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PREFACE




WHAT IS THE PRIMARY VALUE PROPOSITION FOR THIS BOOK?


This book contains a fast-paced introduction to as much relevant information about Pandas as possible that can be reasonably included in a book of this size. Moreover, you will learn about data types, data cleaning tasks, statistical concepts, imbalanced datasets, and data visualization.

However, you will be exposed to a variety of features of NumPy and Pandas, how to write regular expressions, and how to perform many data cleaning tasks. Keep in mind that some topics are presented in a cursory manner, which is for two main reasons. First, it’s important that you be exposed to these concepts. In some cases you will find topics that might pique your interest, and hence motivate you to learn more about them through self-study; in other cases you will probably be satisfied with a brief introduction. In other words, you will decide whether or not to delve into more detail regarding the topics in this book.

Second, a full treatment of all the topics that are covered in this book would significantly increase the size of this book, and few people are interested in reading technical tomes.




THE TARGET AUDIENCE


This book is intended primarily for people who have a solid background as software developers. Specifically, this book is for developers who are accustomed to searching online for more detailed information about technical topics. If you are a beginner, there are other books that are more suitable for you, and you can find them by performing an online search.

This book is also intended to reach an international audience of readers with highly diverse backgrounds in various age groups. This book uses standard English rather than colloquial expressions that might be confusing to those readers. As you know, many people learn by different types of imitation, which includes reading, writing, or hearing new material. This book takes these points into consideration in order to provide a comfortable and meaningful learning experience for the intended readers.




WHAT WILL I LEARN FROM THIS BOOK?


The first chapter contains a quick tour of basic Python3, followed by a chapter that introduces you to data types and data cleaning tasks, such as working with datasets that contain different types of data, and how to handle missing data.

The third chapter contains fundamental statistical concepts, how to handle imbalanced features (SMOTE), how to analyze classifiers, variance and correlation matrices, dimensionality reduction (including SVD and t-SNE), and a section that discusses Gini impurity, entropy, and KL-divergence.

The fourth, fifth, and sixth chapters concentrate on a multitude of features of Pandas (and many code samples). The final chapter of this book delves into data visualization with Matplotlib and Seaborn.




DO I NEED TO LEARN THE THEORY PORTIONS OF THIS BOOK?


Once again, the answer depends on the extent to which you plan to become involved in data analytics. For example, if you plan to study machine learning, then you will probably learn how to create and train a model, which is a task that is performed after data cleaning tasks. In general, you will probably need to learn everything that you encounter in this book if you are planning to become a machine learning engineer.




GETTING THE MOST FROM THIS BOOK


Some programmers learn well from prose, others learn well from sample code (and lots of it), which means that there’s no single style that can be used for everyone.

Moreover, some programmers want to run the code first, see what it does, and then return to the code to delve into the details (and others use the opposite approach).

Consequently, there are various types of code samples in this book: some are short, some are long, and other code samples “build” from earlier code samples.




WHAT DO I NEED TO KNOW FOR THIS BOOK?


Current knowledge of Python 3.x is the most helpful skill. Knowledge of other programming languages (such as Java) can also be helpful because of the exposure to programming concepts and constructs. The less technical knowledge that you have, the more diligence will be required in order to understand the various topics that are covered.

If you want to be sure that you can grasp the material in this book, glance through some of the code samples to get an idea of how much is familiar to you and how much is new for you.




DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE SAMPLES?


The primary purpose of the code samples in this book is to show you Python-based libraries for solving a variety of data-related tasks in conjunction with acquiring a rudimentary understanding of statistical concepts. Clarity has higher priority than writing more compact code that is more difficult to understand (and possibly more prone to bugs). If you decide to use any of the code in this book in a production website, you ought to subject that code to the same rigorous analysis as the other parts of your code base.




WHAT ARE THE NON-TECHNICAL PREREQUISITES FOR THIS BOOK?


Although the answer to this question is more difficult to quantify, it’s important to have strong desire to learn about data analytics, along with the motivation and discipline to read and understand the code samples.




HOW DO I SET UP A COMMAND SHELL?


If you are a Mac user, there are three ways to do so. The first method is to use Finder to navigate to Applications > Utilities and then double click on the Utilities application. Next, if you already have a command shell available, you can launch a new command shell by typing the following command:


open /Applications/Utilities/Terminal.app


A second method for Mac users is to open a new command shell on a MacBook from a command shell that is already visible simply by clicking command+n in that command shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.com/) that simulates bash commands, or use another toolkit such as MKS (a commercial product). Please read the online documentation that describes the download and installation process. Note that custom aliases are not automatically set if they are defined in a file other than the main start-up file (such as .bash_login).




COMPANION FILES


All the code samples in this book may be obtained via downloading by writing to the publisher at info@merclearning.com.




WHAT ARE THE “NEXT STEPS” AFTER FINISHING THIS BOOK?


The answer to this question varies widely, mainly because the answer depends heavily on your objectives. If you are interested primarily in NLP, then you can learn more advanced concepts, such as attention, transformers, and the BERT-related models.

If you are primarily interested in machine learning, there are some subfields of machine learning, such as deep learning and reinforcement learning (and deep reinforcement learning) that might appeal to you. Fortunately, there are many resources available, and you can perform an Internet search for those resources. One other point: the aspects of machine learning for you to learn depend on who you are: the needs of a machine learning engineer, data scientist, manager, student, or software developer, are all different.






CHAPTER 1

INTRODUCTION TO PYTHON


This chapter contains an introduction to Python, with information about useful tools for installing Python modules, basic Python constructs, and how to work with some data types in Python.

The first part of this chapter covers how to install Python, some Python environment variables, and how to use the Python interpreter. You will see Python code samples and also how to save Python code in text files that you can launch from the command line. The second part of this chapter shows you how to work with simple data types, such as numbers, fractions, and strings. The final part of this chapter discusses exceptions and how to use them in Python scripts.

NOTE The Python scripts in this book are for Python 3.



TOOLS FOR PYTHON


The Anaconda Python distribution is available online for Windows, Linux, and Mac:

http://continuum.io/downloads

Anaconda is well-suited for modules such as NumPy (discussed in Chapter 3) and SciPy (not discussed in this book). If you are a Windows user, Anaconda appears to be a better alternative.



easy_install and pip


Both easy_install and pip are easy to use when you need to install Python modules. Whenever you need to install a Python module (and there are many in this book), use either easy_install or pip with the following syntax:


easy_install <module-name>
pip install <module-name>


NOTE Python-based modules are easier to install, whereas modules with code written in C are usually faster, but more difficult in terms of installation.




virtualenv


The virtualenv tool enables you to create isolated Python environments, and its home page is available online:

http://www.virtualenv.org/en/latest/virtualenv.html

virtualenv addresses the problem of preserving the correct dependencies and versions (and indirectly permissions) for different applications. If you are a Python novice, you might not need virtualenv right now, but keep this tool in mind.




IPython


Another very good tool is IPython (which won a Jolt award), and it can be found online:

http://ipython.org/install.html

Type ipython to invoke IPython from the command line:


ipython


The preceding command displays the following output:


Python 3.8.6 (default, Oct  8 2020, 14:06:32)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.18.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]:


Type a question mark (“?”) at the prompt and you will see some useful information, a portion of which is here:


IPython -- An enhanced Interactive Python
=========================================

IPython offers a fully compatible replacement for the standard Python
interpreter, with convenient shell features, special commands, command
history mechanism and output results caching.

At your system command line, type 'ipython -h' to see the command line
options available. This document only describes interactive features.

GETTING HELP
------------

Within IPython you have various way to access help:

  ?         -> Introduction and overview of IPython's features (this screen).
  object?   -> Details about 'object'.
  object??  -> More detailed, verbose information about 'object'.
  %quickref -> Quick reference of all IPython specific syntax and magics.
  help      -> Access Python's own help system.

If you are in terminal IPython you can quit this screen by pressing 'q'.


Finally, type quit at the command prompt, and you will exit the ipython shell.

The next section shows you how to check whether Python is installed on your machine and where you can download Python.





PYTHON INSTALLATION


Before you download anything, check if you have Python already installed on your machine (which is likely if you have a MacBook or a Linux machine) by typing the following command in a command shell:


python -V


The output for the MacBook used in this book is here:


Python 3.8.6


NOTE Install Python 3.8.6 (or as close as possible to this version) on your machine so that you will have the same version of Python that was used to test the Python scripts in this book.

If you need to install Python on your machine, navigate to the Python home page and select the downloads link or navigate directly to this website:

http://www.python.org/download/

In addition, PythonWin is available for Windows, and its home page is available online:

http://www.cgl.ucsf.edu/Outreach/pc204/pythonwin.html

Use any text editor that can create, edit, and save Python scripts and save them as plain text files (don’t use Microsoft Word).

After you have Python installed and configured on your machine, you are ready to work with the Python scripts in this book.




SETTING THE PATH ENVIRONMENT VARIABLE (WINDOWS ONLY)


The PATH environment variable specifies a list of directories that are searched whenever you specify an executable program from the command line. A very good guide to setting up your environment so that the Python executable is always available in every command shell is to follow the instructions available online:

http://www.blog.pythonlibrary.org/2011/11/24/python-101-setting-up-python-on-windows/




LAUNCHING PYTHON ON YOUR MACHINE


There are three different ways to launch Python:


	Use the Python Interactive Interpreter

	Launch Python scripts from the command line

	Use an IDE



The next section shows you how to launch the Python interpreter from the command line. Later in this chapter, you will learn how to launch Python scripts from the command line and about Python IDEs.

NOTE The emphasis in this book is to launch Python scripts from the command line or to enter code in the Python interpreter.



The Python Interactive Interpreter


Launch the Python interactive interpreter from the command line by opening a command shell and typing the following command:


python


You will see the following prompt (or something similar):


Python 3.8.6 (default, Oct  8 2020, 14:06:32)
[Clang 12.0.0 (clang-1200.0.32.2)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>


Type the expression 2 + 7 at the prompt:


>>> 2 + 7


Python displays the following result:


9
>>>


Press ctrl-d to exit the Python shell.

You can launch any Python script from the command line by preceding it with the word “python.” For example, if you have a Python script myscript.py that contains Python commands, launch the script as follows:


python myscript.py


As a simple illustration, suppose that the Python script myscript.py contains the following code:


print('Hello World from Python')
print('2 + 7 = ', 2+7)


When you launch the preceding script, you will see the following output:


Hello World from Python
2 + 7 =  9






PYTHON IDENTIFIERS


A Python identifier is the name of a variable, function, class, module, or other Python object, and a valid identifier conforms to the following rules:


	starts with a letter A to Z or a to z or an underscore (_)

	zero or more letters, underscores, and digits (0 to 9)



NOTE Python identifiers cannot contain characters such as @, $, and %.

Python is a case-sensitive language, so Abc and abc different identifiers. In addition, Python has the following naming conventions:


	class names start with an uppercase letter and all other identifiers with a lowercase letter

	an initial underscore is used for private identifiers

	two initial underscores are used for strongly private identifiers



A Python identifier with two initial underscore and two trailing underscore characters indicates a language-defined special name.




LINES, INDENTATION, AND MULTI-LINES


Unlike other programming languages (such as Java or Objective-C), Python uses indentation instead of curly braces for code blocks. Indentation must be consistent in a code block, as shown here:


if True:
    print("ABC")
    print("DEF")
else:
    print("ABC")
    print("DEF")


Multi-line statements can terminate with a new line or the backslash (“\”) character, as shown here:


total = x1 + \
        x2 + \
        x3


Obviously, you can place x1, x2, and x3 on the same line, so there is no reason to use three separate lines; however, this functionality is available in case you need to add a set of variables that does not fit on a single line.

You can specify multiple statements in one line by using a semicolon (“;”) to separate each statement, as shown here:


a=10; b=5; print(a); print(a+b)


The output of the preceding code snippet is here:


10
15


NOTE The use of semi-colons and the continuation character are discouraged in Python.




QUOTATIONS AND COMMENTS


Python allows single ('), double ('), and triple ('" or """) quotes for string literals, provided that they match at the beginning and the end of the string. You can use triple quotes for strings that span multiple lines. The following examples are legal Python strings:


word = 'word'
line = "This is a sentence."
para = """This is a paragraph. This paragraph contains
more than one sentence."""


A string literal that begins with the letter “r” (for “raw”) treats everything as a literal character and “escapes” the meaning of meta characters, as shown here:


a1 = r'\n'
a2 = r'\r'
a3 = r'\t'
print('a1:',a1,'a2:',a2,'a3:',a3)


The output of the preceding code block is here:


a1: \n a2: \r a3: \t


You can embed a single quote in a pair of double quotes (and vice versa) to display a single quote or a double quote. Another way to accomplish the same result is to precede a single or double quote with a backslash (“\”) character. The following code block illustrates these techniques:


b1 = "'"
b2 = '"'
b3 = '\''
b4 = "\""
print('b1:',b1,'b2:',b2)
print('b3:',b3,'b4:',b4)


The output of the preceding code block is here:


b1: ' b2: "
b3: ' b4: "


A hash sign (#) that is not inside a string literal is the character that indicates the beginning of a comment. Moreover, all characters after the # and up to the physical line end are part of the comment (and ignored by the Python interpreter). Consider the following code block:


#!/usr/bin/python
# First comment
print("Hello, Python!")  # second comment


This will produce following result:


Hello, Python!


A comment may be on the same line after a statement or expression:


name = "Tom Jones" # This is also comment


You can comment multiple lines as follows:


# This is comment one
# This is comment two
# This is comment three


A blank line in Python is a line containing only whitespace, a comment, or both.




SAVING YOUR CODE IN A MODULE


Earlier, you saw how to launch the Python interpreter from the command line and then enter commands. However, that everything that you type in the Python interpreter is only valid for the current session: if you exit the interpreter and then launch the interpreter again, your previous definitions are no longer valid. Fortunately, Python enables you to store code in a text file, as discussed in the next section.

A module in Python is a text file that contains Python statements. In the previous section, you saw how the Python interpreter enables you to test code snippets whose definitions are valid for the current session. If you want to retain the code snippets and other definitions, place them in a text file so that you can execute that code outside of the Python interpreter.

The outermost statements in Python are executed from top to bottom when the module is imported for the first time, which will then set up its variables and functions.

A Python module can be run directly from the command line, as shown here:


python first.py


As an illustration, place the following two statements in a text file called first.py:


x = 3
print(x)


Type the following command:


python first.py


The output from the preceding command is 3, which is the same as executing the preceding code from the Python interpreter.

When a Python module is run directly, the special variable __name__ is set to __main__. You will often see the following type of code in a Python module:


if __name__ == '__main__':
    # do something here
    print('Running directly')


The preceding code snippet enables Python to determine if a module was launched from the command line or imported into another module.




SOME STANDARD MODULES


The Python Standard Library provides many modules that can simplify your own scripts. A list of the Standard Library modules is available online:

http://www.python.org/doc/

Some of the most important Python modules include cgi, math, os, pickle, random, re, socket, sys, time, and urllib.

The code samples in this book use the modules math, os, random, re, socket, sys, time, and urllib. You need to import these modules in order to use them in your code. For example, the following code block shows you how to import four standard Python modules:


import datetime
import re
import sys
import time


The code samples in this book import one or more of the preceding modules, as well as other Python modules.




THE HELP() AND DIR() FUNCTIONS


An Internet search for Python-related topics usually returns a number of links with useful information. Alternatively, you can check the official Python documentation site: docs.python.org.

In addition, Python provides the help() and dir() functions that are accessible from the Python interpreter. The help() function displays documentation strings, whereas the dir() function displays defined symbols.

For example, if you type help(sys), you will see documentation for the sys module, whereas dir(sys) displays a list of the defined symbols.

Type the following command in the Python interpreter to display the string-related methods in Python:


>>> dir(str)


The preceding command generates the following output:


['__add__', '__class__', '__contains__', '__delattr__', '__doc__',
'__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__',
'__getnewargs__', '__getslice__', '__gt__', '__hash__', '__init__', '__
le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__',
'__setattr__', '__sizeof__', '__str__', '__subclasshook__', '_formatter_
field_name_split', '_formatter_parser', 'capitalize', 'center', 'count',
'decode', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'index',
'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace', 'istitle',
'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition', 'replace',
'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split',
'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate',
'upper', 'zfill']


The preceding list gives you a consolidated inventory of built-in functions (including some that are discussed later in this chapter). Although the max() function obviously returns the maximum value of its arguments, the purpose of other functions, such as filter() or map(), is not immediately apparent (unless you have used them in other programming languages). The preceding list provides a starting point for finding out more about various built-in functions that are not discussed in this chapter.

Note that while dir() does not list the names of built-in functions and variables, you can obtain this information from the standard module __builtin__ that is automatically imported under the name __builtins__:


>>> dir(__builtins__)


The following command shows you how to get more information about a function:


help(str.lower)


The output from the preceding command is here:


Help on method_descriptor:

lower(...)
    S.lower() -> string

    Return a copy of the string S converted to lowercase.
(END)

    Check the online documentation and experiment with help() and dir() when you need additional information about a particular function or module.





COMPILE TIME AND RUNTIME CODE CHECKING


Python performs some compile-time checking, but most checks (including type, name, and so forth) are deferred until code execution. Consequently, if your code references a user-defined function that that does not exist, the code will compile successfully. In fact, the code will fail with an exception only when the code execution path references the non-existent function.

As a simple example, consider the following function myFunc that references the non-existent function called DoesNotExist:


def myFunc(x):
    if x == 3:
        print(DoesNotExist(x))
    else:
        print('x: ',x)


The preceding code will only fail when the myFunc function is passed the value 3, after which Python raises an error.

Now that you understand some basic concepts (such as how to use the Python interpreter) and how to launch your custom modules, the next section discusses primitive data types.




SIMPLE DATA TYPES


Python supports primitive data types, such as numbers (integers, floating point numbers, and exponential numbers), strings, and dates. Python also supports more complex data types, such as lists (or arrays), tuples, and dictionaries. The next several sections discuss some of the Python primitive data types, along with code snippets that show you how to perform various operations on those data types.




WORKING WITH NUMBERS


Python provides arithmetic operations for manipulating numbers in a straightforward manner that is similar to other programming languages. The following examples involve arithmetic operations on integers:


>>> 2+2
4
>>> 4/3
1
>>> 3*8
24


The following example assigns numbers to two variables and computes their product:


>>> x = 4
>>> y = 7
>>> x * y
28


The following examples demonstrate arithmetic operations involving integers:


>>> 2+2
4
>>> 4/3
1
>>> 3*8
24


Notice that the division (/) of two integers is actually a truncation in which only the integer result is retained. The following example converts a floating point number into exponential form:


>>> fnum = 0.00012345689000007
>>> "%.14e"%fnum
'1.23456890000070e-04'


You can use the int() function and the float() function to convert strings to numbers:


word1 = "123"
word2 = "456.78"
var1 = int(word1)
var2 = float(word2)
print("var1: ",var1," var2: ",var2)


The output from the preceding code block is here:


var1:  123  var2:  456.78


Alternatively, you can use the eval() function:


word1 = "123"
word2 = "456.78"
var1 = eval(word1)
var2 = eval(word2)
print("var1: ",var1," var2: ",var2)


If you attempt to convert a string that is not a valid integer or a floating point number, Python raises an exception, so it’s advisable to place your code in a try/except block (discussed later in this chapter).



Working with Other Bases


Numbers in Python are in base 10 (the default), but you can easily convert numbers to other bases. For example, the following code block initializes the variable x with the value 1234, and then displays that number in base 2, 8, and 16:


>>> x = 1234
>>> bin(x) '0b10011010010'
>>> oct(x) '0o2322'
>>> hex(x) '0x4d2'


Use the format() function if you want to suppress the 0b, 0o, or 0x prefixes, as shown here:


>>> format(x, 'b') '10011010010'
>>> format(x, 'o') '2322'
>>> format(x, 'x') '4d2'


Negative integers are displayed with a negative sign:


>>> x = -1234
>>> format(x, 'b') '-10011010010'
>>> format(x, 'x') '-4d2'





The chr() Function


The Python chr() function takes a positive integer as a parameter and converts it to its corresponding alphabetic value (if one exists). The letters A through Z have decimal representations of 65 through 91 (which correspond to hexadecimals 41 through 5b), and the lowercase letters a through z have decimal representations 97 through 122 (hexadecimals 61 through 7b). Here is an example of using the chr() function to print an uppercase A:


>>> x=chr(65)
>>> x
'A'


The following code block prints the ASCII values for a range of integers:


result = ""
for x in range(65,90):
  print(x, chr(x))
  result = result+chr(x)+' '
print("result: ",result)


You can represent a range of characters with the following line:


for x in range(65,90):


However, the following equivalent code snippet is more intuitive:


for x in range(ord('A'), ord('Z')):


If you want to display the result for lowercase letters, change the preceding range from (65,91) to either of the following statements:


for x in range(65,90):
for x in range(ord('a'), ord('z')):





The round() Function


The Python round() function enables you to round decimal values to the nearest precision:


>>> round(1.23, 1)
1.2
>>> round(-3.42,1)
-3.4





Formatting Numbers


Python allows you to specify the number of decimal places of precision to use when printing decimal numbers, as shown here:


>>> x = 1.23456
>>> format(x, '0.2f')
'1.23'
>>> format(x, '0.3f')
'1.235'
>>> 'value is {:0.3f}'.format(x) 'value is 1.235'
>>> from decimal import Decimal
>>> a = Decimal('4.2')
>>> b = Decimal('2.1')
>>> a + b
Decimal('6.3')
>>> print(a + b)
6.3
>>> (a + b) == Decimal('6.3')
True
>>> x = 1234.56789
>>> # Two decimal places of accuracy
>>> format(x, '0.2f')
'1234.57'
>>> # Right justified in 10 chars, one-digit accuracy
>>> format(x, '>10.1f')
' 1234.6'
>>> # Left justified
>>> format(x, '<10.1f') '1234.6 '
>>> # Centered
>>> format(x, '^10.1f') ' 1234.6 '
>>> # Inclusion of thousands separator
>>> format(x, ',')
'1,234.56789'
>>> format(x, '0,.1f')
'1,234.6'






WORKING WITH FRACTIONS


Python supports the Fraction() function (which is defined in the fractions module), which accepts two integers that represent the numerator and the denominator (which must be non-zero) of a fraction. Several examples of defining and manipulating fractions are shown here:


>>> from fractions import Fraction
>>> a = Fraction(5, 4)
>>> b = Fraction(7, 16)
>>> print(a + b)
27/16
>>> print(a * b) 35/64
>>> # Getting numerator/denominator
>>> c = a * b
>>> c.numerator
35
>>> c.denominator 64
>>> # Converting to a float >>> float(c)
0.546875
>>> # Limiting the denominator of a value
>>> print(c.limit_denominator(8))
4
>>> # Converting a float to a fraction >>> x = 3.75
>>> y = Fraction(*x.as_integer_ratio())
>>> y
Fraction(15, 4)


Before delving into Python code samples that work with strings, the next section briefly discusses Unicode and UTF-8, both of which are character encodings.




UNICODE AND UTF-8


A Unicode string consists of a sequence of numbers that are between 0 and 0x10ffff, where each number represents a group of bytes. An encoding is the manner in which a Unicode string is translated into a sequence of bytes. Among the various encodings, UTF-8 (Unicode Transformation Format) is perhaps the most common, and it’s also the default encoding for many systems. The digit 8 in UTF-8 indicates that the encoding uses 8-bit numbers, whereas UTF-16 uses 16-bit numbers (but this encoding is less common).

The ASCII character set is a subset of UTF-8, so a valid ASCII string can be read as a UTF-8 string without any re-encoding required. In addition, a Unicode string can be converted into a UTF-8 string.




WORKING WITH UNICODE


Python supports Unicode, which means that you can render characters in different languages. Unicode data can be stored and manipulated in the same way as strings. Create a Unicode string by prepending the letter u, as shown here:


>>> u'Hello from Python!'
u'Hello from Python!'


Special characters can be included in a string by specifying their Unicode value. For example, the following Unicode string embeds a space (which has the Unicode value 0x0020) in a string:


>>> u'Hello\u0020from Python!'
u'Hello from Python!'


Listing 1.1 displays the content of Unicode1.py that illustrates how to display a string of characters in Japanese (Hiragana) and another string of characters in Chinese (Mandarin).

LISTING 1.1: Unicode1.py


chinese1 = u'\u5c07\u63a2\u8a0e HTML5 \u53ca\u5176\u4ed6'
hiragana = u'D3 \u306F \u304B\u3063\u3053\u3043\u3043 \u3067\u3059!'

print('Chinese:',chinese1)
print('Hiragana:',hiragana)


The output of Listing 1.2 is here:


Chinese: 將探討 HTML5 及其他
Hiragana: D3 は かっこぃぃ です!


The next portion of this chapter shows you how to “slice and dice” text strings with built-in Python functions.




WORKING WITH STRINGS


A string in Python 3 is based on Unicode, whereas a string in Python 2 is a sequence of ASCII-encoded bytes. You can concatenate two strings using the + operator. The following example prints a string and then concatenates two single-letter strings:


>>> 'abc'
'abc'
>>> 'a' + 'b'
'ab'


You can use + or * to concatenate identical strings, as shown here:


>>> 'a' + 'a' + 'a'
'aaa'
>>> 'a' * 3
'aaa'


You can assign strings to variables and print them using the print() command:


>>> print('abc')
abc
>>> x = 'abc'
>>> print(x)
abc
>>> y = 'def'
>>> print(x + y)
Abcdef


You can “unpack” the letters of a string and assign them to variables, as shown here:


>>> str = "World"
>>> x1,x2,x3,x4,x5 = str
>>> x1
'W'
>>> x2
'o'
>>> x3
'r'
>>> x4
'l'
>>> x5
'd'


The preceding code snippets shows you how easy it is to extract the letters in a text string. You can extract substrings of a string as shown in the following examples:


>>> x = "abcdef"
>>> x[0]
'a'
>>> x[-1]
'f'
>>> x[1:3]
'bc'
>>> x[0:2] + x[5:]
'abf'


However, you will cause an error if you attempt to “subtract” two strings, as you probably expect:


>>> 'a' - 'b'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'


The try/except construct in Python (discussed later in this chapter) enables you to handle the preceding type of exception more gracefully.



Comparing Strings


You can use the methods lower() and upper() to convert a string to lowercase and uppercase, respectively, as shown here:


>>> 'Python'.lower()
'python'
>>> 'Python'.upper()
'PYTHON'
>>>


The methods lower() and upper() are useful for performing a case insensitive comparison of two ASCII strings. Listing 1.2 displays the content of Compare.py that uses the lower() function to compare two ASCII strings.

LISTING 1.2: Compare.py


x = 'Abc'
y = 'abc'

if(x == y):
  print('x and y: identical')
elif (x.lower() == y.lower()):
  print('x and y: case insensitive match')
else:
  print('x and y: different')


Since x contains mixed case letters and y contains lowercase letters, Listing 1.2 displays the following output:


x and y: different





Formatting Strings


Python provides the functions string.lstring(), string.rstring(), and string.center() for positioning a text string so that it is left-justified, right-justified, and centered, respectively. As you saw in a previous section, Python also provides the format() method for advanced interpolation features. Now enter the following commands in the Python interpreter:


import string

str1 = 'this is a string'
print(string.ljust(str1, 10))
print(string.rjust(str1, 40))
print(string.center(str1,40))


The output is shown here:


this is a string
                        this is a string
            this is a string






UNINITIALIZED VARIABLES AND THE VALUE NONE


Python distinguishes between an uninitialized variable and the value None. The former is a variable that has not been assigned a value, whereas the value None is a value that indicates “no value.” Collections and methods often return the value None, and you can test for the value None in conditional logic.

The next portion of this chapter shows you how to “slice and dice” text strings with built-in Python functions.




SLICING AND SPLICING STRINGS


Python enables you to extract substrings of a string (called “slicing”) using array notation. Slice notation is start:stop:step, where the start, stop, and step values are integers that specify the start value, end value, and the increment value, respectively. The interesting part about slicing in Python is that you can use the value -1, which operates from the right-side instead of the left-side of a string. Some examples of slicing a string are here:


text1 = "this is a string"
print('First 7 characters:',text1[0:7])
print('Characters 2-4:',text1[2:4])
print('Right-most character:',text1[-1])
print('Right-most 2 characters:',text1[-3:-1])


The output from the preceding code block is here:


First 7 characters: this is
Characters 2-4: is
Right-most character: g
Right-most 2 characters: in


Later in this chapter, you will see how to insert a string in the middle of another string.



Testing for Digits and Alphabetic Characters


Python enables you to examine each character in a string and then test whether that character is a digit or an alphabetic character. This section provides a simple introduction to regular expressions.

Listing 1.3 displays the content of CharTypes.py that illustrates how to determine if a string contains digits or characters. Although we have not discussed if statements in Python, the examples in Listing 1.3 are straightforward.

LISTING 1.3: CharTypes.py


str1 = "4"
str2 = "4234"
str3 = "b"
str4 = "abc"
str5 = "a1b2c3"

if(str1.isdigit()):
  print("this is a digit:",str1)

if(str2.isdigit()):
  print("this is a digit:",str2)

if(str3.isalpha()):
  print("this is alphabetic:",str3)

if(str4.isalpha()):
  print("this is alphabetic:",str4)

if(not str5.isalpha()):
  print("this is not pure alphabetic:",str5)

print("capitalized first letter:",str5.title())


Listing 1.3 initializes some variables, followed by two conditional tests that check whether str1 and str2 are digits using the isdigit() function. The next portion of Listing 1.3 checks if str3, str4, and str5 are alphabetic strings using the isalpha() function. The output of Listing 1.3 is here:


this is a digit: 4
this is a digit: 4234
this is alphabetic: b
this is alphabetic: abc
this is not pure alphabetic: a1b2c3
capitalized first letter: A1B2C3






SEARCH AND REPLACE A STRING IN OTHER STRINGS


Python provides methods for searching and replacing a string in a second text string. Listing 1.4 displays the content of FindPos1.py that shows you how to use the find() function to search for the occurrence of one string in another string.

LISTING 1.4: FindPos1.py


item1 = 'abc'
item2 = 'Abc'
text = 'This is a text string with abc'

pos1 = text.find(item1)
pos2 = text.find(item2)

print('pos1=',pos1)
print('pos2=',pos2)


Listing 1.4 initializes the variables item1, item2, and text, and then searches for the index of the contents of item1 and item2 in the string text. The Python find() function returns the column number where the first successful match occurs; otherwise, the find() function returns a -1 if a match is unsuccessful.

The output from launching Listing 1.4 is here:


pos1= 27
pos2= -1


In addition to the find() method, you can use the in operator when you want to test for the presence of an element, as shown here:


>>> lst = [1,2,3]
>>> 1 in lst
True


Listing 1.5 displays the content of Replace1.py that shows you how to replace one string with another string.

LISTING 1.5: Replace1.py


text = 'This is a text string with abc'
print('text:',text)
text = text.replace('is a', 'was a')
print('text:',text)


Listing 1.5 starts by initializing the variable text and then printing its contents. The next portion of Listing 1.5 replaces the occurrence of “is a” with “was a” in the string text, and then prints the modified string. The output from launching Listing 1.5 is here:


text: This is a text string with abc
text: This was a text string with abc





REMOVE LEADING AND TRAILING CHARACTERS


Python provides the functions strip(), lstrip(), and rstrip() to remove characters in a text string. Listing 1.6 displays the content of Remove1.py that shows you how to search for a string.

LISTING 1.6: Remove1.py


text = '   leading and trailing white space   '
print('text1:','x',text,'y')

text = text.lstrip()
print('text2:','x',text,'y')

text = text.rstrip()
print('text3:','x',text,'y')


Listing 1.6 starts by concatenating the letter x and the contents of the variable text, and then printing the result. The second part of Listing 1.6 removes the leading white spaces in the string text and then appends the result to the letter x. The third part of Listing 1.6 removes the trailing white spaces in the string text (note that the leading white spaces have already been removed) and then appends the result to the letter x.

The output from launching Listing 1.6 is here:


text1: x    leading and trailing white space    y
text2: x leading and trailing white space    y
text3: x leading and trailing white space y


If you want to remove extra white spaces inside a text string, use the replace() function as discussed in the previous section. The following example illustrates how this can be accomplished, which also contains the re module for regular expressions:


import re
text = 'a    b'
a = text.replace(' ', '')
b = re.sub('\s+', ' ', text)

print(a)
print(b)


The result is here:


ab
a b





PRINTING TEXT WITHOUT NEWLINE CHARACTERS


If you need to suppress white space and a newline between objects output with multiple print statements, you can use concatenation or the write() function.

The first technique is to concatenate the string representations of each object using the str() function prior to printing the result. For example, execute the following statements in Python:


x = str(9)+str(0xff)+str(-3.1)
print('x: ',x)


The output is shown here:


x:  9255-3.1


The preceding line contains the concatenation of the numbers 9 and 255 (which is the decimal value of the hexadecimal number 0xff) and -3.1.

Incidentally, you can use the str() function with modules and user-defined classes. An example involving the Python built-in module sys is here:


>>> import sys
>>> print(str(sys))
<module 'sys' (built-in)>


The following code snippet illustrates how to use the write() function to display a string:


import sys
write = sys.stdout.write
write('123')
write('123456789')


The output is here:


1233
1234567899





TEXT ALIGNMENT


Python provides the methods ljust(), rjust(), and center() for aligning text. The ljust() and rjust() functions left justify and right justify a text string, respectively, whereas the center() function will center a string. An example is shown in the following code block:


text = 'Hello World'
text.ljust(20)
'Hello World '
>>> text.rjust(20)
' Hello World'
>>> text.center(20)
' Hello World '


You can use the Python format() function to align text. Use the <, >, or ^ characters, along with a desired width, in order to right justify, left justify, and center the text, respectively. The following examples illustrate how you can specify text justification:


>>> format(text, '>20')
'         Hello World'
>>>
>>> format(text, '<20')
'Hello World         '
>>>
>>> format(text, '^20')
'    Hello World     '
>>>





WORKING WITH DATES


Python provides a rich set of date-related functions that are documented here:

http://docs.python.org/2/library/datetime.html

Listing 1.7 displays the content of the script Datetime2.py, which shows various date-related values, such as the current date and time; the day of the week, month, and year; and the time in seconds since the epoch.

LISTING 1.7: Datetime2.py


import time
import datetime

print("Time in seconds since the epoch: %s" %time.time())
print("Current date and time: " , datetime.datetime.now())
print("Or like this: " ,datetime.datetime.now().strftime("%y-%m-%d-%H-%M"))

print("Current year: ", datetime.date.today().strftime("%Y"))
print("Month of year: ", datetime.date.today().strftime("%B"))
print("Week number of the year: ", datetime.date.today().strftime("%W"))
print("Weekday of the week: ", datetime.date.today().strftime("%w"))
print("Day of year: ", datetime.date.today().strftime("%j"))
print("Day of the month : ", datetime.date.today().strftime("%d"))
print("Day of week: ", datetime.date.today().strftime("%A"))


Listing 1.8 displays the output generated by executing the code in Listing 1.7.

LISTING 1.8: datetime2.out


Time in seconds since the epoch: 1375144195.66
Current date and time:  2013-07-29 17:29:55.664164
Or like this:  13-07-29-17-29
Current year:  2013
Month of year:  July
Week number of the year:  30
Weekday of the week:  1
Day of year:  210
Day of the month :  29
Day of week:  Monday


Python also enables you to perform arithmetic calculates with date-related values, as shown in the following code block:


>>> from datetime import timedelta
>>> a = timedelta(days=2, hours=6)
>>> b = timedelta(hours=4.5)
>>> c = a + b
>>> c.days
2
>>> c.seconds
37800
>>> c.seconds / 3600
10.5
>>> c.total_seconds() / 3600
58.5




Converting Strings to Dates


Listing 1.9 displays the content of String2Date.py that illustrates how to convert a string to a date, and also how to calculate the difference between two dates.

LISTING 1.9: String2Date.py


from datetime import datetime

text = '2014-08-13'
y = datetime.strptime(text, '%Y-%m-%d')
z = datetime.now()
diff = z - y
print('Date difference:',diff)


The output from Listing 1.9 is shown here:


Date difference: -210 days, 18:58:40.197130






EXCEPTION HANDLING


Unlike JavaScript, you cannot add a number and a string in Python. Fortunately, you can detect an illegal operation using the try/except construct in Python, which is similar to the try/catch construct in languages such as JavaScript and Java.

An example of a try/except block is here:


try:
  x = 4
  y = 'abc'
  z = x + y
except:
  print 'cannot add incompatible types:', x, y


When you run the preceding code in Python, the print() statement in the except code block is executed because the variables x and y have incompatible types.

Earlier in the chapter, you also saw that subtracting two strings throws an exception:


>>> 'a' - 'b'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'


A simple way to handle this situation is to use a try/except block:


>>> try:
...  print('a' - 'b')
... except TypeError:
...  print('TypeError exception while trying to subtract two strings')
... except:
...  print('Exception while trying to subtract two strings')
...


The output from the preceding code block is here:


TypeError exception while trying to subtract two strings


As you can see, the preceding code block specifies the finer-grained exception called TypeError, followed by a “generic” except code block to handle all other exceptions that might occur during the execution of your Python code. This style resembles the exception handling in Java code.

Listing 1.10 displays the content of Exception1.py that illustrates how to handle various types of exceptions, which includes an exception due to a missing file.

LISTING 1.10: Exception1.py


import sys

try:
    f = open('myfile.txt')
    s = f.readline()
    i = int(s.strip())
except IOError as err:
    print("I/O error: {0}".format(err))
except ValueError:
    print("Could not convert data to an integer.")
except:
    print("Unexpected error:", sys.exc_info()[0])
    raise


Listing 1.10 contains a try block followed by three except statements. If an error occurs in the try block, the first except statement is compared with the type of exception that occurred. If there is a match, then the subsequent print statement is executed, and the program terminates. If not, a similar test is performed with the second except statement. If neither except statement matches the exception, the third except statement handles the exception, which involves printing a message and then “raising” an exception.

Note that you can also specify multiple exception types in a single statement, as shown here:


except (NameError, RuntimeError, TypeError):
    print('One of three error types occurred')


The preceding code block is more compact, but you do not know which of the three error types occurred. Python allows you to define custom exceptions, but this topic is beyond the scope of this book.




