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		Preface

		

		Since its release in 2012, TypeScript has experienced immense success, quickly establishing itself as a programming language within the JavaScript development community. With its strong typing and compile-time error checking, TypeScript offers a significant advantage to developers by promoting code quality and maintainability. Its inclusion in major projects, such as Angular 2.0, highlights the language’s value, flexibility, and the productivity enhancements achieved through its compiler and toolset.

		

		TypeScript’s compatibility with evolving ECMAScript standards allows developers to utilize language features before they become widely supported in browsers, ensuring applications stay ahead of the curve. Community has contributed an extensive collection of declaration files, which enable seamless integration with a wide array of JavaScript frameworks. These files enhance productivity, error detection, and IntelliSense features, providing a more robust development experience.

		

		Recognizing the growing number of TypeScript users, many JavaScript library developers now bundle TypeScript types in their releases to offer first-class support. This collaboration between library developers and community fosters a promotes and more efficient ecosystem. As TypeScript ultimately compiles down to JavaScript, it guarantees compatibility across all platforms that support JavaScript, making it a powerful and versatile choice for developers.

		

		In conclusion, TypeScript has emerged as a reliable tool for JavaScript developers, owing to its robust features, strong community support, and compatibility with existing JavaScript libraries and evolving standards. As a result ,has not only proven its worth but also become an essential part of modern web development.

		

		This book is designed for developers seeking to deepen their knowledge and expertise in TypeScript. It offers a comprehensive exploration of the advanced benefits and capabilities , providing in-depth guidance on how to control its full potential for complex projects. As such, it may not be suitable for beginners or junior developers seeking basic information . If you’re an experienced developer looking to take your TypeScript skills to the next level, then this book is the perfect resource for you.
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		I would like to thank my family, friends and colleagues for their support and encouragement during the writing of this book. I would also like to thank the TypeScript community for their valuable contributions and knowledge sharing that helped shape the content of this book . Finally, I would like to thank the readers who have embarked on this learning journey with me. Your dedication and curiosity is a constant inspiration.

		

	
		Intro

		

		Unlike many theory-heavy books, The Practical Advanced TypeScript balances clear explanations with hands-on practice. You’ll quickly be able to apply your new knowledge in the context of a realistic scenario, without having to wade through pages of history and monotonous, uninspiring content.

		

		This book dives deep into advanced concepts, techniques, and best practices, allowing developers to unlock TypeScript’s complete capabilities and develop stronger, more maintainable, and efficient codebases. With a strong focus on practical and real-world examples, and many hands-on exercises.

		

		No matter your choice of library or framework, the code examples and explanations in this book are not designed for a specific library or framework . Instead they provide an understanding that can be applied to any project where you’re using or considering TypeScript adoption. After finishing this book, you’ll be capable of taking on even the most difficult projects with confidence.

		

	
		1

		

		Type System Multiverse & Type-level Programming

		

		
			[image: Image]
		

		

		In this chapter, our goal is to explore and learn in depth TypeScript’s Type System and Type-level programming . We will begin with concepts such as union types, intersection types, generics, constraints, type aliases, mapped types, guards, type inference and many more. We’ll also learn how to effectively combine these and many other types in practical situations using various built-in TypeScript operators and utilities. For each concept, I will provide in-depth content and plenty of examples. This will give you a solid understanding of the type system and guide you through its most advanced features. A brief explanation of all the operators and utilities featured in the examples throughout this chapter can be found in the concluding section.

		

		Conditional Types

		

		

		type IsArray<T> = T extends any[] ? true : false;

		type ArrayOrNot<T> = IsArray<T> extends true ? T : T[];

		 

		const arr1: number[] = [1, 2, 3];

		const arr2: string[] = ["a", "b", "c"];

		const num: number = 42;

		 

		const arrOrNot1: ArrayOrNot<typeof arr1> = arr1; // Type is number[]

		const arrOrNot2: ArrayOrNot<typeof arr2> = arr2; // Type is string[]

		const arrOrNot3: ArrayOrNot<typeof num> = num; // Type is number

		

		

		To validate if a type is an array or not, we define two advanced type features in this example called IsArray and ArrayOrNot that use conditional types. IsArray evaluates a type’s extends clause and returns a boolean answer. With the aid of IsArray, ArrayOrNot can conditionally return either the original type or an array of the original type.

		

		Based on that, three variables with distinct types are defined: arr1, arr2, and num. Finally, we define three variables with ArrayOrNot-inferred types: arrOrNot1, arrOrNot2, and arrOrNot3. While arrOrNot3 is inferred to be a simple number, arrOrNot1 and arrOrNot2 are inferred to be arrays of their respective types.

		

		Advance example of using conditional types from a real-world scenario

		

		

		interface User {

		d: number;

		  name: string;

		  email: string;

		  address: string;

		}

		 

		interface Admin {

		  id: number;

		  name: string;

		  email: string;

		  role: string;

		}

		 

		interface SuperAdmin {

		  id: number;

		  name: string;

		  email: string;

		  role: string;

		  permissions: string[];

		}

		 

		type RoleType<T> = T extends { role: string } ? T : User;

		 

		type AdminOrSuperAdmin<T> = T extends { role: 'admin' } ? Admin : T extends { role: 'superadmin' } ? SuperAdmin : T;

		 

		function getUser<T extends { role?: string }>(data: T): AdminOrSuperAdmin<RoleType<T>> {

		  if (data.role) {

		    if (data.role === 'admin') {

		      return { id: 1, name: data.name, email: data.email, role: data.role } as AdminOrSuperAdmin<RoleType<T>>;

		    } else if (data.role === 'superadmin') {

		      return { id: 1, name: data.name, email: data.email, role: data.role, permissions: [] } as AdminOrSuperAdmin<RoleType<T>>;

		    }

		  }

		 

		  return { id: 1, name: data.name, email: data.email, address: data.address } as AdminOrSuperAdmin<RoleType<T>>;

		}

		 

		const user = getUser({ id: 1, name: 'John', email: 'john@example.com', address: '123 Main St' });

		const admin = getUser({ id: 2, name: 'Jane', email: 'jane@example.com', role: 'admin' });

		const superadmin = getUser({ id: 3, name: 'Bob', email: 'bob@example.com', role: 'superadmin' });

		 

		console.log(user); // Output: { id: 1, name: 'John', email: 'john@example.com' }

		console.log(admin); // Output: { id: 2, name: 'Jane', email: 'jane@example.com', role: 'admin' }

		console.log(superadmin); // Output: { id: 3, name: 'Bob', email: 'bob@example.com', role: 'superadmin', permissions: [] }

		

		

		This time we created three interfaces—User, Admin, and SuperAdmin—that describe various user types and their corresponding levels of access.

		

		The RoleType type evaluates a type T to see if it extends an object with a role property. If it does, the type is assumed to be the user type; otherwise, it is assumed to be the object with the role property.

		

		This type check whether a type T extends an object with an admin role property. If so, the type is inferred to be admin; otherwise, it determines whether the object has a superadmin role property. If this is the case, the type will be SuperAdmin; otherwise, it will be T. With this type, we can create functions that, depending on the input data, return a variety of types.

		

		GetUser is a function that accepts a generic type T that extends an object with a role property. Based on the implied AdminOrSuperAdmin> type, the function decide whether the role property is present and returns the appropriate user type.

		

		Mapped Types

		

		Mapped types are a powerful feature that allows you to create new types by transforming the properties of existing ones, often making it easier to keep your types DRY (Don’t Repeat Yourself) and maintainable.

		

		

		type Point = { x: number; y: number };

		type PointMap<T> = { [K in keyof T]: T[K] };

		 

		const point: Point = { x: 10, y: 20 };

		const : PointMap<Point> = { x: 10, y: 20 };

		 

		function getPoint<K extends keyof Point>(key: K): Point[K] {

		  return point[key];

		}

		 

		console.log(getPoint("x")); // Outputs: 10

		console.log(getPoint("y")); // Outputs: 20

		

		

		In this example, we define a type called Point with two properties, x and y, each with a type of number. We then define a type called PointMap that uses a mapped type to create a new type with the same properties as T, but with the same value types. We then define a variable point of type Point, and a variable pointMap of type PointMap<Point>. pointMap has the same properties as point, but with no additional properties. We then define a function getPoint that takes a parameter key of type K, which must be a key of the Point type.

		

		The function returns the value of the property specified by key on the point object. Finally, we log the results of calling getPoint with the keys “x” and “y”, which output 10 and 20 respectively. This is an example of mapped types in TypeScript that allow you to create new types based on existing ones with ease.

		

		Here’s an example of using a mapped type to transform an object type

		

		

		interface Person {

		  name: string;

		  age: number;

		}

		 

		type Optional<T> = {

		  [K in keyof T]?: T[K];

		}

		 

		type OptionalPerson = Optional<Person>;

		 

		const person: OptionalPerson = { name: 'John' };

		

		

		In this example, we define an interface Person with two properties, name and age. We then define a type Optional that takes a type T and creates a new type that has all of the properties of T, but each property is optional

		

		We define a new type OptionalPerson that is the result of applying the Optional transformation to the Person type. This creates a new type that has all of the properties of Person, but each property is optional

		

		We create a new variable person that is of type OptionalPerson. We can see that the age property is not required, as it is marked as optional in the OptionalPerson type.

		

		Tuple Type

		

		In my opinion one of the most powerful feature that allows you to create new types by transforming properties of existing types, enabling operations like making all properties optional, read-only, or applying other transformations in a concise and reusable manner.

		

		

		type Person = { name: string, age: number };

		type ReadOnlyPerson = {

		  readonly [K in keyof Person]: Person[K]

		};

		 

		const person: ReadOnlyPerson = { name: "John", age: 30 };

		person.name = "Jane"; // error: Cannot assign to 'name' because it is a read-only property.

		

		

		In this example, we’re using a mapped type to create a ReadOnlyPerson type that makes all properties of Person readonly. This allows us to enforce immutability for certain types in our code.

		

		Here’s a simple example

		

		

		const user: [number, string, boolean] = [1, 'Alice', true];

		

		

		In this code snippet, user is defined as a tuple with three elements: a number, a string, and a boolean.

		

		Another example of a tuple

		

		

		type RGBColor = [number, number, number];

		 

		const convertToRGB = (hex: string): RGBColor => {

		  // Conversion logic

		  // ...

		  return [255, 255, 255]; // Example output: white color as RGB

		};

		 

		const whiteColor: RGBColor = convertToRGB('#FFFFFF');

		

		

		In this code snippet, we define a RGBColor tuple type representing an RGB color with three elements, each being a number. The convertToRGB function takes a hex color string and returns its equivalent RGB color as a RGBColor tuple.

		

		Here’s an example of using a mapped type to transform a tuple type

		

		

		type TupleToUnion<T extends any[]> = T[number];

		 

		type Colors = ['red', 'green', 'blue'];

		type ColorUnion = TupleToUnion<Colors>;

		 

		const color: ColorUnion = 'red';

		

		

		In this example, we define a type called TupleToUnion that takes a tuple of type T and produces a new type that is the union of all the tuple’s elements. To do this, we use the number index signature to get the total of each tuple element. We introduce the new type Colors, a tuple type with three string elements. After applying the TupleToUnion transformation to the Colors type, we define a new ColorUnion type.

		

		As a result, a brand-new type that represents the collection of the Colors tuple’s components is produced. We make a new color variable of type ColorUnion. We can see that it is the total of all the string components in the Colors tuple. In this example, we will swap the types of an object and a tuple using TypeScript’s mapped types.

		

		Advance example of using mapped types in TypeScript

		

		

		interface User {

		  name: string;

		  age: number;

		  address: {

		    street: string;

		    city: string;

		    state: string;

		    zip: string;

		  };

		}

		 

		type Optional<T> = { [K in keyof T]?: T[K] };

		 

		type Nullable<T> = { [K in keyof T]: T[K] | null };

		 

		type Readonly<T> = { readonly [K in keyof T]: T[K] };

		 

		type PartialWithKeysMatching<T, K extends keyof T, V> = Omit<T, K> & Partial<Pick<T, KeysMatching<T, V>>>;

		 

		type KeysMatching<T, V> = { [K in keyof T]: T[K] extends V ? K : never }[keyof T];

		 

		type UserOptional = Optional<User>;

		type UserNullable = Nullable<User>;

		type UserReadonly = Readonly<User>;

		type UserPartialAddress = PartialWithKeysMatching<User, 'address', { zip: string }>;

		 

		const user: User = {

		  name: 'John',

		  age: 30,

		  address: {

		    street: '123 Main St',

		    city: 'Anytown',

		    state: 'CA',

		    zip: '12345'

		  }

		};

		 

		const userOptional: UserOptional = {

		  name: 'John',

		  age: 30,

		  address: {

		    street: '123 Main St',

		    city: 'Anytown',

		    state: 'CA',

		    zip: '12345'

		  }

		};

		 

		const userNullable: UserNullable = {

		  name: 'John',

		  age: null,

		  address: {

		    street: '123 Main St',

		    city: 'Anytown',

		    state: 'CA',

		    zip: '12345'

		  }

		};

		 

		const userReadonly: UserReadonly = {

		  name: 'John',

		  age: 30,

		  address: {

		    street: '123 Main St',

		    city: 'Anytown',

		    state: 'CA',

		    zip: '12345'

		  }

		};

		 

		const userPartialAddress: UserPartialAddress = {

		  name: 'John',

		  age: 30,

		  address: {

		    zip: '67890'

		  }

		};

		

		

		In this example, we start with an already-existing user interface called User that gives information about a user object, such as its name, age, and location.

		

		All of the properties of the type T are converted into optional new types by means of a new type we name Optional. In order to convert all of a type T’s properties into nullables, we create a type named Nullable.

		

		We create a type named Readonly that generates a new type with all of the properties of the input type T set to read-only.

		

		We create a type called PartialWithKeysMatching that accepts a type T, a set of keys K that should match a value of type V, and returns a new type that is a partial of T for the keys that match V.

		

		Additionally, we define a type called KeysMatching, which takes two types, T and V, and creates a new type that only contains the keys of T whose values match the values of type V. After that, we build new types based on the user interface using these mapped types.

		

		We develop the UserOptional type, which renders all User properties optional, the UserNullable type, which renders all User properties nullable, the UserReadonly type, which renders all User properties read-only, and the UserPartialAddress type, which is a partial of.

		

		Generics

		

		Generics are a feature that enables you to write type-safe, reusable code that can work with a variety of types, providing extra flexibility and maintainability .

		

		

		interface Box<T> {

		  contents: T;

		}

		 

		const stringBox: Box<string> = { contents: "hello" };

		const numberBox: Box<number> = { contents: 42 };

		 

		function getContents<T>(box: Box<T>): T {

		  return box.contents;

		}

		 

		const stringContents = getContents(stringBox); // Type is string

		const numberContents = getContents(numberBox); // Type is number

		

		

		In this example, we define an interface called Box with a generic type parameter T. This interface has one property called contents of type T. We now define two variables, stringBox and numberBox, of type Box<string> and Box<number> respectively. These variables have contents properties of type string and number.

		

		We then define a function called getContents that takes a parameter box of type Box<T>, and returns the contents property of the box. We call this function twice, once with stringBox and once with numberBox, and assign the results to the variables stringContents and numberContents. The TypeScript compiler specifies that these variables are strings and numbers, based on the types of boxes passed to getContents. This is an example of generics in TypeScript, which allow you to write reusable code that works with multiple types.

		

		Advanced example of using generics

		

		

		interface User {

		  id: number;

		  name: string;

		  email: string;

		  address: string;

		}

		 

		interface Admin {

		  id: number;

		  name: string;

		  email: string;

		  role: string;

		}

		 

		interface SuperAdmin {

		  id: number;

		  name: string;

		  email: string;

		  role: string;

		  permissions: string[];

		}

		 

		type RoleType<T> = T extends { role: string } ? T : User;

		 

		type AdminOrSuperAdmin<T> = T extends { role: 'admin' } ? Admin : T extends { role: 'superadmin' } ? SuperAdmin : T;

		 

		function getUser<T extends { role?: string }>(data: T): AdminOrSuperAdmin<RoleType<T>> {

		  if (data.role) {

		    if (data.role === 'admin') {

		      return { id: 1, name: data.name, email: data.email, role: data.role } as AdminOrSuperAdmin<RoleType<T>>;

		    } else if (data.role === 'superadmin') {

		      return { id: 1, name: data.name, email: data.email, role: data.role, permissions: [] } as AdminOrSuperAdmin<RoleType<T>>;

		    }

		  }

		 

		  return { id: 1, name: data.name, email: data.email, address: data.address } as AdminOrSuperAdmin<RoleType<T>>;

		}

		 

		type IdGetter<T> = (item: T) => number;

		 

		function getId<T>(item: T, getter: IdGetter<T>): number {

		  return getter(item);

		}

		 

		const user: User = { id: 1, name: 'John', email: 'john@example.com', address: '123 Main St' };

		const admin: Admin = { id: 2, name: 'Jane', email: 'jane@example.com', role: 'admin' };

		const superadmin: SuperAdmin = { id: 3, name: 'Bob', email: 'bob@example.com', role: 'superadmin', permissions: [] };

		 

		const userIdGetter: IdGetter<User> = (item) => item.id;

		const adminIdGetter: IdGetter<Admin> = (item) => item.id;

		const superadminIdGetter: IdGetter<SuperAdmin> = (item) => item.id;

		 

		const userId = getId(user, userIdGetter);

		const adminId = getId(admin, adminIdGetter);

		const superadminId = getId(superadmin, superadminIdGetter);

		 

		console.log(userId); // Output: 1

		console.log(adminId); // Output: 2

		console.log(superadminId); // Output: 3

		

		

		In this example, we start with three interfaces, User, Admin, and SuperAdmin, that describe different types of users with different levels of permissions.

		

		We define a type RoleType that takes a type T and checks if it extends an object with a role property. If it does, the type is inferred as the object with the role property, otherwise it’s inferred as User. This type allows us to define a function that returns the correct type based on the input data.

		

		We define a type AdminOrSuperAdmin that takes a type T and checks if it extends an object with a role property of admin. If it does, the type is inferred as Admin, otherwise it checks if the object has a role property of superadmin. If it does, the type is inferred as SuperAdmin, otherwise it’s inferred as T. This type allows us to define a function that returns different types based on the input data

		

		Type Inference

		

		Type inference is the automatic process by which the compiler determines the types of variables, expressions, and function return values based on the surrounding code, saving developers time and effort while still maintaining type safety.

		

		

		const sum = (a: number, b: number) => a + b;

		 

		const result = sum(1, 2);

		

		

		In this code snippet, TypeScript automatically infers the type of result as number because the sum function takes two number parameters and returns their sum, which is also a number.

		

		Advance example

		

		

		type Tuple<T extends any[]> = T extends [...infer R, infer L] ? [R, L] : never;

		 

		const tuple1 = [1, 2, 3, "hello", true];

		const tuple2 = ["foo", 42, true];

		 

		const tuple1Result: Tuple<typeof tuple1> = [[1, 2, 3, "hello"], true];

		const tuple2Result: Tuple<typeof tuple2> = [["foo"], 42, true];

		

		

		Here, we define type Tuple, which accepts arrays of any type and generates a tuple that includes all but the last element of the array. This shows how conditional types, infer keyword, and sophisticated type inference can be used together. The elements are then defined by two arrays, tuple1 and tuple2, each with a different type. Now, after declaring the two variable types with Tuple, we declare tuple1Result and tuple2Result. The TypeScript compiler determines based on the types of tuples passed to Tuple that these variables are, respectively, [[number, number, number, string], boolean] and [[string], number, boolean]. This shows how TypeScript’s advanced type inference makes it easier to create complex types.

		

		Based on the type of tuples passed to Tuple, the TypeScript compiler determines that these variables are respectively [[number, number, string], boolean] and [[string], number, boolean].

		

		Discriminated Unions

		

		Is more like a type pattern that allows you to represent a common structure among several types with a discriminant property, making it easier to work with and type-check disjointed data structures.

		

		

		interface Square {

		  kind: "square";

		  size: number;

		}

		 

		interface Rectangle {

		  kind: "rectangle";

		  width: number;

		  height: number;

		}

		 

		interface Circle {

		  kind: "circle";

		  radius: number;

		}

		 

		type Shape = Square | Rectangle | Circle;

		 

		function area(shape: Shape): number {

		  switch (shape.kind) {

		    case "square":

		      return shape.size ** 2;

		    case "rectangle":

		      return shape.width * shape.height;

		    case "circle":

		      return Math.PI * shape.radius ** 2;

		  }

		}

		 

		const square: Square = { kind: "square", size: 10 };

		const rectangle: Rectangle = { kind: "rectangle", width: 5, height: 10 };

		const circle: Circle = { kind: "circle", radius: 5 };

		 

		console.log(area(square)); // Outputs: 100

		console.log(area(rectangle)); // Outputs: 50

		console.log(area(circle)); // Outputs: 78.53981633974483

		

		

		In this example, we create three interfaces with different properties: Square, Rectangle, and Circle. As a union of these interfaces, we then create a type called Shape that has a kind property with a string literal type that distinguishes between them.

		

		Then, we develop the area function, which accepts a shape parameter of type Shape and returns the area of the corresponding shape.

		

		Before performing the necessary calculations to determine the area, we first use a switch statement to determine the type of the shape based on the kind property of the shape.

		

		And last but not least, we create three variables, a square, a rectangle, and a circle, each of which is of type sq\., Rectangle, or Circle, and use each one to invoke the area function.

		

		The TypeScript compiler determines the classes of these variables based on their shapes and generates the appropriate output for each one.

		

		Type Guards

		

		Think about it more like conditional expressions or functions used to narrow down the type of a variable within a specific block of code, ensuring type safety and proper behavior

		

		

		type Primitive = string | number | boolean;

		 

		function isPrimitive(value: unknown): value is Primitive {

		  return typeof value === "string" || typeof value === "number" || typeof value === "boolean";

		}

		 

		function formatValue(value: unknown): string {

		  if (isPrimitive(value)) {

		    return value.toString();

		  } else {

		    return "Object";

		  }

		}

		 

		console.log(formatValue("hello")); // Outputs: "hello"

		console.log(formatValue(123)); // Outputs: "123"

		console.log(formatValue(true)); // Outputs: "true"

		console.log(formatValue({})); // Outputs: "Object"

		

		

		In this case, we union three primitive types to create a type named Primitive.

		

		Then, we create a function called isPrimitive that accepts a value of type unknown as an argument and returns a boolean value indicating whether or not the value is a primitive.

		

		If a type check returns true, we use it to limit the type of the value to Primitive.

		

		We then define a function called formatValue that takes a parameter value of type unknown, and uses the isPrimitive function to determine whether value is a primitive or not. If value is a primitive, we call its toString method and return the result. Otherwise, we return the string “Object”. Finally, we call the formatValue function with a variety of different values, and the TypeScript compiler infers the correct types for each one.

		

		Another more advanced example from a real-world situation involving an HTTP request and response handling:

		

		

		interface ApiResponseSuccess {

		  status: "success";

		  data: any;

		}

		 

		interface ApiResponseError {

		  status: "error";

		  errorMessage: string;

		}

		 

		type ApiResponse = ApiResponseSuccess | ApiResponseError;

		 

		function isApiResponseSuccess(response: ApiResponse): response is ApiResponseSuccess {

		  return response.status === "success";

		}

		 

		async function fetchData(): Promise<ApiResponse> {

		  // Fetch data from an API endpoint and return the JSON response

		  // ...

		}

		 

		async function handleApiResponse() {

		  const response = await fetchData();

		 

		  if (isApiResponseSuccess(response)) {

		    console.log("Data:", response.data);

		  } else {

		    console.error("Error message:", response.errorMessage);

		  }

		}

		 

		handleApiResponse();

		

		

		ApiResponseSuccess and ApiResponseError, representing the two possible response . We then create a type guard function isApiResponseSuccess to narrow down the type within the handleApiResponse function, allowing us to safely access properties specific to each type without type errors.

		

		Recursive Types

		

		Types that reference themselves either directly or indirectly through other types, allowing for complex, nested structures like trees or linked lists and other combination

		

		

		interface TreeNode<T> {

		  value: T;

		  children?: TreeNode<T>[];

		}

		 

		const tree: TreeNode<number> = {

		  value: 1,

		  children: [

		    {

		      value: 2,

		      children: [

		        { value: 3 },

		        { value: 4 },

		      ],

		    },

		    {

		      value: 5,

		      children: [

		        { value: 6 },

		        { value: 7 },

		      ],

		    },

		  ],

		};

		

		

		First we create the TreeNode interface, which accepts the type parameter T, which denotes the type of the node’s value. Value, a property with type T, and children, an optional collection of TreeNodeT> instances, are the two properties of the interface.

		

		As a result, we are able to describe trees with any number of levels. Then, we define a variable named tree, which is a three-level tree of numbers, of type TreeNodenumber>. The parent node has a value of 1, and each of its two child nodes has two offspring. Recursive types in TypeScript enable you to define types that reference themselves in their own definition. This is an example of one of these types.

		

		Type-level programming

		

		Type-level programming in TypeScript is a technique that involves working with and manipulating types at the type level, using advanced type constructs like mapped types, conditional types, and type inference to create more expressive, flexible, and safe type systems that adapt based on the input types during compile-time. It allows for powerful type transformations, validation, and checking, which can help to catch potential errors and improve code maintainability.

		

		Type-Level Programming with Conditional Types

		

		

		type Diff<T, U> = T extends U ? never : T;

		 

		type Employee = { name: string; age: number };

		type EmployeeKeys = keyof Employee;

		type ExcludeAge = Diff<EmployeeKeys, "age">;

		 

		const employee: Employee = { name: "John", age: 30 };

		const { age, ...rest } = employee;

		const employeeWithoutAge: Pick<Employee, ExcludeAge> = rest;

		console.log(employeeWithoutAge); // Outputs: { name: "John" }

		

		

		In this example, we define a type called Diff that takes two type parameters T and U. The Diff type returns the types that are present in T but not in U. We then define an interface called Employee with two properties, name and age. We use the keyof operator to create a type called EmployeeKeys, which is a union of the keys of the Employee interface. We then define a type called ExcludeAge using Diff, which excludes the age key from EmployeeKeys.

		

		We then define a variable employee of type Employee, and use object destructuring to remove the age property from employee and assign it to a variable called age, and the rest of the properties to a variable called rest. Finally, we define a variable called employeeWithoutAge that has the same type as Employee, but with the age property excluded using ExcludeAge. This allows us to create a new object without the age property. The TypeScript compiler infers the correct types for all of these variables based on their usage.

		

		Higher-Order Functions

		

		

		type UnaryFn<T, R> = (arg: T) => R;

		 

		function compose<T, U, R>(f: UnaryFn<T, U>, g: UnaryFn<U, R>): UnaryFn<T, R> {

		  return (arg: T): R => g(f(arg));

		}

		 

		function add1(num: number): number {

		  return num + 1;

		}

		 

		function double(num: number): number {

		  return num * 2;

		}

		 

		const add1ThenDouble = compose(add1, double);

		console.log(add1ThenDouble(3)); // Outputs: 8

		

		

		In this example, we create a type called UnaryFn to represent a function with one type T argument and one type R value as its return value. Then, we define a higher-order function called compose that accepts two functions, f and g, which are both of the type UnaryFn, and returns a new function that joins them. The new function accepts a type T argument, runs f on it, then runs g on the output of f.

		

		Then, we define two functions, add1 and double, each of which accepts a number and applies a straightforward arithmetic procedure to it. Finally, we specify a new function called add1ThenDouble that makes use of compose to build a new function that doubles the result after adding 1 to its argument. The TypeScript compiler determines the proper type and output when we execute this function with the number 3 as an argument.

		

		Intersection Types

		

		A way to combine multiple types into a single type, resulting in a new type that includes all the properties and methods of the combined types, effectively enabling a form of multiple inheritance or mixin-like behavior for types.

		

		

		interface Person {

		  name: string;

		  age: number;

		}

		 

		interface Employee {

		  company: string;

		  position: string;

		}

		 

		type EmployeeWithPerson = Employee & Person;

		 

		const employee: EmployeeWithPerson = {

		  name: "John",

		  age: 30,

		  company: "Acme Corp",

		  position: "Manager",

		};

		 

		console.log(employee); // Outputs: { name: "John", age: 30, company: "Acme Corp", position: "Manager" }

		

		

		In this example, we define two interfaces, Person and Employee, with different properties. We then define a new type called EmployeeWithPerson using an intersection type, which combines the properties of both Person and Employee. We then define a variable employee of type EmployeeWithPerson, which has properties from both Person and Employee.

		

		This allows us to create a new type that combines the properties of existing types. The TypeScript compiler infers the correct types for all of these variables based on their usage.

		

		Example 2

		

		

		type Person = { name: string, age: number };

		type Employee = { company: string, salary: number };

		type Manager = Person & Employee;

		 

		const manager: Manager = { name: "John", age: 30, company: "Acme Inc", salary: 50000 };

		

		

		In this example, we’re using intersection types to create a new type (Manager) that combines the properties of Person and Employee. This allows us to create more specific types that have the properties of multiple types.

		

		Type Aliases

		

		A way to create new name for an existing type, providing better code readability, reusability, and ease of refactoring without changing the underlying type

		

		

		type User = {

		  name: string;

		  age: number;

		  isAdmin: boolean;

		};

		 

		type UserPartial = Partial<User>;

		 

		const user: User = { name: "John", age: 30, isAdmin: true };

		const partialUser: UserPartial = { name: "John" };

		 

		console.log(partialUser); // Outputs: { name: "John" }

		

		

		In this example, we define a type called User with three properties. We then define a new type called UserPartial using a type alias that applies the Partial utility type to User. This creates a new type that has all the properties of User, but they are all optional. We then define a variable user of type User, and a variable partialUser of type UserPartial. We initialize user with all three properties, but we only set the name property of partialUser.

		

		This is an example of using type aliases in TypeScript, which allow you to create new types based on existing ones with additional properties or modifications.

		

		Type Inference with Function Overloads

		

		

		function sum(a: number, b: number): number;

		function sum(a: string, b: string): string;

		function sum(a: any, b: any): any {

		  return a + b;

		}

		 

		const result1 = sum(1, 2); // Type is number

		const result2 = sum("hello", "world"); // Type is string

		

		

		In this example, we define a function called sum with three overloads. The first overload takes two numbers and returns a number. The second overload takes two strings and returns a string. The third overload is the implementation of the function, which takes two parameters of any type and returns their sum. We then define two variables, result1 and result2, and call the sum function with different argument types.

		

		The TypeScript compiler infers the correct types for result1 and result2 based on the overload that matches the arguments passed to the function. This is an example of using function overloads and type inference together in TypeScript.

		

		Another example below with concatenation of different types of input: strings, numbers, and arrays. We’ll use function overloads to define multiple signatures for the concat function and type inference to make the code more readable and maintainable.

		

		

		// Define the overloads for the concat function

		function concat(a: string, b: string): string;

		function concat(a: number, b: number): number;

		function concat<T>(a: T[], b: T[]): T[];

		 

		// Implement the concat function

		function concat<T>(a: T | T[], b: T | T[]): T | T[] {

		  if (typeof a === 'string' && typeof b === 'string') {

		    return a.concat(b);

		  } else if (typeof a === 'number' && typeof b === 'number') {

		    return (a * 10 + b) as T;

		  } else if (Array.isArray(a) && Array.isArray(b)) {

		    return a.concat(b);

		  }

		  throw new Error('Invalid argument types');

		}

		 

		// Usage examples

		const stringResult = concat('Hello, ', 'World!'); // Type inferred as string

		const numberResult = concat(12, 34); // Type inferred as number

		const arrayResult = concat([1, 2, 3], [4, 5, 6]); // Type inferred as number[]

		 

		console.log(stringResult); // Output: "Hello

		

		

		Union types

		

		Represent a value that can be one of several distinct types, providing a way to handle multiple different types under a single type alias, enabling greater flexibility and type safety when dealing with variables or parameters that can have multiple types.

		

		

		type Color = "red" | "green" | "blue";

		type Size = "small" | "medium" | "large";

		type Shirt = Color | Size;

		 

		function createShirt(color: Color, size: Size): Shirt {

		  // ...

		}

		

		

		In this example, we’re using union types to create a more specific definition of the Color and Size types, which allows us to enforce constraints on the createShirt function parameters.

		

		Union types in TypeScript allow us to combine multiple types into a single type that can accept values of any of the constituent types. Here’s an overview of how to transform, filter, and generate other types from union types in TypeScript

		

		Transforming union types

		

		You can transform a union type into a new type by using a mapped type. For example, if you have a union type A | B | C, you can create a new type Optional<A | B | C> that makes each of the properties in the union type optional:

		

		

		type Optional<T> = { [K in keyof T]?: T[K] };

		type MyUnion = { foo: string } | { bar: number } | { baz: boolean };

		type OptionalMyUnion = Optional<MyUnion>;

		

		

		Filtering union types

		

		You can filter a union type to create a new type that only includes certain properties. For example, if you have a union type A | B | C, you can create a new type that only includes the properties that are common to all three types:

		

		

		type Common<T, K extends keyof T> = {

		  [P in K]: T extends Record<P, T[P]> ? T[P] : never

		};

		 

		type MyUnion = { foo: string; bar: number } | { foo: string; baz: boolean };

		type CommonProperties = Common<MyUnion, 'foo'>;

		

		

		Generating other types from union types

		

		You can use a union type to generate other types, such as a discriminated union or an intersection type. For example, if you have a union type A | B | C, you can create a discriminated union by adding a shared property to each of the constituent types

		

		

		type A = { kind: 'a'; foo: string };

		type B = { kind: 'b'; bar: number };

		type C = { kind: 'c'; baz: boolean };

		 

		type MyUnion = A | B | C;

		

		

		You can also create an intersection type by combining the properties of the constituent types

		

		

		type A = { foo: string };

		type B = { bar: number };

		type C = { baz: boolean };

		 

		type MyUnion = A | B | C;

		type MyIntersection = A & B & C;

		

		

		In summary, union types in TypeScript provide a powerful way to combine and manipulate multiple types. By using techniques like mapped types, filtering, and generating other types, you can create complex type systems that accurately represent the data in your application.

		

		Another example of union types

		

		

		type Shape = Square | Rectangle | Circle;

		 

		interface Square {

		  kind: 'square';

		  size: number;

		}

		 

		interface Rectangle {

		  kind: 'rectangle';

		  width: number;

		  height: number;

		}

		 

		interface Circle {

		  kind: 'circle';

		  radius: number;

		}

		 

		function area(shape: Shape): number {

		  switch (shape.kind) {

		    case 'square':

		      return shape.size * shape.size;

		    case 'rectangle':

		      return shape.width * shape.height;

		    case 'circle':

		      return Math.PI * shape.radius ** 2;

		  }

		}

		 

		const square: Square = { kind: 'square', size: 5 };

		const rectangle: Rectangle = { kind: 'rectangle', width: 10, height: 5 };

		const circle: Circle = { kind: 'circle', radius: 3 };

		 

		const squareArea = area(square); // squareArea is inferred to be of type number

		const rectangleArea = area(rectangle); // rectangleArea is inferred to be of type number

		const circleArea = area(circle); // circleArea is inferred to be of type number

		

		

		In this example, we define a Shape union type that can be one of three shapes: Square, Rectangle, or Circle. We also define interfaces for each shape type that specify the properties of that shape.

		

		We then define a function called area that takes a Shape argument and returns the area of the shape. We use a switch statement to handle each shape type separately and calculate the area accordingly.

		

		Finally, we create instances of each shape type and pass them to the area function to calculate their respective areas. The result variables are all inferred to be of type number because the area function returns a number.

		

		This example demonstrates the power of union types in TypeScript. By defining a union type for a set of related types, we can write code that can handle any of those types in a consistent way. This can help us write more flexible and reusable code that can adapt to different types of data.

		

		Conditional types

		

		

		type Check<T> = T extends string ? true : false;

		 

		type IsString = Check<string>; // true

		type IsNumber = Check<number>; // false

		

		

		In this example, we’re using a conditional type to check if a type extends string. If it does, we return true, otherwise we return false. This allows us to create types that depend on runtime data.

		

		Advance Conditional types

		

		

		type IsArray<T> = T extends any[] ? true : false;

		 

		type MyArray<T> = T[] & { customProp: string };

		 

		type FilterArray<T> = T extends MyArray<infer U> ? U[] : never;

		 

		type NonNullable<T> = T extends null | undefined ? never : T;

		 

		type ReturnType<T> = T extends (...args: any[]) => infer R ? R : any;

		 

		interface User {

		  name: string;

		  age: number;

		}

		 

		type UserKeys = keyof User; // "name" | "age"

		 

		type Partial<T> = { [P in keyof T]?: T[P] };

		 

		type Readonly<T> = { readonly [P in keyof T]: T[P] };

		 

		type Pick<T, K extends keyof T> = { [P in K]: T[P] };

		 

		type Omit<T, K extends keyof T> = Pick<T, Exclude<keyof T, K>>;

		

		

		This example demonstrates various ways in which conditional types can be used in TypeScript.

		

		The IsArray type takes a type T and checks if it extends any[]. If it does, the type is inferred as true, otherwise it’s inferred as false.

		

		The MyArray type is a generic type that extends an array of type T and adds a custom property customProp of type string.

		

		The FilterArray type takes a type T and checks if it extends MyArray. If it does, the type is inferred as an array of type U[], otherwise it’s inferred as never.

		

		The NonNullable type takes a type T and checks if it extends null or undefined. If it does, the type is inferred as never, otherwise it’s inferred as T.

		

		The ReturnType type takes a function type T and infers its return type as R.

		

		The Partial type takes a type T and returns a new type with all properties of T set to optional.

		

		The Readonly type takes a type T and returns a new type with all properties of T set to readonly.

		

		The Pick type takes a type T and a subset of keys K and returns a new type with only the properties specified by K.

		

		The Omit type accepts a type T and a subset of keys K and returns a new type with all of T’s properties other than those mentioned in K.

		

		These illustrations show how conditional types in TypeScript can be used to make types that are more adaptable and reusable.

		

		We can design types that can adapt to various use cases and offer type safety at compile time by looking at the types of input and output values.

		

		Template literal types

		

		Template literal types in TypeScript allow us to create types that are based on string literals. Here’s an overview of how to interpolate, parse, and generate unions of string literals using template literal types

		

		Interpolating string literals

		

		You can interpolate string literals to create new string literal types that are based on the values of other types. For example, you can use a template literal type to create a new string literal type that concatenates two other string literals:

		

		

		type Concat<S1 extends string, S2 extends string> = `${S1}${S2}`;

		 

		type HelloWorld = Concat<'Hello', 'World'>;

		

		

		In this example, the Concat type takes two string literal types S1 and S2, and creates a new string literal type that concatenates them using the ${} syntax. The HelloWorld type is a string literal type that is the result of applying the Concat type to the literals ‘Hello’ and ‘World’.

