback controller is, from equation (2.152):
-1 1.25-0.43d

Cfb =H G = 1.54-0.53d ~ 0.81

" If, on the other hand, the implied polynomial equation (2.155) is
solved to obtain G and H (after cancelling the common factor (1-0.5d)
between A,B and Dc) then the following controller is oblLained:

Cop = Wle = %—% = 0.46
Since in both of the above cases the palrs G,H satisfy the implied
polynomial equation (2.155) (which is the closed-loop characteristic
equation) boLh controllers give the same (optimal) closed-loop poles
as given by the spectral factors. However, equations (2.39) and
(2.40) show that the closed-loop zeros depend upon the controller
numerator and denominator polynomials G and H. Since in the above
example the polynomials G and H calculated using the implied equation

are different from the optimal G and H (calculated using the coupled

equations) the resulting closed-loop zeros cannot be optimal.
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2.11 OPTIMAL REGULATION WITH DISTURBANCE MEASUREMENT FEEDFORWARD -

THE MULTIVARIABLE CASE

The design of optimal regulators for multivariable plants
subject to nolse disturbances has been intensively studied in recent
years. If only the plant output can be measured it 1s well know that
the optimal regulator consists of linear output feedback and can be
designed using either time-domain (Kwakernaak and Sivan, 1972) or
frequency-domain (Youla et al, 1976b) methods. Alternatively, the
optimal mulctivarliable regulator may be designed using the polynomial
equation approach developed by Ku¥era (1979) and extended to the
tracking case by §ebek (1983a).

It follows from the preceding sections of this chapter that {f,
in addition to the plant output, some disturbance can be measured
then a two—input controller, utilising both feedback and disturbance
measurement feedforward, may be used to {improve the controller
performance (i.e. to decrease the optimal cost).

The scalar feedback/feedforward regulator solution obtained by
$ebek et al (1988) was recently extended to multivariable plants by
Hunt and $ebek (1989), and the results of this work are summarised in

the following.

Problem Formulation

The multi-input multi-output plant under consideration i3
governed by the equation:

Ay = Bu + Cl¢1 + Cz¢2 (2.193)
where y 1s the vector output sequence, u is the vector control input
sequence and ¢1 and ¢2 are two vector nolse seguences. A, B, Cl and

C2 are polynomial matrices in d. The plant is assumed strictly
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causal, so that <A> is invertible while <B> = 0. The noise component

¢2 passes through a filter to produce a measured disturbance signal

Asws = CS¢2 (2.194)
where AS and Cs are polynomial matrices in d, with CS square. The
filter A;ICS typically represents measurement dynamics. The general
linear controller which operates on the plant output (corrupted by a
measurement noise ¢3) and on the measured disturbance signal ¢S is
described by:

Pu = Q(y + ¢3) + S¢s (2.1935)
where P, Q and S are the polynomial matrices to be found, and <P> is
invertible. The overall system structure is shown in Figure 2.6.
Note that in practice the controller must be realised as a single
dynamical system having two vector inputs and one vector output (i.e.
the control signal u).

All the vector random sources ¢1, ¢2 and ¢3 are mutually
and g,,

independent stationary white noises with intensities ¢ a.

1> "2
respectively. To avoid the trivial case of 02 = 0 (i.e no measurable
disturbance) we assume here, without loss of generality, that 02= 1.
dl and 03 are real non—negative definite matrices.

The desired optimal controller evolves from minimisation of the
cost-function:

J = ttace<Q®u> + trace(E@y) {2.196)
where @u and ® are correlation functions of u and y in steady-state,
respectively. Q and I are real non-negative definite weighting

matrices. Thus, the design problem is to minimise the cost (2.196)

subject to the constraint that the closed-loop system defined by
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w
w

Figure 2.6 : Multivariable regulator with
disturbance measurement
feedforward

bs
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equations (2.193)-(2.195) be asymptotically stable.

Problem Solution

The first stage in the design procedure 1s to find a pair of
right—-coprime polynomial matrices A1 and Bl such that:
1

A 's =B AT

1A (2.197)

For brevity we assume that the given data make the problem regular
i.e. that there exist stable polynomial matrices Dc and Df (the

spectral factors) which satisfy:

*Q * * 2

AJOA  +BTB = DD_ (2.198)
* * * 2.199

AGBA + Clalc1 = Dfo (2. )

Further, the following right-coprime matrix fractions are defined

by:
-1 -1
Df A= Adea (2.200)
-1 -1
Df B = Bdeb (2.201)
a"tc, = cat 2.202)
2 Ta'c (2.
Finally, we define the right—coprime polynomial matrices Bc’ Cb by:
BCb = CZBc (2.203)

The maln result may now be stated as follows:

Theorem:
The optimal control problem is solvable if and only if:
(i) The greatest common left divisor of A and B 1is a stable
polynomial matrix.
(11) CS is a stable polynomial matrix.

The optimal controller polynomial matrices P, Q and S are
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obtained from the following left-coprime matrix fraction:

-1 1
fb’

Here, X and Y (along with V) is the solution of the equations:

-1 -1 -1 S g
D (p,q,s] = [xp YD (YD C - 2)A_C, AS] (2.204)

D'x + v'B. = A%g 2.20

X+ VB, = AQ, (2.205a)
X £ 3 X

DY - VA, = BED,

such that <v> = 0,

(2.205b)

The polynomial matrix Z (along with U and W) 1is the solution of

the equations:

X X X
DU+ W B, =AQC, (2.206a)
* * *
D,Z -~ WA_ = BIC, (2.206b)

such that <W> = 0. ¢

Proof:
We define six rational matrices p, q, s, t, P and q; by:
-1 -1
p [a,s] =P [q,s] (2.207)

and

=1 (2.208)

1

t = qh ', - sA; c, (2.209)

2

Using equations (2.193)-(2.195) the vector control input and output
sequences may be expressed as:
_ -1
u = AlqA Cl¢l Altq:2 Aqu:3 (2.210)
_ - -1 . _ -1 _
y = (1 qu)A Cl¢l (Blt A Cz)q:2 qu¢3 (2.211)

The corresponding correlation functions are:
*

x —~]1 k %

GlClA q Al

-1 *x k *x %
¢ = AlqA C + Altczt Al + Alq03q Al

u 1
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-1 % _1* * + * * 2,912
=AqA DDA qA +ActotA (2.212)
) I -8 qA D D*A—l* 1 *8%y + B + 0,q B
y = ¢ (DA DDA (T - q B 199 7 99 %
..1 _1 %
) + (Blt - A Cz)oz(Blt - A CZ) (2.213)
We now substitute (2.212)-(2.213) in (2.196). On employing

(2.198)-(2.199) and completing the squares the cost may be expressed
in the form:

* *
J = trace{G G > + trace<H > + trace<G G > + trace<H >
q q q tt t

- trace<203> (2.214)
where,
*
G = (q-0"'8nHald (2.215)
q c c 1 f :
x 1" 1 -1% % -1
H =gt (2 - z8;p 'n " BYmATlD, (2.216)
*
~ S U
G, = (o_t - ot ByzAlc,) (2.217)
%* *
i o=cal(z-3s0 ! e (2.218)
t 2 17¢ ¢ 1 2 -

Now, notice that the first term in (2.214) is related to the feedback
term q and does not depend on the feedforward term s. Conversely,
the third term in (2.214) is related to the feedforward term s and
does not depend on the feedback term q-. The remaining terms in
(2.214) are not affected by the controller at all. To achieve the
minimum cost we therefore minimise the first and third terms in
(2.214) independently by suitable choice of q and s. Minimisation of
the first term 1is known (Ku¥era, 1979) to be accomplished by
setting:

-1 -1,.-1

ey » @ =D YD (2.219)

-1
p = D, XD
where X and Y are given by (2.205). Consequently, due to the

definitions of Dc' D and D

€a b’ p and q are stable rational

matrices.
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To minimise the third term in (2.214) we proceed analogously :

using equation (2.206b) Gt 15 decomposed as:

*

G =(t-2za Yy +ptw (2.220)
t c c c *

Since the equation (2.206) is solved subject to <W> = 0, the best
*
which can be done to minimise <Gth) is to set the term in brackets
in (2.220) to zero. This calls for:
-1_ -1

Dc ZAc (2.221)

t

or,

s Dgl(yngica - Z)AZIC;IAS (2.222)
where use has been made of (2.209), (2.202) and (2.219). Equatlon
(2.204) then follows from (2.219), (2.222) and (2.207), (2.208).
Now we must show that, similarly to p and q, s defined by
(2.222) is also a stable rational matrix. To this end, post-multiply
-1 -

£,Cp, and (2.205b) by D

sides of the resulting equations, and using the 1identities

(2.205a) by D ;Ca. By comparing the left-hand

(2.200)-(2.203), we obtain:
D:[xngicb -u, Yngica -z] = (v*uglc2 - w*)[-uc, Al (2.223)
By the definitions (2.202)-(2.203) and by condition (1) all the
invariant polynomials of [—Bc, Ac] are stable. It follows that D:
(unstable) divides the right-hand-side of (2.223) and Ac divides the
left-hand-side. It follows, therefore, that s defined by (2.222) is
stable.

To complete the proof we must still justify the solvability
conditions (1) and (i1i). Clearly, the cost 1s finite 1ff all the

rational matrices in (2.210) and (2.211) are stable. It follows from

equations (2.210) and (2.211) that this 1s the case 1ff p, q, and s
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are stable and both conditions (1) and (i1) hold. Moreover,
condition (1) implies the existence and uniqueness of the solution to
equations (2.205) and (2.206). See Ku¥era (1979) for a proof of this
assertion.
Finally, using the theorem on the stablility of wultivarilable
feedback systems given by Ku¥era (1979), stable p, g, aud s result in

an asymptotically stable closed-loop system.
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CHAPTER THREE
INTRODUCTION TO SELF-TUNING CONTROL
Summary

This chapter provides an introduction to Part 2 of the theslis.
The fundamental reasons for the use of feedback control (as opposed
to open~loop control) are reviewed in Section 3.1. The ubiquitous
PI control law is discussed in Section 3.2, and 1its assoclated
problems then lead to the introduction of analytical design, adaptive
control and identification in Sections 3.3 and 3.4. A brief history
of adaptive control is given in Section 3.5 and the three most widely
used approaches to adaptive control (gain scheduling, model reference
adaptive control and self-tuning control) are discussed in Section
3.6. Previous approaches to self-tuning control are briefly reviewed
in Section 3.7. Finally, the contributions made in Chapter 4 in the

polynomial equation approach to self-tuning control are outlined.

3.1 FEEDBACK CONTROL

The overall purpose of a control system is depicted, in a very
general sense, in Figure 3.1 : the process responses are required Lo
be related in a specified way Lo the system Inputs. To achieve the
desired response the process is driven by a set of actuating signals
which are generated by the system controller. The control synthesis
task is to design a controller which, from measurements of the system
inputs, will generate the required actuating signals.

In the simplest problem where the system has only one input and
one response signal the design of an appropriate controller may, at

first sight, appear to be very straightforward. Suppose the process
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is described by a transfer—-function W(s) and that the desired overall
transfer—function from input to output is T(s). Any desired‘relatlon
. T(s) between input and response may be realised by an open loop
configuraction as shown 1n Figure 3.2. The controller

transfer-function C(s) is

T(s)
W(s)

In the open-loop configuration the overall transfer-functlon T(s) 1s

C(s) = (3.1)
obtained by cancellation of the process dynamics since the controller
contains the inverse of the process transfer-function. Clearly,
however, the success of the open-loop solution depends upon accurate
a priori knowledge of the process characteristics. Such an approach
fails i{n the following circumstances:
(1) When W(s) 1s not accurately known in advance of
controller design.
(i1) When W(s) varles during normal system operation.
(111) When the process is subject to unknown disturbances which
corrupt the responses.
In addition, the cancellation of any unstable poles of W(s) will
create an unstable hidden mode in the forward path. To circumvent
the difficulties posed by the above three factors, which characterise
almost all real design problems, a feedback configuration is normally
used. A typical feedback control system is shown in Figure 3.3 where
the disturbances affecting the process have been included.
The equation relating the command input r and disturbance signal
n to the process output y may be found by straightforward analysis

as
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- W(s)G(s) r+ 1 n (3.2)
Y = T ¥ W(s)G(s)H(3) T + W(s)G(s)H(s)
The closed-loop sensitivity function S{s) is defined as

1
1 + W(s)G(s)H(s)

If at all frequencies of interest (i.e all frequencles where the

S(s) =

3.3)

destired system response signal contains significant energy) G(s) is
made sufficiently large so that

IWCIw)G(Jw)H(Jw) | >> 1 3.4)
then the overall transfer—function from input to response at these

frequencies is

W(s)G(s) a1
1 + W(s)G(s)H(s) H(s)

The overall transfer-function T{s) 1s independent of the process

T(s) = (3.5)
dynamics W(s) and 1s therefore unaffected by uncertainty or
varlations in the process characteristics. In addition, when (3.4)
holds the sensitivity function, which 1is equivalent to the
transfer~-function between the disturbance signal and the process
response, becomes

S(s) 20 (3.6)
resulting in the elimination of the effect of the disturbance from
the process response.

The closed-loop equation of the feedback system is then

o 1
M)

Thus, the two primary reasons for using feedback control are to

r 3.7)

reduce the effects of
(1) Parameter uncertainty
(11) Unknown disturbances

where parameter uncertalnty 1is taken to {nclude both {initial
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ignorance of W(s) and subsequent variations in W(s).

3.2 CONVENTIONAL CONTROL

Probably the most widely used form of feedback control law in
industry today is the Proportional Integral (PI) controller. The
basic form of the PI controller is {llustrated im Figure 3.4. The
control law which generates the actuating signal u(t) 1is described
by

W(t) = K(e(t) + 1 [ e(m)dm) (3.8)
i

where the proportional gain K and the integral time-constant 'I‘1 are
the control design parameters which must be selected by the control
gystem designer.

The selection of appropriate values of K and T1 to achleve a
desired response 1s known as the tuning problem. When tuning a
control loop the engineer typlically uses one of two techniques:

(1) The control loop 1s opened and the process input u(t) 1is

manipulated manually. From the process response the

appropriate values of K and T, can be obtained using same

i
heuristic rule (such as the Ziegler-Nichols (1942)
method).

(11) A trial-and-error approach can be adopted. The engineer
makes an initial guess of the values of X and T1 and,
based on observation of the closed-loop response
obtained, subsequently changes these values to achleve

the desired response.

It has been estimated by some sources that around 80% of existing
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process control loops are based on the PI control law and have been
tuned by one of the methods outlined above (Deshpande and Ash 1980).
Typically, after a loop has been tuned the values of the controller
coefficlents remain unchanged over the operational lifetime of the
controller. This situation 1s not surprising since modern process
plants have a very large number of loops, many of which have time
constants of the order of minutes or even hours. The tuning of loops
using the trial-and-error or heuristic methods outlined above can
therefore be a very time consuming procedure and it 1is difficult to
obtainra set of controller coefficients which in some way can be
regarded as being the 'best'.

Although conventional controllers (such as PI) are widely
regarded as giving adequate control performance, the tuning
difficulty means that the accepted performance 1s almost always
inferior to that which is ultimately possible. This fact is becoming
more Iimportant as tighter control on new and existing loops 1is
demanded to ensure that plants are operated as efficiently as
possible. Small improvements in control performance can result in
large economic benefits due, for example, to savings in raw materials
and energy. A further Important feature of conventional control
designs 1g the simplicity of the control laws employed. While it is
true that many control loops in process control applications can be
reasonably approximated by a well-damped second order transfer-
function, more 'advanced' applications and a few critical process
control loops exhibit dynamics which render a simple control law suéh
as PI 1inadequate and demand a more complex design. Successful

implementation of a PI controller is made particularly difficult in
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the presence of any of the following conditions:

(1) The process may contain significant dead-time i.e. it may
contain an appreciable time-delay between a given input
to the process and the resulting response.

(i1) The process may be of high order.

(111} The process may be open-lcop unstable, poorly damped, or
non-minfmum phase.

A final factor in the consideratfon of conventional control system
design is the variation of process dynamics during system operation.
A controller which is well tuned initially may exhibit unsatisfactory
performance should the dynamic characteristlics of the controlled
process change. Such dynamic changes may be due to several causes,
for example:

(1) Changes in environmental conditions.

(L) Ageing of system components.

(111) Non-linearities, where the process gain varies with the
operaling point.

An overview of conventional process control system design is

given by Shinskey (1979).

3.3 ANALYTICAL DESIGN AND ADAPTIVE CONTROL

In distinct contrast to the conventional design methods

described above are the range of analytical design techniques

discussed in Chapter 1 which have been developed by control theorists
during the past forty years. By analytical design is meant the
application of wmathematical techniques to idealised models which

represent the physical process to be controlled : given a process
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model the design algorithm produces once-and-for—-all the controller
which meets the demanded performance specification.

Clearly, the concept of analytical design 1is highly idealised
and, assuming an accurate model of the process 1s available, depends
on two factors:

(1) The formulation of a 'sensible' specification of control

performance.

(i1) The mathematical tractability of the design problem as
defined by the performance specification and process
model.

The analytical design techniques provide a sharp contrast to the
trial-and—error methods since they proceed from the problem
specification directly to the final controller design without the
need for subjective analysis. Further, the methods place no
restriction on the complexity of the controller and most can
therefore cope with processes which have complex dynamics. For
these reasons the analytical design techniques overcome the first two
of the drawbacks of conventional controllers listed above.

Implicit in the discussion of the analytical design techniques
1s the assumption that a model of the process 1is available. The
success of any such design in achieving the specified performance
objectives depends directly upon the accuracy with which the process
dynamics are known @ only if the model did exactly represent the
actual process dynamics would the performance specification be
exactly met. The application of any analytical design can only
follow an evaluation of the process dynamics.

Evaluation of process dynamics 1is known as the identification



127

problem. Techniques for {identifying the process dynamics are
discussed briefly in cthe following section. For the purposes aof
controller design it is most useful to identify process dynamics
in transfer-function form.

Assuming that the initial identification of the process leads to
an accurate model, the problem of initial ignorance of the process
dynamics can be overcome and a suitable controller can then be
designed. However, the problem of subsequent variation in process
dynamics remains. As with conventional control, variations 1in
process dynamics can lead to a deterioration in control performance.
The fact that almost all real physical processes display some kind of
time variation in their dynamics has led to the phenomenal growth of

interest in the concept of adaptive control : control in which the

automatic and continual identification of process dynumics is used as
a basis for the automatic and continuing re-design of the
controller.

The general concept of adaptive control 1is encapsulated in
Figure 3.5. Compared to the non—adaptive control scheme in Figure
3.1 the adaptive controller consists of two additional elements:

(1) Process {identification. The 1identifier, wusing
measurements of various process signals, determines the
dynamic characteristics of the process.

(i1) Controller adjustment. The controller coefficients are
coatinually adjusted 1in sympathy with any measured
variation in process dynamics.

Thus, the ideal adaptive controller can overcome the problems

posed by parameter variation and continually meet the demanded
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performance specification. In Section 3.1, however, reduction of the
effect of parameter varlation was clted as a principal reason for the
use of feedback control. Why, then, {s adaptation required in
addition to feedback?

Unfortunately, the high gain which ensures that condition (3.4)
{s satisfied at frequencies of Interest also tends to drive the
closed-loop system into instability at other critical frequencles.
In addition, this high gain will tend to accentuate any measurement
noise which is present. A limic exist; in the allowable closed-
loop gailn, which essentially amounts to a trade-off between
performance and stability. Although the effect of parameter
varlation 1s greatly reduced by feedback, the degree to which the
overall design objectives are achieved still depends critically upon

the level of avallable knowledge about the process dynamics.

3.4 SYSTEM IDENTIFICATION

Most areas of engineering and scientific inguiry are concerned
with the study or manipulation of dynamical systems {systems where
the present output depends not only on its preseant input, but on {its
past history i.e. systems having memory). Central to the study of
dynamical systems is the concept of a system model; a model provides
a convenlent means of summarisfng knowledge about the system's

properties and behaviour.