HANDLING USER INPUT


Python enables you to read user input from the command line via the input() function or the raw_input() function. Typically, you assign user input to a variable, which will contain all characters that users enter from the keyboard. User input terminates when users press the <return> key (which is included with the input characters). Listing 1.11 displays the content of UserInput1.py that prompts users for their name and then uses interpolation to display a response.

LISTING 1.11: UserInput1.py


userInput = input("Enter your name: ")
print ("Hello %s, my name is Python" % userInput)


The output of Listing 1.11 is here (assume that the user entered the word Dave):


Hello Dave, my name is Python


The print() statement in Listing 1.11 uses string interpolation via %s, which substitutes the value of the variable after the % symbol. This functionality is obviously useful when you want to specify something that is determined at runtime.

User input can cause exceptions (depending on the operations that your code performs), so it’s important to include exception-handling code.

Listing 1.12 displays the content of UserInput2.py that prompts users for a string and attempts to convert the string to a number in a try/except block.

LISTING 1.12: UserInput2.py


userInput = input("Enter something: ")

try:
  x = 0 + eval(userInput)
  print('you entered the number:',userInput)
except:
  print(userInput,'is a string')


Listing 1.12 adds the number 0 to the result of converting a user’s input to a number. If the conversion was successful, a print() statement in the try portion of the code displays message with the user’s input. If the conversion failed, then the except portion of the code in Listing 1.12 consists of a print() statement that displays a message.

NOTE This code sample uses the eval() function, which should be avoided so that your code does not evaluate arbitrary (and possibly destructive) commands.

Listing 1.13 displays the content of UserInput3.py that prompts users for two numbers and attempts to compute their sum in a pair of try/except blocks.

LISTING 1.13: UserInput3.py


sum = 0

msg = 'Enter a number:'
val1 = input(msg)

try:
  sum = sum + eval(val1)
except:
  print(val1,'is a string')

msg = 'Enter a number:'
val2 = input(msg)

try:
  sum = sum + eval(val2)
except:
  print(val2,'is a string')

print('The sum of',val1,'and',val2,'is',sum)


Listing 1.13 contains two try blocks, each of which is followed by an except statement. The first try block attempts to add the first user-supplied number to the variable sum, and the second try block attempts to add the second user-supplied number to the previously entered number. An error message occurs if either input string is not a valid number; if both are valid numbers, a message is displayed containing the input numbers and their sum. Be sure to read the caveat regarding the eval() function that is mentioned earlier in this chapter.




COMMAND-LINE ARGUMENTS


Python provides a getopt module to parse command-line options and arguments, and the Python sys module provides access to any command-line arguments via the sys.argv. This serves two purposes:


	sys.argv is the list of command-line arguments

	len(sys.argv) is the number of command-line arguments



Here, sys.argv[0] is the program name, so if the Python program is called test.py, it matches the value of sys.argv[0].

Now you can provide input values for a Python program on the command line instead of providing input values by prompting users for their input. As an example, consider the script test.py shown here:


#!/usr/bin/python
import sys
print('Number of arguments:',len(sys.argv),'arguments')
print('Argument List:', str(sys.argv))


Run above script as follows:


python test.py arg1 arg2 arg3


This will produce following result:


Number of arguments: 4 arguments.
Argument List: ['test.py', 'arg1', 'arg2', 'arg3']


The ability to specify input values from the command line provides useful functionality. For example, suppose that you have a custom Python class that contains the methods add and subtract to add and subtract a pair of numbers.

You can use command-line arguments to specify which method to execute on a pair of numbers, as shown here:


python MyClass add 3 5
python MyClass subtract 3 5


This functionality is very useful because you can programmatically execute different methods in a Python class, which means that you can write unit tests for your code, as well.

Listing 1.14 displays the content of Hello.py that shows you how to use sys.argv to check the number of command line parameters.

LISTING 1.14: Hello.py


import sys

def main():
  if len(sys.argv) >= 2:
    name = sys.argv[1]
  else:
    name = 'World'
  print('Hello', name)

# Standard boilerplate to invoke the main() function
if __name__ == '__main__':
  main()


Listing 1.14 defines the main() function that checks the number of command-line parameters: if this value is at least 2, then the variable name is assigned the value of the second parameter (the first parameter is Hello.py), otherwise name is assigned the value Hello. The print() statement then prints the value of the variable name.

The final portion of Listing 1.14 uses conditional logic to determine whether to execute the main() function.




SUMMARY


This chapter showed you how to execute Python programs, as well as how to work with numbers and perform arithmetic operations on numbers in Python. Next, you learned how to work with strings and use string operations.

In addition, you learned about the difference between Unicode and ASCII in Python 3 and Python 2, respectively. Then you saw how to slice and splice strings, how to replace a string with another string, and also how to remove leading and trailing characters in a string.

Finally, you learned how to work with dates in Python, and then how to handle exceptions that can arise from user input.






CHAPTER 2

WORKING WITH DATA


This chapter introduces you to various data types that you will encounter in datasets, how to scale data values, techniques for detecting outliers, and several ways for handling missing data values.

The first part of this chapter contains an overview of different types of data and an explanation of how to normalize and standardize a set of numeric values by calculating the mean and standard deviation of a set of numbers. You will see how to map categorical data to a set of integers and how to perform a one-hot encoding.

The second part of this chapter discusses outliers, and anomalies, and missing data, and various techniques for handling these scenarios. The third section discusses imbalanced data and several techniques, such as SMOTE, to deal with imbalanced classes in a dataset.

The fourth section contains details regarding the bias-variance tradeoff and various types of statistical bias. It also discusses ways to evaluate classifiers, such as LIME and ANOVA.

This chapter provides a high-level view of concepts that will help you work with datasets that require preprocessing before using them to train machine learning models. While the code samples reference APIs from Python libraries (such as NumPy and Pandas), the APIs are intuitive: mean() for calculating the mean of a set of numbers and std() for calculating the standard deviation of a set of numbers.

However, the code sample that involves Sklearn is marked “optional” because it uses the EllipticEnvelope class in sklearn.covariance, whose functionality is not intuitive (yet good to be aware of for future study).



DEALING WITH DATA: WHAT CAN GO WRONG?


In a perfect world, all datasets are in pristine condition, with no extreme values, no missing values, and no erroneous values. Every feature value is captured correctly, with no chance for any confusion. Moreover, no conversion is required between date formats, currency values, or languages because of the “One Universal Standard” that defines the correct formats and acceptable values for every possible set of data values.

Of course, all the scenarios mentioned in the previous paragraph can and do occur, which is the reason for the techniques that are discussed in this chapter. Even after you manage to create a wonderfully clean and robust dataset, other issues can arise, such as data drift that is described in the next section.

In fact, the task of cleaning data is not necessarily complete even after a machine learning model is deployed to a production environment. For instance, an online system that gathers terabytes or petabytes of data on a daily basis can contain skewed values that in turn adversely affect the performance of the model. Such adverse affects can be revealed through the changes in the metrics that are associated with the production model.



What is Data Drift?


The value of data is based on its accuracy, its relevance, and its age. Data drift refers to data that has become less relevant: in some cases, this happens over a period of time, and in other cases, it’s because some data is no longer relevant because of feature-related changes in an application.

For example, online purchasing patterns in 2010 are probably not as relevant as data from 2020 because of various factors (such as the profile of different types of customers). Another example involves an inventory of cell phones: discontinued models have a diminished value in such a system. There might be multiple factors that can influence data drift in a specific dataset.

Two techniques for handling data drift are the domain classifier and black-box shift detector, both of which are discussed online:

https://blog.dataiku.com/towards-reliable-mlops-with-drift-detectors

Data drift is one of three types of drift, and all three types are listed below:


	concept drift

	data drift

	upstream data changes



Perform an online search to find more information about these types of drift.





WHAT ARE DATASETS?


In simple terms, a dataset is a source of data (such as a text file) that contains rows and columns of data. Each row is typically called a data point, and each column is called a feature. A dataset can be in a variety of forms:  CSV (comma separated values), TSV (tab separated values), an Excel spreadsheet, a table in an RDBMS, a document in a NoSQL database, the output from a Web service. Someone needs to analyze the dataset to determine which features are the most important and which features can be safely ignored to train a model with the given dataset.

A dataset can vary from very small (a couple of features and 100 rows) to very large (more than 1,000 features and more than one million rows). If you are unfamiliar with the problem domain, then you might struggle to determine the most important features in a large dataset. In this situation, you might need a domain expert who understands the importance of the features, their inter-dependencies (if any), and whether the data values for the features are valid.

In addition, there are algorithms (called dimensionality reduction algorithms) that can help you determine the most important features, such as PCA (Principal Component Analysis), which is discussed in Chapter 3 of this book.



Data Preprocessing


Data preprocessing is the initial step that involves validating the contents of a dataset, which involves making decisions about missing and incorrect data values:


	dealing with missing data values

	cleaning “noisy” text-based data

	removing HTML tags

	removing emoticons

	dealing with emojis/emoticons

	filtering data

	grouping data

	handling currency and date formats



Cleaning data is a subset of data wrangling that involves removing unwanted data as well as handling missing data. In the case of text-based data, you might need to remove HTML tags, and punctuation. In the case of numeric data, it’s possible that alphabetic characters are mixed together with numeric data. However, a dataset with numeric features might have incorrect values or missing values (discussed later). In addition, calculating the minimum, maximum, mean, median, and standard deviation of the values of a feature obviously pertains only to numeric values.

After the preprocessing step is completed, data wrangling is performed, which refers to transforming data into a new format. For example, you might have to combine data from multiple sources into a single dataset. You might also need to convert between different units of measurement (such as date formats and currency values) so that the data values can be represented in a consistent manner in a dataset.

Currency and date values are part of i18n (internationalization); L10n (localization) targets a specific nationality, language, or region. Hard-coded values (such as text strings) can be stored as resource strings in a file that’s often called a resource bundle, where each string is referenced via a code. Each language has its own resource bundle.





DATA TYPES


If you have written computer programs, then you know that explicit data types exist in many programming languages, such as C, C++, Java, and TypeScript. Some programming languages, such as JavaScript and awk, do not require initializing variables with an explicit type: the type of a variable is inferred dynamically via an implicit type system (i.e., one that is not directly exposed to a developer).

In machine learning, datasets can contain features that have different types of data, such as a combination of one or more of the following:


	numeric data (integer/floating point and discrete/continuous)

	character/categorical data (different languages)

	date-related data (different formats)

	currency data (different formats)

	binary data (yes/no, 0/1, and so forth)

	nominal data (multiple unrelated values)

	ordinal data (multiple and related values)



Consider a dataset that contains real estate data, which can have as many as 30 columns (or even more), often with the following features:


	the number of bedrooms in a house: numeric value and a discrete value

	the number of square feet: a numeric value and (probably) a continuous value

	the name of the city: character data

	the construction date: a date value

	the selling price: a currency value and probably a continuous value

	the “for sale” status: binary data (either “yes” or “no”)



An example of nominal data is the seasons in a year: although many countries have four distinct seasons, some countries have two distinct seasons. However, seasons can be associated with different temperature ranges (summer versus winter). An example of ordinal data is an employee pay grade: 1=entry level, 2=one year of experience, and so forth. Another example of nominal data is a set of colors, such as {Red, Green, Blue}.

An example of binary data is the pair {Male, Female}, and some datasets contain a feature with these two values. If such a feature is required for training a model, first convert {Male, Female} to a numeric counterpart, such as {0,1}. Similarly, if you need to include a feature whose values are the previous set of colors, you can replace {Red, Green, Blue} with the values {0,1,2}. Categorical data is discussed in more detail later in this chapter.




PREPARING DATASETS


If you have the good fortune to inherit a dataset that is in pristine condition, then data cleaning tasks (discussed later) are vastly simplified: in fact, it might not be necessary to perform any data cleaning for the dataset. However, if you need to create a dataset that combines data from multiple datasets that contain different formats for dates and currency, then you need to perform a conversion to a common format.

If you need to train a model that includes features that have categorical data, then you need to convert that categorical data to numeric data. For instance, the Titanic dataset contains a feature called “gender,” which is either male or female. As you will see later in this chapter, Pandas makes it extremely simple to “map” male to 0 and female to 1.



Discrete Data Versus Continuous Data


As a simple rule of thumb: discrete data form a set of values that can be counted whereas continuous data must be measured. Discrete data can reasonably fit in a drop-down list of values, but there is no exact value for making such a determination. One person might think that a list of 500 values is discrete, whereas another person might think it’s continuous.

For example, the list of provinces of Canada and the list of states of the USA are discrete data values, but is the same true for the number of countries in the world (roughly 200) or for the number of languages in the world (more than 7,000)?

Values for temperature, humidity, and barometric pressure are considered continuous. Currency is also treated as continuous, even though there is a measurable difference between two consecutive values. The smallest unit of US currency is one penny, which is 1/100th of a dollar (accounting-based measurements use the “mil,” which is 1/1,000th of a dollar).

Continuous data types can have subtle differences. For example, someone who is 200 centimeters tall is twice as tall as someone who is 100 centimeters tall (this is similar for a person who weighs 100 kilograms versus a person who weighs 50 kilograms). However, temperature is different: 80 degrees Fahrenheit is not twice as hot as 40 degrees Fahrenheit.

Furthermore, the word “continuous” has a meaning in mathematics that is not necessarily the same as “continuous” in machine learning. In the former, a continuous variable (let’s say in the 2D Euclidean plane) can have an uncountably infinite number of values. However, a feature in a dataset that can have more values that can be “reasonably” displayed in a drop down list is treated as though it’s a continuous variable.

For instance, values for stock prices are discrete: they must differ by at least a penny (or some other minimal unit of currency), which is to say, it’s meaningless to say that the stock price changes by one-millionth of a penny. However, since there are “so many” possible stock values, it’s treated as a continuous variable. The same comments apply to car mileage, ambient temperature, and barometric pressure.




Binning Continuous Data


With the previous section in mind, the concept of binning refers to subdividing a set of values into multiple intervals, and then treating all the numbers in the same interval as though they had the same value.

As a simple example, suppose that a feature in a dataset contains the age of people in a dataset. The range of values is approximately between 0 and 120, and we could “bin” them into 12 equal intervals, where each consists of 10 values: 0 through 9, 10 through 19, 20 through 29, and so forth.

However, partitioning the values of people’s age as described in the preceding paragraph can be problematic. Suppose that person A, person B, and person C are 29, 30, and 39, respectively. Then person A and person B are probably more similar to each other than person B and person C, but because of the way in which the ages are partitioned, B is classified as closer to C than to A. In fact, binning can increase Type I errors (false positive) and Type II errors (false negative), as discussed in the following blog post (along with some alternatives to binning):

https://medium.com/@peterflom/why-binning-continuous-data-is-almost-always-a-mistake-ad0b3a1d141f

As another example, using quartiles is even more coarse-grained than the earlier age-related binning example. The issue with binning pertains to the consequences of classifying people in different bins, even though they are in close proximity to each other. For instance, some people struggle financially because they earn a meager wage and they are disqualified from financial assistance because their salary is higher than the cut-off point for receiving any assistance.




Scaling Numeric Data via Normalization


A range of values can vary significantly and it’s important to note that they often need to be scaled to a smaller range, such as values in the range [–1,1] or [0,1], which you can do via the tanh function or the sigmoid function, respectively.

For example, measuring a person’s height in terms of meters involves a range of values between 0.50 meters and 2.5 meters (in the vast majority of cases), whereas measuring height in terms of centimeters ranges between 50 centimeters and 250 centimeters: these two units differ by a factor of 100. A person’s weight in kilograms generally varies between 5 kilograms and 200 kilograms, whereas measuring weight in grams differs by a factor of 1,000. Distances between objects can be measured in meters or in kilometers, which also differ by a factor of 1,000.

In general, use units of measure so that the data values in multiple features are belong to a similar range of values. In fact, some machine learning algorithms require scaled data, often in the range of [0,1] or [–1,1]. In addition to the tanh and sigmoid function, there are other techniques for scaling data, such as “standardizing” data (think Gaussian distribution) and “normalizing” data (linearly scaled so that the new range of values is in the range (0,1)).

The following examples involve a floating point variable X with different ranges of values that will be scaled so that the new values are in the interval [0,1].


	Example 1: If the values of X are in the range [0,2], then X/2 is in the range [0,1].

	Example 2: If the values of X are in the range [3,6], then X-3 is in the range [0,3], and (X – 3)/3 is in the range [0,1].

	Example 3: If the values of X are in the range [–10,20], then X +10 is in the range [0,30], and (X + 10)/30 is in the range of [0,1].



In general, suppose that X is a random variable whose values are in the range [a,b], where a < b. You can scale the data values by performing two steps:


	Step 1: X-a is in the range [0,b-a]

	Step 2: (X-a)/(b-a) is in the range [0,1]



If X is a random variable that has the values {x1, x2, x3, . . ., xn}, then the formula for normalization involves mapping each xi value to (xi – min)/(max – min), where min is the minimum value of X and max is the maximum value of X.

As a simple example, suppose that the random variable X has the values {-1, 0, 1}. Then min and max are 1 and -1, respectively, and the normalization of {-1, 0, 1} is the set of values {(-1-(-1))/2, (0-(-1))/2, (1-(-1))/2}, which equals {0, 1/2, 1}.




Scaling Numeric Data via Standardization


The standardization technique involves finding the mean mu and the standard deviation sigma, and then mapping each xi value to (xi – mu)/sigma. Recall the following formulas:


mu = [SUM (x) ]/n
variance(x) = [SUM (x – xbar)*(x-xbar)]/n
sigma = sqrt(variance)


As a simple illustration of standardization, suppose that the random variable X has the values {–1, 0, 1}. Then mu and sigma are calculated as follows:


mu       = (SUM xi)/n = (-1 + 0 + 1)/3 = 0

variance = [SUM (xi- mu)^2]/n
         = [(-1-0)^2 + (0-0)^2 + (1-0)^2]/3
         = 2/3

sigma    = sqrt(2/3) = 0.816 (approximate value)


Hence, the standardization of {-1, 0, 1} is {-1/0.816, 0/0.816, 1/0.816}, which in turn equals the set of values {-1.2254, 0, 1.2254}.

As another example, suppose that the random variable X has the values {-6, 0, 6}. Then mu and sigma are calculated as follows:


mu       = (SUM xi)/n = (-6 + 0 + 6)/3 = 0

variance = [SUM (xi- mu)^2]/n
         = [(-6-0)^2 + (0-0)^2 + (6-0)^2]/3
         = 72/3
         = 24

sigma    = sqrt(24) = 4.899 (approximate value)


Hence, the standardization of {-6, 0, 6} is {-6/4.899, 0/4.899, 6/4.899}, which in turn equals the set of values {-1.2247, 0, 1.2247}.

In the preceding two examples, the mean equals 0 in both cases but the variance and standard deviation are significantly different. The normalization of a set of values always produces a set of numbers between 0 and 1.

However, the standardization of a set of values can generate numbers that are less than –1 and greater than 1: this will occur when sigma is less than the minimum value of every term |mu – xi|, where the latter is the absolute value of the difference between mu and each xi value. In the preceding example, the minimum difference equals 1, whereas sigma is 0.816, and therefore the largest standardized value is greater than 1.




Scaling Numeric Data via Robust Standardization


The robust standardization technique is a variant of standardization that computes the mean mu and the standard deviation sigma based on a subset of values. Specifically, use only the values that are between the 25th percentile and 75th percentile, which ignores the first and fourth quartiles that might contain outliers. Let’s define the following variables:


X25 = 25th percentile
X75 = 75th percentile
XM = mean of {Xi} values
XR = robust standardization


Then XR is computed according to the following formula:


XR = (Xi - XM)/(X75 - X25)


The preceding technique is called the interquartile range (IQR), and you can see a sample calculation online:

https://en.wikipedia.org/wiki/Interquartile_range




What to Look for in Categorical Data


This section contains various suggestions for handling inconsistent data values, and you can determine which ones to adopt based on any additional factors that are relevant to your particular task. For example, consider dropping columns that have very low cardinality (equal to or close to 1), as well as numeric columns with zero or very low variance.

Next, check the contents of categorical columns for inconsistent spellings or errors. A good example pertains to the gender category, which can consist of a combination of the following values:


male
Male
female
Female
m
f
M
F


The preceding categorical values for gender can be replaced with two categorical values (unless you have a valid reason to retain some of the other values). Moreover, if you are training a model whose analysis involves a single gender, then you need to determine which rows (if any) of a dataset must be excluded. Also check categorical data columns for redundant or missing whitespaces.

Check for data values that have multiple data types, such as a numerical column with numbers as numerals and some numbers as strings or objects. Also ensure consistent data formats: numbers as integer or floating numbers and ensure that dates have the same format (for example, do not mix mm/dd/yyyy date formats with another date format, such as dd/mm/yyyy).




Mapping Categorical Data to Numeric Values


Character data is often called categorical data, examples of which include people’s names, home or work addresses, and email addresses. Many types of categorical data involve short lists of values. For example, the days of the week and the months in a year involve seven and twelve distinct values, respectively. Notice that the days of the week have a relationship: each day has a previous day and a next day, and similarly for the months of a year.

The colors of an automobile are independent of each other: the color red is not “better” or “worse” than the color blue. However, cars of a certain color can have a statistically higher number of accidents, but we won’t address this case here.

There are several well-known techniques for mapping categorical values to a set of numeric values. A simple example where you need to perform this conversion involves the gender feature in the Titanic dataset. This feature is one of the relevant features for training a machine learning model. The gender feature has {M,F} as its set of values. As you will see later in this chapter, Pandas makes it very easy to convert the set of values {M,F} to the set of values {0,1}.

Another mapping technique involves mapping a set of categorical values to a set of consecutive integer values. For example, the set {Red, Green, Blue} can be mapped to the set of integers {0,1,2}. The set {Male, Female} can be mapped to the set of integers {0,1}. The days of the week can be mapped to {0,1,2,3,4,5,6}. Note that the first day of the week depends on the country: in some cases, it’s Sunday and in other cases its Monday.

Another technique is called one-hot encoding, which converts each value to a vector (check Wikipedia if you need information regarding vectors). Thus, {Male, Female} can be represented by the vectors [1,0] and [0,1], and the colors {Red, Green, Blue} can be represented by the vectors [1,0,0], [0,1,0], and [0,0,1].

If you vertically “line up” the two vectors for gender, they form a 2x2 identity matrix, and doing the same for the colors {R,G,B} will form a 3x3 identity matrix, as shown here:


[1,0,0]
[0,1,0]
[0,0,1]


If you are familiar with matrices, you probably noticed that the preceding set of vectors looks like the 3x3 identity matrix. In fact, this technique generalizes in a straightforward manner. Specifically, if you have n distinct categorical values, you can map each of those values to one of the vectors in an nxn identity matrix.

As another example, the set of titles {"Intern", "Junior", "Mid-Range", "Senior", "Project Leader", "Dev Manager"} have a hierarchical relationship in terms of their salaries (which can also overlap, but we won’t discuss that detail now).

Another set of categorical data involves the season of the year: {"Spring", "Summer", "Autumn", "Winter"}. While these values are generally independent of each other, there are cases in which the season is significant. For example, the values for the monthly rainfall, average temperature, crime rate, and foreclosure rate can depend on the season, month, week, or even the day of the year.

If a feature has a large number of categorical values, then a one-hot encoding will produce many additional columns for each datapoint. Since the majority of the values in the new columns equal 0, this can increase the sparsity of the dataset, which in turn can result in more overfitting and hence adversely affect the accuracy of machine learning algorithms that you adopt during the training process.

One approach is to use a sequence-based solution in which N categories are mapped to the integers 1, 2, . . ., N. Another solution involves examining the row frequency of each categorical value. For example, suppose that N equals 20, and there are 3 categorical values occur in 95% of the values for a given feature. You can try the following:


	Assign the values 1, 2, and 3 to those three categorical values.

	Assign numeric values that reflect the relative frequency of those categorical values.

	Assign the category “OTHER” to the remaining categorical values.

	Delete the rows that whose categorical values belong to the 5%.






Working with Dates


The format for a calendar date varies among different countries, and this belongs to something called localization of data (not to be confused with i18n, which is data internationalization). Some examples of date formats are as follows (and the first four are probably the most common):


MM/DD/YY
MM/DD/YYYY
DD/MM/YY
DD/MM/YYYY
YY/MM/DD
M/D/YY
D/M/YY
YY/M/D
MMDDYY
DDMMYY
YYMMDD


If you need to combine data from datasets that contain different date formats, then converting the disparate date formats to a single common date format will ensure consistency.




Working with Currency


The format for currency depends on the country, which includes different interpretations for a “,” and “.” in currency (and decimal values in general). For example, 1,124.78 equals “one thousand one hundred twenty-four point seven eight” in the US, whereas 1.124,78 has the same meaning in Europe (i.e., the “.” symbol and the “,” symbol are interchanged).

If you need to combine data from datasets that contain different currency formats, then you probably need to convert all the disparate currency formats to a single common currency format. There is another detail to consider: currency exchange rates can fluctuate on a daily basis, which can affect the calculation of taxes, late fees, and so forth. Although you might be fortunate enough where you won’t have to deal with these issues, it’s still worth being aware of them.





WORKING WITH OUTLIERS AND ANOMALIES


In simplified terms, an outlier is an abnormal data value that is outside the range of “normal” values. For example, a person’s height in centimeters is typically between 30 centimeters and 250 centimeters. Hence, a datapoint (e.g., a row of data in a spreadsheet) with a height of 5 centimeters or a height of 500 centimeters is an outlier. The consequences of these outlier values are unlikely to involve a significant financial or physical loss (though they could adversely affect the accuracy of a trained model).

Anomalies are also outside the “normal” range of values (just like outliers), and they are typically more problematic than outliers: anomalies can have more “severe” consequences than outliers. For example, consider the scenario in which someone who lives in California suddenly makes a credit card purchase in New York. If the person is on vacation (or a business trip), then the purchase is an outlier (it’s “outside” the typical purchasing pattern), but it’s not an issue. However, if that person was in California when the credit card purchase was made, then it’s most likely to be credit card fraud, as well as an anomaly.

Unfortunately, there is no simple way to decide how to deal with anomalies and outliers in a dataset. Although you can drop rows that contain outliers, doing so might deprive the dataset, and therefore the trained model, of valuable information. You can try modifying the data values (described below), but again, this might lead to erroneous inferences in the trained model. Another possibility is to train a model with the dataset that contains anomalies and outliers, and then train a model with a dataset from which the anomalies and outliers have been removed. Compare the two results and see if you can infer anything meaningful regarding the anomalies and outliers.



Outlier Detection/Removal


Although the decision to keep or drop outliers is your decision to make, there are some techniques available that help you detect outliers in a dataset. Here is a short list of techniques, along with a very brief description and links for additional information:


	trimming

	winsorizing

	minimum covariance determinant

	local outlier factor

	Huber and Ridge

	isolation forest (tree-based algorithm)

	one-class SVM



Perhaps trimming is the simplest technique (apart from dropping outliers), which involves removing rows whose feature value is in the upper 5% range or the lower 5% range. Winsorizing the data is an improvement over trimming: set the values in the top 5% range equal to the maximum value in the 95th percentile, and set the values in the bottom 5% range equal to the minimum in the 5th percentile.

The Minimum Covariance Determinant is a covariance-based technique, and a Python-based code sample that uses this technique is available online:

https://scikit-learn.org/stable/modules/outlier_detection.html

The Local Outlier Factor (LOF) technique is an unsupervised technique that calculates a local anomaly score via the kNN (k Nearest Neighbor) algorithm. Documentation and short code samples that use LOF are available online:

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html

Two other techniques involve the Huber and the Ridge classes, both of which are included as part of Sklearn. The Huber error is less sensitive to outliers because it’s calculated via linear loss, similar to the MAE (Mean Absolute Error). A code sample that compares Huber and Ridge is available online:

https://scikit-learn.org/stable/auto_examples/linear_model/plot_huber_vs_ridge.html

You can also explore the Theil-Sen estimator and RANSAC that are “robust” against outliers, and additional information is available online:

https://scikit-learn.org/stable/auto_examples/linear_model/plot_theilsen.html

https://en.wikipedia.org/wiki/Random_sample_consensus

Four algorithms for outlier detection are discussed online:

https://www.kdnuggets.com/2018/12/four-techniques-outlier-detection.html

One other scenario involves “local” outliers. For example, suppose that you use kMeans (or some other clustering algorithm) and determine that a value that is an outlier with respect to one of the clusters. While this value is not necessarily an “absolute” outlier, detecting such a value might be important for your use case.





FINDING OUTLIERS WITH NUMPY


Although we have not discussed the NumPy library, we will only use the NumPy array() method, the mean() method, and the std() method in this section, all of which have intuitive functionality.

Listing 2.1 displays the content of numpy_outliers1.py that illustrates how to use NumPy methods to find outliers in an array of numbers.

LISTING 2.1: numpy_outliers1.py


import numpy as np

arr1 = np.array([2,5,7,9,9,40])
print("values:",arr1)

data_mean = np.mean(arr1)
data_std  = np.std(arr1)
print("data_mean:",data_mean)
print("data_std:" ,data_std)
print()

multiplier = 1.5
cut_off = data_std * multiplier
lower = data_mean - cut_off
upper = data_mean + cut_off
print("lower cutoff:",lower)
print("upper cutoff:",upper)
print()

outliers = [x for x in arr1 if x < lower or x > upper]
print('Identified outliers: %d' % len(outliers))
print("outliers:",outliers)


Listing 2.1 starts by defining a NumPy array of numbers and then calculates the mean and standard deviation of those numbers. The next block of code initializes two numbers that represent the upper and lower values that are based on the value of the cut_off variable. Any numbers in the array arr1 that lie to the left of the lower value or to the right of the upper value are treated as outliers.

The final section of code in Listing 2.1 initializes the variable outliers with the numbers that are determined to be outliers, and those values are printed. Launch the code in Listing 2.1 and you will see the following output:


values: [ 2  5  7  9  9 40]
data_mean: 12.0
data_std: 12.754084313139327

lower cutoff: -7.131126469708988
upper cutoff: 31.13112646970899

Identified outliers: 1
outliers: [40]


The preceding code sample specifies a hard-coded value to calculate the upper and lower range values.

Listing 2.2 is an improvement in that you can specify a set of values from which to calculate the upper and lower range values, and the new block of code is shown in bold.

LISTING 2.2: numpy_outliers2.py


import numpy as np

arr1 = np.array([2,5,7,9,9,40])
print("values:",arr1)

data_mean = np.mean(arr1)
data_std  = np.std(arr1)
print("data_mean:",data_mean)
print("data_std:" ,data_std)
print()

multipliers = np.array([0.5,1.0,1.5,2.0,2.5,3.0])
for multiplier in multipliers:
  cut_off = data_std * multiplier
  lower, upper = data_mean - cut_off, data_mean + cut_off
  print("=> multiplier:  ",multiplier)
  print("lower cutoff:",lower)
  print("upper cutoff:",upper)

  outliers = [x for x in df['data'] if x < lower or x > upper]
  print('Identified outliers: %d' % len(outliers))
  print("outliers:",outliers)
  print()


Listing 2.2 contains a block of new code that initializes the variable multipliers as an array of numeric values that are used for finding outliers. Although you will probably use a value of 2.0 or larger on a real dataset, this range of numbers can give you a better sense of detecting outliers. Launch the code in Listing 2.2 and you will see the following output:


values: [ 2  5  7  9  9 40]
data_mean: 12.0
data_std: 12.754084313139327

lower cutoff: -7.131126469708988
upper cutoff: 31.13112646970899

Identified outliers: 1
outliers: [40]
=> multiplier:   0.5
lower cutoff: 5.622957843430337
upper cutoff: 18.377042156569665
Identified outliers: 3
outliers: [2, 5, 40]

=> multiplier:   1.0
lower cutoff: -0.7540843131393267
upper cutoff: 24.754084313139327
Identified outliers: 1
outliers: [40]

=> multiplier:   1.5
lower cutoff: -7.131126469708988
upper cutoff: 31.13112646970899
Identified outliers: 1
outliers: [40]

=> multiplier:   2.0
lower cutoff: -13.508168626278653
upper cutoff: 37.50816862627865
Identified outliers: 1
outliers: [40]

=> multiplier:   2.5
lower cutoff: -19.88521078284832
upper cutoff: 43.88521078284832
Identified outliers: 0
outliers: []

=> multiplier:   3.0
lower cutoff: -26.262252939417976
upper cutoff: 50.26225293941798
Identified outliers: 0
outliers: []





FINDING OUTLIERS WITH PANDAS


The code in this section contains a simple Pandas data frame, along with the mean() method and the std() method for calculating the mean and standard deviation, respectively, of the “data” column in the Pandas data frame df.

Listing 2.3 displays the content of pandas_outliers1.py that illustrates how to use Pandas to find outliers in an array of numbers.

LISTING 2.3: pandas_outliers1.py


import pandas as pd

df = pd.DataFrame([2,5,7,9,9,40])
df.columns = ["data"]

data_mean = df['data'].mean()
data_std  = df['data'].std()
print("data_mean:",data_mean)
print("data_std:" ,data_std)
print()

multiplier = 1.5
cut_off = data_std * multiplier
lower, upper = data_mean - cut_off, data_mean + cut_off
print("lower cutoff:",lower)
print("upper cutoff:",upper)
print()

outliers = [x for x in df['data'] if x < lower or x > upper]
print('Identified outliers: %d' % len(outliers))
print("outliers:",outliers)


Listing 2.3 starts by defining a Pandas data frame and then calculates the mean and standard deviation of those numbers. The next block of code initializes two numbers that represent the upper and lower values that are based on the value of the cut_off variable. Any numbers in the data frame that lie to the left of the lower value or to the right of the upper value are treated as outliers.

The final section of code in Listing 2.3 initializes the variable outliers with the numbers that are determined to be outliers, and those values are printed. Launch the code in Listing 2.3 and you will see the following output:


values: [ 2  5  7  9  9 40]
data_mean: 12.0
data_std: 12.754084313139327

lower cutoff: -7.131126469708988
upper cutoff: 31.13112646970899

Identified outliers: 1
outliers: [40]


The preceding code sample specifies a hard-coded value in order to calculate the upper and lower range values.

Listing 2.4 is an improvement in that you can specify a set of values from which to calculate the upper and lower range values, and the new block of code is shown in bold.

LISTING 2.4: pandas_outliers2.py


import pandas as pd

#df = pd.DataFrame([2,5,7,9,9,40])
#df = pd.DataFrame([2,5,7,8,42,44])
df = pd.DataFrame([2,5,7,8,42,492])
df.columns = ["data"]
print("=> data values:")
print(df['data'])

data_mean = df['data'].mean()
data_std  = df['data'].std()
print("=> data_mean:",data_mean)
print("=> data_std:" ,data_std)
print()

multipliers = [0.5,1.0,1.5,2.0,2.5,3.0]
for multiplier in multipliers:
  cut_off = data_std * multiplier
  lower, upper = data_mean - cut_off, data_mean + cut_off
  print("=> multiplier:  ",multiplier)
  print("lower cutoff:",lower)
  print("upper cutoff:",upper)

  outliers = [x for x in df['data'] if x < lower or x > upper]
  print('Identified outliers: %d' % len(outliers))
  print("outliers:",outliers)
  print()


Listing 2.4 contains a block of new code that initializes the variable multipliers as an array of numeric values that are used for finding outliers. Although you will probably use a value of 2.0 or larger on a real dataset, this range of numbers can give you a better sense of detecting outliers. Launch the code in Listing 2.4 and you will see the following output:


=> data values:

0      2
1      5
2      7
3      8
4     42
5    492
Name: data, dtype: int64
=> data_mean: 92.66666666666667
=> data_std: 196.187325448579

=> multiplier:   0.5
lower cutoff: -5.42699605762283
upper cutoff: 190.76032939095617
Identified outliers: 1
outliers: [492]

=> multiplier:   1.0
lower cutoff: -103.52065878191233
upper cutoff: 288.85399211524566
Identified outliers: 1
outliers: [492]

=> multiplier:   1.5
lower cutoff: -201.6143215062018
upper cutoff: 386.9476548395352
Identified outliers: 1
outliers: [492]
=> multiplier:   2.0
lower cutoff: -299.7079842304913
upper cutoff: 485.0413175638247
Identified outliers: 1
outliers: [492]

=> multiplier:   2.5
lower cutoff: -397.80164695478084
upper cutoff: 583.1349802881142
Identified outliers: 0
outliers: []

=> multiplier:   3.0
lower cutoff: -495.8953096790703
upper cutoff: 681.2286430124036
Identified outliers: 0
outliers: []




Calculating Z-scores to Find Outliers


The z-score of a set of numbers is calculated by standardizing those numbers, which involves two steps: subtracting their mean from each number and dividing by their standard deviation. Although you can perform these steps manually, the Python SciPy library simplifies the steps involved. If need be, you can install this package with the following command:


pip3 install scipy


Listing 2.5 displays the content of outliers_zscores.py that illustrates how to find outliers in an array of numbers. This code sample relies on convenience methods from NumPy, Pandas, and SciPy.

LISTING 2.5: outliers_zscores.py


import numpy as np
import pandas as pd
from scipy import stats

arr1 = np.array([2,5,7,9,9,40])
print("values:",arr1)

df = pd.DataFrame(arr1)

zscores = np.abs(stats.zscore(df))
print("z scores:")
print(zscores)
print()

upper = 2.0
lower = 0.5
print("=> upper outliers:")
print(zscores[np.where(zscores > upper)])
print()

print("=> lower outliers:")
print(zscores[np.where(zscores < lower)])
print()


Listing 2.5 starts with several import statements, followed by initializing the variable arr1 as a NumPy array of numbers, and then displaying the values in arr1. The next code snippet initializes the variable df as a data frame that contains the values in the variable arr1.

Next, the variable zscores is initialized with the z-scores of the elements of the df data frame, as shown here:


zscores = np.abs(stats.zscore(df))


The next section of code initializes the variables upper and lower, and the z-scores whose values are less than the value of lower or greater than the value upper are treated as outliers, and those values are displayed. Launch the code in Listing 2.3 and you will see the following output:


values: [ 2  5  7  9  9 40]
z scores:
[[0.78406256]
 [0.54884379]
 [0.39203128]
 [0.23521877]
 [0.23521877]
 [2.19537517]]

=> upper outliers:
[2.19537517]

=> lower outliers:
[0.39203128 0.23521877 0.23521877]






FINDING OUTLIERS WITH SKLEARN (OPTIONAL)


This section is optional because the code involves the EllipticEnvelope class in sklearn.covariance, which we do not cover in this book. However, it’s still worthwhile to peruse the code and compare this code with earlier code samples for finding outliers.