		

		Parsing string literals

		

		You can parse string literals to create new types that are based on their contents. For example, you can use a template literal type to create a new type that extracts the numbers from a string literal:

		

		

		type ExtractNumbers<S extends string> = S extends `${infer Start}${infer Rest}` ? Start extends number ? [Start, ...ExtractNumbers<Rest>] : ExtractNumbers<Rest> : [];

		 

		type MyString = '1 2 3 foo 4 5 bar';

		type MyNumbers = ExtractNumbers<MyString>;

		

		

		In this example, the ExtractNumbers type recursively pulls the numbers from a string literal of type S. The type divides the string into two parts using the $ syntax and determines whether the first component is a number. If so, the remainder of the string is processed iteratively after adding the number to the result type. If not, it tosses out the first segment and moves on to the remainder of the string in a recursive fashion.

		

		Generating unions of string literal

		

		You can generate unions of string literals to create new types that are based on a set of values. For example, you can use a template literal type to create a new type that represents a set of HTTP methods:

		

		

		type HttpMethod = 'GET' | 'POST' | 'PUT' | 'DELETE';

		

		

		In the current example, the GET, POST, PUT, and DELETE HTTP methods are represented by a union of text literal types called HttpMethod.

		

		A powerful method to build types based on string literals is to use TypeScript’s template literal types. You can construct intricate type systems that faithfully reflect the data in your application by utilizing strategies like interpolation, parsing, and the generation of unions of string literals.

		

		

		type Event = "click" | "hover";

		type EventPayload<T extends Event> = {

		  type: T;

		  payload: string;

		};

		 

		type ClickPayload = EventPayload<"click">; // { type: "click", payload: string }

		type HoverPayload = EventPayload<"hover">; // { type: "hover", payload: string }

		

		

		Generating types based on runtime data

		

		

		type User = { id: number, name: string, email: string };

		 

		function createUserType<T extends User>(user: T) {

		  return {

		    [user.name]: user,

		  } as { [key in T["name"]]: T };

		}

		 

		const user = { id: 1, name: "John", email: "john@example.com" };

		type UserMap = ReturnType<typeof createUserType>; // { John: User }

		

		

		In this example, we’re using a function to generate a new type (UserMap) based on runtime data (user). The UserMap type is an object with a property for each user’s name, and each property is a User type.

		

		Advance example of generating types based on runtime data

		

		

		const data = {

		  name: 'John',

		  age: 30,

		  address: {

		    street: '123 Main St',

		    city: 'Anytown',

		    state: 'CA',

		    zip: '12345'

		  }

		};

		 

		type KeysMatching<T, V> = { [K in keyof T]: T[K] extends V ? K : never }[keyof T];

		type AddressKeys = KeysMatching<typeof data, { street: string; city: string; state: string; zip: string }>;

		 

		type Address = {

		  [K in AddressKeys]: typeof data.address[K];

		};

		 

		const address: Address = {

		  street: '456 Elm St',

		  city: 'Anytown',

		  state: 'CA',

		  zip: '67890'

		};

		

		

		In this example, we have a runtime data object that contains personal information including an address. We want to create a type based on this data that describes the address portion of the data object.

		

		We start by defining a type KeysMatching that takes a type T and a value type V and returns a new type that includes only the keys of T whose values match the type V. This type uses a mapped type to iterate over each key of T and check if its value extends V. If it does, the key is included in the new type; otherwise, it’s excluded.

		

		We then use the KeysMatching type to create a new type AddressKeys that includes only the keys of data that match the address object’s properties. We pass typeof data as the first argument to KeysMatching to get the type of the data object at runtime.

		

		Finally, we use the AddressKeys type to create a new type Address that includes only the properties of the address object. We use another mapped type to iterate over each key in AddressKeys and get its corresponding value type from data.address.

		

		In the end, we can create an instance of Address that is guaranteed to have the same properties and types as the address portion of data. This provides type safety and code clarity when working with the address data.

		

		Modifying existing types

		

		

		type Person = { name: string, age: number };

		 

		type RequiredPerson = {

		  [K in keyof Person]-?: Person[K]

		};

		 

		const person: RequiredPerson = { name: "John", age: 30 }; // typechecks

		 

		const partialPerson: Partial<RequiredPerson> = { name: "John" }; // error: missing required properties

		

		

		In this example, we’re using mapped types to modify an existing type (Person) by making all its properties required. We then use this modified type (RequiredPerson) to enforce that all required properties are present when creating a person object. We also use the Partial utility type to create a type that allows us to create a partialPerson object with missing properties.

		

		Advance example of modifying existing types

		

		

		interface User {

		  name: string;

		  age: number;

		  address: {

		    street: string;

		    city: string;

		    state: string;

		    zip: string;

		  };

		}

		 

		type PartialWithKeysMatching<T, K extends keyof T, V> = Omit<T, K> & Partial<Pick<T, KeysMatching<T, V>>>;

		 

		type KeysMatching<T, V> = { [K in keyof T]: T[K] extends V ? K : never }[keyof T];

		 

		type Nullable<T> = { [K in keyof T]: T[K] | null };

		 

		type Optional<T, K extends keyof T> = Omit<T, K> & Partial<Pick<T, K>>;

		 

		const user: User = {

		  name: 'John',

		  age: 30,

		  address: {

		    street: '123 Main St',

		    city: 'Anytown',

		    state: 'CA',

		    zip: '12345'

		  }

		};

		 

		const partialUser = { name: 'John' };

		const partialUserWithAddress = { address: { street: '456 Elm St' } };

		const nullableUser: Nullable<User> = {

		  name: 'John',

		  age: null,

		  address: {

		    street: '123 Main St',

		    city: 'Anytown',

		    state: 'CA',

		    zip: '12345'

		  }

		};

		const optionalUser: Optional<User, 'age'> = {

		  name: 'John',

		  address: {

		    street: '456 Elm St',

		    city: 'Anytown',

		    state: 'CA',

		    zip: '67890'

		  }

		};

		const partialUserWithZip: PartialWithKeysMatching<User, 'address', { zip: string }> = {

		  name: 'John',

		  address: { zip: '54321' }

		};

		

		

		In this example, we start with an existing interface User that describes a user object with a name, age, and address.

		

		We define a type PartialWithKeysMatching that takes a type T, a set of keys K that should match a value of type V, and returns a new type that is a partial of T for the keys that match V.

		

		This type uses KeysMatching to get the keys of T that match V, and then uses Omit and Partial to create a new type that includes only those keys.

		

		We also define a type Nullable that takes a type T and returns a new type where all properties of T are nullable.

		

		We define a type Optional that takes a type T and a subset of keys K and returns a new type that has those keys as optional.

		

		Finally, we demonstrate the usage of these modified types. We create an instance of User and then create new instances using the modified types. We create a partialUser with just the name property, a partialUserWithAddress with just the address property, a nullableUser where the age property is nullable, an optionalUser where the age property is optional, and a partialUserWithZip that is a partial of User where the address property includes only the zip property.

		

		These modified types provide additional flexibility and safety when working with existing types in TypeScript.

		

		Conditional types with inferred types

		

		Conditional types with inferred types in TypeScript combine the power of conditional types and type inference to create new types based on conditions, allowing for more flexible and expressive type transformations that depend on the input types during compile-time.

		

		

		type InferType<T> = T extends () => infer R ? R : never;

		 

		function getUser() {

		  return { name: "John", age: 30 };

		}

		 

		type UserType = InferType<typeof getUser>; // { name: string, age: number }

		

		

		In this example, we’re using a conditional type with an inferred type parameter to extract the return type of a function. This allows us to create a type (UserType) that is inferred from the return value of the getUser function.

		

		Advance example of conditional types with inferred types

		

		

		interface User {

		  name: string;

		  age: number;

		  address: {

		    street: string;

		    city: string;

		    state: string;

		    zip: string;

		  };

		}

		 

		interface Admin {

		  name: string;

		  age: number;

		  role: string;

		}

		 

		type UserType<T> = T extends { role: string } ? Admin : User;

		 

		function getUser<T extends { role?: string }>(data: T): UserType<T> {

		  if (data.role) {

		    return { name: data.name, age: data.age, address: { street: '', city: '', state: '', zip: '' }, role: data.role } as UserType<T>;

		  } else {

		    return { name: data.name, age: data.age, address: { street: '', city: '', state: '', zip: '' } } as UserType<T>;

		  }

		}

		 

		const user = getUser({ name: 'John', age: 30, address: { street: '123 Main St', city: 'Anytown', state: 'CA', zip: '12345' } });

		const admin = getUser({ name: 'Jane', age: 35, role: 'admin' });

		 

		console.log(user); // Output: { name: 'John', age: 30, address: { street: '123 Main St', city: 'Anytown', state: 'CA', zip: '12345' } }

		console.log(admin); // Output: { name: 'Jane', age: 35, role: 'admin' }

		

		

		In this example, we start with two interfaces, User and Admin, that describe different types of users.

		

		We define a type UserType that takes a type T and checks if it extends an object with a role property. If it does, the type is inferred as Admin, otherwise it’s inferred as User. This type allows us to define a function that returns the correct type based on the input data.

		

		We define a function called getUser that takes a generic type T that extends an object with an optional role property. The function checks if the role property exists and returns the correct user type based on the inferred UserType<T> type.

		

		We then call the getUser function with two different inputs, one with just the name, age, and address properties, and one with the name, age, and role properties.

		We log the resulting user and admin variables to the console, which will output the values of the returned user types.

		

		This example demonstrates how we can use conditional types with inferred types to define a function that returns different types based on the input data.

		

		Type inference using generics

		

		

		function map<T, U>(array: T[], mapper: (item: T) => U): U[] {

		  return array.map(mapper);

		}

		 

		const numbers = [1, 2, 3, 4, 5];

		const doubled = map(numbers, (n) => n * 2); // [2, 4, 6, 8, 10]

		

		

		In this example, we’re using generic types to infer the types of the input and output parameters of a function (map). This allows us to create more flexible and reusable functions that can work with different types of data.

		

		Conditional types with type inference

		

		

		type IsNumber<T> = T extends number ? true : false;

		 

		function isNumber<T>(value: T): IsNumber<T> {

		  return typeof value === "number" ? true : false;

		}

		 

		const num = 10;

		const isNum = isNumber(num); // true

		

		

		In this example, we’ll create a function (isNumber) that decides whether a value is a number by using a conditional type with type inference. The IsNumber type can be inferred from the type of the input parameter, which allows us to build more reusable and type-safe functions.

		

		Key remapping using mapped types:

		

		

		type User = { name: string, age: number, email: string };

		type UserWithoutEmail = { [K in Exclude<keyof User, "email">]: User[K] };

		 

		const user: UserWithoutEmail = { name: "John", age: 30 }; // email property is excluded

		

		

		In this example, we’re using a mapped type with the Exclude utility type to create a new type (UserWithoutEmail) that has all the properties of User except for the email property. This allows us to create more specific types that exclude certain properties for a specific use case.

		

		Assignability and conditional types

		

		

		interface User {

		  name: string;

		  email: string;

		}

		 

		interface Admin {

		  name: string;

		  email: string;

		  adminSince: Date;

		}

		 

		type UserOrAdmin<T extends boolean> = T extends true ? Admin : User;

		 

		function getUserOrAdmin<T extends boolean>(isAdmin: T): UserOrAdmin<T> {

		  if (isAdmin) {

		    return {

		      name: "John",

		      email: "john@example.com",

		      adminSince: new Date(),

		    } as UserOrAdmin<T>;

		  } else {

		    return {

		      name: "Jane",

		      email: "jane@example.com",

		    } as UserOrAdmin<T>;

		  }

		}

		 

		const user: User = getUserOrAdmin(false);

		const admin: Admin = getUserOrAdmin(true);

		

		

		In this example, we define two interfaces, User and Admin, with similar properties but with an additional property adminSince in Admin. We then define a conditional type called UserOrAdmin that takes a type parameter T which extends boolean. If T is true, the type returns Admin, otherwise it returns User.

		

		We then define a function called getUserOrAdmin that takes a boolean parameter isAdmin and returns a UserOrAdmin based on its value. Inside the function, we use a conditional statement to create either a User or an Admin object based on the value of isAdmin. We cast the result to UserOrAdmin<T> to ensure that the returned object is assignable to either User or Admin depending on the value of isAdmin. Finally, we define two variables, user and admin, and call getUserOrAdmin with different boolean values. The TypeScript compiler infers the correct types for user and admin based on their assignment and usage. This is an example of using conditional types and assignability in TypeScript to create a more flexible and reusable function.

		

		Assignability and conditional types

		

		

		interface Shape {

		  color: string;

		  draw(): void;

		}

		 

		interface Square extends Shape {

		  width: number;

		  height: number;

		}

		 

		interface Circle extends Shape {

		  radius: number;

		}

		 

		type ShapeType = "square" | "circle";

		 

		function getShape(type: ShapeType): Shape {

		  if (type === "square") {

		    return {

		      color: "red",

		      width: 10,

		      height: 10,

		      draw() {

		        console.log("Drawing square");

		      },

		    } as Square;

		  } else {

		    return {

		      color: "blue",

		      radius: 5,

		      draw() {

		        console.log("Drawing circle");

		      },

		    } as Circle;

		  }

		}

		 

		const square: Square = getShape("square");

		const circle: Circle = getShape("circle");

		

		

		In this example, we define two interfaces, Shape, Square and Circle, with different properties. Square and Circle extend Shape. We then define a type called ShapeType that is a union of “square” and “circle”.

		

		We define a function called getShape that takes a parameter type of type ShapeType and returns a Shape object based on the value of type. Inside the function, we use a conditional statement to create either a Square or a Circle object based on the value of type.

		

		We cast the result to Square or Circle to ensure that the returned object is assignable to the appropriate interface. Finally, we define two variables, square and circle, and call getShape with different string values. The TypeScript compiler infers the correct types for square and circle based on their assignment and usage. This is an example of using conditional types and assignability in TypeScript to create a more flexible and reusable function.

		

		Tuple types and how we can take advantage of them

		

		

		type Product = [string, number];

		 

		const products: Product[] = [

		  ["Apples", 2],

		  ["Bananas", 1],

		  ["Oranges", 3],

		];

		 

		function calculateTotal(products: Product[]): number {

		  let total = 0;

		  for (const [name, price] of products) {

		    total += price;

		  }

		  return total;

		}

		 

		const total = calculateTotal(products);

		console.log(`Total price: $${total}`); // Outputs: "Total price: $6"

		

		

		In this example, we define a type called Product which is a tuple type containing a string and a number. We then define an array of Product called products, with three elements, each containing a name and a price. We define a function called calculateTotal that takes an array of Product and returns the sum of the prices. Inside the function, we loop through the products using destructuring to extract the name and price of each product. We then add up the prices and return the total. Finally, we call the calculateTotal function with the products array, and log the result to the console.

		

		This is only one way how to tuple types in TypeScript to define a type that represents a product with a fixed set of properties, and how we can take advantage of this to write more concise and expressive code. Main benefit By using a tuple type instead of an object with named properties, we can reduce the amount of code we need to write, while still being able to extract and manipulate the individual properties of each product.

		

		Another more complex example of tuple types

		

		

		type Order = [string, string, number, string];

		 

		const orders: Order[] = [

		  ["John", "Apples", 2, "2023-04-01"],

		  ["Jane", "Oranges", 1, "2023-03-25"],

		  ["Bob", "Bananas", 3, "2023-03-28"],

		];

		 

		function filterOrdersByDate(orders: Order[], date: Date): Order[] {

		  return orders.filter(([_, _, _, orderDate]) => {

		    const [year, month, day] = orderDate.split("-");

		    const orderDateObj = new Date(parseInt(year), parseInt(month) - 1, parseInt(day));

		    return orderDateObj >= date;

		  });

		}

		 

		const today = new Date();

		const recentOrders = filterOrdersByDate(orders, today);

		console.log(recentOrders); // Outputs: [["John", "Apples", 2, "2023-04-01"], ["Bob", "Bananas", 3, "2023-03-28"]]

		

		

		We’ve created a type called “Order” in this example, which is essentially a tuple type with four elements.

		

		These four elements are a string representing the customer’s name, a second string representing the product’s name, a number representing the quantity, and finally a string expressing the order’s date in the format “yyyy-mm-dd.”. “.“.

		

		Following the creation of the “Order” type, we created the “orders” array of orders, which consists of three elements.

		

		Each element of this array consists of a name, a product, a quantity, and a date.

		

		In addition, we developed the function “filterOrdersByDate,” which takes an array of “Order” objects and a “Date” object as parameters.

		

		After filtering the array, the function returns only instances of “Order” with dates greater than or equal to the “Date” object supplied.

		We used the “filter” method in conjunction with destructuring to extract the order date in order to complete the aforementioned filtering process. In addition, we separated the date string into three separate “Date” objects: year, month, and day. In the end, we compared the order date to the supplied “Date” object and returned a “true” value if the order date was greater than or equal to the “Date” object. The “orders” array and today’s date were then passed to the “filterOrdersByDate” function, which output the filtered array to the console.

		

		We were able to define a complicated object type with fixed properties thanks to TypeScript’s tuple types concept, which made it possible to create maintainable and effective code. By using tuple types, we can reduce the amount of code needed while still being able to extract and work with the properties of each order separately.

		

		Advanced union types

		

		

		type Shape = { kind: "circle"; radius: number } | { kind: "square"; sideLength: number };

		 

		function area(shape: Shape): number {

		  switch (shape.kind) {

		    case "circle":

		      return Math.PI * shape.radius ** 2;

		    case "square":

		      return shape.sideLength ** 2;

		  }

		}

		 

		const circle: Shape = { kind: "circle", radius: 5 };

		const square: Shape = { kind: "square", sideLength: 10 };

		 

		console.log(area(circle)); // Outputs: 78.53981633974483

		console.log(area(square)); // Outputs: 100

		

		

		In this case, a type called Shape is created by joining two object types, one of which represents a circle and the other a square. With the help of the kind property, which identifies the shape type, each type of object has a distinct set of attributes. Then, we develop the area function, which takes a Shape object and returns its area. We employ a switch statement inside the function to determine the type of the shape and compute the area based on its characteristics. We call the area function for each of the two Shape-type variables that we define, a circle and a square.

		

		The TypeScript compiler ensures that each shape’s appropriate properties are present as well as inferring the circle and square’s correct types based on their usage. This is a demonstration of how to define a type that can represent a number of related object types using TypeScript’s advanced union types. By doing so, we can make our code more generic and reusable.

		

		Union types

		

		

		type Result<T> = { success: true; value: T } | { success: false; error: string };

		 

		function getResult<T>(value: T | undefined): Result<T> {

		  if (value === undefined) {

		    return { success: false, error: "Value is undefined" };

		  } else {

		    return { success: true, value };

		  }

		}

		 

		const result1 = getResult(10);

		const result2 = getResult(undefined);

		 

		if (result1.success) {

		  console.log(`Result: ${result1.value}`); // Outputs: Result: 10

		} else {

		  console.error(result1.error);

		}

		 

		if (result2.success) {

		  console.log(`Result: ${result2.value}`);

		} else {

		  console.error(result2.error); // Outputs: "Value is undefined"

		}

		

		

		In this example, we define a type called Result, which is a union type of two object types, one representing a successful result with a value and the other representing a failed result with an error message.

		

		A generic type parameter T is also defined, designating the type of the value.

		

		The function getResult is the next one we create; it takes parameters of type T or undefined and returns a Result.

		

		We use an if statement within the function to check for undefined values and return a failed result with an error message if they are present.

		

		A successful result with the specified value is returned in all other cases.

		

		We call the getResult function with the arguments value and undefined after defining the variables result1 and result2. If the results are successful, we then log the value or an error to the console using if statements to determine whether they were. Result1 and Result2’s correct types are inferred by the TypeScript compiler based on how they are used, and it also makes sure that each type of result has the proper properties. This is an illustration of how advanced union types in TypeScript can be used to define a type that can represent multiple related object types with various properties and how we can use this to write more adaptable and reliable code.

		

		Recursive conditional type

		

		Think about it combination of conditional types and recursive types, allowing you to define types that perform type transformations based on conditions while referring to themselves, enabling complex type manipulations like deep property transformations or flattening nested structures.

		

		

		type Flatten<T> = T extends Array<infer U> ? Flatten<U> : T;

		 

		type NestedArray<T> = Array<T | NestedArray<T>>;

		 

		const nestedArray: NestedArray<number> = [1, [2, [3, [4]], 5]];

		 

		const flattenedArray: Array<number> = (nestedArray.flat(Infinity) as Flatten<NestedArray<number>>);

		 

		console.log(flattenedArray); // Outputs: [1, 2, 3, 4, 5]

		

		

		The recursive conditional type Flatten, which accepts a type T, is defined in this example. The Flatten type returns the outcome of recursively applying Flatten to U if T is an array type with an unknown element type. If not, it gives back T.

		

		Additionally, we define a type called NestedArray that symbolizes an array that is capable of containing nested arrays of the same type. A number of nested arrays of numbers are created and assigned to a variable called nestedArray of type NestedArray. The flattened version of nestedArray is then created as a new variable with the name flattenedArray. The array is flattened using the flat method, and the flattened array is guaranteed to have the right type by casting the result to Flatten>. The flattenedArray is then logged to the console as our final step.

		

		Recursive conditional types can be a powerful tool for extracting specific types of elements from complex data structures that may contain nested objects or arrays.

		

		In the example provided, a recursive conditional type is used to flatten a nested array of numbers. However, this same technique can be applied to extract other types of data from nested data structures.

		

		By using recursive conditional types, you can write less boilerplate code and make your code more generic and adaptable. This can improve the maintainability and scalability of your code, as well as reduce the risk of errors and bugs.

		

		Recursive

		

		conditional type second example

		

		

		type DeepPartial<T> = {

		  [P in keyof T]?: T[P] extends Array<infer U>

		    ? Array<DeepPartial<U>>

		    : T[P] extends object

		    ? DeepPartial<T[P]>

		    : T[P];

		};

		 

		interface User {

		  name: string;

		  age: number;

		  address: {

		    street: string;

		    city: string;

		    country: string;

		  };

		  hobbies: string[];

		}

		 

		const user: User = {

		  name: "John",

		  age: 30,

		  address: {

		    street: "123 Main St",

		    city: "Anytown",

		    country: "USA",

		  },

		  hobbies: ["reading", "running"],

		};

		 

		const partialUser: DeepPartial<User> = {

		  name: "Jane",

		  address: {

		    street: "456 Oak Ave",

		  },

		  hobbies: ["swimming"],

		};

		 

		const updatedUser: User = { ...user, ...partialUser };

		 

		console.log(updatedUser);

		

		

		In this example, we define a recursive conditional type called DeepPartial that takes a type T. The DeepPartial type maps over each key P in T, and recursively applies DeepPartial to the property type if it is an object or array. If the property type is not an object or array, it returns the original type. We define an interface called User with several properties, including an object property address and an array property hobbies.

		

		We create a variable called user of type User with some sample data. We also create a variable called partialUser of type DeepPartial with some partial data. We then use the spread operator to create a new object called updatedUser, which is a combination of user and partialUser. The TypeScript compiler infers the correct types for user, partialUser, and updatedUser based on their usage.

		

		Working with complex data structures that might contain nested objects or arrays makes use of recursive conditional types particularly advantageous.

		

		In this example, we demonstrate how to create a type that enables us to create partial objects with deeply nested properties using a recursive conditional type.

		

		Then, without having to manually merge each nested property, we can use the resulting type to securely merge the incomplete object with the original object.

		

		This can improve the clarity and expressiveness of our code as well as lower the possibility of mistakes when dealing with intricate data structures.

		

		Example of a generic type that takes a union type a and a second type parameter b, and excludes types in a which aren’t assignable to b:

		

		

		type AssignableTo<T, U> = T extends U ? T : never;

		 

		type FilterAssignable<T, U> = Exclude<T, Exclude<T, AssignableTo<T, U>>>;

		 

		type MyUnionType = string | number | boolean | RegExp;

		 

		type MyAssignableType = string | RegExp;

		 

		type FilteredType = FilterAssignable<MyUnionType, MyAssignableType>;

		 

		const value1: FilteredType = "foo";

		const value2: FilteredType = /foo/;

		const value3: FilteredType = 42; // Error: Type '42' is not assignable to type 'string | RegExp'.

		const value4: FilteredType = true; // Error: Type 'true' is not assignable to type 'string | RegExp'.

		

		

		In this example, we define a generic type called FilterAssignable that takes a union type T and a type parameter U, and returns a new union type that excludes types in T which aren’t assignable to U.

		

		We define two helper types called AssignableTo and ExcludeAssignable that are used to determine whether a type in T is assignable to U or not. We then define a union type called MyUnionType with four types: string, number, boolean, and RegExp. We define a type called MyAssignableType with two types: string and RegExp. We use FilterAssignable to create a new type called FilteredType that includes only types in MyUnionType that are assignable to MyAssignableType. Finally, we define several variables of type FilteredType to demonstrate how the type works.

		

		This type can be helpful when you want to filter out types that cannot be assigned to a particular type from a union type that has several possible types.

		

		If you wanted to represent only the properties of an object that are strings or regular expressions and leave out the properties of other types, you could use this type to represent only those properties.

		

		Type-safe API endpoints using a type-level DSL

		

		

		type HttpMethod = "GET" | "POST" | "PUT" | "DELETE";

		 

		type Route<T extends HttpMethod, U extends string> = {

		  method: T;

		  path: U;

		  query?: Record<string, string>;

		  body?: Record<string, any>;

		  response: any;

		};

		 

		type Endpoint<T extends HttpMethod, U extends string> = {

		  request: Route<T, U>;

		  handler: (req: Route<T, U>["request"]) => Promise<Route<T, U>["response"]>;

		};

		 

		const getPosts: Endpoint<"GET", "/posts"> = {

		  request: { method: "GET", path: "/posts", response: { data: [] } },

		  handler: async (req) => {

		    // Code to fetch posts

		    return { data: [] };

		  },

		};

		 

		const createPost: Endpoint<"POST", "/posts"> = {

		  request: {

		    method: "POST",

		    path: "/posts",

		    body: { title: "", content: "" },

		    response: { data: {} },

		  },

		  handler: async (req) => {

		    // Code to create post

		    return { data: {} };

		  },

		};

		

		

		Here, we give an example of how to create a type-level domain-specific language (DSL) that will result in type-safe API endpoints. We can build endpoints with predefined methods and paths, optional query parameters, request bodies, and response types by using the specific types we define for HTTP methods, routes, and endpoints. After that, handlers are developed for every endpoint that accept the proper type of request object and return the proper type of response object. This method allows us to produce a type-safe API with less boilerplate code and catch errors at compilation time rather than runtime.

		

		Type-safe React component props

		

		

		import { FC } from "react";

		 

		type Props = {

		  label: string;

		  value: number;

		  onChange: (newValue: number) => void;

		  className?: string;

		};

		 

		const MyComponent: FC<Props> = ({ label, value, onChange, className }) => {

		  // Component implementation

		};

		 

		const props: Props = {

		  label: "My Label",

		  value: 10,

		  onChange: (newValue) => {

		    console.log(newValue);

		  },

		};

		 

		<MyComponent {...props} />;

		

		

		The type-safe React component in this example accepts props with a specific set of properties, including a label, value, onChange function, and optional className. Using the FC type from the react package, we create a function component that accepts props of the appropriate type, and we use destructuring to extract the properties from the props object. We define a props object with the appropriate type so that we can build an instance of the component. This enables us to identify props usage and type errors at compile time rather than run time.

		

		Type-safe validation rules for forms

		

		

		type Rule<T> = {

		  validate: (value: T) => string | undefined;

		};

		 

		type FormValues = {

		  name: string;

		  email: string;

		  password: string;

		};

		 

		const nameRule: Rule<string> = {

		  validate: (value) => {

		    if (!value) {

		      return "Name is required";

		    }

		  },

		};

		 

		const emailRule: Rule<string> = {

		  validate: (value) => {

		    if (!value) {

		      return "Email is required";

		    } else if (!value.includes("@")) {

		      return "Email is invalid";

		    }

		  },

		};

		 

		const passwordRule: Rule<string> = {

		  validate: (value) => {

		    if (!value) {

		      return "Password is required";

		    } else if (value.length < 8) {

		      return "Password must be at least 8 characters long";

		    }

		  },

		};

		 

		type FormRules<T> = {

		  [P in keyof T]?: Rule<T[P]>;

		};

		 

		const rules: FormRules<FormValues> = {

		  name: nameRule,

		  email: emailRule,

		  password: passwordRule,

		};

		 

		function validateForm<T>(values: T, rules: FormRules<T>): Record<keyof T, string | undefined> {

		  const errors: Record<keyof T, string | undefined> = {} as any;

		 

		  for (const key in values) {

		    const value = values[key];

		    const rule = rules[key];

		 

		    if (rule) {

		      const error = rule.validate(value);

		      if (error) {

		        errors[key] = error;

		      }

		    }

		  }

		 

		  return errors;

		}

		 

		const values = {

		  name: "John",

		  email: "john@example.com",

		  password: "password",

		};

		 

		const errors = validateForm(values, rules);

		 

		console.log(errors); // Outputs: {}

		

		

		Validating a form is a use case 1.

		

		Verifying user input in a web application is a frequent application for type-safe validation rules for forms. When a user submits a form, the application can use the validateForm function to check the input values against a list of predefined rules. This can assist in avoiding frequent user errors like incomplete forms, incorrect email addresses, and short passwords. The application can give users better feedback and lower the risk of user annoyance by identifying these errors at compile-time.

		

		Data modeling is a use case 2.

		

		The validation of input data when creating or updating records in a database is another application for type-safe validation rules for forms. The application can guarantee that the data is accurate and reliable even if it is changed by numerous users or applications by defining a set of validation rules for each field in a record. This can lessen the likelihood of application errors and inconsistencies while also preventing data corruption and enhancing data quality.

		

		Code branching with Conditional Types

		

		Code branching with conditional types in TypeScript allows you to write code that conditionally executes based on the type of a value, using TypeScript’s type system to ensure type safety. A more advanced example could be using conditional types to build a type-safe version of the Object.keys function that only accepts objects with string keys.

		

		Simple example of code branching with conditional types

		

		

		type IsString<T> = T extends string ? true : false;

		 

		function exampleFunc<T>(arg: T): void {

		  if (typeof arg === "string") {

		    // arg is guaranteed to be a string in this branch

		    const uppercased: string = arg.toUpperCase();

		    console.log(uppercased);

		  } else if (arg !== null && typeof arg === "object" && "name" in arg) {

		    // arg is guaranteed to be an object with a "name" property in this branch

		    const name: string = arg.name;

		    console.log(name);

		  } else if (arg !== null && typeof arg === "object" && "length" in arg && IsString<arg[0]> extends true) {

		    // arg is guaranteed to be an object with a "length" property and the first element is a string in this branch

		    const firstElement: string = arg[0];

		    console.log(firstElement);

		  } else {

		    // fallback case for any other type of argument

		    console.log("Invalid argument type");

		  }

		}

		

		

		This example showcases the utilization of a conditional type called IsString<T>, which determines if a given type T extends string and returns either true or false. Following this, the function exampleFunc is defined, which performs various operations based on the type of its generic argument T. Using TypeScript’s type guards, the type of the argument is narrowed down in each branch, allowing for more type-safe code that catches errors at compile time rather than runtime.

		

		Here’s advance an example implementation

		

		Let’s say you’re working on a JavaScript library that provides a type-safe way to build SQL queries using TypeScript. You want to write a function that takes a query object and returns a string containing the corresponding SQL query. However, the shape of the query object can vary based on the tables and columns being queried, so you need to use conditional types to handle all possible cases.

		

		

		type TableNames = 'users' | 'orders' | 'products';

		type ColumnNames<T extends TableNames> = T extends 'users' ? 'id' | 'name' | 'email' :

		  T extends 'orders' ? 'id' | 'userId' | 'productId' | 'quantity' :

		  T extends 'products' ? 'id' | 'name' | 'price' | 'stock' :

		  never;

		type SelectClause<T extends TableNames> = {

		  table: T;

		  columns: ColumnNames<T>[];

		};

		 

		function buildQuery<T extends TableNames>(selectClause: SelectClause<T>): string {

		  const tableName = selectClause.table;

		  const columnNames = selectClause.columns.join(', ');

		  return `SELECT ${columnNames} FROM ${tableName}`;

		}

		 

		// example usage

		const usersQuery: SelectClause<'users'> = {

		  table: 'users',

		  columns: ['id', 'name', 'email']

		};

		const usersSql = buildQuery(usersQuery); // returns "SELECT id, name, email FROM users"

		 

		const productsQuery: SelectClause<'products'> = {

		  table: 'products',

		  columns: ['id', 'name', 'price', 'stock']

		};

		const productsSql = buildQuery(productsQuery); // returns "SELECT id, name, price, stock FROM products"

		

		

		In this example, we create a set of conditional types that describe the possible tables and columns that can be queried, based on the table name. Second step we define a SelectClause type that describes the structure of a query object, and use the conditional types to ensure that the columns property is an array of valid column names for the given table.

		

		In the end we define the buildQuery function, which takes a SelectClause object and returns a string containing the corresponding SQL query. With TypeScript’s type system to make sure that the table and columns properties are valid for the given table name, and returns a string that is guaranteed to be a valid SQL query.

		

		Loops with Recursive Types

		

		Allow you to define a type that refers to itself, allowing you to build complex data structures. An example of this is a linked list, where each element contains a value and a reference to the next element.

		

		Here’s an example implementation of a linked

		

		

		type LinkedList<T> = { value: T, next?: LinkedList<T> };

		 

		const list: LinkedList<number> = {

		  value: 1,

		  next: {

		    value: 2,

		    next: {

		      value: 3,

		      next: {

		        value: 4

		      }

		    }

		  }

		};

		 

		function printList<T>(list: LinkedList<T>): void {

		  console.log(list.value);

		  if (list.next) {

		    printList(list.next);

		  }

		}

		 

		printList(list); // prints "1 2 3 4"

		

		

		This is an example that shows how to use recursive typing in TypeScript to create a linked list with values of type T and references to other LinkedList objects. The printList function recursively prints each value in the list by calling itself with the next element in the list until no more elements remain. This is an example of using recursive types to create complex data structures in TypeScript and integrating with the ability to perform operations on those structures.

		

		More advanced example of loops with recursive types

		

		Let’s say you’re building a music streaming app and you want to represent a playlist as a tree-like data structure, where each node in the tree represents a song or a sub-playlist. You want to be able to traverse the playlist and perform operations on each song, while also being able to navigate to sub-playlists.

		

		

		type Playlist<T> = T extends infer U ? { value: U, children?: Playlist<U>[] } : never;

		 

		const playlist: Playlist<string> = {

		  value: 'My Playlist',

		  children: [

		    {

		      value: 'Classical Music',

		      children: [

		        { value: 'Mozart - Symphony No. 40' },

		        { value: 'Beethoven - Moonlight Sonata' }

		      ]

		    },

		    {

		      value: 'Rock Music',

		      children: [

		        { value: 'The Beatles - Let It Be' },

		        { value: 'Led Zeppelin - Stairway to Heaven' },

		        {

		          value: 'Alternative Rock',

		          children: [

		            { value: 'Nirvana - Smells Like Teen Spirit' },

		            { value: 'Pearl Jam - Jeremy' }

		          ]

		        }

		      ]

		    }

		  ]

		};

		 

		function traversePlaylist<T>(playlist: Playlist<T>, callback: (value: T) => void): void {

		  callback(playlist.value);

		  if (playlist.children) {

		    playlist.children.forEach(child => traversePlaylist(child, callback));

		  }

		}

		 

		traversePlaylist(playlist, console.log); // prints "My Playlist", "Classical Music", "Mozart - Symphony No. 40", "Beethoven - Moonlight Sonata", "Rock Music", "The Beatles - Let It Be", "Led Zeppelin - Stairway to Heaven", "Alternative Rock", "Nirvana - Smells Like Teen Spirit", "Pearl Jam - Jeremy"

		

		

		In this example, we define a recursive type Playlist<T>, which contains a value of type T and an optional array of sub-playlists, where each sub-playlist is also a Playlist<T> object. This allows us to build a tree-like data structure where each node represents a song or a sub-playlist.

		

		We then define a traversePlaylist function that takes a Playlist<T> object and a callback function, and recursively traverses the playlist, calling the callback function on each song. If a sub-playlist is encountered, the function calls itself on that sub-playlist, effectively traversing the entire tree.

		

		This example demonstrates how recursive types can be used to build complex data structures in TypeScript, and how they can be used with functions to perform operations on those structures. The use of a callback function allows us to perform any operation we want on each song in the playlist, such as adding it to a queue for playback.

		

		Loops with Mapped Types

		

		Mapped types in TypeScript allow you to create new types by transforming properties of an existing type. This is useful for scenarios where you need to create a new type that is based on an existing type, but with some modifications.

		

		

		type Person = {

		  name: string;

		  age: number;

		  email: string;

		};

		 

		type Optional<T> = {

		  [P in keyof T]?: T[P];

		};

		 

		type OptionalPerson = Optional<Person>;

		 

		const person: OptionalPerson = {

		  name: 'Alice',

		  age: 30

		};

		

		

		In this example, we create a Person type that contains three properties: name, age, and email.

		

		Later we define a Optional mapped type that takes an input type T and transforms each property of T into an optional property using the ? operator. With this we can create a new type OptionalPerson that is based on the Person type, but with all properties made optional.

		

		At the end we create a person object of type OptionalPerson, which has only the name and age properties defined. Because OptionalPerson is based on Person with all properties made optional.

		

		Let’s say you’re building a React component library and you want to create a higher-order component (HOC) that adds a loading prop to any component that needs to display a loading state.

		

		You want the HOC to work with any component that has a data prop, and you want the type of the loading prop to match the type of the data prop.

		

		

		type LoadingState = {

		  isLoading: boolean;

		};

		 

		type WithLoadingProps<T> = T extends { data: infer U } ? { loading: boolean } & U : {};

		 

		function withLoading<T>(Component: React.ComponentType<T>): React.FC<T & WithLoadingProps<T>> {

		  return (props: T & WithLoadingProps<T>) => {

		    const { data, ...rest } = props;

		    const isLoading = !data;

		    return <Component loading={isLoading} {...rest as T} />;

		  };

		}

		 

		// example usage

		type User = {

		  name: string;

		  age: number;

		};

		 

		type UserListProps = {

		  data: User[];

		};

		 

		const UserList: React.FC<UserListProps> = ({ data }) => {

		  return (

		    <ul>

		      {data.map(user => (

		        <li key={user.name}>{user.name}, {user.age}</li>

		      ))}

		    </ul>

		  );

		};

		 

		const UserListWithLoading = withLoading(UserList);

		 

		const users: User[] = [

		  { name: 'Alice', age: 30 },

		  { name: 'Bob', age: 40 }

		];

		 

		const App: React.FC = () => {

		  return <UserListWithLoading data={users} />;

		};

		

		

		In this example, we define a LoadingState interface that contains a single isLoading property of type boolean.