System models

A system model! can assume many forms, for example:
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(1) Mental or Iintuitive models where the knowledge about the

system Is held in the mind of the person interacting with
that system. For Instance, a driver will generally build
up an Intultive feel for the way 1in which a vehicle
responds to the vartous inputs (accelerator position or
steering wheel angle, for example) he or she applles to
the system.

(11) Graphical models where Lhe system properties are summarised
in a graph or table; In process control a graph of the
non-linear characteristics of a valve 1s frequently
used.

(111) Mathematical models where the system properties are
summarised by the mathematical relationshlip between
system varlables; Newlon's second law provides a
universal model which states that the acceleration of a
body is directly proportional to the force acting on tt.

These few examples 1llustrate firstly the general necessity of models
as an ald to the understanding of dynamical systems and secondly
thelr role in facilitating 1Interaction with those systems. By far
the most important class of models, however, are mathematical models.
The following list of applications, which is by no means exhaustive,
helps to clarify the Importance of and need for mathematical models:

(1) Throughout science mathematical models ave used to quantify
the gross features of system behaviour. The model 1is
then used to infer the more general system propertles and
to examine the wider Implications which result.

(11) A model allows the future behaviour of a system to be

predicted. Prediction models find application 1in such
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(iv)

(v)
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areas as economics and control.
The analytical control system design techniques outlined
in a previous section require that a model of the
controlled process be available.
Models c¢an be used for fault diagnosis. When the
measured system behaviour 1Is seen to differ significantly
from the model behaviour this may indicate a fault
condition In the system.
Models can be used for system simulation and operator
training. Examples are simulators for aircraft and
nuclear power stations. Such simulators also allow
unusual or potentially hazardous situations to be

investigated.

There is one class of mathematical models which has received far nmore

attention

than any other, namely linear, lumped, time-1invariant

models. Briefly, this class of models is characterised as follows:

(1)

(11)

(i11)

Linear models: If the response of a system to an input
ul(c) is yl(t) and its response to uz(t) is yz(L), it is
linear If its response to aul(L) + Buz(L) is ayl(L) +
ByZ(L), where a and B are real constants.

Lumped models: If a system's variables are functions of
time only and have no spatial dependence, then the system
is lumped. Otherwise, the system is distributed.

Time-invariant models: A dynamical system i{s time-

invariant 1€ {its input-oulput relations do not vary with
time {.e. 1f the response of a time-invariant system to

an Input u(t) Is y(t), then the response to the delayed
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input u(t=t) 1is y(L~t).

The predominant factors in the popularity of 1linear, 1lumped,
time-invariant models are their simplicity and amenability Lo
analytical manipulation. Within this class of model there are
several further possibilities regarding the precise nature of the
model. Some of the most important distinctions are:

(1) Internal or external models. Internal models (such as

state-space models) of a dynamical system describe all
the internal couplings between the system variables.
External models, or {input-outpulL models, describe only
the relationship between the system input and output.

(it) Time-domaln or frequency-domain models. System models

may be represented in Lhe time-domain using differential
or difference equations. Alternatively, the system may
be described by a transfer-function in the frequency
domain using either Laplace- or z—transform techniques.

(111) Continuous or discrete models. Moslt real sysltems are by

their very nature continuous-time. In very many cases,
however, observation of a system is performed using a
computer, 8o that the available data 1is discrete-time.
In addition, the growing popularity of digital control
techniques calls for discrete-tLime models.

(1v) Deterministic or stochastic models. If Lhe response of a

system to a given input 1s certaln, Lhen the system {s
deLerministic. Frequently, however, system responses are
subject to stlochastic, or random variations due, for

example, to nolse disturbances.
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The majority of analytical control design techniques used in
adaptive control are based on models which are linear, lumped and
time—-invariant. Invariably, the particular form of model used is an
external transfer—function in discrete-time. In the subsequent
discussion, therefore, this type of model is assumed.

Although the «control design techniques and 1{identification
methods are based on the assumption that the controlled process is
time~invariant, the main motivation for the use of adaptive control
{s the requirement to maintain a specified control performance in the
face of variations in process dynamics. Such systems can still be
considered time-invariant if the dynamics vary slowly in comparison
with the response time of the overall system. Satisfactory
performance is then obtained by coﬁtinually updating the system model
upon which the control design is based. Techniques which allow
variations in process dynamics to be tracked are described in Chapter
4. These techniques awmount to small modifications of the basic

identification methods.

How to construct a system model

There are two basic ways in which a mathematical model of a
system can be constructed: from prior knowledge about the system or
by analysis of experimental data obtained from the system. These

approaches are known, respectively, as modelling and identification:

(1) Modelling: The 1internal mechanisms which shape the
behaviour of a system can be {investigated. By direct
analysis of the physical laws governing the system, a

mathematical model can be constructed.
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(i) Tdentification: A mathematfcal model can be constructed
by performing experiments to obtaln data from the systenm.
Various techniques can then be used to determine the
model which best fits the measured data.

Tn practice the distinction between modelling and identification
is not quite so clear-cut and most models are built using a mixture
of the two technlques. In the modelling approach it is frequently
impossible to build a complete model of the system due to a lack of
total knowledge about the physical 1laws governing the system's
behaviour. Thus, mathematical modelling {s usually combined with
experimentation. A further feature of the modelling approach 1is
that it may be difficult and time-consuming.

In identification, on the other hand, 1t is clearly desirable to
plan experimental trials using as much prior knowledge about the
system as possible. Identification provides the foundation upon

which the majority of adaptive control techniques are built.

Identification -
The techniques of constructing a mathematical model wusing
measured data consist of the followlng steps:

(1) Experiment design: It is necessary to ensure that the

input to a system during an identificatlion experiment is
sufficiently 'rich'. This ensures that all modes of the
system are excited so that the measurements contain
relevant {nformatifon about the system dynamics. This
issue 1is of particular Importance when a process 1s

identified while under closed-loop control since the
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process input cannot then be freely chosen.

Choice of model structure: The exact parameterisation of

the model to be 1identified must be chosen before
experimentation begins. Often, the model 1is simply
chosen to be linear and of finite order.

Parameter estimation: Having decided wupon the model

structure, the parameters, or coefficients, of that model
are obtained by processing the measured data. The most
common form of parameter estimation methods are
formulated as optimisation proublems where the best model
is selected as the one that best fits the measured data
as judged by a specified criterion.

Model validation: After a model has been obtained from

an identification experiment, it must bhe checked to
ensure that it is a credible representation of the actual
system. Any 1inadequacies which become apparent may
require alterations to the model structure or
experimental conditions. 1In practice, therefore, system

identification is an fterative procedure.

The many fdentification techniques which are available can be split

into two broad classes:

1)

(11)

Off-line (batch) methods. 1In off-line identification a

batch of data is collected by taking measurements during
an experimental run. After the experiment is complete

the data is processed to produce a model.

On-line methods. In on-line identification a recursive

algorithm is used to update a model at each time instant
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as new data becomes available. Such recursive
identification methods are used in adaptive control and
in other real-time applications where the process
dynamics must continually be monitored.

In applications where the possibility of performing off-line
identification exists the estimates obtained are usually of higher
precision and are more reliable. The storage requirements for
off-1ine algorithms are, however, far greater than those for on—1line
methods. 1In the recursive on-line methods pnly the most recent data
must be retained and old data can be discarded. The methods of
recursive system Identification are the subject of tLhe recent books
by Ljung and SGderstrom (1983) and Norton (1986), and the survey

paper by Hunt (1986).

Methods of identification

Some of the classiec methods of identification are based upon
non—-parametric system models. An example of such a model is a
system's impulse response which 1s specified directly by each value
of 1it's argument. Other classic methods obtain the systen
transfer—function by frequency-response or transient-response
analysis. In the presence of noise, correlation techniques have
frequently been used.

An alternative to the classic methods are the 'best-fit' methods
in which a criterion function 1is introduced to give a measure of how
well a model fits the experimental data. The most common of such
methods 1s the least-squares technique. 1In this technique the model

paramelers are selected In such a way that the sum of the squared
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errors between the model output and the measured system output 1is
minimised; 1if the model parameters are denoted by the vector 8 and
;(9) represents the model output, which 1ideally should equal the
actual output y, then the least-squares method attempts to find the

model parameters such that the criterion

1 N ~ 2
36) =5 T (y - §o) (3.9)
i=1

is minimised, where 1 = 1, 2...N represenLs the discrete instants of
time over which the identification experiment 1s performed. The
identification methods described in Chapter .4 are based on the

principle of least—-squares.

3.5 ADAPTIVE CONTROL - A BRIEF HISTORY

Although the idea of a control system which has the ability to
continuously adapt to changing process conditions has a strong
intuitive appeal, the 1initial interest in adaptive control arose,
like many other major developments {n control theory, from the need
to solve an 1important engineering problem. Research 1in adaptive
control first became very active 1in the early 1950's in connection
with the design of control systems for high performance aircraft
(Gregory 1959, Mishkin and Braun 1961). The performance
characteristics of these aircraft varied significantly in flight due
to the wide operational range of speed and altitude. It was found
that a normal fixed parameter controller could only be matched to a
single flight condition and that at other conditions within the
flight envelope the fixed controller would give unsatisfactory

performance. The need to develop a more sophisticated controller
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which could adapt to changing dynamic characteristics generated a
great deal of enthusiasm and effort throughout the fifties. Early
surveys in this area are glven by Aseltine et al (1958), Stromer
(1959), Jacobs (1961) and Truxal {(1964). Applications at this time
were, however, largely unsuccessful. The adaptive concept seemed Lo
be a natural way to deal with the parameter varlation problem but the
lack of initial success was the result of two major factors:

(1) Existing hardware was not sufficiently advanced to deal
with Lhe additional complexity of the adaptive
controllers.

(i1) A comprehensive theory of the maln aspects of adaptive
control was not avaflable.

Enthusiasm 1in adaptive control was lessened to some extent 1in the
sixties. In addition to the above problems, this situation was
brought about by the emergence of a major new technological
challenge: in the USA and USSR enormous resources were channelled
into the research and development of control systems for the guidance
and tracking of space vehicles. Included in the rapid progress made
during this time were many contributions which proved Lo be of great
importance for the development of adaptive control : major advances
were made 1In the theory of stochastic control, 1in system
identification, and in estimation theory.

These developments led in the early seventies to a renewed
interest in adaptive control and three faclors were to play a key
role in 1ts success:

(1) The epoch-making progress 1in microelectronics made 1t

possible to implement the new generation of adaptive
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control algorithms easily and cheaply.

(11) Some of the basic theoretical 1ssues in adaptive control
were addressed and solutions began to appear.

(111) A catalogue of successful 1industrfal applications began
to emerge ag understanding of the fundamental
implementation problems Increased.

With these developments came the widespread belief amongst
control researchers that the early promise of adaptive control could
eventually be realised. The success of practical trials also
indicated that adaptive control was valuable in applications other
than the advanced flight control systems which prompted the initial
interest in the area. Most of the successful applications were 1in
fact Iin industrial process coatrol problems. The elghties have seen
a continuation of the vigorous development of adaptive control. A
measure of the Importance of the techniques 1s the ewmergence in
recent years of commerclally available adaptive controllers, a trend
which continues to grow rapidly. This trend has been accompanied by
the awakening of a strong interest in adaptive control amongst
practicing industrial control engineers. The feedback received from
industry will hopefully be a wajor contribution to the continued
maturing of the basic techniques. Surveys of the theory and
application of the various adaptive control techuiques are given by
Unbehauen (1980), Narendra and Monopoli (1980), Harris and Billings

(1981), &strém (1983a) and Warwick (1988).

3.6 THE METHODS OF ADAPTIVE CONTROL

There have been many attempts to derive techniques which change
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the controller parameters in response to changes in process dynamics.
The three most widely studied classes of adaptive control algorithms
are gain scheduling controllers, model-reference adaptive controllers
and self-tuning controllers.

The generic single-input single-output adaptive feedback control
system is shown in Figure 3.6. The scheme consists of a normal
feedback control loop with process and controller. The controller,
however, has parameters which are adjusted by an outer loop
conslsting of process identifier and adjustment mechanism. The three
classes of adaptive algorithm differ only in the way in which the

controller parameters are adjusted.

Gain scheduling

In some applications where the dynamics of the controlled
process are known to exhibit time variation it is possible to find a
process variable which changes In sympathy with changing dynamics.
If such a variable can be measured, then changes in process dynamics
can be {inferred. It 1is then possible to derive a schedule of
controller settings appropriate to selected points on the operating
range of the process. By this means the effect of variatioans in
process dynamics can be reduced. Although the method can deal with

general changes in process dynamics it is known as gain scheduling

since the scheme was devised originally to accommodate changes in
process gain only. The gain scheduling control system is illustrated
in Figure 3.7.

The gain scheduling technique was originally used in aircraft

flight control systems and {s still widely and successfully applied
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in this area: the dynamic characteristics of the aircraft are
inferred from measurements of Lhe dynamic pressure and air density
(Parks et al 1980). Gain scheduling can also be used in process
control problems where the key problem is to find suitable scheduling
variables which can be conveniently measured. Having decided upon
sultable scheduling variables the controller parameters are obtained
for a number of points on the operational range of tLhe process using
some design technique. The particular controller setting used at
any given time is then selected according to continual measurement of
the physical scheduling variable.

A drawback of gain scheduling 1is that suitable controller
parameters for a range of operating conditions must be obtained in
advance of process operation. Depending on the number of operating
conditions for which the controller must be designed, this can be a
time-consuming pgocedure as the performance and stability features of
each design must be satisfactory. An advantage of gain scheduling {s
that the controller parameters can be changed quickly in response to
change; in process dynamics, assuming that the appropriate scheduling

variables can be measured accurately and guickly.

Model reference adaptive control

The aerospace problems of the 1950's prompted another technique
for automatic adjustment of the controller parameters. The design of

model reference adaptive controllers consists of the specification of

a reference model which determines the desired ideal response of the

process output to the command signal. The model-reference adaptive

control method is illustrated in Figure 3.8. The system consists of
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a normal feedback control loop together with am outer loop which
continually adjusts the controller parameters in an atlempt to make
the process output y(t) the same as the reference-model output ym(t).
The adqustment mechanism fs driven by the error em(L) between the
ideal model output ym(t) and the actual process output y(t). The
ad justment mechanism is designed in such a way that the controller
parameters are altered so as to make this error as close as possible
to zero.

The original mechanism proposed for the adjustment of controller
parameters was developed in the late 1950's by workers at
Massachussetts Institute of Technology in the USA in connection with
the design of aircraft flight control systems (Whitaker et al, 1958).
The adjustment rule, which subsequently became known as the 'MIT
rule', is given by the heuristic law

de

a 8%n

In this equation e is again Lhe error between the model output and

= —kemgrad (3.10)
the actual process output. The components of the vector 6 are the
adjustable controller parameters and the components of the vector
gradeem are the sensitivity derivatives of the error with respect to
the ad justable parameters. k is a design parameter which determines
the adaptation rate.

The adjustment rule was originally motivated using the following
heuristic argument; assume that the controller parameters 6 change
much more slowly than the other system variables. To drive the

error e as close to zero as possible the controller parameters are

2
then changed in the direction of the negative gradient of e
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The MIT-rule can be rewritten in the form

a(e) = - kfem(s)gradeem(s)ds (3.11)

It can be seen that the adjustment mechanism consists of three
parts: a linear filter for computing sensitivity derivatives, a
multiplier and an integrator.

The critical aspect of model-reference adaptive control is the
stability of the overall system. Subsequent developments of the MIT
rule have been obtained using stability ctheory (Landau, 1979).
Several applications of the theory have been reported, most notably
in power system control (Irving, 1979) and in ship steering control

problems (Van Amerongen, 1981).

Self-tuning control

Although many successful applications of gain scheduling and
model-reference adaptive control have been reported, the total of
such designs 13 far outnumbered by the third major class of adaptive

algorithms: self-tuning controllers.

Application of the analytical design techniques discussed in a
previgus section consists of two mains steps: identification of a
model of the process and controller design. The success of these
designs depends upon the accuracy with which the process dynamics are
known. 1Initial ignorance of, or subsequent variation in, the process
dynamics can result in poor control quality.

Self-tuning control is a discrete-time method which attempts to
overcome these problems by automating the overall design procedure
and repeating the steps of identification and controller design

during each sample interval. The self-tuning controller therefore
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has the ability to tune {itself initially and to re-tune should the
process dynamics subsequently change. The self-tuning controller is
shown Iin Figure 3.9. The system consists of a normal feedback loop
with process and controller, and an outer loop which continually
adjusts the controller parameters. The outer loop Is composed of
two main parts:

(1) A recursive parameter estimation routine which uses
measurements of the process {Input and output to
contlnually update a model of Lhe process. The model is
normally a simple transfer-function.

(i1) A controller design algorithm which calculates the
controller parameters using the latest estimate of the
process model.

This approach to self-tuning control is known as an explicit
method since the process model {itself 1Is explicitly estimated. In
some self-tuning algorithms It is possible to re-parameterise the
process model such that 1t is expressed In terms of the controller
parameters. In this type of algorithm, known as an implicit method,
the controller design step is eliminated since the controller
parameters themselves are estimated by the recursive identification
routine.

The explicit self-tuning method 1Is very flexible since there 1Is
freedom both 1in the choice of recursive estimation algorithm and
controller design method.

Although the self-tuning control concept was first proposed in
the late 1950's (Kalman, 1958), the early hardware limitations meant

that the first successful applications did not appear until the early
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1970's. Since that time the self-tuning control method has proved to
be the most successful in applications and commercial products using
the technique have appeared. The adaptive algorithm presented in

Chapter 4 belongs to the class of self-tuning controllers.

3.7 PREVIOUS APPROACHES TO SELF-TUNING CONTROL

The earliest practical self-tuning control algorithms were based
upon stochastic control methods derived using polynomial techniques.
Peterka (1970) combined Astrom's (1970) minimum~variance control law
with a recursive least-squares based parameter estimation algorithm
to produce the first version of the celebrated Self-Tuning Regulator
(STR) . The STR was later studied 1in depth by Rstrom and Wittenmark
(1973, 1985). A possible source of difficulty in the STR arises when
the controlled plant is inverse unstable ('non-minimum phase').
Since the poles of the minimum-variance controller cancel the plant
zeros the resulting closed—loop system is unstable whenever the plant
is invérse unstable, although this problem may be alleviated in
certain cases by careful selection of the sampling period (Kstrﬁm and
Wittenmark, 1985). Peterka (1972) subsequently derived the stable
minimum-variance control law for inverse unstable plant and this was
studied in the self-tuning control context by %strom and Wittenmark
(1974). The stability properties of the minimum-variance control law
are a direct result of the fact that no penalty 1s placed on the
magnitude of the control signal generated by the controller.

The Generalised Minimum-Variance (GMV) control law (Clarke and
Gawthrop 1975, 1979) evolves from minimisation of a single-stage

cost-function which includes control costing. The GMV method was
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introduced in an attempt to overcome the stability problems
encountered with the wminimum-variance regulator. For 1laverse
unstable plant, however, closed-loop stability is conditional upon
proper selection of the cost-function weights. The choice of
cost—-function weights is particularly difficult when the controlled
plant is also unstable.

The GMV self-tuner has nevertheless been applied in several
industrial problems (Hodgson 1982, Tuffs 1984). Gawthrop (1977) had
earlier given the method added flexibility by showing that,
depending on the choice of cost weights, the method could be
interpreted as providing model-following, detuned model-following or
Smith predictive control.

The Welghted Minimum-Variance (WMV) control law derived by
Grimble (1981) extends the GMV method to plants which may be bhoth
open-loop unstable and inverse unstable. Grimble shows that a stable
closed-loop system may always be achieved 1f the cost—function
weights are suitably chosen.