Listing 2.6 displays the content of elliptic_envelope_outliers.py that illustrates how to use Pandas to find outliers in an array of numbers.

LISTING 2.6: elliptic_envelope_outliers.py


# pip3 install sklearn
from sklearn.covariance import EllipticEnvelope
import numpy as np

# Create a sample normal distribution:
Xdata = np.random.normal(loc=5, scale=2, size=10).reshape(-1, 1)
print("Xdata values:")
print(Xdata)
print()
# instantiate and fit the estimator:
envelope = EllipticEnvelope(random_state=0)
envelope.fit(Xdata)

# create a test set:
test = np.array([0, 2, 4, 6, 8, 10, 15, 20, 25, 30]).reshape(-1, 1)
print("test values:")
print(test)
print()

# predict() returns 1 for inliers and -1 for outliers:
print("envelope.predict(test):")
print(envelope.predict(test))


Listing 2.6 starts with several import statements and then initializes the variable Xdata as a column vector of random numbers from a Gaussian distribution. The next code snippet initializes the variable envelope as an instance of the EllipticEnvelope from Sklearn (which will determine if there are any outliers in Xdata), and then trains on the data values in Xdata.

The next portion of Listing 2.6 initializes the variable test as a column vector, much like the initialization of Xdata. The final portion of Listing 2.6 makes a prediction on the values in the variable test and also displays the results: the value -1 indicates an outlet. Launch the code in Listing 2.6 and you will see the following output:


Xdata values:
[[5.21730452]
 [5.49182377]
 [2.87553776]
 [4.20297013]
 [8.29562026]
 [5.78097977]
 [4.86631006]
 [5.47184212]
 [4.77954946]
 [8.66184028]]

TEST VALUES:
[[ 0]
 [ 2]
 [ 4]
 [ 6]
 [ 8]
 [10]
 [15]
 [20]
 [25]
 [30]]

envelope.predict(test):
[-1  1  1  1  1 -1 -1 -1 -1 -1]


More information can be found online:

https://www.kdnuggets.com/2019/11/data-cleaning-preprocessing-beginners.html




WORKING WITH MISSING DATA


There are various reasons for missing values in a dataset, some of which are listed here:


	values are unavailable

	values were improperly collected

	inaccurate data entry



Although you might be tempted to always replace a missing value with a concrete value, there are situations in which you cannot determine a value. As a simple example, a survey that contains questions for people under 30 will have a missing value for respondents who are over 30, and in this case, specifying a value for the missing value would be incorrect. With these details in mind, there are various ways to fill missing values, some of which are listed here:


	remove the lines with the data if the dataset is large enough and there is a high percentage of missing values (50% or larger)

	fill null variables with 0 for numeric features

	use the Imputerclass from the scikit-learn library

	fill missing values with the value in an adjacent row

	replace missing data with the mean/median/mode value

	infer (“impute”) the value for missing data

	delete rows with missing data



Once again, the technique that you select for filling missing values is influenced by various factors, such as


	how you want to process the data

	the type of data involved

	the cause of missing values (see above)



Although the most common technique involves the mean value for numeric features, someone needs to determine which technique is appropriate for a given feature.

However, if you are not confident that you can impute a reasonable value, consider deleting the row with a missing value, and then train a model with the imputed value and also with the deleted row.

One problem that can arise after removing rows with missing values is that the resulting dataset is too small. In this case, consider using SMOTE (Synthetic Minority Oversampling Technique), which is used to generate synthetic data. More information about missing data can be found online:

https://www.kdnuggets.com/2020/09/missing-value-imputation-review.html



Imputing Values: When is Zero a Valid Value?


In general, replacing a missing numeric value with zero is a risky choice. This value is obviously incorrect if the values of a feature are positive numbers between 1,000 and 5,000 (or some other range of positive numbers). For a feature that has numeric values, replacing a missing value with the mean of existing values can be better than the value zero (unless the average equals zero); also consider using the median value. For categorical data, consider using the mode to replace a missing value.

There are situations where you can use the mean of existing values to impute missing values but not the value zero, and vice versa. As a first example, suppose that an attribute contains the height in centimeters of a set of persons. In this case, the mean could be a reasonable imputation, whereas 0 suffers from the following problems:


	It’s an invalid value (nobody has height 0).

	It will skew statistical quantities, such as the mean and variance.



You might be tempted to use the mean instead of 0 when the minimum allowable value is a positive number, but use caution when working with highly imbalanced datasets. As a second example, consider a small community of 50 residents with the following characteristics:<NL>


	45 people have an average annual income of $50,000

	4 other residents have an annual income of $10,000,000

	1 resident has an unknown annual income



Although the preceding example might seem contrived, it’s likely that the median income is preferable to the mean income, and certainly better than imputing a value of 0.

As a third example, suppose that a company generates weekly sales reports for multiple office branches, and a new office has been opened but has yet to make any sales. In this case, the use of the mean to impute missing values for this branch would produce fictitious results. Hence, it makes sense to use the value 0 for missing sales-related quantities, which will accurately reflect the sales-related status of the new branch.





DEALING WITH IMBALANCED DATASETS


Imbalanced datasets contain at least once class that has many more values than another class in the dataset. For example, if class A has 99% of the data and class B has 1%, which classification algorithm would you use? Unfortunately, classification algorithms don’t work so well with this type of imbalanced dataset.

Imbalanced classification involves dealing with imbalanced datasets, and the following list contains several well-known techniques:


	random resampling rebalances the class distribution

	random undersampling deletes examples from the majority class

	random oversampling duplicates data in the minority class

	SMOTE (Synthetic Minority Oversampling Technique)



Random resampling rebalances the class distribution by resampling the data space.

The random undersampling technique removes samples that belong to the majority class from the dataset, and involves the following:


	randomly removing samples from the majority class

	can be performed with or without a replacement

	alleviates the imbalance in the dataset

	may increase the variance of the classifier

	may discard useful or important samples However, random undersampling does not work well with extremely unbalanced datasets, such as a 99% and 1% split into two classes. Moreover, undersampling can result in losing information that is useful for a model.



Random oversampling generates new samples from a minority class: this technique duplicates examples from the minority class.

Another option to consider is the Python package imbalanced-learn in the scikit-learn-contrib project. This project provides various re-sampling techniques for datasets that exhibit class imbalance. More details are available online:

https://github.com/scikit-learn-contrib/imbalanced-learn

Another well-known technique is SMOTE, which involves data augmentation (i.e., synthesizing new data samples). SMOTE was initially developed by means of the kNN algorithm (other options are available), and it can be an effective technique for handling imbalanced classes. SMOTE is discussed in more detail in the next section.




WHAT IS SMOTE?


SMOTE (Synthetic Minority Oversampling Technique) is a technique for synthesizing new samples for a dataset. This technique is based on linear interpolation:


	Step 1: Select samples that are close in the feature space.

	Step 2: Draw a line between the samples in the feature space.

	Step 3: Draw a new sample at a point along that line.



A more detailed explanation of the SMOTE algorithm is here:


	Select a random sample “a” from the minority class.

	Find k nearest neighbors for that example.

	Select a random neighbor “b” from the nearest neighbors.

	Create a line L that connects “a” and “b.”

	Randomly select one or more points “c” on line L.



If need be, you can repeat this process for the other (k-1) nearest neighbors in order to distribute the synthetic values more evenly among the nearest neighbors.



SMOTE extensions


The initial SMOTE algorithm is based on the kNN classification algorithm, which has been extended in various ways, such as replacing kNN with SVM. A list of SMOTE extensions is as follows:


	selective synthetic sample generation

	Borderline-SMOTE (kNN)

	Borderline-SMOTE (SVM)

	Adaptive Synthetic Sampling (ADASYN)



Perform an Internet search for more details about these algorithms, and also navigate to the following URL:

https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis





THE BIAS-VARIANCE TRADEOFF


This section is presented from the viewpoint of machine learning, but the concepts of bias and variance are highly relevant outside of machine learning, so it’s still worthwhile to read this section as well as the previous section.

Bias in machine learning can be due to an error from wrong assumptions in a learning algorithm. High bias might cause an algorithm to miss relevant relations between features and target outputs (underfitting). Prediction bias can occur because of “noisy” data, an incomplete feature set, or a biased training sample.

Error due to bias is the difference between the expected (or average) prediction of your model and the correct value that you want to predict. Repeat the model building process multiple times, and gather new data each time, and also perform an analysis to produce a new model. The resulting models have a range of predictions because the underlying datasets have a degree of randomness. Bias measures the extent to the predictions for these models are from the correct value.

Variance in machine learning is the expected value of the squared deviation from the mean. High variance can/might cause an algorithm to model the random noise in the training data, rather than the intended outputs (aka overfitting). Moreover, adding parameters to a model increases its complexity, increases the variance, and decreases the bias.

The point to remember: dealing with bias and variance involves dealing with underfitting and overfitting.

Error due to variance is the variability of a model prediction for a given data point. As before, repeat the entire model building process, and the variance is the extent to which predictions for a given point vary among different “instances” of the model.

If you have worked with datasets and performed data analysis, you already know that finding well-balanced samples can be difficult or highly impractical. Moreover, performing an analysis of the data in a dataset is vitally important, yet there is no guarantee that you can produce a dataset that is 100% “clean.”

A biased statistic is a statistic that is systematically different from the entity in the population that is being estimated. In more casual terminology, if a data sample “favors” or “leans” toward one aspect of the population, then the sample has bias. For example, if you prefer movies that are comedies more so than any other type of movie, then clearly you are more likely to select a comedy instead of a dramatic movie or a science fiction movie. Thus, a frequency graph of the movie types in a sample of your movie selections will be more closely clustered around comedies.

However, if you have a wide-ranging set of preferences for movies, then the corresponding frequency graph will be more varied, and therefore have a larger spread of values.

As a simple example, suppose that you are given an assignment that involves writing a term paper on a controversial subject that has many opposing viewpoints. Since you want a bibliography that supports your well-balanced term paper that takes into account multiple viewpoints, your bibliography will contain a wide variety of sources.

In other words, your bibliography will have a larger variance and a smaller bias. However, if most (or all) the references in your bibliography espouse the same point of view, then you will have a smaller variance and a larger bias (it’s just an analogy, so it’s not a perfect counterpart to bias-versus-variance).

The bias-variance trade-off can be stated in simple terms: in general, reducing the bias in samples can increase the variance, whereas reducing the variance tends to increase the bias.



Types of Bias in Data


In addition to the bias-variance trade-off that is discussed in the previous section, there are several types of bias, some of which are listed here:


	availability bias

	confirmation bias

	false causality

	sunk cost fallacy

	survivorship bias



Availability bias is akin to making a “rule” based on an exception. For example, there is a known link between smoking cigarettes and cancer, but there are exceptions. If you find someone who has smoked three packs of cigarettes on a daily basis for four decades and is still healthy, can you assert that smoking does not lead to cancer?

Confirmation bias refers to the tendency to focus on data that confirms their beliefs and simultaneously ignore data that contradicts a belief.

False causality occurs when you incorrectly assert that the occurrence of a particular event causes another event to occur as well. One of the most well-known examples involves ice cream consumption and violent crime in New York during the summer. Since more people eat ice cream in the summer, that “causes” more violent crime, which is a false causality. Other factors, such as the increase in temperature, may be linked to the increase in crime. However, it’s important to distinguish between correlation and causality: the latter is a much stronger link than the former, and it’s also more difficult to establish causality instead of correlation.

Sunk cost refers to something (often money) that has been spent or incurred that cannot be recouped. A common example pertains to gambling at a casino: people fall into the pattern of spending more money in order to recoup a substantial amount of money that has already been lost. While there are cases in which people do recover their money, in many (most?) cases, people simply incur an even greater loss because they continue to spend their money. Hence, we have the expression “it’s time to cut your losses and walk away.”

Survivorship bias refers to analyzing a particular subset of “positive” data while ignoring the “negative” data. This bias occurs in various situations, such as being influenced by individuals who recount their rags-to-riches success story (“positive” data) while ignoring the fate of the people (which is often a very high percentage) who did not succeed (the “negative” data) in a similar quest. So, while it’s certainly possible for an individual to overcome many difficult obstacles in order to succeed, is the success rate one in one thousand (or even lower)?





ANALYZING CLASSIFIERS (OPTIONAL)


This section is marked “optional” because its contents pertain to machine learning classifiers, which is not the focus of this book. However, it’s still worthwhile to glance through the material, or perhaps return to this section after you have a basic understanding of machine learning classifiers.

Several well-known techniques are available for analyzing the quality of machine learning classifiers. Two techniques are LIME and ANOVA, both of which are discussed in the following subsections.



What is LIME?


LIME is an acronym for Local Interpretable Model-Agnostic Explanations. LIME is a model-agnostic technique that can be used with machine learning models. The process for this technique is straightforward: make small random changes to data samples and then observe the manner in which predictions change (or don’t). This approach involves changing the output (slightly) and then observing what happens to the output.

By way of analogy, consider food inspectors who test for bacteria in truckloads of perishable food. Clearly, it’s infeasible to test every food item in a truck (or a train car), so inspectors perform “spot checks” that involve testing randomly selected items. In an analogous fashion, LIME makes small changes to input data in random locations and then analyzes the changes in the associated output values.

However, there are two caveats to keep in mind when you use LIME with input data for a given model:


	The actual changes to the input values are model-specific.

	This technique works on input that is interpretable.



Examples of interpretable input include machine learning classifiers (such as trees and random forests) and NLP techniques such as BoW. Non-interpretable input involves “dense” data, such as a word embedding (which is a vector of floating point numbers).

You could also substitute your model with another model that involves interpretable data, but then you need to evaluate how accurate the approximation is to the original model.




What is ANOVA?


ANOVA is an acronym for analysis of variance, which attempts to analyze the differences among the mean values of a sample that’s taken from a population. ANOVA enables you to test if multiple mean values are equal. More importantly, ANOVA can assist in reducing Type I (false positive) errors and Type II errors (false negative) errors. For example, suppose that person A is diagnosed with cancer and person B is diagnosed as healthy, and that both diagnoses are incorrect. Then the result for person A is a false positive whereas the result for person B is a false negative. In general, a test result of false positive is much preferable to a test result of false negative.

ANOVA pertains to the design of experiments and hypothesis testing, and it can produce meaningful results in various situations. For example, suppose that a dataset contains a feature that can be partitioned into several “reasonably” homogenous groups. Next, analyze the variance in each group and perform comparisons with the goal of determining different sources of variance for the values of a given feature. For more information about ANOVA, navigate to the following link:

https://en.wikipedia.org/wiki/Analysis_of_variance





SUMMARY


This chapter started with an explanation of datasets, a description of data wrangling, and details regarding various types of data. Then you learned about techniques for scaling numeric data, such as normalization and standardization. You saw how to convert categorical data to numeric values, and how to handle dates and currency.

Then you learned how to work with outliers, anomalies, and missing data, along with various techniques for handling these scenarios. You also learned about imbalanced data and evaluating the use of SMOTE to deal with imbalanced classes in a dataset. In addition, you learned about the bias-variance tradeoff and various types of statistical bias. Finally, you learned about classifiers using two techniques LIME and ANOVA.






CHAPTER 3

INTRODUCTION TO PROBABILITY AND STATISTICS


This chapter introduces you to concepts in probability as well as an assortment of statistical terms and algorithms.

The first section of this chapter starts with a discussion of probability, how to calculate the expected value of a set of numbers (with associated probabilities), and the concept of a random variable (discrete and continuous), as well as a short list of some well-known probability distributions.

The second section of this chapter introduces basic statistical concepts, such as mean, median, mode, variance, and standard deviation, along with simple examples that illustrate how to calculate these terms. You will also learn about the terms RSS, TSS, R^2, and F1 score.

The third section of this chapter introduces the Gini impurity, entropy, perplexity, cross entropy, and KL Divergence. You will also learn about skewness and kurtosis.

The fourth section explains covariance and correlation matrices and how to calculate eigenvalues and eigenvectors.

The fifth section explains PCA (Principal Component Analysis), which is a well-known dimensionality reduction technique. The final section introduces you to Bayes’ Theorem.



WHAT IS A PROBABILITY?


If you have ever performed a science experiment in one of your classes, you might remember that measurements have some uncertainty. In general, we assume that there is a correct value, and we endeavor to find the best estimate of that value.

When we work with an event that can have multiple outcomes, we try to define the probability of an outcome as the chance that it will occur, which is calculated as follows:


p(outcome)  = # of times outcome occurs/(total number of outcomes)


For example, in the case of a single balanced coin, the probability of tossing a head H equals the probability of tossing a tail T:


p(H) = 1/2 = p(T)


The set of probabilities associated with the outcomes {H, T} is shown in the set P:


P = {1/2, 1/2}


Some experiments involve replacement while others involve non-replacement. For example, suppose that an urn contains 10 red balls and 10 green balls. What is the probability that a randomly selected ball is red? The answer is 10/(10+10) = 1/2. What is the probability that the second ball is also red?

There are two scenarios with two different answers. If each ball is selected with replacement, then each ball is returned to the urn after selection, which means that the urn always contains 10 red balls and 10 green balls. In this case, the answer is 1/2 * 1/2 = 1/4. In fact, the probability of any event is independent of all previous events.

However, if balls are selected without replacement, then the answer is 10/20 * 9/19. Card games are also examples of selecting cards without replacement.

One other concept is called conditional probability, which refers to the likelihood of the occurrence of event E1 given that event E2 has occurred. A simple example is the following statement:


"If it rains (E2), then I will carry an umbrella (E1)."




Calculating the Expected Value


Consider the following scenario involving a well-balanced coin: whenever a head appears, you earn $1 and whenever a tail appears, you earn $1 dollar. If you toss the coin 100 times, how much money do you expect to earn? Since you will earn $1 regardless of the outcome, the expected value (in fact, the guaranteed value) is 100.

Now consider this scenario: whenever a head appears, you earn $1 and whenever a tail appears, you earn 0 dollars. If you toss the coin 100 times, how much money do you expect to earn? You probably determined the value 50 (which is the correct answer) by making a quick mental calculation. The more formal derivation of the value of E (the expected earning) is here:


E = 100 *[1 * 0.5 + 0 * 0.5] = 100 * 0.5 = 50


The quantity 1 * 0.5 + 0 * 0.5 is the amount of money you expected to earn during each coin toss (half the time you earn $1 and half the time you earn 0 dollars), and multiplying this number by 100 is the expected earnings after 100 coin tosses. Also note that you might never earn $50: the actual amount that you earn can be any integer between 1 and 100, inclusive.

As another example, suppose that you earn $3 whenever a head appears, and you lose $1.50 dollars whenever a tail appears. Then the expected earning E after 100 coin tosses is shown here:


E = 100 *[3 * 0.5 - 1.5 * 0.5] = 100 * 1.5 = 150


We can generalize the preceding calculations as follows. Let P = {p1,...,pn} be a probability distribution, which means that the values in P are non-negative and their sum equals 1. In addition, let R = {R1,...,Rn} be a set of rewards, where reward Ri is received with probability pi. Then the expected value E after N trials is shown here:


E = N * [SUM pi*Ri]


In the case of a single balanced die, we have the following probabilities:


p(1) = 1/6
p(2) = 1/6
p(3) = 1/6
p(4) = 1/6
p(5) = 1/6
p(6) = 1/6
P = { 1/6, 1/6, 1/6, 1/6, 1/6, 1/6}


As a simple example, suppose that the earnings are {3, 0, –1, 2, 4, –1} when the values 1, 2, 3, 4, 5, and 6, respectively, appear when tossing the single die. Then after 100 trials, our expected earnings are calculated as follows:


E = 100 * [3 + 0 + -1 + 2 + 4 + -1]/6 = 100 * 3/6 = 50


In the case of two balanced dice, we have the following probabilities of rolling 2, 3, …  or 12:


p(2) = 1/36
p(3) = 2/36
...
p(12) = 1/36
P = {1/36,2/36,3/36,4/36,5/36,6/36,5/36,4/36,3/36,2/36,1/36}






RANDOM VARIABLES


A random variable is a variable that can have multiple values, and each value has an associated probability of occurrence. For example, if we let X be a random variable whose values are the outcomes of tossing a well-balanced die, then the values of X are the numbers in the set {1,2,3,4,5,6}. Each of those values can occur with equal probability (which is 1/6).

In the case of two well-balanced dice, let X be a random variable whose values can be any of the numbers in the set {2,3,4, . . . , 12}. Then the associated probabilities for the different values for X are listed in the previous section.



Discrete versus Continuous Random Variables


The preceding section contains examples of discrete random variables because the list of possible values is finite. As an aside, the set of integers as well as the set of rational numbers are both countably infinite, but the set of irrational numbers and also the set of real numbers are both uncountably infinite (proofs are available online). As pointed out earlier, the associated set of probabilities must form a probability distribution, which means that the probability values are non-negative and their sum equals 1.

A continuous random variable is a variable whose values can be any number in an interval, which can be an uncountably infinite number of values. For example, the amount of time required to perform a task is represented by a continuous random variable.

A continuous random variable also has a probability distribution that is represented as a continuous function. The constraint for such a variable is that the area under the curve (which is sometimes calculated via a mathematical integral) equals 1.




Well-known Probability Distributions


There are many probability distributions, and some of the well-known probability distributions are listed here:


	Gaussian distribution

	Poisson distribution

	Chi-squared distribution

	Binomial distribution



The Gaussian distribution is named after Karl F. Gauss, and it is sometimes called the normal distribution or the Bell curve. The Gaussian distribution is symmetric: the shape of the curve on the left of the mean is identical to the shape of the curve on the right side of the mean. As an example, the distribution of IQ scores follows a curve that is similar to a Gaussian distribution.

The frequency of traffic at a given point in a road follows a Poisson distribution (which is not symmetric). Interestingly, if you count the number of people who go to a public pool based on five-degree (Fahrenheit) increments of the temperature, followed by five-degree decrements in temperature, that set of numbers follows a Poisson distribution.

Perform an Internet search for each of the bullet items in the preceding list and you will find numerous articles that contain images and technical details about these (and other) probability distributions.

This concludes the brief introduction to probability, and the next section delves into the concepts of mean, median, mode, and standard deviation.





FUNDAMENTAL CONCEPTS IN STATISTICS


This section contains several subsections that discuss the mean, median, mode, variance, and standard deviation. Feel free to skim (or skip) this section if you are already familiar with these concepts. As a starting point, let’s suppose that we have a set of numbers X ={x1, ..., xn} that can be positive, negative, integer-valued, or decimal values.



The Mean


The mean of the numbers in the set X is the average of the values. For example, if the set X consists of {-10,35,75,100}, then the mean equals (–10 + 35 + 75 + 100)/4 = 50. If the set X consists of {2,2,2,2}, then the mean equals (2+2+2+2)/4 = 2. As you can see, the mean value is not necessarily one of the values in the set.

The mean is sensitive to outliers. For example, the mean of the set of numbers {1,2,3,4} is 2.5, whereas the mean of the set of number {1,2,3,4,1000} is 202. Since the formulas for the variance and standard deviation involve the mean of a set of numbers, both of these terms are also more sensitive to outliers.




The Median


The median of the numbers (sorted in increasing or decreasing order) in the set X is the middle value in the set of values, which means that half the numbers in the set are less than the median and half the numbers in the set are greater than the median. For example, if the set X consists of {-10,35,75,100}, then the median equals 55 because 55 is the average of the two numbers 35 and 75. As you can see, half the numbers are less than 55 and half the numbers are greater than 55. If the set X consists of {2,2,2,2}, then the median equals 2.

By contrast, the median is much less sensitive to outliers than the mean. For example, the median of the set of numbers {1,2,3,4} is 2.5, and the median of the set of numbers {1,2,3,4,1000} is 3.




The Mode


The mode of the numbers (sorted in increasing or decreasing order) in the set X is the most frequently occurring value, which means that there can be more than one such value. If the set X consists of {2,2,2,2}, then the mode equals 2.

If X is the set of numbers {2,4,5,5,6,8}, then the number 5 occurs twice and the other numbers occur only once, so the mode equals 5.

If X is the set of numbers {2,2,4,5,5,6,8}, then the numbers 2 and 5 occur twice and the other numbers occur only once, so the mode equals 2 and 5. A set that has two modes is called bimodal, and a set that has more than two modes is called multi-modal.

One other scenario involves sets that have numbers with the same frequency and they are all different. In this case, the mode does not provide meaningful information, and one alternative is to partition the numbers into subsets and then select the largest subset. For example, if set X has the values {1,2,15,16,17,25,35,50}, we can partition the set into subsets whose elements are in range that are multiples of ten, which results in the subsets {1,2}, {15,16,17}, {25}, {35}, and {50}. The largest subset is {15,16,17}, so we could select the number 16 as the mode.

As another example, if set X has the values {-10,35,75,100}, then partitioning this set does not provide any additional information, so it’s probably better to work with either the mean or the median.




The Variance and Standard Deviation


The variance is the sum of the squares of the difference between the numbers in X and the mean mu of the set X, divided by the number of values in X, as shown here:


variance = [SUM (xi - mu)**2 ] / n


For example, if the set X consists of {-10,35,75,100}, then the mean equals (-10 + 35 + 75 + 100)/4 = 50, and the variance is computed as follows:


variance = [(-10-50)**2 + (35-50)**2 + (75-50)**2 + (100-50)**2]/4
         = [60**2 + 15**2 + 25**2 + 50**2]/4
         = [3600 + 225 + 625 + 2500]/4
         = 6950/4 = 1,737


The standard deviation std is the square root of the variance:


std = sqrt(1737) = 41.677


If the set X consists of {2,2,2,2}, then the mean equals (2+2+2+2)/4 = 2, and the variance is computed as follows:


variance = [(2-2)**2 + (2-2)**2 + (2-2)**2 + (2-2)**2]/4
         = [0**2 + 0**2 + 0**2 + 0**2]/4
         = 0


The standard deviation std is the square root of the variance:


std = sqrt(0) = 0





Population, Sample, and Population Variance


The population specifically refers to the entire set of entities in a given group, such as the population of a country, the people over 65 in the USA, or the number of first year students in a university.

However, in many cases statistical quantities are calculated on samples instead of an entire population. Thus, a sample is a much smaller subset of the given population. See the Central Limit Theorem regarding the distribution of the mean of a set of samples of a population (which need not be a population with a Gaussian distribution).

If you want to learn about techniques for sampling data, here is a list of three different techniques that you can investigate:


	stratified sampling

	cluster sampling

	quota sampling



The population variance is calculated by multiplying the sample variance by n/(n-1), as shown here:


population variance = [n/(n-1)]*variance





Chebyshev’s Inequality


Chebyshev’s inequality provides a simple way to determine the minimum percentage of data that lies within k standard deviations. Specifically, this inequality states that for any positive integer k greater than 1, the amount of data in a sample that lies within k standard deviations is at least 1 - 1/k**2. For example, if k = 2, then at least 1 – 1/2**2 = 3/4 of the data must lie within 2 standard deviations.

The interesting part of this inequality is that it has been mathematically proven to be true; i.e., it’s not an empirical or heuristic-based result. An extensive description regarding Chebyshev’s inequality (including some advanced mathematical explanations) is available online:

https://en.wikipedia.org/wiki/Chebyshev%27s_inequality




What is a p-value?


The null hypothesis states that there is no correlation between a dependent variable (such as y) and an independent variable (such as x). The p-value is used to reject the null hypothesis if the p-value is small enough (< 0.005) which indicates a higher significance. The threshold value for p is typically 1% or 5%.

There is no simple formula for calculating p-values, which are values that are always between 0 and 1. In fact, p-values are statistical quantities to evaluate the null hypothesis, and they are calculated by means of p-value tables or via spreadsheet/statistical software.





THE MOMENTS OF A FUNCTION (OPTIONAL)


The previous sections describe several statistical terms that can be viewed from the perspective of different moments of a function.

The moments of a function are measures that provide information regarding the shape of the graph of a function. In the case of a probability distribution, the first four moments are defined as follows:


	The mean is the first central moment.

	The variance is the second central moment.

	The skewness (discussed later) is the third central moment.

	The kurtosis (discussed later) is the fourth central moment.



More detailed information (including the relevant integrals) regarding moments of a function is available online:

https://en.wikipedia.org/wiki/Moment_(mathematics)#Variance



What is Skewness?


Skewness is a measure of the asymmetry of a probability distribution. A Gaussian distribution is symmetric, which means that its skew value is zero (it’s not exactly zero, but close enough for our purposes). In addition, the skewness of a distribution is the third moment of the distribution.

A distribution can be skewed on the left side or on the right side. A left-sided skew means that the long tail is on the left side of the curve, with the following relationships:


mean < median < mode


A right-sided skew means that the long tail is on the right side of the curve, with the following relationships (compare with the left-sided skew):


mode < median < mean


If need be, you can transform skewed data to a normally distributed dataset using one of the following techniques (which depends on the specific use-case):


	exponential transform

	log transform

	power transform



Perform an online search for more information regarding the preceding transforms and when to use each of these transforms.




What is Kurtosis?


Kurtosis is related to the skewness of a probability distribution, in the sense that both of them assess the asymmetry of a probability distribution. The kurtosis of a distribution is a scaled version of the fourth moment of the distribution, whereas its skewness is the third moment of the distribution. Note that the kurtosis of a univariate distribution equals 3.

If you are interested in learning about additional kurtosis-related concepts, you can perform an online search for information regarding mesokurtic, leptokurtic, and platykurtic types of the “excess kurtosis.”





DATA AND STATISTICS


This section contains various subsections that briefly discuss some of the challenges and obstacles that you might encounter when working with datasets. This section and subsequent sections introduce you to the following concepts:


	Correlation versus Causation

	The bias-variance tradeoff

	Types of bias

	The Central Limit Theorem

	Statistical inferences



Statistics typically involves data samples, which are subsets of observations of a population. The goal is to find well-balanced samples that provide a good representation of the entire population.

Although this goal can be very difficult to achieve, it’s also possible to achieve highly accurate results with a very small sample size. For example, the Harris poll in the USA has been used for decades to analyze political trends. This poll computes percentages that indicate the favorability rating of political candidates, and it’s usually within 3.5% of the correct percentage values. What’s remarkable about the Harris poll is that its sample size is a mere 4,000 people who are from the US population, which is greater than 325,000,000 people.

Another aspect to consider is that each sample has a mean and variance, which do not necessarily equal the mean and variance of the actual population. However, the expected value of the sample mean and variance equal the mean and variance, respectively, of the population.



The Central Limit Theorem


Samples of a population have an interesting property. Suppose that you take a set of samples {S1, S3, …, Sn} of a population and you calculate the mean of those samples, which is {m1, m2, …, mn}. The Central Limit Theorem provides a remarkable result: given a set of samples of a population and the mean value of those samples, the distribution of the mean values can be approximated by a Gaussian distribution. Moreover, as the number of samples increases, the approximation becomes more accurate.




Correlation versus Causation


In general, datasets have some features (columns) that are more significant in terms of their set of values, and some features only provide additional information that does not contribute to potential trends in the dataset. For example, the passenger names in the list of passengers on the Titanic are unlikely to affect the survival rate of those passengers, whereas the gender of the passengers is likely to be an important factor.

In addition, a pair of significant features may also be “closely coupled” in terms of their values. For example, a real estate dataset for a set of houses will contain the number of bedrooms and the number of bathrooms for each house in the dataset. As you know, these values tend to increase together and also decrease together. Have you ever seen a house that has 10 bedrooms and 1 bathroom, or a house that has 10 bathrooms and 1 bedroom? If you did find such a house, would you purchase that house as your primary residence?

The extent to which the values of two features change is called their correlation, which is a number between –1 and 1. Two “perfectly” correlated features have a correlation of 1, and two features that are not correlated have a correlation of 0. In addition, if the values of one feature decrease when the values of another feature increase, and vice versa, then their correlation is closer to –1 (and might also equal –1).

However, causation between two features means that the values of one feature can be used to calculate the values of the second feature (within some margin of error).

Keep in mind this fundamental point about machine learning models: they can provide correlation but they cannot provide causation.




Statistical Inferences


Statistical thinking relates processes and statistics, whereas statistical inference refers to the process you use to make inferences about a population. Those inferences are based on statistics that are derived from samples of the population. The validity and reliability of those inferences depend on random sampling to reduce bias. There are various metrics that you can calculate to help you assess the validity of a model that has been trained on a particular dataset.





STATISTICAL TERMS: RSS, TSS, R^2, AND F1 SCORE


Statistics is extremely important in machine learning, so it’s not surprising that many concepts are common to both fields. Machine learning relies on a number of statistical quantities in order to assess the validity of a model, some of which are listed here:


	RSS

	TSS

	R^2



The term RSS is the “residual sum of squares” and the term TSS is the “total sum of squares.” These terms are used in regression models.

As a starting point so we can simplify the explanation of the preceding terms, suppose that we have a set of points {(x1,y1), . . . , (xn,yn)} in the Euclidean plane. In addition, let’s define the following quantities:


	(x,y) is any point in the dataset.

	y is the y-coordinate of a point in the dataset.

	y_ is the mean of the y-values of the points in the dataset.

	y_hat is the y-coordinate of a point on a best-fitting line.



Just to be clear, (x,y) is a point in the dataset, whereas (x,y_hat) is the corresponding point that lies on the best fitting line. With these definitions in mind, the definitions of RSS, TSS, and R^2 are listed here (n equals the number of points in the dataset):


RSS = Iy - y_hat)**2/n
TSS = (y - y_bar)**2/n
R^2 = 1 - RSS/TSS


We also have the following inequalities involving RSS, TSS, and R^2:


0 <= RSS
RSS <= TSS
0 <= RSS/TSS <= 1
0 <= 1 - RSS/TSS <= 1
0 <= R^2 <= 1


When RSS  is close to 0, then RSS/TSS is also close to zero, which means that R^2 is close to 1. Conversely, when RSS is close to TSS, then RSS/TSS is close to 1, and R^2 is close to 0. In general, a larger R^2 is preferred (i.e., the model is closer to the data points), but a lower value of R^2 is not necessarily a bad score.



What is an F1 score?


In machine learning, an F1 score is for models that are evaluated on a feature that contains categorical data, and the p-value is useful for machine learning in general. An F1 score is a measure of the accuracy of a test, and it’s defined as the harmonic mean of precision and recall. Here are the relevant formulas, where p is the precision and r is the recall:


p = (# of correct positive results)/(# of all positive results)
r = (# of correct positive results)/(# of all relevant samples)

F1-score  = 1/[((1/r) + (1/p))/2]
          = 2*[p*r]/[p+r]


The best value of an F1 score is 0 and the worse value is 0. An F1 score is for categorical classification problems, whereas the R^2 value is typically for regression tasks (such as linear regression).





GINI IMPURITY, ENTROPY, AND PERPLEXITY


These concepts are useful for assessing the quality of a machine learning model and the latter pair are useful for dimensionality reduction algorithms.

Before we discuss the details of Gini impurity, suppose that P is a set of non-negative numbers {p1, p2, ..., pn} such that the sum of all the numbers in the set P equals 1. Under these two assumptions, the values in the set P comprise a probability distribution, which we can represent with the letter p.

Now suppose that the set K contains a total of M elements, with k1 elements from class S1, k2 elements from class S2, . . ., and kn elements from class Sn. Compute the fractional representation for each class as follows:


p1 = k1/M, p2 = k2/M,..., pn = kn/M


As you can surmise, the values in the set {p1, p2, ..., pn} form a probability distribution. We’re going to use the preceding values in the following subsections.



What is the Gini Impurity?


The Gini impurity is defined as follows, where {p1,p2,...,pn} is a probability distribution:


Gini = 1 – [p1*p1 + p2*p2 + . . . + pn*pn]
     = 1 – SUM pi*pi (for all i, where 1<=i<=n)


Since each pi is between 0 and 1, then pi*pi  <= pi, which means that


1 = p1 + p2 + . . . + pn
  >= p1*p1 + p2*p2 + . . . + pn*pn
   = Gini impurity


Since the Gini impurity is the sum of the squared values of a set of probabilities, the Gini impurity cannot be negative. Hence, we have derived the following result:


0 <= Gini impurity <= 1





What is Entropy?


Entropy is a measure of the expected (“average”) number of bits required to encode the outcome of a random variable. The calculation for the entropy H (the letter E is reserved for Einstein’s formula) as defined via the following formula:


H = (-1)*[p1*log p1 + p2 * log p2 + . . . + pn * log pn]
  = (-1)* SUM [pi * log(pi)] (for all i, where 1<=i<=n)





Calculating the Gini Impurity and Entropy Values


For our first example, suppose that we have three classes A and B and a cluster of 10 elements with 8 elements from class A and 2 elements from class B. Therefore, p1 and p2 are 8/10 and 2/10, respectively. We can compute the Gini score as follows:


Gini = 1 – [p1*p1 + p2*p2]
     = 1 – [64/100 + 04/100]
     = 1 - 68/100
     = 32/100
     = 0.32


We can also calculate the entropy for this example as follows:


Entropy = (-1)*[p1 * log p1 + p2 * log p2]
        = (-1)*[0.8 * log 0.8 + 0.2 * log 0.2]
        = (-1)*[0.8 * (-0.322) + 0.2 * (-2.322)]
        = 0.8 * 0.322 + 0.2 * 2.322
        = 0.7220


For our second example, suppose that we have three classes A, B, C and a cluster of 10 elements with 5 elements from class A, 3 elements from class B, and 2 elements from class C. Therefore p1, p2, and p3 are 5/10, 3/10, and 2/10, respectively. We can compute the Gini score as follows:


Gini = 1 – [p1*p1 + p2*p2 + p3*p3]
     = 1 – [25/100 + 9/100 + 04/100]
     = 1 - 38/100
     = 62/100
     = 0.62


We can also calculate the entropy for this example as follows:


Entropy = (-1)*[p1 * log p1 + p2 * log p2]
        = (-1)*[0.5*log0.5 + 0.3*log0.3 + 0.2*log0.2]
        = (-1)*[-1 + 0.3*(-1.737) + 0.2*(-2.322)]
        = 1 + 0.3*1.737 + 0.2*2.322
        = 1.9855


In both examples, the Gini impurity is between 0 and 1. However, while the entropy is between 0 and 1 in the first example, it’s greater than 1 in the second example (which was the rationale for showing you two examples).