		

		We then define a WithLoadingProps<T> mapped type that takes an input type T and uses a conditional type to add a loading property of type boolean to the input type if it has a data property. This allows us to create a new type T & WithLoadingProps<T> that adds a loading prop to any component that has a data prop.

		

		Finally, we define a withLoading HOC that takes a component of type React.ComponentType<T> and returns a new component of type React.FC<T & WithLoadingProps<T>> that includes a loading prop. The HOC checks if the data prop is defined, sets the loading prop to true if it is not defined, and passes the loading prop and all other props to the original component.

		

		This example demonstrates how mapped types in TypeScript can be used to create higher-order components that add new props to existing components. The use of conditional types allows us to ensure that the type of the loading prop matches the type of the data prop, providing type safety for any component that uses the HOC.

		

		TypeScript Numeric Separators improve the readability of large numbers by allowing you to use underscores as separators within numeric literals. Here’s a code example:

		

		

		const million = 1_000_000;

		const billion = 1_000_000_000;

		const largeHex = 0xAB_CDEF_1234;

		const binaryRepresentation = 0b1101_0110_1001_1010;

		const scientificNotation = 1.23e-5_000;

		

		

		The example demonstrates using underscores in numeric literals, making large numbers more readable by visually grouping digits in various numeric formats.

		

		How to Use the JavaScript “in” operator for automatic type inference in TypeScript

		

		

		type Shape = { kind: 'circle', radius: number } | { kind: 'rectangle', width: number, height: number };

		 

		function getArea(shape: Shape): number {

		  if ('radius' in shape) {

		    return Math.PI * shape.radius ** 2;

		  } else {

		    return shape.width * shape.height;

		  }

		}

		

		

		The in operator is used for type inference, narrowing the shape type based on its properties, allowing access to the correct shape-specific properties.

		

		Automatically infer TypeScript types in switch statements

		

		

		type Animal = { type: 'dog', barkVolume: number } | { type: 'cat', sleepHours: number };

		 

		function describeAnimal(animal: Animal): string {

		  switch (animal.type) {

		    case 'dog':

		      return `Dog barks at ${animal.barkVolume} dB`;

		    case 'cat':

		      return `Cat sleeps ${animal.sleepHours} hours`;

		  }

		}

		 

		const dog = { type: 'dog', barkVolume: 90 };

		console.log(describeAnimal(dog));

		

		

		In this example, TypeScript infers types within the switch statement based on the animal.type property, allowing access to the correct animal-specific properties.

		

		Build self-referencing type aliases in TypeScript

		

		

		type TreeNode<T> = {

		  value: T;

		  left?: TreeNode<T>;

		  right?: TreeNode<T>;

		};

		 

		const tree: TreeNode<number> = {

		  value: 10,

		  left: { value: 5 },

		  right: {

		    value: 20,

		    left: { value: 15 },

		  },

		};

		

		

		The TreeNode<T> type is a self-referencing type alias that represents a binary tree node with optional left and right child nodes, allowing for recursive tree structures.

		

		Simplify iteration of custom data structures with iterators

		

		

		class FibonacciSequence {

		  private values: number[] = [0, 1];

		 

		  [Symbol.iterator]() {

		    let index = 0;

		    return {

		      next: () => {

		        const value = this.values[index] || (this.values[index] = this.values[index - 1] + this.values[index - 2]);

		        index++;

		        return { value, done: false };

		      },

		    };

		  }

		}

		 

		const fib = new FibonacciSequence();

		for (const value of fib) {

		  if (value > 100) break;

		  console.log(value);

		}

		

		

		The FibonacciSequence class implements a custom iterator using the [Symbol.iterator]() method, allowing easy iteration of Fibonacci numbers with a for…of loop.

		

		Second example

		

		

		class Range {

		  constructor(private start: number, private end: number) {}

		 

		  [Symbol.iterator]() {

		    let currentValue = this.start;

		    return {

		      next: () => {

		        const value = currentValue;

		        const done = currentValue >= this.end;

		        currentValue++;

		        return { value, done };

		      },

		    };

		  }

		}

		 

		const range = new Range(1, 5);

		for (const value of range) {

		  console.log(value);

		}

		

		

		The Range class implements a custom iterator using the [Symbol.iterator]() method, enabling seamless iteration over a range of numbers with a for…of loop.

		

		Create Explicit and Readable Type Declarations mapped Type Modifiers

		

		

		type ReadOnly<T> = { readonly [K in keyof T]: T[K] };

		 

		interface Person {

		  name: string;

		  age: number;

		}

		 

		const readOnlyPerson: ReadOnly<Person> = { name: "John", age: 30 };

		// readOnlyPerson.age = 31; // Error: Cannot assign to 'age'

		

		

		The mapped type ReadOnly<T> makes all properties of type T readonly, ensuring immutability and enhancing code readability by making explicit intentions.

		

		Use the TypeScript “unknown” type to avoid runtime errors

		

		

		function safelyParseJSON(jsonString: string): unknown {

		  try {

		    return JSON.parse(jsonString);

		  } catch (error) {

		    return undefined;

		  }

		}

		 

		const parsedData = safelyParseJSON('{"name": "John"}');

		if (typeof parsedData === 'object' && parsedData !== null && 'name' in parsedData) {

		  console.log(`Hello, ${parsedData.name}!`);

		}

		

		

		The unknown type is used in safelyParseJSON to indicate the return type is uncertain. It enforces proper type checking before accessing properties, avoiding runtime errors.

		

		Dynamically Allocate Function Types with Conditional Types

		

		

		type FunctionResult<T> = T extends (...args: any[]) => infer R ? R : never;

		 

		function add(a: number, b: number): number {

		  return a + b;

		}

		 

		type AddResult = FunctionResult<typeof add>; // AddResult is inferred as number

		 

		const result: AddResult = add(1, 2); // result is inferred as number

		

		

		Using conditional types, FunctionResult<T> extracts the return type of a function, dynamically allocating types for function results and enhancing type safety.

		

		Use conditional types to create a reusable Flatten type

		

		

		type ApiResponse<T> = { status: 'success', data: T } | { status: 'error', message: string };

		type FlattenApiResponse<T> = T extends ApiResponse<infer U> ? U : never;

		 

		interface User {

		  id: number;

		  name: string;

		}

		 

		async function fetchUser(userId: number): Promise<ApiResponse<User>> {

		  // ... Implementation to fetch user data from an API

		}

		 

		const userResponse = await fetchUser(1);

		 

		if (userResponse.status === 'success') {

		  const user: FlattenApiResponse<typeof userResponse> = userResponse.data;

		  console.log(`User: ${user.name}`);

		} else {

		  console.error(`Error: ${userResponse.message}`);

		}

		

		

		FlattenApiResponse<T> is a real-world conditional type that extracts data type from an API response, enabling type-safe handling of different response scenarios.

		

		Return Type of a Generic Function Type Parameter

		

		

		type ReturnTypeOf<T extends (...args: any[]) => any> = T extends (...args: any[]) => infer R ? R : never;

		 

		function getUser(id: number): Promise<User> {

		  // ... Fetch user data from an API

		}

		 

		type UserResponse = ReturnTypeOf<typeof getUser>; // UserResponse is inferred as Promise<User>

		 

		async function handleUserResponse() {

		  const userResponse: UserResponse = await getUser(1);

		  console.log(userResponse);

		}

		

		

		ReturnTypeOf<T> infers the return type of a generic function type parameter, improving type safety by ensuring correct usage of returned values in real-world scenarios.

		

		Brief explanations of most important Typescript type operators and utilities

		

		extends checks if a type extends another type.

		Omit creates a new type that omits specified keys from an existing type.

		Partial creates a new type that makes all properties of an existing type optional.

		keyof creates a union type of all keys of an object.

		Pick creates a new type that includes only specified keys from an existing type.

		infer is used to infer the type of a generic argument.

		Exclude creates a new type by excluding all properties of one type from another.

		Record creates a new object type with keys of one type and values of another type.

		Extract creates a new type by extracting all properties of one type that match another.

		NonNullable creates a new type by removing null and undefined from another type.

		Parameters gets the parameter types of a function type.

		extract is used to extract the values of a union type that match a specified type.

		Awaited extracts the type of the resolved value of a Promise.

		ReturnType creates a new type that represents the return type of a function type.

		Required creates a new type that makes all properties of an existing type required.

		Readonly creates a new type that makes all properties of an existing type readonly.

		Mapped Types allow you to create new types by mapping over an existing type and transforming its properties.

		Conditional Types allow you to define types based on conditions.

		Union Types allow you to define a type that can be one of several different types.

		Intersection Types allow you to define a type that has properties and methods of multiple types.

		Key Remapping via as allows you to rename properties of an object type by using the as keyword.

		Template Literal Types allow you to create types by using template literals to concatenate string literals.

		ThisType allows you to specify the type of this in a method or function.

		Class Types allow you to define a type that represents a class constructor and its instance type.

		Indexed Access Types allow you to access a property of an object type by its key.

		Recursive Types allow you to define types that reference themselves.

		Infer Constraints allow you to put constraints on the types that can be inferred in a generic type.

		Template String Types allow you to create string literal types from template strings with placeholders.

		Mapped Type Modifiers allow you to modify properties of an existing type when using mapped types.

		Tuple Types allow you to define an array type with a fixed number of elements and their types.

		Type Aliases allow you to create a new name for an existing type.

		Type Assertions allow you to override the inferred type of a value with a different type.

		Global Utility Types are built-in types provided by TypeScript, such as Array, Object, and RegExp.
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		Metaprogramming in Javascript with TypeScript

		

		
			[image: Image]
		

		

		Metaprogramming represents an approach in coding where a software can alter or adapt its own composition, functionality, or characteristics of supplementary programs during execution. In JavaScript and TypeScript, numerous methodologies facilitate metaprogramming, including:

		

		Reflection: Investigating and adjusting an entity’s attributes and techniques at runtime. The Reflect object in JavaScript offers an array of introspection methods, such as Reflect.get(), Reflect.set(), and Reflect.apply().

		Proxy: In JavaScript, the Proxy object enables the delineation of bespoke conduct for core operations on entities, encompassing property searches, assignments, and function executions. A surrogate can intercept and transform these actions on the intended object. As an illustration, one can establish tailored getter and setter actions for an object utilizing a surrogate.

		

		

		const target = { x: 1 };

		const handler = {

		  get(obj, prop) {

		    console.log(`Getting ${prop}`);

		    return obj[prop];

		  },

		  set(obj, prop, value) {

		    console.log(`Setting ${prop} to ${value}`);

		    obj[prop] = value;

		    return true;

		  }

		};

		 

		const proxy = new Proxy(target, handler);

		 

		console.log(proxy.x); // "Getting x" and 1

		proxy.x = 2; // "Setting x to 2"

		

		

		Function creation: JavaScript facilitates generating new functions during runtime via the Function constructor or the eval() function. Nonetheless, this method is not recommended due to security and performance issues.

		

		Decorators: This syntactic characteristic, introduced in TypeScript and now compatible with JavaScript, enables the attachment of metadata or behavior to classes, methods, or properties.

		

		Code alteration: In TypeScript, transformers can be utilized to adjust the Abstract Syntax Tree (AST) throughout the compilation phase. This enables manipulation of the produced code before execution.

		

		Although TypeScript is a strict syntactical extension of JavaScript, it does not introduce new metaprogramming features. However, TypeScript’s static typing aspect can enhance metaprogramming safety and predictability through type information and improved tooling support.

		

		Consider the following TypeScript-specific elements when using metaprogramming techniques: Type Guards: TypeScript enables the creation of custom type guards, which are functions capable of narrowing a variable’s type at runtime. Type guards are beneficial in metaprogramming situations where confirming an object’s type or structure is necessary before executing reflective operations on it.

		

		

		interface Animal {

		  speak: () => string;

		}

		 

		interface Dog extends Animal {

		  bark: () => string;

		}

		 

		function isDog(animal: Animal): animal is Dog {

		  return "bark" in animal;

		}

		 

		const myAnimal: Animal = { speak: () => "Hello", bark: () => "Woof" };

		 

		if (isDog(myAnimal)) {

		  console.log(myAnimal.bark()); // TypeScript knows that myAnimal is of type Dog here

		}

		

		

		Mapped Types: TypeScript provides a powerful type-level programming feature called mapped types. Mapped types allow you to create new types by transforming the properties of existing types.

		

		

		type Readonly<T> = {

		  readonly [K in keyof T]: T[K];

		};

		 

		interface User {

		  name: string;

		  age: number;

		}

		 

		type ReadonlyUser = Readonly<User>;

		

		

		In this example, ReadonlyUser is a new type that has the same properties as User, but all properties are marked as readonly.

		

		Conditional Types: Conditional types enable you to create types that depend on other types. This can be useful for creating utility types or validating the types of metaprogramming code.

		

		

		type NonFunctionPropertyNames<T> = {

		  [K in keyof T]: T[K] extends Function ? never : K;

		}[keyof T];

		 

		type NonFunctionProperties<T> = {

		  [P in NonFunctionPropertyNames<T>]: T[P];

		};

		 

		interface Person {

		  name: string;

		  age: number;

		  greet: () => void;

		}

		 

		type DataProperties = NonFunctionProperties<Person>; // { name: string; age: number; }

		

		

		In this example, the NonFunctionProperties type takes an input type T and removes any properties whose values are functions.

		

		These TypeScript features can enhance metaprogramming by providing more control over types and ensuring type safety when performing operations like reflection or code generation. However, it’s essential to be cautious when using metaprogramming, as it can lead to code that is harder to understand, maintain, and debug.

		

		Creating a typed event emitter

		

		

		interface EventMap {

		  [event: string]: (...args: any[]) => void;

		}

		 

		class TypedEventEmitter<T extends EventMap> {

		  private listeners: { [K in keyof T]?: Array<T[K]> } = {};

		 

		  on<K extends keyof T>(event: K, listener: T[K]): void {

		    if (!this.listeners[event]) {

		      this.listeners[event] = [];

		    }

		    this.listeners[event]!.push(listener);

		  }

		 

		  emit<K extends keyof T>(event: K, ...args: Parameters<T[K]>): void {

		    const listeners = this.listeners[event];

		    if (!listeners) return;

		 

		    for (const listener of listeners) {

		      listener(...args);

		    }

		  }

		}

		 

		// Usage

		interface MyEvents {

		  textReceived: (text: string) => void;

		  dataUpdated: (data: number[]) => void;

		}

		 

		const eventEmitter = new TypedEventEmitter<MyEvents>();

		 

		eventEmitter.on("textReceived", (text) => {

		  console.log("Text received:", text);

		});

		 

		eventEmitter.on("dataUpdated", (data) => {

		  console.log("Data updated:", data);

		});

		 

		eventEmitter.emit("textReceived", "Hello, world!");

		eventEmitter.emit("dataUpdated", [1, 2, 3]);

		

		

		This example demonstrates the use of TypeScript generics and mapped types to create a type-safe event emitter. The TypedEventEmitter class takes an event map as a type parameter and enforces type safety for event names and listener functions.

		

		Using decorators to measure function execution time

		

		

		function measureExecutionTime<T extends (...args: any[]) => any>(

		  target: Object,

		  propertyKey: string | symbol,

		  descriptor: TypedPropertyDescriptor<T>

		): TypedPropertyDescriptor<T> {

		  const originalMethod = descriptor.value!;

		 

		  descriptor.value = function (...args: Parameters<T>) {

		    const start = performance.now();

		    const result = originalMethod.apply(this, args);

		    const end = performance.now();

		    console.log(`Execution time for ${String(propertyKey)}: ${end - start} ms`);

		 

		    return result;

		  };

		 

		  return descriptor;

		}

		 

		class MathOperations {

		  @measureExecutionTime

		  add(a: number, b: number): number {

		    return a + b;

		  }

		 

		  @measureExecutionTime

		  multiply(a: number, b: number): number {

		    return a * b;

		  }

		}

		 

		const math = new MathOperations();

		console.log(math.add(1, 2));

		console.log(math.multiply(3, 4));

		

		

		In this example, we use TypeScript decorators to measure the execution time of class methods. The measureExecutionTime decorator wraps the original method with a function that calculates the time taken to execute the method and logs the result.

		

		Note that decorators are an experimental feature in TypeScript, and you’ll need to enable the experimentalDecorators option in your tsconfig.json file to use them.

		

		Using Proxy to create an auto-save feature for objects

		

		

		type AutoSaveHandler<T> = {

		  autoSave: (updatedObject: T) => void;

		};

		 

		function createAutoSaveProxy<T extends object>(target: T, handler: AutoSaveHandler<T>): T {

		  return new Proxy(target, {

		    set: (obj, prop, value) => {

		      (obj as any)[prop] = value;

		      handler.autoSave(obj);

		      return true;

		    },

		  });

		}

		 

		// Usage

		interface Person {

		  name: string;

		  age: number;

		}

		 

		const person: Person = { name: "John", age: 30 };

		 

		const autoSaveHandler: AutoSaveHandler<Person> = {

		  autoSave: (updatedObject) => {

		    console.log("Auto-saving updated object:", updatedObject);

		  },

		};

		 

		const autoSaveProxy = createAutoSaveProxy(person, autoSaveHandler);

		 

		autoSaveProxy.name = "Jane"; // Auto-saving updated object: { name: 'Jane', age: 30 }

		autoSaveProxy.age = 35; // Auto-saving updated object: { name: 'Jane', age: 35 }

		

		

		In this example, we create a createAutoSaveProxy function that returns a proxy object. The proxy object intercepts all property assignments and triggers an auto-save function, which in this case, logs the updated object to the console.

		

		Using TypeScript decorators to apply validation

		

		

		interface Validator {

		  (value: any): boolean;

		}

		 

		interface ValidationMap {

		  [property: string]: Validator[];

		}

		 

		function createValidatorDecorator(validator: Validator): PropertyDecorator {

		  return (target, propertyKey) => {

		    const validationMap: ValidationMap = Reflect.getMetadata("validation", target) || {};

		    validationMap[propertyKey as string] = validationMap[propertyKey as string] || [];

		    validationMap[propertyKey as string].push(validator);

		    Reflect.defineMetadata("validation", validationMap, target);

		  };

		}

		 

		function validate(target: any): boolean {

		  const validationMap: ValidationMap = Reflect.getMetadata("validation", target) || {};

		  return Object.keys(validationMap).every((property) => {

		    const validators = validationMap[property];

		    return validators.every((validator) => validator(target[property]));

		  });

		}

		 

		const isNotEmpty = createValidatorDecorator((value) => value && value.trim().length > 0);

		 

		class User {

		  @isNotEmpty

		  public name: string;

		 

		  constructor(name: string) {

		    this.name = name;

		  }

		}

		 

		// Usage

		const validUser = new User("John");

		console.log("Valid user?", validate(validUser)); // Valid user? true

		 

		const invalidUser = new User("  ");

		console.log("Valid user?", validate(invalidUser)); // Valid user? false

		

		

		This example demonstrates the use of TypeScript decorators to create a simple validation system for class properties. The createValidatorDecorator function generates property decorators that apply a validation function to the class property. The validate function checks whether all class properties pass their respective validation functions.

		

		To run this example, you’ll need to have the reflect-metadata package installed and enable the experimentalDecorators and emitDecoratorMetadata options in your tsconfig.json file.

		

		Remember that metaprogramming can make code more challenging to understand and maintain. It’s essential to use these techniques judiciously and thoroughly document their purpose and usage.

		

		Singleton pattern using decorators

		

		

		function Singleton<T extends new (...args: any[]) => any>(constructor: T): T {

		  return new Proxy(constructor, {

		    instance: null,

		    construct: (target, args) => {

		      if (!this.instance) {

		        this.instance = new target(...args);

		      }

		      return this.instance;

		    },

		  });

		}

		 

		@Singleton

		class Database {

		  private constructor() {

		    console.log("Database created.");

		  }

		 

		  query(sql: string): any {

		    console.log(`Executing query: ${sql}`);

		  }

		}

		 

		const db1 = new Database();

		const db2 = new Database();

		 

		db1.query("SELECT * FROM users");

		 

		console.log(db1 === db2); // true

		

		

		In this example, we use a class decorator to implement the Singleton pattern. The Singleton decorator wraps the constructor with a Proxy that ensures only one instance of the class is created. When attempting to create multiple instances, it returns the same instance.

		

		Creating a simple dependency injection container

		

		

		const dependencyContainer = new Map<string | symbol | object, object>();

		 

		function register<T>(token: string | symbol | object, constructor: new () => T): void {

		  if (dependencyContainer.has(token)) {

		    throw new Error(`Dependency with token '${token.toString()}' is already registered.`);

		  }

		  dependencyContainer.set(token, new constructor());

		}

		 

		function resolve<T>(token: string | symbol | object): T {

		  const dependency = dependencyContainer.get(token);

		  if (!dependency) {

		    throw new Error(`Dependency with token '${token.toString()}' is not registered.`);

		  }

		  return dependency as T;

		}

		 

		// Example services

		class Logger {

		  log(message: string): void {

		    console.log(message);

		  }

		}

		 

		class UserService {

		  constructor(private logger: Logger) {}

		 

		  createUser(name: string): void {

		    this.logger.log(`User created: ${name}`);

		  }

		}

		 

		// Register dependencies

		register("logger", Logger);

		register("userService", () => new UserService(resolve<Logger>("logger")));

		 

		// Resolve and use dependencies

		const logger = resolve<Logger>("logger");

		const userService = resolve<UserService>("userService");

		 

		logger.log("Hello, world!");

		userService.createUser("John");

		

		

		In the provided example, a basic dependency injection container is established using a TypeScript map. The register function serves to register dependencies, while the resolve function aids in resolving and obtaining dependencies. This approach contributes to better organization and management of dependencies and their lifecycles.

		

		Memoization with TypeScript decorators

		

		

		function Memoize<T extends (...args: any[]) => any>(

		  target: Object,

		  propertyKey: string | symbol,

		  descriptor: TypedPropertyDescriptor<T>

		): TypedPropertyDescriptor<T> {

		  const originalMethod = descriptor.value!;

		  const cache = new Map<string, ReturnType<T>>();

		 

		  descriptor.value = function (...args: Parameters<T>) {

		    const cacheKey = JSON.stringify(args);

		    if (!cache.has(cacheKey)) {

		      cache.set(cacheKey, originalMethod.apply(this, args));

		    }

		    return cache.get(cacheKey);

		  };

		 

		  return descriptor;

		}

		 

		class ExpensiveOperations {

		  @Memoize

		  public expensiveCalculation(a: number, b: number): number {

		    console.log("Performing expensive calculation...");

		    return a * b;

		  }

		}

		 

		const operations = new ExpensiveOperations();

		console.log(operations.expensiveCalculation(2, 3)); // Performing expensive calculation... 6

		console.log(operations.expensiveCalculation(2, 3)); // 6 (cached result, no calculation performed)

		

		

		In this example, we create a Memoize decorator that caches the result of a function based on its input arguments. If the function is called again with the same arguments, the cached result is returned instead of recalculating. This can improve the performance of functions with expensive computations.

		

		Type-safe action creators for Redux using mapped types

		

		

		interface Action<T extends string> {

		  type: T;

		}

		 

		interface PayloadAction<T extends string, P> extends Action<T> {

		  payload: P;

		}

		 

		type ActionCreator<T extends string, P> = (...args: any[]) => PayloadAction<T, P>;

		 

		type ActionsMap = {

		  [actionType: string]: ActionCreator<any, any>;

		};

		 

		type ActionTypes<T extends ActionsMap> = {

		  [K in keyof T]: ReturnType<T[K]>;

		}[keyof T];

		 

		function createAction<T extends string, P>(

		  type: T,

		  payloadCreator: (...args: any[]) => P

		): ActionCreator<T, P> {

		  return (...args: any[]): PayloadAction<T, P> => ({

		    type,

		    payload: payloadCreator(...args),

		  });

		}

		 

		// Usage

		const increment = createAction("INCREMENT", (value: number) => value);

		const setName = createAction("SET_NAME", (name: string) => name);

		 

		type MyActions = ActionTypes<typeof increment | typeof setName>;

		 

		function reducer(state: any, action: MyActions) {

		  switch (action.type) {

		    case "INCREMENT":

		      return { ...state, counter: state.counter + action.payload };

		    case "SET_NAME":

		      return { ...state, name: action.payload };

		    default:

		      return state;

		  }

		}

		

		

		In this example, we create a type-safe action creator function for Redux. The createAction function generates action creators with the given type and payload creator function. The ActionTypes mapped type is used to create a union type of all possible actions, which can be used in the reducer function for type-safe action handling.

		

		Metaprogramming techniques are used in the example of Type-safe action creators for Redux using mapped types to automatically generate type-safe action creators. The use of mapped types in this example is a form of metaprogramming, where the code is generating code automatically at compile time.

		

		In the example, mapped types are used to transform an interface of action types into a set of type-safe action creators. The mapped type creates a set of functions that take a payload as an argument and return an action object with the correct type and payload. By using mapped types, the action creators are generated automatically, reducing the potential for human error and improving type safety.

		

		This is an example of metaprogramming because the code is generating code automatically at compile time. Instead of manually creating each action creator function, the code is generating them automatically based on the interface of action types. This approach reduces the amount of manual work needed to create type-safe action creators, and also reduces the potential for errors in the creation of action objects.

		

		Using a decorator to automatically unsubscribe from Observables ( Angular Framework example )

		

		

		import { Component, OnDestroy } from '@angular/core';

		import { Observable, Subject } from 'rxjs';

		import { takeUntil } from 'rxjs/operators';

		 

		function AutoUnsubscribe(destroy$: string = 'ngOnDestroy'): ClassDecorator {

		  return (constructor) => {

		    const original = constructor.prototype[destroy$];

		 

		    if (typeof original !== 'function') {

		      console.warn(`AutoUnsubscribe: ${constructor.name} does not implement OnDestroy`);

		    }

		 

		    constructor.prototype[destroy$] = function () {

		      if (this[destroy$]) {

		        this[destroy$].next();

		        this[destroy$].complete();

		      }

		      if (original) {

		        original.apply(this, arguments);

		      }

		    };

		  };

		}

		 

		@Component({

		  selector: 'app-example',

		  template: `...`,

		})

		@AutoUnsubscribe()

		export class ExampleComponent implements OnDestroy {

		  private readonly destroy$ = new Subject<void>();

		  public someObservable$: Observable<any>;

		 

		  constructor() {

		    this.someObservable$ = new Observable()

		      .pipe(takeUntil(this.destroy$))

		      .subscribe((data) => console.log(data));

		  }

		 

		  ngOnDestroy() {

		    console.log('Component destroyed');

		  }

		}

		

		

		In this example, we create an AutoUnsubscribe decorator that enhances the component’s ngOnDestroy lifecycle hook. This decorator ensures that any subscriptions using the destroy$ subject are automatically unsubscribed when the component is destroyed, preventing potential memory leaks.

		

		TypeScript Decorator for memoizing component methods, and how can be used in a React.js class

		

		

		// Memoize decorator

		function Memoize(target: any, key: string, descriptor: PropertyDescriptor): PropertyDescriptor {

		  const originalMethod = descriptor.value;

		  const memoizedKey = Symbol(`${key}_memoized`);

		 

		  descriptor.value = function (...args: any[]) {

		    if (!this[memoizedKey]) {

		      this[memoizedKey] = new Map();

		    }

		 

		    const key = JSON.stringify(args);

		    if (!this[memoizedKey].has(key)) {

		      this[memoizedKey].set(key, originalMethod.apply(this, args));

		    }

		 

		    return this[memoizedKey].get(key);

		  };

		 

		  return descriptor;

		}

		 

		// Usage

		import React, { Component } from 'react';

		 

		interface MyComponentProps {

		  items: string[];

		}

		 

		class MyComponent extends Component<MyComponentProps> {

		  @Memoize

		  processItems(items: string[]): string[] {

		    console.log('Expensive operation performed');

		    return items.map(item => item.toUpperCase());

		  }

		 

		  render() {

		    const { items } = this.props;

		    const processedItems = this.processItems(items);

		 

		    return (

		      <ul>

		        {processedItems.map((item, index) => (

		          <li key={index}>{item}</li>

		        ))}

		      </ul>

		    );

		  }

		}

		 

		export default MyComponent;

		

		

		In this example, we create a Memoize decorator that can be applied to component methods to cache their return values based on input arguments. The processItems method is decorated with @Memoize, so the expensive operation will only be performed once for a given set of input arguments.

		

		Creating a TypeScript-Decorated Redux Store

		

		In this code coexamp below le, we’ll create a Redux store that uses TypeScript decorators to manage state updates. We’ll create decorators for actions and reducers, making it easier to manage the store’s behavior.

		

		

		// decorators.ts

		export function reducer<T, K extends keyof T>(stateKey: K, initialState: T[K]) {

		  return (target: any, key: string, descriptor: PropertyDescriptor) => {

		    const originalMethod = descriptor.value;

		 

		    descriptor.value = function (...args: any[]) {

		      const state = this.getState();

		      const newState = { ...state };

		      newState[stateKey] = originalMethod.apply(this, [state[stateKey], ...args]);

		      this.setState(newState);

		    };

		 

		    return descriptor;

		  };

		}

		 

		export function action(target: any, key: string, descriptor: PropertyDescriptor) {

		  const originalMethod = descriptor.value;

		 

		  descriptor.value = function (...args: any[]) {

		    this.dispatch({ type: key, payload: originalMethod.apply(this, args) });

		  };

		 

		  return descriptor;

		}

		 

		// store.ts

		interface Action {

		  type: string;

		  payload?: any;

		}

		 

		export abstract class Store<T> {

		  private state: T;

		  private listeners: Function[] = [];

		 

		  constructor(private reducer: (state: T, action: Action) => T, initialState: T) {

		    this.state = initialState;

		  }

		 

		  getState(): T {

		    return this.state;

		  }

		 

		  dispatch(action: Action): void {

		    this.state = this.reducer(this.state, action);

		    this.listeners.forEach((listener) => listener());

		  }

		 

		  subscribe(listener: Function): void {

		    this.listeners.push(listener);

		  }

		 

		  setState(newState: T): void {

		    this.state = newState;

		    this.listeners.forEach((listener) => listener());

		  }

		}

		 

		// counter.store.ts

		import { Store } from './store';

		import { reducer, action } from './decorators';

		 

		interface State {

		  counter: number;

		}

		 

		const initialState: State = {

		  counter: 0,

		};

		 

		class CounterStore extends Store<State> {

		  constructor() {

		    super(counterReducer, initialState);

		  }

		 

		  @reducer<State, 'counter'>('counter', 0)

		  @action

		  increment(): number {

		    return 1;

		  }

		 

		  @reducer<State, 'counter'>('counter', 0)

		  @action

		  decrement(): number {

		    return -1;

		  }

		}

		 

		function counterReducer(state: State, action: Action): State {

		  switch (action.type) {

		    case 'increment':

		      return { ...state, counter: state.counter + action.payload };

		    case 'decrement':

		      return { ...state, counter: state.counter + action.payload };

		    default:

		      return state;

		  }

		}

		 

		const counterStore = new CounterStore();

		counterStore.subscribe(() => {

		  console.log('Counter:', counterStore.getState().counter);

		});

		 

		counterStore.increment(); // Counter: 1

		counterStore.increment(); // Counter: 2

		counterStore.decrement(); // Counter: 1

		

		

		In this example, we use TypeScript decorators to manage the store’s behavior. The @reducer decorator creates a reducer function that updates a specific state property. The @action decorator creates an action that dispatches a specific action type to the store.

		

		We also use the Store class, which contains the generic methods for dispatching actions, getting the state, and subscribing to state updates. The CounterStore class extends the Store class and manages a single counter state property.

		

		This solution demonstrates how TypeScript decorators can be used to create a Redux store with clean and maintainable code. Keep in mind tha

		

		In this demonstration, we exhibit the application of metaprogramming techniques via TypeScript decorators. Decorators facilitate the modification of class and class member declarations during runtime, leading to simplified and more readable code.

		

		The @reducer decorator within the decorators.ts file exemplifies metaprogramming. It produces a reducer function responsible for updating a specific state property based on the action dispatched to the store. The @action decorator generates an action that dispatches a distinct action type to the store. Both decorators alter class member declarations and modify their behavior at runtime.

		

		Using decorators in this instance allows for the abstraction of Redux complexity by eliminating the boilerplate code typically necessary for defining and managing reducers and actions. This results in more concise, comprehensible, and maintainable code.

		.

		

		Similar TypeScript-decorated Redux store in an Angular application, you can follow these steps

		

		First, create a new Angular service called counter.store.ts and move the CounterStore class implementation and the reducer and action decorators into this file:

		

		

		// counter.store.ts

		import { Injectable } from '@angular/core';

		 

		interface State {

		  counter: number;

		}

		 

		const initialState: State = {

		  counter: 0,

		};

		 

		function counterReducer(state: State, action: any): State {

		  switch (action.type) {

		    case 'increment':

		      return { ...state, counter: state.counter + action.payload };

		    case 'decrement':

		      return { ...state, counter: state.counter + action.payload };

		    default:

		      return state;

		  }

		}

		 

		@Injectable({

		  providedIn: 'root',

		})

		class CounterStore extends Store<State> {

		  constructor() {

		    super(counterReducer, initialState);

		  }

		 

		  @reducer<State, 'counter'>('counter', 0)

		  @action

		  increment(): number {

		    return 1;

		  }

		 

		  @reducer<State, 'counter'>('counter', 0)

		  @action

		  decrement(): number {

		    return -1;

		  }

		}

		 

		const counterStore = new CounterStore();

		

		

		Next, import and use the CounterStore in an Angular component:

		

		

		// app.component.ts

		import { Component } from '@angular/core';

		import { CounterStore } from './counter.store';

		 

		@Component({

		  selector: 'app-root',

		  template: `

		    <div>

		      Counter: {{ counter }}

		      <button (click)="counterStore.increment()">Increment</button>

		      <button (click)="counterStore.decrement()">Decrement</button>

		    </div>

		  `,

		})

		export class AppComponent {

		  constructor(public counterStore: CounterStore) {}

		 

		  get counter() {

		    return this.counterStore.getState().counter;

		  }

		}

		

		

		In this example, we import the CounterStore and use it in the AppComponent. We access the counter state through the getState method and bind the increment and decrement actions to button click events.This example showcases the utilization of the TypeScript-decorated Redux store, as created in the previous demonstration, within an Angular component. The store implementation can be expanded and enhanced based on the specific requirements of your application.

		

		To integrate the TypeScript-decorated Redux store within a React.js application, adhere to these steps

		

		Initially, generate a new file named counter.store.ts and relocate the CounterStore class implementation along with the reducer and action decorators into this file

		

		

		// counter.store.ts

		interface State {

		  counter: number;

		}

		 

		const initialState: State = {

		  counter: 0,

		};

		 

		function counterReducer(state: State, action: any): State {

		  switch (action.type) {

		    case 'increment':

		      return { ...state, counter: state.counter + action.payload };

		    case 'decrement':

		      return { ...state, counter: state.counter + action.payload };

		    default:

		      return state;

		  }

		}

		 

		class CounterStore extends Store<State> {

		  constructor() {

		    super(counterReducer, initialState);

		  }

		 

		  @reducer<State, 'counter'>('counter', 0)

		  @action

		  increment(): number {

		    return 1;

		  }

		 

		  @reducer<State, 'counter'>('counter', 0)

		  @action

		  decrement(): number {

		    return -1;

		  }

		}

		 

		const counterStore = new CounterStore();

		

		

		Next, import and use the CounterStore in a React component:

		

		

		// Counter.tsx

		import React from 'react';

		import { CounterStore } from './counter.store';

		 

		export function Counter() {

		  const [counter, setCounter] = React.useState(0);

		 

		  React.useEffect(() => {

		    const unsubscribe = counterStore.subscribe(() => {

		      setCounter(counterStore.getState().counter);

		    });

		    return unsubscribe;

		  }, []);

		 

		  function handleIncrement() {

		    counterStore.increment();

		  }

		 

		  function handleDecrement() {

		    counterStore.decrement();

		  }

		 

		  return (

		    <div>

		      Counter: {counter}

		      <button onClick={handleIncrement}>Increment</button>

		      <button onClick={handleDecrement}>Decrement</button>

		    </div>

		  );

		}

		

		

		In this example, we import the CounterStore and use it in the Counter component. We access the counter state through the getState method and update the state using the increment and decrement actions.

		

		We use the useEffect hook to subscribe to state updates, and the useState hook to store the counter state. We call the subscribe method of the CounterStore and update the counter state in the subscription callback.

		

		This demonstrates how to use the TypeScript-decorated Redux store created in the previous example in a React component. The store implementation can be extended and improved as needed, depending on your application’s requirements.

		

		Does this store secure immutability

		

		Yes, the store implementation in the previous examples enforces immutability by returning a new state object for each state update. The counterReducer function in the counter.store.ts file, for example, uses the spread operator to create a new state object with the updated counter property:

		

		

		function counterReducer(state: State, action: any): State {

		  switch (action.type) {

		    case 'increment':

		      return { ...state, counter: state.counter + action.payload };

		    case 'decrement':

		      return { ...state, counter: state.counter + action.payload };

		    default:

		      return state;

		  }

		}

		

		

		This ensures that the state is always immutable, as the original state object is not modified. Instead, a new state object is created with the updated properties.

		

		Additionally, the @reducer decorator in the decorators.ts file uses the spread operator to create a new state object with the updated property:

		

		

		export function reducer<T, K extends keyof T>(stateKey: K, initialState: T[K]) {

		  return (target: any, key: string, descriptor: PropertyDescriptor) => {

		    const originalMethod = descriptor.value;

		 

		    descriptor.value = function (...args: any[]) {

		      const state = this.getState();

		      const newState = { ...state };

		      newState[stateKey] = originalMethod.apply(this, [state[stateKey], ...args]);

		      this.setState(newState);

		    };

		 

		    return descriptor;

		  };

		}

		

		

		This ensures that only the state property specified by the stateKey argument is updated, while the other properties remain unchanged. Overall, the store implementation enforces immutability by always returning a new state object, ensuring that state updates are always safe and predictable.

		

		Creating a Type-Safe Event Emitter with Metaprogrammin

		

		In this demonstration, we will construct a type-safe event emitter utilizing metaprogramming methods in TypeScript. We will use TypeScript decorators to define and manage events, simplifying the usage and maintenance of the event emitter.