The use of Kufera's (1979) polynomial equation approach to LQG
control was first applied in the self-tuning control context by
Zhao-Ying and Zstrén (1981) and Xstrom (1983b). Grimble (1984)
derived an implicit LQG self-tuning algorithm. The explicit method
was extended to include dynamic cost—function weights and feedforward
control of weasurable disturbances by Hunt et al (1986, 1987) and
Hunt and Grimble (1988) and is fully treated in the following
chapter. The LQG controllers have a guarantee of closed-loop
stability regardless of the plant pole/zero locations.

Self-tuning LQG controllers based upon the standard state-space
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formulation have been considered by Lam {(1980) and Clarke et al
(1985) . Peterka (1986) has derived an LQG self-tuner which 1is
applicable to both the ARMA and difference operator (Goodwin, 1985)
model forms. In Peterka's approach algorithmic and numerical aspects
are emphasised and the final controller de;ign is obtained using
state-space transformations. Peterka's method has been permanently
installed 1in several 1industrial applications (see, for example,
Ettler 1986 and Lizr 1986).

A further class of self-tuning control methods which has
received growing ' attention 1in recent years 1s the family of
long~range predictive controllers. The first attempts to wuse
long-range prediction concepts in controller design were proposed in
the IDCOM method of Richalet et al (1978) and the DMC algorithm of
Cutler and Ramaker (1980). A unifying 1idea in the long-range
predictive methods 1is to extend the prediction horizon beyond
non-minimum phase effects and time delays. Self-tuning controllers
based on this 1idea have been proposed by Ydstie (1984), Peterka
(1984), Mosca et al (1984) and De Keyser and Van Cauwenberghe (1985).
The Generalised Predictive Control {(GPC) wmethod of Clarke et al
(1987) effectively extends the CMV method by use of long-range
prediction over a multi-stage cost-function, and can overcome the
problém of stabilising non-minimum phase plant 1if the prediction
horizon 1is chosen to‘be long enough. The GPC method can also be
given the same design polynomials and interpretations discussed by
Gawthrop (1977) for the GMV algorithm.

One final class of self-tuning controllers 1is the continuous-

time approach studied by Egardt (1979b) and extensively developed by
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Gawthrop (1986). The method proposed by Gawthrop is based upon the
premise that robust adaptive controllers will arise by basing
the design wupon established control engineering principles and
practice. In this spirit, the design 1is performed in the
continuous—time domain although the implementation is still digital.
Egardt and Gawthrop also demonstrate that a number of different

algorithms can be unified in the continuous—~time framework.

3.8 CONTRIBUTIONS OF THE PRESENT WORK

As mentioned above, there are several approaches to the design
of self-tuning control systems using stochastic optimal control
theory ('LQG' control). The method followed in Chapter 4 uses the
theory developed in Chapter 2 which 1is based upon Kufera's (1979Y)
polynomial equation approach. 1In this approach the design procedure
reduces to the solution of polynomial equations whose coefficients
are obtained by spectral factorisation. These equations can be
solved using fast and efficient numerical algorithms.

The polynomial approach to LQG control offers a flexible design
method which can be readily used as the basis of a self-tuning
control algorithm. The new algorithwm presented in Chapter 4 contalns
some refinements and important extensions of the earlier work by
Grimble (1984) and Hunt et al (1986). In particular, the optimal
tracking problem in the presence of a measurable disturbance was
solved in Chapter 2. The solution naturally involves the use of a
feedforward compensator and 1is described in Chapter 4 1in the
self-tuning control framework.

Use of the polynomial equation solution to the optimal



151

feedforward control problem in a self-tuning control algorithm was
first given by Hunt, Grimble and Jones (1986, 1987) and 1is also
studied in Hunt and Grimble (1988). Sternad (1987) has made a very
detailed and independent study of the optimal feedforward technique
applied to both fixed-parameter and self-tuning systems. Sternad
also compares the optimal technique using polynomial methods with
previous approaches to the feedforward compensation of measurable
disturbances.

A further feature of the design method presented 18 the use of
frequency-dependent welghting elements {n the cost—function. The
dynamic welghts allow the frequency-response of the closed-loop
system to be shaped in a straightforward manner.

The optimal control law which 1s presented in Chapter 4 1is a
slmplified version of the theory derived 1in Chapter 2. In
particular, all measurement nolses are assumed to be zero in order to
reduce the plant model to the basic ARMAX form which is sufficient
for general-purpose self-tuning algorithms (the full complexity of
the model used 1in Chapter 2 s required in some specialised
applications such ag ship steering (Grimble, 1986a) where, for
identification purposes, a priorl knowledge about the coloured
measurement nolse sub-system {s available in the form of standard
wave spectra).

The two-degrees-of-freedom (2DF) plus feedforward optimal
controller which was derived in Section 2.7 1is employed for the LQG
self-tuner. The optimal controller consists of three parts
(feedback, reference and feedforward) which process tﬁe system

output, reference and measurable disturbance signals separately.
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Three possible design strategles are proposed:

(1) The complete general solution of the optimal control
problem which 1nvolves three couples of polynomial
equations, one couple being assoclated with each part of
the controller.

(11) Each couple of polynomial  equations can be reduced to a

single 'implied' equation. Under certain stated

conditions the three implied polynomial equations can be
solved to obtain the unique optimal controller. Solution
of the implied equations 1s computationally simpler than
solution of the original couples.

(111) 1In the optimal control design the feedback part of the
controller 1s 1Independent of the reference and
feedforward parts. A third design strategy is proposed
in which the optimal feedback controller is calculated in
the normal way and then the reference and feedforward
parts are calculated non-optimally using steady-state
considerations. The method is useful in situations where
the available computation time 1is short as the reference
and feedforward polynomial equations no longer need to be
solved.

The robustness properties of the LOG self-tuner are discussed by
summarising the important features of the control design and various
techniques which have been used to achieve robust parameter
estimation. The main results of a recent convergence analysis

(Grimble, 1986c) are also presented 1in Chapter 4,
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Chapter & concludes with a discussion of practical issues
relating to control 1law implementation, cost-function weight
selection and computational issues. Proofs of all the results stated
in Chapter 4 can be found in Chapter 2 (with the exception of the

convergence proof which is due to Grimble, 1986c).



CHAPTER FOUR
OPTIMAL SELF-TUNING ALGORITHM
Summary

The open—loop model for the single-input single-output plant
under consideration is described in Section 4.1. The plant output
which is to be controlled is affected by two disturbance signals, one
of which Is assumed measurable.

In Section 4.2 the two-degrees-of freedom (2DF) controller
structure employed 1is 1introduced. In addition, a feedforward
compensator 1s used to reject the measurable disturbance signal.
The optimal controller consists of three parts (feedback, reference
and feedforward) which process the system output, reference and
measurable disturbance signals separately. Three possible design
strategies are proposed in Section 4.2:

(1) The complete general solution of the optimal control

problem (Section 4.2.1).

(11) The optimal solution using the 'implied' polynomial
equations. The conditions under which the implied
equations yield the unique optimal controller are stated
(Section 4.2.2).

(i1) A computationally simpler design where the feedback part
is calculated opfimally, and the reference and
feedforward parts of the controller are calculated to
give correct steady state performance (Section 4.2.3).

The robustness properties of the LQG self-tuner are discussed in

Section 4.4 by summarising the important features of the control
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design and various techniques which have been used to achieve robust
parameter estimation. The main results of a recent convergence
analysis are presented in Section 4.5.
The chapter concludes in Section 4.6 with a discussion of
practical 1issues relating to control 1law implementation, cost-

function weight selection and computational issues.
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4.1 MODEL STRUCTURE

The open-loop model for the single-input single-output plant
under consideration 1s shown in Figure 4.1. The plant is governed

by the equation:

y(t) = p(t) + x(t) + d(t) (4.1)

Wpu(t) + wxz(t) + wdwd(t) (4.2)

where y(t) 1s the output to be controlled, u(t) is the plant control
input, ¢d(t) 1s an unmeasurable disturbance, and £(t) is a
disturbance which 1s available for measurement. Denoting the
least-common—-denominator of Wp, wx and Wd as A, these sub-systems

may be expressed as:

-1
W =A B 4.3
p 4.3)
-1
Wy=AC (4.4)
Wo=a D (4.5)

where A,B,C and D are polynomials in the delay operator d.

Reference generator

The system output y(t) 1s required to follow as closely as
possible a reference signal r(t). The signal r(t) 1is represented
as the output of a generating sub-system wr which is driven by an
external stochastic signal ¢r(t):

r(t) = wr¢r(t) (4.6)

The sub-system Wr is represented in polynomial form as:
-1

W= A E, 4.7

where Ae and Er are polynomials 1in d.
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The tracking error e(t) is defined as:

e(t) A r(t) - y(t) (4.8)

Any common factors of Ae and A are denoted by De such that:

A, = DAL, A= DA (4.9)

(S e ec

Measurable disturbance generator

The measurable disturbance signal L(t) may be represented as the

output of a generating sub-system W_ driven by an external stochastic

signal ¢l(t);

= W .
2(E) = W4, (6) (4.10)
The sub-system wx is represented in polynomial form as:
-1
W, = .
N Al El (4.11)

where Al and El are polynomials in d.

Assumptions

1. Each sub-system is free of unstable hidden modes.

2. The plant input-output transfer-function Wp is assumed strictly
causal i.e. <B> = 0.

3. The polynomials A and B must have no unstable common factors.

4. Any unstable factors of Ae must also be factors of A.

5. Any unstable factors of Al must also be factors of both A and
D.

6. may, without loss of generality, be

The polynomials C, Er and EX

assumed stable.

These assumptions, together with the assumptions on the

cost—=function welghting elements given 1in the following section,

amount to the solvability conditions for the optimal control problem
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(see Theorem 14). By making these assumptions, therefore, we ensure
that a solution to any given problem exists. The question of
artificially ensuring problem solvability is discussed 1in Section
5.6.3.

Different types of reference and disturbance signals (r(t), 2(t)
and d(t) in Figure 4.1) may be admitted by appropriate definition of
the external stochastic signals, ¢r(t), ¢1(t) and ¢d(c), namely:

(1) Coloured zero-mean signals are generated when the driving

source (¢r, ¢1 or ¢d) is a zero-mean white noise sequence

and the filter (wr, W or Wd) 1s asymptotically stable.

2

(11) Random walk sequences are generated when the driving
source {s a zero-mean white noise sequence and the filter
has a denominator 1-d.

(111) Step-like sequences consisting of random steps at random
times are generated when the driving source 'is a Poisson
process and the filter has a denominator 1-d.

(iv) Deterministic sequences (such as steps, ramps or
sinusolds) are generated when the driving source is a unit

pulse sequence and the filter has poles on the unit circle

of the d-plane.
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4.2 CONTROLLER DESIGN

In the closed-loop system a two—degrees—of-freedom (2DF) control
structure 18 wused. In addition, a feedforward compensator 1is

employed to counter the effect of the measurable disturbance 2(t).

Controller structure

The closed-loop system 1is shown in Figure 4.2. The control law
is given by:
t) = -C t) + Cr(t) - C t 4.12
u(t) EbY( ) c (t) fEX( ) ( )
where the feedback controller Cfb’ the reference controller Cr’ and

the feedforward controller Cff may be expressed as ratios of

polynomials in the delay operator d as:

-1

Ceb = CepaCebn (4.13)
-1

c, =cic. (4.14)
-1

Cee = CeeaCrga (4.15)

Cost function

The desired optimalAcontroller evolves from minimisation of the
cost-function:

2 2

J = a{(uqe) (t) + (B w)"(0)} (4.16)
where Hq and Hr are dynamic (i.e. frequency dependent) weighting
elements which may be realised by rational transfer-functions.

Using Parseval's Theorem the cost-function may be transformed to

.the frequency domain and expressed as:

_ 1 dz
7= 7;3—,£l=1{0c¢e + RCQU} “z (4.17)
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where ¢ and ¢ are the tracking error and control input spectral
e u

densities, respectively, and:

*
, R,=HH (4.18)

=HH
QC q4q
The weighting elements Qc and Rc may be expressed as ratlos of

polynomials in the delay operator d as:

* *
BB BrBr
Q, A1, R, & (4.19)
A A A A
qq rr
Assumptions
1. The weighting elements Q@ and R are strictly posftive on
c c
1d1=1.
2. A ,B, B and A are stable polynomifals.
q q r r —_—
4.2.1 Optimal Control Law
The stable spectral factor Dc is defined by:
* *x k K *x k &
DD =BABBAB+AABBAA (4.20)
cc rqqr qrrq

The feedback, reference and feedforward parts of the control law

(4.12) which minimises the cost=function (4.17) are as follows:

(1) oOptimal feedback controller

GA

_ r
Cep = m, (4.21)

where G, H (along with F) 1s the solution having the property:
* g -1
(Dcz ) "F striectly proper

of the polynomial equations:
* g x k & g
Dz G+ FAA =B A BB Cz (4.22)
c q rqgq
* -g * k * -g
Dz - FBA_ = A A BB Cz (4.23)
c r qrr
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where g > 0 Is the smallest Integer which makes the equations

(4.22)~(4.23) polynomial in d.

(ii) Optimal reference controller
MArC
cC = (4.24)

r ErHAq

where M (along with N and Q) is the solution having the
property:
* -g -1
(Dcz ) "N strictly proper

of the polynomial equations:

*x g * Kk % -g
Dz M+ NAA = BABBE =z (4.25)
c qe rqqr
* -g * g
Dz°>Q-NBAA' =AABGBA'Ez (4.26)
c r ec rr r
(1i1) Optimal feedforward comntroller
A_(XC - GE_D)
c r L (4.27)

= AE
ff H q lA
where X (along with Z and Y) 1s the solution having the
property:
* —g -1

(Dcz ) Z strictly proper
of the polynomial equations:

D*278X + ZAA A = B'A'B B DE z & (4.28

= -

c? q L rqaq lz )

-8

* * k % -g
Dz“ - ZBA A, = AABBDEz (4.29)
c r i qrr £

4,2,2 Implied Diophantine Equations

The general solution of the optimal control problem involves
three couples of polynomial equations, one couple for each part of
the control law. However, under certain conditions each couple can
be replaced by a single, related, equation. Optimality of the
implied diophantine equations requires the following additional

assumptions:
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Assumptions

1.

We

The disturbance sub—systems A-IC, A-ID, A;lEr and A;lE1 are
assumed to be proper rational transfer-functions.

The cost~function terms A;qu and A:lBr are assumed to be proper
rational transfer—functions.

The polynomial patirs Aq’Ar’ Aq,B and Ar’A are each assumed to

be coprime.

can easily ensure that Assumptions 2 and 3 are satisfied by

appropriate choice of the cost-function weights.

(1)

(i1)

Implied feedback equation

The polynomials G and H in equations (4.22)-(4.23) also satisfy
the polynomial equation:

AAH+BAG=DC (4.30)

q r c
The optimal feedback controller polynomials G and H are
determined uniquely by the solution of equation (4.30) having
the property:
-1
(AAq) G strictly proper

1ff the polynomials A and B are coprime.

Implied reference equation

The polynomials M and Q in equations (4.25)-(4.26) also satisfy

the polynomial equation:

DAQ+ BAM=DE (4.31)

The optimal reference controller polynomial M is determined
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uniquely by the solution of equation (4.31) having the
property:

(AeAq)—IM strictly proper
1ff the polynomials A and B are coprime Eﬂg-Ae is a divisor of
A . When this condition holds then, from equation (4.9), De = Ae
and the implied equation (4.31) becomes:

AeAqQ + BArM =DE (4.32)

cr

(iii{)Implied feedforward equation

The polynomials X and Y in equations (4.28)-(4.29) also satisfy
the polynomial equation:

AA Y + BA X = D DE (4.33)
q r c

2
Assume now that AR is a divisor of both A and D. From equations
(46.28)-(4.29) Al must then also divide both X and Y. The
implied feedforward diophantine equation (4.33) becomes:

AAqY' + BA X' = DD'E, (4 .34)
where:

YaAY, XAAX , D4AD (4.39)
The conditions for optimality of the 1implied feedforward
diophantine equation may now be stated as follows: the optimal
feedforward controller polynomial X is given by X = AXX' where
X' is determined uniquely by the solution of equation (4.34)
having the property:

(AAq)_lX' strictly proper
1€f the polynomlals A and B are coprime and the polynomial A is

3
a divisor of hoth A and D.
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Discussion

The condition that the A and B polynomials must be coprime is
required in order that the implied feedback, reference and
feedforward diophantine equations uniquely determine the optimal
feedback, reference and feedforward parts of the controller. This
condition means that all the poles of the disturbance sub-systems wd
and WX must also be poles of the plant input-output transfer-function
wo.

P

The extra condition required for optimality of the {mplted
reference equation 1is that Ae, the reference generator denominator,
must divide A. In the case of the unstable reference generators of
greatest practical interest (such as steps, ramps etc) this condition
corresponds to one of the optimal control problem solvability
conditions (see Assumption 4 in Section 4.1). If, therefore, the
reference generator 1is unstable and the optimal control problem is
solvable (by satisfying assumptions 1-6 1in Section 4.1 and
Assumptions 1-2 in Section 4.2 we can ensure that the problem {s
solvable) then the condition for optimality of the implied reference
diophantine equation reduces to the condition that A and B must be
coprime.

The conditions required for optimality of the feedforward
diophantine equation are that A and B must be coprime and that A ,
the measurable disturbance generator denominator, must divide both A
and D. For the unstable disturbance generators of practical
importance the condition that AR must divide A and D again
corresponds to one of the optimal control problem  solvability

conditions (see Assumption 5 in Section 4.1). If, therefore, the
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measurable disturbance generator is unstable and the optimal control
problem is solvable then the condition for optimality of the implied
feedforward diophantine equation reduces to the condition that A and
B must be coprime (this is the same condition required for optimality
of the implied feedback diophantine equation).

The question of ensuring problem solvability 1is discussed in

Section 4.6.3.

4.2.3 Simplified Design

The control structure used allows flexibility in the design of
the reference and feedforward parts of the controller. Having
designed the optimal feedback controller the reference and
feedforward parts can then, if desired, be designed independently of
the feedback properties of the system. This option may be important
in cases where the full LQG design cannot be implemented due to
computational constraints. In such cases the reference and
feedforward parts of the controller can be designed to ensure proper '

steady-state performance as follows:

(1) Reference controller

The reference controller may be defined as:

yArC
c =

(4.36)
q

where the scalar y replaces the polynomial M in equation (4.24).
From the closed-loop system structure shown in Figure 4.2 the
transfer-function between the reference signal r(t) and the
controlled output y(t) may be calculated as:

T, =X (4.37)
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properties of the feedforward controller in favour of a static
feedforward design which is calculated to ensure the elimination of
the measurable disturbance in steady-state:
Ceg = %% (4.42)

The two problems of the non-optimal design outlined above demonstrate
a clear advantage of the optimal feedforward design since a causal
and stable feedforward controller will always result in the optimal

design regardless of the relative delays in the B and D polynomials,

and regardless of the positions of the zeros of B.
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4.3 LQG SELF-TUNING CONTROL ALGORITHM

An explicit LQG self-tuning controller may be constructed using

the certainty equivalence argument, where the A,B,C and D polynomials

in the LQG design of Sectfon 4.2 are replaced by thelr estimated

AN A N
values A,B,C and D.

The explicit LQG self-tuning control algorithm may be summarised

as follows:

Step
Step
Step

Step

Step

Step

Step

Step

In steps

1

2

3

7

8

.

: Choose cost-function weights.

Update estimates of A,B,C and D polynomials.

: Solve spectral factorisation (4.20) for Dc.

Solve equations (4.22)-(4.23) for G and H, and form
feedback controller according to equation (4.21).

Solve equations (4.25)-(4.26) for M, and form reference
controller according to equation (4.24).

Solve equatlons (4.28)-(4.29) for X, and form
feedforward controller according to equation (4.27).

Calculate and implement new control signal.

: Goto Step 1 at next sample instant.