Keep in mind that a set whose elements belong to the same class has a Gini impurity equal to 0 and an entropy equal to 0. For example, if a set has 10 elements that belong to class S1, then


Gini = 1 – SUM pi*pi
     = 1 - p1*p1
     = 1 – (10/10)*(10/10)
     = 1 – 1 = 0

Entropy = (-1)*SUM pi*log pi
        = (-1) * p1*log pi
        = (-1) * (10/10) * log(10/10)
        = (-1)*1*0  = 0





Multi-dimensional Gini Index


The Gini index is a one-dimensional index that works well because the value is uniquely defined. However, when working with multiple factors, we need a multidimensional index. Unfortunately, the multi-dimensional Gini index (MGI) is not uniquely defined. While there have been various attempts to define an MGI that has unique values, they tend to be non-intuitive and mathematically much more complex. More information about MGI is available online:

https://link.springer.com/chapter/10.1007/978-981-13-1727-9_5




What is Perplexity?


Suppose that q and p are two probability distributions, and {x1, x2, …, xN} is a set of sample values that is drawn from a model whose probability distribution is p. In addition, suppose that b is a positive integer (it’s usually equal to 2). Now define the variable S as the following sum (logarithms are in base b not 10):


S = (-1/N) * [log q(x1) + log q(x2) + . . . + log q(xN)]
  = (-1/N) * SUM log q(xi)


The formula for the perplexity PERP of the model q is b raised to the power S, as shown here:


PERP = b^S


If you compare the formula for entropy with the formula for S, you can see that the formulas as similar, so the perplexity of a model is somewhat related to the entropy of a model.





CROSS-ENTROPY AND KL DIVERGENCE


Cross-entropy is useful for understanding machine learning algorithms, and frameworks such as TensorFlow, which supports multiple APIs that involve cross-entropy.  KL divergence is relevant in machine learning, deep learning, and reinforcement learning.

As an interesting example, consider the credit assignment problem, which involves assigning credit to different elements or steps in a sequence. For example, suppose that users arrive at a Web page by clicking on a previous page, which was also reached by clicking on yet another Web page. Then on the final Web page, users click on an ad. How much credit is given to the first and second Web pages for the selected ad? You might be surprised to discover that one solution to this problem involves KL Divergence.



What is Cross-Entropy?


The following formulas for logarithms are presented here because they are useful for the derivation of cross-entropy in this section:


    • log (a * b) = log a + log b
    • log (a / b) = log a - log b
    • log (1 / b) = (-1) * log b


In a previous section, you learned that for a probability distribution P with values {p1,p2,...pn}, its entropy is H, defined as follows:


H(P) = (-1)*SUM pi*log(pi)


Now let’s introduce another probability distribution Q whose values are {q1,q2,…,qn}, which means that the entropy H of Q is defined as follows:


H(Q) = (-1)*SUM qi*log(qi)


Now we can define the cross-entropy CE of Q and P as follows (notice the log qi and log pi terms, and recall the formulas for logarithms in the previous section):


CE(Q,P) = SUM (pi*log qi) - SUM (pi*log pi)
        = SUM (pi*log qi - pi*log pi)
        = SUM pi*(log qi - log pi)
        = SUM pi*(log qi/pi)





What is KL Divergence?


Now that entropy and cross-entropy have been discussed, we can easily define the KL Divergence of the probability distributions Q and P as follows:


KL(P||Q) = CE(P,Q) - H(P)


The definitions of entropy H, cross-entropy CE, and KL Divergence in this chapter involve discrete probability distributions P and Q. However, these concepts have counterparts in continuous probability density functions. The mathematics involve the concept of a Lebesgue measure on Borel sets (which is beyond the scope of this book), which  are described online:

https://en.wikipedia.org/wiki/Lebesgue_measure

https://en.wikipedia.org/wiki/Borel_set

In addition to the KL Divergence, there is also the JS Divergence, also called the Jenson-Shannon Divergence, which was developed by Johan Jensen and Claude Shannon (who defined the formula for entropy). The JS Divergence is based on the KL Divergence, and it has some differences: the JS Divergence is symmetric and a true metric, whereas the KL Divergence is neither (as noted in chapter 4). More information regarding JS Divergence is available online:

https://en.wikipedia.org/wiki/Jensen–Shannon_divergence




What’s Their Purpose?


The Gini impurity is often used to obtain a measure of the homogeneity of a set of elements in a decision tree. The entropy of that set is an alternative to its Gini impurity, and you will see both of these quantities used in machine learning models.

The perplexity value in NLP is one way to evaluate language models, which are probability distributions over sentences or texts. This value provides an estimate for the encoding size of a set of sentences.

Cross-entropy is used in various methods in the TensorFlow framework, and the KL Divergence is used in various algorithms, such as the dimensionality reduction algorithm t-SNE. For more information about any of these terms, perform an online search and you will find numerous online tutorials that provide more detailed information.





COVARIANCE AND CORRELATION MATRICES


This section explains two important matrices: the covariance matrix and the correlation matrix. Although these are relevant for PCA (Principal Component Analysis) that is discussed later in this chapter, these matrices are not specific to PCA, which is the rationale for discussing them in a separate section. If you are familiar with these matrices, feel free to skim through this section.



The Covariance Matrix


As a reminder, the statistical quantity called the variance of a random variable X is defined as follows:


variance(x) = [SUM (x – xbar)*(x-xbar)]/n


A covariance matrix C is an nxn matrix whose values on the main diagonal are the variance of the variables X1, X2 . . . Xn. The other values of C are the covariance values of each pair of variables Xi and Xj.

The formula for the covariance of the variables X and Y is a generalization of the variance of a variable, and the formula is shown here:


covariance(X, Y) = [SUM (x – xbar)*(y-ybar)]/n


Notice that you can reverse the order of the product of terms (multiplication is commutative), and therefore the covariance matrix C is a symmetric matrix:


covariance(X, Y) = covariance(Y,X)


Suppose that a CSV file contains four numeric features, all of which have been scaled appropriately, and let’s call them x1, x2, x3, and x4. Then the covariance matrix C is a 4x4 square matrix that is defined with the following entries (pretend that there are outer brackets on the left side and the right side to indicate a matrix):


cov(x1,x1) cov(x1,x2) cov(x1,x3) cov(x1,x4)
cov(x2,x1) cov(x2,x2) cov(x2,x3) cov(x2,x4)
cov(x3,x1) cov(x3,x2) cov(x3,x3) cov(x3,x4)
cov(x4,x1) cov(x4,x2) cov(x4,x3) cov(x4,x4)


Note that the following is true for the diagonal entries in the preceding covariance matrix C:


var(x1,x1) = cov(x1,x1)
var(x2,x2) = cov(x2,x2)
var(x3,x3) = cov(x3,x3)
var(x4,x4) = cov(x4,x4)


In addition, C is a symmetric matrix, which is to say that the transpose of matrix C (rows become columns and columns become rows) is identical to the matrix C. The latter is true because (as you saw in the previous section) cov(x,y) = cov(y,x) for any feature x and any feature y.




Covariance Matrix: An Example


Suppose we have the two-column matrix A defined as follows:


      x  y
A = | 1  1 | <= 6x2 matrix
    | 2  1 |
    | 3  2 |
    | 4  2 |
    | 5  3 |
    | 6  3 |


The mean x_bar of column x is (1+2+3+4+5+6)/6 = 3.5, and the mean y_bar of column y is (1+1+2+2+3+3)/6 = 2. Now subtract x_bar from column x and subtract y_bar from column y to obtain matrix B, as shown here:


B = | -2.5 -1 | <= 6x2 matrix
    | -1.5 -1 |
    | -0.5  0 |
    |  0.5  0 |
    |  1.5  1 |
    |  2.5  1 |


Let Bt indicate the transpose of the matrix B (i.e., switch columns with rows and rows with columns) which means that Bt is a 2 x 6 matrix, as shown here:


Bt = |-2.5 -1.5 -0.5 0.5, 1.5, 2.5|
     |-1   -1    0   0    1    1  |


The covariance matrix C is the product of Bt and B, as shown here:


C = Bt * B = | 15.25 4 |
             |  4    8 |


Note that if the units of measure of features x and y do not have a similar scale, then the covariance matrix is adversely affected. In this case, the solution is simple: use the correlation matrix, which defined in the next section.




The Correlation Matrix


As you learned in the preceding section, if the units of measure of features x and y do not have a similar scale, then the covariance matrix is adversely affected. The solution involves the correlation matrix, which equals the covariance values cov(x,y) divided by the standard deviation stdx and stdy of x and y, respectively, as shown here:


corr(x,y) = cov(x,y)/[stdx * stdy]


The correlation matrix no longer has units of measure, and we can use this matrix to find the eigenvalues and eigenvectors.

Now that you understand how to calculate the covariance matrix and the correlation matrix, you are ready for an example of calculating eigenvalues and eigenvectors, which are the topic of the next section.




Eigenvalues and Eigenvectors


According to a well-known theorem in mathematics (whose proof you can find online), the eigenvalues of a symmetric matrix are real numbers. Consequently, the eigenvectors of C are vectors in a Euclidean vector space (not a complex vector space).

Before we continue, a non-zero vector x' is an eigenvector of the matrix C if there is a non-zero scalar lambda such that C*x' = lambda * x'.

Suppose that the eigenvalues of C are b1, b2, b3, and b4, in decreasing numeric order from left-to-right, and that the corresponding eigenvectors of C are the vectors w1, w2, w3, and w4. Then the matrix M that consists of the column vectors w1, w2, w3, and w4 represents the principal components.





CALCULATING EIGENVECTORS: A SIMPLE EXAMPLE


As a simple illustration of calculating eigenvalues and eigenvectors, suppose that the square matrix C is defined as follows:


C = | 1  3 |
    | 3  1 |


Let I denote the 2x2 identity matrix, and let b' be an eigenvalue of C, which means that there is an eigenvector x' such that:


C* x' = b' * x', or
(C-b*I)*x' = 0 (the right side is a 2x1 vector)


Since x' is non-zero, that means the following is true (where det refers to the determinant of a matrix):


det(C-b*I) = det |1-b 3  | = (1-b)*(1-b)-9 = 0
                 |3   1-b|


We can expand the quadratic equation in the preceding line to obtain the following:


det(C-b*I) = (1-b)*(1-b) - 9
           = 1 - 2*b + b*b - 9
           = -8 - 2*b + b*b
           = b*b - 2*b – 8


Use the quadratic formula (or perform factorization by visual inspection) to determine that the solution for det(C-b*I) = 0 is b = -2 or b = 4. Next, substitute b = -2 into (C-b*I)x' = 0 and we obtain the following result:


|1-(-2) 3     | |x1| = |0|
|3      1-(-2)| |x2|   |0|


The preceding reduces to the following identical equations:


3*x1 + 3*x2 = 0
3*x1 + 3*x2 = 0


The general solution is x1 = -x2, and we can choose any non-zero value for x2, so let’s set x2 = 1 (any non-zero value will do just fine), which yields x1 = –1. Therefore, the eigenvector [–1, 1] is associated with the eigenvalue –2. In a similar fashion, if x' is an eigenvector whose eigenvalue is 4, then [1,1] is an eigenvector.

Notice that the eigenvectors [–1, 1] and [1,1] are orthogonal because their inner product is zero, as shown here:


[-1,1] * [1,1] = (-1)*1 + (1)*1 = 0


In fact, the set of eigenvectors of a square matrix (whose eigenvalues are real) are always orthogonal, regardless of the dimensionality of the matrix.



Gauss Jordan Elimination (Optional)


This simple technique enables you to find the solution to systems of linear equations “in place,” which involves a sequence of arithmetic operations to transform a given matrix to an identity matrix.

The following example combines the Gauss-Jordan elimination technique (which finds the solution to a set of linear equations) with the “bookkeeper’s method,” which determines the inverse of an invertible matrix (its determinant is non-zero).

This technique involves two adjacent matrices: the left-side matrix is the initial matrix and the right-side matrix is an identity matrix. Next, perform various linear operations on the left-side matrix to reduce it to an identity matrix: the matrix on the right side equals its inverse. For example, consider the following pair of linear equations whose solution is x = 1 and y = 2:


2*x + 2*y = 6
4*x - 1*y = 2


Step 1: Create a 2x2 matrix with the coefficients of x in column 1 and the coefficients of y in column two, followed by the 2x2 identity matrix, and finally a column from the numbers on the right of the equal sign:


| 2  2 | 1 0 | 6|
| 4 -1 | 0 1 | 2|


Step 2: Add (–2) times the first row to the second row:


| 2  2  | 1  0 |6  |
| 0  -5 | -2 1 |-10|


Step 3: Divide the second row by 5:


| 2  2  | 1      0 |6    |
| 0  -1 | -2/5 1/5 |-10/5|


Step 4: Add 2 times the second row to the first row:


| 2  0  |  1/5 2/5 |2 |
| 0  -1 | -2/5 1/5 |-2|


Step 5: Divide the first row by 2:


| 1  0  | -2/10 2/10 |1 |
| 0  -1 | -2/5   1/5 |-2|


Step 6: Multiply the second row by (-1):


| 1  0  | -2/10 2/10 |1|
| 0  1  |  2/5  -1/5 |2|


As you can see, the left-side matrix is the 2x2 identity matrix, the right-side matrix is the inverse of the original matrix, and the right-most column is the solution to the original pair of linear equations (x=1 and y=2).





PCA (PRINCIPAL COMPONENT ANALYSIS)


PCA is a linear dimensionality reduction technique for determining the most important features in a dataset. This section discusses PCA because it’s a very popular technique that you will encounter frequently. Other techniques are more efficient than PCA, so it’s worthwhile to learn other dimensionality reduction techniques, as well.

Keep in mind the following points regarding the PCA technique:


	PCA is a variance-based algorithm.

	PCA creates variables that are linear combinations of the original variables.

	The new variables are all pair-wise orthogonal.

	PCA can be a useful pre-processing step before clustering.

	PCA is generally preferred for data reduction.



PCA can be useful for variables that are strongly correlated. If most of the coefficients in the correlation matrix are smaller than 0.3, PCA is not helpful. PCA provides some advantages: less computation time for training a model (for example, using only five features instead of 100 features), a simpler model, and the ability to render the data visually when two or three features are selected. Here is a key point about PCA:

PCA calculates the eigenvalues and the eigenvectors of the covariance (or correlation) matrix C.

If you have four or five components, you won’t be able to display them visually, but you could select subsets of three components for visualization, and perhaps gain some additional insight into the dataset.

The PCA algorithm involves the following sequence of steps:


	Calculate the correlation matrix (from the covariance matrix) C of a dataset.

	Find the eigenvalues of C.

	Find the eigenvectors of C.

	Construct a new matrix that comprises the eigenvectors.



The covariance matrix and correlation matrix were explained in a previous section. You also saw the definition of eigenvalues and eigenvectors, along with an example of calculating eigenvalues and eigenvectors.

The eigenvectors are treated as column vectors that are placed adjacent to each other in decreasing order (from left-to-right) with respect to their associated eigenvectors.

PCA uses the variance as a measure of information: the higher the variance, the more important the component. In fact, PCA determines the eigenvalues and eigenvectors of a covariance matrix (discussed in a previous section) and constructs a new matrix whose columns are eigenvectors, ordered from left-to-right in a sequence that matches the corresponding sequence of eigenvalues: the left-most eigenvector has the largest eigenvalue, the next eigenvector has the second-largest eigenvalue, and continuing in this fashion until the right-most eigenvector (which has the smallest eigenvalue).

Alternatively, there is an interesting theorem in linear algebra: if C is a symmetric matrix, then there is a diagonal matrix D and an orthogonal matrix P (the columns are pair-wise orthogonal, which means their pair-wise inner product is zero), such that the following holds:


C = P * D * Pt (where Pt is the transpose of matrix P)


In fact, the diagonal values of D are eigenvalues, and the columns of P are the corresponding eigenvectors of the matrix C.

Fortunately, we can use NumPy and Pandas to calculate the mean, standard deviation, covariance matrix, and correlation matrix, as well as the matrices D and P to determine the eigenvalues and eigenvectors.

Any positive definite square matrix has real-valued eigenvectors, which also applies to the covariance matrix C because it is a real-valued symmetric matrix.



The New Matrix of Eigenvectors


The previous section described how the matrices D and P are determined. The left-most eigenvector of D has the largest eigenvalue, the next eigenvector has the second-largest eigenvalue, and so forth. This fact is very convenient: the eigenvector with the highest eigenvalue is the principal component of the dataset. The eigenvector with the second-highest eigenvalue is the second principal component, and so forth. You specify the number of principal components that you want via the n_components hyperparameter in the PCA class of Sklearn (discussed briefly in Chapter 7).

As a simple and minimalistic example, consider the following code block that uses PCA for a (somewhat contrived) dataset:


import numpy as np
from sklearn.decomposition import PCA
data = np.array([[-1,-1], [-2,-1], [-3,-2], [1,1], [2,1], [3,2]])
pca = PCA(n_components=2)
pca.fit(X)


Note that there is a trade-off here: we greatly reduce the number of components, which reduces the computation time and the complexity of the model, but we also lose some accuracy. However, if the unselected eigenvalues are small, we lose only a small amount of accuracy.

Now let’s use the following notation:


	NM denotes the matrix with the new principal components.

	NMt is the transpose of NM.

	PC is the matrix of the subset of selected principal components.

	SD is the matrix of scaled data from the original dataset.

	SDt is the transpose of SD.



Then the matrix NM is calculated via the following formula:


NM = PCt * SDt


Although PCA is a useful technique for dimensionality reduction, keep in mind the following limitations of PCA:


	less suitable for data with non-linear relationships

	less suitable for special classification problems



A related algorithm is called Kernel PCA, which is an extension of PCA that introduces a non-linear transformation so you can still use the PCA approach.





WELL-KNOWN DISTANCE METRICS


There are several similarity metrics available, such as item similarity metrics, the Jaccard (user-based) similarity, and cosine similarity (which is used to compare vectors of numbers). The following subsections introduce you to these similarity metrics.

Another well-known distance metric is the “taxicab” metric, which is also called the Manhattan distance metric. Given two points A and B in a rectangular grid, the taxicab metric calculates the distance between two points by counting the number of “blocks” that must be traversed in order to reach B from A (the other direction has the same taxicab metric value). For example, if you need to travel two blocks north and then three blocks east in a rectangular grid, then the Manhattan distance is 5.

In fact, there are various other metrics available, which you can learn about by searching Wikipedia. In the case of NLP, the most commonly used distance metric is calculated via the cosine similarity of two vectors, and it’s derived from the formula for the inner (“dot”) product of two vectors.



Pearson Correlation Coefficient


The Pearson correlation coefficient is the Pearson correlation between two vectors. Given random variables X and Y, and the following terms:


std(X)   = standard deviation of X
std(Y)   = standard deviation of Y
cov(X,Y) = covariance of X and Y,


then the Pearson correlation coefficient rho(X,Y) is defined as follows:


              cov(X,Y)
rho(X,Y) =  -------------
            std(X)*std(Y)


The Pearson correlation coefficient is limited to items of the same type. More information about the Pearson correlation coefficient is available online:

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient




Jaccard Index (or Similarity)


The Jaccard similarity is based on the number of users which have rated item A and B divided by the number of users who have rated either A or B. The Jaccard similarity is based on unique words in a sentence and is unaffected by duplicates, whereas the cosine similarity is based on the length of all word vectors (which changes when duplicates are added). The choice between cosine similarity and Jaccard similarity depends on whether word duplicates are important.

The following Python method illustrates how to compute the Jaccard similarity of two sentences:


def get_jaccard_sim(str1, str2):
  set1 = set(str1.split())
  set2 = set(str2.split())
  set3 = set1.intersection(set2)
  # (size of intersection) / (size of union):
  return float(len(set3)) / (len(set1) + len(set2) - len(set3))


The Jaccard similarity can be used in situations involving Boolean values, such as product purchases (true/false), instead of numeric values. More information is available online:

https://en.wikipedia.org/wiki/Jaccard_index




Local Sensitivity Hashing (Optional)


If you are familiar with hash algorithms, you know that they are algorithms that create a hash table that associate items with a value. The advantage of hash tables is that the lookup time to determine whether an item exists in the hash table is constant. Of course, it’s possible for two items to “collide,” which means that they both occupy the same bucket in the hash table. In this case, a bucket can consist of a list of items that can be searched in more or less constant time. If there are too many items in the same bucket, then a different hashing function can be selected to reduce the number of collisions. The goal of a hash table is to minimize the number of collisions.

The Local Sensitivity Hashing (LSH) algorithm hashes similar input items into the same “buckets.” In fact, the goal of LSH is to maximize the number of collisions, whereas traditional hashing algorithms attempt to minimize the number of collisions.

Since similar items end up in the same buckets, LSH is useful for data clustering and nearest neighbor searches. Moreover, LSH is a dimensionality reduction technique that places data points of high dimensionality closer together in a lower-dimensional space, while simultaneously preserving the relative distances between those data points.

More details about LSH are available online:

https://en.wikipedia.org/wiki/Locality-sensitive_hashing





TYPES OF DISTANCE METRICS


Non-linear dimensionality reduction techniques can also have different distance metrics. For example, linear reduction techniques can use the Euclidean distance metric (based on the Pythagorean theorem). However, you need to use a different distance metric to measure the distance between two points on a sphere (or some other curved surface). In the case of NLP, the cosine similarity metric is used to measure the distance between word embeddings (which are vectors of floating point numbers that represent words or tokens).

Distance metrics are used for measuring physical distances, and some well-known distance metrics are listed here:


	Euclidean distance

	Manhattan distance

	Chebyshev distance



The Euclidean algorithm also obeys the “triangle inequality,” which states that for any triangle in the Euclidean plane, the sum of the lengths of any pair of sides must be greater than the length of the third side.

In spherical geometry, you can define the distance between two points as the arc of a great circle that passes through the two points (always selecting the smaller of the two arcs when they are different).

In addition to physical metrics, there are algorithms that implement the concept of “edit distance” (the distance between strings), as listed here:


	Hamming distance

	Jaro–Winkler distance

	Lee distance

	Levenshtein distance

	Mahalanobis distance metric

	Wasserstein metric



The Mahalanobis metric is based on an interesting idea: given a point P and a probability distribution D, this metric measures the number of standard deviations that separate point P from distribution D. More information about Mahalanobis is available online:

https://en.wikipedia.org/wiki/Mahalanobis_distance

In the branch of mathematics called topology, a metric space is a set for which distances between all members of the set are defined. Various metrics are available (such as the Hausdorff metric), depending on the type of topology.

The Wasserstein metric measures the distance between two probability distributions over a metric space X. This metric is also called the “earth mover’s metric” for the following reason: given two unit piles of dirt, it’s the measure of the minimum cost of moving one pile on top of the other pile.

The KL Divergence bears some superficial resemblance to the Wasserstein metric. However, there are some important differences between them. Specifically, the Wasserstein metric has the following properties:


	It is a metric.

	It is symmetric.

	It satisfies the triangle inequality.



The KL Divergence has the following properties:


	It is not a metric (it’s a divergence).

	It is not symmetric: KL(P,Q) != KL(Q,P).

	It does not satisfy the triangle inequality.



Note that the JS (Jenson-Shannon) Divergence (which is based on KL Divergence) is a true metric, which would enable a more meaningful comparison with other metrics (such as the Wasserstein metric). A comparison of the Wasserstein metric and KL Divergence is available online:

https://stats.stackexchange.com/questions/295617/what-is-the-advantages-of-wasserstein-metric-compared-to-kullback-leibler-diverg

More information regarding the Wasstertein metric is available online:

https://en.wikipedia.org/wiki/Wasserstein_metric




WHAT IS BAYESIAN INFERENCE?


Bayesian inference is an important technique in statistics that involves statistical inference and Bayes’ theorem to update the probability for a hypothesis as more information becomes available. Bayesian inference is often called “Bayesian probability,” and it’s important in the dynamic analysis of sequential data.



Bayes’ Theorem


Given two sets A and B, let’s define the following numeric values (all of them are between 0 and 1):


P(A) = probability of being in set A
P(B) = probability of being in set B
P(Both) = probability of being in A intersect B
P(A|B) = probability of being in A (given you're in B)
P(B|A) = probability of being in B (given you're in A)


Then the following formulas are also true:


P(A|B) = P(Both)/P(B) (#1)
P(B|A) = P(Both)/P(A) (#2)


Multiply the preceding pair of equations by the term that appears in the denominator and we obtain these equations:


P(B)*P(A|B) = P(Both) (#3)
P(A)*P(B|A) = P(Both) (#4)


Now set the left-side of Equations #3 and #4 equal to each another and that gives us this equation:


P(B)*P(A|B) = P(A)*P(B|A) (#5)


Divide both sides of Equation #5 by P(B) and we obtain this well-known equation:


P(A|B) = P(A)*P(A|B)/P(B) (#6)





Some Bayesian Terminology


In the previous section, we derived the following relationship:


P(h|d) = (P(d|h) * P(h)) / P(d)


There is a name for each of the four terms in the preceding equation.

First, the posterior probability is P(h|d), which is the probability of hypothesis h given the data d.

Second, P(d|h) is the probability of data d given that the hypothesis h was true.

Third, the prior probability of h is P(h), which is the probability of hypothesis h being true (regardless of the data).

Finally, P(d) is the probability of the data (regardless of the hypothesis)

We are interested in calculating the posterior probability of P(h|d) from the prior probability p(h) with P(D) and P(d|h).




What is MAP?


The maximum a posteriori (MAP) hypothesis is the hypothesis with the highest probability, which is the maximum probable hypothesis. This can be written as follows:


MAP(h) = max(P(h|d))


or


MAP(h) = max((P(d|h) * P(h)) / P(d))


or


MAP(h) = max(P(d|h) * P(h))





Why Use Bayes’ Theorem?


Bayes’ theorem describes the probability of an event based on the prior knowledge of the conditions that might be related to the event. If we know the conditional probability, we can use Bayes’ theorem to find out the reverse probabilities. The previous statement is the general representation of the Bayes’ theorem.





SUMMARY


This chapter started with a discussion of probability, expected values, and the concept of a random variable. Then you learned about some basic statistical concepts, such as mean, median, mode, variance, and standard deviation. Next, you learned about the terms RSS, TSS, R^2, and F1 score. In addition, you got an introduction to the concepts of skewness, kurtosis, Gini impurity, entropy, perplexity, cross-entropy, and KL Divergence.

Next, you learned about covariance and correlation matrices and how to calculate eigenvalues and eigenvectors. Then you were introduced to the dimensionality reduction technique known as PCA (Principal Component Analysis), after which you learned about Bayes’ theorem.






CHAPTER 4

INTRODUCTION TO PANDAS (1)


This chapter introduces you to Pandas and provides code samples that illustrate some of its useful features. If you are familiar with these topics, skim through the material and peruse the code samples, just in case they contain information that’s new for you.

The first part of this chapter contains a brief introduction to Pandas. This section contains code samples that illustrate some features of data frames and a brief discussion of series, which are two of the main features of Pandas.

The second part of this chapter discusses various types of data frames that you can create, such as numeric and Boolean data frames. In addition, we discuss examples of creating data frames with NumPy functions and random numbers.



WHAT IS PANDAS?


Pandas is a Python package that is compatible with other Python packages, such as NumPy and Matplotlib. Install Pandas by opening a command shell and invoking this command for Python 3.x:


pip3 install pandas


In many ways, the semantics of the APIs in the Pandas library are similar to a spreadsheet, along with support for xsl, xml, html, and csv file types. Pandas provides a data type called a data frame (similar to a Python dictionary) with an extremely powerful functionality.

Pandas data frames support a variety of input types, such as ndarray, list, dict, or series.

The data type series is another mechanism for managing data. In addition to performing an online search for more details regarding Series, the following article contains a good introduction:

https://towardsdatascience.com/20-examples-to-master-pandas-series-bc4c68200324



Pandas Options and Settings


You can change the default values of environment variables:


import pandas as pd

display_settings = {
    'max_columns': 8,
    'expand_frame_repr': True,  # Wrap to multiple pages
    'max_rows': 20,
    'precision': 3,
    'show_dimensions': True
}

for op, value in display_settings.items():
pd.set_option("display.{}".format(op), value)


Include the preceding code block in your own code if you want Pandas to display a maximum of 20 rows and 8 columns, and floating point numbers displayed with 3 decimal places. Set expand_frame_rep to True if you want the output to “wrap around” to multiple pages. The preceding for loop iterates through display_settings and sets the options equal to their corresponding values.

In addition, the following code snippet displays all Pandas options and their current values in your code:


print(pd.describe_option())


There are various other operations that you can perform with options and their values (such as the pd.reset() method for resetting values), as described in the Pandas user guide:

https://pandas.pydata.org/pandas-docs/stable/user_guide/options.html




Pandas Data Frames


In simplified terms, a Pandas data frame is a two-dimensional data structure, and it’s convenient to think of the data structure in terms of rows and columns. Data frames can be labeled (rows as well as columns), and the columns can contain different data types. The source of the dataset for a Pandas data frame can be a data file, a database table, and a Web service. The data frame features include


	Data frame methods

	Data frame statistics

	Grouping, pivoting, and reshaping

	Handle missing data

	Join data frames



The code samples in this chapter show you almost all the features in the preceding list.




Data Frames and Data Cleaning Tasks


The specific tasks that you need to perform depend on the structure and contents of a dataset. In general, you will perform a workflow with the following steps, not necessarily always in this order (and some might be optional). All of the following steps can be performed with a Pandas data frame:


	Read data into a data frame

	Display the top of a data frame

	Display the column data types

	Display missing values

	Replace NA with a value

	Iterate through the columns

	Statistics for each column

	Find missing values

	Total missing values

	Percentage of missing values

	Sort table values

	Print summary information

	Columns with > 50% missing

	Rename columns



This chapter contains sections that illustrate how to perform many of the steps in the preceding list.




Alternatives to Pandas


Before delving into the code samples, there are alternatives to Pandas that offer very useful features, some of which are in the following list:


	PySpark (for large datasets)

	Dask (for distributed processing)

	Modin (faster performance)

	Datatable (R data.table for Python)



The inclusion of these alternatives is not intended to diminish Pandas. Indeed, you might not need any of the functionality in the preceding list. However, such functionality might be relevant in the future, so it’s worthwhile for you to know about these alternatives now (and there may be even more powerful alternatives at that point in the future).





A PANDAS DATA FRAME WITH A NUMPY EXAMPLE


Listing 4.1 shows the content of pandas_df.py that illustrates how to define several data frames and display their contents.

LISTING 4.1: pandas_df.py


import pandas as pd
import numpy as np
myvector1 = np.array([1,2,3,4,5])
print("myvector1:")
print(myvector1)
print()

mydf1 = pd.DataFrame(myvector1)
print("mydf1:")
print(mydf1)
print()

myvector2 = np.array([i for i in range(1,6)])
print("myvector2:")
print(myvector2)
print()

mydf2 = pd.DataFrame(myvector2)
print("mydf2:")
print(mydf2)
print()

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])
print("myarray:")
print(myarray)
print()

mydf3 = pd.DataFrame(myarray)
print("mydf3:")
print(mydf3)
print()


Listing 4.1 starts with standard import statements for Pandas and NumPy, followed by the definition of two one-dimensional NumPy arrays and a two-dimensional NumPy array. Each NumPy variable is followed by a corresponding Pandas data frame (mydf1, mydf2, and mydf3). Now launch the code in Listing 4.1 to see the following output, and you can compare the NumPy arrays with the Pandas data frames:


myvector1:
[1 2 3 4 5]

mydf1:
   0
0  1
1  2
2  3
3  4
4  5

myvector2:
[1 2 3 4 5]

mydf2:
   0
0  1
1  2
2  3
3  4
4  5

myarray:
[[  10   30   20]
 [  50   40   60]
 [1000 2000 3000]]

mydf3:
      0     1     2
0    10    30    20
1    50    40    60
2  1000  2000  3000


By contrast, the following code block illustrates how to define a Pandas Series:


names = pd.Series(['SF', 'San Jose', 'Sacramento'])
sizes = pd.Series([852469, 1015785, 485199])
df = pd.DataFrame({ 'Cities': names, 'Size': sizes })
print(df)


Create a Python file with the preceding code (along with the required import statement), and when you launch that code, you will see the following output:


    City name    sizes
0          SF   852469
1    San Jose  1015785
2  Sacramento   485199





DESCRIBING A PANDAS DATA FRAME


Listing 4.2 shows the content of pandas_df_describe.py, which illustrates how to define a Pandas data frame that contains a 3x3 NumPy array of integer values, where the rows and columns of the data frame are labeled. Other aspects of the data frame are also displayed.

LISTING 4.2: pandas_df_describe.py


import numpy as np
import pandas as pd

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])

rownames = ['apples', 'oranges', 'beer']
colnames = ['January', 'February', 'March']

mydf = pd.DataFrame(myarray, index=rownames, columns=colnames)
print("contents of df:")
print(mydf)
print()

print("contents of January:")
print(mydf['January'])
print()

print("Number of Rows:")
print(mydf.shape[0])
print()

print("Number of Columns:")
print(mydf.shape[1])
print()

print("Number of Rows and Columns:")
print(mydf.shape)
print()

print("Column Names:")
print(mydf.columns)
print()

print("Column types:")
print(mydf.dtypes)
print()

print("Description:")
print(mydf.describe())
print()


Listing 4.2 starts with two standard import statements followed by the variable myarray, which is a 3x3 NumPy array of numbers. The variables rownames and colnames provide names for the rows and columns, respectively, of the Pandas data frame mydf, which is initialized as a Pandas data frame with the specified data source (i.e., myarray).

The first portion of the output below requires a single print() statement (which simply displays the contents of mydf). The second portion of the output is generated by invoking the describe() method that is available for any Pandas data frame. The describe() method is useful: you will see various statistical quantities, such as the mean, standard deviation minimum, and maximum performed by columns (not rows), along with values for the 25th, 50th, and 75th percentiles. The output of Listing 4.2 is here:


contents of df:
         January  February  March
apples        10        30     20
oranges       50        40     60
beer        1000      2000   3000

contents of January:
apples       10
oranges      50
beer       1000
Name: January, dtype: int64

Number of Rows:
3

Number of Columns:
3

Number of Rows and Columns:
(3, 3)

Column Names:
Index(['January', 'February', 'March'], dtype='object')

Column types:
January     int64
February    int64
March       int64
dtype: object

Description:
           January     February        March
count     3.000000     3.000000     3.000000
mean    353.333333   690.000000  1026.666667
std     560.386771  1134.504297  1709.073823
min      10.000000    30.000000    20.000000
25%      30.000000    35.000000    40.000000
50%      50.000000    40.000000    60.000000
75%     525.000000  1020.000000  1530.000000
max    1000.000000  2000.000000  3000.000000





PANDAS BOOLEAN DATA FRAMES


Pandas supports Boolean operations on data frames, such as the logical OR, the logical AND, and the logical negation of a pair of data frames. Listing 4.3 shows the content of pandas_boolean_df.py that illustrates how to define a Pandas data frame whose rows and columns are Boolean values.

LISTING 4.3: pandas_boolean_df.py


import pandas as pd

df1 = pd.DataFrame({'a': [1, 0, 1], 'b': [0, 1, 1] }, dtype=bool)
df2 = pd.DataFrame({'a': [0, 1, 1], 'b': [1, 1, 0] }, dtype=bool)

print("df1 & df2:")
print(df1 & df2)

print("df1 | df2:")
print(df1 | df2)

print("df1 ^ df2:")
print(df1 ^ df2)


Listing 4.3 initializes the data frames df1 and df2, and then computes df1 & df2, df1 | df2, and df1 ^ df2, which represent the logical AND, the logical OR, and the logical negation, respectively, of df1 and df2. The output from launching the code in Listing 4.3 is as follows:


df1 & df2:

       a      b
0  False  False
1  False   True
2   True  False
df1 | df2:
      a     b
0  True  True
1  True  True
2  True  True
df1 ^ df2:
       a      b
0   True   True
1   True  False
2  False   True




Transposing a Pandas Data Frame


The T attribute (as well as the transpose function) enables you to generate the transpose of a Pandas data frame, similar to the NumPy ndarray. The transpose operation switches rows to columns and columns to rows. For example, the following code snippet defines a Pandas data frame df1 and then displays the transpose of df1:


df1 = pd.DataFrame({'a': [1, 0, 1], 'b': [0, 1, 1] }, dtype=int)

print("df1.T:")
print(df1.T)


The output of the preceding code snippet is here:


df1.T:
   0  1  2
a  1  0  1
b  0  1  1


The following code snippet defines Pandas data frames df1 and df2 and then displays their sum:


df1 = pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, dtype=int)
df2 = pd.DataFrame({'a' : [3, 3, 3], 'b' : [5, 5, 5] }, dtype=int)

print("df1 + df2:")
print(df1 + df2)


The output is here:


df1 + df2:
   a  b
0  4  5
1  3  6
2  4  6






PANDAS DATA FRAMES AND RANDOM NUMBERS


Listing 4.4 shows the content of pandas_random_df.py that illustrates how to create a Pandas data frame with random integers.

LISTING 4.4: pandas_random_df.py


import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randint(1, 5, size=(5, 2)), columns=['a','b'])
df = df.append(df.agg(['sum', 'mean']))

print("Contents of data frame:")
print(df)


Listing 4.4 defines the Pandas data frame df, which consists of 5 rows and 2 columns of random integers between 1 and 5. Notice that the columns of df are labeled “a” and “b.” In addition, the next code snippet appends two rows consisting of the sum and the mean of the numbers in both columns. The output of Listing 4.4 is here:


a    b
0      1.0  2.0
1      1.0  1.0
2      4.0  3.0
3      3.0  1.0
4      1.0  2.0
sum   10.0  9.0
mean   2.0  1.8


Listing 4.5 shows the content of pandas_combine_df.py that illustrates how to combine Pandas data frames.

LISTING 4.5: pandas_combine_df.py


import pandas as pd
import numpy as np

df = pd.DataFrame({'foo1' : np.random.randn(5),
                   'foo2' : np.random.randn(5)})

print("contents of df:")
print(df)

print("contents of foo1:")
print(df.foo1)

print("contents of foo2:")
print(df.foo2)


Listing 4.5 defines the Pandas data frame df, which consists of 5 rows and 2 columns (labeled foo1 and foo2) of random real numbers between 0 and 5. The next portion of Listing 4.5 shows the content of df and foo1. The output of Listing 4.5 is as follows:


contents of df:
       foo1      foo2
0  0.274680 _0.848669
1 _0.399771 _0.814679
2  0.454443 _0.363392
3  0.473753  0.550849
4 _0.211783 _0.015014
contents of foo1:
0    0.256773
1    1.204322
2    1.040515
3   _0.518414
4    0.634141
Name: foo1, dtype: float64
contents of foo2:
0   _2.506550
1   _0.896516
2   _0.222923
3    0.934574
4    0.527033
Name: foo2, dtype: float64





READING CSV FILES IN PANDAS


Pandas provides the read_csv() method for reading the contents of CSV files. For example, Listing 4.6 shows the content of sometext.csv that contains labeled data (spam or ham), and Listing 4.7 shows the content of read_csv_file.py that illustrates how to read the contents of a CSV file.