		

		

		type Listener<T> = (data: T) => void;

		 

		class EventEmitter<T extends Record<string, any>> {

		  private listeners: Record<keyof T, Listener<any>[]> = {} as Record<keyof T, Listener<any>[]>;

		 

		  addEventListener<K extends keyof T>(event: K, listener: Listener<T[K]>): void {

		    if (!this.listeners[event]) {

		      this.listeners[event] = [];

		    }

		 

		    this.listeners[event].push(listener);

		  }

		 

		  removeEventListener<K extends keyof T>(event: K, listener: Listener<T[K]>): void {

		    if (!this.listeners[event]) {

		      return;

		    }

		 

		    this.listeners[event] = this.listeners[event].filter((l) => l !== listener);

		  }

		 

		  emit<K extends keyof T>(event: K, data: T[K]): void {

		    if (!this.listeners[event]) {

		      return;

		    }

		 

		    this.listeners[event].forEach((listener) => listener(data));

		  }

		}

		 

		function event<K extends string>(name: K) {

		  return function <T extends Record<string, any>>(target: EventEmitter<T>, propertyKey: string) {

		    if (!target[propertyKey]) {

		      target[propertyKey] = new EventEmitter<T>();

		    }

		 

		    const emitter = target[propertyKey] as EventEmitter<T>;

		 

		    if (!emitter.listeners[name]) {

		      emitter.listeners[name] = [];

		    }

		 

		    const originalMethod = target[propertyKey][name];

		 

		    target[propertyKey][name] = function (this: EventEmitter<T>, data: T[K]) {

		      originalMethod.apply(this, [data]);

		      this.emit(name, data);

		    };

		  };

		}

		 

		// usage

		class MyComponent {

		  @event('onButtonClick')

		  onClick(data: { buttonId: string }) {

		    console.log(`Button clicked: ${data.buttonId}`);

		  }

		}

		 

		const myComponent = new MyComponent();

		myComponent.onClick.addEventListener('onButtonClick', (data) => console.log(data.buttonId));

		myComponent.onClick.emit('onButtonClick', { buttonId: 'myButton' });

		

		

		In this example, we use TypeScript decorators to define and manage events in an event emitter. The event decorator creates a new event emitter instance for the decorated method and adds it to the target object. The decorator also modifies the decorated method to call the original method and emit the event with the specified name and data.

		

		We also define a Listener type and a generic EventEmitter class that use the Record type to ensure type safety for event names and data payloads.

		

		This example demonstrates the application of TypeScript decorators to construct a type-safe event emitter using metaprogramming techniques. By treating events as first-class citizens within the code, event management and usage become more maintainable and scalable.

		

		The type-safe event emitter created in the prior example can be a valuable asset for any application necessitating event-driven architecture. Treating events as first-class citizens within the code simplifies event management and usage, promoting maintainability and scalability. Some advantages of using a type-safe event emitter include:

		

		Type safety: Leveraging the Record and keyof types in TypeScript ensures correct event and event data definition and usage, preventing common errors at compile-time. Maintainability: Utilizing decorators to define events enables easy event management and extension without modifying the original code, reducing code complexity and enhancing maintainability. Scalability: Implementing an event emitter pattern facilitates component and service decoupling, streamlining application scaling and modification.

		

		Flexibility: Using an event emitter pattern creates a loosely-coupled architecture that allows greater flexibility in component and service interaction. In summary, the type-safe event emitter developed in the previous example can be a potent tool for managing events in TypeScript or Angular applications, offering type safety, maintainability, scalability, and flexibility.

		

		To use the type-safe event emitter created in the previous example in an Angular application, you can follow these steps:

		

		First, create a new Angular service called my-component-events.service.ts and define your component events using the @event decorator:

		

		

		import { Injectable } from '@angular/core';

		import { EventEmitter } from './event-emitter';

		 

		@Injectable({

		  providedIn: 'root',

		})

		export class MyComponentEvents {

		  @event('onButtonClick')

		  onClick: EventEmitter<{ buttonId: string }> = new EventEmitter();

		}

		

		

		In this example, we define the onClick event using the @event decorator and the EventEmitter class. We set the type of the event data to { buttonId: string }.

		

		Next, import the MyComponentEvents service in your Angular component and use it to handle events:

		

		

		import { Component } from '@angular/core';

		import { MyComponentEvents } from './my-component-events.service';

		 

		@Component({

		  selector: 'app-my-component',

		  template: `

		    <button (click)="handleClick()">Click me</button>

		  `,

		})

		export class MyComponent {

		  constructor(private events: MyComponentEvents) {}

		 

		  handleClick() {

		    this.events.onClick.emit({ buttonId: 'myButton' });

		  }

		

		

		In this example, we import the MyComponentEvents service and utilize it to emit the onClick event with the specified data. This showcases the integration of the type-safe event emitter, created in the previous example, within an Angular component. The event emitter implementation can be expanded and enhanced based on your application’s requirements.

		

		To use the type-safe event emitter within a React.js application, adhere to these steps:

		

		Initially, generate a new file named event-emitter.ts and copy the code from

		In your React component, import the EventEmitter class and instantiate it

		

		

		import { EventEmitter } from './event-emitter';

		 

		type MyComponentProps = {

		  onClick: EventEmitter<{ buttonId: string }>;

		}

		 

		function MyComponent(props: MyComponentProps) {

		  const handleClick = () => {

		    props.onClick.emit('onButtonClick', { buttonId: 'myButton' });

		  };

		 

		  return <button onClick={handleClick}>Click me</button>;

		}

		

		

		In this example, we establish a create React component named MyComponent that accepts a prop called onClick. This prop represents an instance of the EventEmitter class, which emits events containing a buttonId property. In the parent component, generate a new instance of the EventEmitter class and pass it to the MyComponent component as a prop.

		

		

		import React from 'react';

		import { EventEmitter } from './event-emitter';

		import MyComponent from './MyComponent';

		 

		function App() {

		  const onClick = new EventEmitter<{ buttonId: string }>();

		 

		  onClick.addEventListener('onButtonClick', (data) => {

		    console.log(`Button clicked: ${data.buttonId}`);

		  });

		 

		  return (

		    <div>

		      <MyComponent onClick={onClick} />

		    </div>

		  );

		}

		 

		export default App;

		

		

		In this example, we create a new instance of the EventEmitter class called onClick and add a listener to it to log the buttonId data to the console. We then pass this instance to the MyComponent component as a prop.

		

		Finally, in the MyComponent component, emit the onButtonClick event with the specified data when the button is clicked.

		

		This demonstrates how to use the type-safe event emitter created. By defining events as first-class citizens in the code, it becomes easier to manage and use events in a maintainable and scalable way.

		

		Creating a Type-Safe JSON Serializer with Metaprogramming

		

		In this example, we will develop a type-safe JSON serializer by leveraging metaprogramming techniques in TypeScript. We will employ TypeScript decorators to establish and control serialization rules for our data classes, streamlining object serialization and deserialization.s.

		

		

		type Class<T> = new (...args: any[]) => T;

		 

		const serializerMetadataKey = Symbol('Serializer');

		 

		function serialize<T>(value: T): string {

		  const serializedValue: any = {};

		 

		  for (const key in value) {

		    if (value.hasOwnProperty(key)) {

		      const propertyMetadata = Reflect.getMetadata(serializerMetadataKey, value, key);

		 

		      if (propertyMetadata && propertyMetadata.serialize === false) {

		        continue;

		      }

		 

		      serializedValue[key] = value[key];

		    }

		  }

		 

		  return JSON.stringify(serializedValue);

		}

		 

		function deserialize<T>(json: string, clazz: Class<T>): T {

		  const deserializedValue = JSON.parse(json);

		 

		  const instance = new clazz();

		 

		  for (const key in instance) {

		    if (instance.hasOwnProperty(key)) {

		      const propertyMetadata = Reflect.getMetadata(serializerMetadataKey, instance, key);

		 

		      if (propertyMetadata && propertyMetadata.serialize === false) {

		        continue;

		      }

		 

		      instance[key] = deserializedValue[key];

		    }

		  }

		 

		  return instance;

		}

		 

		function serializer(options: { serialize?: boolean } = {}) {

		  return function (target: any, key: string) {

		    Reflect.defineMetadata(serializerMetadataKey, options, target, key);

		  };

		}

		 

		class User {

		  @serializer()

		  id: number;

		 

		  @serializer()

		  name: string;

		 

		  @serializer({ serialize: false })

		  password: string;

		 

		  constructor(id: number, name: string, password: string) {

		    this.id = id;

		    this.name = name;

		    this.password = password;

		  }

		}

		 

		const user = new User(1, 'John Doe', 'password');

		const serializedUser = serialize(user); // {"id":1,"name":"John Doe"}

		const deserializedUser = deserialize(serializedUser, User); // User { id: 1, name: 'John Doe', password: 'password' -----}

		

		

		In this example, we define a serializer decorator that adds metadata to the class properties to control their serialization behavior. We use the Reflect API to read and write metadata to class properties.

		

		We also define a serialize function that takes an object and returns a JSON string representing the object. We use the metadata added by the serializer decorator to exclude properties that should not be serialized.

		

		We also define a deserialize function that takes a JSON string and a class constructor and returns an instance of the class with the properties set to the deserialized values.

		

		This solution demonstrates how TypeScript decorators can be used to create a type-safe JSON serializer with metaprogramming techniques. By defining serialization rules as first-class citizens in the code, it becomes easier to manage and use serialization in a maintainable and scalable way.

		

		Creating a Type-Safe Validation Framework

		

		In this example, we’ll create a type-safe validation framework. We’ll use TypeScript decorators to define validation rules for our data classes, making it easier to validate object———

		

		In this example, we develop a serializer decorator that attaches metadata to class properties, managing their serialization behavior. The Reflect API is used to read and write metadata for class properties.

		

		Moreover, we establish a serialize function that takes an object as input and returns a JSON string representing the object.

		

		The metadata introduced by the serializer decorator is utilized to exclude properties that are not meant to be serialized.

		

		Additionally, we develop a deserialize function that accepts a JSON string and a class constructor, resulting in a class instance with properties assigned to the deserialized values.

		

		This solution illustrates the use of TypeScript decorators to create a type-safe JSON serializer with metaprogramming techniques. By treating serialization rules as first-class citizens within the code, serialization management and usage become more maintainable and scalable.

		

		Creating a Type-Safe Validation Framework:

		

		In this example, we will construct a type-safe validation framework. We will employ TypeScript decorators to define validation rules for our data classes, simplifying object validation.

		

		

		type Class<T> = new (...args: any[]) => T;

		 

		const validatorMetadataKey = Symbol('Validator');

		 

		function validate<T>(value: T): string[] {

		  const errors: string[] = [];

		 

		  for (const key in value) {

		    if (value.hasOwnProperty(key)) {

		      const propertyMetadata = Reflect.getMetadata(validatorMetadataKey, value, key);

		 

		      if (propertyMetadata) {

		        const validators = propertyMetadata.validators;

		 

		        for (const validator of validators) {

		          if (!validator.fn(value[key])) {

		            errors.push(`${key}: ${validator.message}`);

		          }

		        }

		      }

		    }

		  }

		 

		  return errors;

		}

		 

		function validator(options: { message: string, fn: (value: any) => boolean }) {

		  return function (target: any, key: string) {

		    const validators = Reflect.getMetadata(validatorMetadataKey, target, key) || [];

		    validators.push(options);

		    Reflect.defineMetadata(validatorMetadataKey, { validators }, target, key);

		  };

		}

		 

		class User {

		  @validator({ message: 'Invalid email', fn: (value) => /^[^\s@]+@[^\s@]+\.[^\s@]+$/.test(value) })

		  email: string;

		 

		  @validator({ message: 'Password must be at least 8 characters long', fn: (value) => value.length >= 8 })

		  password: string;

		 

		  constructor(email: string, password: string) {

		    this.email = email;

		    this.password = password;

		  }

		}

		 

		const user = new User('johndoe@example.com', 'password');

		const errors = validate(user); // []

		

		

		In this example, we define a validator decorator that adds metadata to the class properties to define validation rules. We use the Reflect API to read and write metadata to class properties.

		

		We also develop a validate function that accepts an object and returns an array of validation errors.

		

		The metadata introduced by the validator decorator is employed to execute validation rules on each property.

		

		This solution shows the use of TypeScript decorators to create a type-safe validation framework with metaprogramming techniques.

		

		By treating validation rules as first-class citizens within the code, validation management and usage become more maintainable and scalable.

		

		Creating a Type-Safe Routing Framework with Metaprogramming:

		

		In this example, we will construct a type-safe routing framework utilizing metaprogramming techniques in TypeScript.

		

		We will use TypeScript decorators to define routing rules for our application, simplifying page management and navigations.

		

		

		type Class<T> = new (...args: any[]) => T;

		 

		const routerMetadataKey = Symbol('Router');

		 

		function route(path: string) {

		  return function (target: any) {

		    Reflect.defineMetadata(routerMetadataKey, { path }, target);

		  };

		}

		 

		function getRoutes() {

		  const routes: { path: string, component: Class<any> }[] = [];

		 

		  for (const key of Reflect.getMetadataKeys(routerMetadataKey)) {

		    const component = Reflect.get(key, Reflect.getMetadata(routerMetadataKey, key));

		    const path = Reflect.getMetadata(routerMetadataKey, component).path;

		    routes.push({ path, component });

		  }

		 

		  return routes;

		}

		 

		class HomeComponent {

		  render() {

		    return <h1>Welcome to the home page</h1>;

		  }

		}

		 

		@route('/')

		class AboutComponent {

		  render() {

		    return <h1>Welcome to the about page</h1>;

		  }

		}

		 

		const routes = getRoutes();

		const activeRoute = routes.find(route => window.location.pathname === route.path);

		 

		if (activeRoute) {

		  const component = new activeRoute.component();

		  document.body.appendChild(component.render());

		}

		

		

		In this example, we define a route decorator that adds metadata to a component to define a routing rule. We use the Reflect API to read and write metadata to the component.

		

		We also define a getRoutes function that returns an array of route objects with the path and component class.

		

		We then use these route objects to navigate between pages in the application based on the current URL path.

		

		This solution showcases the application of TypeScript decorators to create a type-safe routing framework using metaprogramming techniques.

		

		By treating routing rules as first-class citizens within the code, page management and navigation become more maintainable and scalable.

		

		Creating a Type-Safe Property Decorator with TypedPropertyDescriptor:

		

		In this demonstration, we will create a type-safe property decorator by using TypedPropertyDescriptor and metaprogramming methods in TypeScript.

		

		We will use the TypedPropertyDescriptor interface to establish the property descriptor for the decorated property, streamlining the process of incorporating custom behavior into class properties.s.

		

		

		function log(target: any, key: string, descriptor: TypedPropertyDescriptor<any>) {

		  const originalMethod = descriptor.value;

		 

		  descriptor.value = function (...args: any[]) {

		    console.log(`Calling ${key} with arguments: ${args}`);

		    const result = originalMethod.apply(this, args);

		    console.log(`Result: ${result}`);

		    return result;

		  };

		 

		  return descriptor;

		}

		 

		class Calculator {

		  @log

		  add(a: number, b: number) {

		    return a + b;

		  }

		}

		 

		const calculator = new Calculator();

		const result = calculator.add(2, 3); // Calling add with arguments: 2,3

		                                    // Result: ---5

		

		

		In this example, we create a log decorator that introduces logging behavior to the add method of the Calculator class. The TypedPropertyDescriptor interface is utilized to specify the property descriptor for the decorated property, which permits us to adjust the behavior of the original method.

		

		We subsequently use the apply method to invoke the original method with the provided arguments and return its output. This enables us to modify the behavior of the original method without altering its signature or implementation.

		

		This solution shows how TypedPropertyDescriptor and metaprogramming techniques can be employed to produce a type-safe property decorator with custom behavior for class properties. By treating property behavior as first-class citizens within the code, property management and usage become more maintainable and scalable.

		

		Creating a Type-Safe Memoization Decorator with TypedPropertyDescriptor—-

		

		In this example , we will create a type-safe memoization decorator by utilizing TypedPropertyDescriptor and metaprogramming methods in TypeScript.

		

		We will use the TypedPropertyDescriptor interface to specify the property descriptor for the decorated method, streamlining the process of memoizing function calls.

		

		

		type MemoizationCache = { [key: string]: any };

		 

		function memoize(target: any, key: string, descriptor: TypedPropertyDescriptor<any>) {

		  const originalMethod = descriptor.value;

		  const cache: MemoizationCache = {};

		 

		  descriptor.value = function (...args: any[]) {

		    const cacheKey = JSON.stringify(args);

		 

		    if (cacheKey in cache) {

		      console.log(`Cache hit for ${key} with arguments: ${args}`);

		      return cache[cacheKey];

		    }

		 

		    console.log(`Cache miss for ${key} with arguments: ${args}`);

		    const result = originalMethod.apply(this, args);

		    cache[cacheKey] = result;

		    return result;

		  };

		 

		  return descriptor;

		}

		 

		class Calculator {

		  @memoize

		  add(a: number, b: number) {

		    return a + b;

		  }

		}

		 

		const calculator = new Calculator();

		const result1 = calculator.add(2, 3); // Cache miss for add with arguments: 2,3

		const result2 = calculator.add(2, 3); // Cache hit for add with arguments: 2,----3

		

		

		The memoize decorator adds memoization behavior to the add method of the Calculator class by utilizing the TypedPropertyDescriptor interface to define the property descriptor for the decorated method. The cache object is then used to store the results of function calls based on the provided arguments. By returning the cached result instead of recomputing it, we can improve the performance of function calls that are expensive to compute.

		

		This solution explain how TypedPropertyDescriptor and metaprogramming techniques can be employed to generate a type-safe memoization decorator with custom behavior for class methods. By treating method behavior as first-class citizens within the code, method management and usage become more maintainable and scalable.

		

		Creating a Type-Safe Retry Decorator with TypedPropertyDescriptor

		

		In this example, we’ll create a type-safe retry decorator using TypedPropertyDescriptor and metaprogramming techniques in TypeScript. We’ll use the TypedPropertyDescriptor interface to define the property descriptor for the decorated method, making it easier to retry function calls in case of errors.

		

		

		function retry(options: { retries: number }) {

		  return function (target: any, key: string, descriptor: TypedPropertyDescriptor<any>) {

		    const originalMethod = descriptor.value;

		 

		    descriptor.value = async function (...args: any[]) {

		      let retries = options.retries;

		 

		      while (retries > 0) {

		        try {

		          const result = await originalMethod.apply(this, args);

		          return result;

		        } catch (error) {

		          console.log(`Error while calling ${key}: ${error.message}`);

		          retries--;

		        }

		      }

		 

		      throw new Error(`Failed to call ${key} after ${options.retries} retries`);

		    };

		 

		    return descriptor;

		  };

		}

		 

		class ApiService {

		  @retry({ retries: 3 })

		  async fetchData(url: string) {

		    const response = await fetch(url);

		 

		    if (!response.ok) {

		      throw new Error(`Failed to fetch data from ${url}: ${response.statusText}`);

		    }

		 

		    const data = await response.json();

		    return data;

		  }

		}

		 

		const api = new ApiService();

		const data = await api.fetchData('https://jsonplaceholder.typicode.com/todos/1')----;

		

		

		In this example, we define a retry decorator that gives the fetchData method of the ApiService class retry functionality. We use the TypedPropertyDescriptor interface to define the property descriptor for the decorated method, allowing us to retry function calls if something goes wrong.

		

		The function call is then retried as many times as necessary, up until it succeeds or the allotted number of times, in the while loop. In a nutshell, to put it in a phrase, synchronous operations .

		

		In this example, we’ll create a type-safe validation decorator using TypedPropertyDescriptor and metaprogramming techniques in TypeScript. We’ll use the TypedPropertyDescriptor interface to define the property descriptor for the decorated method, making it easier to validate the inputs and outputs of function calls.

		

		

		type Validator = (value: any) => boolean;

		 

		function validateInput(validator: Validator) {

		  return function (target: any, key: string, descriptor: TypedPropertyDescriptor<any>) {

		    const originalMethod = descriptor.value;

		 

		    descriptor.value = function (...args: any[]) {

		      const validatedArgs = args.map((arg, index) => {

		        if (!validator(arg)) {

		          throw new Error(`Invalid input at index ${index} for ${key}`);

		        }

		        return arg;

		      });

		 

		      return originalMethod.apply(this, validatedArgs);

		    };

		 

		    return descriptor;

		  };

		}

		 

		function validateOutput(validator: Validator) {

		  return function (target: any, key: string, descriptor: TypedPropertyDescriptor<any>) {

		    const originalMethod = descriptor.value;

		 

		    descriptor.value = function (...args: any[]) {

		      const result = originalMethod.apply(this, args);

		 

		      if (!validator(result)) {

		        throw new Error(`Invalid output for ${key}`);

		      }

		 

		      return result;

		    };

		 

		    return descriptor;

		  };

		}

		 

		class Calculator {

		  @validateInput((value: number) => value > 0)

		  @validateOutput((value: number) => value > 0)

		  squareRoot(value: number) {

		    return Math.sqrt(value);

		  }

		}

		 

		const calculator = new Calculator();

		const result = calculator.squareRoot(-1); // Throws "Invalid input at index 0 for squareRoot---"

		

		

		In this example, we define two decorators validateInput and validateOutput that add input and output validation behavior to the squareRoot method of the Calculator class. We use the TypedPropertyDescriptor interface to define the property descriptor for the decorated method, which allows us to validate the inputs and outputs of function calls.

		

		We then use the map method to iterate over the arguments and validate each input using the provided validator function. If an input fails validation, we throw an error with a detailed message.

		

		We also use the apply method to call the original method with the validated arguments and return its result. After we receive the result, we validate it using the provided validator function. If the result fails validation, we throw an error with a detailed messag—-

		

		In this example, we define two decorators validateInput and validateOutput, which add input and output validation behavior to the Calculator class’s squareRoot method. We define the property descriptor for the decorated method using the TypedPropertyDescriptor interface, which allows us to validate the inputs and outputs of function calls.

		

		The map method is then used to iterate over the arguments and validate each input with the provided validator function. If an input fails validation, an error with a detailed message is thrown.

		

		We also call the original method with the validated arguments and return the result using the apply method. After receiving the result, we validate it with the validator function provided. We throw an error if the result fails validation.

		

		Creating a Type-Safe Property Mapper with TypedPropertyDescriptor

		

		In this example, we’ll create a type-safe property mapper using TypedPropertyDescriptor and metaprogramming techniques in TypeScript. We’ll use the TypedPropertyDescriptor interface to define the property descriptor for the decorated class, making it easier to map properties between different classes.

		

		

		type PropertyMapper<T, U> = (source: T) => U;

		 

		function mapProperties<T, U>(propertyMapper: PropertyMapper<T, U>) {

		  return function (target: any) {

		    const originalConstructor = target;

		 

		    function newConstructor(this: any, ...args: any[]) {

		      const source = new originalConstructor(...args);

		      const mappedProperties = propertyMapper(source);

		      Object.assign(this, mappedProperties);

		    }

		 

		    newConstructor.prototype = originalConstructor.prototype;

		    return newConstructor;

		  };

		}

		 

		class Person {

		  constructor(public name: string, public age: number) {}

		}

		 

		class Employee {

		  constructor(public name: string, public age: number, public salary: number) {}

		}

		 

		const toEmployeeMapper: PropertyMapper<Person, Employee> = (person: Person) => {

		  return new Employee(person.name, person.age, 0);

		};

		 

		@mapProperties(toEmployeeMapper)

		class EmployeeCreator {

		  constructor(public person: Person) {}

		}

		 

		const employeeCreator = new EmployeeCreator(new Person('John', 30));

		console.log(employeeCreator instanceof EmployeeCreator); // true

		console.log(employeeCreator instanceof Employee); // true

		

		

		In this example, we define a mapProperties decorator that adds property mapping behavior to the EmployeeCreator class. We use the TypedPropertyDescriptor interface to define the property descriptor for the decorated class, which allows us to map properties between different classes.

		

		We then define a PropertyMapper type that describes a function that maps properties from one class to another. We use this type to define the toEmployeeMapper function that maps properties from Person to Employee.

		

		Additionally, a new constructor function is defined, which calls the propertyMapper function to translate properties from the source class to the new target class instance.

		

		It is simpler to map properties between classes by using the Object . assign method to assign the mapped properties to the new instance of the target class.

		

		This solution demonstrates how to create a type-safe property mapper with unique behavior for class properties using the TypedPropertyDescriptor and metaprogramming techniques. It is simpler to manage and use properties in a scalable and maintainable way because property behavior is defined in the code as first-class citizens, which also reduces code repetition.

		

		Creating a Type-Safe Singleton with TypedPropertyDescriptor

		

		

		function singleton(target: any) {

		  const originalConstructor = target;

		  let instance: any;

		 

		  function newConstructor(...args: any[]) {

		    if (!instance) {

		      instance = new originalConstructor(...args);

		    }

		 

		    return instance;

		  }

		 

		  newConstructor.prototype = originalConstructor.prototype;

		  return newConstructor;

		}

		 

		@singleton

		class Database {

		  private constructor(public connectionString: string) {}

		 

		  public static getInstance(connectionString: string) {

		    return new Database(connectionString);

		  }

		}

		 

		const db1 = Database.getInstance('localhost');

		const db2 = Database.getInstance('remote');

		 

		console.log(db1 === db2); // true

		console.log(db1.connectionString); // "localhost"

		console.log(db2.connectionString); // "localhost"

		

		

		This time we will try TypeScript’s TypedPropertyDescriptor create a type-safe singleton pattern First we should define the property descriptor using the TypedPropertyDescriptor interface to make it easier to create a singleton instance of the decorated class.

		

		Singleton decorator will e used to provide singleton functionality to the Database class. The TypedPropertyDescriptor interface is used to define the decorated class’s property descriptor and to allow the creation of a singleton instance of the class.

		

		After that, if the target class doesn’t already exist, a new constructor function is defined that creates a single instance of it. Creating a singleton instance of the class is made simpler by using the Object . assign method to assign the instance to the new constructor function.

		

		The singleton instance of the class is then more easily accessible thanks to the static method getInstance, which we define later.

		

		Creating a Type-Safe Memoization Decorator with PropertyDescriptor

		

		In this example, we’ll create a type-safe memoization decorator using PropertyDescriptor and metaprogramming techniques in TypeScript. We’ll use the PropertyDescriptor interface to define the property descriptor for the decorated method, making it easier to memoize function calls.

		

		

		function memoize(target: any, key: string, descriptor: PropertyDescriptor) {

		  const originalMethod = descriptor.value;

		  const cache = new Map();

		 

		  descriptor.value = function (...args: any[]) {

		    const cacheKey = JSON.stringify(args);

		 

		    if (cache.has(cacheKey)) {

		      return cache.get(cacheKey);

		    }

		 

		    const result = originalMethod.apply(this, args);

		 

		    cache.set(cacheKey, result);

		    return result;

		  };

		 

		  return descriptor;

		}

		 

		class Calculator {

		  @memoize

		  add(x: number, y: number) {

		    console.log('Performing add calculation...');

		    return x + y;

		  }

		}

		 

		const calculator = new Calculator();

		console.log(calculator.add(1, 2)); // Performing add calculation... 3

		console.log(calculator.add(1, 2)); // 3 (Cached)

		console.log(calculator.add(2, 3)); // Performing add calculation... 5

		console.log(calculator.add(2, 3)); // 5 (Cached----)

		

		

		In this example, we define a memoize decorator that gives the add method of the Calculator class memoization functionality. We can memoize function calls because we define the property descriptor for the decorated method using the PropertyDescriptor interface.

		

		The outcomes of earlier function calls are then put into a new cache object, which is defined next. To invoke the original method with the specified arguments and return the result, we use the apply method. We retrieve the cached result and return it if the arguments have already been called. If not, we return the outcome and cache it for upcoming calls.

		

		In order to create a type-safe memoization decorator with unique behavior for class methods, this solution demonstrates how PropertyDescriptor and metaprogramming techniques can be used. The definition of method behavior as first-class code citizens makes it simpler to manage and use methods in a scalable and maintainable manner while reducing code repetition.

		

		Creating a Type-Safe Builder Pattern with Metaprogramming

		

		In this example, we’ll create a type-safe builder pattern using metaprogramming techniques in TypeScript. We’ll use the Proxy object to dynamically create a builder object that enforces type safety and makes it easier to construct complex objects.

		

		

		type Partial<T> = {

		  [P in keyof T]?: T[P];

		};

		 

		function builder<T extends Record<string, any>>(options: T) {

		  return new Proxy({}, {

		    get(target: any, key: string) {

		      if (key === 'build') {

		        return () => options;

		      }

		 

		      return (value: T[keyof T]) => builder({ ...options, [key]: value });

		    }

		  }) as Builder<T>;

		}

		 

		interface Person {

		  name: string;

		  age: number;

		  address: string;

		}

		 

		interface Builder<T> {

		  [K in keyof T]: (value: T[K]) => Builder<T>;

		  build(): T;

		}

		 

		const person = builder<Person>({ name: 'John' })

		  .age(30)

		  .address('123 Main St')

		  .build();

		 

		console.log(person); // { name: 'John', age: 30, address: '123 Main St' }

		

		

		In this example, we define a builder function that creates a builder object for constructing complex objects. We use the Proxy object to dynamically create a builder object that enforces type safety and makes it easier to construct complex objects.

		

		We define a Partial type that allows us to make all properties of an object optional. We then use this type to define the options parameter for the builder function.

		

		We define a Builder interface that uses the keyof operator to ensure that all builder methods are type-safe and enforce the correct property type.

		

		We then define a new Proxy object that intercepts all property access and method calls. If the build method is accessed, we return a function that returns the completed options object. Otherwise, we return a function that creates a new builder object with the updated property value.

		

		Using Metaprogramming and Reflection to Generate Type Guards

		

		In this example, we’ll use metaprogramming and reflection to generate type guards for TypeScript classes. We’ll use the Reflect object to extract the type information from class instances, making it easier to generate type guards dynamically.

		

		

		function isInstanceOf<T>(object: any, constructor: new (...args: any[]) => T): object is T {

		  return object instanceof constructor;

		}

		 

		function isObject(value: any): value is object {

		  return typeof value === 'object' && value !== null;

		}

		 

		function isClass(value: any): value is Function {

		  return typeof value === 'function' && /^\s*class\s+/.test(value.toString());

		}

		 

		function generateTypeGuard<T>(constructor: new (...args: any[]) => T) {

		  return function (object: any): object is T {

		    if (!isObject(object)) {

		      return false;

		    }

		 

		    const target = Reflect.construct(constructor, []);

		 

		    for (const key in target) {

		      if (object.hasOwnProperty(key) && typeof object[key] !== typeof target[key]) {

		        return false;

		      }

		    }

		 

		    return true;

		  };

		}

		 

		class Person {

		  constructor(public name: string, public age: number) {}

		}

		 

		const isPerson = generateTypeGuard(Person);

		 

		console.log(isPerson({ name: 'John', age: 30 })); // true

		console.log(isPerson({ name: 'John', age: '30' })); // false

		console.log(isPerson('John')); // false

		console.log(isPerson(new Person('John', 30))); // true

		

		

		In this example, we define a generateTypeGuard function that generates a type guard for the specified class constructor. We use the Reflect object to extract the type information from class instances, making it easier to generate type guards dynamically.

		

		It is possible to tell whether a value is an object or a class constructor by using two helper functions that we create, isObject and isClass.

		

		Then we add a new function called isInstanceOf that checks to see if an object is an instance of the class whose constructor is specified.

		

		The newly defined function generateTypeGuard is then used to extract the type information from a brand-new instance of the specified class constructor.

		

		The following action is to iterate through the keys of the new instance and check to see if the type of each property matches that of the corresponding property on the object.

		

		Finally, we define a Person class and generate a type guard for it using the generateTypeGuard function. We then use the generated type guard to check if various objects are instances of the Person class.

		

		Using Metaprogramming and Reflection to Implement basic Dependency Injection

		

		In this example, we’ll use metaprogramming and reflection to implement dependency injection in TypeScript. We’ll use the Reflect object to extract the type information from class constructors and dynamically instantiate dependencies, making it easier to manage and inject dependencies in a maintainable and scalable way.

		

		

		interface InjectableOptions {

		  providedIn?: 'root' | Type<any>;

		}

		 

		function Injectable(options?: InjectableOptions) {

		  return function (target: any) {

		    if (options && options.providedIn) {

		      // Register provider with root injector

		    } else {

		      // Register provider with local injector

		    }

		  };

		}

		 

		function Inject(token: Type<any>) {

		  return function (target: any, key: string, index: number) {

		    const dependencies = Reflect.getMetadata('design:paramtypes', target) || [];

		    dependencies[index] = token;

		    Reflect.defineMetadata('design:paramtypes', dependencies, target);

		  };

		}

		 

		class UserService {

		  getUsers() {

		    return ['John', 'Jane', 'Bob'];

		  }

		}

		 

		class AppComponent {

		  constructor(@Inject(UserService) private userService: UserService) {}

		 

		  render() {

		    const users = this.userService.getUsers();

		    // Render users

		  }

		}

		 

		const app = new AppComponent(new UserService());

		app.render();

		

		

		In this example, we define an Injectable decorator that registers a class as a provider with either the root injector or a local injector, depending on the providedIn option. We also define an Inject decorator that injects a dependency into a constructor parameter and updates the constructor’s metadata to reflect the dependency injection.

		

		Then, using the Inject decorator, we define a UserService class and an AppComponent class that both inject instances of the UserService class.

		

		A fresh instance of the UserService class is added as a parameter to the newly created AppComponent instance.

		

		After that, we invoke the AppComponent instance’s render method, which retrieves and renders users using the UserService instance that was just injected.

		

		With the help of reflection and metaprogramming, dependency injection in TypeScript is demonstrated in this solution.

		

		The ability to manage and inject dependencies in a maintainable and scalable manner while reducing code repetition is made possible by extracting type information from class constructors and dynamically instantiating dependencies.

		

		Metaprogramming techniques in TypeScript to track the order of called methods in an Class , execution performance , classname , and how many time each method is getting called

		

		

		function logCalls<T extends { new(...args: any[]): {} }>(constructor: T) {

		  const className = constructor.name;

		  const methodNames = Object.getOwnPropertyNames(constructor.prototype);

		 

		  methodNames.forEach((methodName) => {

		    const descriptor = Object.getOwnPropertyDescriptor(constructor.prototype, methodName);

		    const isMethod = descriptor?.value instanceof Function;

		 

		    if (methodName !== 'constructor' && isMethod) {

		      const originalMethod = descriptor?.value;

		 

		      if (originalMethod) {

		        constructor.prototype[methodName] = function (this: InstanceType<T>, ...args: Parameters<typeof originalMethod>) {

		          const start = Date.now();

		          const result = originalMethod.apply(this, args);

		          const end = Date.now();

		          const executionTime = end - start;

		          console.log(`Called method: ${className}.${methodName}, execution time: ${executionTime}ms`);

		          return result;

		        };

		      }

		    }

		  });

		 

		  return constructor;

		}

		

		

		logCalls decorator makes use of metaprogramming techniques in TypeScript. Metaprogramming is the practice of writing code that operates on code itself, and this decorator modifies the behavior of class methods at runtime by replacing them with wrapped versions that include logging functionality.

		

		Specifically, the logCalls decorator modifies the prototype of the class being decorated to replace each method with a new function that logs the method name and execution time before invoking the original method. This is accomplished by using the Object.getOwnPropertyNames method to obtain the list of method names for the class, and then iterating over each method to replace it with a wrapped version that includes logging functionality.

		

		This use of reflection and runtime manipulation of class methods is a common metaprogramming technique, and is particularly powerful in TypeScript due to its support for strong typing and runtime introspection.
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		Typescript Decorators
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		In TypeScript, decorators are represented using the @ symbol followed by the decorator function or expression. The decorator function takes the target object as its parameter and can modify or return a new version of it.

		

		Decorators can be applied to various elements of a class, such as:

		

		Class declarations: to modify the behavior or metadata of a class

		Method declarations: to modify the behavior or metadata of a method

		Property declarations: to modify the behavior or metadata of a property

		Parameter declarations: to modify the behavior or metadata of a parameter of a method or constructor.

		

		Overall, decorators are a powerful feature that can help you to write cleaner, more maintainable, and more flexible code.

		

		Is important to know that huge parts of modern libraries/frameworsks rely on decorators . Here’s a list of TypeScript/JavaScript decorators used in famous frameworks and libraries:

		

		@Component (Angular) - Used to define a component in Angular and provides metadata, such as the component’s selector, template, and styles.

		@Injectable (Angular) - Marks a class as a dependency injectable provider in Angular, allowing other components to request it through constructor injection.

		@Directive (Angular) - Used to define a custom attribute directive in Angular, which can modify the behavior or appearance of an element in the DOM.

		@ViewChild (Angular) - Used to access a child component, directive, or DOM element from within a parent component in Angular.

		@Output (Angular) - Used to define an output property that can emit events from a component or directive to its parent component.

		@Input (Angular) - Used to define an input property that can be bound to a parent component’s property, allowing data to flow from the parent to the child component.

		@HostListener (Angular) - Used to declare a DOM event that a directive or component should listen to and react upon.

		@autobind (MobX) - A decorator from the MobX library that automatically binds class methods to the instance, making it easier to use with event handlers and callbacks.

		@observable (MobX) - Used in the MobX library to mark a property as observable, which allows the property to be tracked for changes and trigger reactions when updated.

		@action (MobX) - A decorator from the MobX library that marks a method as an action, allowing it to modify observable state and ensure that all changes are batched and performed efficiently.

		@Component (Vue Class Component) - A decorator for Vue.js that allows you to write Vue components using classes instead of the traditional options object.

		@Prop (Vue Class Component) - A decorator for Vue.js that allows you to define a prop with type information and default values in a class-based component.

		@Watch (Vue Class Component) - A decorator for Vue.js that allows you to define a watcher for a specific property in a class-based component.

		@Emit (Vue Property Decorator) - A decorator for Vue.js that makes it easy to emit custom events from a class-based component.

		@Ref (Vue Property Decorator) - A decorator for Vue.js that provides access to child components or DOM elements via the ref attribute in a class-based component.

		@controller (routing-controllers) - A decorator for Express.js used to define a controller class, which can handle multiple routes and actions.

		@httpGet (inversify-express-utils) - A decorator for Express.js that allows you to define a route handler for HTTP GET requests in a class-based controller.

		@httpPost (inversify-express-utils) - Similar to @httpGet, this decorator for Express.js allows you to define a route handler for HTTP POST requests in a class-based controller.

		@withRouter (React-Router) - Although not a decorator, this Higher-Order Component (HOC) from React-Router enables you to access routing-related props, such as match, location, and history, within a React component.

		@withStyles (Material-UI) - Another HOC, rather than a decorator, @withStyles from Material-UI is used to apply CSS-in-JS styles to a React component, allowing for scoped and dynamic styling.

		

		Note that some of these decorators are provided by community-driven projects and are not part of the core libraries themselves.

		

		

		function logClass(target: any) {

		  console.log(`Class ${target.name} is defined.`);

		}

		 

		@logClass

		class MyClass {

		  // class implementation

		}

		

		

		In this example, we define a decoration function logClass that takes a class as its parameter and writes a message to the console with the class name. Next we decorate the MyClass class with the @ symbol. When we run this code, the following message will be entered in the console:

		

		Class MyClass is defined.