4-6 it may be possible to solve the Implied diophantine

equations to obtain the optimal controller polynomials, as discussed

in Section 4.2.2. Similarly, in steps 5-6 it may be desirable to use

the steady-state designs outlined in Section 4.2.3.
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4.4 ROBUSTNESS OF THE LQG SELF-TUNER

The subject of robustness of self-tuning controllers 1s one
which has generated a great deal of discussion and controversy in
recent years. This discussion has largely been stimulated by the
paper of Rohrs et al (1982) which analysed the robustness propertles
of the self-tuning regulator (STR) and of model reference adaptive
controllers (MRAC) In the presence of unmodelled dynamics and
disturbances. These authors concluded that adaptive controllers are
inherently non-robust and this stimulated a very active debate
leading to some useful insights into the robustness question.

Zstrom (1983c) directly challenged the allegations of Rohrs,
while Goodwin et al (1985) pointed out that the approach of analysing
existing high performance adaptive controllers would almost certainly
reveal poor robustness properties.

Rstrom (1983b) and Goodwin et al (1985) take a more pragmatic
approach to the robustness issue by attempting to obtain a robust
adaptive controller by combining a robust control law with a robust
identification algoritha.

In the following discussion the robustness properties of the LQG
design are examined and methods of achieving robust parameter

estimation are discussed.

4.4.1 Robustness of the LQG Design

The performance and properties of feedback control systems have
long been understood by control engineers in terms of the frequency
responses of the various system transfer-functions (Truxal 1955,
Horowitz, 1963)}. The main ideas of conventional frequency-response

design methods have recently been supported by theoretical analysis
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(Doyle and Stein, 1981).

These ideas can be summarised with reference to a typical Bode
plot of the loop galn as shown in Figure 4.3. It is well understood
that there are three important frequency regions:

(1) The low-frequency region where the loop gain should be high
to achieve good command response, disturbance rejection
and robust performance properties.

(11) The crossover region where the stability margins should be
adequate.

(111) The high-frequency region where the loop gain should fall
off rapidly to achfeve robust stability (1i.e.
insensitivity to unmodelled high-frequency dynamics) and
insensitivity to measurement noise.

Any competent design of a digital control system should include
antt-aliasing filters to eliminate signal transmission above the
Nyquist frequency (Xstram and Wittenmark, 1984). The high-frequency
propertles of the controller will therefore depend critically upon
the sampling period.

The relevant features of the LQG controller may be investigated
by summarising the properties of the design preseanted in Section
4.2:

(1) The feedback, reference and feedforward parts of the
controller each have poles due to the A weighting term,
and zeros due to the Ar welghting term (see equations
(4.21), (4.24) and (4.27)). Thus, loop-shaping may easily
be achieved by manipulation of the cost function weights.

In particular, the desired high gain at low-frequency can
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be achieved by introducing integral action when the Aq
term is chosen as Aq =1-9d, v » 1.
A particularly simple formulation of the weighting terms
Qc and Rc which requires the selection of only two
parameters 1s presented in Section 4.6.2.
The stability margins for the closed-loop system can be
examined using the implied feedback diophantine equation
(4.30):

AAqH + BArG = DcC AT (4.43)
From the feedback controller equatfon (4.21) and the
closed-loop system model 1in Filgure 4.2 it may easily be
verified that equation (4.43) 1is the characteristic
equation of the closed-loop system, where T is defined as
the characteristic polynomial. This shows that the
nominal closed-loop system 1is guaranteed to be stable,
since the polynomials Dc and C are by definition stable.
This result should be contrasted with the stability
properties of the Self-Tuning Regulator (Rstrém  and
Wittenmark, 1973) and the Self-Tuning Controller {Clarke
and Gawthrop, 1975, 1979). ‘It 1s possible that the
closed-loop system for these control laws will be

nominally wunstable, particularly when the controlled

process has zeros inside the unit circle in the d-plane.

Equation (4.43) also shows that standard pole-assignment may be

obtained as a by-product of the LQG algorithm by solving the

equation:

AAH+BAG=TC (4.44)
q r ¢

where T
c

1s chosen as the desired closed-loop pole polynomial.
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Notice that in this formulation of the pole-assignment algorithm the
lcop~shaping properties of the LQG design are retained since the A
and Ar polynomials remain in equation (4.44). Use of the pole-
assignment algorithm introduces computational savings since the
spectral factorisation (4.20) {is no longer required, and Iin

subsequent calculations the polynomial Dc is replaced by Tc.

4.4.2 Robust Parameter Estimation

In this section the recursive Extended-Least-Squares (ELS)
estimation algorithm {i{s described and the methods which can be used
to achieve robust parameter tracking are briefly reviewed. The
plant model (4.2) is re-written in the approximate form:

y(£) = 97 ()B(E) + ¢, () (4.45)

where the parameter vector 6(t) and regression vector ¢(t) are

defined by:

oT(e) = [ayeeea s byeasb ys dooend gic)ene, ] (4.46)
oT(E) = [-y(t-1)...=y(t-na);u(t=k ). ..u(t-k -nb);
l(t-kz)...R(t—kz-nd);v(t-l)...v(t—nc)] (4.47)

The parameters, a.,b.,c. and d. are the coefficients of the
polynomials A,B,C and D. k1 and k2 represent the time-delays in the
sub-systems wp and Wx as integer multiples of the sample period. The
signal v(t) is a proxy to the unmeasurable signal ¢d(t), defined by:

v(r) = y(&) = g7 (O)F(D) (4.48)
where §ﬂt) i{s the vector of estimated parameters.

The recursive ELS algorithm may be summarised as follows:

. PE-1)8(t) § (£)P(E-1)

MY T Y T S o ham

(4.49)
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v(t)
8(e)

In
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P(t-1)¢(t)
= P(t)a(t) = = (4.50)
AE) + ¢ (E)P(t=1)(t)
= y(t) - §T ()80 (4.51)
= 8(t-1) + k(e)v(t) (4.52)

the above algorithm the 'forgetting factor' A(t) (where

0 < A(t) < 1) weights the measurements, such that a measurement

received

n samples ago will have a weighting proportional to xn

(assuming a constant forgetting factor A(t) = \).

The constant forgetting factor technique for parameter tracking

has frequently been used in self-~tuning control algorithms. The

method, however, has some potential implementation difficulties:

(1)

(i1)

If the algorithm is to remain capable of tracking sudden
parameter changes the updating gain k must be prevented
from becoming too small as the parameter estimates
improve. Moreover, 1f good data is arriving and k becomes
small, equation (4.49) implies that P is near singular and
roundoff error over many updating steps may cause the
computed P to become indefinite and the algorithm to break
down (the UD factorisation technique (Bierman, 1977) is
normally used to alleviate this problem). Thus, A must
not stay too close to unity.

On the other hand, when A is less than 1 and little new
information on § is being brought in by the observations,
equation (4.49) shows that P may increase as A-l (the well
known 'burst phenomenon', sometimes also known as
'estimator wind-up*). If P becomes large in this way then
observation noise, or a sudden increase in information,

may induce large spurious variations in §.
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When using the constant forgetting factor method, therefore,
chotce of A 1s a difficult and often unsatisfactory compromise. Many
methods of adjusting A(t) automatically in the recursion have been
devised (Kstram 1980, Fortescue et al 1981, Wellstead and Sanoff,
1981). Alternatively, P may be adjusted directly. For instance, a
constant matrix, which can be interpreted as the covariance of random
increments 1in the parameters, may be added at each step then some
upper bound applied to P, or the new P may be formed as a weighted
gum of the old P and the identity matrix I, the weights being chosen
to keep trace P constant (Goodwin et "al, 1985). Other methods are
described by Egardt (1979), Higglund (1983), Kulhavy and Karny (1984)
and Andersson (1985).

Chen and Norton (1987) have recently described a new parameter
tracking method which enables the recursive ELS algorithm to track
both abrupt and smooth parameter changes. The method differs from
methods based on a scalar forgetting factor by its use of vectors to
detect parameter variation, which then results In the relevant
element in the updating gain vector being Iincremented. It also
incorporates a test to determine when parameter updating should be
suspended so as to avoid divergence when little new information about
the parameters is arriving.

The algorithm does not, therefore, have the drawbacks associated
with the constant forgetting factor method. The algorithm also
embodies one of the key ideas behind robust estimation, namely that
estimation should only be performed when 'good' data is arriving.

The method has been described in the context of LQG self-tuning

control by Hunt et al (1986).
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4.5 CONVERGENCE PROPERTIES

One of the key theoretical problems in self-tuning control which
has received growing attention in recent years 1s convergence
analysis. Chen and Caines (1984) and Moore (1984) have tackled the
problem for state-equation based LQG algorithms.

A global convergence result for explicit polynomfal based LQG
self-tuning control algorithms of the type under discussion in this
chapter has recently been derived and will be summarised {in the
following. The result relates to the regulator case (i.e.
r(t) = 2(t) = 0) and to a stochastic approximation type
identification algorithm. The result is due to Grimble (1986¢c).

To guarantee the convergence properties of the algorithm the

following assumptions must be made:

Assumptions

1. Upper bounds na = n, a, = m and a, = gq on the polynomials A,B
and C are known.

2. The polynomial € - k'/2 is {input strictly passive (strictly

positive real) for some real positive constant k'.
3. There exists a finite T2 such that E(t;d) remains stable for all
T
t < 2.
~ ~
' Any common roots of A{t;d) and B(t;d) are strictly and uniformly

outside the wunit circle of the d-plane as t -+ o, with

probability one.

Remarks
(a) Assumption 1 is generally valid and has the useful

property that the transport delay need not be known

exactly.
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(b) A positive real condition such as Assumption 2 often
arises as a sufficient condition for the convergence of
recursive parameter estimation schemes.
The global convergence theorem faor the explicit LQG self-tuner

may now he stated:

Theorem
Subject to Assumptions 1-4 the explicit LQG self-tuning
regulator, using a stochastic approximation fdentification algorithm,

is globally convergent in the following sense:
T

(1) Lim sup % T yz(t) { @ a.s. (4.53)

Tre t=1
1 T 2

(1i1) Lim sup T Z u(t) = a.s. (4.54)

Tro t=1
1 T A 2

(111) Lim = £ E[(y(e)-y(c/e~1))/F__.] =1 a.s. (4.55)

Tero T t=1 -1

(iv) The closed-loop characteristic polynomial T(t;d) converges

in the sense:

Lim %
Tre t

[0 e B

E[TCt;d)y(e)-H(e;d)C(e-15d)e(e) ]2 = 0 a.s.
1

(4.56)
Proof: Grimble (1986c)

Remarks

(a) Parts (i) and (ii1) of the theorem ensure that the output and
control signals are bounded.

(b) If the system parameters and past values of e(t) are known the
prediction error 1is obtained as 1. Part (i1ii1) of the theorem

shows that this is obtained asymptotically.
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From the system model shown in Figure 4.2, and from equations
(4.21) and (4.43), the transfer—function between the disturbance
¢d(t) and the output y(t) may be written:

(1) = 2 4 () (4.57)
which may be re-written in the form:

Ty(t) - CH¢d(t) =0 (4.58)
This equation allows the convergence result in part (iv) of the
theorem (equation (4.56)) to be more easily interpreted.
The theorem remains substantially unchanged if Assumption 4 1s
replaced by a weaker assumption and the identification algorithm

is replaced by extended least-squares (see Grimble, 1986c).
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4.6 PRACTICAL ISSUES

4.6.1 Control Law Implementation

When implementing the control law (4.12) it 1is necessary to
include in the forward path the term Ar/HAq since this term, which is
common to each part of the controller {(see equations (4.21), (4.24)
and (4.27)), 1is not necessarily stable. Thus, the control law

should be implemented using the equivalent structure shown in Figure

4.4 yhere:
A
Cep & Chy A~ (4.59)
q
A
c 4 cCl ﬁ%‘ (4.60)
q
Al‘
Cee & Cor A (4.61)
q

From equations (4.21), (4.24) and (4.27):

¢, = ¢ (4.62)
c = %E (4.63)
r
XC - GE D
Ctf = —EA (4.64)
2

It is also necessary to show that C%f in equation (4.64) 1is stable.
To this end, multiply equations (4.22)-(4.23) by DE)Q and equations
(4.28)-(4.29) by C. When the resulting equations are compared the
following equations, after some algebraic manipulation, are obtained:
CX - GE D A (FDE,_ - ZA C A (HDE_ - YC
2 q( 2 N ) q( 3 )

= = (4.65)
* —
A Dcz 4 BAr

By assumption the pairs A,B and A,Ar can have no unstable common
*

factors. Since Dc is unstable (due to equation (4.20)) all the

fractions in (4.65) are, in fact, polynomials. Thus C!_ in equation

ff
(4.64) 1s stable (El is stable by definition).
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4.6.2 Cost-function Weight Selection

In the LQG optimal controller design the cost—-function weighting
elements, Qc and Rc’ are the major design parameters which must be
selected by the system user. Perhaps one of the key practical
objectives 1in any self-tuning control algorithm 1is to reduce the
number of design parameters (the 'on-line tuning knobs') te a
oinimum, and to gilve these parameters a clear physical
interpretation.

In the cost-function of equation (4.17) there are many ways to
choose the welighting elements, allowing various performance
characteristics and loop-shaping properties to be achieved. However,
a straightforward technique appropriate for self-tuning systems which
involves only ¢two design parameters, each with a simple
interpretation is described in the following.

As previously mentioned, the controller will have 1integral
action when the error weighting denominator has the form Aq =1 -d.
Since 1in the majority of practical problems 1t 1s desirable -to
include integral action in the controller the following definition

for the cost-function weights is appropriate:

*
8% _ _(1-pay*(1-pa)
QC = * = 2 * (4‘66)
A A 1- 1-d 1-d
aq (1-)"(1-d) (1-d)
*
R = PP 1 (4.67)
C z*a P
rr
These definitions correspond to the following:
B, = (1-d)/(1-p) (4.68)
A =1-4d 4.69
q ( )
Br =1 (4.70)
A = o2 (4.71)
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In this formulation the scalars p and B effectively become the
on~line tuning parameters. The interpretation of their effect is
straightforward : the control weighting 1/p varies the relative
wmagnitude of error and control penalty while § determines the amount
of integral action. As p is increased (i.e. the control weight is
decreased) the error signal will be decreased at the expense of
increased control effort, an effect analogous to increasing the
proportional gain of a PI controller, since the term Ar = p1/2
appears in the controller numerator (see equations (4.21), (4.24) and
(4.27)). As 8 » 1 the integral action is removed since the term
(1-d) becomes cancelled in (4.66) (in practice g is never allowed to
come too close to 1). Conversely, decreasing the value of 3
increases the effect of the integral action, which is analogous to
decreasing the integral time constant in a PI controller.

Although a strict application of the theory requires that Aq is
stable the use of unstable Aq’ such as Aq =1 - d, can be justified

using the argument in the following section.

4.6.3 Solvability Conditions and Unstable Weighting Terms

Solvability of the optimal control problem is dependent upon the

conditions (see Section 4.1):

1. The polynomials A and B must have no unstable common factors.
This condition 1is equivalent to the requirement that any
unstable terms in Ad and Ax (where Ad and Ax are the
denominators of Wd and Wx, respectively} must also be factors
of the denominator of the plant input-output transfer—function
W .

P
2. Any unstable factors of Ae must also be factors of A.
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3. Any unstable factors of Al must also be factors of A and D.
This condition {8 equivalent to the requirement that any
unstable terms in AxAR must also be factors of the denominator
of the plant ifnput-output transfer—function Wp.

To summarise, any unstable terms in Ae' A

d

factors of the denominator of the plant 4input-output

or A A must also be
X 2

transfer-function W .
P
In any practical situation where an unstable term in Ae, Ad or

AxAl does not appear in the denominator of Wp then this term must be
artificially introduced {nto the forward path using Aq. Sim{larly,
in other situations it may be desirable to use an unstable Ar
weightlng term. In some situations, therefore, the plant conditions
may dictate that the use of unstable weighting terms is desirable.

A strict application of the theory, however, requires that A
and Ar should be stable. The use of unstable Aq and Ar in practice
can be justified using the following argument: let us formally define
the plant as that part of the system which is known a priori in
advance of controller design. Assume now that the given data is such

that we know unstable weighting terms are desirable. Denote A and
q

Ar as follows:

+ -
= A A 4.72
q qq ( )
+ -
AL = AA 4.73)
where + indicates a stable polynomial and — indicates an unstable

polynomial. The forward path is then as shown in Figure 4.5. Since
blem data tell P i . .

the given problem data tells us a priori that the terms Aq and Ar are

necessary let us conslder the transfer-function A;/A; asg part of the

plant, as shown in Figure 4.6. The controller is then designed for
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the new plant in Figure 4.6 where the solvability conditions have now
been satisfied by appropriate choice of A;. This approach is

equivalent to minimising the cost-function:

* *
B B B B
J=ob 4 (L, +EE , j 42
' * * ' .
273 1z)=1 A+ A+ e A+ A+ u z (4.74)
q q r r

Finally, the control signal u is implemented as follows:
A
u=-£ (4.75)
A

This argument allows us to ensure that the problem solvability
conditions are always satisfied without violating the theoretical
conditions on the cost-function weights. The original approach of
directly wusing wunstable welghts will, nevertheless, result in
preciseiy the same closed-loop system. To 1illustrate the polnt,
consider a system which has a drifting disturbance due to a factor

1 - d in the denominator of the disturbance transfer-function W

.

d
Assume that this term is not present in the denominator of the plant

input-output transfer-function Wp. It is immediately apparent that
integral action 1is needed to counter the effect of the drifting
disturbance. Aq is then defined as Aq =1 - d and the controller is
calculated. However, that this problem violates the theoretical
solvability conditions i3 apparent for three reasons:
(1) The polynomials A and B have an unstable common factor
1-d.
(ii) Aq is unstable.
(i111) A drifting control signal u will result 1in order to
counteract the drifting disturbance. The cost~function

will, therefore, be infinite.
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The above argument can, however, be used to justify the design:
let us assume that the term 1/A; is included in the plant and then
calculate a controller based on this newly defined plant to minimise
the cost=function (4.74). This design will result in the same
closed-loop system as the original design. The new design will,
however, have the following properties.
(1) The newly defined A and B polynomials will not have any
unstable common factors.
(11) The effective weighting terms A: and A: are stable.
(111) The pseudo control signal u' will be stable.
From equatfion (4.75) u' = A;u. In this example A; =1 - d which
means that changes 1in the control signal are, effeciively, being

weighted.

4.6.4 Computational Algorithms

Efficient computational routines for diophantine equation
solution have been derived by Ku¥era (1979) and Je¥ek (1982). The
spectral factorisation can be performed using the {iterative
algorithms proposed by Kufera (1979) or Je¥ek and Ku¥era (1985) .
Tteration of the spectral factorisation routine is terminated either
when a specified tolerance 1s reached or when a specified maximum
number of iterations have been performed. These algorithms have the
necessary property that the solution obtained after each iteration is

guaranteed to be stable.

4.6.5 Common Factors in A and B

The 1Implied feedback diophantine equation (4.30) uniquely
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determines the optimal feedback controller when the plant 4 and B
polynomials are coprime. If A and B have a stable common factor then
the couple of equations (4.22)-(4.23) must be solved to obtain the
optimal feedback controller.

If, however, it 1s deemed necessary in a particular application
to always solve the implied equation (since this is computationally
simpler than solving the original couple) regardless of any possible
stable common factors in A and B then this equation will still be
solvable since any stable common factors of A and B will also divide
Dc (see equation (4.20)). Such a solutiom will lead to a closed-loop
system with optimal pole positions but sub-optimal zero positions.

In this situation the common factor should be cancelled from
both sides of the equation before it is solved. The algorithm
derived by Jezek (1982) is based upon the Euclidean algorithm which
can inherently cope with such common factors.