LISTING 4.6: sometext.csv


type    text
ham     Available only for today
ham     I'm joking with you
spam    Free entry in 2 a wkly comp
ham     U dun say so early hor
ham     I don't think he goes to usf
spam    FreeMsg Hey there
ham     my brother is not sick
ham     As per your request Melle
spam    WINNER!! As a valued customer


LISTING 4.7: read_csv_file.py


import pandas as pd
import numpy as np

df = pd.read_csv('sometext.csv', delimiter='\t')
print("=> First five rows:")
print(df.head(5))


Listing 4.7 reads the contents of sometext.csv, whose columns are separated by a tab (“\t”) delimiter. Launch the code in Listing 4.7 to see the following output:


=> First five rows:
   type                          text
0   ham     Available only for today
1   ham           I'm joking with you
2  spam  Free entry in 2 a wkly comp
3   ham        U dun say so early hor
4   ham  I don't think he goes to usf


The default value for the head() method is 5, but you can display the first n rows of a data frame df with the code snippet df.head(n).



Specifying a Separator and Column Sets in Text Files


The previous section showed you how to use the delimiter attribute to specify the delimiter in a text file. You can also use the sep parameter to specify a different separator. In addition, you can assign the names parameter the column names in the data that you want to read. An example of using delimiter and sep is here:


df2 = pd.read_csv("data.csv",sep="|",
                  names=["Name","Surname","Height","Weight"])


Pandas also provides the read_table() method for reading the contents of CSV files, which uses the same syntax as the read_csv() method.




Specifying an Index in Text Files


Suppose that you know that a particular column in a text file contains the index value for the rows in the text file. For example, a text file that contains the data in a relational table would typically contain an index column.

Fortunately, Pandas allows you to specify the kth column as the index in a text file, as shown here:


df = pd.read_csv('myfile.csv', index_col=k)






THE LOC() AND ILOC() METHODS IN PANDAS


If you want to display the contents of a record in a data frame, specify the index of the row in the loc() method. For example, the following code snippet displays the data by feature name in a data frame df:


df.loc[feature_name]


Select the first row of the “height” column in the data frame:


df.loc([0], ['height'])


The following code snippet uses the iloc() function to display the first 8 records of the name column with this code snippet:


df.iloc[0:8]['name']





CONVERTING CATEGORICAL DATA TO NUMERIC DATA


One common task in machine learning involves converting a feature containing character data into a feature that contains numeric data. Listing 4.8 shows the content of cat2numeric.py that illustrates how to replace a text field with a corresponding numeric field.

LISTING 4.8: cat2numeric.py


import pandas as pd
import numpy as np

df = pd.read_csv('sometext.csv', delimiter='\t')

print("=> First five rows (before):")
print(df.head(5))
print("-------------------------")
print()

# map ham/spam to 0/1 values:
df['type'] = df['type'].map( {'ham':0 , 'spam':1} )

print("=> First five rows (after):")
print(df.head(5))
print("-------------------------")


Listing 4.8 initializes the data frame df with the contents of the CSV file sometext.csv, and then displays the contents of the first five rows by invoking df.head(5), which is also the default number of rows to display.

The next code snippet in Listing 4.8 invokes the map() method to replace occurrences of ham with 0 and replace occurrences of spam with 1 in the column labeled type, as shown here:


df['type'] = df['type'].map( {'ham':0 , 'spam':1} )


The last portion of Listing 4.8 invokes the head() method again to display the first five rows of the dataset after having renamed the contents of the column type. Launch the code in Listing 4.8 to see the following output:


=> First five rows (before):
   type                          text
0   ham     Available only for today
1   ham           I'm joking with you
2  spam  Free entry in 2 a wkly comp
3   ham        U dun say so early hor
4   ham  I don't think he goes to usf
-------------------------

=> First five rows (after):
   type                          text
0     0     Available only for today
1     0           I'm joking with you
2     1  Free entry in 2 a wkly comp
3     0        U dun say so early hor
4     0  I don't think he goes to usf
-------------------------


As another example, Listing 4.9 shows the contents of shirts.csv and Listing 4.10 shows the contents of shirts.py; these examples illustrate four techniques for converting categorical data into numeric data.

LISTING 4.9: shirts.csv


type,ssize
shirt,xxlarge
shirt,xxlarge
shirt,xlarge
shirt,xlarge
shirt,xlarge
shirt,large
shirt,medium
shirt,small
shirt,small
shirt,xsmall
shirt,xsmall
shirt,xsmall


LISTING 4.10: shirts.py


import pandas as pd

shirts = pd.read_csv("shirts.csv")
print("shirts before:")
print(shirts)
print()

# TECHNIQUE #1:
#shirts.loc[shirts['ssize']=='xxlarge','size'] = 4
#shirts.loc[shirts['ssize']=='xlarge', 'size'] = 4
#shirts.loc[shirts['ssize']=='large',  'size'] = 3
#shirts.loc[shirts['ssize']=='medium', 'size'] = 2
#shirts.loc[shirts['ssize']=='small',  'size'] = 1
#shirts.loc[shirts['ssize']=='xsmall', 'size'] = 1

# TECHNIQUE #2:
#shirts['ssize'].replace('xxlarge', 4, inplace=True)
#shirts['ssize'].replace('xlarge',  4, inplace=True)
#shirts['ssize'].replace('large',   3, inplace=True)
#shirts['ssize'].replace('medium',  2, inplace=True)
#shirts['ssize'].replace('small',   1, inplace=True)
#shirts['ssize'].replace('xsmall',  1, inplace=True)

# TECHNIQUE #3:
#shirts['ssize'] = shirts['ssize'].apply({'xxlarge':4, 'xlarge':4, 'large':3, 'medium':2, 'small':1, 'xsmall':1}.get)

# TECHNIQUE #4:
shirts['ssize'] = shirts['ssize'].replace(regex='xlarge', value=4)
shirts['ssize'] = shirts['ssize'].replace(regex='large',  value=3)
shirts['ssize'] = shirts['ssize'].replace(regex='medium', value=2)
shirts['ssize'] = shirts['ssize'].replace(regex='small',  value=1)

print("shirts after:")
print(shirts)


Listing 4.10 starts with a code block of six statements that uses direct comparison with strings to make numeric replacements. For example, the following code snippet replaces all occurrences of the string xxlarge with the value 4:


shirts.loc[shirts['ssize']=='xxlarge','size'] = 4


The second code block consists of six statements that use the replace() method to perform the same updates, an example of which is shown here:


shirts['ssize'].replace('xxlarge', 4, inplace=True)


The third code block consists of a single statement that uses the apply() method to perform the same updates, as shown here:


shirts['ssize'] = shirts['ssize'].apply({'xxlarge':4, 'xlarge':4, 'large':3, 'medium':2, 'small':1, 'xsmall':1}.get)


The fourth code block consists of four statements that use regular expressions to perform the same updates, an example of which is shown here:


shirts['ssize'] = shirts['ssize'].replace(regex='xlarge', value=4)


Since the preceding code snippet matches xxlarge as well as xlarge, we only need four statements instead of six statements. Launch the code in Listing 4.10 to see the following output:


shirts before
     type     size
0   shirt  xxlarge
1   shirt  xxlarge
2   shirt   xlarge
3   shirt   xlarge
4   shirt   xlarge
5   shirt    large
6   shirt   medium
7   shirt    small
8   shirt    small
9   shirt   xsmall
10  shirt   xsmall
11  shirt   xsmall

shirts after:
     type  size
0   shirt     4
1   shirt     4
2   shirt     4
3   shirt     4
4   shirt     4
5   shirt     3
6   shirt     2
7   shirt     1
8   shirt     1
9   shirt     1
10  shirt     1
11  shirt     1





MATCHING AND SPLITTING STRINGS IN PANDAS


Listing 4.11 shows the content of shirts_str.py, which illustrates how to match a column value with an initial string and how to split a column value based on a letter.

LISTING 4.11: shirts_str.py


import pandas as pd

shirts = pd.read_csv("shirts2.csv")
print("shirts:")
print(shirts)
print()

print("shirts starting with xl:")
print(shirts[shirts.ssize.str.startswith('xl')])
print()

print("Exclude 'xlarge' shirts:")
print(shirts[shirts['ssize'] != 'xlarge'])
print()

print("first three letters:")
shirts['sub1'] = shirts['ssize'].str[:3]
print(shirts)
print()

print("split ssize on letter 'a':")
shirts['sub2'] = shirts['ssize'].str.split('a')
print(shirts)
print()

print("Rows 3 through 5 and column 2:")
print(shirts.iloc[2:5, 2])
print()


Listing 4.11 initializes the data frame df with the contents of the CSV file shirts.csv, and then displays the contents of df. The next code snippet in Listing 4.11 uses the startswith() method to match the shirt types that start with the letters xl, followed by a code snippet that displays the shorts whose size does not equal the string xlarge.

The next code snippet uses the construct str[:3] to display the first three letters of the shirt types, followed by a code snippet that uses the split() method to split the shirt types based on the letter “a.”

The final code snippet invokes iloc[2:5,2] to display the contents of rows 3 through 5 inclusive, and only the second column. The output of Listing 4.11 is as follows:


shirts:
     type    ssize
0   shirt  xxlarge
1   shirt  xxlarge
2   shirt   xlarge
3   shirt   xlarge
4   shirt   xlarge
5   shirt    large
6   shirt   medium
7   shirt    small
8   shirt    small
9   shirt   xsmall
10  shirt   xsmall
11  shirt   xsmall

shirts starting with xl:
    type   ssize
2  shirt  xlarge
3  shirt  xlarge
4  shirt  xlarge

Exclude 'xlarge' shirts:
     type    ssize
0   shirt  xxlarge
1   shirt  xxlarge
5   shirt    large
6   shirt   medium
7   shirt    small
8   shirt    small
9   shirt   xsmall
10  shirt   xsmall
11  shirt   xsmall

first three letters:
     type    ssize sub1
0   shirt  xxlarge  xxl
1   shirt  xxlarge  xxl
2   shirt   xlarge  xla
3   shirt   xlarge  xla
4   shirt   xlarge  xla
5   shirt    large  lar
6   shirt   medium  med
7   shirt    small  sma
8   shirt    small  sma
9   shirt   xsmall  xsm
10  shirt   xsmall  xsm
11  shirt   xsmall  xsm
split ssize on letter 'a':

     type    ssize sub1        sub2
0   shirt  xxlarge  xxl  [xxl, rge]
1   shirt  xxlarge  xxl  [xxl, rge]
2   shirt   xlarge  xla   [xl, rge]
3   shirt   xlarge  xla   [xl, rge]
4   shirt   xlarge  xla   [xl, rge]
5   shirt    large  lar    [l, rge]
6   shirt   medium  med    [medium]
7   shirt    small  sma    [sm, ll]
8   shirt    small  sma    [sm, ll]
9   shirt   xsmall  xsm   [xsm, ll]
10  shirt   xsmall  xsm   [xsm, ll]
11  shirt   xsmall  xsm   [xsm, ll]

Rows 3 through 5 and column 2:
2    xlarge
3    xlarge
4    xlarge
Name: ssize, dtype: object





CONVERTING STRINGS TO DATES IN PANDAS


Listing 4.12 shows the content of string2date.py, which illustrates how to convert strings to date formats.

LISTING 4.12: string2date.py


import pandas as pd

bdates1 = {'strdates':  ['20210413','20210813','20211225'],
           'people': ['Sally','Steve','Sarah']
          }

df1 = pd.DataFrame(bdates1, columns = ['strdates','people'])
df1['dates'] = pd.to_datetime(df1['strdates'], format='%Y%m%d')
print("=> Contents of data frame df1:")
print(df1)
print()
print(df1.dtypes)
print()

bdates2 = {'strdates':  ['13Apr2021','08Aug2021','25Dec2021'],
           'people': ['Sally','Steve','Sarah']
          }

df2 = pd.DataFrame(bdates2, columns = ['strdates','people'])
df2['dates'] = pd.to_datetime(df2['strdates'], format='%d%b%Y')
print("=> Contents of data frame df2:")
print(df2)
print()

print(df2.dtypes)
print()


Listing 4.12 initializes the data frame df1 with the contents of bdates1, and then converts the strdates column to dates using the %Y%m%d format. The next portion of Listing 4.12 initializes the data frame df2 with the contents of bdates2, and then converts the strdates column to dates using the %d%b%Y format. Launch the code in Listing 4.12 to see the following output:


=> Contents of data frame df1:
   strdates people      dates
0  20210413  Sally 2021-04-13
1  20210813  Steve 2021-08-13
2  20211225  Sarah 2021-12-25

strdates            object
people              object
dates       datetime64[ns]
dtype: object

=> Contents of data frame df2:
    strdates people      dates
0  13Apr2021  Sally 2021-04-13
1  08Aug2021  Steve 2021-08-08
2  25Dec2021  Sarah 2021-12-25

strdates            object
people              object
dates       datetime64[ns]
dtype: object





WORKING WITH DATE RANGES IN PANDAS


Listing 4.13 shows the content of pand_parse_dates.py that shows how to work with date ranges in a CSV file.

LISTING 4.13: pand_parse_dates.py


import pandas as pd

df = pd.read_csv('multiple_dates.csv', parse_dates=['dates'])

print("df:")
print(df)
print()

df = df.set_index(['dates'])
start_d = "2021-04-30"
end_d   = "2021-08-31"

print("DATES BETWEEN",start_d,"AND",end_d,":")
print(df.loc[start_d:end_d])
print()

print("DATES BEFORE",start_d,":")
print(df.loc[df.index < start_d])
years = ['2020','2021','2022']
for year in years:
  year_sum = df.loc[year].sum()[0]
  print("SUM OF VALUES FOR YEAR",year,":",year_sum)


Listing 4.12 starts by initializing the variable df with the contents of the CSV file multiple_dates.csv and then displaying its contents. The next code snippet sets the dates column as the index column and then initializes the variable start_d and end_d that contain a start date and an end date, respectively.

The next portion of Listing 4.12 displays the dates between start_d and end_d, and then the list of dates that precede start_d. The final code block iterates through a list of years and then calculates the sum of the numbers in the values field for each year in the list. Launch the code in Listing 4.12 to see the following output:


df:
        dates  values
0  2020-01-31    40.0
1  2020-02-28    45.0
2  2020-03-31    56.0
3  2021-04-30     NaN
4  2021-05-31     NaN
5  2021-06-30   140.0
6  2021-07-31    95.0
7  2022-08-31    40.0
8  2022-09-30    55.0
9  2022-10-31     NaN
10 2022-11-15    65.0

DATES BETWEEN 2021-04-30 AND 2021-08-31 :
            values
dates
2021-04-30     NaN
2021-05-31     NaN
2021-06-30   140.0
2021-07-31    95.0

DATES BEFORE 2021-04-30 :
            values
dates
2020-01-31    40.0
2020-02-28    45.0
2020-03-31    56.0

SUM OF VALUES FOR YEAR 2020 : 141.0
SUM OF VALUES FOR YEAR 2021 : 235.0
SUM OF VALUES FOR YEAR 2022 : 160.0





DETECTING MISSING DATES IN PANDAS


Listing 4.13 shows the content of pandas_missing_dates.py that shows how to detect missing date values in a CSV file.

LISTING 4.13: pandas_missing_dates.py


import pandas as pd

# A dataframe from a dictionary of lists
data = {'Date': ['2021-01-18', '2021-01-20', '2021-01-21', '2021-01-24'],
        'Name': ['Joe', 'John', 'Jane', 'Jim']}
df = pd.DataFrame(data)

# Setting the Date values as index:
df = df.set_index('Date')

# to_datetime() converts string format to a DateTime object:
df.index = pd.to_datetime(df.index)

start_d="2021-01-18"
end_d="2021-01-25"

# display dates that are not in the sequence:
print("MISSING DATES BETWEEN",start_d,"and",end_d,":")
dates = pd.date_range(start=start_d, end=end_d).difference(df.index)

for date in dates:
  print("date:",date)
print()


Listing 4.13 initializes the dictionary data with a list of values for the Date field and the Name field, after which the variable df is initialized as a data frame whose contents are from the data variable.

The next code snippet sets the Date field as the index of the data frame df, after which the string-based dates are converted to DateTime objects. Another pair of code snippets initialize the variables start_d and end_d with a start date and an end date, respectively.

The final portion of Listing 4.13 initializes the variable dates with the list of missing dates between start_d and end_d, after which the contents of dates are displayed. Launch the code in Listing 4.13 to see the following output:


MISSING DATES BETWEEN 2021-01-18 and 2021-01-25 :
date: 2022-01-19 00:00:00
date: 2022-01-22 00:00:00
date: 2022-01-23 00:00:00
date: 2022-01-25 00:00:00





INTERPOLATING MISSING DATES IN PANDAS


Listing 4.14 shows the content of missing_dates.csv and Listing 4.15 shows the content of pandas_interpolate.py that illustrates how to replace NaN values with interpolated values that are calculated in several ways.

LISTING 4.14: missing_dates.csv


"dates","values"
2021-01-31,40
2021-02-28,45
2021-03-31,56
2021-04-30,NaN
2021-05-31,NaN
2021-06-30,140
2021-07-31,95
2021-08-31,40
2021-09-30,55
2021-10-31,NaN
2021-11-15,65


Notice the value 140 (shown in bold) in Listing 4.14: this value is an outlier, which will affect the calculation of the interpolated values and potentially generate additional outliers.

LISTING 4.15: pandas_interpolate.py


import pandas as pd
df = pd.read_csv("missing_dates.csv")

# fill NaN values with linear interpolation:
df1 = df.interpolate()

# fill NaN values with quadratic polynomial interpolation:
df2 = df.interpolate(method='polynomial', order=2)

# fill NaN values with cubic polynomial interpolation:
df3 = df.interpolate(method='polynomial', order=3)

print("original dataframe:")
print(df)
print()
print("linear interpolation:")
print(df1)
print()
print("quadratic interpolation:")
print(df2)
print()
print("cubic interpolation:")
print(df3)
print()


Listing 4.15 initializes df with the contents of the CSV file missing_dates.csv and then initializes the three data frames df1, df2, and df3, which are based on linear, quadratic, and cubic interpolation, respectively, via the interpolate() method. Launch the code in Listing 4.15 to see the following output:


original dataframe:
         dates  values
0   2021-01-31    40.0
1   2021-02-28    45.0
2   2021-03-31    56.0
3   2021-04-30     NaN
4   2021-05-31     NaN
5   2021-06-30   140.0
6   2021-07-31    95.0
7   2021-08-31    40.0
8   2021-09-30    55.0
9   2021-10-31     NaN
10  2021-11-15    65.0

linear interpolation:
         dates  values
0   2021-01-31    40.0
1   2021-02-28    45.0
2   2021-03-31    56.0
3   2021-04-30    84.0
4   2021-05-31   112.0
5   2021-06-30   140.0
6   2021-07-31    95.0
7   2021-08-31    40.0
8   2021-09-30    55.0
9   2021-10-31    60.0
10  2021-11-15    65.0

quadratic interpolation:
         dates      values
0   2021-01-31   40.000000
1   2021-02-28   45.000000
2   2021-03-31   56.000000
3   2021-04-30   88.682998
4   2021-05-31  136.002883
5   2021-06-30  140.000000
6   2021-07-31   95.000000
7   2021-08-31   40.000000
8   2021-09-30   55.000000
9   2021-10-31   68.162292
10  2021-11-15   65.000000

cubic interpolation:
         dates      values
0   2021-01-31   40.000000
1   2021-02-28   45.000000
2   2021-03-31   56.000000
3   2021-04-30   92.748096
4   2021-05-31  132.055687
5   2021-06-30  140.000000
6   2021-07-31   95.000000
7   2021-08-31   40.000000
8   2021-09-30   55.000000
9   2021-10-31   91.479905
10  2021-11-15   65.000000





OTHER OPERATIONS WITH DATES IN PANDAS


Listing 4.16 shows the content of pandas_misc1.py that illustrates how to extract a list of years from a column in a data frame.

LISTING 4.16: pandas_misc1.py


import pandas as pd
import numpy as np

df = pd.read_csv('multiple_dates.csv', parse_dates=['dates'])
print("df:")
print(df)
print()

year_list = df['dates']

arr1 = np.array([])
for long_year in year_list:
  year = str(long_year)
  short_year = year[0:4]
  arr1 = np.append(arr1,short_year)

unique_years = set(arr1)
print("unique_years:")
print(unique_years)
print()

unique_arr = np.array(pd.DataFrame.from_dict(unique_years))
print("unique_arr:")
print(unique_arr)
print()


Listing 4.16 initializes df with the contents of the CSV file multiple_dates.csv via the read_csv() function in Pandas and then displays its contents by invoking the print() command. The next portion of Listing 4.16 initializes year_list with the dates column of df.

The next code block contains a loop that iterates through the elements in year_list, extracts the first four characters (i.e., the year value) and appends that substring to the NumPy array arr1. The final code block initializes the variable unique_arr as a NumPy array consisting of the unique years in the dictionary unique_years. Launch the code in Listing 4.16 to see the following output:


df:
        dates  values
0  2020-01-31    40.0
1  2020-02-28    45.0
2  2020-03-31    56.0
3  2021-04-30     NaN
4  2021-05-31     NaN
5  2021-06-30   140.0
6  2021-07-31    95.0
7  2022-08-31    40.0
8  2022-09-30    55.0
9  2022-10-31     NaN
10 2022-11-15    65.0

unique_years:
{'2022', '2020', '2021'}

unique_arr:
[['2022']
 ['2020']
 ['2021']]


Listing 4.17 shows the content of pandas_misc2.py that illustrates how to iterate through the rows of a data frame. Row-wise iteration is not recommended because it can result in performance issues in larger datasets.

LISTING 4.17: pandas_misc2.py


import pandas as pd

df = pd.read_csv('multiple_dates.csv', parse_dates=['dates'])

print("df:")
print(df)
print()

print("=> ITERATE THROUGH THE ROWS:")
for idx,row in df.iterrows():
  print("idx:",idx," year:",row['dates'])
print()


Listing 4.17 initializes the Pandas data frame df, prints its contents, and then processes the rows of df in a loop. During each iteration, the current index and row contents are displayed. Launch the code in Listing 4.17 to see the following output:


df:
        dates  values
0  2020-01-31    40.0
1  2020-02-28    45.0
2  2020-03-31    56.0
3  2021-04-30     NaN
4  2021-05-31     NaN
5  2021-06-30   140.0
6  2021-07-31    95.0
7  2022-08-31    40.0
8  2022-09-30    55.0
9  2022-10-31     NaN
10 2022-11-15    65.0

=> ITERATE THROUGH THE ROWS:
idx: 0  year: 2020-01-31 00:00:00
idx: 1  year: 2020-02-28 00:00:00
idx: 2  year: 2020-03-31 00:00:00
idx: 3  year: 2021-04-30 00:00:00
idx: 4  year: 2021-05-31 00:00:00
idx: 5  year: 2021-06-30 00:00:00
idx: 6  year: 2021-07-31 00:00:00
idx: 7  year: 2022-08-31 00:00:00
idx: 8  year: 2022-09-30 00:00:00
idx: 9  year: 2022-10-31 00:00:00
idx: 10  year: 2022-11-15 00:00:00


Listing 4.18 shows the content of pandas_misc3.py that illustrates how to display a weekly set of dates that are between a start date and an end date.

LISTING 4.18: pandas_misc3.py


import pandas as pd

start_d="01/02/2022"
end_d="12/02/2022"
weekly_dates=pd.date_range(start=start_d, end=end_d, freq='W')

print("Weekly dates from",start_d,"to",end_d,":")
print(weekly_dates)


Listing 4.18 starts with initializing the variables start_d and end_d that contain a start date and an end date, respectively, and then initializes the variable weekly_dates with a list of weekly dates between the start date and the end date. Launch the code in Listing 4.18 to see the following output:


Weekly dates from 01/02/2022 to 12/02/2022 :
DatetimeIndex(['2022-01-02', '2022-01-09', '2022-01-16', '2022-01-23',
               '2022-01-30', '2022-02-06', '2022-02-13', '2022-02-20',
               '2022-02-27', '2022-03-06', '2022-03-13', '2022-03-20',
               '2022-03-27', '2022-04-03', '2022-04-10', '2022-04-17',
               '2022-04-24', '2022-05-01', '2022-05-08', '2022-05-15',
               '2022-05-22', '2022-05-29', '2022-06-05', '2022-06-12',
               '2022-06-19', '2022-06-26', '2022-07-03', '2022-07-10',
               '2022-07-17', '2022-07-24', '2022-07-31', '2022-08-07',
               '2022-08-14', '2022-08-21', '2022-08-28', '2022-09-04',
               '2022-09-11', '2022-09-18', '2022-09-25', '2022-10-02',
               '2022-10-09', '2022-10-16', '2022-10-23', '2022-10-30',
               '2022-11-06', '2022-11-13', '2022-11-20', '2022-11-27'],
              dtype='datetime64[ns]', freq='W-SUN')





MERGING AND SPLITTING COLUMNS IN PANDAS


Listing 4.16 shows the contents of employees.csv and Listing 4.17 shows the contents of emp_merge_split.py; these examples illustrate how to merge columns and split columns of a CSV file.

LISTING 4.16: employees.csv


name,year,month
Jane-Smith,2015,Aug
Dave-Smith,2020,Jan
Jane-Jones,2018,Dec
Jane-Stone,2017,Feb
Dave-Stone,2014,Apr
Mark-Aster,,Oct
Jane-Jones,NaN,Jun


LISTING 4.17: emp_merge_split.py


import pandas as pd

emps = pd.read_csv("employees.csv")
print("emps:")
print(emps)
print()

emps['year']  = emps['year'].astype(str)
emps['month'] = emps['month'].astype(str)

# separate column for first name and for last name:
emps['fname'],emps['lname'] = emps['name'].str.split("-",1).str

# concatenate year and month with a "#" symbol:
emps['hdate1'] = emps['year'].astype(str)+"#"+emps['month'].astype(str)

# concatenate year and month with a "-" symbol:
emps['hdate2'] = emps[['year','month']].agg('-'.join, axis=1)

print(emps)
print()


Listing 4.17 initializes the data frame df with the contents of the CSV file employees.csv, and then displays the contents of df. The next pair of code snippets invoke the astype() method to convert the contents of the year and month columns to strings.

The next code snippet in Listing 4.17 uses the split() method to split the name column into the columns fname and lname that contain the first name and last name, respectively, of each employee’s name:


emps['fname'],emps['lname'] = emps['name'].str.split("-",1).str


The next code snippet concatenates the contents of the year and month string with a “#” character to create a new column called hdate1:


emps['hdate1'] = emps['year'].astype(str)+"#"+emps['month'].astype(str)


The final code snippet concatenates the contents of the year and month string with a “-” to create a new column called hdate2, as shown here:


emps['hdate2'] = emps[['year','month']].agg('-'.join, axis=1)


Launch the code in Listing 4.14 to see the following output:


emps:
         name    year month
0  Jane-Smith  2015.0   Aug
1  Dave-Smith  2020.0   Jan
2  Jane-Jones  2018.0   Dec
3  Jane-Stone  2017.0   Feb
4  Dave-Stone  2014.0   Apr
5  Mark-Aster     NaN   Oct
6  Jane-Jones     NaN   Jun

         name    year month fname  lname      hdate1      hdate2
0  Jane-Smith  2015.0   Aug  Jane  Smith  2015.0#Aug  2015.0-Aug
1  Dave-Smith  2020.0   Jan  Dave  Smith  2020.0#Jan  2020.0-Jan
2  Jane-Jones  2018.0   Dec  Jane  Jones  2018.0#Dec  2018.0-Dec
3  Jane-Stone  2017.0   Feb  Jane  Stone  2017.0#Feb  2017.0-Feb
4  Dave-Stone  2014.0   Apr  Dave  Stone  2014.0#Apr  2014.0-Apr
5  Mark-Aster     nan   Oct  Mark  Aster     nan#Oct     nan-Oct
6  Jane-Jones     nan   Jun  Jane  Jones     nan#Jun     nan-Jun


There is one other detail regarding the following commented out code snippet:


#emps['fname'],emps['lname'] = emps['name'].str.split("-",1).str


The following deprecation message is displayed if you uncomment the preceding code snippet:


#FutureWarning: Columnar iteration over characters
#will be deprecated in future releases.





READING HTML WEB PAGES IN PANDAS


Listing 4.18 displays the content of the HTML Web page abc.html, and Listing 4.16 shows the content of read_html_page.py that illustrates how to read the contents of an HTML Web page from Pandas. Note that this code will only work with Web pages that contain at least one HTML <table> element.

LISTING 4.18: abc.html


<html>
<head>
</head>
<body>
  <table>
    <tr>
      <td>hello from abc.html!</td>
    </tr>
  </table>
</body>
</html>


LISTING 4.19: read_html_page.py


import pandas as pd

file_name="abc.html"
with open(file_name, "r") as f:
  dfs = pd.read_html(f.read())

print("Contents of HTML Table(s) in the HTML Web Page:")
print(dfs)


Listing 4.19 starts with an import statement, followed by initializing the variable file_name to abc.html that is displayed in Listing 4.18. The next code snippet initializes the variable dfs as a data frame with the contents of the HTML Web page abc.html. The final portion of Listing 4.19 displays the contents of the data frame dsf. Launch the code in Listing 4.19 to see the following output:


Contents of HTML Table(s) in the HTML Web Page:
[                      0
0  hello from abc.html!]


For more information about the Pandas read_html() method, navigate to this URL:

https://pandas.pydata.org/pandas-docs/stable/reference/api/




SAVING A PANDAS DATA FRAME AS AN HTML WEB PAGE


Listing 4.20 shows the content of read_html_page.py that illustrates how to read the contents of an HTML Web page from Pandas. Note that this code will only work with Web pages that contain at least one HTML <table> element.

LISTING 4.20: read_html_page.py


import pandas as pd

emps = pd.read_csv("employees.csv")
print("emps:")
print(emps)
print()

emps['year']  = emps['year'].astype(str)
emps['month'] = emps['month'].astype(str)

# separate column for first name and for last name:
emps['fname'],emps['lname'] = emps['name'].str.split("-",1).str

# concatenate year and month with a "#" symbol:
emps['hdate1'] = emps['year'].astype(str)+"#"+emps['month'].astype(str)

# concatenate year and month with a "-" symbol:
emps['hdate2'] = emps[['year','month']].agg('-'.join, axis=1)

print(emps)
print()

html = emps.to_html()
print("DataFrame as an HTML Web Page:")
print(html)


Listing 4.20 populates the data frame temps with the contents of employees.csv, and then converts the year and month attributes to type string. The next code snippet splits the contents of the name field with the “-” symbol as a delimiter. As a result, this code snippet populates the new fname and lname fields with the first name and last name, respectively, of the previously split field.

The next code snippet in Listing 4.20 converts the year and month fields to strings, and then concatenates them with a “#” as a delimiter. Yet another code snippet populates the hdate2 field with the concatenation of the year and month fields.

After displaying the content of the data frame emps, the final code snippet populates the variable html with the result of converting the data frame emps to an HTML web page by invoking the to_html() method of Pandas. Launch the code in Listing 4.20 to see the following output:


Contents of HTML Table(s)
emps:
         name    year month
0  Jane-Smith  2015.0   Aug
1  Dave-Smith  2020.0   Jan
2  Jane-Jones  2018.0   Dec
3  Jane-Stone  2017.0   Feb
4  Dave-Stone  2014.0   Apr
5  Mark-Aster     NaN   Oct
6  Jane-Jones     NaN   Jun

         name    year month fname  lname      hdate1      hdate2
0  Jane-Smith  2015.0   Aug  Jane  Smith  2015.0#Aug  2015.0-Aug
1  Dave-Smith  2020.0   Jan  Dave  Smith  2020.0#Jan  2020.0-Jan
2  Jane-Jones  2018.0   Dec  Jane  Jones  2018.0#Dec  2018.0-Dec
3  Jane-Stone  2017.0   Feb  Jane  Stone  2017.0#Feb  2017.0-Feb
4  Dave-Stone  2014.0   Apr  Dave  Stone  2014.0#Apr  2014.0-Apr
5  Mark-Aster     nan   Oct  Mark  Aster     nan#Oct     nan-Oct
6  Jane-Jones     nan   Jun  Jane  Jones     nan#Jun     nan-Jun

DataFrame as an HTML Web Page:
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>name</th>
      <th>year</th>
      <th>month</th>
      <th>fname</th>
      <th>lname</th>
      <th>hdate1</th>
      <th>hdate2</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0</th>
      <td>Jane-Smith</td>
      <td>2015.0</td>
      <td>Aug</td>
      <td>Jane</td>
      <td>Smith</td>
      <td>2015.0#Aug</td>
      <td>2015.0-Aug</td>
    </tr>
    <tr>
      <th>1</th>
      <td>Dave-Smith</td>
      <td>2020.0</td>
      <td>Jan</td>
      <td>Dave</td>
      <td>Smith</td>
      <td>2020.0#Jan</td>
      <td>2020.0-Jan</td>
    </tr>
    // details omitted for brevity
    <tr>
      <th>6</th>
      <td>Jane-Jones</td>
      <td>nan</td>
      <td>Jun</td>
      <td>Jane</td>
      <td>Jones</td>
      <td>nan#Jun</td>
      <td>nan-Jun</td>
    </tr>
  </tbody>
</table>





SUMMARY


This chapter introduced you to Pandas for creating labeled data frames and displaying the metadata of data frames. Then you learned how to create data frames from various sources of data, such as random numbers and hard-coded data values. In addition, you saw how to perform column-based and row-based operations in Pandas data frames.

You also learned how to read Excel spreadsheets and perform numeric calculations on the data in those spreadsheets, such as the minimum, mean, and maximum values in numeric columns. Then, you saw how to create Pandas data frames from data stored in CSV files.






CHAPTER 5

INTRODUCTION TO PANDAS (2)


This chapter introduces you to Pandas and provides code samples that illustrate some of its useful features. If you are familiar with these topics, skim through the material and peruse the code samples, just in case they contain some new information.

The first part of this chapter contains a brief introduction to Pandas. This section contains code samples that illustrate some features of data frames and a brief discussion of series, which are two of the main features of Pandas.

The second part of this chapter discusses various types of data frames that you can create, such as numeric and Boolean data frames. In addition, we discuss examples of creating data frames with NumPy functions and random numbers.



COMBINING PANDAS DATA FRAMES


Pandas supports the concat() method to concatenate data frames. Listing 5.1 shows the content of concat_frames.py that illustrates how to combine two data frames.

LISTING 5.1: concat_frames.py


import pandas as pd

can_weather = pd.DataFrame({
    "city": ["Vancouver","Toronto","Montreal"],
    "temperature": [72,65,50],
    "humidity": [40, 20, 25]
})

us_weather = pd.DataFrame({
    "city": ["SF","Chicago","LA"],
    "temperature": [60,40,85],
    "humidity": [30, 15, 55]
})

df = pd.concat([can_weather, us_weather])
print(df)


The first line in Listing 5.1 is an import statement, followed by the definition of the data frames can_weather and us_weather that contain weather-related information for cities in Canada and the USA, respectively. The data frame df is the vertical concatenation of  can_weather and us_weather. The output from Listing 5.1 is here:


0  Vancouver        40           72
1    Toronto        20           65
2   Montreal        25           50
0         SF        30           60
1    Chicago        15           40
2         LA        55           85





DATA MANIPULATION WITH PANDAS DATA FRAMES (1)


As an example, suppose that we have a two-person company that keeps track of income and expenses on a quarterly basis, and we want to calculate the profit/loss for each quarter, as well as the overall profit/loss.

Listing 5.2 shows the content of pandas_quarterly_df1.py, which illustrates how to define a Pandas data frame consisting of income-related values.

LISTING 5.2: pandas_quarterly_df1.py


import pandas as pd

summary = {
    'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],
    'Cost':    [23500, 34000, 57000, 32000],
    'Revenue': [40000, 40000, 40000, 40000]
}

df = pd.DataFrame(summary)

print("Entire Dataset:\n",df)
print("Quarter:\n",df.Quarter)
print("Cost:\n",df.Cost)
print("Revenue:\n",df.Revenue)


Listing 5.2 defines the variable summary that contains hard-coded quarterly information about cost and revenue for our two-person company. In general, these hard-coded values would be replaced by data from another source (such as a CSV file), so think of this code sample as a simple way to illustrate some of the functionality that is available in Pandas data frames.

The variable df is a data frame based on the data in the summary variable. The next block of code in Listing 5.2 consists of three print() statements that display the quarters, the cost per quarter, and the revenue per quarter. The output from Listing 5.2 is as follows:


Entire Dataset:
     Cost Quarter  Revenue
0  23500      Q1    40000
1  34000      Q2    60000
2  57000      Q3    50000
3  32000      Q4    30000

Quarter:
0    Q1
1    Q2
2    Q3
3    Q4
Name: Quarter, dtype: object

Cost:
0    23500
1    34000
2    57000
3    32000
Name: Cost, dtype: int64

Revenue:
0    40000
1    60000
2    50000
3    30000
Name: Revenue, dtype: int64





DATA MANIPULATION WITH PANDAS DATA FRAMES (2)


Let’s suppose that we have a two-person company that keeps track of income and expenses on a quarterly basis, and we want to calculate the profit/loss for each quarter, and also the overall profit/loss.

Listing 5.3 shows the content of pandas_quarterly_df2.py, which illustrates how to define a Pandas data frame consisting of income-related values.