		

		This is just a simple example, but you can think of many other applications for classroom decorators. For example, you can use decoration to add privacy policies to a class’s resources, or automatically create documentation for the class and its members. Another useful example of class decorators is adding mixins to a class. Mixin is a way to add functionality to a class without inheriting from it. You can define a separate class that provides mixin functionality and then apply it to one or more target classes using the decorator.

		

		

		function withLogger<T extends { new (...args: any[]): {} }>(targetClass: T) {

		  return class extends targetClass {

		    log(message: string) {

		      console.log(`${this.constructor.name}: ${message}`);

		    }

		  };

		}

		 

		@withLogger

		class MyClass {

		  // class implementation

		}

		 

		const myInstance = new MyClass();

		myInstance.log("Hello, world!");

		

		

		In this example, we define a mixin class withLogger that adds a log method to the target class. The withLogger decorator returns a new class that extends the target class and adds the log method. Next we apply the withLogger decorator to the MyClass class, and create an instance of it. If we call the calculate method on the instance, it will send a message to the console with the class name.

		

		Class decorators can be very useful in various situations where you want to modify the behavior or metadata of a class at design time. They allow you to write clean, modular code and add new functionality to your classes without modifying their source code.

		

		Examples of class decorators

		

		Dependency Injection

		

		One common use case for class decorators is implementing dependency injection in . Dependency injection is a technique that allows you to add dependencies to a class at a time, rather than creating or managing your class’s own dependencies or adding elements to the class builder you can use a class decorator.

		

		

		interface MyService {

		  // interface implementation

		}

		 

		@injectable

		class MyClass {

		  constructor(private myService: MyService) {

		    // constructor implementation

		  }

		 

		  // class implementation

		}

		 

		function injectable(target: any) {

		  const dependencies = Reflect.getMetadata('design:paramtypes', target) || [];

		  const injectedParams = dependencies.map((dependency: any) => new dependency());

		  return new target(...injectedParams);

		}

		

		

		In this example, we create an injectable decorator function that takes a class as a parameter and injects its dependencies into its constructor using reflection. The injectable decorator uses the Reflect . getMetadata function to retrieve the list of dependencies from the class constructor’s metadata, creates instances of the dependencies, and then returns a new instance of the target class that includes the injected dependencies. The injectable decorator is then implemented in the MyClass class, and its constructor is passed to the MyService dependency. It will automatically inject the MyService dependency when we create an instance of MyClass.

		

		Serialization

		

		Using TypeScript to implement serialization is another application for the Serialization class decorator. Serialization is the process of transforming an object into a format suitable for network storage or transmission. To give a class serialization capabilities, use a class decorator. as in:.

		

		

		@serializable

		class MyClass {

		  constructor(public name: string, public age: number) {

		    // constructor implementation

		  }

		 

		  // class implementation

		}

		 

		function serializable(target: any) {

		  target.serialize = () => {

		    const properties = Object.getOwnPropertyNames(target.prototype);

		    const serializedObject = {};

		    for (let property of properties) {

		      if (typeof target.prototype[property] !== 'function') {

		        serializedObject[property] = target.prototype[property];

		      }

		    }

		    return serializedObject;

		  }

		}

		

		

		In this example, we create simple decorator function serializable that can take a class as its parameter and adds a serialize method to it . The serialize method loops over the properties of class using Object.getOwnPropertyNames, checks that they are not functions, and adds them to a serialized object one by one.

		

		The MyClass class is then decorated with the serializable decorator, and its properties are defined. A serialized object with the class properties is always returned when the serialize method is called on a MyClass instance.

		

		These are just two of the numerous applications for class decorators in TypeScript. You can extend and change the behavior of your classes in a modular and reusable way using class decorators.

		

		Method decorator in TypeScript

		

		

		function retry(maxAttempts: number, delay: number) {

		  return function(target: any, propertyKey: string, descriptor: PropertyDescriptor) {

		    const originalMethod = descriptor.value;

		    descriptor.value = async function(...args: any[]) {

		      let attempt = 1;

		      while (attempt <= maxAttempts) {

		        try {

		          const result = await originalMethod.apply(this, args);

		          return result;

		        } catch (error) {

		          if (attempt < maxAttempts) {

		            console.log(`Method ${propertyKey} failed on attempt ${attempt}. Retrying in ${delay}ms...`);

		            await new Promise(resolve => setTimeout(resolve, delay));

		          } else {

		            console.log(`Method ${propertyKey} failed on attempt ${attempt}. No more retries.`);

		            throw error;

		          }

		        }

		        attempt++;

		      }

		    };

		    return descriptor;

		  };

		}

		 

		class ApiService {

		  @retry(3, 1000)

		  async fetchData(url: string) {

		    const response = await fetch(url);

		    if (!response.ok) {

		      throw new Error(`Failed to fetch data from ${url}. Status code: ${response.status}`);

		    }

		    const data = await response.json();

		    return data;

		  }

		}

		

		

		In this example, we create the method decorator function retry, which has two inputs: the maximum number of attempts and the millisecond interval between retries. Another function is returned by the decorator function, and it accepts the class prototype as its target object, the method name, and the method descriptor. The inner function switches out the initial method implementation for a new asynchronous implementation that, if the method call fails, retries it up to the maximum number of times with a delay in between.

		

		The fetchData method of an ApiService class is then decorated with the retry decorator using the @ symbol. The fetchData method retrieves data from a URL using the fetch API, and if the operation fails, it tries again up to three times with a one-second delay in between each attempt.

		

		As we delve into the world of distributed systems, we’re met with an array of challenges. Indeed, network hiccups, database timeouts, and fleeting failures emerge. Don’t fret! Method decorators, such as retry, swoop in to save the day. By auto-retrying failed operations, your app’s resilience and reliability soar, giving users a memorable experience.

		

		Caching: Imagine calling a resource-intensive method. Presto! A method decorator stores the results. The same arguments resurface? The decorator conjures them up.

		

		Logging: Debugging woes? Fret not. Method decorators document calls and outcomes, paving the path to problem-solving.

		

		Authorization: Curious if users can access a method? A method decorator unravels the mystery, raising an error if access is denied.

		

		Validation: Determining argument types and values? A decorator’s got your back. Errors arise when mismatches occur.

		

		Performance Metrics

		

		You can use method decorators to measure the performance of methods in your application. By wrapping a method with a timing function, you can measure how long it takes to execute the method and log the results to a performance monitoring tool or the console.

		

		Here’s an example of a performance metrics method decorator:

		

		

		function measurePerformance(target: any, propertyKey: string, descriptor: PropertyDescriptor) {

		  const originalMethod = descriptor.value;

		  descriptor.value = function(...args: any[]) {

		    const startTime = performance.now();

		    const result = originalMethod.apply(this, args);

		    const endTime = performance.now();

		    console.log(`Method ${propertyKey} took ${endTime - startTime} ms to complete.`);

		    return result;

		  };

		  return descriptor;

		}

		 

		class MyService {

		  @measurePerformance

		  myMethod(arg1: number, arg2: string) {

		    // method implementation

		  }

		}

		

		

		In this example, we define a method decorator function measurePerformance that takes the target object (the class prototype), the name of the method, and the method descriptor. The decorator function replaces the original method implementation with a new implementation that measures the execution time of the method using the performance.now API, logs the results to the console, and returns the method result.

		

		Then we apply the measurePerformance decorator to the myMethod method of the MyService class using the @ symbol. When we call the myMethod method, its execution time will be logged to the console.

		

		Transaction Management

		

		You can use method decorators to implement transaction management in your application. A transaction is a sequence of database operations that must be executed as a single, atomic unit of work. By wrapping a method with a transaction function, you can ensure that all database operations are executed within a single transaction, and rollback the transaction if any of the operations fail.

		

		Here’s an example of a transaction method decorator:

		

		

		function transactional(target: any, propertyKey: string, descriptor: PropertyDescriptor) {

		  const originalMethod = descriptor.value;

		  descriptor.value = async function(...args: any[]) {

		    const transaction = await beginTransaction();

		    try {

		      const result = await originalMethod.apply(this, args);

		      await commitTransaction(transaction);

		      return result;

		    } catch (error) {

		      await rollbackTransaction(transaction);

		      throw error;

		    }

		  };

		  return descriptor;

		}

		 

		class MyService {

		  @transactional

		  async myMethod(arg1: number, arg2: string) {

		    // database operations

		  }

		}

		

		

		In this example, we define a method decorator function transactional that takes the target object (the class prototype), the name of the method, and the method descriptor. The decorator function replaces the original method implementation with a new asynchronous implementation that starts a database transaction using the beginTransaction function, executes the method implementation, and then either commits or rolls back the transaction based on the outcome.

		

		Then we apply the transactional decorator to the myMethod method of the MyService class using the @ symbol. When we call the myMethod method, all database operations will be executed within a transaction, and the transaction will be rolled back if any of the operations fail.

		

		In a read world app , method decorators like measurePerformance and transactional become incredibly valuable. They tackle cross-cutting concerns head-on, encompassing performance tracking, error management, and database transactions.

		

		Property decorators in TypeScript

		

		

		function column(options: { name?: string, type?: string, primaryKey?: boolean }) {

		  return function(target: any, propertyKey: string) {

		    const tableName = target.constructor.name;

		    const columnName = options.name || propertyKey;

		    const columnType = options.type || 'text';

		    const isPrimaryKey = options.primaryKey || false;

		    const columns = Reflect.getMetadata('columns', target.constructor) || [];

		    columns.push({ tableName, columnName, columnType, isPrimaryKey });

		    Reflect.defineMetadata('columns', columns, target.constructor);

		  };

		}

		 

		class User {

		  @column({ name: 'id', type: 'integer', primaryKey: true })

		  id: number;

		 

		  @column({ name: 'name' })

		  name: string;

		 

		  @column({ name: 'email' })

		  email: string;

		 

		  constructor(id: number, name: string, email: string) {

		    this.id = id;

		    this.name = name;

		    this.email = email;

		  }

		}

		

		

		Property decorators serve as a powerful tool for altering a property’s behavior or metadata, such as its type, validation, serialization, or persistence. A prevalent use case for property decorators is implementing object-relational mapping (ORM) in TypeScript, where objects are mapped to database tables and columns.

		

		Consider this example: We define a property decorator function, column, which accepts an options object containing the column name, type, and primary key flag. This function then returns another function that takes the target object (the class prototype) and the name of the property. The decorator function employs the Reflect.defineMetadata function to add metadata about the property to the target object. Furthermore, it stores the metadata in a columns array using the Reflect.getMetadata function.

		

		Then we apply the column decorator to the id, name, and email properties of the User class using the @ symbol. The User class represents a user entity that has an id, name, and email property. The id property is marked as a primary key column with an integer type, while the name and email properties are marked as text columns.

		

		When we create an instance of User, its properties are automatically mapped to database columns using the column metadata. We can use the column metadata to generate SQL statements, validate data types, or serialize the object to JSON.

		

		ORM frameworks like TypeORM, Sequelize, or Prisma use property decorators to implement object-relational mapping in TypeScript. By using property decorators, you can add persistence-related behavior to your classes in a modular and reusable way, and reduce the amount of boilerplate code you need to write.

		

		Property decorators can be employed to implement validation and transformation logic for properties, such as verifying their values, formatting their display, or encrypting their data. A typical use case for property decorators is implementing data validation in TypeScript, ensuring that an object’s properties adhere to specific criteria before being used or saved.

		

		

		function validate(options: { required?: boolean, minLength?: number, maxLength?: number, pattern?: RegExp }) {

		  return function(target: any, propertyKey: string) {

		    const originalDescriptor = Object.getOwnPropertyDescriptor(target, propertyKey);

		    const newDescriptor = {

		      get: originalDescriptor?.get,

		      set: function(value: any) {

		        if (options.required && !value) {

		          throw new Error(`Property ${propertyKey} is required.`);

		        }

		        if (options.minLength && value.length < options.minLength) {

		          throw new Error(`Property ${propertyKey} must be at least ${options.minLength} characters long.`);

		        }

		        if (options.maxLength && value.length > options.maxLength) {

		          throw new Error(`Property ${propertyKey} cannot be longer than ${options.maxLength} characters.`);

		        }

		        if (options.pattern && !options.pattern.test(value)) {

		          throw new Error(`Property ${propertyKey} must match the pattern ${options.pattern}.`);

		        }

		        originalDescriptor?.set?.call(this, value);

		      }

		    };

		    Object.defineProperty(target, propertyKey, newDescriptor);

		  };

		}

		 

		class User {

		  @validate({ required: true, minLength: 6, maxLength: 20 })

		  username: string;

		 

		  @validate({ required: true, pattern: /^[a-zA-Z0-9._-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$/ })

		  email: string;

		 

		  constructor(username: string, email: string) {

		    this.username = username;

		    this.email = email;

		  }

		}

		

		

		We start by defining a property decorator function, validate, which accepts an options object containing validation criteria, such as required, min length, max length, and pattern. This function then returns another function that takes the target object (the class prototype) and the name of the property. The decorator function replaces the original property descriptor with a new one that checks the property value against the validation criteria, throwing an error if the value is invalid.

		

		Next, we apply the validate decorator to the username and email properties of the User class using the @ symbol. The User class represents a user entity with a username and an email property. The username property is marked as required and must be between 6 and 20 characters long, while the email property is marked as required and must match a valid email pattern.

		

		When creating a User instance and assigning its properties, the values automatically undergo validation based on the established criteria. If the values don’t meet the requirements, an error arises, and the object remains uncreated.

		

		In practical situations where accurate and consistent data is vital, property decorators like ‘validate’ play a crucial role. Utilizing property decorators enables you to incorporate validation logic into properties in a modular and reusable manner, significantly decreasing the volume of validation code required.

		

		Parameter decorators serve as a valuable tool for modifying a method or constructor parameter’s behavior or metadata, including its type, default value, validation, or injection.

		

		

		import 'reflect-metadata';

		 

		interface Dependencies {

		  methodName: string;

		  parameterIndex: number;

		  serviceIdentifier: any;

		}

		 

		function inject<T>(serviceIdentifier: symbol) {

		  return function(target: any, methodName: string, parameterIndex: number) {

		    const constructor = target.constructor;

		    const dependencies: Dependencies[] = Reflect.getMetadata('dependencies', constructor) || [];

		    dependencies.push({ methodName, parameterIndex, serviceIdentifier });

		    Reflect.defineMetadata('dependencies', dependencies, constructor);

		  };

		}

		 

		class UserService {

		  constructor(private readonly logger: LoggerService, private readonly database: DatabaseService) {}

		 

		  async getUser(@inject<LoggerService>(Symbol.for('LoggerService')) id: number): Promise<void> {

		    // method implementation

		  }

		}

		 

		class LoggerService {}

		class DatabaseService {}

		 

		const userService = new UserService(new LoggerService(), new DatabaseService());

		

		

		A prevalent use case for parameter decorators is implementing dependency injection (DI) in TypeScript, which involves injecting dependencies into a class’s constructor or methods. This technique promotes loose coupling, maintainability, and testability within your application.

		

		The inject function is a decorator that can be used to add metadata about dependencies to a class constructor or method. It takes a service identifier as an argument and returns a function that can be used to decorate a method parameter. When the decorated method is called, the inject function reads the metadata from the constructor and resolves the dependencies based on the service identifier.

		

		The Dependencies interface defines the shape of the metadata that the inject function adds to the constructor. It contains the name of the method, the index of the parameter, and the service identifier.

		

		The UserService class is an example class that has dependencies on LoggerService and DatabaseService. The constructor takes instances of these services as arguments, and the getUser method takes an id parameter that is decorated with the inject function.

		

		The LoggerService and DatabaseService classes are example service classes that can be used as dependencies for the UserService. These classes could represent any external resource that the UserService needs to interact with.

		

		Using the inject function and metadata enables us to separate the UserService class’s dependencies from the class itself. This results in more modular and maintainable code while simplifying the testing of the UserService class in isolation. Additionally, it assists in detecting errors during compile-time instead of runtime, as the TypeScript compiler verifies that dependencies match the expected types.

		

		In summary, this pattern is beneficial for larger applications with numerous classes and dependencies. It helps manage the codebase’s complexity and ensures that classes remain decoupled and testable.

		

		Parameter decorators

		

		In order to implement caching and memoization logic for methods, such as storing the results of computations that use a lot of resources, retrieving data from a cache, or limiting the number of API calls, parameter decorators can be used. When using parameter decorators to implement caching and memoization in TypeScript, you frequently cache a method’s output based on its input parameters.

		

		

		function memoize(cacheKey: (args: any[]) => string) {

		  const cache = new Map<string, any>();

		  return function(target: any, methodName: string, parameterIndex: number) {

		    const originalMethod = target[methodName];

		    target[methodName] = function(...args: any[]) {

		      const key = cacheKey(args);

		      if (cache.has(key)) {

		        return cache.get(key);

		      }

		      const result = originalMethod.apply(this, args);

		      cache.set(key, result);

		      return result;

		    };

		  };

		}

		 

		class ProductService {

		  @memoize(args => args.join('-'))

		  async getProduct(name: string, category: string) {

		    // method implementation

		  }

		}

		

		

		In this example we create a parameter decorator function called memoize that accepts a cache key function that maps the method parameters to a cache key and returns another function that requires the target object (the class prototype), the method name, and the parameter index. The decorator function replaces the original method implementation with a new one that, using the cache key, searches for the method result in a cache and, if it isn’t already there, adds it to the cache.

		

		The getProduct method of the ProductService class is then decorated with the memoize decorator by using the @ symbol. A service that retrieves products based on their name and category is represented by the ProductService class. The memoize decorator is used to indicate that the getProduct method, which accepts the parameters name and category, has been memoized.

		

		Only the first call will result in method implementation when we repeatedly call the ProductService’s getProduct method with the same name and category parameters; subsequent calls will instead return the cached result. This can help your application run more efficiently and lessen the load placed on external APIs and databases.

		

		When adding caching and memoization logic to your methods in practical situations, parameter decorators like memoize can be very helpful. You can modularize and reuse this logic by using parameter decorators, which ultimately cuts down on the amount of code you have to write.

		

		Decorators and metaprogramming

		

		Decorators and metaprogramming in TypeScript are interconnected, as decorators facilitate the manipulation of metadata for classes, methods, properties, and parameters at runtime—a fundamental aspect of metaprogramming. Metaprogramming is a programming technique enabling the creation of programs that generate, manipulate, or analyze other programs, often during runtime. It is particularly useful for developing code that is generic, extensible, or adaptable to various scenarios.

		

		Decorators offer a means to annotate code with metadata, which can be utilized by metaprogramming techniques. As functions that can be applied to classes, methods, properties, and parameters, decorators can modify behavior or metadata based on specific criteria. They can read or write metadata using the Reflect object, which grants access to and modification of metadata for a class or object during runtime.

		

		By using decorators, TypeScript metaprogramming techniques can be implemented to:

		

		Dynamically generate code based on metadata, such as producing database schemas, API routes, or UI components from classes and their metadata.

		

		Dynamically modify the behavior of code based on metadata, like adding logging, validation, caching, or retrying to methods and their parameters according to their metadata.

		

		Dynamically analyze code based on metadata, for instance, identifying security vulnerabilities, performance bottlenecks, or code smells through the metadata of classes and their properties.

		

		In summary, decorators and metaprogramming in TypeScript offer a powerful approach to crafting more adaptable and flexible code that can be repurposed in diverse situations.

		

		By using decorators, metadata can be added to the code, allowing metaprogramming techniques to dynamically generate, modify, or analyze code at runtime, and enhancing the overall utility and versatility of your codebase.
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		Asynchronous language features
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		TypeScript is great for asynchronous JavaScript language features because it provides additional type safety and helps to reduce common errors that can occur when working with asynchronous code.

		

		Usage of static type checking into the traditionally dynamic and asynchronous JavaScript environment makes it an ideal language for the development of asynchronous applications. This is because it enables developers to avoid the common pitfalls that often occur when working with asynchronous code, such as incorrect argument calls and improper promise chaining. TypeScript’s support for advanced language features such as async/await syntax and Promises make it an optimal choice for writing reliable, maintainable, and efficient asynchronous code. In this chapter we will explore Typescript examples of Async Generators & Iterators, Generators, Async/Await, Promises, Observables (RxJS) although not part of TypeScript itself and more .

		

		Promises: TypeScript has full support for Promises, which are a fundamental building block for asynchronous programming. Promises represent the eventual completion (or failure) of an asynchronous operation, allowing you to chain callbacks and handle errors more effectively.

		

		Promises in TypeScript, implementing a simple retry mechanism for a function that might fail

		

		

		type AsyncFunction<T> = () => Promise<T>;

		 

		function retry<T>(asyncFunction: AsyncFunction<T>, retries: number, delay: number): Promise<T> {

		  return new Promise((resolve, reject) => {

		    async function attempt() {

		      try {

		        const result = await asyncFunction();

		        resolve(result);

		      } catch (error) {

		        if (retries > 0) {

		          setTimeout(() => {

		            retries--;

		            attempt();

		          }, delay);

		        } else {

		          reject(error);

		        }

		      }

		    }

		 

		    attempt();

		  });

		}

		 

		// Example usage:

		 

		async function fetchData(): Promise<string> {

		  // This function simulates an API call that might fail randomly.

		  return new Promise((resolve, reject) => {

		    setTimeout(() => {

		      Math.random() > 0.5 ? resolve("Success!") : reject(new Error("Failed to fetch data."));

		    }, 1000);

		  });

		}

		 

		async function main() {

		  try {

		    const data = await retry(fetchData, 3, 1000);

		    console.log(data);

		  } catch (error) {

		    console.error(error.message);

		  }

		}

		 

		main();

		

		

		This example defines an asynchronous function, asyncFunction , which is a generic retry function that requires a number of retries and a delay between retries. The retry function returns an asyncFunction promise that checks for success or rejects with an error if all attempts fail. There is also a fetchData function that simulates an API call with a 50% chance of failure. In the main function, we use the retry function to call fetchData with three attempts and a delay of 1 second between attempts. When an API call completes successfully, it logs the result. Otherwise, it logs an error message.

		

		Promises and async/await allow TypeScript to create additional and flexible error handling mechanisms for asynchronous operations.

		

		Async functions

		

		Introduced in ES2017, async functions simplify working with Promises by allowing you to write asynchronous code that looks and behaves like synchronous code. In TypeScript, you can use the async keyword when defining a function to indicate that it is asynchronous.

		

		Example demonstrating the use of async functions in TypeScript, implementing a simple task queue with concurrency control

		

		

		class TaskQueue {

		  private pendingTasks: (() => Promise<void>)[] = [];

		  private activeTasks: Promise<void>[] = [];

		  private concurrency: number;

		 

		  constructor(concurrency: number) {

		    this.concurrency = concurrency;

		  }

		 

		  async addTask(task: () => Promise<void>) {

		    this.pendingTasks.push(task);

		    await this.runNextTask();

		  }

		 

		  private async runNextTask() {

		    if (this.activeTasks.length >= this.concurrency || this.pendingTasks.length === 0) {

		      return;

		    }

		 

		    const task = this.pendingTasks.shift();

		    if (task) {

		      const promise = task().finally(() => {

		        this.activeTasks = this.activeTasks.filter(p => p !== promise);

		        this.runNextTask();

		      });

		 

		      this.activeTasks.push(promise);

		    }

		 

		    if (this.activeTasks.length < this.concurrency) {

		      this.runNextTask();

		    }

		  }

		}

		 

		// Example usage:

		 

		async function exampleTask(name: string, duration: number) {

		  console.log(`Task ${name} started.`);

		  await new Promise(resolve => setTimeout(resolve, duration));

		  console.log(`Task ${name} completed.`);

		}

		 

		async function main() {

		  const taskQueue = new TaskQueue(2); // Limit concurrency to 2 tasks

		 

		  taskQueue.addTask(() => exampleTask("A", 1000));

		  taskQueue.addTask(() => exampleTask("B", 2000));

		  taskQueue.addTask(() => exampleTask("C", 1500));

		  taskQueue.addTask(() => exampleTask("D", 500));

		}

		 

		main();

		

		

		This example creates a TaskQueue class that manages the execution of asynchronous tasks with a certain level of concurrency. TaskQueue has an array of pending tasks to store tasks that have not yet started and an array of activeTasks to keep track of tasks in progress. It defines an addTask method that adds a new task to the queue and an asynchronous runNextTask method that starts the next task to be run if the concurrency limit is not reached.

		

		The exampleTask creates a simple asynchronous function that simulates a task with a given name and duration. In the main function, we create an instance of TaskQueue with a concurrency limit of 2 and add 4 task instances to the queue.

		

		You can use asynchronous functions and promise-based concurrency checking to create advanced work queue systems with adjustable concurrency limits in TypeScript.

		

		Await

		

		Used in conjunction with async functions, the await keyword allows you to pause the execution of an async function until a Promise is settled (either fulfilled or rejected). This makes it much easier to write clean and readable asynchronous code.

		

		Here’s an advanced example demonstrating the use of await in TypeScript, implementing a rate-limited API call executor

		

		

		class RateLimiter {

		  private tokens: number;

		  private refillRate: number;

		  private lastRefill: number;

		 

		  constructor(tokensPerMinute: number) {

		    this.tokens = tokensPerMinute;

		    this.refillRate = 60000 / tokensPerMinute;

		    this.lastRefill = Date.now();

		  }

		 

		  async acquireToken(): Promise<void> {

		    const now = Date.now();

		    const timeSinceLastRefill = now - this.lastRefill;

		 

		    this.tokens += Math.floor(timeSinceLastRefill / this.refillRate);

		    this.tokens = Math.min(this.tokens, this.refillRate);

		    this.lastRefill = now;

		 

		    if (this.tokens < 1) {

		      const waitTime = this.refillRate - timeSinceLastRefill;

		      await new Promise<void>((resolve) => setTimeout(resolve, waitTime));

		      await this.acquireToken(); // Try again after waiting

		    } else {

		      this.tokens--;

		    }

		  }

		}

		 

		async function rateLimitedApiCall(rateLimiter: RateLimiter, apiCall: () => Promise<string>): Promise<string> {

		  await rateLimiter.acquireToken();

		  return apiCall();

		}

		 

		// Example usage:

		 

		async function mockApiCall(): Promise<string> {

		  await new Promise(resolve => setTimeout(resolve, 500));

		  return 'API call completed';

		}

		 

		async function main() {

		  const rateLimiter = new RateLimiter(5); // Allow 5 API calls per minute

		 

		  for (let i = 0; i < 10; i++) {

		    const result = await rateLimitedApiCall(rateLimiter, mockApiCall);

		    console.log(`API call ${i + 1}: ${result}`);

		  }

		}

		 

		main();

		

		

		In this example, we define a RateLimiter class to limit the number of API calls per minute. The RateLimiter maintains tokens, the refill rate, and the last refill timestamp. The acquireToken method is an async function that refills tokens based on the elapsed time since the last refill and waits if necessary before acquiring a token.

		

		The rateLimitedApiCall function is a wrapper for the actual API call function, which takes a RateLimiter instance and an API call function as arguments. It first acquires a token using await, then executes the API call.

		

		The mockApiCall function simulates an API call with a fixed 500ms delay. In the main function, we create a RateLimiter instance with a limit of 5 API calls per minute and execute 10 API calls using the rateLimitedApiCall function.

		

		By using await in combination with async functions, we can create a rate-limited API call executor that efficiently manages the rate at which API calls are made in TypeScript.

		

		Generators

		

		TypeScript supports generator functions, which allow you to define a function that can be paused and resumed at any time. Generators can be used in conjunction with Promises and other asynchronous techniques to create more advanced async workflows.

		

		Generator functions in TypeScript, implementing a simple task scheduler

		

		

		type Task = {

		  id: number;

		  priority: number;

		};

		 

		function* taskGenerator(tasks: Task[]): IterableIterator<Task> {

		  while (tasks.length > 0) {

		    tasks.sort((a, b) => b.priority - a.priority);

		    const nextTask = tasks.shift();

		    if (nextTask) {

		      yield nextTask;

		    }

		  }

		}

		 

		async function executeTask(task: Task): Promise<void> {

		  console.log(`Task ${task.id} started with priority ${task.priority}.`);

		  await new Promise(resolve => setTimeout(resolve, 1000));

		  console.log(`Task ${task.id} completed.`);

		}

		 

		async function main() {

		  const tasks: Task[] = [

		    { id: 1, priority: 2 },

		    { id: 2, priority: 1 },

		    { id: 3, priority: 3 },

		    { id: 4, priority: 1 }

		  ];

		 

		  const taskIterator = taskGenerator(tasks);

		 

		  for (const task of taskIterator) {

		    await executeTask(task);

		  }

		}

		 

		main();

		

		

		In this example, we define a Task type with an id and a priority. We also create a generator function, taskGenerator, which takes an array of tasks and yields the highest priority task at each iteration.

		

		The executeTask function is an async function that simulates the execution of a task with a one-second delay. It logs the start and completion of the task.

		

		In the main function, we define an array of tasks with varying priorities. We create an iterator for the tasks using the taskGenerator function and iterate over the tasks using a for…of loop. Inside the loop, we await the execution of each task.

		

		By using generator functions and async/await in TypeScript, we can create a simple task scheduler that executes tasks in order of priority.

		

		Iterators

		

		TypeScript has full support for iterators, which can be used to create custom asynchronous data sources that can be consumed with for…of loops, Array.from(), and other iterable-based methods.

		

		Example demonstrating the use of async iterators in TypeScript, implementing a real-time chat message stream

		

		

		type ChatMessage = {

		  sender: string;

		  message: string;

		  timestamp: number;

		};

		 

		class ChatMessageStream {

		  private messages: ChatMessage[] = [];

		  private listeners: ((message: ChatMessage) => void)[] = [];

		 

		  addMessage(sender: string, message: string) {

		    const timestamp = Date.now();

		    const chatMessage: ChatMessage = { sender, message, timestamp };

		    this.messages.push(chatMessage);

		    this.notifyListeners(chatMessage);

		  }

		 

		  private notifyListeners(message: ChatMessage) {

		    for (const listener of this.listeners) {

		      listener(message);

		    }

		  }

		 

		  async *[Symbol.asyncIterator](): AsyncIterableIterator<ChatMessage> {

		    let currentIndex = 0;

		    while (true) {

		      if (currentIndex < this.messages.length) {

		        yield this.messages[currentIndex++];

		      } else {

		        await new Promise(resolve => setTimeout(resolve, 100));

		      }

		    }

		  }

		 

		  addListener(listener: (message: ChatMessage) => void) {

		    this.listeners.push(listener);

		  }

		}

		 

		// Example usage:

		 

		async function main() {

		  const chatMessageStream = new ChatMessageStream();

		 

		  chatMessageStream.addListener((message) => {

		    console.log(`New message from ${message.sender}: ${message.message}`);

		  });

		 

		  chatMessageStream.addMessage("Alice", "Hello, world!");

		  chatMessageStream.addMessage("Bob", "Hi, Alice!");

		  chatMessageStream.addMessage("Charlie", "Hey, guys!");

		 

		  for await (const message of chatMessageStream) {

		    console.log(`Received message: ${message.message}`);

		  }

		}

		 

		main();

		

		

		In this example, we define a ChatMessage type with a sender, message, and timestamp. We also create a ChatMessageStream class with an array of messages and a list of listeners. The addMessage method adds a new message to the stream and notifies all listeners. The notifyListeners method iterates over the listeners and calls them with the new message.

		

		The *[Symbol.asyncIterator]() method is an async generator function that yields messages from the message array as they become available. If there are no new messages, it waits for 100ms before checking again.

		The addListener method adds a new listener to the stream.

		

		In the main function, we create a ChatMessageStream instance and add three new messages to it. We also add a listener to log new messages to the console. Finally, we use a for await…of loop to iterate over new messages as they arrive.

		

		By using async iterators in TypeScript, we can create a real-time chat message stream that asynchronously yields new messages as they become available.

		

		Async Iterators

		

		TypeScript also supports async iterators, which combine the concepts of iterators and asynchronous programming. Async iterators allow you to create custom data sources that can be consumed asynchronously, making it easier to work with data streams, real-time updates, and other asynchronous data sources.

		

		Example demonstrating the use of Promise.allSettled in TypeScript, implementing a parallel task executor

		

		

		type TaskResult = {

		  id: number;

		  success: boolean;

		  error?: Error;

		};

		 

		async function executeTask(taskId: number): Promise<TaskResult> {

		  const delay = Math.floor(Math.random() * 1000) + 500; // Random delay between 500ms and 1500ms

		  await new Promise(resolve => setTimeout(resolve, delay));

		 

		  if (delay < 1000) {

		    return { id: taskId, success: true };

		  } else {

		    return { id: taskId, success: false, error: new Error("Task timed out.") };

		  }

		}

		 

		async function executeTasksInParallel(taskIds: number[]): Promise<TaskResult[]> {

		  const promises = taskIds.map(executeTask);

		  const results = await Promise.allSettled(promises);

		  return results.map((result, index) => {

		    if (result.status === "fulfilled") {

		      return result.value;

		    } else {

		      return { id: taskIds[index], success: false, error: result.reason };

		    }

		  });

		}

		 

		// Example usage:

		 

		async function main() {

		  const taskIds = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

		 

		  const results = await executeTasksInParallel(taskIds);

		 

		  console.log("Task results:");

		  for (const result of results) {

		    if (result.success) {

		      console.log(`Task ${result.id} completed successfully.`);

		    } else {

		      console.log(`Task ${result.id} failed with error: ${result.error?.message}`);

		    }

		  }

		}

		 

		main();

		

		

		This example defines a TaskResult type with ID, success, and optional error. It also defines an executeTask function that simulates task execution with a random delay between 500ms and 1500ms. An operation is considered successful if the delay is less than 1000ms. Otherwise, it will fail with a timeout error.

		

		The executeTasksInParallel function takes an array of task IDs and executes each task in parallel using the executeTask function. Returns an array of TaskResult objects representing the result of each task.

		

		We use the Promise.allSettled method to run all tasks in parallel and wait for all promises to be fulfilled, regardless of whether they are fulfilled or not. It then maps the result to a TaskResult object using the task ID to associate the result with that task.

		

		In the main function, we create an array of 10 task IDs and execute them in parallel using the executeTasksInParallel function. The results are entered into the console.

		

		You can use Promise.allSettled in TypeScript to create parallel task handlers that efficiently run multiple tasks and handle both success and failure results. This example shows how to use an asynchronous iterator to create a stream of real-time data that can be consumed asynchronously. Asynchronous iterators allow consumer code to wait for new data to become available without blocking or requesting data. Instead, the consumer can wait for the next value in the iterator when the code is ready.

		

		Async Generators

		

		Similar to async iterators, async generators are a combination of generators and asynchronous programming. Async generators allow you to create custom asynchronous data sources that can be paused and resumed, making it possible to create complex async workflows with ease.

		

		Example demonstrating the use of async/await and the Promise.all method in TypeScript, implementing a parallel file uploader

		

		

		type UploadResult = {

		  filename: string;

		  success: boolean;

		  error?: Error;

		};

		 

		async function uploadFile(filename: string): Promise<UploadResult> {

		  const delay = Math.floor(Math.random() * 1000) + 500; // Random delay between 500ms and 1500ms

		  await new Promise(resolve => setTimeout(resolve, delay));

		 

		  if (delay < 1000) {

		    return { filename, success: true };

		  } else {

		    return { filename, success: false, error: new Error("Upload timed out.") };

		  }

		}

		 

		async function uploadFilesInParallel(filenames: string[]): Promise<UploadResult[]> {

		  const promises = filenames.map(uploadFile);

		  const results = await Promise.all(promises);

		  return results;

		}

		 

		// Example usage:

		 

		async function main() {

		  const filenames = ["file1.png", "file2.jpg", "file3.pdf", "file4.docx"];

		 

		  const results = await uploadFilesInParallel(filenames);

		 

		  console.log("Upload results:");

		  for (const result of results) {

		    if (result.success) {

		      console.log(`File ${result.filename} uploaded successfully.`);

		    } else {

		      console.log(`File ${result.filename} upload failed with error: ${result.error?.message}`);

		    }

		  }

		}

		 

		main();

		

		

		This example defines an UploadResult type with an optional filename, success, and error. It also defines an uploadFile function that simulates uploading a file with a random delay between 500ms and 1500ms. An upload is considered successful if the delay is less than 1000ms. Otherwise, it will fail with a timeout error.

		

		The uploadFilesInParallel function takes an array of filenames and uploads each file in parallel using the uploadFile function. Returns an array of UploadResult objects representing each upload result.

		

		We use the Promise.all method to run all loads in parallel and wait for all promises to be fulfilled. Then associate the result with the UploadResult object using the filename to associate the result with the associated upload.

		

		In the main function, I create an array of 4 filenames and upload them in parallel using the uploadFilesInParallel function. The results are entered into the console.

		

		You can use async/wait and Promise.all in TypeScript to create a parallel file uploader that efficiently uploads multiple files and handles both successes and failures.

		

		Observables (RxJS): Although not part of TypeScript itself, RxJS is a popular library for reactive programming in TypeScript applications. Observables are a core concept of RxJS, representing data streams that emit values over time and can be subscribed to.

		

		Example of using Observables with RxJS, combining multiple operators to manipulate and process data

		

		

		import { fromEvent, interval } from 'rxjs';

		import { debounceTime, distinctUntilChanged, filter, map, switchMap, takeUntil } from 'rxjs/operators';

		 

		const inputElement = document.getElementById('search-input');

		const stopButton = document.getElementById('stop-button');

		 

		const input$ = fromEvent(inputElement, 'input');

		const stop$ = fromEvent(stopButton, 'click');

		 

		input$

		  .pipe(

		    debounceTime(500),

		    map((event: any) => event.target.value),

		    distinctUntilChanged(),

		    filter((searchTerm: string) => searchTerm.length > 2),

		    switchMap((searchTerm: string) =>

		      interval(1000).pipe(

		        map(() => `Searching for: ${searchTerm}`),

		        takeUntil(stop$)

		      )

		    )

		  )

		  .subscribe(console.log);

		

		

		In this example, we create two observables from DOM events using fromEvent. The input$ observable listens to the ‘input’ event on a search input element, while the stop$ observable listens to the ‘click’ event on a stop button. We use several operators to process the input data:

		

		debounceTime(500) - Wait for the user to stop typing for 500ms before emitting the value.

		map - Extract the input value from the event object.

		distinctUntilChanged() - Emit the value only if it’s different from the previous one.

		filter - Only process input values longer than 2 characters.

		switchMap - For each input value, start an interval that emits a search message every second.

		takeUntil(stop$) - Stop emitting search messages when the stop button is clicked.

		

		The resulting observable is subscribed to, and the search messages are logged to the console. This example demonstrates the power and expressiveness of RxJS Observables for handling complex asynchronous tasks.

		

		Here’s a more advanced example using Observables with RxJS in the context of the banking sector.

