
TypeScript
Basics

Learn TypeScript from Scratch and
Solidify Your Skills with Projects
Nabendu Biswas

Apress

TypeScript Basics
Learn TypeScript from Scratch

and Solidify Your Skills
with Projects

Nabendu Biswas

Apress®

TypeScript Basics: Learn TypeScript from Scratch and Solidify Your Skills
with Projects

Nabendu Biswas
Bhopal, India

ISBN-13 (pbk): 978-1-4842-9522-9 ISBN-13 (electronic): 978-1-4842-9523-6
https://doi.org/10.1007/978-1-4842-9523-6
Copyright © 2023 by Nabendu Biswas
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.
Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham
Coordinating Editor: Gryffin Winkler
Copy Editor: Kezia Endsley

Cover image designed by eStudioCalamar
Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.
For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com .
Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.
Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit https://www.apress.com/gp/services/source-code.
Paper in this product is recyclable

https://doi.org/10.1007/978-1-4842-9523-6
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:booktranslations@springernature.com
mailto:bookpermissions@springernature.com
http://www.apress.com/bulk-sales
https://github.com/Apress
https://www.apress.com/gp/services/source-code

This book is affectionately dedicated to my wife and kid.

Table of Contents

About the Author ..ix

About the Technical Reviewer ...xi

Introduction ...xiii

Chapter 1: Getting Started ..1
Project Setup ...1

Summary...4

Chapter 2: TypeScript Basics..5
The Number Type ..5

The String and Boolean Types... 7

Inference ...7

Objects ..8

Arrays..10
Complex Arrays.. 11

Functions ...12

Union Types..13

Literal Types ...14

Enum Types..14

Optionals Type.. 15

Interfaces and Types ..16

Running the Code..18

Summary... 19

v

TABLE OF CONTENTS

Chapter 3: The TypeScript Compiler ... 21
Watch Mode ...21

Compiling an Entire Project...22

rootDir and outDir ... 26

Summary... 27

Chapter 4: Classes and Interfaces.. 29
The Basics about Classes ...29

Advanced Classes ... 34

Interface Basics ..44

Summary... 49

Chapter 5: Advanced Types ..51
Initial Setup..51

Intersection Types ... 52

Type Guards and Discriminated Unions ...53

Type Casting...56

Index Properties .. 58

Function Overloading ...59

Nullish Coalescing... 61

Summary... 62

Chapter 6: Generics and Decorators..63
Initial Setup..63

Array and Promise Types...64

Generic Functions ... 65

Type Constraints..66

Generic Classes ..68

Generic Utilities...69

vi

TABLE OF CONTENTS

Decorators Setup ..69

Simple Decorators .. 71

Decorator Factories..73

Useful Decorators ... 74

Property Decorators ... 75

Summary... 78

Chapter 7: Creating a To-do List Project with TypeScript............... 79
Initial Setup..79

Creating the To-Do List... 81

Summary... 86

Chapter 8: Creating a Drag-and-Drop Project with TypeScript........87
Initial Setup..87

DOM Selection ..89

Rendering a List .. 95

Filtering Logic ...102

Abstract Class ...107

Rendering Items..112

Draggable Items..115

Summary..122

Chapter 9: Improving the Drag-and-Drop Project.........................123
Changing to ES6 Modules ...123

Using Webpack..134

Summary..140

vii

TABLE OF CONTENTS

Chapter 10: Creating a Party App in ReactJS with TypeScript141
Party App..141

Listing People ...142

Adding People ... 146

Summary..151

Chapter 11: Using React Redux with TypeScript153
Setting Up the Project .. 153

Setting Up Redux .. 154

The Output ...157

Summary..160

Index...161

viii

About the Author
Nabendu Biswas is a full stack JavaScript
developer. He has worked in the IT industry
for the past 18 years for the world’s top
development firms and investment banks.
He is a passionate tech blogger and YouTuber
and he currently works as an Architect in an
IT company at Bhopal. He is the author of five
books, all published by Apress. His books cover
Gatsby, MERN, and React Firebase.

ix

About the Technical Reviewer
Alexander Nnakwue has a background
in mechanical engineering. He is a senior
software engineer with over seven years of
experience in various industries, including
payments, blockchain, and marketing
technologies. He is a published author in
professional JavaScript, as well as a technical
writer and reviewer. Currently, he is working as
a software engineer at Konecranes, helping the

digital experience team with machine data and industrial cranes.
In his spare time, he loves to listen to music and enjoys the game of

soccer. He currently lives in Helsinki, Finland with his lovely wife.

xi

Introduction
TypeScript is revolutionizing how developers create JavaScript apps. It
was built by Microsoft to fix the issues that came out of loose binding in
JavaScript. Since JavaScript is a loosely typed language, a lot of issues
ended up in the production apps. These issues were hard to track and took
a lot of time to fix.

TypeScript is a superset of JavaScript, and it enables you to avoid type
errors before they even occur. You can catch them in an IDE (Integrated
Development Environment) like VS Code. The popular JavaScript frontend
framework of Angular uses TypeScript by default. The most popular
JavaScript frontend library called React also uses JavaScript by default.

This book first teaches you about TypeScript, and then you will use
it in a ReactJS project. You will also use it with the JavaScript backend
framework of NodeJS and learn how to create a React Redux project.

xiii

CHAPTER 1

Getting Started
Welcome to TypeScript Basics, where you’ll learn TypeScript from scratch
and solidify your skills by creating some projects. TypeScript is a superset
of JavaScript and was built by Microsoft to fix the issues of loose binding in
JavaScript.

After learning the fundamentals of TypeScript in the first six chapters,
you will use that information to create the following projects:

• A to-do list (Chapter) 7

• A drag-and-drop project (Chapters and) 8 9

• A party app (Chapter) 10

• A React Redux TypeScript project (Chapter) 11

With TypeScript, you get all the new features of JavaScript, through
which you can avoid type errors before they occur. The limitation of
TypeScript is that browsers can’t execute it.

Browsers only understand JavaScript, so TypeScript needs to be
compiled to JavaScript. This chapter starts with the basic setup.

Project Setup
Open a new folder in VS Code and create a basic index.html file in it (see
Listing 1-1). This example also refers to a JavaScript file called main.js.

© Nabendu Biswas 2023
N. Biswas, TypeScript Basics, https://doi.org/10.1007/978-1-4842-9523-6_1

1

https://doi.org/10.1007/978-1-4842-9523-6_7
https://doi.org/10.1007/978-1-4842-9523-6_8
https://doi.org/10.1007/978-1-4842-9523-6_9
https://doi.org/10.1007/978-1-4842-9523-6_10
https://doi.org/10.1007/978-1-4842-9523-6_11
https://doi.org/10.1007/978-1-4842-9523-6_1%2523DOI

CHAPTER 1 GETTING STARTED

Listing 1-1. Basic index.html File

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8">
<meta name="viewport" content="width=device-width,
initial-scale=1.0">
<title>TypeScript Basics</title>

</head>
<body>

<h1>TypeScript Basics</h1>
<script src="main.js"></script>

</body>
</html>

Next, install TypeScript globally on your system with the following
command. Add a sudo if you are using a Mac or Linux system.

1 npm i -g typescript

Now, create the main.ts file and add a simple console.log to it. The
browser only understands JavaScript, so you have to change it to JavaScript
using the tsc main.ts command. The tsc command runs the TypeScript
compiler and converts the TypeScript file to JavaScript. This command will
create a new main.js JavaScript file in the same directory. See Figure 1-1.

2

CHAPTER 1 GETTING STARTED

Figure 1-1. Simple main.ts

You will also be using the awesome extension of Live Server in this
project (see Figure 1-2) so that you don’t have to rerun the project after
every change.

Figure 1-2. Live Server

3

https://marketplace.visualstudio.com/items?itemName=ritwickdey.LiveServer

CHAPTER 1 GETTING STARTED

Summary
In this introductory chapter, you completed the basic setup for TypeScript.
You installed TypeScript globally and created basic HTML and TypeScript
files and made them work together.

4

CHAPTER 2

TypeScript Basics
This chapter starts your TypeScript journey. Here, you will learn about
different types and ways to use them in your projects. You will start with
the number type, followed by the string and Boolean types. You will also
learn about many more types and end by learning about interfaces.

The Number Type
Create an index.ts file in your earlier setup. Then add the code in
Listing 2-1 to it. You have two variables—myNum and anotherNum. The code
gives anotherNum the number type.

That means the myNum and anotherNum variables cannot take anything
other than numbers.

Listing 2-1. Number Types

//Numbers
let myNum = 10;
let anotherNum: number = 20;

myNum = 12;
myNum = '12';

anotherNum = 30;
anotherNum = false;

© Nabendu Biswas 2023
N. Biswas, TypeScript Basics, https://doi.org/10.1007/978-1-4842-9523-6_2 5

https://doi.org/10.1007/978-1-4842-9523-6_2%2523DOI

CHAPTER 2 TYPESCRIPT BASICS

If you hover your mouse over the error, you can see the real issues, as
shown in Figures 2-1 and 2-2.

p
©
S’

a?

ts index.ts 2 x

▼s index .ts > ...

1
2 let myNum: number

3 Type 'string' is not assignable to type
4 'number'. ts(2322)
5 View Problem No quick tixo* avalloblo

6 myNum = '12';
7
8 anotherNum = 30;
9 anotherNum = false;|

Figure 2-1. Number issue

ci U 11 1

co -

Figure 2-2. Boolean issue

As you can see in this example, even if you don’t assign a type,
TypeScript infers a type. Hover the mouse over myNum and it will show the
number type. See Figure 2-3.

6

CHAPTER 2 TYPESCRIPT BASICS

»4»i> Titikm

is index n 2 X

tB iftflti It > _ ।--1
1 //Nil l®t myNum: number

2 let myNum = 10;
3 let anotherNum: number = 20;

m

Figure 2-3. TypeScript

The String and Boolean Types
The same is true for the String and Boolean types. When you first assign a
type and then give the wrong type, you will get an error. Second, the types
are inferred. That means if you don’t provide a type, TypeScript will assign
one depending on the value. See Listing 2-2.

Listing 2-2. String and Boolean types

//String
let myStr: string = 'Hello';
let anotherStr = 'World';
myStr = true;
anotherStr = 45;
//Boolean
let myBool: boolean = true;
let anotherBool = false;

myBool = 'true';
anotherBool = 76;

Inference
So, you might wonder when to assign a type and when is it better to let
TypeScript automatically assign it?

7

CHAPTER 2 TYPESCRIPT BASICS

In most cases, you should leave it to TypeScript to assign the type. In
Listing 2-3, the salary variable wasn’t assigned a type.

Later on, you will assign a number, string, and Boolean type to it.

Listing 2-3. Wrong Types

//Inference
let salary;
salary = 12000;
salary = '12000';
salary = true;

Now, this is not right. When you want to assign a value later, you’ll
provide an explicit type.

You will now start getting type errors, as shown in Listing 2-4.

Listing 2-4. Type Errors with Inference

//Inference
let salary:number;
salary = 12000;
salary = '12000';
salary = true;

Objects
This section explains what objects are in TypeScript. In the example in
Listing 2-5, an object that has two strings is given one number and one
Boolean type.

If you hover your mouse over the object, it will indicate the data types.

8

CHAPTER 2 TYPESCRIPT BASICS

Listing 2-5. Object with No Types

//Objects
const developer = {

firstName: 'Nabendu',
lastName: 'Biswas',
age: 40,
isTrainer: true

}

Now create a new object where you will give the type of each key (see
Listing 2-6). You will get an error if you try to assign a different value to a
key or to a key that doesn’t exist. See Figure 2-4.

Listing 2-6. Object with Types

const newDeveloper: { name: string; age: number; isDev:
boolean } = {

name: 'Mousam',
age: 39,
isDev: true

}

newDeveloper.name = 'Mousam Mishra';
newDeveloper.age = 'Forty';
newDeveloper.firstName = 'Mousam';

9

CHAPTER 2 TYPESCRIPT BASICS

Figure 2-4. Object errors

Arrays
This section looks at arrays. In TypeScript, if you provide an array of
strings, such as languages in the following example, you cannot push a
number or Boolean type to that array.

You can also explicitly declare that you have an array of a certain type,
such as declaring an array of number types. See Listing 2-7.

10

CHAPTER 2 TYPESCRIPT BASICS

Listing 2-7. Arrays with Types

//Arrays
const languages = ['React', 'Angular', 'Vue'];

languages.push('TypeScript');
languages.push(56);
languages.push(true);

const numbers: number[] = [51, 22, 33];
numbers.push(56);
numbers.push('56');
numbers.push(true);

Complex Arrays
In this section, you learn to create an array of objects. You provide the type
and you indicate the type of keys in the object (see Listing 2-8).

Listing 2-8. Complex Arrays with Types

const arrOfObj: { name: string; age: number }[] = [
{ name: 'Nabendu', age: 40 },
{ name: 'Mousam', age: 39 }

];
arrOfObj.push({ name: 'Shikha', age: 39 });
arrOfObj.push({ name: 'Hriday', age: 'Eight' });

If you want to write the array type, you need to use two brackets [] in
the type inference, as shown in Listing 2-9.

11

CHAPTER 2 TYPESCRIPT BASICS

Listing 2-9. More Complex Arrays with Types

const arrOfArrays: number[][] = [
[11, 32, 43],
[34, 75, 64]

];

arrOfArrays.push([21, 32, 13]);

Functions
This section looks at the example of functions. Suppose you need to add
two numbers and create a function called addNums to do so.

If you don’t provide the type, you will not get an error even if you give
one string. See Listing 2-10.

Listing 2-10. Functions

//Functions
const addNums = (num1, num2) => {

return num1 + num2;
}

addNums(10, 20);
addNums(10, '20');

You should always provide the type, as in multiNums. It is also
advisable to provide the return type, as it can catch the error if you provide
the wrong return type, as in modNums.

If you don’t give a return type, you should provide void, as shown in
printSum in Listing 2-11.

12

CHAPTER 2 TYPESCRIPT BASICS

Listing 2-11. Function Types

const multiNums = (num1: number, num2: number) => {
return num1 * num2;

}

multiNums(10, 20);
multiNums(10, '20');

const modNums = (num1: number, num2: number): number => {
// return num1 % num2;
return num1 > num2

}

modNums(10, 20);
modNums(10, '20');

const printSum = (num1: number, num2: number): void => {
console.log(num1 + num2);

}

printSum(10, 20);
printSum(10, '20');

Union Types
You can also create union types, in which a variable can have multiple
types. Say you have a variable called numOrStr, which can be a number or
string type.

You can also have an array, which can only contain elements of the
number or string type. See Listing 2-12.

13

CHAPTER 2 TYPESCRIPT BASICS

Listing 2-12. Union Types

//Union types
let numOrStr: number | string;
numOrStr = 10;
numOrStr = 'Ten';

let arr: (number | string)[] = [10, 'Ten', true];

Literal Types
With literal types, you specify only the acceptable terms. For example, in
the myLiteral type, Nabendu, Mousam, Shikha, and Hriday are the only
acceptable values.

Listing 2-13 uses Parag and the program returns errors.

Listing 2-13. Literal Types

//Literal types
let myLiteral: 'Nabendu' | 'Mousam' | 'Shikha' | 'Hriday' =
'Nabendu';

myLiteral = 'Mousam';
myLiteral = 'Shikha';
myLiteral = 'Hriday';
myLiteral = 'Parag';

Enum Types
This section looks at enum, which is a combination of the union type and
the literal type. Listing 2-14 provides a predefined type with the enum
variable.

14

CHAPTER 2 TYPESCRIPT BASICS

After that, you can use it in your code.

Listing 2-14. Enum Types

//Enum
enum Role { ADMIN, READ_ONLY, AUTHOR };

const myRole = Role.ADMIN;
const hridayRole: Role = Role.AUTHOR;

Optionals Type
This section looks at optionals. Suppose you want an age field, which
should be a number.

In the example in Listing 2-15, in optionalObj, the age is declared as
a number and is undefined. The problem with this approach is that you
need to leave it undefined if you don’t want to specify it.

In the betterOptObj example, the age is indicated with ?, which means
if you provide it, it should be a number, but it is not required.

Listing 2-15. Optionals Types

//Optionals
let optionalObj: { name: string; age: number | undefined } = {

name: 'Nabendu',
age: undefined

};

let betterOptObj: { name: string; age?: number } = {
name: 'Nabendu'

};

15

CHAPTER 2 TYPESCRIPT BASICS

Interfaces andTypes
This section looks at interfaces. They are a better way to provide types for
different properties of an object. Listing 2-16 shows a Developer interface
that includes some properties.

You can use this interface in two different variables, called person1 and
person2.

Listing 2-16. Interfaces

//Interfaces
interface Developer {

name: string;
age: number;
isDev: boolean;

}

const person1: Developer = {
name: 'Nabendu',
age: 40,
isDev: true

}

const person2: Developer = {
name: 'Mousam',
age: 39,
isDev: true

}

Types are similar to interfaces. As you can see in Listing 2-17, they are
used in DeveloperType.

Interfaces can be used only in objects, whereas types can be used in
strings, arrays of objects, or anything else.