This property of the optimal design should be contrasted with
standard pole-assignment algorithms (Wellstead et al, 1979) where the
diophantine equation (4.44) must be solved. Since the arbitrary
polynomial Tc appears on the right-hand-side of this equation (in
place of Dc) any common factors in A and B will render this equation

unsolvable (unless, coincidentally, this factor also divides ch)'
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Example 4.1

In this example the technique outlined i{n Section 4.6.3 for
dealing with unstable reference generator poles which are not also
poles of the plant is {llustrated. Consider a sinusoidal reference
of the form r(t) = sin wkT, where k i{s the sample instant and T the
gample period. When ¢ = n and T = 0.1, this reference signal may be

modelled as:
-1 - 0.31
e T 1).9d+d?
Consider a plant defined by:
W o= dz(l + 0.5d)
p 1-0.95d

To formulate a meaningful optimisatfon problem the technique outlined

q q4q
and A; = 1-1.9d + dz, the unstable poles of W.. The term 1/A; is

In Section 4.6.3 1s used : A  {s defined as A = ATAT, where A: =1

now considered part of the plant, so that the effective plant

becomes:
2
A -
W o= A 1B - d“(1 + 0.5d) >
P (1-0.95d)(1-1.9d+d*)
The remalining cost function weights are defined simply as Bq = Ar =
Br =1, From equations (4.20)-(4.26) the optimal feedback and

+
reference controllers may be calculated (replacing A by Aq) as:

_7.44 - 10.93d + 4.46d°

¢ 7
3.02 + 5.87d + 2.35d

fb

2.98 - 2.46d
3.02 + 5.87d + 2.35d°

The resulting closed-loop system was then simulated and a sinusoidal

C
r

set-point applied. The plant output and set-point are shown 1n

Figure 4.7(a). The control signals u{t) and u'(t) are shown 1n
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Figure 4.7(b). It 1s seen that perfect tracking 1s achleved, that
u(t) is oscillatory, and that the steady-state value of u'(t) 1is

ZEero.
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Example 4.2

This example is a self-tuning version of example 4.1. The plant
paramelers were estimated during each sample interval using Recursive
Least-squares (RLS). For simplicity a constant forgetting factor of
unity was used. The plant oulput and set-point are shown in Figure
4.8(a). The control signals u(t) and u'(t) are shown in Figure
4.8(b). After an initial tuning-in transient the plant output again
follows the set-point.

Estimates of the plant A and B polynomials are plotted in Figure
4.9. Evolution of the resulting controller parameters is shown in
Figure 4.10. It {s seen from Filgure 4.10 that the controller
parameters converge to the values calculated in Example 4.1 using the

true plant polynomials.
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Example 4.3

This example investigates the tracking and feedforward control
performance in the self-tuning context. Consider the following
plant:

2
W = alp - 41+ 0.5d4)

p ~ 71-0.95d
-1 1
Wg = A C=135353
-1, d%(1-0.75d)
We =4 D= 595

The plant output was required to track step—like changes in set—point
while the plant was subjected to step changes in the measurable load
disturbance 2(t). The reference and load disturbance generators were

therefore modelled as:
-1 1
wr Ae Er B =

- 1
W= A B =1

Integral action was included in the controller by defining Aq = 1-d.

The control weighting Rc was set to Rc = 0.1, and Bq was chosen as

Bq = 1. Using the above data the true controller transfer functions

may be calculated as:

3.01 - 2.01d

C =
£b  (1.3542.714d41.06d%)(1-d)
Ct = - 2
(1.3542.71d+1.06d%)(1~d)
2 3
 1.0440.20d — 2.82d% +1.59d
Cee =

(1.3542.71d+1.06d2)(1-d)

In the simulation results which follow the 1load disturbance R(t)

changed as follows:



196

t €< 60 () =0
60 < t < 90 2(t) = 10
90 < t < 120 L) =0
120 < t <150 2(t) = 10
t > 150 Wty =0

Performance of the fixed controller with Cfb and Cr as above but with
no feedforward action (Cff = ) is shown in Figure 4.11. The effect
of the changes in load disturbance i{s clearly seen, with the
disturbance eventually being rejected after each change by the
integral action only.

Performance of the fixed controller fncluding optimal
feedforward control is shown in Figure 4.12. The effect of Lhe load
disturbance 1s greatly reduced in this case. Note that a further
reduction in the effect of f(t) could be achieved by reducing the
control welghting (in fact, since the delay in D = delay in R
complete cancellation is possible for Rc = 0).

The performance for the self-tuning simulation is shown in
Figure 4.13. Again, RLS with unity forgetting factor was used to
estimate the A,B and D polynomials. The first change in load
disturbance is clearly seen on the output. However, after the
feedforward controller has tuned-in the performance matches that of
Lthe fixed controller shown in Figure 4.12. The control signal for
the self-tuning simulation is also shown in Figure 4.13.

Estimates of the plant polynomials A,B and D are shown in Figure

4.14.
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Evolution of the feedback controller G and H polynomials is
shown in Figure 4.15, and the feedforward controller numerator Cffn

in Figure 4.16. Comparison with the fixed controllers calculated

above shows that the parameters converge to thelr true values.
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CHAPTER FIVE
A POWER SYSTEMS APPLICATION
Summary

The self-tuning LQG controller described in the previous chapter
has been evaluated in experimental trials at the Hunterston ‘B!
Advanced Gas~cooled Reactor (AGR) power station simulator. The
results of these trials are reported in this chapter.

The principles of the AGR power system design are briefly
outlined in Section 5.1. The control strategy curreantly implemented
at Hunterston is described in Sectfon 5.2. The Hunterston 'B'
simulator consists of a full-scale replica of the statifoan central
control room and the plant models run in real-time on a distributed
network of 52 processors. The simulator {s described in Section
5.3.

The control loop on which the LQG self-tuner was implemented is
the turbine stop-valve (TSV) steam pressure loop. The existing
controller on this loop is of analogue Proportional-Integral (PI)
form. Performance of the PI controller is evaluated in Section 5.4.
The results of the self-tuning LQG trials and details of the
hardware/software implementation of ‘the algorfthms are presented in
Section 5.5.

The chapter concludes in Section 5.6 with an evaluation of the
LQG controller performance, and a comparison with the performance of

the existing PI controller.
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5.1 THE ADVANCED GAS-COOLED REACTOR

The Hunterston 'B' nuclear power station i{s based upon the
Advanced Gas—cooled Reactor (AGR) design (see Figure 5.1). The fuel
elements used {in the AGR consist of uranium oxide encased 1in
stainless steel cladding to form fuel rods. The fuel rods are loaded
fnto vertical channels in the reactor core, which is made up of
graphite bricks (the moderator). The core has further vertical
channels which contain control rods. The control rods are made of
strong neutron absorbing material and can be {nserted or withdrawn
from the core to adjust the rate of the fission process and heﬁce the
reactor heat output.

The graphite moderator and fuel elements are cooled by
circulating pressurised carbon dioxide gas. The gas temperature is
therebf raised and the hot gas is then passed to the boilers to
produce steam which subsequently drives the turbines.

The whole assembly 1{s encased 1in a pre-stressed concrete
pressure vessel which performs the dual purpose of gas containment
and radiation shielding.

For reliability reasons the boiler/reactor assembly is divided
into four distinct quadrants. Each quadrant consists of three
boilers and two gas circulators, and the boflers are further divided
into half-units which means that each reactor consists of a total of

twenty-four water-steam circuits.

5.2 THE HUNTERSTON 'B' OVERALL CONTROL STRATEGY

The overall reactor/turbine generation system consists of two
closed circuits. In the primary circult pressurised carbon dioxide

gas {s pumped up through the reactor core and over onto the boiler
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heat exchangers by the gas circulators which are located beneath the
bolilers.

Having generated steam in this way the rest of the generation
plant s similar in nature to a conventional power station ; the
secondary circult 1s comprised of the bollers and turbine. 1In the
secondary circuit feed pumps supply feedwater to the boilers and as
it is passed up through the heat exchangers it 1ls converted to steam.
The steam ls then passed to the high pressure stages of the turbine,
back to the reheater banks of the boilers, and finally to the turbine
low pressure stages. The low pressure steam is then condensed and
passed back into the feed section of the circuit.

A schematic of the overall plant structure and control strategy
is shown in Figure 5.2. In addition te the turbine governor the
system consists of seven control loops:

(1) Loop 1: The reactor gas outlet temperature (T2) |is

controlled by manipulation of the control rods.
The control rods are divided into five sectors,
each consisting of 37 rods.

(2) Loop 2: The boiler outlet steam temperature ls

controlled by generating a trim signal to the
Loop 1 reference level.

(3) Loaop 3 (main):

The turbine stop valve (TSV) steam pressure ls
controlled by manipulation of the boiler feed
regulating valves (FRV's).

(%) Loop 3 (auxiliary):

The differential pressure across the feed
regulating valves is controlled by manipulation

of the feed pump speed.
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(5) Loop 4: The circulator outlet gas temperature (Tl) 1is
controlled by manipulation of the gas circulator
inlet guide vanes.

(6) Loop 5: Changes in demanded turbine load are used to
provide feedforward control for loop 3 (main)
and Loop 4. The load signal is also used to
provide a trim for the Loop 1 reference level.

(7) Loop 7: The 1{individual half-unit outlet steam
temperatures are controlled by manipulation of
each half-unit valve.

The controllers which perform each of the above tasks are of

analogue PI form, with the exception of Loop 1 controller which is of

double lead-lag form.

5.3 HUNTERSTON 'B' SIMULATOR

The South of Scotland Electricity Board have built at Hunterston
a total plant simulation facility for the Hunterston 'B' AGR. The
simulator consists of an exact full-scale replica of the station's
central control room and provides full simulation of all major plant
items {including all reactor plant protection and safety systems
(Figure 5.3).

The whole simulation facility i{s run in real-time by utilising a
distributed parallel processing network which wuses arrays of
microprocessors. The actual plant response is duplicated by the
real-time solution of thousands of differential equations which have
been obtained over a long period of time in an extensive programme of

plant modelling studies. By duplicating all {instruments, controls



211

Figure 5.3 : Simulator Control Room



212
and displays In the control room and connecting these to the
real-time simulation an environment 1Is created which s
indistinguishable from the real thing.

The main purpose of the simulator i{s to provide a full training
facility for all control room personnel. As well as providing the
opportunity for the rehearsal of routine plant operations such as
start-up and shutdown the simulator 1s also used to investigate a
wide variety of fault conditfons. The simulator is monitored from
an Instructors console which allows the plant to be {nitialised at
any given state and subsequently to be subjected to any desired
sequence of operating conditions.

In addition, the simulator provides the ideal environment for
the testing and evaluation of new control methods and techniques
which ailm to modify and- improve the efficiency of the existing
strategy.

The Hunterston 'B' models are mounted on a total of 52 Marconi
computers. These 52 processors are split {into several clusters
which each simulate various areas of the plant. Each cluster {s
connected in parallel to the central control cluster. The computers
are distributed throughout the control room and drive the display
panels via {nterface equipment.

The adaptive LQG controller which was tested at the simulator
was mounted in an IBM PC in which an I/0 card was installed (see
Section 5.5.1 for wmore details). Connection of the IBM to the
simulator {nvolved small modifications to the simulator software in
order to remove the existing PI controller from the loop under
investigation. The IBM controller was then Iintroduced {nto the loop

by directly connecting via {ts I/0 card to the simulator interface
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equipment behind the display panels (see Figures 5.4 and 5.5).

S.4 TSVP CONTROL (LOOP 3 (MAIN))

The control loop under investigation in this particular study is
the turbine stop valve steam pressure (TSVP) control, which is
achieved by manipulation of the feed regulating valves {Loop 3
(main)). This loop 1s of particular importance 1in the overall
system since the maintenance of a steady TSV pressure has a direct
influence on the power output of the generator. Iﬁ addition, since
Loop 3 (main) regulates the secondary water-steam circuit it has a
direct 1influence on the other controlled variables in the system.
Thus, the study investigates the following factors:

1) The transient response of Loop 3 (main).

(1) The tightness of control in steady-state.

(111) The transients induced into the rest of the system due to

perturbations in the Loop 3 (main) reference level.

A primary objective of the study 1is to {investigate the
performance of the LQG self-tuner with respect to the above factors.
To evaluate the LQG controller the performance of the existing

analogue PI controller is first studied.

5.4.1 PI Performance

The TSV steam pressure reference level was subjected to two step
changes : a step from 85% to 65% followed by a step from 65% back to
85% (the pressure scaling was chosen such that 0-100% corresponds to
120-170 bar). The interaction between Loop 3 (main) and the rest of

the system was 1investigated by monitoring three other controlled
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Figure 5.5 : IBM Adaptive Controller
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variables : the circulator outlet gas temperature (Tl), the reactor
gas outlet temperature (T2), and the feed regulating valve
differential pressure (FRVDP).
The responses for the downward step are shown in Figure 5.6 and
for the upward step in Figure 5.7. Each figure has three graphs:
(1) TSV pressure and set-point.
(i) FRV position.
(iii) A plot of the other monitored variables T1, T2 and FRVDP
(along with TSVP and FRV position).
From Figures 5.6 and 5.7 the following observations regarding the
performance of the PI controller may be made:
(1) Each change in the TSV steam pressure reference level is
followed by a sudden and large movement of the FRV
actuator. This initial valve movement is followed by a
slow oscillatory transition to the steady-state region.
(ii) As a result of (i) the TSV steam pressure response {is
initially quite fast but displays a significant overshoot
and oscillation around the reference level when moving
into the steady-state region.
(iii) The initial rapid movement of the FRV actuator induces
very strong transients in the other controlled variables
Tl, T2 and FRVDP. The FRVDP transient is particularly
severe. Following the initial period the transients

decay with a slow oscillation.
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5.5 SELF-TUNING LQG CONTROL

5.5.1 Hardware and software

The LQG self-tuner was ilmplemented on an IBM PC 1n which an IBM
Data Acquisition and Control Adapter (DACA) card was 1installed.
Interface to the card was via an external termlnal board (see
Figure 5.5).

The real-time LQG self-tuning algorithm was programmed mainly in
IBM Professional FORTRAN (FORTRAN 77). All graphlcs were drawa using
the IBM Plotting System and data I/0 was performed by calls to the
DACA subroutine library. A keyscan routine for real-time operator
interface was programmed in 8087 assembly language.

A fuller technical summary of the PC-based self-tuning system is

glven in Hunt and Jones (1988).

5.5.2 Control law and model parameterisation

For this particular study the plant model used was given by:
B C

y(E) = 5 ule) + § ¢yt (5.1)

The control law used is glven by:
= - + b

u{t) Cfby(t) Crr(t) (5.2)
Thls controller structure and plant model corresponds to the design
presented in Chapter 4, but without the feedforward part of the
controller.

For the cost-function (4.17) the welghting functions Qc and Rc

were chosen according to the formulation given In Section 4.6.2 1.e:

*
- (1-fd) (1-Bd)
< 2 * » R
(1-8)"(1=d) (1-d)
In the following trials the scalar B was fixed at B = 0.1 so that the

-1
< p H
only on—line tuning parameter was the control weighting .
In the controller design stage the feedback part of the

controller was calculated using the implied feedback diophantine
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equation (4.30) and the reference part was calculated using the
steady-state strategy defined by equations (4.36) and (4.38). The
control design steps may be summarised as follows:
(1) Calculate Dc from the spectral factorisation (4.20)

i.e.:

* * * * *

Dch =B (1.11~0.11d) (1.11-0.11d)B + A (1-d) u(l-d)A

(i) The feedback controller is given by:

G
Cep = WI=d

where G,H are calculated from the diophantine equation
(4.30):

A(1-d)H + BG = DCC

such that:

deg G = deg A

(iii) The reference controller is given by equation (4.36):

- &
r H(1~d)

where y is calculated according to equation (4.38) as:
D (1)
L T8 )

The control law is then implemented according to the strategy

c

given in Section 4.6.1.
Based on the results of an open-loop step test performed on Loop
3 (main) a sample interval of 20 seconds was chosen. For the
parameterisation of the estimation routine a second order model with
a two-step delay was selected such that the estimated A and B
polynomials were given by:
2

A=1+ ald + azd

2
B=4d (bo + bld)

The C polynomial was simply set to C = 1 so that a total of four
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parameters were estimated. The estimatfon routine used was
recursive least-squares with an ordinary exponential forgetting
factor which could be altered on~line from the keyboard.

The parameter estimates were initialised according to the
following stable second order model:

B _ d°(0.15 + 0.05d)
A 1o 1.5 + 0.74°
and the forgetting factor was initfally set to A = 0.95.

5.5.3 Self-tuning LQG control results

The performance of the LQG self-tuner was {nvestigated by
performing two main trials. In the first trfal the main objective
was simply to obtain accurate estimates of the plant parameters, and
subsequently to 1investigate the effect of varying the control
weighting while the estimation routine was frozen. In the second
trial the estimation routine was frozen for the whole run and the
loop subjected to a serles of step changes in the set-point while the
control weighting was varfed. The step changes were of the same
magnitude as those applied during the PI test described in Section
5.4.1. During each step change the responses of the other controlled
variables in the system (Tl, T2 and FRVDP) were recorded in order
that the LQG controller could be compared with the existing analogue
PI:

(1) Rl

The first test had a duration of 260 samples (1 1/2
hours). The TSV steam pressure and set-point, and the

FRV position are shown in Figure 5.8. The parameter
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estimation was frozem at t = 120. During the tuning
phase (t < 120) the loop was subjected to a sequence of
step-changes in set-point. The loop responses for the
tuning phase are shown in Filgure 5.9. Evolution of the
parameter estimates and prediction error during this time
1s shown in Figure 5.10.

The step response at t = 100 indicated that the
parameter estimates were of reasonable accurdcy and this
led to the decision to freeze estimation at t = 120. At
this time the estimated plant model was:

4%(0.001 + 0.08d)
1 - 1.158d + 0.25484°

The low relative value of the first B coefficient

§.=
A

indicates that the plant tilme-delay may have been
underestimated by one step.

A relatively low value of control welghting,
p = 0.8, was used during the tuning phase. After the
parameter estimation routine was frozen the control
welghting was Successively increased during the fixed
phase (t > 120). The loop responses for the fixed phase
are shown 1in Figure 5.11. Changes in control welghting
occurred as follows:
t =145 , p=2.0
t =160 , p=10.0
t =170 , p = 30.0
t =180 , p=40.0

As would be expected, the graph of FRV position shows
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that the effect of increasing the control weighting 1s to
significantly damp out the actuator movements.
Comparison of the step response occurring at t = 100
(p = 0.8) with those at t = 190 and t = 230 (p = 40.0)
also shows, however, that increasing pj also leads to a
slower step response with significant overshoot.

The results clearly demonstrate that the particular
formulation of the control weights used allows the
actuator activity to be traded against closeness of
set—point following in a straightforward way using only

one on-line tuning parameter.
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Run 2

The second test had a duration of 315 samples (1 3/4
hours). The purpose of this test was to subject the loop
to a series of step changes in set-point for different
values of control weighting while monitoring the
responses of the other controlled variables in the system
(Tl, T2 and FRVDP).

The TSV steam pressure and set—point, and the FRV
position for the whole test are shown 1in Figure 5.12.
The value of control weighting was changed after each of
the down/up changes in set-point as follows:

t =0 , p = 0.8

t =110 , p= 20.0

t=168 , 50.0

In the steady-state phase following the set-point changes
(t > 200) the control weighting was changed as follows:

t = 243 , p = 20.0

t =270 , p=0.5

The system responses for each downward and upward step
are plotted as follows:

Figure 5.13 : downstep at t = 50 with = 0.8

Figure 5.14 : upstep at t =80 with p = 0.8

Figure 5.15 : downstep at t = 116 with = 20.0

Figure 5.16 : upstep at t = 140 with p = 20.0

Figure 5.17 : downstep at t = 170 with p = 50.0

Figure 5.18 : upstep at t = 180 with p = 50.0
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The responses for the steady-state period 225 < t < 255 during
which the control welighting was chaqged from 50 to 20 (t = 243) are
shown In Figure 5.19. The responses for the period 255 < t < 285
during which the control welghting was changed from 20 to 0.5
(t = 270) are shown Iin Flgure 5.20.