LISTING 5.3: pandas_quarterly_df2.py


import pandas as pd

summary = {
    'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],
    'Cost':    [-23500, -34000, -57000, -32000],
    'Revenue': [40000, 40000, 40000, 40000]
}

df = pd.DataFrame(summary)
print("First Dataset:\n",df)

df['Total'] = df.sum(axis=1)
print("Second Dataset:\n",df)


Listing 5.3 defines the variable summary that contains quarterly information about cost and revenue for our two-person company. The variable df is a data frame based on the data in the summary variable. The three print() statements display the quarters, the cost per quarter, and the revenue per quarter. The output from Listing 5.3 is as follows:


First Dataset:
     Cost Quarter  Revenue
0 -23500      Q1    40000
1 -34000      Q2    60000
2 -57000      Q3    50000
3 -32000      Q4    30000

Second Dataset:
     Cost Quarter  Revenue  Total
0 -23500      Q1    40000  16500
1 -34000      Q2    60000  26000
2 -57000      Q3    50000  -7000
3 -32000      Q4    30000  -2000





DATA MANIPULATION WITH PANDAS DATA FRAMES (3)


Let’s start with the same assumption as the previous section. We have a two-person company that keeps track of income and expenses on a quarterly basis, and we want to calculate the profit/loss for each quarter, and also the overall profit/loss. In addition, we want to compute column totals and row totals.

Listing 5.4 shows the content of pandas-quarterly-df3.py that illustrates how to define a Pandas data frame consisting of income-related values.

LISTING 5.4: pandas-quarterly-df3.py


import pandas as pd

summary = {
    'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],
    'Cost':    [-23500, -34000, -57000, -32000],
    'Revenue': [40000, 40000, 40000, 40000]
}

df = pd.DataFrame(summary)
print("First Dataset:\n",df)

df['Total'] = df.sum(axis=1)
df.loc['Sum'] = df.sum()
print("Second Dataset:\n",df)

# or df.loc['avg'] / 3
#df.loc['avg'] = df[:3].mean()
#print("Third Dataset:\n",df)


Listing 5.4 defines the variable summary that contains quarterly information about cost and revenue for our two-person company. The variable df is a data frame based on the data in the summary variable. The three print() statements display the quarters, the cost per quarter, and the revenue per quarter. The output from Listing 5.4 is shown here:


First Dataset:
     Cost Quarter  Revenue
0 -23500      Q1    40000
1 -34000      Q2    60000
2 -57000      Q3    50000
3 -32000      Q4    30000
Second Dataset:
        Cost   Quarter  Revenue  Total
0    -23500        Q1    40000  16500
1    -34000        Q2    60000  26000
2    -57000        Q3    50000  -7000
3    -32000        Q4    30000  -2000
Sum -146500  Q1Q2Q3Q4   180000  33500





PANDAS DATA FRAMES AND CSV FILES


The code samples in several earlier sections contain hard-coded data inside the Python scripts. However, it’s also common to read data from a CSV file. You can use the Python csv.reader() function, the NumPy loadtxt() function, or the Pandas function read-csv() function (shown in this section) to read the contents of CSV files.

Listing 5.5 shows the content of weather-data.py, which illustrates how to read a CSV file, initialize a Pandas data frame with the contents of that CSV file, and display various subsets of the data in the data frames.

LISTING 5.5: weather-data.py


import pandas as pd

df = pd.read-csv("weather-data.csv")

print(df)
print(df.shape)  # rows, columns
print(df.head()) # df.head(3)
print(df.tail())
print(df[1:3])
print(df.columns)
print(type(df['day']))
print(df[['day','temperature']])
print(df['temperature'].max())


Listing 5.5 invokes the read-csv() function to read the contents of the CSV file weather-data.csv, followed by a set of print() statements that displays various portions of the CSV file. The output from Listing 5.5 is as follows:


day,temperature,windspeed,event
7/1/2018,42,16,Rain
7/2/2018,45,3,Sunny
7/3/2018,78,12,Snow
7/4/2018,74,9,Snow
7/5/2018,42,24,Rain
7/6/2018,51,32,Sunny


In some situations, you might need to apply Boolean conditional logic to filter out some rows of data, based on a condition that’s applied to a column value.

Listing 5.6 shows the content of the CSV file people.csv and Listing 5.7 shows the content of people-pandas.py; these code snippets illustrate how to define a Pandas data frame that reads the CSV file and manipulates the data.

LISTING 5.6: people.csv


fname,lname,age,gender,country
john,smith,30,m,usa
jane,smith,31,f,france
jack,jones,32,m,france
dave,stone,33,m,italy
sara,stein,34,f,germany
eddy,bower,35,m,spain


LISTING 5.7: people_pandas.py


import pandas as pd

df = pd.read_csv('people.csv')
df.info()
print('fname:')
print(df['fname'])
print('____________')
print('age over 33:')
print(df['age'] > 33)
print('____________')
print('age over 33:')
myfilter = df['age'] >  33
print(df[myfilter])


Listing 5.7 populates the data frame df with the contents of the CSV file people.csv. The next portion of Listing 5.7 displays the structure of df, followed by the first names of all the people.

Next, Listing 5.7 displays a tabular list of six rows containing either True or False, depending on whether a person is over 33 or at most 33, respectively. The final portion of Listing 5.7 displays a tabular list of two rows containing all the details of the people who are over 33. The output from Listing 5.7 is shown here:


myfilter = df['age'] >  33
<class 'pandas.core.frame.Data frame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 5 columns):
fname      6 non_null object
lname      6 non_null object
age        6 non_null int64
gender     6 non_null object
country    6 non_null object
dtypes: int64(1), object(4)
memory usage: 320.0+ bytes

fname:
0    john
1    jane
2    jack
3    dave
4    sara
5    eddy
Name: fname, dtype: object

____________
age over 33:
0    False
1    False
2    False
3    False
4     True
5     True
Name: age, dtype: bool

____________
age over 33:
  fname  lname  age gender country
4  sara  stein   34      f  france
5  eddy  bower   35      m  France





MANAGING COLUMNS IN DATA FRAMES


This section contains various subsections with short code blocks that illustrate how to perform column-based operations on a data frame, which resemble the operations in a Python dictionary.

For example, the following code snippet illustrates how to define a Pandas data frame whose data values are from a Python dictionary:


df = pd.DataFrame.from_dict(dict([('A',[1,2,3]),('B',[4,5,6])]),
                orient='index', columns=['one', 'two', 'three'])
print(df)


The output from the preceding code snippet is here:


   one  two  three
A    1    2      3
B    4    5      6




Switching Columns


The following code snippet defines a Pandas data frame and then switches the order of the columns:


df = pd.DataFrame.from_dict(dict([('A',[1,2,3]),('B',[4,5,6])]),
                orient='index', columns=['one', 'two', 'three'])

print("initial data frame:")
print(df)
print()

switched = ['three','one','two']
df=df.reindex(columns=switched)
print("switched columns:")
print(df)
print()


The output from the preceding code block is shown here:


initial data frame:
   one  two  three
A    1    2      3
B    4    5      6

switched columns:
   three  one  two
A      3    1    2
B      6    4    5





Appending Columns


The following code snippet computes the product of two columns and appends the result as a new column to the contents of the data frame df:


df['four'] = df['one'] * df['two']
print(df)


The output from the preceding code block is as follows:


   one  two  three  four
A    1    2      3     2
B    4    5      6    20


The following operation squares the contents of a column in the data frame df:


df['three'] = df['two'] * df['two']
print(df)


The output from the preceding code block is here (notice the numbers shown in bold):


   one  two  three  four
A    1    2      4     2
B    4    5     25    20


The following operation appends a new column called flag that contains True or False, based on whether the numeric value in the “one” column is greater than 2:


import numpy as np
rand = np.random.randn(2)
df.insert(1, 'random', rand)
print(df)


The output from the preceding code block is here:


   one    random  two  three  four   flag
A    1 -1.703111    2      4     2  False
B    4  1.139189    5     25    20   True





Deleting Columns


Columns can be deleted, as shown in following code snippet that deletes the “two” column:


del df['two']
print(df)


The output from the preceding code block is shown here:


one    random  three  four   flag
A    1 -0.460401      4     2  False
B    4  1.211468     25    20   True


Columns can be removed, as shown in following code snippet that deletes the “three” column:


three = df.pop('three')
print(df)
   one    random  four   flag
A    1 -0.544829     2  False
B    4  0.581476    20   True





Inserting Columns


When inserting a scalar value, it will be propagated to fill the column:


df['foo'] = 'bar'
print(df)


The output from the preceding code snippet is shown here:


   one    random  four   flag  foo
A    1 -0.187331     2  False  bar
B    4 -0.169672    20   True  bar


When inserting a series that does not have the same index as the data frame, it will be “conformed” to the index of the data frame:


df['one_trunc'] = df['one'][:1]
print(df)


The output from the preceding code snippet is here:


   one    random  four   flag  foo  one_trunc
A    1  0.616572     2  False  bar        1.0
B    4 -0.802656    20   True  bar        NaN


You can insert raw ndarrays, but their length must match the length of the index of the data frame.

The following operation inserts a column of random numbers in index position 1 (which is the second column) in the data frame df:


import numpy as np
rand = np.random.randn(2)
df.insert(1, 'random', rand)
print(df)


The output from the preceding code block is shown here:


   one    random  two  three  four
A    1 -1.703111    2      4     2
B    4  1.139189    5     25    20





Scaling Numeric Columns


Pandas makes it easy to scale the values in numeric columns. The value in every numeric column of the first row is assigned the value of 1, and the remaining column values are scaled accordingly. Note that values are scaled on a column-by-column basis, which is to say, the columns are treated independently of each other.

Listing 5.8 shows the content of numbers.csv and Listing 5.9 shows the content of scale_columns.py; these examples illustrate how to scale the values in numeric columns.

LISTING 5.8: numbers.csv


qtr1,qtr2,qtr3,qtr4
100,330,445,8000
200,530,145,3000
2000,1530,4145,5200
900,100,280,2000


LISTING 5.9: scale_columns.py


import pandas as pd

filename="numbers.csv"

# read CSV file and display its contents:
df = pd.read_table(filename,delimiter=',')
print("=> contents of df:")
print(df)
print()

print("=> df.iloc[0]:")
print(df.iloc[0])
print()

df2 = df # save the data frame

# df/df.iloc[0] scales the columns:
df = df/df.iloc[0]
print("=> contents of df:")
print(df)
print()

# df2/df2['qtr1'].iloc[0] scales column qtr1:
df2['qtr1'] = df2['qtr1']/(df2['qtr1']).iloc[0]
print("=> contents of df2:")
print(df2)
print()


Listing 5.9 initializes the variable df as a data frame with the contents of the CSV file numbers.csv. Next, a print() statement displays the contents of df, followed by the contents of the column whose index is 0.

Next, the data frame df2 is initialized as a copy of df, followed by a division operation in df whereby the elements of every row are divided by their counterparts in df.iloc[0]. The final code block in Listing 5.9 updates the first column of df2 (which is a copy of the original contents of df) by an operation that effectively involves division by 100. Launch the code in Listing 5.9 to see the following output:


=> contents of df:
   qtr1  qtr2  qtr3  qtr4
0   100   330   445  8000
1   200   530   145  3000
2  2000  1530  4145  5200
3   900   100   280  2000

=> df.iloc[0]:
qtr1     100
qtr2     330
qtr3     445
qtr4    8000
Name: 0, dtype: int64

=> contents of df:
   qtr1      qtr2      qtr3   qtr4
0   1.0  1.000000  1.000000  1.000
1   2.0  1.606061  0.325843  0.375
2  20.0  4.636364  9.314607  0.650
3   9.0  0.303030  0.629213  0.250

=> contents of df2:
   qtr1  qtr2  qtr3  qtr4
0   1.0   330   445  8000
1   2.0   530   145  3000
2  20.0  1530  4145  5200
3   9.0   100   280  2000


The preceding code will result in an error if the CSV file contains any non-numeric columns. However, in the latter case, you can specify the list of numeric columns whose values are to be scaled, an example of which is shown in the final code block in Listing 5.23.





MANAGING ROWS IN PANDAS


Pandas supports various row-related operations, such as finding duplicate rows, selecting a range of rows, deleting rows, and inserting new rows. The following subsections contain code sample that illustrate how to perform these operations.



Selecting a Range of Rows in Pandas


Listing 5.10 shows the contents of duplicates.csv and Listing 5.11 shows the contents of row_range.py; these examples illustrate how to select a range of rows in a Pandas data frame.

LISTING 5.10: duplicates.csv


fname,lname,level,dept,state
Jane,Smith,Senior,Sales,California
Dave,Smith,Senior,Devel,California
Jane,Jones,Year1,Mrktg,Illinois
Jane,Jones,Year1,Mrktg,Illinois
Jane,Stone,Senior,Mrktg,Arizona
Dave,Stone,Year2,Devel,Arizona
Mark,Aster,Year3,BizDev,Florida
Jane,Jones,Year1,Mrktg,Illinois


LISTING 5.11: row_range.py


import pandas as pd

df = pd.read_csv("duplicates.csv")

print("=> contents of CSV file:")
print(df)
print()

print("=> Rows 4 through 7 (loc):")
print(df.loc[4:7,:])
print()

print("=> Rows 4 through 6 (iloc):")
print(df.iloc[4:7,:])
print()


Listing 5.11 initializes the data frame df with the contents of the CSV file duplicates.csv, and then displays the contents of df. The next portion of Listing 5.11 displays the contents of rows 4 through 7, followed by the contents of rows 4 through 6. Launch the code in Listing 5.11 to see the following output:


=> contents of CSV file:
  fname  lname   level    dept       state
0  Jane  Smith  Senior   Sales  California
1  Dave  Smith  Senior   Devel  California
2  Jane  Jones   Year1   Mrktg    Illinois
3  Jane  Jones   Year1   Mrktg    Illinois
4  Jane  Stone  Senior   Mrktg     Arizona
5  Dave  Stone   Year2   Devel     Arizona
6  Mark  Aster   Year3  BizDev     Florida
7  Jane  Jones   Year1   Mrktg    Illinois

=> Rows 4 through 7 (loc):
  fname  lname   level    dept     state
4  Jane  Stone  Senior   Mrktg   Arizona
5  Dave  Stone   Year2   Devel   Arizona
6  Mark  Aster   Year3  BizDev   Florida
7  Jane  Jones   Year1   Mrktg  Illinois

=> Rows 4 through 6 (iloc):
  fname  lname   level    dept    state
4  Jane  Stone  Senior   Mrktg  Arizona
5  Dave  Stone   Year2   Devel  Arizona
6  Mark  Aster   Year3  BizDev  Florida





Finding Duplicate Rows in Pandas


Listing 5.12 shows the content of duplicates.py that illustrates how to find duplicate rows in a Pandas data frame.

LISTING 5.12: duplicates.py


import pandas as pd

df = pd.read_csv("duplicates.csv")
print("Contents of data frame:")
print(df)
print()

print("Duplicate rows:")
#df2 = df.duplicated(subset=None)
df2 = df.duplicated(subset=None, keep='first')
print(df2)
print()

print("Duplicate first names:")
df3 = df[df.duplicated(['fname'])]
print(df3)
print()

print("Duplicate first name and level:")
df3 = df[df.duplicated(['fname','level'])]
print(df3)
print()


Listing 5.12 initializes the data frame df with the contents of the CSV file duplicates.csv, and then displays the contents of df. The next portion of Listing 5.12 displays the duplicate rows by invoking the duplicated() method, whereas the next portion of Listing 5.12 displays only the first name fname of the duplicate rows.

The final portion of Listing 5.12 displays the first name fname as well as the level of the duplicate rows. Launch the code in Listing 5.12 to see the following output:


Contents of data frame:
  fname  lname   level    dept       state
0  Jane  Smith  Senior   Sales  California
1  Dave  Smith  Senior   Devel  California
2  Jane  Jones   Year1   Mrktg    Illinois
3  Jane  Jones   Year1   Mrktg    Illinois
4  Jane  Stone  Senior   Mrktg     Arizona
5  Dave  Stone   Year2   Devel     Arizona
6  Mark  Aster   Year3  BizDev     Florida
7  Jane  Jones   Year1   Mrktg    Illinois

Duplicate rows:
0    False
1    False
2    False
3     True
4    False
5    False
6    False
7     True
dtype: bool

Duplicate first names:
  fname  lname   level   dept     state
2  Jane  Jones   Year1  Mrktg  Illinois
3  Jane  Jones   Year1  Mrktg  Illinois
4  Jane  Stone  Senior  Mrktg   Arizona
5  Dave  Stone   Year2  Devel   Arizona
7  Jane  Jones   Year1  Mrktg  Illinois

Duplicate first name and level:
  fname  lname   level   dept     state
3  Jane  Jones   Year1  Mrktg  Illinois
4  Jane  Stone  Senior  Mrktg   Arizona
7  Jane  Jones   Year1  Mrktg  Illinois


Listing 5.13 shows the content of drop_duplicates.py, which illustrates how to remove duplicate rows in a Pandas data frame.

LISTING 5.13: drop_duplicates.py


import pandas as pd

df = pd.read_csv("duplicates.csv")
print("Contents of data frame:")
print(df)
print()

print("=> number of duplicate rows:", df.duplicated().sum())
print()

print("=> row number(s) of duplicate rows:")
print(np.where(df.duplicated() == True)[0])
print()

fname_filtered = df.drop_duplicates(['fname'])
print("Drop duplicate first names:")
print(fname_filtered)
print()

fname_lname_filtered = df.drop_duplicates(['fname','lname'])
print("Drop duplicate first and last names:")
print(fname_lname_filtered)
print()


Listing 5.13 initializes the data frame df with the contents of the CSV file duplicates.csv, and then displays the contents of df. The next portion of Listing 5.13 deletes the rows that have duplicate fname values, followed by a code block that eliminates rows with duplicate fname and lname values. Launch the code in Listing 5.13 to see the following output:


Contents of data frame:
  fname  lname   level    dept       state
0  Jane  Smith  Senior   Sales  California
1  Dave  Smith  Senior   Devel  California
2  Jane  Jones   Year1   Mrktg    Illinois
3  Jane  Jones   Year1   Mrktg    Illinois
4  Jane  Stone  Senior   Mrktg     Arizona
5  Dave  Stone   Year2   Devel     Arizona
6  Mark  Aster   Year3  BizDev     Florida
7  Jane  Jones   Year1   Mrktg    Illinois

=> number of duplicate rows: 2

=> row number(s) of duplicate rows:
[3 7]

Drop duplicate first names:
  fname  lname   level    dept       state
0  Jane  Smith  Senior   Sales  California
1  Dave  Smith  Senior   Devel  California
6  Mark  Aster   Year3  BizDev     Florida

Drop duplicate first and last names:
  fname  lname   level    dept       state
0  Jane  Smith  Senior   Sales  California
1  Dave  Smith  Senior   Devel  California
2  Jane  Jones   Year1   Mrktg    Illinois
4  Jane  Stone  Senior   Mrktg     Arizona
5  Dave  Stone   Year2   Devel     Arizona
6  Mark  Aster   Year3  BizDev     Florida





Inserting New Rows in Pandas


Listing 5.14 shows the contents of emp_ages.csv and Listing 5.15 shows the contents of insert_row.py; these examples illustrate how to insert a new row in a Pandas data frame.

LISTING 5.14: emp_ages.csv


fname,lname,age
Jane,Smith,32
Dave,Smith,10
Jane,Jones,65
Jane,Jones,65
Jane,Stone,25
Dave,Stone,45
Mark,Aster,53
Jane,Jones,58


LISTING 5.15: insert_row.py


import pandas as pd

filename="emp_ages.csv"
df = pd.read_table(filename,delimiter=',')

new_row = pd.DataFrame({'fname':'New','lname':'Person','age':777},index=[0])
df = pd.concat([new_row, df]).reset_index(drop = True)

print("insert new first row in df:")
print(df.head(3))
print()


Listing 5.15 contains an import statement and then initializes the variable df with the contents of the CSV file emp_ages.csv. The next code snippet defines the variable new_row, whose contents are compatible with the structure of df, and then appends the contents of new_row to the data frame df. Launch the code in Listing 5.15 to see the following output:


  fname   lname  age
0   New  Person  777
1  Jane   Smith   32
2  Dave   Smith   10






HANDLING MISSING DATA IN PANDAS


Listing 5.16 shows the contents of employees2.csv and Listing 5.17 shows the content of the Python file dup_missing.py that illustrates how to find duplicate rows and missing values in a Pandas data frame.

LISTING 5.16: employees2.csv


name,year,month
Jane-Smith,2015,Aug
Jane-Smith,2015,Aug
Dave-Smith,2020,
Dave-Stone,,Apr
Jane-Jones,2018,Dec
Jane-Stone,2017,Feb
Jane-Stone,2017,Feb
Mark-Aster,,Oct
Jane-Jones,NaN,Jun


LISTING 5.17: missing_values.py


import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
# the meaning of two strings:
#NA:  Not Available (Pandas)
#NaN: Not a Number (Pandas)
#NB:  NumPy uses np.nan() to check for NaN values

df = pd.read_csv("employees2.csv")

print("=> contents of CSV file:")
print(df)
print()

print("=> any NULL values per column?")
print(df.isnull().any())
print()

print("=> count of NAN/MISSING values in each column:")
print(df.isnull().sum())
print()

print("=> count of NAN/MISSING values in each column:")
print(pd.isna(df).sum())
print()

print("=> count of NAN/MISSING values in each column (sorted):")
print(df.isnull().sum().sort_values(ascending=False))
print()

nan_null = df.isnull().sum().sum()
miss_values = df.isnull().any().sum()

print("=> count of NaN/MISSING values:",nan_null)
print("=> count of MISSING values:",miss_values)
print("=> count of NaN values:",nan_null-miss_values)


Listing 5.17 initializes the data frame df with the contents of the CSV file employees2.csv, and then displays the contents of df. The next portion of Listing 5.17 displays the number of null values that appear in any row or column. The next portion of Listing 5.17 displays the fields and the names of the fields that have null values, which are the year and month columns of the CSV file.

The next two code blocks of Listing 5.17 display the number of NaN values in the data frame using the method df.isnull().sum() and pd.isna(df).sum(), respectively (the result is the same).

The final portion of Listing 5.17 initializes the variables nan_null and miss_values that are 4 and 2, respectively, and then displays their values as well as the differences of their values. Launch the code in Listing 5.17 to see the following output:


=> contents of CSV file:
         name    year month
0  Jane-Smith  2015.0   Aug
1  Jane-Smith  2015.0   Aug
2  Dave-Smith  2020.0   NaN
3  Dave-Stone     NaN   Apr
4  Jane-Jones  2018.0   Dec
5  Jane-Stone  2017.0   Feb
6  Jane-Stone  2017.0   Feb
7  Mark-Aster     NaN   Oct
8  Jane-Jones     NaN   Jun

=> any NULL values per column?
name     False
year      True
month     True
dtype: bool

=> count of NAN/MISSING values in each column:
name     0
year     3
month    1
dtype: int64

=> count of NAN/MISSING values in each column:
name     0
year     3
month    1
dtype: int64

=> count of NAN/MISSING values in each column (sorted):
year     3
month    1
name     0
dtype: int64

=> count of NaN/MISSING values: 4
=> count of MISSING values: 2
=> count of NaN values: 2




Multiple Types of Missing Values


Listing 5.18 shows the content of employees3.csv that contains multiple types of missing values. Listing 5.19 shows the content of missing_multiple_types.py that illustrates how to specify multiple missing value types when reading employees3.csv into a Pandas data frame.

LISTING 5.18: employees3.csv


name,year,month
Jane-Smith,2015,Aug
Dave-Smith,2020,NaN
Dave-Stone,?,Apr
Jane-Jones,2018,Dec
Jane-Stone,2017,Feb
Jane-Stone,2017,Feb
Mark-Aster,na,Oct
Jane-Jones,!,Jun


LISTING 5.19: missing_multiple_types.py


import pandas as pd

missing_values = ["na", "?", "!", "NaN"]
df = pd.read_csv("employees3.csv", na_values = missing_values)

print("=> contents of CSV file:")
print(df)
print()


Listing 5.19 is almost the same as previous examples. The only difference is shown in the pair of code snippets (in bold) that illustrates how to specify multiple missing value types.




Test for Numeric Values in a Column


Listing 5.20 displays the content of test_for_numeric.py, which illustrates how to check if a value in a row is numeric.

LISTING 5.20: test_for_numeric.py


import pandas as pd
import numpy as np

missing_values = ["na", "?", "!", "NaN"]
df = pd.read_csv("employees3.csv", na_values = missing_values)

print("=> contents of CSV file:")
print(df)
print()

count = 0
for row in df['year']:
  try:
    int(row)
    df.loc[count," "] = np.nan
  except ValueError:
    count += 1

print("non-numeric count:",count)


Launch the code in Listing 5.20 to see the following output:


=> contents of CSV file:
         name    year month
0  Jane-Smith  2015.0   Aug
1  Jane-Smith  2015.0   Aug
2  Dave-Smith  2020.0   NaN
3  Dave-Stone     NaN   Apr
4  Jane-Jones  2018.0   Dec
5  Jane-Stone  2017.0   Feb
6  Jane-Stone  2017.0   Feb
7  Mark-Aster     NaN   Oct
8  Jane-Jones     NaN   Jun

non-numeric count: 3





Replacing NaN Values in Pandas


Listing 5.21 shows the content of missing_fill_drop.py, which illustrates how to replace missing values in a Pandas data frame.

LISTING 5.21: missing_fill_drop.py


import pandas as pd

df = pd.read_csv("employees2.csv")

print("=> contents of CSV file:")
print(df)
print()

print("Check for NANs:")
print(pd.isna(df))
print()

print("Drop missing data:")
df2 = df.dropna(axis=0, how='any')
print(df2)
print()

print("Replace missing data:")
print(df.fillna(7777))
print()


Listing 5.21 initializes the data frame df with the contents of the CSV file employees2.csv, and then displays the contents of df. The next portion of Listing 5.21 checks for NaN values by invoking the isna() function and then displays a tabular result in which each cell is either False or True, depending on whether the respective entry is NaN or not NaN, respectively.

The next code snippet initializes the data frame df2 with the contents of df, and then drops all rows in df2 that contain a NaN value. The final code snippet in Listing 5.21 replaces all occurrences of NaN with the value 7777 (there is nothing special about this value: it’s simply for the purpose of demonstration). Launch the code in Listing 5.21 to see the following output:


=> contents of CSV file:
         name    year month
0  Jane-Smith  2015.0   Aug
1  Jane-Smith  2015.0   Aug
2  Dave-Smith  2020.0   NaN
3  Dave-Stone     NaN   Apr
4  Jane-Jones  2018.0   Dec
5  Jane-Stone  2017.0   Feb
6  Jane-Stone  2017.0   Feb
7  Mark-Aster     NaN   Oct
8  Jane-Jones     NaN   Jun

=> Check for NANs:
    name   year  month
0  False  False  False
1  False  False  False
2  False  False   True
3  False   True  False
4  False  False  False
5  False  False  False
6  False  False  False
7  False   True  False
8  False   True  False

=> Drop missing data:
         name    year month
0  Jane-Smith  2015.0   Aug
1  Jane-Smith  2015.0   Aug
4  Jane-Jones  2018.0   Dec
5  Jane-Stone  2017.0   Feb
6  Jane-Stone  2017.0   Feb

=> Replace missing data:
         name    year month
0  Jane-Smith  2015.0   Aug
1  Jane-Smith  2015.0   Aug
2  Dave-Smith  2020.0  7777
3  Dave-Stone  7777.0   Apr
4  Jane-Jones  2018.0   Dec
5  Jane-Stone  2017.0   Feb
6  Jane-Stone  2017.0   Feb
7  Mark-Aster  7777.0   Oct
8  Jane-Jones  7777.0   Jun






SUMMARY


This chapter introduced you to Pandas for creating labeled data frames and displaying the metadata of data frames. Then you learned how to create data frames from various sources of data, such as random numbers and hard-coded data values. In addition, you saw how to perform column-based and row-based operations in Pandas data frames.

You also learned how to read Excel spreadsheets and perform numeric calculations on the data in those spreadsheets, such as the minimum, mean, and maximum values in numeric columns. Then, you saw how to create Pandas data frames from data stored in CSV files.






CHAPTER 6

INTRODUCTION TO PANDAS (3)


This chapter is the third of three chapters that are devoted to Pandas. If you are familiar with these topics, skim through the material and peruse the code samples, just in case they contain some new information.

The first part of this chapter shows you how to find outliers in a data frame, followed by the pipe() method, which demonstrates method chaining in Pandas, and how to use the query() method for filtering data in a Pandas data frame.

The second part of the chapter shows you how to work with the Pandas groupby() method as well as how to perform aggregate operations with the titanic.csv dataset. In addition, you will learn how to use the apply() and mapapply() methods in Pandas, as well as how to work with window functions.

The third part of the chapter shows you how to work with JSON data in Pandas, how to work with a Python dictionary and JSON data, and also how to combine Python, Pandas, and JSON data.

The final part of the chapter contains an example of regular expressions in Pandas, addition information about method chaining, how to profile Pandas code, and a brief description of alternatives to Pandas.



THRESHOLD VALUES AND OUTLIERS


During the data cleaning process, you might want to drop columns and rows that have too many missing values, as well as drop outliers, all of which are determined by you.

Listing 6.1 displays the content of many_missing.csv and Listing 6.2 displays the content of threshold_outliers.py that illustrates how to use the Pandas dropna() API and the NumPy quantile() API to perform such operations on a data frame.

LISTING 6.1: drop_missing.csv


fname,lname,level,dept,state,salary
,Smith,Senior,,California,80000
Dave,,Senior,,California,140000
Jane,Jones,,Mrktg,Illinois,240000
Jane,,Year1,Mrktg,Illinois,50000
Jane,Stone,Senior,Mrktg,Arizona,60000
Dave,,Year2,Devel,Arizona,400000
Mark,Aster,Year3,BizDev,Florida,70000
Jane,,Year1,Mrktg,Illinois,80000


LISTING 6.2: threshold_outliers.py


import pandas as pd
import numpy  as np

df = pd.read_csv("many_missing.csv")
print("=> initial data frame:")
print(df)
print()

factor = 0.6
threshold = len(df)*factor
pct = (1-factor)*100

#df = df.dropna(axis=1, thresh=threshold, inplace=True)

print("=> drop columns with",pct,"% or more missing values:")
df = df.dropna(axis=1, thresh=threshold)
print("df:")
print(df)
print()

print("=> drop rows with",pct,"% or more missing values:")
df = df.dropna(axis=0, thresh=threshold)
print("df:")
print(df)
print()

low_cut = np.quantile(df.salary, 0.05)
high_cut = np.quantile(df.salary, 0.95)

low_rows = df[df['salary'] <= low_cut]
high_rows = df[df['salary'] >= high_cut]

print("=> low outliers:")
print(low_rows)
print()

print("=> high outliers:")
print(high_rows)
print()

print("salaries between 5th and 95th quantiles:")
df = df[df.salary.between(low_cut, high_cut)]
print("df:")
print(df)
print()


Listing 6.2 starts with some import statements and then initializes the Pandas data frame df with the contents of the CSV file many_missing.csv. The next code block drops rows that have at least 40% missing values.

Next, the variables low_cut and high_cut are initialized as 0.05 and 0.95, respectively, which are used to find the rows whose salary is below low_cut and also the rows whose salary is greater than high_cut.

The final code block displays three sets of rows: those below and above the low_cut and high_cut values, as well as those that lie between these values. Launch the code in Listing 6.2 to see the following output:


=> initial data frame:
  fname  lname   level    dept       state  salary
0   NaN  Smith  Senior     NaN  California   80000
1  Dave    NaN  Senior     NaN  California  140000
2  Jane  Jones     NaN   Mrktg    Illinois  240000
3  Jane    NaN   Year1   Mrktg    Illinois   50000
4  Jane  Stone  Senior   Mrktg     Arizona   60000
5  Dave    NaN   Year2   Devel     Arizona  400000
6  Mark  Aster   Year3  BizDev     Florida   70000
7  Jane    NaN   Year1   Mrktg    Illinois   80000

=> drop columns with 40.0 % or more missing values:
df:
  fname   level    dept       state  salary
0   NaN  Senior     NaN  California   80000
1  Dave  Senior     NaN  California  140000
2  Jane     NaN   Mrktg    Illinois  240000
3  Jane   Year1   Mrktg    Illinois   50000
4  Jane  Senior   Mrktg     Arizona   60000
5  Dave   Year2   Devel     Arizona  400000
6  Mark   Year3  BizDev     Florida   70000
7  Jane   Year1   Mrktg    Illinois   80000

=> drop rows with 40.0 % or more missing values:
df:
  fname   level    dept     state  salary
3  Jane   Year1   Mrktg  Illinois   50000
4  Jane  Senior   Mrktg   Arizona   60000
5  Dave   Year2   Devel   Arizona  400000
6  Mark   Year3  BizDev   Florida   70000
7  Jane   Year1   Mrktg  Illinois   80000

=> low outliers:
  fname  level   dept     state  salary
3  Jane  Year1  Mrktg  Illinois   50000

=> high outliers:
  fname  level   dept    state  salary
5  Dave  Year2  Devel  Arizona  400000

salaries between 5th and 95th quantiles:
df:
  fname   level    dept     state  salary
4  Jane  Senior   Mrktg   Arizona   60000
6  Mark   Year3  BizDev   Florida   70000
7  Jane   Year1   Mrktg  Illinois   80000





THE PANDAS PIPE METHOD


The Pandas pipe() method supports method chaining, which involves concatenating two or more methods so that the output of one method is processed as the input of the next method. This functionality obviates the need to define intermediate variable, thereby saving both time and space. If you have worked with Unix, then you are already familiarity with the concept of piping (redirecting) the output of one command to the input of a subsequent command, in a left-to-right fashion.

Listing 6.3 shows the content of pandas_pipe.py that illustrates how to use the Pandas pipe() method on a data frame.

LISTING 6.3: pandas_pipe.py


import pandas as pd

def increment(num1,num2):
  return num1+num2

def multiply(num1,num2):
  return num1*num2

pd_series = pd.Series([1,2,3,4])

print("=> Original data:")
print(pd_series)
print()

print("=> Increment by 4:")
pd_series = pd_series.pipe(increment,4)
print(pd_series)
print()

print("=> Multiply by 3:")
pd_series = pd_series.pipe(multiply,3)
print(pd_series)
print()

print("=> Multiply by 3 and then increment by 5:")
pd_series = pd_series.pipe(multiply,3).pipe(increment,5)
print(pd_series)
print()


Listing 6.3 defines the increment() function and the multiply() Python function to increment and multiply two numeric values, respectively. The next portion of Listing 6.3 defines a Pandas Series variable pd_series that contains the numbers 1, 2, 3, and 4.

The next pair of code blocks in Listing 6.3 increments pd_series by 4 and then multiplies the result by 3. The final portion of Listing 6.3 multiplies the previous result by 3 and then increments the latter result by 5. Launch the code in Listing 6.3 to see the following output:


=> Original data:
0    1
1    2
2    3
3    4
dtype: int64

=> Increment by 4:
0    5
1    6
2    7
3    8
dtype: int64

=> Multiply by 3:
0    15
1    18
2    21
3    24
dtype: int64

=> Multiply by 3 and then increment by 5:
0    50
1    59
2    68
3    77
dtype: int64





PANDAS QUERY() METHOD FOR FILTERING DATA


Given a data frame df that contains data, df.query() takes a Boolean expression and returns the rows in the data frame that evaluate to True.

Listing 6.4 shows the content of query_random.py that illustrates how to use the Pandas query() API on a data frame.

LISTING 6.4: query_random.py


import pandas as pd
import numpy as np

df = pd.Data frame( np.random.randint(1,10, size=(5,5) ), columns=list('ABCDE') )

# Insert a column "Name"
df.insert(0,'Name',['Jack','John', 'Paul', 'Jack', 'Paul'])

print("df:")
print(df)
print()

# Basic Query
query1 = df.query('A == 9')
print("query1:")
print(query1)
print()

# Query with operator
query2 = df.query(' A+B > C+D')
print("query2:")
print(query2)
print()

# Query with operator
query3 = df.query(' A ** 0.5 == B')
print("query3:")
print(query3)
print()

#Query with string
query4 = df.query(' Name == "John" ')
print("query4:")
print(query4)
print()

# Query with variable
name = 'Jack'
query5 = df.query('Name == @name')
print("query5:")
print(query5)
print()

# Using Lists
query6 = df.query("Name in ['Paul','John'] & D < 9")
print("query6:")
print(query6)
print()

# Query Slicing Result
query7 = df.query(' A+B > C+D')[['A', 'C', 'D']]
print("query7:")
print(query7)
print()


Listing 6.4 starts with some import statements, followed by initializing the Pandas data frame df with five rows and five columns consisting of randomly selected integers that are between 1 and 10. Next, a set of column labels and a set of row labels are inserted into df and then its contents are displayed.

The remaining code in Listing 6.4 consists of defining the data frames query1 through query7, starting with the data frame query1 that is initialized with the rows of df whose value in column A equals 9, which is an empty data frame.

The data frame query2 consists of the rows of df in which the value of column A plus column B is greater than the value of column C plus column D.

The data frame query3 consists of the rows of df in which the square root of the values column A equal the corresponding entry in column B.

The next portion of Listing 6.4 defines the variable query4 and query5 that show you two ways to select a matching set of records from a data frame.

The data frame query4 matches the rows of df in which the name column equals John.

The data frame query5 matches of the rows of df in which the name column equals Jack that is the value of the variable name.

The data frame query6 that is initialized via a compound statement with two conditions: it matches the rows of df whose name value is either Paul or John, and whose value in column D is less than 9.

The data frame query7 is also initialized via a compound statement that involves two conditions: it displays only the columns A, C, and D in df2 whose values match the condition that A+B > C + D. Launch the code in Listing 6.4 to see the following output:


df:
   Name  A  B  C  D  E
0  Jack  4  7  4  6  4
1  John  4  6  4  5  1
2  Paul  1  3  5  3  2
3  Jack  5  2  4  2  4
4  Paul  5  1  5  1  8

query1:
Empty Data frame
Columns: [Name, A, B, C, D, E]
Index: []

query2:
   Name  A  B  C  D  E
0  Jack  4  7  4  6  4
1  John  4  6  4  5  1
3  Jack  5  2  4  2  4

query3:
Empty Data frame
Columns: [Name, A, B, C, D, E]
Index: []

query4:
   Name  A  B  C  D  E
1  John  4  6  4  5  1

query5:
   Name  A  B  C  D  E
0  Jack  4  7  4  6  4
3  Jack  5  2  4  2  4

query6:
   Name  A  B  C  D  E
1  John  4  6  4  5  1
2  Paul  1  3  5  3  2
4  Paul  5  1  5  1  8

query7:
   A  C  D
0  4  4  6
1  4  4  5
3  5  4  2





SORTING DATA FRAMES IN PANDAS


Listing 6.5 shows the contents of sort_df.py that illustrate how to sort the rows in a Pandas data frame.