16

CHAPTER 2 TYPESCRIPT BASICS

Listing 2-17. Types

//Types
type DeveloperType = {

name: string;
age: number;
isDev: boolean;

}

const person3: DeveloperType = {
name: 'Nabendu',
age: 40,
isDev: true

}

type PersonName = string;
const person4: PersonName = 'Nabendu';

type CoderType = {
name: string;
category: 'frontend' | 'backend' | 'mobile';
age: number;

}[];

const coder1: CoderType = [
{ name: 'Nabendu', category: 'frontend', age: 40 },
{ name: 'Mousam', category: 'backend', age: 39 },

]

17

CHAPTER 2 TYPESCRIPT BASICS

Running theCode
Since the index.ts file has a lot of errors, you will add a bit of it to the
main.ts file. You also need to run the tsc main.ts command to convert
the code into a JavaScript file. See Listing 2-18.

Listing 2-18. Running the Code

//Types
type DeveloperNewType = {

name: string;
age: number;
isDev: boolean;

}
const person5: DeveloperNewType = {

name: 'Nabendu',
age: 40,
isDev: true

}
console.log('${person5.name} is a ${person5.isDev} Dev and is
${person5.age} years old');

Now, in the localhost, you can see the desired console log (see
Figure 2-5).

18

CHAPTER 2 TYPESCRIPT BASICS

Figure 2-5. The console

Summary
In this chapter, you learned about different types in TypeScript. You
learned about the number type and then moved to string and Boolean
types. After learning about object and array types, you learned about
complex arrays. Then you learned about union, literal, enum, and optional
types. The chapter ended by discussing interfaces.

19

CHAPTER 3

The TypeScript
Compiler
When you run the TypeScript file every time, you are making changes to it.
In this chapter, you learn about other ways to watch for and make changes.

Watch Mode
You can watch the changes in the main.js file by using watch mode. Then
you don’t have to run the file after each change. You need to run the tsc
command with the -w flag, as follows:

1 tsc main.ts -w

If you then add anything to the file, it will be converted into the
corresponding JavaScript file. See Listing 3-1.

Listing 3-1. New Code

type PersonNewName = string;
const person6: PersonNewName = 'Mousam';
console.log('New Developer is ${person6}');

You can see the new changes in the localhost (see Figure 3-1).

© Nabendu Biswas 2023
N. Biswas, TypeScript Basics, https://doi.org/10.1007/978-1-4842-9523-6_3

21

https://doi.org/10.1007/978-1-4842-9523-6_3%2523DOI

CHAPTER 3 THE TYPESCRIPT COMPILER

Figure 3-1. Local changes

Compiling an Entire Project
To compile an entire project, you have to make it a TypeScript project. You
need to run the tsc -init command, which will create a tsconfig.json
file in the root directory. See Figure 3-2.

22

CHAPTER 3 THE TYPESCRIPT COMPILER

Figure 3-2. Compiling a project

You can then run the tsc command to compile all the TypeScript files.
However, the index.ts file has a lot of errors. Figure 3-3 shows one of
these errors.

23

CHAPTER 3 THE TYPESCRIPT COMPILER

Figure 3-3. The tsc error

You need to exclude this file by adding an exclude to the tsconfig.
json file. Now, when you run the tsc command, you will not get an error
(see Figure 3-4).

24

CHAPTER 3 THE TYPESCRIPT COMPILER

p
©
S’
e>
a?

<> kww.htrri F tsconfig json x Q] ■••

F tsccnftg.json > —
94 // "noImplicitOverrj.de": true, /* Ensure overriding members

in derived classes are marked with an override modifier. ♦/
95 // "noPropertyAccessFromlndexSignature": true, /★ Enforces using indexed

accessors for keys declared using an indexed type. */
96 // "allowUnusedLabels": true, /♦ Disable error reporting

for unused labels. ♦/
97 // "allowUnreachableCode": true, /* Disable error reporting

for unreachable code. ♦/
98
99 /★ Completeness ♦/

100 11 "skipDefaultLibCheck": true, /♦ Skip type checking .d.ts
files that are included with Typescript. ♦/

101 "skipLibCheck": true /* Skip type checking all .d.
ts files. */

102 },
103 "exclude": (
104 "index.ts"
105 1
106
107

PROBLEMS OUTPUT DEBUG CONSOLE TERMKAL (7] boin + JI ft ' X

nat«'x>jbisw»s*Nac*'x»JS-“JC-«lnl /ProjecWTtteScript-BooVBasLci >|ttc |
nabendut>lSM*CNab«nAA-M»c-«ilnl /Projecti/TypeScript-BooKzBasLCS

Figure 3-4. The tsc file again, without the error

You can also exclude all the node_modules, which are created when
you use a third-party library. Sometimes they contain TypeScript code and
you don’t want to compile them.

Similar to using exclude, you have use include to add the mentioned
files. In the example in Figure 3-5, the main.ts file is included.

25

noImplicitOverrj.de

CHAPTER 3 THE TYPESCRIPT COMPILER

Figure 3-5. This include adds the main.ts file

rootDir andoutDir
To organize your TypeScript project, you should keep all the TypeScript
files in a src folder.

You have put the index.ts and main.ts files in the src folder. Also
create a dist folder.

In the tsconfig.json file, uncomment rootDir and outDir. This is
where you put the respective folders (see Figure 3-6). You also have to run
the tsc command; it is not throwing an error.

26

CHAPTER 3 THE TYPESCRIPT COMPILER

ncaVflltor - UW1

P
0

<> indethtmi F tMonfigjpon x

P tsccnbg,j»on > (} comp<l*rOptions

OJ -

3'

a?

23

24

25

26
27
28

29
30
31

32

33

for ’createElement'. This only applies when targeting 'react' JSX emit
// "noLib": true,
library files, including the default lib.d.ts. ♦/
// "useDefineForClassFields": true,
ECMAScript-standard-compliant class fields. */
// "moduleDetection": “auto",
used to detect module-format JS files. ♦/

/* Modules ♦/
"module”: "commonjs",
is generated. ♦/
"rootDir": ”./src",
"outDir": "./dist",
// "moduleResolotion":
looks up a file from a
// "baseUrl":
to resolve non-relative module names. */
// "paths": O, /*
that re-map imports to additional lookup locations. ♦/

/♦

/*

/♦

/*

Disable

Emit

Control

Specify

*/
including any

what method is

what module code

/* Specify the root folder within your source files. */
/* Specify an output folder for all emitted files. ♦/

how Typescript"node”, /*
given module specifier. ♦/

/♦

Specify

Specify the base directory

Specify a set of entries

PPOSFMS OUTPUT DFBUOCOMSOIF TFRMNAI (7) Mlh + • (2 |

natendubiiMM4MBbe*idus-NK-«lnl -/Pro)e<ts/Tyoe5c'-lpt-®ook/fl**ic5 title |
natendubiSMBi9tebendu*-n»c-aiM /Froiett- t |

Figure 3-6. The tsconfig.json file

You can now see the main.js file in the dist folder (see Figure 3-7).
You also need to change the path of the main.js file in the index.html file.

Figure 3-7. The index.html file

Summary
In this chapter, you learned to configure your TypeScript projects properly.

27

CHAPTER 4

Classes and
Interfaces
This chapter covers classes and interfaces. In order to follow along, you
should have basic knowledge of ES6 classes.

The Basics about Classes
TypeScript classes have some special features. TypeScript classes can have
public and private variables, like OOP languages such as Java and C++ do.

Listing 4-1 shows a class called CreateRoom. It has a public variable
called room and a private family array.

You can add values to the family array only by using the
addFamilyMember function and you can get values using the showFamily
function.

Listing 4-1. Classes

//Classes
class CreateRoom{

public room: string;
private family: string[] = [];
constructor(name: string){

this.room = '${name}s room'
}

© Nabendu Biswas 2023
N. Biswas, TypeScript Basics, https://doi.org/10.1007/978-1-4842-9523-6_4

29

https://doi.org/10.1007/978-1-4842-9523-6_4%2523DOI

CHAPTER 4 CLASSES AND INTERFACES

addFamilyMember(member: string){
this.family.push(member);

}
showFamily(){

console.log(this.family);
}
cleanRoom(soap: string){

console.log('Cleaning ${this.room} with ${soap}');
}

}

const nabendu = new CreateRoom('Nabendu');
const shikha = new CreateRoom('Shikha');
const hriday = new CreateRoom('Hriday');
const mousam = new CreateRoom('Mousam');
nabendu.family;
nabendu.addFamilyMember('Nabendu');
shikha.addFamilyMember('Shikha');
hriday.addFamilyMember('Hriday');
mousam.cleanRoom('Lizol');

You can also use read-only variables in TypeScript. In Listing 4-2,
dobShikha is a read-only variable. You can access it from outside of the
class, but you cannot update it.

You can make a variable private and read-only both (like dobHriday).
That way, you cannot access the variable from the outside.

Listing 4-2. Private and Read-Only Variables

//Classes
class CreateRoom{

public room: string;
private family: string[] = [];
readonly dobShikha: string = '1982-12-12';

30

CHAPTER 4 CLASSES AND INTERFACES

private readonly dobHriday: string = '2013-12-12';
constructor(name: string){

this.room = '${name}s room'
}
...

}

const nabendu = new CreateRoom('Nabendu');
const shikha = new CreateRoom('Shikha');
const hriday = new CreateRoom('Hriday');
const mousam = new CreateRoom('Mousam');
shikha.dobShikha;
shikha.dobShikha = '1982-11-12';
hriday.dobHriday;

You can clean up a TypeScript class by using the constructor.
In Listing 4-3, room in the constructor has been removed and is now public.

Listing 4-3. Updating the Constructor

class CreateRoom{
private family: string[] = [];
readonly dobShikha: string = '1982-12-12';
private readonly dobHriday: string = '2013-12-12';
constructor(public room: string){
}
...
...
cleanRoom(soap: string){

console.log('Cleaning ${this.room} with ${soap}');
}

}

31

CHAPTER 4 CLASSES AND INTERFACES

Listing 4-4 creates a new file called classDemo.ts in the src folder. You
can utilize the class from the earlier part. There are no errors in this file.

Listing 4-4. New Class

//Classes
class Room{

private family: string[] = [];
readonly dobShikha: string = '1982-12-12';
private readonly dobHriday: string = '2013-12-12';
constructor(public room: string){
}

addFamilyMember(member: string){
this.family.push(member);

}
showFamily(){

console.log(this.family);
}
cleanRoom(soap: string){

console.log('Cleaning ${this.room} with ${soap}');
}

}

const nab = new Room('Nabendu');
const shi = new Room('Shikha');
const hri = new Room('Hriday');
const mou = new Room('Mousam');
nab.dobShikha;
nab.addFamilyMember('Nabendu');
nab.addFamilyMember('Shikha');
nab.addFamilyMember('Hriday');
nab.cleanRoom('Lizol');
nab.showFamily();

32

CHAPTER 4 CLASSES AND INTERFACES

You also need to add this new file to tsconfig.json in the include
array. After that, run the tsc command from an integrated terminal. See
Figure 4-1.

tacoano j*en - Bax*

p
O
S’
O5"
a?

r ttconfrg.json X r* main t» T» claasOamo.U <> «Klex html

Cl tsconfig j*on >

for unreachable code. */
98
99 /* Completeness */

100 // "skipDefaultLibCheck": true,
files that are included with Typescript. */

101 "skipLibCheck": true
ts files. */

102 }r
103 “exclude": (
104 "node_modules“
105],
106 “include": [
107 "src/main.ts",
108 | "src/classDenio.ts“~|
109 1,
110 }

PROBLEMS OUTPUT MBUCCONSOLt TtRMNAL

nabendubiMBSdabcndus-Mk-«UU '/Projecu/TypeStript Boax/BasK. i|tsc |
ntbendublMBSCtabendus-NK-elni •yPnriectS/TWcScrlM 8oo«yBaii<s $ I

(DULD 08

CD •••

, w. . w. . wrw.

/* Skip type checking .d.ts

/* Skip type checking all .d.

□ bMh + - □ t /XX

Figure 4-1. The tsconfig.json file

Now, you will add the JavaScript file to index.html. You can see the
new output in the console for the localhost. See Figure 4-2.

Figure 4-2. The index.html file

33

CHAPTER 4 CLASSES AND INTERFACES

Advanced Classes
This section covers advanced topics related to classes. It starts with
inheritance.

Using inheritance, you can inherit from a base class. Say you created
a new class called OyoRoom in the classDemo.ts file. You have extended it
from room using the extends keyword.

In the constructor, you have to take the earlier room variable and use
super() to call it. You can also add a new variable to the constructor. Here,
you are adding the roomRent variable. This utilizes the shortcut discussed
earlier.

Next, add two new functions to the OyoRoom class—to update the rent
and to show the rent.

Lastly, you create a new object called shekar and initialize it with
values. This example uses showRoomRent and changeRoomRent from this
class. It also uses cleanRoom from the parent class of Room. See Listing 4-5.

Listing 4-5. Extending Classes

class OyoRoom extends Room{
constructor(room: string, private roomRent: number){

super(room);
}

changeRoomRent(rent: number){
this.roomRent = rent;

}

showRoomRent(){
console.log('${this.room}'s room rent is ${this.
roomRent}');

}
}

34

CHAPTER 4 CLASSES AND INTERFACES

const shekar = new OyoRoom('Shekar', 1000);
shekar.showRoomRent();
shekar.changeRoomRent(2000);
shekar.showRoomRent();
shekar.cleanRoom('Phenyl');

Now, after running the tsc command from the terminal, you can see
the updated console log in the localhost (see Figure 4-3).

<- CO® 127.0 ai:S500/M«xhtml 6 0 *<B

TypeScript Basics

Figure 4-3. The localhost shows the updated console log

Override the function of addFamilyMember in the OyoRoom class. The
family array is private, so you should change it to protected. Now, any
inherited class can access it. See Listing 4-6.

Listing 4-6. Adding a Protected Class

//Classes
class Room{

protected family: string[] = [];

35

CHAPTER 4 CLASSES AND INTERFACES

readonly dobShikha: string = '1982-12-12';
private readonly dobHriday: string = '2013-12-12';
constructor(public room: string){
}
...
...

}

class OyoRoom extends Room{
constructor(room: string, private roomRent: number){

super(room);
}

addFamilyMember(member: string){
if(member === 'Kapil')

return
this.family.push(member);

}
...
...

}

Next, add the shobha and kapil objects to OyoRoom. You can also add
the members using addFamilyMember and run showFamily. See Listing 4-7.

Listing 4-7. Adding Objects

const shekar = new OyoRoom('Shekar', 1000);
const shobha = new OyoRoom('Shobha', 1000);
const kapil = new OyoRoom('Shobha', 1000);
shekar.addFamilyMember('Shekar');
shekar.addFamilyMember('Shobha');
shekar.addFamilyMember('Kapil');

36

CHAPTER 4 CLASSES AND INTERFACES

shekar.showFamily();
shekar.showRoomRent();
shekar.changeRoomRent(2000);
shekar.showRoomRent();
shekar.cleanRoom('Phenyl');

Now, in the localhost, you can see that Shekar and Shobha were added.
Kapil was not added, as you have the logic for it in addFamilyMember, in
the OyoRoom class. See Figure 4-4.

Figure 4-4. The localhost

You can access private variables in a class, through setters and getters.
You now have a Report array in OyoRoom, which is private.

You can access it through a function called allReports with the get
keyword. You can then add a new report using the newReport function,
which uses the set keyword.

Then you can add a new report to the newReport function by assigning
a value to it. You also get all the reports by calling allReports. But notice
that this doesn’t use () in allReports.

37

CHAPTER 4 CLASSES AND INTERFACES

Listing 4-8. The Getter and Setter

class OyoRoom extends Room{
private reports: string[] = [];

get allReports(){
return this.reports;

}

set newReport(report: string){
this.reports.push(report);

}

}

const shekar = new OyoRoom('Shekar', 1000);
const shobha = new OyoRoom('Shobha', 1000);
const kapil = new OyoRoom('Shobha', 1000);
shekar.newReport = 'Year End Report';
console.log(shekar.allReports);

The new Report array can be seen in the localhost, as shown in
Figure 4-5.

Figure 4-5. The new Report array

38

CHAPTER 4 CLASSES AND INTERFACES

Here, you learn about static methods and properties. They are used to
create utility methods or properties and can be accessed without creating
an object.

In the OyoRoom class, create a static variable called currentYear. You
also need to create a static function called createRoom.

Then create a variable called rohit, through which you call the
createRoom function directly. You do not create an object. This example
also calls the currentYear variable directly. See Listing 4-9.

Listing 4-9. Static Variables and Functions

class OyoRoom extends Room{
private reports: string[] = [];
static currentYear = 2022;

get allReports(){
return this.reports;

}

set newReport(report: string){
this.reports.push(report);

}

constructor(room: string, private roomRent: number){
super(room);

}

static createRoom(room: string){
return { room: room };

}
...
...

}

39

CHAPTER 4 CLASSES AND INTERFACES

const rohit = OyoRoom.createRoom('Rohit');
console.log(rohit);
console.log(OyoRoom.currentYear);
const shekar = new OyoRoom('Shekar', 1000);

The new static variables can now be seen in the localhost, as shown in
Figure 4-6.