From the results the following observations may be made

regarding the performance of the LQG controller:

(1) When the control weighting is low the loop has a very
fast step response with no overshoot. However, this
tight command following performance 1s at the cost of a
relatively active actuator movement. This actuator
movement also causes a severe Interaction effect with the
other controlled variables 1In the system. This
interaction {s perhaps only slightly worse than that
observed during the PI test in Section 5.4.1.

(11 When the control welighting is high the step-response {is
slower with a significant overshoot. This 1is
accompanied by a very smooth actuator movement. This
smooth actuator movement leads to a dramatic reduction in
the transients induced in the other control loops.

When the LQG performance 1s compared to the performance of the

existing analogue PI controller shown Iin Figures 5.6 and 5.7 the

following observatlions can be made:

(€9) For a low value of control weighting the step-response of
the loop 1s greatly improved under LQG control : the
rise-time 1s short and there 1s no overshoot. The

actuator movements when |1 1Is low are greater under LQG
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control. This may or may not be a bad thing depending
on whether it is the magnitude of actuator movements or
the number of actuator start/stops which is important
(under LQG control the actuator only moves once every 20
seconds) .

When p is low the interaction with other loops is
slightly worse under LQG control due to the magnitude of
actuator movements.

(i1) For a high value of control weighting the step~responses
are similar for LQG and PI in terms of rise-time and
overshoot. Under LQG control, however, the interaction
transients in the other loops are dramatically reduced.

This 1s due to the very smooth actuator movement under

LQG with a large p.

5.6 CONCLUSIONS

Although it is not usual during normal plant operation to move
the TSV steam pressure set-point very frequently the tests performed
still give an accurate 1illustration of the general interaction
between loops due to various perturbation and disturbance effects.
Probably the most important design factor in this particular system
is to reduce these interaction effects to a minimum while still
retalning an adequate level of control accuracy in each loop. In
this respect the LQG controller, with a high value of control
weighting, can be adjudged to give a very significant imprqvement in
control performance when compared with the existing analogue PI

controller.
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The changes in the command response of the loop as the control weight
p ias varied from 0.8 > 50 may be explained by plotting the locus of
the closed~loop poles with respect to p. From equation (4.37) the
closed—loop poles of the transfer-function between r(t) and y(t) are
determined by the zeros of the spectral factor Dc. To determine the
root-locus the estimated plant was used, as follows:

d42(0.001 + 0.08d)
1-1.158d + 0.2548d

2.
A 2

The closed-loop root~locus with respect to p is plotted in Figure
5.21. Note that the open-loop poles of the plant are 0.295 and
0.863. From Figure 5.21 it 1is seen that for very high i the
closed~loop poles migrate towards the open-loop poles. In the range
0.8 ¢ p < 50 the complex-conjugate palr of poles are seen to move
significantly to the right and towards the real ~axis which
corresponds, respectively, to reduced natural frequency of
oscillation and increased damping. This corroborates the responses

observed during the experiment as p was increased.

.80
.68
.48
.28

~,

~-.20
-.48
-.60
-.88

LA B 077 G s NG L B
e
£
v
=
_)
N

B~ S
-1 ~.60@ -.28 .28 .64

Figure 5.21 : Closed-loop Root-locus



PART FOUR

CONCLUSIONS






CHAPTER SIX
CONCLUSIONS

6.1 Stochastic optimal control theory

In application of the optimal control theory presented in
Chapter 2 the design procedure consists of choosing the cost-
function welights to achieve satisfactory performance from the
closed-loop system. In practice this 1is necessarily an iterative
procedure : given a plant model and a performance specification the
cost-function welghts are selected, the control law is calculated and
the resulting closed-loop system 1s analysed with respect to

_transient response, steady-state error, frequency response, stability
marging, and so on. If the performance is found not to satisfy the
specification then the cost-function welights must be altered and the
design/analysis procedure repeated. 'This process continues until a
satisfactory closed-loop performance is achieved.

One major area 1in this respect having considerable scope for
further work 1s the selection of the dynamic cost-function welghts.
It was shown in Chapter 2 that the dynamic weights have a direct
influence on the frequency-response properties of the closed-loop
system. It was also demonstrated that fundamental design
requirements such as low galn at high frequency could be easily
introduced by this means. What 1is needed, however, 1is a
comprehensive and systematic design procedure for selection of the

dynamic welghts to meet a range of performance specifications.
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A criticism of the stochastic optimal control theory is that
there is no direct way in which to incorporate desirable sensitivity
and robustness properties into the optimisation procedure. As
mentioned above, these considerations can only be partially addressed
using the iterative cost-function selection procedure. Grimble
(1983) and Youla and Bongiorno (1985) have augmented the standard LQG
problem {in an attempt to address the robustness question by
incorporating sensitivity terms in the quadratic cost-function.

The H@ optimisation technique (Zames, 1981), on the other hand,
concentrates purely on robustness properties by posing a cost-
function which directly includes various system sensitivity measures.
Rwakernaak (1986) and Grimble (1986d4) have tackled the Hw design
problem using polynomial optimisation techniques. The key area of
research in these methods at the present time is the development of
efficient and robust numerical procedures for execution of the Hcn
controller design which involves non~linear diophantine equations,
If these issues can be satisfactorily resoived then the Hw method

will become a powerful design tool for linear systems.

6.2 LQG self-tuning control

In cases where the {iterative design procedure outlined above
cannot be used (due to ignorance of the plant parameters, for
example) a natural way to use the stochastic optimal control theory
is in self-tuning control. This idea is pursued in Chapter 4 where,
for identification purposes, the plant model considered is simpler

than the general model of Chapter 2.
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Clarke et al (1987) assert that a self-tuning control algorithm
must be applicable in the following situations in order to be
considered as a ‘'general purpose' algorithm for the stable control of
the majority of real processes:

(1) nen~-minimum phase plant

(i1) open-loop unstable plant or plant with badly damped

poles

(11i1) a plant with variable or unknown dead-time

(iv) a plant with unknown order

The LQG self-tuner presented in Chapter 4 overcomes all these
problems.

The LQG controller has a guarantee of closed-loop stability
regardless of the plant pole/zero locations. Thus, conditions (1)
and (ii1) above are satisfied. Since the LQG algorithm presented in
Chapter 4 was based upon explicit plant identification the method can
deal with variable dead-time by overparameterisation of the numerator
polynomials B and D. This technique 1is also employed in the
pole-placement self-tuners. In the pole-placement algorithms,
however, overparameterisation of the plant numerator polynomials
means that the order of the estimated denominator polynomial must be
chosen with great care to avoid singularities in the solution of the
diophantine equation caused by common factors in the estimated plant
A and B polynomials. This problem does not arise in the LQG
gelf-tuner of Chapter 4 since the couple of polynomial equations
(4.22) - (4.23) can be solved (with only a small increase 1in
computation relative to the implied equation (4.30)) to obtain the

unique optimal controller regardless of any possible stable common
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factors in the plant A and B polynomials.

The LQG self-tuner can therefore cope with variable or unknown
dead-time without suffering from overparameterisation problems and
thereby satisfies conditions (i1ii) and (iv) above.

A further attractive feature of the LQG self-tuner is the
relatively low number of on-line tuning parameters. The simple
formulation of the cost-function weights given in Chapter 4 leads to
the necessary inclusion in the controller of integral action, and
requires the selection of only two scalar parameters (in the
experimental trials presented in Chapter 5 only one parameter was
actually tuned on-line).

The polynomial solution of the Hm control problem is another
area which may be of considerable use in self-tuning systems. At the
present time only a simplified version of the theory has been
proposed for use in self-tuning control (Brown et al 1986, Grimble
1986e). However, developments in algorithmic aspects should give
the method considerable potential as the basis for a robust

self-tuning controller.
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APPENDICES

APPENDIX 1 : Proof of Theorem 1

The closed loop transfer function M and the sensitivity

function S for the SDF control structure are defined as:

c
c 1
"4 Tvwe, 0 54 Tvwe (at.1)
pc pc
thus:
M=CS,S=1-WM (Al.2)
c p

From the SDF system structure shown in Figure 2.3 the control input

and tracking error signals may be written as:

u=-Md+n-m-~- wx¢1n) - SCcff (Al.3)
e = —(l—pr)(d—m_wx¢1n) + prn
= by = (W W SCOE (AL.4)
where:
Ccf A Cff + chx (Al.9)

From equations (Al.3) and (Al.4) the control input and tracking error

spectral densities may be written as:

x % * &
M(‘bd oty t wxojlnwx)M + Sccf¢fccfs (aL.6)

i

oy

* * k X
(10 M) (9 g+o #W ap W Y(1-H M)~ + W Mo MW

¢

e

*
0+ (W W SC )0 (W ~W SC_ ) (AL.7)

Denoting the integrand of the cost-function (2.43) as 1, the

integrand may be written:

L=0Q¢, * Rc¢u (Al.8)

Substituting the expressions for ¢u and ¢e given in equations (Al.6)
and (Al1.7) into equation (Al.8) the cost-function integrand may be
written, after some algebraic manipulation, as:

*
cf®eCet

* K
+ Cc(¢d+¢n+¢m+wx°£nwx)cc)

* *
I = (W QM +R)SS (C
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* *
+ Qc(wx¢fwx+¢d+¢m+wx°1nwx+drn)

* * %
- Qc¢f(wxccfs wp+wpsccfwx)
* * *x AL.9
- Qc(¢d+¢m+wx°xnwx)(m wp+pr) (A1.9)

To further simplify the cost expression the control and filter

spectral factors (Yc and Yf, respectively) are defined by:

* *
YCYc A wpchp + Rc (Al.10)
* *

Yfo A dq + o + ¢m + wxolnwx (Al.11)
Similarly, the measurable disturbance spectral factor de is defined
by:

Y. v AL.12

fa'£a & O (AL.12)
The following auxiliary spectra are defined by:
* *
N A Qc(wxd;fwx +ody t+ Op * wx“znwx + °ru) (A1.13)
*
L ) Qc¢prwx (Al.14)
* %

¥ & Qc(¢d oyt wxdlnwx)wp (AL.13)

Substituting from equations (Al.10) - (Al.15) into equation
(Al1.9), the cost-function integrand may be written as:

1 *SS* C Y* * *C*

- YcYc ( chfd fdccf t CchYf c)
C* S* * * *
PO T Ml T nSCer T fnoMt T oM (AL.16)

The Integrand may now be split into terms which depend on each part
of the controller, and terms which do not depend on the controller at
all. Completing the squares in equatfon (Al.16) the integrand may be

expressed as:

¢ [
hl hl
L= (¥.5C ¢Y¢q ;T) (Y SC ¢¥eq = T )
c fd c fd
[ ¢ *
h2 h2
+ (1 sc Y, - ;TYT) (x_sc ¥, ok )
c f c f
o (A1.17)

ol
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where:
* *
1, 1 %o
01 = 9o - % ( — * ) (A1.18)
Yoo Yea¥ea YeXe

The term ¢01 in equation (Al.17) does not depend on the controller
and does not, therefore, enter into the following cost minimisation
procedure. The first two terms in equation (Al.17) depend,
respectively, on the feedforward and cascade parts of the
controller.

Before proceeding it 1Is necessary to express the spectral

factors of equations (Al.10)-(Al.12) in polynomial form as follows:

*
. DD,
Y Y A . (A1.19)
¢ AA
cc
*
x  DgD¢
Y, Y. A (A1.20)
£E2 %
£
D..D.
* £4°fd
dede iy 'A—A*—- (Al.21)
£d°£d

Using the polynomial equation form of the system model given in Table
2.1, and using the polynomial equation form of the cost-function
welghts given by equatlon (2.45), the spectral factors may be written
as:

*x Kk & k k&
BABBAB +AABBAA
pgqrrqp

- prqqrp
YCYc = o (Al.22)
AAAAAA
Pqrraqp
* * k Kk K * k k k
Yfo = (AnAeAxcdgdCdAerAn * AdAeAanUnCnAerAd
AA A *A*A** k k k %
+ dAn xErUrEr b3 nAd + AdAnAeAernAerAnAd
x k k % k k Kk K
+ AdAnAerUXanAeAnAd)/(AdAnAerAeAxAnAd) (A1.23)
* *
A,o, A, + E g E
* 2 An" % !
dede % (Al.24)

Aghs
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Comparison of equations (Al.19) - (Al.21) with equations (Al.22)

- (Al.24) then ylelds:

* k Kk k * Kk *
DD =BABBAB +AABBAA (A1.25)
cc prqqrp PqQYrqp
* AA' C C*A'*A* + A C C*A*
Dfo ( nlex-d%"“d ex n dex”n%n “ndex
+ AA' E E*A'*A* + A A A* A*
n"xd % “rxd™n n"dexrn"dex™n
k Kk k *
1 L} 1 ]
+ AnAedcxcknchedAn)Apprf (Al.26)
* * *
Ddefd = AlalnAl + EkdlEl (Al1.27)
and:
A = AAA (Al1.28)
c pqQr
Af = AdexAnApf (A1.29)
Arg = A (A1.30)

Each of the controller dependent terms in equation (Al.l17) may now be
simplified separately:

(1) Cc dependent term

From the plant model equatlons and spectral factor definitions

obtaln:

B*A*B*B (D D* ~-C C*A' A'* A A*
d>h2 prqgqg ff nn"n dexp dexp p p)
* %k = * % (A1.3l)
Y Y A A A' ADD
c f p q dexp n ¢ f

The diophantine equation (2.50) allows the strictly unstable

part of equation (Al.31) to be separated as follows:

¢ gl
Y:i* ) ApAqueprn * zfn* (a1-32
c f c f
From the system equations and spectral factor definitions obtain:
DchCcn
Y SC ¥ = A A A AA(AC FB5C ) (A1.33)

pqdexpnr pcd pcn
From equations (Al.32) and (Al.33) obtain:
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Iy DD.C -GA(AC  +BC ) gl
chchf _ 22* __c fen r'pcd p cn _ F: - (AL.34)
\
Ych ApAqueprnAr(Apccd+BpCcn) DD

Substituting from the implied cascade diophantine equation (2.58),

equation (Al.34) may be expressed as:

¢ C H-GAC gl
¥ SC Y, - L cn r cd - FE (a.3s)
1
Ych AqueprnAr<Apccd+chcn) Dch
Finally, equation (Al.35) may be expressed as:
Yscy, - oh2_ gt - (AL.36)
c e f * x 71 1 :
Y Y
c f
where f; denotes the first term in equation (Al.35) and T; denotes

the second, strictly unstable, term.

(it) C‘:f dependent term

From the plant model equations and spectral factor definitions
obtain:

* k k c
¢'hl - BpAquBq fod

* % ] (Al.37)
Y. ¥4 A AL,

The diophantine equatfon (2.55) allows the strictly unstable part of
equation (A1.37) to be separated as follows:

o1 X 2282
5% T TAd + = (A1.38)
clgg A AX

c
From the system equations and spectral factor definitions obtain:

Dc .C D
Y sC .Y - c cd cfn fd
c e

f fd CcfdAquAr(Apccd+chcn)

(A1.39)

From equations (Al1.38) and (Al.39) obtain:



272

- A +
Y SC_.Y_, - *h1 = PeCeaCeenleat Mrled pled BPCcn)
* % ¥
c7cf £d vy, C e tar A e A Cea B o)
g2
Zz* (Al.40)
D

Substituting from equation (2.59) this may now be written:

- D 2

%1 CeaCeenlea®s ™ clera® 228
Yo SCeffea "2 F T C_AAAAD T (AL.41)
¢ ¢ YyY cfd 2 x qr f D

c fd c

Finally, equation (Al.41) may be expressed as:

¢
hl + ~
YCSCCfod -~ x % = T2 + T2 (Al.42)
Y Y
c fd

+
wheaere T2 denotes the first term in equation (Al.41) and T2 denotes

the second, strictly unstable, term.

Minimisation
Substituting from equations (Al.36) and (Al.42) into equation
(Al.17) the cost—function integrand may he written:

R o=k -k
L= (TP#T) (T #T)) + (THT)(Ty4Ty) + o o (AL.43)

+

In equation (Al.43) the T, terms are stable and the TI terms strictly

unstable for 1 = {1.2}. In the expansion of eguation (Al1.43) the
~ 4%
terns TiTt are therefore analytic in |z < 1. 1In addition, the

+% -
terms TiTi /z are also analytic in |z] ¢ 1 since the Ti terms are

strictly proper in z-1 (the optimality conditions). Thus, using the

identity:

— %* =
é§ T otz . ¢ i 42 (Al .44)
[

z
c

and {anvoking Cauchy's Theorem, the contour integrals of the cross
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% - 4%
terms TIT1 R TiTI in equation (Al.43) are zero. The cost function

therefore simplifies to:

2
+
[ £ (T,T,

1
— ¢
3 z1=1 t=1

Since the terms TI and ¢01 are independent of the controller the

—n¥ dz
J = + T T )+ ¢01] = (A1.45)

cost—function J is minimised by setting:

T, =0, t = (1,2} (A.46)

(1) cCascade controller

From equations (Al.35) and (Al1.36), setting T; = 0 {nvolves:

c,H-caC =0 (AL.47)

or:

C =L (Al1.48)

(11) Feedforward controller

+

From equations (Al.41) and (Al.42), setting T2 = 0 involves:
CoaCornraty = XA Copas = O (A1.49)
or:
XAer
C = o (Al1.50)
cf CcdedAx

Using the definition of Cc in equation (Al.5), the feedforward

f
controller becomes:

XAer - Cchfod
Cee = D_AC (AL.51)
fd x cd
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Minimum Cost

+

Setting T1 =0, 1 = {1,2} in equation (Al.45), the minimum cost

ts found to be:

R S S : Ty g ] 22 (A1.52)
min  2nj lzi=1 {=1 i1 ol z

Stability of Tt Terms

+

Implicit in the above proof 1is the requirement that the T, terms

4 -

are asymptotically stable for { = [1,2]. Stability of the T, terms

—~

may be demonstrated as follows:

() TT term

From equations (Al.35) and (Al.36) obtain:
C H-GAC
T+ - _cn r cd (A1.53)

t
1 AqueprnAerDc

By definition, Aq and Ar are strictly Hurwitz polynomials. By virtue

of conditions (a), (b) and (c) Iin Theorem 1 Aéexp is strictly

Hurwitz. From Corollary 3 in Section 2.4 An divides both G and Ccn'

By definition, D_ {s Hurwitz, but in the limiting case when D_ has a

£ f

zero on the unit circle this zero will also be in G and Ccn(by virtue

of Corollary 5). From Lemma 1 Dc is strictly Hurwitz. TT is

therefore asymptotically stable.

(11) T, term
From equations (AlL.41) and (Al.42) obtain:

T+ - CcdccanfdAx B XAth
2 CcfdAzAquAer

£4f

(A1.54)
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Substituting from the implied feedforward diophantine equation (2.60)

and using equation (Al1.50), the expression for T; may, after some
algebraic manipulation, be written as:
4 -
T+ - XAplx(H Ccd) (AL.55)
2 AT A DD :
xq £ c

By definition Aq is strictly Hurwitz. By virtue of condition (c¢) in
Theoren 1-Aix is strictly Hurwitz. By definition, Df i{s Hurwitz but
in the limiting case when Df has a zero on the unit circle this zero
will also be in Aélx (by virtue of Corollary 5 and equation (2.27)).
From Lemma 1 Dc {s strictly Hurwitz. T; is therefore asymptotically
stable.

Solvability conditions

It only remains to relate the conditions (a)-(d) in Theorem 1l to
solvability of the optimal control problem. Problem solvability in
this context 1s taken to mean that the given data generate a
controller which renders the cost-function finite.

Clearly, the cost will be finite 1f and only 1f the twelve
transfer-functions in equations (2.32) and (2.33) are asymptotically
stable.