LISTING 6.5: sort_df.py


import pandas as pd

df = pd.read_csv("duplicates.csv")
print("Contents of data frame:")
print(df)
print()

df.sort_values(by=['fname'], inplace=True)
print("Sorted (ascending) by first name:")
print(df)
print()

df.sort_values(by=['fname'], inplace=True,ascending=False)
print("Sorted (descending) by first name:")
print(df)
print()

df.sort_values(by=['fname','lname'], inplace=True)
print("Sorted (ascending) by first name and last name:")
print(df)
print()


Listing 6.5 initializes the data frame df with the contents of the CSV file duplicates.csv, and then displays the contents of df. The next portion of Listing 6.5 displays the rows in ascending order based on the first name, and the next code block displays the rows in descending order based on the first name.

The final code block in Listing 6.5 displays the rows in ascending order based on the first name as well as the last name. Launch the code in Listing 6.5 to see the following output:


Contents of data frame:
  fname  lname   level    dept       state
0  Jane  Smith  Senior   Sales  California
1  Dave  Smith  Senior   Devel  California
2  Jane  Jones   Year1   Mrktg    Illinois
3  Jane  Jones   Year1   Mrktg    Illinois
4  Jane  Stone  Senior   Mrktg     Arizona
5  Dave  Stone   Year2   Devel     Arizona
6  Mark  Aster   Year3  BizDev     Florida
7  Jane  Jones   Year1   Mrktg    Illinois

Sorted (ascending) by first name:
  fname  lname   level    dept       state
1  Dave  Smith  Senior   Devel  California
5  Dave  Stone   Year2   Devel     Arizona
0  Jane  Smith  Senior   Sales  California
2  Jane  Jones   Year1   Mrktg    Illinois
3  Jane  Jones   Year1   Mrktg    Illinois
4  Jane  Stone  Senior   Mrktg     Arizona
7  Jane  Jones   Year1   Mrktg    Illinois
6  Mark  Aster   Year3  BizDev     Florida

Sorted (descending) by first name:
  fname  lname   level    dept       state
6  Mark  Aster   Year3  BizDev     Florida
0  Jane  Smith  Senior   Sales  California
2  Jane  Jones   Year1   Mrktg    Illinois
3  Jane  Jones   Year1   Mrktg    Illinois
4  Jane  Stone  Senior   Mrktg     Arizona
7  Jane  Jones   Year1   Mrktg    Illinois
1  Dave  Smith  Senior   Devel  California
5  Dave  Stone   Year2   Devel     Arizona

Sorted (ascending) by first name and last name:
  fname  lname   level    dept       state
1  Dave  Smith  Senior   Devel  California
5  Dave  Stone   Year2   Devel     Arizona
2  Jane  Jones   Year1   Mrktg    Illinois
3  Jane  Jones   Year1   Mrktg    Illinois
7  Jane  Jones   Year1   Mrktg    Illinois
0  Jane  Smith  Senior   Sales  California
4  Jane  Stone  Senior   Mrktg     Arizona
6  Mark  Aster   Year3  BizDev     Florida





WORKING WITH GROUPBY() IN PANDAS


Listing 6.6 shows the contents of groupby1.py that illustrate how to invoke the groupby() method to compute the subtotals of the feature values.

LISTING 6.6: groupby1.py


import pandas as pd

# colors and weights of balls:
data = {'color':['red','blue','blue','red','blue'],
        'weight':[40,50,20,30,90]}
df1 = pd.Data frame(data)
print("df1:")
print(df1)
print()
print(df1.groupby('color').mean())
print()

red_filter = df1['color']=='red'
print(df1[red_filter])
print()
blue_filter = df1['color']=='blue'
print(df1[blue_filter])
print()

red_avg = df1[red_filter]['weight'].mean()
blue_avg = df1[blue_filter]['weight'].mean()
print("red_avg,blue_avg:")
print(red_avg,blue_avg)
print()

df2 = pd.Data frame({'color':['blue','red'],'weight':[red_avg,blue_avg]})
print("df2:")
print(df2)
print()


Listing 6.6 defines the variable data containing the color and weight values, and then initializes the data frame df with the contents of the variable data. The next two code blocks define red_filter and blue_filter that match the rows whose colors are red and blue, respectively, and then prints the matching rows.

The next portion of Listing 6.6 defines the two filters red_avg and blue_avg that calculate the average weight of the red value and the blue values, respectively. The last code block in Listing 6.6 defines the data frame df2 with a color color and a weight column, where the latter contains the average weight of the red values and the blue values. Launch the code in Listing 6.6 to see the following output:


initial data frame:
df1:
  color  weight
0   red      40
1  blue      50
2  blue      20
3   red      30
4  blue      90

          weight
color
blue   53.333333
red    35.000000

  color  weight
0   red      40
3   red      30

  color  weight
1  blue      50
2  blue      20
4  blue      90

red_avg,blue_avg:
35.0 53.333333333333336

df2:
  color     weight
0  blue  35.000000
1   red  53.333333





WORKING WITH APPLY() AND MAPAPPLY() IN PANDAS


Earlier in this chapter, you saw an example of the apply() method for modifying the categorical values of a feature in the CSV file shirts.csv. This section contains more examples of the apply() method.

Listing 6.7 shows the content of apply1.py, which illustrates how to invoke the Pandas apply() method to compute the cube of a column of numbers.

LISTING 6.7: apply1.py


import pandas as pd

df = pd.Data frame({'X1': [1,2,3], 'X2': [10,20,30]})

def cube(x):
  return x * x * x

df1 = df.apply(cube)
# same result:
# df1 = df.apply(lambda x: x * x * x)

print("initial data frame:")
print(df)
print("cubed values:")
print(df1)


Listing 6.7 initializes the data frame df with columns X1 and X2, where the values for X2 are 10 times the corresponding values in X1. Next, the Python function cube() returns the cube of its argument. Listing 6.7 then defines the variable df1 by invoking the apply() function, which specifies the user-defined Python function cube(), and then prints the values of df as well as df1. Launch the code in Listing 6.7 to see the following output:


initial data frame:
   X1  X2
0   1  10
1   2  20
2   3  30
cubed values:
   X1     X2
0   1   1000
1   8   8000
2  27  27000


Apply a function to a data frame that multiplies all values in the height column of the data frame by 3:


df["height"].apply(lambda height: 3 * height)


OR


def multiply(x):
    return x * 3
df["height"].apply(multiply)


Listing 6.8 shows the content of apply2.py that illustrates how to invoke the apply() method to compute the sum of a set of values.

LISTING 6.8: apply2.py


import pandas as pd
import numpy as np

df = pd.Data frame({'X1': [10,20,30], 'X2': [50,60,70]})

df1 = df.apply(np.sum, axis=0)
df2 = df.apply(np.sum, axis=1)

print("initial data frame:")
print(df)
print("add values (axis=0):")
print(df1)
print("add values (axis=1):")
print(df2)


Listing 6.8 is a variation of Listing 6.7. The variables df1 and df2 contain the column-wise sum and the row-wise sum, respectively, of the data frame df. Launch the code in Listing 6.8 to see the following output:


   X1  X2
0  10  50
1  20  60
2  30  70

add values (axis=0):
X1     60
X2    180
dtype: int64

add values (axis=1):
0     60
1     80
2    100
dtype: int64


Listing 6.9 shows the content of mapapply1.py that illustrates how to invoke the mapapply() method to compute the square of a column of numbers.

LISTING 6.9: mapapply1.py


import pandas as pd
import math

df = pd.Data frame({'X1': [1,2,3], 'X2': [10,20,30]})
df1 = df.applymap(math.sqrt)

print("initial data frame:")
print(df)
print("square root values:")
print(df1)


Listing 6.9 is another variant of Listing 6.7. In this case, the variable df1 is defined by invoking the mapapply() function on the variable df, which in turn references (but does not execute) the math.sqrt() function.

Next, a print() statement displays the contents of df, followed by a print() statement that displays the contents of df1. It is at this point that the built-in math.sqrt() function is invoked to calculate the square root of the numeric values in df. Launch the code in Listing 6.9 to see the following output:


initial data frame:
   X1  X2
0   1  10
1   2  20
2   3  30

square root values:
         X1        X2
0  1.000000  3.162278
1  1.414214  4.472136
2  1.732051  5.477226


Listing 6.10 shows the content of mapapply2.py, which illustrates how to invoke the applymap() method to convert strings to lowercase and uppercase.

LISTING 6.10: mapapply2.py


import pandas as pd

df = pd.Data frame({'fname': ['Jane'], 'lname': ['Smith']},
                   {'fname': ['Dave'], 'lname': ['Jones']})

df1 = df.applymap(str.lower)
df2 = df.applymap(str.upper)

print("initial data frame:")
print(df)
print()
print("lowercase:")
print(df1)
print()
print("uppercase:")
print(df2)
print()


Listing 6.10 initializes the variable df with two first and last name pairs, and then defines the variables df1 and df2 by invoking the applymap() method to the strings in the data frame df. The data frame df1 converts its input values to lowercase, whereas the data frame df2 converts its input values to uppercase. Launch the code in Listing 6.10 to see the following output:


initial data frame:
      fname  lname
fname  Jane  Smith
lname  Jane  Smith

lowercase:
      fname  lname
fname  jane  smith
lname  jane  smith

uppercase:
      fname  lname
fname  JANE  SMITH
lname  JANE  SMITH





HANDLING OUTLIERS IN PANDAS


This section uses Pandas to find outliers in a dataset. The key idea involves finding the z-score of the values in the dataset, which involves calculating the mean mu and standard deviation std, and then mapping each value x in the dataset to the value (x-mu)/std.

Next, specify a value of z (such as 3) and find the values with a z-score greater than 3. The rows that contain such values are considered outliers. Note that a suitable value for the z-score is your decision (not some other external factor).

As an illustration of calculating z-scores, consider the following block of Python code:


import numpy as np
import scipy.stats as stats

arr1 = [1,-1,2,-2]
print(arr1)
print(np.mean(arr1))
print(np.var(arr1))
print(np.std(arr1))
print(stats.zscore(arr1))


The output of the preceding code block is here:


[1, -1, 2, -2]
0.0
2.5
1.5811388300841898
[ 0.63245553 -0.63245553  1.26491106 -1.26491106]


As you can see, the sum of the values is 0, so the mean is also 0. Next, the variance is the sum of the squares divided by 4, which is 10/4 and therefore 2.5. The standard deviation is the square root of 2.5, which equals 1.5811388300841898. Calculate the value (x-mu)/sigma for each value in the array and you will see the values displayed in the final output line of the preceding output.

Listing 6.11 shows the content of outliers_zscores.py that illustrates how to find a z-score greater than (or less than) a specified value.

LISTING 6.11: outliers_zscores.py


import numpy as np
import pandas as pd
from scipy import stats
from sklearn import datasets

df = datasets.load_iris()
columns = df.feature_names
iris_df = pd.Data frame(df.data)
iris_df.columns = columns

print("=> iris_df.shape:",iris_df.shape)
print(iris_df.head())
print()

z = np.abs(stats.zscore(iris_df))
print("z scores for iris:")
print("z.shape:",z.shape)

upper = 2.5
lower = 0.01
print("=> upper outliers:")
print(z[np.where(z > upper)])
print()

outliers = iris_df[z < lower]
print("=> lower outliers:")
print(outliers)
print()


Listing 6.11 initializes the variable df with the contents of the built-in Iris dataset. Next, the variable columns is initialized with the column names, and the data frame iris_df is initialized from the content of df.data that contains the actual data for the Iris dataset. In addition, iris_df.columns is initialized with the contents of the variable columns.

The next portion of Listing 6.11 displays the shape of the data frame iris_df, followed by the z-score of the iris_df data frame, which is computed by subtracting the mean and then dividing by the standard deviation (performed for each row).

The last two portions of Listing 6.11 display the outliers (if any) whose z-score is outside the interval [0.01, 2.5]. Launch the code in Listing 6.11 to see the following output:


=> iris_df.shape: (150, 4)
   sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0                5.1               3.5                1.4               0.2
1                4.9               3.0                1.4               0.2
2                4.7               3.2                1.3               0.2
3                4.6               3.1                1.5               0.2
4                5.0               3.6                1.4               0.2

z scores for iris:
z.shape: (150, 4)

=> upper outliers:
[3.09077525 2.63038172]

=> lower outliers:
    sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
73                6.1               2.8                4.7               1.2
82                5.8               2.7                3.9               1.2
90                5.5               2.6                4.4               1.2
92                5.8               2.6                4.0               1.2
95                5.7               3.0                4.2               1.2





PANDAS DATA FRAMES AND SCATTERPLOTS


Listing 6.12 shows the content of pandas_scatter_df.py, which illustrates how to generate a scatterplot from a data frame.

LISTING 6.12: pandas_scatter_df.py


import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import read_csv
from pandas.plotting import scatter_matrix

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])

rownames = ['apples', 'oranges', 'beer']
colnames = ['January', 'February', 'March']

mydf = pd.Data frame(myarray, index=rownames, columns=colnames)

print(mydf)
print(mydf.describe())

scatter_matrix(mydf)
plt.show()


Listing 6.12 starts with various import statements, followed by the initialization of the NumPy array myarray. Next, the variables myarray and colnames are initialized with values for the rows and columns, respectively. The next portion of Listing 6.12 initializes the data frame mydf so that the rows and columns are labeled in the output, as shown here:


January  February  March
apples        10        30     20
oranges       50        40     60
beer        1000      2000   3000

           January     February        March
count     3.000000     3.000000     3.000000
mean    353.333333   690.000000  1026.666667
std     560.386771  1134.504297  1709.073823
min      10.000000    30.000000    20.000000
25%      30.000000    35.000000    40.000000
50%      50.000000    40.000000    60.000000
75%     525.000000  1020.000000  1530.000000
max    1000.000000  2000.000000  3000.0000000





PANDAS DATA FRAMES AND SIMPLE STATISTICS


Listing 6.13 shows a portion of the CSV file housing.csv and Listing 6.14 shows the contents of housing_stats.py; these samples illustrate how to gather basic statistics from housing.csv in a Pandas data frame.

LISTING 6.13: housing.csv


price,bedrooms,bathrooms,sqft_living
221900,3,1,1180
538000,3,2.25,2570
180000,2,1,770
604000,4,3,1960
510000,3,2,1680
// details omitted for brevity
785000,4,2.5,2290
450000,3,1.75,1250
228000,3,1,1190
345000,5,2.5,3150
600000,3,1.75,1410


LISTING 6.14: housing_stats.py


import pandas as pd

df = pd.read_csv("housing.csv")

minimum_bdrms = df["bedrooms"].min()
median_bdrms  = df["bedrooms"].median()
maximum_bdrms = df["bedrooms"].max()

print("minimum # of bedrooms:",minimum_bdrms)
print("median  # of bedrooms:",median_bdrms)
print("maximum # of bedrooms:",maximum_bdrms)
print("")

print("median values:",df.median().values)
print("")

prices = df["price"]
print("first 5 prices:")
print(prices.head())
print("")

median_price = df["price"].median()
print("median price:",median_price)
print("")

corr_matrix = df.corr()
print("correlation matrix:")
print(corr_matrix["price"].sort_values(ascending=False))


Listing 6.14 initializes the data frame df with the contents of the CSV file housing.csv. The next three variables are initialized with the minimum, median, and maximum number of bedrooms, and then these values are displayed.

The next portion of Listing 6.14 initializes the variable prices with the contents of the prices column of the data frame df. Next, the first five rows are printed via the prices.head() statement, followed by the median value of the prices.

The final portion of Listing 6.14 initializes the variable corr_matrix with the contents of the correlation matrix for the data frame df, and then displays its contents. The output from Listing 6.14 is shown here:


minimum # of bedrooms: 2
median  # of bedrooms: 3.0
maximum # of bedrooms: 5

median values: [4.5900e+05 3.0000e+00 1.7500e+00 1.7125e+03]

first 5 prices:
0    221900
1    538000
2    180000
3    604000
4    510000
Name: price, dtype: int64

median price: 459000.0

correlation matrix:
price          1.000000
sqft_living    0.620634
bathrooms      0.440047
bedrooms       0.379300
Name: price, dtype: float64





AGGREGATE OPERATIONS IN PANDAS DATA FRAMES


The agg() function is an alias for aggregate, which performs aggregate (multiple) operations on columns.

Listing 6.15 shows the content of aggregate1.py, which illustrates how to perform aggregate operations with the data in a data frame.

LISTING 6.15: aggregate1.py


import pandas as pd

df = pd.Data frame([[4, 2, 3, 1],
                   [8, 1, 5, -4],
                   [6, 9, 8, -8]],
                  columns=['X1', 'X2', 'X3', 'X4'])

print("=> data frame:")
print(df)
print()

print("=> Aggregate sum and min over the rows:")
print(df.agg(['sum', 'min', 'max']))
print()

print("=> Aggregate mean over the columns:")
print(df.agg("mean", axis="columns"))
print()


Listing 6.15 initializes the data frame df with the contents of a 3x4 array of numeric values, and then displays the contents of df. The next code snippet invokes the agg() method to append the methods sum(), min(), and max() to df. The result is a new 3x4 array of values where the rows contain the sum, minimum, and maximum of the values in each column of df. The final code snippet displays a row of data that contains the mean of each column of df. Launch the code in Listing 6.15 to see the following output:


=> data frame:
   X1  X2  X3  X4
0   4   2   3   1
1   8   1   5  -4
2   6   9   8  -8

=> Aggregate sum and min over the rows:
     X1  X2  X3  X4
sum  18  12  16 -11
min   4   1   3  -8
max   8   9   8   1

=> Aggregate mean over the columns:
0    2.50
1    2.50
2    3.75
dtype: float64





AGGREGATE OPERATIONS WITH THE TITANIC.CSV DATASET


Listing 6.16 shows the content of aggregate2.py that illustrates how to perform aggregate operations with columns in the CSV file titanic.csv.

LISTING 6.16: aggregate2.py


import pandas as pd

#Loading titanic.csv in Seaborn:
#df = sns.load_dataset('titanic')
df = pd.read_csv("titanic.csv")

# convert floating point values to integers:
df['survived'] = df['survived'].astype(int)

# specify column and aggregate functions:
aggregates1 = {'embark_town': ['count', 'nunique', 'size']}

# group by 'deck' value and apply aggregate functions:
result = df.groupby(['deck']).agg(aggregates1)
print("=> Grouped by deck:")
print(result)
print()

# some details regarding count() and nunique():
# count() excludes NaN values whereas size() includes them
# nunique() excludes NaN values in the unique counts

# group by 'age' value and apply aggregate functions:
result2 = df.groupby(['age']).agg(aggregates1)
print("=> Grouped by age (before):")
print(result2)
print()

# some "age" values are missing (so drop them):
df = df.dropna()

# convert floating point values to integers:
df['age'] = df['age'].astype(int)

# group by 'age' value and apply aggregate functions:
result3 = df.groupby(['age']).agg(aggregates1)
print("=> Grouped by age (after):")
print(result3)
print()


Listing 6.16 initializes the data frame df with the contents of the CSV file titanic.csv. The next code snippet converts floating point values to integers, followed by defining the variable aggregates1 that specifies the functions count(), nunique(), and size() that will be invoked on the embark_town field.

The next code snippet initializes the variable result after invoking the groupby() method on the deck field, followed by invoking the agg() method.

The next code block performs the same computation to initialize the variable result2, except that the groupby() function is invoked on the age field instead of the embark_town field. Notice the comment section regarding the count() and nunique() functions. Let’s eliminate the rows with missing values via df.dropna() and investigate how that affects the calculations.

After removing the rows with missing values, the final code block initializes the variable result3 in exactly the same way that result2 was initialized. Launch the code in Listing 6.16 to see the following output:


=> Grouped by deck:
     embark_town
           count nunique size
deck
A             15       2   15
B             45       2   47
C             59       3   59
D             33       2   33
E             32       3   32
F             13       3   13
G              4       1    4

=> Grouped by age (before):
        age
      count nunique size
age
0.42      1       1    1
0.67      1       1    1
0.75      2       1    2
0.83      2       1    2
0.92      1       1    1
...     ...     ...  ...
70.00     2       1    2
70.50     1       1    1
71.00     2       1    2
74.00     1       1    1
80.00     1       1    1

[88 rows x 3 columns]

=> Grouped by age (after):
      age
    count nunique size
age
0       1       1    1
1       1       1    1
2       3       1    3
3       1       1    1
4       3       1    3
6       1       1    1
11      1       1    1
14      1       1    1
15      1       1    1

// details omitted for brevity
60      2       1    2
61      2       1    2
62      1       1    1
63      1       1    1
64      1       1    1
65      2       1    2
70      1       1    1
71      1       1    1
80      1       1    1





SAVE DATA FRAMES AS CSV FILES AND ZIP FILES


Listing 6.17 shows the content of save2csv.py that illustrates how to save a Pandas data frame as a CSV file and as a zip file that contains both the CSV file and the contents of the data frame.

LISTING 6.17: save2csv.py


import pandas as pd

df = pd.Data frame({'fname':'Jane','lname':'Smith','age':25},
                   {'fname':'Dave','lname':'Jones','age':35},
                   {'fname':'Sara','lname':'Stone','age':45})

# save data frame to CSV file:
print("Saving data to save.csv:")
print(df.to_csv("save.csv",index=False))

# save data frame as CSV file in a zip file:
compression_opts = dict(method='zip',archive_name='save2.csv')
df.to_csv('save2.zip', index=False, compression=compression_opts)


Listing 6.17 defines the data frame df that contains three rows of data, with values for the first name, last name, and age of three people. The next code snippet invokes the to_csv() method to save the contents of df to the CSV file save2.csv. The final code snippet also invokes the to_csv() method, this time to save the contents of save2.csv in the zip file save2.zip. Launch the code in Listing 6.17, after which you will see two new files in the directory where you launched this Python script:


save.csv
save2.zip





PANDAS DATA FRAMES AND EXCEL SPREADSHEETS


Listing 6.18 shows the content of write_people_xlsx.py, which illustrates how to read data from a CSV file and then create an Excel spreadsheet with that data.

LISTING 6.18: write_people_xlsx.py


import pandas as pd

df1 = pd.read_csv("people.csv")
df1.to_excel("people.xlsx")

#optionally specify the sheet name:
#df1.to_excel("people.xlsx", sheet_name='Sheet_name_1')


Listing 6.18 contains the usual import statement, after which the variable df1 is initialized with the contents of the CSV file people.csv. The final code snippet then creates the Excel spreadsheet people.xlsx with the contents of the data frame df1, which contains the contents of the CSV file people.csv.

Launch write_people_xlsx.py from the command line and then open the newly created Excel spreadsheet people.xlsx to confirm its contents.

Listing 6.19 shows the content of read_people_xslx.py that illustrates how to read data from an Excel spreadsheet and create a Pandas data frame with that data.

LISTING 6.19: read_people_xslx.py


import pandas as pd

df = pd.read_excel("people.xlsx")
print("Contents of Excel spreadsheet:")
print(df)


Listing 6.19 shows that the Pandas data frame df is initialized with the contents of the spreadsheet people.xlsx (the contents are the same as people.csv) via the function read_excel(). The output from Listing 6.19 is shown here:


df1:
   Unnamed: 0 fname  lname  age gender  country
0           0  john  smith   30      m      usa
1           1  jane  smith   31      f   france
2           2  jack  jones   32      m   france
3           3  dave  stone   33      m    italy
4           4  sara  stein   34      f  germany
5           5  eddy  bower   35      m    spain





WORKING WITH JSON-BASED DATA


A JSON object consists of data represented as colon-separated name/value pairs, and the data objects are separated by commas. An object is specified inside curly braces {}, and an array of objects is indicated by square brackets []. Note that character-valued data elements are inside quotes “” (no quotes for numeric data).

Here is a simple example of a JSON object:


{ "fname":"Jane", "lname":"Smith", "age":33, "city":"SF" }


Here is a simple example of an array of JSON objects:


[
{ "fname":"Jane", "lname":"Smith", "age":33, "city":"SF" },
{ "fname":"John", "lname":"Jones", "age":34, "city":"LA" },
{ "fname":"Dave", "lname":"Stone", "age":35, "city":"NY" },
]




Python Dictionary and JSON


The Python json library enables you to work with JSON-based data in Python.

Listing 6.20 shows the content of dict2json.py that illustrates how to convert a Python dictionary to a JSON string.

LISTING 6.20: dict2json.py


import json

dict1 = {}
dict1["fname"] = "Jane"
dict1["lname"] = "Smith"
dict1["age"]   = 33
dict1["city"]  = "SF"

print("Python dictionary to JSON data:")
print("dict1:",dict1)
json1 = json.dumps(dict1, ensure_ascii=False)
print("json1:",json1)
print("")

# convert JSON string to Python dictionary:
json2 = '{"fname":"Dave", "lname":"Stone", "age":35, "city":"NY"}'
dict2 = json.loads(json2)
print("JSON data to Python dictionary:")
print("json2:",json2)
print("dict2:",dict2)


Listing 6.20 invokes the json.dumps() function to perform the conversion from a Python dictionary to a JSON string. Launch the code in Listing 6.20 to see the following output:


Python dictionary to JSON data:
dict1: {'fname': 'Jane', 'lname': 'Smith', 'age': 33, 'city': 'SF'}
json1: {"fname": "Jane", "lname": "Smith", "age": 33, "city": "SF"}

JSON data to Python dictionary:
json2: {"fname":"Dave", "lname":"Stone", "age":35, "city":"NY"}
dict2: {'fname': 'Dave', 'lname': 'Stone', 'age': 35, 'city': 'NY'}





Python, Pandas, and JSON


Listing 6.21 shows the content of pd_python_json.py, which illustrates how to convert a Python dictionary to a Pandas data frame and then convert the data frame to a JSON string.

LISTING 6.21: pd_python_json.py


import json
import pandas as pd

dict1 = {}
dict1["fname"] = "Jane"
dict1["lname"] = "Smith"
dict1["age"]   = 33
dict1["city"]  = "SF"

df1 = pd.Data frame.from_dict(dict1, orient='index')
print("Pandas df1:")
print(df1)
print()

json1 = json.dumps(dict1, ensure_ascii=False)
print("Serialized to JSON1:")
print(json1)
print()

print("Data frame to JSON2:")
json2 = df1.to_json(orient='split')
print(json2)


Listing 6.21 initializes a Python dictionary dict1 with multiple attributes for a user (first name, last name, and so forth). Next, the data frame df1 is created from the Python dictionary dict2json.py, and its contents are displayed.

The next portion of Listing 6.21 initializes the variable json1 by serializing the contents of dict2json.py, and its contents are displayed. The last code block in Listing 6.21 initializes the variable json2 to the result of converting the data frame df1 to a JSON string. Launch the code in Listing 6.21 to see the following output:


dict1: {'fname': 'Jane', 'lname': 'Smith', 'age': 33, 'city': 'SF'}
Pandas df1:
           0
fname   Jane
lname  Smith
age       33
city      SF

Serialized to JSON1:
{"fname": "Jane", "lname": "Smith", "age": 33, "city": "SF"}

Data frame to JSON2:
{"columns":[0],"index":["fname","lname","age","city"],"data":[["Jane"],["Smith"],[33],["SF"]]}
json1: {"fname": "Jane", "lname": "Smith", "age": 33, "city": "SF"}






WINDOW FUNCTIONS IN PANDAS


Listing 6.22 shows the content of temperature_changes.py, which illustrates how to use the Pandas expanding() and rolling() methods to calculate changes in daily temperature.

LISTING 6.22: temperature_changes.py


import numpy as np
import pandas as pd

# simple Numpy array for values:
temper_list = [10,20,30,40,50,60]

temper_array = np.array(temper_list)
print("temper_array:",temper_array)
print()

print("next day temper_array[1:]:")
print(temper_array[1:])
print()

print("initial temper_array[:-1]:")
print(temper_array[:-1])
print()

print("minus 1 temper_array[:-1] - 1:")
print(temper_array[:-1] - 1)
print()

# ratio = (tomorrow-today)/today = tomorrow/today - 1
print("ratios temper_array[1:]/temper_array[:-1]:")
print(temper_array[1:]/temper_array[:-1])
print()

print("ratios temper_array[1:]/temper_array[:-1] minus 1:")
print(temper_array[1:]/temper_array[:-1]-1)
print()

deltas = temper_array[1:]/temper_array[:-1] - 1
print("temperature deltas:")
print(deltas)

# now use Pandas data frames:
temper_df = pd.Data frame(temper_list, columns=['temperature'])
temper_df['prev_temperature'] = temper_df.shift(1)
temper_df['pct_daily_change'] = temper_df['temperature']/temper_df['prev_temperature']-1

# calculate the average temperature:
avg_temp = temper_df['temperature'].sum()/temper_df.shape[0]
print("average temperature:",avg_temp)
print()

# An expanding window provides a temperature value for an additional day,
# which enables us to update the mean value via the .expanding() method
# the range of columns for each calculation is shown here:
# 0 to 0
# 0 to 1
# 0 to 2
# 0 to 3
# ...
# 0 to n
temper_df['expand_mean']=temper_df['temperature'].expanding().mean()

# The .rolling() method uses a "sliding window" of constant width
# three consecutive columns for each calculation is shown here:
# 0 to 2
# 1 to 3
# 2 to 4
# 2 to 5
# ...
# (n-2) to n
temper_df['roll_mean_3']=temper_df['temperature'].rolling(3).mean()

print("temper_df with expanding window and rolling window:")
print(temper_df)
print()

import matplotlib.pyplot as plt
plt.subplots(figsize=(8,6))
plt.plot(temper_df['pct_daily_change'], label='Daily Change')
plt.plot(temper_df['expand_mean'], label='Expanding Mean')
plt.plot(temper_df['roll_mean_3'], label = 'Rolling Mean')
plt.xlabel('Day')
plt.ylabel('Change')
plt.legend()
plt.show()


Listing 6.22 starts with some import statements and then initializes the array variable temper_list with a set of six temperatures from 10 to 60. Admittedly, these numbers are contrived, but the rationale is to make it simple to follow the various calculations later in the code sample.

The next snippet displays the all-but-first values in temper_list, followed by the all-but-last values in temper_list. After subtracting 1 from the latter set of values, the next code snippet computes the fractional difference between the temperatures for consecutive days with the following code snippet:


print(temper_array[1:]/temper_array[:-1]-1)


The next code block initializes the Pandas data frame temper_df with the same fractional values. The two remaining concepts are the expanding window and rolling window. A rolling window always has the same width: it’s like a sliding window of a fixed width that starts with its left index equal to index 0, and its right index equal to the width of the window. As the left index increments by 1, so does the right index. When the left index increments by 1 again, so does the right index. This process is repeated until the right index equals the right-most index of the vector of numbers.

By contrast, an expanding window always has its left index equal to index 0, whereas its right index starts from 0, and then sequentially increases to 1, 2, 3, and so forth, until the value of the right most index of a vector of numbers.

The code in Listing 6.22 computes the expanding windows and their mean values, followed by computing the rolling windows and their mean values, and then displays the results. The final portion of Listing 6.22 displays a chart that displays three line graphs. Launch the code in Listing 6.22 to see the following output:


temper_array: [10 20 30 40 50 60]

next day temper_array[1:]:
[20 30 40 50 60]

initial temper_array[:-1]:
[10 20 30 40 50]

minus 1 temper_array[:-1] - 1:
[ 9 19 29 39 49]

ratios temper_array[1:]/temper_array[:-1]:
[2.         1.5        1.33333333 1.25       1.2       ]

ratios temper_array[1:]/temper_array[:-1] minus 1:
[1.         0.5        0.33333333 0.25       0.2       ]

temperature deltas:
[1.         0.5        0.33333333 0.25       0.2       ]
average temperature: 35.0

temper_df with expanding window and rolling window:
   temperature  prev_temperature  pct_daily_change  expand_mean  roll_mean_3
0           10               NaN               NaN         10.0          NaN
1           20              10.0          1.000000         15.0          NaN
2           30              20.0          0.500000         20.0         20.0
3           40              30.0          0.333333         25.0         30.0
4           50              40.0          0.250000         30.0         40.0
5           60              50.0          0.200000         35.0         50.0


Figure 6.1 displays a line graph that contains lines graphs corresponding to the daily change, the expanding mean, and the rolling mean of the data in Listing 6.17.


[image: Images]

FIGURE 6.1 A set of line graphs for temperature changes.






USEFUL ONE-LINE COMMANDS IN PANDAS


This section contains an eclectic mix of one-line commands in Pandas (some of which you have already seen in this chapter) that are useful to know:

Drop a feature in a data frame:


df.drop('feature_variable_name', axis=1)


Convert object type to float in a data frame:


pd.to_numeric(df["feature_name"], errors='coerce')


Convert data in a Pandas data frame to a NumPy array:


df.as_matrix()


Rename the fourth column of the data frame as “height:”


df.rename(columns = {df.columns[3]:'height'}, inplace=True)


Get the unique entries of the column “first” in a data frame:


df["first"].unique()


Display the number of different values in the first column:


df["first"].nunique()


Create a data frame with columns “first” and “last” from an existing data frame:


new_df = df[["name", "size"]]


Sort the data in a data frame:


df.sort_values(ascending = False)


Filter the data column named “size” to display only values equal to 7:


df[df["size"] == 7]


Display, at most, 1000 characters in each cell:


pd.set_option('max_colwidth', 1000)


Display, at most, 20 data frame rows:


pd.set_option('max_rows', 20)


Display, at most, 1000 columns:


pd.set_option('max_columns', 1000)


Display a random set of n rows:


df.sample(n)





WHAT IS PANDASQL?


As you can probably surmise, pandasql is a Python-based open source library that enables you to execute SQL statements from Pandas code. If you are unfamiliar with SQL, please read (or at least skim through) the appendix that contains information about SQL. Now launch the following command to install pandasql from the command line:


pip3 install -U pandasql


Listing 6.23 shows the content of pandasql.py that illustrates how to use the pandasql library with Pandas.

LISTING 6.23: pandasql1.py


from pandasql import sqldf
import pandas as pd
from sklearn import datasets

df_data = datasets.load_iris(as_frame = True)['data']
df_target = datasets.load_iris(as_frame = True)['target']
#print ("type(df_data):", type(df_data))
#print ("type(df_target):", type(df_target))

# an example of a query:
query = "SELECT * FROM df_target LIMIT 4"

# globals() returns a dictionary of variables:
session_vars = sqldf(query, globals())
print("globals()['df_data']:")
print(globals()['df_data'])
print("------------------------")

print("globals()['df_target']:")
print(globals()['df_target'])
print()

pysqldf = lambda q: sqldf(q, globals())

query = 'SELECT * FROM df_data LIMIT 4'
print("pysqldf(query):")
print(pysqldf(query))


Listing 6.23 starts with several import statements from pandasl, pandas, and sklearn. The next pair of code snippets initializes the variable df_feature with the “data” of the built-in Iris dataset from sklearn, followed by initializing the Series variable df_target with the “target” of the Iris dataset.

The variables that are created in the current session are stored as a dictionary that is returned by the globals() function, which in this case includes df_feature and df_target.

Note that Pandasql has limitations, some of which are inherited from SQLite, including no right outer join, no full outer join, and only SQL query statements are supported. Launch the code in Listing 6.23, which generates the following output:


globals()['df_data']:
     sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0                  5.1               3.5                1.4               0.2
1                  4.9               3.0                1.4               0.2
2                  4.7               3.2                1.3               0.2
3                  4.6               3.1                1.5               0.2
4                  5.0               3.6                1.4               0.2
..                 ...               ...                ...               ...
145                6.7               3.0                5.2               2.3
146                6.3               2.5                5.0               1.9
147                6.5               3.0                5.2               2.0
148                6.2               3.4                5.4               2.3
149                5.9               3.0                5.1               1.8

[150 rows x 4 columns]
------------------------
globals()['df_target']:
0      0
1      0
2      0
3      0
4      0
      ..
145    2
146    2
147    2
148    2
149    2
Name: target, Length: 150, dtype: int64

pysqldf(query):
   sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0                5.1               3.5                1.4               0.2
1                4.9               3.0                1.4               0.2
2                4.7               3.2                1.3               0.2
3                4.6               3.1                1.5               0.2





WHAT IS METHOD CHAINING?


Method chaining refers to combining method invocations without intermediate code. Method chaining is available in many languages, including Java, Scala, and JavaScript. Code that uses method chaining tends to be more compact, more performant, and easier to understand than other types of code. However, debugging such code can be difficult, especially in long method chains.

As a general rule, start by invoking a sequence of methods, and after ensuring that the code is correct, construct method chains with, at most, five or six methods. However, if a method inside a method chain also invokes other functions, then split the chain into two parts to increase readability. Since there is no “best” way to determine the number of methods in a method chain, experiment with method chains of different sizes (and differing complexity) until you determine a style that works best for you.



Pandas and Method Chaining


Recently, Pandas improved its support for method chaining, which includes the methods assign(), pivot_table(), and query(). Moreover, the pipe() method supports method chaining that contains user-defined methods. The following code snippet illustrates how to use method chaining to invoke several Pandas methods:


import pandas as pd
(pd.read_csv('data.csv')
   .fillna(...)
   .query('...')
   .assign(...)
   .pivot_table(...)
   .rename(...)
)


Consult the online documentation for more details regarding method chaining in Pandas.





PANDAS PROFILING


Pandas profiling is a useful Python library that performs an analysis on a dataset, which can be exported as a JSON-based file or an HTML Web page. Launch the following command in a command shell to install Pandas profiling:


pip3 install pandas_profiling


Listing 6.23 shows a small portion of the CSV file titanic.csv that is analyzed in Listing 6.24.

LISTING 6.23: titanic.csv


PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S
2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C
3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S
4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S
[details omitted for brevity]


Listing 6.24 shows the content of profile_titanic.py that illustrates how to invoke Pandas profiling to generate an HTML Web page that contains an analysis of the titanic.csv dataset.

LISTING 6.24: profile_titanic.py


import pandas as pd
import numpy as np
from pandas_profiling import ProfileReport

df = pd.read_csv("titanic.csv")

#generate the report:
profile = ProfileReport(df, title='Pandas Profiling Report', explorative=True)
profile.to_file("profile_titanic.html")


Listing 6.24 contains several import statements, followed by the initialization of the variable df as a Pandas data frame that contains the contents of the CSV file titanic.csv. The next code snippet initializes the variable profile as an instance of the ProfileReport class, followed by an invocation of the to_file() method that generates an HTML Web page with the contents of the CSV file titanic.csv.