Figure 4-6. Static variables

The next thing you learn about is abstract classes. You are going to
learn how to make the base class of Room abstract. You also create the
cleanRoom function as abstract and remove all the statements from it.

When you make a function abstract, it is the responsibility of the
inherited class to implement it. Listing 4-10 implements the cleanRoom
method in OyoRoom.

Listing 4-10. An Abstract Class

//Classes
abstract class Room{

protected family: string[] = [];
readonly dobShikha: string = '1982-12-12';

40

CHAPTER 4 CLASSES AND INTERFACES

private readonly dobHriday: string = '2013-12-12';
constructor(public room: string){
}

addFamilyMember(member: string){
this.family.push(member);

}
showFamily(){

console.log(this.family);
}

abstract cleanRoom(soap: string): void;
}

class OyoRoom extends Room{
private reports: string[] = [];
static currentYear = 2022;

cleanRoom(soap: string){
console.log('${this.room}'s Oyo Room cleaned with
${soap}');

}

get allReports(){
return this.reports;

}
...
...

}

The abstract class cannot have its object. You would get an error if you
created an instance of the Room class, as shown in Figure 4-7.

41

CHAPTER 4 CLASSES AND INTERFACES

Figure 4-7. The error

If you comment this out, everything will work fine, as shown in
Figure 4-8.

Figure 4-8. Commented out errors

The last thing about classes that you learn is private constructors. They
are used to implement the singleton pattern. With this pattern, you can
have only one instance of any class. You cannot create multiple objects of a
class in such a scenario.

42

CHAPTER 4 CLASSES AND INTERFACES

Consider a new class called TreboHotel in which the constructor is
private. You create instances of it using the getInstance method from
inside the class.

Next, you create an object called vijay by calling this method. See
Listing 4-11.

Listing 4-11. A Singleton Pattern

class TreboHotel extends Room{
private static instance: TreboHotel;
private constructor(room: string, private roomRent:
number){

super(room);
}

static getInstance(){
if(!TreboHotel.instance){

TreboHotel.instance = new TreboHotel('Trebo', 1000);
}
return TreboHotel.instance;

}

cleanRoom(soap: string){
console.log('${this.room}'s Trebo Room cleaned with
${soap}');

}
}

const vijay = TreboHotel.getInstance();
console.log(vijay);

You can now see the new object in the localhost, as shown in
Figure 4-9.

43

CHAPTER 4 CLASSES AND INTERFACES

<- -> C O ® 127.0.0.«:5500/lnd««.ritml

TypeScript Basics

6 * ■» - 4 • » W □ • :

Figure 4-9. The Singleton object

Interface Basics
You looked at interfaces briefly in Chapter 2, where you used them to
create types for objects. You can use interfaces in other situations as well.

This example works with a new file called interfaceDemo.ts. You first
need to import the file in the index.html file. See Listing 4-12.

Listing 4-12. Interface Addition

<body>
<h1>TypeScript Basics</h1>
<script src="dist/main.js"></script>
<script src="dist/classDemo.js"></script>
<script src="dist/interfaceDemo.js"></script>

</body>

44

https://doi.org/10.1007/978-1-4842-9523-6_2

CHAPTER 4 CLASSES AND INTERFACES

Next, add it to the tsconfig.json file, as shown in Listing 4-13.

Listing 4-13. Interface Addition

"include": [
"src/main.ts",
"src/classDemo.ts",
"src/interfaceDemo.ts"

]

Now, you create an interfaceDemo.ts file in the src folder. This
example creates an interface called Greeting, through which you are given
a variable name and a function called greet.

Next, you create a class called Person, which implements Greeting.
This example uses both the name and the greet function.

Finally, you create a developer object and call the greet function from
it, as shown in Listing 4-14.

Listing 4-14. The interfaceDemo.ts File

interface Greeting {
name: string;
greet(sentence: string): void;

}

class Person implements Greeting {
constructor(public name: string) {}

greet(sentence: string): void {
console.log('${sentence} ${this.name}');

}
}

let developer: Greeting = new Person('Kapil');
developer.greet('Hello from');

45

CHAPTER 4 CLASSES AND INTERFACES

You’ll see the new console log in the localhost, as shown in Figure 4-10.

Figure 4-10. Interface console

You can also make a property read-only. If you make a name read-only,
you won’t be able to set it directly. Figure 4-11 shows the error.

46

CHAPTER 4 CLASSES AND INTERFACES

rUrtoc*C«mo t> -

p
e

e>
a?

>*maints ’* intorfacoDomo.ts ’ X oindcx.html

«re > « interfaccOcmo ts > -

1 interface Greeting {
2 [readonly] name: string;

greet(sentence: string): void;
4 }

5
6 class Person implements Greeting {
7 constructor(public name: string) {}
8
9 greet(sentence: string): void {

10 CO—1* —------- 1 *'*»•----------------

11 }
12 }
13
14 let develo • r a P ■. : No Quack *i»*» tmiable

15 [developer.name ■ 'Rohit^Tj
16 developer.greet! 'Hello from');|

(property) Greeting.name: any

Cannot assign to 'name' because it is a read-only
property. ts(2540) J

(DHCU OS

(D ...

Figure 4-11. A read-only error

Next, you see how to divide the Greeting interface. You move the name
variable to another interface, called Naming. Then you extend it in the
Greeting interface. See Listing 4-15.

Listing 4-15. Read-Only in a File

interface Naming{
readonly name: string;

}

interface Greeting extends Naming {
greet(sentence: string): void;

}

class Person implements Greeting {

}

47

CHAPTER 4 CLASSES AND INTERFACES

let developer: Greeting = new Person('Kapil');
// developer.name = 'Rohit';
developer.greet('Hello from');

You can also use optional parameters in interfaces. In the Naming
interface for, example, there is an optional parameter called nickName.
Notice that you have to use ? to make it optional.

You don’t have to use it and you are not using it in the Person class.
However, the new Dog class uses the nickName. See Listing 4-16.

Listing 4-16. Optional Parameter in the Interface

interface Naming{
readonly name: string;
nickName?: string;

}

interface Greeting extends Naming {
greet(sentence: string): void;

}

class Person implements Greeting {
...
...

}

class Dog implements Greeting {
nickName: string = "Doggy";
constructor(public name: string) {}
greet(sentence: string): void {

console.log('${sentence} ${this.name}');
}

}

48

CHAPTER 4 CLASSES AND INTERFACES

let dog: Greeting = new Dog("Rocket");
console.log(dog.nickName);
dog.greet("Woof from");

You can now see the new console log in the localhost, as shown in
Figure 4-12.

Figure 4-12. Optional parameter in the interface

Summary
In this chapter, you learned everything about classes. Classes were
introduced with ES6 in JavaScript, but with TypeScript, many advanced
features were added to them.

You learned about protected variables, static functions, abstract
classes, and singleton patterns in classes. You also learned about interfaces
in detail.

49

CHAPTER 5

Advanced Types
In this chapter, you learn about advanced types. These are special types
that can be used in TypeScript. They include intersection types, type
guards and discriminated unions, type casting, index properties, function
overloading, and nullish coalescing.

Initial Setup
You will be using a new file in the project called advancedDemo.ts. Create
this file in the src folder. You only need to show the output of it, so keep
the output and remove everything else in the index.html file, as shown in
Listing 5-1.

Listing 5-1. Adding an Advanced File

<body>
<h1>TypeScript Basics</h1>
<script src="dist/advancedDemo.js"></script>

</body>

Next, you include this in the tsconfig.json file and start the tsc in
watch mode by running tsc -w. See Listing 5-2.

© Nabendu Biswas 2023
N. Biswas, TypeScript Basics, https://doi.org/10.1007/978-1-4842-9523-6_5

51

https://doi.org/10.1007/978-1-4842-9523-6_5%2523DOI

CHAPTER 5 ADVANCED TYPES

Listing 5-2. Adding the File to tsconfig.json

"exclude": [
"node_modules"

],
"include": [

"src/advancedDemo.ts"
]

Intersection Types
You can combine two types using the & operator. The advancedDemo.ts file
has two types—ITadmin and Employee.

You can combine them to form a new AdminEmployee type with the
& operator. Next, create an admin employee called emp1 with all required
fields and log it in the console. See Listing 5-3.

Listing 5-3. Creating the advancedDemo.ts File

//Intersection Types
type ITadmin = {

access: string[];
}

type Employee = {
name: string;
startDate: Date;
skills: string[];

}

type AdminEmployee = Employee & ITadmin;

const emp1: AdminEmployee = {
name: 'John',

52

CHAPTER 5 ADVANCED TYPES

startDate: new Date(),
skills: ['Cisco', 'Python', 'Perl'],
access: ['admin', 'user']

}

console.log(emp1);

As shown in Figure 5-1, you’ll get emp1 in the console of the localhost.

® 177 0.01 &500fnd«>.Mml (J) 0 -> 0 0 J» . I £

TypeScript Basics

CS (Fl Usnentt Conac* Par’OTnma *Wa A Souca* N« w* I*t<rwiw IMirory *0CKMon Secztv U?*«uw iteccrasr A RMw ■ 1 O • X

(kJ Q too • <•> r>«K DrtaJI Mil • 1 'Muo ■ 1 O
| » (M—■• 'X» , It»rten»: rn» t* itii ItHlrM ?!•*!. ’iuUtt~arr»rti>. *ce«n: ar>«yi2;>~~| A<«*41 >;II

Figure 5-1. TypeScript console

Type Guards and Discriminated Unions
You can use Type with the OR operator(|). In the example in Listing 5-4,
the two interfaces (Human and Horse) have different properties.

If you create a type of mammal that can be either Human or Horse, you
use an OR operator.

The moveMammal functions checks whether walkingSpeed or
runningSpeed was passed. This process uses Type Guards and the if
statement to check whether walkingSpeed is in mammal. It shows a console
log according to the results. Otherwise, it shows the console logs for Horse.

53

CHAPTER 5 ADVANCED TYPES

Without the Type Guards, you won’t be able to use the moveMammal
function. See Listing 5-4.

Listing 5-4. Type Guards

interface Human {
walkingSpeed: number;

}

interface Horse {
runningSpeed: number;

}

type Mammal = Human | Horse;

function moveMammal(mammal: Mammal) {
if('walkingSpeed' in mammal){

console.log('Human is moving at ${mammal.
walkingSpeed} km/h');

} else {
console.log('Horse is moving at ${mammal.
runningSpeed} km/h');

}
}

moveMammal({ walkingSpeed: 10 });
moveMammal({ runningSpeed: 40 });

In the console of the localhost, you'll get the correct log for Human and
Horse, as shown in Figure 5-2.

54

CHAPTER 5 ADVANCED TYPES

<- CO® 127 0.0.1 5600/nde.htmi * 4 <g * » W □ f

TypeScript Basics

Ca Q Ftamar* Conaol* P«r'o-manc» ra^yHta A Sowcaa Nrtwor* Pwkrmano* Memory AcpAcMxxi Sttury lJifrvuM RKordar A Rm>ui O' o • X

H G top » O tMnut towM • 1 lu>* ■ 1 Cl
»<MNr frl 17 jni llMstt CKt-tUt Ttat). ArrartJ). »rr»r<l>> HrtfttMAwr.till

Figure 5-2. Console for Type Guards

There is a different pattern, called discriminated unions, that can
achieve this same effect. This pattern adds a type. Now, inside the
moveMammal function, you have a switch case by type. It shows the
different console logs.

Note that in the call to the moveMammal function, you have to send a
type. See Listing 5-5.

Listing 5-5. Discriminated Unions

interface Human {
type: 'human';
walkingSpeed: number;

}

interface Horse {
type: 'horse';
runningSpeed: number;

}

55

CHAPTER 5 ADVANCED TYPES

type Mammal = Human | Horse;

function moveMammal(mammal: Mammal) {
switch(mammal.type) {

case 'human':
console.log('Human is moving at ${mammal.
walkingSpeed} km/h');
break;

case 'horse':
console.log('Horse is moving at ${mammal.
runningSpeed} km/h');
break;

}
}

moveMammal({ type:'human', walkingSpeed: 10 });
moveMammal({ type:'horse', runningSpeed: 40 });

Type Casting
When you work with DOM elements, it is very important for TypeScript to
know the element’s type. TypeScript doesn’t go through the HTML file, so
it is important to provide the correct type.

Listing 5-6 uses a new input type in index.html with the
input-user ID.

Listing 5-6. Adding Type Casting

<body>
<h1>TypeScript Basics</h1>
<input type="text" id="input-user">
<script src="dist/advancedDemo.js"></script>

</body>

56

CHAPTER 5 ADVANCED TYPES

Next in the TypeScript file, you select it with the usual getElementById.
But there is also an ! after it. It tells the expression before it that it will
never be null. After that, you tell TypeScript with the as keyword that it is
an HTMLInputElement.

After that, you have the usual event listener code. It also tells
TypeScript that it is optional by using ?. Also inside the event listener, you
have to indicate that the target is HTMLInputElement. See Listing 5-7.

Listing 5-7. Type Casting

//Type Casting
const inputUser = document.getElementById('input-user')! as
HTMLInputElement;

inputUser?.addEventListener('input', (event) => {
const target = event.target as HTMLInputElement;
console.log(target.value);

});

Now, you will get the correct result in the localhost, as shown in
Figure 5-3.

57

CHAPTER 5 ADVANCED TYPES

Figure 5-3. Type casting is working

Index Properties
You can provide index properties in interfaces as well, which means that
you can indicate the type of key and value an object is expecting.

In the example in Listing 5-8, you have an interface called
ErrorMessages, which expects key and value to be strings.

Now, when creating an object, you give the keys and values as strings.

Listing 5-8. Index Properties

//Index Properties
interface ErrorMessages {

[key: string]: string;
}

58

CHAPTER 5 ADVANCED TYPES

const errorMessages: ErrorMessages = {
name: 'Name is required',
email: 'Email is required',
password: 'Password is required'

}

Function Overloading
In the example in Listing 5-9, the addElements function can add two
numbers or two strings. It can also add a string and a number. This
example uses the StrOrNum type, which means it can take a string
or number.

You can pass different combinations to it. But when you try a string
method like split(), TypeScript will throw an error because it doesn’t
know the result type.

Listing 5-9. Function Overloading Problem

//Function Overloading
type StrOrNum = string | number;

function addElements(a: StrOrNum, b: StrOrNum){
if(typeof a === 'string' || typeof b === 'string') {

return a.toString() + b.toString();
}
return a + b;

}

const result = addElements(1, 2);
const result2 = addElements('Nabendu', ' Biswas');
const result3 = addElements('Nabendu ', 2);
result2.split('');

59

CHAPTER 5 ADVANCED TYPES

To solve this issue, you have to specify the different type of function
calls that are acceptable before the actual function call. See Listing 5-10.

Listing 5-10. Function Overloading

//Function Overloading
type StrOrNum = string | number;

function addElements(a: number, b: number): number;
function addElements(a: string, b: string): string;
function addElements(a: string, b: number): string;
function addElements(a: number, b: string): string;
function addElements(a: StrOrNum, b: StrOrNum){

if(typeof a === 'string' || typeof b === 'string') {
return a.toString() + b.toString();

}
return a + b;

}

const result = addElements(1, 2);
const result2 = addElements('Nabendu', ' Biswas');
const result3 = addElements('Nabendu ', 2);
console.log(result);
console.log(result2);
console.log(result3);
console.log(result2.split(''));

You will get the desired output in the localhost, as shown in Figure 5-4.

60

CHAPTER 5 ADVANCED TYPES

<- • C (j ® 127.O.0.1:MOOfra«x.htinl

TypeScript Basics
I I

/• « * ■, • »

(« n Umertj Con»o« Pxrtowwic* raonts A Sfercca rwwo* Partarwc* M«r«ry «*cnca»or Secirtv UgrrcuM Heco««r A RMm ■' o • X

r»l Q too • 0 f«* Maul meto • 1 »ue ■ l O

Figure 5-4. Function overloading console

Nullish Coalescing
You can use nullish coalescing to require better behavior of null and
undefined values.

The example in Listing 5-11 uses the OR (||) operator. For an empty
string, you will get Default, because empty strings are considered falsy
values in JavaScript.

If you use ?? in place of ||, it will consider only null and undefined as
default values.

Listing 5-11. Nullish Coalescing

//Nullish Coalescing
const theInput = '';
const storedInput = theInput || 'Default';
console.log(storedInput);

61

CHAPTER 5 ADVANCED TYPES

const theInput2 = '';
const storedInput2 = theInput2 ?? 'Default 2';
console.log(storedInput2);

const theInput3 = null;
const storedInput3 = theInput3 ?? 'Default 3';
console.log(storedInput3);

You get the correct output in the localhost, as shown in Figure 5-5.

© 127.0.0.1:5500,ma«K.httnl □ •
TypeScript Basics

a(w 01 Etonenu Cento* Sourcm N*two<* Memor> *oo«caMn A«5ui

CMaJt Itvett

)1;U

IN) fu-.

E O
MOiir Arrtyti)!