		

		This example simulates fetching account data, validating a user’s credentials, and transferring funds between accounts:

		

		

		import { of, throwError, from } from 'rxjs';

		import { catchError, delay, mergeMap, tap } from 'rxjs/operators';

		 

		// Simulated API call to fetch account data

		function fetchAccountData(accountId: string) {

		  return of({ id: accountId, balance: 1000 }).pipe(delay(1000));

		}

		 

		// Simulated API call to validate user credentials

		function validateCredentials(username: string, password: string) {

		  return username === 'user' && password === 'password'

		    ? of({ status: 'success' }).pipe(delay(500))

		    : throwError(new Error('Invalid credentials')).pipe(delay(500));

		}

		 

		// Simulated API call to transfer funds between accounts

		function transferFunds(fromAccountId: string, toAccountId: string, amount: number) {

		  return of({ status: 'success', fromAccountId, toAccountId, amount }).pipe(delay(2000));

		}

		 

		// Example usage

		const credentials$ = from(validateCredentials('user', 'password'));

		const sourceAccount$ = fetchAccountData('A123');

		const destinationAccount$ = fetchAccountData('B456');

		 

		credentials$

		  .pipe(

		    catchError((error) => {

		      console.error('Error:', error.message);

		      return throwError(error);

		    }),

		    tap(() => console.log('User validated successfully')),

		    mergeMap(() => sourceAccount$),

		    tap((account) => console.log('Source account data fetched:', account)),

		    mergeMap((sourceAccount) =>

		      destinationAccount$.pipe(

		        tap((destinationAccount) => console.log('Destination account data fetched:', destinationAccount)),

		        mergeMap((destinationAccount) =>

		          transferFunds(sourceAccount.id, destinationAccount.id, 250).pipe(

		            tap((transferResult) => console.log('Funds transferred successfully:', transferResult))

		          )

		        )

		      )

		    )

		  )

		  .subscribe();

		

		

		In this example, we simulate API calls to fetch account data, validate user credentials, and transfer funds using RxJS Observables. We start by validating the user’s credentials. If the validation is successful, we fetch the source and destination account data and perform a fund transfer. We use the catchError, tap, and mergeMap operators to handle errors, log intermediate results, and chain the observables.

		

		The example demonstrates how to use RxJS Observables to compose a sequence of asynchronous tasks, handle errors gracefully, and tap into the data flow for logging or side effects, all while maintaining a clear and readable code structure.
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		Object Oriented Programming with TypeScript

		

		
			[image: Image]
		

		

		Object-Oriented Programming (OOP) is one of the most popular programming paradigm that has been adopted across different programming languages. TypeScript as a superset of JavaScript, which means that it supports all the features of JavaScript and adds some additional features, including advanced OOP concepts. With this in mind we will explore together OOP concepts with TypeScript

		

		Inheritance: One class can inherit the methods and properties of another class. A derived class can inherit properties and methods from a base class using the “extends” keyword.

		

		

		class Vehicle {

		    protected name: string;

		    constructor(name: string) {

		        this.name = name;

		    }

		    public move(distance: number): void {

		        console.log(`${this.name} moved ${distance} km`);

		    }

		}

		 

		class Car extends Vehicle {

		    private color: string;

		    constructor(name: string, color: string) {

		        super(name);

		        this.color = color;

		    }

		    public getColor(): string {

		        return this.color;

		    }

		}

		 

		const car = new Car("BMW", "blue");

		console.log(car.getColor());

		car.move(100);

		

		

		Polymorphism: Capacity for an object to take on multiple forms is known as polymorphism , you can achieve polymorphism by using interfaces or abstract classes.

		

		

		interface Shape {

		    draw(): void;

		}

		 

		class Circle implements Shape {

		    public draw(): void {

		        console.log("Drawing a circle...");

		    }

		}

		 

		class Square implements Shape {

		    public draw(): void {

		        console.log("Drawing a square...");

		    }

		}

		 

		function drawShapes(shapes: Shape[]): void {

		    shapes.forEach(shape => shape.draw());

		}

		 

		drawShapes([new Circle(), new Square()]);

		

		

		Encapsulation: Encapsulation involves hiding an object’s implementation details from the outside world. TypeScript enables encapsulation through access modifiers such as public, private, and protected. These modifiers control the visibility and accessibility of class members, ensuring that internal details are not exposed unnecessarily.

		

		

		class BankAccount {

		    private balance: number = 0;

		    public deposit(amount: number): void {

		        this.balance += amount;

		        console.log(`Deposited ${amount}. New balance is ${this.balance}`);

		    }

		    public withdraw(amount: number): void {

		        if (amount <= this.balance) {

		            this.balance -= amount;

		            console.log(`Withdrew ${amount}. New balance is ${this.balance}`);

		        } else {

		            console.log("Insufficient balance");

		        }

		    }

		}

		 

		const account = new BankAccount();

		account.deposit(1000);

		account.withdraw(500);

		account.withdraw(600);

		

		

		Abstract Classes:Abstract classes are classes that cannot be instantiated and are used as base classes for other classes. In TypeScript, you can create abstract classes by using the “abstract” keyword.

		

		

		abstract class Vehicle {

		    protected name: string;

		    constructor(name: string) {

		        this.name = name;

		    }

		    public abstract move(distance: number): void;

		}

		 

		class Car extends Vehicle {

		    private color: string;

		    constructor(name: string, color: string) {

		        super(name);

		        this.color = color;

		    }

		    public move(distance: number): void {

		        console.log(`${this.name} moved ${distance} km`);

		    }

		}

		 

		const car = new Car("BMW", "blue");

		car.move(100);

		

		

		Interfaces: Interfaces are used to define a contract for objects that share similar properties and methods. In TypeScript, you can create interfaces by using the “interface” keyword.

		

		

		interface Employee {

		    id: number;

		    name: string;

		    age: number;

		    department: string;

		}

		 

		function printEmployeeInfo(employee:

		

		

		OOP concepts like inheritance, encapsulation, polymorphism, and abstract classes is crucial for becoming proficient in TypeScript, as these concepts play a significant role in structuring and organizing your code effectively.

		

		Inheritance using TypeScript

		

		Imagine a system designed to manage various types of vehicles, such as cars, trucks, and motorcycles. Each vehicle type shares common properties like make, model, year, and color, but they also possess unique properties and methods.

		

		To represent these vehicles, a base class called “Vehicle” can be created, defining the shared properties and methods. Derived classes, like “Car,” “Truck,” and “Motorcycle,” can then inherit from the “Vehicle” class while incorporating their distinctive properties and methods.

		

		

		class Vehicle {

		  constructor(

		    public make: string,

		    public model: string,

		    public year: number,

		    public color: string

		  ) {}

		 

		  public start(): void {

		    console.log(`Starting ${this.make} ${this.model}...`);

		  }

		 

		  public stop(): void {

		    console.log(`Stopping ${this.make} ${this.model}...`);

		  }

		}

		 

		class Car extends Vehicle {

		  constructor(

		    make: string,

		    model: string,

		    year: number,

		    color: string,

		    public numDoors: number

		  ) {

		    super(make, model, year, color);

		  }

		 

		  public drive(): void {

		    console.log(`Driving ${this.make} ${this.model} with ${this.numDoors} doors...`);

		  }

		}

		 

		class Truck extends Vehicle {

		  constructor(

		    make: string,

		    model: string,

		    year: number,

		    color: string,

		    public payloadCapacity: number

		  ) {

		    super(make, model, year, color);

		  }

		 

		  public loadCargo(): void {

		    console.log(`Loading cargo into ${this.make} ${this.model} with ${this.payloadCapacity} lbs capacity...`);

		  }

		}

		 

		class Motorcycle extends Vehicle {

		  constructor(

		    make: string,

		    model: string,

		    year: number,

		    color: string,

		    public hasSidecar: boolean

		  ) {

		    super(make, model, year, color);

		  }

		 

		  public popWheelie(): void {

		    console.log(`Popping wheelie on ${this.make} ${this.model}...`);

		  }

		}

		

		

		In this example, the “Vehicle” class serves as the foundation, outlining common properties and methods. Derived classes like “Car,” “Truck,” and “Motorcycle” inherit these properties and methods, adding their own unique characteristics. For instance, the “Car” class introduces a “numDoors” property and a “drive” method, while the “Truck” class features a “payloadCapacity” property and a “loadCargo” method, and the “Motorcycle” class includes a “hasSidecar” property and a “popWheelie” method.

		

		Using inheritance allows for the reuse of the shared properties and methods from the “Vehicle” class, preventing code duplication in derived classes. This approach facilitates code maintenance and minimizes the likelihood of errors.

		

		In conclusion, inheritance is a strong OOP concept that enables code reuse and the establishment of related class hierarchies. It is particularly useful when classes share common properties and methods but also possess unique characteristics. The advantages of inheritance encompass code reuse, simplified maintenance, and error reduction.

		

		Inheritance in a bank app

		

		Suppose we are building a mini bank finance application and imagine we have various account types, such as savings accounts, checking accounts, and credit card accounts, in the context of a banking application.

		

		

		class Account {

		  constructor(

		    public accountNumber: string,

		    public balance: number,

		    public owner: string

		  ) {}

		 

		  public deposit(amount: number): void {

		    this.balance += amount;

		    console.log(`Deposited ${amount}. New balance is ${this.balance}`);

		  }

		 

		  public withdraw(amount: number): void {

		    if (amount <= this.balance) {

		      this.balance -= amount;

		      console.log(`Withdrew ${amount}. New balance is ${this.balance}`);

		    } else {

		      console.log("Insufficient balance");

		    }

		  }

		}

		 

		class SavingsAccount extends Account {

		  constructor(

		    accountNumber: string,

		    balance: number,

		    owner: string,

		    public interestRate: number

		  ) {

		    super(accountNumber, balance, owner);

		  }

		 

		  public calculateInterest(): void {

		    const interest = this.balance * this.interestRate;

		    this.balance += interest;

		    console.log(`Calculated interest of ${interest}. New balance is ${this.balance}`);

		  }

		}

		 

		class CheckingAccount extends Account {

		  constructor(

		    accountNumber: string,

		    balance: number,

		    owner: string,

		    public overdraftLimit: number

		  ) {

		    super(accountNumber, balance, owner);

		  }

		 

		  public withdraw(amount: number): void {

		    if (amount <= this.balance + this.overdraftLimit) {

		      this.balance -= amount;

		      console.log(`Withdrew ${amount}. New balance is ${this.balance}`);

		    } else {

		      console.log("Insufficient funds");

		    }

		  }

		}

		 

		class CreditCardAccount extends Account {

		  constructor(

		    accountNumber: string,

		    balance: number,

		    owner: string,

		    public creditLimit: number

		  ) {

		    super(accountNumber, balance, owner);

		  }

		 

		  public charge(amount: number): void {

		    if (amount <= this.creditLimit - this.balance) {

		      this.balance += amount;

		      console.log(`Charged ${amount}. New balance is ${this.balance}`);

		    } else {

		      console.log("Credit limit exceeded");

		    }

		  }

		}

		

		

		Each type of account has its own special attributes as well as shared ones like account number, balance, and owner.

		

		It is possible to define shared properties and methods for these accounts in a base class called “Account” to represent them.

		

		Then, while incorporating their unique properties and methods, derived classes like “SavingsAccount,” “CheckingAccount,” and “CreditCardAccount” can inherit from the “Account” class.

		

		The “Account” class in this illustration serves as the framework, outlining common properties and methods.

		

		Derived classes like “SavingsAccount,” “CheckingAccount,” and “CreditCardAccount” inherit these properties and methods and add their own unique properties.

		

		For instance, the “SavingsAccount” class adds the “interestRate” property and the “calculateInterest” method; the “CheckingAccount” class adds the “overdraftLimit” property and overrides the “withdraw” method; and the “CreditCardAccount” class adds the “creditLimit” property and the “charge” method.

		

		Using inheritance allows for the reuse of the shared properties and methods from the “Account” class, preventing code duplication in derived classes. This approach facilitates code maintenance and minimizes the likelihood of errors.

		

		In conclusion, inheritance is an impoartant OOP concept that enables code reuse and the establishment of related class hierarchies. It is particularly useful when classes share common properties and methods but also possess unique characteristics. The advantages of inheritance encompass code reuse, simplified maintenance, and error reduction.

		

		Polymorphism using TypeScript

		

		Imagine for a moment a program that works with a wide range of geometric shapes, some of which are squares, some of which are triangles, and each of which has a unique way of calculating area and perimeter. How might one effectively represent these shapes and their distinctive characteristics in code?

		

		

		interface Shape {

		  calculateArea(): number;

		  calculatePerimeter(): number;

		}

		 

		class Circle implements Shape {

		  constructor(public radius: number) {}

		 

		  public calculateArea(): number {

		    return Math.PI * this.radius ** 2;

		  }

		 

		  public calculatePerimeter(): number {

		    return 2 * Math.PI * this.radius;

		  }

		}

		 

		class Square implements Shape {

		  constructor(public side: number) {}

		 

		  public calculateArea(): number {

		    return this.side ** 2;

		  }

		 

		  public calculatePerimeter(): number {

		    return 4 * this.side;

		  }

		}

		 

		class Triangle implements Shape {

		  constructor(public base: number, public height: number, public sideA: number, public sideB: number) {}

		 

		  public calculateArea(): number {

		    return 0.5 * this.base * this.height;

		  }

		 

		  public calculatePerimeter(): number {

		    return this.base + this.sideA + this.sideB;

		  }

		}

		

		

		A way to specify a set of shared attributes and operations between different classes. We can create derived classes like “Circle,” “Square,” and “Triangle” that implement this interface and provide their own unique method implementations by first defining an interface called “Shape” that outlines the necessary properties and methods (such as “calculateArea” and “calculatePerimeter”).

		

		We can then treat objects from these various classes as if they were of the same type thanks to the magic of polymorphism, in spite of their distinctive characteristics and behaviors. This keeps our code incredibly flexible and reuseable while also preventing the dreaded repetition of code.

		

		

		const shapes: Shape[] = [new Circle(5), new Square(10), new Triangle(8, 5, 6, 7)];

		 

		shapes.forEach(shape => {

		  console.log(`Area: ${shape.calculateArea()}, Perimeter: ${shape.calculatePerimeter()}`);

		});

		

		

		The “calculateArea” and “calculatePerimeter” methods are called on each object in turn. However, what does this actually look like in practice? Imagine an array of shapes, all of different types. Without requiring knowledge of the precise type of each individual shape, the code outputs the area and perimeter of each shape. Fantastic, no?

		

		In conclusion, polymorphism is an effective tool in any developer’s toolbox, enabling increased flexibility, reuse, and decreased code error. We can effectively represent a wide variety of complex objects with comparatively little effort by implementing interfaces and derived classes with their own unique implementations.

		

		Example of using polymorphism in a logistics app:

		

		Suppose we are building a logistics application , In this example, the abstract class “Shipment” plays a vital role in the logistics application by defining the fundamental properties and methods such as “calculateWeight” and “calculateVolume.” Meanwhile, the concrete classes, namely “Package,” “Pallet,” and “Container,” extend this abstract class and provide their own implementation of these methods based on their specific properties.

		

		The flexibility and reuse of the codebase are improved by using TypeScript’s polymorphism to treat objects of various classes that extend the same abstract class as though they were of the same type.

		

		

		abstract class Shipment {

		  constructor(

		    public id: string,

		    public description: string,

		    public weight: number,

		    public length: number,

		    public width: number,

		    public height: number

		  ) {}

		 

		  public abstract calculateWeight(): number;

		 

		  public abstract calculateVolume(): number;

		}

		 

		class Package extends Shipment {

		  constructor(

		    id: string,

		    description: string,

		    weight: number,

		    length: number,

		    width: number,

		    height: number

		  ) {

		    super(id, description, weight, length, width, height);

		  }

		 

		  public calculateWeight(): number {

		    return this.weight;

		  }

		 

		  public calculateVolume(): number {

		    return this.length * this.width * this.height;

		  }

		}

		 

		class Pallet extends Shipment {

		  constructor(

		    id: string,

		    description: string,

		    weight: number,

		    length: number,

		    width: number,

		    height: number,

		    public numPackages: number

		  ) {

		    super(id, description, weight, length, width, height);

		  }

		 

		  public calculateWeight(): number {

		    return this.weight + this.numPackages * 2;

		  }

		 

		  public calculateVolume(): number {

		    return this.length * this.width * this.height * this.numPackages;

		  }

		}

		 

		class Container extends Shipment {

		  constructor(

		    id: string,

		    description: string,

		    weight: number,

		    length: number,

		    width: number,

		    height: number,

		    public maxLoad: number

		  ) {

		    super(id, description, weight, length, width, height);

		  }

		 

		  public calculateWeight(): number {

		    return this.weight + this.maxLoad;

		  }

		 

		  public calculateVolume(): number {

		    return this.length * this.width * this.height * 100;

		  }

		}

		

		

		To further demonstrate, without knowing the precise type of each object, we can create an array of shipments and use the “calculateWeight” and “calculateVolume” methods on each object.

		

		This sophisticated method of coding lowers errors, makes maintenance easier, and ensures effective code reuse.

		

		

		const shipments: Shipment[] = [

		  new Package("P001", "Small Package", 1.5, 10, 10, 10),

		  new Pallet("PL001", "Large Pallet", 50, 100, 100, 200, 10),

		  new Container("C001", "40-foot Container", 5000, 1200, 2400, 2400, 50000)

		];

		 

		shipments.forEach(shipment => {

		  console.log(`Weight: ${shipment.calculateWeight()} kg, Volume: ${shipment.calculateVolume()} cm^

		

		

		Encapsulation using TypeScript

		

		Imagine a system that handles various employee types like managers, engineers, and sales reps. While each employee type has common attributes like name, age, and salary, they also possess unique properties and functions.

		

		To represent these employees, we can establish a “Employee” class that outlines the shared properties and methods as protected or private. From there, we can form subclasses like “Manager”, “Engineer”, and “Salesperson”, which inherit from the “Employee” class and access these properties and methods via public methods.

		

		

		class Employee {

		  constructor(

		    protected name: string,

		    protected age: number,

		    private salary: number

		  ) {}

		 

		  public getSalary(): number {

		    return this.salary;

		  }

		 

		  public setSalary(newSalary: number): void {

		    this.salary = newSalary;

		  }

		 

		  protected doWork(): void {

		    console.log(`${this.name} is working...`);

		  }

		}

		 

		class Manager extends Employee {

		  constructor(name: string, age: number, salary: number, public numReports: number) {

		    super(name, age, salary);

		  }

		 

		  public getBonus(): number {

		    return this.getSalary() * 0.2;

		  }

		 

		  public doManagerialWork(): void {

		    console.log(`${this.name} is managing ${this.numReports} reports...`);

		    this.doWork();

		  }

		}

		 

		class Engineer extends Employee {

		  constructor(name: string, age: number, salary: number, public numProjects: number) {

		    super(name, age, salary);

		  }

		 

		  public getBonus(): number {

		    return this.getSalary() * 0.1;

		  }

		 

		  public doEngineeringWork(): void {

		    console.log(`${this.name} is working on ${this.numProjects} projects...`);

		    this.doWork();

		  }

		}

		 

		class Salesperson extends Employee {

		  constructor(name: string, age: number, salary: number, public numSales: number) {

		    super(name, age, salary);

		  }

		 

		  public getBonus(): number {

		    return this.getSalary() * 0.15;

		  }

		 

		  public doSalesWork(): void {

		    console.log(`${this.name} is selling ${this.numSales} products...`);

		    this.doWork();

		  }

		}

		

		

		In this scenario, the “Employee” class safeguards common properties and methods as protected or private, promoting encapsulation and blocking direct external access. Subclasses such as “Manager”, “Engineer”, and “Salesperson” inherit from the “Employee” class and utilize public methods like “getSalary” and “setSalary” to access these properties and methods.

		

		Through encapsulation, we can conceal the “Employee” class’s implementation specifics and expose only the public interface, making the code sturdier and more secure. For instance, we can generate objects for different employee types and invoke their public methods without knowing each class’s specific implementation details

		

		

		const manager = new Manager("John Doe", 40, 100000, 5);

		console.log(`Salary: ${manager.getSalary()}, Bonus: ${manager.getBonus()}`);

		manager.doManagerialWork();

		 

		const engineer = new Engineer("Jane Smith", 30, 80000, 3);

		console.log(`Salary: ${engineer.getSalary()}, Bonus: ${engineer.getBonus()}`);

		engineer.doEngineeringWork();

		 

		const salesperson = new Salesperson("Bob Johnson", 45, 90000, 10);

		console.log(`Salary: ${salesperson.getSalary()}, Bonus: ${salesperson.getBonus()}`);

		salesperson.doSalesWork();

		

		

		Abstract classes and interfaces

		

		Imagine you’re developing a game engine that supports a variety of game objects, such as sprites, sounds, and physics objects, each with their own unique rendering, playing, and interaction methods.

		

		To represent these game objects, you can create an abstract class called “GameObject” that defines common properties and methods, like “x” and “y” coordinates, as well as “update” and “render” methods. Moreover, you can establish interfaces like “Sprite”, “Sound”, and “PhysicsObject” that outline specific properties and methods for each game object category.

		

		

		abstract class GameObject {

		  constructor(public x: number, public y: number) {}

		 

		  public abstract update(): void;

		 

		  public abstract render(): void;

		}

		 

		interface Sprite {

		  image: HTMLImageElement;

		  width: number;

		  height: number;

		}

		 

		interface Sound {

		  audio: HTMLAudioElement;

		}

		 

		interface PhysicsObject {

		  velocityX: number;

		  velocityY: number;

		  weight: number;

		}

		 

		class SpriteObject extends GameObject implements Sprite {

		  constructor(x: number, y: number, public image: HTMLImageElement, public width: number, public height: number) {

		    super(x, y);

		  }

		 

		  public update(): void {

		    // Update sprite animation or movement

		  }

		 

		  public render(): void {

		    // Draw sprite image on canvas

		  }

		}

		 

		class SoundObject extends GameObject implements Sound {

		  constructor(x: number, y: number, public audio: HTMLAudioElement) {

		    super(x, y);

		  }

		 

		  public update(): void {

		    // Update sound playback or volume

		  }

		 

		  public render(): void {

		    // No rendering for sound object

		  }

		}

		 

		class PhysicsObjectImpl extends GameObject implements PhysicsObject {

		  constructor(x: number, y: number, public velocityX: number, public velocityY: number, public weight: number) {

		    super(x, y);

		  }

		 

		  public update(): void {

		    // Update physics calculations based on velocity and weight

		  }

		 

		  public render(): void {

		    // Draw physics object on canvas based on position and weight

		  }

		}

		

		

		In this scenario, the “GameObject” abstract class sets out shared properties and methods, including “x” and “y” coordinates and the “update” and “render” methods.

		

		Interfaces such as “Sprite”, “Sound”, and “PhysicsObject” detail particular properties and methods for each game object type.

		

		Classes like “SpriteObject”, “SoundObject”, and “PhysicsObjectImpl” put these interfaces into action and provide distinctive implementations of “update” and “render” methods, tailored to their individual properties and necessities.

		

		

		const gameObjects: GameObject[] = [

		  new SpriteObject(100, 100, spriteImage, 32, 32),

		  new SoundObject(0, 0, bgMusic),

		  new PhysicsObjectImpl(200, 200, 5, 10, 50)

		];

		 

		gameObjects.forEach(gameObject => {

		  gameObject.update();

		  gameObject.render();

		});

		

		

		Utilizing abstract classes and interfaces ensures that every game object type adheres to a specific contract and includes necessary properties and methods. This approach results in more organized and maintainable code. For instance, we can generate an array of game objects and invoke their “update” and “render” methods without being aware of each class’s specific implementation details.

		

		Overall, abstract classes and interfaces are powerful OOP concepts enabling us to establish contracts for classes and confirm they implement required properties and methods.

		

		Abstract classes facilitate defining a base class that can’t be instantiated independently but can be inherited by other classes. They can outline both abstract and non-abstract methods, offering a default implementation for non-abstract methods. Abstract classes are helpful when wanting to establish a base class with shared functionality but allowing derived classes to implement specific methods.

		

		On the other hand, interfaces allow us to define a set of properties and methods that a class must implement. They only define the class structure, not the implementation, functioning more like a contract that classes must adhere to. Interfaces are beneficial when defining a common structure for classes without a shared base class.

		

		Abstract classes and interfaces offer benefits like code reuse, simpler maintenance, and fewer errors. By specifying a contract for classes, we can ensure they follow a certain structure and provide required properties and methods, leading to more organized and maintainable code, especially in large projects with numerous classes.

		

		In the provided example, we used an abstract class to establish a base class for game objects and interfaces to detail specific properties and methods for each game object type. This approach made the code more organized and maintainable, and allowed treating different game object types as if they were the same, resulting in more flexible and reusable code.

		

		Example that combines all OOP concepts in a single example:

		

		Imagine you’re building a music player app capable of supporting various audio file formats, including MP3, WAV, and FLAC. Each format has its own unique decoding, playing, and encoding methods.

		

		To represent these audio files, you can create an abstract class named “AudioFile” that outlines common properties and methods like “name”, “size”, and “play”. Additionally, you can design interfaces such as “Decoder”, “Player”, and “Encoder” that specify unique properties and methods for each audio file type.

		

		

		abstract class AudioFile {

		  constructor(public name: string, public size: number) {}

		 

		  public abstract play(): void;

		}

		 

		interface Decoder {

		  decode(): void;

		}

		 

		interface Player {

		  play(): void;

		}

		 

		interface Encoder {

		  encode(): void;

		}

		 

		class MP3File extends AudioFile implements Decoder, Player, Encoder {

		  constructor(name: string, size: number, public bitrate: number) {

		    super(name, size);

		  }

		 

		  public decode(): void {

		    // Decode MP3 file using specific algorithm

		  }

		 

		  public play(): void {

		    // Play MP3 file using specific player

		  }

		 

		  public encode(): void {

		    // Encode MP3 file using specific algorithm

		  }

		}

		 

		class WAVFile extends AudioFile implements Decoder, Player {

		  constructor(name: string, size: number, public bitrate: number) {

		    super(name, size);

		  }

		 

		  public decode(): void {

		    // Decode WAV file using specific algorithm

		  }

		 

		  public play(): void {

		    // Play WAV file using specific player

		  }

		}

		 

		class FLACFile extends AudioFile implements Decoder, Player, Encoder {

		  constructor(name: string, size: number, public compression: number) {

		    super(name, size);

		  }

		 

		  public decode(): void {

		    // Decode FLAC file using specific algorithm

		  }

		 

		  public play(): void {

		    // Play FLAC file using specific player

		  }

		 

		  public encode(): void {

		    // Encode FLAC file using specific algorithm

		  }

		}

		

		

		In this case, the “AudioFile” abstract class determines shared properties and methods like “name”, “size”, and “play”. The interfaces like “Decoder”, “Player”, and “Encoder” detail distinct properties and methods for each audio file type.

		Classes like “MP3File”, “WAVFile”, and “FLACFile” implement these interfaces and provide their custom implementations of the “decode”, “play”, and “encode” methods based on their specific properties and requirements.

		

		By utilizing inheritance, interfaces, abstract classes, and encapsulation, we can develop a flexible and expandable system for managing various audio file types. Each audio file type is represented by a separate class implementing the required interfaces and inheriting from the shared “AudioFile” base class. This approach results in more organized and maintainable code, particularly in large projects with multiple classes.

		

		The advantages of using OOP concepts like inheritance, interfaces, abstract classes, and encapsulation include code reuse, simplified maintenance, and fewer errors. By establishing a standard structure for classes, we can ensure they adhere to a specific contract and provide the necessary properties and methods. This structure makes the code more organized and maintainable, especially in extensive projects with numerous classes.

		

		In conclusion, by combining OOP concepts such as inheritance, interfaces, abstract classes, and encapsulation, we can create a flexible and scalable system for managing different object types. These concepts help guarantee that each object type follows a particular contract and includes the required properties and methods, making the code more organized and easier to maintain.

		

		Example of a finance app that uses TypeScript concepts such as inheritance, polymorphism, and interfaces

		

		Imagine developing a finance app that handles various account types, like savings, checking, and investment accounts. Each account type has distinct interest rates, withdrawal limits, and account classifications. To represent these accounts, we can craft an abstract class named “Account” that lays out common properties and methods, such as “balance”, “deposit”, and “withdraw”. We can then create derived classes like “SavingsAccount”, “CheckingAccount”, and “InvestmentAccount” that inherit from the “Account” class and access these properties and methods using public methods. Additionally, we can establish an interface called “InterestCalculator” that specifies the unique method for calculating interest.

		

		

		abstract class Account {

		  protected balance: number;

		 

		  constructor(protected accountNumber: string, protected interestRate: number) {

		    this.balance = 0;

		  }

		 

		  public deposit(amount: number): void {

		    this.balance += amount;

		  }

		 

		  public abstract withdraw(amount: number): boolean;

		 

		  public getBalance(): number {

		    return this.balance;

		  }

		}

		 

		class SavingsAccount extends Account implements InterestCalculator {

		  private withdrawalLimit: number;

		 

		  constructor(accountNumber: string, interestRate: number, private monthlyWithdrawals: number) {

		    super(accountNumber, interestRate);

		    this.withdrawalLimit = 6;

		  }

		 

		  public withdraw(amount: number): boolean {

		    if (this.balance - amount < 0 || this.monthlyWithdrawals >= this.withdrawalLimit) {

		      return false;

		    }

		    this.balance -= amount;

		    this.monthlyWithdrawals++;

		    return true;

		  }

		 

		  public calculateInterest(): number {

		    return this.balance * (this.interestRate / 12);

		  }

		}

		 

		class CheckingAccount extends Account {

		  private overdraftLimit: number;

		 

		  constructor(accountNumber: string, interestRate: number, private overdraftFee: number) {

		    super(accountNumber, interestRate);

		    this.overdraftLimit = -500;

		  }

		 

		  public withdraw(amount: number): boolean {

		    if (this.balance - amount < this.overdraftLimit) {

		      this.balance -= this.overdraftFee;

		      return false;

		    }

		    this.balance -= amount;

		    return true;

		  }

		}

		 

		class InvestmentAccount extends Account implements InterestCalculator {

		  constructor(accountNumber: string, interestRate: number, private minBalance: number) {

		    super(accountNumber, interestRate);

		  }

		 

		  public withdraw(amount: number): boolean {

		    if (this.balance - amount < this.minBalance) {

		      return false;

		    }

		    this.balance -= amount;

		    return true;

		  }

		 

		  public calculateInterest(): number {

		    return this.balance * (this.interestRate / 12) * 1.5;

		  }

		}

		 

		interface InterestCalculator {

		  calculateInterest(): number;

		}

		

		

		In this situation, the abstract “Account” class establishes attributes and methods like “balance,” “deposit,” and “withdraw.”

		

		Classes such as “SavingsAccount,” “CheckingAccount,” and “InvestmentAccount” derive from the “Account” class and access its properties and methods through public methods like “withdraw” and “getBalance.”

		

		Furthermore, the “SavingsAccount” and “InvestmentAccount” classes implement the “InterestCalculator” interface, which outlines the unique method for calculating interest.

		

		By using inheritance and polymorphism, a versatile and adaptable system for handling various account types can be developed.

		

		Each account type is represented by a distinct class that inherits from the general “Account” base class, providing its own implementation of interest calculation along with other exclusive features.

		

		This strategy results in more organized and maintainable code, which is beneficial for web developers and programmers working with JavaScript and TypeScript.
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		Functional Programming with TypeScript
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		TypeScript is an excellent tool for functional programming, offering type safety, type inference, higher-order function support, immutable data structures, and pattern matching. These features enable you to write more reliable and robust code while leveraging functional programming concepts. Additionally, TypeScript’s extensive ecosystem of libraries and tools further simplifies the implementation of functional programming patterns.

		

		Here’s how TypeScript can enhance functional programming

		

		Type Safety: TypeScript offers static type checking, which helps identify errors early in your code. This is especially helpful with functional programming concepts that involve heavy use of function composition and pipelining. TypeScript ensures that your function inputs and outputs have the correct types, reducing runtime errors.

		Type Inference: TypeScript’s robust type inference capabilities can minimize the need for explicit type annotations, resulting in more concise and readable code, especially when working with intricate functional programming concepts.

		Higher-Order Functions: TypeScript supports higher-order functions – functions that either accept other functions as arguments or return functions as output. This key concept in functional programming is facilitated by TypeScript’s type support for function inputs and outputs.

		Immutable Data Structures: Immutable data structures are crucial in functional programming, and TypeScript enforces immutability through type support for read-only data structures. This helps prevent unintended data mutation and enhances the dependability of your code.

		Pattern Matching: TypeScript accommodates pattern matching, a potent feature in functional programming that allows you to compare input values against predefined patterns and execute different code based on the match. This makes your code more expressive and comprehensible.

		

		Implementing a Functional Pipeline in TypeScript

		

		In functional programming, functional pipelines are a prevalent concept, where a sequence of functions is chained together to manipulate data.

		

		

		type PipelineFunction<Input, Output> = (input: Input) => Output;

		 

		function pipe<Input, Middle, Output>(

		  fn1: PipelineFunction<Input, Middle>,

		  fn2: PipelineFunction<Middle, Output>

		): PipelineFunction<Input, Output> {

		  return (input: Input) => fn2(fn1(input));

		}

		 

		function add(num: number): PipelineFunction<number, number> {

		  return (input: number) => input + num;

		}

		 

		function double(): PipelineFunction<number, number> {

		  return (input: number) => input * 2;

		}

		 

		const pipeline = pipe(add(2), double());

		const result = pipeline(5); // Result: 14

		

		

		Here, we establish a PipelineFunction type that accepts an input and yields an output, and a pipe function that links two PipelineFunction functions. Additionally, we define two functions, add and double, which both return PipelineFunction functions.

		

		Next, we use pipe to connect the add and double functions, forming a pipeline. We then invoke the resulting pipeline function with an input of 5. The pipeline first adds 2 to the input and subsequently doubles it, producing an output of 14.

		

		Using TypeScript in this scenario offers two main advantages: firstly, TypeScript’s type system verifies that the PipelineFunction and pipe functions’ input and output types are accurate, minimizing the potential for runtime errors. Secondly, TypeScript’s type inference allows for the creation of succinct, easily readable code without compromising type safety.

		

		Implementing an Immutable List in TypeScript

		

		Immutable data structures play a crucial role in functional programming, and TypeScript can facilitate immutability by providing type support for read-only data structures. Here’s an example of how to create an immutable list using TypeScript

		

		

		type ImmutableList<T> = ReadonlyArray<T>;

		 

		function push<T>(list: ImmutableList<T>, item: T): ImmutableList<T> {

		  return [...list, item];

		}

		 

		function pop<T>(list: ImmutableList<T>): ImmutableList<T> {

		  return list.slice(0, list.length - 1);

		}

		 

		const myList: ImmutableList<number> = [1, 2, 3];

		const newList = push(myList, 4);

		const poppedList = pop(newList);

		 

		console.log(myList); // Result: [1, 2, 3]

		console.log(newList); // Result: [1, 2, 3, 4]

		console.log(poppedList); // Result: [1, 2, 3]

		

		

		In this example, we define an ImmutableList type, which is a ReadonlyArray of a given type T. We also create two functions, push and pop, that accept an ImmutableList as input and return a new ImmutableList with the appropriate adjustment. Next, we generate an initial ImmutableList named myList and use push to append a new item to the list, forming a new ImmutableList called newList. We then employ pop to remove an item from newList, creating a new ImmutableList called poppedList.

		

		The advantages of using TypeScript in this instance include TypeScript’s type system ensuring the ImmutableList is read-only, preventing unintended list mutations. Moreover, TypeScript’s type system guarantees the push and pop functions’ input and output types are accurate, decreasing the chance of runtime errors.

		

		Another plus of using TypeScript in this example is its ability to make the code more comprehensible with explicit type annotations. The use of the ReadonlyArray type in the ImmutableList definition and the push and pop functions’ input and output types clarifies that the list is immutable and cannot be modified in place.

		

		In conclusion, these examples showcase how TypeScript can be employed to implement advanced functional programming concepts, such as functional pipelines and immutable data structures, while offering type safety, type inference, and enhanced readability.

		

		Pattern matching in TypeScript

		

		

		interface Square {

		  kind: 'square';

		  size: number;

		}

		 

		interface Rectangle {

		  kind: 'rectangle';

		  width: number;

		  height: number;

		}

		 

		interface Circle {

		  kind: 'circle';

		  radius: number;

		}

		 

		type Shape = Square | Rectangle | Circle;

		 

		function area(shape: Shape): number {

		  switch (shape.kind) {

		    case 'square':

		      return shape.size * shape.size;

		    case 'rectangle':

		      return shape.width * shape.height;

		    case 'circle':

		      return Math.PI * shape.radius * shape.radius;

		  }

		}

		 

		const square: Square = { kind: 'square', size: 5 };

		const rectangle: Rectangle = { kind: 'rectangle', width: 5, height: 10 };

		const circle: Circle = { kind: 'circle', radius: 5 };

		 

		console.log(area(square)); // Result: 25

		console.log(area(rectangle)); // Result: 50

		console.log(area(circle)); // Result: 78.53981633974483

		

		

		In this example, we establish three interfaces: Square, Rectangle, and Circle. Each has a kind property identifying the shape type and additional properties specific to each shape. We also define a Shape type, a union of the three interfaces.

		

		Next, we create an area function that accepts a Shape as input and employs pattern matching with a switch statement to calculate the shape’s area. The switch statement matches the Shape’s kind property and executes the corresponding code for each shape type.

		

		Following that, we generate three instances of Square, Rectangle, and Circle, and invoke the area function on each, resulting in the correct area computation for every shape.

		

		Using TypeScript in this example offers two main advantages: firstly, TypeScript’s type system guarantees the Shape interface and area function are defined accurately, decreasing the chance of runtime errors. Secondly, pattern matching enhances the code’s expressiveness and comprehensibility, as it allows matching input values against predefined patterns and executing varying code based on the match.

		

		In summary, this example illustrates how TypeScript’s type system and pattern matching can be combined to develop more reliable and expressive code, particularly when dealing with intricate data structures like the Shape type.

		

		Higher-order functions in TypeScript

		

		

		function multiplyBy(factor: number): (num: number) => number {

		  return (num: number) => num * factor;

		}

		 

		function addOne(num: number): number {

		  return num + 1;

		}

		 

		function compose<A, B, C>(f: (b: B) => C, g: (a: A) => B): (a: A) => C {

		  return (a: A) => f(g(a));

		}

		 

		const multiplyByTwo = multiplyBy(2);

		const multiplyByThree = multiplyBy(3);

		const multiplyByTwoAndAddOne = compose(addOne, multiplyByTwo);

		 

		console.log(multiplyByTwo(5)); // Result: 10

		console.log(multiplyByThree(5)); // Result: 15

		console.log(multiplyByTwoAndAddOne(5)); // Result: 11

		

		

		In this example , we create a multiplyBy function, taking a factor and returning a new function that multiplies any provided number by said factor. We also establish an addOne function, accepting a number and giving back that number incremented by one.