Consider the case when a has a zero on the unit circle as
discussed in Corollary 5. Such a zero arises when Ap has a zero on
the unit circle and when A, Ax and Ae do not. Using Corollary 5 D

d f

and Ccn will also have this zero. From equation (Al.51) Cffn will

also have this zero. As a consequence, this unstable zero will.

cancel in all the transfer-functions in equations (2.32) and (2.33)
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and the problem remains solvable.
By Corollary 3 (which results from condition (d)) the transfer
functions BC C /A and AC C /A are asymptotically stable. From
pcan n pecan n
equation (Al1.51), and by Corollary 4 and Lemma 1, the transfer-

functions B C C and A C /

pCeenCea’ Ceta pCefnbed’Cesa
stable. Finally, conditions (a) - (c) ensure asymptotlc stability of

are asymptotically
the remaining transfer-functions as follows:

(1) Condition (a)
Clearly, condition(a) ensures asymptotic stability of the

transfer functions CdApCcd/Ad and CdApCcn/Ad.

(11) Condition (b)
Clearly, condition (b) ensures asymptotic stability of the

transfer~functions A C E /A and AC E /A .
pecdr e pecnr e

(111)Condition (c¢)
The fifth transfer-function in equation (2.32) is:

(CxApcffd B chfanx)Cchx
At Ceea®

Substituting from the implied feedforward equation (2.60) and using

equation (Al1.51) this may be rewritten, after some algebraic
manipulation, as:

YE D
Aq L f

1
A xPea”

By condition (c) Ai

This transfer—-function is therefore asymptotically stable.

x is strictly Hurwitz and by Lemma 1 so is Dfd'
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The fifth transfer—function in equation (2.33) is:

(ConCiCeeat Cren’xCed)?ply
A Achffd
Substituting from equation (Al.51) this may be written:

]
(¢ )Ap1x L

cn X fd

1
Aszfd“

Again, condition (c) and Lemma 1 ensure asymptotic stability of this

transfer-function. °
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APPENDIX 2 : Proof of Theorem 6

The closed-loop~ transfer~function M and the sensitivity

function S for the 2DF control structure are defined as:

[
fb 1
MA 5 , 88 sV (A2.1)
= 1+ cfbwp 1+ cfbwp
thus:
M= Cfbs , S = 1—pr (A2.2)

Feom the 2DF system structure shown in Figure 2.4 the control input
and tracking error signals may now be written as:

= —-Md-Mn + - 8C. f + MW .
u Md-Mn scrm Lf x¢ln (A2.3)

=(1=W M)d + W M + (1-SW C)m = 4,

[]
[

- - f + -W M)W AZ2.4
O Swpclf) (1 Wp AN ( )
where:
le A Cff + Cfwa (A2.5)
From equations (A2.3) and (A2.4) the control input and tracking erroc

spectral densities may be written as:

k % *k %
¢u = M(¢d + 0, + wxolnwx)m + Scr¢mcrs
Y A2.6
+ 8C,c0.C\ S (A2.6)
* * * &
by = (1—wpx)(¢d+wx01nwx)(1—wpm) + pr¢nM up
*
+ (l-Sprr)¢m(1-Sprr) + Sen
*
+ (wx—swpclf)¢f(wx—swpclf) (A2.7)

Denoting the integrand of the cost-function (2.43) as I, the
integrand may be written:
I=Qu, + RS, (A2.8)

Substituting the expressions for ¢u and ¢e given 1in equations (A2.6)
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and (A2.7) into equation (A2.8) the cost-function integrand may be

written, after some algebraic manipulation, as:

* * * *
1= (prcwp + Rc) sS (c1f¢fc1f + cr¢mcr
* %
F Cepl0g + 0 * W,000%)Cep)
* *
+ Qc(wx¢fwx +ooy t wx“lnwx + oot °rn)
x % %k *
- Qc¢f(wxc1prs + swpclfwx)

* k k
- Qc¢m(CerS + SWPCr)
* k&
—Qc(d)d + chlnwx)(M WP + WPM) (A2.9)
To further simplify the cost expression the control and filter

spectral factors (Yc and Yf, respectively) are defined by:

* *
YCYc A prcwp + Rc (A2.10)
* *
vaf A ¢d + ¢n + wxcknwx (A2.11)
Similarly

, the measurable disturbance spectral factor de and the

reference spectral factor Ym are defined by:

*
Yeu¥iq & O (A2.12)

*
Y Y Ao (A2.13)

The following auxiliary spectra are defined by:

* *

0, B QW O W + by +Wo W+ o +o0.) (A2.14)
*

by 4 Qc¢prwx (A2.15)
*

Pha & oM, (A2.16)

x %
bp3 & Q(og + Woay WOW, (A2.17)

Substituting from equations (A2.10)-(A2.17) into equation (A2.9), the

cost-function integrand may be expressed as:
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_ %* * * c* c *c* c v Y*c*
T = Y Y88 (Cre¥eq¥eaCre + Co¥p¥pCp * Cop¥¥eCep)
* * * s
oy T bniCreS 7 4 SC
k % * * * A2.18
T 005 7 0pSCL oM - M (42.18)

The integrand may now be split {nto terms which depend on each part
of the controller, and terms which do not depend on the controller at
all. Completing the squares in equation (A2.18) the Integrand may be

expressed as:

¢ ¢ *
_ hl hl
L= (Y SC ¥y = =i a (Y SC ¢y o )
c fd c fd
¢ [} *
h2 h2
+ (Y scy - Y(Y SC Y_ - )
cr'm ¥ Y* c rm Y*Y*
cm cm
¢ $ *
h3 b
MY = ) (Y MY = )
Y ¥ Yy
c f c f
+ 4 (A2.19)
where:
brony  brobi,  bpadn
Doy = b5 = 1_(htht | Tha'he | Th3THI (A2.20)
Y Yo Yea¥ed Toln Ye¥e

The term ¢01 in equation (A2.19) does not depend on the controller
and does not, therefore, enter into the followlng cost minimisation
procedure. The first three terms in equation (A2.19) depend,
respectively, on the feedforward, reference and feedback parts of the
controller.

Before proceeding it 1s necessary to express the spectral

factors of equations (A2.10) - (A2.13) in polynomial form as

follows:
*
Y Y EEB; A2.21
Yo - (A2.21)
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*
«  DeD¢
Y Y. A (A2.22)
g2 Tk
£he
*
& DeaDeq
ea'ed & T (A2.23)
falted
*
Y Y A Pn’ (A2.24)
= * .
mm A A
m m

Using the polynomial equation form of the system model given in Table

2.1, and using the polynomial equation form of the cost-functlon

welghts glven by equatfon (2.45), the spectral factors may be wrltten

*

N BABBAB+AABrBrAA
Y Y o= ;! B 1p (A2.25)
c cC
AAA A A A
pqr q
Cc C*A*A* +AAC c A A + AAC C A A
Y‘Y* - A A d%a"d"x™n 4% 'nn n x d d”n"x%n "x d
£ £
AdAnAxAxAnAd
(A2.26)
A + E E*
S AgOanty t EgogBy (A2.27)
£d fd A A" )
JAS
Ag A + E O E
*
Yy o= St (A2.28)
A A
e e
Comparison of equations (A2.21)-(A2.24) with equations
(A2.25)-(A2.28) then yields:
*
DD =B A B B A B + AAB B A A A2,
cc rqqrp pqrrqp (229)

* * *
= 1 ' ' ' '
Dfo (AnAxCdUdCdAx An+ AdanUnCnAdx AdA c 01 C A A )A Ap

(A2.30)
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* *
Ddefd 1 1 AX + El XEX (A2.31)
*
DD = AearnAe +Eo E (A2.32)
and:
A = AAA (A2.33)
¢ pqr
A = A AA' A2.34
f dx n p ( )
Afd = Al (A2.35)
= A .
Am e (A2.36)

Each of the controller dependent terms in equation (A2.13) may now be

simplified separately:

(1) Cfb dependent tern

From the plant model equations and spectral factor definitfons

‘obtain:

1 1
¢h3 ) BpAquBq(D Dr-C o CnAdXAdXA A o)

1
Ych ApAquxAnDch

(A2.37)

The diophantine equation (2.78) allows the strictly unstable part of

equation (A2.37) to be separated as follows:

o sl
G + 2 (42.38)
Y Y ApA AéxAn D*D*
c f Pd c f
From the system equations and spectral factor definitions obtain:
DDC
c f fbn
Y MY, = T (A2.39)
c  f A AquxAnA (A Cfbd n)

From equations (A2.38) and (A2.39) obtain:

¢ up - b3 DPeCepn = FA(AChg*BCebn) puBl (A2.40)
* kO T + T TR & .
e T T AR AR AT FB e ) Vo

Substituting from the implied feedback diophantine equation (2.89),
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equation (A2.40) may be expressed as:

¢ my 3 Cepnl! = Cepa®he Fz8! (A2.41)
T Tx % C 7 T Tk %
¢ f YY AquxAnAr(Apcfbd+chfbn) DD
c f c f
Finally, equation (A2.41) may be expressed as:
TP B (A2.42)
c  f * % 1 1 *
Ych

+ -—
where Tl denotes the first term in equation (A2.41) and Tl denotes

the second, strictly unstable, term.

(1) Cr dependent term

From the plant model equations and spectral factor definitions

ohtain:
¢ B*A*B*B D
h2 r m
P AL I § (A2.43)
Yy AAD
cm qec

The diophantine equation (2.83) allows the strictly unstable part of

equatfon (A2.43) to be separated as follows:

[ g2

h2 M Nz

% " A + — (A2.44)
YY q e D

cm [

From the system equations and spectral factor definitions obtain:

DccfbdDmcrn
Y SCY = (A2.45)
¢ rm CrdAeAqAr(ApCfbd+chfbn)

From equations (A2.44) and (A2.45) obtain:

¢scy -2 PeCenPaCeba T Cra®Ar{ApCepatBpCepn’
* k
la TR Crahalhr(A Crpa¥8 Ceu
82
- e (A2.46)

D
c
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Substituting from equation (2.90) this may be written as:

%2 CrnPuCeba = CraMAle N282 (A2.47)
YeSC Yy - %% " T T AAAD T
Yy rdeqr f D
cm c
Finally, equation (A2.47) may be expressed as:
¢
h2 + -
YSCY - =T, 4T, (A2.48)
YY
c'm

+ —_
where T2 denotes the first term in equation (AZ.47) and T2 denotes

the second, strictly unstable, term.

dependent term

(i) ¢ .

From the plant model equations and spectral factor definitions

obtain:
¢ B*A*B*B c.D
hl r x fd
- — (A2.49)
Ychd AquAch

The diophantine equation (2.86) allows the strictly unstable part of

equation (A2.49) to be separated as follows:

¢ g3

hl X Zz

*y* Ty + D* (A2.50)
Yc fd ax c

From the system equations and spectral factor definitions

obtain:

1£a Ed
2Ceba oy

D
¢ sc .y - ccfbdc
c ULE ' Fd C AA(A

T (A2.51)
1£d"2"q

cfbn)

From equations' (A2.50) and (A2.51) obtain:
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v sc, v a1 _ DeCepaCienleats T *ArCieaApCenatBpCena’
% %k
1£°€d ~ Ty Cleare it (A cfbd+a Cron)
c fd
g3
- % (A2.52)
D
c
Substituting from equation (2.90) this may be written as:
¥h1 cfbdclanEdAx XA Cyeals 2283
YeSCieq T E T AAAAD T (A2e33)
YY lfd Lxqrf D
c fd c
Finally, equation (A2.53) may be expressed as:
]
hl oA -
¥ SCe¥eq R TR (A2.54)
Yyt
c fd

+ -
where T3 denotes the first term in equation (A2.53) and T3 denotes

the second, strictly unstable, term.

Minimisation

Substlituting from equations (A2.42), (A2.48) and (A2.54) into
equation (A2.19), the cost-function integrand may be written:
L= (1) + T)(T] + TI)*+(T; + (T T;)*+(T; + TI(TS + T;)*+¢,ol

(A2.55)

In equation (A2.55) the TI terms are stable and the T; terms strictly
unstable for i = {1,2,3}. In the expansion of equation (A2.55) the
terms TITI* are therefore analytic in |z} ¢ 1. 1In addition, the
terms T T /z are also analytic in |z} < 1l since the TI terms are
strictly proper in z 1. Thus, using the ifdentity:

T gyt 2

k4 Z
C c

(A2.56)
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and Invoking Cauchy's Theorem, the contour integrals of the cross

+, —* ~ 4%
terms TiTi ) TiTi in equation (A2.55) are zero. The cost—function

therefore simplifies to:

3
J=5—= ¢ [Z(T+T+*

1 dz
213 1zi=1 =1 171

- %
+ T, T )+ ] (A2.57)

Since the terms T, and ¢ol are independent of the controller the
cost~function J is minimised by setting:

T, =0, 1={1,2,3} (A2.58)

(1) Feedback controller

From equations (A2.41) and (A2.42), setting T: = 0 involves:

Copal = Cppg®A, = 0 (A2.59)

or:

cC., =— (A2.60)

(11) Reference controller

From equations (A2.47) and (A2.48), setting T; = 0 involves:

Cenlaleba = Crd™ g = O (A2.61)
or.:
MAer
¢ = (A2.62)
* Dyl

(111) Feedforward controller

From equations (A2.53) and (A2.54), setting T; = 0 involves:

CenaCrenleatx ™ ¥ArCiea® = 0 (A2.63)
or.
XAer
e TP A (A2.64)

fd x"fbd
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Using the definition of C in equatlion (A2.5), the feedforward

1f
controller becomes:
XALDe = CopnCilea
Cff = D_ AC (A2.65)
fd 'x fbd

Minimum cost
+
Setting T; = 0, 1 = {1,2,3} in equation (A2.57), the minimum
cost 1Is found to be:

J L [ g (17T + o ] %2 (A2.66)
nin 2n3 (z{=1 1i=1 i1 ol z

Stablility of T: terms

+
Implicit in the above proof is the requirement that the TL terms

+
are asymptotically stable for 1 = [1,2,3}. Stability of the T1

terms may be demonstrated as follows:

(1) TT term
From equations (A2.41) and (A2.42) obtatn:

+  Cepn! T Crpa®Ac

T = AA XAD.D (42.67)
gdsnrfe

By defintition, Aq and Ar are strictly Hurwitz polynomials. By virtue

of conditions (a) and (¢) in Theorem 6 Aéx 1s strictly Hurwitz. From

Corollary 4 An divides both Cfbn and G. By definition, Df is

Hurwitz, but in the limiting case when Df has a zero on the unit

cirele, this zero will also be in Cfbn and G (by virtue of

+
Corollary 6). From Lemma 1 Dc is strictly Hurwitz, T1 i1s therefore
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asymptotically stable.

+
(11) T2 term

From equations (A2.47) and (A2.48) obtain:
+ Crancfbd— Cr MArD

T, =
2 CrdAeAqAer

d £

(A2.68)

Substituting from the implied reference diophantine equation (2.91),

+
and using equation (A2.62), the expression for ’1‘2 may, after some

algebraic manipulation be written as:

T+ __0p d)
2 A'A D.D D
eqfecm

MA' (D H - C
_ e ''m r

(A2.69)

By definition, Aq is strictly Hurwitz. By virtue of condition (b)

in Theorem 6 A' is strictly Hurwitz. By definition, D_ is Hurwitz,
e

f

but in the limiting case when D_. has a zero on the unit circle, this

£

zero will also be 1in A;e (by virtue of Corollary 6 and equation

(2.17))., From Lemma 1 Dc and Dm are strictly Hurwitz. T; is

therefore asymptotically stable.

(111) T; term

From equations (A2.53) and (A2.54) obtain:

+  CebaCrenPeatx = ¥4 Cp a0
Ty = C .. AAADA (A2.70)
1£a8 8% DA

Substituting from the implied feedforward diophantine equation

(2.92), and using equation (A2.64), the expression for T; may, after

some algebraic manipulation, be written as:
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] -
o XAthx(H Cfbd)
3 A' ADD

Lt q fe

(A2.71)

By definition, Aq ig strictly Hurwitz. By virtue of condition (c) in

is Hurwitz, but

Theorem 6 Aix is strictly Hurwitz. By definition, Df

in the limiting case when D_ has a zero on the unit eclircle, this zero

f

will also be in A;RK (by virtue of Corollary 6 and equation (2.27)).
+
From Lemma 1 Dc is strictly Hurwitz. T3 is therefore asymptotically

stable.

Solvability conditions

It only remains to relate the conditions (a)-(d) in Theorem 6
to solvability of the optimal control problem. Problem solvability
in this context is understood to mean that the glven data generate a
controller which renders the cost-function finite.

Clearly, the cost will be finite {f and only if the twelve
transfer-functions in equations (2.39) and (2.40) are asymptotically
stable.

Consider the case when ¢ has a zero on the unit circle as
discussed ia Corollary 6. Such a zero arises when Ap has a zero on

the unit circle and when A, and Ax do not. Using Corollary 6 D_. and

d f
Cfbn will also have this zero. From equations (A2.62) and (A2.65)
C and C will also have this zero. As a consequence, this
rn ffn

unstable zero will cancel in all traunsfer-functions in equations
(2.39) and (2.40) and the problem remains solvable.

By Corollary 4 (which results from condition (d)) the
transfer-functions BpCfann/An and CfbuCuAp/An are asymptotically

stable. By equation (A2.62) and Lemma 1 the transfer-functions
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c C /Cr /C , are asymptotically stable. By

B CrnCrpa and C_A C

d p fbd" "rd

equation (A2.65), Corollary 5, and Lemma 1 the transfer-functions

and A C

/Ceeq pCEEnCEbd

/C are asymptotically stable.

B CeenCEbd £Fd
Finally, conditlons (a) - (c) ensure asymptotic stability of the

remalning transfer-functions as follows:

(1) Cond{tion (a)

Clearly, condition (a) ensures asymptotic stability of the
transfer-functions CdApCfbd/Ad and cfandAp/Ad'
(i11i) Condition (b)

The third transfer-functlon in equation (2.39) is:

(Cpqa - chrncfbd)Er
AeaC

rd

Substituting from the implled reference diophantine equation
(2.91) and using equation (A2.62) this may be rewritten, after some

algebralic manipulation, as:
AqQEer
A'D a
e m
By condition (b) Aé is strictly Hurwitz and by Lemma 1 so is Dm.

This transfer-function 1s therefore asymptotically stable.

The third transfer-function in equatlion (2.40) is:
CrnhrApCfbd
C Aaqa
rd e

This may be rewritten, using equatfon (A2.62), as:
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C EA
rn r p

D Aa
me
Condition (b) and Lemma 1 ensure asymptotic stability of this

transfer-function.

(1t1)Condition (c)
The fifth transfer-function in equation (2.39) is:

(CoACeed = ACeenPp)EeCrba

At Ceeq®

Substituting from the implied feedforward equation (2.92) and using
equation (A2.65) this may be rewritten, after some algebraic
manipulation, as:

AqYEng

1]
ArxPea®

By condition (c) Aix {s strictly Hurwitz and by Lemma 1 so is Dfd'

This transfer-function is therefore asymptotically stable.
The fifth transfer-function in equation (2.40) is:

C cC +
( fbn x ffd Axcffncfbd)ElAp
AheCeea®

Substituting from equation (A2.65) this may be written:

( )E A’

Cepnx"fd ¥ CeenlBilpax
¥
A xPed®

Again, condition (c¢) and Lemma 1 ensure asymptotic stability of this

transfer-function.
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APPENDIX 3 : Proof of Theorem 12

The proof of Theorem 12 follows that of Theorem 1l in Appendix 1
up to equation (Al.21).