■ft*nc*4DoN.l>;M

Figure 5-5. Nullish coalescing in the console

Summary
In this chapter, you learned everything about advanced types in
TypeScript. These advanced types include intersection types, function
overloading, and others. In the next chapter, you learn about generics and
decorators.

62

CHAPTER 6

Generics and
Decorators
In this chapter, you learn about the advanced topics of generics and
decorators. You also learn about the Array and Promise types, generic
functions, type constraints, generic classes, and different decorators,
including decorator factories.

Initial Setup
Create a file for this project called genericsDemo.ts in the src folder. To
just show the output of it, Listing 6-1 removes everything else from the
index.html file.

Listing 6-1. Initial Setup

<body>
<h1>TypeScript Basics</h1>
<input type="text" id="input-user">
<script src="dist/genericsDemo.js"></script>

</body>

Listing 6-2 shows the script added to the tsconfig.json file. Next, start
the tsc in watch mode by running tsc -w.

© Nabendu Biswas 2023
N. Biswas, TypeScript Basics, https://doi.org/10.1007/978-1-4842-9523-6_6

63

https://doi.org/10.1007/978-1-4842-9523-6_6%2523DOI

CHAPTER 6 GENERICS AND DECORATORS

Listing 6-2. Adding the tsconfig.json File

"include": [
"src/genericsDemo.ts"

]

Array and Promise Types
For the Array and Promise generic types, you have to provide the return
value in <> brackets.

The example in Listing 6-3 declares an array called occupation. It
returns a string value. Next, the Promise type also returns a string value.

The resolve and reject functions have to send back a string. The then
block uses the string method called split. TypeScript won’t produce an
error, because you are getting a string back.

Listing 6-3. Array and Promise Types

//Array Type
const occupation: Array<string> = [];

//Promise type
const promise: Promise<string> = new Promise((resolve,
reject) => {

setTimeout(() => {
let num = Math.random();
num > 0.5 ? resolve('It is Success') : reject('It
is Fail');

}, 2000);
})

promise
.then(data => console.log(data.split('')))
.catch(err => console.log(err));

64

CHAPTER 6 GENERICS AND DECORATORS

Figure 6-1 shows the split data, indicating a successful run.

<- CO® 127.0.01 MOOfWXMx Mrm fi O > n ♦ > N n ;

TypeScript Basics
I ,

(■ 6~! EWwrtx Canada Por’o'maxe n*0X> A SouTM Nc*»or« Por’onnaxe Manor, AppaoaMn SacuKV UlFfWuaa Recon** A HMu< H ' Q ; X

(E ® kc • & rnar CMw(• i i«m ■ i 0
| » <U) ('I', ' ", '!•» *•’, " ‘f’t '•*< *<", •<', *•’, aaaaricitwi-n;»2

Figure 6-1. Successful data

Generic Functions
You can also create generic function types. Suppose you have a
mergeObject function that merges two objects.

The program calls the function with two objects (name and age) and
stores the objects in a merged variable. However, you cannot access the
name and age properties, because TypeScript has very little information
about those objects. See Listing 6-4.

Listing 6-4. Generic Function Problem

//Generic Function
function mergeObject(obj1: object, obj2: object) {

return { ...obj1, ...obj2 };
}

65

CHAPTER 6 GENERICS AND DECORATORS

const merged = mergeObject({ name: 'John' }, { age: 30 });
merged.name;
merged.age;

You can solve this issue by using a generic type for the function. Inside
the <> brackets, you provide two capital letters. Now, when you hover the
mouse over the function, you can see that TypeScript now knows that it is
getting two variables and returns the intersection of them. See Listing 6-5.

Listing 6-5. Generic Function Resolved

//Generic Function
function mergeObject<T , U>(obj1: T, obj2: U) {

return { ...obj1, ...obj2 };
}

const merged = mergeObject({ name: 'John' }, { age: 30 });
merged.name;
merged.age;

Type Constraints
There is an issue with the generic function in Listing 6-5. You could also
pass something other than an object, like a number. See Listing 6-6.

Listing 6-6. Generic Function Issue

//Generic Function
function mergeObject<T , U>(obj1: T, obj2: U) {

return { ...obj1, ...obj2 };
}

const merged = mergeObject({ name: 'John' }, 30);
console.log(merged);

66

CHAPTER 6 GENERICS AND DECORATORS

The problem is that TypeScript will not throw an error, but will print
the first object without merging it in the localhost (see Figure 6-2).

<- CO® 127.0.0-1:5500/WMltx.html 6 * 4 0 » Si □ *

TypeScript Basics
I I

£] Elamara Conaoit Partorwco nsa^ti A So joa *»*xct* Partomarca Memory ApcAcator Seoxtr U^rP^ojaa Aoocrdar A Hadui ■ i O ; X

fl»l O wo • & fpm Daiaji «v*a • I iNua ■' O
| »foaoar f | WI’lfiffM ll'lt
it ta tail Mrt**5iftFtii‘'H

Figure 6-2. The problem

To solve this issue, you have to use the extends keyword and specify
that they are objects. Now, the number 30 throws an error in the editor. See
Listing 6-7.

Listing 6-7. Generic Function Solution

function mergeObject<T extends object, U extends object>
(obj1: T, obj2: U) {

return { ...obj1, ...obj2 };
}

const merged = mergeObject({ name: 'John' }, 30);
console.log(merged);

67

CHAPTER 6 GENERICS AND DECORATORS

Generic Classes
You can also have generic types in classes. In these cases, it is better to use
the extends keyword to specify the data types that are allowed.

For example, in the StoreData class, the string and number types
are allowed. The removeData function is inside this class, so if you pass a
JavaScript object to the instance, it will cause an error. See Listing 6-8.

Listing 6-8. Generic Classes

//Generic Classes
class StoreData<T extends string | number>{

constructor(public data: T[]) { }

removeData(item: T) {
this.data.splice(this.data.indexOf(item), 1);

}

getData() {
return this.data;

}
}

const stringData = new StoreData<string>(['John', 'Doe',
'Smith']);
const numberData = new StoreData<number>([21, 12, 31]);
stringData.removeData('John');
console.log(stringData.getData());
console.log(numberData.getData());

In the localhost, you get the correct data, as shown in Figure 6-3.

68

CHAPTER 6 GENERICS AND DECORATORS

Figure 6-3. The solution

Generic Utilities
TypeScript also has some generic utility types and one of them is Readonly.
In the example in Listing 6-9, the family variable is marked as a Readonly
type, and it contains a string of arrays.

That means you cannot push into the family array or pop from it.

Listing 6-9. Generic Utility

//Generic Utility
const family: Readonly<string[]> = ['Nabendu', 'Shikha',
'Hriday'];
family.push('Raj');
family.pop();

Decorators Setup
Decorators are experimental features and are part of the next generation of
JavaScript. They are used heavily in JavaScript frameworks like Angular.

For this project, create a new file called decoratorsDemo.ts in the
src folder. Listing 6-10 shows only the output, with everything else in the
index.html file removed.

69

CHAPTER 6 GENERICS AND DECORATORS

Listing 6-10. Adding Decorators

<body>
<h1>TypeScript Basics</h1>
<input type="text" id="input-user">
<script src="dist/decoratorsDemo.js"></script>

</body>

Since decorators are experimental features, you need to enable them
through the tsconfig.json file. Make sure the target is set to es2016 and
experimentalDecorators is true. See Figure 6-4.

Figure 6-4. The tsconfig.json file

Include this file in the tsconfig.json file, as shown in Listing 6-11.
Start the tsc in watch mode by running tsc -w.

Listing 6-11. Adding Decorators

"exclude": [
"node_modules"

],
"include": [
"src/decoratorsDemo.ts"

]

70

CHAPTER 6 GENERICS AND DECORATORS

Simple Decorators
The example in Listing 6-12 starts with a simple Car class in the
decoratorsDemo.ts file. The name property is inside the Car class and a
constructor shows it when you create an object.

Listing 6-12. The Car Class

class Car{
name = 'Tata Nexon';
constructor(){

console.log('Car ${this.name} created');
}

}
const car1 = new Car();
console.log(car1)

A decorator is a function and it is applied to something, like a class.
The function called Helper in Listing 6-13 is passed a parameter called
constructor. The type is Function, because classes are constructor
functions. In this example, you are "console-logging" the name and the
constructor. Then, you add it before the class with the @ operator.

Listing 6-13. Decorator Functions

function Helper(constructor: Function) {
console.log('Showing constructor: ${constructor.name}');
console.log(constructor);

}

@Helper
class Car{

name = 'Tata Nexon';

71

CHAPTER 6 GENERICS AND DECORATORS

constructor(){
console.log('Car ${this.name} created');

}
}

const car1 = new Car();
console.log(car1)

In the output in the localhost shown in Figure 6-5, you can see the
decorator logs before the logs from the creation of the object. This happens
because decorators run when the class is defined and not when it is
instantiated.

CO© 127 0.0.1 5500f«d«>.htnW

TypeScript Basics

Figure 6-5. The decorator logs

72

CHAPTER 6 GENERICS AND DECORATORS

Decorator Factories
The previous function can be converted to a decorator factory by returning
the constructor function. The benefit of doing that is that you can pass a
generic string to the function. See Listing 6-14.

Listing 6-14. Decorator Factory

function Helper(genericString: string) {
return function(constructor: Function) {

console.log(genericString);
console.log(constructor);

}
}
@Helper('Showing constructor:')
class Car{

name = 'Tata Nexon';
constructor(){

console.log('Car ${this.name} created');
}

}

const car1 = new Car();
console.log(car1)

Now, in the localhost, you can see the generic log (see Figure 6-6).

Figure 6-6. The decorator factory

73

CHAPTER 6 GENERICS AND DECORATORS

Useful Decorators
The JavaScript framework of Angular is completed based on decorators. In
this section, you create a decorator similar to those found in Angular and
show the HTML content.

To do this, first add an empty div with an ID of app to the index.html
file, as shown in Listing 6-15.

Listing 6-15. Adding an ID

<body>
<h1>TypeScript Basics</h1>
<input type="text" id="input-user">
<div id="app"></div>
<script src="dist/decoratorsDemo.js"></script>

</body>

Next, in the decoratorsDemo.ts file, create a new function called
AngularTemplate, which takes two parameters—template and hookId.
Inside this, return the function, but add an underscore(_). This tells
TypeScript that you know you need an argument, but you don’t actually
need it.

Inside the function, you first get the HTML element by using
getElementById. Next, make the innerHTML equal to the template.

Through the decorator, you pass the text formatted as an <h4>, as well
as the app. See Listing 6-16.

Listing 6-16. Angular Template

function AngularTemplate(template: string, hookId: string) {
return function (_: any) {

const hookEl = document.getElementById(hookId);

74

CHAPTER 6 GENERICS AND DECORATORS

if (hookEl) {
hookEl.innerHTML = template;

}
}

}

// @Helper('Showing constructor:')
@AngularTemplate('<h4>This is an Angular like Template code
</h4>', 'app')
class Car{

name = 'Tata Nexon';
constructor(){

console.log('Car ${this.name} created');
}

}

Now, the empty div shows the text in the localhost because of the
decorator, as shown in Figure 6-7.

G> IffM Aft •

Typescript Basics

Figure 6-7. Angular template

Property Decorators
You can also add decorators to various parts of a class. For example, in the
Employee class in Listing 6-17, a decorator is added to the title variable.

75

CHAPTER 6 GENERICS AND DECORATORS

You set the fullName and getNameWithTitle functions and the
parameter of the id function.

Listing 6-17. The Employee Class

class Employee {
@Log
title: string;
private _fullName: string;

@Log2
set fullName(name: string) {

this._fullName = name;
}

constructor(title: string, name: string) {
this.title = title;
this._fullName = name;

}

@Log3
getNameWithTitle(@Log4 id: number) {

return 'Employee - ${id}, Title - ${this.title},
Name - ${this._fullName}';

}
}

Next, you need to write the code for the decorators. In Listing 6-18, you
can access different things, like target, name, and descriptor.

76

CHAPTER 6 GENERICS AND DECORATORS

Listing 6-18. Property Decorators

//Property Decorators
function Log(target: any, propertyName: string | Symbol) {

console.log('Property decorator!');
console.log(target, propertyName);

}

function Log2(target: any, name: string, descriptor:
PropertyDescriptor) {

console.log('Accessor decorator!');
console.log(target);
console.log(name);
console.log(descriptor);

}

function Log3(target: any, name: string | Symbol, descriptor:
PropertyDescriptor) {

console.log('Method decorator!');
console.log(target);
console.log(name);
console.log(descriptor);

}

function Log4(target: any, name: string | Symbol, position:
number) {

console.log('Parameter decorator!');
console.log(target);
console.log(name);
console.log(position);

}

77

CHAPTER 6 GENERICS AND DECORATORS

Now, in the console log shown in Figure 6-8, you can see all the details
of the various decorators.

Figure 6-8. Property decorators

You can find the code for Chapters 1 through 6 on GitHub at https://
github.com/nabendu82/Basics-TypeScript.

Summary
In this chapter, you learned about the advanced topics of generics and
decorators. You learned about generic functions, type constraints, generic
classes, and different decorators, including decorator factories. In the next
chapter, you will create your first project—a to-do list.

78

https://doi.org/10.1007/978-1-4842-9523-6_1
https://doi.org/10.1007/978-1-4842-9523-6_6
https://github.com/nabendu82/Basics-TypeScript
https://github.com/nabendu82/Basics-TypeScript

CHAPTER 7

Creating aTo-do
List Project with
TypeScript
With all the foundational learnings under your belt, you can now start
building projects. This first project is a to-do list, which you will build using
TypeScript (see Figure 7-6 for the final result).

Initial Setup
Production projects generally require build tools, as they help install
dependencies and minification. In this example, you will use a build tool
called snowpack to create your project.

A build tool is required for the production Vanilla TypeScript project,
because you can use different third-party node modules in it.

© Nabendu Biswas 2023
N. Biswas, TypeScript Basics, https://doi.org/10.1007/978-1-4842-9523-6_7

79

https://doi.org/10.1007/978-1-4842-9523-6_7%2523DOI

CHAPTER 7 CREATING A TO-DO LIST PROJECT WITH TYPESCRIPT

Use this command to create a TypeScript project with snowpack
(see Figure 7-1):

1 npx create-snowpack-app todo-ts --template @snowpack/app-\
template-blank-typescript

Figure 7-1. Creating a snowpack project

That command will create the basic structure. Then, you need to run
the npm start command to start the project on http://localhost:8080/
in the browser. See Figure 7-2.

Figure 7-2. The starting project

80

http://localhost:8080/

CHAPTER 7 CREATING A TO-DO LIST PROJECT WITH TYPESCRIPT

Next, you need to do some cleanup by deleting all the content from
index.ts file. Also delete the files shown in Figure 7-3 from the public folder.

Figure 7-3. Deleting unnecessary files

Creating the To-Do List
Remove everything from the index.html file and add the contents of
Listing 7-1 to it. Note that the and <form> elements are inside the
<body> tag. This example also uses inline styling in the <body> and tags.

The <form> tag has an input and a button. Notice that the <script> tag
is the module type; that’s because you will use ES6 imports in this file.

Listing 7-1. Adding the HTML

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8" />
<link rel="icon" href="/favicon.ico" />
<meta name="viewport" content="width=device-width,
initial-scale=1" />

81

CHAPTER 7 CREATING A TO-DO LIST PROJECT WITH TYPESCRIPT

<title>Todo TypeScript</title>
</head>
<body style="display: grid; place-items: center">

<ul id="list" style="list-style: none; padding: 0;">
<form id="task-form">

<input type="text" id="task-title">
<button type="submit">Add</button>

</form>
<script src="dist/index.js" type="module"></script>

</body>
</html>

Now, install the uuid and @types/uuid packages in the project, as
shown in Figure 7-4.

Figure 7-4. Installing npm packages

In the index.ts file, import the uuid first, which generates random
numbers. After that, you select the , <form>, and <input> tags. Notice
the types that are used for the input elements, which you learned about in
an earlier section.

After that, you have an event listener on the form. Notice that optionals
are used here, which is another TypeScript feature discussed in Chapter 2.
After that, the code checks if the input value is an empty string or null and
returns the result.

82

https://doi.org/10.1007/978-1-4842-9523-6_2

CHAPTER 7 CREATING A TO-DO LIST PROJECT WITH TYPESCRIPT

The newTask object has an interface that defines its types. Inside this
object, the id is defined as uuid, the title is the value entered by the user,
completed is initially false, and createdAt is the current date.

Listing 7-2. Creating the index.ts File

import { v4 as uuidV4 } from "uuid"

const list = document.querySelector<HTMLUListElement>("#list")
const form = document.querySelector<HTMLFormElement>(
"#task-form")
const input = document.querySelector<HTMLInputElement>(
"#task-title")

interface Task {
id: string
title: string
completed: boolean
createdAt: Date

}

form?.addEventListener("submit", e => {
e.preventDefault()
if (input?.value == "" || input?.value == null) return

const newTask: Task = {
id: uuidV4(),
title: input.value,
completed: false,
createdAt: new Date()

}
})

83

CHAPTER 7 CREATING A TO-DO LIST PROJECT WITH TYPESCRIPT

Now, create a new function called addItemToList. It will take this task
and create a list item, label, and checkbox. Now, if you enter an item and
click Add, it will be shown. See Listing 7-3.