Launch the code in Listing 6.24, after which you will see the HTML Web page profile_titanic.html, whose contents you can view in a browser.




ALTERNATIVES TO PANDAS


Although Pandas is a powerful Python-based library and the rationale for this book, there are alternatives available if you need to work with datasets that are too large to fit in RAM, such as DASK and VAEX.

Dask is a Python-based open-source framework that is designed for parallel and distributed computations. Dask provides a high-level API called Dask.Data frame that is well suited for handling memory and performance issues that can arise with Pandas.

Interestingly, Dask.Data frame consists of multiple smaller Pandas data frames that are managed by a Dask task scheduler. A “general” task is handled by a set of smaller Pandas data frames, and their results are merged when all the subtasks have completed execution.

Another option is Vaex, which is a high-performance Python-based library in Python that is designed for managing datasets whose size is comparable to the hard disk of a user’s machine. One key difference: Vaex does not rely on horizontal scaling (adding more computers).

The Vaex architecture is based on C++ code and can process data at a very high speed: one billion rows of data in a mere two seconds. Moreover, Vaex is compatible with Apache Arrow, and supports data streaming from cloud storage.

One other key point: Vaex involves lazy execution whereby the compute() method is essentially a “terminal” operator that initiates the execution of the Vaex code. Here is a simple code block in Vaex:


from dask import data frame as dd
dask_df = dd.read_parquet("sample.parquet")
mean_x = dask_df.x.mean().compute()


However, if you prefer to work exclusively with Pandas, there are some performance improvements that are possible by using vectorization, which is described in detail online:

https://towardsdatascience.com/do-you-use-apply-in-pandas-there-is-a-600x-faster-way-d2497facfa66




SUMMARY


This chapter started with an example of finding outliers in a data frame. You also saw how to use the pipe() method for method chaining, followed by the query() method for filtering data in a Pandas data frame.

In addition, you learned how to use the Pandas groupby() method, as well as how to perform aggregate operations with the titanic.csv dataset. Furthermore, you saw how to use the apply() and mapapply() methods in Pandas, as well as how to work with window functions.

Then you learned about managing JSON data in Pandas, how to work with a Python dictionary and JSON data, and also how to combine Python, Pandas, and JSON data.

Finally, you saw how to define regular expressions in Pandas and how to profile Pandas code, and read a brief description of alternatives to Pandas.






CHAPTER 7

DATA VISUALIZATION


This chapter introduces data visualization, along with a wide-ranging collection of Python-based code samples that use various visualization tools (including Matplotlib and Seaborn) to render charts and graphs. In addition, this chapter contains Python code samples that combine Pandas, Matplotlib, and built-in datasets.

The first part of this chapter briefly discusses data visualization, with a short list of some data visualization tools, and a list of various types of visualization (bar graphs, pie charts, and so forth).

The second part of this chapter introduces you to Matplotlib, which is an open source Python library that is modeled after MatLab. This section also provides the Python code samples for the line graphs (horizontal, vertical, and diagonal) in the Euclidean plane that you saw in a previous chapter.

The third part of the chapter introduces you to Seaborn for data visualization, which is a layer above Matplotlib. Although Seaborn does not have all of the features that are available in Matplotlib, Seaborn provides an easier set of APIs for rendering charts and graphs.

The final portion of this chapter contains a very short introduction to Bokeh, along with a code sample that illustrates how to create a more artistic graphics effect with relative ease in Bokeh.



WHAT IS DATA VISUALIZATION?


Data visualization refers to presenting data in a graphical manner, such as bar charts, line graphs, heat maps, and many other specialized representations. As you probably know, Big Data comprises massive amounts of data, which leverages data visualization tools to assist in making better decisions.

A key role for good data visualization is to tell a meaningful story, which in turn focuses on useful information that resides in datasets that can contain many data points (i.e., billions of rows of data). Another aspect of data visualization is its effectiveness: how well does it convey the trends that might exist in the dataset?

There are many open source data visualization tools available, some of which are listed here (many others are available):


	Matplotlib

	Seaborn

	Bokeh

	YellowBrick

	Tableau

	D3.js (JavaScript and SVG)



Incidentally, in case you have not already done so, it would be helpful to install the following Python libraries (using pip3) on your computer so that you can launch the code samples in this chapter:


pip3 install matplotlib
pip3 install seaborn
pip3 install bokeh




Types of Data Visualization


Bar graphs, line graphs, and pie charts are common ways to present data, and yet many other types exist, some of which are listed below:


	2D/3D Area Chart

	Bar Chart

	Gantt Chart

	Heat Map

	Histogram

	Polar Area

	Scatter Plot (2D or 3D)

	Timeline



The Python code samples in the next several sections illustrate how to perform visualization via rudimentary APIs from matplotlib.





WHAT IS MATPLOTLIB?


Matplotlib is a plotting library that supports NumPy, SciPy, and toolkits such as wxPython (among others). Matplotlib supports only version 3 of Python: support for version 2 of Python was available only through 2020. Matplotlib is a multi-platform library that is built on NumPy arrays.

The plotting-related code samples in this chapter use pyplot, which is a Matplotlib module that provides a MATLAB-like interface. Here is an example of using pyplot (copied from https://www.biorxiv.org/content/10.1101/120378v1.full.pdf) to plot a smooth curve based on negative powers of Euler’s constant e:


import matplotlib.pyplot as plt
import numpy as np
a = np.linspace(0, 10, 100)
b = np.exp(-a)
plt.plot(a, b)
plt.show()


The Python code samples for visualization in this chapter use primarily Matplotlib, along with some code samples that use Seaborn. The code samples that plot line segments assume that you are familiar with the equation of a (non-vertical) line in the plane: y = m*x + b, where m is the slope and b is the y-intercept.

Furthermore, some code samples use NumPy APIs such as np.linspace(), np.array(),  np.random.rand(), and np.ones() that are discussed in Chapter 3, so you can refresh your memory regarding these APIs.




LINES IN A GRID IN MATPLOTLIB


Listing 7.1 displays the content of plotlinegrid2.py that illustrates how to plot lines in a grid.

LISTING 7.1: plotlinegrid2.py


import numpy as np
import pylab
from itertools import product
import matplotlib.pyplot as plt

fig = plt.figure()
graph = fig.add_subplot(1,1,1)
graph.grid(which='major', linestyle='-', linewidth='0.5', color='red')

x1 = np.linspace(-5,5,num=200)
y1 = 1*x1
graph.plot(x1,y1, 'r-o')

x2 = np.linspace(-5,5,num=200)
y2 = -x2
graph.plot(x2,y2, 'b-x')

fig.show() # to update
plt.show()


Listing 7.1 defines the NumPy variable points that defines a 2D list of points with three rows and four columns. The Pyplot API plot() uses the points variable to display a grid-like pattern.

Figure 7.1 displays a pair of diagonal “dashed” line segments with a grid-like background effect from the code in Listing 7.1.


[image: Images]

FIGURE 7.1 A grid with diagonal line segments.






A COLORED GRID IN MATPLOTLIB


Listing 7.2 displays the content of plotgrid2.py that illustrates how to display a colored grid.

LISTING 7.2: plotgrid2.py


import matplotlib.pyplot as plt
from matplotlib import colors
import numpy as np

data = np.random.rand(10, 10) * 20

# create discrete colormap
cmap = colors.ListedColormap(['red', 'blue'])
bounds = [0,10,20]
norm = colors.BoundaryNorm(bounds, cmap.N)

fig, ax = plt.subplots()
ax.imshow(data, cmap=cmap, norm=norm)

# draw gridlines
ax.grid(which='major', axis='both', linestyle='-', color='k', linewidth=2)
ax.set_xticks(np.arange(-.5, 10, 1));
ax.set_yticks(np.arange(-.5, 10, 1));

plt.show()


Listing 7.2 defines the NumPy variable data that defines a 2D set of points with ten rows and ten columns. The Pyplot API plot() uses the data variable to display a colored grid-like pattern.

Figure 7.2 displays a colored checkerboard grid based on the code in Listing 7.2.


[image: Images]

FIGURE 7.2 A checkerboard pattern with colored cells.






RANDOMIZED DATA POINTS IN MATPLOTLIB


Listing 7.3 displays the content of lin_reg_plot.py that illustrates how to plot a graph of random points.

LISTING 7.3: lin_plot_reg.py


import numpy as np
import matplotlib.pyplot as plt

trX = np.linspace(-1, 1, 101) # Linear space of 101 and [-1,1]

#Create the y function based on the x axis
trY = 2*trX + np.random.randn(*trX.shape)*0.4+0.2

#create figure and scatter plot of the random points
plt.figure()
plt.scatter(trX,trY)

# Draw one line with the line function
plt.plot (trX, .2 + 2 * trX)
plt.show()


Listing 7.3 defines the NumPy variable trX that contains 101 equally spaced numbers that are between -1 and 1 (inclusive). The variable trY is defined in two parts: the first part is 2*trX and the second part is a random value that is partially based on the length of the one-dimensional array trX. The variable trY is the sum of these two “parts”, which creates a “fuzzy” line segment.

The next portion of Listing 7.3 creates a scatterplot based on the values in trX and trY, followed by the Pyplot API plot() that renders a line segment. Figure 7.3 displays a random set of points based on the code in Listing 7.3.


[image: Images]

FIGURE 7.3 A random set of points.






A HISTOGRAM IN MATPLOTLIB


Listing 7.4 displays the content of histogram1.py that illustrates how to plot a histogram using Matplotlib.

LISTING 7.4: histogram1.py


import numpy as np
import Matplotlib.pyplot as plt

max1 = 500
max2 = 500

appl_count = 28 + 4 * np.random.randn(max1)
bana_count = 24 + 4 * np.random.randn(max2)

plt.hist([appl_count, appl_count],stacked=True,color=['r','b'])
plt.show()


Listing 7.4 is straightforward: the NumPy variables appl_count and bana_count contain a random set of values whose upper bound is max1 and max2, respectively. The Pyplot API hist() uses the points appl_count and bana_count to display a histogram. Figure 7.4 displays a histogram whose shape is based on the code in Listing 7.4.


[image: Images]

FIGURE 7.4 A histogram based on random values.






A SET OF LINE SEGMENTS IN MATPLOTLIB


Listing 7.5 displays the content of line_segments.py that illustrates how to plot a set of connected line segments in Matplotlib.

LISTING 7.5: line_segments.py


import numpy as np
import matplotlib.pyplot as plt

x = [7,11,13,15,17,19,23,29,31,37]

plt.plot(x) # OR: plt.plot(x, 'ro-') or bo
plt.ylabel('Height')
plt.xlabel('Weight')
plt.show()


Listing 7.5 defines the array x that contains a hard-coded set of values. The Pyplot API plot() uses the variable x to display a set of connected line segments. Figure 7.5 displays the result of launching the code in Listing 7.5.


[image: Images]

FIGURE 7.5 A set of connected line segments.






PLOTTING MULTIPLE LINES IN MATPLOTLIB


Listing 7.6 displays the content of plt_array2.py that illustrates the ease with which you can plot multiple lines in Matplotlib.

LISTING 7.6: plt_array2.py


import matplotlib.pyplot as plt

data = [[8, 4, 1], [5, 3, 3], [6, 0, 2], [1, 7, 9]]
plt.plot(data, 'd-')
plt.show()


Listing 7.6 defines the array data that contains a hard-coded set of values. The Pyplot API plot() uses the variable data to display a line segment. Figure 7.6 displays multiple lines based on the code in Listing 7.6.


[image: Images]

FIGURE 7.6 Multiple lines in Matplotlib.






TRIGONOMETRIC FUNCTIONS IN MATPLOTLIB


You can display the graph of trigonometric functions as easily as you can render “regular” graphs using Matplotlib. Listing 7.7 displays the content of sincos.py that illustrates how to plot a sine function and a cosine function in Matplotlib.

LISTING 7.7: sincos.py


import numpy as np
import math

x = np.linspace(0, 2*math.pi, 101)
s = np.sin(x)
c = np.cos(x)

import matplotlib.pyplot as plt
plt.plot (s)
plt.plot (c)
plt.show()


Listing 7.7 defines the NumPy variables x, s, and c using the NumPy APIs linspace(), sin(), and cos(), respectively. Next, the Pyplot API plot() uses these variables to display a sine function and a cosine function.

Figure 7.7 displays a graph of two trigonometric functions based on the code in Listing 7.7.


[image: Images]

FIGURE 7.7 Sine and cosine trigonometric functions.



Now let’s look at a simple dataset consisting of discrete data points, which is the topic of the next section.




DISPLAY IQ SCORES IN MATPLOTLIB


Listing 7.8 displays the content of iq_scores.py that illustrates how to plot a histogram that displays IQ scores (based on a normal distribution).

LISTING 7.8: iq_scores.py


import numpy as npf
import matplotlib.pyplot as plt

mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)

# the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75)

plt.xlabel('Intelligence')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()


Listing 7.8 defines the scalar variables mu and sigma, followed by the NumPy variable x that contains a random set of points. Next, the variables n, bins, and patches are initialized via the return values of the NumPy hist() API. Finally, these points are plotted via the usual plot() API to display a histogram

Figure 7.8 displays a histogram whose shape is based on the code in Listing 7.8.


[image: Images]

FIGURE 7.8 A histogram to display IQ scores.






PLOT A BEST-FITTING LINE IN MATPLOTLIB


Listing 7.9 displays the content of plot_best_fit.py that illustrates how to plot a best-fitting line in Matplotlib.

LISTING 7.9: plot_best_fit.py


import numpy as np

xs = np.array([1,2,3,4,5], dtype=np.float64)
ys = np.array([1,2,3,4,5], dtype=np.float64)

def best_fit_slope(xs,ys):
  m = (((np.mean(xs)*np.mean(ys))-np.mean(xs*ys)) /
       ((np.mean(xs)**2) - np.mean(xs**2)))
  b = np.mean(ys) - m * np.mean(xs)

  return m, b

m,b = best_fit_slope(xs,ys)
print('m:',m,'b:',b)

regression_line = [(m*x)+b for x in xs]

import matplotlib.pyplot as plt
from matplotlib import style
style.use('ggplot')

plt.scatter(xs,ys,color='#0000FF')
plt.plot(xs, regression_line)
plt.show()


Listing 7.9 defines the NumPy array variables xs and ys that are “fed” into the Python function best_fit_slope() that calculates the slope m and the y-intercept b for the best-fitting line. The Pyplot API scatter() displays a scatter plot of the points xs and ys, followed by the plot() API that displays the best-fitting line. Figure 7.9 displays a simple line based on the code in Listing 7.9.


[image: Images]

FIGURE 7.9 A best-fitting line for a 2D dataset.



This concludes the portion of the chapter regarding NumPy and Matplotlib. The next section introduces you to Sklearn, which is a powerful Python-based library that supports many algorithms for machine learning. After you have read the short introduction, subsequent sections contain Python code samples that combine Pandas, Matplotlib, and Sklearn built-in datasets.




THE IRIS DATASET IN SKLEARN


Listing 7.16 displays the content of sklearn_iris.py that illustrates how to access the Iris dataset in Sklearn.

In addition to support for machine learning algorithms, Sklearn provides various built-in datasets that you can access with literally one line of code. In fact, Listing 7.16 displays the content of sklearn_iris1.py that illustrates how you can easily load the Iris dataset into a Pandas data frame.

LISTING 7.16: sklearn_iris.py


import numpy as np
import pandas as pd
from sklearn.datasets import load_iris

iris = load_iris()

print("=> iris keys:")
for key in iris.keys():
  print(key)
print()

#print("iris dimensions:")
#print(iris.shape)
#print()

print("=> iris feature names:")
for feature in iris.feature_names:
  print(feature)
print()

X = iris.data[:, [2, 3]]
y = iris.target
print('=> Class labels:', np.unique(y))
print()

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5

print("=> target:")
print(iris.target)
print()

print("=> all data:")
print(iris.data)


Listing 7.16 contains several import statements and then initializes the variable iris with the Iris dataset. Next, a loop displays the keys in dataset, followed by another loop that displays the feature names.

The next portion of Listing 7.19 initializes the variable X with the feature values in columns 2 and 3, and then initializes the variable y with the values of the target column.

The variable x_min is initialized as the minimum value of column 0 and then an additional 0.5 is subtracted from x_min. Similarly, the variable x_max is initialized as the maximum value of column 0 and then an additional 0.5 is added to x_max. The variables y_min and y_max are the counterparts to x_min and x_max, applied to column 1 instead of column 0.

Launch the code in Listing 7.16 and you will see the following output (truncated to save space):


Pandas df1:

=> iris keys:
data
target
target_names
DESCR
feature_names
filename

=> iris feature names:
sepal length (cm)
sepal width (cm)
petal length (cm)
petal width (cm)

=> Class labels: [0 1 2]

=> x_min: 0.5 x_max: 7.4
=> y_min: -0.4 y_max: 3.0

=> target:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]

=> all data:
[[5.1 3.5 1.4 0.2]
 [4.9 3.  1.4 0.2]
 [4.7 3.2 1.3 0.2]
 // details omitted for brevity
 [6.5 3.  5.2 2. ]
 [6.2 3.4 5.4 2.3]
 [5.9 3.  5.1 1.8]]




Sklearn, Pandas, and the Iris Dataset


Listing 7.17 displays the content of pandas_iris.py that illustrates how to load the contents of the Iris dataset (from Sklearn) into a Pandas data frame.

LISTING 7.17: pandas_iris.py


import numpy as np
import pandas as pd
from sklearn.datasets import load_iris

iris = load_iris()

print("=> IRIS feature names:")
for feature in iris.feature_names:
  print(feature)
print()

# Create a data frame with the feature variables
df = pd.Data frame(iris.data, columns=iris.feature_names)

print("=> number of rows:")
print(len(df))
print()

print("=> number of columns:")
print(len(df.columns))
print()

print("=> number of rows and columns:")
print(df.shape)
print()

print("=> number of elements:")
print(df.size)
print()

print("=> IRIS details:")
print(df.info())
print()

print("=> top five rows:")
print(df.head())
print()

X = iris.data[:, [2, 3]]
y = iris.target
print('=> Class labels:', np.unique(y))


Listing 7.17 contains several import statements and then initializes the variable iris with the Iris dataset. Next, a for loop displays the feature names. The next code snippet initializes the variable df with the contents of the Iris dataset in the form of a Pandas data frame.

The next block of code invokes some attributes and methods of a Pandas data frame to display the number of rows, columns, and elements in the data frame, as well as the details of the Iris dataset, the first five rows, and the unique labels in the Iris dataset. Launch the code in Listing 7.17 and you will see the following output:


=> IRIS feature names:
sepal length (cm)
sepal width (cm)
petal length (cm)
petal width (cm)

=> number of rows:
150

=> number of columns:
4

=> number of rows and columns:
(150, 4)

=> number of elements:
600

=> IRIS details:
<class 'pandas.core.frame.Data frame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 4 columns):
sepal length (cm)    150 non-null float64
sepal width (cm)     150 non-null float64
petal length (cm)    150 non-null float64
petal width (cm)     150 non-null float64
dtypes: float64(4)
memory usage: 4.8 KB
None

=> top five rows:
   sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0                5.1               3.5                1.4               0.2
1                4.9               3.0                1.4               0.2
2                4.7               3.2                1.3               0.2
3                4.6               3.1                1.5               0.2
4                5.0               3.6                1.4               0.2

=> Class labels: [0 1 2]


Now let’s turn our attention to Seaborn, which is a very nice data visualization package for Python.





WORKING WITH SEABORN


Seaborn is a Python package for data visualization that also provides a high-level interface to Matplotlib. Seaborn is easier to work with than Matplotlib, and actually extends Matplotlib, but Seaborn is not as powerful as Matplotlib.

Seaborn addresses two challenges of Matplotlib. The first involves the default Matplotlib parameters. Seaborn works with different parameters, which provides greater flexibility than the default rendering of Matplotlib plots. Seaborn addresses the limitations of the Matplotlib default values for features such as colors, tick marks on the upper and right axes, and the style (among others).

In addition, Seaborn makes it easier to plot entire data frames (somewhat like pandas) than doing so in Matplotlib. Nevertheless, since Seaborn extends Matplotlib, knowledge of the latter is advantageous and will simplify your learning curve.



Features of Seaborn


Some of the features of Seaborn include the following:


	scale seaborn plots

	set the plot style

	set the figure size

	rotate the label text

	set xlim or ylim

	set the log scale

	add titles



Some useful methods are as follows:


	plt.xlabel()

	plt.ylabel()

	plt.annotate()

	plt.legend()

	plt.ylim()

	plt.savefig()



Seaborn supports various built-in datasets, just like NumPy and Pandas, including the Iris dataset and the Titanic dataset, both of which you will see in subsequent sections. As a starting point, the three-line code sample in the next section shows you how to display the rows in the built-in “tips” dataset.





SEABORN BUILT-IN DATASETS


Listing 7.18 displays the content of seaborn_tips.py that illustrates how to read the tips dataset into a data frame and display the first five rows of the dataset.

LISTING 7.18: seaborn_tips.py


import seaborn as sns
df = sns.load_dataset("tips")
print(df.head())


Listing 7.18 is very simple: after importing seaborn, the variable df is initialized with the data in the built-in dataset tips, and the print() statement displays the first five rows of df. Note that the load_dataset() API searches for online or built-in datasets. The output from Listing 7.18 is here:


   total_bill   tip     sex smoker  day    time  size
0       16.99  1.01  Female     No  Sun  Dinner     2
1       10.34  1.66    Male     No  Sun  Dinner     3
2       21.01  3.50    Male     No  Sun  Dinner     3
3       23.68  3.31    Male     No  Sun  Dinner     2
4       24.59  3.61  Female     No  Sun  Dinner     4





THE IRIS DATASET IN SEABORN


Listing 7.19 displays the content of seaborn_iris.py that illustrates how to plot the Iris dataset.

LISTING 7.19: seaborn_iris.py


import seaborn as sns
import Matplotlib.pyplot as plt

# Load iris data
iris = sns.load_dataset("iris")

# Construct iris plot
sns.swarmplot(x="species", y="petal_length", data=iris)

# Show plot
plt.show()


Listing 7.19 imports seaborn and Matplotlib.pyplot and then initializes the variable iris with the contents of the built-in Iris dataset. Next, the swamplot() API displays a graph with the horizontal axis labeled species, the vertical axis labeled petal_length, and the displayed points are from the Iris dataset.

Figure 7.10 displays the images in the Iris dataset based on the code in Listing 7.19.


[image: Images]

FIGURE 7.10 The Iris dataset.






THE TITANIC DATASET IN SEABORN


Listing 7.20 displays the content of seaborn_titanic_plot.py that illustrates how to plot the Titanic dataset.

LISTING 7.20: seaborn_titanic_plot.py


import matplotlib.pyplot as plt
import seaborn as sns

titanic = sns.load_dataset("titanic")
g = sns.factorplot("class", "survived", "sex", data=titanic, kind="bar", palette="muted", legend=False)

plt.show()


Listing 7.20 contains the same import statements as Listing 7.19, and then initializes the variable titanic with the contents of the built-in Titanic dataset. Next, the factorplot() API displays a graph with dataset attributes that are listed in the API invocation.

Figure 7.11 displays a plot of the data in the Titanic dataset based on the code in Listing 7.20.


[image: Images]

FIGURE 7.11 A histogram of the Titanic dataset.






EXTRACTING DATA FROM THE TITANIC DATASET IN SEABORN (1)


Listing 7.21 displays the content of seaborn_titanic.py that illustrates how to extract subsets of data from the Titanic dataset.

LISTING 7.21: seaborn_titanic.py


import matplotlib.pyplot as plt
import seaborn as sns

titanic = sns.load_dataset("titanic")

print("titanic info:")
titanic.info()

print("first five rows of titanic:")
print(titanic.head())

print("first four ages:")
print(titanic.loc[0:3,'age'])

print("fifth passenger:")
print(titanic.iloc[4])

#print("first five ages:")
#print(titanic['age'].head())

#print("first five ages and gender:")
#print(titanic[['age','sex']].head())

#print("descending ages:")
#print(titanic.sort_values('age', ascending = False).head())

#print("older than 50:")
#print(titanic[titanic['age'] > 50])

#print("embarked (unique):")
#print(titanic['embarked'].unique())

#print("survivor counts:")
#print(titanic['survived'].value_counts())

#print("counts per class:")
#print(titanic['pclass'].value_counts())

#print("max/min/mean/median ages:")
#print(titanic['age'].max())
#print(titanic['age'].min())
#print(titanic['age'].mean())
#print(titanic['age'].median())


Listing 7.21 contains the same import statements as Listing 7.20, and then initializes the variable titanic with the contents of the built-in Titanic dataset. The next portion of Listing 7.21 displays various aspects of the Titanic dataset, such as its structure, the first five rows, the first four ages, and the details of the fifth passenger.

As you can see, there is a large block of “commented out” code that you can uncomment to see the associated output, such as age, gender, persons over 50, and unique rows. The output from Listing 7.21 is here:


titanic info:
<class 'pandas.core.frame.Data frame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
survived       891 non-null int64
pclass         891 non-null int64
sex            891 non-null object
age            714 non-null float64
sibsp          891 non-null int64
parch          891 non-null int64
fare           891 non-null float64
embarked       889 non-null object
class          891 non-null category
who            891 non-null object
adult_male     891 non-null bool
deck           203 non-null category
embark_town    889 non-null object
alive          891 non-null object
alone          891 non-null bool
dtypes: bool(2), category(2), float64(2), int64(4), object(5)
memory usage: 80.6+ KB
first five rows of titanic:
   survived  pclass     sex   age  sibsp  parch     fare embarked  class  \
0         0       3    male  22.0      1      0   7.2500        S  Third
1         1       1  female  38.0      1      0  71.2833        C  First
2         1       3  female  26.0      0      0   7.9250        S  Third
3         1       1  female  35.0      1      0  53.1000        S  First
4         0       3    male  35.0      0      0   8.0500        S  Third

     who  adult_male deck  embark_town alive  alone
0    man        True  NaN  Southampton    no  False
1  woman       False    C    Cherbourg   yes  False
2  woman       False  NaN  Southampton   yes   True
3  woman       False    C  Southampton   yes  False
4    man        True  NaN  Southampton    no   True
first four ages:
0    22.0
1    38.0
2    26.0
3    35.0
Name: age, dtype: float64
fifth passenger:
survived                 0
pclass                   3
sex                   male
age                     35
sibsp                    0
parch                    0
fare                  8.05
embarked                 S
class                Third
who                    man
adult_male            True
deck                   NaN
embark_town    Southampton
alive                   no
alone                 True
Name: 4, dtype: object
counts per class:
3    491
1    216
2    184
Name: pclass, dtype: int64
max/min/mean/median ages:
80.0
0.42
29.69911764705882
28.0





EXTRACTING DATA FROM THE TITANIC DATASET IN SEABORN (2)


Listing 7.22 displays the content of seaborn_titanic2.py that illustrates how to extract subsets of data from the Titanic dataset.

LISTING 7.22: seaborn_titanic2.py


import matplotlib.pyplot as plt
import seaborn as sns

titanic = sns.load_dataset("titanic")

# Returns a scalar
# titanic.ix[4, 'age']
print("age:",titanic.at[4, 'age'])

# Returns a Series of name 'age', and the age values associated
# to the index labels 4 and 5
# titanic.ix[[4, 5], 'age']
print("series:",titanic.loc[[4, 5], 'age'])

# Returns a Series of name '4', and the age and fare values
# associated to that row.
# titanic.ix[4, ['age', 'fare']]
print("series:",titanic.loc[4, ['age', 'fare']])

# Returns a Data frame with rows 4 and 5, and columns 'age' and 'fare'
# titanic.ix[[4, 5], ['age', 'fare']]
print("data frame:",titanic.loc[[4, 5], ['age', 'fare']])

query = titanic[
    (titanic.sex == 'female')
    & (titanic['class'].isin(['First', 'Third']))
    & (titanic.age > 30)
    & (titanic.survived == 0)
]
print("query:",query)


Listing 7.22 contains the same import statements as Listing 7.21, and then initializes the variable titanic with the contents of the built-in Titanic dataset. The next code snippet displays the age of the passenger with index 4 in the dataset (which equals 35).

The following code snippet displays the ages of passengers with index values 4 and 5 in the dataset:


print("series:",titanic.loc[[4, 5], 'age'])


The next snippet displays the age and fare of the passenger with index 4 in the dataset, followed by another code snippet displays the age and fare of the passengers with index 4 and index 5 in the dataset.

The final portion of Listing 7.22 is the most interesting part: it defines a variable query, as shown in the following code snippet.


query = titanic[
    (titanic.sex == 'female')
    & (titanic['class'].isin(['First', 'Third']))
    & (titanic.age > 30)
    & (titanic.survived == 0)
]


The preceding code block will retrieve the female passengers who are in either first class or third class, who are also over 30, and who did not survive the accident. The entire output from Listing 7.22 is here:


age: 35.0
series: 4    35.0
5     NaN
Name: age, dtype: float64
series: age       35
fare    8.05
Name: 4, dtype: object
data frame:     age    fare
4  35.0  8.0500
5   NaN  8.4583
query:      survived  pclass     sex   age  sibsp  parch     fare embarked  class  \
18          0       3  female  31.0      1      0  18.0000        S  Third
40          0       3  female  40.0      1      0   9.4750        S  Third
132         0       3  female  47.0      1      0  14.5000        S  Third
167         0       3  female  45.0      1      4  27.9000        S  Third
177         0       1  female  50.0      0      0  28.7125        C  First
254         0       3  female  41.0      0      2  20.2125        S  Third
276         0       3  female  45.0      0      0   7.7500        S  Third
362         0       3  female  45.0      0      1  14.4542        C  Third
396         0       3  female  31.0      0      0   7.8542        S  Third
503         0       3  female  37.0      0      0   9.5875        S  Third
610         0       3  female  39.0      1      5  31.2750        S  Third
638         0       3  female  41.0      0      5  39.6875        S  Third
657         0       3  female  32.0      1      1  15.5000        Q  Third
678         0       3  female  43.0      1      6  46.9000        S  Third
736         0       3  female  48.0      1      3  34.3750        S  Third
767         0       3  female  30.5      0      0   7.7500        Q  Third
885         0       3  female  39.0      0      5  29.1250        Q  Third





VISUALIZING A PANDAS DATASET IN SEABORN


Listing 7.23 displays the content of pandas_seaborn.py that illustrates how to display a Pandas dataset in Seaborn.

LISTING 7.23: pandas_seaborn.py


import pandas as pd
import random
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.Data frame()

df['x'] = random.sample(range(1, 100), 25)
df['y'] = random.sample(range(1, 100), 25)

print("top five elements:")
print(df.head())

# display a density plot
#sns.kdeplot(df.y)

# display a density plot
#sns.kdeplot(df.y, df.x)

#sns.distplot(df.x)

# display a histogram
#plt.hist(df.x, alpha=.3)
#sns.rugplot(df.x)

# display a boxplot
#sns.boxplot([df.y, df.x])

# display a violin plot
#sns.violinplot([df.y, df.x])

# display a heatmap
#sns.heatmap([df.y, df.x], annot=True, fmt="d")

# display a cluster map
#sns.clustermap(df)

# display a scatterplot of the data points
sns.lmplot('x', 'y', data=df, fit_reg=False)
plt.show()


Listing 7.23 contains several familiar import statements, followed by the initialization of the Pandas variable df as a Pandas data frame. The next two code snippets initialize the columns and rows of the data frame, and the print() statement displays the first five rows.

For your convenience, Listing 7.23 contains an assortment of “commented out” code snippets that use Seaborn to render a density plot, a histogram, a boxplot, a violin plot, a heatmap, and a cluster. Uncomment the portions that interest you to see the associated plot. The output from Listing 7.23 is here:


top five elements:
    x   y
0  52  34
1  31  47
2  23  18
3  34  70
4  71   1


Figure 7.12 displays a plot of the data in the Titanic dataset based on the code in Listing 7.23.


[image: Images]

FIGURE 7.12 A Pandas data frame displayed via Seaborn.






DATA VISUALIZATION IN PANDAS


Although Matplotlib and Seaborn are often the “go to” Python libraries for data visualization, you can also use Pandas for such tasks.

Listing 7.24 displays the content pandas_viz1.py that illustrates how to render various types of charts and graphs using Pandas and Matplotlib.

LISTING 7.24: pandas_viz1.py


import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.Data frame(np.random.rand(16,3), columns=['X1','X2','X3'])
print("First 5 rows:")
print(df.head())
print()

print("Diff of first 5 rows:")
print(df.diff().head())
print()

# bar chart:
#ax = df.plot.bar()

# horizontal stacked bar chart:
#ax = df.plot.barh(stacked=True)

# vertical stacked bar chart:
ax = df.plot.bar(stacked=True)

# stacked area graph:
#ax = df.plot.area()

# non-stacked area graph:
#ax = df.plot.area(stacked=False)

#plt.show(ax)


Listing 7.24 initializes the data frame df with a 16x3 matrix of random numbers, followed by the contents of df. The bulk of Listing 7.24 contains code snippets for generating a bar chart, a horizontal stacked bar chart, a vertical stacked bar chart, a stacked area graph, and a non-stacked area graph. You can uncomment the individual code snippet that displays the graph of your choice with the contents of df. Launch the code in Listing 7.24 and you will see the following output:


First 5 rows:
         X1        X2        X3
0  0.051089  0.357183  0.344414
1  0.800890  0.468372  0.800668
2  0.492981  0.505133  0.228399
3  0.461996  0.977895  0.471315
4  0.033209  0.411852  0.347165

Diff of first 5 rows:
         X1        X2        X3
0       NaN       NaN       NaN
1  0.749801  0.111189  0.456255
2 -0.307909  0.036760 -0.572269
3 -0.030984  0.472762  0.242916
4 -0.428787 -0.566043 -0.124150





WHAT IS BOKEH?


Bokeh is an open source project that depends on Matplotlib as well as Sklearn. As you will see in the subsequent code sample, Bokeh generates an HTML Web page that is based on Python code, and then launches that Web page in a browser. Bokeh and D3.js (which is a JavaScript layer of abstraction over SVG) both provide elegant visualization effects that support animation effects and user interaction.

Bokeh enables the rapid creation of statistical visualizations, and it works with other tools, such as Python Flask and Django. In addition to Python, Bokeh supports Julia, Lua, and R (JSON files are generated instead of HTML Web pages).

Listing 7.25 displays the content bokeh_trig.py that illustrates how to create a graphics effect using various Bokeh APIs.

LISTING 7.25: bokeh_trig.py


# pip3 install bokeh
from bokeh.plotting import figure, output_file, show
from bokeh.layouts import column
import bokeh.colors as colors
import numpy as np
import math

deltaY = 0.01
maxCount = 150
width  = 800
height = 400
band_width = maxCount/3

x = np.arange(0, math.pi*3, 0.05)
y1 = np.sin(x)
y2 = np.cos(x)

white = colors.RGB(255,255,255)

fig1 = figure(plot_width = width, plot_height = height)

for i in range(0,maxCount):
  rgb1 = colors.RGB(i*255/maxCount, 0, 0)
  rgb2 = colors.RGB(i*255/maxCount, i*255/maxCount, 0)
  fig1.line(x, y1-i*deltaY,line_width = 2, line_color = rgb1)
  fig1.line(x, y2-i*deltaY,line_width = 2, line_color = rgb2)

for i in range(0,maxCount):
  rgb1 = colors.RGB(0, 0, i*255/maxCount)
  rgb2 = colors.RGB(0, i*255/maxCount, 0)
  fig1.line(x, y1+i*deltaY,line_width = 2, line_color = rgb1)
  fig1.line(x, y2+i*deltaY,line_width = 2, line_color = rgb2)
  if (i % band_width == 0):
    fig1.line(x, y1+i*deltaY,line_width = 5, line_color = white)

show(fig1)


Listing 7.25 starts with a commented out pip3 code snippet that you can launch from the command line to install Bokeh (in case you haven’t done so already).

The next code block contains several Bokeh-related statements, as well as NumPy and Math.

Notice that the variable white is defined as an (R, G, B) triple of integers, which represents the red, green, and blue components of a color. In particular, (255, 255, 255) represents the color white (check online if you are unfamiliar with RGB). The next portion of Listing 7.25 initializes some scalar variables that are used in the two for loops that are in the second half of Listing 7.28.

Next, the NumPy variable x is a range of values from 0 to math.PI/3, with an increment of 0.05 between successive values. Then the NumPy variables y1 and y2 are defined as the sine and cosine values, respectively, of the values in x. The next code snippet initializes the variable fig1 that represents a context in which the graphics effects will be rendered. This completes the initialization of the variables that are used in the two loops.

The next portion of Listing 7.25 contains the first for loop that creates a gradient-like effect by defining (R, G, B) triples whose values are based partially on the value of the loop variable i. For example, the variable rgb1 ranges in a linear fashion from (0, 0, 0) to (255, 0, 0), which represent the colors black and red, respectively. The variable rgb2 ranges in a linear fashion from (0, 0, 0) to (255, 255, 0), which represent the colors black and yellow, respectively. The next portion of the for loop contains two invocations of the fig1.line() API that renders a sine wave and a cosine wave in the context variable fig1.

The second for loop is similar to the first for loop: the main difference is that the variable rgb1 varies from black to blue, and the variable rgb2 variables from black to green. The final code snippet in Listing 7.25 invokes the show() method that generates an HTML Web page (with the same prefix as the Python file) and then launches the Web page in a browser.

Figure 7.13 displays the graphics effect based on the code in Listing 7.25. If this image is displayed as black and white, launch the code from the command line and you will see the gradient-like effects in the image.
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FIGURE 7.13 A Bokeh graphics sample






SUMMARY


This chapter started with a brief introduction of a short list of data visualization tools, and a list of various types of visualization (such as bar graphs and pie charts).

Then you learned about Matplotlib, which is an open source Python library that is modeled after MATLAB. You saw some examples of plotting histograms and simple trigonometric functions.

In addition, you were introduced to Seaborn, which is an extension of Matplotlib, and saw examples of plotting lines and histograms, as well as how to plot a Pandas data frame using Seaborn.

Finally, you received a very short introduction to Bokeh, along with a code sample that illustrates how to create a more artistic graphics effect with relative ease in Bokeh.
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