Using the common denominator form of the system model given in
equations (2.99)~(2.102) and using the polynomial equation form of
the cost-function weights given by equatton (2.45), the spectral
factors (Al.10)-(Al.12) may be written as:

* BA B B A B + AA B B A A

R qrr (A3.1)
aa A aTATA"
qrrag
* * % * % * %
Ye¥e = (A Co,C A+ AC o CA +AEGE A
* %
+ AAnornAnA + A D, D AN)/AA AN (A3.2)
*
¢ ¥ - Aoaaty + Eogfy (43.3)
£d £d o '
g

Comparison of equations (Al1.19)-(Al.21) with equations (A3.1)-(A3.3)

then yields:

Dch = BAquBqA B + AA BrBrAqA (A3.4)
* * %
Dfo = AnCadC An + ACnonCnA + AnEorE An
* % * %
+ AAnornAnA + AnDGQnD An ,(A3'5)
* * *
DeyDeg = AldlnAl + ElolEl (A3.6)
and:
A, = AAA (A3.7)
Af = AAn (A3.8)
Afd = Al (A3.9)

Each of the controller dependent terms in equation (Al.17) may now be

simplified separately:
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(1) Cc dependent term

From the plant model equations and spectral factor definftions

obtain:
B*A*B*B (D D* AC C*A*)
¢ = g
h2 r f°f nnn
= a4 — (A3.10)
Y Ye AAqAnDch

The dlophantine equation (2.109) allows the strictly unstable part of

equation (A3.10) to be separated as follows:

1
fhi = AAGA t F:g* (A3.11)
Ych qn Dch
From the system equations and spectral factor definfitions obtafin:
Dchccn
Y5C Y A A A(AC FBC ) (43.12)
qnr Tcd cn

From equations (A3.11) and (A3.12) obtain:

- +
Yscy. - ) - DchCcn GAr(ACcd Bccn) _ Fzg1 (A3.13)
el f % AA A A (AC_¥BC ) % .
Ych qQqnr cd cn Dch

Substituting from the implied cascade diophantine equation (2.117),

equatfon (A3.13) may be expressed as:

Yscy. - oh2 - Can - GArccd _ Fzg1 (A3.14)
e e * k A A A (AC +BC ) * & :
Ych qQqnr cd cn Dch

Finally, equation (A3.14) may be expressed as:

¢
h2 + -
Y SC Y, x =T f T (A3.15)
Ych

+
where T1 denotes the first term in equation (A3.14) and T2 denotes

the second, strictly unstable, term.
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(ii) Cc dependent term

f

From the plant model equations and spectral factor definitions .

obtain:
8°A "B
¢ DD
hl r £d
— 11 (A3.16)
Y Y, AA A,D

The diophantine equation (2.114) allows the strictly unstable part of

equation (A3.16) to be separated as follows:

¢ g2
hl X Zz
Y*Y* = I Al + D* (A3.17)
c fd 4 c

From the system equations and spectral factor definitions obtain:

D
Dcccdccfn fd
AqAr(ACcd+BCcn)

Y SC Y = (A3.18)
c cf fd CcfdAk

From equations (A3.17) and (A3.18) obtain:

Yysc vy - ¢h1 _ DcccdccanfdA B XArCcfd(ACcd+BCcn)
¢ ef fd x x C . A A AA(AC_+BC )
Ychd cfd 8 qr cd cn

g2
- 2z (43.19)

D
c

Substituting from equations (2.108) and (2.117) this may be written:

esc v - o CeaberaPrat T~ MACerdPr 222 20
c”Ccf £d * k0 C _ A AAAD * (A3.
cfd 8 qr °f D
c fd c
Finally, equation (A3.20) may be expressed as:
CSC Y. - ML gt (A3.21)
c"ef fd k% 2 2 :
YY
c fd
+ -
where T2 denotes the first term in equation (A3.20) and T2 denotes

the second, strictly unstable, term.
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Minimisation

Using a similar argument to the one used in Appendix 1 the cost

+—-

funcrion may be minimised by setting T, = 0, i = {1,2}.

(i) Cascade controller

+
From equations (A3.14) and (A3.15), setting Tl = 0 involves:

C_H=-GAC =0 (A3.22)

or:

¢ =L (a3.23)

(i1) Feedforward controller

From equations (A3.20) and (A3.21), setting T; = 0 Involves:
CLiCopalpqh = XA C pqlf = O (A3.24)
or:
XAer
C =g (A3.25)
cf CcdedA

Using the definition of C ¢ in equation (Al.5), the feedforward
c

controller becomes:

XA D_~- C DD
Cff - er - cn fd (43.26)
fd" “ecd

Solvability conditions

To verify the solvability conditions (a)~(c) in Theorem 12 for
the optimal control problem using a common denominator model it is
sufficient to show that:

(1) The conditions (a)~(c) in Theorem 12 are equivalent to

conditions (a)-(d) in Theorem 1.
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(i1) The controllers generated by the equations in Theorem 12

and in Theorem 1 are the same.

(1) Equivalence of solvability conditions

Any factors of A Ae or Ax which are not also factors of Ap

q°
will result in common factors in A and B. Condition (a) in Theorem
12 therefore subsumes conditions (a) and (b), and the Ax part of
condition (c), Iin Theorem 1.

Condition (b) in Theorem 12, that any unstable factor of AX must
be a factor of A and D means firstly that any unstable factors of Ak
must be in Ap’ and secondly that the product of such factors with any
which are also in Ax must appear ian Ap (i.e. thls Is just condition

(c) in Theorem 1). Condition (c) in Theorem 12 is clearly equivalent

to condition (d) in Theorem 1.

(11) Equivalence of controllers

From the definitions in Table 2.2:

A= Ay T A (A3.27)
B =B Ao (A3.28)
C = ALCyA (A3.29)
D= ALCAL (A3.30)
E = AP AL (A3.31)

Using equations (A3.27) - (A3.31) equations (2.50) and (2.51)

become:
* % _p] * K
D Dz G+ FAAA =B ABBR (A3.32)
c f qn prqaql
DDz 8 - FBA A A = ATR 43.33
c'f rgn p 2 (43.3%)
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where
R, = 28 (o0} - ¢ g Ch Ax%) (A3.34)
R, = 2 (D D AquB B + BB A AquBandnCn) (A3.35)
Multiplying equations (A3.32) and (A3.33) by Aéexp obtain:
FpraBlg 4 -8 a'8'B » A3.36)
D! Dz °G AA A = B ABB R (A3.
JE * ] , *
D' D_z H - F'BA A A AR (A3.37)
c rqn 2
where:
D' = D A' (A3.138)
c c dexp
LI t
F FAdexp (A3.39)
From (A3.38) and (2.46) obtain:
D'D' = BA B B A B + AA B B A A (A3.40)
cc rqq

Using equations (A3.27)-(43.31) it is clear that the definlitions of
Df in equations (2.47) and (2.106) are equivalent.

Comparison of equations (A3.36), (A3.37) and (A3.40) with
équattons (2.109), (2.110) and (2.105) shows the solution G,H of
equations (A3.36) and (A3.37) with:

* —-gl.-1

(Dé z }y F! strictly proper (A3.41)
to be equivalent to the solution G,H of equations (2.109) and (2.110)

* ~g1 -1
with (Dcz ) F strictly proper. .

From the definitions in Table 2.2:

A = 1 L}

AerdApE (A3.42)
Multiplying equations (2.55) and (2.56) by AédABf and using equations
(A3.30) and (A3.42) obtain:

* —g2 -g2 % * *

Dz X' + ZAA A =z B A B B DD (A3.43)
c q 2 q q fd

*2782yr _ 28 A a' A - 2782 %8 s A D (A3.44)
c praxed pf pqrr plx fd *
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where:
LI ] ] | - A A\l 4
X XAedApf , ¥ YAedApf (A3.45)
Using the definitions in Table 2.2 obtain:
13 1
. B AXAerdApf
B AleedA £ D
p P pAx
AP
=g A B a
p dexp Dpkx b4
= ]
BAplel
Substftuting in equation (A3.44) obtain:
* - —p2 *k k %
82, _ - 82
bz oY ZBA A, = z ApAqBrBrDDfd (A3.46)

where Y' A Y"AL Multiplying equations (A3.43) and (A3.46) by

x’
*
Al obtain:

dexp
* ~p2 -g2 * * %
1 ' ' =
DLz ZTX + Z AAqu z °°B AquBqDDfd (A3.47)
% -~ - * k k
8200 _ oy - , 82
Dé z Y YA BArAR z A AqBrBrDDfd (A3.48)
where:
*
Z' = ZA! (A3.49)

dexp
Comparison of equations (A3.47) and (A3.48) with equations (2.114)
and (2.115) shows the solution X', Y" of equations (A3.47) and
(A3.48) with:
(Dé*z_gz)_lz' strictly proper
to be equivalent to the solution X,Y of equatiomns (2.114) and (2.115)
with (D:z‘gz)‘lz strictly proper. The countrollers obtained from

equations (2.54) and (2.113) are therefore equivalent. -
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APPENDIX 4 : Proof of Theorem 14

The proof of Theorem 14 follows that of Theorem 6 in Appendix 2
up to equation (A2.24).

Using the common denominator form of the system model given 1in
equations (2.125)-(2.127), and using the polynomlal equation form of
the cost-function weights given by equation (2.45), the spectral
factors (A2.10)-(A2.13) may be written as:

« BAB B A B+ AA B BAA"
q

- _rq qQrrgq
Y Y, i (A4.1)
AAAAAA
qQrrq
A Co,CA" + AC o C*A" + A Do, DA
% a a a
Yfo -_nd n n*n*n n “in’ ‘n (A4.2)
A A A
) Sty * Eyiy (44.9)
Yea¥ea = A A :
272
A g A + E O E
*
yy --21;m¢ (A4.4)
m m AA
e e

Comparison of equations (A2.21)-(A2.24) with equations (A4.1)-(A4.4)

ylields:
D D* BA B B*A*B* + AA B B A A 4.5
= A4,
cc rqqr q rq ( )
* * % * *
Df £ = = A Cc C An + AC o, C A + A Dul D An (A4.6)
* *
Ddefd = AlclnAl + E GlEl (A4.7)
D * * *
mDm = AecrnAe + ErcrEr (A4.8)
and:
A = AA A (A4 .9)
c qr
Af = AAn (A4.10)
A, = A (44.11)
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A = A (A4 .12)
Each of the controller dependent terms in equation (A2.19) may now be

simplified separately:

(1) Cfb dependent term

From the plant model equations and spectral factor definitions

obtain:
¢ B A%8 "B (D DY - AC C*A*)
h3 r £f 0% "“n
— 19 -1 (A4.13)
Yy AA ADD
c f qnc f

The diophantine equation (2.137) allows the strictly unstable

part of equation (A4.13) to be geparated as follows:

$ sl
h3 G Fz
Y*y* = R + == (A4.14)
c'f an D, D¢
From the system equations and spectral factor definitions obtain:
D D.C
f fbn
Y MY, = < (A4.15)
c  f AAqArAn(ACfbd+BCfbn)
From equations (A4.14) and (A4.15) abtain:
D DC - AC
¢y - 3 DePeCen T A (ACH *BCh,,)
f x X
¢ Ych AAqArAn<ACfbd+Bcfbn)
Fzg1
T TF
oD (A4.16)
c f

Substituting from the implied feedback diophantine equation (2.148),

equation (A4.16) may be expressed as:

P L W 1 T a1 T
* %
¢ f rr;  Pffa(ACeba B

F28L

(]

(A4.17)
D

Q%

*
D¢
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Finally, equation (A4.17) may be expressed as:

¢
h3 + -
YCMYf - 53 T1 + T1 (A4.18)
Ych

+ -
where T1 denotes the first term in equation (A4.17) and T1 denotes

the second, strictly unstable, term.

(11) Cr dependent term

From the plant model equations and spectral factor definitions

obtain:
8*A*8*8 D
®h2 r
— " 132 (A4.19)
Y Y A AD
ca q e c

The diophantine equation (2.142) allows the strictly unstable

part of equation (A4.19) to be separated as follows:

] g2
h2 M Nz
% ii Y= (A4.20)
YY q"e D
cm c
From the system equations and spectral factor definitions obtain:
D C D C
fbd m rn
Y SCY = c (A4.21)
cT rm CrdAeA;Ar(ACfbd+BCfbn)
From equations (A4.2Q) and (A4.21) obtain:
¢ scy -2 PeCea’nleba T Cra™(ACepa* ey
* &
cr'n v CrdAeAqAr(ACfbd+BCfbn)
g2
- B (A4.22)
D
c

Substituting from equations (2.136) and (2.148) this may now be
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written:
¢h2 CranCfbd - CrdMAer Nzgz
YSCY = <% =~ iAiiD - = (A4.23)
YY rdeqr f D
cm [d

Finally, equation (A4.23) may be expressed as:

)

+ —
YSCY -5 =1T,+T, (A4.24)
Yy
cm
+ —
where T, denotes the first term in equation (A4.23) and T2 denotes

the second, strictly unstable, term.

(ii1) le dependent term

From the plant model equations and spectral factor definitions

obtain:
¢ B*A*B*B DD
hl r fd
x % 13 * (A4.25)
Ychd AAquDc

The diophantine equation (2.145) allows the strictly unstable

part of equation (A4.25) to be separated as follows:

¢ g3
hl X Zz
Y* * ~ AA A + = (A4.26)
chd 9k Dc

From the system equations and spectral factor definitions obtain:

DCenaC1nlsd

YeS1e¥sa = (A4.27)
¢LEEd G ApA AL (AC FBCE )
From equations (A4.26) and (A4.27) obtain:
Y SC, Y., - *n1 = PcCebaCrenlrat = XA C)5q(ACpa*BOey,)
X x
cPULEfd T R ledAAquAr(ACfbd+BCfbn)
c fd
g3
Zz
T (A4.28)
D

[
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Substituting from equations (2.136) and (2.148) this may now be

written:
¢ se v - Cena®iealeat ~ *ACieas
* *
Sar¥ea T F, T, eaMhqAyheDs

c fd

23
-2z (A4.29)

D

c

Finally, equation (A4.29) may be expressed as:

$
D
YSC Y -G =T, + T, (A4.30)
YY
c fd

+ -
where 'I‘3 denotes the first term in equation (A4.29) and T3 denotes

the second, strictly unstable, term.

Minimisation
Using a similar argument to the one used in Appendix 2 the

cost-function may be minimised by setting Tt =0, 1= {1,2,3}.

(1) Feedback controller

From equations (A4.17) and (A4.18), setting T: = 0 involves:

C o= GACL =0 (A4.31)

or.:

c. = - (A4.32)

(i1) Reference controller

+
From equations (A4.23) and (A4.24), setting T2 = 0 involves:

- C 4qMAD. =0 (A4.33)

Crnnmcfbd £
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or.

MA Df
c = —21 (A4.34)

T Dl

(111) Feedforward cantroller

+
From equations (A4.29) and (A4.30), setting T3 = 0 fnvolves:

CoraCreneq® = ¥AC,ggPs = O (A4.35)
or:
XA D
r f
o - (A4.36)
LE  DeyACeq

Using the definition of le tn equation (A2.5), the feedforward

controller becomes:

XA De = CopnPPeq
Cpp =~ (A4.37)
£d*Ceba

Solvability conditions

To verify the solvability conditions (a) - (d) in Theorem 14 it

is sufficient to show that:
(1) The conditions (a) - (d) in Theorem 14 are equivalent to
conditions (a) - (d) in Theorem 6.
(11) The controllers generated by the equations in Theorem 14

and in Theorem 6 are the same.

(1) Equivalence of solvability conditions

Any factors of Ad or Ax which are not also factors of Ap will
appear as common factors in A and B. Condition (a) in Theorem 14

therefore subsumes condition (a), and the Ax part of condition (c),
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in Theorem 6.
Condition (c) in Theorem 14 means that any unstable factors of
Aﬂ must be in Ap, and that the product of such factors with any which

are also in Ax must appear in Ap (i.e. this is just condition {c) in

Theorem 6).

Conditions (b) and (d) in Theorem 14 are clearly equivalent to

conditions (b) and (d), respectively, in Theorem 6.

(11) Equivalence of controllers

From the definitions in Table 2.2:

A=Ay = AN (A4.38)
B= B AL (A4.39)
C = AC A (A4 .40)
D = AC A (A4.41)

Using equations (A4.3B) - (A4.41) equations (2.78) and (2.79)

become:
DDz 858G+ FAAA =B A bob
cDg2 q*n pr quRl (A4.42)
* k ~g] *
D D _z H-FBAAA = AR (A4.43)
c f rqn p 2
where:
R ~gl * x K
1= 2 (Dfo - Co,CaA) (A4 .44)
-zl * k% x kK *
R, = 2z (DfoAquBrBr + BB ArAquBanchn) (A4.45)

*
Multiplying equations (A4.42) and (A4.43) by A"  obtain:
dx

* * o] * k %
D' D_z G+ F'AAA =B ABB
c q n r

. AN (A4.46)
D *piz By - A A A = AR 4.47
c f? rqg'n 2 (A4.47)

where:



306

D! = DAL (A4.48)
F' = FA&: (A4 .49)

From (A4.48) and (2.73) obtain:
p'p'* = Ba B B AYB" + aa B B*a*A* (A4.50)
ce rqqr qrrq
Using equations (A4.38) — (A4.41) it is clear that the definitions of
Df in equations (2.74) and (2.133) are equivalent.

Comparison of equations (A4.46), (A4.47) and (A4.50) with
equations (2.137), (2.138) and (2.132) shows the solution G,H of
equations (A4.46) and (A4.47) with:

* —p] ~

(D; z gl) 1F' strictly proper

to be equivalent to the solution G,H of equations (2.137) and (2.138)
* —gl,.-1
with (Dcz ) "F strictly proper.

Denote by ASx that part of A&x which does not have any common

factors with Ae. Then

(8 T At v
AL AL = AL A (A4.51)
"OAT o At
AdxApe A (A4.52)
Multiplying equation (2.84) by A;x obtain:
* - -2 k k_k
D2 8% - NBa A’ = 27 82a%A"B"ap (A4.53)
c r ec Pqr m
where:
' = oa"
Q QAdx (A4.54)
*
Multiplying equatfons (2.83) and (A4.53) by Aéx obtain:
* - —g2 * k %
02782 + n'a A = 2 B28*A"B*s (A4.55)
c qe rqqm
* -g? -g2 k * %
' T . N T o 1
DLz - Q N'BAAL, =z T AABAD (A4.56)

where:
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*
' = ' 4.
N NAY (A4.57)

Comparison of. equations (A4.55) and (A4.56) with equations (2.142)
and (2.143) shows the solution M,Q' of equations (A4.55) and (A4.56)
with:

-g2)-1N, strictly proper

*
(DC z
to be equivalent to the solution M,Q of equations (2.142) and (2.143)
* —p? —
with (Dcz g2) 1N strictly proper.
From the definitions in Table 2.2:

A= AxAéAL (A4.58)

Multiplying equations (2.86) and (2.87) by AéA; and using equations

(A4.41) and (A4.58) obtain:

*_83 —33***
D z X' + ZAA A, = 2 B ABBDD (A4.59)
c q 2 prqgq fd
D 2By - 2B a A’ atar = 27833%A"8"B A’ DD (A4.60)
c prixdyp pqgrr pkx fd
where:
- TAY | . TAT
X XA, Y YAdAp (A4.61)
Using the definitions in Table 2.2 obtain:
v arar o BAA AN
BpAledAp p é x d'p
paX
AP
=B A, —— A
p dx Dplx 2
= ]
BAL1xs
Substituting in equation (A4.60) obtain:
* -g3 . _ L B3k
Dcz Y ZBArAl 4 ApAqBrBrDDfd (A4.62)

*
1

where Y' = Y“A;lx. Multiplying equations (A4.59) and (A4.62) by Adx

obtain:
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* o3 -g3 * Kk _*
D' z X' + Z'AA A =2 B ABB DD (A4.63)
c q R rqgq fd
* g3 —gd * * *
' - Al 2
Dc 2 Y VA BArAl 2z A AqBrBrDDfd (A4.64)
where:
z' = zA'” (A .65)
dx

Comparison of equations (A4.63) and (A4.64) with equations (2.145)
and (2.146) shows the solution X', Y" of equations (A4.63) and

(A4.64) with:

¥ -g3,-1,,
(Dc z ) 2 strictly proper {A4.66)
to be equivalent to the solution X,Y of equations (2.145) and (2.146)

* —p3 —
with (Dcz 83) lZ strictly proper. The controllers obtained from

equations (2.85) and (2.144) are therefore equivalent. e
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