Listing 7-3. Adding a Function

form?.addEventListener("submit", e => {
e.preventDefault()
if (input?.value == "" || input?.value == null) return

const newTask: Task = {
id: uuidV4(),
title: input.value,
completed: false,
createdAt: new Date()

}

addItemToList(newTask)
})

const addItemToList = (task: Task): void => {
const item = document.createElement("li")
const label = document.createElement("label")
const checkbox = document.createElement("input")
checkbox.type = "checkbox"
label.append(checkbox, task.title)
item.append(label)
list?.append(item)

}

Upon checking the DOM, you can see the exact structure of this item
(see Figure 7-5).

84

CHAPTER 7 CREATING A TO-DO LIST PROJECT WITH TYPESCRIPT

Figure 7-5. Adding items

Now, add an event listener inside the addItemToList function. In
Listing 7-4, you are selecting the checkbox and adding a line-through
element if the checkbox is selected.

Listing 7-4. Adding Events

form?.addEventListener("submit", e => {
e.preventDefault()

addItemToList(newTask)
input.value = ""

})

85

CHAPTER 7 CREATING A TO-DO LIST PROJECT WITH TYPESCRIPT

const addItemToList = (task: Task): void => {
const item = document.createElement("li")
const label = document.createElement("label")
const checkbox = document.createElement("input")
checkbox.addEventListener("change", () => {
task.completed = checkbox.checked
if(checkbox.checked) label.style.textDecoration =
"line-through"

})
checkbox.type = "checkbox"
checkbox.checked = task.completed
label.append(checkbox, task.title)
item.append(label)
list?.append(item)

}

This small app is now complete and working perfectly in the localhost
(see Figure 7-6). You can find the code on GitHub at https://github.com/
nabendu82/todo-typescript.

Figure 7-6. Marking an item

Summary
In this chapter, you created a simple to-do list app with snowpack. In the
next chapter, you will create a fairly big drag-and-drop project.

86

https://github.com/nabendu82/todo-typescript
https://github.com/nabendu82/todo-typescript

CHAPTER 8

Creating aDrag-and-
Drop Project with
TypeScript
In this chapter, you create an awesome drag-and-drop project in
TypeScript. It is a fairly large project in comparison to the earlier projects
you’ve tackled so far (see Figure 8-11 for the completed project).

Initial Setup
First, create a new directory called drag-drop and move into it. Inside
the drag-drop folder, create a package.json file using the npm init -y
command. Also add a tsconfig.json file in this folder using the tsc-init
command. See Figure 8-1.

© Nabendu Biswas 2023
N. Biswas, TypeScript Basics, https://doi.org/10.1007/978-1-4842-9523-6_8

87

https://doi.org/10.1007/978-1-4842-9523-6_8%2523DOI

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

Figure 8-1. The directory

Now, create dist and src folders in the root directory. Inside the src
folder, create an index.ts file. Add the code in Listing 8-1 to the index.
html file in the root directory.

Listing 8-1. The HTML

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8">
<meta name="viewport" content="width=device-width,
initial-scale=1.0">
<title>Drag and Drop</title>

</head>
<body>

<script src="dist/index.js"></script>
</body>
</html>

88

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

In the tsconfig.json file, uncomment rootDir and outDir and
provide the appropriate path. See Figure 8-2.

0

a?

*1 indd Is *’ MssMmi P Iscwfigjson *
P tsconftg Json > 1} compterOpUona

eLFiAbcript-stanoaro-compnant ciass Tietos.
25 | // "moduleOetection": "auto",

used to detect module-format JS files* •/
26
27 I /* Modules */
28 "module": "commonjs",

is generated* */
29 "root Dir": ",/src”, |

'within your source files. */
30 ["outDir": "./dist*T|

for all emitted files. ♦/

/» Control what method is

/• Specify what module code '

/♦ Specify the root folder

/♦ Specify an output folder

Figure 8-2. The tsconfig.json updates

DOM Selection
You will link a style.css file to the project by creating it in the root
directory. The contents of the file can be taken from the GitHub link listed
at the end of the chapter.

In the index.html file, you will add a template, and inside that
template, you’ll add a form. The form will contain title, description, and
people input fields and a button. Notice that the form will not be shown in
the localhost, because of the template. See Listing 8-2.

Listing 8-2. Adding the First Template

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8">
<meta name="viewport" content="width=device-width,
initial-scale=1.0">

89

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

<title>Drag and Drop</title>
<link rel="stylesheet" href="style.css">

</head>
<body>

<template id="project">
<form>

<div class="form-control">
<label for="title">Title</label>
<input type="text" id="title" />

</div>
<div class="form-control">

<label for="description">Description</label>
<textarea id="description" rows="3"></textarea>

</div>
<div class="form-control">

<label for="people">People</label>
<input type="number" id="people" step="1"
min="0" max="10" />

</div>
<button type="submit">ADD PROJECT</button>

</form>
</template>
<script src="dist/index.js"></script>

</body>
</html>

Next, you add two more templates to the project. You also need to start
a live server in the project. See Listing 8-3.

90

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

Listing 8-3. Adding Another Template

</form>
</template>
<template id="single">

</template>
<template id="list">

<section class="projects">
<header>

<h2></h2>
</header>

</section>
</template>
<div id="app"></div>
<script src="dist/index.js"></script>

</body>
</html>

Next, create a Project class in the index.ts file. Inside the constructor,
you first select the template with the project ID. After that, you select the
div with the app ID.

Next, you import the template using importNode(). Since the form
element is the first element of the template, you store it in formElem, with
firstElementChild.

Next, you attach the method that shows the form in the div with
the app ID.

Notice that this example also starts the TypeScript part with tsc -w
command. See Listing 8-4.

91

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

Listing 8-4. The index.ts File

class Project {
templateElem: HTMLTemplateElement;
renderElem: HTMLDivElement;
formElem: HTMLFormElement;

constructor() {
this.templateElem = <HTMLTemplateElement>document.
querySelector('#project');
this.renderElem = <HTMLDivElement>document.
querySelector('#app');

const imported = document.importNode(this.templateElem.
content, true);
this.formElem = <HTMLFormElement>imported.
firstElementChild;
this.attach();

}

private attach(){
this.renderElem.insertAdjacentElement('afterbegin',
this.formElem);

}
}

const project = new Project();

Now, you will see a nice-looking form in the localhost, as shown in
Figure 8-3.

92

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

© 1> K »M O-OO X ■

<- -> C L) <D 127.0.0.1:56WW«x Mmi

Title

> Q ♦

Description

People

ADO PROJECT

Figure 8-3. The output

Now you need to add some elements for selection. You also call the
config() function from the constructor. In the config() function, you add
an event listener to the form and show the title entered by the user. See
Listing 8-5.

Listing 8-5. Adding More Elements

class Project {
templateElem: HTMLTemplateElement;
renderElem: HTMLDivElement;
formElem: HTMLFormElement;
titleElem: HTMLInputElement;
descElem: HTMLInputElement;
peopleElem: HTMLInputElement;

constructor() {
this.templateElem = <HTMLTemplateElement>document.
querySelector('#project');
this.renderElem = <HTMLDivElement>document.
querySelector('#app');

93

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

const imported = document.importNode(this.templateElem.
content, true);
this.formElem = <HTMLFormElement>imported.
firstElementChild;
this.formElem.id = 'user-input';
this.titleElem = <HTMLInputElement>this.formElem.
querySelector('#title');
this.descElem = <HTMLInputElement>this.formElem.
querySelector('#description');
this.peopleElem = <HTMLInputElement>this.formElem.
querySelector('#people');
this.config();
this.attach();

}

private config() {
this.formElem.addEventListener('submit', e => {

e.preventDefault();
console.log(this.titleElem.value);

})
}
...
...

}

Now, enter something in the title and click the Add Project button.
Figure 8-4 shows some entered text in the console log.

94

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

Figure 8-4. The console log

Rendering aList
In this section, you will create a userInput array and add title,
description, and people to it. You also create the title, desc, and people
variables and assign them by array-destructuring of userInput.

After that, you need to make the elements an empty string so that the
user-entered data is cleared after clicking Submit. See Listing 8-6.

Listing 8-6. Adding More Data

private config() {
this.formElem.addEventListener('submit', e => {

e.preventDefault();
let userInput:[string, string, number] = [this.
titleElem.value, this.descElem.value, +this.
peopleElem.value];

95

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

const [title, desc, people] = userInput;
console.log(title, desc, people);
this.titleElem.value = '';
this.descElem.value = '';
this.peopleElem.value = '';

})
}

Now create a new class called List. Inside the constructor, select the
template with the list ID. Then select the section inside it.

Next, select the section element, which is inside this template in the
index.html file. After that, you need to add a type ID for section.

Then attach it to the div with the app ID, using the attach() function.
After that in, the listId and the two types of projects will then appear in
contentRender().

You changed the earlier class called Project to Input. You also created
an instance of Input and two instances of List, with active and finished
being passed for constructors. See Listing 8-7.

Listing 8-7. Adding a List

class List {
templateElem: HTMLTemplateElement;
renderElem: HTMLDivElement;
sectionElem: HTMLElement;

constructor(private type: 'active' | 'finished') {
this.templateElem = <HTMLTemplateElement>document.
querySelector('#list');
this.renderElem = <HTMLDivElement>document.
querySelector('#app');
const imported = document.importNode(this.templateElem.
content, true);

96

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

this.sectionElem = <HTMLElement>imported.
firstElementChild;
this.sectionElem.id = '${this.type}-projects';
this.attach();
this.contentRender();

}

private contentRender() {
const listId = '${this.type}-projects-list';
this.sectionElem.querySelector('ul')!.id = listId;
this.sectionElem.querySelector('h2')!.innerText =
'${this.type.toUpperCase()} PROJECTS';

}

private attach(){
this.renderElem.insertAdjacentElement('beforeend',
this.sectionElem);

}
}

class Input {
...
...

}

const projInput = new Input();
const activeList = new List('active');
const finishedList = new List('finished');

Now you can see the Active and Finished projects in the localhost, as
shown in Figure 8-5.

97

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

6 OC o ® 127.0.0.1 5600/JnaenJwnl

© O'*S Droc

ACTIVE PROJECTS

FINISHED PROJECTS

Figure 8-5. The current project

You now need to create a class called State. It is a Singleton class with
a private constructor. It has two functions—addListener and addProject.
The addListener function adds listenerFn to the listeners array.

To the addProject function, you need to add a new project in the
projects array. See Listing 8-8.

Listing 8-8. The Singleton Class

class State {
private listeners: any[] = [];
private projects: any[] = [];
private static instance: State;
private constructor() {}
static getInstance() {

if (this.instance) return this.instance;

98

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

this.instance = new State();
return this.instance;

}

addListener(listenerFn: Function){
this.listeners.push(listenerFn);

}

addProject(title: string, desc: string, nums: number) {
const newProject = {

id: Math.random().toString(),
title: title,
description: desc,
people: nums

};
this.projects.push(newProject);
for (const listenerFn of this.listeners) {

listenerFn(this.projects.slice());
}

}
}

const prjState = State.getInstance();

Back in the List class, create an assignedProjects array. After that,
add a listener for each project by using the addListener function of the
State class.

Next, you render each of the projects by looping through the
assignedProjects array. Create an inside the you created
earlier. See Listing 8-9.

99

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

Listing 8-9. Updating the List

class List {
templateElem: HTMLTemplateElement;
renderElem: HTMLDivElement;
sectionElem: HTMLElement;
assignedProjects: any[];

constructor(private type: 'active' | 'finished') {
this.templateElem = <HTMLTemplateElement>document.
querySelector('#list');
this.renderElem = <HTMLDivElement>document.
querySelector('#app');
this.assignedProjects = [];
const imported = document.importNode(this.templateElem.
content, true);
this.sectionElem = <HTMLElement>imported.
firstElementChild;
this.sectionElem.id = '${this.type}-projects';
prjState.addListener((projects: any[]) => {

this.assignedProjects = projects;
this.projectsRender();

})
this.attach();
this.contentRender();

}

private projectsRender() {
const listEl = <HTMLUListElement>document.
getElementById('${this.type}-projects-list');
for (const prjItem of this.assignedProjects) {

const listItem = document.createElement('li');
listItem.textContent = prjItem.title;

100

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

listEl.appendChild(listItem);
}

}

}

In config() function that’s inside the Input class, you call the
addProject function with title, desc, and people. See Listing 8-10.

Listing 8-10. Updating the Input

class Input {

private config() {
this.formElem.addEventListener('submit', e => {

e.preventDefault();
let userInput:[string, string, number] = [this.
titleElem.value, this.descElem.value, +this.
peopleElem.value];
const [title, desc, people] = userInput;
prjState.addProject(title, desc, people);
this.titleElem.value = '';
this.descElem.value = '';
this.peopleElem.value = '';

})
}

}

If you now add a new title and click Add Project, you will see the title
in the Active and Finished projects. You have to fix some bugs and add
filtering logic next (see Figure 8-6).

101

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

Figure 8-6. The bug

Filtering Logic
In this section, you create a new class called Project. Add the id, title,
description, people, and status features to the constructor. The status is
an enum called ProjectStatus with an Active or Finished state.

You also need to change the earlier type called any to Project and
create an instance of Project and pass the required parameters to it. See
Listing 8-11.

102

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

Listing 8-11. Adding the Project Class

enum ProjectStatus {
Active,
Finished

}

class Project {
constructor(public id: string, public title: string, public
description: string, public people: number,public status:
ProjectStatus) { }

}

class State {
private listeners: any[] = [];
private projects: Project[] = [];
private static instance: State;
private constructor() {}
...

addProject(title: string, desc: string, nums: number) {
const newProject = new Project(Math.random().
toString(), title, desc, nums, ProjectStatus.Active);
this.projects.push(newProject);
for (const listenerFn of this.listeners) {

listenerFn(this.projects.slice());
}

}
}

In the List class, replace the earlier type called any with the Project
type. See Listing 8-12.

103

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

Listing 8-12. Updating the List

class List {
templateElem: HTMLTemplateElement;
renderElem: HTMLDivElement;
sectionElem: HTMLElement;
assignedProjects: Project[];

constructor(private type: 'active' | 'finished') {
...
prjState.addListener((projects: Project[]) => {

this.assignedProjects = projects;
this.projectsRender();

})
this.attach();
this.contentRender();

}
...
...

}

Next, you need to create a type called Listener and make the earlier
type called any the Listener type in the State class. See Listing 8-13.

Listing 8-13. Updating the State Class

type Listener = (items: Project[]) => void;

class State {
private listeners: Listener[] = [];
private projects: Project[] = [];

104

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

addListener(listenerFn: Listener){
this.listeners.push(listenerFn);

}
...

}

Add the filtering logic to the List class. As Listing 8-14 shows, you add
the Active or Finished status based on the status.

Listing 8-14. Updating the List Class

class List {
...

constructor(private type: 'active' | 'finished') {
...
this.sectionElem.id = '${this.type}-projects';
prjState.addListener((projects: Project[]) => {

const relevantProjects = projects.filter(prj
=> this.type === 'active' ? prj.status
=== ProjectStatus.Active : prj.status ===
ProjectStatus.Finished);
this.assignedProjects = relevantProjects;
this.projectsRender();

})
this.attach();
this.contentRender();

}

private projectsRender() {
const listEl = <HTMLUListElement>document.
getElementById('${this.type}-projects-list');
listEl.innerHTML = '';

105

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

for (const prjItem of this.assignedProjects) {
const listItem = document.createElement('li');
listItem.textContent = prjItem.title;
listEl.appendChild(listItem);

}
}

}
}

Figure 8-7.
Now, all the new projects will go to the Active Projects list, as shown in

Figure 8-7. Titles have been added

106

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

Abstract Class
These are common functionalities in the List and Item classes, which you
will move to an abstract class called Component.

Listing 8-15 moves the common functionalities of template, render,
and element. The attach method is now taking an insert parameter,
because you have two types of it in the List and Item classes.

Two abstract methods—called configure() and contentRender()—
need to be created by the classes that will inherit from the Component class.

Listing 8-15. An Abstract Class

// Component Base Class
abstract class Component<T extends HTMLElement, U extends
HTMLElement> {

templateElem: HTMLTemplateElement;
renderElem: T;
element: U;

constructor(templateId: string, renderElemId: string,
insertAtStart: boolean, newElemId?: string) {

this.templateElem = document.
getElementById(templateId)! as HTMLTemplateElement;
this.renderElem = document.
getElementById(renderElemId)! as T;
const importedNode = document.importNode(this.
templateElem.content, true);
this.element = importedNode.firstElementChild as U;
if (newElemId) this.element.id = newElemId;
this.attach(insertAtStart);

}

107

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

private attach(insert: boolean) {
this.renderElem.insertAdjacentElement(insert ?
'afterbegin' : 'beforeend', this.element);

}

abstract configure(): void;
abstract contentRender(): void;

}

Now, in the List class, you extend the Component. Listing 8-16 has
removed all the earlier code from the constructor and passed it to the
Component class using super(). It also passes the earlier filter logic to
configure().