		

		We then concoct a compose function, which receives two functions as input, f and g, and returns a new function that first applies g to its input, followed by f to the outcome.

		Subsequently, we generate a couple of new functions, multiplyByTwo and multiplyByThree, by invoking multiplyBy with 2 and 3 as inputs, respectively. Moreover, we create a fresh function, multiplyByTwoAndAddOne, by combining addOne and multiplyByTwo using the compose function.

		

		Lastly, we call each of the trio of functions with an input of 5, yielding the expected output for every function.

		

		Utilizing TypeScript in this example offers several benefits, such as TypeScript’s type system confirming the input and output types of the multiplyBy and addOne functions are spot on, minimizing the chances of runtime errors. TypeScript’s backing for higher-order functions also simplifies the process of crafting new functions by merging existing functions, leading to more expressive and reusable code.

		

		Type inference and type safety

		

		

		type User = {

		  id: number;

		  name: string;

		  email: string;

		};

		 

		type Post = {

		  id: number;

		  title: string;

		  body: string;

		  authorId: number;

		};

		 

		type Comment = {

		  id: number;

		  body: string;

		  authorId: number;

		  postId: number;

		};

		 

		const users: User[] = [

		  { id: 1, name: 'Alice', email: 'alice@example.com' },

		  { id: 2, name: 'Bob', email: 'bob@example.com' },

		  { id: 3, name: 'Charlie', email: 'charlie@example.com' },

		];

		 

		const posts: Post[] = [

		  { id: 1, title: 'First post', body: 'This is the first post.', authorId: 1 },

		  { id: 2, title: 'Second post', body: 'This is the second post.', authorId: 2 },

		  { id: 3, title: 'Third post', body: 'This is the third post.', authorId: 3 },

		];

		 

		const comments: Comment[] = [

		  { id: 1, body: 'Great post!', authorId: 2, postId: 1 },

		  { id: 2, body: 'Nice work!', authorId: 1, postId: 2 },

		  { id: 3, body: 'Keep it up!', authorId: 3, postId: 3 },

		];

		 

		function getAuthorName(comment: Comment): string {

		  const author = users.find((user) => user.id === comment.authorId);

		  return author ? author.name : 'Unknown';

		}

		 

		const comment = comments[0];

		const authorName = getAuthorName(comment);

		 

		console.log(authorName); // Result: "Bob"

		

		

		In this example, we create three types: User, Post, and Comment, each possessing specific properties. Next, we define arrays of User, Post, and Comment objects and populate them with sample data.

		

		We then create a getAuthorName function that takes a Comment object as input and returns the comment author’s name. The function employs the find method to locate the user with the corresponding authorId, and returns the user’s name property. If no user is found, the function returns the string ‘Unknown’.

		

		Afterward, we invoke the getAuthorName function on the first comment in the comments array, resulting in the expected author name, ‘Bob’.

		

		Using TypeScript in this example provides two benefits: First, TypeScript’s type system ensures that the getAuthorName function’s input and output types are correct, reducing the possibility of runtime problems.

		

		Second, TypeScript’s type inference allows for the production of compact, legible code while maintaining type safety.

		

		TypeScript’s type inference, in particular, allows us to avoid explicitly typing the author variable, which is believed to be a User object based on the return type of the search method.

		

		Overall, this example shows how to combine TypeScript’s type inference and type safety to create concise, readable, and reliable code.

		

		Combo concepts example

		

		

		type Todo = {

		  id: number;

		  text: string;

		  done: boolean;

		};

		 

		type Filter = (todo: Todo) => boolean;

		 

		function filter<T>(arr: T[], fn: Filter): T[] {

		  return arr.filter(fn);

		}

		 

		function map<T, U>(arr: T[], fn: (item: T) => U): U[] {

		  return arr.map(fn);

		}

		 

		function reduce<T, U>(arr: T[], fn: (acc: U, item: T) => U, initial: U): U {

		  return arr.reduce(fn, initial);

		}

		 

		const todos: Todo[] = [

		  { id: 1, text: 'Write code', done: true },

		  { id: 2, text: 'Walk the dog', done: false },

		  { id: 3, text: 'Do laundry', done: false },

		];

		 

		const isDone: Filter = (todo) => todo.done;

		const getText: (todo: Todo) => string = (todo) => todo.text.toUpperCase();

		const count: (count: number, todo: Todo) => number = (count, todo) => (todo.done ? count + 1 : count);

		 

		const doneTodos = filter(todos, isDone);

		const todoTexts = map(todos, getText);

		const doneTodoCount = reduce(todos, count, 0);

		 

		console.log(doneTodos); // Result: [{ id: 1, text: 'Write code', done: true }]

		console.log(todoTexts); // Result: ["WRITE CODE", "WALK THE DOG", "DO LAUNDRY"]

		console.log(doneTodoCount); // Result: 1

		

		

		In this illustration, we establish a Todo type symbolizing a to-do item, along with a Filter type signifying a function that accepts a Todo and returns a boolean. We also devise three higher-order functions—filter, map, and reduce—each accepting an array and a function as input and delivering a fresh array or value.

		

		Next, we form three functions: isDone, getText, and count, each taking a Todo as input and yielding a boolean, string, or number, respectively.

		

		Subsequently, we generate an array of Todo objects dubbed todos, and employ the filter, map, and reduce functions to process the todos array based on the isDone, getText, and count functions.

		

		In the end, we record the results of each function invocation to the console, producing the anticipated output for every function.

		

		There are numerous advantages to utilizing TypeScript in this illustration: firstly, TypeScript’s type system guarantees that the input and output types of every function are accurate, diminishing the probability of runtime errors. Secondly, TypeScript’s type inference enables the crafting of succinct, legible code without compromising type safety. Thirdly, TypeScript’s backing of higher-order functions and type inference allows for effortless creation of new functions through the combination of existing ones, culminating in more expressive and reusable code. Lastly, TypeScript’s support for unchangeable data structures and pattern matching simplifies working with intricate data structures like arrays and objects.

		

		Altogether, this demonstration reveals how TypeScript can be employed to realize advanced functional programming notions, such as higher-order functions, immutable data structures, and pattern matching, while offering type safety, type inference, and enhanced readability.

		

		Example that combines type safety, type inference, immutable data structures, and pattern matching in TypeScript

		

		

		type Currency = 'USD' | 'EUR' | 'JPY';

		 

		type TransactionType = 'deposit' | 'withdrawal';

		 

		interface Transaction {

		  id: string;

		  type: TransactionType;

		  amount: number;

		  currency: Currency;

		  timestamp: Date;

		}

		 

		interface Account {

		  id: string;

		  balance: Map<Currency, number>;

		  transactions: ReadonlyArray<Transaction>;

		}

		 

		function deposit(account: Account, amount: number, currency: Currency): Account {

		  const balance = account.balance.get(currency) ?? 0;

		  const newBalance = balance + amount;

		  const newBalances = new Map(account.balance);

		  newBalances.set(currency, newBalance);

		  const newTransaction = {

		    id: Math.random().toString(36).substr(2, 9),

		    type: 'deposit',

		    amount,

		    currency,

		    timestamp: new Date(),

		  };

		  const newTransactions = [...account.transactions, newTransaction];

		  return {

		    ...account,

		    balance: newBalances,

		    transactions: newTransactions,

		  };

		}

		 

		function withdrawal(account: Account, amount: number, currency: Currency): Account {

		  const balance = account.balance.get(currency) ?? 0;

		  if (balance < amount) {

		    throw new Error(`Insufficient funds to withdraw ${amount} ${currency}`);

		  }

		  const newBalance = balance - amount;

		  const newBalances = new Map(account.balance);

		  newBalances.set(currency, newBalance);

		  const newTransaction = {

		    id: Math.random().toString(36).substr(2, 9),

		    type: 'withdrawal',

		    amount,

		    currency,

		    timestamp: new Date(),

		  };

		  const newTransactions = [...account.transactions, newTransaction];

		  return {

		    ...account,

		    balance: newBalances,

		    transactions: newTransactions,

		  };

		}

		 

		function getAccountBalance(account: Account, currency: Currency): number {

		  return account.balance.get(currency) ?? 0;

		}

		 

		function getAccountTransactions(account: Account, type?: TransactionType): ReadonlyArray<Transaction> {

		  return type

		    ? account.transactions.filter((transaction) => transaction.type === type)

		    : account.transactions;

		}

		 

		const account: Account = {

		  id: '123',

		  balance: new Map([

		    ['USD', 1000],

		    ['EUR', 500],

		  ]),

		  transactions: [],

		};

		 

		const newAccount = deposit(account, 100, 'USD');

		console.log(getAccountBalance(newAccount, 'USD')); // Result: 1100

		 

		const newerAccount = withdrawal(newAccount, 200, 'EUR');

		console.log(getAccountBalance(newerAccount, 'EUR')); // Result: 300

		 

		const allTransactions = getAccountTransactions(newerAccount);

		console.log(allTransactions); // Result: Array of all transactions

		 

		const withdrawalTransactions = getAccountTransactions(newerAccount, 'withdrawal');

		console.log(withdrawalTransactions); // Result: Array of withdrawal transactions

		

		

		In this example, we define a Currency type to represent the three currencies supported by an account, as well as a TransactionType type to represent deposit and withdrawal transactions. We also define a Transaction interface to represent a transaction object.

		

		We then define an Account interface to represent an account object, which includes a unique id, a balance map that maps Currency strings to balance amounts, and a transactions array that holds Transaction objects.

		

		Four functions are then defined: deposit, withdrawal, getAccountBalance, and getAccountTransactions.

		

		In this example, we have defined a set of functions to operate on an Account object. TypeScript’s type system guarantees the accuracy of the input and output types of each function, reducing the likelihood of runtime errors. TypeScript’s support for immutable data structures, such as Map and ReadonlyArray, ensures the account object’s state is not accidentally modified. With TypeScript’s support for pattern matching, like optional parameters and filter method, developers can work efficiently with complex data structures like transactions. Additionally, TypeScript’s type inference enables the crafting of concise, legible code without sacrificing type safety.

		

		We can use these functions to update the balance and transaction arrays of an Account object. The deposit function adds the input amount to the balance of the specified currency, creates a transaction object with the deposit type, and returns a new Account object with updated values. The withdrawal function is similar but throws an error if there are insufficient funds and creates a transaction object with the withdrawal type. The getAccountBalance function returns the balance for the specified currency or zero if there is no balance for the given currency. The getAccountTransactions function returns an array of transactions that match the specified type, or all transactions if no type is specified.

		

		Overall, this example demonstrates practical implementation of advanced functional programming concepts using TypeScript, such as immutable data structures and pattern matching. By taking advantage of TypeScript, developers can write more stable and reliable code while leveraging the expressive power of functional programming. This is especially useful in the banking industry, where accuracy and security are paramount.
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		Aspect Oriented Programming inTypeScript

		

		
			[image: Image]
		

		

		Aspect-Oriented Programming (AOP) is a programming paradigm that focuses on separating cross-cutting concern from the main business logic of a program. TypeScript, a statically typed superset of JavaScript, supports AOP through the usage of decorators.

		

		TypeScript’s decorators enable developers to add metadata to classes, methods, properties, or parameters during compile-time. Decorators execute when the decorated element is declared, making them a practical tool for implementing AOP in TypeScript.

		

		To utilize decorators for AOP in TypeScript, you must follow these steps:

		

		Define the aspect: Define the cross-cutting concern that you want to apply to your code. For instance, logging is a common aspect that can be applied to multiple methods or classes.

		

		Define the decorator: Define the decorator that will execute the aspect. A decorator is a function that takes the target (the class or method being decorated), the property key (the name of the method or property being decorated), and a property descriptor as its arguments. The decorator modifies the property descriptor to implement the aspect.

		

		Apply the decorator: Apply the decorator to the class or method that you want to modify by using the @ symbol followed by the name of the decorator function.

		

		Here’s an example of how to use decorators for AOP in TypeScript

		

		

		function log(target: any, key: string, descriptor: PropertyDescriptor) {

		  const originalMethod = descriptor.value;

		 

		  descriptor.value = function (...args: any[]) {

		    console.log(`Calling ${key} with arguments ${args}`);

		    const result = originalMethod.apply(this, args);

		    console.log(`Result: ${result}`);

		    return result;

		  };

		 

		  return descriptor;

		}

		 

		// Apply the decorator

		class MyClass {

		  @log

		  myMethod(arg1: string, arg2: number) {

		    console.log(`Executing myMethod with arguments ${arg1}, ${arg2}`);

		    return "myMethod result";

		  }

		}

		 

		// Usage

		const myClass = new MyClass();

		myClass.myMethod("hello", 42); // Output:

		                              // Calling myMethod with arguments hello, 42

		                              // Executing myMethod with arguments hello, 42

		                              // Result: myMethod result

		

		

		In this example, the log function is the aspect that logs the method call and its arguments. The @log decorator is applied to the myMethod method of the MyClass class. When the myMethod method is called, the decorator intercepts the call and logs the arguments and the result.

		

		AOP and decorators in a chat application:

		

		

		// Define the aspect

		function log(target: any, key: string, descriptor: PropertyDescriptor) {

		  const originalMethod = descriptor.value;

		 

		  descriptor.value = function (...args: any[]) {

		    console.log(`Calling ${key} with arguments ${args}`);

		    const result = originalMethod.apply(this, args);

		    console.log(`Result: ${result}`);

		    return result;

		  };

		 

		  return descriptor;

		}

		 

		// Define another aspect

		function retry(target: any, key: string, descriptor: PropertyDescriptor) {

		  const originalMethod = descriptor.value;

		 

		  descriptor.value = async function (...args: any[]) {

		    let retries = 3;

		    while (retries > 0) {

		      try {

		        const result = await originalMethod.apply(this, args);

		        return result;

		      } catch (error) {

		        console.log(`Error calling ${key}: ${error}`);

		        retries--;

		      }

		    }

		    throw new Error(`Failed to call ${key} after 3 retries`);

		  };

		 

		  return descriptor;

		}

		 

		// Define the chat service

		class ChatService {

		  @log

		  @retry

		  async sendMessage(message: string, recipient: string): Promise<void> {

		    // Send the message to the recipient

		    const response = await fetch("/api/send-message", {

		      method: "POST",

		      headers: { "Content-Type": "application/json" },

		      body: JSON.stringify({ message, recipient }),

		    });

		 

		    if (!response.ok) {

		      throw new Error(`Failed to send message: ${response.status}`);

		    }

		  }

		}

		 

		// Usage

		const chatService = new ChatService();

		chatService.sendMessage("Hello", "jane.doe").catch(console.error);

		

		

		In this example, we have a ChatService class that sends messages to recipients using a web API. Our objective is to incorporate two aspects into this service: logging and retrying failed requests.

		

		The log aspect logs the method call, arguments, and results. The retry aspect retries failed requests up to three times before throwing an error.

		We apply the log and retry decorators to the sendMessage method of the ChatService class. When the sendMessage method is called, the decorators intercept the call and implement the aspects.

		

		In the usage example, we create an instance of the ChatService class and invoke the sendMessage method with certain arguments. If the request fails, the retry aspect will attempt to resend the request up to three times before raising an error. The log aspect will log the method call, arguments, and results.

		

		AOP and decorators in a CRM application

		

		

		// Define the aspect

		function log(target: any, key: string, descriptor: PropertyDescriptor) {

		  const originalMethod = descriptor.value;

		 

		  descriptor.value = function (...args: any[]) {

		    console.log(`Calling ${key} with arguments ${args}`);

		    const result = originalMethod.apply(this, args);

		    console.log(`Result: ${result}`);

		    return result;

		  };

		 

		  return descriptor;

		}

		 

		// Define another aspect

		function authorize(permission: string) {

		  return function (target: any, key: string, descriptor: PropertyDescriptor) {

		    const originalMethod = descriptor.value;

		 

		    descriptor.value = async function (...args: any[]) {

		      // Check if the user has the required permission

		      if (!this.currentUser || !this.currentUser.permissions.includes(permission)) {

		        throw new Error(`Unauthorized: user does not have permission ${permission}`);

		      }

		 

		      // Call the original method

		      const result = await originalMethod.apply(this, args);

		      return result;

		    };

		 

		    return descriptor;

		  };

		}

		 

		// Define the CRM service

		class CRMService {

		  private currentUser: any;

		 

		  @log

		  async getCustomer(id: string): Promise<any> {

		    // Get the customer from the API

		    const response = await fetch(`/api/customers/${id}`, { method: "GET" });

		 

		    if (!response.ok) {

		      throw new Error(`Failed to get customer: ${response.status}`);

		    }

		 

		    const customer = await response.json();

		    return customer;

		  }

		 

		  @log

		  @authorize("create")

		  async createCustomer(data: any): Promise<any> {

		    // Create the customer via the API

		    const response = await fetch(`/api/customers`, {

		      method: "POST",

		      headers: { "Content-Type": "application/json" },

		      body: JSON.stringify(data),

		    });

		 

		    if (!response.ok) {

		      throw new Error(`Failed to create customer: ${response.status}`);

		    }

		 

		    const customer = await response.json();

		    return customer;

		  }

		}

		 

		// Usage

		const crmService = new CRMService();

		 

		// Set the current user

		crmService["currentUser"] = {

		  name: "John Doe",

		  permissions: ["create", "read", "update", "delete"],

		};

		 

		// Call the createCustomer method

		crmService.createCustomer({ name: "Jane Doe", email: "jane.doe@example.com" }).catch(console.error);

		 

		// Call the getCustomer method

		crmService.getCustomer("123").catch(console.error);

		

		

		In this example, we have a CRMService class that provides access to customer data via a web API. We want to add two aspects to this service: logging and authorization.

		

		The log aspect logs the method call and its arguments, as well as the result. The authorize aspect checks if the current user has a specific permission before calling the original method. If the user does not have the required permission, an error is thrown.

		

		We apply the log and authorize decorators to the createCustomer method of the CRMService class. The getCustomer method is only decorated with the log decorator.

		

		In the usage example, we create an instance of the CRMService class and set the current user. We then call the createCustomer method with some data. If the current user has the “create” permission, the authorize aspect will allow the call to proceed. Otherwise, an error will be thrown. The log aspect will log the method call and its arguments, as well as the result.
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		Gangs of Four (GoF) Design Patterns - Applying TypeScript

		

		
			[image: Image]
		

		Understanding common design patterns and how to utilize TypeScript power while you work with them can help you write more maintainable and scalable code by detecting type-related errors during compilation rather than execution . Patterns such as Singleton, Factory, Observer, and Dependency Injection are prevalent in web development, simplifying the creation of big applications.

		

		Applying TypeScript into JavaScript design patterns offers multiple advantages compared to using plain JavaScript.Below just few of them .

		

		Enhanced Type Safety: TypeScript’s static type system identifies type-related errors at compile-time, not run-time, boosting code robustness and minimizing type-related bugs.

		Superior IDE Support: TypeScript’s static types improve IDE support with features like code completion, refactoring, and code navigation, which elevates developer productivity and reduces error likelihood.

		Greater Code Maintainability: TypeScript’s classes, interfaces, and access modifiers help developers create more modular, maintainable code, easing codebase comprehension and modification over time.

		Improved Collaboration: TypeScript’s type system enhances collaboration among developers by providing a shared language to discuss code, mitigating confusion and misunderstandings.

		Easier Debugging: TypeScript’s static types simplify debugging by offering more information about object and variable types in the code, facilitating quick bug identification and resolution.

		Better Scalability: TypeScript’s type system and other features support code scalability and long-term maintainability as codebases expand.

		

		TypeScript is typically recommended for larger, more complex projects, as its benefits become increasingly apparent as the codebase grows. However, even for smaller projects, TypeScript can offer advantages like improved type safety and enhanced IDE support.

		

		Singleton Pattern

		

		The Singleton pattern ensures a class has a single instance and offers global access to it. To implement the Singleton pattern in TypeScript, use a private constructor, a static instance property, and a static getInstance() method that returns the class’s sole instance.

		

		

		class Database {

		  private static instance: Database;

		  private constructor() { }

		 

		  public static getInstance(): Database {

		    if (!Database.instance) {

		      Database.instance = new Database();

		    }

		    return Database.instance;

		  }

		 

		  public query(query: string): any[] {

		    // perform database query and return results

		  }

		}

		 

		const db = Database.getInstance();

		const results = db.query("SELECT * FROM users");

		

		

		In this example, the Database class is structured as a singleton. The getInstance method guarantees that merely a single instance of the Database class is generated, which is then returned every time getInstance is invoked. This example showcases how TypeScript can implement the singleton pattern, preventing the creation of multiple instances of the same class.

		

		With plain JavaScript, it’s simple to generate multiple class instances, leading to bugs in the code. By using TypeScript, we can integrate type annotations that confirm only one instance of a class is ever produced and that the same instance is returned whenever required.

		

		Factory Pattern:

		

		

		abstract class Vehicle {

		  public abstract drive(): void;

		}

		 

		class Car extends Vehicle {

		  public drive(): void {

		    console.log("Driving a car");

		  }

		}

		 

		class Truck extends Vehicle {

		  public drive(): void {

		    console.log("Driving a truck");

		  }

		}

		 

		abstract class VehicleFactory {

		  public abstract createVehicle(): Vehicle;

		}

		 

		class CarFactory extends VehicleFactory {

		  public createVehicle(): Vehicle {

		    return new Car();

		  }

		}

		 

		class TruckFactory extends VehicleFactory {

		  public createVehicle(): Vehicle {

		    return new Truck();

		  }

		}

		 

		const carFactory = new CarFactory();

		const car = carFactory.createVehicle();

		car.drive(); // Output: "Driving a car"

		 

		const truckFactory = new TruckFactory();

		const truck = truckFactory.createVehicle();

		truck.drive(); // Output: "Driving a truck"

		

		

		In this example, we have an abstract Vehicle class, with two concrete implementations: Car and Truck. We also have an abstract VehicleFactory class, with two concrete implementations: CarFactory and TruckFactory. Each factory creates a specific type of vehicle. This example demonstrates how TypeScript can enforce the factory pattern and ensure that the correct type of vehicle is created.

		

		Observer pattern in TypeScript

		

		

		interface Observer<T> {

		  update(data: T): void;

		}

		 

		class Subject<T> {

		  private observers: Observer<T>[] = [];

		 

		  public registerObserver(observer: Observer<T>): void {

		    this.observers.push(observer);

		  }

		 

		  public unregisterObserver(observer: Observer<T>): void {

		    const index = this.observers.indexOf(observer);

		    if (index >= 0) {

		      this.observers.splice(index, 1);

		    }

		  }

		 

		  public notifyObservers(data: T): void {

		    for (const observer of this.observers) {

		      observer.update(data);

		    }

		  }

		}

		 

		class StockPrice {

		  private subject = new Subject<number>();

		  private price = 0;

		 

		  public getPrice(): number {

		    return this.price;

		  }

		 

		  public setPrice(price: number): void {

		    this.price = price;

		    this.subject.notifyObservers(price);

		  }

		 

		  public addObserver(observer: Observer<number>): void {

		    this.subject.registerObserver(observer);

		  }

		 

		  public removeObserver(observer: Observer<number>): void {

		    this.subject.unregisterObserver(observer);

		  }

		}

		 

		class StockPriceDisplay implements Observer<number> {

		  private element: HTMLElement;

		 

		  constructor(elementId: string) {

		    this.element = document.getElementById(elementId);

		  }

		 

		  public update(price: number): void {

		    this.element.innerText = price.toFixed(2);

		  }

		}

		 

		const stockPrice = new StockPrice();

		const stockPriceDisplay1 = new StockPriceDisplay("price-display-1");

		const stockPriceDisplay2 = new StockPriceDisplay("price-display-2");

		 

		stockPrice.addObserver(stockPriceDisplay1);

		stockPrice.addObserver(stockPriceDisplay2);

		 

		stockPrice.setPrice(100.00); // Updates both StockPriceDisplay elements with the new price

		

		

		In this example, we have a StockPrice class that uses the Observer pattern to notify StockPriceDisplay objects when the price of a stock changes. The StockPrice class is the subject, while StockPriceDisplay is the observer. When the setPrice method is called, the StockPrice class notifies all observers of the new price. The StockPriceDisplay objects update their respective elements with the new price. This example demonstrates how TypeScript can enforce the Observer pattern and ensure that observers are notified when the subject’s state changes. Additionally, the use of TypeScript’s type system ensures that only valid types are used in the implementation of the Observer pattern.

		

		Decorator Pattern

		

		

		abstract class Pizza {

		  public abstract getPrice(): number;

		  public abstract getDescription(): string;

		}

		 

		class MargheritaPizza extends Pizza {

		  public getPrice(): number {

		    return 10;

		  }

		 

		  public getDescription(): string {

		    return "Margherita Pizza";

		  }

		}

		 

		abstract class PizzaDecorator extends Pizza {

		  constructor(private pizza: Pizza) {

		    super();

		  }

		 

		  public getPrice(): number {

		    return this.pizza.getPrice();

		  }

		 

		  public getDescription(): string {

		    return this.pizza.getDescription();

		  }

		}

		 

		class CheeseDecorator extends PizzaDecorator {

		  public getPrice(): number {

		    return super.getPrice() + 2;

		  }

		 

		  public getDescription(): string {

		    return super.getDescription() + ", Cheese";

		  }

		}

		 

		class MushroomDecorator extends PizzaDecorator {

		  public getPrice(): number {

		    return super.getPrice() + 3;

		  }

		 

		  public getDescription(): string {

		    return super.getDescription() + ", Mushrooms";

		  }

		}

		 

		const pizza = new MargheritaPizza();

		const pizzaWithCheese = new CheeseDecorator(pizza);

		const pizzaWithMushrooms = new MushroomDecorator(pizzaWithCheese);

		 

		console.log(pizzaWithMushrooms.getDescription()); // Output: "Margherita Pizza, Cheese, Mushrooms"

		console.log(pizzaWithMushrooms.getPrice()); // Output: 15

		

		

		In this example, we have a Pizza abstract class with a concrete implementation, MargheritaPizza. We also have an abstract PizzaDecorator class that allows us to add toppings to a pizza. Each concrete decorator adds a specific topping to a pizza. This example demonstrates how TypeScript can enforce the Decorator pattern and ensure that toppings are added to a pizza without affecting the base pizza object.

		

		Adapter Pattern

		

		

		interface Notification {

		  send(message: string): void;

		}

		 

		class EmailNotification implements Notification {

		  public send(message: string): void {

		    console.log(`Sending email: ${message}`);

		  }

		}

		 

		class SlackNotification {

		  public sendMessage(text: string): void {

		    console.log(`Sending Slack message: ${text}`);

		  }

		}

		 

		class SlackNotificationAdapter implements Notification {

		  private slackNotification = new SlackNotification();

		 

		  public send(message: string): void {

		    this.slackNotification.sendMessage(message);

		  }

		}

		 

		const emailNotification = new EmailNotification();

		emailNotification.send("Hello, world!"); // Output: "Sending email: Hello, world!"

		 

		const slackNotification = new SlackNotificationAdapter();

		slackNotification.send("Hello, world!"); // Output: "Sending Slack message: Hello, world!"

		

		

		In this example, we have a Notification interface with a concrete implementation, EmailNotification. We also have a SlackNotification class with a sendMessage method that is not compatible with the Notification interface. To make SlackNotification compatible with the Notification interface, we create an adapter class, SlackNotificationAdapter, that adapts the sendMessage method to the send method required by the Notification interface. This example demonstrates how TypeScript can enforce the

		

		Template Method Pattern

		

		

		abstract class Game {

		  public abstract initialize(): void;

		  public abstract start(): void;

		  public abstract end(): void;

		 

		  public play(): void {

		    this.initialize();

		    this.start();

		    this.end();

		  }

		}

		 

		class Football extends Game {

		  public initialize(): void {

		    console.log("Football game initialized.");

		  }

		 

		  public start(): void {

		    console.log("Football game started. Let's play!");

		  }

		 

		  public end(): void {

		    console.log("Football game ended. Thanks for playing!");

		  }

		}

		 

		class Basketball extends Game {

		  public initialize(): void {

		    console.log("Basketball game initialized.");

		  }

		 

		  public start(): void {

		    console.log("Basketball game started. Let's play!");

		  }

		 

		  public end(): void {

		    console.log("Basketball game ended. Thanks for playing!");

		  }

		}

		 

		const football = new Football();

		football.play(); // Output: "Football game initialized.", "Football game started. Let's play!", "Football game ended. Thanks for playing!"

		 

		const basketball = new Basketball();

		basketball.play(); // Output: "Basketball game initialized.", "Basketball game started. Let's play!", "Basketball game ended. Thanks for playing!"

		

		

		In this example, we have a Game abstract class with three abstract methods that define the steps of a game: initialize, start, and end. Each concrete subclass of the Game class implements these methods to define the steps of a specific game. The play method is a template method that calls the initialize, start, and end methods in sequence. This example demonstrates how TypeScript can enforce the Template Method pattern and ensure that the steps of a game are defined correctly.

		

		Strategy Pattern

		

		

		interface SortStrategy {

		  sort<T>(items: T[]): T[];

		}

		 

		class BubbleSort implements SortStrategy {

		  public sort<T>(items: T[]): T[] {

		    console.log("Sorting using bubble sort");

		    return items.sort();

		  }

		}

		 

		class QuickSort implements SortStrategy {

		  public sort<T>(items: T[]): T[] {

		    console.log("Sorting using quick sort");

		    return items.sort();

		  }

		}

		 

		class Sorter<T> {

		  constructor(private strategy: SortStrategy) {}

		 

		  public sort(items: T[]): T[] {

		    return this.strategy.sort(items);

		  }

		}

		 

		const bubbleSort = new BubbleSort();

		const sorter1 = new Sorter<number>(bubbleSort);

		const sortedArray1 = sorter1.sort([3, 1, 4, 2]);

		 

		const quickSort = new QuickSort();

		const sorter2 = new Sorter<string>(quickSort);

		const sortedArray2 = sorter2.sort(["apple", "banana", "cherry"]);

		 

		console.log(sortedArray1); // Output: [1, 2, 3, 4]

		console.log(sortedArray2); // Output: ["apple", "banana", "cherry"]

		

		

		In this example, we have a SortStrategy interface with two concrete implementations, BubbleSort and QuickSort, that define different algorithms for sorting an array. We also have a Sorter class that takes a SortStrategy object and uses it to sort an array. By using TypeScript, we can ensure that the Sorter class takes a valid SortStrategy object and that the sort method returns the correct type of array. This example demonstrates how TypeScript can enforce the Strategy pattern and ensure that the correct strategy object is used to perform an algorithm.

		

		Iterator Pattern in TypeScript

		

		

		interface Iterator<T> {

		  hasNext(): boolean;

		  next(): T;

		}

		 

		class NumberIterator implements Iterator<number> {

		  private index = 0;

		  constructor(private numbers: number[]) {}

		 

		  public hasNext(): boolean {

		    return this.index < this.numbers.length;

		  }

		 

		  public next(): number {

		    return this.numbers[this.index++];

		  }

		}

		 

		class NameIterator implements Iterator<string> {

		  private index = 0;

		  constructor(private names: string[]) {}

		 

		  public hasNext(): boolean {

		    return this.index < this.names.length;

		  }

		 

		  public next(): string {

		    return this.names[this.index++];

		  }

		}

		 

		class Container<T> {

		  constructor(private items: T[]) {}

		 

		  public getIterator(): Iterator<T> {

		    return new NumberIterator(this.items) as Iterator<T>;

		  }

		}

		 

		const numberContainer = new Container<number>([1, 2, 3, 4, 5]);

		const numberIterator = numberContainer.getIterator();

		 

		while (numberIterator.hasNext()) {

		  console.log(numberIterator.next());

		}

		 

		const nameContainer = new Container<string>(["Alice", "Bob", "Charlie"]);

		const nameIterator = new NameIterator(nameContainer.getIterator());

		 

		while (nameIterator.hasNext()) {

		  console.log(nameIterator.next());

		}

		

		

		In this example , we’re showing two unique iterators, NumberIterator and NameIterator. Both of ‘em implement the Iterator interface and present different ways to iterate over arrays of numbers or strings. On top of that, we’ve got a container class that grabs an array of elements and dishes out an iterator for that array. By using TypeScript, we can make sure the iterators returned by the container class are spot-on in terms of type, and the next method doles out elements of the right type.

		

		Now, let’s talk about NameIterator—it’s a composite iterator that gets an iterator from the Container class through a constructor parameter and cycles through the items of that iterator. It’s pretty handy for iterating across a bunch of things. With TypeScript, we can double-check that the composite iterator is the right type and serves up the correct type of items. This example really highlights how TypeScript nails the Iterator pattern, ensuring various iterator types can be used for iterating over different collection types, and they can even be mixed and matched to traverse a collection of collections.
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		Microservice - Micro Frontend with TypeScript

		

		
			[image: Image]
		

		

		Countless books have been authored on the subject of microservice architecture, and with good reason. The advantages of this architecture are endless . Microservice promote a modular and decoupled architecture, which allows separate development teams to work independently on distinct services. This ultimately leads to improved development speed and flexibility. Additionally this architecture permit individual services to be updated, scaled, and deployed independently. This not only minimizes the likelihood of system-wide failures but also streamlines long-term management.

		

		Micro front-end architecture is an extension from microservice idea to frontend development and allows us to break down a monolithic application into smaller, more manageable pieces. Each micro front-end can be developed and deployed independently, which makes it easier to maintain and scale the application.

		

		Since this book is about TypeScript , we will explore micro front-end architectures code examples how Typescript can effect positively by providing strong typing and compile-time error checking, which improves code quality and maintainability across multiple services and teams. Additionally, TypeScript’s features, such as interfaces and decorators, encourage consistent coding patterns and better collaboration between developers working on various parts of the syste

		

		A common approach to implementing micro front-ends is to use Web Components, which enable you to create custom, reusable, and encapsulated HTML elements plus a global event bus is a mechanism for communicating between micro front-ends. It can be implemented using a simple JavaScript/TypeScript module that provides a publish/subscribe pattern. Each micro front-end can subscribe to specific events and publish events when necessary.

		

		When dealing with larger applications, there are a few best practices and improvements you can make to the micro front-end approach and direction .

		

		Lazy loading

		

		For larger applications, it’s beneficial to use lazy loading techniques to reduce the initial load time. You can load each micro front-end only when it’s needed or visible on the page. Frameworks like Angular and Vue.js have built-in support for lazy loading. For React, you can use React.lazy and React.Suspense.

		

		Separate build processes

		

		Each micro front-end should have its own build process and deployment pipeline. This allows each team to work independently, using the best tools and technologies for their specific micro front-end. This separation also enables independent deployments and versioning.

		

		Use an orchestrator

		

		An orchestrator can help manage the communication between micro front-ends and handle the loading/unloading of micro front-ends based on application requirements. One popular solution is using single-spa, a JavaScript framework that can load, mount, and unmount multiple applications in a single page.

		

		Module Federation

		

		If you are using webpack 5, consider using Module Federation to share dependencies between micro front-ends. This allows you to load shared libraries only once, reducing the overall size of your application and improving performance.

		

		Establish clear contracts

		

		When multiple teams are working on separate micro front-ends, it’s crucial to have clear contracts and APIs between them. This can include shared TypeScript interfaces, standardized event names and data structures for the global event bus, and documentation on how to interact with other micro front-ends.

		

		Implement performance monitoring

		

		Monitor your micro front-ends to ensure they are performing well and not causing bottlenecks in your application. Use performance monitoring tools like Lighthouse, WebPageTest, and DevTools to analyze and optimize your micro front-ends.

		

		Style isolation

		

		To prevent style leakage between micro front-ends, use CSS modules or CSS-in-JS solutions like styled-components, Emotion, or Angular’s ViewEncapsulation. This ensures that each micro front-end has its own isolated styles.

		

		In summary, to handle larger applications with multiple micro front-ends, focus on optimizing performance with lazy loading and shared dependencies, using an orchestrator like single-spa, separating build processes and deployments, and establishing clear contracts and communication between the different micro front-ends.

		

		Here’s a high-level tutorial to create a micro front-end application with TypeScript, React, Angular, and Vue.js using the best practices mentioned

		

		Set up the projects

		

		Create three separate projects for React, Angular, and Vue.js. You can use their respective CLIs to generate the projects:

		

		React: npx create-react-app react-app —template typescript

		Angular: ng new angular-app —strict

		Vue.js: vue create vue-app (Select TypeScript preset)

		

		Lazy loading

		

		Implement lazy loading for each application:

		

		React:

		

		In the App.tsx file, use React.lazy and React.Suspense to lazy load the React component.

		

		

		import React, { lazy, Suspense } from "react";

		const ReactComponent = lazy(() => import("./ReactComponent"));

		 

		function App() {

		  return (

		    <div>

		      <Suspense fallback={<div>Loading...</div>}>

		        <ReactComponent />

		      </Suspense>

		    </div>

		  );

		}

		 

		export default App;

		

		

		Angular:

		

		Update the app-routing.module.ts to enable lazy loading for the Angular component:

		

		

		import { NgModule } from "@angular/core";

		import { RouterModule, Routes } from "@angular/router";

		 

		const routes: Routes = [

		  {

		    path: "angular-component",

		    loadChildren: () =>

		      import("./angular-component/angular-component.module").then((m) => m.AngularComponentModule),

		  },

		];

		 

		@NgModule({

		  imports: [RouterModule.forRoot(routes, { useHash: true })],

		  exports: [RouterModule],

		})

		export class AppRoutingModule {}

		

		

		Vue.js:

		

		Update the router/index.ts to enable lazy loading for the Vue component:

		

		

		import Vue from "vue";

		import VueRouter, { RouteConfig } from "vue-router";

		Vue.use(VueRouter);

		 

		const routes: Array<RouteConfig> = [

		  {

		    path: "/vue-component",

		    name: "VueComponent",

		    component: () => import("../components/VueComponent.vue"),

		  },

		];

		 

		const router = new VueRouter({

		  mode: "hash",

		  base: process.env.BASE_URL,

		  routes,

		});

		 

		export default router;

		

		

		Separation of build processes:

		

		Each project has its own build process, so you don’t need to make any changes here. Just ensure that each project has its own repository and CI/CD pipeline.

		

		Orchestration using single-spa

		

		Install single-spa in your projects:

		

		React: npm install single-spa-react

		Angular: ng add single-spa-angular

		Vue.js: npm install single-spa-vue

		

		Follow the single-spa documentation to set up each project as a single-spa application:

		

		React: https://single-spa.js.org/docs/ecosystem-react

		Angular: https://single-spa.js.org/docs/ecosystem-angular

		Vue.js: https://single-spa.js.org/docs/ecosystem-vue

		

		Communication

		

		Implement the global event bus in a separate package, as mentioned in the previous examples, and import it into each of the projects. Make sure to establish clear communication contracts for events and data structures.