Listing 8-16. List Class Has Been Updated

class List extends Component<HTMLDivElement, HTMLElement> {
assignedProjects: Project[];

constructor(private type: 'active' | 'finished'){
super('list', 'app', false, '${type}-projects');
this.assignedProjects = [];
this.configure();
this.contentRender();

}

configure(){
prjState.addListener((projects: Project[]) => {

const relevantProjects = projects.filter(prj =>
this.type === 'active' ? prj.status ===
ProjectStatus.Active : prj.status ===
ProjectStatus.Finished);
this.assignedProjects = relevantProjects;

108

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

this.projectsRender();
})

}

contentRender() {
const listId = '${this.type}-projects-list';
this.element.querySelector('ul')!.id = listId;
this.element.querySelector('h2')!.innerText = '${this.
type.toUpperCase()} PROJECTS';

}

private projectsRender() {
const listEl = <HTMLUListElement>document.
getElementById('${this.type}-projects-list');
listEl.innerHTML = '';
for (const prjItem of this.assignedProjects) {

const listItem = document.createElement('li');
listItem.textContent = prjItem.title;
listEl.appendChild(listItem);

}
}

}

Listing 8-17 extends the Component, this time in the Input class. The
earlier code has been removed from the constructor and is passed to the
Component class using super(). The earlier submit logic has also been
passed to configure().

Listing 8-17. Input Class Has Been Updated

class Input extends Component<HTMLDivElement,
HTMLFormElement> {

titleElem: HTMLInputElement;
descElem: HTMLInputElement;

109

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

peopleElem: HTMLInputElement;

constructor() {
super('project', 'app', true, 'user-input');
this.titleElem = <HTMLInputElement>this.element.
querySelector('#title');
this.descElem = <HTMLInputElement>this.element.
querySelector('#description');
this.peopleElem = <HTMLInputElement>this.element.
querySelector('#people');
this.configure();

}

configure() {
this.element.addEventListener('submit', e => {

e.preventDefault();
let userInput:[string, string, number] = [this.
titleElem.value, this.descElem.value, +this.
peopleElem.value];
const [title, desc, people] = userInput;
prjState.addProject(title, desc, people);
this.titleElem.value = '';
this.descElem.value = '';
this.peopleElem.value = '';

})
}

contentRender() {}
}

Listing 8-18 performs further optimization by putting addListener in
its own ListenerState class.

110

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

Listing 8-18. ListenerState Class

type Listener<T> = (items: T[]) => void;

class ListenerState<T> {
protected listeners: Listener<T>[] = [];

addListener(listenerFn: Listener<T>) {
this.listeners.push(listenerFn);

}
}

class State extends ListenerState<Project> {
private projects: Project[] = [];
private static instance: State;
private constructor() {

super()
}
static getInstance() {

if (this.instance) return this.instance;
this.instance = new State();
return this.instance;

}

addProject(title: string, desc: string, nums: number) {
...
...
}

}

Upon checking in the localhost (see Figure 8-8), you can see that the
titles were added properly.

111

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

® Drag «no Drop x ■

CO® 127.0.0.1:5500/mdex.h(ml

Figure 8-8. Everything is working

Rendering Items
Listing 8-19 creates <h2>, <h3>, and <p> tags inside the tag of the
single template.

Listing 8-19. Template Update

<template id="single">

<h2></h2>
<h3></h3>
<p></p>

</template>

112

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

Now, you can create a new Item class, which will again extend
from Component. You again pass the required code from super(). In
contentRender(), you assign the <h2>, <h3>, and <pr> tags with the
respective fields.

Listing 8-20 also creates a getter, called persons. It will return 1 person
or a number of persons, depending on the people assigned to the project.

Listing 8-20. The Item Class

class Item extends Component<HTMLUListElement, HTMLLIElement> {
private project: Project;

get persons() {
return this.project.people === 1 ? '1 person' :
'${this.project.people} persons';

}

constructor(hostId: string, project: Project) {
super('single', hostId, false, project.id);
this.project = project;

this.configure();
this.contentRender();

}

configure(){}

contentRender(){
this.element.querySelector('h2')!.innerText = this.
project.title;
this.element.querySelector('h3')!.innerText = this.
persons + ' assigned';
this.element.querySelector('p')!.innerText = this.
project.description;

}
}

113

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

Now, from the List class, you need to instantiate the Item class with id
and prjItem. See Listing 8-21.

Listing 8-21. List Class Has Been Updated

class List extends Component<HTMLDivElement, HTMLElement> {

private projectsRender() {
const listEl = <HTMLUListElement>document.
getElementById('${this.type}-projects-list');
listEl.innerHTML = '';
for (const prjItem of this.assignedProjects) {

new Item(this.element.querySelector('ul')!.id,
prjItem);

}
}

}

Upon adding a project with the required fields, you will see that all the
fields are working, as shown in Figure 8-9.

114

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

Figure 8-9. All fields are working

Draggable Items
In this section, you learn how to create the main logic of the draggable
items from Active Projects to Finished Projects. First, you need to add the
HTML property called draggable to the list item, as shown in Listing 8-22.

Listing 8-22. Draggable Has Been Added

<template id="single">
<li draggable="true">

<h2></h2>

115

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

<h3></h3>
<p></p>

</template>

Next, you create the interface for Draggable and DragTarget in the
index.ts file, as shown in Listing 8-23.

Listing 8-23. Interface Has Been Added

interface Draggable {
dragStartHandler(event: DragEvent): void;
dragEndHandler(event: DragEvent): void;

}

interface DragTarget {
dragOverHandler(event: DragEvent): void;
dropHandler(event: DragEvent): void;
dragLeaveHandler(event: DragEvent): void;

}

You need to implement Draggable in the Item class. After that, you add
the dragStartHandler and dragEndHandler methods to it.

In the configure() method, you need to add the dragstart and
dragend event listeners to each element. These event listeners will call
the dragStartHandler and dragEndHandler methods, respectively. See
Listing 8-24.

Listing 8-24. Draggable Has Been Implemented

class Item extends Component<HTMLUListElement, HTMLLIElement>
implements Draggable {

private project: Project;

116

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

get persons() {
return this.project.people === 1 ? '1 person' :
'${this.project.people} persons';

}

constructor(hostId: string, project: Project) {
super('single', hostId, false, project.id);
this.project = project;

this.configure();
this.contentRender();

}

dragStartHandler = (event: DragEvent) => {
console.log('DragStart', event);

}

dragEndHandler = (_: DragEvent) => {
console.log('DragEnd');

}

configure(){
this.element.addEventListener('dragstart', this.
dragStartHandler);
this.element.addEventListener('dragend', this.
dragEndHandler);

}
...

}

Now, when you drag an item to Active Projects, this action will be
shown in the console, as you can see in Figure 8-10.

117

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

Figure 8-10. Draggable

Next, in the dragStartHandler method, you call the setData function
from the event and pass id to it. You also need to set effectAllowed to
true. See Listing 8-25.

Listing 8-25. dragStartHandler Has Been Updated

dragStartHandler = (event: DragEvent) => {
event.dataTransfer!.setData('text/plain', this.
project.id);
event.dataTransfer!.effectAllowed = 'move';

}

Create a new function called moveProject in the State class. From
the list of all the projects, you can find the project being dragged with the
project ID.

118

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

Inside that project, change the project status and call a new function
called updateListeners, which will re-create all the listeners. See
Listing 8-26.

Listing 8-26. State Has Been Updated

class State extends ListenerState<Project> {
...
addProject(title: string, desc: string, nums: number) {

const newProject = new Project(Math.random().
toString(), title, desc, nums, ProjectStatus.Active);
this.projects.push(newProject);
this.updateListeners();

}

moveProject(projectId: string, newStatus: ProjectStatus) {
const project = this.projects.find(prj => prj.id ===
projectId);
if (project && project.status !== newStatus) {

project.status = newStatus;
this.updateListeners();

}
}

private updateListeners() {
for (const listenerFn of this.listeners) {

listenerFn(this.projects.slice());
}

}
}

Now you need to implement Dragtarget in the List class. Call the
dragOverHandler, dragLeaveHandler, and dropHandler functions from
the dragover, dragleave, and drop events, respectively.

119

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

In the dragOverHandler function, add the class called droppable to the
 containing the item.

In the dragLeaveHandler function, remove the class called droppable.
In the dropHandler function, call moveProject and pass the item ID

and the status. See Listing 8-27.

Listing 8-27. List Has Been Updated

class List extends Component<HTMLDivElement, HTMLElement>
implements DragTarget {

...
dragOverHandler = (event: DragEvent) => {

if (event.dataTransfer && event.dataTransfer.types[0]
=== 'text/plain') {

event.preventDefault();
const listEl = this.element.querySelector('ul')!;
listEl.classList.add('droppable');

}
}

dropHandler = (event: DragEvent) => {
const prjId = event.dataTransfer!.getData('text/
plain');
prjState.moveProject(

prjId,
this.type === 'active' ? ProjectStatus.Active :
ProjectStatus.Finished

);
}

dragLeaveHandler = (_: DragEvent) => {
const listEl = this.element.querySelector('ul')!;
listEl.classList.remove('droppable');

}

120

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

configure(){
this.element.addEventListener('dragover', this.
dragOverHandler);
this.element.addEventListener('dragleave', this.
dragLeaveHandler);
this.element.addEventListener('drop', this.
dropHandler);
prjState.addListener((projects: Project[]) => {

const relevantProjects = projects.filter(prj =>
this.type === 'active' ? prj.status ===
ProjectStatus.Active : prj.status ===
ProjectStatus.Finished);
this.assignedProjects = relevantProjects;
this.projectsRender();

})
}
...

}

The final project is done, and you can now drag items from Active to
Finished projects (see Figure 8-11).

121

CHAPTER 8 CREATING A DRAG-AND-DROP PROJECT WITH TYPESCRIPT

Figure 8-11. The final project

You can find the code for this project on GitHub at https://github.
com/nabendu82/drag-drop-ts.

Summary
In this chapter, you created a fairly complex TypeScript app for tracking
projects. The final app has draggable projects, which can be dragged from
the Active to Finished status. In the next chapter, you learn how to divide
this large project into small, manageable modules.

122

https://github.com/nabendu82/drag-drop-ts
https://github.com/nabendu82/drag-drop-ts

CHAPTER 9

Improving the
Drag-and-Drop
Project
The drag-and-drop project you created in the previous chapter is a large
index.ts file. In this chapter, you are first going to divide the project into
small, manageable modules (see Figure 9-1). After that, you are also going
to learn about webpack and make the project more efficient (Figure 9-8
shows the end result).

Changing to ES6 Modules
The first thing you need to do is add a module to the script file in index.
html, as shown in Listing 9-1.

Listing 9-1. Adding a Module

<script type="module" src="dist/index.js"></script>

Now, create a models folder inside the src folder and create two files—
drag.ts and project.ts—inside that folder.

Place the interface code from index.ts into the drag.ts file, as shown
in Listing 9-2. The only difference is the export at the front.

© Nabendu Biswas 2023 123
N. Biswas, TypeScript Basics, https://doi.org/10.1007/978-1-4842-9523-6_9

https://doi.org/10.1007/978-1-4842-9523-6_9%2523DOI

CHAPTER 9 IMPROVING THE DRAG-AND-DROP PROJECT

Listing 9-2. Creating the drag.ts File

export interface Draggable {
dragStartHandler(event: DragEvent): void;
dragEndHandler(event: DragEvent): void;

}

export interface DragTarget {
dragOverHandler(event: DragEvent): void;
dropHandler(event: DragEvent): void;
dragLeaveHandler(event: DragEvent): void;

}

Next, in the project.ts file, export the Project class and the
ProjectStatus enum, again from the index.ts file. See Listing 9-3.

Listing 9-3. Creating the project.ts File

export enum ProjectStatus {
Active,
Finished

}

export class Project {
constructor(public id: string, public title: string, public
description: string, public people: number,public status:
ProjectStatus) { }

}

Create a state folder inside the src folder and add a state.ts file in
that new folder. Inside it, transfer State and ListenerState from index.
ts. Note that this example also imports Project and ProjectStatus from
the project.ts file. See Listing 9-4.

124

CHAPTER 9 IMPROVING THE DRAG-AND-DROP PROJECT

Listing 9-4. Creating the state.ts File

import { Project, ProjectStatus } from '../models/project.js';

type Listener<T> = (items: T[]) => void;
class ListenerState<T> {

protected listeners: Listener<T>[] = [];
addListener(listenerFn: Listener<T>) {

this.listeners.push(listenerFn);
}

}

class State extends ListenerState<Project> {
private projects: Project[] = [];
private static instance: State;
private constructor() {

super()
}
static getInstance() {

if (this.instance) return this.instance;
this.instance = new State();
return this.instance;

}

addProject(title: string, desc: string, nums: number) {
const newProject = new Project(Math.random().
toString(), title, desc, nums, ProjectStatus.Active);
this.projects.push(newProject);
this.updateListeners();

}

moveProject(projectId: string, newStatus: ProjectStatus) {
const project = this.projects.find(prj => prj.id ===
projectId);

125

CHAPTER 9 IMPROVING THE DRAG-AND-DROP PROJECT

if (project && project.status !== newStatus) {
project.status = newStatus;
this.updateListeners();

}
}

private updateListeners() {
for (const listenerFn of this.listeners) {

listenerFn(this.projects.slice());
}

}
}

export const prjState = State.getInstance();

Now, create a components folder inside the src folder and a base.ts
file to that new folder. In Listing 9-5, you are transferring the Component
abstract class from the index.ts file.

Listing 9-5. Creating the base.ts File

export default abstract class Component<T extends HTMLElement,
U extends HTMLElement> {

templateElem: HTMLTemplateElement;
renderElem: T;
element: U;

constructor(templateId: string, renderElemId: string,
insertAtStart: boolean, newElemId?: string) {

this.templateElem = document.
getElementById(templateId)! as HTMLTemplateElement;
this.renderElem = document.
getElementById(renderElemId)! as T;

126

CHAPTER 9 IMPROVING THE DRAG-AND-DROP PROJECT

const importedNode = document.importNode(this.
templateElem.content, true);
this.element = importedNode.firstElementChild as U;
if (newElemId) this.element.id = newElemId;
this.attach(insertAtStart);

}

private attach(insert: boolean) {
this.renderElem.insertAdjacentElement(insert ?
'afterbegin' : 'beforeend', this.element);

}

abstract configure(): void;
abstract contentRender(): void;

}

Next, create an item.ts file inside the components folder. Transfer
the Item class from the index.ts file. As you can see in Listing 9-6, the
necessary imports are also included.

Listing 9-6. Creating the item.ts File

import { Draggable } from "../models/drag.js";
import { Project } from "../models/project.js";
import Component from "./base.js";

export class Item extends Component<HTMLUListElement,
HTMLLIElement> implements Draggable {

private project: Project;

get persons() {
return this.project.people === 1 ? '1 person' :
'${this.project.people} persons';

}

127

CHAPTER 9 IMPROVING THE DRAG-AND-DROP PROJECT

constructor(hostId: string, project: Project) {
super('single', hostId, false, project.id);
this.project = project;

this.configure();
this.contentRender();

}

dragStartHandler = (event: DragEvent) => {
event.dataTransfer!.setData('text/plain', this.
project.id);
event.dataTransfer!.effectAllowed = 'move';

}

dragEndHandler = (_: DragEvent) => {
console.log('DragEnd');

}

configure(){
this.element.addEventListener('dragstart', this.
dragStartHandler);
this.element.addEventListener('dragend', this.
dragEndHandler);

}

contentRender(){
this.element.querySelector('h2')!.innerText = this.
project.title;
this.element.querySelector('h3')!.innerText = this.
persons + ' assigned';
this.element.querySelector('p')!.innerText = this.
project.description;

}
}

128

CHAPTER 9 IMPROVING THE DRAG-AND-DROP PROJECT

Now, create a list.ts file inside the components folder. Transfer the
List class from index.ts. As you can see in Listing 9-7, the necessary
imports are also included.

Listing 9-7. Creating the list.ts File

import { DragTarget } from "../models/drag.js";
import { Project, ProjectStatus } from "../models/project.js";
import Component from "./base.js";
import { prjState } from "../state/state.js";
import { Item } from "./item.js";

export class List extends Component<HTMLDivElement,
HTMLElement> implements DragTarget {

assignedProjects: Project[];

constructor(private type: 'active' | 'finished'){
super('list', 'app', false, '${type}-projects');
this.assignedProjects = [];
this.configure();
this.contentRender();

}

dragOverHandler = (event: DragEvent) => {
if (event.dataTransfer && event.dataTransfer.types[0]
=== 'text/plain') {

event.preventDefault();
const listEl = this.element.querySelector('ul')!;
listEl.classList.add('droppable');

}
}

129

CHAPTER 9 IMPROVING THE DRAG-AND-DROP PROJECT

dropHandler = (event: DragEvent) => {
const prjId = event.dataTransfer!.getData('text/plain');
prjState.moveProject(

prjId,
this.type === 'active' ? ProjectStatus.Active :
ProjectStatus.Finished

);
}

dragLeaveHandler = (_: DragEvent) => {
const listEl = this.element.querySelector('ul')!;
listEl.classList.remove('droppable');

}

configure(){
this.element.addEventListener('dragover', this.
dragOverHandler);
this.element.addEventListener('dragleave', this.
dragLeaveHandler);
this.element.addEventListener('drop', this.dropHandler);
prjState.addListener((projects: Project[]) => {

const relevantProjects = projects.filter(prj
=> this.type === 'active' ? prj.status
=== ProjectStatus.Active : prj.status ===
ProjectStatus.Finished);
this.assignedProjects = relevantProjects;
this.projectsRender();

})
}

contentRender() {
const listId = '${this.type}-projects-list';
this.element.querySelector('ul')!.id = listId;

130

CHAPTER 9 IMPROVING THE DRAG-AND-DROP PROJECT

this.element.querySelector('h2')!.innerText = '${this.
type.toUpperCase()} PROJECTS';

}

private projectsRender() {
const listEl = <HTMLUListElement>document.
getElementById('${this.type}-projects-list');
listEl.innerHTML = '';
for (const prjItem of this.assignedProjects) {

new Item(this.element.querySelector('ul')!.id,
prjItem);

}
}

}

Now, create an input.ts file inside the components folder. Transfer
the Input class from index.ts. As you can see in Listing 9-8, the necessary
imports are also included.

Listing 9-8. Creating the input.ts File

import { prjState } from "../state/state.js";
import Component from "./base.js";

export class Input extends Component<HTMLDivElement,
HTMLFormElement> {

titleElem: HTMLInputElement;
descElem: HTMLInputElement;
peopleElem: HTMLInputElement;

constructor() {
super('project', 'app', true, 'user-input');
this.titleElem = <HTMLInputElement>this.element.
querySelector('#title');

131

CHAPTER 9 IMPROVING THE DRAG-AND-DROP PROJECT

this.descElem = <HTMLInputElement>this.element.
querySelector('#description');
this.peopleElem = <HTMLInputElement>this.element.
querySelector('#people');
this.configure();

}

configure() {
this.element.addEventListener('submit', e => {

e.preventDefault();
let userInput:[string, string, number] = [this.
titleElem.value, this.descElem.value, +this.
peopleElem.value];
const [title, desc, people] = userInput;
prjState.addProject(title, desc, people);
this.titleElem.value = '';
this.descElem.value = '';
this.peopleElem.value = '';

})
}

contentRender() {}
}

Finally in the index.ts file, you only import twice and keep the
instantiating of classes, as shown in Listing 9-9.

Listing 9-9. Updating the index.ts File

import { Input } from './components/input.js';
import { List } from './components/list.js';

new Input();
new List('active');
new List('finished');

132

CHAPTER 9 IMPROVING THE DRAG-AND-DROP PROJECT

You also need to change module to es2015 in the tsconfig.json file, as
shown in Listing 9-10. Finally, start the project using the tsc -w command.

Listing 9-10. Updating the tsconfig.json File

"module": "es2015",

Upon checking the project on the localhost, you will see that it works
(see Figure 9-1). You can find this code on GitHub at https://github.
com/nabendu82/drag-drop-ts-v2.

ACTIVEPROJECTS

FINISHEDPROJECTS ■
Figure 9-1. The enhanced project

133

https://github.com/nabendu82/drag-drop-ts-v2
https://github.com/nabendu82/drag-drop-ts-v2

CHAPTER 9 IMPROVING THE DRAG-AND-DROP PROJECT

Using Webpack
In this optimized project with modules, you have two problems. First, the
dist folder is an exact replica of the src folder. It includes all the JavaScript
files, corresponding with the TypeScript files. Because of this, the code is
not optimized (see Figure 9-2).

Figure 9-2. The code is not optimized

The other problem is that a lot of API calls are made, because of all the
different files. You can see this on the Network tab shown in Figure 9-3.

134

CHAPTER 9 IMPROVING THE DRAG-AND-DROP PROJECT

® k 4­

© 127.0A1 MOQ*)dex mmi ft ☆ > -g • » ■ (1 >

fl twmnt* cc*»o*o PwfomonM rmqrm A soueas Netov* Paforn*neo Memory *©c»cnon Mew*? vxmouM Hocoroor A HMlI ■ 1 O : X

• 7 Q, (1 nmor i loq ; iDnobacocno Nommno • O
rtv O»MK 1 IHOOM1LKU « FotffVWW JS CSS no Font Doc WS Wmm UorreK otw I HMMocxaecooNoo boons roquomo I M owv mquosa

MOV <000n <M»ra 3000 v MOOn MOOra MOO V •300 ■» •MOV MOO v M00» OOOOv 0000 V 700C V 3M0rn

irw Sxui ISP* koutor SCO Tkno WKorl® 4
S MoiMnS

MM0
-XM
200

dOCUOWM
KSPI «■>» m

2M8
MOB

a™»
6 rm

"OU JO 200 *crto« b2u.il: 131® »rm
200 ocrtpi BkLlU 201® • mo

□ •» 101 wotnocW OB Portng
OtOlOM 200 •CNN S»dlLl 161® 10 m
(•w» 200 oct* •saA.12 101® lS<w
toofoct* 200 KtX a?0B 23 m
«o<n> 200 KTtX at nJ 1.9 1® 22 -m
RM 200 oct* rrr-l-'t n 12 1.41® 2 m
OCX* Jo 200 Kt* rrr-y* it 12 2.0 l® 1 rm

OM 200 K<tX cCTvnuv 1.4 1® 3rm

12 wqjMW Miamimo 1421® raooocm Frmr»23t DOMConMraoaOod 128m» Lmo: l»™

• Ccnsow X

M Q too » 0 f«» Dtta® *»** • 1 Hour ■ 1 O

Figure 9-3. The Network tab

To solve these issues, it’s best to use a bundler like webpack. It changes
the TypeScript files into a single, optimized JavaScript file. The production
app will then be optimized and thus be faster.

To use webpack in your project, you need to add webpack along with
its dependencies, as shown in Listing 9-11.

Listing 9-11. Installing webpack

npm i -D webpack webpack-cli webpack-dev-server typescript
ts-loader

135

CHAPTER 9 IMPROVING THE DRAG-AND-DROP PROJECT

You also need to comment out rootDir in the tsconfig.json file,
because you are going to take this from a new webpack config file soon.
See Figure 9-4.

Figure 9-4. The tsconfig.json file

Next, you need to delete the .js from all the TypeScript files, as shown
in Listing 9-12.

Listing 9-12. Deleting js from the Files

import { DragTarget } from "../models/drag";
import { Project, ProjectStatus } from "../models/project";
import Component from "./base";
import { prjState } from "../state/state";
import { Item } from "./item";

Next, create a webpack.config.js file in the root directory and add the
contents of Listing 9-13 to it. You have an entry point and output details.
You also have rules using regular expressions, which say to look for all the
ts files. You can use ts-loader to change the TypeScript files to JavaScript
and exclude the node_modules.

136

CHAPTER 9 IMPROVING THE DRAG-AND-DROP PROJECT

Listing 9-13. Creating the webpack.config.js File

const path = require('path');

module.exports = {
mode: 'development',
entry: './src/index.ts',
output: {

filename: 'bundle.js',
path: path.resolve(__dirname, 'dist'),
publicPath: 'dist'

},
devtool: 'inline-source-map',
module: {

rules: [
{

test: /\.ts$/,
use: 'ts-loader',
exclude: /node_modules/

}
]

},
resolve: {

extensions: ['.ts', '.js']
}

};

Next, add a build script to the package.json file; it will run webpack
(see Listing 9-14).

137

CHAPTER 9 IMPROVING THE DRAG-AND-DROP PROJECT

Listing 9-14. Updating package.json

"scripts": {
"build": "webpack"

},

Delete all the folders and files inside the dist folder, as shown in
Figure 9-5.

Figure 9-5. Delete files

Run the npm run build command from the command line. You will
see the bundle.js file created in the dist folder, as shown in Figure 9-6.

138

CHAPTER 9 IMPROVING THE DRAG-AND-DROP PROJECT

bundle p >

kBootstrap

/src/components/base.ts'

webpack_exports.

drag-droMl.B.a build
webpack

* styiecss
P tsconfig json
48 webpack co-fig js

/***/ ((_ unused_webpack_module,
_ webpack_require_) => {

_webpack_exports_);
_webpack_require_ .d(__webpack_exports_ , {
"default": () => (/* binding */ Component)

'use strict";
'ar _ webpackjnodules.

■odules by path ./src/conpoeents/a.ts 4.58 KiB
./src/coupooMts/iaput.ts 885 bytes (built] (code generated]
./src/cnapne lets/list-ts 7.1 KiB (built] (code generated)
.Zsrc/canpoeeats/beso.ts 684 bytes (built] (code generated]
./src/coeponents/itee.ts 1.82 KiB (bailt) (code generated]

./src/iado*.ts 141 bytes [built] (code generated’

./src/stata/state.ts 1.13 KiB (built] (code generated)

./src/uodals/projoct.ts 458 bytes (built] (code generated]
tbpack $.73.8 coapilcd successfully in 848 us

_ webpack_require.
/♦ harmony export
/* harmony export
/* harmony export
class Component {

constructor(templateld, renderElemld, insertAtStart, newElemld) {
this.templateElem = document.getElementByld(templateld);

Figure 9-6. The bundle.js file

You also updated the script file in index.html to bundle.js. The app is
running perfectly on the localhost, as shown in Figure 9-7.

Figure 9-7. index.html

139

CHAPTER 9 IMPROVING THE DRAG-AND-DROP PROJECT

Now, when you open the Network tab, you will see fewer requests
being made, as shown in Figure 9-8.

Figure 9-8. The localhost shows fewer requests being made

You can find the code on GitHub at https://github.com/nabendu82/
drag-drop-ts-v3.

Summary
In this chapter, you updated the drag-and-drop project. You divided it into
small, manageable modules and used webpack to make the project more
efficient. In the next chapter, you will create a small party app with React
and TypeScript.

140

https://github.com/nabendu82/drag-drop-ts-v3
https://github.com/nabendu82/drag-drop-ts-v3

CHAPTER 10

Creating a Party
App in ReactJS
with TypeScript
React is the most popular JavaScript library. Almost all production projects
are made in ReactJS or Angular. In Angular, you have to write your code in
TypeScript, but in React that is not the case.

You can easily add TypeScript to a ReactJS project by specifying it using
create-react-app. In this chapter, you learn how to create a party app in
ReactJS with TypeScript (see Figure 10-3 for the completed project).

Party App
You will create a simple party list app with React and TypeScript. Open
your terminal and provide the command shown in Figure 10-1. Notice that
you have to specify --template typescript to create a ReactJS project
with TypeScript.

© Nabendu Biswas 2023
N. Biswas, TypeScript Basics, https://doi.org/10.1007/978-1-4842-9523-6_10

141

https://doi.org/10.1007/978-1-4842-9523-6_10%2523DOI

CHAPTER 10 CREATING A PARTY APP IN REACTJS WITH TYPESCRIPT

Figure 10-1. The TypeScript template

Listing People
Next, in the App.tsx file, create a simple state called people, using the
useState hook. The only difference from a normal ReactJS component in
JavaScript is that you specify the type here.

You are specifying that people is an array of objects containing name,
age, img, and note. See Listing 10-1.

Listing 10-1. Creating the App.tsx File

import { useState } from 'react';
import './App.css';

function App() {
const [people, setPeople] = useState<{name: string, age:
number, img: string, note: string}[]>([

{ name: 'John',
age: 30,
img: 'https://randomuser.me/api/portraits/men/22.jpg',
note: 'John is a very good person'

},
{ name: 'Jane',

age: 25,
img: 'https://randomuser.me/api/portraits/women/22.jpg',

142

https://randomuser.me/api/portraits/men/22.jpg'
https://randomuser.me/api/portraits/women/22.jpg'

CHAPTER 10 CREATING A PARTY APP IN REACTJS WITH TYPESCRIPT

note: 'Jane is a very good person'
},

])

return (
<div className="App">
< h1>People List - Birthday Party</h1>

</div>
);

}

export default App;

Next, create a components folder inside the src folder and then create
the PeopleList.tsx file inside it. If you try to import this list in the App.
tsx file, you would get an error because you have not defined the type. See
Listing 10-2.

Listing 10-2. Adding the PeopleList.tsx File

import PeopleList from './components/PeopleList';

function App() {
return (

<div className="App">
< h1>People List - Birthday Party</h1>
< PeopleList people={people} />

</div>
);

}

export default App;

143

CHAPTER 10 CREATING A PARTY APP IN REACTJS WITH TYPESCRIPT

In the PeopleList.tsx file, you are receiving the props of people.
You loop through the list using a map and showing the image, name, age,
and note received from the App component. The main thing to note here
is the React.FC type of the PeopleList component, which means it’s a
functional component.

The IProps interface tells you that you have a person with an object
type inside an array. Now, all of the errors are resolved. See Listing 10-3.

Listing 10-3. Creating the PeopleList.tsx File

interface IProps {
people: {

name: string
age: number
img: string
note: string

}[]
}

const PeopleList: React.FC<IProps> = ({ people }) => {
return (

{people.map(person => (

<li className="list">
<div className="list-header">

<img className="list-img"
src={person.img} />
<h2>{person.name}</h2>

</div>
<p>{person.age} years old</p>
<p className="list-note">{person.note}</p>

))}

144

CHAPTER 10 CREATING A PARTY APP IN REACTJS WITH TYPESCRIPT

)

}

export default PeopleList

You also need to add the styles for the component in the App.css file.
See Listing 10-4.

Listing 10-4. Creating the App.css File

.App {
text-align: center;

}
.list {
list-style: none;
display: flex;
align-items: center;
width: 50rem;
margin: 0rem auto;
border: 0.1rem solid rgba(0, 0, 0, 0.233);
padding: 1rem;
justify-content: space-between;

}
.list-header {
display: flex;
align-items: center;

}
.list-header h2 { color: rgb(37, 36, 36)}
.list-img {
width: 4rem;
height: 4rem;
border-radius: 100%;

145

CHAPTER 10 CREATING A PARTY APP IN REACTJS WITH TYPESCRIPT

margin-right: 0.5rem;
}
.list-note {
width: 30%;
text-align: left;

}

Now, in the localhost, you will get both of these people, as shown in
Figure 10-2.

Figure 10-2. The localhost shows the results

Adding People
Next, create a component called AddToPeople.tsx in the components
folder. You have three input fields that take input: name, age, and img.
There is also a textarea for a note. Lastly, there is a button to submit the
entries.

You have an input state to take the name, age, img, and note. In
handleChange, you use the common React trick, which uses e.target.
name to create a common function.

The main thing to note is the e type, which is commonly known as an
event. In this example, you have to set it to React.ChangeEvent, but it can
have two other values—HTMLInputElement or HTMLTextAreaElement. See
Listing 10-5.

146

CHAPTER 10 CREATING A PARTY APP IN REACTJS WITH TYPESCRIPT

Listing 10-5. Creating the AddToPeople.tsx File

import React, { useState } from 'react'

const AddToPeople = () => {
const [input, setInput] = useState({ name: "", age: "",
note: "", img: "" })

const handleChange = (e: React.ChangeEvent<HTMLInputElement
| HTMLTextAreaElement>) => {

setInput({
...input,
[e.target.name]: e.target.value

})
}

const handleClick = () => {}

return (
<div className="add-people">

<input type="text" onChange={handleChange}
className="add-input" name="name" value={input.
name} placeholder="Name" />
<input type="text" onChange={handleChange}
className="add-input" name="age" value={input.age}
placeholder="Age" />
<input type="text" onChange={handleChange}
className="add-input" name="img" value={input.img}
placeholder="Url" />
<textarea onChange={handleChange} className="add-
input" name="note" value={input.note}
placeholder="Note" />
<button onClick={handleClick} className="add-
button">Add to List</button>

147

CHAPTER 10 CREATING A PARTY APP IN REACTJS WITH TYPESCRIPT

</div>
)

}

export default AddToPeople

You can now add the styles for this new component to the App.css file.
See Listing 10-6.

Listing 10-6. Adding Styles to App.css

.add-people {
display: flex;
flex-direction: column;
width: 30rem;
margin: 5rem auto

}

.add-input {
padding: 0.5rem;
font-size: 1rem;
margin: 0.3rem 0rem

}

.add-button {
padding: 0.5rem;
cursor: pointer;
background-color: darkmagenta;
font-weight: 700;
color: white;
border: none;
border-radius: 0.5rem;
text-transform: uppercase;

}

148

CHAPTER 10 CREATING A PARTY APP IN REACTJS WITH TYPESCRIPT

Now, you can render AddToPeople from the App.tsx file. You pass
people and setPeople as props. You will get errors, because the types are
expected to be given in AddToPeople.

Sometimes, it is difficult to find the types for the props. In such cases, if
you hover your mouse over the props, you can see the expected types. You
can copy those types from there. See Listing 10-7.