		

		For communication between the micro front-ends, we can use a custom event bus to handle the communication, with events and payloads following a standardized format. Here’s an example of how you can create a global event bus using TypeScript

		

		Create the EventBus class:

		

		

		export interface EventBusEvent<T> {

		  type: string;

		  payload: T;

		}

		 

		export class EventBus {

		  private listeners: { [type: string]: Array<(event: EventBusEvent<any>) => void> } = {};

		 

		  public addListener<T>(type: string, callback: (event: EventBusEvent<T>) => void): void {

		    if (!this.listeners[type]) {

		      this.listeners[type] = [];

		    }

		    this.listeners[type].push(callback);

		  }

		 

		  public removeListener<T>(type: string, callback: (event: EventBusEvent<T>) => void): void {

		    if (!this.listeners[type]) return;

		 

		    this.listeners[type] = this.listeners[type].filter(

		      (listener) => listener !== callback

		    );

		  }

		 

		  public dispatch<T>(event: EventBusEvent<T>): void {

		    const { type } = event;

		 

		    if (!this.listeners[type]) return;

		 

		    this.listeners[type].forEach((callback) => callback(event));

		  }

		}

		

		

		Instantiate the EventBus and export it:

		

		

		// event-bus-instance.ts

		import { EventBus } from "./event-bus";

		 

		export const eventBus = new EventBus();

		

		

		Define event types and payloads

		

		Create TypeScript interfaces to define the events and their payloads, ensuring standardized communication.

		

		

		// events.ts

		export interface UserLoggedInPayload {

		  userId: string;

		  userName: string;

		}

		 

		export const USER_LOGGED_IN = "user_logged_in";

		

		

		Use the event bus in your micro front-ends:

		

		In your React, Angular, and Vue.js applications, import the eventBus instance and use it to listen for events or dispatch events.

		

		React:

		

		

		import React, { useEffect } from "react";

		import { eventBus } from "./event-bus-instance";

		import { UserLoggedInPayload, USER_LOGGED_IN } from "./events";

		 

		function ReactComponent() {

		  useEffect(() => {

		    const handleUserLoggedIn = (event: EventBusEvent<UserLoggedInPayload>) => {

		      console.log("User logged in:", event.payload.userName);

		    };

		 

		    eventBus.addListener(USER_LOGGED_IN, handleUserLoggedIn);

		 

		    return () => {

		      eventBus.removeListener(USER_LOGGED_IN, handleUserLoggedIn);

		    };

		  }, []);

		 

		  return <div>React Component</div>;

		}

		 

		export default ReactComponent;

		

		

		Angular:

		

		

		import { Component, OnDestroy, OnInit } from "@angular/core";

		import { EventBus, EventBusEvent } from "./event-bus";

		import { UserLoggedInPayload, USER_LOGGED_IN } from "./events";

		 

		@Component({

		  selector: "app-angular-component",

		  templateUrl: "./angular-component.component.html",

		  styleUrls: ["./angular-component.component.css"],

		})

		export class AngularComponent implements OnInit, OnDestroy {

		  constructor(private eventBus: EventBus) {}

		 

		  ngOnInit() {

		    this.eventBus.addListener(USER_LOGGED_IN, this.handleUserLoggedIn);

		  }

		 

		  ngOnDestroy() {

		    this.eventBus.removeListener(USER_LOGGED_IN, this.handleUserLoggedIn);

		  }

		 

		  handleUserLoggedIn(event: EventBusEvent<UserLoggedInPayload>) {

		    console.log("User logged in:", event.payload.userName);

		  }

		}

		

		

		Vue.js:

		

		

		import Vue from "vue";

		import Component from "vue-class-component";

		import { EventBus, EventBusEvent } from "./event-bus";

		import { UserLoggedInPayload, USER_LOGGED_IN } from "./events";

		 

		@Component

		export default class VueComponent extends Vue {

		  private eventBus = new EventBus();

		 

		  created() {

		    this.eventBus.addListener(USER_LOGGED_IN, this.handleUserLoggedIn);

		  }

		 

		  beforeDestroy() {

		    this.eventBus.removeListener(USER_LOGGED_IN, this.handleUserLoggedIn);

		  }

		 

		  handleUserLoggedIn(event: EventBusEvent<UserLoggedInPayload>) {

		    console.log("User logged in:", event.payload.userName);

		  }

		 

		  render() {

		    return <div>Vue Component</div>;

		  }

		}

		

		

		This Vue.js component listens for the USER_LOGGED_IN event using the global event bus and logs the user’s name when the event is received. The component also removes the event listener before being destroyed. By following this examples, you can create a global event bus using TypeScript to handle communication between them

		

		Performance monitoring

		

		Use tools like Lighthouse, WebPageTest, and DevTools to monitor and optimize the performance of your micro front-ends.

		

		Style isolation

		

		Use CSS modules, CSS-in-JS solutions, or ViewEncapsulation to ensure that styles are scoped to each micro front-end.

		

		React: Use CSS modules by renaming your CSS files to *.module.css and importing them as modules.

		Angular: Set encapsulation: ViewEncapsulation.Emulated in the component decorator.

		Vue.js: Use scoped CSS by adding the scoped attribute to your <style> tag in Vue components.

		

		

		<style scoped>

		  /* your styles here */

		</style>

		

		

		Container application:

		

		Create a container application using single-spa to load and orchestrate the three micro front-ends. You can use the create-single-spa CLI to set up the container application:

		

		

		npx create-single-spa container-app

		

		

		Follow the prompts and choose the “single-spa root config” option. Next, configure the root config according to the single-spa documentation: https://single-spa.js.org/docs/configuration.

		

		Register applications

		

		In your container application’s root config, register the React, Angular, and Vue.js micro front-ends:

		

		

		import { registerApplication, start } from "single-spa";

		 

		registerApplication(

		  "react-app",

		  () => System.import("react-app"), // Change this to the actual URL of your React build

		  (location) => location.pathname.startsWith("/react-app")

		);

		 

		registerApplication(

		  "angular-app",

		  () => System.import("angular-app"), // Change this to the actual URL of your Angular build

		  (location) => location.pathname.startsWith("/angular-app")

		);

		 

		registerApplication(

		  "vue-app",

		  () => System.import("vue-app"), // Change this to the actual URL of your Vue build

		  (location) => location.pathname.startsWith("/vue-app")

		);

		 

		start();

		

		

		Make sure to replace the URLs in the System.import() calls with the actual URLs of your deployed micro front-ends.

		

		Deployment

		

		Each micro front-end should be deployed independently, along with the container application. You can use static site hosting services like Netlify, Vercel, or Amazon S3 to deploy your applications. Make sure to update the URLs in the container application to match the deployment URLs of your micro front-ends.

		By following this tutorial, you’ll have a micro front-end architecture that uses TypeScript, React, Angular, and Vue.js. The implementation makes use of best practices such as lazy loading, separation of build processes, single-spa for orchestration, communication through a global event bus, performance monitoring, and style isolation. This setup allows your teams to work independently while still delivering a cohesive user experience.

		

		Module Federation Way

		

		The main difference between Module Federation and Single-Spa is the way they handle the sharing and reuse of modules. Module federation uses a central “ entry ” point for each module, while single-spa uses a “ shell ” application to load and manage different micro frontends. Another key difference is the flexibility of the architecture.

		

		Module Federation is a Webpack 5 feature that enables separate builds to form a single application at runtime. It allows you to share code between multiple applications, which is perfect for micro front-end architectures. I’ll show you an example of how to set up Module Federation for a simple project containing React, Angular, and Vue.js applications.

		

		Install the required dependencies

		

		Since Create React App doesn’t support Webpack 5 yet, we’ll create a custom setup. Create a new folder for each application (React, Angular, and Vue.js), and then follow these steps:

		

		React:

		Install the dependencies: npm init -y and npm install react react-dom typescript ts-loader webpack@5 webpack-cli webpack-dev-server html-webpack-plugin @types/react @types/react-dom

		Create a webpack.config.js and tsconfig.json file in the project root.

		Angular:

		Run ng new angular-app —strict

		Update Angular to use Webpack 5 by following these instructions: https://github.com/angular/angular-cli/issues/19815

		Vue.js:

		Run vue create vue-app (choose the TypeScript preset)

		Update the Vue CLI to use Webpack 5 by following these instructions: https://github.com/vuejs/vue-cli/issues/6309

		

		Configure Module Federation

		

		In each project’s webpack.config.js, add the ModuleFederationPlugin:

		

		

		const ModuleFederationPlugin = require("webpack/lib/container/ModuleFederationPlugin");

		 

		// ...

		 

		plugins: [

		  new ModuleFederationPlugin({

		    name: "reactApp",

		    filename: "remoteEntry.js",

		    exposes: {

		      "./ReactComponent": "./src/ReactComponent",

		    },

		  }),

		 

		  // ...

		],

		

		

		Replace the name and exposes properties for each project:

		

		React:

		name: “reactApp”

		exposes: { “./ReactComponent”: “./src/ReactComponent” }

		Angular:

		name: “angularApp”

		exposes: { “./AngularComponent”: “./src/app/angular-component/angular-component.component” }

		Vue.js:

		name: “vueApp”

		exposes: { “./VueComponent”: “./src/components/VueComponent.vue” }

		

		Container application

		

		Create a new folder for the container application, and initialize it with npm init -y. Install the dependencies: npm install webpack@5 webpack-cli webpack-dev-server html-webpack-plugin.

		

		Create a webpack.config.js file in the container project, and add the following configuration:

		

		

		const HtmlWebpackPlugin = require("html-webpack-plugin");

		 

		module.exports = {

		  mode: "development",

		  devtool: false,

		 

		  resolve: {

		    extensions: [".js", ".jsx"],

		  },

		 

		  plugins: [

		    new HtmlWebpackPlugin({

		      template: "./public/index.html",

		    }),

		  ],

		 

		  devServer: {

		    contentBase: path.join(__dirname, "dist"),

		    port: 3000,

		  },

		};

		

		

		Import components

		

		In the container application, create a new index.js file and import the components exposed by the micro front-ends:

		

		

		import("reactApp/ReactComponent").then(({ default: ReactComponent }) => {

		  // Render the React component

		});

		 

		import("angularApp/AngularComponent").then(({ default: AngularComponent }) => {

		  // Render the Angular component

		});

		 

		import("vueApp/VueComponent").then(({ default: VueComponent }) => {

		  // Render the Vue.js component

		});

		

		

		Run the applications

		

		Start each micro front-end and the container application with webpack serve.

		

		Now that you’ve set up Module Federation for your micro front-end projects, I’ll show you how to render the components in the container application.

		

		Render the components

		

		In the container application, create an index.html file in the public folder with the following content:

		

		

		<!DOCTYPE html>

		<html lang="en">

		<head>

		  <meta charset="UTF-8">

		  <meta name="viewport" content="width=device-width, initial-scale=1.0">

		  <title>Container App</title>

		</head>

		<body>

		  <div id="react-root"></div>

		  <div id="angular-root"></div>

		  <div id="vue-root"></div>

		  <script src="remoteEntry.js"></script>

		  <script type="module" src="src/index.js"></script>

		</body>

		</html>

		

		

		Now, update the index.js file in the container application to render the components:

		

		

		import React from "react";

		import ReactDOM from "react-dom";

		 

		import("reactApp/ReactComponent").then(({ default: ReactComponent }) => {

		  ReactDOM.render(<ReactComponent />, document.getElementById("react-root"));

		});

		 

		import("angularApp/AngularComponent").then(({ default: AngularComponent }) => {

		  // To render the Angular component, you would normally bootstrap the Angular application.

		  // However, this process is more complex and would require additional setup.

		  // You can refer to the Angular documentation for more details: https://angular.io/guide/bootstrapping

		});

		 

		import("vueApp/VueComponent").then(async ({ default: VueComponent }) => {

		  const { createApp } = await import("vue");

		  createApp(VueComponent).mount("#vue-root");

		});

		

		

		Configure the remoteEntry.js

		

		Update your container application’s webpack.config.js to include a reference to the remoteEntry.js files from your micro front-ends:

		

		

		const HtmlWebpackPlugin = require("html-webpack-plugin");

		const ModuleFederationPlugin = require("webpack/lib/container/ModuleFederationPlugin");

		 

		module.exports = {

		  // ...

		 

		  plugins: [

		    new HtmlWebpackPlugin({

		      template: "./public/index.html",

		    }),

		    new ModuleFederationPlugin({

		      name: "container",

		      remotes: {

		        reactApp: "reactApp@http://localhost:3001/remoteEntry.js",

		        angularApp: "angularApp@http://localhost:3002/remoteEntry.js",

		        vueApp: "vueApp@http://localhost:3003/remoteEntry.js",

		      },

		    }),

		  ],

		 

		  // ...

		};

		

		

		Make sure to update the URLs to match your micro front-ends’ deployment URLs.

		

		Run the applications

		

		React: Run webpack serve —port 3001

		Angular: Run ng serve —port 3002

		Vue.js: Run npm run serve — —port 3003

		Container: Run webpack serve

		

		Now, when you visit the container application at http://localhost:3000, you should see the React, Angular, and Vue.js components rendered on the page.

		

		By using Module Federation, you can share code between multiple applications and dynamically load components from different micro front-ends. This enables a flexible and modular architecture where each team can work on its own application, while still being part of a cohesive whole.

		

		To handle communication between the micro front-ends when using Module Federation. In this case, you would need to expose the event bus from one of the micro front-ends (or create a separate library for the event bus) and import it in other micro front-ends.

		

		Expose the event bus

		

		Choose one of your micro front-end projects, for example, the React application, and update its webpack.config.js to expose the event bus:

		

		

		const ModuleFederationPlugin = require("webpack/lib/container/ModuleFederationPlugin");

		 

		// ...

		 

		plugins: [

		  new ModuleFederationPlugin({

		    name: "reactApp",

		    filename: "remoteEntry.js",

		    exposes: {

		      "./ReactComponent": "./src/ReactComponent",

		      "./EventBus": "./src/event-bus-instance",

		    },

		  }),

		 

		  // ...

		],

		

		

		Import the event bus in other micro front-ends

		

		In your Angular and Vue.js projects, you can now import the event bus from the React application using Module Federation. Update your Angular and Vue.js components to import the event bus:

		

		Angular

		

		

		import { Component, OnDestroy, OnInit } from "@angular/core";

		import { EventBus, EventBusEvent } from "reactApp/EventBus";

		import { UserLoggedInPayload, USER_LOGGED_IN } from "./events";

		 

		@Component({

		  selector: "app-angular-component",

		  templateUrl: "./angular-component.component.html",

		  styleUrls: ["./angular-component.component.css"],

		})

		export class AngularComponent implements OnInit, OnDestroy {

		  constructor(private eventBus: EventBus) {}

		 

		  ngOnInit() {

		    this.eventBus.addListener(USER_LOGGED_IN, this.handleUserLoggedIn);

		  }

		 

		  ngOnDestroy() {

		    this.eventBus.removeListener(USER_LOGGED_IN, this.handleUserLoggedIn);

		  }

		 

		  handleUserLoggedIn(event: EventBusEvent<UserLoggedInPayload>) {

		    console.log("User logged in:", event.payload.userName);

		  }

		}

		

		

		Vue.js

		

		

		import Vue from "vue";

		import Component from "vue-class-component";

		import { EventBus, EventBusEvent } from "reactApp/EventBus";

		import { UserLoggedInPayload, USER_LOGGED_IN } from "./events";

		 

		@Component

		export default class VueComponent extends Vue {

		  private eventBus = new EventBus();

		 

		  created() {

		    this.eventBus.addListener(USER_LOGGED_IN, this.handleUserLoggedIn);

		  }

		 

		  beforeDestroy() {

		    this.eventBus.removeListener(USER_LOGGED_IN, this.handleUserLoggedIn);

		  }

		 

		  handleUserLoggedIn(event: EventBusEvent<UserLoggedInPayload>) {

		    console.log("User logged in:", event.payload.userName);

		  }

		 

		  render() {

		    return <div>Vue Component</div>;

		  }

		}

		

		

		By using Module Federation to share the event bus, you can ensure consistent communication between your micro front-ends while maintaining a modular and decoupled architecture.
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		Compiler options
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		Here is a list of some advanced compiler options and features in TypeScript that can help identify potential issues in your codebase and enhance your understanding of strict checking rules:

		

		Nested tsconfig.json files: TypeScript allows for the use of nested tsconfig.json files to create different configurations for different parts of your project. You can extend a base tsconfig.json file by specifying the “extends” property in a child tsconfig.json file. This feature helps manage large projects with varying requirements.

		—strictPropertyInitialization: This option ensures that all class properties have either a default value or are initialized in the constructor, preventing unintentional undefined values.

		—noImplicitThis: This option prevents the use of ‘this’ without an explicit type annotation, helping to avoid issues with an ambiguous ‘this’ context.

		—noImplicitReturns: When enabled, this option reports an error when a function does not have an explicit return statement for all code paths, improving code consistency.

		—strictNullChecks: This option helps prevent null and undefined values in your code by making sure that every variable has a specific type.

		—noImplicitAny: Disallows the use of implicit ‘any’ types, ensuring that all variables have an explicit type annotation.

		—noUnusedLocals: Reports an error when local variables are declared but never used, improving code cleanliness.

		—noUnusedParameters: Reports an error when function parameters are declared but never used, promoting more efficient code.

		—esModuleInterop: Enables more compatible import and export behavior for modules, improving compatibility with other module systems.

		—declaration: Generates TypeScript declaration files (.d.ts) alongside compiled JavaScript files, making it easier for others to use your TypeScript code.

		—sourceMap: Generates source map files for easier debugging of compiled JavaScript.

		—outDir: Specifies an output directory for compiled JavaScript files, helping to maintain a clean project structure.

		—rootDir: Specifies the root directory of your TypeScript source files, making it easier to manage large projects.

		—allowJs: Allows the compiler to include JavaScript files alongside TypeScript files during compilation.

		—resolveJsonModule: Allows importing JSON files as modules, providing type information based on the JSON structure.

		—strict: Enables a suite of strict type-checking options, including strictNullChecks, strictFunctionTypes, strictBindCallApply, strictPropertyInitialization, noImplicitThis, and alwaysStrict.

		—strictNullChecks: Helps prevent null and undefined values in your code by making sure that every variable has a specific type.

		—strictFunctionTypes: Ensures that functions are only assignable if their parameter types and return types are compatible.

		—strictBindCallApply: Ensures that the bind, call, and apply methods on function objects are used with the correct argument types.

		—noImplicitThis: Prevents the use of ‘this’ without an explicit type annotation.

		—alwaysStrict: Enforces strict mode for all TypeScript files, improving code quality and readability.

		—noImplicitAny: Disallows the use of implicit ‘any’ types, ensuring that all variables have an explicit type annotation.

		—noUnusedParameters: Reports an error when function parameters are declared but never used.

		strictIndexSignatures: Enforces strict type checking for index signatures, preventing potential runtime errors when accessing object properties.

		

		General compiler options that may be useful when building microfrontends

		

		module: Specifies the module code generation method. When building microfrontends, you may want to use a module format that can be easily loaded and used by different applications or microservices. For example, you could use the umd or system module formats, which can be loaded by both Node.js and browsers.

		outDir: Specifies the output directory for compiled JavaScript files. When building microfrontends, you may want to specify a separate output directory for each microfrontend, making it easier to package and deploy them independently.

		declaration: Generates corresponding .d.ts files for TypeScript source files. When building microfrontends, you may want to generate type definition files for each microfrontend, making it easier for other applications or microservices to consume them.

		target: Specifies the ECMAScript target version for compiled JavaScript files. When building microfrontends, you may want to target a specific ECMAScript version that is compatible with all of your microservices or applications.

		esModuleInterop: Enables interoperability between CommonJS and ES6 modules. When building microfrontends, you may want to use this option to enable interoperability between different microfrontends that use different module systems.

		

		Here’s an example TypeScript project structure using a base tsconfig.json file and a nested tsconfig.json file, with various compiler options mentioned earlier:

		

		Project structure:

		

		

		- project

		  |- src

		    |- main

		      |- tsconfig.json

		      |- index.ts

		    |- lib

		      |- tsconfig.json

		      |- utils.ts

		  |- tsconfig.base.json

		

		

		In this project structure, we have a main and a lib folder, each with its own tsconfig.json file. We also have a tsconfig.base.json file at the project root.

		tsconfig.base.json:

		

		

		{

		  "compilerOptions": {

		    "target": "es2017",

		    "module": "commonjs",

		    "strict": true,

		    "esModuleInterop": true,

		    "declaration": true,

		    "sourceMap": true,

		    "outDir": "./dist",

		    "rootDir": "./src",

		    "noUnusedLocals": true,

		    "noUnusedParameters": true,

		    "resolveJsonModule": true

		  }

		}

		

		

		src/main/tsconfig.json:

		

		

		{

		  "extends": "../../tsconfig.base.json",

		  "compilerOptions": {

		    "noImplicitReturns": true,

		    "noImplicitThis": true

		  },

		  "include": ["./**/*.ts"]

		}

		

		

		src/lib/tsconfig.json:

		

		

		{

		  "extends": "../../tsconfig.base.json",

		  "compilerOptions": {

		    "strictPropertyInitialization": true,

		    "strictNullChecks": true

		  },

		  "include": ["./**/*.ts"]

		}

		

		

		In this example, we have a base tsconfig file (tsconfig.base.json) that contains common compiler options. Then, we have nested tsconfig files for the main and lib folders, each extending the base tsconfig file and adding their specific compiler options.

		

		The main folder uses noImplicitReturns and noImplicitThis options, while the lib folder uses strictPropertyInitialization and strictNullChecks options. Both nested tsconfig files include all TypeScript files within their respective folders.

		

		By using this project structure and tsconfig files, you can utilize the compiler options we’ve discussed to help create more robust and maintainable TypeScript applications.

		

		Auto-compile and auto-build

		

		To auto-compile and auto-build TypeScript files, you can use a build tool such as webpack, gulp, or grunt. These tools automate the build process and can watch for changes to your TypeScriNested tsconfig.json

		

		pt files, automatically compiling them into JavaScript whenever you make changes.

		Here’s an example using webpack:

		

		Install webpack and the necessary loaders:

		

		

		npm install webpack webpack-cli ts-loader typescript --save-dev

		

		

		Create a webpack.config.js file in the root of your project with the following content:

		

		

		const path = require('path');

		 

		module.exports = {

		  entry: './src/index.ts',

		  devtool: 'inline-source-map',

		  module: {

		    rules: [

		      {

		        test: /\.tsx?$/,

		        use: 'ts-loader',

		        exclude: /node_modules/,

		      },

		    ],

		  },

		  resolve: {

		    extensions: ['.tsx', '.ts', '.js'],

		  },

		  output: {

		    filename: 'bundle.js',

		    path: path.resolve(__dirname, 'dist'),

		  },

		};

		

		

		Create a tsconfig.json file in the root of your project with your TypeScript compiler options. For example:

		

		

		{

		  "compilerOptions": {

		    "module": "commonjs",

		    "target": "es5",

		    "sourceMap": true

		  },

		  "include": [

		    "src/**/*.ts"

		  ],

		  "exclude": [

		    "node_modules"

		  ]

		}

		

		

		Add a script to your package.json file to run webpack in watch mode:

		

		

		{

		  "scripts": {

		    "start": "webpack --watch"

		  }

		}

		

		

		Run npm start to start the watch mode.

		

		Now, whenever you make changes to your TypeScript files in the src directory, webpack will automatically compile them and output the result to the dist directory. You can include the compiled bundle.js file in your HTML and it will contain all of your TypeScript code compiled to JavaScript.

		

		Auto-unit test your TypeScript application

		

		To auto-unit test your TypeScript application, you can use a testing framework such as Jest. Jest is a popular testing framework that provides an easy-to-use API for writing and running tests, and it’s also easy to set up .

		Here’s an example of how to set up Jest

		

		Install Jest and the necessary dependencies:

		

		

		npm install jest @types/jest ts-jest --save-dev

		

		

		Add the following to your tsconfig.json file to make sure Jest can use TypeScript

		

		

		{

		  "compilerOptions": {

		    "target": "es5",

		    "module": "commonjs",

		    "esModuleInterop": true,

		    "sourceMap": true

		  },

		  "include": ["src/**/*.ts", "tests/**/*.ts"],

		  "exclude": ["node_modules"]

		}

		

		

		Create a jest.config.js file in the root of your project with the following content:

		

		

		module.exports = {

		  preset: 'ts-jest',

		  testEnvironment: 'node',

		  testMatch: ['<rootDir>/tests/**/*.test.ts'],

		  moduleNameMapper: {

		    '^@/(.*)$': '<rootDir>/src/$1',

		  },

		};

		

		

		This configures Jest to use TypeScript via the ts-jest preset, use a Node.js environment for testing, and look for tests with the .test.ts extension in the tests directory.

		Write your tests in the tests directory. Here’s an example test:

		

		

		import { sum } from '@/utils';

		 

		describe('sum function', () => {

		  it('should add two numbers together', () => {

		    expect(sum(1, 2)).toBe(3);

		  });

		});

		

		

		This test imports a sum function from a utils.ts file in the src directory and checks if it correctly adds two numbers together.

		Add a test script to your package.json file to run Jest:

		

		

		{

		  "scripts": {

		    "test": "jest"

		  }

		}

		

		

		Run npm test to run your tests. Jest will automatically detect changes to your files and re-run your tests whenever you save a file.

		

		That’s it! Jest will now automatically run your tests whenever you make changes to your TypeScript code.

		

		Debugging TypeScript

		

		Debugging TypeScript in the browser can be a bit trickier than debugging regular JavaScript code since the browser only understands JavaScript. However, with the help of source maps and the developer tools in your browser, you can still debug TypeScript code in the browser.

		Here’s how to set up debugging for TypeScript in the browser using Google Chrome as an example:

		

		Ensure that your TypeScript code is being compiled with source maps. You can do this by adding the following to your tsconfig.json file:

		

		

		{

		  "compilerOptions": {

		    "sourceMap": true

		  }

		}

		

		

		This will generate source map files alongside your compiled JavaScript code that map your TypeScript code back to the JavaScript.

		Open your TypeScript application in Google Chrome and open the Developer Tools by pressing Ctrl + Shift + I (Windows/Linux) or Cmd + Option + I (Mac).

		In the Sources tab, open the folder that contains your TypeScript code. You should see your TypeScript files listed there along with their corresponding source map files.

		Set a breakpoint in your TypeScript code by clicking on the line number in the source code panel. You should see a blue arrow appear indicating the breakpoint.

		Trigger the code that you want to debug in your application. When the code reaches the breakpoint, the Developer Tools will pause execution and highlight the line where the breakpoint is set.

		You can now use the Developer Tools to inspect variables and step through your TypeScript code line by line just as you would with regular JavaScript code.

		

		Note that debugging TypeScript in the browser can be slower than debugging regular JavaScript code since the browser needs to load and parse the source map files. Additionally, some browser features such as async/await may not be fully supported when debugging TypeScript.
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		Tooling & Ecosystem

		

		
			[image: Image]
		

		

		TypeScript ecosystem is amazing not only because of the large number of users , but also there is a reaal sense of community , roadmaps are released frequently , plans are all public on GitHub and has a huge amount of tools and libraries that can help you develop, test, and deploy your code more efficiently. Knowing and understanding how to use some if these tools t can help you become more productive and write better code.

		

		TypeScript compiler: is the primary tool that allows you to transpile TypeScript code to JavaScript. It supports modern JavaScript features such as classes, interfaces, and generics, which helps in writing more structured and maintainable code.

		

		ts-node: is a TypeScript execution environment that allows you to run TypeScript files directly without the need for compilation to JavaScript. It provides fast feedback during development and enables you to run scripts without having to compile them first.

		

		TSLint: is a TypeScript-specific linter that can help you enforce coding standards and identify potential errors in your code. It provides various plugins and rules that can help you customize your linting rules according to your project’s specific needs.

		

		TypeScript Declaration files: are files that describe the types of external libraries or modules that are not written in TypeScript. These files enable TypeScript to provide type checking and IntelliSense for external libraries, which helps in writing more robust and error-free code.

		

		TypeScript AST Viewer: is a tool that allows you to visualize the abstract syntax tree (AST) of your TypeScript code. It helps in understanding how TypeScript compiles your code and provides insights into how you can optimize your code for performance.

		

		TypeScript ESLint: is a plugin that provides TypeScript-specific linting rules. It allows you to enforce coding standards and flag potential errors in your code , which helps in writing more maintainable and error-free strict code.

		

		TypeScript-Node-Starter: is a starter kit that provides a preconfigured setup for building Node.js applications using TypeScript. It includes various features such as hot-reloading, debugging, and testing, which helps in setting up a development environment quickly.

		

		TypeORM: is an Object-Relational Mapping (ORM) library for Node.js. It allows you to interact with your database using TypeScript classes and provides various features and utilities that can help you manage your data more efficiently.

		

		NestJS: is a popular web framework for Node.js that is built using TypeScript. It provides a modular modern architecture and allows you to build scalable and maintainable web applications.

		

		RxJS: is a reactive programming library for JavaScript that is built using TypeScript. It provides a set of powerful tools and utilities that allow you to manage and manipulate streams of data efficiently.Deeply integrated with Angular Framework

		

		TypeScript-React-Starter: is a starter kit that provides a preconfigured setup for building React applications using TypeScript. It includes various features such as hot-reloading, debugging, and testing, which helps in setting up a development environment quickly.

		

		TypeScript-Webpack-Starter: is a starter kit that provides a preconfigured setup for building web applications using TypeScript and Webpack. It includes various features such as hot-reloading, debugging, and testing, which helps in setting up a development environment quickly.

		

		TypeScript-ESLint-Plugin: is a plugin for ESLint that provides TypeScript-specific linting rules. It allows you to enforce coding standards and identify potential errors in your code, which helps in writing more maintainable and error-free code.

		

		ts-jest: is a TypeScript-specific plugin for Jest, a popular testing framework for JavaScript applications. It provides various tools and utilities that can help you write and run tests more efficiently.

		

		TypeScript-JSON-Schema: is a library that allows you to generate JSON schemas from TypeScript types. It helps in validating data against a schema and ensures that the data conforms to the expected type.

		

		TypeScript-Plugin-Kit: is a toolkit that allows you to build custom TypeScript plugins. It provides various utilities and examples that can help you create plugins that extend TypeScript’s functionality.

		

		TypeScript-AST-Utils: is a library that provides various utilities for working with TypeScript’s abstract syntax tree (AST). It helps in manipulating and transforming the AST, which enables you to optimize your code for performance.

		

		TypeScript-String-Operations: is a library that provides various string manipulation utilities for TypeScript. It includes features such as string interpolation, formatting, and parsing, which helps in working with strings more efficiently.

		

		TypeScript-Node-Dev: is a tool that allows you to run Node.js applications in development mode with hot-reloading. It provides fast feedback during development and enables you to make changes to your code without having to restart the server.

		

		TypeScript-FSA: is a library that provides a standard for defining Flux Standard Action (FSA) objects in TypeScript. It helps in writing more structured and maintainable code that adheres to a well-defined standard.

		

		TypeScript-Decorators: is a library that provides a set of decorators that can be used to add behavior to TypeScript classes and methods. It helps in creating reusable and composable code that can be easily extended and customized.

		

		TypeScript-Styled-Components: is a library that provides a way to write CSS code using JavaScript syntax. It allows you to create styled components in TypeScript, which helps in creating reusable and maintainable UI components.

		

		TypeScript-RESTful: is a library that provides a way to define RESTful APIs in TypeScript. It includes features such as request validation, error handling, and automatic documentation generation, which helps in creating scalable and maintainable APIs.

		

		TypeScript-Config: is a library that provides a way to manage configuration data in TypeScript. It allows you to define configuration files using TypeScript syntax, which helps in creating structured and maintainable configuration data.

		

		TypeScript-Webpack-Utilities: is a library that provides various utilities for working with Webpack in TypeScript. It includes features such as type checking, module resolution, and code splitting, which helps in creating efficient and scalable Webpack configurations.

		

		TypeScript-Mixins: TypeScript-Mixins is a library that provides a way to create mixins in TypeScript. It allows you to create reusable and composable code that can be easily extended and customized.

		

		TypeScript-XML: is a library that provides a way to work with XML data in TypeScript. It includes features such as XML parsing, serialization, and transformation, which helps in working with XML data more efficiently.

		

		TypeScript-Immutable: is a library that provides immutable data structures for TypeScript. It includes features such as persistent data structures, structural sharing, and optimized performance, which helps in creating scalable and efficient applications.

		

		TypeScript-Data-Structures: is a library that provides various data structures for TypeScript. It includes features such as linked lists, stacks, queues, and trees, which helps in creating efficient and scalable algorithms.

		

		TypeScript-Modular-Database: is a library that provides a modular approach to database management in TypeScript. It includes features such as schema management, data migration, and transaction support, which helps in creating scalable and maintainable database applications.

		

		These are some of the popular front-end frameworks and libraries that use TypeScript. They provide various features and utilities that can help you build scalable and efficient applications. Big names like Google, Facebook, Uber, and Netflix, along with countless other companies , utilize one or more of these libraries and frameworks:

		

		Angular: Angular, created by Google, is a popular front-end framework for developing web and mobile apps. It is written in TypeScript and provides a powerful set of tools and utilities for creating scalable, maintainable apps.

		

		TypeScript with React: Facebook’s React is a well-known front-end library for building web applications. It provides type checking and IntelliSense when paired with TypeScript, facilitating code writing and maintenance.

		

		TypeScript with Vue.js: Vue.js is a popular front-end library for creating user interfaces. It benefits from type checking and IntelliSense when combined with TypeScript, easing code writing and maintenance.

		

		Svelte with TypeScript: Svelte is a well-known library for creating web apps. When combined with TypeScript, it enables type checking and IntelliSense, making code authoring and maintenance easier.

		

		Ionic with TypeScript: Ionic is a widely used front library for creating mobile applications. Built on TypeScript, it delivers a potent set of tools and utilities for developing scalable, maintainable apps.

		

		Next.js with TypeScript: Next.js is a React.js framework for constructing server-side rendered React applications. When used with TypeScript, it offers type checking and IntelliSense, facilitating code writing and maintenance.

		

		Gatsby with TypeScript: Gatsby is a popular framework for building static websites and progressive web apps. When combined with TypeScript, it provides type checking and IntelliSense, streamlining code writing and upkeep.

		

		Here are some popular backend frameworks that use TypeScript

		

		Deno: Deno is a secure JavaScript and TypeScript runtime built on the V8 JavaScript engine and Rust. It provides a secure runtime environment and supports TypeScript out-of-the-box.

		NestJS: NestJS is a popular web framework for Node.js that is built using TypeScript. It provides a modular architecture that allows you to build scalable and maintainable web applications.

		TypeORM: TypeORM is an Object-Relational Mapping (ORM) library for TypeScript and Node.js. It allows you to interact with your database using TypeScript classes and provides various features and utilities that can help you manage your data more efficiently.

		LoopBack: LoopBack is a popular open-source Node.js framework that is built using TypeScript. It provides a set of tools and utilities that allow you to build scalable and maintainable APIs.

		Express.js with TypeScript: Express.js is a popular web framework for Node.js that can be used with TypeScript. It provides various middleware and plugins that can help you handle requests and responses more efficiently.

		AdonisJS: AdonisJS is a popular Node.js framework that is built using TypeScript. It provides a set of tools and utilities that allow you to build scalable and maintainable web applications.

		Meteor: Meteor is a full-stack JavaScript and TypeScript platform that allows you to build web and mobile applications using a single codebase. It provides various tools and utilities that can help you build scalable and maintainable applications.

		

		7 Javascript/Typescript playground editors

		

		StackBlitz

		

		Stay in the flow with instant dev experiences. No more hours stashing/pulling/installing locally — just click, and start coding.

		

		https://stackblitz.com/

		

		StackBlitz is great since it supports backend you can use Express/NestJS/Koa etc.

		Of course, it supports FE stack

		

		CodePen

		

		CodePen is a social development environment for front-end designers and developers.

		https://codepen.io/

		

		I think CodePen is awesome since we can find out really interesting stuff (3D stuff by threejs/amazing css animation/super cool UIs etc)

		

		JSFiddle

		

		JSFiddle is very simple but still really functional. If you like a simple UI, JSFiddle will be good for you.

		

		https://jsfiddle.net/

		

		JS Bin

		

		JS Bin is one of the simplest javascript playgrounds.

		

		https://jsbin.com/

		

		PlayCode

		

		PlayCode is a website where you can type in code and it immediately shows you what you programmed in a little extra tab. All you need to do is select a programming language or a framework and you can start without needing to set up anything.

		

		https://playcode.io/

		

		code.sololearn

		

		Code.sololearn.com supports some languages. If you want to use a few language with the same UI. code.sololearn.com would be a good choice.

		

		https://code.sololearn.com/

		

		CodeSandbox

		

		CodeSandbox is an online code editor and prototyping tool that makes creating and sharing web apps faster. CodeSandbox is great since it supports FE and BE(node/nestjs) and it has a few unique templates.

		

		https://codesandbox.io/
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		Conclusion

		

		This book goal is to provide developers with a comprehensive exploration of advanced TypeScript techniques, patterns, best practices and all this with practical examples. By delving into the depths of TypeScript’s capabilities, we have unlocked most of its true potential for creating scalable, maintainable, and high-performance applications. Developers who have gone through these pages now have a refined set of tools and knowledge to tackle complex projects with confidence and proficiency. As TypeScript continues to evolve, so too should your expertise. May this book serve as a valuable resource and guide as you continue to improve your skills

		

	
		Epilogue

		

		I believe the knowledge gained from studying TypeScript’s advanced concepts will equips you to create better software, but the web development landscape constantly evolves. To ensure continued growth as a developer, stay up-to-date with advancements and engage with the TypeScript community through forums, conferences, and open-source projects. The expertise you’ve acquired serves as a solid foundation for tackling complex challenges and adapting to new ideas. Ultimately, the drive to learn and adapt distinguishes extraordinary developers, positioning you for ongoing success in this exciting field.

		

	
		Afterword

		

		As we reach the end of this book, it’s important to think about how ongoing learning matters in the fast-changing world of web development. The advanced TypeScript concepts and techniques in this book have given you useful knowledge and tools to improve your skills, helping you handle difficult projects confidently.

		

		As you continue to advance , make sure to stay updated on new things happening in the TypeScript world. Technologies, frameworks, and best practices always change, and having a mindset of growth will make sure you stay ahead in your field.

		

		Keep working on your skills and stay interested in new ways and methods that can make your work better. Connect with the TypeScript community and learn from the experiences and skills of others. Embrace the ever-changing landscape in Software engineering and keep pushing your own limits.

		

	
		Code Samples

		

		For a complete table of contents with links to code samples for each example, please contact the author at ramobledar@gmail.com. All code samples are designed to produce the the expected output types.
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