Listing 10-7. Adding AddToPeople to App.tsx

import AddToPeople from './components/AddToPeople';

function App() {
...
return (

<div className="App">
<h1>People List - Birthday Party</h1>
<PeopleList people={people} />
<AddToPeople people={people} setPeople={setPeople} />

</div>
);

}

export default App;

Back in the AddToPeople.tsx file, you will have an interface containing
the people and setPeople props. Notice that I copied the setPeople props
from the copying that was done earlier. See Listing 10-8.

Listing 10-8. Adding Props to AddToPeople.tsx

import React, { useState } from 'react'

interface IProps {
people: {

name: string
age: number

149

CHAPTER 10 CREATING A PARTY APP IN REACTJS WITH TYPESCRIPT

img: string
note: string

}[],
setPeople: React.Dispatch<React.SetStateAction<{

name: string;
age: number;
img: string;
note: string;

}[]>>
}

const AddToPeople: React.FC<IProps> = ({setPeople,
people}) => {

...
return (
)

}

export default AddToPeople

Next, you need to update the handleClick function. You simply use
setPeople and the spread operator and then pass the object with input
from the user. In the end, you are setting the name, age, img, and note to
empty strings. See Listing 10-9.

Listing 10-9. Adding handleClick to AddToPeople.tsx

const handleClick = () => {
if(!input.name || !input.age || !input.img || !input.
note) return;
setPeople([...people, {name: input.name, age:
Number(input.age), img: input.img, note: input.note}])
setInput({ name: "", age: "", note: "", img: "" })

}

150

CHAPTER 10 CREATING A PARTY APP IN REACTJS WITH TYPESCRIPT

You can now add a new person to the localhost (see Figure 10-3). You
can find the code for this process on GitHub at https://github.com/
nabendu82/party-app-react-ts.

■ React Aos

CO® locaihost 3000 96

People List - Birthday Party

John 30 years old John is a very good person

Jane 25 years old Jane is a very good person

Nabendu 40 years old Nabendu is a Trainer

Figure 10-3. Final app

Summary
In this chapter, you created a party app in ReactJS with TypeScript. You
learned how to add types to various parts of the React project.

In the final chapter, you are going to create a small Redux app with
TypeScript.

151

https://github.com/nabendu82/party-app-react-ts
https://github.com/nabendu82/party-app-react-ts

CHAPTER 11

Using React Redux
with TypeScript
In this chapter, you learn to add TypeScript to a React Redux project (see
Figure 11-2 for the completed app). You need basic knowledge of Redux to
follow along in this chapter.

Setting UptheProject
You will create a new React app with TypeScript by adding the template to
create-react-app. See Figure 11-1.

Figure 11-1. Create a React app

© Nabendu Biswas 2023
N. Biswas, TypeScript Basics, https://doi.org/10.1007/978-1-4842-9523-6_11

153

https://doi.org/10.1007/978-1-4842-9523-6_11%2523DOI

CHAPTER 11 USING REACT REDUX WITH TYPESCRIPT

Now, create a state folder inside the src folder. Inside that folder,
create three more folders—actions, reducers, and types. Inside the
actions and types folders, create an index.ts file.

Inside the reducers folder, create a bankReducer.ts file. Now, in
the index.ts file that’s inside the types folder, export an enum called
ActionType, where you’ll create two constants. See Listing 11-1.

Listing 11-1. The index.ts file in the types Folder

export enum ActionType {
DEPOSIT = "DEPOSIT",
WITHDRAW = "WITHDRAW"

}

Setting UpRedux
You now need to the create types that will be used in TypeScript. So,
in the index.ts file in the actions folder, create two interfaces called
DepositAction and WithdrawAction. You are using ActionType from the
types folder and specifying the number payload. See Listing 11-2.

Listing 11-2. The index.ts file in the actions Folder

import { ActionType } from "../types";
interface DepositAction {

type: ActionType.DEPOSIT,
payload: number

}
interface WithdrawAction {

type: ActionType.WITHDRAW,
payload: number

}
export type Action = DepositAction | WithdrawAction;

154

CHAPTER 11 USING REACT REDUX WITH TYPESCRIPT

In the bankReducer.ts file, add the logic of the reducers with the usual
switch statements. Provide state and action and their return types. See
Listing 11-3.

Listing 11-3. The bankReducer.ts File in the reducers Folder

import { Action } from "../actions";
import { ActionType } from "../types";

const initialState = 0;

const reducer = (state: number = initialState, action: Action):
number => {

switch (action.type){
case ActionType.DEPOSIT:

return state + action.payload;
case ActionType.WITHDRAW:

return state - action.payload;
default:

return state
}

}

export default reducer

You need to install the required packages before moving forward. You
can do that from the terminal, as shown in Listing 11-4.

Listing 11-4. Installing Redux

npm i redux react-redux react-thunk @types/react-redux

Next, create an index.ts file in the reducers folder. Here, you add
the combineReducers logic, which is required in a Redux project. See
Listing 11-5.

155

CHAPTER 11 USING REACT REDUX WITH TYPESCRIPT

Listing 11-5. The index.ts File in the reducers Folder

import { combineReducers } from "redux";
import bankReducer from "./bankReducer"

const reducers = combineReducers({
bank: bankReducer

})

export default reducers

Now, you’ll create actionCreators. First create the creators folder
inside the state folder and the index.ts file inside that. Note the two
functions—depositMoney and withdrawMoney. You are dispatching the
type and payload as usual, but you should also include the amount and
dispatch types here. See Listing 11-6.

Listing 11-6. The index.ts File in the creators Folder

import { Dispatch } from "react"
import { Action } from "../actions"
import { ActionType } from "../types"

export const depositMoney = (amount: number) => {
return (dispatch: Dispatch<Action>) => {

dispatch({
type: ActionType.DEPOSIT,
payload: amount

})
}

}

export const withdrawMoney = (amount: number) => {
return (dispatch: Dispatch<Action>) => {

dispatch({

156

CHAPTER 11 USING REACT REDUX WITH TYPESCRIPT

type: ActionType.WITHDRAW,
payload: amount

})
}

}

Now create a store.ts file inside the state folder. You are creating a
store with reducers and adding the middleware called thunk. Since you
have not installed the types for redux-thunk yet, you need to do it that
now with the npm i @types/redux-thunk command, which runs from the
terminal. See Listing 11-7.

Listing 11-7. The store.ts File

import { applyMiddleware, createStore } from "redux";
import thunk from "redux-thunk"
import reducers from "./reducers";

export const store = createStore(reducers, {},
applyMiddleware(thunk))

Finally, add an index.ts file to the state folder. You are exporting
store and actionCreators. See Listing 11-8.

Listing 11-8. The index.ts File in the state Folder

export * from './store';
export * as actionCreators from "./creators";

The Output
You need to add Redux to the application by wrapping the root element of
the app with it. So, wrap the App component with Provider and pass the
store in the index.tsx file. See Listing 11-9.

157

CHAPTER 11 USING REACT REDUX WITH TYPESCRIPT

Listing 11-9. The index.ts File

import ReactDOM from 'react-dom/client';
import './index.css';
import App from './App';
import { Provider } from 'react-redux';
import { store } from './state';
const root = ReactDOM.createRoot(
document.getElementById('root') as HTMLElement

);

root.render(
<Provider store={store}>

<App />
</Provider>

);

You also need to export the reducers type from the combineReducers
file of index.ts, which is in the reducers folder. See Listing 11-10.

Listing 11-10. The index.ts File in the reducers Folder

import { combineReducers } from "redux";
import bankReducer from "./bankReducer"

const reducers = combineReducers({
bank: bankReducer

})

export default reducers
export type RootState = ReturnType<typeof reducers>

Finally, update the App.tsx file and use the useSelector hook to get
the Redux state. This example uses the useDispatch hook to dispatch the
actionCreators. It also provides the required types. See Listing 11-11.

158

CHAPTER 11 USING REACT REDUX WITH TYPESCRIPT

Listing 11-11. The App.tsx File

import { useDispatch, useSelector } from 'react-redux';
import { bindActionCreators } from 'redux';
import { actionCreators } from './state';
import { RootState } from './state/reducers';
import './App.css';

function App() {
const amount = useSelector((state: RootState) => state.bank)
const dispatch = useDispatch();
const { depositMoney, withdrawMoney } = bindActionCreators
(actionCreators, dispatch)

return (
<div className="App">

<h1>{amount}</h1>
<button onClick={() => depositMoney(1000)}>Deposit</button>
<button onClick={() => withdrawMoney(500)}>Withdraw</button>

</div>
);

}
export default App;

When you start the React app with npm start from the terminal, you
will see the app with the Deposit and Withdraw buttons working fine, as
shown in Figure 11-2.

O A Q teu*e«»co # <1 <• % —

8500

Figure 11-2. The final app

159

CHAPTER 11 USING REACT REDUX WITH TYPESCRIPT

This completes this small app. You can find the code on GitHub at
https://github.com/nabendu82/redux-ts.

Summary
In this final chapter, you created a small app in ReactJS using Redux with
TypeScript. You learned how to add types to various parts of the Redux
project.

160

https://github.com/nabendu82/redux-ts

Index
A, B
Abstract classes, 40, 41,

107-111, 126
addElements function, 59
addItemToList function, 84, 85
addItemToList function, 84, 85
addListener function, 98, 99, 110
addProject function, 98, 101
Advanced classes

abstract classes, 40
add objects, 36
add protected class, 35
commented out errors, 42
error, 42
getter and setter, 38
inheritance, 34
localhost, 37
OyoRoom class, 34
private constructors, 42
new Report array, 38
Singleton object, 44
singleton pattern, 43
static variables, 39, 40

advancedDemo.ts, 51, 52
Advanced types

add advanced file, 51

add file to tsconfig.json, 52
discriminated unions, 55
function overloading, 59-61
index properties, 58
initial setup, 51
intersection, 52, 53
nullish coalescing, 61, 62
type casting, 56-58
type guards, 53-55
TypeScript, 51

App.tsx file, 142, 143, 149, 158, 159

C
Classes, 29

constructor, 31
creates new file, 32
index.html file, 33
OOP languages, 29
private and read-only

variables, 30
tsconfig.json file, 33

config() function, 93
configure() method, 107-109, 116
contentRender() method,

96, 107, 113

© Nabendu Biswas 2023
N. Biswas, TypeScript Basics, https://doi.org/10.1007/978-1-4842-9523-6

161

https://doi.org/10.1007/978-1-4842-9523-6%2523DOI

INDEX

D
Decorators

Angular, 74
Angular template, 74, 75
Car Class, 71
decoratorsDemo.ts file, 74
employee class, 76
factories, 73
function, 71
logs, 72
property, 75, 77, 78
setup, 69, 70
tsconfig.json file, 70

Discriminated unions, 51, 53-56
Drag-and-drop project

abstract class, 107-111
directory, 87, 88
DOM selection

add template, 89, 91
config() function, 93
console log, 94, 95
importNode(), 91
index.html file, 89
index.ts file, 92
output, 93
style.css file, 89

draggable items, 115-122
ES6 modules (see ES6 modules,

drag-and-drop project)
filtering logic

List class, 103-105
project class, 103
State Class, 104

HTML, 88
Item class, 113
List class, 114
rendering list

addProject function, 98
bug, 102
Input class, 101
List class, 99, 100
Singleton Class, 98

template update, 112
tsconfig.json file, 89
Webpack (see Webpack, drag-

and-drop project)
dragOverHandler function,

119, 120
dragStartHandler method, 116, 118
dropHandler function, 119, 120

E
Enum types, 14, 15
ES6 modules, drag-and-

drop project
base.ts file creation, 126
drag.ts file creation, 124
enhanced project, 133
index.ts file, 132
input.ts file creation, 131
item.ts file creation, 127
list.ts file creation, 129
state.ts file creation, 125
update tsconfig.json file, 133

Event, 85, 146
Event listener, 57, 82, 85, 93, 116

162

INDEX

F
Function overloading, 59-61

G, H
Generic function types, 65
Generics

array and promise
types, 64

classes, 68
generic function, 66

issue, 66
problem, 65
resolve, 66
solution, 67

genericsDemo.ts
file, 63, 64

generic utility, 69
initial setup, 63
type constraints, 66, 67

I, J, K
Index properties, 58
Inheritance, 34
Input class, 109
Interface

addition, 44, 45
console, 46
Greeting interface, 47
interfaceDemo.ts file, 44, 45
optional parameter, 48, 49
read-only error, 47

Intersection types, 52, 53, 62

L
List class, 99, 103, 105, 108, 114,

119, 129
ListenerState class, 110, 111

M
moveMammal functions, 53-55
moveProject function, 118, 120

N
Nullish coalescing, 51, 61, 62
numOrStr, 13

O
OOP languages, 29
Optionals type, 15

P, Q
Party app, ReactJS

add PeopleList.tsx file, 143
AddToPeople to App.tsx file, 149
AddToPeople.tsx file, 146,

147, 149
App.css file, 148
App.css file creation, 145
App.tsx file creation, 142
final app, 151
handleClick to AddToPeople.

tsx, 150
IProps interface, 144

163

INDEX

Party app, ReactJS (cont.)
localhost, 146
PeopleList.tsx file, 143, 144
TypeScript template, 141, 142

Property decorators, 75, 77, 78

R
React Redux project

App.tsx file, 159
bankReducer.ts file, reducers

folder, 155
create-react-app, 153
final app, 159
index.ts file, 158

actions folder, 154
creators folder, 156
reducers folder, 156, 158
state folder, 157
types folder, 154

install redux, 155
setup, 154-157
store.ts file, 157

removeData function, 68
rootDir and outDir, 26, 27

S
Singleton Class, 98
Singleton object, 44
split() method, 59
StoreData class, 68
String and Boolean types,

5, 7, 8, 19

T
To-do list project

add events, 85
add HTML, 81
add items, 85
addItemToList, 84
index.ts file creation, 82, 83
create snowpack project, 80
delete files, 81
newTask object, 83
start project, 80
install uuid and @types/uuid

packages, 82
tsconfig.json file, 26
Type Casting, 56-58
Type Guards, 53-55
TypeScript

arrays
complex arrays with

types, 11
types, 11

Boolean types, 7
Boolean issue, 6
console, 19, 53
enum types, 14, 15
functions, 12
function types, 13
inferences, 7, 8
interfaces, 16
JavaScript, 1
limitation, 1
literal types, 14
live server, 3

164

INDEX

number issue, 6
number types, 5, 6
objects

errors, 10
with no types, 9
with types, 9

optionals type, 15
party app, ReactJS (see Party

app, ReactJS)
project setup, 1-3
run code, 18
simple main.ts, 3
String types, 7
types, 16, 17
union types, 13, 14

TypeScript compiler
include adds the main.ts

file, 26
index.html file, 27
node_modules, 25
project, 22, 23
rootDir and outDir, 26, 27
tsc error, 24

tsc file again, without the error, 25
tsconfig.json file, 27
watch mode, 21

U, V
updateListeners function, 119

W, X, Y, Z
Watch mode, 21
Webpack, drag-and-drop project

bundle.js file, 139
create webpack.config.js

file, 136, 137
delete files, 138
index.html, 139
install, 135
delete js, 136
localhost, 140
network tab, 134, 135
tsconfig.json file, 136
update package.json file, 137, 138

165

	TypeScript Basics

	Apress

	TypeScript Basics

	CHAPTER 1

	Getting Started

	Project Setup

	Summary

	CHAPTER 2

	TypeScript Basics

	The Number Type

	The String and Boolean Types

	Inference

	Objects

	Arrays

	Functions

	Union Types

	Literal Types

	Enum Types

	Optionals Type

	Interfaces andTypes

	Running theCode

	Summary

	CHAPTER 3

	The TypeScript Compiler

	Watch Mode

	Compiling an Entire Project

	rootDir andoutDir

	Summary

	CHAPTER 4

	Classes and

	Interfaces

	The Basics about Classes

	Advanced Classes

	Interface Basics

	Summary

	CHAPTER 5

	Advanced Types

	Initial Setup

	Intersection Types

	Type Guards and Discriminated Unions

	Type Casting

	Index Properties

	Function Overloading

	Nullish Coalescing

	Summary

	CHAPTER 6

	Generics and Decorators

	Initial Setup

	Array and Promise Types

	Generic Functions

	Type Constraints

	Generic Classes

	Generic Utilities

	Decorators Setup

	Simple Decorators

	Decorator Factories

	Useful Decorators

	Property Decorators

	Summary

	CHAPTER 7

	Creating aTo-do List Project with TypeScript

	Initial Setup

	Creating the To-Do List

	Summary

	CHAPTER 8

	Creating aDrag-and- Drop Project with TypeScript

	Initial Setup

	DOM Selection

	Rendering aList

	Filtering Logic

	Abstract Class

	Rendering Items

	Draggable Items

	Summary

	CHAPTER 9

	Improving the Drag-and-Drop Project

	Changing to ES6 Modules

	Using Webpack

	Summary

	CHAPTER 10

	Creating a Party App in ReactJS with TypeScript

	Party App

	Listing People

	Adding People

	Summary

	CHAPTER 11

	Using React Redux with TypeScript

	Setting UptheProject

	Setting UpRedux

	The Output

	Summary

